L-PI-04-065, FAI/01-86, Rev 1 Gap - User Documentation
ML041460194 | |
Person / Time | |
---|---|
Site: | Prairie Island |
Issue date: | 04/04/2004 |
From: | Hammersley R, Luangdilok W Fauske & Associates |
To: | Office of Nuclear Reactor Regulation, Nuclear Management Co |
References | |
L-PI-04-065 FAI/01-86, Rev 1 | |
Download: ML041460194 (52) | |
Text
FAI/01-86 GAP - USER DOCUMENTATION (Revision 1)
Prepared by Fauske & Associates, Inc.
16W070 Wcst 83rd Street Burr Ridge, IL 60527 Prepared for Prairie Island Nuclear Power Station Prepared by: Signature Date g -
R. J. Hlammerslcy April 3.2002 Verified by:
Wison Luangdilok Wison Langdilk Anri 4.200 Anril 4, 2002
TABLE OF CONTENTS
1.0 INTRODUCTION
..........................................................................................................5 1.1 Scope of GAP Code .................... 5 1.2 Program Features ................... 7 1.3 Installation and Use ................... 7 2.0 KNOWN PROBLEMS ................... 8 3.0 ERROR REPORTING .................... 9 4.0 INPUT ................... 9 5.0 OUTPUT .................. 14
6.0 REFERENCES
.................. 15 APPENDIX A: Code Structure and Subroutine Descriptions . ...........................
A-I APPENDIX B: Validation Testing Results .. ............................ B-I APPENDIX C: Sample GAP Output ................................ C-I FAl/1 -86, Rev.- I 04/03/02
LIST OF FIGURES 1 Sample Input (8GD2_97U02_2595.INP) ....................................................... 10 2 Sample Fuel Nodal Histories Input Deck (8GD2_97UO2_2595.DAT) ....................... 12 FAI/0 l -86, Rcv. I 04/03/02
LIST OF TABLES I Radionuclides Included in GAP (Version 0) Code ......................................... 6 FAI/01-86, Rev.-l- 04/03/02
1.0 INTRODUCTION
The GAP code has been generated to provide an NRC accepted methodology for calculating the fractional release of volatile fission products from oxide fuel that collect in the gap between the fuel pellet and its cladding. The need for this capability evolves from the Regulatory Guidance for the application of the Alternate Source Term definition as provided in USNRC Regulatory Guide 1.183 and its several appendices. In Table 3 of RG 1.183 the gap fraction inventories to be used for non-LOCA accident sequences are described. Footnote 11 associated with Table 3 restricts the use of the release fractions listed in Table 3 to LWR fuel with a peak bumup of 62,000 MWVD/MTU provided that the maximum linear heat generation rate does not exceed 6.3 kv/fI peak rod average power for burnups exceeding 54 MWVD/MTU.
The fuel management scheme at some plants results in bumups and maximum linear -heat generation rates which exceed the NRC's stated limit of applicability for Table 3 of RG 1.183.
The NRC guidance goes on to say that, "as an alternative, fission gas release calculations performed using NRC-approved methodologies may be considered on a case-by-case basis."
1.1 Scope of GAP (Version 0) Code The GAP (Version 0) computer code implements the methodology provided in American National Standard ANSIIANS-5.4-1982, Method for Calculating the Fractional Release of Volatile Fission Products from Oxide Fuel (ANS, 1982). The methodology in this standard specifically addresses radionuclides in the noble gas and halogen groups and cesium from the alkali metal group. Per Table 3 of RG 1.183, an additional radionuclide from the alkali metal group needs to be considered, i.e., rubidium. Thus, the implementation of the ANS-5.4-1982 methodology in the GAP (Version 0) program will include the set of radionuclides identified in Table 1. Appendix A provides a discussion of the GAP code structure and descriptions of its subroutines. Appendix B summarizes the results of the GAP code validation testing.
- FAI/01-86, Rev. I .04/03/02
Table 1 Radionuclides Included in GAP (Version 0) Code Type I Half-Life KR-83m 1.86 HR KYR-85 10.72 YR KR-85m 4.48 HR KR-87 76.00 MIN KR-88 2.84 HR KR-89 3:16 MIN XE-131m 11.92 DAY XE-133 5.27 DAY XE-133m 2.30 DAY XE-135 9.20 HR XE-135m 15.80 MIN XE-138 17.00 MIN I-130 12.4 HR I-131 8.05 DAY 1-132 2.30 HR 1-133 20.80 HR 1-134 52.50 MIN 1-135 6.70 HR CS-134 2.10 YR CS-136 13.00 DAY CS-137 30.00 YR RB-86 18.66 DAY RB-88 17.80 MIN RB-89 15.00 MIN FAI/OI -86, Rev. I 04/03/02
1.2 Program Features The GAP code has a single mode of operation, i.e., stand-alone. It requires an externally defined set of input data that provides the plant specific values of the fuel node time histories of power, temperature, and bumup. The code's input structure is flexible such that different sets of plant specific input parameters and data can be used for each stand-alone execution.
The GAP (Version 0) code includes Prairie Island-specific production rates for each of the radionuclides listed in Table 1. The long-lived radionuclides (half-life greater than 1 year) include Kr-85, Cs-134, and Cs-137. The production rate for each of these long-half life radionuclides as a function of bumup is required input for the ANS-5.4-1982 methodology. The inventory of each of these three long-lived radionuclides as a function of bumup are determined from an empirical fit of the isotopic histories derived from the Prairie Island plant's core history.
These empirical expressions are incorporated in the GAP (Version 0) code as derived from the ORIGEN2 (ORNL, 1989) computer program f6r the Prairie Island-specific fuel data (FAI, 2001). The GAP code uses the change in each radionuclide's inventory from time interval to time interval to calculate the radionuclide's production rate which is used in the standard methodology.
The coding in the GAP (Version 0) only allows for the assessment of a single long-lived radionuclide for each code execution. The input interface is used to specify which of the three long-lived radionuclides is quantified for a given code execution.
1.3 Installation and Use The GAP code installation on a WINDOWS based PC simply requires that the executable code (GAP.exe) and a fuel node data file (discussed in Section 4.0 INPUT) be placed in a folder on a PC's hard drive. The GAP code can be run from that folder by double clicking the executable file.
}FA1/ 1-86, Rev. I 04103/02
When the GAP code execution is started, the screen will go black and a series of questions with interactive responses will occur. The interactive input session wvill be followed by the running of the specified problem. Once the problem's execution is completed, a window will be displayed on the screen. As discussed in Section 5.0 OUTPUT, for successful code execution the window will state that the program execution terminated with exit code 0. The user should then click the YES button. This will return the user to the originating folder. The results for that GAP code execution will be available in the originating folder in a file delineated as .OUT.
An interactive input session may be terminated at any time by simply clicking on the screen and closing the window. This will return the user to the originating folder.
2.0 KNOWN PROBLEMS There are no known problems associated with Version 0 of the GAP code. The ANS-5.4-1982 methodology is characterized in the ANSI standard as providing conservative values for the GAP fractions. The testing performed as part of the code validation (see Appendix B) identified one condition which could affect the accuracy of the results provided by this methodology. The equations in the standard methodology for higlh-temperature release calculations for both long-lived and short-lived radionuclides includes a parameter, T, which is defined as the product. of the burnup increment (time) and the fuel node's diffusion coefficient for that increment. The methodology identifies two different expressions for the release fraction. The choice of which expression to use is determined by the value of -r. For those situations where the fuel nodal conditions (temperature, power, and burnup) result in extremely small values of T (that is much, much less than 0.1) the testing demonstrates that the accuracy of the methodology can be affected. Thus, it is suggested that for any given application of the GAP code (given it is based upon this standard methodology) that the values of T for the given fuel nodal conditions be checked and compared to the value of 0.1. If the values of T are within several orders of magnitude of 0.1, the accuracy of the code results will be high. The typical fuel nodal temperatures and bumups expected in reactor applications will generally yield values of Xwhich provide adequate accuracy.
FAI/01-86, Rev. I 04/03/02
There are no warning or error messages included within the GAP program. If error messages are encountered they will have resulted from the FORTRAN or WINDOWS message sets.
3.0 ERROR REPORTING Errors in the GAP code should be reported to FAI. The point of contact for the GAP code is the GAP code manager, R. J. Hammersley. He may be reached by phone at (630) 887-5239 or by e-mail at hammerslevyifauske.com. Additionally, he may be contacted by sending correspondence to FAI's offices:
Fauske & Associates, Inc.
16W070 West 83 rd Street Burr Ridge, IL 60527 The user should provide a description of the error with sample input and output as available for FAI's use in investigating the error and its resolution. FAI will maintain a log of errors and distribute error reports to the registered GAP users. FAI will employ its procedure (FAI-IG-3.4, Rev. 1) to assure the proper processing and dispositioning of suspected code errors.
4.0 INPUT Each execution of the GAP code requires one input file, i.e., casename.DAT. Part of the input for each execution is prepared interactively by the code user during code execution while the case name.DAT input is supplied from an external source. Figure 1 is a sample of an interactive data input session. It is used to identify the user selected case or run title, the fuel pellet diameter (in), the minimum fuel temperature limit in degrees F (its use is discussed in Appendix B), the name of the file containing the fuel nodal input data (power (kw/R)),
temperature (F) and burnup (MWD/MTU) histories)), and the selection of which of the three long-lived radionuclides will be assessed in the next code execution. In Figure I the input selects Kr-85 as the long-lived radionuclide to be analyzed.
9-FAI/01-86, Rev. 1 04/03/02
Figure 1 Sample Input (8GD2_97U02_2595.INP)
Enter a title for this run:
8GD2 _97U02 2595 Enter the fuel pellet diameter in inches:
0.3 Enter the minimum fuel temperature (F) that will be used.
If fuel node data provides lower temperatures than the casename.DAT file the fuel node temperatures will be set at this value:
0.0 Enter the name of the ascii text file containing the fuel node data:
8GD2_97U02_2595.DAT Select the single long-term isotope for this run.
- 1) Kr-85
- 2) Cs-134
- 3) CS-137 I
These lines will be displayed during the interactive execution which occurs once the last interactive data input is entered.
Creating 8GD2_97U02_2595_KR-85.OUT Creating 8GD2_97U02_2595_KR-85.DBG Creating 8GD2_97U02_2595_KR-85.TXT Creating 8GD2_97U02_2595_KR-85.TRM Notes on interactive input:
I. The title can be anything the user selects to describe the run. The content of the entire line will appear as the title information.
- 2. The typical (default) value for the minimum fuel temperature limit is 0.0.
- 3. The character string preceding .DAT in the fuel node data file is used to name the four output files created by each code execution. This character string corresponds to Itcasename" as discussed in Section 5.0 OUTPUT. The character string may not include blank spaced or periods (.).
FAI/01 -86, Rev. I 04/03/02
Figure 2 is an excerpt of the fuel data input file. The fuel nodal histories are supplied from an external source. The bounding (peak core flux location) temperature history for each type of fuel assembly used in a given station's core is supplied from the nuclear fuel vendor or the fuel management organization at the respective utility. A set of seven input values per line of input (each separated by at least one blank space) are read until the entire time history is input. The seven parameters that are read are the time/burnup step number, the time (hour) of each step, the axial fuel node number, the radial fuel node number, the fuel node's local power (kw/ft), the fuel node's temperature (F), and the fuel node's bumup (MWD/MTU). The excerpt in Figure 2 was supplied as an EXCEL file. It was saved as a text (ASCII) file which is the required format for the input file to be read by the program. The first two lines of the file label the contents of each line of fuel data and their units. The first two lines of the input file are ignored when GAP reads the fuel node data. (CAUTION: If these two lines of descriptive information were not included, the first two lines of fuel data would be ignored.)
To calculate the releases of fission products from the fuel rod (column of fuel pellets) into the gap between the fuel pellets and the fuel rod's cladding, the fuel rod is divided into radial and axial nodes. The standard methodology is applied to each node for the appropriate local values of temperature, power and bumup. The standard methodology requires six or more radial nodes of equal volume or equal radial increment and ten or more axial nodes of equal length.
The radiation period shall be divided into a series of bumup (time) increments such that the temperature and power in each increment can be assumed constant. These increments shall not exceed 2,000 MWD/MTU provided that the bumup values used in the analyses correspond to the mid-point of the burnup increments. Otherwise, the burnup increments shall not exceed 1,000 MWD/MTU. The GAP code will require as input from an external source the temperature, power, and bumup histories for each of the fuel nodes. These requirements from the standard methodology should be communicated by the GAP user to the organization which generates the fuel node temperature, power and bumup histories.
_ 04030 Rev FAIIOI-86~
IFAI/01-86, Rev. 1 04/03/02
Figure 2 Sample Fuel Nodal Histories Input Deck (8GD2_97UO2_2595.DAT)
Bu Step EFPil Axial Seg Ring Node Local Power Fuel Temp Local Burnup (hour) (kW/ft) (degree F) (MWD/MTU) 1 0.014 1 1;5128 6.14E+02 1.10E-02 1 0.014 1 1.5128 6.35E+02 6.35E-03 1 0.014 1 1.5128 6.56E+02 5.42E-03 1 0.0i4 1 1.5128 6.76E+02 4.99E-03 1 0.014 1 1.5128 6.96E+02 4.71E-03 1 0.014 1 1.5128 7.15E+02 4.53E-03 1 0.014 1 1.5128 7.35E+02 4.42E-03 1 0.014 1 1;5128 7.55E+02 4.33E-03 1 0.014 1 1.5128 7.75E+02 4.28E-03.
1 0.014 1 1.5128 7.95E+02 4.39E-03 1 0.014 2 2.532 i6.68E+02 1.1 83E-02 1 0.014 2 2.532 7.05E+02
, 1.106E-02
.1 0.014 2 2.532 77.40E+02 9.1D7E-03 1 0.014 2 2.532 71.75E+02 8.:35E-03 1 0.014 2 2.532 E3.09E+02 7.i38E-03 1 0.014 2 2.532 E3.43E+02 7.~59E-03 1 0.014 2 2.532 E3.78E+02 7.:39E-03 1 0.014 2 2.532 !9.13E+02 7. 24E-03 1 0.014 2 2.532 S9.48E+02 7.: 16E-03 1 0.014 2 2.532 9.84E+02 7.35E-03 FAIO10-86, Rev. I 04/03/02
The GAP subroutines which read these inputs are INPUTI and INPUTD which are described in Appendix B.
GAP (Version 0) contains empirical expressions for the bumup dependent inventories for the three long-lived radionuclides based upon Prairie Island-specific data. They are used in subroutine HITEMP (see Appendix B). If the Prairie Island core power (for example, following a power uprate) or fuel design are changed, or if a different plant was assessed, it may be necessary to revise these expressions or, at least, confirm that they are sufficiently applicable.
The requisite long-lived inventories in curies as a function of bumup can be derived by making a series of ORIGEN2 runs for a set of bumups. The inventory at shutdown for each of these bumups for each of the selected radionuclides is used to define an empirical expression which is used in the GAP subroutine HITEMP.
The fission product inventories, i.e., when plotted versus their corresponding bumups (B) on log-log scales are each found to yield a straight line. Thus, the form of the empirical expression used to fit the data is a power law:
I = aBb (1) where I = fission product inventory in curies B = burnup in MWD/MTU a, b = parameters determined by statistical fit (power law regression) of each data set The statistical data fit corresponds to converting the input data pairs into the corresponding logarithms of each pair and then fitting the logarithms with linear expression of the form log I = a log B+c (2)
FAI/01-86, Rev. I 04/03/02
- wherec is log b.
This statistical fit can readily be performed with a scientific calculator. The use of new empirical expressions for the long-lived radionuclides inventories as a function of burnup will require a code change to subroutine HITEMP.
5.0 OUTPUT Each execution of the GAP code produces four output files, i.e., casename.OUT, casename.TRM, casename.TXT and casename.DBG. Case name.OUT contains the gap fractional release results. It presents the case-name and echoes all the input data from the interactive session and case-name.DAT file (run title, number of time increments, number of axial and radial nodes, fuel pellet diameter minimum fuel temperature limit, and fuel node data) and the low-temperature and high-temperature gap fractions for each time interval for each of the radionuclides. The long-lived radionuclide identified in the interactive input session is simply included the set of tabulated gap fractions in the output file. An excerpt of a casename.OUT file is provided in Appendix C.
The case name.TRM files contains a record of the interactive session used to initiate the run. It is supplied merely as a record of that session and not as an input file that the GAP code could read.
The case name.TXT file echoes all the fuel node data that was read from the case_name.DAT file for the given run.
The casename.DBG file contains selected output variables and intermediate parameters which can be used to debug the code. This file would not be used for normal code usage, but could be useful given code changes were made for example, to update the empirical expressions for the long-lived radionuclide inventories.
FAI/ 1-86, Rev. I 04/03/02
If the interactive session ends with the display of a window which states Program Termninated with exit code 0 l Exit Window? l the GAP execution was successful. Select YES and the user is returned to the originating folder which will contain each of the four output files. If an input error is made, a different window will be displayed which will give an indication of the error. For example, if the fuel node data file is not available or its name was incorrectly specified during the interactive input session, the error will indicate an error finding the input data file.
ANS-5.4-1982 directs that the gap fraction for each radionuclide should be calculated using both the low-temperature and high-temperature expressions. The value to be chosen for the gap fraction for that radionuclide should be the larger of these two results. Typically, the high-temperature result is bounding for the range of fuel temperatures experienced in LXVR reactor cores.
6.0 REFERENCES
FAI, 2001, Fission Product Inventories for Use in Prairie Island Alternate Source Term Assessments, FAIIO1-56, Rev. 0, October 17.
ANS, 1982, American National Standard, Method for Calculating the Fractional Release of Volatile Fission Products from Oxide Fuel, ANSIIANS-5.4-1982, November 10.
ORNL, 1989, "Standard-and-Extended-Bumup PWR and BWR Reactor Models for the ORIGEN2 Computer Code," TM-i 1018, ORNL Chemical Technology Division, December.
-1 5-FAI/ 1-86, Rev. I 04/03/02
APPENDIX A Code Structure and Subroutine Descriptions A-1 FAI/O1-86, Rev. 0 11/08/01
GAP CODE STRUCTURE The GAP code evaluates the expressions for fractional gap releases provided in ANS-5.4-1982 based on user supplied inputs. The main program is simply a series of calls to the several subroutines as illustrated in Figure A-I. The standard methodology is used to calculate the fractional gap release for a set of radionuclides for each fuel node in the array of axial and radial nodes that represent a single fuel rod. The code output displays the overall (total fuel rod) gap fraction for each time interval. As described in the subroutine descriptions for the low-temperature gap fraction calculation, the overall gap fraction is determined by summation of the individual node gap fractions as weighted by relative power level. The overall gap fraction for the high-temperature model is calculated by combining the fuel node gap fractions using a.
bumup adjusted weighting. The code outputs the overall (total "rod") gap fractions as calculated by both the low-temperature and high-temperature models for each time interval.
The balance of this appendix contains descriptions of each of the GAP code subroutines.
A-2 FAI/0 1-86, Rev. 0 l 1/08/01
Call INPUTI Call INPUTD Call HEADER Call AVERAGE Call CONVERT Call LOTEMP Call HITEMP Call XWRITE STOP Figure A-I GAP Code Flow Chart.
A-3 FAI/01-86, Rev. 0 I 1/08101
Subroutine INPUT1
1.0 INTRODUCTION
Subroutine IPUTI reads the following during an interactive session that initiates code execution: the input run title, fuel pellet diameter, minimum fuel temperature limit, the name of the fuel nodal data input file, and a selection of the single long-lived radionuclide to be quantified.
2.0 STRUCTURE AND INTERFACE This subroutine is called by the main GAP program.
The input parameters for this subroutine are as follows:
Title Case Title DIA The diameter of the fuel pellet in inches TEMPMIN The minimum fuel temperature limit (F)
INFILE The name of the fuel node input file as read in subroutine INPUTD ISOFLAG A flag used to identify which of the long-lived radionuclides will be assessed. A value of I represents Kr-85, a value of 2 represents Cs-134 and value of 3 represents Cs-137.
A minimum fuel temperature limit (TEMPMIN) can be specified if it is desired to set a limit on the fuel temperature. Since high fuel temperature increases the diffusion of fission products out of the fuel and into the gap, this is a means of adding conservatism to an analysis if that is desired. Although fuel temperatures would not ever be expected to be below 700 F, the value will normally be specified as zero which would not result in any adjustment to the fuel temperatures provided in the fuel node input data.
3.0 PHYSICAL BASIS OF MODEL Not applicable to this subroutine which only reads input.
A-4 FAI/0 1-86, Rev. 0 11/08/01
4.0 VALIDATION The code testing described in Appendix B demonstrates the proper functioning of subroutine INPUTI in all of the test cases. Test case 3 demonstrates the proper functioning of the minimum fuel temperature limit.
5.0 REFERENCES
None
'A-5 FA1/01-86, Rev. 0 11108/01
Subroutine INPUTD
1.0 INTRODUCTION
This subroutine reads input for the number of fuel bumup increments, the number of axial and radial nodes, and the times associated with each burnup increment. It also reads the fuel node's power, temperature, and burnup histories.
Thus subroutine reads the computer file that was generated to obtain:
- 1. Power in kw/fI for each axial node as a function of time (variable P)
- 2. Fuel temperature in 0 F for each axial/radial node as a function of time (variable T)
- 3. Fuel burnup in MWD/MTU for each axial/radial node as a function of time (variable BU).
Each line of data provides seven inputs each separated by at least one blank space. The seven inputs read per line are the time/bumup step number, the time (hour) of each step, the axial fuel node number, the radial fuel node number, the fuel node's local power (kwv/f), the fuel node's temperature (F), and the fuel node's bumup (MWD/MTU). This subroutine skips over the identifiers of bumup increment, axial node, and radial node and their units that are provided in the input file.
2.0 STRUCTURE AND INTERFACE The GAP main program calls INPUTD. The value of TEMPMIN as read from INPUTI is used in this subroutine. This subroutine revises the fuel tempature data if a minimum temperature limit has been specified. Nonnally the value of TEMPMIN will be specified as zero and the fuel nodal temperatures developed by the external fuel analysis will be used without modification. This subroutine also calculates the time span of each burnup increment in seconds.
A-6 FAI/01-86, Rev. 0 11/08/01
The input parameters for this subroutine are as follows:
I The burnup or time increment TIME The time in hours of each bumup/time step J The axial node index value K The radial node index value POWER The fuel node's local power in kv/fl FTEMP The fuel node's temperature in degree (F)
BURNUP The fuel node's burnup in MWD/MTU There are no outputs for this subroutine.
3.0 PHYSICAL BASIS OF TIHE MODEL Not applicable as this subroutine simply reads input.
4.0 VALIDATION The test cases provided in Appendix B demonstrate the proper behavior of the INPUTD subroutine.
5.0 REFERENCES
None.
A-7 FAW/1-86, Rev. 0 11/08/01
ii Subroutine MEADER
1.0 INTRODUCTION
This subroutine writes the header banner and the input data read by INPUT 1 and INPUTD. This subroutine writes the header banner for the output file.
2.0 STRUCTURE AND INTERFACT This subroutine is called by the GAP main program.
There are no inputs or variable outputs for this subroutine.
3.0 PHYSICAL BASIS OF THE MODEL Not applicable as this subroutine is just used to display output.
4.0 VALIDATION The proper functioning of the HEADER subroutine has been demonstrated by the several test cases described in Appendix B.
5.0 REFERENCES
None A-8 FAOI/01-86, Rev. 0 11/08/01
Subroutine AVERAGE- .
1.0 INTRODUCTION
This subroutine determines the overall rod average values for power, temperature, and burnup. The calculation is a simple division of the summation of the values for all the nodes in the fuel rod by the total number of nodes. This averaging is provided for each time interval.
2.0 STRUCTURE AND INTERFACE This subroutine is called by the main GAP program and uses the information as input by subroutine INPUTD. There are no inputs read by this subroutine.
This subroutine outputs the following parameters:
BUAVE The average rod bumup in MWD/MTU PAVE The average rod power in k-v/fl TAVE The average rod temperature in F 3.0 PHYSICAL BASIS OF MODEL A simple algebraic averaging of the individual nodal values is used to calculate the total rod average value.
4.0 VALIDATION The test cases provided in Appendix B demonstrate the proper calculation of rod averages.
5.0 REFERENCES
None A-9 17AI/0 1-86, Rev. 0 11/08/01
Subroutine CONVERT
1.0 INTRODUCTION
This subroutine converts the units of the fuel nodal data (F and kw/ft) to the units required by the expressions in ANS-5.4-1982, i.e., degrees K and MW/MTU.
2.0 STRUCTURE AND INTERFACE The GAP main program calls this subroutine. It simply converts the units of the fuel node temperatures and power.
There are no inputs or outputs for this subroutine.
3.0 PHYSICALIBASIS OF MODEL Input data for power generation in fuel is given as kw/f which is the power (in kilowatts) generated per linear foot of a fuel rod. This must be converted to an equivalent form of MW/MTU for use in the ANS-5.4-1982 equations evaluated in the GAP. code. MW is power as megawatts and MTU is metric tons of heavy metal (uranium) in the fuel.
The temperature conversion is performed as follows:
K = (T-32.0) x 5J9. + 273 where K = temperature in degrees Kelvin T= temperature in degrees Fahrenheit
- - - The power generation conversion is performed as follows:
A-10 FAI/01-86, Rev. 0 11/08/01
MW kv 1 1 270 2204.6 1
= x x x-x x MTU ft 7{DIA) 2 684.2(.95) 238 1 4t 12) where DIA = fuel rod diameter in inches p U0 2 = (.95) 684.2 lb 3
"/fl (theoretical density adjusted for actual density of 0.95 of theoretical) molecular wt of U0 2 = 270 lb/lb-mole molecular vt of U = 238 lb/lb-mole MW =KW x I xFACTOR MTU ft DIA 2 where FACTOR 4 x 144 x 270x 2204 Yrx.95x684.2x238x10 3 4.0 VALIDATION The test cases provided in Appendix B demonstrate the proper performance of the CONVERT subroutine.
5.0 REFERENCES
None.
A-ll FAI/O1-86, Rev. 0 11/08/01
Subroutine LOTEMP I
1.0 INTRODUCTION
This subroutine calculates the low-temperature gap release fractions for the long-lived and short-lived radionuclides. The long-lived radionuclides currently addressed by the GAP code are Kr-85, Cs-134 and Cs-137. The low-temperature release fractions are calculated based on the models defined in Section 3.2 of ANS-5.4-1982.
2.0 STRUCTURE AND INTERFACE The main GAP program calls this subroutine. The calculated low-temperature gap fractions are written by subroutine XWRITE.
There are no inputs or outputs for this subroutine.
3.0 PHYSICAL BASIS OF THE MODEL Per ANS-5A-1982 (Section 3.2) the expression for the long-lived.radionuclide gap fraction is:
F=(7.Oxl08)(Bu3 vg) where F = gap fraction Buavg = rod average accumulated bumup (MWD/MTU)
The expression for the short-lived radionuclide gap fraction for each fuel node is calculated using the equation:
A-12 FAI/01-86, Rev. 0 I 1/08/01
I F= (I/X) [IC r\+ (1.'~X6x1012)PI where F = gap fraction X = isotopic decay constant (sec")
P = specific power (MW/MTU)
The overall gap fraction is determined by summation of the individual node gap fractions as corrected by relative power level. In this manner, the gap fractions associated with the higher power level fuel nodes are emphasized and the gap fractions associated with the lower power level fuel nodes are de-emphasized. Consequently, the overall gap fraction reflects the fact that the production of fission products is proportional to the power level.
k FT = (F ) (Pi)/(P.,,)(k) 1=1 where k = the number of fuel nodes F1 = gap fraction for the ith fuel node Pi = specific power for the ith fuel node Pavg = rod average power for the time interval After the determination of the overall gap fractions for the various isotopes, a correction is made to the gap fractions for Xe-133 and Xe-135 to take into account precursor effects. From Section 3.3 of ANS-5.4-1982, the correction is:
TotalFXe 133 = FI-133+FXe-133 -(F 1-13 3 )(FXe-133)
Total FXe 135 = ]35 +FXe-135 ((r;-135)(FX,-13 5 )
A-13 FAI/01-86, Rev. 0 11/08/01
Per Section 3.3, the effect of precursors is believed to be negligibly small for the other isotopes.
4.0 VALIDATION The test cases provided in Appendix B demonstrate the proper performance of this subroutine for both short-lived and long-lived radionuclides.
5.0 REFERENCES
ANS, 1982, American National Standard, Method for Calculating the Fractional Release of Volatile Fission Products from Oxide Fuel, ANSI/ANS-5.4-1982, November 10.
A-14 FA1/0 1-86, Rcv. 0 11/08101
Subroutine IIITEMP
1.0 INTRODUCTION
This subroutine calculates the high-temperature gap release fractions for the long-lived and short-lived radionuclides. The models from Section 3.1 of ANS-5.4-1982 are used.
2.0 STRUCTURE AND INTERFACE The main GAP program calls this subroutine. This subroutine writes selected output to the debug file for use in debugging code modifications. The gap fractional releases as calculated by this subroutine are displayed by subroutine XWRITE.
There are no inputs or outputs associated with this subroutine.
3.0 PHYSICAL BASIS OF TIHE MODEL Short-Lived Isotopes Per Section 3.1.2 of ANS-5.4-1982, the release fraction for a given isotope and fuel node is:
F=3((l/u)(coth(F)) (I /))
where F = fraction released to the gap it = ?
D = [(DJa2 ) (exp (-Q/RT))] x 1 00BDJ28w0 Do/a2 = 0.61 sec' (from Section 3.1 of ANS-5.4-1982)
Q = 72,300 cal/mol (from Section 3.1 of ANS-5.4-1982)
A-15 FAIIO1-86, Rev. 0 11/08/01
R = 1.987 cal/mol-'K (from Section 3.1 of ANS-5.4-1982)
Tj = temperature (0K) of the fuel node during the 1P time interval Bu = accumulated bumup (MWD/MTU)
In coding this material, the first step was to provide for the determination of D since it is also used for the calculation of long-lived isotopic gap fractions. The second step is a line of code to calculate p (variable name U). The third step is to determine the gap fraction for the specific fuel node (variable name XIITEMP). Note that, since FORTRAN does not contain a hyperbolic cotangent function, the coth has been replaced by I/tanh since that is the definition of the hyperbolic contangent. The final step is to determine the overall gap fraction by summation of the individual node gap fractions as corrected by relative bumup over the time increment.- In this manner, the gap fractions associated with the nodes having a higher burnup over the time period are emphasized and the gap fractions associated with nodes having a lower burnup over the time period are de-emphasized. Consequently, the overall gap fraction reflects the fact that the production of fission products is proportional to the bumup rate.
After the determination of the overall gap fractions for the various isotopes, a correction is made to the gap fractions for Xe-133 and Xe-135 to take into account precursor effects (see subroutine LOTEMP).
Lon2-Lived Isotopes With the currently defined group of isotopes addressed by the code, Kr-85, Cs-134, and Cs-137 are the only long-lived isotopes considered (i.e., half life greater than one year). The coding of the model described in Section 3.1.1 of ANS-5.4-1982 for long-lived isotopes is somewhat complicated and a simplification was made by only considering one isotope at a time.
From Section 3.1.1 the gap fraction for long-lived isotopes is calculated for the first time step by:
F= I- g (where g is defined below)
A-16 FAI/01 -86, Rev. 0 I 1/08/01
And for time steps after th&first one by:
k-l k Fk =1 [:(BI (rFg; - r+l g+1 )/D )+ BkAtkgk]/BiAti with Fk = cumulative fractional release at the end of k bumup (time) increments Bi = the fission product production rate during the ith step (equation provided below)
Di = as defined above (page A-15) and To and gj are defined below.
From (FAI, 2001) the equation for total Kr-85 production as a function of burnup is:
I = 0.74264 BU0 86575 The equation provides the inventory for a single fuel assembly in curies (adjusted by a radial peaking factor of 1.65). The use of this inventory is acceptable since the usage of production rates in the above equation has the units cancel completely (production rate. appears in both the numerator and the denominator). Separate expressions are also provided for Cs-134 and Cs-137.
To obtain a production rate the equation has to be modified to consider the bumup over the time period of concern and to divide by the time interval.
Bk = (It - It- ])/At i =ZDiAti i=A A-17 FAI/01-86, Rev. 0 11/08/01
This determination oft, must be revised each time step since the value determined during one time interval is not valid in the next time interval. This approach must be followed to reflect the fact that the inventory of Kr-85 produced in one time interval is still present and available for release to the gap during the next time interval.
There are two equations provided for the calculation of gi. The choice of which equation is to be used depends on the value of t, that has been calculated.
if rTis< O.], g =1-4 f7P+3r; /2 if To is> 0. 1, gj (I (15lri) - (6 /ri)(N) whereN = Yexp(_n or ri)/(n Jr4) n=J 4.0 VALIDATION The test cases provided in Appendix B demonstrate the proper behavior of this subroutine for both long-lived and short-lived radionuclides.
5.0 REFERENCES
ANS, 1982, American National Standard, Method for Calculating the Fractional Release of Volatile Fission Products froth Oxide Fuel, ANSI/ANS-5.4-1982, November 10.
FAT, 2001, Fission Product Inventories for Use in Prairie Island Alternate Source Term Assessments, FAII01-56, Rev. 0, October.
A-18 FAI/ 1-86, Rev. 0 11108/01
Subroutine XWRITE
1.0 INTRODUCTION
This subroutine writes the calculated gap fractions for each of the radionuclides at each of the bumup intervals. This provides the output in the casename.OUT file.
2.0 STRUCTURE AND INTERFACE This subroutine is called by the main GAP program. It interfaces with the gap fractions as calculated for the entire fuel rods in subroutines LOTEMP and HITEMP.
There are no inputs for this subroutine, but the following outputs are provided:
I the time interval or bumup interval FLOTEMP the low-temperature overall rod gap fraction FHITEMP the high-temperature overall rod gap fraction ISOTOPE the name of the isotope whose high and low-temperature gap fractions are being reported 3.0 PHYSICAL BASIS OF TIHE MODEL Not applicable as this subroutine simply is used to display the code output.
4.0 VALIDATION The test cases in Appendix B demonstrate the proper operation of this subroutine.
5.0 REFERENCES
None A-19 FAI/01-86, Rev. 0 I 1/08/01
APPENDIX B VALIDATION TESTING RESULTS B-1 FAJI01-86, Rev. 0 I 1/08/01
Test of Evaluation of ANS-5.4-1982 Equations The technical adequicy of the GAP code's implementation of the ANS-5.4-1982 fractional release equations was tested by comparing the code results to hand calculations for the set of inputs provided in Table B-I. The acceptance criterion used for the verification of the implementation of the ANS-5.4-1982 methodology was agreement of the GAP code results to be within at least three significant figures of the hand calculation results.
First, Case I is used to determine the low- and high-temperature gap fractions for the short-lived (1-133 and Xe-133) and long-lived (Kr-85) radionuclides where T is much less than 0.1. The parameter T is defined as the product of the fuel node's exposure time and its diffusion.
coefficient. The Xe-133 results include the precursor effect correction and the 1-133 results include the adjustment multiplier (DFACTOR) on the iodine diffusion coefficients. The comparison between the hand calculation and code results is provided in Table B-2. All the results for Case I satisfy the acceptance criteria except for the second time step for the long-lived isotope, Kr-85. The appropriate acceptance criterion (Section 9.4 of GAP Test Plan) is agreement between the gap fractions to within at least three significant figures. This hand calculation result under predicts the code result by about 27%. The size of the discrepancy is attributed to the fact that while the values obtained for the numerator and denominator in the expression for the fuel node gap fractions both by hand and the code agree they are extremely close (they are identical to 6 digits after the decimal point). Thus, slight differences in round off for example can result in magnifying the discrepancy. The set of arbitrary fuel node inputs chosen for Case I resulted in very small values of T, less than may be experienced in actual fuel data. It can be concluded from Case I that the accuracy of the methodology (for high-temperature cases) may be limited if the actual fuel data results in extremely small values of x. It would be prudent for the analyst in future applications of the GAP code to check the T values to see if this set of conditions are encountered. However, it should be noted that an accuracy of 20 to 30% may be sufficient for the selected application and not constitute a limitation on the use of the ANS-5.4-1982 methodology. (The methodology tends to over predict gap fractions.) The Case 2 fuel data has been selected to yield larger values of T that would be more likely to be experienced by the fuel in an operating nuclear plant.
B-2 FAI/01-86, Rev. 0 11/08/01
Table B-1 Input Data for Evaluation of Implementation of ANS-5.4-1982 Equations MUPT~DA TA 3'rime Increments 2 Axial Nodes 1 Radial Nodes Fuiel pellet dia is 0.3000 inches Radial Time Power Temp. IBurnup Time "IStep Axial Node Node (IIR) (KW/FT) (Deg F) (NM* 'UNITU))
I I I 5.5132 6.5 1.025133 9.
2 1 5.5E2 7.5 1.117133 1..23000E13 2
I I I.1E3 7.0 1.013E3 I. .84000E33 2
2 1 1.1133 8.0 1.095E3 2. .50000E13
- - -1 1.65133 6.0 1.000133 2.- .78000E13 3
2 1 1.65E3 7.0 1.080133 3.:.80000E33 Radial Time Power Temp. I Burnup Time S1;tep Axial Node Node (IIR) (KVMIT) (Deg F) (N1i ,N'D/A\ITU)
I I 2.4E3 7.0 2.0E3 4838 I
2 1 2.4133 8.0 2.5133 5529 2
I 1 4.8E3 7.0 2.0133 9676 2
2 1 4.8133 8.0 2.5133 11058 3 I 1 7.2E3 7.0 2.0E3 14514 2 1 7.2E3 8.0 2.5133 16587 d1ue re Yelonmperlur Radial Time Power Temp. I Burnup 3 ;tep Axial Node Node (1IR) (KWIFI) (Deg F) (NINVD/MMlJ 3j" I I 2.4E3 7.0 2.0133 4838 2 1 2.4E3 8.0 2.5133 5529 I I 4.8E3 7.0 2.0133 9676 2 1 "4.8E3- 8.0 2.5E3 11I0 5~8 I 1 7.2133 7.0 2.0E3 14514 2 1 7.2133 8.0 2.5133 16587 B-3 IFAI/01-86, Rev. O 1]/08/01
Table B-2 Comparison of Hand and Code Evaluations of ANS-5.4-1982 Equations Acceptance Criteria Case Results from Hand Calculations Results from GAP Code Satisfied Time Time Interval 1-133 Xe-133 Kr-85 Cs-134 Interval 1-133 Xe-133 Kr-85 Cs-134 I-Low temperature fractions 1 4.240E-O5 1.818E104 7.490E-05 . I 4.240E-05 1.818E-04 7.490E-05 Y 2 4.307E-05 1.866E-04 1.519E-04 .2 4.307E-05 1.866E-04 1.519E-04 .. -- Y 3 4.173E-05 1.770E-04 2.303E-04 3 4.173E-OS 1.770E-04 2.303E-04 . Y 1- High temperature fractions I 1.477E-06 2.856E-06 1.798E-06 .. 1 1.477E-06 2.856E-06 1.798E-06 . y 2 1.243E-06 2.404E-06 1.668E-06 . 2 1.243E-06 2.404E-06 2.286E-06 .IT--
1.126E-06 I3 2.177E-06 .. 3 1.126E-06 2.177E-06 2-High temperature fractions 1 .. .. 7.144E-02 9.952E-02 I .. 7.144E-02 9.952E-01 y; 2 1.458E-01 1.748E-01 2 1.458E-01 1.748E-01 Y 3-High temperature fractions (min fuel I . . 5.039E-01 .. I .. . 5.039EO01 y temperature of 2 8.139E-01 . 2 .. 8.138E-01 Y 3000 F) I II
'Except for the long-lived radionuclide, Kr-85.
B-4 FAI/01-86, Rev. 0 11/08/01
The Case 2 data is used to determine the high-temperature gap fractions for two long-lived radionuclides, Kr-85 and Cs-134. The r values for the Case 2 input data are found to be much larger than those from the Case I input, however, they still are less than 0.1. The results for the gap fraction for both time steps and both long-lived radionuclides are now found to agree with the code output and satisfy the acceptance criterion. The results for Case 2 are summarized in Table B-2.
Lastly, Case 3 is used to determine the high-temperature gap fraction for the long-lived radionuclide, Kr-85, where T is greater than 0.1 and a minimum fuel temperature limit of 3,000 is specified. This case exercises the remaining logic branches in the code which were not executied for the Case I and Case 2 inputs. As shown in Table B-2, the results from the hand calculation check with the code results and the test plan's acceptance criterion is satisfied.
REFERENCES ANS, 1982 American National Standard, Method of Calculating the Fractional Release of Volatile Fission Products from Oxide Fuel, ANSI/ANS-5.4-1982, November 10.
Hammersley, R. J., 2001, GAP (Version 0) Test Plan Results, November.
FAI/O-86, Rev. 0 11/08/01
APPENDIX C EXCERPT OF SAMPLE OUTPUT (GAP FRACTIONAL RELEASE RESULTS)
- C-l, FAI/0 1-86, Rev. 0 11/08/01
- f-GAP CODE
--- NOTICE ---
P R O G R A M G A P THIS PROGRAM PROVIDES A DETERMINATION OF GAP FRACTIONS OF XENON, KRYPTON IODINE, CESIUM, AND RUBIDIUM ISOTOPES AS A FUNCTION OF BURNUP UTILIZING THE MODEL DESCRIPED IN ANSI/ANS 5.4-1982.
C-2 FAV0O1 -86, Rev. 0 11108/01
I"., .1,
- ,i
--- 8GD2_97U02_2595 INPUT DATA 34 TIME INCREMENTS 11 AXIAL NODES 10 RADIAL NODES FUEL PELLET DIA IS 0.3000 INCHES MINIMUM FUEL TEMPERATURE LIMIT IS 0.0 DEG. F TIME TIME AXIAL RADIAL POWER TEMP BURNUP STEP (HR) NODE NODE (KW/FT) (DEG F) (MWD/MTU) 1 0.014 1 1 1.5128 6.14E+02 1.10E-02 1 0.014 1 2 1.5128 6.35E+02 6.35E-03 1 0.014 1 3 1.5128 6.56E+02 5.42E-03 1 0.014 1 4 1.5128 6.76E+02 4.99E-03 1 0.014 1 5 1.5128 6.96E+02 4.71E-03 1 0.014 1 6 1.5128 7.15E+02 4 .53E-03 1 0.014 1 7 1.5128 7.35E+02 4.42E-03 1 0.014 1 8 1.5128 7.55E+02 4.33E-03 1 0.014 1 9 1.5128 7.75E+02 4.28E-03 1 0.014 1 10 1.5128 7.95E402 4.39E-03 1 0.014 2 1 2.5320 6.68E+02 1.83E-02 1 0.014 2 2 2.5320 7.05E+02 1.06E-02 1 0.014 2 3 2.5320 7.40E+02 9.07E-03 1 0.014 2 4 2.5320 7.75E+02 8.35E-03 I 0.014 2 5 2.5320 8.09E+02 7.88E-03 1 0.014 2 6 2.5320 8.43E+02 7.59E-03 0.014 2 7 2.5320 8.78E+02 7.39E-03 1 0.014 2 8 2.5320 9.13E+02 7.24E-03 1 0.014 2 9 2.5320 9.48E+02 7.16E-03 1
0.014 2 10 2.5320 9.84E:02 7.35E-03 1
0.014 3 1 3.0172 6.96E+02 2.19E-02 1
0.014 3 2 3.0172 7.4OE+02 1.27E-02 1-0.014 3 3 3.0172 7.82E+02 1. 08E-02 1-0.014 3 4 3.0172 8.24E+02 9.9sE-03 1
0.014 3 5 3.0172 8.66E+02 9.39E-03 1
0.014 3 6 3.0172 9.08E+02 9.04E-03 1
0.014 3 7 3.0172 9.50E+02 8.81E-03 1
0.014 3 8 3.0172 9.93E+02 8.63E-03 1
0.014 3 9 3. 0172 1.04E+03 8.53E-03 1
1 0.014 3 10 3.0172 1.08E+03 8.75E-03 0.014 4 1 3.2731 7.13E+02 2.37E-02 1
0.014 4 2 3.2731 7.61E+02 1.37E-02 1
0.014 4 3 3.2731 8. 07E+ 02 1.17E-02 1
0.014 4 4 3.2731 8.53E+02 1.08E-02 1
1 0.014 4 S 3.2731 8.99E+02 1.02E-02 0.014 4 6 3.2731 9.4SE+02 9.81 E-03 C-3 FAI/01-86, Rev. 0 1 1/08/01
I - I i .
34 44469.578 ,6 5 2.9882 8.63E+02 6.84E+04 34 44469.578 '6 6 2.9882 9.06E+02 6.50E+04 34 44469.578 6 7 2.9882 9.48E+02 6.26E+04 34 44469.578 6 8 2.9882 9.90E+02 6.08E+04 34 44469.578 6 9 2.9882 1.03E+03 5.94E+04 34 44469.578 6 10 2.9882 1.07E+03 5.85E404 34 44469.578 7 1 3.0780 6.98E+02 9.75E+04 34 44469.578 7 2 3.0780 7.46E+02 8.69E+04 34 44469.578 7 3 3.0780 7.92E+02 7.89E+04 34 44469.578 7 4 3.0780 8.37E+02 7.29E+04 34 44469.578 7 5 3.0780 8.81E+02 6. 84E+04 34 44469.578 7 6 3.0780 9.25E+02 6.50E+04 34 44469.578 7 7 3.0780 9.69E+02 6.26E+04 34 44469.578 7 8 3.0780 1.O1E+03 6.07E+04 34 44469.578 7 9 3.0780 1.06E+03 5.94E+04 34 44469.578 7 10 3.0780 1.lOE+03 S.85E+04 34 44469.578 8 1 3.2013 7.11E+02 9. 66E+04 34 44469.578 8 2 3.2013 7.61E+02 8.61E+04 34 44469.578 8 3 3.2013 8.09E+02 7. 82E+04 34 44469.578 8 4 3.2013 8.56E+02 7.23E+04 34 44469.578 8 5 3.2013 9.02E402 6.78E+04 34 44469.578 8 6 3.2013 9.48E+02 6.4 SE+04 34 44469.578 8 7 3.2013 9. 94E+02 6.20E+04 34 44469.578 8 8 3.2013 1.04E+03 6.02E+04 34 44469.578 8 9 3.2013 1. 09E+03 5.89E+04 34 44469.578 8 10 3.2013 1.13E+03 5.80E+04 34 44469.578 9 1 3.4289 7.28E+02 9.51E+04 34 44469.578 9 2 3.4289 7.82E+02 8. 48E+04 34 44469.578 9 3 3.4289 8.34E+02 7.7 OE+04 34 44469.578 9 4 3.4289 8.85E+02 7.12E+04 34 44469.578 9 5 3.4289 9.35E+02 6. 68E+04 34 44469.578 9 6 3.4289 9.85E+02 6.35E+04 34 44469.578 9 7 3.4289 1.03E+03 6. 11E+04 34 44469.578 9 8 3.4289 1.08E+03 5.94E+04 34 44469.578 9 9 3.4289 1.13E+03 5.81E+04 34 44469.578 9 10 3.4289 1.19E+03 5.72E-+04 34 44469.578 10 1 3.7902 7.53E+02 9.16E+04 34 44469.578 .10 2 3.7902 8.13E+02 8. 18E+04 34 44469.578 10 3 3.7902 8.71E+02 7.43E+04 34 44469.578 10 4 3.7902 9.28E+02 6.87E+04 34 44469.578 10 5 3.7902 9. 84E+02 6. 45E+04 34 44469.578 10 6 3.7902 1.04 E+03 6.14E+04 34 44469.578 10 7 3.7902 1. lOE+03 5.91E+04 34 44469.578 10 8 3.7902 1. 15E+03 5.74 E+04 34 44469.578 10 9 3.7902 1.2 1E+03 S.61E+04 34 44469.578 10 10 3.7902 1.27E+03 S.53E+04 34 44469.578 11 1 3.2223 7.30E+02 6.81E+04 34 44469.578 11 2 3.2223 7.81E+02 6.13E+04 34 44469.578 11 3 3.2223 8.30E+02 5.62E+04 34 44469.578 11 4 3.2223 8.79E+02 5.22E+04 34 44469.578 11 5 3.2223 9.27E+02 4.92E+04 34 44469.578 11 6 3.2223 9.75E+02 4.70E+04 34 44469.578 li 7 3.2223 1.02E+03 4.54E+04 34 44469.578 11 8 3.2223 1.07E+03 4.4 1E+04 34 44469.578 11 9 3.2223 1. 12E+03 4.31E+04 34 44469.578 11 10 3.2223 1.17E+03 4.24E+04 C-4 FAI/01-86, Rev. 0 I 1/08/01I
~;
IA : ) : i I1 . '
7"I 1
AVE. BU(MWD/MTU) AVE. POWER(KW/FT) AVE. TEMP(F) 1 0.01 2.782 876.97 2 1999.67 4.019 1017.71 3 3999.91 5.256 1159.82 4 5999.55 6.492 1318.61 5 8000.18 7.729 1478.55 6 9999.27 8.038 1519.86 7 12000.45 8.038 1515.46 8 13999.09 8.038 1513.06 9 15997.64 8.038 1512.31 10 17995.45 7.883 1509.45 11 20001.73 7.729 1494.65 12 22003.64 7.574 1478.61 13 24003.64 7.420 1462.30 14 26000.91 7.265 1450.70 15 27999.09 7.110 1427.60 16 29995.45 6.956 1406.31 17 31998.18 6.801 1385.91 18 34000.00 6.647 1377.05 19 35997.27 6.492 1354.96 20 38000.91 6.338 1331.25 21 39997.27 6.183 1308.43 22 41998.18 5.936 1289.65 23 44000.91 5.688 1261.05 24 46002.73 5.441 1228.35 25 47998.18 5.194 1193.65 26 50000.00 4.946 1157.40 27 52001.82 4.699 1125.22 28 53999.09 4.452 1088.47 29 55999.09 4.204 1052.22 30 57999.09 3.957 1017.60 31 60001.82 3.710 985.15 32 61999.09 3.462 951.26 33 64000.00 3.215 918.02 34 64999.09 3.092 900.00 TIME,.__, 1-130 GAP FRACTION 1-131 GAP FRACTION INTERVAL LOW TEMP TI TEMP LOW TEMP HI TEMP 1 2.774E-05 2.504E-07 1.369E-04 9.88 OE-07 2 2.879E-05 3.081E-06 1.532E-04 1.216E-05 3 2.984E-05 3.498E-05 1.696E-04 1.380E-04 4 3.078E-05 2.978E-04 1.842E-04 1.173E-03 5 3.181E-05 2.514E-03 2.003E-04 9.763E-03 6 3.207E-05 4 .745E-03 2.043E-04 1.819E-02 7 3.192E-05 3.629E-03 2.020E-04 1.396E-02 8 3.192E-05 4.212E-03 2.020E-04 1.613E-02 9 3.192E-05 4 .946E-03 2.020E-04. 1.880E-02 10 3.203E-05 9.567E-03 2.037E-04 3.521E-02 11 3.190E-05 9.683E-03 2.017E-04 3.557E-02 12 3.177E-05 9.752E-03 1.997E-04 3.573E-02 13 3.164E-05 9.617E-03 1.976E-04 3.52BE-02 14 3.137E-05 5.990E-03 1.934E-04 2.282E-02 C-5
- FAI/01-86, Rev. 0 11/08/01
I
,7r 1S 3.124E-05 5.566E-03 1.915E-04 2.126E-02 16 3.112E-05 5.117E-03 1.895E-04 1.960E-02 17 3.099E-05 4.836E-03 1.875E-04 1.855E-02 18 3.080E-05 4.384E-03 1.846E-04 1.657E-02 19 3.067E-05 4.193E-03 1.826E-04 1.584E-02 20 3.055E-05 3.845E-03 1.806E-04 1.455E-02 21 3.042E-05 3.539E-03 1.787E-04 1.343E-02 22 3.039E-05 4.749E-03 1.781E-04 1.813E-02 23 3.018E-05 3.863E-03 1.749E-04 1.484E-02 24 2.997E-05 3.081E-03 1.716E-04 1.190E-02 25 2.976E-05 2.295E-03 1.684E-04 8.915E-03 26 2.955E-05 1.662E-03 1.651E-04 6.483E-03 27 2.925E-05 7.325E-04 1.605E-04 2.879E-03 28 2.905E-05 4.808E-04 1.573E-04 1.892E-03 29 2.885E-05 3.143E-04 1.541E-04 1.238E-03 30 2.864E-05 2.045E-04 1.509E-04 8.061E-04 31 2.840E-05 1.308E-04 1.473E-04 5. ISSE-04 32 2.820E-05 8.383E-05 1. 441E-04 3.305E-04 33 2.800E-05 5.184E-05 1.410E-04 2.044E-04 34 2.790E-05 3.982E-05 1.394E-04 1.571E-04 TIME 1-132 GAP FRACTION 1-133 GAP FRACTION INTERVAL LOW TEMP HI TEMP LOW TEMP HI TEMP 1 1.133E-05 1.075E-07 3.683E-05 3.244E-07 2 1.152E-05 1.323E-06 3.859E-05 3.991E-06 3 1.172E-05 1.502E-05 4.035E-05 4.530E-05 4 1.189E-05 1.279E-04 4.194E-05 3.857E-04 5 1.208E-05 1.082E-03 4.366E-05 3.251E-03 6 1.213E-05 2.048E-03 4.409E-05 6.128E-03 7 1.210E-05 1.565E-03 4.385E-05 4.688E-03 8 1.210E-05 1.818E-03 4.3B5E-05 5.439E-03 9 1.210E-05 2.138E-03 4.385E-05 6.383E-03 10 1.212E-05 4.161E-03 4.403E-05 1.231E-02 11 1.210E-05 4.212E-03 4 .382E-05 1.246E-02 12 1.207E-05 4.244E-03 4.360E-05 1.254E-02 13 1.205E-05 4.185E-03 4.338E-05 1.237E-02 14 1.200E-05 2.589E-03 4.293E-05 7.732E-03
-15 1.198E-05 -2.404E-03 4.271E-05 7.186E-03 16 1.195E-05 2.209E-03 4.250E-05 6.609E-03 17 1.193E-05 2.088E-03 4.228E-05 6.247E-03 18 1.189E-05 1.897E-03 4.197E-05 5.655E-03 19 1.187E-05 1.815E-03 4.176E-05 5.408E-03 20 1.185E-05 1.664E-03 4.155E-05 4 .960E-03 21 1.182E-05 1.531E-03 4.133E-05 4.566E-03 22 1.182E-05 2.052E-03 4.128E-05 6.132E-03 23 1.178E-05 1.667E-03 4.093E-05 4.991E-03 24 1.174E-05 1.328E-03 4.057E-05 3.982E-03 25 1.170E-05 9.881E-04 4.022E-05 2.968E-03 26 1.166E-05 7.149E-04 3.987E-05 2.150E-03 27 1.161E-05 3.147E-04 3.937E-05 9.484E-04 28 1.157E-05 2.065E-04 3.903E-05 6.226E-04 29 1.153E-05 1.350E-04 3.869E-05 4.070E-04 30 1.150E-05 8.782E-05 3.835E-05 2.649E-04 31 -- 1.145E-05 5.617E-05 3.795E-05 1.694E-04 C-6 FAL/01-86, Rev. 0 I 1/08/01
32 1.141E-05 3.600E-05 3.761E-05 1. 086E-04 33 1.138E-05 2.226E-05 3.727E-05 6.714E-05 34 1.136E-05 1.710E-05 3.710E-05 5.158E-05 TIME I-134 GAP FRACTION 1-135 GAP FRACTION INTERVAL LOW TEMP HI TEMP LOW TEMP HI TEMP 1 6.915E-06 6.660E-08 1.97SE-05 1.825E-07 2 6.989E-06 B.193E-07 2.031E-05 2.245E-06 3 7.064E-06 9.302E-06 2.086E-05 2.549E-05 4 7.130E-06 7.924E-05 2.136E-05 2. 171E-04 5 7.203E-06 6.710E-04 2.191E-05 1.834E-03 6 7.221E-06 1.271E-03 2.205E-05 3.467E-03 7 7.211E-06 9.71OE-04 2.197E-05 2.651E-03 8 7.211E-06 1.128E-03 2.197E-05 3.078E-03 9 7.211E-06 1.327E-03 2.197E-05 3.617E-03 10 7.219E-06 2.587E-03 2.203E-05 7. 016E-03 11 7.210E-06 2.619E-03 2.196E-05 7.101E-03 12 7.200E-06 2.639E-03 2.189E-05 7.154E-03 13 7.191E-06 2.602E-03 2.182E-05 7.054E-03 14 7.172E-06 1.607E-03 2.168E-05 4.379E-03 15 7.163E-06 1.4 92E-03 2.161E-05 4.068E-03 16 7. 154E-06 1.371E-03 2.154E-05 3.739E-03 17 7. 145E-06 1.295E-03 2.147E-05 3.534E-03 18 7.132E-06 1.178E-03 2.137E-05 3.207E-03 19 7.123E-06 1.127E-03 2.131E-05 3.068E-03 20 7.114E-06 1.033E-03 2.124E-05 2.813E-03 21 7.105E-06 9.502E-04 2.117E-05 2.58BE-03 22 7.103E-06 1.273E-03 2.116E-05 3.472E-03 23 7. 088E-06 1.034E-03 2.104E-05 2. 822E-03 24 7.073E-06 8.236E-04 2.093E-05 2.250E-03 25 7.058E-06 6.126E-04 2.082E-05 1. 675E-03 26 7.044E-06 4.431E-04 2.071E-05 1.212E-03 27 7.022E-06 1.950E-04 2.055E-05 5.34OE-04 28 7.008E-06 1.279E-04 2.044E-05 3.505E-04 29 6.994E-06 8.360E-05 2.034E-05 2.291E-04 30 6.979E-06 5.44OE-05 2.023E-05 1.491E-04 31 6.962E-06 3.479E-05 2.010E-05 9. 534E-05
- -- 32 6.948E-06 2.230E-05 1.999E-05 6. iOE-OS 33 6.934E-06 1.379E-05 1.989E-05 3.778E-05 34 6.927E-06 1.059E-05 1.983E-05 2.902E-05 TIME KR-83M GAP FRACTION KR-85M GAP FRACTION INTERVAL LOW TEMP HI TEMP LOW TEMP HI TEMP 1 1.018E-05 3.667E-08 1.610E-05 5.689E-08 2 1.034E-05 4.511E-07 1.648E-05 6.999E-07 3 1.050E-05 5.121E-06 1.686E-05 7.947E-06 4 1.064E-05 4.363E-0S 1.720E-05 6.769E-05 5 1.079E-05 3.697E-04 1.758E-05 5.733E-04 6 1.083E-05 7.004E-04 1.767E-0S 1.086E-03 7-- _ 1.081E-05 5.351E-04 1.762E-05 8.298E-04 8 1.081E-05 6.219E-04 1.762E-05 9.641E-04 C-7 FAIV01 -86, Rev. 0 11/08/01
- ,I 9 1.081E-05 7.318E-04 1.762E-05 1.134E-03 10 1.083E-05 1.428E-03 1.766E-05 2.212E-03 11 1.081E-05 1.446E-03 1.761E-05 2.239E-03 12 1.079E-05 1. 457E-03 1.756E-05 2.257E-03 13 1.077E-05 1.437E-03 1.751E-05 2.225E-03 14 1.073E-05 8. 858E-04 1.742E-05 1.373E-03 15 1.071E-05 8.224E-04 1.737E-05 1.275E-03 16 1.069E-05 7.556E-04 1. 733E-05 1.171E-03 17 1.067E-05 7.138E-04 1.728E-05 1. 107E-03 18 1.064E-05 6.497E-04 1.721E-05 1.007E-03 19 1.062E-05 6.214E-04 1.717E-05 9.631E-04 20 1.061E-05 5.696E-04 1.712E-05 8. 829E-04 21 1.059E-05 5.239E-04 1.707E-05 8. 121E-04 22 1.058E-05 7. 01BE-04 1.706E-05 1.088E-03 23 1.055E-05 5.699E-04 1.699E-05 8.837E-04 24 1.052E-05 4.538E-04 1.691E-O5 7.037E-04 25 1.049E-05 3.375E-04 1.684E-05 5.234E-04 26 1.046E-05 2.44OE-04 1.676E-05 3.786E-04 27 1.041E-05 1.074E-04 1.665E-05 1. 666E-04 28 1.038E-05 7.045E-05 1.658E-05 1. 093E-04 29 1.035E-05 4.603E-05 1. 651E-05 7.142E-05 30 1.032E-05 2.995E-05 1.643E-05 4.647E-05 31 1.028E-05 1.916E-05 1. 635E-05 2.972E-05 32 1.025E-05 1.228E-05 1. 627E-05 1. 905E-05 33 1.022E-05 7.591E-06 1.620E-05 1.178E-05 34 1.021E-05 5.831E-06 1.616E-05 9.048E-06 TIME KR-85 GAP FRACTION KR-87 GAP FRACTION INTERVAL LOW TEMP HI TEMP LOW TEMP HI TEMP 1 6.999E-10 1.992E-09 8.352E-06 3.026E-08 2 1.400E-04 9.033E-06 8.460E-06 3.722E-07 3 2.800E-04 1. 098E-04 8.567E-06 4 .226E-06 4 4.200E-04 8.287E-04 8.663E-06 3.600E-05 5 5.600E-04 5.978E-03 8.768E-06 3. 051E-04 6 6.999E-04 1.229E-02 8.795E-06 5.781E-04 7 8.400E-04 1.510E-02 8.780E-06 4.417E-04 8 9.799E-04 1.764E-02 8.780E-06 5.133E-04 9 1.120E-03 2.071E-02 8.780E-06 6.041E-04 10 1.260E-03 3.339E-02 8.791E 1.179E-03 11 1.400E-03 4.046E-02 8.778E-06 1. 194E-03 12 1.540E-03 4.595E-02 8.764E-06 1.203E-03 13 1.680E-03 5.037E-02 8.751E-06 1. 186E-03 14 1.820E-03 5.093E-02 8.724E-06 7.311E-04 15 1.960E-03 5.130E-02 8.711E-06 6.788E-04 16 2.100E-03 5.150E-02 8.698E-06 6.236E-04 17 2.240E-03 5.163E-02 8.68SE-06 5.891E-04 18 2.380E-03 5.329E-02 8.665E-06 5.363E-04 19 2.520E-03 5.382E-02 8.653E-06 5. 130E-04 20 2.660E-03 5.389E-02 8. 64OE-06 4.702E-04 21 2.800E-03 5.371E-02 8.627E-06 4.325E-04 22 2.940E-03 5.536E-02 8.623E-06 5.793E-04 23 3.080E-03 5.557E-02 8. 602E-06 4.704E-04 24 3.220E-03 5.509E-02 8.580E-06 3.745E-04 25 3.360E-03 5.417E-02 8.559E-06 2.785E-04 C-8 FAWIOI-86, Rev. 0 I 1/08/01
4.
26 3.500E-03 5.296E-02 8.538E-06 2.014E-04 27 3.640E-03 5.140E-02 8.507E-06 8.860E-05 28 3.780E-03 4.988E-02 8.486E-06 5.813E-05 29 3.920E-03 4.841E-02 8.466E-06 3.798E-05 30 4.060E-03 4.700E-02 8.445E-06 2.471E-05 31 4.200E-03 4.567E-02 8.420E-06 1.581E-05 32 4.340E-03 4.441E-02 8.400E-06 1.013E-05 33 4.480E-03 4.320E-02 8.379E-06 6.264E-06 34 4.550E-03 4.263E-02 8.369E-06 4.812E-06 TIME KR-88 GAP FRACTION KR-89 GAP FRACTION INTERVAL LOW TEMP HI TEMP LOW TEMP HI TEMP 1 1.259E-05 4.498E-08 1.664E-06 6.169E-09 2 1.283E-05 5.534E-07 1.668E-06 7.590E-08 3 1.307E-05 6.283E-06 1.673E-06 8.617E-07 4 1.328E-05 5.352E-05 1.677E-06 7.341E-06 5 1.351E-05 4.534E-04 1.681E-06 6.224E-05 6 1.357E-05 8.590E-04 1.682E-06 1.180E-04 7 1.354E-05 6.564E-04 1.682E-06 9.013E-05 8 1.354E-05 7.627E-04 1. 682E-06 1. 048E-04 9 1.354E-05 8.975E-04 1.682E-06 1.233E-04 10 1.356E-05 1.751E-03 1.682E-06 2.409E-04 11 1.353E-05 1.773E-03 1.682E-06 2.440E-04 12 1.350E-05 1.786E-03 1.681E-06 2.459E-04 13 1.347E-05 1.761E-03 1. 680E-06 2.424E-04 14 1.34lE-05 1.086E-03 1.679E-06 1.492E-04 15 1.338E-05 1. 009E-03 1.679E-06 1.385E-04 16 1.336E-05 9.267E-04 1.678E-06 1.273E-04 17 1.333E-05 8.755E-04 1.678E-06 1.202E-04 18 1.328E-05 7.967E-04 1. 677E-06 1.095E-04 19 1.326E-05 7.620E-04 1. 676E-06 1.047E-04 20 1.323E-05 6.9B5E-04 1.676E-06 9.600E-05 21 1.320E-05 6.425E-04 1. 675E-06 8.830E-05 22 1.319E-05 8.608E-04 1.675E-06 1. 182E-04 23 1.314E-05 6.990E-04 1.674E-06 9.600E-05 24 1.310E-05 5.566E-04 1.673E-06 7.642E-05 25 1.305E-05 4.14OE-04 1.672E-06 5.682E-05 26 1.300E-05 2.994E-04 1.672E-06 4.108E-05 27 1.294E-05 1.317E-04 1.670E-06 1.807E-05 28 1.289E-05 8. 643E-05 1.669E-06 1.185E-05 29 1.284E-05 5.647E-05 1. 669E-06 7.745E-06 30 1.280E-05 3.675E-05 1.668E-06 5. 040E-06 31 1.274E-05 2.350E-05 1.667E-06 3.223E-06 32 1.270E-05 1.506E-05 1. 666E-06 2.066E-06 33 1.265E-05 9.313E-06 1.665E-06 1.277E-06 34 1.263E-05 7.154E-06 1.665E-06 9. 811E-07 TIME XE-131M GAP FRACTION XE-133M GAP FRACTION INTERVAL LOW TEMP HI TEMP LOW TEMP HI TEMP 1 1.771E-04 4.560E-07 6.291E-05 1.966E-07 2.014E-04 5.610E-06 6.744E-05 2.il9E-06
. C-9 FAI/01-86, Rev. 0 11/08/01
0' '?,
3 2.258E-04 6.369E-05 7.198E-05 2.747E-05 4 2.477E-04 5.420E-04 7. 605E-05 2.339E-04 5 2.716E-04 4.557E-03 8.049E-05 1.976E-03 6 2.776E-04 8.571E-03 8.160E-05 3.733E-03 7 2.742E-04 6.562E-03 8.097E-05 2.855E-03 8 2.742E-04 7.606E-03 8. 097E-05 3.314E-03 9 2.742E-04 8.915E-03 8.097E-05 3.894E-03 10 2.767E-04 1.709E-02 8. 145E-05 7.550E-03 11 2.737E-04 1.729E-02 8.089E-05 7.642E-03 12 2.707E-04 1.741E-02 8.032E-05 7.697E-03 13 2.677E-04 1.717E-02 7.976E-05 7.590E-03 14 2.614E-04 1.080E-02 7.860E-05 4.716E-03 15 2.584E-04 1.005E-02 7.805E-05 4.381E-03 16 2.555E-04 9.242E-03 7.750E-05 4.027E-03 17 2.525E-04 8.738E-03 7.695E-05 3.805E-03 18 2.482E-04 7.890E-03 7.614E-05 3.453E-03 19 2.453E-04 7.545E-03 7.559E-05 3.303E-03 20 2.423E-04 6.922E-03 7.505E-05 3.028E-03 21 2.394E-04 6.376E-03 7.450E-05 2.787E-03 22 2.386E-04 8.571E-03 7.435E-05 3.738E-03 23 2.337E-04 6.983E-03 7.345E-05 3.039E-03 24 2.289E-04 5.578E-03 7.255E-05 2.423E-03 25 2.240E-04 4.161E-03 7.165E-05 1.804E-03 26 2.192E-04 3.016E-03 7.075E-05 1.306E-03 27 2.123E-04 1.332E-03 6.946E-05 5.754E-04 28 2.075E-04 8.750E-04 6. 858E-05 3.776E-04 29 2.028E-04 5.720E-04 6.770E-05 2.468E-04 30 1.980E-04 3.723E-04 6.681E-05 1. 606E-04 31 1.925E-04 2.381E-04 6.579E-05 1.027E-04 32 1.879E-04 1.526E-04 6.492E-05 6.583E-05 33 1.832E-04 9.439E-05 6.405E-05 4.071E-05 34 1.808E-04 7.251E-05 6.361E-05 3.127E-05 TIME XE-133 GAP FRACTION XE-135M GAP FRACTION INTERVAL LOW TEMP III TEMP LOW TEMP HI TEMP 1 1.422E-04 6.273E-07 3.688E-06 1.357E-08 2 1.548E-04 7.718E-06 3.709E-06 1.670E-07 3 1.673E-04 8.762E-05 3;-731E-06 -- '1:896E-06 4 1.785E-04 7.458E-04 3.750E-06 1.615E-05 5 1.908E-04 6.278E-03 3.771E-06 1.369E-04 6 1.939E-04 1.182E-02 3.777E-06 2.595E-04 7 1.921E-04 9.050E-03 3.774E-06 1.983E-04 8 1.921E-04 1.050E-02 3.774E-06 2.304E-04 9 1.921E-04 1.231E-02 3.774E-06 2.712E-04 10 1.934E-04 2.368E-02 3.776E-06 5.298E-04 11 1.919E-04 2.397E-02 3.773E-06 5.365E-04 12 1.903E-04 2.413E-02 3.771E-06 5.407E-04 13 1.888E-04 2.38OE-02 3.768E-06 5.330E-04 14 1.856E-04 1.490E-02 3.762E-06 3.283E-04 15 1.840E-04 1.386E-02 3.760E-06 3.048E-04 16 1.825E-04 1.275E-02 3.757E-06 2.800E-04 17 1.810E-04 1.205E-02 3.755E-06 2.645E-04 18 1.788E-04 1. 091E-02 3.751E-06 2.408E-04 19 1.773E-04 1.044E-02 3.748E-06 2.304E-04 C-10 FAI/01-86, Rev. 0 11/08/01
l; , I I I.
20 1.758Ee04 9.575E-03 3.746E-06 2.112E-04 21 1.742E-04 8.817E-03 3.743E-06 1.942E-04 22 1.738E-04 1.183E-02 3.742E-06 2.601E-04 23 1.713E-04 9.632E-03 3.738E-06 2.112E-04 24 1.689E-04 7.689E-03 3.734E-06 1.681E-04 25 1.664E-04 5.732E-03 3.729E-06 1.250E-04 26 1.639E-04 4.154E-03 3.725E-06 9. 038E-05 27 1.603E-04 1.833E-03 3.719E-06 3.976E-05 28 1.579E-04 1.204E-03 3.715E-06 2.608E-05 29 1.554E-04 7.869E-04 3.710E-06 1.704E-05 30 1.530E-04 5.122E-04 3.706E-06 1.109E-05 31 1.502E-04 3.276E-04 3.701E-06 7.093E-06 32 1.47BE-04 2.100E-04 3.697E-06 4.545E-06 33 1.454E-04 1.298E-04 3.693E-06 2.810E-06 34 1.442E-04 9.975E-05 3.691E-06 2.159E-06 TIME XE-135 GAP FRACTION XE-138 GAP FRACTION INTERVAL LOW TEMP HI TEMP LOW TEMP HI TEMP 1 4.332E-05 2.639E-07 3.551E-06 1.308E-08 2 4.465E-05 3.247E-06 3.571E-06 1.609E-07 3 4.598E-05 3.686E-05 3.591E-06 1.827E-06 4 4.718E-05 3.139E-04 3.609E-06 1.556E-05 5 4.849E-05 2.653E-03 3. 629E-06 1.319E-04 6 4.882E-05 5.014E-03 3.634E-06 2.500E-04 7 4.863E-05 3.834E-03 3.631E-06 1.910E-04 8 4.863E-05 4 .452E-03 3.631E-06 2.220E-04 9 4.863E-05 5.232E-03 3.631E-06 2.613E-04 10 4.877E-05 1.015E-02 3.633E-06 5.104E-04 11 4.861E-05 1.028E-02 3.630E-06 5.168E-04 12 4.844E-05 1.035E-02 3. 628E-06 5.209E-04 13 4.827E-05 1.021E-02 3. 625E-06 5.135E-04 14 4.793E-05 6.333E-03 3. 620E-06 3.163E-04 15 4.777E-05 5.883E-03 3. 618E-06 2.936E-04 16 4.761E-05 5.408E-03 3. 615E-06 2.697E-04 17 4.745E-05 5.11OE-03 3. 613E-06 2.548E-04 18 4.721E-05 4.641E-03 3.609E-06 2.320E-04 19 4.705E-05 4.439E-03 ~3.607E-06 -2.219E-04 20 4.689E-05 4.071E-03 3.605E-06 2.034E-04 21 4.673E-05 3.746E-03 3.602E-06 1.871E-04 22 4.668E-05 5.021E-03 3.602E-06 2.506E-04 23 4.642E-05 4.082E-03 3.598E-06 2.034E-04 24 4.615E-05 3.254E-03 3.594E-06 1.620E-04 25 4.589E-05 2.422E-03 3.590E-06 1.204E-04 26 4.562E-05 1.753E-03 3.586E-06 8.707E-05 27 4.524E-05 7.722E-04 3.580E-06 3.830E-05 28 4.498E-05 5.068E-04 3.576E-06 2.513E-05 29 4.472E-05 3.312E-04 3.572E-06 1.642E-05 30 4.446E-05 2.155E-04 3.568E-06 1.068E-05 31 4.416E-05 1.379E-04 3.564E-06 6.833E-06 32 4.391E-05 8.835E-05 3.560E-06 4.379E-06 33 4.365E-05 5.463E-05 3.556E-06 2.707E-06 34 4.352E-05 4.197E-05 3.554E-06 2.080E-06 C-1I FAI/01-86, Rev. 0 I 1/08/01
_ ).P i ',
TIME CS-136,0GAP FRACTION RB-86 GAP FRACTION INTERVAL LOW TEMP HI TEMP LOW TEMP HI TEMP l;
1 1.867E-04 6.715E-07 2.378E-04 8.046E-07 2 2.132E-04 8.262E-06 2.758E-04 9.898E-06 3 2.396E-04 9.378E-05 3.137E-04 1.124E-04 4 2.633E-04 7.978E-04 3.478E-04 9.555E-04 5 2.892E-04 6.680E-03 3.850E-04 7.981E-03 6 2.957E-04 1.252E-02 3.943E-04 1.492E-02 7 2.920E-04 9.592E-03 3.890E-04 1.144E-02 8 2.920E-04 1.110E-02 3.890E-04 1.323E-02 9 2.920E-04 1.299E-02 3.890E-04 1.546E-02 10 2.94BE-04 2.467E-02 3.930E-04 2.918E-02 11 2.915E-04 2.494E-02 3.883E-04 2.950E-02 12 2.882E-04 2.509E-02 3.835E-04 2.965E-02 13 2.850E-04 2.475E-02 3.788E-04 2.926E-02 14 2.782E-04 1.575E-02 3.691E-04 1.875E-02 1S 2.750E-04 1.465E-02 3.645E-04 1.745E-02 16 2.718E-04 1.349E-02 3.599E-04 1.608E-02 17 2.685E-04 1.276E-02 3.553E-04 1.521E-02 18 2.638E-04 1.147E-02 3.485E-04 1.364E-02 19 2.607E-04 1.097E-02 3.440E-04 1.304E-02 20 2.575E-04 1.007E-02 3.394E-04 1.197E-02 21 2.543E-04 9.282E-03 3.348E-04 1.104E-02 22 2.534E-04 1.250E-02 3.336E-04 1.489E-02 23 2.482E-04 1.020E-02 3.260E-04 1.217E-02 24 2.429E-04 8.164E-03 3.185E-04 9.744E-03 25 2.377E-04 6.100E-03 3.109E-04 7.287E-03 26 2.324E-04 4.427E-03 3.034E-04 5.294E-03 27 2.249E-04 1.960E-03 2.926E-04 2.346E-03 28 2.198E-04 1.288E-03 2.852E-04 1.542E-03 29 2.146E-04 8.419E-04 2.779E-04 1.008E-03 30 2.095E-04 5.481E-04 2.705E-04 6.565E-04 31 2.035E-04 3.505E-04 2.619E-04 4.199E-04 32 1.984E-04 2.247E-04 2.546E-04 2.692E-04 33 1.933E-04 1.390E-04 2.473E-04 1.665E-04 34 1.908E-04 1.068E-04 2.437E-04 1.279E-04 TIME RB-88 GAP FRACTION RB-89 GAP FRACTION INTERVAL LOW TEMP HI TEMP LOW TEMP HI TEMP 1 3.970E-06 2.065E-08 3.676E-06 1.914E-08 2 3.995E-06 2.540E-07 3.697E-06 2.354E-07 3 4.020E-06 2.884E-06 3.719E-06 2. 673E-06 4 4.043E-06 2.457E-05 3.738E-06 2.277E-05 5 4.067E-06 2.082E-04 3.759E-06 1.930E-04 6 4.073E-06. 3.947E-04 3.764E-06 3.658E-04 7 4.070E-06 3.015E-04 3.761E-06 2.794E-04 8 4.070E-06 3.504E-04 3.761E-06 3.248E-04 9 4.070E-06 4.124E-04 3.761E-06 3.822E-04 10 4.073E-06 8.054E-04 3.763E-06 7.465E-04 11 4.069E-06 8.155E-04 3.761E-06 7.558E-04 12 4.066E-06 8.219E-04 3.758E-06 7.618E-04 13 4.063E-06 8.103E-04 3.755E-06 7.510E-04 I
C-12 FAIV01-86, Rev. 0 11/08/01
. - -b--[
I ,tt s
~*1 1 I
14 4.057E-06 4.992E-04 3.750E-06 4.626E-04 15 4.054E-06 4.634E-04 3.747E-06 4.295E-04 16 4.051E-06 4.258E-04 3.745E-06 3.946E-04 17 4.048E-06 4.022E-04 3.742E-06 3.728E-04 18 4.043E-06 3.662E-04 3.738E-06 3.394E-04 19 4.040E-06 3.503E-04 3.736E-06 3.246E-04 20 4.037E-06 3.211E-04 3.733E-06 2.976E-04 21 4.034E-06 2.953E-04 3.731E-06 2.737E-04 22 4.033E-06 3.955E-04 3.730E-06 3.666E-04 23 4.028E-06 3.211E-04 3.726E-06 2.976E-04 24 4.024E-06 2.557E-04 3.721E-06 2.369E-04 25 4.019E-06 1.901E-04 3.717E-06 1.762E-04 26 4.014E-06 1.375E-04 3.713E-06 1.274E-04 27 4.006E-06 6. 047E-05 3.707E-06 5.604E-05 28 4.002E-06 3.968E-05 3.702E-06 3.677E-05 29 3.997E-06 2.592E-05 3.698E-06 2.402E-05 30 3.992E-06 1. 687E-05 3.694E-06 1. 563E-05 31 3.986E-06 1.079E-05 3.689E-06 9.998E-06 32 3.981E-06 6.914E-06 3.685E-06 6.407E-06 33 3.977E-06 4.275E-06 3.681E-06 3. 962E-06 34 3.974E-06 3.284E-06 3.679E-06 3.043E-06 C-13 FAI/01-86, Rev. 0 I 1/08/01