L-96-011, RCS & SG Isotopic Concentrations,Pre-Incident Spike Concentrations & Iodine Spike Appearance Rates Corresponding to 0.35 & 0.5 Uci/Gm RCS Specific Activity

From kanterella
Jump to navigation Jump to search
RCS & SG Isotopic Concentrations,Pre-Incident Spike Concentrations & Iodine Spike Appearance Rates Corresponding to 0.35 & 0.5 Uci/Gm RCS Specific Activity
ML20212F017
Person / Time
Site: Beaver Valley
Issue date: 12/19/1996
From: Lavie S
DUQUESNE LIGHT CO.
To:
Shared Package
ML20212C877 List:
References
ERS-SFL-96-011, ERS-SFL-96-011-R01, ERS-SFL-96-11, ERS-SFL-96-11-R1, NUDOCS 9711040145
Download: ML20212F017 (24)


Text

RTL: A9.621A c - Form: RE1.10s 1 DrnEwie Light 'a Health Physics Department REVISION 1 2 3 Sub M . RCS and Steam Generator Isotopic Concentrations, PAGE 1 OF Pre-incident Spike Concentrations, and lodine Spike Appearance ERS SFL-96-011 g4 Rates Corresponding to 0.35 and 0.5 pCl/gm RCS Specific ActMty.

Reference RCM RP EPP_ T/S 3/4.4.8 EM DCP RIP Rev',ew Category 10 CFR 50.59 RSC Req'd RSC Not Req'd Required 1 Purpose This paakage determines RCS and steam generator isotopic conce.7trations that correspond to N technical specifier.tlon spe<Xg actMty firn:ts 0.35 pCygm and 0.5 CVgm. These values are being prepared in support of a future change in the RCS specific actMty T/S limit from 1.0 pCygm. A'so determined are the transient iodine spike T/S graph (pre-incident lodine spike) and the lodine spike appearance rates for use with concurrent lodine spikes.

NOTE: TNs calculator. package documents th6 eva!uation de scribed above.TNs package DOES NOT,In of hself provide autority for any revision in a structure, system, or component; nor changes in procedures. tests, and egeriments described in the plant Econsing basis. The data and/or conclusions of this package shall not be e utended to other purposes whhout expr, cit concurrence from Radiological 2ngineering.

ty date chk ere l

  • l sie I by are 3

mfe e,e i by .

ere 2 **

date w

t er.

  • Y f SctooT @ re. ic rt P-so 2>c.Fs
  • D. E. I. si

& '

0 code Listings E BV RECORDS CENTER O DIR, RadOps-1 E Author: S.F. LaVie E CALCULATION FILE O DIR, RadOps 2 O l O MGR, Health Physics O DIR Safety & Env Sves O E DIR, RadEng & Health O Tmg Dept.. O l

9711040145 971022 PDR ADOCK 05000412 P PDR

. ,. . ~ - - --. . - - . . .. -

RTL' n/a Form: R31.10s.3 A92 V -e= MM ERS SFL-96-011. d Pase 2 I

.I

' ~

. DISCUSSION BVPS Unit 2_ RCS and secondary activity are limited by technical specifications. 2 TS 3/4.4.8 spect-fles that the specific activity of the reactor coole.nt shall be limited to;

c. _ s 1.0 pCi/ gram DOSE EQUIVALENT l 131, and >
b. s 100/E pCl/ gram in addition, the TS provides a graph of DOSE EQUIVALENT ! 131 primary coolant specific activity limit versus percent rated thermal power for transient conditions. DOSE EQUIVALENT l 131 is defined as being that concentration of I 131 which alone would produce the came thyroid dose as the quantity and isotop:c mixture of I 131,1132,1133,1134, and 1135 actually present. The thyroid dose conver-c?on tactors used for this calculation shall be based on ICRP 308 rather than TID 148444. The basis of &

this T/S will be revised to reference DCFs based on ICRP 30 in liw of those currently cited.

TS 3/4.7.1.4 specifies that the specific activity of the secondary coolant system shall be s 0.10 pCL/

. gram DOSE EQUIVALENT l 131.

Note that the technical specifications do not provide isotopic activity limits. However, such values are needed for various design basis radiological assessments. Unit 2 UFSAR8 Table 15.0 8 tabulate isotopic activities for the more significant radionuclides expected in the RCS and secondary side.

TWe values were generated by SWEC prior to licensing.

. USNRC Generic Letter 95-05, Voltage Based Repair Criteria for Westinghouse Steam Generator Tubes AMected by Outside Diameter Stress Corrosion Cracking *, provided an option for licensees to reduce the RCS technical specification actMty as a means of increasing allowable MSLB induced primary to-secondary leakage in implementing attemate tube plugging criteria. The generic letter provide sample RCS activity technical specifications. The generic letter does provide that reductions to below 0.35 Cl/gm taqu!N kpucid }UJ!!!ied!Ian %!!?, rugdRI ta IMind f,pikG rO!GMC 'tte!.. ,

The purpose of this calculation package is to generate, for new proposed RCS activity T/S of 0.35 pCi/

gm and 0.5 Cl/gm DOSE EQUIVALENT l 131:

  • RCS isotopic concentrations that correspond to both of these overali activity limits, e _ pr+1ncident spike concentrations -
  • . SG liquid and vapor space isotopic concentrations that correspond to the cacondary activity
  • revised T/S transient I-131 activity graph a lodine appearance rate factors for concurrent lodine spike cases Although the secondary side equilibrium activity is a direct function of the RCS activity, the generic letter did not explicitly identify modifications to this technical specification as an option. Since the initial g activity in the steam generators is a relatively minor contributor to offsite or control room dose, reduc-ing the 0.1 pCl/gm technical specification will not be pursued further herein.

l l

RTL* n's Form: RE 1.103-3 892 Ak H MM m%0.pnt ERS-SFL-96-011 page 3 METHODOLOGY

1. RCS Concentrations Corresponding to 0.35 and 0.5 Cl/gm Dose Equivalent 1131 The technical speelfication definition of dose equivalent 1131 was stated above. Mathematically, this definition is expressed as:

I I,Ag.DCFi d e.1131 = ' I13 DC %

where:

d.e.1131 = Dose equivalent 1131, Cl/gm A, = RCS cctivity, pCl/gm, for Isotope I (1131 to 1135)

DCF,= Dose conversion factor, for isotope i Since this application desires that the d.e.1131 be 0.35 Cl/gm or 0.5 Cl/nm, it is necessary to ratio the input activities:

0.35 Aio,3, - A;

  • d al131 [2a]

0.5

~

5 d e.1131 [2b) where:

A RCS ut;vity, Cl/gm, for isotope I, for 0.35 Cl/gm d.o.l.131 r*

lus =

Aio.s = RCS actMty, pCl/gm, for isotope I, for 0.5 pCl/gm d.e.l-131 mix Note that all radionuclides in the mix, including noble gases are included in this ratioing,

2. RCS Concentrations Corresponding to 21 and 30 Cl/gm Dose Equivalent 1-131

.The pre-incident lodine spike is based on the minimum transient 1-131 technical specification.

The generic letter directed that the graph of the transient FiCS activity TS be reduced by the same factor that the steady state d.e.1131 specification was reduced. 60 x 0.35 = 21,60 x 0.5 =

30. These values can be determined using a variation of equations 2a,2b:

21 Ai ,, - A i a [3al d e.1131 30-A;3, - 6 de.1131 [3b)

I

RTU r0 Form: CE 1.103-3 292 MM A k H.m rw k.o.puvn re ERS SFL 96-011 page 4 nhere:

Ani = RCS actMty, pCVgm, for isotope I, for pre-incident spike based on 0.35 pCVgm de.l.131 A133 = RCS actMty, pCVpm, for isotope I, for pre-incident spike based on 0.5 CVgm de.l 131

3. SG Liquid Concentrations Corresponding to 0.1 pCl/gm Dose Equivalent 1131 The technical specification definitiers of dose equivalent 1131 was stated above. Mathematically, this definition is expressed as:

I Ai .DC5 d e.1131 = 8 [4]

where:

d.e,1131 = Dose equivalent 1131, pCl/gm A, = SG liquid actMty, pCl/gm, for isotope 1 (1 131 to 1 135)

DCF,= Dose conversion factor, for isotope i Since this aoplication desires that the d.e.1131 be 0.1 Cl/gm, it is necessary to ratis the input actMtle.

Ai ,, - Ai

  • g (5) where:

Ahi = SG liquid actMty, pCI/gm, for isotope I, for 0.1 pCl/gm d.e.l 131 mix Note that only radiolodines are included since it is ascumed that no noble gases are retainod in the SG liquid,

4. SG Steam Concentrations Tne noble gas concentrutions In the steam phase are a function of the noble gas release rate from the primary and the steaming rate of the generators, No holdup of noble gases is as.

sumed. Thus, the noble gas concentrations are not dependent on the secondary actMty, but rather are a function of the RCS actMty, Note that the concentrations are based on all three steam generators and as such, are applicable to the the main steam header. The concentrations are applicable to the ac?Mty in the steam phase in a single SG only if one assumes that the primary to secondary leakage is evenly distributed between SGs,

-

  • Primary- to-Secondary Leak Rate Total Sterming Hate (6)

?

l l

I CTL: n/a Form: RE 1.103 3 A92

$ DuquesN @ ERS SFL-96 011 p ,9, 3 1

where.

A, = RCS activity, pCVgm, for isotope i A da N

= SO steam phase acdvity, pCVgm, for isotope l The lodine concentration in the steam phkse are based on the lodine concentrations in the liquid phase, aqustea for partitioning:

Ay, - A , i *n. 0.01 (7) ,

where:

Ale s,,, = SG steam phase lodine activity, pCVgm, for Isotope 1 (1131 to 1135)

A g, = SG liquld phase activity, pCVgm, for Isotooe 1, see equation 5 5.- lodine Spiking Appearance Factors Most of the material in this section is extracted from Review oflodine Sp/ke Data from PWR Power Plants in Relaflon to SGTR with MSi.B. EPRI Report TR 103680, Decamber 1093', Other references' A io were also reviewed.

Equilibrium concentrations of lodines can be expressed as:

Ci =Co e e-A + (1- e-A*I) [8]

where:

C, a lodine concentration at time t, CVgm Co= fodine concentration at t=0, CVgm R= Constant release rate, CVhr M= Mass of water in primary system, gm A = loss rate constant for iodine, hr5 t= time, hr This expression can be re arranged to solve for R:

R = MA(C, -Co e e-A) [9]

_y, g If one recognizes that the concentrations multiplied by mass y'sid activity, the expression can be writtre in a different form:

g, A(A t- Ao e edet) 1-e 4*'

RTU rc Form: RE 1,103 3 a92, OLENMN M ERS SFL 96 011 E80' O AF HeemMsDepament This form is identical to that described by Adams and Atwood", and by Essig' before the ACRS.

At equilibrium, the exponential terms in expression [9] reduce to 0, '/leiding:

R=0 M=A [11]

The loss rate constant, A, is expressed as:  ;

Aa

+h+Ad [12) where: -

F= cleenup system flow rate, gm/hr E= fractional cleanup efficiency

= 1-L= leak rate from RCS, gm/hr A, = decay constant for 1131, hri The cleanup system flow rate is typleally expressed in units of gpm. The flow rates in the let-down and chstgin0 system (which determines the purificat;on flow rate) are based on relatively cool, low pressure water. Thus, it is appropriate to assum6 a density of 1,0 gm/cm8 ,

The technical specification leak rate from the RCS is expressed in gallons per day The density of RCS water at T,vo = 577F and P = 2235 psig can be found from steam tables'8 via interpola-tion of specific volume data (ft 3/lb):

2000 pela 2?50 psia 2500 pela 670 F 0.02206 0.02f96 0.02186 1 577 0.02221 1 580 F 0.02243 0.02232 0.02221 l 0.02221 ft 3/lb specific volume = 0,72 gm/cm3 density, t

i Note: The above treatment of RCS density may appear contrary to other applications in which the leakage was assumed to han a density of f.0 gm/cm'. It must be noted that the intent of the above calculatfor is to determine an equilibrium lodine appearance rate during normal operations. Thus, it is appropriate to correct for density in th,'s application.

l l

48'

HR: We Form: M 1.108 3 $9s R(4W m w n =M =:

ERS SFL 06 011 A p.g. 7 INPUT DATA / ASSUMPTIONS

1. RCS and becondary Uquid Concentrations at 1% F.F. [5,13)

P RCS SG Uquid Nuclide pCL/gm Cl/gm Kr 83m 4.34E 01 0 Kr 85m 2.12E+00 0 Kr 85 1.12E+01 0 Kr 87 1.21 E+00 0 Kr88 3.23E+00 0 Kr 89 1.02E 01 0 Xe 131m 1.09E 01 0 Xe 133m 3.11 E+00 0 Xe 133 2.65E+01 0 Xe 135m 1.10E+00 0 Xe 133 3.25E400 0 Xe 137 1.65E 01 0 Xe 138 6.80E 01 0 1131 2.54E+00 1.30E 03 1132 8.85E 01 3.84E 04 1133 3.96E+00 1.86E 03 1134 5.54E 01 8.56E-06 l135 2.13E+00 8.32E 04

2. lodine Dose Conversion Factors (mrem /pCl) [3]

l131 1.08E 3 1132 E 44E 6 l133 1.80E 4 l134 1.07E 6 l135 3.135 5 7he dose conversion factors listed above are for thyrold COE as deMned in ICRP 30 and are takm kom Federal Guidance Report No.113. This represents a change kom the previous TS deRnition of Dose Equ,' valent I 131, which will be revised as a result of this ettbit, i

3. Total Steam Flow = 3.873E6 x 3 = 1.163E7 lbm/hr (5)

, . - . , . , _ , . . , . - , -. .--.,_,,_q , . . _ . . - - . . . - -

RTU tVa Form: PE 1.105 3 att MM AE H m%D pwenent ERS SFL 96 011 d page 8 I

4. Decay Lambda, seci [14) l131 9.9783E 7 l132 8.3713E 5 l133 9.2568E 6 l134 2.1963E 4 l135 2.9129E 5 CALCULATION
1. RCS Concentrations Corresponding to 0.35 and 0.5 pCL/gm Dose Equivalent 1131 The fo!!owing table implements expression [1):

1% FF RCS isotope pCl/gm DCF " Dose" l131 2.54E+00 1.08E 03 2.74E 03 1132 8.85E 01 6.44E 06 5.70E 06 ,

1133 3.96E+00 1.80E 04 7.13E 04 & '

l134 5.54E 01 1.07E 06 5.93E 07 l 1Mi 2.13E+00 3.13E 05 - 6.67E 05 Sum 3.53E 03/1.08E 3 = 3.268 pCVgm The dose equivalent 1131 associated with 1% F.F. RCS equillibrium concentration is 3.268 pCl/ ,

gm. Using expressions [2a) and [2b), ratio the 1% F.F. equillb.-lem concentrations to obtain the values appropriate for 0.35 pCVgm dose equivalent, and the 0.5 pCl/gm dose equivalent:

RCS Equilibrium Concentrations, pcigm Corresponding to 0.35 pCl/gm 0.5 pCL/gm isotope 1% F.F. d.e.1 131 d.e.1 131 Kr 83m 4.34E 01 4.65E 02 6.64E 02 Kr 85m 2.12E+00 2.27E 01 3.24E 01 Kr 85 1.12E+01 1.20E+00 1.71 E+00 Kr 87 1.21 E+00 1.30E 01 1.85E 01 Kr 88 3.23E+00 3.46E 01 4.94E 01 Kr 89 1.02E 01 1.09E 02 1.56E 02 Xo 131m 1.09E 01 1.17E 02 1.67E-02 Xe 133m . 3.11E+00 3.33E-01 4.76E-01 Xe 133 2.65E+01 2.84E+00 4.05E+00 A Xe 135m 1,10E+00 1.18E 01 1.68E 01 Xe135 3.25E+00 3.48E 01 4.97E 01 Xe-137 1.65E 01 1.77E 02 2.52E-02 Xe 138 6.80E 01 7.2SE 02 1.04E 01 1131 2.54E+00 2.72E 01 3.89E-01 1132 8.85E 01 9.48E 02 1.35E 01 1133 3.96E+00 4.24E 01 6.06E 01 1134 5.54E 01 5.93E 02 8.48E 02 1135 2.13E+00 2.28E 01 3.26E-01

RTl ria Form: ct 1.103 3 cC2 MM A h H e ety*.s o.parim.n ERS SFL 96 011 b P898 9 j 2- 1CS Concentrations Correspondng to 21 and 30 pCVgm Dose Equivalent 1131 g Using the dose equivalent 1131 concentration from above and expressions [3a) and [3b], the 1%

'T F.F. equilibrium concentrations can be ratioed to obt#n the values appropriate for 21 pC!/gm dose equiva,ent, and the 30 pCl/gm dose equivalent (transient technical specification concentra- ,

'"

  • tions corresponding to the 0.35 pCI/gm dose equivalent, and the 0.5 pCl/gm dose equivalent).

RCS Transient Concentrations, pCVgm Corresponding to 21 pCVgm 30 CVgm isotopo 1% F.F. d.e.1 131 d.e.1 131 1131 2.54E+00 1.63E+01 2.33E+01

] l132 8.85E 01 5.69E+00 R.12E+00 b  %

l133 3.96E400 2.54E+01 3.64E+01 1134 5.54E 01 3.56E+ 00 5.09E+00 1135 2.13E+ 00 1.37E+01 1.96E+01

3. SG Liquid Concentrations Corresponding to 0.1 pCVgm Dose Equivalent 1131 The following table implements expression (4):

1% FF isotope pCl/gm DCF " Dose" l131 1.30E 03 1.08E 03 1.40E 06 l132 3.84E 04 6.44E 06 2.47E 09 l133 1.86E 03 1.80E 04 3.35E 07 l134 8.56E 06 1.07E 06 9.16E 12 b l135 8.32E 04 3.13E 05 2.60E 08 Sum 1.77E 06/1.08E 3 = 0.00164 pCl/gm The dose equivalent 1131 steam generator liquid concentration associated with 1% F.F is 1.64E 3 Cllgm. Using expression [5), ratio the 1% F.F. equilibrium concentrations to obtain the values appropriate for 0.1 pCl/gm dose equivalent.

SG Liquid Equilibrium Concentrations, pCVgm Corresponding to 0.1 pCVgm Isotope 1 % F.'". d.e.1131 1131 1.30E 03 7.93E 02 1132 3.84E 04 2.34E 02 1133 1.86E-03 1.13E 01 A l134 8.56E 06 5.22E 04 l135 8.32E 04 5.07E 02

RTu n/a Form: iE 1.103 3 892 l D ERS SFL 96411 A b%u@agem o. - M .. Pao

  • to
4. 50 Steam Concentrations As noted above, the noble gas steam phase concentrations at equilibrium are a function of the primary to secondary leakrate, the steam flow rate, and the RCS concentrations. The concen.

trations are found using expression (6).

, Primary- to-Secondary Leak Rate M Total Steaming Rate The total steaming rate (datum 3) 1.162E7 lbm/hr = 5.271E9 gm/hr. As noted above, the density of the RCS liquid is 0.72 gm/cm 8450 gpd = 1.703E6 cm /3 day = 5.110E4 gm/hr.

A;* - Ai

  • 5.1108gm&

5.271E99m/hr Ag - A *i 9.695E - 6 Steam Phase SG Noble Gas concentrations, pCl/gm RCS SG RCS SG Nuclide 0.35 de 1131 Steam 0.5 del 131 Steam Kr 83m 4.65E 02 4.51E 07 6.64E 02 6.44E 07 Kr 85m 2.27E 01 2.20E 06 3.24E 01 3.14E 06 Kr85 1.20E+00 1.16E 05 1.71 E+00 1.66E 05 Kt87 1.30E 01 1.26E 06 1.85E 01 1.79E 06 Kt88 3.46E 01 3.35E 06 4.94E 01 4.79E 06 Kr 89 1.09E 02 1.06E 07 1.56E 02 1.51E 07 Xe 131m 1.17E 02 1.13E 07 1.67E 02 1.62E 07 &

Xo 133m 3.33E 01 3.23E 06 4.76E 01 4.61E 06 Xe-133 2.84E+00 2.75E 05 4.05E+00 3.93E 05 Xe 135m 1.18E 01 1.14E 06 1.68E 01 1.63E 06 Xs 135 3.48E 01 3.37E 06 4.97E 01 4.82E 06 Xe-137 1.77E 02 1.71E 07 2.52E 02 2.45E 07 Xe 138 7.28E 02 7.06E 07 1.04E 01 1.01E 06 The lodine concentrations are based on the liquid phase lodine concentrations reduced to account for partitfdoning using expression [7).

A y - Ag, + 0.01 i

Steam Generator Concentrations, pCl/gm Liquid Steam Nuclide Phase Phase 1131 7.93E 02 7.93E 04 1132 2.34E 02 2.34E 04 ,

h l133 1.13E 01 1.13E 03 1134 5.22E 04 5.22E 06 l135 5,07E 02 5.07E 04

- , . . . - . _ . - . . _ ~ . . _ . - - . _ - . -.-_ . - - - - .-- . . - - - . - . -

l MTU n/a Perm: RE 1.tse a set p* m w M.M r. .

ERS SFL es 011 A page 11 l

5. lodine Spiking Appearance Factors i l

I The lodine spiking appearance rates are determined using expressions [11) and (12). A i MathCad worksheet was used. See Attachment 3.

6. Transient lodine Spike Technical Specification Graph ,

l I

GL 96-05 provided the following'

  • ...Revise Figure 3.Lf to lower the Mne by a lackr corresponding k the reduction M speclRc actMty. The lomrod Hne should paraMel the original....' i The language here is not perilculatty clear. It is not possible to maintain the lines parallel if a ,

flector is to be used. As the line proceeds to the left, the d/5srence (i.e., value of the factor) increases, separating the lines. In order for the lines to remain parallel, the d/Marence between  ;

the original line (between 70 and 100% power) and the tww line reduced by a factor of 50% and i i

65% (in this case,30 pCygm_ and 39 pCVgm) must be subtracted from the original line.

Since the requirement for the lines to be parallel is explicit, this snalyst will assume that flector ~

l was intended to mean dWorence.

Attachment 2 contains a graph showing the lines associated with 0.35, 0.5, and 1.0 pCVgm. This graph was prepared using EXCEL, first plotting the 1.0 pCVgm line from the current Figure 3.41, and then subtracting the differences 60-(0.35 x 60) = 39,60-(0.5 x 60) = 30.

RESULTS Attachment 1 contains tablas that summarize the results obtained above for the two proposed specific activity limits. Attachment 2 contains tae graph of the transient activity.

REFERENCES i I

1. DLC, Unit 1 Technical Specifications.
2. DLC, Unit 2 Technical Specifications.

- 3. USEPA. Limitina Valuaa of Ratsonuclide intake and Air Concentration and Dose Conversion & i Factors for Inhalation. Submersion. and Ingestion. Federal Guidance Report No.11. EPA 520/1-88 020

4. DiNunno, J.J., otal, *Ma' tan of Distance F=dars for Power and Test R==dar Sites. USAEC ,

TID 14844,1962 :

5.; DLC, Undated Final Safety Analysis Report Unit 2. ,

6 USNRC, Vop=a= Ramad Panale Criteria for Westinahana= Steam Generatar Tuham Affected by  ;

Outside Diameter Stress Corrosion Cracking. Generic Letter 95-05 ,

7' . Postma, A.K., Review at lodine Solke Data frcm PWR Powar Plants in Relation to SGTR with MSLB. EPRI Report TR 103680,1993

--,_.,---.,--,5,,,w_ , . . . . . . . _ , _ . , , _ . , 4-c. .-g5 , .

m_ ,.. .._.,.,,r#..._,---.,,-, _m_,.-,,_.,,,7 .,_,,,.-4ww,._,m,,v,.my,..-

QTL' rd Form: CE 1.if43 A92 Dutptem M ERS SFL-96 011

'AF m m o.m page 12 8 Essig, T. Radiation Protection Persoective on Steam Generator Generle Letter on Attornate Benalr Criteria (ARCL presentation materials for ACRS presentation on August 3,1994.

9 Westinghouse, QQfnments on the Three Individual Staff Members Technical Concerns with the NRC Positions Described in the Generic Letter on the Voltage Based _Recalr Criteria for Y{estinohouse Steam Generator Tubes. Itr NTD.NRC 94 4329 did 1Ql31/94 10 Raghuram, S, etal, lodine Behavlor in Steam Generator Tube Ruoture Accidents. NUREG/CR-2683 11 Adams,J, Atwood, C, The lodine Solke Release Rate Durina a Steam Generator Tube Ruoture.

Nuclear technology v94, June 1991 ,

12. Keenan, J.H. and Keyes, F.G., Steam Tables: Thermodynamle Proceities of Water including Vaoor. Llauld. and SolidEbst, WNey & Sons, New York 1909
13. SWEC, BV2 tech Soec Primary Coolant and Secondary Side Concentrations Usina TID 14844 lodine Dose Conversion Factors.12241 UR(B) 233
14. DLC, Table of Half Lifes and Decav Constants. ERS SFL 93 018 ATTACHMENTS
1. RCS and SG Concentrations Corresponding to 0.35 pCl/gm and 0.5 pCl/gm
2. Transient Activity Graph
3. lodine Spiking Appearance Rate I

l l

i l

l

- + . ,-- , ..w- , - . - . - - ,-.n v. - - . -r.-----v . ,, ,- ., - , , , . , - , - - - - , - - , -. ,--- v

RTL.: nb Form: RE 1.103-3 892 Duagem M ERS SFL 96 011 A A > w@% o.p.m.ni Page 13 Isotopic Concentrations, pCVgm, Corresponding to 0.35 pCVgm Dose Equivalent 1131 ,

Steam Generators I Liquid

  • Steam **

Nuclide RCS Phase Phase Kr 83rn 4.65E 02 4.51E 07 Kr 85m 2.27E 01 2.20E 06 Kr 85 1.20E+00 1.16E 05 Kr 87 1.30E 01 1.26E 06 Kr88 3.46E 01 3.35E 06 <

Kr 89 1.09E 02 1.06E 07 Xe 131m 1.17E 02 1.13E 07 Xe 133m 3.33E 01 3.23E 06 Xe 133 2.84E400 2.75E 05 Xe 135m 1.18E 01 1.14E 06 Xe 135 3.48E 01 3.37E 06 Xe 137 1.77E 02 1.71E 07 -

Xe 138 7.28E 02 7.06E 07 l 101 2.72E 01 7.93E 02 7.93E 04 &

l132 9.48E 02 2.34E 02 2.34E 04 l133 4.24E 01 1.13E 01 1.13E 03 1134 5.93E 02 5.22E 04 5.22E 06 l135 2.28E 01 5.07E 02 5.07E 04

  • Based on SG Specific ActMty TS of 0.1 pCVgm d.e.1131

". Noble 0 01 gases times liquid based phase on RCS(0.1 concentrations 0.35 pCygm pCVgm d.e.1131. lodines based on d.e.1131)

RCS Pre-incident Spike Concentrations, CVgm Corresponding to 21 pCVgm d.e.1131 1131 1.63E+01 1132 5.69E+00 l133 2.54E+01 1134 3.5(i+00 1135 1.37E+01 Concurrent lodine Spike Appearance Rates, CVsec (500 x Equilibrium Rate)

Corresponding to 0.35 pCVgm d.e. l 131 1131 0.49 1132 0.92 1133 1.10 1134 1.34 l135 1.02 1 l

. - _ ~ - _ - - - -

HTt: n/a Form: CE1.In3 892 QM Attachment 1 TA EMM f mg%, ERS SFt.96 011 d page 14 isotopic Concentrations, pCVgm, Corresponding to 0.5 pCVgm Dose Equivalent 1131 Steam Generators Liquid

  • Steam **

Nuclide RCS Phase Phase t Kr 83m 6.64E 02 6.44E 07 Kr 85m 3.24E 01 3.14E 06 Kr 85 1.71 E+00 1.66E 05 Kr87 1.85E 01 1.79E 00 Kr 88 4.94E 01 4.79E 06 Kr89 1.56E 02 1.51E 07

. Xe 131m 1.67E 02 1.62E 07 Xe 133m 4.76E 01 4.61E 06 Xe 133 4.05E+00 3.93E 05 Xe 135m 1.68E 01 1.63E 06 Xe 135 4.97E 01 4.82E 06 Xe 137 2.52E 02 2.45E 07 Xe 138 1.04E 01 1.01E 06 1131 3.89E 01 7.93E 02 7.93E 04 l132 1.35E 01 2.34E 02 2.34E 04 l133 6.06E 01 1.13E 01 1.13E 03 1134 8.48E 02 5.22E 04 5.22E 06 l135 3.26E 01 5.07E 02 5.07E 04

  • Based on SG Specific ActMty TS of 0.1 pCygm d.e.1131

" Noble gr.ses based on RCS 0.5 pCygm d.e.1131 lodines based on 0.01 times liquid phase concentrations (0.1 pCygm d.e.1 131)

RCS Pre-incident Concentrations, pCVgm Corresponding to 30 pCVgm d.e.1131 1131 2.33E+01

. 1132 8.12E+00 A l133 3.64E+01 1134 5.09E+00 1135 1.966!+01 Concurrent lodine Spike Appearance Rates, CVsec (500 x Equilibrium Rate)

Corresponding to 0.5 pCVgm d.e.1131 1131 0.70 1132 1.31 1133 1.57 l134 1.92 1135 1.46

+m

ERS SFi.96-011 Attachment 2 P.on 5 N

250 \ \--

N I

. 200 1 N

'1.0 uCVgm DOSE EQUlVALENT l 131 Steady Sta I

W k

v) >

150 - .

O f 0.5 uCVgm DOSE EQUIVALENT l.131 Steady State n.

E' 100

\

II d 0.35 uCVgm DOSE EQUIVALENT l 131 Eieady State 8 \

50 -

0 20 30 40 50 60 70 80 90 100 Percent of RATED THERMAL POWER FIGURE 3.4-1 DOSE EQUIVALENT l 131 Primary Coolant Specific Activity Limit Versus Percent of RATED THERMAL POWER with the Primary Coolant Specific Activity >0.35, >0.5, >1.0 uCl/ gram DOSE EQUlVALENT l 131 EC961102.XLS

Intentionaily Blank b

. -- . . ~. .

ERS-SFLs96-011 d '

Attachment 3 Page (7 IODINE SPIKE MODEL-Initial 0.35 uCl/gm OUnit 2 The purpose Of this sheet is to determine concurrent lodine spike appearance factors for reduced initial T/S actMty. See text for derivation of formulae.

First, setup some unit conversions:

ORIGIN ;= 1 .

Cl e 3.7 10. sec* I UCI .a 1.0 10. Cl Assign sorte input parameters:

RCS Mass = M . 1.91 10' om Purification Flow Rate = Fs 60 N .I.0 E8 min em Purification Efficiency (DF=10)= E = 0.9

.r The parameters above are from Westinghouse letter DMW b.3050 (Attachment G to SWEC 12241 UR(B) 224)

RCS T/S Leakage = L=450+b.0.72.#8 day em 9.9783 10'I 8.3713 10 5 d

Decay Constants (ERS SFL 93-018) Ad= 9.2568 10 S*c 2.1963 10'4 2.9129 10 5 0.272 0.0948 RCS Concentrations 0 0.35 pCL/gm = C 0.35 = 0.424 $

0.0593 0.228 YC961104 MCD

ERS SFLe96-011 d Attachment 3 Page W L 4 A := F.E +g+Ad l l

Where, F = purification system flow rate, E = purification efficiency, M = RCS mass, L = RCS leak rate, ), = radioactive decay constant, ). = lou,1/hr.

6.8073 10 1

3.6585 10" A* 9.7805 10

-2 .hrd 8.5515 10" 1.6935 10 1

The EPRI report provided the following expression for the appearance rate: l l

l R - (C .35'M' 0 A) l Where, C = concentration, uCl/gm, R = eq. spike rate, Cl/sec. (The arrow operator directs  !

Mathcad to treat this as an array operation). The equillibilum rates are given below:

9.8237 10" l 1.8401 10'8 CD R= 2.2002 10'8 .-

sec 2.6905 10'8 2.0485 10'8 The concurrent iodine spike assumption is 500 x the equillibrium spike:

4 9118 10" 9.2005 10

S := R 500 s= 3,goni .E e

1.3452 1.0243 YC961104 MCD

i ERS-SFL 96 011 d Attachment 3 Page q IODINE SPlKE MODEL-Initial 0.5 uCl/gm OUnit 2 The purpose of this sheet is to determine concurrent lodine spike appearance factors for reduced initial T/S actMty. See text for derivation of formulae.

First, setup some unit conversions:

ORIGIN .= 1

"; . 3.7 10. sec' '

UCI := 1.0 10' 8. Cl Assign some input parameters:

RCS Mass - M . 1.91 10'.gm Purification Flow Rates F := 60 b.1.0 #8 min em Purification Efficiency (DF=10)= E . 0.9 The parameters above are from Westinghouse letter DMW-D 3050 (Attachment G 10 SWEC 12241 UR(B) 224)

RCS T/S Leakage = L . 450 N 0.72 #3 day cm ,

9.9783 Io*I 8.3713 10'8 Decay Constants (ERS SFL 93-018) d Ad := 9.2568 10** .see 2.1963 10'd 2.9129 10-5 0.389 0.135 RCS Concentrations 0 0.5 CVgm = C o,5 .= 0.606 .$

0.0848 0.326 YC961106MCD

ERS SFL=96-011 Attachment 3 Page to d

x . 7 3. x, l Where, F = purification system flow rate, E = purification offic,ency, M = RCS mass, L = RCS leak I rate, Q = radioactive decay constant, A = loss,1/hr.

j 6.8073 10-2 3.6545 10

A* -2 . hr- '

9.7805 10 ,

8.5516 10

1.6935 10

The EPRI report provided the following expression for the appearance rate:

R := (C o s M Aj Where, C = concentration, UCV0m, R = eq spike rate, CVsec. (The arrow operator directs Mathcad to treat this as an array operat!on). The equillibrium rates are given below:

-s 1.4049 1u 2.6204 10'8 R= 3.1446 10

~8 .

3.8474 10'8 2.929 10'8 The concurrent lodine spike assumption is 500 x the equillibrium spike:

7.0247 10

1.3102 S : R 500 S= 1.5723 .-

sec 1.9237 1.4645 YCM1106.MCD L

ERS SFL-96-011 Att:chment 3 Page 2 j NOTE: This case performed to confirm algorithm against previous values supplied by Westinghouse IODINE SPlKE MODEL -- Initial 1.0 uCl/gm @ Unit 2 1

The purpose of this sheet is to determine concurrent iodine spike appearance factors for redumd Initial T/S actMty. See text for derivation of formulae.

First, setup some unit conversions:  !

ORIGIN := 1 Cl := 3.710'0 sec

uCl := 1.010.Cl Assign some input parameters:

RCS Mass = M : 1.91 108 gm Purification Flow Rater F := 60 Y1 .0 9"3 rNi g Purification Efficiency (DF=10)= E : 0.9 1.8 0.63 RCS Concentrations @ 1%FF pCl/gm = Cpp:= 2.9 -

0.39 1.5 ,

The parameters above are from Westinghouso letter DMW-D 3050 (Attachment G to SWEC f224f UR(B) 224)

RCS T/S Leakage = t. := 1.0. 9"I 0.72 9

  • min 3 cm 9.9783 10*7 8.3713 10

Decay Constants (ERS SFL 93 018) Ad := 9.2568 10 8 sec

2.1963 10

2.9129 10-5 ,

1.49 10**

1.43 10'8 DCF:* 2.69 10'd RG1,109 Adult Thyroid Inhal DCFs=

3.73 10'8 l ym33nge , 5.6 10 I 1

- - - - ,._ ..,.,.-__m, , _1

(

ERS:SFL< 96-011 Attachment 3 Page 22 0 pp.DCF Del 131 :: Del 131 = 2.387

  • ung DCF, gm

~

7.541'10

~

C pp 1.0.$ 2.639s*10 '

C y,o :=

8* C y'o = 1.2149 *$

Del 131 _ gm 1.6339*10 ,

~

, 6.2842*10 ' ,

EPRI Report, Redew oflodina SpRe Data from PWR Power Plants b Relation to SGTR wkh MSLA TR*103680, provided the following expression for lodine loss constant:

F L

A := F. E M M Where, F = purification system flow rate, E = purification efficiency, M = RCS mass, L = RCS leak rate, A, = radioactive decay constant, A = loss,1/hr.

~8 6.8662*10 J.6644* 10

A5 9.8394*10'

  • hr' '

~

8.5574*10 '

~

, 1.6993*10 '

The EPRI report provided the following expression for tlw appearance rate:

I R := (C1 .0'M' A Where, C = concentration, uCl/gm, R = eq. spike rate, Cl/sec. (The arrow operator directs Mathcad to treat this as an array operation). The equilibrium rates are' ghten below:

2.7471'10'

~

5.1313 10 ' '

R= 6.3424*10' *E

' 7.4181'10'

""" , 5.6658 10

~3

(

.I.

. . . - . --. . . - .. . _ . - ._.. __ - _.. . _ . _ _ _ _ . _ - . -. ~_. -

N ERfs-SFL-96 011 -

Attachment 3 Page,23 1.3735 7 2.54H

.s ;. R 500 8= 3.1712 . bb 3.709

- , 2.6129, c 1.36 '
r . 2.52  !

Metinghovse letter DMW D 3050 provided the following values W :. 3.075 A  !

soo ,

3.68 t 2.005, j 2

- The differe%g (%)!s: i .996' 0 f 4

1.811 i 4 m :. 0 ' -100 M= 3.128 W i 0.789 T

,0.C94, ',

4-i

. The dlMorences are all lots than 3% Based on trials calcolating backwards from the i Westinghouse results, the differences are nuclide specific, suggesting that Westinghouse may  ;

used deony constants from another reference. The close correlation on 1 131 suggest that there i may be difforences in how Westinghouse ratioed the other Isotopes to obtain de 1 131. TID 14844 and RG1.109 DCFs were used herein. The RG1.109 values provided the closest fit.

YCes1108.Meo '!

,-ww-$--,-- g- 3 g. vie y-.-%,.. t.,.%..w, ,,,r ww *,-t'mee-'

t I

intentionally Blank i

f I

e I

l

__a . , . ,.