ML20217J836

From kanterella
Jump to navigation Jump to search
Rev 1 to DE&S-SR/EM01, Ampacity Derating Factors of Fire- Protected Conduits
ML20217J836
Person / Time
Site: Beaver Valley
Issue date: 10/02/1997
From: Bhatia A, Dogan T
DUKE ENGINEERING & SERVICES
To:
Shared Package
ML20217J832 List:
References
DE&S-SR-EM01, DE&S-SR-EM1, NUDOCS 9710220153
Download: ML20217J836 (110)


Text

A1 Q\

G

  • 0 ( ,qg,)ftdVNW '7 Duquesne Light Company A1.cein m DESIGN ANALYSIS / CALCULATION COVER SHEET  %)g/ llo hgej D ign Analysis (MJ Aherwte( W a h l } Unit lZl her LM lS) l QA cA7300er CALCULATION in L.E (Indicanve of the Ojb ecuhvegppecr Inua ogJ l OABLE llt f (Ju- USA t' PAD C M 9 0 1 T '~  %

IIll 1

UF Systen No. Building Calculation No. Rev. Add. Semmie p/A S/A /0690 GFf 2- A 1- rea 2 na l Prepared By /,Dat4 Check By / Date . Confirmation Required (7af4L@ "+f 7 ffjmp//wg%l? = "o mfbH GJI4 ?G rf L Approved By / Date 1% 1 b e EA fleview / Date na ,scir

'd b

{}, j A ~~'

'!3 I CROS5 REFTKFFCED DATA j TER Al4 '

DCP 2 WtO E51 Al M 5tWR N8 l Temp. Mod. Al A , , l Supersedes Calc. Rev. . Adden. l 0 C S'O - E., l j2,cfe'Ro V 2 A d el p Heitt Mii Supplernent Calc. Rev. , Adden. A) A l Purchase Order No. .T > lr&2. 9 3 Pipe Line No. ' AJ /$

Cable /Racewey No. WA Software. Rev. used A//4

' Referenced drswings MN Equipment Mark No. Ar 4 i

I l Additioral Data 'Rp(AGCeck PC9ce.s d , 3. A 9 AI2. e Ad.(t t 1b1 )(2 LB fI5Af L tN1 '3 Be$.S' CP 110'(di

l' I l %ksB S .se /En1M %v. L l

WWElflij@UL81 9710220153 9710!3 7 819 ffIT T' 4)

D9 ADOCK 05000 2 '3w wu.i, en

(031 DrR .),24 DE&S CALCULATION COVER SHEET PAGE I OF l, KIV. 2 l

Duke Engineering & Servic:s San Ramon. Calfornia I

CALCULATION NUhtBER: DE&S SR/EM01

~

REV, I i L CALCULATION TITLE: Ampacity Derating Factors of Fire Protected Conduits PROJECT NAhtE: Beaver Valley Power Station Unit 2 WID NUhtBER: V20300 CLIENT: DUQUESNE Light Company

, Tills IS A QA CONDITION 1 CALCULATION.

SOFTWARE USAGE tRenann usageprun proor reventons ofapphrablel

' Pre Use Software Versto Hardware Platform / Description of I unctions, features, biodules, Verification Name n Operating System Libraries, hiodeling Techniques N/A N/A N/A N/A N/A Reuew Software Capabilities, Reuew Open Error Notices, Ensure installation lest Completed, and Access Control Satis 6cd, per DPR.).$

DESIGN VERIFICATION DESIGN REVIEW CRITERIA SOFTWARE REVIEW CRITERIA htETHOD YES NO trEM YES NO ITEM g Design Review S O Desisalarut Conestly Selected O O $nhware Capabilities Reviewed O Alternate Calculation BO Assumptions Adequate / Reasonable O O Open enor Notices Rev8ewed O Qualification Testing B O Assumptkins Noted for Verinsation O O sonware u,edCorrecii>

S O Arrrorriaie Desira M'ihadi O O $ciware Results Documenied SO Deilsa lacut iacorporated ia Deiisa O O Ker Prosrom t aiores Recorded S O Reasonable Outputs for the input o

S O laierfac6as rsanizat'oas specined Preparer

  • Verifier Appyr Signature

.fgg }

gg Printed Name Tahun Dogan Ashok Bhatta p Date 10'2/97 10'2/97 gg7 PAGE 1 OF 49

p,....-,,~ . . ~ ~

t t .

f 4. bn[ 8.' g'. .

iORM DPR .) 2B i

PAGE 1 OF 1. RrV. 2 l C A .-*4twemg # .*n Xes San Ramon, Cal (fornia L. . . l REVISION DOCUMENTATION SilEET

$ g.._,~_

r f' CN SATION NUMba: DE&S SR.EM01 I

1 C!.LCULATION TITLE: Ampacity Derating Factors of Fire Protected Conduits

> REVISION NO. DESCRIPTION OF REVISION O ORIGINAL ISSUE I

(ast%

Pagel

/dded QA MO Added the DE&S form Number Page 2 Added the DEAS form Number and the Revision status Page A9 Added (x100)in Equation A.S. No efIcct on the results. Calculations were done using the correct form of the equation.

Page A12 Deleted the duplicate line defining d, Page A19 Added the missing negative sign in Equation A.35. No effect on results. Calculations were donc using the correct form of the equation.

REV PREPARER VEPJFIER CLIENT / PROJECT: DUQUESNE Light Co. /BVPS Unit 2 PAGE I

A /W2/97 g /W2/97 CALCULATION NO. DE&S SR/EM01 2 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

DE&S Duke Engineering & Servkas San Ramon. Calfornia TABLE OF CONTENTS Page 1.0 PURPOSE...............................................................................................................4

2.0 REFERENCES

.......................................................................................................5 3.0 D E S I G N IN P UT . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.0 A S S U M PTI O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

, 5.0 M ET110 DO L OG Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.0 IDENTIFICATION OF COMPUTER PROORAMS............................................! 6 7.0 RESULTS.............................................................................................................17 8.0 C A L C U L ATI O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ATTACHMENT A Heat Transfer Model for Fire Protected Conduits........................Al ATTACHMENT B Walkdown Report on Fire Protected Conduits.............................B1 REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

77) /9/19/97 g /9//9/97 CALCULATION NO. DEAS.SR/EM01 3 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

. A

DE&S Duke Enginwmg & Servicos San Ramon. Calfornia 1.0 PURPOSE

'lhe pVtpose of this calculation is to determine the ampacity derating factor and the available amparity of 600V and SkV cables routed in raceways clad with Thermo-Lag fire protective ,

material. The available ampacity of the cables are compared to the fullload rating of the  :

elecJical loads and the 'margir. between the available ampacity and the full load rating is ca',culated.

The raceways covered in this calculation are defined in Duquesne Light Company Order No.

D158293 dated Jur.e 4,1997, and are listed below:

1 2CH9490B1 16 2CL6070F 2 2CH9570B 17 2CL950BA 3 2CH957PA 18 2CL950RA 4 2CL213ND 19 2CL9570B 5 2CL30lOAl 20 2CL957PA 6 2CL30 LOA 2 21 2CH925GC2 7 2CL30 LOA 3 22 2CL9230A 8 2CL30 LOA 4 23 2CL923OH 9 2CL6050A 24 2CL957WA 10 2CL6070A 25 2DH925G02 11 2CL6070Al 26 2DH925001 12 2CL60708 13 2CL6070C 14 2CL6070D 15 2CL6070E REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9//9/97 gg, /9/19/97 CALCULAT10N NO DE&S SR/EM01 4 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

DE&S Lkke Engineering O Services San Ramon. Cahfornia

2.0 REFERENCES

1, Environmental Conditions for Class IE Equipment Qualification Requirements, BVPS Unit 2, ES M-013. Rev. 3,

2. Beaver Valley Unit 2 Raceway List, EC 612241.00, July 17,1987.
3. Spec No. 2BVS 309, insulated 5000V Power Cable Schedule of Requirements. 09/22/86.

1 Spec No. 2BVS 312, insulated 600V Power Cable Schedule of Requirements,03/06/84.

5. Spec No. 2BVS 828. 600V Fite Resistant Power Cable Schedule of Requirements. 08/23/85.
6. Cable Impedance and Ampacity Data, Duquesne Light Company Analysis No. 8700 E 261, 12/17/92.
7. Equipment List Report EC 0,12241.00,07/20/87.
8. Table for Fire Protection of Cables & Race ways, Sheets 1 through 3,10080 RE-34CV, Rev.

6,10080-RE-34CW, Rev. 8,10080 RE 34CX, Rev. 8.

l 9. ANSI C80.1 l

10. Cable Schedule List, Beaver Valley Unit , .C 112241.00,12/20/88 1
11. Thermal Science Inc. Test Report i 11934, United States Testing Company, Inc., July 25, 1994,
12. Letter from Michael Murphy (Peak Seals) to Nick Cherish (The Cleveland Electric Illuminating Company) dated February 11,1997.

Subject:

Thickness Tolerances / Thermal Properties.

13. Omega Point Laboratories Report Titled,"Ampacity Derating of Fire Protected Cables,"

Project No. 14540-100770, December 5,1996. .

14. ASHRAE Handbook, fundamentals,1993.

REV PREPARER VERiflER CLIENT / PROJECT: DUQUESNE Light Co. IBVPS Unit 2 PAGE O

% /9/19/97 g <9/19/97 CALCULATION NO DE&S SR/EM01 5 TITLE: An pacity Derating Factors of OF Fire Protected Conduits 49 l

__ a

l l DE&S Duae Engheering0 Services San Ramon. California

15. Safety Evaluation Report by the Office of Nuclear Reactor Regulation, "Ampacity issues Related to Thermo Lag Fire Barriers, Texas Utilities Electric Company, Comanche Peak Steam Electric Station, Unit 2, Docket No. 50-446," US Nuclear Regulatory Commission, June 14,1995,
16. Beaver Valley Unit 2 Equipment List, EC 012241.00,07/20/87.
17. Beaver Valley Unit 2 Equipment Analysis 10080 E 68, Rev. 4, Attachments G and H.
18. Beaver Valley Unit 2 Equipment Analysis 10080 E 221, Rev.0 Addenda Aland E 222, Rev.0 Addenda Al.
19. Beaver Valley Unit 2 Equipment Analysis 10080 E 201, Rev.1 Addenda A2.
20. Beaver Valley Unit 2 Equipment Analysis 10080 E-58, Rev. I1 A61enda A2.
21. Thermal Science Inc. Report Titled "Ampacity Derating of Cables Enclosed in One Hour Electrical Raceway fire Barrier Systems (ERFBS)," Project No.'s 11960 97332,97334 6.

97768-70, hf arch 28,1995.

22. Early, hi. W. et al., National E!ectric Code Handbook, National Fire Protection Association.

1993.

23. Letter from T. Dogan (DE&S) to hl. Patel (DUQUESNE Light Co.) dated September 15, 1997, VC20300 002,
24. Letter from hi. Patel (DUQUESNE Light Co.) to T. Dogan (DE&S) dated September 18.

Subject:

Ampacity Derating calculation.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9//9/97 CALCULATION NO. DEAS SR/EM01 6 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

DE&S Duke Engineering & Sorskes San Ramon. Calfornia 3.0 DESIGN INPUT 3.1 Raceway, Cable,and Ampacity Data The design input data used in this calculation is summarized in Tables 3.1,3.2, and 3.3. For convenience the input data is organized into three categories:

1. Raceway Data (Table 3.1)
2. Cable and Conductor Data (Table 3.2)
3. Baseline Ampacity Data (Table 3.3) 1 The source documents used to compile the input data are identified in the column headings of
Tables 3.1,3.2, and 3.3. The majority of the raceways are rigid aluminum conduits. There are l three conduits (2CH925GC2,2DH925G02,2DH925001) that are zine coated rigid steel.

3.2 Supplemental Raceway Dats l

Supplemental raceway data have been obtained from the plant walkdown report in Attachment B.

The supplemental raceway data consists of:

1. Orientation of the raceway (horizontal, vertical, or both)
2. Configuration of the raceway (proximity to other raceways)
3. Use of common enclosures to protect multiple raceways
4. Use of 2M Interam fire barrier material Almost all of the raceways covered in this calculation have both vertical and horizontal runs. All of them are individually wrapped with Thermo. Lag fire protective material except in the vicinity of supports, wall penetrations, and on flexible conduit sections where 3M Interam fire protective material is used. The majority of the raceways are routed away from other raceways so that there is no blockage of the radiative heat transfer. Table B.1 in Attachment B provides a summary of the walkdown data relevant to the scope of this calculation. Table 3.4 summarizes the radiation shape factors for the raceways that run parallel to other nearby raceways.

3.3 Surface Emissivity of the Conduits I

Surface emissivity of the conduits are taken from [Ref.14]. The values used in the calculation are:

Aluminum conduit: c3=0.20 [Ref.14, p: 36.3, Aluminum / heavily oxidized)

Steel conduit (zine coated): c3=0.23 [Ref.14, p: 36.4, Zinc / Galvanizing)

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97- g /9/19/97 CALCULATION NO. DEAS SR/EM01 7 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49 4

DE&S Duke Engineering & Services San Ramon. Cahfornia 3.4 Temperature Data All 600V and SkV cables consist of copper conductors with insulation rated at 90'C (194 'F), for use at an ambient temperature of 40'C (104'F). The highest ambient ter..perature surrounding the raceways evaluated in this calculation is 104 'F. There are two rac'eways (2CH957PA and 2CL957PA) that are at an ambient temperature of 88.5 'F.

3.5 Thermal Conductivity and Thickness of the Thermo Lag Material Tb; mal conductivity of the Thermo-Lag fire protective material is obtained from (Ref.11).

Surface emissivity is obtained from (Ref.15). For conservatism, both paramete:s are chosen on the low side to increase the thermal resistance of the fire barrier and to yield a higher ampacity derating factor. The values used in this calculation are given below:

Thermal conductivity: k, = 0.09 Bru/hr ft 'F (value from Ref. I1. Ref.15, p: A3 8 gives k, =

0.122 Btu /h ft 'F)

Surface emissivity: c3 = 0.9 [value from Ref.15, p: A3 8. Ref. 21, p: 22 gives en =.99)

Thickness (See Att. B): 13 =1-3/8" for 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> rated conduits (all sizes) 3/4" for 1-hour hour rated 2" conduits 1 5/16" for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> rated conduits larger than 2"

3. 6 Thermal Conductivity and Thickness of :he 3M Interam Material Thermal conductivity of the 3M Interam fire protective material is obtained from (Ref.12).

Surface emissivity is obtained from (Ref.13). The values used in this calculation are given below:

'Ihermal conductivity: k, = 0.083 Btu /hr ft 'F (from Ref.12 at 100'F. At 200 'F k,=0.09 Btu /hr ft 'F. 0.08 used in the calculation) .

Surface emissivity: c3 = 0.29 [kef.13, p: 8) (0.30 used in the calculation)

Thickness: 13 =0.410.04 in per layer (Ref.12)

The 3M Interam material is applied in three layers /,1.32" maximum thickness) for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> barriers, and in five layers (2.20" maximum thickness) for 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> barriers. See Attachment B Section B.S.3 for more details.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

% /9/19/97 g /9//9/97 CALCULATION NO. DE&S-SR/EM01 8 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

l l

DE&S Duke Engineering & Serskes San Ramon, California Table 3.1 Racenmy Data l

9 E 4 -

4 -

1 1,

1 p

E I, } l I h  ! $ - J

, r r r II gY >g Y Y T Y 2 5. *E .E e - .E E E !E. E.

I 2CH9490BI CAC.lD 55 3 EL 74T4' I TL3M i# 0 4' R At 4 500 D 237 43.3%

2 2CHV)tus C AC.Il Ciel EL 73 74- I TLlM 104 0 3' R Al 3M U.235 276%

3 JCHv)7rA CAe 'I @ EL 7.ii4' I TldR $ ketch I 55.3 3 K Al 3.363 0 235 2245 4 2CL213ND CAG.!I CVal EL 733 4' 3 TL 5 ketch 6 104.0 3' R Al 3.363 0.235 14 4 %

3 JCLJDIDAl CAC-06 CV.3 EL 733 4' I TL ID4 0 2' R Al 2.373 D 134 24.1%

6 2CC30 LOA 2CAC 06 CV.4 EL 773 4' I T .,

404 0 2' R Al 2.373 0.134 24 1 %

  • 7 JCL30lO A3 CAC.06 CV.3 EL 73T4' T~

1 104 0 2' R Al 2.373 0.134 40 4%~

5 ZCm30 lO A4CAC 06 CV-4 EL 77T4' i TL 1040 T K Al 2.373 U.134 40 4 %

9 JCL6030A CAC 05 55 3 EL 74T4' I TL/3M 104 0 3' R Al 3 500 U.216 35.3%

10 2CL6070A CAC-05 55 3 EL 743 4- i elm 5 ketch 3 104 0 3' R Al 3.300 U 216 35.3 %

1i 2CL6070Al CAC-05 55 3 EL 74T4' I TUIM 5 ketch 3 104 0 3" R Al 1 300 0.216 15.3 %

12 2CL6U(Up CAC.05 55-3 EL 743~4' 1 TblM 104 0 3' R Al 3.300 D.216 35 3 %

13 2CL69 ILA CAC.12 5B-3 EL 743'4' I TLlM 5 ketch 3 104 0 6' R At 6 623 U.250 95%

14 2CL^"ivu CAG.Il 35 3 EL 74T4' 1 R/JM 5 ketch 3 404.0 3 ' R Al 3J63 0.235 30.3 %

13 2CL6970L CAC.12 55 3 EL 74T4' I TL Sketch 2 104.0 6' R At 6 623 0.250 35.4 %

Percent IMI witi : 4VS AOL210 deener sized; 22.3 %

16 G L6VIUt CAG.12 55 3 EL 743 -6' I TLT3M 5 ketch 2 104.0 6' R Al 6 623 0.250 40.7 %

17 JCLV3DBA CAC.I I CB.2 EL 72T4' 1 TLlM ID4 0 3' R Al 3.363 U.235 29.2%

15 2CLv30RA CAC.12 55 3 EL 74T4- I TL ID4.0 6' R At 6 623 71L93 7up CAC-I l CT.l EL 7174- 0.250 20.2 %

1 TblM 1D4 0 5' R AI TT87"" U.235 14.2 %

20 2CLV37FA CAC. I l CV.I EL 73F4' I TLlM Sketch I 55 3 5' R At 3.363 0.235 14.2 %

21 JCHVZ30CJ CA B-ID FA.3 3 TL 104 0 4'RElZn 4.3 0.237 23.7 %

T 2C4.9230A CAGil FA.3 3 TL 5 ketch 4 104.0 3' R Al 3.363 0.235 15Jh '

23 JCLV230H CAC05 FA 3 3 TL 5 ketch 3 104 0 3' R Al 3.3 0.216 35.3 %

24 2CLy>in A CAC-11 FA.3 TL 3 1040 3' R Al 3.363 0.235 29 2%

23 ZUHVZ3OU2 CAB.lO FA 3 3 IL Sketch 7 104 0 4' R 51 In 4.300 0.237 23.7 %

26 ZUHVZ3 OUI CA5-IU FA 3 3 TL 104 0 4' R 51Zn 4.300 0 ;37 314e NOTES

1. 27. W h de am 6 ewer manardalen a# rarewes.

JAf(JMlanrown) k Emdfhe orqA #e rewrage k mors ther iJL See Anarheent B}rr niranus,

2. See Figure 3.2 in Anwheent 8
3. R AL C tRigdAJuminum ConMo. A StZn C(RigWSorel Zune Coard RL/ PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit.1 PAGE O

] /9/19/97 g /9/19/97 CALCULATION NO. DE&S SR/EM01 9 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49 s

DE&S Duke Engineering & Services San Ramon. California Table 3.2 Cable and Conductor Data d

h@5 C 9C c =

A e ~ B<

Z .

j 2 b ,

  • 3 2d W w a m T*

IF j- 0- 5- j- j5 -

l  !" 30 ly ly fy 30 1 a a- at as is os at a]"d_-

1 2CH9490B] 25WSAOH301 N KB-05 4i0 3 2.650 5000 0.0688 '

2 2CH9570B 25WSAOH301 NAB-05 4/0 3 2.650 5000 0.0688 3 2CH957PA 25WSBPH301 NKB-07 2/0 3 2.390 5000 0.1094 4 2CL213ND 2LAPNNLO10 NKZ-01 2 DUP 0.939 600 0.2182 25CANNL.016 NKZ-01 2 DUP 0.939 600 0.2182 25CANNL017 N KZ-01 2 DUP 0.939 600 0.2182 25CANNLO25 N KZ-12 6 DUP 0.718 600 0.5508 25CANNLO26 N M -12 6 DUP 0.718 600 0.5508 5 2CL30lOAl 2HVZAOL200 NM 21 2 IRI 1.014 600 0.2182 6 2CL30 LOA 2 2HVZAOL200 NKZ 21 2 TRI 1.014 600 0.2182 7 2CL30 LOA 3 iilVZAOL205 NKZ 23 1/0 TRI 1.314 600 0.1376 b 2CL30lOAl 2HVZAOL205 NKZ 23 1/0 IRI 1.314 600- 0.1376 9 2CL6050A 2EH5AOL2II NKZ 27 250 I RI l.903 600 0.0593 10 2CL6070A ZEH5AOL 240 NKZ 27 250 IRI 1.903 600 0.0593 II 2CL6070Al 2EH5AOL246 NKZ 27 250 TRI 1.903 ~ 600 0.0593 12 2CILO70B ZEH5AOL240 NKZ 27 250 I RI 1.903 600 0.0593 13 2CL6070C ZEH5AOL245 NKZ 27 250 TRI l.903 600 0.0593 14 2CL6070D 2EY510L604 NKA 74 4 3 1.170 600 1 0.3465 2BY510L605 NKA 74 4 3 1.170 600 0.3465 2BY510L606 NKA 74 4 3 1.170 600 0.3465 2EH5AOL205 NKZ 27 250 TRI 1.903 600 0.0593 i5 2CL6070E 2 EH5AOL245 NKZ 27 250 I RI 1.903 600 0.0593 2HV5AOL200 NKZ 28 350 I RI 2.139 600 0.0434 2HVSAOL210 NKZ 29 500 TRI 2.434 600 0.0316 16 2CL6070F 2BY510L604 NKA 74 4 3 1.170 600 0.3465 2BY5 t OL605 NKA 74 4 3 1.170 600 0.3465 2BYS10L606 NKA 74 4* 3 1.170 600 0.3465 2EH5AOL205 NKZ 27 250 IRI 1.903 600 0.0593 ZEH5AOL246 NKZ-27 250 131 1.903 600 0.0593 ZEH5AOL250 NKZ-27 250 TRI 1.903 600 0.0593 17 2CL9.0BA 2VB53BL501 NKZ 500 QUAD 2.729 600 0.0316 18 2CL950RA 2VB51RL501 NKZ-05 500 QUAD 2.729 600 0.0316 19 2CL9570B 2EH5AOL240 NKZ 27 250 TRI 1.903 600 0.0593 20 2CL957PA 2EH5BPL215 NKZ 27 250 I RI 1.903 600 0.0593 21 2CH9250C2 2CH5COH301 NKU-31 1/0 1RI 1.960 5000 0.1376 22 2CL9230A ZEH5AOL245 NKZ-27 250 TRI 1.903 600 0.0m 2FNC AOL001 NKZ 21 TRI 23 2CL9230H 2EH5AOL246 2 1.014 600 OXol NKZ 27 250 IRI 1.N)3 600 0.0593 24 2CL957WA 2VB52WL 501 NKZ 05 500 25 QUAD 2.729 600 0.0316 2DH925002 2CH5CUH301 N AB-31 1/0 I RI 1.960 5000 0.1376 23 2DH925001 2CH5AOH301 NKB-09 lio 3 2.250 5000 0.1376 REV PREPARER VERJFIER CLIENT / PROJECT."DUQUESNE Light Co. /BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATIONiG DE&S-SR/EM01 10 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. Cahfornia Table 3J Baseline Ampacity Data I

d f 4 E I 1 I .

.p 4 4 f p p >p 'y  %

  • 1 2

.1 JUMWevvpl JUMv31Up il J3W3AUMJUI J3W3AUMJUI L1 4/U 4 'O h

J 11 3UUU 3UUU L1 4 50.0 450.0 11 1.00 1.UU 9

1.00 i

l 30.0 I .UU 250.0 J JUMV37PA 43W35PMJUI 2/U 3 3UUU Z12.0 1.UU l .UB 213.0 4 JULJIJNU ZLArNNLUIU 2 IJUP OUU I JU.0 U.30 1.U0 03.0 Z3GANNLUIS 2 UUP 000 IJU.0 U.30 1.UU 03.0 23b ANNLU17 2 UUP 000 IJO U U.30 1.00 03.0 JEANNLU23 0 UUP 000 73.0 U.30 1.00 37.3 43CANNLU2O O UUP OUU 73.0 U.30 1.UU 37.3 3 JULJU1UAI JM V4AUL3W 2 I MJ 000 lJ0.0 l UU 0

1.UU IJU.0 JULJUIUAZ JMV4AULJUC ' 2 IIU 000. I JU.0 5.00 l .UU L 30.0 7 JULmIUAJ JM V4AULJU3 IIU I KI 600 179.0 I UU l .UU 179.0 5 JULJUlUA4 2rIV4Ar_n m3 1/U I KI 000 179.0 I.UU I .UU 179.0 9 2['L"30A JLM3AUL2 8 3 230 I KI 000 317.0 I .UU l .UU JI7.0 IU JUL OUIUA JLM3AUL240 230 I KI 000 J I 7.0 I .UU l .UU J t 7.0 11 JULOUiUA1 JLM3AUL240 23U I KI 000 317.0 L .UU l .UU J I7.0 12 JULOUIU5 JLM3AUL240 Z30 I KI 600 317.0 I.UU l .UU 317.0 aJ JL L%IUU JLM3AUL243 230 I KI 000 317.0 1.00 1.00 337.0 14 JUL*JIUU 45 T310 LOU 4 4 3 000 V1.0 U.30 1.00 43.3 45 Y3 4 0 LOU 3 4 3 000 VI .D U.30

=

1 UU 43 3 45 Y 31 ULOOO 4 3 000 V1.0 U.30 1.00 45.3 J LM3AULJU3 230 I MI 000 J I 7.0 0.30 1.00 '

135.3

( 13 JCLPJIUL JLM3AUL243 230 I KI 000 JI 7.0 0.70 1.00

Z21.9 JHV5AULJUU 330 I K1 000 354.0 0.70 1.00 I 205.5 JMV5AUL210 300 IKI 000 477.0 0.70 - 1,00 JJJ.T 10 JUL9JIUt 45 T310 LOU 4 4 J S00 V1.0 U.30 1.00 43.3 25T33OLOU3 4 J 000 V1.0 0.30 I .UU 43.3 45Y310 LOUD 4 3 000 V I .0 U.30 1.00 43.3 JLM3AOLm3 230 I KI 000 J I 7.0 U.30 1.00 135.3 JLil3AUW40 230 I KI 000 317.0 U.30 1.00 '35.3 JLM3AUL230 23U I KI 000 JI T.0 0.30 1.00 135.3 17 2CLV305A J V 53JULml 300 QUAD 000 477.0 U.50 1.00 351.0 15 JULV3UKA Z V 531 ".L"1 300 QUAU 000 477.0 0.50 1.00 J51.0 EELV3 /UU JLM3AULZ40 230 I KI 000 317.0 1.00 1.00 J I7.0 20 JCLV37PA JLhacrul3 230 I KI 000 317.0 1.00 1.05 317.0 21 JUMV23UUJ jut %UMJUI I/O I KI 3UUU 155 0 1.00 1.U0 155.0 22 JULV2JUA JLM3AULJ43 230 IKI 000 317.0 U.50 1.00 23J.O JPNUAOLWI 2 I K1 000 lJU U U.50 I .UU l04.0 23 JULVJJUM JLM3AULJ40 230 i KI 000 J 17.0 1.00 1.00 J 17.0 24 JULW3Iw A JY53dwb301 300 QUAD 000 477.0 U.50 1.00 J51.0 23 JuMV23uus jut m unJUI I19 Inl 3UUU 155.c 1.00 I .UU 455.0 20 JUMV23UUI JUM3AUMJUI I/O J 3UUU 150.0 1.00 1.00 150.0

-NOTES

1. ACCF(Mulspir Conhcor ConwonenFacner)per(Ref 22.hwcle31043,Penapupbse]

} 3. A1CF(AmMent Tenpereaue Comenon Feewr)per(Ref 22. Article 31013. Noor 1)

-REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g, /9/19/97 CALCULATION NO. DE&S SR/EM01 11 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon, Cahfornia Table 3.4 Radiation Shape Factors

.n $ g. }T }T -

f= 0 ud g - x o = .

48" 48 <d g. s M

a I(<,

c _g gf5 dd l-oc $

l m 4u

} $ I 6 a in 4

  • ij *? g er 1

w i

U }

l 2CH957PA _

b 5 56 I.45 8 45 0 94 Fw 2CL957PA k 5.56 1.45 24 00 8.45 15.55 1 00 3 68 5.68 fu 0.06 2CL957PA b 5.56 1.45 8 45 Fw 0.94 2CH957PA k 5.56 1.45 24 00 8 45 15.55 1.00 3 68 5.68 Fu 0.06 2 2CL6Mt' b 6 63 1.44 9.50 0.87 Fw 2CL6070F k 6 63 1.45 12.00 9.52 2.49 1.00 0.52 2.53 Fu 0.13 2CL6070F b 6 63 1.45 9.52 Fw 0.87 2CL6070E k 6 63 1.44 12.00 9.30 2 49 1.00 0.52 2.52 fu. 0.13 3 2CL6070Al b 3.50 1.45 6.39 Fw 0.78 2CL6070C k 6 63 1.45 8 00 9.52 0.05 1 74'9 0.01 2.50 fu 0.22 2CL6070C b 6 63 1.45 9.52 Fw 0.71 2CL6070A1 k 3 50 1.45 8 00 6.39 0.05 0 67 0.01 1.68 Fw 0.15 2CL6070A I 3.50 1.45 8.00 6.39 0.05 0.67 0.01 1.68 fu 0.15 2CL6070A b 3 50 1.45 6.39 Fw 0.60 2CL6070C k 6 63 1.45 8.00 9.52 0.05 1.49 0.01 2.50 Fu 0.22 2CL6070D I 5 b6 1.45 8 00 84? O $8 1.32 0.18 2.50 fu 0.19 2CL6070D b 5 56 I.45 8 45 Fw 0.86 2CL6070A k 3.50 1.45 s.00 6.39 0.58 0.76 0.14 1.89 fu 0.14 4 2CL923OA b 5.56 1.50 8.56 Fw 0 se 2CC923OA k 5.56 0.00 15.6 5.56 8.56 0.65 2.00 3.65 fu u.06 2CK9230A I 5.56 0.00 15.6 5.56 8.56 0.65 2.00 3 65 Fu 0.06 5 2CL92J'JH b 3 50 1.50 6.50 Fw 0.93 2CK923PC k 3.50 0.00 12.0 3.50 7.00 0.54 2.13 3.69 fu 0.05 6 2CL213ND b 5.56 1.50 8.56 Fw 0.89 2CC220ND k 3.50 0.00 9.0 3.50 2.97 0.41 0.69 2.10 fu 0.07 2CK213NC i 3 50 0.00 12.7 3.50 6.70 0.41 1.56 2.97 0.04 Fw 7 2DH925GO3 b 4.50 1.50 7.50 Fw 0.86 2DH92SOO3 k 4.50 1.50 9.0 7.50 1.50 1.00 0 40 2.40 Fu 0.14 NOTES.

1. See Figwe B.2 in Attachment B for conduit configurations
3. riap thickness. t,, is !!s* (see note in Figwu B.! in Attachment B)
3.
  • enier thickness is assigned perperegrupbs 3.4 and 3.5. See Table 3.1 rw tra type of fire barner mawrial.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9//9/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 12 TITLE: Ampacity Derating Factors Of OF Fire-Protected Conduits 49 I

-DE&S -

Duke Engineering & Servkes ^

San Ramon Ca.'tfornia 4.0 ASSUMPTIONS.

This calculation is based on the assumptions and approximations listed below. These assumptions and approximations arejustified herein and do not require later confirmation or

-justification.

4.1 The fire barrier material thickness is at the upper fabrication tolerance specified by the >

manufacturer / installation procedure. This is a conservative assumption since it increases the thermal resistance of the enclosure and results in a lower cable ampacity.

4.2 Where there are different sizes of cables in a raceway, the ampacity derating factor is calculated assuming that the raceway is filled with the smallest size cable in it. A sensitivity study in Attachment A demonstrates this is a conservative assumption.

4.3 Variations in the application of the barrier that do not extend more than thrt.e feet are neglected. This is a reasonable assumption since axial conduction along the ccbles and the conduit helps even out the temperature difference. This assumption is also consistent with Sandia National Laboratories assessment [Ref.15, p: 3) which allows up to 3 feet of variation, and the NEC [Ref. 22, Article 310-15) which allows exemption for up to 10 feet or 10 percent of the circuit length, whichever is less.

4.4 Raceways protected by 3M Interam fire wrap for a length of more than 3 feet are assumed to be protected by 3M Interam over their entire length. This is a conservative assumption since 3M has a higher thermal resistance than Thermo Lag and yields a higher ampacity derating factor. ,

4.5 Ambient temperature is assumed to be at the maximum value of the normal operating temperature range specified in [Ref.1), BVPS Unit 2 " Environmental Conditions for Class IE Equipment Requirements." This is a conservative assumption since the ampacity decreases with increasing ambient temperature.

- 4.6 An air gap having a width of 1/8" is assumed to exist between the conduit and the fire wrap; This is a conservative sssumption since the presence of the gap decreases the cable ampacity by reducing the heat dissipation capability of the raceway. The 3M Interam flexible mat is applied by wrapping it around the conduit so that a tight contact without a gap is expected to form between the conduit and the fire wrap. The Thermo-Lag sections are prefabricated to the size of the conduit to provide a close fit. Therefore, the assumed value of 1/8" for width of the air gap is reasonable.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DEdcS-SR/EM01 13 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

I DE&S Duke Engineering & Services San Ramon. Calfornia 4.7 Where part of a fire barrier is formed by an adjacent wall, the effect of the wall is neglected. This is a reasonable assumption since the heat dissipation rate through a wall is as effective as the heat dissipation through rate through a normal fire barrier. See Section A.3.8 of Attachment A for further discussion.

4 REV PREPARER VERIFIER CLIENT / PROJECT: DUQ,UESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g - /9//9/97 CALCULATION NO. DE&S-SR/EM01 14 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

,n,, - _.. _ -.

DE&S-

' Duke Engineering & Services '

San Ramon. Cahfornia 5.0 METHODOLOGY 5.1 Deflaitions

, Definition of the terms used in this calculation are given in Attachment A Section A.2.1.

5.2 Methodology The cable ampacities and the ampacity derating factors are determined by performing heat transfer analysis for the raceways and their fire barriers. The heat transfer model is based on basic heat transfer principles and correlations for conduction, convection, and radiation, and is discussed in detail in Attachment A. The heat transfer model is verified against test data to evaluate the degree of conservatism inherent in the method. Sensitivity studies are also performed tojustify the approximations and simplifications introduced into the calculations.

Verification of the method and the sensitivity studies are contained in Attachment A.

He essence of the heat transfer model is to determine the maximum heat dissipation rate from a -

given raceway fire barrier assembly with the cable conductor temperature at % 'C (194 'F) and the ambient at 40'C (104'F). The heat dissipation rate is then converted into an ampacity value and an ampacity derating factor is calculated as defined by Equation A.I.

The overall methodology involves the following steps:

1. Determine the raceway size, fire bamer size, and the cable fill data (size, quantity).  !
2. Determine the radiation shape factor for the raceway enclosure by considering its size and its proximity to the adjacent raceways.
3. Perform a heat transfer analysis of the raceway and the enclosed cables (see Attachment A for details) and determine the ampacity derating factor, ADF, for the raceway.
4. Calculate the protected ampacity of the cable (s)in the raceway using Equation A.I. This is the protected cable ampacity at 90 *C conductor and 40 'C ambient temperature.
5. Apply an ambient temperature correction factor (in accordance with Paragraph A.3.9 of Attachment A) to the ampacity value calculated in Step 4 and determine the cable ampacity margin using Equation A.2.

REV PREPARER VERIFIER CLIENT /P.'OJECT: DUQUESNE Light Co./BVPS Unic 2 PAGE O

% /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 15 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. Cahfornia 6.0 IDENTIFICATION OF COMPUTER PROGRA31S ne ampacity calculations are performed using Microsoft Excel 5.0. The input data and the calculated results are checked against hand calculations for accuracy and consistency with the applicable equations.

The calculations require iterations over the raceway temperature and the fire barrier temperature.

These parameters are identified in the Tables in Section 8.0. For clarity, only the final values of the iterations are showTi.

l REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 16 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49


J

DE&S .

Duke Engineering & Services San Ramon. Cahfornia 7.0 RESULTS The results of the ampacity calculations for the cables covered within the scope of this calculation are summarized in Table 7.1. This table also contains the essential raceway and the cable data used in the calculation. The results are reported in terms of theprotectedampacity, the ampacity deratir'gfactor, and the ampacity margin (see Section A.2.1 of Attachment A for the definitions) for all cables.

The ampacity derating factors are in the 16% to 34% range which is somewhat higher than the ampacity derating factors assigned by the industry to protected conduits with similar fire rating.

There are thrce reasons for this:

1. The thickness of the fire barrier material used at BVPS Unit 2 is greater than the thickness of the similarly rated barriers in other plants.
2. The heat transfer method and the input data used is biased toward a conservative result (i.e.,

high ampacity derating factor).

3. Some of the raceways have significant lengths protected by 3M Interam material, which has a higher thermal resistance than Thermo-Lag.

It must be noted that the ampacity derating factor is defined in reference to a baseline ampacity according to Equation A.I. Everything else being the same, a low baseline ampacity results in a low ampacity derating factor and vice versa. Therefore, it is important to realize that the ampacity derating factors reported in this calculation are unique to the raceways and the baseline ampacity assigned to the cables installed in them.

All cables routed in Fire-Protected raceways are adequately sized as indicated by the positive margins except:

Raceway 2CL213ND cables : 2SCANNL025 2SCANNLO26 Raceway 2CL6070E cable: 2HVSAOL200

, 2HVSAOL210 These cables have negative ampacity margin primarily due to their low baseline ampacity. A further evaluation of these raceways is performed below by considering the diversity of the of the cables installed in them.

REV PREi%RER VERJFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9//9/97 CALCULATION NO. DE&S-SR/EM01 17 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. Cahfornia Raceways 2CL113ND Examination of the ampacity margins in Table 7.1 for raceways 2CL213ND indicates that some of the cables in this raceways have positive ampacity margins while the others have negative 1

' ampacity margins. In other words, some cables are lightly loaded while the others are heavily loaded. When this diversity ofloading is considered, and a heat balance for the entire set of cables in the raceway is performed, it can be seen that the thermal conditions at the " required" currer.t are more favorable than the thermal conditions at the " rated" current (i.e., " protected" ampacity). This is demonstrated in Table 7.2 where the total heat generated at the maximum required current is compared with the total heat at the protected ampacity The total heat generated at the maximum required current is less than the total heat generated at the protected ampacity. This implies that the cable conductor temperature at the maximum current will be less than the cable conductor temperature at the protected ampacity (i.e.,194 'F). It can, therefore, be concluded that the cables in raceway 2CL213ND have sufficient diversity so that overloading of the two cables (2SCANNLO25 and 2SCANNLO26) is compensated by the underloding of the remaining three cables.

Raceways 2CL6070E The situation with 2CL6070E is similar to the situation with 2CL213ND discussed above.

However, there are only three cables in this raceway with two of them heavily overloaded. The diversity ofloading is not sufficient to keep the conductor temperature at or below its limit of 194 *F when all three cables are loaded at their maximum required load.

A supplemental calculation was done for raceway 2CL607ND with cable 2HVSAOL210 deenergized per [Ref. 24]. This calculation, which is given in Table 8.15A, is based on only two triplex cables in the raceway so that the Multiple Conductor Correction Factor (MCCF) is 0.8, the baseline ampacity of the model cable is 253.6 (=0.8x317), and the percent fill is 22.3% (two 1.9" diameter cables in a 5" conduit). The results show that, under these conditions, the ampacity derating factor is 26.1%. With this ampacity derating factor the cable 2HVSAOL200 has a protected ampacity of 227 which exceeds the required ampacity of 223 Amps by nearly 2 percent.. In addition to the 2 percent ampacity margin, there is sufficient diversity to prevent overheating of this cable. This is demonstrated in Table 7.2 where it is shown that the heat generated at the maximum required current is less than the heat generated at the protected ampacity.

Based on the above discussion, the cables in raceway 2CL6070E have positive ampacity margins and sufficient diversity so that the high current load on the second cable (2HVSAOL200) is more than compensated by the low current load on the first cable (2HVSAOL245) provided that the third cable (2HVSAOL210) is not simultaneously energized.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co. /BVPS Unit 2 PAGE O

7) /9//9/97 Q /9/19/97 CALCULATION NO. DEAS-SR/EM01 18 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon, Cahfornia If the cable 2HVSAOL210 is simultaneously energized with the other two cables at their maximum required current, the overload condition will cause the cable conductor temperature to exceed the 90 C (194 'F) limit.

l REV PREPARER VERIFIER CLIENT / PROJECT: DUQI,IESNE Light Co. /BVPS Unit 2 PAGE O y /9/19/97 Q /9/19/97 CALCULATION NO. DE&S-SR/EM01 19 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

DE&S Dide Engineering & Services San Ramon. Cahfornia Table 7.1 Ampacity DErating Facetri and Aampacity Margins 9

m w

l

(

"' * (*E kE5 a I

W a

B m

  • 4 y I

},. g_r <

j .-j

< k < )J i-

[

4 i

a <

y f

  • 3 3,

> ] a <

l K Mv47Up l Z7 95e 43w 3 AUMJul ;50 0 1.00 1.00 J50.0 201.9 147.0 Ret 17 1.10 125.7 349e 2 KNV31up 23.3 % 4a w 3 AUMJul Z50 0 1 00 1.00 250 0 ZUV.Z 147.0 Ret 17 3.40 125.7 35 %

3 KMV3 rrA Z3.5% 43w aarMJUI 213.0 1.UU l.05 212.0 161.3 I I7.0 Rs017 1.10 1Z5 7 20 %

4 JULJ 4 J.NU 13.7 % 2LArNNLolg 1300 0 30 1 00 63.0 34.5 Z7.1 Ret 15 1.10 29.5 4th Z3C ANNLUlt 130.0 U.30 I UU 63.0 34 5 7.3 Ret 15 1.10 5.3 53 %

Z3C ANNLUl7 130.0 U.30 I UU 63.0 34 5 5V ROI 15 1.10 V5 52 %

23CANNLUZ3 73.0 0 30 I UU 37.3 31.6 40.3 Ret.15 1.10 44 4 41 %

Z3CANNLU28 73.0 U.30 1.00 37.3 31.4 46 5 Ret.15 1.10 31.3 63%

3 ZULJUlUAl Zl . lie ZMYLAULJUU 130.0 1 UU I UU 130 0 IUZt 74.I Re!.17 1.30 51.3 ZIh 6 KLJUIVAJ Zl.Ih ZMV4AULJUU 130.0 1.00 3.00 130 0 102 4 74.1 Ret 17 1.30 51.3 ZIh 7 ZCLJUIUAJ Z3 V% JMV4A UL203 179 U l .UU I .UU 179 0 134.2 90.3 Ret.17 I.IU TV t Z7%

5 KL3010A4 Z3.9% ZMV4AULJU3 17V U I .UU l .UU 179.0 136.2 90.3 Ret 17 1.10 VV.4 Z7%

V KLDU30A 33.U% 4tM3 AULZil 317.0 1.00 1.00 317.0 21 Z.4 103.2 Reg.17 ' 10 113.3 47 %

10 KLOU7UA 33.3 % 4tM3AUL24U 317.0 1.00 1.00 317.0 21U 5 V.2 ROI.17 1.19 10.2 V3%

ll KLOU7UA1 33 2 % 4tM3A UL248 317.0 I UU i .UU 317.0 ZI I .5 51.9 ReL I7 I.10 90.1 37 %

12 KL6u ivu 33 U% 4tM3A ULJ40 317.0 1.00 I .UU 337.0 Zl 2.4 9.2 Ret.17 I.10 10.2 V3%

13 KL6u iUL 73.U% 4tM3AUL243 317.0 I UU l.00 317.0 ZJ 7.5 51.V Ret.17 1.10 90.1 02%

44 JULDU TUU 20.9 % d5 T 3 3 UL404 VI .D U.30 1.00 43.3 36.0 5 pert N<A N/A 45 Y 310 LOU 3 V1.0 U.30 1 UU 43.3 36 0 21.0 Re!.IV 1.10 33.1 30 %

45T310L406 VLU U.30 1.00 43.3 36 0 64 Ret IV I.10 7.0 EU%

JtM3AUL203 317.0 U.30 1.00 135.3 In.4 34.1 Ret.17 1.10 t i .7 31 %

1) KLOU tut 31.0% - 4tM3AUL243 317.0 U 70 1.00 Z21.V 133.1 51.9 Ret.17 1.10 VU.! 41%

ZMV3AULJUU 354.0 U.70 1.00 265.5 153.3 203.0 Ret 17 1.10 ZZ3.3 2U%

ZM V3AUL210 477.0 U.70 1.00 333.V ZJU.4 277.0 Ret 17 1.00 Z77.0 2U%

16 2LL64ivt 29 6 % 45T340L604 V I .D U.30 1.00 43.3 32.0 3pme N/A N/A 45T310L603 VI .U O.30 I .UU 43 3 32.0 21.0 Ret. IV 1.IU Z3.1 ZEC 4513 4 GL606 VI .0 0.30 1.00 43.3 3Z.0 64 Ret. IV 1.10 7.0 7C ZLM3AUL2U3 317.0 0.30 1.00 135.3 II I .4 36.1 Ret 17 1.10 61.7 43 %

4tM3AULJ40 317.0 U.30 1.00 135.3 114.6 51.V Ret 47 I.10 90.1 LV%

4tM3AUL230 337.0 U.30 1.00 135.3 I l l .6 10 5 Ret. I7 1.10 11.9 59 %

17 zcLv305A n.3% Ji n3Jub3UI 477.0 U.50 1.00 351.4 274.7 65 $ Raf 20 1.10 TZ.I 74 %

15 KLV3cRA 20.8 % 2T v31RL3UI 4T7.0 0 50 1.00 351.6 304.V 71.2 Raf 20 1.10 75.3 74 %

19 ZCLV3 rup 26 V% 4tM3AULJ40 317.0 1.00 000 317.0 Z31.7 V2 Ret.17 4.10 lua 90 %

20 KLV3 7rA 27.0 % 4tM3nrLJI) 3 I7.0 1 UU I.05 317.0 Z3 L4 W.2 Ret 17 i.10 10.2 VD%

21 AMynuca 21.4 % KMacuMJul 155.0 L .UU l .UU 155.0 147 5 72.0 Reg.17 1.10 79.2 4ew 22 JCLV4JUA 32.9 % ItM3AULJ43 317.0 U 50 LUU n 3.6 170.2 51.9 Ret 17 I.IU 90.1 47 %

JPNUAULUUI 130.0 0 50 1.00 104 0 69.5 32.3 Ret 15 1.10 33.5 49 %

Z3 KLVZJUM 25.3% ItM3AUL248 317.0 1.00 I .UU J I 7.0 212.7 El.V RJL 17 1.10 V0.1 35 %

24 KLV3IW A Z2.0% 4) madWL301 4770 0.50 4.00 351.6 ZW3.4 101 1 Raf 20 1.10 111.2 42%

n ZuMvo uva zi.5% acMwurugi 155 0 i .UU I.00 155 0 147.0 T2.0 I.30 7V.2 26 Ke!.17 40 % i duMvnUUi Zlaw JcM3AutuUi 15a.D 1.00 1.00 i36.0 lee 5 72.0 Rei.17 7v.2 i.IU 4e% i NOTES

t. ACCFt%h>h CeakeneComenen Farer)per(R4f 22. Arnek 31&l3. ?- .; *e]
2. AXF(Ankent Tempermane Comenen Faeor)per/Ref 22. Arnek 31s!3. Noor 1)
3. ADF(Amper& Dere% Fernet See Tahks 3.1 throash 8.26Jer desaihdeelvulanean A Anpac& A6egin =(ProenesedAmper& x AXF. Required Amper&y(PronnesedAmper&s AXF)

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2

_ PAGE O

g /9//9/97 Q /9/19/97 CALCULATION NO, DE&S-SR/EM01 20 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. California Table 7.2 Evaluation of Raceways 2CL213ND and 2CL6070E Based on Heat Generation Rate E .

b t

$ pg- E E- e '[ '[

2

  • e L2 L 413 iLim?25 2e f  ;,

)

4 j i 43 .j Ifi lj

^

S-20 j-

-$ a*

1 a

8%

=L 3% ]h ja4 bg *lg Q-EE

$ 3a ja~ M  ;: j3 .

. . , .!! 5 4 2CL213ND 15.7% 2LE'NNLO10 1300 0.50 1.00 65.0 54.8 29.8 25 [.3 25CANNLOl6 130.0 0.50 1.00 65.0 54.8 8.3 4.5 0.1 25CANNL017 130.0 0.50 1.00 65.0 54.8 9.8 4.5 0.1 25CANNLJ25 75.0 0.50 1.00 37.5 31.6 44.6 3.8 7.5 25CANNLO26 75.0 0.50 1.00 37.5 31.6 51.5 3.8 10.0 Total Heat Generated (Btu,1r n) 20.9 19.0 15 2CL6070l; 26.0% 2tH5AOL245 317.0 0.80 1.00 253.6 187.7 90.1 21.4 4.9 MV5AOL200 384.0 0.80 1.00 '07.2 227.3 223.3 23.0 22.1 2tfV5AOL210 0.0 N/A II T 10.0 0.0 0.0 0.0 0.0 Total Heat Generated (Btu /Lu-n) , 44.3 27.1 NOTES I. See Table 7.!for the definitions ofkCCF, ATCF, and ADF.

2. The heatgenerated is in Bruthr-ft and calculated using Equation A.3 ofAttachment A with R (conductor resistance) and n , (number ofconductors) obtainedfrom Table 3.2.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE-0 Q /9/19/97 pg /9/19/97 CALCULATION NO. DE&S SR/EM01 21 TITLE: Arnpacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Raron. Cahfornia 8.0 CALCULATIONS Tables 8.1 through 8.26 contain the detailed calculations for the ampacity derating factors.

These tables are sequentially numbered to match the raceway sequence number in Table 7.1 (first column), and are designed in an identical format containing the following sections:

3~

Fire Barrier Data (input data)

Lists the barrier size and thermal properties. The radiation shape factor (Fu) is calculated separately in Table 3.4 for raceways routed in close proximity to others and entered here as input.

A value of 1.0 is used for raceways that are not near other raceways.

Air Gap Data (input data)

Lists the width of the air gap between the conduit and the barrier, and the thermal conductivity of air.

Heat Transfer Parameters (input data)

Lists the physical constants used in the calculation Raceway Dimension and Cable Fill Data (input data)

Lists the raceway dimensio..s, cable / conductor size, conductor resistance, ampacity, etc.

Calculatedparameters Lists the heat transfer and ampacity parameters that are calculated using the input data described above. The applicable equation number for each parameter calculated is shown in a bracket next to the calculated value. Calculations are given for the unprotected raceway to establish the thermal resistance of the cable / conduit assembly (U,), and the protected raceway to establish the ampacity derating factor.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9//9/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 22 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. California Table 3,1 - Raceway 2CH9490B1 FIRESARRIER DATA AIR GAP DA TA HEAT TRANSFER PARAMETERS de, outside diameter, (in) 7.39 k,,(Bru/hr ft *F) 0016 c. Btu'hr-ff *R' l.7140E 09 e., emissivity 0.30 t,, (in) I/8 C. (W h/ Btu) 0.2931 s., thickness (in) 1.32 a 0.20 A., thermal cond.,(Bru/hr-ft *F) 0.08 -

n 0.25 ru, shape factor 1.00 T., (*F) 194.0 T.,(*F) 104.0 RA CEWA Y DIMENSION AND CABLE TILL DA TA Raceway ID 2CH9490BI 4,,outside diameter,(in) 4.500 Rin boxes designate the parameters over s,, wall thickness,(in) 0.237 whtch sterations are carried out. Only the final fill. (%) 43.3 values are shown.

c,, surface emissivity 0.20 cable size (model cable) 3/C #4/0 Entries in [ ] show the applicable equation 4,, cable dia, (in) 2.650 number in Section A.3, or the equation itself.

. n , no of conductors (per cable) 3 R, resistance,(Ohm /1000A) 0.0688 Ampacity calculation is conservatively based 1 ., basehne amp.,(Asap) 280.0 on 3M Interam wrap which is applied to a 4 ft C4LCUL4TED PARAMETERS section of the raceway, UnprotecsedRacewagt (basehne) n,, number of cables 1 [Eq. A.4]

A,, heat transfer area, (ft*/ft) 1.18 [nd/12]

q,, Heat gen, rate,(Bru/ht ft) 55.18 [Eq. A.3, with l=/u,,,,, )

U,, (Btu /hr-ft' *F) 0.73 [A.6]

T,, Surface Temp., (*F) 1129.0 l hm,(Btuatr ft* *F) 0.7s [Eq. A.27 with a=0.27 and n =l/4, L=d,/12, Section A.3.10]

h, w,(Btu /hr ft* *F) 1.05 [Eq. A.21 with T ,=T,, c. =0.8, and f =l]

q,,, Heat dissip. rate,(Btu /hr ft) 55.19 [Eq. A.7 with Tw=T, g , must agree with baseline 9,]

PronectedRaceway im.,,, protected amp., (Amp) pv1.s l g,,(Bru/hr ft ) 25.7 [Eq.A.3]

T,, Surface Temp (*F) 160.6 [Eq. A.6]

Air Gap h,.,.. (Btu /ht-ft* *F) 1.54 [Eq. A.15]

4,, ue,(Bru/hr ft* *F) 0.22 [Eq. A.8]

4,.. (Bru/hr ft' *F) 1.75 (4,4 +h,.54]

g,.. (Btu /hr ft) 28.7 [Eq. A. 7. q,. must agree with protected g, ]

Barrier & AmMear A s, area ,(ft'/ft) 1.9 [nd./12]

U.,(Btu /ht ft* *F) 0.59 [Eq. A.17]

Tw Inside Temp.,(*F) l146.7 l T ,, Outside Temp.,(*F) Iz1.3 [Eq. A.16]

4,.u. (Btu /hr-ft* *F) 0.46 [Eq. A.28]

h, ,(Btu /h-ft* *F) 0.39 [Eq. A.21]

hu,(Bru/hr ft* *F) 0.85 [h,.u +h,.w ]

T. (p onecsod),(*F) 104.0 [Eq. A.19. Calculated T, must agree with input T,1 ADF 27.9 % [Eq. A.l]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9//9/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 23 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49 4

DE&S Duke Engineering & Services San Ramon. Cahfornia Table 8.2 - Raceway 2CH9570B FIREBARRIER DATA AIR GAP DA TA HEA T TR.4NSFER PARAMETERS de, outside diameter,(in) 8.45 k,,(Bratt A *F) 0.016 o, Btahr A2 *R' l.7140E 09 e., emissivity 0.30 t,,(in) 1/8 C (W VBru) 0.2931 te, thickness (in) 1.32 a 0.20 1., thermal cond.,(Blu'hr A *F) 0.08 .

n 0.25 Fu, shape factor I.00 T., (*F) 1940 T , (*F) 104.0 RA CEWA YDIMENSIONAND CABLE FILL DA TA Raceway ID 2CH9570B d,,outside diameter,(in) 5.563 [EntrIeTin boxes designate the parameters over t,, w all thickness,(in) 0.258 w hich iterations are carried out. Only the final fill, (%) 27.6 values are shown.

e., surface emissivity 0.20 cable size (model cable) 3/C #4/0 Entries in [ ] show the applicable equation d,, cable dia,(in) 2.650 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 R resistance,(Ohm /1000A) 0.0688 Ampacity calculation is conservatively based lu,,, . baseline amp., (Amp) 280.0 on 3M Interam wrap which is applied to a 6 A

~

CALCULA TED PARAMETERS section of the raceway, Umroter ed Raceway (baseline) n,, number of cables 1 [Eq. A.4]

A,, heat transfer area, ( A'/A) 1.46 [xd,/12]

q,, Heat Ben. rate,(Bru/hr A) 55.28 [Eq. A.3, with /=/u,,% ]

U,,(Bru/hr A' *F) 0.56 [A.6]

T,, Surface Temp., (*F) p23.7 l Am,(Bra'hr A' *F) U.7 I [Eq. A.27 with a=0.27 and ==1/4, L=d,/12, Section A.3.10]

h%,(Bru/hr-A* *F) 1.04 [Eq. A 21 with Tw,,=T,, c. =0.8, and F.,=l]

q,,, Heat dissip rate,(Bru'hr A) 55.29 [Eq. A.7 with Tu,,=T. g,, must a8ree with baseline g,]

Protected Raceway 1%, protected amp.,( Amp) pov.I l g,,(Bru/ht A ) JU.s (Eq. A 3]

T,, Surface Temp.,(*F) 155.9 [Eq. A.6]

Air Gap hm, (Bru/hr-A' *F) 1.54 [Eq. A.15]

h,.u.,(Btu /hr A* *F) 0.2 I [Fa.A.8]

h, ,(Btu /hr A* *F) 1.75 [h,,,. +h,.u. j .

9,,, (Bru/ht- A) , 30.8 [Eq. A. 7, g, must agree with protected g, ]

Barrier & AmMeat A , area ,(A'/A) 2.2 [ad /12]

U ,(Bru/ht A' *F) 0.61 [Eq. A.17]

T ,Inside Temp.,(*F) p 43.s l T . Outside Temp.,(*F) 120.s [Eq. A.16]

h,.u,(Btu /hr-A* *F) 0.44 [Eq. A.28]

h, (Blu/h It' *F) 0.39 [Eq. A.21]

hu,(Bru/hr A2 *F) 0.83 [h m +h, u,]

T. (protected),(*F) 104.0 [Eq. A.19. Calculated T, must agree with inpus T,]

ADF 253% [Eq. A.l]

REV PREPARER VERIFIEP. CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SRIEM01 24 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

DE&S /

Duke Engineering & Services San Ramon, Cahfornia Table 8.3 - Raceway 2CH957PA FIREBARRIER DATA AIR GAPbATA HEA T TRANSFER PAK4 METERS d.. outside diameter (in) il 43 A,,(Dtwhr. A *F) Q 016 c. Bru/hr ft' *R* 1.7140E 09 c., emissivity 0.30 s,. (in) lib C, (W h/ Btu) 0.2931 s., thickness (in) l.32 a 0.20 A., thermal cond.,(Bru/ht ft.*F) 0.08 n 0.25 F.,, shape factor 0.92 T., (*F) 194.0 T , (*F) 104.0 RACEWA YDIMENSIONAND CABLE FILL DA TA Racewey ID 2CH957PA d,, outside diameter,(in) $.563 lTn"trieslin boxes designate the parameters over t,, wall thickness,(in) 0.258 which stcrations are carned out. Only the final fill, (%) 22.4 values arv shown, e,, surface emissivity 0.20 cable size (model cabic) 3/C #2/0 Entries in [ ] show the applicable equation d,, cr ble dia (in) 2.390 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 R resistance,(Ohm /1000ft) 0.1094 Ampacity calculation is conaervatively ba ad la ,, baseline amp.,(Amp) 212.0 on 3M Interam wrap which is applied to a 6 ft C4LCULA TED PARAMETERS section of the racewey.

Uyrotected Raceway (b,sseline) n,, number of cables 1.00 [Eq. A.4) i A,, heat transfer area,(ft3 /ft) 1.46 [nd/12) g,, Heat gen. rate,(Btu /hr ft) 50.28 [Eq. A.3, with /=l%)

U,,(Btu /hr ft' *F) 0.49 [A.6)

T,, Surface Temp., (*F) l

[124.0 h,,,(Blu/hr ft *F)3 0 e9 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.101 h,.w. (Bru/ht ft* *F) 1.04 [Eq. A.21 with Ts ,=T,, c =0.8, and F =ll g,,, Heat dissip. rate,(Btu /hr ft) 50.29 [Eq. A.7 with Tu =T. 9,, must agree with baseline q,]

Protected Raceway im, protected amp.,(Amp) l101.3 l q,,(Btu /hr ft ) 29.2 [Eq. A.3]

T,, Surface Temp., (*F) 153.4 [Eq. A.6)

Air Gap h,4,(Btu /hr ft' *F) 1.54 [Eq. A.15]

3 h .(Bru/hr ft *F) 0.21 [Eq. A.8) 6,.,(Btu /hr ft* *F) 1.75 [h,4 +h,.m) g,.,(Budhr ft) 29.1 [Eq. A. 7. g,. must agree with protected g, )

Barrier & Ambient

  • A s, area. (ft*/ft) 2.2 [nd./12]

U.,(Btu /hr ft' *T) 0.6I [Eq. A.17)

Tm InsideTemp.,(*F) lI4 I.9 l T ,, Outside Temp.,(*F) 120.2 [Eq. A.16]

  • A, (Bru/hr-ft' *F) 0.44 [Eq. A.28]

twa , (Btu /h ft* *F) 0.38 [Eq. A.21]

h ,,,(Bru/hr fts,,F) 0.81 [h, +h,,,m]

T. (protassed) (*F) 104.0 [Eq. A.19. Calculated T must agree with input T.)

ADF 23.8 % [Eq. A.!]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co.IBVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 25 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. Calsfornia Table 8.4 - Raceway 2CL213ND TIREMRRIER DATA AIR GAP DA TA LEA T TRANSFER PARAhlETERS de, outside diameter,(in) 8.56 1,,(Btutr A *F) 0 016 o, Bru/hr A* *R* 1.7140E-09 c., emissivity 0.90 t,, (in) 1/8 0.2931 C. (W h/ Btu) t , thickness (in) 1.38 a 0.20

&.. thermal cond,(Brutt A *F) 0.09 a 0.25 fu, shape factor 0.86 7., (*F) 194.0 T., (*F) 104.0 RA CEWA Y DIMENSIONA?:D CA BLE FILL DA TA Raceway ID 2CL213ND d,,outside diameter,(in) 5.563 [EEGIeTlin boxes designate the parameters over t,, wall thickness,(in) 0.258 w hich iterations are carried out. Only the final fil!. (%) 14.4 values are shown.

t,, surface emissivity 0.20 cable size (model cable) DUP #6 Entries in [ ] show the applicable equation d e, cable dia,(in) D 718, number in Section A.3, or the equation itself, n., no. of conductors (per cable) 2 R resistance,(Ohm /1000A) 0.5508 l . baseline amp.,(Amp) 37.5 CALCULATED PARAMETERS Unprotected Racewq (baselme) n,, number of cables 7.12 [Eq. A.4]

A,, heat transter ares,(ft'/A) 1.46 [nd/12]

g,, Heat gen, rate,(Bru/hr ft) 37.61 [Eq. A.3, with l=le ,. ]

i U,,(Btutr it' *F) 0.35 [A.6]

l T,, Surface Temp.,(*F) l119.4 i Am,(Stu/hr ft' *F) u.o) [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A 3.10)

A, (Btu /hr ft* *F) 1.03 [Eq. A.11 with Tw=T,, c. =0.8, and f =1]

9,,, Heat dissip. tate, (Btu /hr-ft) 37.61 [Eq A.7 with T ,,=T. g,. must agree with baseline q,]

ProterredRacewq Im,,,, protected amp.,(Amp) p 1.0 l g,,(Blu/hr ft ) 20.7 [Eq. A.3]

T,, Surface Temp.,(*F) 141.1 [Eq. A.6]

AirGm h,,,,,(Bruhr ft' *F) 1.54 [Eq. A.15]

h ,,,,,,, (B ru/ht-f 0.28. [Eq. A.8]

A, ,(Brutt sftF),.t' *F) 1.8) [h,.,. + h ,.u. ]

g,.. (Bru/ht-ft) 26.6 [Eq. A. 7. g,. must agree with protected g, )

Barrier & Ambient -

A., arts . ( A'/ft) 2.2 [nd./12]

U.,(Btu /hr ft' *F) 0.65 [Eq. A.17]

Tw,Inside Temp.,(*F) lIJi.i l Ta.,,, Outside Temp., (*F) i 12.s [Eq. A.16]

A,.u (Bru/hr ft' *F) 0.37 [Eq. A.28]

hn, (Bru/h-ft' *F) 0.99 [Eq. A.21]

h . (Bruhr ft* *F) 1.36 [h, ,, +h,.tu]

T. (protected),(*F) 104.1 [Eq. A.19. Calculated T. must agree with input T.]

ADF 15.8 % [Eq. A.1]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

% /9/19/97 g /9/19/97 CALCULATION NO. DEkS-SR/EMO: 26 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S.

Duke Engineering & Services San Ramon, Caltfornia Table 8.5 - Raceway 2C0 LOA 1 FIREBARRIER DATA AIR GAP DA TA HEA T TRANSFER PARAMETERS de, outside diameter (in) 4.13 k,,(Btu'hrh*F) 0.016 o, Btu /hr A' *R' l.7140E 09 se, emissivity 0.90 t,, (in) 1/8 C, (W h/ Btu) 0.2931 t , thickness (in) 0.75 a 0.20 ke, thermal cond.,(Bru/hr A *F) 0.09

  • n 0 25 Fu, shape factor 1.00 T., (*F) 194.0 T.,(*F) 104.0 RACEWA YDIMENSIONAND CABLE FILL DA TA Raceway ID 2CL30lOAl d,,outside diameter,(in) 2.375 Rin boxes designate the parameters over t,, w all thickness,(in) 0.154 which iterations are carried out. Only the final fill, (%) 24.1 values are shown.

c,, surface emissivity 0.20 cable size (model cable) TRI82 Entries in [ ] show the applicable equation d,, cable dia,(in) 1.014 n'imber in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 R. resistance,(Ohm /1000A) 0.2I82 lu,,,,,,, baseline amp., ( Amp) 130.0 C4LCUL4 TED PARAMETERS Unprotected Raceway (baseline) n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area, (n'/A) 0.62 [nd/12]

q,, Heat gen, rate, (Btu /hr. A) 37.80 [Eq. A.3, with /=fu,,u, )

U,,(Btu /hr ft' *F) 1.02 [A.6]

T,, Surface Temp.,(*F) l t J4.2 l h,.,,, (Dtu/hr-A* *F) 0.v3 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

h%,(Bru/hr A* *F) 1.07 [Eq. A.21 with Tu,,, =T,, c, =0.8, and Fu=1]

9,,, Heat dissip. rate, (Btu /hr. A) 37.78 [Eq. A.7 with Tu,,=T, g,, must agree with baseline 9,)

ProtectedRaceway 1,,,w, protected amp., ( Amp) l102.6 l g,,(Bru/ht ft ) 2J.6 [Eq. A.3]

T,, Surface Temp., (*F) 156.7 [Eq, A.6]

Air Gap h,,,. (BtWhr A2 ,,F) 1.54 [Eq. A.15]

h, u.,(Bru/hr-ft* *F) 0.30 [Eq.A.8]

h, ,(, Btu /ht-A* *F) 1.84 [h,,,,+h w ]

g,,, (Btu /ht-ft) 23.5 [Eq. A. 7. g, must agree with protected g, ]

Barrier & AmMeet A., area ,(ft2/ft) 1.1 [nd,/12]

U.,(Bru/hr ft* *F) 1.16 [Eq. A.I7]

Tw,inside Temp.,(*F) l136.1 l Tu,, Outside Temp., (*F) i17.3 [Eq. A.16] .

h, . (Bru/hr-ft* *F) '

O.50 [Eq. A.28]

h,,m. (Bru/b-A' *F) 1.15 [Eq. A.21]

he,,,(Btu /hr ft' *F) 1.65 [4,.u +h,,m ) -

T. (protected),(*F) 104.0 [Eq. A.19. Calculated T, must agree withinput T,]

ADF 21 1 % [Eq. A.1]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQL)ESNE Light Co. /BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S SRIEM01 27 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. Cahfornia Table 8.6 . Raceway 2C0 LOA 2 FIRESARRIER DATA AIR GAP D A TA HEA T TRANSFER PARAMETERS d., outside diameter,(in) 4.13 4,,(Brutr-A *F) 0 016 o, Btutt ft* *R* 1.7140E 09 c., emissivity 0.90 t,, (in) 1/8 C (W h/ Btu) 0.2931 s , thickness (in) 0.75 a 0.20 A., thermal cnnd. (Blutr A *F) 0 09

  • n 0.25 F.,,, shape factor 1.00 T., (*F) 194.0 T.,(*F) 104.0 RA CEWA Y DIMENSION AND CA BLE FILL DA TA Raceway ID 2CL30 LOA 2 d,,outside diameter,(in) 2.373 ((nEeilin boxes designate the parameters over t,, wall thickness,(in) 0.154 w hich iterations are carried out. Only the final fill, (%) 24.1 values are shown.

e,, surface emissivity 0.20 cable size (model cable) TRI#2 Entries in [ ] show the applicable equation d,, cable dia (in) 1.014 number in Section A.3, or the equation itself, n., no of conductors (per cable) 3 R, resistance,(Ohm /1000A) 0.2182 1 , baselineamp.,(Amp) 130.0 CALCULATED PARAMETERS th,protectedRaceway (baseline)

[ n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area. ( A'/A) 0.62 [nd,/12]

g,, Heat gen. rate,(Bru/hr R) 37.80 [Eq. A.3, with l=la, ,,, ]

U,,(Bru/hr A' *F) 1.02 [A.6]

T,, Surface Temp., (*F) p 34.2 l hm,(Btu /ht-A* *F) 0.v3 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

h#,(Btu /hr A' *F) 1.07 [Eq. A.21 with Tw =T,, c. =0.8, and F =1]

9,,, Heat dissip. rate,(Bru/ht R) 37.78 [Eq. A.7 with Tu,,=T. q,, must agree with baseline g,]

ProtecordRaceway tw, protected amp.,(Amp) p02.0 l g,,(Btu /ht A ) 23.6 [Eq. A.3)

T,, Surface Temp.,(*F) 156.7 [Eq. A.6]

Air Gap hm,(Brutr A' *F) 1.54 [Eq. A.15]

h,.u.,(Bru/hr A* *F) 0.30 [Eq. A.8]

A,.. (Brutt A* *F) 1.84 [h,,,. +h,,.u. ]

9,,,(Bru/hr A) 23.5 [Eq. A. 7. q,. must agree with protected g, ]

Barrier & AmMent A .. arsa , ( A*/A) 1,1

[xd./12]

U.,(Btu /hr A' *F) I.16 [Eq. A.17]

Tu,,, Inside Temp., (*F) p J6. i l Tw. Outside Temp., (*F) i 17.J [Eq. A.16]

hm, (Bru/hr-A' *F) 0.50 [Eq. A.28]

h,,m, (Bru/h- As,.F) 1.15 [Eq. A.21]

ha,,(Bt;/hr A' *F) 1.65' [h,,+h ]

T. (protected),(*F) 104.0 (Eq. A.19. Calculated T, must agree with input T.]

ADF 21,1% [Eq. A.l]

REV PREPAPr~l VERiflER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O /9/19/97 g, /9/19/97 CALCULATION NO. DE&S-SR/EM01 28 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon, Cohfornia Table 8,7 . Raceway 2CL30!OA3 flREBARRIER DATA AIR GAP DA TA HEA T TRANSFER PARAMETERS d ,outside diameter (in) 4.13 A,,(Btu'hr A *F) 0 016 o, Btuhr ft' *R' l.7140E 09 c., emissivity 0.90 t,, (in) 1/8 C (W h/Bru) 0.2931 te, thickness (in) 0.75 a 0.20

.& , thermal cond (Bru/hr ft *F) 0 09 a 0.25 f . shape factor 1.00 T., (*F) 194.0 T., (F) 10 0 RACEWA YDIMENSIONAND CABLE FILL DA TA Raceway ID 2CL3310A3 4,, outside diameter,(m) 2.375 Rin boxes designate the parameters over t,, w all thickness,(in) 0.154 which iterations are carried out. Only the final fill. (%) 40.4 values are shown.

c,, surface emissivity 0.20 cable sir.e (model cable) TRI 1/0 Entries in [ ] show the applicable equation d,, cable dia (in) 1.314 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 R, resistance,(Ohm /1000ft) 0.1376 1%, baseline amp.,(Amp) 179.0 CALCULATED PARAMETERS Unprotected Raceway (basehne) n,, number of cables 1.00 [Eq. A.4)

A,, heat transfer area. (ft'/ft) 0.62 [nd,/12]

g,, Heat gen. rate,(Btwtr A) 45.12 [Eq. A.3, with t=l% )

U,,(Btu /hr ft' *F) 1.32 [A.6]

T,, Surfacc Temp. (*F) [I Jv.2 l h,.. (Btu /hr ft' *F) 9.vy (Eq. A.27 with a=0.27 and n=l/4, L=d,/12 Section A.3.10]

h ,(Bru/hr ft* *F) 1.08 [Eq. A.21 with Tw =T,, c. =0.8, and fe,=1]

g,.. Heat dissip. rate, (Btu /hr ft) 45.14 [Eq. A.7 with Tu,,=T. 9,, must agree with baseline q,]

Protected Raceway 1,,,,,,w, protected etnp., ( Amp) [be.1 l g,, (Bru/hr-ft ) '7ET [Eq. A.3]

T,, Surface Temp.,(*F) 162.2 [Eq. A.6)

Air Gap h,,,,,(Bru/hr ft* *F) 1.54 [Eq. A.15]

Am (Btu /hr ft' *F) 0.31 [Eq. A.I]

h,. (Btu /hr A' *F) 1.84 [h,,, + A w]

g,.. (Btwhr ft) 26.1 [Eq. A. 7, g,. must agree with protected g, )

Barrier & AnaMeat A . area , (ft'/ft) 1.1 [xd/12]

U.,(Btulhr ff *F) 1.16 [Eq. A.I7)

Tw,inside Temp.,(*F) l t Jv.4 l Tw ,Outside Temp.,(*F) a s.6 [Eq. A.16) h,.a.,(Btu /hr ft* *F) 0.51 [Eq. A.28]

he,(Bru/h-ft* *F) 1.15' [Eq. A.2I) ha,,(Bru/ht-ft' *F) 1.66 [h, +Aml T. (protected),(*F) 104.0 (Eq. A.19. Calculated T, must agne with input T,]

ADF 23.9 % [Eq. A.IJ REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S SR/EM01 29 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49 t

DE&S Duke Engineering & Services

_ San Ramon. California Table 8.8 - Raceway 2CL30 LOA 4 FIREBARRIER DATA AIR GAP DA TA llEA T TRANSFER PARAMETERS de, outside Giameter,(in) 4.13 1,,(Bruhr A *F) 0.016 o, Btwtr A 3 *R' l.7140E-09 e., emissivity 0 90 r,. (in) I/8 C, (W h/Bru) 0 2931 r , thickness (in) 0.75 o 0.20 A., thennal cond.,(Btu /hr A *F) 0.09 n 0.25 fu, shape factor 1.00 T., (*F) 1940 T., (*F) 1(M 0 MCEWA YDIMENSIONAND CABLE TILL DATA Raceway ID 2CL30 LOA 4 d,, outside diameter,(in) 2.375 Ain boxes designate the parameters over r,, w all thickness,(in) 0.154 whach iterations are ca.rried out. Only the final ful, (%) 40.4 values are shown, c,, surface emissivity 0.20 cable size (model c:sle) TRI 1/0 Entries in [ ] show the applicable equation d,, cabit dia, (in) 1.314 number in Section A.3, or the equation itself.

n., no of conductests (per cable) 3 R, resistance, (Ohm /1000A) 0.1376 1 ,w, bar:line amp.,(Amp) 179.0 CALCULATED PARAMETERS Unpro.ected Raceway (b.1selme) n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area, ( A'/A) 162 [itd,/12]

q,, Heat gen. rate, (Bru/hr. A) 45.12 [Eq. A.3, with l=1 , , ]

U,,(Brutt A* *F) 1.32 (A.6]

T,, Surface Temp., (*F) hm,(Blu/hr A* *F) [Jv.2 l L.vy

[Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

h%,(Btu /ht A' *F) 1.0% [Eq. A.21 with Tw =T,, c =0.8, and F =ll q,,, Heat dissip. rate (Bin'hr A) 45.14 [Eq. A 7 with T ,=T, g,, must agree with baseline g,]

Protected Raceway 1%, protected amp.,(Amp) p 36.2 "l g,,(Bru/hr A ) 26.1 lEq. A.3]

T,, Surface Temp.,(*F) 162.2 (Eq. A.6)

Air Gap h,a,(Bru/hr A* *F) 1.54 [Eq. A.15]

h,.u.,(Bru/hr A* *F) 0.3 I [Eq. A.8) h,.,(Btu /hr A2 *F) 1.84 [h,.,.+h w ] .

9,,, (Btu /hr-A) 26.1 @q. A. 7. q,. must agree with protected g, )

Barrier & Ambient '

A. area ,(A 2/A) 1.1 [r d,/12]

U.,(Btu /ht A* *F) 1.16 [Cq. A.17}

Tu, Inside Temp., (*F) pJv.4 l T3,, Outside Temp., (*F) I 15.o [Eq. A.16] -

h,*,(Bru/hr-A* *F) 0.5I [Eq. A.28]

3 tw(Btu /h-8 *F) 1.15 [Eq. A.2Il hu,(Btu /hr-A2 *F) 1.66 (4,u+h m )

T. (protected), (*F) 104.0 [Eq. A.19. N*d T, must agree with input T.]

ADF 23.9 % [Eq. A.l]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O y /9/19/97 g /9/19/97 CALCULATION NO DE&S-SR/EM01 30 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

_- . _ _ _ _ - ~

DE&S Duke EngineerinE & Services San Ramon, Califor,sia Table 8,9 - Raceway 2CL60$OA FIREK4RRIER DATA AIR GAPDATA de. outside diameter,(in) HEA T TRANSFER PARAMETERS 6.39 k,,(Btu /hr A *F) 0 016 c, BtWhr A 8 'R' te, emissivity l.7140E 09 0.30 t,,(in) I/8 C. (W WBtu) 0.2931 te, thickness (in) 1.32 . o 0.20 k.,thermalcond,(Btuhr A *F) 0.08 n 0.25 F.,, shape factor 1.00 T., (*F) 194.0 T,,(*F) 104.0 RACEWAYDIMENSION AND CABLEFILL DATA Raceway ID 2CL6050A d,,outside diameter,(in) 3.500

[EnIEeslin boxes designate the parameters over s,, wall thickness,(in) 0.216 which sterations are carried out. Only the final fill, (%) 38.5 values are shown.

c , surface emissivity 0.20 cable size (modelcabic) TRI250 Entries in [ ] show the applicable equation d,, cable dia,(in) 1.903 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 R. resistance,(Ohm /1000A) 0.0593 l . baseline amp.,(Amp) 317.0 CALCULATED PARAMETERS UnprotectedRacewey (basehne) n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area ( A'/A) 0.92 ,

[nd/121 g,, Heat gen. rate,(Btu /hr R) 61.04 [Eq. A.J. withl=1 ,]

U,,(Bru/hr-AI T) 1.19 [A.6]

T,, Surface Temp.,(*F) l t J 7.9 l hm, (Bru/hr-A' *F) 0.sv

[Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

h ,(Btu /hr ft*-T) 1.08 [Eq. A.21 with T ,=T,, c. =0.8, and F.,=1]

9,,,, Heat dissip. rate,(Bru/hr A) 61.05 [Eq. A.7 with T ,,=T. g, must agree with baseline q,]

Protected Racewey Im.,,,, protected amp., (Amp) [212.3 l g,,(Bru/hr A) z7.4 [Eq. A.31 T,, Surface Temp., (*F) 168.8 [Eq. A.6]

Air Gm .

h,4 (Btu /hr A' *F) 1.54 [Eq. A.15]

h, ,., (Bru/hr A* *F) 0.22 [Eq. A.8]

A,., (Btu /hr A' 'F) 1.76 [h,,,, +h,.6,. ]

g,,,(Btu /ht A) 27.4 [Eq. A. 7 9,. must agree with protected g, ]

Barrier & AnaMeat '

A ., area , ( A'/A) I.7 [nd/12]

U., (Btu /hr- A*-T) 0.56 [Eq. A.17]

T Inside Temp.,(*F) l131.s l T ,, Outside Temp.,(*F) :zz.7 [Eq. A.16]

h, (Btatr A'*F) 0.49 [Eq. A.28]

h, (Brah-A* T) 0.39 [Eq. A.21]

h ,,,(Btwhr A2,.F) 0.87 [h, ,, +h,.m]

T. (protectedJ,(*F) 104.0 [Eq. A.19. Calculased T. must ayee with input T.]

ADF 33.0 % [Eq. A.l]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S SR/EM01 31 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon California Table 8.10 - Raceway 2CL6070A FIREBARRIER DATA AIR G4P DATA HEA T TRANSFER PARAMETERS de, outside diameter,(in) 6.39 k,,(Bru/hr h *F) 0.016 o, Bru/hr R8 .*R' l.7140E 09 e., emissivity 0.30 t,, (in) 1/8 C, (W.WBru) 0.293I t , thickness (in) 1.32 a

. 0.20 A., thermal cond.,(Btwhr A *FI 0.08 a 0.25 F . shape factor 0.59 T., (*F) 194.0 ,

T., (*F) 104.0 RA CEWA Y DIMENSION AND C4 BLE FILL DA TA Raceway ID 2CL6070A d,,outside diameter,(in) 3.500 E lin boxes designate the parameters over

[G~ttnes t,, wall thickness,(in) 0.216 which iterations are carried out. Only the final fill. (%) 38.5 values are shown.

c,, surface emissivity 0.20 cable size (model cabic) TRI 250 Entries in [ ] show .he applicable equation d,, cabk. dia, (in) 1.903 number in Sectior A.3, or the equation itself.

n., no. of conductors (per cable) 3 R, resistance,(Ohm /1000ft) 0.0593 .

l ,, baseline amp.,(Amp) 317.0 C4LCULA TED PARAMETERS Capotected Raceway (baseline)

! n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer ares,(R8 /ft) 0.92 [nd,/:1]

q,, Heat gen. rate (Btutt A) 61.04 [Eq. A.3, with l=la.,n,,, ]

U,,(Btu /hr ft' *F) 1.19 [A.6]

T,, Surface Temo., (*F) l t n.v l h,. (Btu /hr ft' *F) 0.sv [Eq. A.27 with a=0.27 and n=l/4, L=d,/I2, Section A.3.101 h ,(Btu /hr ft' *F) 1.08 [Eq. A.21 with Tw =T,, e, =0.8, and F.,=1]

9,,, Heat dissip. rate,(Btu /hr A) 61.05 [Eq. A.7 with T =T. q,, must agree with baseline g,]

ProtectedRaceway tw, protected amp.,(Amp) pIO.y l g,,(Bru/ht ft ) n.o [Eq. A.3]

T,, Surface Temp., (*F) 169.2 [Eq. A.6]

Air Gap h,4,(Btu /hr ft' *F) 1.54 [Eq. A.15]

hw,(Btu /hr ft' *F) 0.22 [Eq. A 8]

h,,,(Bru/hr-ft* *F) I,76 [h,a +hw]

q,,, (Bru/hr-ft) 27.0 [Eq. A. 7. q,, must agree with protected g, ]

Rarrier & Anablent A.. area , (ft'/ft) . 1.7 [ad,/12]

U ,(Bru/ht-ft' *F) 0.56 [Eq. A.17]

Ta.,, inside Temp., (*F) [I .u.4 l Ta ,, Outside Temp.,(*F) lu.s [Eq. A.16]

  • h, (Btu /hr ft' *F) 0.49 [Eq. A.281 h,,m, (Btu /h-A' *F) 0.32 [Eq. A.21]

h.,,(Btu /hr fts *F) 0.82 [hm+h, m]

T. (protected),(*F) 104.0 [Eq. A.19. Calculated 7. must agree withinput 7.]

ADF 33.5 % [Eq. A.l]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 gg, , /9/19/97 CALCULATION NO. DE&S SR/EM01 32 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon, California Table 811 - Raceway 2CL6070A1 FIRERARRIER DATA AIR GAP DA TA HF.A T TRANSFER PARAMETERS de. outside diameter,(in) 6.39 A,,(Bru/ht ft *F) o, Btu'ht ft' *R' 0.016 l.7140E-09 c., emissivity 0.30 t,, (in) 1/8 C. (W h/Bru) 0.2931 s., thickness (in) 1.32 a,

  • 0.20
k. thermalcond.,(Bru/hr ft *F) 0.08 n 0.25 f , shape factor 0.78 T. , (*F) 194.0 T.,(*F) 104.0 RA CEWA YDIMENSION AND CA BLE FILL DA TA Raceway ID 2Cf o070A1 d,, outside diameter,(in) 3.500

[EEie~slin boxes designate the parameters over

,, wall thickness,(in) 0.216 which ste.ations are carried out. Only the final fill. (%) 38.5 salues are shown.

e,, surface emissivity 0.20 cable size (model cable) TRI 250 Entries in [ ] show the applicable equation d,, cable dia,(in) 1.903 number in Section A.3, or the equation itself.

, n., no. of conductors (per cable) 3 R, resistance,(Ohm /1000ft) 0.0593 Im, baseline amp.,(Amp) 317.0 C4LCULATED PARAMETERS .

UnpreeecredRaceway (baseline) n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area,(ft*/A) 0.92 [nd/12]

g,, Heat gen. rate,(Btu /hr R) 61.04 [Eq. A.3, with l=Im ]

U,,(Btu /hr ft' *F) I.19 [A.6]

T,, Surface Temp.,(*F) [1J 7.9 l h,,,,,(Bru/hr ft' *F) 9.sv [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

l h ,(Bru/hr ft' *F) 1.08 [Eq. A.21 with Tw =T,, e. =0.8, and F =l]

q,,, Heat dissip. rate,(Btu /hr ft) 61.05 [Eq. A.7 with Tw =T. 9,, must agree with baseline g,]

ProtectedRaceway 1,,,w. protected amp.. (Amp) pi t.s l g,,(Btu /hr ft ) 27.2 [Eq. A.3]

T,, Surface Temp.,(*F) 169.0 [Eq. A.6]

Air Gap 1.54 [Eq. A.15]

h,4,(Btu 4, ,.,(Btu /ht/hr ft2, ft* *F.)F) 0.22 [Eq. A.8]

h,., (Bru/hr-It' *F) 1.76 [h,.,.+h w ]

q,.,(Btn'ht ft) 27.2 [Eq. A. 7. q, must agree with protected g, j Rarrier A AmWant A., area , (ft*/ft) 1.7 [nd/12]

U.,(Bru/ht ft* *F) 0.56 [Eq. A.17]

Tw,inside Temp.,(*F) [ t 32.1 l T ,, Outside Temp.,(*F) IzJ.2 [Eq. A.16]

ha,(Btu /hr ft* *F) 0.49 [Eq. A.28]

h,,m,(Bru/h-A* *F) 0.36- [Eq. A.21]

hu,(Btu /hr ft2,.F) 0.85 [ha +h,,m ]

T. (protected),(*F) 104.0 [Eq. A.19. Calculated T, must agree with input 7,]

ADF 33.2% - [Eq. A.1]

REV PREPARER VERiflER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 33 TITLE: Ampacity D: rating Factors of OF Fire-Protected Conduits 49 1

DE&S Duke Engineering & Services San Ramon, Cahfornia Table 8.12 - Raceway 2CL60703 TIREBARRIER DATA A:R GAP DATA HEAT TRANSFER PARAMETERS d.. outside diameter,(in) 6.39 A,.(Bratt A *F) 0.016 c.Btatt A.*R' 3 l.7140E 09 e., emissivity 0.30 t,, (in) 1/8 C (W h/Bru) 0.293I t., thickness (in) 1.32 a 0.20 A. thermal cond.,(Bru/hr ft.*F) 0.08 n 0.25 f.,, shape factor 1.00 T., (*F) 194.0 T.,(*F) 104.0 RACEWA YDIMENSION AND CABLE FILL DA TA Racewmy ID 2CL6070B d,,outside diameter,(in) 3.500 [EnEieslin boxes desi nate 8 the parameters over t,, wall thickness,(in) 0.216 which sterations are carried out. Only the final fill. (%) 38.5 values are shown.

c,, surface emissivity 0.20 cable size (model cable) TRI250 Entries in [ ] show the applicable equion 4,, cable dia,(in) 1.903 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 R, resistance,(Ohm /1000ft) 0.0593 .

1%, baseline amp.,(Amp) 317.0 CALCULA TED ? AMMETERS UnprotocredRaceway (basehne) n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area. (ft'/A) 0.92 [nd,/12]

q,, Heat 8en. rate. (Btwhr ft) 61.04 [Eq. A.3, with l=Im ]

U,, (Btstr-ft' *F) 1.19 [A.6]

T,, Surface Temp., (*F) l l J 7.9 l hm,(Btu /hr ft* *F) U.sv [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

4, ,,, (Btu /hr-ft' *F) 1.08 [Eq. A.21 with T ,=T,, c. =0.8, and f =1]

q,,, Heat dissip. rate, (Btu /ht- A) 61.05 [Eq. A.7 with Tw =T. 9,, must agree with baseline 9,]

ProtectedRaceway 1%, protected amp.,(Amp) piz.3 l g,,(Bratr d ) 27.4 [Eq. A.3]

T,, Surface Temp., (*F) 168.8 [Eq. A.6]

Air Gap hw,(Btu /ht-A' *F) 1.54 [Eq. A.15]

hm, (Btu /ht-A' *F) 0.22 [Eq A.8]

h,.,(Btu /hr-ft' *F) 1.76 9,. (Bruht-A)

[4m +h w ]

27.4 [Eq. A. 7. g,. must agree with protected g, ]

Barrier & AnaMent

  • A., area . (ft*/ft) 1.7 [nd/12]

U.,(Bru/hr-A' *F) 0.56 [Eq. A.17]

Tw.inside Temp (*F) . II: na l Tu,,, Outside Temp., (*F) izz.7 [Eq. A.I6) hm,(Btu /hr-fts,.F) 0.49 [Eq. A.28]

h,,u,,(Bru/h ft* *F) 0.39 [Eq. A.2l]

ha,,,(Bru/hr-ft* *F) 0.87 [4 m +h, T. (protected),(*F) a]

104.0 [Eq. A.19 Casculated T, must a8ree with input T.)

ADF 33.0 % [Eq. A.I]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQl)ESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 34 i TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

(

DE&S Duke Engineering & Services San Ramon, California Table A.9 - Verification Case V4 (S Inch Conduit)

FIREBARRIER DATA AIR GAP DA TA d , outside diameter,(in)

HEA T TMNSFER PAK lfETERS 6 81 k,,(Btutt A *F) 0016 o, Brutr ft'#R* 1.7140E 09 c.. emissivity 0.90 t,, (in) t/8 C. (W-h/ Btu) 0.2931 f., thickness (in) 0.50 a 0.20 A. thermal cond.,(Brutr A?F) 0.122 a 0.25 Fu. shape factor 1.00 T., (*F) 194.0 T.,(*F) 104.0 RACEWA YDIMENSIONAND CABLE FILL DA TA Raceway ID $* CONDUIT d,, outside diameter,(in) 5.563 Ein boxes designate the parameters over i,, wall thickness,(in) 0.258 e which iterations are carried out. Only the final t fill. (%) 26.1 values are shown.

c,, surface emissivity 0.40 cable size (model cable) 1/C 750 Entries in [ ] show the applicable equation 4,, cable dia,(in) 1.290 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) l R resistance,(Ohm /I'000A) 0.022 '

lu,,,,,, baseline amp., (Amp) 571.0 CALCULATED PARAMETERS Unpenected Raceway (baselme. 90 *C conductor temp., 40 *C ambient temp.)

n, number of cables 4 [Eq. A.4]

A,, heat transfer area,(ft2/A) 1.46 [nd,/12]

q,, Heat gen. rate,(Btu /hr ft) 97.79 [Eq. A.3, with /=lu,%, j U,,(Btu /hr A*#F) 1.24 [A.6]

T,, Surface Temp., (*F) I lJ 9.7 l l h,,,,,,(Btu /hr ft'JF) 0.50 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

! hm,(Btutt A*/F) 1.08 [Eq. A.21 with T ,, =T. 2, =0.8, and Fu=1]

g., Heat dissip. rate (Bru/ht h) 97.74 [Eq. A.7 with T ,=T. q,, must agree with baseline g,]

Protected Raceway 1,,,,,w, protected amp.,(Amp) l439.3 l g,,(Btu /hr ft ) 6J.3 [Eq. A 3]

T,, Surface Temp.. (*F) 158.8 [Eq. A.6]

Air Gap h,,,, (Brulhr-ft'#F) 1.54 [Eq. A.15]

h,w.,,,(Brutr ft'#F) 0.59 [Eq. A.8]

h,,, fBrulhr ft*/F) 2.13 [h,,. +h w]

9,,,(Btutr ft) 63.3 [Et;. A. 7 9,. must agree with protected g, )

Barrier & AmMaat

  • A., ares , P3 /ft) 1.8 [nd/12]

U.,(Bru/hr ft2?F) 2.71 [Eq. A.17]

Ta.,, Inside Temp., (*F) pJs.4 l Ta .Outside Temp.,(*F) In.3 [Eq. A.16]

hm,(Brutr-ft*#F) 0.49 [Eq. A.281 h,,m,(Brut ft*/F) 1.17 [Eq. A.21]

A.,,,(Bru/hr-ft' *F) 1.67 [hm +h,,,m]

7,(protected),(*F) 104.0 [Eq. A.19. Calculated T. must agree with input T.]

ADF 19.5 % [Eq.A.1]

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUE,SNE Light Co./BVPS Unit 2 PAGE O g 9/19/97 g /9/19/97 CALCULATICN No. DE&S-SR/EM01 A35 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S Duke Engineering & Services San Ramon, California Table A.10 Sensitivity Study Case S1 (Base Case)

FIREBARRIER DATA AIR GAPDA TA de, outside diameter,(in) HEAT TRANSFER PARAMETERS 6.75 A,,(Bratt-A *F) 0.016 c. Btu /hr ft* *R* 1.7140E 09 e., emissivity 0.90 t,,(in) 1/8 C, (W h/Bru) 0.2931 te, thickness (in) 1.00 a 0.20 A., thermal cond..(Bratt A *F)- 0.090 a 0.25 -

Fu, shape factor 1.00 T., (*F) 194.0 T.,(*F) 104.0 RACEWA Y DIMENSION AND CARLE FILL DA TA Raceway ID 4' CONDUIT d,, outside diameter,(in) 4.50 Rin boxes designate the parameters over i,, wall thickness,(in) 0.237 which sterations are carried out. Only the final filt (%) 39.0 values are shown.

e., surface emissivity 0.40 cable site (model cable) 3/C#6 Entries in ] ] show the applicable equation 4,, cable dia,(in) 0.889 number in Section A.3, or the equation itself, n., no. of cond. (per cable) 3 R. resistance (Ohm /1000ft) 0.$15 '

1%, baseline amp.,(Amp) 31.1 CALCULATED PARAMETERS Unprerected Raceway (basehne. 90 *Cconductor temp., 40 *Cambient temp.)

n,, number of cables 8 [Eq. A.4]

A,, heat transfer area,(h'/ft) 1.18 [nd/12]

g,, Heat gen. rate, (Btu /ht R) 40.65 [Eq. A.3, with l=Im ]

U,,(Btu /ht-ft* *F) 0.49 [A.6]

T,, Surface Temp., (*F) [123.0 I hm,(Bru/ht ft' *F) 0.73 [Eq. A.27 with a =0.27 and n=l/4, L=d,/12 Section A.3.10]

hm,(Btu /hr h' *F) 1.04 [Eq. A.21 with Tw =T,, e. =0.8, and Fu=ll 9,,, Heat dissip, rate, (Blu/hr-ft) 40.64 [Eq. A.7 with Tu =T, g,, must agree with baseline q,]

ProtectedRaceway 1,,,,,w. protected amp., ( Amp) [26.2 {

g,,(Btu /ht ft ) zu.s [Eq. A.3]

T,, Surface Temp.,(*F) 144.0 [Eq. A.6]

Air Cap hye (Btu /hr ft' *F) 1.54 [Eq.A.15]

hm,(Btu /hr ft* *F) 0.56 - [Eq.A.8]

h,.. (Bru/hr ft' *F) 2.10 [h,4 +h w]

g,,,(Btu /hr ft) 28.8 [Eq. A. 7 q,. must agree with protected g, )

Barrier & Anablent

  • A 3. area,(ft'/ft) 1.8 [stdvl2]

U.,(Bru/hr ft' *F) 0.91 [Eq. A.17] ,

Tu,inside Temp.,(*F) l132.4 l Tw,,, Outside Temp., (*F) i I4.2 [Eq. A.16]

hm,(Btu /hr-ft' *F) 0 42 [Eq. A.28]

h,,m,(Btu /h-ft* *F) 1.14 [Eq. A.21]

ha..(Bru/hr ft'.*F) 1.55 [h m +h,,,w]

7,(protected),(*F) 104.0 [Eq. A.19. Calculated T, must agree with input T,]

ADF 15J % {Eq.A.l]

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

g 9/19/97 g , /9/19/97 CALCULATION No. DE&S SR/EM01 A36 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S Duke Engineering & Services San Ramon, California Table A.11 - Sensitivity Study Case S2 (Effect of Percent Fill)

FIRE RARRIER DATA AIR GAP DA TA d.. outside diameter,(in) HEA T TRANSFER PARAMETERS 6.75 A,,(B*att ft *F) 0 016 o,Brutr R 2 *R' l.7140E 09 c., emissivity 0.90 t,, (in) 1/8 C. (W.h/Bru) 0.2931 r., thickness (in) 1.00 a 0.20 A. thermal cond.,(Bratt ft *F) 0.090 n 0.25 f., shape factor 1.00 T., (*F) 194.0 T.,(*F) 104.0 RACEWA YDIMENSIONAND CABLE FILL DA TA Raceway ID 4" CONDUlT d,,outside diameter,(in) 4.500

[EnEIeslin boxes designate the parameters over t,, wall thickness (in) 0.237 which *erations are carned out. Only the final fil,(%) 24.4 values are shown, c., surface emissivity 0.40 cable size (model cable) 3/C #6 Entries in [ ] show the applicable equation 4,, cable dia,(in) 0.889 number in Section A.3, or the equation itself.

n., no. of cond. (per cable) 3 R, resistance, (Ohm /1000ft) 0.515 1a ,, , baseline amp.,( Amp) 34.5 CALCUI.A TED PARAMETERS Unprotected Raceway (baseltne. 90 *Cconductor temp., 40 *C ambient temp.)

n,, number of cables 5 (Eq. AA]

A,, heat transfer area. (ft*/A) 1.18 [nd,/12]

q,, Heat gen. rate,(Btu /hr ft) 31.40 [Eq. A.3, with l=le ,a,,, )

U,,(Btatr ft* *F) 0.36 (A.6]

7,, Surface Temp. (*F) [l iv.s I hm,(Btatt ft s,.F) 0.69

[Eq. A.27 with a=0.2I and n=l/4, L=d,/12, Section A.3.10]

h,,,,,,,(Bratt ft* *F) 1.03 [Eq. A.21 with T ,=T,, c. =0.8, and F al]

q,,, Heat dissip rate,(Btu /hr ft) 31.33 [Eq. A.7 with T =T, g,, must agree with baseline q,)

Protected Raceway 1%, protected amp.,(Amp) pv. t l

,, (Bru/ht-ft ) u.9 IEq. A.3]

i,. Surface Temp., (*F) 137.4 [Eq. A.6]

As, Gap h,, ,(Bratt-ft 3*F) 1.54 (Eq. A.15]

hm,(Btatr-st* *F) 0.55 [Eq. A.8]

h,.. (Btatt-A' *F) 2.08 (4,,,+h w ]

9,,,(Btatr ft) 23.9 (Eq. A. 7. q,. must agree with protected q, j Barrier & Ambient

  • A.. area , (ft'/ft) 1.8 (itdvl2]

U.,(Btu /hr ft* *F) - 0.91 [Eq. A.17]

7 ,inside Temp.,(*F) [T77.6 l Ta ,, Outside Temp.,(*F) I iz.s (Eq. A.16]

A m ,(Bratr R2 'F) 0.40 [Eq. A.28]

tw (Brwt-ft*2 *F) 1.13 [Eq. A.21]

hu,(Btu /hr-ft *F) 1.53 [hm +h,,m]

T. (protected), (*F) 103.9 [Eq. A.19. Calculated T, must agree with input T,]

ADF 12.8Y. (Eq. A.t]

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

Q 9//9/97 4 /9//9/97 CALCULATION No. DE&S-SR/EM01 A37 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40 E

i DE&S Duke L .gineering & Services Sars Ramon, Calfornia Table A 12 = Sensitivity Study Case S3 (Effect of Concluctor Size)

TIREBARRIER DATA AIR G4r DA TA HL4T TMNSTER PARA %fETERS de, outside diameter (in) 6.75 A,,(Bintr A *F) 0016 o, Beatr ft'.*R' l.7140E 09

t. emissivity 0 90 t,, (in) 1/8 C, (W WBtu) 0.2931 s , thicknes:(in) 1.00 a 0.20 4., thermal cond (9tatt.A *F) 0.090 n 0.2$

ru, shape factoe 1.00 T., (*F) 194 0 T,,(*F) 104 0 RA CEWA YDIMENSION AND CABLE TILL DA TA Racewey l!) 4"CONDUli d,, outside diameter,(in) 4.$00 [UIt7'eslin boxes designaw the parameters over s,. wall thickness,(in) 0.237 w hich sterations are carried out. Only the finsi fill, (%) 23.3 s alues are shown.

t,, surface emissivity 0 40 cable size (modelcable) 3/C#2 Entries in [ ] show the applicable equation 4,, cable dia, (in) 1.121 number in Section A.3, or the equation itself.

n., no, of cond. (per cable) 3

' R, resistance,(Ohm /1000A) 0 203 la,,,,,,,, ba*eline amp.,( Amp) 61.S CALCUL4TED P/ tAMETERS Unproteesed Racewety /basehne. 90 *C conductor temp , 40 *C awbient teorp) n,, number of cables 3 (Uq A.4j A,, heat transfer area,(ft'/A) 1.18 [nd/12)

<;,, Heat Sen, rate (Btatr A) 23.62 [Eq. A.3, with !=1,,,,,t.,,, j U,,(Biv/hr ft'.7) 0 26 [A.6]

T,, Surface Temp,,(*F) lii6 o l h,,,,,,(Blatt A'.7) u.64 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12. Section A.3.10]

h ,(BtatrA'.T) 1.02 [Eq. A.21 with Tw,, = T,, c, =0 8, and T&=l]

g,,, Heat dissip. rate,(Bratt A) 23.40 [Eq. A.7 with Tu =T g,, must agree with baseline g,]

ProtectedRaceway 1, .,,,, protected amp.,(Amp) p 3.J l g,,(Bratt ft ) i v. [Eq. A.3)

T,, Surface Temp.,(*F) 130.8 [Eq. A.6)

AirCap A,,,,(Brutr ft' T) 1.54 [Eq. A.15]

hw,(Btatt A'.*T) 0.$3 [Eq. A.8]

h,,,(Btatt ft' *F) 2.07 [h,,,+h w ]

g,,,(Blatr ft) 18.9 [Eq. A. 7. g,. must agree with protected g, ]

Barrier & AneMeet A e, area ,(ft'/ft) 1.8 [nd,/12]

U ,(Ban'hr A' T) 0.91 [Eq. A.17)

T ,,,inside Temp.,(*F) pzJ.I l Tw,,, Outside Temp.,(*F) i i 1.2 [Eq. A,16) ,

Am,(Bratr ft'.*F)

  • O 38 [Eq. A.281 h,,,, w (Bruth- A'.T) 1.13 (Eq. A.21]

Aw,(Btu /hr ft' *F) 1.51 th,.u + 4 m)

T, (protected),(T) 104.0 [Eq. A.19. Calculated T, must agree with input T.)

ADF 10.0% [Eq. A.Ij REV, PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

% 9/19/97 tpg /9/19/97 CALCULATION No. DE&S SR/EM01 A38 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

4 DE&S Duke Engineering & Services San Ramon, Colfornla Table A.13 Sensitivity Study Case 54 (Effect of Air Gap Width) flRERARRIER DATA AIR GAP DAT4 HEAT TRAN5fER PAR 4 METERS s., outside diameter,(in) 7.00 A,, (Stutt. A.T) 0.016 o,StuhrA'.*R' l.7140E 09 se, emissivity 0.90 t,, (in) 1/4 C. (W.h'Blu) 0.2931

, te, thickness (in) 1.00 e

. 0.20 de,thermalcond (Blar.A.*F) 0.090 n 0 23 ra,, shape factor 1.00 T., (T) 194.0 T,, (*F) 104.0 RACE WA T DIMENSION AND CABLE TILL DA TA Raceway ID 4* CONDUlf 4,,outside diameter (in) 4.$00 Ain bones desi8nate the parameters over 1,, wall thickness,(in) 0.237

  • hach storations are carried out. Only the final flit (%) 39.0 values are sliown.

s,. surface emissivity 0.40 cable site (modelcable) 3/C86 Entries in [ ] show the applicable equation 4,, cable dia. (in) 0.889 number in Section A.3, or the equation itself.

n., no. of cond. (per cable) 3 R resistance,(Ohm /1000A) 0.51$

la . baseline amp.,(Amp) 31.1 CALCULATED PARAMETERS Vyrotected Raceway (baseline. 90 *Cconductor It:q., 40 *C ambient temp) n,, number of cables 8- [Eq. A.4)

A,, heat transfer area,( A8 /A) 1.18 [nd,/12) g,, Heat gen. rate,(Blu/hr. A) 40.65 [Eq. A.3, with /=la ]

U,,(Bruhr A'.7) 0 49 [A.6)

T,, Surface Temp., (*F) p aJ.4 l S

h,,,,,(BidtA.T) U.7J [Eq. A.27 with a=0.27 and n=1/4, L=d,/12. Sectica A.3.10]

4,,m, (Stu/hr.R'.T) 1.04 [Eq. A.21 with Tw =T,, t, =0.8, and f =ll g,,, Heat dissip. rate,(Btuhr A) 40.64 [Eq. A.*/ with Tw =T. g,, must agree with baseline g,)

Protected Racewq Ig,,,,, protected amp.,(Amp) p3.e ]

g,, (Btdr.R ) 37.1 [Eq.A.3)

T,, Surface Temp.,(*F) 147.0 [Eq. A 6)

Air Gm h,,,,, (Badr A8 .T) 0.77 [Eq. A.l$)

4, . (Stu/hr A'.*F) 0.56 [Eq. A.8l 4,,, (Btar. A'.*F) 1.33 [Am +4 w ] ,

g,,, (Stu/hr. A) , 27.1 [Eq.A.7.g,e must agree with protected g, ]

Retrier & AneMeet A , ares ,( A'/A) - 1.8 8

[ 4 /I21 U ,(BtdrA.T) 0.92 [Eq. A.l?] -

T ,inside Temp.,(T) pn.s 1 T3, Outside Temp.,(T) iIJ.4 (Eq. A.]6) 4,,a,,(Stdr A .7) 8 0.40 (Eq. A.281 8

h (Stu/h A8 .*F) 1.14 [Eq. A.21]

h m,(Badr A .T) i 1.$4 [h,.6, +4,,m ]

T. (protected),(T) 104.0 [Eq. A.19, Calculated T must agree with input T,)

ADr 18J% (Eq. A.l]

REY. PREPARER VERIFIER CLIENT / PROJECT: DUQUE,5NE Light Co./BVPS Unit 2 PAGE O g 9/19/97 mg, /9/19/97 CALCULATION No. DEAS SR/EM01 A39 TITLE: Ampacity Derating Factors of OF Fire. Protected Conduits A40

DE&S .

Duke Engineering & Servkes San Ramon, Catfornia A.5 REFERENCES Al. 1EEEllPCEA Standard 51351P %-426, Power Cable Ampacities: Volume 1 Copper Conductors and Volume H Aluminum Conductors, l984.

A2. Early, hi. W. et al., National Electric Code Handbook, National Fire Protection Association, 1993.

! A3. ICEA Standard Publication, Ampacities of Cables in Open top Cable Trays, ICEA P-54 440 l (Third Edition), NEMA WC 51 1986.

A4.

IEEE P848, Draft lEEE Standard titled," Procedure for The Determination of The Ampacity Derating of Fire Protected Cables," Draft 16, January 1,1995.

AS. Incropera, F. P. and Dewitt, D. P., Introduction to Heat Transfer, John Wiley & Sons,1990.

A6. Ozisik, M. N., Basic Heat Transfer, McGraw Hill,1977.

A7. Holman, J. P., Heat Transfer, McGraw Hill,1963.

AB. Stolpe, J., "Ampacities for Cables in randomly Filled Trays," IEEE Transactions on Power Apparatus and Systems, Volume 90, part 1,1971, pp: 962 974.

A9.

Neher, J. H. and M. H. McGrath, The Calculation of The Temperature Rise and Load Capability of cable Systems, IEEE Transactions, Vol. 76, October 1957, pp: 752 773.

A10. Safety Evaluation Report by the Office of Nuclear Reactor Regulation,"Ampacity Issues Related to Thermo Lag Fire Barriers, Texas Utilities Electric Company, Comanche Peak Steam Electric Station, Unit 2, Docket No. 50-446," US Nuclear Regulatory Commission, June 14,1995.

All, Omega Point Laboratories Report Titled,"Ampacity Derating of Cables Enclosed in Conduits with Thermo-Lag 330-1/7701 Upgrade Electrical Raceway Fire Barrier Systems (ERFBS),"

Project Nos.~11960 97337 & 97338, Tennessee Valley Authority, August 21,1995.

A12. Omega Point Laboratories Report Titled,"Ampacity Derating of Fire Protected Cables," Project No.12340 94583,95165 95168,95246, TU Electric, March 19,1993.

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUE,SNE Light Co. /BVPS Unit 2 PAGE O 9//9/97 pg, /9/19/97 CALCULATION No. DE&S SR/EM01

_% A40 TITLE: Ampacity Derating Factors of OF

- Fire Protected Conduits A40

DE&S Duke Engineering & Sonices San Ramon, Cayornia ATTACHMENT B WALKDOWN REPORT ON FIRE PROTECTED CONDUITS REV PREPARER VERIFIER CLIENT / PROJECT: DUQU,ESNE Light Co./BVPS2 PAGE O g 9//9/97 g 9/19/97 CALCULATION No. DEAS SR/EM01 Bt TITLE: Ampacity Derating Factors of OF Fire Protected Conduits B15

DE&S Duke Engineering & Servkas San Ramon. Calfornia TABLE OF CONTENTS Section Iillt ........................................................................................ bgg B.1 P U RPO S E AN D S C O P E . . .... . .... .. .. . . .. . ... ... . .. . . . . . .. .. . ... . . . . . . ... . ... .. ................. B 3 B.2 RE F E REN C E S . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B.3 B A C K G R O UN D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B.4 METHODOLOGY AND ASSUMPTIONS .............................................B6 B.5 G EN E RA L F E ATURE S .. .... . .. .. .. . .. . . . . . . .. . . . . . . .... . .. ... .. ......... ... . ..... . ... ....... ... B 8 B.6 S U MMA RY O F WALKDOWi J ............................................................ B 1 1 REV PREPARER VERIFIER PAGE CLIENT / PROJECT: DUQU,ESNE Light Co./BVPS2 O g 9//9/97 9//9/97 CALCULATION No. DEAS SR/EM01 B2 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits BIS

r_._. _ _ - _ _ _ _ _ _ _ _ _ . - _ .-

DE&S l Duke Enginnving & Servkes San kmon, Calfornt.s B.I PURPOSE AND SCOPE The purpose of this report is to document the results of the walkdown of conduits that are covered with Thermo Lag and contain power cables at Beaver Valley Power Station (BVPS)

Unit 2. This report will document the raceway configurations that would have an impact on the protected ampacity of the cables routed in conduits.

The scope for this walkdown is the Unit 2 conduits identified in Table B.1.

l REV PREPARER VERiflER CLIENT / PROJECT: DUQUESNE Light Co./BVPS2 PAGE O g 9//9/97 g 9//9/97 CALCULATION No. DE&S SR/EM01 D3 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits Bis

DE&S Duke Engineering & Services San Ramon. California IL2 REFERENCES B1 ECN 2240 2, DCP 2240, Thermo Lag Upgrade of 3",4",5" and 6" Electrical Conduits, Part IV.

D2 3ht Interam E 50 Series Fire Protection hint,1 liour Flexible Wrap Protection System for Electric Raceways, Issue No. 5500 005,6/19/87.

B3 3ht Interam E 50 Series Fire Protection hiat,3 liour Flexible Wrap Protection System for Electric Raceways, Issue No. 6350-002,10/27/87.

B4. Letter from T. Dogan (DE&S) to hi. Patel (DUQUESNE Light Co.) dated September 15, 1997, VC20300-002.

B5. Letter from hi. Patel (DUQUESNE Light Co.) to T. Dogan (DE&S) dated September 18.

Subject:

Ampacity Derating calculation.

REV PREPARER VERIFIER PAGE CLIENT / PROJECT: DtJQU,ESNE Light Co./BVPS2 O

% 9//9/97 g g 9//9/97 CALCULATION No. DE&S SR/EM01 B4 TITI.E: Ampacity Derating Factors of OF Fire Protected Conduits Bis i

, _~

DE&S Duke Engineering & Services San Ramon, Calfornia B.3 UACKGROUND Thenno Lag fire barrier systems have been used at BVPS Unit 2 to protect electrical power and control cables for systems and components required to achieve and maintain safe shutdown conditions. These fire barrier systems were originally installed in accordance with the industry standards applicable at that time. Subsequent industry tests and evaluations have indicated that the Thermo Lag fire barriers must be " upgraded" by applying additional fire protection material over the existing " baseline" fire protection. These upgrades are being applied at BVPS Unit 2 according to the installation plan described in [Ref. Bl). Application of the upgrade, while improving the fire endurance of the protected cables, reduces their ampacity (i.e., eturent carry.ng capacity). The purpose of this walkdown is to collect or confirm the necessary information to evaluate the ampacity of the cables in the fire protected raceways at BVPS Unit 2.

These raceway are listed in Table B.1 and consist of conditits ranging in size from 2 inches to 6 inches. Only those features that are imponant to the ampacity evaluation are observed. .

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS2 PAGE O g 9/19/97 g 9//9/97 CALCULATION No. DEAS SR/EM01 B5 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits Bt5

DE&S Duke Engineering & Serske San Ramon. Calfornia D.4 METilODOLOGY AND ASSUMPTIONS B.4.1 Methodology The walkdown was performed by two DE&S engineers (the preparer and the checker) who were escorted by two DVPS cognizant engineers. The walkdown documented the raceway configurations and the installation of the fire protective material. Only those attributes that have a direct effect on the ampacity of the cables in the protected raceways were observed. Namely,

1. Thermo Lag fire coverage thickness (original installation thickness plus the upgrade thickness if applicable).
2. Raceways running along ceilings, walls or floors where the structure forms a part of the raceway enclosure (length of affected coverage and type of structure).

l 3. The coverage by 3M Interam fire barrier material (number oflayers of coverage and length of coverage).

4. 'Ihermo-Lag fire barrier coverage method (half round or box). *
5. Barriers covered with Thermo Lag Flexi Blanket materiel (number oflayers and length of coverage).
6. Raceways contained in common enclosures with other raceways.
7. Raceways in congested locations where other raceways are in close proximity and running parallel.
8. Raceway orientation (vertical, horizontal or both)

B.4.2 Assumptions The walkdown information contained in this report is based on the following assumptions

1. The scope of this walkdown is the raceways listed in Table B.I. This list of raceways has been provided by Duquesne Light Company. Duke Engineering and Services did not verify the completeness or accuracy of this list.
2. The purpose of the walkdown is to obtain general configuration information and not to develop detailed as built routing or provide any detailed measurements of the Thermo-REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS2 PAGE g

9//9/97 O

g 9/19/97 CALCULATION No. DE&S SR/EM01 B6 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits Bis

DE&S Duke Engineenng & Services San Ramon. Colt fornia Lag or 3M Interam configurations. It is assumed that the conduits are protected in accordance with the installation specifications unless field walkdown or information provided by Duquesne Light Company indicate otherwise.

3.

Variations in the installation of the fire barrier over short distances (less than two feet) are not recorded. Such variations are insignificant in the determination of the ampacity since their effect is cancelled by the axial conduction of the heat along the cable conductors and the conduit wall.

4. Information for the junction boxes and pull boxes is not recorded. Ampacity of the cables in thejunction/ pull boxes are limited by the ampacity of the cables in the conduits attached to them since these bexes have larger surface area (on a per cable basis) to )

dissipate the heat than the attached conduits.

S. Thickness of the fire barrier material was not measured since it would have required l either removal of samples or drilling into the barrier wall. The barrier thickness values reported here for Thermo Lag are subjected to verification by the QC per the BVPS installation procedure [Ref. Bl). The thickness values reported for the 3M Interam mat are taken from the vendor installation procedures (Refs. B2, B3).

REV PREPARER VERiflER CLIENT / PROJECT: DUQUESNE Light Co./BVPS2 PAGE O g 9/19/97 g 9//9/97 CALCULATION No. DE&S-SR/EM01 B7 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits Bis

DE&S DuAs Engineering & Servkrs San Ramon, California B.5 GENERAL FEATURES B.5.1 Conduit Schedule and Fire Protection

' i All conduits are schedule 40 rigid aluminum except the raceways 2CH925GC2,2DH925002, i and 2DH925001 which are rigid galvanized (zine coated) steel. Flexible conduits are used caly in a small section of the raceways 2CH957PA and 2CL957PA. Fire protection is done primarily by Thermo Lag material with the exception of flexible conduits and the conduit sections in the vicinity of supports and penetrations where 3M Interam fire protection material is used.

B 5.2 Thermo Lag Fire Protection

'Ihermo Lag fire protection material is installed as illustrated in Figure B.1 with a base layer installed directly over the conduit and two skim coats applied over the base layer. Application of the upgrade is controlled by the BVPS Unit 2 installation plan [Ref. Bl] which restricts the overall thickness of the upgrade to a maximum of 9/16 inches. Upgrades are applied only to conduits in the 3" to 6" nominal size range with 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> fire rating. The maximum width of the gap between the base layer and the conduit is 0.10 inches. Nominal thickness and the tolerances for each layer are given in below:

Baseline (1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> rated barrier)

Three feet long " half round" conduit sections with 5/8"(+1/8", -0") thickness and stress skin on the inner face.

Baseline (3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> rated barrier)

Three feet long " half round" conduit sections with 1 1/4"(+1/8", 0") thickness and stress skin on the inner face.

Upgrade (applied to 3" and larger conduits rated at 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> rating. 2" conduits and conduits rated at 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> are not upgraded)

First skim coat: 1/4" to 3/8" thick including the stres:: sr .t ,

Second skim coat:1/8 to 3/16" thick Combined first and second coats not to exceed 9/16".

'Ihese values yield the maxirr.um Thermo-Lag Barrier thickness as summarized below:

Conduit Size 1 Hour 3 Hour 2" 3/4 1-3/8 3" to 6" l-5/16 1 3/8 REV PREPARER VERIFIER PAGE CLIENT / PROJECT: DUQU,ESNE Light Co./BVPS2 o g 9/19/97 g 9/19/97 CALCULATION No. DEAS SR/EM01 B8 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits B15

DE&S Duke Engineering & Services San Ra'non, Calfornia

B.5.3 3M Interam Fire Protection Material 1M Interam fire protection material is installed on shon conduits sections in the sicinity of supports and on flexible conduits. It is also used on short sections (less than 30 inches) occurring between sections of 3M Interam fire wrap as an upgrade coat in lieu of Thermo Lag. The 3M

, fire protection material is applied in accordance with the manufacturer's procedure [Refs. B2, 1 B3] by wrapping multiple layers of flexible mats of this material around the protected l commodity (i.e., conduit or the support). The 3M material is extended approximately 12 to 18

! inches on either side of the supports, and approximately 12 inches onto the conduit at 1

penetrations. Thus, the length of the conduit section protected by the 3M fire protective material  !

is three feet or less at supports and penetrations. The length covered at flexible conduit sections

  • i is determined by the length of the flexible section itself. The maximum length noted during the  :

walkdown was approximately six feet and was installed on the conduits 2CH9570B,2CH957PA l and 2CL957PA. The overall thickness of the 3M materialis determined by the fire rating of the barrier. One hour rated conduits are wrapped with three layers and three hour rated conduits are wrapped with five layers 3M Interam fire wrap.

Nominal 3M Interam Barrier Thickness Conduit Size 1 Hour 3 Hour 5"orless Aluminum I layer of 0,4" thick E-54A and $ layers of 0.4" thick 4

2 layers of 0.3" thick E 53A mat E 54A mat

> 5" Aluminum 3 Layers of 0.3" thick E 53A mat 5 layers of 0.4" thick i

E 54A mat Steel (all sizes) 3 layers of 0.3" thick E 53A mat 5 layers of 0.4" thick E 54A mat B.5.4 Adjacent Walls in situations where the conduit is routed in close proximity to a wall such that the clearance between t!3 wall and the conduit is not wide enough to comfortably install the fire protection material, the w ige shaped gap between the conduit and the wall is filled with trowel grade Thermo Lag mataiJ. In these cases pan of the fire barrier is formed by the wall itself, i

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS2 PAGE n

% 9//9/97 g 9//9/97 CA!.CULATION No. DE&S-SR/EM01 B9 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits Bis

DE&S Duke Engmeering & Senices San Ramon. Calfornia f Second Skim Coat

/ (Trowel Grade Thermo-Lag) l

.e s -

,,e.,<,v.v

,v.w . s v.,,, , ,

/

='

<y g Stresa Skin s /'- V V V V V V weQ,'s /-

r , ,/

, ' ,e v . ,

f r r 5 e ,'o, .

v., - -

v,9 v , 4, '

', y, , c -/- , , sN y First Skim Coat v ,.,' 0,'y e (Trowel Grade Thermo-Lag)

.'.v,9 c v.

- ' , ' e'/

, v.9

'#l/.

g(

>6 ,/

ed'

>Q'

> ,4 en

/

T f ,

i, f .

en y

W v,-

1>Y 9 r / e 'x," >

v' e i, .,/ , 9e v .g, I < <; vr 5

v . 6, , .K x K,$,' y e,', ,,' " - ',/ ' '

" x

,';9 e , '

v.vrh" v , ['?.

Baseline Half Round Section

.v v.v v .v , y (Preformed Thermo-Lag)

  • w 9 p 9 p 9 p 9 /m"

, " mj , 9 V v 7 V V x"/- ,,"

v,. r , r <.

l',0'..:.. ,y ev'; l ' '

':S Conduit .

Note:

An air gap may form between the half rounds and the conduit due to fabrication tolerances. This gap is approximately 1/8" wide and is not shown in the figure.

Figure B.1 Thermo-Lag Installation (Baseline and Upgrade)

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co. iBVPS2 PAGE O

g 9//W97 jg 9/19/97 CALCULATION No. DEAS SR/EM01 DIO TITLE: Ampacity Derating Factors of OF Fire Protected Conduits BIS

DE&S Dule Engineering & Servkes San Ramon. Cahfornia U.6

SUMMARY

OF WALKDOWN The walkdown data is summarized in Table B.I. The data is organized according to the attributes stated in Section 4.0 under the following columns:

Raccug No. DVPS Unit 2 unique raceway number.

Size Nominal size of the conduit (inches).

Rating Fire rating of the conduit. One Hour (1-Hr) or three hour (341r).

Orientation Vertical (vert) or horizontal (horiz). Most conduits have both horizontal and vertical mns and are designated so.

JMinteram Sections (if any) of the conduit protected by 3M Interam material.

Configuration Presence or absence of adjacent raceways, common enclosures, walls forming a part of the the barrier, etc. Relative position of the adjacent raceways (if present) are shown on the sketches in Figure B.2. The dimensions given on these sketches are rounded off/ approximated on the low side so that a conservative radiation shape factor (from the protected raceway to the surrounding) is calculated.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co. iBVPS2 PAGE O g v//9/97 9/19/97 CALCULATION No. DLLS SR/EM01 Bil TITLE: Ampacity Derating Factors of OF Fire Protected Conduits Bis

DE&S D:Le Engmeeting & Sentr San Ramon. Cahfornia Table D.1 Summary of Walkdown Information RACEWAY Size fire Area Onent- 3M Interam Coverage Con 0gurauon and and ation Rating Elevation i 2CH949081 4" SB 3 Both Approximately 4' of Individually w rapped.

(1 Hr) 745' 6" s ertical section near a No adjacent raceways.

support at the Door. No contact with walls.

2 2CH9570B 5" CT 1 Both At supports and a Individually wrapped.

(1Hr) 712' 6" junction box No adjacent raceways.

(approximately6 A). No contact with walls.

3 2CH957PA 5" CV 1 Vert. At supports and on a Individually wrapped.

(1 ilt) 735' 6" flexible conduit section Parallel to 2CL957PA at 2 h (approximately 6 h). distance. See Sketch I in Figure B.2 No contact with walls 4 2CL213ND 5" CV l Vert. None Individually wrapped except a 2 (3 Hr) 735'-6" A section where it is wrapped with two other conduits Runs parallel to two 3" unwrapped conduits at approximately 9" distance. See Sketch 6 in Figure B.2.

No contact with walls.

5 2CL30lOAl 2" CV 3 Both At supports Individually wrapped.

(1 Hr) 755' 6" (approximately 2 A). No adjacent raceways.

No contact with walls 6 2CL30 LOA 2 2" CV-4 Both At supports individually wrapped.

(1 Hr) 773' 6" (approximately 2 A). No adjacent raceways.

No contact with walls 7 2CL30 LOA 3 2" CV 3 Both At supports individually wrapped.

(1 Hr) 755' 6" (approximately 2 ft). No adjacent raceways.

No contact with walls 8 2CL30 LOA 4 2" CV 4 Both At supports Individually wrapped.

(1 lit) 773' 6" (approximately 2 R). No adjacent raceways.

No contact with walls 9 2CL6050A 3" SB 3 Both At supports individually wrapped.

(1 Hr) 745' 6" (approximately 2 R). No adjacent raceways.

Contact with wall at 3 different See Note I locations,6' long max.

10 2CL6070A 3" SB 3 Vert Approximately 3' at the Individually wrapped (1 Hr) 745'-6" floor penetration and Arranged in a row with the cable tray above. 2CL6070Al-6070C 6070A-6070D. See Sketch 3 in Figure B.2.

See Note 1 No contact with walls.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS2 PAGE O g 9/19/97 gq 9/19/97 CALCULATION No. DE&S-SR/EM01 B12 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits als

DE&S Duke Engineering & Servic:s San Ramon. Cahfornia Table B.1 Summary of Walkdown Information (Continued)

RACEWAY Size Ftre Area Orient. 3M inkram Coverage Con 0guration and and ation Rating Elevation 11 2CL6070Al 3" SB 3 Vert. Approximately 3' at the Individually wrapped (1 Hr) 745' 6" door penetration and Arranged in a row with l

the cable tray above. 2CL6070Al 6070C 6070A- '

6070D. See Sketch 3 in Figure B.2.

See Note 1 No contact with walls.

12 2CL60708 3" SB 3 Horiz. Approximately 2 A at Individually w rapped.~ l (1 Hr) 745' 6" two support locations. Approximately 2 A long total. 1 l

No adjacent racewsys.

See Note i No contact with wC!s.

13 2CL6070C 6" SB 3 Vert. Approximately 3' at the individually wrapped (1 Hr) 745' 6" Door penetration and Arranged in a row with the cable tray above. 2CL6070Al 6070C 6070A-6070D. See Sketch 3 in Figure B.2.

See Note i No contact with walls.

14 2CL6070D 5" SB 3 Vert. Approxirnately 3' at the Individually wrapped (1 Hr) 745' 6" Goor penetration and Arranged in a row with the cable tray above. 2CL6070Al 6070C 6070A-6070D. See Sketch 3 in Figure B.2.

See Note i No contact with walls.

15 2CL6070E 6" SB 3 Both At supports individually wrapped.

(1 Hr) 745' 6" (approximately 2 A). Runs parallelto 2CL6070F at approximately 12" distance. See Sketch 2 in Figure B.2.

Contact with wall. 8' long.

16 2CL6070F 6" SB 3 Both At supports individually wrappeo.

(1 Hr) 745'6" (approximately 2 A). Runs parallel to 2CL6070E at approximately 12" distance. See Sketch 2 la figure B.2.

See Note 2 Contact with wall. 8' long.

17 2CL950BA 5" SB 3 Both At supports individually wrapped.

(1 Hr) 745' 6" (approximately 2 A). No adjacent racewsys.

See Note 3 Contact with wall. 8' long 18 2CL950RA 6" ,

SB 3 Horiz. At supports Individually wrapped.

(1 Hr) 745' 6" (approximately2 A). No adjacent raceways.

No contact with walls 19 2CL95708 5" CT 1 Both At supports and a Individually wrapped.

(1Hr) 712'-6" junction box No adjacent raceways.

(approximately 6 A). No contact with walls REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS2 PAGE O g 9/19/97 g 9/19/97 CALCULATION No. DE&S SR/EM01 B13 TITLE: Ampacity Derating Factors of OF l Fire Protected Conduits B15

_ _ - . . ~ _ _ . - ___. - . . - - . . . . . - - - _ _ _ _ . - . . . - - - - _ _ -

DE&S Duke Engineering & SevicOs San Ramon. Calfornia Table B.I Summary of Walkdown Information (Continued)

RACEWAY Slze Fire Area Orient. 3M Interam Coserage Con 0guration and and ation Rating Elevation 20 2CL957PA 5" CV.I Vert. At supports and on a Individually wrapped.

(i.Hr) 735' 6" Dexible conduit section Runs parallel to 2CH957PA at 2

. (approximately 6 R). A distance. See Sketch I in Figure B.2 No contact with walls 21 2CH925GC2 4" PA 3 Horiz. None Individually wrapped.

(3.Hr) Various No adjacent raceways.

l No contact with walls.

22 2CL9230A 5" PA 3 Both None Individually wrapped.

(3 Hr) Various Runs parallel to two other unwrapped conduits in a

, triangular arrangement at

^

approx.15" centers. See Sketch 4 in Figure B.2.

~

No contact with walls.

23 2CL923OH 3" PA 3 Both At one support Individually wrapped.

i (3.Hr) Various (approximately 2 A). Runs parallel to an unprotected conduit at approximately I A distance. See Sketch 5 in Figure B.2.

l No contact with walls.

, 24 2CL957WA 5" PA.3 Both None Individually wrapped.

(3.Hr) Various No adjacent raceways.

No contact with walls.

< 25 2DH925G02 4" PA.3 Doth Nonc Individually wrapped (3 Hr) Various Runs parallel to a wrapped 4" conduit at approx. 9" distance.

See Sketch 7 in Figure B.2.

_ No wall contact.

26 2DH925001 4" PA 3 Both None Individually wrapped (3.Hr) Variou No edjacent raceways.

No contact with walls.

1 Note: Per [Refs. B4, B5) the upgrade subsequent to the walkdown has resulted in 3M Interam wrap on the following raceways:

1. 2CL6050A,2CL6070A,2CL6070A1,2CL60708,2CL6070C,2CL6070D; 42" of 3M Intersm
2. 2CL6070F; 38" of 3M Interam j

3, 2CL950BA; 5 A of 3M Interam.

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS2 PAGE O g 9//9/97 g 9/19/97 CALCULATION No. DEAS SR/EM01 B14 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits Bis

DE&S Duke Engineering & Services San Ramon. Colfornia

. l

=

24' l= 12' ]

AM,/ f%- a t i 2CH957PA 5'

\L/

2CL957PA 5' Q 2CL6070E4' Ql2CLM70F4' l

SKETCHI SKFTCH 2 k

~

' 2CL9230A 5' 2CC9230A 5" 2CK9230A 5'

_4 m m

]

8

\/  %/

2CL6070Al- 2CL6070A 3*

g 20- -

2CL6070C4' 2CL6070D 5' SKETCH 3 SKETCH 4

- tr - -- 9. - _ 9. _

f% n A f3 2CC220ND-3' f"% /"T Y

MMT

\,./ Y (,,/

2CK E T 2CL213ND 5"

-O A 2DFJ0024' 2DH925G03#

2CK213NC 3' SKETCH 5 SKETCH 6 SKETCH 7 NOTES

1. Protected raceways are shown in thick circles, unprotected raceways in thin circles.
2. Distances shown are approximate and on the conservative side (i.e., small).

Figure B.2 Raceway Configurations REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS2 PAGE O g 9//9/97 j g 9/19/97 CALCULATION No. DEAS SR/EM01 BIS TITLE: Ampacity Derating Factors of OF Fire Protected Conduits Bis

BULLE M E N M THE OKONITE COMPANY Engineering Data for Copper and 8 Aluminum Conductor Electrical Cables 1

3 2,,l$fll 1  ?

\ I!!!! t t -

e 4-i e
s. "Ni cabins gyyggggg Information e Stranding Compact and Conductor Compressed Sue Number Compact Comprest Diameters AWO or of Demeter Diameter kcmd Wiret enchet mc!MS Table 1 1 A

, 7 , 333 _

6 7 0 167 -

4 7 0 211 -

2 7 0 266 -

1 19 0 299 321 1/0 19 0 336 .361 2/0 19 0 376 .405 3/D 19 0 423 456 4/0 19 0 475 .511 250 37 0 520 .557 300 37 0 570 .610 350 37 0 616 659 400 37 0659 .706 500 37 0 736 788 600 61 0 813 866 750 61 0 908 970 l 800 61 0 938 1 000 l

900 61 0 999 1 060 1000 61 1 060 1.116 Solid and concentric stranding Tabie 1 1 50Lt3 CLASS *8" $TRANDING Cl A11"C" $1RANDING CONDUCTOR WElGHT Conductor Circular fbor CrIts.

Sectional So WW conducto, Jiamete, Conducg Ob Weight

)

Number og Oi,agl(r o

Conductor Number Diameter of 0,',a j(r Conductor g,,, Diameter ran ing Ob> W ft )

wire kemit Area p Will Alummum Copoer

"" Mds I'"I """ Wds I'" I Alummum Copper 24 404 0205 20 1 -

1.22 7 76 0 023 - - - -

1 24 22 640 0 324 25 3 -

1 94 7 96 0 029 - - - -

I 98 20 1.020 0 519 32 0 0.942 3 10 7 12.1 0 036 - - - -

3 15 19 1.290 0 653 35 9 1.19 3 90 7 13 6 0 041 - - - -

3 98 18 1.620 0 823 40 3 1 99 4 92 7 15 2 0 046 - - - -

5 01 16 2,580 1.31 50 8 2,38 7 81 7 19 2 0 058 - - - -

7 97 14 4 110 2 08 64 1 3 78 12 44 7 24 2 0 073 L9 14 7 0 074 - 12 7 12 6 530 3 31 80 8 6 01 19 77 7 30 5 0 092 L9 18 5 0 093 6 13 20 2 10 10.380 5 26 101.9 9.56 3143 7 38 5 0 116 i9 23 4 0.117 9 75 32 0 9 13,090 6 63 114 4 12.04 39 63 7 43 2 0 130 19 26 2 0 131 12.3 40 4 8 16 510 8 37 128 5 15 20 50 0 7 48 6 0 146 19 29 5 0 146 15.15 51 0 7 20.820 10 55 1 A4 3 19.16 63 03 7 54 5 0.164 19 33 1 0 166 19 16 64 2 6 26.240 13 30 162 0 24 15 79 4 7 61 2 0 184 19 37 2 0186 24 60 81 0 5 33.090 16 67 181 9 30 45 100 2 7 68 8 0 206 19 41 7 0 209 31.1 102 0 4 81.740 2115 204 3 38 44 126 4 7 77.2 0 232 19 46 9 0235 39 20 129 0 3 52.620 26 67 229 4 48 43 159 3 7 86 7 0260 19 52 6 0 263 49 4 162 0 2 66 360 33 62 257 6 5' 07 200 9 7 97 4 0 292 19 59 1 02% 62 30 205 0 1 83 690 44 21 289 3 '/8 03 253 3 19 66 4 0 332 37 41 6 0 333 78 60 258 0 1/0 105 600 53 49 324 9 97 15 319 6 19 74 5 0 373 37 53 4 0 374 9)10 326 0 2/0 133 100 67 43 364 8  !!! 5 402 9 19 83 7 0 419 37 60 0 0 420 125 0 411 0 3/0 167.800 85 01 409 6 154 4 - 507 9 19 .94 0 0 470 37 67.3 0 471 157.0 518 0 4 'O 211.600 107.20 .60 0 194.2 640 5 19 105 5 0 528 37 75 6 0 529 1990 653 0 250 -

127 0 - - -

37 82 2 0 575 61 64 0 0 576 235 0 772 0 300 -

152 0 - ,- -

37 90 0 0 630 61 70 1 0 631 282 0 926 0 350 -

177 0 - - -

37 97.3 0 681 61 75 7 0 681 329 0 1081 0 400 -

203 0 - - -

37 104 0 0 728 61 81 0 0 729 376 0 1235 0 500 -

253 0 - - -

37 116 2 0813 61 90 5 0 815 469.0 1544 0 600 -

304 0 - - -

61 99 2 0 893 91 81 2 0 893 563 0 1853 0 750 -

380 0 - - -

61 110 9 0 998 91 90 8 0 999 704 0 2316 0 1000 -

507 0 * - - -

61 128 0 1 152 91 104 8 1153 939 0 30880 1250 -

633 0 - - -

91 117 2 1289 127 99 2 1290 1173 0 3859 0 1500 -

760 0 - - -

91 128 4 1 412 127 108 7 1 413 1408 0 4631 0 1750 -

887 0 - - -

127 117 4 1.526 169 101 8 1.527 1643 0 5403 0 2000 -

1010 0 - - -

127 125 5 1632 169 108 8 1632 18770 6175 0 )

2500 -

1263 0 - - -

127 140 3 1.824 169 121 6 1 824 2370 0 7794 0

[

,$"$, " Wrad&m&dm Information Stranding i i I

1 l

l l

Floxible atranding Tabio 3 2 CLA11 G CLA15 H CLA11l

  • 0;ameter CONOUC10R Diameter
  • I Diameter AWG Number of Appron Weight Number of Appron. Weight Number of Appron. Weight or of lath Wire 00 lbs per of tach Wire DD tbs per of [ach Era OD lbs per acmd h es Mds taches 1000 F1 wires Mds Inches 1000 ft. Wires Mds Inches 1000iL 14 49 92 0 083 12 8 12 49 11 6 0' 04 20 3 10 49 14 6 0 ,31 32 3 26 20 1 0 125 32.5 8 49 18 4 0 l66 51 133 11.1 0 167 52 di 20 1 0 156 51 6 49 '23 1 0 208 82 133 I t.0 0 210 82 63 20.1 0 207 80 4 49 29 2 0 263 130 133 17 7 0 266 132 105 20.1 0 263 134 2 49 36 8 0 331 207 133 22 3 0 335 208 161 20 1 0 319 205 1 133 25 1 0 377 264 ?3 18 0 0 378 266 210 20 1 0.367 267 l<0 133 28 2 0 423 334 259 20 2 0 424 334 266 20 1 0 441 342 2/0 133 31 6 0 474 413 259 22.7 0 417 422 342 20 1 0 500 439 3/0 133 35 5 0 533 's29 259 25 5 0 536 533 418 20 1 0549 537 4 'O 133 39 9 0 599 668 259 28 6 0 601 670 532 20 1 0 613 683 250 259 3!.1 0 653 795 427 24 2 0 653 795 637 20 1 0 682 825 300 259 34 0 0 714 945 427 26 5 0 716 153 735 20 1 0 737 955 350 259 36 8 0 173 1110 427 28 6 0 772 1110 882 20.1 0 800 lith 42 259 39 3 0 825 1265 427 30 6 0 826 1279 980 20 1 0 831 1270 500 259 43 9 0 922 1585 427 34 2 0 923 151 > 1225 20 1 0 941 1590 600 427 37 5 1013 1910 703 29 2 1022 1920 1470 20 1 1 027 1905 750 427 41 9 1,131 2385 103 32 7 1145 2410 1862 20 1 1235 2435 1000 427 48 4 1.307 3180 703 37 7 1.320 3205 2527 20.1 1427 3305 1250 427 54 1 1 461 3975 703 42 2 1 477 4015 3059 20 1 1 564 4000 1500 427 59 3 1 601 4775 703 46 2 1 617 4815 3724 20.1 1 715 4875 1750 703 49 9 1 747 5620 1159 38 9 1 151 5625 4389 20 1 1 880 5745 2000 703 53 3 1866 6415 1159 41.5 I 868 6400 4921 20 1 2 003 6440

' Pet ICE A S 68 516

\

Specifications applying to conductors COPPER CONDUCTOR $ ALUMINuli CONDUCTORS Sokd. tinned anneated ASTM B33 Sold tard drawn 1350 W19 ASTM B230 Solid alloy coated annealed ASTM BIB 9 Sold %, % & % hard 1350 HXX ASTM B609 Sohd. plain bare. annealed ASIM B3 Concentrc stranded ASTM B231 Concentric stranded. plain or coated ASIM BS Cornpact stranded ASTM B400 Rope lay stranded burthed rnembers ASIM B172 Rope lay stranded. concentric merr,bers ASTM B173 Bunch stranded ASTM B174 Compact stranded ASTM B496

,$"O Gonoral Conductor Information i e dc Resistance Resistance in Ohms per 1000 feet per condui. sit 20C and 25C of solid wire and cuss B concentric strands co'ner isnd aluminum conductor

, we 3 3 Conductor ANNEAlfD UNC0ATED COPPER ANNEALED C0AffD COPPtR Sn. ANNEALED ALU8HNUM Amt or Stranded Stranded kcmd Solid Class 8 folid Class B

~

20C 25C* 20C 25C* 20C 25C* 20C 25C*

CU At CU AL CU AL CU AL CU CU CU CU 24 25 1 -

26 2 - - - - -

26 8 27 3 - -

~ ~ ~

2 10 2 10 2 10 3 2 10 5 2 10$ !0f 11 0 1152

~ ~ ~ ~

18 2 2 6 51 2 6 64 5  ! 6 92 7 05 16 4 02 -

4 10 -

4 10 -

4 18 -

4 18 4 26 4 35 4 44 14 2 52 4 14 2 57 4 22 2 57 -

2 62 -

2 62 2 68 2 68 2 73 12 1 59 2 60 1 62 2 66 1 62 2 65 1 65 2.70 1 62 1 68 1 68 1 72 10 0 999 1 64 1 02 1.67 1 02 1 67 1 04 1.70 1 04 1 06 1 06 1 08 9 0792 1.30 0 808 1.32 0 808 1.33 0 824 1.35 0 816 0 831 0 840 0 857 8 0 628 1 03 0 641 1 05 0 641 1 05 0 654 1 07 0 646 0 659 0 666 0 679 7 0 498 817 0 508 .833 0 518 833 0 518 0 850 0 513 0 523 0 528 0 539 6 0 395 648 0 403 .661 0 403 661 0 410 0 674 0 407 0 415 0 419 0 427 5 0 313 .514 0 319 524 0 320 .524 0 326 0 535 0 323 0 329 0 333 0 339 4 0 248 407 0 253 .415 0 253 .416 0 259 0 424 0 256 0 261 0 264 0 269 3 0 197 323 0 201 .330 0 205 .330 0 205 0 336 0 203 0 207 0 209 0 213 2 0 156 256 0 159 261 0 159 262 0 162 0 267 0 161 0 164 0 166 0 169 1 0 124 .203 0 126 207 0 126 .206 0 129 0 211 0 !?8 0 130 0 131 0 134 1/0 0 0982 161 0 100 .164 0 100 165 0 102 0 168 0 101 0 103 0 104 0 106 2/0 0 0779 .128 0 0195 130 0 0795 131 00811 0 133 0 0798,. 0 0814 0 0827 0 0843 3/0 0 0618 101 ') Ot40 .103 0 0630 103 0 0642 0 105 0 0633 0 0645 0 0656 0 0668 4/0 0 0490 0803 0 0500 082 0 0500 0821 0 OE O0836 0 0502 0 0512 0 0515 0 0525 250 - - - -

0 0423 .0695 0 0431 0 0708 - -

0 0440 0 0449 300 - - - -

0 0353 0579 0 0360 0 0590 - -

0 0367 0 0374 350 - - - -

0 0302 0496 0 0308 0 0505 - -

0 0314 0 0320 400 - - - -

0 0264 .0434 0 0270 0 0442 - -

0 0272 0 0278 500 - - - -

0 0212 0348 0 0216 0 0354 - -

0 0218 0 0222 600 - - - -

0 0176 .0290 0 0180 0 0295 - -

0 0184 0 0187 750 - - - -

0 0141 0232 0 0144 0 0236 - -

0 0145 0 0148 1000 - - - -

0 0106 .0174 0 0108 0 0177 - ' - 0 0109 0 0111 1250 - - - -

0 00846 .0139 0 00863 0 0142 - -

0 00871 0 00888 1500 - - - -

0 00705 .0116 0 00719 00118 - -

0 00726 0 00740 1750 - *- - -

0 00604 .00992 0 00616 0 0101 - -

0 00622 0 00634 2000 - - - -

0 00529 00869 0 00539 0 00885 - -

0 00544 0 00555 v 2500 - - - -

0 00427 00702 0 00436 0 00715 - -

0 00440 0 00448

  • NOTE. To determine resistance for temperatures other than 25C use a multiplying factor shown on page 4

OkonitaC:bl s Secti:n 6 Ampacity Tables The ampacity tables in this bulletin cover the installa- Temperature Correction Factors tion conditions most commonly encountered The actual To determine ampacities for ambient temperatures and current carrying capacities tables are taken from tables conductor temperatures other than those indicated on given in AIEE IPCEA ' Power Cable Ampacities . joint the individual tables. multiply table values by the cor.

publication S 1351 and P 46-426 which includes more rection factors shown in Table 61 or Table 6 2 complete tables covenng additional earth resistivities andload factors The following tables relate to insulated cables in Correction Factors For Various underground ducts, in free air, in conduit in air, and d" Ambient Earth Temperatures Table 6 2 rectly buried in earth The values are based on 90 C con-ductor temperature and an ambient temperature of 20 0 AMBIENT EARTH TEMPERATURE for all cables in underground duct or directly buried in the ground and 40 C fof all cables in air. 10 C 15 C 20 C 25 C 30 C Load f ackrs of 75 and 100 percent are shown by 75 o og o ss o si o 87 o 82 definition the nad factor is the ratio of the average load 85 i o4 1 02 o g7 o 93 o 89 over a designal W period of time to the peak load oc- Conductor go , oy i o4 i og o se o 93 curring in that period For vanable continuous loading Tom ture the base penod is 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> These apply for cables in ,,o , , , , 33 3 ,o , o7 i o, conventional underground duct installations since there 126 1 ?? t 19 1 16 1 14 1 11 is a time lag between the temperature nse of the Cable 130 1 24 1 21 1 18 1 16 1 13 and the temperature rise of the duct structure and sur. 160 1 30 1 28 1 25 1 23 1 20 rounding earth.This heat time tag characteristic permits assigning higher current ratings for cables in ducts which do not carry full load continuously For in air in- Effect of Grouping Ampacities for cable in air or conduit in air are based on stallations 100% load factor is used These ratings are a single isolated cable or conduit Where the spacing be-used to any load f actor due to the relatively low thermal tween cable or conduit surfaces is not greater than the capacity of the surrounding air, cable or conduit diameter, the current rating should be reduced in accordance with values given in the table Emergency Overloads Spacings less than one quarter of cable or conduit di-Operation at the emergency overload temperature of ameter are not covered 130C (266F) shall not exceed 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> in any twelve consecutive months nor more than 500 hours0.00579 days <br />0.139 hours <br />8.267196e-4 weeks <br />1.9025e-4 months <br /> dunng the Group Corrertr ~ a Table 6 3 lifetime of the cable NUMBER OF CABLES IN AIR Lower temperatures for emergency overload con.

ditions may be required because of the type of matenal Horizontally 1 2 3 4 5 6 used in the cable, joints and terminations or because of y ,,y cable environmental conditions , g g ,, 9 ,3 g ,,

2 0 89 0 83 0 79 0 76 075 074 Correction Factors For Various 3 o 80 o 76 o 72 o to o e9 oe8 Ambient Air Temperatures Table 61 l AMBIENT AIR TEMPERATURE Group Correction Factors Table 6 4 30 C 35 C 40 C 45 C 50 C 1

76 o 97 o or o 86 o 79 o 72 NUMBER OF CONDUlTS IN AIR l 85 1 08 1 01 0 96 0 90 0 84 Horizontally 2 3 4 5 6 Conductor go 3 io , o3 i on o g3 o eg 1 Temperature vertically in C too 1 17 1 12 1 o8 1 o3 o 98 110 1 23 1 19 1 16 1.11 1 06 1 1 00 0 94 0 91 0 88 0 87 0 86 125 1 31 1 27 1 24 1 20 1 16 2 0 92 0 87 0 84 0 81 080 079 130 1 33 1 30 1 27 1 23 1 19 3 0 85 0 81 0 78 0 76 07s 074 c

i 150 1 42 1.39 1 38 1 33 1 30 l

- ~__ - - - - _ _ _ _ - - - _ _ . - . -_ - - - . . _ _ - _ - - . _ - . . _ . .- - ._ _ _-_ -

DE&S Duke Engineering & Services San Ramon, California Table 8.13 - Raceway 2CL6070C t 1

FIREBARRIER DATA AIR GAP DA TA de, outside diameter,(in) HEA T a RANSFER PAR 4klETERS 9.52 k,,(Brutt A 'F) 0 016 o, Btutt A'.*R* 1.7140E 09 c.. emissivity 0.30 t,, (in) 1/8 te, thickness (in)

C. (W4Stu) 0 2931 1.32 a 0.20 t A thermal cond.,(Btutt A 'F) 0 08 e 0.2$

rd, shape factoe 0.71 T., (*F) 194.0 T , (*F) 1040 RACEfYA YDIMENSIONAND CARLE F/ll DA TA Racewmy ID , 2CL6070C 4,,outside diameter,(in) 6.623 [lTtEe's lin boxes designate the parameters over 8,, wall thickness,(in) 0.280 w hich sterations are carried out. Only the final ft//, (%) 9.8 values are shown.

t,, surface emissivity 120 cable sin (model cable) TRI 250 Entries in [ ] show the applicable equation 4,, cable dia,(in) 1.903 number in Section A.3, or the eq stion itself, n., no. of conductors (per cable) 3 R, resistance,(Ohm /1000A) ' O.0593 ,

, la a., baseline amp.,(Amp) 317.0 CALCULA TED PARAMETERS Unprocessed Raceway (baselme) n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area, (ft'/A) I,73 [nd,/12]

g,, Heat gen. rate,(Biatt A) 60.72 [Eq. A.3, with /=/%]

U,,(Brutr A .7) 8 0.50 [A.6]

T,, Surface Temp., (*F) {l24 4 l h,. (Bratr ft'.'F) 0.07

' [Eq. A.27 with a=0.27 and n=1/4, L=d,/12, Section A.3.10]

h ,(Btatt A'.7) 1.04 [Eq. A.21 with T ,=T,,s. =0 8 and F =ll 9,,, Heat dissip. rate. (Btu /ht A) 60.74 [Eq. A.7 with 6T ,=T. g,, must agree with baseline g,]

ProenesedRaceway ly ,, protected amp.,( Amp) l2J 7.7 l g,,(Brutt ft ) 34.1 [Eq. A.3]

T,, Surface Temp., (*F) 1$4.9 [Eq. A.6]

Air Gq A,4,(Btutr ft'.T) 1.54 [Eq. A.15]

Aw,(Brutt ft'.*F) 0.21 [Eq. A.8]

h,,,(Btutrft'.*F) 1.75 [h,4+h,.5,.]

g,,,(Beatr ft) 34.1 [Eq. A. 7. g,, must agree with protacted g, j Barrier & AmMent '

A s, ares . (ft*/ft) 2.5 [nd,/12]

U,,(Btutt A'.*F) 0.62 [Eq. A.17]

T3,Inside Temp.,(T) l143.7 l T$,, Outside Temp.,(T) 121.o [Eq. A.16] '

h, ,(Brutt ft8 .7) 0.43 [Eq. A.28]

h, (Blut-ft'.*F) 0.34 [Eq. A.21]

ha. (Bratt A'.*F) 0.78 [h,*+h ]

T,(proiscted),(T) 104.0 [Eq. A.19. Calculated T. snust agree with input T.]

ADF 25.0% [Eq. A.1]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQt)ESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g, /9/19/97 CALCULATICt4 NO. DE&S SR/EM01 35 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. Cal (fornia Table 8.14 - Raceway 2CL6070D flRERARRIER DATA AIR G.4P DATA de, outside diameter,(in) HEAT TK4NSFER PARAhfETERS 8 45 A,,(Brutt A *F) 0 016 o,Btutt A 8

  • R* 1.7140E 09 c . emissivity 0.30 t,,(in) 1/8 te, thickness (in) C. (W hStu) 0.2931

. 1.32 e 0.20 A. thermal cond.,(Brutt A.*F) 0 08 a 0.25 r ,ushape factor 0.8$ T., (*F) 194.0 T., (*F) 104,0 RACEWA YDiMENSION AND CARLE rlLL DA TA Raceway ID 2CL6070D d,,outside diameter,(in) $.563 Ain boxes designate the parameters over s,. wall thickness, (in) 0.258 whoch sterations are carried out. Only the final fill. (%) 30.3 values are shown, s,, surface emissivity 0.20 cable site (model cable) 3/C #4 Entries ln [ ] show the applicable equation d,, cable dia (in) 1.170 number in Section A.3, or the equation itself, n., no. of conductors (per cable) 3 l

R, resistance,(Ohm /1000A) 0.3465 l ,,, . baseline amp.,( Amp)

~

45.$

CALCUL4 TED PARAMETERS

  • UnprotectedReceway (baseline) n,, number of cables 5.64 [Eq. A.4]

A,, heat transfer area. ( A'/f:) 1.46 [nd,/12]

q,, Heat gen. rate. (Brutt A) 41A0 [Eq. A.3, with /=Im ]

U,,(Btatr A' *F) 0.39 [A.6]

7,, Surface Temp., (*F) pzo.s I h,,,,, (Btntr-ft' *F) 0.00 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3 l')]

Aw,(Bruhr A .*F) 8 1.03 [Eq. A.21 with Tw, =T,, c, =0.8, and Tu-l]

g . Heat dissip. rate,(Btatt A) 41.41 [Eq. A.7 with Tw =T g, must agree with baseline q,]

ProtectedReceway

/w, protected amp.,( Amp) p6.0 l I g,,(BtwtrA) 23.y [Eq. A.3]

T,, Surface Temp., (*F) 148.2 [Eq. A.6]

Air Gnp h,4,(Btutt ft' *F) 1.$4 [Eq. A.15]

Aw,(Btatr ft' *F) 0.21 [Eq.A.Bl h, ,(Btatt ft* *F) 1,74 [h,phw]

g,,,(Bintr ft) 25.8 [Eq A 7 9,, must agree with protected g, ]

Barrier & AnaNent

  • A. area . (ft'/A) 2.2 [nd,/12]

U,,(81att A' *F) 0.6I [Eq. A.17]

Tu, inside Temp.,(*F) p Js.o l Tw,, Outside Temp.,(*F) is.s [Eq. A.16]

hm,(Btatr ft' *F) 0.43 [Eq. A.28]

h,,m, (Btu /h-A' *F) 0.36 [Eq. A.21]

h ,(Btutr A* *F) 0.79 T. (protected), (*F)

[hm +h m ]

104.0 [Eq. A.19. Calculated T. must agree with input T.]

ADF 20.9 % [Eq. A.l]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S SR/EM01 36 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49 l

l

DE&S Denke Engineer >g & Senkes San Ramon. Cal (fornic TaWe 8.15 . Raceway 2CL4070E flREEARRIER DATA AIR GAPDATA 4 . outside diameter,(in) HEAT TRANSFER PARAMETERS 9.50 4,,(Bruhr A T) 0 016 o,Btuhr A 8.*R' l.7140E 09 s., emissivity 0.90 s, (in) 1/8 te, thickness (in) C (W h/Bru) 0.2931 1.31 a

- 0.20 A., thermal cond.,(8tuhr A *F) 0.09 -

n 0.25 T shape factor 0.87 T., (T) 194.0 T., (*F) 104.0 A4CEWA YDIMENSIONAND CARLE flLL DA TA Raceway ID 2CL6070E 4,, outside diameter,(in) 6.625

[GEilin bones designate the parameters over t,, wall thickness,(in) 0.280 which iterations are carried out. Only the final

. ful. (%) 38.4- values are shown.

s,, surface emissivity 0.20 cable sine (modelcable) TRI250 Entries in [ ] show the applicable equation 4,, cable dia,(in) 1.903 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 A, resistance,(Ohrn/1000A) 0.0$93 ,

la.,n., baseline amp.,(Amp) 221.9

. C4LCULATED PARAMETERS Unpreenened Recewsp (baseline. 90 *Cconductor senp.,40 *Cambient sennp.)

n,, number of cables 3.90 (Eq. A.4)

A,, heat transfer area (A'/A) 1.73 [nd,/12) e,, Heat gen, rate,(Stu/hr R) 116.39 [Eq. A.3, with /=/ ,)

U,,(Btuhr 8 7) 8 1.25 [A.61 T,, Surface Temp.,(T) p GU.J l A,.,.. (Btu /hr A' T) 0.77 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.101 A% ,(BtulhrA8 T) 1.08 [Eq. A.21 with T$ =T,, s =0.8, and r* =1) g . Heat dissip, rate,(Btwhr R) 116.60 [Eq. A.7 with TS.,=T. g,, must agree with baseline g,)

Per:ectedAscoway tw, protected amp.,(Amp) p 3J. l g,,(StuhrR) 33.3 [Eq. A.31 T,, Surface Temp.,(T) 168.4 [Eq. A.6)

Ah" Gap A,,,,,(Stu/hr A*.7) 1.54 [Eq. A.I$)

Aw,(Baulbr A2 .T) 0.32 [Eq. A.8j A,.. (Blu/ht A'.7) 1.86 [4,4+A w ]

g .(Bru/hr A) 55.5 [Eq. A. 7. g,. must agree with protected g, )

Aarrierd Anuhinet A., ares , ( A'/A) 2.5 I [n4/12]

U., (Stu/hr-A'.T) 0.70 [Eq. A.17]

T ,inside Temp.,(T) p31.z 1 T$ . Outside Temp.,(*F) 117.3 [Eq. A.16]

A, . (Btu /hr-A*.T) 0.42 [Eq. A.281 h m (Best Ra- T) 1.02 [Eq. A.2l}

. A ,,(Bru/hr-A* *F) 1.44 [4, , + A,,,u,]

7,(protecesd),(*F) 104.0 (Eq. A.19. Calculated T, must agree with hipet T,]

ADF 31.0 % .[Eq.A.1] ,

REV rREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O fj /9/19/97 g, /W19/97 CALCULATION NO. DEAS SR/EM01 37-TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon, Cahfornia Table 815A - Raceway 2CL6070E (with 2HVSAOL210 deerergized)

FIREBARRIER DATA AIR GAP DA TA HEA T TRANSFER PARAMETER?

4., outside diameter,(in) 9.50 A,,(Brahr A T) 0 016 c. Btwhr ft8.*R' l.7140E-09 te, emissivity 0.90 t,, (in) 1/8 C, (W h/ Btu) 0.2931 te, thickness (in) 1.31 a 0.20 k,,thermalcond (Braht A *F) 0 09 a 0.25 Fu, shape factor 0 87 T., 6) 194.0 T., W) 104.0 RA CEWA Y DIMEN$10N AND CA BLE FILL DA TA Raceway ID 2CL6070E d,, outside diameter,(in) 6.625 Ain boxes designate the parameters over t,, wall thickness,(in) 0.280 w hich iterations are carried out. Only the final ful. (%) 22.3 values are shown.

c,, surface emissivity 0.20 cable size (model cable) TRI250 Entries in [ ] show the applicable equation d,, cable dia,(in) 1.903 number in Section A.3 or the equation itself.

n., no. of conductors (per cable) 3 R, reWstance,(Ohm /1000ft) 0.0593 lu,,.,,, baseline amp., (Amp) 253.6 CALCULA TED PAMMFTERS flapnuected Raceway (baseline. 90 *C conductor temp., 40 *C ambient temp.)

n,, number of cables 2.27 [Eq. A.4)

A,, heat transfer area,(ft'/ft) 1,73

[nd/12]

g,, Heat gen. rate,(Bru/hr ft) 88.43 [Eq. A 3, with l=la ]

U,,(Btwhr ft'.T) 0 83 [A.6]

T,, Surface Temp., (*F) [132.6 l I hm,(Bluhr ft'.*F) 9.72 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

l 4%,(Btu /hr ft'.T) 1.06 [Eq. A.21 with Tw =T,, c. =0.8, and fu=ll 9,,, Heat dissip. rate,(Btu /hr ft) 88.44 [Eq. A.7 with Tu =T. g,, must agree with baseline 9,]

l ProteesedRaceway l

/,,w, protected amp., (Amp) lIs 7.3 l g,,(Bru'ht fi) 4s.4 [Eq. A.3)

T,, Surface Temp.,(T) 160.4 [Eq. A.6]

Air Gasp h,4 (Btatr ft'.*F) 1.54 [Eq. A.15]

h,,s,,, (Btahr ft'.T) 0.31 [Eq. A.8]

h,,, (Bruhr.ft'.T) 1.84 [h,a +h 4,.]

g,,,(Brahr A) 48.3 [Eq. A. 7. g,. must agree with protected g, ]

Barrier & Anabimat .

A., arca , (ft'/ft) 2.5 [nd,/12]

U ,(Btu /hr ft'.7) 0.70 [Eq. A.17)

Tu,inside Temp ,(*F) [I4).J l Tw, Outside Temp.,(*F) 117.7 [Eq. A.16]

A, ,(Brahr A8 .7) 0Ai [Eq. A.28) h,. (Brah ft'.T) 1.01 [Eq. A.21]

ha,(Btuhr-ft'.7) 1.42 [h, , +h ]

T. (protected),(*F) 104.0 [Eq. A.19. Calculated T must agree with input T.)

ADF 26.4% [Eq. A.I)

REV PREPARER VERIFIER l C' 'ENT/ PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

7-() /9/19/97 g /9/19/97 l ULATION NO. DE&S.SR/EMO1 38 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

)

DE&S Duke Engineering & krvices San Ramort. Cattfornia Table 8.16 = Raceway 2CL6070F FIRERARRIER DATA AIR GAP DA TA HEAT TRANSFER PAMMETERS d , outside diameter,(in) 9.52 A,,(Btwtt ft 'F) 0.016 o, Btutr ft' *R* 1.7140E 09 c., emissivity 0.30 t,,(in) 1/8 C. (W h/Bru) 0.2931 te, thickness (in) 1.32 a 0.20 k , thermal cond.,(Brutr A *T) 0.08 a 0.25 Fu, shape factor 0.87 T., (*F) 194.0 T.,(*F) 104.0 RACEWA YDIMENSIONAND CABLE FILL DA TA Raceway ID 2CL6070F d,, outside diameter,(in) 6.625 [Ent" rte ~slin boxes designate the parameters over t,, w all thickness,(in) 0.280 w hach sterations are carried out. Only the 'inal fiff. (%) 40.7 values are shown.

c,, surface emissivity 0.20 cable size (model cable) 3/C84 Entries in [ ] show the applicable equation 4,, cable dia,(in) 1.170 number in Section A.3, or the equation itself, n., no. of conductors (per cable) 3 R, resistance,(Ohm /1000A) 0.3465 1 . baseline amp.,(Amp) 45.5 CALCULA TED PARAMETERS UnprerectedRacewey (baseline. 90 *Cconductor temp.,40 *Cambient temp.I n,, number of cables 10.94 [Eq. A.4]

A,, heat transfer area,(ft'/ft) 1.73 [nd,/12]

4,, Heat gen, rate,(Btu /ht A) 80.31 [Eq. A.3, with l=lu,,4,,, ]

U,,(Btwhr ft' *F) 0.73 [A.6]

T,, $urface Temp (*F) [130.J l h,.,,,(Btwhr ft *F)8 9.n [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

hw,(Btu /hr A* *F) 1.05 [Eq. A.21 with T ,=T,, c =0.8, and Fu=l]

g,,, Heat dissip rate,(Bter ft) 80.31 (Eq. A.7 with Tw =T, g,, must agree with baseline g,]

Proteesed Raceway Im ,. protected amp.,(Am.n) pz.o [

g,,(Btwtr fi) J7s [Eq. A.3]

T,, Surface Temp.,(*F) 162.4 [Eq. A.6]

AkGm h, .(B:u/hr ft' *F) 1.54 [Eq. A.15]

Aw,(Btu /hr ft' *F) 0.22 [Eq. A.8]

4,,,(Stu/ht ft' *F) 1.75 [h,,, +hw]

g,,,(Btdr ft) 39.8 [Eq. A. 7. g,, must agree with protected g, ]

Barrier R. blant A., aree . . 2.5 [nd,/12]

Ue,(Btd .r) 0.62 [Eq. A.17]

T w , Ins % ,ip (*F) lI49.J l Tw., Outside Temp., (*F) I zJ.., [Eq. A.16]

4, ,,,(Btdr It' *F) 0.45 [Eq. A.28]

tw (Brabit* *F) 0.37 [Eq. A.2l]

ha,,,(Btdt-ft* *F) 0.82 [h,.u + h ,,u,]

T. (protected),(*F) 104.0 [Eq. A.19. Calculated T, must agree with input T,)

ADF 29.6 % [Eq. A.l]

REV PREPARER VEP!F:ER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

% /9/19/97 hg, /9//9/97 CALCULATION NO. DE&S SR/EM01 39 TITLE: Ampacity Derating Factors of OF Fire Protected Cond'.its 49

DE&S Duke Engineering & Services San Ramon, Cahfornia Table 8.17 - Raceway 2CL950BA FIREBARRIER DATA AIR GAP D.4 TA '

! de, outside diameter,(in) HEA T TRA NSFER PARAMETERS 8.45 A,,(Btutr A *F) 0.016 o, Bru/hr hW s., emissivity l.7140E 09 0.30 t,,(in) 1/8 C, (W h/ Btu) 0.2931 te, thickness (in) l.32 a 0.20 4., thermal cond.,dtutt ft *F)- 0.08 n fa,, shape factor 0.25 1,00 T., (*F) 194.0 T., (*F) 104.0 R A CEWA Y DIMENSION AND CARLE FILL DA TA Racewmy ID 2CL950BA i

d,.outside diameter,(in) 5.563 t,, wall thickness, fin) [E6Tes lin boxes designate the parameters over 0.258 which nerations are carned out. Only the final fill (%) 29.2 salues are shown.

e , surface emissivity 0.20 cAle size (model cable) QUAD 500 Entries in [ ] show the applicable equation d,, cab lt dia, (in) 2.729 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 4 R, resistance,(Ohm /1000ft) 0.0316 14 , baseline amp.,(Amp) 381.6 CALCULA TED PARAMETERS UnprenectedRaceway (basehne. 90 *Cconductor temp.,40 *Cambient temp) n,, number of crbles I.00 [Eq. A.4l A,, heat transfer area, (ft2 /h) 1.46 i [nd/12]

g,, Heat 8en, rate,(Bru/hr ft) 62.73 [Eq. A.3, with l=l%)

U,,(Btwtr.ft' *F) 0.66 [A.6)

T,. Surface Temp., (*F)

[T7ET l 4,. (Bruhr ft' *F) 0.7J h%,(Btu /ht ft* *F) [Eq. A.27 with a=0.27 and n=l/4. L=d,/12, Section A.3.10) 1.05 [Eq. A.21 with Tw,-T,, e, =0.8, and f =ll 9,,, Heat dissip. rate, (Brwtt ft) 62.73 [Eq. A.7 with Tu =T. g,, must agree with baseline g,]

ProtectedRaceway 1,,,,,,w, protected amp., (Amp) p 70.5 l g,,(Btatt fi) JJ.o [Eq. A.3]

T,, Surface Temp.,(*F) 159.4 [Eq. A.6)

Air Gq hm,(Btutr ft' *F) 1.54 [Eq. A.151 hw .(Btutr ft' *F) 0.22 [Eq. A.8) h,. (Btu /hr ft* *F) 1.75 i g,..(Btu /hr ft)

[hm +h m )

33.0 [Eq. A. 7. g,, must agree with protected g, j Barrier & Ambient A., arca , (ft*/ft) 2.2 [sdvl2]

U.. (Btu'hr ft* *F) 0.61 [Eq A.17]

- Tw, Inside Temp., (*F) l146.3 l Tw,, Outside Temp., (*F) 121.9 [Eq. A.16]

h, ,(Btwtr ft' *F) -

0.45 [Eq. A.28}

h,.(Btu /h-ft* *F) 0.39 [Eq. A.21]

.'ra,(Bru/hr ft* *F) 0.84 [h,u+h . ]

T. (protected),(*F) 104.1 ADr (Eq. A.19. Calculated T, must agne with input T,)

27.5% /Eq. A.l]

REV PREPARER VERIFIER CLIENT / PROJECT: Dt:QUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NEDE&S-SR/EM01 40 TITLE: Ampacity Derating Factors of OF l Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon, California Table 8.18 - Raceway 2CL950RA FIREBHRIER DATA AIR GAP DA TA HEA T TRANSFER PARAMETERS de, outside diameter,(in) 9.50 k,,(Bruhr A 'F) 0.016 o, Btu /hr ft* 'R' l.7140E 09 c , emissivity 0.90 t,,(in) 1/8 C (W h/ Btu) 0.2931 s., thickness (in) 1.31 a 0.20

1. thermal cond.,(Btutr ft *F) 0.09 n 0.25 F.,,, shape factor 1.00 T.,(*F) 194.0 T.,(*F) 104.0 RACEWA YDIMENSIONAND CABLE F!LL DA TA Raceway ID 2C950RA d,, outside diameter,(m) 6.625 [ErIdTeslin boxes designate the parameters over s,, wall tMckness,(in) 0.280 wNch iterations are carried out. Only the final fill, (%) 20.2 values are shown.

s,, surface emissivity 0.20 cable size (model cable) QUAD 500 Entries in [ ] show the applicable equation d,, cable dia,(in) 2.729 number in Section A.3, or the equation itself.

n., no. of conductors (per etna) 4 R, resistance,(Ohm /1000ft) 0.0316 l w baseline amp.,(Amp) 381.6 l

CALCUL4TED PARAMETERS Unprenected Raewwny (baseline. 90 *C conductor temp., 40 *Camb,ent temp.)

n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area,(ft2 /ft) 1.73 [nd,/12]

q,, Heat gen. rate, (Btu /hr-ft) 62.66 [Eq. A.3, with l=1 ,w ]

U,,(Bru/hr ft* *F) 0.52 [A.6]

T,, Surface Temp., (*F) [123.1 [

hm,(Bru/hr ft *F) 3 0.07 [Eq. A.27 with a=0.27 and n =l/4, L=d,/12. Section A.3.10]

h ,(Btu /hr ft* *F) 1.04 [Eq. A.21 with Tw,=T,, c. =0.8, and F.,=ll g,,, Heat dissip. rate, (Bru/hr ft) 62.48 [Eq. A.7 with Tu =T. q,, must agree with oasaline 9,]

Protected Raceway 1,,,,,,,,,, protected amp., ( Amp) pv3.0 l g,,(Bru/ht ft ) 40.0 [Eq. A.3]

T,, Surface Temp.,(*F) 150.0 [Eq. A.6]

Air Gap hm,(Brutt ft* *F) 1.54 [Eq. A.15]

he,(Btu /ht ft 3*F) 0.30 [Eq. A.8]

h,,, (Btu /hr-ft' *F) 1.83 [hm +h,.m]

9,..(Bruht-A) 39.9 [Eq. A. 7. g, must agree with protected g, ]

Barrier & AneMaat A.. area (ft*/A) 2.5 [nd.f t 2]

U.,(Btu /hr fts ,.F) 0.70 [Eq. A.17]

T ,Inside Temp.,(*F) lTi7.4 l Tw,, Outside Temp., (*F) 114.3 [Eq. A.16]

hm,(Bru/hr A' *F) 0.38 [Eq. A.28]

h,,m, (Bru/h A' *F) 1.14 [Eq. A.21]

h . (Btu /hr ft' *F) 1.52 [hm +hm]

T. (protected),(*F) 103.9 [Eq. A.19. Calculated T, must agree with input T,]

ADF 20.1 % [Eq. A.1)

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 4i TITLE: Ampacity Derating Factors of OF

{ Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. California Table 8.19 - Raceway 2CL9570B FIREBARRIER DATA AIR GAP DA TA d.. outside diameter,(in) HEA T TMNSFER PAMMETERS 8.45 A,.(P'whr A T) 0.016 o, Btutt h' *R' I,7140E 09 c., e.nissivity . 0.30 t,.(m, f., thickness (in) 1/8 C. (WNBru) 0.2931 1.32 a 0.20

&., thermal 6cnd.,(Btu /ht A *F) 0.08 n 0.25 f.,, shape factor 1.00 T., (*F) 19411 T.,(T) 104.0 MCEN'A Y DIMENSIONAND CARLE FILL DA TA Raceway ID 2CL9570B

, d,, outside diameter,(in) 5.563

[E7tEElin boxes designate the parameters over l t,, wall thickness,(in) 0.258 which iterations are carried out. Only the final fill. (%) 14.2 values are shown, e,, surface emissivity 0.20 cable size (model cable) TRI250 Entries in [ ] show the applicable equation 4,, cable dia. (in) 1.903 number in Section A.3, or the equation itself, n., no. at ~:r. hrs (per cabic) 3 R, resistance,(Ohm /1000A) 0.0593 Ampacity calculation is conservatively based I w. baseline amp.,(Amp) 317.0 on 3M Interum wrap which is applied to a 6 R CALCUI.ATEDFAMMETERS section of the raceway.

Unproceesed Racewey (baseline. 90 *C conductor temp., 40 *Combient temp.)

n,, number of celes 1.00 [Eq. A.4]

A,, heat transier area. (R*/A) 1,46 [ad,/12]

q,, Heat gen, rate (Btu /hr A) 60.93 [Eq. A.3, with l=/.,,,,w ]

U,,(Deu/hr R* *F) 0.63 [A.6]

T,, Surface Temp.,(*F) U z7.0 l Am,(Btu /hr ft' *F) 0.72

[Eq. A.27 with a=0.27 and n=l/4, Lad,/12, Section A.3.10}

h#,(Bra'ht fL' *F) 1.05 [Eq. A.21 with T =T,, c. =0.8, and F =1}

g,,, Heat dissip. rate,(Btutr A) 60.76 [Eq. A.7 with T ,=T. 9,, must agree with baselir,e g,]

ProtectedRaceway tw, protected amp.,(Amp) [2J1.6 l g,,(Brutr A ) J 2.3 [Eq. A.3]

7,, Surface Temp., (*F) 158.6 [Eq. A.6]

Air GQ h,4,(Bru/hr A' *F) I.54 [Eq.A.I51 hw,(Btu /hr A' *F) 0.21 [Eq. A.8]

h,6,(Bru/hr A' *F) 1.75 [h,a+h w ]

q,.,(Btu /ht ft) 32.4

[Eq. A. 7. g,. must agree with protected g, ]

Rarrier& Anablant

  • A., area,(f.8/A) 2.2 [xd /121 U.,(Btu /hr A' *F) 0.61 {Eq. A.17]

T . Inside Temp.,(*F) p4J.y l Tw OutsideTemp.,(*F) 121.0 [Eq. A.16]

h, .(Btu /hr ft* *F) 0.45 [Eq. A.281

h. (Bru/h A' *F) 0.39 [Eq. A.21]

A .(Bru/hr A' *F) 0.83 [h, ,+hm) 7 (psosected),(*F) 104.0 [Eq. A.19. Calculaaed T, must agreei;ith input T ]

Abr 26.9 % [Eq.A.ll REV PREPARER VERIFIER CLIENT / PROJECT: DUQtJESNE Light Co.lBVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DEAS SR/EM01 42 TITLE: Ampacity Derating factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services ~

San Ramon. Cahfornia Table 8.20 Raceway 2CL957PA FIREBAMRIER DATA AIR GAP DA TA HEA T TRANSFER PARAMETERS d., outside diameter,(in) 8.45 k,,(Btutth*F) 0.016 c. Btu /hr ft' *R' l.7140E 09 e., emissivity 0.30 t,,(in) I/8 C, (W-hStu) 0.2931 f , thickness (in) 1.32

c. 0.20 1., thermal cond.,(B@hr A *F) 0.08 n 0.25 f.,, shape factor 0.94 T., (*F) 194.0 T , ('F) 104.0 MCEWA YDIMENSIONAND CABLE FILL DATA Raceway ID 2CL957PA d,, outside diameter,(ini 5.563 [fn"Ee~slin boxes designate the parameters over t,, wall thickness,(ir) 0.258 which sterations are carried out. On!y the final fill, (%) 14.2 values are saown.

e,, surface emissivity 0.20 cable size (model cable) TRI250 Entries in [ ] show the applicable equation 4,, ;able dia. (in) 1.903 number in Section A.3, or the equation itself.

n., no. of inductors (per cable) 3 R. resistance (Ohm /1000ft) 0.0593 Ampacity calculation is conservatively based I ,,,,, baseline amp.,(Amp) 317.0 on 3M 1meram wrap which is applied to a 6 it CALCULATED PARAMETERS section of the raceway.

Unprotected Raceway (basehnt. 90 *Cconductor temp.,40 *Combient temp.)

n,, number of cables 1.00 [Eq. A.4)

A,, heat transfer area, (ft'/h) 1.46 [nd,/12]

q,, Heat gen. rate,(Bru/hr ft) 60.93 [Eq. A.3, with /=/ a,. )

U,,(Btu /hr f13 *F) 0.63 [A.6]

T,, Surface Temp., (*F) I n 27.6 I h,,,,,(Bru/hr ft* *F) 0.72 [Eq. A.27 with a =0.27 and n =l/4, L=d,/12, Section A.3.10]

h ,(Btu /hr ft' *F) 1.05 [Eq. A.21 with T ,, =T,, c. =0.8, and f.,=ll q,,, Heat dissip, rate,(Btu /hr ft) 60.76 [Eq. A.7 with Tw =T, g,, must agree with baseline g,)

ProtectedRaceway l p,,,,,,,, protected amp., (Amp) [2J 1.4 l q,,(Btu /ht ft ) Jz.s [Eq. A.3)

T,, Surface Temp., (*F) 158.6 [Eq. A.6}

Air Gap hm,(Btu /hr ft* *F) 1.54 [Eq. A.15]

Aw,(Bru/hr f 0.21 [Eq. A.8) .

h,,,(Btu /hr F)fts t* *F) 1.75 [h,,,,+h m )

g,,, (Btu /hr-ft) 32.4 [Eq. A. 7 9,. must agree with protected g, )

Barrier & AnaNent '

A ., area , (ft'/tt) 2.2 [ad/12]

Us,(Btu /hr ft* *F) 0.61 [Eq. A.17]

T ,inside Temp.,(*F) l143.9 l T ,,, Outside Temp.,(*F) zi.7 (Eq. A.161

  • h,.u,(Brulhr ft* *F) 0.45 [Eq. A.28) 2 h, (Bru/b-8 *F) 0.38 [Eq. A.21]

h (Btu /hr ft* *F) 0.83 - [h,.u +hm]

T (protected),(*F) 104.0 [Eq. A.19. Calculated T must agne with input T,1 ADF 27.0 % [Eq. A.1]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co. /BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S SR/EM01 43 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. CalVornia Table 8.21 - Raceway 2CH925GC2 FIRERARRIER DATA AIR GAP DA TA de, outside diameter,(in)

HEA T TMNSFER PAMMETERS 7.50 k,,(Brutr ft *F) 0.016 c. Stuhr ft' *R* 1.7140E 09 c , emissivity 0.90 t,,(in) 1/8 C, (W h/ Btu) 0.2931 te, thickness (in) . 1.38 o 0.20 A., thennal cond.,(Bru/hr ft *F) 0.09 a 0.25 ff., shape factor 1.00 T., (*F) 194.0 T., (*F) 104.0 MCEWA YDIMENSIONAND CARLE FILL DA TA Raceway ID 2CH925GC2 d,, outside diameter,(in) 4.500

[Tn'tries"lin boxes designate the parameters over t,, wall thickness,(in) 0.237 whach sterations are carried out. Only the final fill, (%) 23.7 values are shown.

e,, surface emissivity 0.23 cable size (model cable) TRI 1/0 Entries in [ ] show the applicable equation 4,, cable dia,(in) 1.960 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 R, resistance,(Ohm /1000ft) 0.1376 l ,,, baseline amp.,(Amp) 188.0 CALCULATED PAMMETERS Unprotected Racewgr (baselme. 90 *Cconductor temp., 40 *Cambient temp.)

n,, number of cables I.00 [Eq. A.4]

A,, heat transfer area,(ft2 /ft) 1.18 [nd,/12]

q,, Heat gen. rate,(Btu /ht ft) 49.78 [Eq. A.3, with l=le ,.,. ]

U,,(Bratr ft' *F) 0.63 [A.6]

T,, Surface Temp., (*F) 127.3 l h,..(Btatr ft *F) 2 0.70

[Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

hw,(Btwtr ft' *F) 1.05 [Eq. A.21 with T ,,=T,, s =0.8, and T.,=1]

g,,,, Heat dissip. rate,(Btu /hr ft) 49.90 [Eq. A.7 with Tw =T. g, must agree with baseline q,]

ProtectedRaceway im, protected amp.,(Amp) [147.7 l g,,(Btutt ft ) JU. 7 [Eq. A 1]

T,, Surface Temp., (*F) 152.9 [Eq. A.6]

Air Gap .

Am. (Btatr-ft* *F) 1.54 [Eq. A.15]

hw,(Bru/hr fts -*F) 0.34 [Eq. A.8]

h,.,(Brutt ft 2*F) 1.88 [h ,,,. + A w ]

g,,,(Bru/hr ft) 30.8 [Eq. A. 7 g,. must agree with protected g, )

Barrier & Andlent A , area ,(ft'/ft) 2.0 [xd /12]

U.,(Bru/ht fla,.F) 0.63 [Eq. A.17]

Tw, inside Temp., (*F) lIJv.o l T . Outside Temp.,(*F) i14.2 [Eq. A.16]

hm,(Bru/hr ft2 *F) 0.40 [Eq. A.28]

h,,m,(Btu /h-ft* *F) 1.14 [Eq. A.21]

he,,(Bru/hr ft2 *F) 1.54 [h, +4,,m]

T. (protected), (*F) 104.0 [Eq. A.19. Calculated T, must agree with input T.]

ADF 21A% [Eq. A.l]

REV PREPARER VERIFIER I CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE 0 g /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 44 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49 dk a

DE&S Duke Engineering & Services San Ramon. Cahfornia Table 8.22 - Raceway 2CH923OA FIREBARRIER DATA AIR GAP DA TA IfEA T TRANSFER PARAMETERS de outside diameter (lu) 8.56 k,,(Bruhr A.'F) 0.016 o,Btutr A**R' l.7140E 09 c., emissiv.ty 0.90 t,,(in) I/8 C, (W-h/Bru) 0.2931 te, thickness (in) 1.38 a 0.20 A thermal cond.,(Btutr ft *F)- 0.09 n 0.25 Fu, shape factor 0.88 7,, (*F) 194.0 T.,(*F) 104.0 RA CEWA Y Dl% FEN 510N AND CABLE FILL DA TA Raceway ID 2CH9230A d,,outside diameter,(in) 5.563

[tTtEe'slin boxes designate the parameters over 4., wall thickness,(in) 0.258 which iterations are carried out. Only the final fill, (%) 18.3 values are shown.

c,, surface emissivity 0.20 cable size (model cable) TRI 2 Entries in [ ] show the applicable equation d,, cable dia, (in) 1.014 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 R, resistance,(Ohm /1000ft) 0.2182 lu,,w, baseline amp.,(Amp) 104.0 CALCULA TED PARAMETERS Unprotected Raceway (basehne. 90 *Cconductor temp., 40 *C ambient temp.)

n,, number of cables 4.53 [Eq. A.4]

A,, heat transfer area,(ft*/ft) 1.46 [nd,/12]

q,, Heat gen. rate, (Bru/hr-ft) 109.53 [Eq. A.3, with l=lu,,,,,, )

U,,(Bru/hr-ft* *F) 1.49 [A.6]

T,, Surface Temp.,(*F) l143.4 l hm,(Brutt-A* *F) U.52 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

Aw, (Btu /hr-ft' *F) 1.09 [Eq. A.21 with Tw,, = T,, c. =0.8, and Fu=1]

g,,,, he Mssip. rate,(Blu/hr ft) 109.56 [Eq. A.7 with T ,=T. g,,, must agree with baseline g,]

Protected Raceway Ig ,w, protected amp.,( Amp) [69.5 l g,,(Btuhr ft ) 49.4 [Eq. A.3]

T,, Surface Temp.,(*F) 171.2 [Eq. A.6]

Air Gap hm, (Btutr-f1,.F) 2 1.54 [Eq. A.1$]

hw,(Bru/hr-A' *F) 0.32 [Eq. A.8]

t h,,, (Btuihr-fi ,.F) 1.86 [h,,, +h w]

g,. . (Btwhr-ft) 49.4 [Eq. A. 7. g,. mun agree with protected g, )

Barrier i Ambient

' A., area . (ft'/A) 2.2 [nd.fl2]

U.,(Btu /hr-ft' *F) 0.65 [Eq. A.17]

Tw, inside Temp., (*F) p3J.o l Tu,,, Outside Temp., (*F) 119.1 [Eq. A.16]

h, .(Btu /hr fts,.F) 0.43 [Eq. A.28]

h, ,(Brut-ft 2,.F) 1.03 [Eq. A.21]

ha,,,(Brwtr ft* *F) 1 46 [h,* + h m ]

T (protected),(*F) 104.0 [Eq. A.19. Calculated T, must agree with input T,]

ADF 32.9 % [Eq. A.l]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

Q /9/19/97 g /9/19/97 CALCULATION NO. DE&S SR/EM01 45 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49 l

, __J

DE&S Duke Engineering & Services San Ramon. Cahfornia Table 8 23 - Raceway 2CH9?.3OH FIRERARRIER DATA AIR GAP DA TA d 4, outside diameter,(in) HEA T TRANSFER PARAMETERS 6.50 A,,(Btutt ft T) 0.016 o, Btu /hr ft' *R' l.7140E 09 e., emissivity 0.90 t,, (in) I/8 C, (W h/ Btu) 0.2931 te, thickness (in) 1.38 o 0.20

&e, thermal cond.,(Bru,tr h *F) 0.09 n 0.25 f ,, shape factor 0.95 T., (*F) !94.0 T., (*F) 104.0 RACEWA YDIMENS/04AND CABLE TILL DA TA l

Raceway ID 2CH9230H d,, outside diameter,Iin) 3.500 t,, wall thickness,(in) [En'Eieslin boxes designate the parameters over 0.216 which iterations are evried out. Only the final fdl. (%) 38.5 values are shown.

c,, surface emissivity 0.20

! cable size (model cable) TRI 250 Entries in [ ] show the applicable equation d,, cable dia,(in) 1.903 number in Section A.3, or the equation itself, n., no of conductors (per cable) 3 R, resistence,(Ohm /1000ft) 0.0593 1 ,w, baseline amp.,(Amp) 317.0 CALCUL4TED PARAMETERS UyrotectedRnenway (baselme. 90 *Cconductor temp.,40 *Cambient temp.)

n,, number of cabies 1.00 [Eq. A.4]

A , heat transfer area,(ft2 /ft) 0.92 [xd/12]

g,, Heat gen. rate (Btu /hr ft) 61.04 [Eq. A.3, with /=la.,,a,,, )

U,,(Bru/hr ft* *F) 1.19 [A.6}

T,, Surface Temp., t*F) lI J 7.9 l

! hm, (Bru/hr-ft' *F) ';.sv

[Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

h ,(Btu /hr ft' *F) 1.08 [Eq. A.21 with Ta ,=T,, c. =0.8, and F.,=1) g,,,, Heat dist.ip. rate, (Btu /hr ft) 61.01 [Eq. A.7 with Tw=T. q,, must agree with baselme g:}

ProtectedRaceway Ig, protected amp.,(Amp) p27.4 l g,, (Bru/hr-ft ) 31.4 [Eq. A.3]

T,, Surface Temp.,(*F) 165.2 [Eq. A.6]

Air Gm hm,(Btu /hr-ft' *F) 1.54 [Eq. A.15]

hw,(Bru/hr ft 2,.F) 0.31 [Eq. A.8) h,,,(Bru,hr fta,.F) 1 85 q,., (Bratr-ft) [hs +h w }

31.4 [Eq. A. 7. g,. must agree with protected g, )

Barrier & AneMont ,

A , ares,(ft*/ft) I,7

[nd/12]

U.,(Btu,tr ft' *F) 0.60 [Eq. A.I7]

T . Inside Temp., (*F) lIco.6 l Tw, Outside Temp.,(*F) i16.1 [Eq. A.16]

h, ,(Bru/ht-A* *F) 0.43 [Eq. A.281

h. (Bru/h-A* *F) I.09. [Eq. A.21]

ha,,(Bru/ht-ft' *F) 1.53 [h,.4.+h, m]

T. tprotected),(*F) 104.0 ADT [Eq. A.19. Ch'-" T. must agree with input T,]

28.3 % [Eq. A.1)

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co. /BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 46 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49

DE&S Duke Engineering & Services San Ramon. Cahfo nla Table 8.24 - Raceway 2CL957WA FIREBARRIER DATA AIR GAP DA TA HEA T TRANSFER PAR.A,'GTERS d , outside diameter,(in) 8.56 k,, (Btutt-ft.*F) 0.016 c. Bru/hr ft'.*R' l.7140E 09

- e., emissivity 0.90 t,, (in) I/8 C, (W h/Bru) 0.2931 te, thickness (in) 1.38 o 0.20 A , thermal cond.,(Btu /hr ft *F) 0.09 n 025 Fu, shape factor 1.00 T.,(*F) 194.0 T,,(*F) 104.0 RACEWA Y DIMENSIONAND CABLE FILL DA TA Raceway ID 2CL957WA d,, outside diameter,(in) ' 5.563 t,, wall thickness,(in) [GtEJlin boxes designate the parameters over 0.258 which iterations are carried out. Only the final fill. (%) 29.2 values are sliown.

e,, surface emissivity 0.20 cable size (model cable) QUAD 500 Entries in [ ] show the applicable equation d,, cable dia,(ia.) 2.729 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 4 R, resistance. (Ohm /1000A) 0.0316 lu ,, baseline amp., (Amp) 381.6 CALCul.A TED PARAMETERS Umrerected Racewey (baseline. 90 *Cconductor temp., 40 *C ambient temp.)

n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area,(ft*/ft) .l.46 [nd/12]

g,, Heat gen. rate,(Bru/ht *t) 62.73 [Eq. A.3, with l=l%}

U,,(Btatr.A.*F) 3 0.65 [A.6]

T,, Surface Temp (*F) pas.2 1 Am,(Btwhr ft *F) 3 0.73 h [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

.(btu /hr ft'.*F) 1.05 [Eq. A.21 with Tw,,, =T,, e. =0.8, and Fu=ll g,,,, Heat dissip. rate, (Btu /hr-A) 62.67 [Eq. A.7 with Tu,,=T. g,. must agree with baseline g,)

ProtectedRaceway

/, ,,,,,, protected amp., (Amp) py),2 l g,,(Bru/hr A ) J 7.3 [Eq. A.3)

T,, Surface Temp., (*F) 154.6 [Eq. A.6]

Air Go h,,.,(Bru/hr ft'.*F) 1.54 [Eq. A.15)

Aw,(Btu /hr ft' T) 0.30 - [Eq. A.8) h,.,(Bru/hr ft'.*F) 1.84 [h,,,. + h w ]

g,.,(Btu /hr A) 37.5 [Eq. A. 7. q,. must agree with protected g, )

Barrier & Anablant A., area, ( A3 /ft) 2.2 [nd,/12]

U ,(Btu /hr-ft s.*F) 0.65 [Eq. A.17j Tu,,, inside Temp., (*F) _ p40.6 l T Outside Temp.,(*F) 114.9 [Eq. A.16}

s hw, (Bru/hr-ft ,.F) 0.40 [Eq. A.28]

hm (Btu /h ft' *F) 1.14 [Eq. A.2l}

Au,(Btu /hr ft'.*F) 1.54 [h,.u +h m ]

T. (protected),(*F) 104.0 [Eq. A.19, Calculated T, must agree with input T.]

ADF 22.6 % [Eq.A.1)

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g, /9/19/97 CALCULATION NO. DE&S SR/EM01 47 TITLE: Ampacity Derating Factors of OF 1 Fire-Protected Conduits 49

DE&S Duke Engineering & Services I

San Ramon. Cahfornia Table 8.25 - Raceway 2DH925G02 FIREBARRIER DATA AIR GAPDA TA d., outside diameter,(in) HEA T TRANSFER PARAMETERS 7.50 A,,(Btutt A *F) 0.016 e, Btutr R8 *R' l.7140E-09 c., emissivity 0.90 r,, (in) 1/8 C (W h/ Btu) 0.2931 f., thickness.(in) 1.38 a

  • 0.20 A., thermal cond.,(Btu /hr ft *F) 0.09 = 0.25 F , shape factor 0.86 T., (*F) 1940 T.,(*F) 104.0 RA CEWA Y DIMENSIONAND CABLE FILL DA TA Raceway ID 2DH925002 d,, outside diameter,(in) 4.500 [GtEeTlin boxes designate the parameters over I,, wall thickness,(in) 0.237 which iterations are canied out. Only the final fill. (%) , 23.7 values are shown.

c , surface emissivity 0.23 cable size (model cable) TRJ 1/0 Entries in [ ] show the applicable equation d,, cable dia, (in) 1.960 number in Section A.3, or the equation itself, n., no. of conductors (per cabic) 3 R. resistance,(Ohm /1000ft) 0.1376 1 , ,, baseline amp.,(Amp) 188.0 CALCULA TED PARAMETERS Unprotected Racewey (baseline. 90 *C conductor temp., 40 *Cambient temp) l n,, number of cables 1.00 [Eq. A.4]

A,, heat transfer area (ft2 /ft) 1.18 [nd/12]

9,, Heat gen. rate,(Bru/ht ft) 49.78 [Eq. A.3, with l=1 ,)

U,,(Bru/hr.ft' *F) 0.63 [A.6]

T,, Surface Temp., (*F) l127.3 l h,.. (Bttihr ft' *F) 0.76 [Eq. A.27 with a=0.27 and a=l/4, L=d,/12, Section A.3.101 hm,(Bru/hr ft* *F) 1.05 [Eq. A.21 with Tw,,=T,, s. =0.8, and F.,=l]

q,,, Heat dissip. rate,(Btu /ht ft) 49.90 [Eq. A.7 with Tw =T q,, must agree with baseline q,1 Protected Raceway 1,,,,,,w, protected amp., (Amp) lI46.y l g,,(Bra'hr ft ) J 0.4 [Eq. A.3)

T,, Surface Temp., (*F) 153.3 [Eq. A.6]

Air Gap h, . (Btu /hr-ft' *F) 1.54 [Eq. A.151 hw,(Btu /hr ft' *F) 0.34 [Eq. A.8]

h,.,(Btu /ht ft* *F) 1.88 [h,4 +hw] -

q,.,(Btu /hr-ft) 30.4 [Eq. A. 7. g,. must agree with protected g, ]

Barrier & Ambient 3

A.. area . (ft /ft) 2.0 [nd,/12]

U., (Btu /hr-ft2.*F) 0.63 [Eq. A.17]

Tw, inside Temp (*F) lIJ9.6 l Tw, Outside Temp.,(*F) I i3.0 [Eq. A.16]

ha,(Bru/ht ft* *F) 0.4 I [Eq. A.281 h, m. (Bru/h-ft' *F) 0.99 [Eq. A.21]

3 h (Btu /hr-ft *F) 1.40 [hm +h,,m]

7,(protected), (*F) 104.0 [Eq. A.19. Calculated T, must agree with input T,1 ADF 21.8 % [Eq. A.l]

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g /9/19/97 g /9/19/97 CALCULATION NO. DEAS SR/EM01 48 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49 o

DE&S Duke Engineering & Services San Ramon. California Table 8 26 - Raceway 2DH92SOO1 FIRER 4RRIER DATA AIR GAPDA TA d,, outside diameter, (in) Hs.'A T TA4NSFER PARAMETERS 7.50 k,,(Btwhrft*F) 0.016 e, Brutt ft* *R' l.7140E 09 c , emissivity 0.90 t,, (in) 1/8 te, thickness (in)

C (W h/ Btu) 0.2931

. l.38 o 0.20 A., thermal cond.,(Bru/ht ft *F) 0.09 n 0.25 F . shape factor 1.00 T., (*F) 194.0 T.,(*F) 104.0 RA CEWA Y DIMENSION AND CA BLE FILL DA TA Raceway ID 2DH925001 d,,outside diameter,(in) 4.500 lEn~eslin boxes designate the parameters over t,, wall thickness,(in) 0.237 which steratiots are carried out. Only the final fill. (%) 31.2 values are shown, t,, surface emissivity 0.23 cable siac (model cable) 3/C I/O Entries in [ ] show the applicable equation d,, cable dia,(in) 2.250 number in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 R, resistance,(Ohm /1000ft) 0.1376 1 , , baseline amp., ( Amp) 186.0 CALCULATED PARAMETERS thyrotected Raceway (baseline. 90 *Cconductor temp., 40 *Cambient remp.)

n,, number of cables I.00 [Eq. AA)

A,, heat transfer area, (ft'/ft) 1.18 [xd,/12]

9,, Heat gen, rate,(Bru/hr-ft) 48.68 [Eq. A 3, with I=la , ]

U,,(Bru/hr-ft* *F) 0.62 [A.6]

l T,, Surface Temp., (*F) l126.9 2 l

! 0.73 h,,,,,(Bru/hr h%,(Bru/hr fts,ft *F.)F) 1.05

[Eq. A.27 with a=0.27 and n=l/4, L=d,/12. Section A.3.10]

[Eq. A.21 with T ,=T,, c. =0.8, and F =ll q,,,11 eat dissip. rate,(Btu /hr ft) 48.62 [Eq. A.7 with Tw=T. q,, must agree with baseline q,)

Protected Raceway tw, protected amp.,(Amp) ll to.s l g,,(Brutt ft ) Jo.J [Eq. A.3]

T,, Surface Temp., (*F) 152.2 [Eq. A.6]

Air Gngp hm (Btu /hr ft' *F) 1.54 [Eq. A.15]

2 hm.(Btu /hr f1 *F) 0.34 [Eq. A.8) h,.,(Blu/hr-ft* *F) I.88 [h,.,. +h w]

q,,,(Brutr ft) 30.3 [Eq. A. 7. g,. must agree with protected g, )

Barrier & Anablant A., area , (fts/ft) 2.0 [nd./12]

U.,(Btu /hr ft* *F) 0.63 [Eq. A.17]

T ,Inside Temp.,(*F) l1Js.) l Tw, Outside Temp., (*F) 114.0 [Eq. A.16]

h, ,,,(Btwtr ft* *F) 0.40 [Eq. A.28]

h (Bru/h ft* *F) 1.14 [Eq. A.21]

h ,(Btu,hr ft' *F) 1.54 [h,, +hm]

T. (protected), (*F) 104.0 [Eq. A.19. Calculated T. must agree with input T ]

ADF 21.1*A [Eq.A.1)

REV PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

% /9/19/97 g /9/19/97 CALCULATION NO. DE&S-SR/EM01 49 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits 49 J

DE&S Duke Engineering & Services San Ramon. Cahfornia

, ATTACHMENT A HEAT TRANSFER MODEL FOR FIRE PROTECTED CONDUITS REV, PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

% 9/19/97 g /9/19/97 CALCULATION No. DE&S-SR/EM01 Al TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits ^40

/

DE&S Duke Engineering & Services San Ramon, Cal {fornia TABLE OF CONTENTS Pege A.1 '

INTRO D U CTI O N . . . . . ... . . . . . . . ... .. . . . . .. . . . . . .. . . . . .. . . . . .. . . .. ... .. . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . ..

A.2 DEFINITIONS AND NOMENCLATURE .......................................................... A5 i

i A.3 CONDUIT HEAT TRANSFER MODEL ............................................................ A7 A.4 VERIFICATION AND SENSITIVITY STUDIES ............................................A23 l

A.5 REF E REN C E S .... . . ... . . ..... . .. . . . . .. .. ... . . . .. .... ... .. . . . .. ... . . . . ... .. .. . .... .... . .... .. .. . ..... . . . ... . . . . . . A 4 0 REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESMd Light Co./BVPS Unit 2 PAGE O

g 9/19/97 g /9/19/97 CALCULATION No. DE&S-SR/EM01 A2 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40 1

I

DE&S Duke Engineering & Services San Ramon. Cahfornia A.1 INTRODUCTION This document describes a heat transfer method to determine the ampacity derating factors of cables routed in raceways protected by a fire barrier system. Fire Barrier Systems (FBS) are commonly used in nuclear power plants as passive fire barriers to protect the electrical cables and equipment required for safe shutdo vn of the reactor.

He ampacity of a cable conductor is a measure ofits cunent carrying capacity and is affected by the ability of the cable to dissipate the heat generated within the conductors to the surrounding without exceeding the allowable cable insulation temperature. The heat generated in the conductor increases in proportion the electrical resistance of the conductor. For a cable in thermal equilibrium, the heat generation rate is balanced by the heat dissipation rate, that increases with decreasing theimal resistance and surrounding air temperature. Thus, for an unprotected raceway, i.e., a raceway that is not wrapped by a FBS, the ampacity is afTected by the following factors:

1. Conductor size and material (copper or aluminum)'
2. Cable type (duplex, triplex, single conductor, three conductor)
3. Type of the raceway (conduit or tray)
4. Permissible operating temperature of the cable insulation
5. Ambient temperature
6. Number of the cables in the raceway
7. Proximity to other raceways The first four of these factors are unique to the type of the cable and the raceway in which the cable is routed. Taken together, they define a conductor's " nominal ampacity," I,,,,,,, which can be obtained from industry standads and codes such as IEEE [Ref. A1] or NEC [Ref. A2). The last three factors are unique to the instJiation of the raceway and are applied as correction factors to the nominal ampacity to define a " baseline ampacity",Iwn,,,. These correction factors, commonly called the Ambient Temperature Correction Factor (ATCF), Multiple Conductor Correction Factor (MCCF), and Conduit Grouping Factor (CGF) are also obtained from industry standards such as IEEE [Ref. Al] or ICEA [Ref.

A3).

The addition of a FBS to a raceway hinders the dissipation of the heat generated by the cables in the raceway and reduces the ampacity of the cables. The impact of adding a FBS to an unprotected raceway is expressed in terms of an Ampacity Derating Factor (ADF). The ADF is a percent reduction in the current carrying capacity of the cables in the protected raceway relative to the unprotected raceway, i.e.,

ADF = '""

'"""" 'x 100 (A.1) easelme REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./DVPS Unit 2 PAGE O

g 9/19/97 g /9/19/97 CALCULATION No. DE&S-SR/EM01 A3 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

-DE&S .

Duke Engineering & Serv -

San Ramon. Cahfornia where-ADF - Ampacity_Derating Factor

/w, - ' Cable ampacity without the fire barrier Im Cable ampacity with the fire barrier The ADF is an attribute of the raceway-fire barrier system and is applied to all the cables ~in the raceway.

There are two basic methods to determine the ampacity of cables protected by a FBS. The first method involves prototype or actual testing of the cables. The second method involves heat transfer analysis.

The testing methods require building a physical model of the actual plant installation in a controlled temperature environment and measuring the cable current and the cable temperature. The IEEE Standard Pg48 [Ref. A4) describes the requirements and the guidelines that must be followed in

!- performing these tests. The ampacity derating factor determined for tlie tested configuration is applied L to other raceways that are similar in type, size, and FBS installation. The beat transfer method is based on conventional heat transfer analysis techniques and attempts to detennine the limiting heat dissipation capability of the raceway without exceeding the permissible cable insulation temperature. This limiting heat transfer rate is, then, converted to an ampacity value and an ADF is calculated according to Equation A.1 above. Although the analytical methods a:e based on well established heat transfer -

principles, uncertainties are introduced into the results due to approximations of the cable and the FBS geometry, variations in thermal properties of the materials involved, and uncertainties in the empirical heat transfer correlations. For this reason, the analytical methods require validation using test data.

The remainder of this document describes a heat transfer model that can be used to ermine the ampacity derating factors for protected raceways. Section A.2 provides the definir s 3f the frequently

'used terms and the nomenclature in the document. Section A.3 describes the equations used in the heat -

transfer model. Section A.4 discusses the veritication of the heat transfer model and the sensitivity ofit to the model parameters. Section A 5 lists the references.

REV. PREPARER- VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE

=0 g 9//9/97 g - /9/19/97 CALCULATION No. DE&S-SR/EM01 A4 TITLE: Ampacity Derating Feetors of OF Fire-Protected Conduits A40

DE&S Duke Engineering & Services San Ramon. Cahfornia A.2 DEFINITIONS AND NOMENCLATURE A.2.1 Definitions The definitions below are used in describing the heat transfer model and its application to protected racewap.

Ampacity: The current carrying capacity, expressed in amperes, a condu: tor can cany continuously within a specified environment without exceeding its temperature rating.

Ampacity Derating Factor (ADF): The percentage reduction in measured ampacity between the unprotected cordiguration (baseline ampacity) and protected configuration. ADF values are calculated from:

ADF = "'" '"""" x 100 banalme (A.1)

I Ampacity Margin: The difference between the Protected Ampacity and the Full Load current expressed as a percentage of the ProtectedAmpacity.

' """"" ##^"

AmpacityMargin -

( A TCF) x 1,,,,,,,s (A.2) where LFis the impedance load factor (generally, LF > 1.0 for inductive loads, LFal.0 for resistive loads),I is is the full load current, and ATCP is the Ambient Temperature Correction Factor defined in Section A.3.9..

Baseline Ampacity (Iwi,,,): The ampacity of a cable in an unwrapped raceway. Iwi,,,, equals the nominal ampacity,I., times all applicable correction factors such as conductor and ambient temperature, conduit grouping, number of conductors in conduit, tray covers, etc.

Full Load Current: Total current carried by a conductor based on the nameplate data for the equipment (s) fed by the conductor.

Nominal Ampacity (IJ: The ampacity of a cable based on the construction of the cable (i.e.,

conductor size, insulation, diameter, etc.) as given in the applicable standards such as IEEE or NEC

[Refs. Al and 2).

Protected Ampacity (Im): The ampacity of a cable for the raceway configuration while protected by the fire barrier.

REV. PREPARER VERiflER CLIENT / PROJECT: DUQUESNE Light Co./8VPS Unit 2 PAGE O

g 9//9/97 g /9//9/97 CALCULATION No. DEAS.SR/EM01 AS TITLE: Ampacity Detating Factors of OF i Fire-Protected Conduits A40

DE&S Duke Engineering & Services San Ramon. Calfornia Raceway: An enclosed channel designed expressly for holding wires, cables, or busbars. As used in this document," raceway" is synonymous with " conduit " A Protected Raceway is a raceway wrapped or enclosed by fire insulation material to protect its contents from the efrects of fire.

A.2.2 Nomenclature The frequently used symbols and subscripts in this document are defined below. The less frequently used symbols are defined where they appear.

Symbols:

A area, ft 2 d diameter, ft F radiation shape factor, dimensionless

'h heat transfer coefficient, Btu /hr-fiz,op I conductor current, Amps k thermal conductivity, Btu /hr-ft 'F g heat transfer rate, Btu /hr R conductor resistance, ohm /ft t thickness, ft T temperature, 'F U overall heat transfer coefficient, Btu /hr-ft2,op Subscripts:

! a ambient b barrier e cable or convective heat transfer n conductor p conduit r raceway rad radiative REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g 9/19/97 g /9/19/97 CALCULATION No. DE&S-SR/EM01 A6 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40 v A

DE&S

- Duke Engineering & Servicos .

San Ramon. Cahfornia A.3 CONDUIT HEAT TRANSFER MODEL ne purpose ~of the heat transfer model is to determine the steady state heat dissipation capability and the corresponding ampacity derating factor of a given raceway-fire barrier system. The heat dissipation rate under steady state conditions is equal to the heat generation rate in the cables due to the ohmic loss (/R).

This heat generation rate is converted into en ampacity value and an Ampacity Derating Factor (ADF) is calculated for the cables routed in the raceway as:

ADF(%) = '""'"" ""'" x 100 (A.1)

Iw,,,,

where Iwo,,, is the ampacity of the cable without the fire barrier and ly,,,is the ampacity of the cable with the fire barrier. Iwo,,, is determined using the applicable industry standards such as (Refs. Al, A2, A3). Iy,,,is determined by the heat transfer model described here. -

The heat transfer model is developed from basic heat transfer principles and correlations for conduction, convection, and radiation that can be found in popular heat transfer text books such as Incropera (Ref, AS), Ozisik [Ref. A6), and Holman [Ref. A7]. Where uncertainties exist, effort has been made to bias the model toward calculating a higher thermal resistance so that the calculated ampacity is lower, and therefore, a conservative ampacity derating factor is determined. The heat transfer model is based on the following conventions and approximations:

1. He heat generation rates and the heat transfer rates are for a unit length (i.e., per foot) of the raceway.
2. No distinction is made between AC and DC power cables. The model can be applied to both cases by proper selection of the cable conductor resistance.
3. The raceway is filled with a model cable representing the assortment of the actual cables routed in the raceway. This approach is consistent with the IEEE standard [Ref. A4] for testing the ampacity of cables in protected raceways. .
4. All cables are continuously powered cables.

The equations for the heat transfer model are described below starting with the heat generation rate in the cables and progressing through the cable bed, the enclosure air space, the fire barrier wall, and finally, the dissioation to the surrounding air.

A typical protected conduit and its thermal model is illustrated in Figun A.I. The conduit, typically an aluminum or steel pipe, is enclosed with fire protective material of sufficient thickness. The fire REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE g - 9/19/97 g O /9/19/97- CALCULATION No. DE&S.SR/EM01 A7 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S Duke Engineering & Services San Ramon. Cahfornia protective material is generally pre fo cied half-rounds as illustrated in Figure A.l. It can also be applied by wrapping Dexible fire protective blanket around the conduit. Although rare, box enclosures are also used by attaching fire protective panels of pre-cut sizes around the conduit. The model described here applies to conduits protected by cylindrical barriers. In all cases mechanical means such as steel wires, staples, and wire meshes are used to secure the fire protective material on the conduit.

Themial resistance of these mechanical devices are insignificant in comparison to 'the overall thermal resistance of the conduit-fire bamer assembly, and can safely be neglected. The installation of the fire barrier usually results in an air gap between the conduit wall and the barrier itself. This gap, typically a small fraction of an inch, presents an additional thermal resistance to the heat flow and must be considered in the heat transfer model.

The model treats a protected conduit in distinct regions starting with the generation of the heat in the conductors and ending with the dissipation of the heat into the surrounding. The conduit model has the following elements.

1. Heat generation rate in the conduit
2. Heat transfer from the cables to the conduit wall
3. Heat transfer in the air gap region
4. Heat transfer through the fire barrier wall l S. Heat transfer to the surrounding '

I It should be pointed out that the conduit wall is not treated separately in the model. There are two reasons for this. First, the thermal resistance cf the conduit wall is negligible due to the high thermal conductivity of the metal wall. Second, as discussed in Section A.3.2 below, the thermal resistance of the region from the cable conductor to the conduit wall, which is back calculated using the NEC/IPCEA

[Refs. A2, A3] baseline ampacity data, includes the thermal resistance of the conduit wall.

A3.1 Heat Generation Rate in the Conduit Heat is generated in the cables due to ohmic losses according to: 4 q, = n.(n,,l'R)/ C '

(A.3) where q, heat generation rate per unit length of the raceway, Btu /hr-fi C unit conversion constant,0.2931 W-hr/ Btu I conductor current, Amperes R conductor resistance per unit length, ohm /ft n,, number of conductors per cable n, number of cables in the raceway REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Cc./BVPS Unit 2 PAGE O

% 9/19/97 g /9/19/97 CALCULATION No. DE&S SR/EM01 AS TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S

  • Duke Engineering & Sernces SanRamon Colofornia Tc subscript for cable
n. subscript for conductor r subscript for raceway .

Equation A.3 above is an extension of Equation 2 of Stolpe [Ref. A8] for a single conductor to a raceway containing multiple cables with multiple conductors. Distinction between AC and DC powered cables and inductive effects (if significant) are accounted for by proper selection of the cable conductor resistance R..

De number of cables n, within the conduit is calculated from the percent fill parameter for the conduit which is dermed as the ratio (expressed in percent) of the total cross sectional area of the cables in the conduit to the internal cross sectional area of the conduit. Thus,

. ,, , 'd. - 21 " filit%) p

.d a ,

100 where ~

. d, diameter of the cable, ft d, outside diameter of the conduit, ft t, conduit wall thickness, tt and falps) = [crosssectionalareaof thecables x 100 = [ d*? , x 100 insLieareaof the raceway (d, - 2t,)~ (A.5)

A.3.2 Heat Transfer from the Cables to the Coaduit Wall ne heat generated in the conductors is transferred through the cable insulation by conduction to the surface of the cable. Transfer of this heat to the conduit wall takes place either oy direct contact heat transfe.r in areas where a solid contact between the cable and the conduit wall exists, and by convection and radiation where an air space separates the cables from the conduit wall. Using an overall heat transfer coefficient U, to represent the combination of the contact heat transfer coefficient and the convective / radiative heat transfer coefficients, the equation describing this heat transfer process is q, = U,(xd,){T, - T,)

(A.6)

REV. PREPARER VERIFIER - CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE I g 10/2/97 g' 10/2/97 CALCULATION No. DEAS-SR/EM01 A9 TITLE: Ampacity Derating Factors of . OF l Fire-Protected Conduits A40

DE&S

- Duke Enginne"ing & Servkos San Ramon. California where U, overall heat transfer coefficient (conductor to conduit wall), Btu /hr-ft2 ,op T, conductor temperature, *F :

T, raceway wall temperature,'F l- A direct approach to estimate the cable geometry parameters and calculate a heat tiansfer coefficient U, based on first principles is not followed due to its complexity and the uncertainties in the arrangement of the cables in the conduit, the contact area, and the contact heat transfer coefficient. A method that accounts for these details is described by Neher McGrath [Ref. A9], and is used by IEEE [Ref. Al) to develop ampacity tables for conduits with various cable sizes and cable fills. The conduit heat transfer model takes advantage of these published ampacity tables and back calculates an overall heat transfer coefficient 7, from the cable conductor to the surface the conduit wall. Since this process requires calculation of the heat transfer rate from the conduit wall to the ambient which is discussed in Section l A3.1, detailed discussion of the step by step procedure io calculate U,is deferred to Section A3.7, A33 Heat Transfer in the Air Gap The heat generated within the cables and arriving at the surface of the conduit is transferred'across the air gap to the barrier wall by convection and radiation according to (Ref. A7, p: 203):

q,={hc.,e + % ..e)(A )(T,- T,.,,) (A.7) where

- A, outer surface area of the raceway per unit length (A,=nd,), ft 2ffg .

h,.4 convective heat transfer coefficient (raceway-to-barrier), Btu /hr-ft' 'F h,a radiative heat transfer coefficient (raceway to-barrier), Btu /hr-ft* 'F Tu inside surface temperature of the barrier,'F T, - . surface temperature of the raceway,'F The radiative heat transfer coefficient hw between the conduit wall and the barrier surface is calculated from its definition (Ref. A7, p: 203). Noting that the surface area of'the conduit is very nearly the same as the inside surface area of the barrier and the shape factor between these surfaces is very close to unity,

, a [(T, + 460J' r (Ts.,, + 460J'][(T, + 460) + (Ts.,, + 460))

y

- +.---]

Ir Eb i

REV. PREPARER- VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O-

% 9/19/97 g /9/19/97 CALCULATION No. DE&S-SR/EM01 A10 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S Duke Engineering & Services San Ramon. Cahfornia where e, emissivity of the conduit surface, dimensionless e, emissisity of the barrier surface, dimensionless a Stefan-Boltzmann constant (0.1714x10 Btu /hr-ft - R*, Ref. A7, p: 174) 2 ne' convective heat transfer coefficient h, is calculated using the method described in Incropera (Ref.

AS, p: 563] for an annular space between long, horizontal cylinders. This method is based on using an effective thermal conductivity k,f ot represent the combined effects of condation and convection in an annular gap. The equation for h,.,3 is obtained from (Ref. A6, p: 51] describing the heat conduction transfer coefficient for a hollow cylinder, (A.9) b . =Tj,'#

  • d ) ,

where t

-, width of the gap, ft k,f effective thermal wnductivity of the air in the gap, Btu /hr-ft2,op ne effective thermal conductivity is determined as function of the Rayleigh number (Ra) and the Prandtl number (Pr) from the following equation found in (Ref. AS, p: 563]

g e ,In

=0.386 Ra'" (A.10) where k, thermal conductivity of the air in the gap, Btu /hr-ft2,op Pr Prandtl number Ra modified Rayleigh number as defined below

[Infdo., / d,)J' EO(Ts.,, - T,)tl l tl(d," + ds.,,*'"J' _

v' '

- where da inside diame,ter of the barrier (dw=d,+2t ), ft g

g constant of gravity,32.2x36002 = 4.17x10 ft/hr 2 p thermal expansion coefficient of air,1/ F v viscosity of air, ft2 jg, The thermal expansion coetlicient p is, by definition, related to the temperature by

- REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g 9/19N 7 pg, /9/19/97 CALCULATION No. DE&S-SR/EM01 All TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

]

DE&S-Duke Engineering & Services .

San Ramon. Cahfornia D=7 , (A.12) 2 7

- Equation A.10 is applicable in the range 10 <Ra<10 .- For Ra<100, k,g=k,. A common characteristic of the conduits protected by pre-formed half-round fire barriers is that the air gap separating the conduit from the barrier is very small in comparison to the diameter of the conduit, i.e., t/d, << l. This results in considerable simplifications in Equations A.9 and A.10. Noting that infl+ x) = x - x' + x' - I*+...... x (A.13) i Equation A.9 simplifies to the well known conduction equation, k

%=d (A.14)

's J Using a representative set of data for the variables in Equation A.11 for the Rayleigh number as listed below:

d, 0.292 ft ( 3" conduit with 3.5" outside diameter) t, 0.010 ft (1/8 in) dm 0.313 fi( d,+2t,))

1r 0.7 T, 150'F Tu 140'F v 0.77 ft2/hr, [Ref. A6, p: 499] by interpolation at 150 F Ra=0.13x13.2=0.23 Since Ra < 100, k,j=k, and Equation A.14 reduces to:

k b =l (A.15)

's L

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Uni:2 PAGE I

g 10/2/97 g' /W2/97 CALCULATION No.- DEAS-SR/EM01 A12 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S.

Duke Engineering & Services San Ramon, Calfornia A.3.4 Heat Transfer through the Barrier Wall Heat transfer through the enclosure wall is by conduction according to the following equation.

q, = Us As(Ts.;, - Ts.,,,) (A.16) where A3 outer surface area of the barrier per unit length, n'/A T.,,,

3 outside surface temperature of the enclosure, F U3 conduction heat transfer coefficient of the barrier wall, Btu /hr R* *F The equations for U3 [Ref. A6, p: 51) and A3are given below:

U, =

g, (A.0) 2 d, - 21, j where d3 outer diameter of the barrier, A k3 thermal conductivity of the barrier material, Btu /hr R *F The outer surface area A3 is calculated from A6 = nds (A.18)

A.3.5 Heat Transfer from the Barrier Wall to the Amblent Heat transfer from th9 enclosure wall to the ambient is by convection and radiation according to the following equation.

4r = A6(he-ba + head-ba)(T6 -ou, - T,) (A.19) where h,.3, convective heat transfer coefficient from the barrier to the ambient, Btu /hr-A* *F h,a radiative heat transfer coefficient from the barrier to the ambient, Btu /hr-A2,op T, ambient tempoium,'F The area term A3 in Equation A.19 is the effective exposed surface area of the barrier per unit length. In calculating this area the effect of nearby walls or structures that may be touching the barrier must be REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

% 9/19/97 g /9/19/97 CALCULATION No. DEAS-SR/EM01 A13 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

DE&S Duke Engineering & Servkes San Ramon. California accounted for. For free standing barriers without any contact with the nearby walls and stmetures, A6 is equal to the perimeter of the enclosure. For barriers that are touching the nearby walls and structures, A 3 may need to be adjusted. Section A.32 evaluates the effect of adjacent walls on heat dissipation capability of barriers.

'Ihe radiative heat transfer coefficient h a.u e between the barrier and the surrounding is determined'using its common definition. Since q,a.u=h,a.uA (T 3 .,,,-T),

3 an equivalent radiative heat transfer coefficient can be defined as h,a.u=g,a.3/A (T 3 3.,,,-T) where the net radiative heat transfer q,a.3,, is given by (Ref.

A7, p: 190],

9ead-ba " o[(T3 ,, + 460)4 -(T, + 460)4 ])

1

+ 1_ c#

1_

e As c3 + Fs As s , c, A, (A.20) where c3 emissivity of the barrier, dimensionless e, emissivity of the surrounding, dimensionless A3 surface area of the barrier, ft A, surface area of the surrounding, ff Fu shape factor, dimensionless Since the surface area, A,, of the surrounding is much larger than the surface area of the barrier, A3 , the last term in the denominator can safely be dropped. Expanding the expression inside the bracket and combining with the definition for h,a.u, o [(T3_,,, + 460)2 + (T, + 460)2 ][(T3 _,,, + 460) + (T, + 460)]

head-ba = 1 (A.21) 1_ c3ba + I Eb The convective heat transfer coefficient h,.u is calculated from empirical correlations published in literature. These correlations are typically expressed in terms of the dimensionless Nusselt number, Nu.

and the Rayleigh number, Ra, and have the general form:

Nu = CRa" (A.22) where Nu =

(A.23)

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g 9//9/97 g /9/19/97 CALCULATION No. DE&S SR/EMut A14 TITLE: Ampacity Derating Factors of OF

Fire-Protected Conduits A40

DE&S Duke Engineering & Servkes San Ramon. California and Ra = *MI'v,~ I'N Pr (A.24)

~

are based on the characteristic 2

length L of the geometry. The parameter h, is the convective heat transfer coefficient (Btu /hr-ft 'F), and k, is the thermal conductivity (Btu /hr-fb'F). Typically, n=l/4 for laminar flow and 1/3 for turbulent flow. The parameter C varies depending on the value of the Rayleigh number and the orientation of the surface, i.e., horizontal or vertical. For convenience, there are also correlations developed over the entire range of Ra. The correlations, which are applicable in the range of Ra from 10'8 to 10'2, are given below for a horizontal conduit and a vertical conduit.

Horizontal conduit of outer diameter D [Ref. AS, p: 551],

8 add Nuo = 040 +

e (1+(0339/ Pr)*"'f'2' s (A.25)

Vertical conduit oflength L [Ref. AS, p: 543),

t l

l-Nug, = 0.823 +

[l + (0.492 / Pr)*H' f'2' s (A.26)

In applying the above correlations to a conduit, considerable simplifications can be achieved by taking a -

bounding approach so that a single and simple equation is conservatively applicable to horizontal and vertical conduits. An equation that can serve for this purpose is given in [Ref A6 p: 315] for air at atmospheric pressure and moderate temperatures in the following form:

h, = k(A7)"

L ,

(A r/)

where L characteristic length, ft

' AT=Tw-T, is the temperature difference,?F REV. PREPARER YERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g 9/19/97 g /9/19/97 CALCULATION No. DE&S SR/EM01 A15 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S Duke Engineering & Services San Ramon. Cahfornia where a and n are constants parameters dictated by the orientation of the conduit (vertical or horizontal) and the heat transfer regime (laminar or turbulent). Recommended values of the parameters a and n. and the characteristic length L are listed below:

Orientation Characteristic Length a n Applicability Horizontal Diameter 0.27 1/4 10'<Ra<10' O.18 1/3 10'<Ra<10" Vertical Length 0.29 1/4 10'<Ra<10' O.18 1/3 10'<Ra<10" A given conduit may have both horizontal and vertical runs since electrical equipment fed by the same raceway may be located at different coordinates and different floor elevations. This suggests that a bounding heat transfer coefficient must be applied to the entire conduit regardless of the orientation of its individual segments. Such a bounding heat transfer coefficient can be calculated by selecting the parameters a and n near their low values. In Table A.2 predictions of Equations A.25 and A.26 are compared with the predictions of such a bounding equation.= The comparison covers the range of conditions expected in typical conduit installations with respect to the conduit size and the surface temperature. The results show that with a=0.20, n=l/4, and the characteristic length based on the diameter, Equation A.27 reasonably bounds Equations A.25 and A.26. Therefore the equation describing the convective heat transfer coefficient for a conduit can be conservatively calculated from:

f a 1/4

% o oJo E (A.28) -

rdo This equation is conservatively applicable to horizontal as well as vertical conduits. The degree of conservatism in h,.u calculated by this equation is in the vicinity of 15 percent. This conservatism,

- however, does not induce any appreciable penalty on the results since h,.,. is a small fraction of the overall heat transfer coefficient for the entire cable-conduit-barrier system. As demonstrated in Section A.5, the ampacity derating factor changes less than one percent for a 30 percent change in h,.,..

A.3.6 Radiation Shape Factors Radiation shape factor between a conduit and its surrounding, Fu, is calculated making use of the shape factor equations given in (Ref. AS, pp: 796-797]. The common conduit configuration involves a group of conduits running parallel to each other. Thus, the radiation firom a given conduit might be blocked by one or more adjacent conduits. The radiation shape factor from a conduit to a nearby conduit can be calculated using the equation for two parallel cylinders of radius "r," and "rj" separated by distance (s+r,+r3) on centers:

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE 1.ight Co./BVPS Unit 2 PAGE O g 9//9/97 g /9/19/97 CALCULATION No. DEAS-SR/EM01 A16 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S Duke Engineering & Services San Ramon, Cahfornia F, d {n + [C' -(R + 1)']"* - {C -(R - 1)*]"2 2 2x R i

+(R- 1)cos"[g-pl (A.29) d

-(R+1)cos C[b1])

C where R=r/rs S=s/rs C=1+R+S and F, radiation shape factor from cylinder "i" to cylinder "f' r radius of the cylinder s clearance between the cylinders ne radiation shape factor from the conduit to the surrounding is calculated using the summation rule, i.e.,

fu = 1-[F6j (A.30) where the suinmation is taken over all of the adjacent conduits and, Fu shape factor between conduit (b) and its surrounding F 3,, shape factor between the conduit (b) and conduit (/)

A.3.7 Effect of Convective Heat Transfer Coefficient on ADF ne convective heat transfer coefficient from the barrier surface tc the ambient air is calculated using a simplified bounding correlation described by Equation A.27 in Section A.3.5. By comparing it to more accurate correlations, it was shown in Table A.2 that Equation A.27 introduccia conservatism of up to 30 percent into hw It is lateresting, however, to notice that the effect of this conservatism on the ampacity derating fr.ctor is quite small due to the fact that the convective heat transfer coefficient is in .

parallel with a much larger radiative heat transfer coefficient and the thermal resistance of the cavity is  !

only a small portion of the overall thermal resistance for the entire raceway-fire barrier system. This is demonstrated below:

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co. /BVPS Unit 2 PAGE O g 9/19/97 g /9/19/97 CALCULATION No. DE&S.SR/EM01 A17 TITLE: Ampaaty Derating Factors of OF Fire-Protected Conduits A40

DE&S Duke Engineering & Services -

San Ramon, Calsfornia The overall heat transfer coefficient for the entire barrier system is (referring to the thermal model in Figure A.1):

U U,

+- +1+ #

(A.31)

A,s . h .,e a + h a .,s,r A ,s kg h a.s, + ha.s, where A, surface area of the barrier, A2 A, surface area of the raceway, ft' U overall heat transfer coefficient for the entire raceway-barrier assembly (based on A ),

Btu /hr-ft* 'F U, overall heat transfer coefficient for the raceway, Btu /hr-ft* *F l ha convective heat transfer coefficient from the raceway to the barrier wall, Btu /hr ft2,op l hw radiative heat transfer coefficient from the raceway to the barrier wall, Btu /hr-ft2,op h,.u convective heat transfer coefficient from the barrier wall to the ambient, Btu /hr-it' *F he radiative heat transfer coefficient from the barrier to the ambient, Btu /hr-ft2,op t, thickness of die barrier, ft l

- k, thermal conductivity of the barrier, Btu /hr-ft *F Differentiating the overall heat transfer coefficient U with respect to the convective heat transfer coefficient h,.u and ignoring the second order effects (change in thermal properties due to the change in temperature) gives:

^U U 4-

U. r.u + %.u r.u + %.u (A.32)

A reasonable estimate of AU/U can be obtained by using representative values for the parameters in Equations A.31 and A.32. Such .m estimate is calculated in Table A.2 using data from Table A.10 for a 4 inch conduit protected by 1 inch thick fire barrier. As shown in Table A.2, the overall heat transfer coefficient, U, (therefore the heat dissipation rate) increases by only 1.3 percent corresponding to a 30 percent increase in the convective heat transfer coef5cient, h,.u. The corresponding effect on the -

ampacity derating factor due to an increase in the heat dissipation rate can be found by noting that:

. s(st'R)/ c= UA(T, - T,)

(A.33) where I conductor current, Amperes R conductor resistance per unit length, ohm /ft n, number of conductors per cable ~

n, numberofcables in the raceway REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co. /BVPS Unit 2 PAGE O g 9//9/97 g /9/19/97 CALCULATION No. DEAS-SR/EM01 A18 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

  • a

DE&S Duke Engmeering a Services San Ramon. Cahfornia n, number of cables in the raceway T, conductor temperature,'F T, ambient temperature, 'F i C unit conversion constant,0.2931 Dia/\Whr Taking the logcrithmic d rivative of Equation A.33,

(- - (A34)

Usin), the definition of the ampacity derating factor (ADF),

g --f-- (A.35)

Thus, a 1.3 percent increase m the overall heat transfer coefficient (corresponding to 30 percent increase in the convective heat transfer coefficient) increases the ampacity derating factor by only 0.7 percent.

This is the main reason why a simple yet conservative convective heat transfer equation is preferred to more accurate but complicated equations. The incremental benefit gained from more accurate equations is well within the uncertainties introduced into the overall method through the input data.

A.3.8 Effect of Adjacent Walls Protected conduits often run ,sarallel to a wall or a ceiling without a large enough clearance to

> comfortably apply the fire '.iarrier material between the conduit and the wall. In such instances the fire barrier is applied around '.ne expused perimeter of the conduit as close to the wall as practical and terminated at the surface of the wall, in this configuration, part of the fire barrier is formed by the wall itself. While this practice is acceptable fire protection, its implication from the point of view of ampacity must be evaluated. The purpose of this section is to perform this evaluation by comparing the heat dissipation capability of a conduit adjacent to a concrete wall with that of a free standing conduit, i.e., a conduit protected entirely by Thermo-Lag fire barrier material. The first conduit is effected by the thermal resistance of the Thermo Lag material. The second conduit is affected by the combined thermal resistance of the Thermo Lag material plus the concrete wall. Since the conduit and the cable fill remains the same in both cases, only the Thermo-Lag and the wall need to be considered. For the purpose of simplifying this comparison tw o extreme cases are considered:

1. A conduit wrapped with Thermo Lag only
2. A hypothetical conduit wrapped with Thermo-Lag and a 2 ft concrete wall.

The geometry of the hypothetical conduit is illustrated in Figure A.2, The input data used in the

, comparison and the results are summarized in Table A.3. The Thermo Lag material is 1 inch thick and is at 150 F at its inside surface. These values are reasonable representation of most conduit installations REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE I

g /0/2/97 g /0/2/97 CALCULATION No. DE&S SR/EM01 Al9 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40 T

i1 DE&S Dule Engineering & Services San Ramon. ralfornia for the purpose of this comparison. The heat transfer calculations are performed using the appropriate equations described in the previous sections. Examination c: the results shows that the addition of the concrete wall over the Thermo. Lag barrier has nearly no effect. Although this may seem surprising, it is physicallyjustified for the rer. son that the reduction of the overall heat transfer coefficient due to the presence of the wall is more than compensated by the increase in the exposed surface area of the barrier.

Since thl:t is true for a hypothetical barrier wrapped with a concrete wall around its entire perimeter, it is also true for a conduit that has only a panial contact with an adjacent wall. Based on this, the effect of adjacent walls that may form part of the fire barrier of a conduit can safely be ignored, and the conduit may be treated as ifit is protected by a layer of fire protection material uniformly wrapped around its entire perimeter and fully exposed to the ambient.

A.3.9 Effect o. .\mblent Temperature Cable ampacities are typically rated for 90 'C (194 'F) cable conductor temperature at 40"C (104'F) ambient temperature of. Ampacities at ambient temperature other than these can be determined using the equation below taken from NEC [Ref. A2, Anicle 315):

~' ^

Inir - twi -T " I'"'a J A XF (A.36) where Ipavo Ampacity .t. 90"C conductor and 40'C unbient temperature 1,37 Ampacity at 90*C conductor and T*C ambient temperature ATCF Arnbient temperature correction factor (see equation A.37 below).

T,, Conductor temperature in 'C T,3 h eference ambient temperature in 'C T,f Actual ambient temperature in 'C DELTA TD Dielectric loss temperature rise The amoient tensperrture correction factor is defined by the expression under the square root.

Substituting T,=90, T,f=40, T,f=T, and DELTA TD=0. .

,g,, 90 - T('c) ,,

194 - T(* F) ,

90 - 40 3 194 - 104 l A.3.10 Implementation 1

The equations given in the previous sections are solved by iteration to determine the limiting rate of heat generation within each raceway such that the cable conductor temperature is at its specified value. The REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

% 9/19/97 g /9/19/97 CALCUl. ATION No. DE&S SR/EM01 A20 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

DE&S .

Dul.e Engineering & Services San Ramon. Calfornia heat generation rate is then convened into an ampacity value using Equ; tion A.2 and an ampacity derating factor (ADF) is calculated using Equation A.1 as:

l ADF = ""'" ~ ?"" x100 (A.1) fu.,1,,,,

\

where Iw,i,,,, refers to the ampacity of the cable without the fire enclosure and I,,,,,,,,a refers to the ampacity of the cable with the enclosure. This approach (defining the ADF value rather than the actual ampacity) eliminates the need for specific cable infonnation in each individual raceway and simplifies the subsequent application of the ADFs. This approach is also consistent with the NRC method used in

{Ref. A10 p: A3 9).

Calculations are performed using the steps as outlined below.

1. Calculate the overall heat transfer coefficient of the raceway, U,,in Equation A.6 from the raceway and the cable data. As discussed in Section A.3.2, U,is back calculated from the baseline ampacity data by performing the following intermediate steps:

Calculate q, from Equation A.3 corresponding to the baseline ampacity and the number of cables in the conduit.

Substitute q,into Eqt ation A.4 and A.19 with the appropriate temperature and the diameter terms to solve for U,.

These intermediate steps require iteration over the surface temperature of the conduit since the heat transfer coeflicient from the conduit to the ambient is a function of the surface temperature and the emissivity of the conduit surface. The source document (Ref. Al], where the baseline ampacity i.S obtained, does not specify what emissivity value was used to determine the baseline ampacity. It has been assumed that the emissivity (c) upon which the baseline ampacity in (Ref. Al) is based is at the high end of the range (0.4 to 0.8) given in (Ref. A10, p: A4-5), i.e., emissivity =0.8. This is conservative since choosing a high emissivity value for the conduit (for the' purpose of determining U,) lowers U, and increases the ADF value.

2. Estimate a reasonable ampacity for the protected cables.
3. Calculate the corresponding heat generation rate, q,, from Equation A.3, and the raceway
temperature, T,, from Equation A.7.

REV. PREPARER VERiflER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE 0 g 9//9/97 g /9//9/97 CALCULATION No. DE&S SR/EM01 A21 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

DE&S D:Le Engiverlag & Servicu San Ramon. Calfornia
4. Estimate a reasonable barrier inside wall temperature, T6 .,, and calculate the heat transfer rate across the air gap using Equation A.7. Iterate until the calculated heat transfer rate agrees with the heat generation rate 9, calculated in Step 3.

l 5. Calcula.e the barrier outside surface temperature, 6T ,, using Equation A.16.

6. Calculate the corresponding ambient tempe'ature, T,, using Equation A.19.
7. Repeat Steps 2 through 6 until the ambient temperature calculated in Step 6 is in reasonable agreement with the actual amblent temperature.
8. Calculate the ampacity derating factor from Equation A.l.

4 l

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

g 9/19/97 yt /9/19/97 CALCULATION No. DEAS SR/EM01 A22 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

DE&S Duke Engineering & Servkes San Ramon. Calfornia A.4 - VERIFICATION OF TIIE MODEL AND SENSITIVITY STUDIES A.4.1 Verification of the Model ne heat transfer model described in Section A.3 was verified against test data to evaluate the .

conservatism of the method. The verification cases involved four corduits, each wrapped with Thermo.

Lag fire protective material, and ranging in size from one inch to five inches. The essential test data and the comparison of the measured ampacity with the calculated results are summarized in Table A.4.

The one inch conduit test (Case V1 in Table A.4) and the four inch conduit test (Case V2 in Ta were performed by Omega Point Laboratories for Tennessee Valley Authority (Ref. All). The tests ,

were performed in accordance with written procedures using calibrated instruments. The fire protective  !

material (nermo Lag) was applied in three layers consisting of a base layer of 1.25 inch thick pre-formed half rounds followed by two layers of each 0.375 inch thick flexible blanket. Each layer of the flexible material was overlapped at the seam by approximately 3 inches and the gaps were filled with trowel grade Thermo-Lag material. Each test involved measuring the currents (baseline and protected),

the conductor temperature, and the ambient temperature after the test asserably had attained steady state conditions. In addition, surface emissivity measurements and barner thickness measurements were taken. He data used in the heat transfer model are based on the measured data except the cable conductor resistance and the thermal conductivity of the barrier which are taken from (Ref. Al, p: 313]

and [Ref. A10, p: A3 8) respectively. The model also neglects the air gap between the P.d!c blankets by assuming a perfect continuity between the individual layers. Since this assumption reduces the thermal resistance of the barrier the protected ampacity is calculated on the high side.

The two inch conduit test (Case V3 in Table A.4) and the five inch conduit test (Case V4 in Table A.

were performed by Texas Utilities Electric Company (Ref. A12). These tests were also performed in accordance with written procedures using calibrated instruments. The fire protective material (Thermo-Lag) was applied in a single layer of 0.75 inch thick pre formed half rounds. The source document describing the tests (Ref. Al l) is not specific about any thickness or emissivity measurements.

Therefore the thickness value used in the model is based on the nominal thickness stated in the tot report (Ref. Al1). The barrier emissivity and the raceway emissivity are taken from (Ref. A10, pp: A3-8, A4-5),

he test cases described above were simulated using the heat transfer model described in Section A.3.

The input data used in the. simulation and the comparison of the results are summarized in Table A.4.

Detailed calculations are contained in Tables A.6 through A.9. Where specific test data was not available, the input data is intentionally biased to yield a low ampacity derating factor. The purpose in -

doing this is to demonstrate that the heat transfer model is conservative with reasonable choice of the data. The results show that:

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co. /BVI-5 Unit 2 PAGE O g 9//9/97 g /9//9/97 CALCULATION No. DE&S SR'EM01 A23 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

DE&S Duke Engineering & Serskes San Ramon. Cahfornia

1. The protected ampacity calculated by the model is less than the measured value by approximately 3 to 14 percent.
2. The ampacity derating factor calculated by the model is higher than ampacity derating factor determined from the test data by 3 to 10 percentage points.

Based on these results and the conservative modeling approach used, it is concluded that the heat transfer model is reasonable and conservative.

A.4.2 SensitMty Studies ne heat transfer model described in Section A.3 should not be regarded as a precision method for determining the ampacity derating factors, but as a practical method with reasonably accurate and conservative results. The degree of accuracy and the level of conservatism is determined by the approximations and the uncertainty carried in the input data. The purpose of the sensitivity studies described here is to evaluate the effect of some key model parameters on the calculated results.

Calculations are performed for a base case representing a typical conduit installation, and three variations of the base case representing changes in conduit percent fill, cable conductor size, and barrier air gap. The input data used in theses sensitivity studies and the results are summarized in Table A.S.

The results show that: .

1. Ampacity derating factor decreases with decreasing cable fill. Changing the percent fill from 40 to 24 decreased the ampacity derating factor from 15.8 percent to 12.8 percent.
2. Ampacity derating factor decreases with increasing cable conductor size. Going from 3/C #6 conductor to 3/C #2 conductor, while maintaining the same percent fill, decreased the ampacity derating factor by 5.8 percentage point (15.8% to 10%).
3. Ampacity derating factor increases with increasing air gap. Doubling the width of the air gap from 1/8 inch to 1/4 inch increased the ampacity derating factor by 2.5 percentage point (15.8% to 18.3%).

Based on these results it can be concluded that the ampacity derating factor is weakly sensitive to the cable fill, the conductor size, and the air gap provided that these parameters are reasonably represented in the model. The range of variation of the ampacity derating factors in Table A ' .5 in relation to the respective parameters can be used as a guideline to assess the significuce of uncertainties and the approximations in them.

REY. PREPARER YERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g 9/19/97 g /9//9/97 CALCULATION No. DEAS SR/EM01 A24 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits M

d DE&S Duke Engineering & Serskes Sanp,,,,,(,,g,,,,,

l

- Cables

<, *r

'o, '*a

,*,..*,..o

+

+,* *,,** ,

,*,,, *, , Conduit

.,' r *

,[*+,,*, "'"%, ,' ' , ,*+* , ,, _ Altgip L

. ' o,; ,

    • ,e*<,< .

e s .nm . _ y=2 ,r- 9.

1 a , ,J.

  • g *r ,

1-25)  % *, *,

      • **r -f *, **,

x .

.*o..* r' /

. ,,,,,f/ o a, *a

  • o
  • r* o

'o

  • e r

f f f r

  • e*r#*o*

f r

g

  1. e r # #

e, *+ #'

  1. # /

t is Tr TNe w Te l T. I Ur I bid g I bt be g

~

A Y"". '

A y

""~~*

A Y A StS$0tFU SDSQL3 Y

tr bredd hrine Y a ambia A me b bemer 6 hetsuiscoefoss e angstin i isIbwre b

a condear T tmperamt 4 ThermalReumam(=llAh orllAU) r rxesy(condu) U ed barsdeconfean ral rdew

  • TernperannNode Figure A.1 Thermal Model of a Protected Conduit REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE 0 g p//p/97 g /p//p/97 CALCULATION No. DE&S-SR/EM01 A2$

TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S Duke Engineering & Services l

1 5,,ga,on,c,yy,,,,,

i l

l c te  :'

l -

Thermo Lag ,, ...'.,'.,'

Concrete Wall Fire Barrier .'.; l ; l.; l.;

M... . . . . . * , .. * .

. ,.....4 .

g.K., ... ... ... ...

Conduit Actual Configuration r

= d-*+hw m... i .. ..

... i ..

b,..

. . ..' . r . .g Thermal Modelof the Extreme Case Figure A.2 Conduit Partially Protected by a Concrete Wall REY. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g 9/19/97 g /9/.'9/97 CALCULATION No. DE&S-SR/EM01 A26 TITLE: Arnpacity Derating Factors of OF Fire. Protected Conduits A40 J

DE&S Duke Engineering & Services San Ramon. California Table A.1 Cornparison of Convective Heat Transfer Correlations Physical Constants

3. ftt ' 4.17E+08
c. Stahr A'.*R' l.714E 09 Properties of Ai. [Ref. 6]

T.*F 0 200 A, Bru/hr A *F 0.014 0.018

v. A'/hr 0480 0 862 Pr 0.7l l 0.692 input Data se. In I
  1. (verticallength), A 10 T,.*F 104 Conduit slae 2 inch 2 inch 4 inch 4 inch 6 inch 6 inch de. A 0.36 '0.36 , 0.54 .

0.$4 0.72 0.72 T w .*F 114 134 114 134 114 134 AT. *F 10 30 10 30 10 30 Tj,(Film Temp.) *F 109 119 109 119 109 119 .

A, Bru'hr A *F 0.016 0.016 0.016 0.016 0.016 0.016

v. A'/hr 0.688 0.707 0.68d 0.707 0.648 0.707 Pr 0.701 0.700 0.701 0.700 0.701 0.700 Vertical Conduit (characteristic length I. based on the height #)

Rag [A.24] 1.lE+10 3.0E+ 10 1.lE+10 3.0E+10 1.lE+10 3.0E+ 10 Nut [A.26] 279 386 279 386 279 386 h [A.23] 0.45 0.63 0.45 0.63 0.43 0.63 Hortaostal Condelt (characteristic length based on the diameter de )

Rao [A,24] 5.3E+05 1.5E+06 1.7E+06 4.8E+06 4.0E+06 1.lE+07 Nuo [A.23] 12.7 16.9 17.7 23.9 22.7 30.6 A[A.23] 0.57 0.76 0.53 0.72 0.51 0.70 Bounding Equation A [A.28] 0.46 0.60 0 41 0.55 0.39 0.51 Comparison of Heat Transfer Coemelents (Eq. A.23 versus Eq. A.28)

Deviation (vert. cond.) 1% 5% 8% 14 % 15 % 20%,

Deviation (horia, cond.) 19 % 21 % 22 % 25 % 25 % 27%

Notes:

Numbers in [ ] refer to the equation numbers in Se wa A.3 Thermal properties are evaluated at the film temperature f T =(Tw +T.)/2 g4,, h{ A.23)-hf Alsj h[A23)

REV, PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O 9//P/97 g, /9//9/97

% CALCULATION No. DEAS SR/EM01 A27 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

DE&S Duke Enginvring & Services SanRamon Calfornia Table A.2 Effect of Change in Convective Heat Transfer Coemclent on ADF laput Data (from Table A.10)

U,, Stu/hr ftF 0.49 h e , Btu /hr ft t,ep 3,54 ,

hm, Stu/hr ftF 0.56 h eu , Blu/hr ft' 'F 0.42 he, Blu/hr ft' *F 1.14 f.,in 1 l

k , Stu/hr ft *F 0.09 A . , ft' 1,77 A,, ft' 1.18 l

Effect of Convective Heat Transfer Coemclent on the Ampacity Derating Factor l

a(heu)/h,u (%) 0% 15% 30%

h,w, Stu/hr ft' F 0.42 0.48 0.55 U, Btu /hr ftF 0.168 0.169 0.170 [Eq. A.31)

AU/U 0.0% +0.7% +1.3%

a(ADF)/ADF 0.0% -0.3% -0.7% (Eq. A.35)

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

g 9/19/97 g /9/19/97 CALCULATION No. DE&S SR/EM01 A28 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

DE&S Duke Enginuring & Servkn San Ra**em Cal &nia Table A.3 Effect of Adjacent Concrete Walls on ADF Physical Constants g, htr' 4.17E+08

c. Btwhr A' *R' l.714E 09 loput Data te. A l/12 i k , Binhr A.*F 0.09 l te 0.9 f., A 1.0 A,, Btatt A *F 0.90 t, 0.9 Conduit slas 3 inch d,, A
  • 0.29 (conduit o.d.) ,

da, A 0.46 (banier o.d.).

d., A 2.46 (wall o.d.)

T,, 'F l40 T. , *F 104 Heat Transfer Rates Without Wall With Wall U . Btwhr A' *F 0.87 0.87 [Eq. A.17)

A . , A'/A 0.12 0.12 [Eq. A.18)

U., Btwhr A' *F N/A 0.44 [Eq. A.17 with subscript & replced by w)

A ,, A'/A N/A 0.64 [Eq. A.18 with subscript 6 repiced by w)

Tw, *F 140 140 [ Input)

Twt, 'F i16.7 115.8 [ iteration Parameter) g,, Btwhr 29.2 30.3 [Eq. A.16)

T *F N/A 115.8 [T =T> ,)

T t. *F N/A 106.7 [Eq. A.17 with sbscript & repiced by w]

h m ,Stu/hr A' *F 0.46 0.30 [Eq. A.28]

h,.tu . Stu/hr A8 *F l.14 1.14 [Eq. A.21)

Us , , Btu /hr A' *F l.60 1.44 [h, u +h,.5u) gu, Btu /hr 29.2 30.4 [Eq. A.19]

Note:

Calculations are performed by iterating over Ta until g,=gu REV- PREPARER VERIFIER CLIENT / PROJECT: DUQUliSNE Light Co./BVPS Unit 2 PAGE 0 g 9//9/97 g /9//9/97 CALCULATION No. DEAS SR/EM01 A29 TITLE: Ampacity Derating Factors of OF Fire-Protected Conduits A40

DE&S was Ensimring a sevicu san A: mon. Catgorna Table A.4 Sussmary of the Test Data and the Verification Results Case No. VI V2 V3 V4 Source of Data TVA lRef. All) TVA [Ref. All) TU [Ref. Al2l TU [Ref. Al2]

Raceway Data Raceway Sizs I" Galv. Steet 4" Galv. Steel 2" Galv. Steel 5" Ostv. Steel Outside Diameter, m 1.315 4.50 2.375 5.563 Wall Thickness, m 0.133 0.237 0.154 0.258 Percent Fall 33 % 40% 22.5 % 26.lts Emissivity 0.48 0.69 N/A N/A Cable Data Size 4/C s10,600V 3/C #6. 600V 3/C s6. 600V I/C 750,600V Number of Cables i 12 1 4 Baselme Ampacity, amps 32.7 29.21 64.5 571 Diameter, m 0.603 0.735 0.980 I

1.290 Fire Barrkr Type Thermo Lag Thermo Lag Thermo Lag nermo Lag Thickness 2.4"(measured) 2.1" (measured) 0.75" (nommal) 0.50"(nominal)

Thermal Conductivity "' O.122 0.122 0.122 0.122 Air Gap Width, m 0.2 0.2 N/A N/A Emissivity 0.99 0.99 N/A N/A Test Results Protected Ampacity amps 29.66 25.56 60.2 510 ADF 10 % 13 % 6.7%

l 10.7 %

Model Results Detailed Calculations Table A.6 Table A.7 Table A.8 Table A.9 Conductor Resistance"' l.35 0.515 0.515 0.022 Gap Width, m "' O.2 0.2 1/8 t/8 Protected Ampacity, amps 26.3 23.0 58.2 448 ADF 19.4 % 21.3% 9.8% 21.5 %

Deviation (%). * +11.3% + 10% +3.3 % + 13.8%

1, Conductor resistances (in Ohm /1000A) for the TVA tests (DC) are taken from NEC (Ref. A2, Table 8) for uncoated copper conductors at 75'C. For the TU tests (AC) they are taken from NEC[Ref. A2, Table 9) for uncoated copper wires in steel conduit. Adjustment to 90'C conductor temperature is made using the equation in (Ref. A2, Table 8) as:

Rn = R s[l + 0 0032)(90 - 73)]

2. The width of the air gap was measured during the TVA tests but not the TU tests. Assumed I/8 inch for the 11) tests based on the minimum value measured during the TVA tests.
3. Thermal conductivity of ttie Thermo Lag material (Brushr A *F)is taken from (Ref. A10, p: A3 8}

4 Deviation =[ Protected Ampacity(Test). Protected Ampacity Model)]/ Protected Ampacity(Test)

REV. PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co.iBVPS Unit 2 PAGE 0 g 9/19/97 /9/19/97 CALCULATION No. DE&S SR/EM01 A30 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40 A

DE&S Dule Engineering & Services San Ramon Calfornia Table A.5 Summary of the Sensitivity Studies TEST DATA COMPARISON SENSITIVITY STUDIES I

Case No. St S2 S3 S4 I

Base Case Effect of Effect of _

Effect of

. Percent Fill Conductor Size Air Gap i

}Uaceway Data Raceway Size 4" Galv. Steel 4" Galv Steel 4" Galv. Steel 4" Galv. Steel 1

Outside Diametet,in 4.50 4.50 4.50 4.50 Wall Thickness, in 0.237 0.237 0.237 0.237

% Fill (No. of conductors) 39% (24) 24.4 % (15) 39 % (15) 39 % (24)

Emissivity 0.40 0.40 0.40 0.40 Cable Data Size 3/C #6. 600V 3/C #6,600V 3/C #2,600V 3/C #6. 600V 2

Baselint< A%scity, amps 69x0.45-31.05 69x0.50=34.5 123x0.50-61.5 69x0.45=31.05 Diameter, in 0.889 0.889 1.121 0.889 I

Fire Barrier Type Thermo Lag Thermo. Lag Thermo-Lag Thermo. Lag Thickness. in 1.0 1.0 1.0 1.0 Air Gap W Jth in 1/8 1/8 1/8 1/4 Emissivity 0.90 0.90 0.90 0.90 Model Results"'

Detailed Calculations Table A.10 Table A.ll Table A.12 Table A.13 Cond . a 9 .istance'" 0.515 0.515 0.203 0.515 Protecica A'npacity i 26.2 30.1 55.3 25.4 ADF 15.8 % 12.8 % 10 % 18.3 %

Deviation"' O.0% point 3.0% Point 5.8% Point +2.5% Point

1. Conductor resistances (in Ohm /1000ft) are taken from NEC [Ref. A2, Table 8) for uncoated copper conductors at 75'C.

Adjustment to 90*C conductor temperature is made using the equation in [Ref. A2, Table 8) as:

Rn = R s[I + 000323f 90 ~ 73))

2. Model cable data are taken from: Cable diameter and nominal ampacity[Ref. Al, p: 313), Multiple Conductor Correctior: Factor [Ref. 42, Article 31015).
3. Deviation (percentage point) = %ADF. %ADF (Base Case)

REV, PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g 9/19/97 g /9//9/97 CALCULATION No. DE&S SR/EM01 A31 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

DE&S Duke Engineering & Services San Ramon. California Table A.6 - Verification Case VI(1.0 Inch Conduit)

TIREBARRIER DATA AIR GAP DA TA HEA T TMNSTER PARA %IETERS de, outside dierneter,(in) 6 $2 k,,(Btuhr h *F) 0016 c. Btuhr ft' *R' l.7140E 09 c , emissivity 0 99 t,,(in) I/$ C (W h/Bru) 0.2931 te, thickness (b) . 2.40 a 0 20 4., thermal cow.,(Btwhr n *F) 0.122 n 0.25 f . shape fa.: tor 1.00 T. , (*F ) 1940 T., (*F) 104.0 RACEWA YDIMENSIONAND CABLE FILL DA TA Raceway ID l' CONDUIT d,, outside diameter,(ir.) 1.315 [UItrieslin boxes desituate the parameten over t,, wall thickness,(ln) 0.133 which sterations are cartied out. Only tl,4 final fill, (%) 33.0 values are shown.

c,, surface emissivity 0.48 cable size (n.odel cable) 4/C#10 Entries in [ ] show the applicable equation 4,, cable dia. (in) 0.603 number in Section A.3, or the equation itself, n., no. of conducton (per cable) 4 A, resistance,(Ohm /1000ft) 1.35 l ,,,,,,, baseline amp.,(Amp) 32.7 C ALCULA TED PARAMETERS Unprerected Raceway (baseline. 90 *C conductor temp., 40 *C ambient temp.)

n,, number of cables 1 [Eq. A.4]

A,, heat transfer area,(ft'/ft) 0.34 [nd,/12]

g,,liest sen. rate,(Btwhr ft) 19.64 [Eq. A.3, with t=/6 ,]

U,,(Btuhr ft' *F) 0.90 [A.6]

T,, Surface Temp., (*F) l t 30.9 l h,.,,,(Btwhr ft* *F) 1.07 [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

h, ,,,(Blu/ht ft' *F) 1.06 [Eq. A.21 with T ,,=T,, c. =0 8, and F =ll g,,,,l{ cat dissip. rate (Bru/hr ft) 19.67 [Eq. A.7 with Tu =T. g,, must agree with baseline g,]

ProtectedRaceway

/,,,,,,,,,,, protected amp., ( Amp) l .:6.J l q,,(Btu /hr ft ) iz.s [Eq. A.3]

T,, Surface Temp., (*F) 1$3.0 [Eq. A.6] ,

Air Gap h,.,.. (Btu /hr ft3 *F) 0.% [Eq. A.15]

h,, ,., (Btu /hr.ft' *F) 0.71 [Eq. A.8) h,..(Bruhr ft' *F) 1.67 [4,,.+h w ]

g,..(Btahr ft) 12.8 [Eq. A. 7. g, must agree with protected g, ]

Barrier & Analent

  • A., ares ,(fts /ft) 1.7 [xd,/12]

U.,(Bruhr ft' *F) 0.34 [Eq. A.17]

T ,,,inside Temp.,(*F) [ t J9.9 l Tw,Outside Temp (*F) los.7 [Eq. A.16] -

h, ,,,(Brahr ft8 *F) 0.34 [Eq. A.28]

h, ,(Btu /h-ft* *F) 1.23 [Eq. A.21]

h.,,,(Btu /hr ft' *F) 1.58 [h, ,+h, ]

T (protected),(*F) 103.9 [Eq. A.19. Calculated T, must agree with input T,]

ADF 19A% (Eq. A.l]

REV, PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O g 9/19/97 g /9/19/97 CALCULATION No. DEdcS SR/EM01 A32 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40

DE&S Duke Engineering & Services San Ramon, California Table A.7 Verification Case V2 (4 inch Conduit)

FIRERARRIER DATA AIR GAP DA TA HEA T TMNSTER PARAMETERS de, out ide diameter,(in) 9.10 1,,(Btuhr A *F) 0.016 c. Btuhr A *R*

8 l.7140E 09 c.. emissivity 0.99 t,, (in) 1/5 C. (WWBru) 0.2931 se, thickness (in) 2.10 . a 0.20 A there,ial cond..(Btu'hr A *F) 0.122 a 0 25 Ea,, shape factor 1.00 7., W) 194.0 T.,(*F) 104.0 RACEWA YDIMENSIONAND CARLE FILL DA TA Raceway ID 4* CONDUIT d,, outside diameter (in) 4.!CO [Etries lin boxes designate the parameters over t,, wall thickness,(in) 0.237 which iterations are carried out. Only the final fill, (%) 40.0 values are shown.

s,, surface emissivity 0.69 cable size (model cable) 3/C#6 Entries in [ ] show the applicable equation d,, cable dia, (in) 0.735 number in Section A.3, or the equation itself, n,, no. of conductors (per cable) 3 R. resistance,(Ohm /1000A) 0.515 la.,w, baseline amp.,(Amp) 29.2 CALCULATED PARAMETERS Umroceesed Raceway / baseline 90 *Cconductor temp. 40 *Cambient tenp) n,, number of cables 12 [Eq. A.4]

A,, heat transfer area,( A'/h) 1.18 [nd,/12]

q,, Heat Sen. rate, (Btv/ht A) 53.99 [Eq. A.3, with t=la.,a,,, )

U,,(Btu /ht A' *F) 0.7I [A.6)

T,, Surface Temp., (*F) l I 29.1 l h,.,,, (Bru/hr A; .*F) U.77 [Eq. A.27 with a=0.2* and a=l/4, L=d,/12, Section A.3.10) .

h%,(Btuhr A'.*F) 1.05 [Eq. A.21 with Tw =T,, c. =0 8 and fa,=l]

q . Heat dissip. rate,(Btu /hr A) 53.92 [Eq. A.7 with Tw =T. g,, must agree with baseline q,]

ProtectedRaceway

/,,,,,,w, protected amp.,(Amp) l23.9 l g,,(BtwhrA) JJ.4 [Eq. A.3)

T,, Surface Temp.,(*F) 153.8 [Eq. A.6J Air Gy h,4, (Btuhr-A'.*F) 0.% [Eq. A.15]

h,,,5,.. (Blu/hr A'.*F) 1.05 [Eq. A.8]

4,,,(Bru/hr A'.*F) 2.0I [4,k +h,,,$, ] .

q,.. (Btnhr A) 33.5 [Eq. A. 7 g,. must agree with protected 9,)

Rarrier a AmWest '

A e, area , (R'/A) 2.4 [nd,/12]

U 6,(Btu /hr A'.*F) 0.52 [Eq. A.17]

Tw,Inside Temp., (*F) l1Jv.i l T6 .Outside Temp.,(*F) 112.7 [Eq. A.16] .

h,*,(Btu /hr A'.*F) 0.37 [Eq. A.28]

3 h,,aa , (Btu /h.A .*F) 1.25 [Eq. A.21) ha,,(Btuhr A'.*F) 1.61 [h,w+h,,6%)

T. (protected),(*F) 104.0 [Eq. A.19. Calculated T mtut agree with input T,)

ADF 213% (Eq. A.1)

REV, PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O

$ 9//9/97 g /9//9/97 CALCULATION No. DEAS SR/EM01 A33 TITLE: Ampacity Derating Factors of OF Fire. Protected Conduits A40

DE&S Duke Engineering & Services San Ramon. Calfornia i

Table A.3 - Verincetion Case V3 (2 inch Conduit)

FIRERARRIER DATA AIR GAP DA TA HEA T TRANSFER PARA bfETERS de, outside diameter (in) 4.13 A,,(Bruhr A *F) 0.016 o, Btwhr A'.*R* 1.7140E 09 te, emissivity 0.90 t,, (in) 1/8 C, (W NBru) 0.2931

, te, thickness (in) 0.71 a 0.20 A.' thermalcond (Btdt A *F) 0.122 a 0 25 Fu, shape factor 1.00 T., (*F) 194,0 T., (*F) 104.0 RACEWA Y DIMENSION AND CARLE fill DA TA Raceway ID 2* CONDUlf 4,, outside diameter,(in) 2.375 [GRis lin bones designate the parameters over i

f,, wall thickness,(in) 0.154 whoch sterations are carried out. Only the final fill, (%) 22.5 talues are shown.

t,, surface emissivity 0.40 cable size (r'iodel cable) 3/C #6 Entries in [ ] show the applicable equation 4,, cable dia,(in) 0.980 t.imber in Section A.3, or the equation itself.

n., no. of conductors (per cable) 3 .

R, resistarce,(Ohm /l000R) 0.515

/%, baseline amp.,(Amp) 64.5 CALCULA TED PARAMETERS Unprwecsed Raceway (baselme. 90 *C conductor semp., 40 *C ambient temp.)

n,, number of cables I [Eq. A.4]

A,, heat transfer area, ( A8 /ft) 0.62 [nd,/12]

q,, Heat sen. rate,(Bishr A) 21.95 [Eq. A.3, with l=Im j U,,(Btu,hr A 8.*F) 0.50 (A 6]

T,, Surface Temp.. (*F) lizz.s I h,,,,, (Btu /ht A' *F) o se [Eq. A.27 with a=0.27 and n=l/4, L=d,/12, Section A.3.10]

4,,,, . (Btuhr A'.*F) 1.03 [Eq. A.21 with Tw =T,, c. =0.8, and Fu=l) g,,,, Heat dissip. rate,(Btwhr A) 21.96 [Eq. A.7 with Tw =T, g,, must agree with baseline g,)

ProtectedRacewey

/-.,,, protected amp., ( Amp) ps.2 l g,,(Btu /hr R ) 17.9 [Eq. A.3]

T,, Sarface Temp.,(*F) 136.0 [Eq. A.6]

Air G,p h,4,(Btwhr A 8.*F) 1.54 [Eq. A.15]

hm,(Btu /ht A'.*F) 0.54 [Eq. A.8]

h,. (Btu /hr A* *F) 2.08 [h,a +h w I g,.,(Bru/hr A) 14.4 [Eq. A. 7. g, must agree with protected g, )

Rerrier& Ambient A .. area , ( A'/A) 1.1 [nd,/12]

Us,(Btwtr A8 *F) 1.57 [Eq. A.17]

Tu,Inside Temp.,(*F) lize.v j T ,, Outside Temp.,(*F) i 14.J -[Eq. A.16]

h,u,(Bru/hr A'.*F) 0.47 [Eq. A.281 h,,m. (Stuh-A* *F) 1.14 [Eq. A.21]

hu,(Btuhr R 8.*F) 1.61 [h,% +h,,,m]

T,(protected),(*F) 104.0 [Eq. A.19. Calculated T, mwn agree with input T,1 ADF 9.8% [Eq. A.1]

REV, PREPARER VERIFIER CLIENT / PROJECT: DUQUESNE Light Co./BVPS Unit 2 PAGE O 9/19/97 7[) g /9/19/97_ CALCULATION No. DEAS SR/EM01 A34 TITLE: Ampacity Derating Factors of OF Fire Protected Conduits A40 J