ML20217F950

From kanterella
Revision as of 02:06, 21 March 2021 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 1 to Calculation C-1101-770-E420-018, Derating of Cable Ampacity Due to Raceway Fire Barriers
ML20217F950
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 07/24/1997
From:
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20217F929 List:
References
C-1101-770-E420, C-1101-770-E420-018, C-1101-770-E420-18, NUDOCS 9708070057
Download: ML20217F950 (215)


Text

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ - _ _ _ _ _ _

(bu - NUCLEAn Calculation Shoot Subrect Calc No. Rev. No Sheet No l Derstmg cf Cable Ampacity Due To Raceway Fire Barriers C 1101770-E420-018 1 1 of43 l rvm., om. oei.

RWW MM

^

1 e e s w /tt % ,/2+/9, .

M+' . d( i p.4/gy

. 1,0 Problem S;atement Power cables whose tray is wrapped with Electrical Raceway Fire Barrier Systems (ERFBS) to meet 10CFR50 Appendix R (Ref. 3.12) requirements require a special ampacity derating factor. At ThSI, a Thermal Science Inc.

(TSI) Rermo-lag 330-1 one-hour rated ERFBS is used for power cable trays (Ref. 3.13). The Gilbert / Commonwealth Cable Sinng Criteria for Cycle 6 Routing (Ref. 3,14) used ERFBS derating factor of 13%

as per provided by TSI for one hour rated EFRBS over cable tray. The 13% derating factor has been resised by testing performed for nuclear plants at Texas Utilities (TU) whose ERFBS configurations bound configurations at TMI l (Ref. 3.13). He problem is to calculate ampacity of power cables in trays protected by ERFBS, resising the ERFBS derating factor from 13% to 32% and comparethe revised ampacity against the expected load currants.

Revisiort 0 of this calculation used IPCEA P-46-426 (Ref. 3.6) methodology fc: ampacity derating assessment of cables installed in trays protected by EFRBS. '

R'evision 1 of this calculation uses ICEA P-54-440 (Ref. 3.21) methodology for ampacity derating assessment of cables installed in trays protected by EFRBS.

t 0

v 9700070057 PDR 970731 ADOCK 05000289 PDR

Page la of 45 DOCUMENT NO, nuct:4n C 1101770-E420 018

, TITLE Derating of Cable Ampacity Due to Raceway Fire Barriers REV

SUMMARY

OF CHANGE APPROVAL DATE 1 a. Clarify problem statement (1.0). -

b. Include ICEA P 54-440 evaluation as final evaluation for ampacity derating for cables installed in trays protected by fire barriers (1.0, 2.0, qg( l

, 3.21,3.22, 3.23, 4.6, 4.7,4.8, 4.9,5.0, 6.0, 7.0, 8.13,8.14, 8.15). Pp9

c. Include a conservative life estimate for cable LS6 (2.0,3.24,3.25,3.26, 3,27,3.28,3.29,4.10,6.4,7.0). MUN b
d. Clarify assumptions (4.1,4.2).
c. ClarQ there are no power circuits protected by three-hour rated fire barriers at TMI 1 (5.0).

6, 1

9 4

1 4

4 6

9 Noo36 I

-n

Gs%u NUCLEAn Calculation Sheet Subrect Cale No. Rev. No. Sheet No.

l Derating of Cable Ampacity Due TO Racew8y Fire Barriers C-1101770-E420-018 1 2 of 43 onginator , Date Reviewed by oste ACE 7/?N1 b 7/2 'r'/17 2.0 Summary of Results Table 1: Circuit Revised Ampacity and Comparison Ak,ainst the Expected Load Current Circus IPCEA NEC ICEA Degraded Gnd Load Current Loed P-46 426 Ampeedy P-54-440 Load Current (A)

Ampecay (A) (A) Ampec#y (A)

(A)

CG11* 16 23 18 4 AH-E 15A CG83 89 105 102 91.9 82.7 IC P-1 A CH61 107 124 91 9 82.7 tC-P-18 CL43' 89 102 75 86 AH-E 7A I

CM43' 89 102 72 63 5 AH-E 78 CQ43* 16 23 18 <2.3 NS-V-4 ED307A 29 33 7.5 DC Feed to 1S Swgr.

E0306A 75 75 3 75 OC Feed to 1T Swgr.

ED3068 75 75 3.75 DC Feed to 1T Swgr. g 4

ED6033 ee 80 3 75 OC Feed to 1T Swgr.

  • E05033A se 80 3 75 OC Feed to 1T Swgr.

ED5034 80 80 3 75 OC Food to 1T Swgr.

ED6034A OS 80 3.75 DC Feed to if Swgr.

LP2* 103 133 118 106 103.2 OC-P 1 A ll LPSA 203 206 80 IC ESV MCC l LP58 203 206 80 1C ESV MCC LP6 140 161 100 143 140 NS-P-1 A LS5 147 100 146 140 MS-P 1C LS6' 147 132 146 140 NS-P 18 LS7 255 287 139 8 18 ESV MCC l MA9' 123 183 66.1 SR-P-3A l M89* 123 183 80.1 SR P-38 l M811* 188/181 224 <70/178 1H Transkrmer l M B13* 168 224 56 tu Treneformer l MC12* 168/181 224 <50/178 1M Treneformer l M011 200 224 60.4 1R Treneformer l ME1 254 2T3 236 18 Dieses Genero*er l ME2 254 273 235 18 Dieses Generecer l ME4 150 142 67 E F-P-28 l ME5 206 218 144 IS Treneformer ME6* 123 183 47.4 OH-P-18 ME7 123 163 ,,

91.1 MU-P-1C ME9" 123 183 32 BS-P 18 MEIO* 123 183 48.7 RR-P-18 ME11 168 224 [ 70 1T Transformer

~

Table I shows the summa y of results of the calculation from Table'4 sorted by circuit number. Column i lists all power circuits that are located in cable tray that is wrapped with lhermo lag. The circuits with asterisks (*) are non-

. Appendix R circuits. Column 2 lists the corresponding ampacities derated for tray and for Thermo-lag in amperes using IPCEA P-46-426 (Ref. 3.6) methodology. Column 3 shows the NEC (Ref. 3.7) determined ampacity for cable in tray 590. Column 4 shows the revised ampacity using ICEA P 54-440 (Ref. 3.21) methodology. Column 5 lists the degraded grid load current to obtain a conservative maximum expected load current for marginal cases only.

. Column 6 lists the corresponding expected load currents in amperes and Column 7 identifies the corresponding loads. For MB11 and MCl2 the summer values are given first, winter values second in columns 2 and 6.

The ampacity of power cables in trays protected by ERFBS is calculated, revising the ERFBS derating factor from 13% to 32% and the revised ampacity is compared against the expected load currents.

a

U NUCLEAR Calculation Sheet Subpct Caic No. R.v. No. Sheet No.

l Derating of Cable Ampacity Due To Raceway Fire Bamers C 1101770-E420-018 1 3 of 43

. ~. - o gW 7lm(cp fZW6 7 23-q r

P-46-426/NEC Evaluation For 32 out of 35 cables the maximum expected load current does not exceed the IPCEA P-46-426 (Ref. 3.6)

I am; acity. Here are three (3) cables, CG83, LP2, and LP6, out of 35 for which the maximum expected load current may slightly exceed the revised ampacity when calculated using the IPCEA P-46-426 (Ref. 3.6) methodology, Cables CG83, LP2, and LP6 are routed in tray 590 along with cables CGI1 and CQ43. The NEC (Ref. 3.7) is used to provide a closer evaluation of circuits in tray 590 which takes credit for the actual non random physical configuration. He NEC ampacity evalcation shows that the cables in tray 590 are not overloaded.

P 54-440 Evalugh he ICEA P-54-440 (Ref. 3.21) is the methodology selected for ampacity evaluation for power cables installed in'-

tray protected by EFRBS is because the P-54-440 method most ' closely applies to the testing performed by TU (R6f.

3.8) to determine the EFRBS tray derating factor of 32% used in this calculation (see section 6.3). He ICEA P 54-440 ampacity shows that one cable, LS6, is nomma*Jy overloaded by 6% of the derated ampacity and could be overloaded during degraded grid or runout conditions by 11% of the derated ampacity.

Conservative Life Evaluation for LS6 he con =ervative LS6 cable life evaluation given shows that there is sufficient cable life remaining until 1/30/2001 but not until end of plant life; 9/1/2014. Monthly surveillance OPS-S94 (Ref. 3.28) will be changed to require .

engineering evaluation if NS-P-1B-IS breaker elapsed time meter reaches the laboratory end-of life limit. Remedial follow-up actions are rec;uired to assure cable LS6 life.

Conclusion in conclusion, 34 cables in this calculation are acceptably sized with respect to ampacity even with increased derating due to Thermo-Ir.g Sre barriers. One cable, LS6, is shown to be nominally overloaded due to the Thermolag barrier 1CCD-FB02 installed over 6" tray 551. Cable LS6 is shown to have sufficient remaining life until 1/30/2001 by a conservative life evaluation. Follow-up actions are required to assure NS-P-1B function umil 9/1/2014.

4 t 4

(bu suctsAs Calculation Sheet Subrect Caic No. Rev. No, Sh+et No.

l Derating of Cable Ampacity Due To Raceway Fire Bamers C 1101770-E420418 1 4 of 43 Onynetw '

Date Reviewed by Date EcE 7/q/97 T2 #.; 7/24/rr Reouired Follow-up Actions Required follow up actions for Rev. I of this calculation are documented under Engineering Task Tracking System Task No. 2324 and ec described below:

1. Evaluate and implement remedial options to assure cable life until 2014 or longer and evaluate condition monitoring options to provide assurance of LS6 cable life.
2. Initiate change to OPS-S94 (Ret 3.28) to require an engineering evaluation if the nun of NS-P-1B-1P and NS P-1B lS elapsed time meters passes the laboratory end-of life limit.
. 3. Review other applicable documents including but not limited to the FSAR (Ref. 3.11), the FHAR (Ret 3.1), and ES-023 (Ret 3.3) and initiate any necessary changes.

No other changes are required at this time.

For Rev. O of this calculation, documentation was reviewed including the FS AR (Ref. 3.11), the FHAR (Ret 3.1),

and ES-023 (Ref 3.3) and necessuy changes were incorporated per Engineering Task Tracking System Task No.

444.

EFRBS Protectine Conduit Because this analysis shows that the revised ampacity of cables installed in trays protected by one-hour Bre barriers is acceptable for 97% of the 35 cables, it follows from assumption 4.2 that the revised ampacity of cables installed in conduits protected by one-hour fire barriers is acceptable as well. With the ICEA P-54-440 (Ref 3.21) methodology

.the worst case is LS6 where the maximum expected load current of 147 A exceeds the P-54-440 ampacity of 132 A by 11% of the derated ampacity. With the IPCEA (ReE 3.6) methodology the worst case is LP2 where the maximum expected current of 1% A exceeded the P-46-426 ampacity of 103 A by 3% From Table 2 the cables in conduits protected by one hour fire barrie s have 14% to 15% higher ampacity than cables in trays protected by one hour fire barriers. Thus, it is inferred that cables in conduits that have been sized using the IPCEA (ReE 3.6) methodology are acceptably sized with respect to ampacity.

N 4

r a

  • e

hU NUCLWAR calculation sheet i Sutect C.k No. Rev. No. Sheet No.

l Derstmg of Cable Ampacity Due To Raceway Fire 5 rriers C 1101770-E420 018 1 5 or43-onen.io, o.i. n.vi d by o.i.

ECG -

7(L1h7 ISW 7hY/h 3.0 Referencas 3.1 GPUN TMI l Fire Hazards Analysis Report (FHAR), Rev.16:

3.1.1 Attachment 3 1 "TMI l Appendix R Cables". j 3.1.2 Fire Arealayout Drawing 1-FHA-001, " Legend and Notes", Rev. 3, dato.; 219.

3.1.3 Fire Area Layout Drawing 1-FHA-026, " Aux. and Fuel Handling Bldgs.-El. 281", Rev. I 1, dated 3/94.

3.1.4 Fire Area Layout Drawing 1-FHA-027, " Aux, and Fuel Handling Bldgs.-El. 305", Rev. 6, dated 3/89.

3.1.5 Fire Area Layout Drawing 1-FHA-034, " Control Room Tower El. 306", Rev. I1, dated 3/94.

3.1.6 Fire Area Layout Drawing 1 FHA-046, " Intake Screen & Pump House-El. 308", Rev. 8, dated 3/92.

3.2 GPUN Cable Routing Computer Program PC-CKS, Report CKSR1060u, dated 9/9/96 (App. 8.2).

3.3 GPUN Standard ES-023, " Selection and Sizing of Power, Lighting, and Contru Cables", Rev. 2, dr.ted 11/94. . t 3.4 GPUN Electrical Cable Informetion System, printed 9/9/96 ( App. 8.3).

3.5 Kerite Cable Information (from design basis recovery effort) circa 1967 (App. 8.4).

, 3.6 IPCEA P-46-426, " Power Cable Ampacities; Volume I Copper Conductors" Copyrighted 1962 w/ cumulative errata of 9/1/66.

l 3.7 National Electric Code Handbook,1996, Seventh Edition, published by National Fire Protection Association.

3.8 Omega Point Labs Test Report, " Electrical Test to Determine the Ampacity Derating of a Protective Envelope for Class IE Electrical Circuits ", Project No. 12340-94583,95165-95168,95246, dated 3/13/96.

3.9 Load Current

References:

i l 3.9.1 TDR No. 836, Rev. 6, Loadmg for Emergency Diesels 3.9.2 ~ TDR No. 995, Rev. 3, Voltage Drop Study on Degraded Grid 3.9.3 Calc. No. C 1101-734 5350-004, Rev.1. TMI l DC System Calculation Final Report 3.9.4 Memo No. MSS-86-079, Stah Operation of AH E-7A/B Fans Evaluation of Test Results (App. 8.5) 3.9.5 Lotus Notes, Tom Akos to Dick Bensel dated 9/9/96, TSI Cable Current Determmation (App. 8.6) 3.9.6 Lotus Notes, Tom Akos to Dick Bensel dated 9/10/96, DC-P-1 A Full Load Current (App. 8.7) i 3.9.7 GPUN Vendor Manual VM-TM-0718, Rev. 4, dated 1/24/94, Westir.ghouse AC Motors and Westinghouse l (Source 00919) Dwg. 267C795, Rev. 2.

! 3.9.8 GPUN Job Order 99494,1420-LTQ-7 data sheet, dated 9/15/95 (App. 8.8) l 3.10 GPUN Standard ES-010 "TMI-l Environmental Parameters", Rev.1, dated 11/90 E

3.11 GPUN TMI-I Final Safety Analysis Report, Update 13, dated 4/96 3.12 USNRC 10 CFR 50 Appendix R

G E8 NtJCLEAR Calculation Sheet Subtect Calc No. Rev. No. Sheet No.

} Derstmg of Cable Ampacity Due To Raceway Fue Barrim C Il01770-E420 018 1 6 of43

Ongmator t Reviewed by

. Date l /2cfL Da/e7 w/m /ws 7/24/57 3.13 GPUN Memo E540-96-002, Rev. 2, dated 10/4/96, " Comparison of TMI ~bermo-lag Fire Barrier Test Configurations With TU and TVA Configurations" (App. 8.10).

3.14 Gilbert / Commonwealth Design Input DI 217-012, "600 Volt Cable Sizing Criteria for Cycle 6 Routing",

Rev.1, dated 12/19/86.

3.15 GAI Dwg. E 215-052, Rev 60, Electrical Conduit and Cable Layout Auxiliary Building Elev. 281'.

3.16 GAI Dwg. E 215-054, Rev 57, Electrical Conduit and Cable Layout Auxiliary Building Elev. 305'.

l 3.17 Met Ed Purchase Order 97099 (Kerite Order No. A3265) dated 4/23/69 (App. 8.14).

3.18 GAI Pullfrerm sheets for power cables in this calculation that have been changed since original construchon (App. 8.11): -

3.18.1 Pullfrerm sheet 1 CH 61 date pulled 12/19/86 (Appendix R modi 6 canons) 3.18.2 Pullfrerm sheet 1 ED 307A date pulled 1/16/87 (Appendix R modifications) 3.19 Packing Slips for GPUN Purchase Orders for cables under 3.18 (App. 8.12):

3.19.1 BICC Brand-Rex Order 87431 packing slip, dated 6/13/86 for GPUN Order TP-038388 (with FAX dated 9/12/96) 3.19.2 Rockbestos Order 64213 packing slip, dated 12/15/86 for GPUN Order 044730 (with catalog cut dated i1/90) 3.20 IEEE Transaction Paper 70 TP 557 PWR, "Ampacities for Cables in Randomly Filled Trays" by J. Stolpe, l dated 1970 (App. 8.9).

3.21 ICEA P-54-440, "Ampacities of Cables in Open-top Cable Trays" Third Edition, dated 1986, with errata dated 6/23/87, .

3.22 Gilbert / Commonwealth Cable Routing Computer Program ElISTDAT, Report CKSR0401, Run 218, dated 9/30/88 - selected pages (App. 8.13).

3.23 Sandia National Laboratories Report to NRC, "A Technical Evaluation of the Three Mile Island Unit 1 Fire Barrier Ampacity Derating Assessments," Rev. O, dated 4/10/97 (App 8.15).

3.24 GPUN TMI-l Operating Procedure 1104-1 f, " Nuclear Services Closed Cooling Water System," Rev. 46, dated 1/9/97.

3.25 Sandia National L 4boratories Report SAND 96-0344, " Aging Management Guideline for Commercial Nuclear Power Plants - Electrical Cable and Terminations," dated September,1996.

(a%u NUCLEAn Calculation Sheet Subpect Calc No. Rev.No. Sheet No.

l Derating of Cable Ampacity Duc To Raceway Fire Barriers C 1101770-E420418 1 7 of 43 on n.. - o ne o..

K 2- Tftt{cf3 f2Wfd 7/Erfy7 3.26 GPUN Installation Specification TI-IS-123062-001, " Installation of Elapsed Time Meters," Rev. O, dated September 12,1985.

- 3.27 GPUN Installation Specification TI-IS-412384-027, " Cycle 6 Cable Routing Modifications...," Rev.1, dated August 8,1986.

3.28 GPUN TMI l Operations Surveillance OPS-S94, "Run Times on ITS/NSR, ES and BOP Equipment,"

Dated June 14,1994.

3.29 GPUN Equipment Qualification File EQ-T1-111, "Kerite - Low Voltage Power and Control Cable; Med.

Volt. Power Cable," Rev.1, dated September 25,1987.

t 4

0

(hou NUClaFAn Calculation Sheet Sutyct Calc No. Rev. No. sheet No, l Derating of Cable Ampacity Due To Raceway Fire Bamers C 1101770 E420 018 1 8 of 43 o , ,- o.

- R% o kA 7/ztM /2wis 7/zv/ev 4.0 Assumptions 4.1 Derating of control, control power, and instrumentation cables is not to be considered because neither type of cable carries any significant load near its ampacity rating. These words are adapted from the FS AR (Ref 3.11) section 8.2.2.11 b. fifih sentence. However, in cases where 480 VAC power cables are routed with

, 125 VDC control power cables, then the control power cables are considered because they can affect each others' ampacity.

l 4.2 At TMI l there are no power circuits that are protected by three-hour rated fue barriers as per the FHAR (Ref. 3.1). For 4160 VAC power circuits, the one-hour rated fire barriers are installed over cable trays or l over cables that are in cable trays. For 480 VAC,120 VAC, or 125 VDC power circuits, fire barriers are installed over cable trays or over conduit Testing performed for Texas Utilities (TU) showed one-hour ' ire barrier derating factors of 31.6% for cable trays and 10.7% maximum for conduit (Ref 3.8). He one-hobr fire barrier con 6guration at TU plants bounds the one-hour fire barrier configuration at TMI-l (Ref 3.13).'

Conduit is not included in this calculation because cable tray derating associated with the addidon of Thermo-lag is considered the bounding case. Table 2 shows the comparison between cable irays and conduit Table 2: Comparison of Tray and Conduit Ampacities With One-hour Thermo-lag Derating AWG Tar M g *

  • a"* Tar ^"T,'? * *" w% c.

y,-

  1. 8 41 28 36 32 350 MCM 285 194 253 225 Values in columns two and four of Table 2 are taken from Ret 3.14 which is based on Ret 3.6 for a 90 *C conductor rating operati:ig in a 40 'C ambient when installed with a total of 7 to 24 current carrying conductors inclusive. Columns 3 and 5 are calculated by multiplying the respective values in columns 2 and 4 by 0.680 and 0.890 representing derating factors of 32.0% and 11.0% respectively. When comparing columns 3 and 5 it can be seen that the ampacity for cables routed in tray protected by a one-hour fire barrier is significantly less than that for cables in conduit Thus, the analysis of ampacity of cables installed in trays protected by one-hour fire barriers is bounding when compared to that for cables in conduit 4.3- All original power cables are manufactured by Kerite (Ref 3.17) except as noted in Table 3. This is reasonable since our research found no other vendor, except as noted, and the free air ampacity values given by Kerite are comparable to those given by Ret 3.6 or Ref 3.7.

4.4 Unless otherwise noted all cables are assumed to be installed without maintained spacing. This configuration is more conservative than with maintained spacing or installation in accordance with NEC (Ref. 3.7) Article 318-9. ,

4.5 For cables MBI1 and MCl2 the ambient temperature in the winter is less than 90 'F (32.2 'C). The winter ambient is correlated with the heavy heating loads in the winter. The ambient ofless than 90 F is reasonable since the worst case aging temperature for the Auxiliary Building given by ES-010 (Ref. 3.10) is 90'F.

_o

I[ -

suctran Calculation Sheet i

l Subsest- Calc No. Rev.No. Sheet No.

l l Derstmg ofCable Ampacity Due To Raceway Fire Bani$rs C 1101770-E420418 1 9 . of 43

~

onynew Dane Revw.ed by KE ~

7/u67 /2 t+M one.

7/wn s

4.6 Tray T-54 28 and T 52-54 widths are assumed to be 6" which is the worst case.

47 DC cables are assumed to be rated for 600 V. This is reasonable since DC cable construction has similar I insulation and thicknesses to that rated for 600 V (Assumption 4.7).

4.8 The 1-4-350 cable actually has 3 conductors sized at 350 MCM and 3 conductors sized at 1/0 (Ref. 3.17 and also confirmed by walkdown at IC ES MCC Trtnsfer Switch Cabinet). Likewise, the 14-500 cable actually has 3 conductors sized at 500 MCM and 3 conductors sized at 1/0 (Ref. 3.17). De three conductors sized at 1/0 function as the neutral conductor. Considenng the 3-1/0 conductors as one neutral conductor is

. conservative since the sum total of the currents in the neutral conductors is expected to be much less than the current one of the main conductors. De main conductors feed essentially three-phase balanced motor loads when fully loaded (Assumption 5.8). The three I/O conductors are bare and are located in the interstices of the cable, nis allows the cable diameter to be the same as the 3-conductor cable with out the 1/0 t conductors. -

4.9 Sectmn 2.3 ofICEA P-54-440 (Ref. 3.21) gives a cable ampacity correction is given for actual one or three-conductor cable diameters that are less than dau. It is assumed that the correction also applies to actual diameters that are greater than dau. His assumption is reasonable since:

1. He paper by Stolpe (Ref. 3.20) does not limit the correction (see equation 10) to cables with diameters less than dau.
2. In cases where there are large cables mixed with small cables, the large cable ampacity may exceed its '

free air ampacity. However, as a fmal check all cables in the tray are imuted to 80% of the free air ampacity.

3. The correction given in 2.5 for a cable different number of conductors also corrects for the different cable diameter but does not limit the correction to cables with diameter less than dan.

~

4.10 See the section near the end of this calculation for assumpoons made for the 136 cable life evaluation.

4 e-e k

A

G U NUCLEAN CalculatlOn Sheet Subsect Calc No. Rev. No. Sheet No.

l Derating Of Cable Ampacity Due TO Raceway Fi7e Damers C 1101770-E420-018 1 10 Of 43 on9 meter Date RevievM by Date VA-

  • 70t(97 17M 7/zWn 5.0 Desien InDut There are no power circuits protected by three-hour rated fire barriers (Ref. 3,1) at TMI l. That leaves only one-hour rated fire barriers at TMI l for power circuits. Table 3 gives the identification number for the one-hour fire barriers that are installed over cable trays.

Table 3: Basic Data of Cables in Trays Protected by One Hour Rated TSI Fire Wrap Fire Berner Tray (s) Location Max. Normal Circus Manuencturer. Reted VoR. Cat 4e 0.0. Ine. Type Jacket (Wdth (Inchee)} Temp. (F) (volts) (in.)

l 1CCD-F 802 551. 553 [6. 9) C8 95 LPSA Kerne 800 1-4-350 2 40 HT (EPR) FR m lA 1CCD F802 551, 553 [6, 9) C8 95 LP58 Kerne 800 1-4-350 2.40 MT (EPR) FR m lA ICCD-F802 551, 553 (6. 9) CB 95 LS6* Konte 800 13-4/0 2.00 HT (EPR) FR m LA 1 AAD-F 802 AB 104 CG11' '

500 (12) Konte 800 1 3-10 0 91 HT(EPR) FRetA i

1 AAC-F 801 590[12) A8 104 CG63 Konte 800 13110 1 64 HT (EPR) FR m lA _

1 AxD-F802 500(12 A8 104 CQ43* Kante 800 1 3-10 0 93 HT (EFtt) FR m lA ',

1AXD Fis02 500(12. A8 104 LP2* Kerne 800 13-2/0 1.74 H T (EPR) FR m lA ,

I AXD F802 500. T 54 28 (12,6) Als 104 LP6 Konte 800 134/0 2.00 HT (EPR) FR in IA l 1SHD-F806 732.T33(6,6} ISPH 104 MD11 Kertte 5000 1 3-360 3.12 HT (EPM) NS in IA ISHD-F805 r35,734, 751.756 ISPH 104 WE11 Kerite 5000 1 3-360 3.12 HT (EPR) NS m LA (9.6.30 181 1CCD F800 745112) CB 95 ME1 Kente 5000 1 3-500 3 40 HT (EPR) NS m lA ICCD F800 745 12) C8 95 ME2 Kante 5000 1 3-500 3.40 HT (EPR) NSmlA ICCD-F800 745112] C8 95 ME4 Kerne 5000 134/0 2.62 HT (EPR) NS m lA ICCD-F80d 745112) C8 95 MES Kante 5000 1 3-360 3.12 HT (EPR) NS m lA 1 AXC-F 804 751, 756 [30, 18) A8 104 MA9* Kerne 5000 13-4/0 2.82 HT (EPR) NS m LA I

1AXC F804 751,756[30,18) AB 104 M89* Kente 5000 1340 2.62 HT (EPR) NS m lA pKC-F 804 751 [30) AB 104 M811' Kente 5000 1 3-350 3.12 HT gdPR) NS m AA 1 AXC-FSO4 751. 756 [30, 18) AB 104 M813* Kante 5000 1-3-360 3 12 HT (EPR) NS in IA 1 AAC F804 751 [307 A8 104 MC12* Konte 5000 1-3 380 3.12 HT (EPR) NS m 1A 1 AXC-F804 751[30) A8 104 ME6* Konte 5000 134/0 2 82 HT (EPR) PS m lA 1 AAC F804 751(30) A8 104 ME7 Kante 5000 1340 2 82 . HT (EPR) NS in LA 1 AXC F804 751 [30) A8 104 ME9" Karte 5000 1-3-4#0 2.82 HT (EPR) NS m LA 1AXC-F804 751.756[30.18) AB 104 ME10* Konte 5000 134/0 2 82 HT (EPR) NS in lA 1CCD F801 1020[18) C6 95 E D307A Brand-Rex 000 126 0.806 XLPE CSPE m tA ICCD F801 1019.1020(18,18) C8 95 CH61 Rem 800 13-2/O 1.54 XLPE CSPE in IA 1CCD F801 1019(18) CS 95 E06033 Konte 800 12-2 1.50 HT EPR) FR m lA 1CCD F801 1019,1020[18.18) C8 95 ED5033A Kante 600 12-2 1.50 HT (EPR) FRinIA 1CCD F801 1019(18] C8 95 ED5034 Kante 800 122 1.50 HT (EPR) FRmlA ICCD F801 1019.1020i18,18) CB 95 ED5034A Konte 800 122 1.50 HT (EPR) FR m (A 1CCD-F B01 1019.1020 18.18) C8 95 LS7 Kante 800 1 4-500 2.73 HT (EPR) FRmLA ICCD-F801 1019,1020. T 54-31 C8 95 LS5 Kante 800 1-340 2.00 HT (EPR) FR m LA (18.18.61 1 AXD F801 T 54 31 (6) AB 104 CL43' Kante 600 13-1/0 1.64 HT (EPR) FRinlA 1AXD-F801 T 54-31 [6] AB 104 CM43' Kante 600 13-1/0 1.64 HT (EPR) FR 6n LA l 1FHC-F005 T-52 54 [6] FH 104 ED308A Kante 600 1-2-2 1.50 HT (EPR) FR in lA l IFHC-F805 T 52 54 (6) FH 104 ED3068 Kente 800 12-2 1.50 HT (EPR) FRinlA 5.1 Column I shows the fire barrier identification number from FHAR Att. 3-1 (Ref. 3.1.1) that is protecting 4160 VAC and 480 VAC power circuits in tray (Assumption 4.1), Control pcwer circuits that are routed with the 480 VAC circuits are included (Assumption 4.1). When more than one fire barrier is protecting a circuit, the fire barrier that is in the highest ambient temperature is given.

l

(2*u NUCLEAM CalculatlOn Sheet Subt ect Calc No. Rev No. Sheet No.

l Derating of Cable Ampacity Due To Raceway Fire Barriers C 1101770-E420418 1 11 of 43 onomete Does Revwwed try Date ML 76W9] f2Wf y/zWn 5.2 Column 2 shows the tray identification numbers with power cables that are protected by fire barriers in Column 1. He FHAR Att. 3 1 (Ref 3.1.1) is used to identify the tray that is wrapped with Thermo-lag.

Where FHAR Att. 3-1 (Ref 3.1.1) does not identify a tray number, the FHAR fire area drawings (Ref. 3.1.2 through 6) are used to get the tray mimbers. Tray widths are shown in brackets ( ) and taken from Ref. 3.22 except tray T;54 31 width is from Ref. 3.16. Tray T-54-28 and T 52-54 widths are assumed to be 6" which is the worst case (Assumption 4.6).

5.3 Column 3 shows the location of the TSI one-hour fire barrier per Ref. 3.1.1 through 6. CB= Control Bldg.,

AB= Auxiliary Bldg., ISPH= Intake Screen and Pump House, and FH= Fuel Handling Bldg. Where the tray has more than one fire barrier located in more than one building, the building with the maximum ambient temperature is listed in Column 3.

5.4 Column 4 shows the maximum design ambient temperature in *F for the location of the TSI one-hour firi, barrier. These values are obtained from the FSAR (Refl3.ll) Table 9.8-1 v,hich lists the maximum HVAC design temperatures for different buildings in the plant. Since the control building maximum HVAC design temperature is less than 104 'F, or 40 'C, the ampacity given at 40 'C is increased to account for a 95 'F, or 35 'C, ambient.

5.5 Column 5 shows the circuit number of the cables in the trays of column 1. Appendix R circuits are identified from Ref. 3.1.L Circuits with an asterisk (*) are non-Appendix R circuia. TMI-l Electrical Cable Information System (Ref 3.4) and TMI-l PC-CKS (Ref. 3.2) are used to identify the non-Appendix R circuits which are not listed in the FHAR Att. 3 1 (Ref. 3.1.1) but are routed through tray which is wrapped. .

This approach covers all trays that are not " field run" trays. Ref. 3.15 and 3.16 are used to identify cables in

" field run" trays.

Note that circuit numbers begmnmg with "M" are operating at 4160 VAC nommal, "ED" are operating at 125 VDC nommal, and the remaining are operating at 480 VAC nominal. 125 VDC control power cables would not be considered.if they were routed by themselves (Assumption 4.1). However, since they are run with 480 VAC cables they are considered in this calculation (Assumption 4.1).

5.6 Column 6 shows the manufacturer of the cables in Column 5 (Assumption 4.3 and Ref. 3.17) For cables that are manufactured by those other than Kerite (cables that were modified since original construction) the Purchase Order (PO) (Ref 3.19) was retrieved from the pull / term (Ret 3.18) sheet and the information was taken directly' from the packing list from the PO or obtained from the vendor.

5.7 Column 7 shows the cable rated voltage in volts (Ref 3.17 for Kerite, ReE 3.18 and 3.19 for manufacturers other than Kerite). Cables rated for DC voltage are assumed to be rated for 600 V. His is reasonable since DC cable construction has similar insulation and thicknesces to that rated for 600 V (Assumption 4.7).

T _J

SS -

NUCLEAN CalculatlOn Sheet Sutyct Calc No. Rev. No. Sheet No l Derating of Cable Ampacity Due To Raceway Fire Barriers C 1101770 E420 018 1 12 of 43 ongmotor Date Rev6ewed by

. Date 9cIz 7(t4(9 7 12ws 7/z.419r 5.8 Column 8 shows the cable configuration. For example "l 3-4/0" is one cable with 3 conductors , sized at 4/0.

Ref. 3.4 gives the cable configuration. The 1-4-350 cable actually has 3 conductors sized at 350 MCM and 3 conductors sized at 1/0 (ReE 3.17 and also confirmed by walkdown at IC ES MCC Transfer Switch Cabinet). Likewise, the 1-4-500 cable actually has 3 conductors sized at 500 MCM and 3 conductors sized at 1/0 (Ref 3.I'). He three conductors sized at 1/0 function as the neutral conductor. Considering the 3 1/0 conductors as one neutral conductor is conservative since the sum total of the currants in the neutral conductors is expected to be much less than the current one of the main conductors (See Assumption 4.8).

The main conductors feed essentially three-phase balanced motor loads when fully loaded. He three 1/0 conductors are bare and are located in the interstices of the cable. His allows the cable diameter to be the same as the 3 conductor cable with out the 1/0 conductors.

5.9 Column 9 shows the cable outside diameter in inches (Ref 3.3 for Kerite, Ref. 3.'8 and 3.19 for manufacturers other than Kerite). He outside diameter is given for the galvamzed corrugated steel shea&i.

ES-023 (Ref 3.3) and Met Ed purchase order 97099 (Ref 3.17) for Kerite cable showed smaller cable

  • diameter compared to cable diameter information in Ref 3.5. To resolve the discrepancy, certain easily accessible Kerite cable circumferences were measured in the field. A piece of paper was wrapped around the largest diameter of the corrugated armor to measure the circumference. He diameter wu then calculated by dividing the circumference by x = 3.1415927. He data below shows that the cable diameters from Ref. 3.3 and ReE 3.17 are more accurate than those from Ret 3.5 and are therefore used in this calculation.

Config- Circuit Location Circumf- Calculaied ReE 3.3 Ref 3.5 uration Number erencs (") Diameter (") Diameter (") Diameter (")

1-3-1/0 CG83 @ IC-P-1 A 5.22 1.66 1.64 1.81 1-3-2/0 LP2 @ DC-P-1 A 5.36 1.71 1.74 1.91 I l-3 2/0 LS2 @ DC-P-1B 5.48 1.74 1.74 1.91 1-3-2/0 CH61 @IC-P-1B 5.52 1.76 1.74 1.91 1-3-4/0 LS6 @ NS-P-1 A 6.32 2.01 2.00 2.16 1-4-350 LG3A @ tray 576 7.35 2.34 2.40 2.65 AB 305' near elevator 1-4-350 LG3B @ tray 576 7.45 2.37 2.40 2.65 AB 305' near elevator 1-4 750 LS1B @ tray 1025 CB 10.08 3.21 3.20 ---

322 near IB ES MCC 5.10 Column 10 shows the cable insulation type (Ref 3.5 for Kerite, Ref 3.18 and Ref 3.19 for manufacturers other than Kerite).

5.11 Column 11 shows the cablejacket material (Ret 3.5 for Kerite, Ref. 3.18 and ReE 3.19 for manufacturers other than Kerite).

w

1 G U NUCLEAn Calculation Shoot Sutnoct Calc No. Rev. No. Sheet No.

l l Derating of Cable Ampacity Due To Raceway Ftre Bamers C 1101770-E420418 1 13 of 43 ongnetor . Date Reviewed by Date

Ecle 1(zd i /2cd 7hv/97 6.0 Overall' Approach and Methodolon 6.1 IPCFA P-46-426 Methodology Free air ampacity values for 90 'C conductor temperature in a 40 'C ambient given by the manufacturer are used in lieu ofIPCEA P-46-426 (Ref. 3.6) free air ampacity values. He ampacity is derated in accordance with IPCEA P-46-426 (Ref 3.6) for the number of current-carrying conductors in the tray and associated ampacity correction factors. The ampacity is derated further for nermo-lag material in accordance with derating factors from Ref 3.8. The resulting ampacity is compa ed against the expected load currents.

6.2 NEC Methodology -

The NEC (Ref. 3.7) was applied for the three cables shown to be overloaded by the P-46-426 methodology to provide a closer evaluation.

6.3 ICEA P-54-440 Methodology .

Free air ampacity values for 90 'C conductor temperature in a 40 'C ambient given by the manufacturer are used in lieu ofIPCEA P-46-426 (Ref. 3.6) free air empacity values. The ampacity is dera'. in accorr'uce with ICEA P-54-440 (R f. 3.21) for the depth of fill of current-canymg conductors in the tray and associated ampacity correction factors. He ampacity is derated further for Thermo-lag material in accordance with derating factors from Ref 3.8. The resulting ampacity is compared against the expected load currents.

ICEA P-54-440 is selected as the methodology for ampacity evaluation for cables protected by Thermolag because it assumes the same cable tray con 6gurations used in the test report (Ref 3.8) to establish the Hermolag derating factor of 32% ne baseline ampacity test without Hermolag has cables tightly packed with uniform tray fill. His is a conservative cable tray configuration and bounds tray configurations where cable spacing is not maintained. Since we have established (Ref 3.13) that the fire barrier configuration used in the test report (Ref. 3.8) bounds the TMI-l configuration and we have conservatively assumed that cable spacing is not maintained in the tray (Assumption 4.4), it follows that the ICEA P-54-440 methodology is the appropriate methodology for the ampacity evaluation.

6.4 Cable Life Evaluation Methodology ne methodology used for cable life evaluation is Ref. 3.25.

G?>u NUCLEAR . CalculatlOn Sheet i

Subt ect Cole No. Rev. No. Sheet No.

l Derating Of Cable Ampacity Due TO Raceway Fire Barriers C 1101770-E420 018 l 14 Of 43 on9 netor Date Review.oy Dei.

52 @ -

Thyhy 7/tf[c17

, +

/2W 7.0 Calculation The basic datein Table 3 is used to perform calculations in Table 4. Each row in Table 3 corresponds to the row in Table 4 with the same circuit number.

Table 4: Ampacity Calculation for Cables in Table 3 Cacud Cabie Free Air <40 C Uprote P-46 426 P 46426 P-54 440 P4.S440 Load Current (A) Load Ainpocay (A) (A) Trey Derate TSI Derste Troy Derste TSI Deruse (A) (A) (A) (A)

LPSA 14350 407 427 290 203 260 1TT 80 (ref 3 9.1) 1C ESV MCC l LP58 14350 407 427 299 203 200 177 80 (ref. 3.9.1) 1C ESV MCC LS6' 13-4/0 295 310 217 147 194 132 140 (ref. 3 9.2) NS-P-18 1146 (ref 3 9 5))

CGit' 1310 34 34 24 16 27 18 4 (ref. 3 91) AH-E 15A CG83 1 3-110 188 188 132 80 150 102 82.7 (ref. 3.9.1) IC-P 1 A 1919 (ret 3 91)]

CQ43* 1 3-10 34 34 24 16 27 18 <2.3 (ref. 3 9 8) NS-V 4 g LP2* t-3-2/O 217 217 152 103 174 IIS 103.2 (ref. 3 9,1) DC-P-1 A *

[106 (ref 3 9 8)]

LP6 1340 296 295 207 140 236 100 141 (ref. 3.9.2) NS-P-1A

[143 (ref 3 0 5))

MD11 1 3-350 452 412 -412 280 330 224 80 4 (ref. 3 9.1) 1R Treneformer ME11 1 3-350 412 412 247 188 330 224 70 (ref. 3 9.1) 1T Treneformer I ME1 1 3-500 506 533 373 254 402 273 236 (ref. 3.91) 18 Diesel Generator ME2 13500 506 533 373 254 402 2 73 235 (ref. 3.9.1) 18 Dimal Generator c ME4 13-4/0 301 316 221 150 200 142 87 (ref. 3 9.1) F P-28 MES 1 3-350 412 433 303 206 314 214 144 (ref 3 9.1) 13 Transformer l MAS

  • 134/0 301 301 181 123 239 163 08.1 (ref. 3.9.7) SR-P-3A

~

M80* 13-4/0 301 301 181 123 239 183 08.1 (ref. 3 9.7) SR P-38

! M811* 14350 412 412 247 188/181 330 224 470/178 (App.8.1) 1H Transformer l M813* 13350 412 412 247 158 330 224 56 (App. 8.1) * .U Treneformer MC12* 13350 412 412 247 168/181 330 224 <$0/178 (App. IM Treneformer 81)

MES* 1340 301 301 181 123 239 183 47.4 (ref. 3 9.1) DH-P 18 ME7 1340 301 301 181 123 239 183 91.1 (ref. 3 0.1) MU-P-1C -

l ME9* 1340 301 301 181 123 239 183 32 (ref. 3 91) 88 P-18 l ME10* 13-4/0 '301 301 181 123 230 183 48.7 (ref. 3.9.1) RR P 18 l ED307A 128 50 82 43 29 46 33 7.5 (ref. 3 9.3) DC Feed to 1S Swgr.

CH61 - 142!0 215 226 154 107 182 124 82.7 (ref. 3.9.1) C.P 18 1919 (W 3 91)]

ED5033 122 139 146 102 OS 117 80 3.75 (ref 3 9.3) DC Feed to if Swgr.

tD5033A 1-2-2 139 146 102 69- 117 80 3.75 (ref. 3.9.3) DC Feed to 1T Swgr.

ED5034 122 1% 146 102 80 117 80 3.75 (ref. 3 9.3) DC Feed to 1T Swgr.

ED5034A 12-2 130 148 102 09 117 80 3.75 (ref. 3.9.3) DC Feed to IT Swgr.

LS7 - 14500 510 536 375 255 422 287 139 8 (ref. 3 9.1) 18 ESV MCC (SS 1-3-4/0 296 310 217 147

  • 236 ISO 144 (ref. 3.9.2) NS-P 1C (146 (ref 3 9 5)!

CL43* 13-1/0 188 186 132 89 150 102 66 (ref. 3.9 4) AH-E TA

[75 (ret 3 9 4))

CM43* 13-1/0 186 186 132 80 150 102 63.5 (ref. 3.9.4) AH-E 78

[72 (ref. 3 9 4))

ED308A 122 139 130 111 75 111 75 3.75 (ref. 3

  • 1) DC Feed to 1T Swgr.

l ED30e8 12-2 139 139 111 75 111 TS 3.75 (rer. 3 ' DC Feed to IT Swgt.

7.1 Column I shows the circuit number of the cables in the trays from Table 3. Circuits with an asterisk (*) are non Appendix R circuits.

Glou wuctaAr Calculation Sheet subpet _ .

Calc No. Rev.No. Sheet No.

'l Derating of Cable Ampecity Due To Raceway Fire Barriers C 1101770-E420418 1 15 of 43 on nmer . one Rmw one

& '1fLWR") f2 M, Wt.Yl97 l 7.2 Column 2 shows the cable configuration from Table 3 (i.e.1 3-4/0 is one cable with 3 conductors sized at 4/0).

l7.3 Column 3 shows the free air ampacity in amperes for a 90 *C rated conductor temperature operating in a 40

,_ 'C environment. Ref. 3.5 is the source for Kerite. For cables manufactured by those other than Kerite (see Table 3 for manufacturers other than Kerite), the table on page 309 of Ref. 3.6 for 1 KV 90 *C rated conductor temperature in air at 40 'C is used for Column 4.

l7.4 Column 4 shows the ampacity in amperes corrected for ambient temperatures less than 40 'C given in Table

3. Ref. 3.6 Equation 5A is used to correct for ambient temperatures other than 40 *C.

, I'_ = Ig(Tc'-Ta'-IhltaTd')/ (Tc - Ta - DettaTd) in Amperes ,

where: ',

T=ampacity at r.ew ambient temperature Ta' and r,ew conductor temperature Tc' in Amperes .

I=ampacity at old ambient temperature Ta and old conductor temperature Tc in Amperes Tc'=new conductor temperature in 'C Tc=old conductor temperature in 'C Ta'=new ambient temperature in *C Ta=old ambient temperature in 'C

' DeltaTd'=new dielectric loss temperature rise in 'C DeltaTd=old dielectric loss temperature rise in *C From paga 309 of Ref. 3.6, DeltaTd' = Del'aTd t = 0 *C for 1 KV and lower cablps and <0.30 *C (negligible) for i KV to 5 KV cables. Also, Tc' = Tc = 90 *C and Ta = 40 'C. He maximum design ambient temperatures for the control building from Table 3 is 95 'F (35.0 *C). Plugging in the values for the Control Building:

T = I](90 - 35.0 - 0) / (90 0) = 1(1.05) in Amperes Thus the free air ampacity values in Column 4 for the Control Building are multiplied by the above correenon factors for a:nbient temperatures less than 40 'C to obtain the values in Column 5.

For circuits MBil and MCl2 the ampacity are calculated for summer and winter operation since these cables carry a signi6 cant heatmg load, ne ambient temperature given in Table 3 is for summer. During winter the ambient temperature in the Auxiliary Building is not eWM to be greater than 90 'F or 32.2 'C

- (Assumption 4.5). Pluggmg in the values for MBI1 and MC12:

r= I](90-32.2-0)/(90-40-0) = I(1.08) in Amperes 1

l

G U NUCLEAR Calculation Sheet Subsect Calc No. Rev No. SheNNo l Deratmg of Cable Ampacity Due To Raceway Fire Bamers C !101770-E420418 1 16 of 43 ow n.t= . o.t. n.w or o.i.

M 7/tf/q 'l f7. cud 7/zv/n l7.5 Column 5 shows the IPCEA P-46 426 (Ref. 3.6) ampacity derated according to the number of conductors in a tray in amperes. De derating factors are taken from Ref 3.6 Page V Table VIII Factors for Cables Without Maintained Spacing as follows in Table 5.-

Table 5: Current Carning Conductors Tray Number of Current Factor Carning Conductors l 551,553 11 0.70 590 15 0.70 732,733 3 1.00 745 12 0.70 751 2 30 0.60 s, 756 15 0.70 ,

_1019 18 0.70 1020 16 0.70 T-54 31 9 0.70 T-52-54 4 0.80 Trays 735 and 736 are not listed since only one cable passes through those trays and the same cable passes through 751 and 756. Likewise, tray T-54 28 is not listed since only one cable passes though that tray and the same cable passes dirough tray 590. The tray containing the higher number of cables is used to set the ampacity of cables passing through. Because 4-conductor circuits LP5A, LPSB, and LS7 are essentially feeding balanced loads the fourth or neutral conductor has negligible current. However, for conservatism the neutral conductors aie included in the conductor count. Considering the 3 1/0 conductors as one neutral conductor is conservative since the sum total of the currents in the neutral conductors is expected to be much less than the current one of the main conductors (Assumption 4.8). The main conductors feed essentially three-phase balanced motor loads when fullv loaded.

7.6 Column 6 shows the IPCEA P-46-426 (Ref. 3.6) ampacity derated to account for TSI one hor fre i wrap.

Since configurations at TU bound 'Ihermo-lag configurations at TMI 1, the testing perfonra :s these utilities is used for establish a conservative derating for Hermo-lag. Ref. 3.8 provides a value of 31.6%. We will use 32% derating or a factor of 0.68 for conservatism. For MB11 and MCl2 the revised ampacity in the winter is 168(1.08) = 181 A using the 1.08 multiplier calculated in 7.5.

e 0

1

U .

, NUCLEAn Calculation Sheet Subsect Calc No. Rev. No. Sheet No l Derstmg of Cable Ampacity Due To Raceway Fire Barriers C 1101770-E420-018 1 17 of 43 ow., . R% o Fc fe- o, f. g5y 72 (ug ,gge 7.7 Column 7 shows the ICEA P 54-440 (Ref. 3.21) derated ampacity for power cables installed in tray as calculated below. Where a cable is rout:d through multiple trays protected by Thermolag, the most limiting ampacity is selected for Column 7. He following method and formulas are taken from ICEA P 54-440 (Ref. 3.21).

From section 2.2 the calculated depth of fill is:

dau = (nidi' + n2d2 ' + ... + n.d.2) j ,

where:

dnu = the calculated depth, inches d i, d2, . . , d. = dit. meter of cables, inches ni, na, ... , n = number of cables with diameters di, d2, ... , d , respectively \

w = width of; tray, inches -

ne calculated depth, dan, is then used to fmd the tabulated ampacity limit in Table 3-3 for 600 V cables or Table 3 15 for 5000 V.- Linear interpolation is used, if required, to fmd ampacity values for dan values that are in between danvalues in the table.

From section 2.3 the ampacity correction for the actual diameter of one or three-conductor cable that is different from the nominal diameter of one or three-conductor cable given in the tables is:

17(6/do)Io where:

Io = [ uncorrected) ampacity for one or three-conductor cable with diameter do from the table do = [ nominal) one or three-conductor cable diameter from the table I = [ corrected) ampacity for one or three-conductor cable with diameter d.

d = [ actual] one or three-conductor cable diameter When cables with two, four, or more conductors are used, ampacity correction is per section 2.5.

< Note that according to section 2.3 the above correction is given for actual one or three-conductor cable diameters that are less than dau. It is assumed that :he correction also applies to actual diameters that m greater than dau. This assumption (Assumption 4.9) is reasonable since:

l. The paper by Stolpe (Ref. 3.20) does not limit the correction (see equation 10) to cables with diameters less than dan.
2. In cases where there are large cables mixed with small cables, the large cable ampacity may exceed its free air ampacity. However, as a fmal check all cables in the tray are limited to 80% of the free air ampacity.
3. The correction given in 2.5 for a cable different number of conductors also corrects for the different cable diameter but does not limit the correction to cables with diameter less than dan.

_a

E8 -

l- wuctr4s - Calculation Sheet SM Ca6c No. Rev. No, sheet No l Derating of Cable Ampacity Due To Raceway Fire Barriers C 1101770-E420 018 1 18 of 43 onenn., - om. R-w om.

M 7/L4fQ] R. w A 7{ty)ry

\

I Fro'rn section 2.4 the ampacity multiplying factor for ambient temperatures different than 40 'C is:

Ambient Temocrature Multiolvine FactQt

  • CfD 30 1.09 3 35 1.05 From section 2.5 the ampacity correction for cables with a number of conductors different than three it:

I.' = ( d! / do') ( lo ( 3 / n. )% )

where:

I ' = ampacity for three conductca c.ble from the table .

Il = ampacity for cable having n. conductors -

d! = diameter of cable having n conductors do' = diameter of three conductor cable from table n, = number of conductors n%r than given in table -

Lastly the resulting P 54-440 ampacity limit is compared to 80% of the free or open air limit given in Table

4. Whicheverlimitis less applies.

9 J l e

W

-6

l (dou NUCLEAR CSlCulatlOn Sheet suti.cs _ cak No. n.v. No. sh N..

l Derating of Cable Ampacity Due To Raceway Fire Barriers C 1101770-E420418 1 19 of 43 one netoe . One n wi d by om.

kb l 14/M /7 WS 7/1Y[9'1 Trav 551 Tray 551 is a 6" tray with three cables installed, dnu = ( (2)(2.40)2 +(2.00)2 ) / 6.00 = (11.5 + 4.00) / 6.00 = 15.5 / 6.00 = 2.58" From table 3-3 (600 V) the tabulated ampacity limits are found and linearly interpolated to fmd the limit at dan:

Cable Size 2.5" Fill Limit 3.0" Fill Limit Interpolation 2.58" Fill Limit 4/0 149 131 I" - (""* 18 4*5") 146 350 245 215 24s t u m m 3") 240 g Diameter correction:

Cab'e Size Tabulated Limit Diameter Corrected Limit Correction .

4/0 146 (2.co<i.373 - i.27 185 350 240 (2.aw > - i.i' 286 A correction is required for number of conductorr for the 350 MCM cables since there are actually 3 350 and 3 1/0 neutral conductors. It is conservative to consider the 3-1/0 conductors as one additional 350 MCM since the sum total of the currents in the neutral conductors is expected to be much less than the 5

current one of the main 350 MCM conductors (Assumption 4.8). The main 350 MCM conductors feed essentially three-phase balanced motor loads when fully loaded.

Cable Size Tabulated Limit No. of Cond. Corrected Limit Correction 350 286 *

  • f " "" 248 Tray 551 is in a 35 *C maximum ambient and therefore a temperature correction is required.

Cable Size Corrected Limit Ambient Ambient Correction Corrected Limit 4/0 185 1.05 194 350 248 1.05 260

+

8

_J

Glou NUCLEAN CalculatlOn Sheet swored cwo No, Rev.No. Sh=W No.

l Derating of Cable Ampacity Due To Raceway Fire Barners C.1101770-E420 018 1 20 of43 ognaw Done Reviewed by osse

~

ILt t 7 [7. W 4 7/Z4/M Lastly the resulting P-54 440 limits are compared against 80% of the open air limit (uprated for 35 'C) to obtain the bounding limit.

Cable Size P 54 440 Limit 80% Open Air Bounding Limit Table 4 Limit 4/0 194 ,

248 194 350 260 l 342 260 Trav 553 Circuit ampacity for cables routed through tray 553 is limited by tray 551.

s, i

+

4

j Chu NUCLEAR CSICulatlOn Sheet Subsect Caic No. Rev.No. Sheet No.

l Derating of Cable Ampacity Due To Raceway Fire Barrien C 1101770-E420418 1 21 of 43

%- - o., R- o..

f'CA 7/tf/97 -/t w 6 7/z.y/rr Trav 590 Tray 590 is a 12" tray with five cables installed.

dnu = ( (2)(0.930)2 + (l.64)2 + 4 g,74)2 + (2.00)2 ) /12.0 = (1.73 + 2.69 + 3.03 + 4.00) /12.0 =

11.5 /12.0 = 0.96 " /

From table 3-3 (600 V) the tabulated ampacity limits are found at dan = 1.0" Cable Size 1" Fill Limit 10 18 g 1/0 149 ',

2/0 172 4/0 229 Diameter correction: ,

Cable Size Tabulated Limit Diameter Corrected Limit Conection 10 18 (" * *")*l'* 35 1/0 149 u w i.22)-134 188 2/0 172 o 3*132)-132 227

~~

4/0 229 (2 m ia n - i.27 291 No correction is required for number ofconductors since all cables are three conductor cables.

Tray 590 is in a 40 'C maximum ambient and therefore no temperature correctum is required.

Lastly the resulting P-54-440 limits are compared against 80% of the open air limit to obtain the bounding limit.

Cable Size P 54-440 Limit 80% Open Air Bounding Limit Table 4 Limit 10 35 27 27 1/0 188 150 150 2/0 227 174 174 4/0 291 236 236 4

(Boa suctrAs Calculation Sheet sw .

Caic No. aw. No. Sh.et No.

l Derstmg of Cable Ampacity Due To Raceway Fire Bamers C.1101770-E420418 1 22 of 43

m. o. .-

W .

77.W99 t

t rtw8 o

,/29 /1, ,

Trav 732 Tray 732 is a 6" tray with one cable installed.

ds: = ( (3 I2)2 ) / 6.00 = 9.73 / 6.00 = 1.62" From table 3 15 (5000 V) the tabulated ampacity limits are found and linearly interpolated to fmd the limit at I dan:

Cable Size 1.5" Fill Limit 2.0" Fill Limit Interpolation 1.62" Fill Limit 350 348 303 3*s.a:20 4smw) 337 Diameter correctiori:

Cable Size Tabulated Limit Dismeter Corrected Limit Correction 350 337 (31 3)

  • 8 ** 492 No correction is required for number of conductors since all cables are three conductor cables.

Tray 732 is in a 40 *C maximum ambient and therefore no temperature correction is required.

Lastly the resulting P-54-440 limit is compared against 80% of the open air limit to obtain the bounding limit.

Cable Size P-54-440 Limit 80% Open Air Bounding Limit Table 4 Limit 350 492 330 330 Trav 733 Same as tray 732.-

Trav 735 Circuit ampacity for cable routed through 9" tray 735 is limited by 6" tray 736.

Trav 736 This case is the same as tray 732.

U i

NUCLn?AM Calculation Sheet sun,ect CWc No. Rev. No. Sheet No.

l Deratmg of Cable Ampacity Due To Raceway Fire Bamers C 1101770-E420418 1 23 of 43 onom** ' tse R W gg ~

7[ty_/O G g,y()

osee 7lt.'tl41 a

l. .

Trav 745 Tray 745 is a 12" tray with four cables installed.

du = ( (2.62)3 + (3.12)2 + (2)(3.40)' ) /12.0 = (6.86 + 9.73 + 23.2) /12.0 = 39.8 /12.0 = 3.3'2" This calculated depth is greater than the largest depth given in the tables. 'Ihus, extrapolation is necessary to fmd the heat intensity (Q) and then the ampacity limit can be calculated. An extrapolation model was developed by Sandia National Labs (Ref. 3.23) to be used for de greater than 3.0" but less than 5.0" is used here:

2 Q = 6.553*(ds)i.42o = 6.553*(3.32)i.420 = 6.553*0.1820 = 1.193 Watts /fVm ,

From Stolpe (Ref. 3.20) equation 8 the ampacity limit (I) for each conductor is:

I = (QA / nR)" = (Qd'/ nR)"

where:

Q = allowable heat intensity in Watts /fVm' A = cross sectional area of the n-conductor cable = d' = cable diameter squared (The Sandia extrapolation model and the ICEA heat intensity tables assume A = d')

n = number of conductors in the cable R = attemating current resistance of condutor at the maximum operating temperature (90 *C) of the insulation material in the cable tray.

_ Resistances are obtained from ES-023 (Ref,3.3) Table 15 at 75 *C and corrected for 90 *C:

R4, = 0.06576 * ((234.5 + 90) / (234.5 + 75)) = 0.06576

  • 1.048 = 6.89E-5 R33o = 0.04123 * ((234.5 + 90) / (234.5 + 75)) = 0.04123
  • 1.048 = 4.32E-5 R3oo = 0.02990 * ((234.5 + 90) / (234.5 + 75)) = 0.02990
  • 1.048 = 3.13E-5 Ampacity limitt 14o = ((1.193) * (2.62)' / (3
  • 6.89E 5))" = ((8.18) / (20.7E-5))" = (39500)" = 199 A I350 = ((1.193) * (3.12)2 / (3
  • 4.32E-5))* = ((11.6) / (13.0E-5))" = (89200)4 = 299 A 1500 = ((l.193) * (3.40)2 / (3
  • 3.13E-5))" = ((13.8) / (9.39E-5))" = (147000)" = 383 A Tray 745 is in a 35 *C maximum ambient and therefore a temperature correction is required.

Cable Size Calculated Limit Ambient Ambient -

Correction Corrected Limit 4/0 199 1.05 209 350' 299 1.05 314 500 383 1.05 402

4 Q~ -wuctras ou -

Calculation Sheet Subted .. . . .

Caic No. Rev. No, Sheet No.

l Derstmg of Cable Ampacity Due To Raceway Fire Bamers C 1101770-E420 018 1 24 of 43 ortemmw . One me m wed W om.

Eri 7/t-t/97

'l

/2 w a- 7/zv/r7 Lastly the resulting P54 440 limits are compared against 80% of the open air limit (uprated to 35 *C) to obtain the bounding limit. +

Cable Size P 54-440 Limit 80% Open Air Bounding Limit Table 4 Limit 4/0 209 253 209 350 314 346 _ 314 500- 402 ,427 402 5

)

( b u. NUCLEAM CalCulatlOn Sheet Sw W Cale No. Rev. N., Sheet No.

l Derating of Cable Ampacity Due To Raceway Fire Barriers C 1101770-E420 018 1 25 of 43 o,.., n-W '

o.

7(tt%9 Rw4 o.

7/vt/r, I

l Trav 751 Tray 751 is a 30" tray with ten cables installed.

drai = ( (6)(2.62/ + (4)(3.12)2 ) / 39.0 = (41.2 + 38.9) / 30,0 = 80.1/ 30.0 = 2,67" From table '-15 (5000 V) the tabulated ampacity limits are found and linearly interpolated to find the limit at dem:

Cable Size 2.5" Fill Limit 3.0" Fill Limit Interpolation 2.67" Fill Limit 4/0 171 150 ni ain 2imw 164 350 259 228 2n.winsi m ") 249 Diameter correction:

D Cable Size Tabulated Limit Diameter Corrected Limit Co:Tection 4/0 164 (2nm - i." 239 350 249 01 3)

  • 1 " 364 No correction is required for number of conductors since all cables are three conductor cat's Tray 751 is in a 40 'C maximum ambient and therefore no temperature correction is required.

Lastly the resulting P-54-440 limits are compared against 80% of the open air limit to obtain the bounding limit.

Cable Size P-54-440 Limit 80% Open Air Bounding Limit Table 4 Limit 4/0 -239 241 239 350 364 330 330 f

E8 .

NUCLEAn Calculation Sheet 1

Sutgeot '

Caic No. Rev.No. Sheet No.

l Derating of Cable Ampacity Due To Raceway Fire Barners C Il01770-E420418 1 26 of 43 on,ama nww W

  • om.

7fLWR9 RW6 o

Wzvh1 Trav 756 '

T ay 756 is a 18" tray with five cables installed.

dau = ( (3)(2.62)2 + (2)(3.12)2 ) /18 = (20.6 + 19.5) /18 = 40.1/18 = 2.23" From table 3 15 (5000 V) the tabulated ampacity limits are found and linearly interpolated to find the limit at dan:

Cable Size - 2.0" Fill Limit 2.5" Fill Limit Interpolation 2.23" Fill Limit g

4/0 200 171 2m no.23o+2s 09.3m> gg7 ,

350 303 259 303 -(a230*u a9 s") 283 -

Diameter correction:

Cable Size Tabulated Limit Diameter Corrected Limit .

Correction 4/0 187 (2.6ri.wr t." 273 350 283 (3 l 3Pl" 413 No correction is required for number of conductors since all cables are three conductor cables.

Tray 756 is in a 40 'C maximum ambient and therefore no temperature correction is required.

Lastly the resulting P54-440 limits are compared agairst 80% of the'open air limit to obtain the bounding limit.

Cable Size P-54-440 Limit 80% Open Air Bounding Limit Table 4 Limit 4/0 273 241 241 350 340 330 330 l

4 4

I (bu NuctrAs Calculation Sheet aw ca w.. nu w.. sw w..

l Derating of Cable Ampacity thu To Raceway Fire Damers c.11014770 E420418 1 27 of 43 cue.., . o n.% o..

(LCfr- ficvg 7/29(17 Yf-ff*M Trav 1019 Tray 1019 is a 18" tray with seven cables installed.

dnu = ( (4)(l.50)3 + (l.54)' + (2.00)' + (2.73)3 ) /18.0 = (9.00 + $37 + 4.00 + 7.45) /18.0 22.8 /18,0 = 1.27" From table 3 3 (600 - ae tabulated ampacity limits are found and linearly interpolated to find the limit at duu:

Cable Size 10" Fill Limit 1.5" Fill Limit Interpolation 1.27" Fill Limit 2 97 75 n oo.2)o*u oS3*> g3 2/0 172 140  !?2 40 27W2 ** $*) 155 -

4/0 229 211 229 9aa70 ie '"8 219 500 390 _ 390 N/A 390 Diameter correction: ,,

Cable Size Tabulated Limit Diameter Corrected Limit Correction 2 ~8'S 84S8 " "L4' 128 2/0 155 84'ia2 i.it igg 4/0 219 2 w i.s1 i.27 278 .

~~

500 390 nmo - tis 464 A correction i= required for number cf conductors for the #2 cables since these DC c.bles are two conductor cables. A mvection is required for number of conductors for the 500 MCM cables since there are actually 3 500 and bl/0 neutral coruiuctors. It is conservative to consider the 3 1/0 conductors as one additional 500 MCM since the sum total of the currents in the neutral conductors is expected to be much less than the current one of the main 500 MCM conductors (Assumption 4.8). 'the main 500 MCM conductors feed essentially three-phase balanced motor loads when fully loaded.

Y Cable Size Corrected Limit No. of Cond. Corrected Limit Correction _

2 128 (m' i.22 156

, 350 l 464 04)86* 402 9

d e

l Glou NUCLNAM CSICulatlOn Shtet sw c.= n.. n.a.. sw w.

l Detattng of Cable Ampacity Due To Raceway Fire Damers C.1101770 E420418 1 28 of 43 on .n.= - . o. n.- w o..

M'- 7/14/91 R wg 712v/47 l

l Tra'y 1019 is in a 35 'C maximum ambient and therefore a temperature correction is required.

Cable Size Corrected Limit Ambient Ambient Correction Corrected Limit 2 156 1.05 164 2/0 18I l.05 I90 4/0 278 1.05 292 500 402 1.05 422 Lastly the resulting P-54-440 limits are compared against 80% of the open air limit (uprated for 35 'C ambient) to obtain the bounding limit. g Cable Size P 54-440 Limit 80% Open Air Boundmg Limit Table 4 Limit 2 162 117 117

,2/0 182 182 182 4/0 292 248 248 500 422 428 422

+

4 9

(a%u NUCLKAn calculation Sheet w c= u.. n.< u.. sw u..

l Derstmg of Cable Ampacity Du2 To Raceway Fire Bamers C 1101770-E4:0418 1 29 of 43 cw, Wg , o.. n.~aw cw.

ilel'11 n.wa 7/evin Trav1020 Tray 1020 is a 18" tray with six cables installed.

dnu = ((0.805)3 + (2)(l.50)' + (l.54)8 + (2.00)2 + (2.73)3 ) /18.0 =

(0.648 + 4.50 + 2.37 + 4.00 + 7.45) /t 8.0 = 19.0 /18.0 = 1.06" From table 3 3 (600 V) the tabulated ampacity limits are found and linearly interpolated to find the limit at dan:

Cable Size 1.0" Fill Limit 1.5" Fill Limit Interpolation 1.06" Fill Limit ,

8 24 81*" *** '3*8

  • 31 30 2 97 75 "
  • W **22.093m> 94 2/0 172 140 in.w w n as'*) 168 4/0 229 211 229.w m aisaS4 ") 227
  • 500 390 390 N/A 390 Diameter correction:

Cable Size Tabulated I imit Diameter Corrected Limit i Correction 8 30 * "55 ** - i.2e 3g 2 94 8363 " *14' 141 2/0 168 14'ia -i.it i97 4/0 227 m t.n - u7 ggg 500 390 272'24'*88' 464 A correction is required for number of conductors for the #8 and #2 cables since these DC cables are two conductor cables. . A correction is required for number of conductors for the 500 MCM cables since there are actually 3 500 and 3 1/0 neutral conductors. It is conservative to consider the 3 1/0 conductors as one additional 500 MCM since the sum total of the currents in the neutral conductors is expected to be much less than the current one of the m In 500 MCM conductors (Assumption 4.8). The main 500 MCM conductors feed essentially three-phase balanced motor loads when tu!!y loaded.

Cable Size Corrected Limit - No. of Cond. Corrected Limit Correction

, g 3g (ni'- ua 46 2 141 (ne i.22 172 350 464 - (H f * *

  • 402

U ~

NUCLEAR Calculation Sheet s@ CWc No. Rw. No. l$hedNo.

l Derstmg of Cable Ampacity Due To Racewsy Fire Bamm C 1101770 E420418 1 30 of 43 l onenaw om. nw d by o.i.

1 V (2 & ~1{14/97 Tray 1020 is in 4 35 'C maximum ambient and therefore a temperature correction is required.

~

Cable Size Corrected Limit Ambient Ambient Correction Corrected Limit 8 46 1.05 48 2 172 1.05 181 2/0 197 1.05 207 4/0 288 1.05 302 500 402 1.05 422

. Lastly the resulting P 54 440 limits are compared against 80% of the open air limit (uprated for 35 'C i ambient) to obtain the bounding limit. .

Cable Size P 54-440 Limit 80% Open Air Bounding Limit Table 4 Limit 8 48 49 48 2 181 117 117 2/0 207 I82 __

~

182 4/0 302 248 248 500 422 428 422 9

1 1

Gau NuctsAn

~

Calculation Sheet Subpst Cale No. Ret No sheet k l Derating of CablJ Ampacity Due To Racewey Fire Baniers C.1101770 E420418 1 31 of 43 one ww tw R% om.

V 2lWI11 0Y 7l?W97 Trav T 52 54 ,

Trsy T 52 54 is a 6" tray with two cables installed.

driu = ( (2)(1.50)' ) / 6.00 = 4.50 / 6.00 = 0.750" From table 3 3 (600 V) the tabulated ampacity limits are found at dau = 1.0" Cable Size 1.0" Fill Limit 2 97 Diameter correction:  ;

i Cable Size Tabulated Limit Diameter Corrected Limit Correction 2 97 ISS !"

  • l*

146 A correction is required for number of conductors for the #8 and #2 cables since these DC cables are two conductor cables.

Cable Size Corrected Limit No. of Cond. Corrected Limit Correction

. 2 146 ov i.22 g73 Tray T 52 54 is in a 40 *C maximum ambient and therefore no temperature correction is required.

Lastly the resulting P 54-440 limit is compared against 80% of the open air liinit to obtain the bounding limit.

Cable Size P 54-440 Limit 80% Opm Air Boundmg Lirr.it Table 4 Limit - ,

2 178 111 111 4

A

-___._.m_ _ - _ . - - -

$ $[kMfIbY N,

E auNUCLEAM -

CalculatlOn Sheet Sutyct C a No. Rev No. Sheet No l Derstmg ofCable Ampacity Du s To Raceway Fire Butiers C.1101770 E420 018 1 32 of 43 owi., . u. .- o.i.

PG- 7,/t4/q1 T2Wrf 7/ v/e ;

Trav T 54 21 Assume tray T.54 28 is a 6" tray since this is the smallest width power tray at TMI l. T 54 28 has one cable installed.

dnu = ( (2.00)3 ) / 6.00 = 1.00 / 6.00 = 0.667" I

1 From table 3 3 (600 V) th 3 tabulated ampacity limits are found at dan = 1.0" Cable Size 1" Fill Limit 4/0 22) ,

. I Diameter correction:

L Cable Size . Tabulated L mit Diameter Corrected Limit Correction 4/0 2;9 zwisi t.27 291 No correction is required for mim5er of conductors since the cable is a three conductor cable.

Tray T 54 28 is in a 40 'C maximam ambient and therefore no temperature correction is required.

Lastly the resulting P.54-440 timitt are compared against 80% of the open air limit to obtain the bounding limit.

Cable Size P.54 440 Limit 80% Open Air Bounding Linut Table 4 Limit 4/O' 291 236 236 1

Glou suctras Calculation Sheet suh,est calc No. Rev. Ne sheet n l Dwatmg of Cable Ampacity Due To Racewey Fue Bamers C 1101770 E420418 1 33 of 43 oneinew- Done Rweaed Dr osie N YLY99 l1Uk

. 1/19/91 -

Trav T 54 31 Tray T 54 31 is a 6" tray with three cables installed.

dan = ( (2)(1.64)8 + (2.00): ) / 6 = (5.38 + 4.00) / 6 = 1.56" From table 3 3 (600 V) the tabulated ampaciy limits are found and l'inearly interpolated to fmd the limit at dan:

~

I Cable Size - 1.5" Fill Limit 2.0" 511 Limit Interpolation 1.56" Fi:1 Limit 1/0 115 95 ais wwo+2e m w) gg3 4/0 211 174 ati p ow+nm") 207 Diameter correction:

Cable Size Tabulated Limit Diameter Corrected Limit Correcton I/0 113 1 ** 8 h" 151 4/0 207 zwn.s? i.27 gg3 No correction is required for number of conductors since all cables are three con:luctor cables.

Trmy T 54 31 is in a 40 *C maximum ambient and therefore no temperature correction is required.

Lastly the resulting P M-440 limits are compar ed against 80% of the open air limit to obtain the bounding limit.

Cable Size P 54-440 Limit 80% Open Air Bounding Limit Table 4 Limit 1/0 . 151 150 150 4/0 263 236 236 I

I t

6 h

(bu NUCLEAN Calculation Sheet sw cm w.. n.a.. sw w..

l Derstmg of Cable Ampacity Due To Raceway Fire Bamers C Il01770 E4:0418. 1 34 of 43 oneww . om n oy on.

  • ] & Wf.> WLY/f1 7.8 Column 8 shows the ICEA P 54 440 (Ref. 3.21) ampacity derated to account for TSI one hour fire wrap.

7.9 Column 9 shows the maximum expected load current value in amperes for each protected circuit with the reference in parentheses, While degraded grid low voltage is not expected, the current at degraded grid is given in brackets [ ] and is taken as the conservative expected load curtent where the ampacity is less than 125% of the full load cunent for motor loads.

Circuits LP5 A and LP5B are parallel circuits to the IC ES Valves MCC. De load current (160 amps) is evenly split between the circuits (80 amps per circuit).

Circuits LS6, LP6, and LS$, for pumps NS P 1 A, IB, and IC respectively are loaded to near the derated ampacity with the 230 KV grid voltage at 235 KV. He grid voltage is monitored and verified to be greater than 232 KV 99% of the tirae. At 232 KV the NS P l A, IB, and IC load currents are 143 amps,146 aihps, and 146 amps, respectively (Ref. 3.9.5). '

Circuits CG83 and CH61 are for pumps IC P 1 A and IB, during normal operation one of two pumps is in operation. ne degraded grid currents are shown in brackets and come from Ref. 3.9,l.

Circuit CQ43 ampacity is generally neglected per FSAR (Ref. 3.11) since operation of motor operated valves is infrequent when compared to operation of continuous duty rnotors. However, for conservatism it is included in this calculation.

Circuit LP2 for DC P 1 A is loaded to the derated ampacity of the cable. At 232 KV the load current for this pump is 106 amps (ref. 3.9.6). DC P 1 A is shutdown during normal plant operation and runs for periodic l testing and when the plant is shutdown.

Circuits MEl and ME2 are parallel circuits for the IB Diesel Generator. Da diesel generator is loaded for periodic testing and LOOP events only. He diesel output of 470 amps is split between the circuits (235 amps per circuit). ,

Circuit ME4 for EF P 2B is de-energized during normal plant operation. EF P 2B runs only for periodic testing.

Circuits MA9 and MB9 for SR P 3 A & B Post Cooling Tower pumps are normally de-energized. During the past year the Post Cooling Tower was in service 22% of the time. When the tower is in operation one of the two pumps i runrung. Ref. 3.9.7 references Westinghouse drawing 267C795 which lists 52.9 A for full load current. Multiplying the fullload current by 1.25 to account for sersice factor we get 66.1 A.

l 0

(bu NUCLEAM Calculation Sheet Sutyect Calc N.. R v. N.. Eh tNu l Derstmg of Cable Ampacity Due To Racew sy Fire Bamen C Il01770-E420 018 1 35 of43 own.t. o.t. n. o.t.

W 7hq/D a i, Rwa 9hYln Circuit MBI1 power feeder to the 111 Bus and circuit hicl2 power feeder to the lhi Bus are nomially lightly loaded, except during cold weather when they can be loaded to beyond the cable derated ampacity r.t 40 'C. The heavy loadmg is due to heating load during cold weather when the ambient temperature is less than 90 'F or 32 2 'C. During periods of heavy loading the dersted ampacity at 32.2 'C is higher than the expected load current. Aux./Fuelllandling Bldg. Exhaust Fans, All E.14A D are powered from the lli &

IM Bus. Two fans are normally in senice, either the 14A & C faru, powered from the til Bus, or the 14D

& D fans powered from the IM Dus. The calculated load values assume (2) fans (49 amps) are operating frorn each Bus.

For Mal 1, the load of <70 amps is based on a 4 KV feeder breaker ammeter reading obtained on 9/03/96 with the plant at 100% power. The lli Dus and 10 Bus are supplied through a shared breaker therefore the measured load is the total load for both buses. Load of 176 amps is a calculated value based on cold weather space heating load (see Appendix 8.1). s, For t.fB13, the load of <10 amps is based on a 4 KV feeder Breaker ammeter reading obtained on 9/03/96 with the plant at 100% power. Load of 56 amps is a calculated value based on operation of the Post Cooling Tower (see Appendix 8.1).

For MCl2, the load of <50 amps is based on a 4 KV feeder breaker ammeter reading obtained on 9/03/96 with the plant at 100% power. The 1M and 1L Duses are srpplied through a shared breaker therefore the measured load is the total load for both buses. Load of 178 ausps is a calculated value based on cold weather space heating load (see Appendix 8.1).

Circuit ME6 for Dii P 1B is normally de-energized, Dil P 1B is a standby pump for Low Pressure Injection. It operates for periodic testing and when the plant is shutdown.

Circuit ME7 for MU P.lC is normally de-energized. MU P-lC is a standby pump for Iligh Pressure injection and is normally operated for periodic testing only.

Circuit ME9 for BS-P 1B is normally de-erargized. BS P 1B is a standby pump for Reactor Building Spray and is operated periodically for testing.

Circuit ME10 for RR P 1B is normally de energized. RR P 1B is a standby pump for Reactor Building Emergency cooling and is operated periodically for testing.

Circuits ED5033/ED5033A/ED308A are paralleled with circuits ED3034/ED3034A/ED308B for the 125 VDC control power feeder to the IT 480V Bus. The load current of 7.5 amps is split (3.75 amps) between the paralleled cables. Circuit ED307A has a similar load but it is not split.

Circuits CL43 and CM43 degraded grid load currents do not exceed the derated ampacity of 89 A and are therefore acceptable.

7.9 Column 9 shows the tag number of the load (Ref. 3.1 and 3.4) corresponding to the current in Column 8.

(2eu Nucte4s Calculation Sheet s+.a ce N. n.< w. r.s e w.

l Dernung of Cable Ampacity Due To Raceway hre Bamers C.1101770-E420418 I 36 of 43 onen.t. o.i. n.<, oy o.

M 7/ta/c JZug 7/i2y/e7 l hduation of Cables Shown To Be Overleaded By ne P 46-426 Methodology l nere are three cables, CG83, LP2, and LP6, for which the maximum expected load current may slightly exceed the revised ampacity when using the methodology given in IPCEA P-46 426 (Ref. 3.6). Rese three circuits are routed in tray 590 along with CGil and CQ43. The NEC (Ref. 3.7)is used to provide a closer evaluation of tray 590 which takes credit for non random physical configuration.

l From a walkdown on 10/3/96, tray 590 is a 12" wide and 6" deep tray The cables are arranged in one layer fastened to the tray with tie wraps in accordance with the NEC (Ref. 3.7) Article 318 9(a)(3). De sum of the cross sectional areas of cables smaller than 4/0 using diameters from Table 3 is:

CGil. A = nr8 = n * (0.930/2)* = n * (0.465)8 = (3.1415927)*(0.216) = 0.679 in 8 CG83: A = nr8 = n * (1.64/2)8 = n * (0.820)* = (3.1415927)*(0.672) = 2.11 in8 ,

CQ43: A = nr8 = n * (0.930/2)* = n * (0.465)8 = (3.1415927)*(0 216) = 0.679 in8 LP2: A = nr8 = n * (1.74/2)8 = n * (0.870)* = (3.1415927)*(0.757) = 2.38 in8 8

l IA = Sum of cross sectional areas for cables smaller than 4/0 = 5.85 in Table 318 9 Column 2 of the NEC (Ref. 3.7), for a 12 inch tray, requires that IA s 14.0 -(1.20'Sd), where Sd equals the sum of all diameters, in inches, of all Nos. 4/0 and larger multiconductor cables in the same cable tray with the smaller cables. For tray 590 there is only one cable that is 4/0 or larger and thes:

8 l 14.0 -(1.20*Sd) = 14.0 -[(l.20)*(2.00)] = 14.0 2.40 = 11.6 in l Since 5.85 is less than or equal to 11.6, the cables in tray 590 are installed in accordance with the NEC (Ref. 3.7)

Article 318 9. nerefore, in accordance with Article 31811(a) we can use table 31016 to account for ampacity derating due to installation in tray ne column for 90 'C with correction in accordance with the same Table 31016 for ambient of 40 *C by multiplying 0.910 gives:

AWG 10: 40(0.910) = 36 A l liowever,34 A shall be used for #10 AWG cable because the Kente free air ampacity of 34 A in a 40 *C AWG 1/0: 170(0.910) = 155 A AWG 2/0: 195(0.910) = 177 A AWG 4/0. 260(0.910) = 237 A Taking the addinonal 32% deratmg due to nermo Lag:

CGil:(34)(0.680)= 23 A CG83:(155)(0.680)= 105 A l CQ43:(34)(0.680)= 23 A LP2:(195)(0.680) = 133 A LP6:(237)(0.680) = 161 A 1

i e

_ ~ _ _ _ _ _ _

GPU NUCLEAR ' caiculation Sheet Sutvect C.4 No Rev. No Shed No.

I Derstmg of Cable Ampacity Due To Racewsy Fire Barners C 1101770 E420418 1 37 of 43 orgneter oste Re m d tiy Dei.

k'1: 7/u/9, ,

12 wS 7(vt(9, Conservative Life Estimate For Cable Shown To Be Overloadt.d Dv ne P 54-440 Methodoloev For one cable, LS6, the maximum expected load current exceeds the P 54-440 ampacity. Sandia Labs Report SAND 96 0344 (Ref. 3 25) Appendix G section G.5 is used as a guide for this evaluation. His evaluation is will conservatively estimate the effects on LS6 cable life due to Thermolag barrier ICCD FB02. The laboratory end-of-life is defined conservatively as the point where the cable elongation has decreased to 50% retention of elongation.

Absolute cable failure is defined as phy sical rupture of the insulation which has been demonstrated to occur well after the laboratory end oflife (Ref. 3.25).

1. Calculate the energized cable temperature, ne temperature of all cable conductors in the tray is conservatively assumed to be operating at the 90 'C linut by the P 54-440 methodology. Assuming this to be true for tray 551, at a current of132 A, LS6 cable conductors 5, would be operating at 90 'C in a 35 'C ambient. Prior to the hermolag being installed, a current of 194 A would-produce 90 *C in a 35 *C ambient. S AND96 0344 (Ref. 3.25) Appendix G and IPCEA 46-426 (Ref. 3.6)Section II.B Equation 5 allows calculation of the conductor temperature at a different current.

T = 1 * ( ( (T! - T! - AT/ ) / (T. - T. ATi ) ) * ( (234.5 + T.) / (234.5 + T/) ) )"

Where:

T = conductor current at T!, T!, and AT/ in A 1 = conductor current at T., T., and AT4 in A T/ = new conductor temperature associated with r in 'C T. = conductor temperature associated with I in 'C T/ = new ambient temperature associated with r in *C T. = ambient temperature associated with I in 'C ATi = dielectric less temperature rise in 'C associated with r AT = dielectri: loss temperature rise in 'C associated with 1 Per table on page 309 of Ref. 3.6 ATi- AT4 = 0 for cables rated 1 KV and below.

nus, T = 1 * ( ( (T/' T!) / (T. T.) ) * ( (234.5 + T.) / (234.5 + T/) ) )*

And for T/ from Report SAND 96-0344 (Ref. 3.25) page G 3:

T/ = ( T/ * ( 234.5 + T. ) + 234.5 * (T. T. ) * ( r /1)') / (( 234.5 + T. )-( T. - T. ) * ( r /1 )2 )

58 -

l wuctr4n Calculation Sheet

! se em u. n., u.. sw w..

l Derstmg of Cable Ampacity Due To Racewey Fire Damers C 1101770 E420 018 1 38 of 43 w.,- a .-

%.. ~{n/cn r (7x), u.h 7 yte At a currerit of 140 A.

T/ = ( 35'( 234.5 + 90 ) + 234.5'( 90 35)*( 140 /132 )3 ) /(( 234.5 + 90 )-( 90 35 )*( 140 /132 T/ = ( 35*( 324.5 ) + 234.5'( 55 )*( l.06 ) ) / ( 324.5 -( 55 )'( l.06 )2 )

T/ = ( l1400 + 14400 ) /( 324.5 - 61.6 ) = 25800 / 263 = 981 'C At a current of 146 A:

T,' = ( 35'( 234.5 + 90 ) + 234.5'( 90 35)*( 146 /132 )2 ) / (( 234.5 + 90 )-( 90 35 )*( 146 /132 )3 )

T/ = ( 35*( 324.5 ) + 234.5*( $5 )*( l.11 ' )/( 324.5 -( 55 )'( l.11 )2 )

T/ = ( l1400 + 15900 ) / ( 324.5 67.7 ) = 27300 / 257 - 106 *C Prior to nermolag being installed at a current of 146 A: ' ,

  • 146 /194 )' ) /(( 234.5 + 90 )-( 90 35 )*( 146 /194 )2 )

T/ = ( 35'( 234.5 + 90 ) + 234.5'( 90 35 )2() / ( 324.5 - ( $5 )*( 0.753 )

T/ = ( 35'( 324.5 ) + 234.5'( $5 )*( 0.753 )

T/ = ( l1400 + 7320 ) / ( 324.5 31.2 ) = 18700 / 293 = 63.8 *C

2. Calculate the cable duty cycle.

He nameplate fullload current for NS P 1B motor is 140 A (Ref. 3.9.1). Current has been measured at 140 A for NS P 1B when operating with NS P 1 A off and NS-P-1C on (Ref. 3.9.1). A maximum expected current of 146 A for NS P 1B is given by Ref. 3.9.5 for degraded grid conditions. He value of 146 A is also calculated for pump runout conditions (Ref. 3.9.1).

T1 normal opnation of the NSCCW system requires two pumps for normal cooling (Rel. 3.24 section 3.2.1). One pt. np is required for emergency cooling. However, two pumps from different Engineered Safeguard (ES) power train i re started for emergency ES operation (Ref. 3.24 section 3.2.1) to meet redunda .cy requirements. NS P l A is powered from iP 480 V Switchgear (ES train A) power and NS P 1C is powered from IS 480 V Switchgear (ES train B). NS P 1B is designed as a standby swing pump. NS P 1B is normally aligned to IP 480 V Switchgear but may be aligned to the 480 V IS Switchgear.

During st?rtup, Operating Procedure 1104-11 (Ref. 3.24) section 3.1.2 "Startup Procedure" requires the operator start the A and C pumps and place NS P-1B :ontrol switch in the normal after stop position which puts NS P 1B in the off(standby) mode.

During normal operations, if NS P 1 A is taken out for maintenance, then NS P 1B is placed in senice from the 1P 480 V Switchgear. If NS P lC pump is taken out for maintenance, then NS P 1B (Ref. 3.24 section 3.3 and 3.4)is placed in senice after being aligned to 1S 480 V Switchgear, ne electrical configuration is such that LS6 is energized if IP or IS Switchgear is powering NS P lD.

6 ius

c%u NUCLEAR Calculation Sheet sa,.a ca w.. n., s. sw.

l Derstmg of Cable Ampacay Due To Raceway Fire Bamers C 1101770 E420 018 1 39 of 43 cw., o.i. n.% o.1.

kC 1/t4M /M/3 7/2df7 l

Elapsed time meters were installed at IP 480 V Switchgear for NS P l A and NS P 1B lP breaker and at IS 480 V Switchgear for NS P 1B 1C and NS P 1B IS breaker on 1/28/86 under Budget Actisity 123062 (Ref. 3.26). ne Herrmlag fire bamer ICCD FB02 was installed over tray 551 in December,1986 under Budget Actisity 412384 (Ref. 3.27).

For this analysis we will use:

1 year = 12 monthr = 8760 hours0.101 days <br />2.433 hours <br />0.0145 weeks <br />0.00333 months <br /> (neglecting leap years)

I month = 730 hours0.00845 days <br />0.203 hours <br />0.00121 weeks <br />2.77765e-4 months <br /> TMI l went into commercial operation in early September,1974. For the first i1 years and 5 months (11.4 years or 99900 hours) of plant operation, LS6 did not have an or elapsed time meter installed. He elapsed time rneters for NS P 1B 1P and NS P 1B IS breakers were read on 5/31/97 to be 29260 and 10736 hours respectively. The elapsed time meters are controlled by the respective breaker auxiliary contact and surveilled under Operations 5, Surveillance procedure OPS S94 (Ref. 3.28). He elapsed time meters operated to months (0.83 years or 7300 -

hours) prior to the installation of the fire barriers.

From 1/28/86 until 5/31/97 is 11 years and 4 months which is 11.3 years or 99000 hours. Out of 99000 hours the LS6 cable was energized 29260 + 10736 = 40000 hours or 40.4% of real time. Aus, assuming the 40.4% ia typical over 40 years, the cable can be expected to be energized for 40.4% of 40 years or 16.2 years. Assuming 40.4% is typical for 40 years is reasonable since 40.4% is calculated for 11.3 of the 22.8 years the plant has 'ocen in operation and because it is a circuit that by design is not normally energized. Hus, we have established the duty cycle of cable LS6 to be 40.4% of the total 40 years which is 16.2 years or 142000 hours.

Rus, Frc m beginning of plant life to fire barrier installation: 12 years and 3 months = 12.25 years = 107300 hours Cable energized without fire barrier: 0.404

  • 12.25 = 4.95 years = 43400 hours From fire barrier installed to 5/31/97: 10 years and 6 months = 10.50 years = 92000 hours cable energized with fire barrier up tr 5/31/97: 0.404
  • 10.50 = 4.24 years = 37100 horrs From begirning of plant life to 5/31/97: 22 years and 9 months -' 22.75 years = 199000 hours Cable energized up to 5/31/97: 0.404
  • 22.75 = 9.19 years = 80500 hours From 5/31/1997 to 9/1/2014: 17 years and 3 months = 17.25 years = 151000 hours Cable energized from 5/31/97 to end of plant life: 0.404
  • 17.25 = 6.97 years = 61100 hours Fire barrier install, d to end of plant life: 10.50 + 17.25 = 27.75 yer.rs = 243000 hours Cable energized from fire barrier installed to end of plant life: 0.404
  • 27.75 = 11.2 years = 98200 hours
3. Using the Arrhenius relationship, calculate the time the cable is allowed to be energized at the new higher temperature using life at amoient temperature.

In Appendix G of Ref. 3.25, it is assumed there is no temperature drop across the cable. His is conservative since in reality there will be a temperature gradient across the cable insulation. Also, end oflife is defined as the point where the cable insulation elongation reduces to 50% retention of absolute elongation. His has been demonstrated to be conservative (Ref. 3.25). In reality, absolute cable loss of safety function is at the point where insulation rupture occurs.

U .

NUCLEAN CSICulatlOn Sheet se ca w.. nu w.. sw..

l Derating of Cable Arnpacity Due To Raceway Fire Bamers C 1101770 E420418 I 40 of 43 c;= om n. % o k 1/tV/O T7 W/>> 7/ry/n Radiation, humidity, and pressure emironmental effects are negligible (Ref. 3.10) for both normal and accident conditions in the control building. 'Ihus, thermal aging is the only phenomenon that is required to be considered.

From Ref. 3.25 section 4.1.1.1.2:

ti=1 *e"'U*IIT'IT 2 i 2 "

where: .

ti = time at temperature T i; normally known as the time at the senice condition t 2= time at temperature T2; normally known as the time at the test condition 4 = activation energy in eV k = Boltzmann's constant (8.617E 3 eV/'K)

T i= absolute temperature at senice condition corresponding to time ti in 'K 6, T 2= absolute temperature at test condition corresponding to time 12 in *K .

From our Equipment Qualification (EQ) file (Ref. 3.29) we can obtain the values required for this analysis.

Activation energy is 1.04 eV (Ref. 3.29 SRS A-10 page 3). One point identified on the Arrehnius cune is 16000 hours (1,83 years )at 120 *C (Ref. 3.29111-01 page 46).

Life at 90 'C:

l t2 = 1.83 / e (l.041617E $ )'( l /(120+273). II(90 + 273 ))]

l t2 = 1. 8 3 / e " * ( "'" ' ""' " -

I t2= 1. 8 3 / e '" * ' * "" ' *'"" " ,

t2= 1.83 / e'**" * (' ' ' " ' ' "

t2 = 1.83 / et -2.H1 = 1.83 / 78.9E-3 = 23.2 years Life at 35'C:

t = 23.2 / e[( l 041617E $ ) * ( lI(90+273). t /( 35 + 273 )))

g , 73 g j ,112100 '( l / H3. I / 308 } l' t2 = 23.2 / et izin *(IME 3 3.2$E 3 H t 2= 23.2 / en zi m *(. u m E 3 n t2= 23.2 / eld"l = 23.2 / 2.36E 3 = 9830 years After fire bamer installation for cable operating at 106 *C verses 35 'C:

ti = 9830

  • eH IMHl7E 3 )* OI(IM+2M).1I(35 + 23 n j ti = 9830
  • e n2iM
  • o isn. ii3n n t( = 9830
  • e( 121M * ( 2.HE 3 3.2SE 3 H ti = 9830
  • en 2 M
  • b H OE-3 H ti = 9830
  • eb'3'l = 9830
  • 0.624E 3 = 6.13 years or $3700 hours

(bu NUCLKAM CalculatlOn Sheet sutveci ese he. Rev. No. Sheet No.

l Derating of Cable Ampacity Due To Raceway Fire 11aniers C 1101770 E420 018 1 41 of 43 ongmWw Remned by

%- heh1 TLw/3 Due 7/o/n 4

Prior to fire barrier installation for cable operating at 63,8 'C verses 35 *C:

l ti = 9830

  • e (IM H17E.$ i41/W 8+D3> 1/(H + 273 Hi ti = 9830
  • et irinni/3n i/inil ti = 9830 e ,1 niw q urt.).3 2st.:il ,

4tw n a 2pt.3>l t i = 9830 t: = 9830

  • e ts HI = 9830
  • 33.7E 3 = 331 years or 2.90E6 hours The 331 years represcrits a conservative estimate of cable life at 63.8 *C.

ne following discusion calulates the aging rate at a constant temperature for two aging rates. Using an upper limit of 40 years for cable life, the two aging rates are linearly combined.

For every year the cable is energized with nermolag installed, the cable ages at a rate of 40 life years per 6.13 real.

time-years or 6.53 life-years per real-time-year, ne aging rate in this case is 40 life years per 331 real time-years or O.121 life-years per real time year. For conservatism it will be assumed that the aging rate at 63.8 *C also applies to the time the cable is de-energized over the 40 years.

l Thus, we have established two aging rates for the same cable, one at a conductor temperature 63.8 *C and one at s' conductor temperature of 106 *C. To evaluate when in real time years we will reach the life limit of 40 life years we

, will assume the cable ages at the slower rate first and then start the fast rate. His way we can evaluate how much time LS6 can be energized with the Gre barrier installed assuming the time prior to nermolag being installed and the de-energized time use up their portion of the cable life first.

The first 28.75 real-time-years equals:

the total time the cable is de-energized; 23.8 real time years = 40 years * (1 - 0.404 duty cycle)

plus the time the cable is energized without the fire barrier; 4.95 real time-years nus, from time = 0 until time = 28.75 real time-years we use the equation: .

i L = 0.121

  • t ; where L = life in life years and t = real time in ieal time years
nen, at t = 28.75 we switch to the fast rate and we use the equation

L = 6.53

  • t + b ; where b is the y axis intercept for the equation of the line To solve for b:

L = 0.121

  • t = 0.121
  • 28.75 = 3.48 life-years f

Using L = 6.53

  • t + b at L = 3.48 and t = 28.75:

, 3.48 = 6.53

  • 28.75 + b a 188 + b '

b = 3.48 - 188 = -l85 life-years i

- - . . - -. .. . , , - - - . - - + . ,-.

Glou Nuclean Calculation Sheet Subpst Cak No. Rw. No. Sheet No.

l Dweting of Ctble Ampacity Due To Raceway Fire Beim c 1101770-E420 Ol8 1 42 of 43 onenmot Does Awwaad by omie M. YtTM US 7/2df1 Using L = 6.53

  • t .185 at L = 40:

40 = 6.53

  • t.185; 225
  • 6.53
  • t t = 225 / 6.53 = 34.5 real time years Thus, at 34.5 real time years we will reach the life limit of 40 life-years. brefore, the cable time limit when aging at the fast rate is: 34.5 28.75 or 5.75 real time years.

In conclusion, since the conservatively estimated limit of 5.75 years or 50400 hours allowable time energind with the fire barrier is greatw than the onwgind time with the fire barrier installed of 4.24 years, the existing configuration is acceptable for now. Howevw, since the utimated in service time of 11.2 years will exceed the h'mit of 5.75 years remedial acten will be required. Cunently we indiccte a margin of 5.75 4.24 = 1.51 years energized time. The estimated time we will reach the limit is 1.51/ 0.404 = 3.'4 years or 1/30/2001.

Conclaa % -

Per the above evaluation the " laboratory end oflife" will occur aner 1/30/2001. Remedial action will be required to assure LS6 cablelife until 9/1/2014 -

As a follow up action for assurance, monthly surveillance OPS S94 (Ref. 3.28) will be changed to require an engineering evaluation if the sum of the elapsed time meters for NS P 1B approaches the life limit. The value to be used must account for the fact that the elapsed time metas wwe not installed when the Are baxriers wwe installed.

For the first t o months the elapsed time metas wwe installed, the LS6 cable is utimated to have been enwgind for 40.4% of 10 months which is 4.04 months or 2950 hours0.0341 days <br />0.819 hours <br />0.00488 weeks <br />0.00112 months <br /> To find the conect indicated limit we subtract 2950 hours0.0341 days <br />0.819 hours <br />0.00488 weeks <br />0.00112 months <br /> from 50400 hours which is 47500 hours life limit as indicated by the sum of NS P 1B IP and IS breaker elapsed time meters.

4

. A 4

e

h t# NUCLEAR ' calcuistion sheet subiest Cole No. An Ne Sheet No.

l Durating of Cable Ampacity Due To Raceway Fire llamers C 1101770-E420418 1 43 of 43 o, e,-

kt. Ys4/m (~Lu't3

=

7lid94 8.0 Anneddices 8.1 IH & IM 480V Bus Heating Load and Load Factor Determinaten 8.2 GPUN Cable Routing Computer Program PC CKS, Report CKSR1060u, dated 9/9/96 (Ref. 3.2).

8.3 GPUN Electrical Cable Information System, printed 9/9/96 (Ref. 3.0 8.4 Kerite Cable Information (from design basis recovery effort) circa 1%7 (Ref. 3.5).

8.5 Memo No. MSS86-079, Stall Operation of AH E 7A/B Fans Evaluanon of Test Results (Ret 3.9.4) 8.6 Lotus Notes, Tom Akos to Dick Bensel dated 9/10/96, TSI Cable Current I'ri,Mm (Ref. 3.9.5) '

8.7 Lotus Notes, Tom Akos to Dick Bensel dated 9/l 1/96, DC P 1 A Full lead Current. (Ref. 3.9.6) 8.8 GPUN Job Order 99494,1420 LTQ 7 data sheet, dated 9/15/95 (Ret 3.9.8) 8.9 IEEE Transaction Paper 70 TP 557 PWR, "Ampacities for Cables in Randomly Filled Trays" by J. Stolpe, dated 1970 (Ret 3.20) 8.10 GPUN Memo E540 96-002 Rev. 2, datea 10/4/96, " Comparison of TMI Thermo lag File Barrier Test Ccafigurations With TU and TVA Configuratens" (Ref. 3.13).

8.11 gal Pull /rerm sheets for power cables in this calculation that have been changed since original construction (Ret 3.18): l Pullfierm sheet 1 CH 61 date pulled 12/19/86 (Appendix R moddicanons)(Ref 3.18.1)

. l Pullfrerm sheet 1 ED 307A date pulled 1/16/87 (Appendix R moddications)(Ref. 3.18.2) 8.12 Packing Slips for GPUN Purchase Orders for cables under 3.18 (Ref 3.19):

r BICC Brand Rex Order 87431 packing slip, dated 6/13/86 for GPUN Order TP-038388 (with FAX dated 9/12/96)(Ref. 3.19.1) .

l Rock'oestos Order 64213 packing slip, dated 12/15/86 for GPUN Order 044730 (with catalog cut dated

.11/90)(Ret 3.19.2) 8.13 Gilbert / Commonwealth Cable Routing Computer Program ElISTDAT, Report CKSR0401, Run 218, dated 9/30/88 selected pages (Ref. 3.22).

8.14 Met Ed Purchase Order 97099,(Kerite Order No. A3265) dated 4/23/69 (Ret 3.17).

8.15 Sandia National Laborstories Report to NRC, "A Technical Evaluanon of the 'Ihree Mile Island Unit i Fire Barrier Ampacity Derating Assessments," Rev. O, dated 4/10/97 (Ret 3.23).

I

_ o

GPUb '~~.sc.'

Ccble Routing inree Mile Island Unit 1

  • Printed:Br29/96 Time: 07 12:29 Report: CESR1060u Pagg- 1 Circuit Pouted in Tray Circutt No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.)

Tray 551 1 LP 5A 1 LP SD 1 LS 6 y ,

. e 6

3 4

. C -IlVI- 770'E W ~OIO fAv. o fl2& P. 5.L}

ppf < n / ' Y ' ,'

fry ( 4ll '~

4 l ~

\

l GPUN Cablo Routing l

Three Milo Intend Unit 1 . Printed;1/29/96 Timo: 01:13:32

, Report cr.s R1060u Page: 1 Circuit Routed in Tray Circuit No. (Interimtio.( Circuit tio, (Interim No.) Circuit No. (Interim No.)

Tray $53 -

1 LP SA .

1 LP $8 1 LS 6 n

D I.

e -

P 4

4 4

4 4

9 que #

vO lpgtrl

  • k l* L f29<l.oll'
  • C -IfM-77s -E+22 -sl8> f1V<
  • f M 6 +- DI c as.t MSIW$

111 & 131 JNOV Hus Heatlug Load ar,d Load factor Betermination Load neorurements for the id & th) 480V Buses dunng cold weather are n.it asallable. During moderate weather co% mons these Euses are lightly loaded since the large space heating load connected to the Buses (lH Bus 1112 KW and 1M Bus .1128 KW)is not encrpt To reasonably calculate the impact of the heating load connected to these buses, the ddtm..cc la load for the upstream 4160V bus during cold and moderate weather was evaluated. The IH Bus is povgred from the ;B 4160V Turbine Plat %s and the lhi Sus is powered from the IC 4160V Turbine Plant Bus The total heatiny load coueN to Oc iB TN is the summation of the heating load connected to the IF and lH 480 V Buses The total heating h c.) es tJostei(N the IC Bus is the summadon of the haang load connected to the 1K and thi Bases.

i (Reference IH, thi, and IU bes t Ahulmed Load $$cdon) .

l The htVA loading for the Balance of Plant (bot") 4160V Buses (I A, IB & IC 4160V Turbine Plant Buses), Reference Drawing E 2064)21(ref. A1.8)is monitored weeldy. To determine a loading facto for headng loads, the difference in BOP Bus loading for the lowest ambient tempetature day monitored was compared to a typical warm day monitored.

DATE BUS MVA Loading 1/21/94 (smbnnt temp .16 'F) IB 4160V Turbine Plant 5 25 h1VA ~

7/25/94 IB 4160V Turbine Plant 4.32 MVA Ah1VA e 0 93 hlVA t /16/94 (ambient temp .16 'F) ly ol60V Turoine Plant 1015 MVA g 7/5/94 1C 4160V Turbine Plant 8 47 MVA AMVA = 168 MVA ,

The total connected heating load for the IB 4160V Turbine Plant Bus is 1142.5 KW and the total connected heating load for the iC 4i60V Turbine Plant Btis is 2328.4 KW.

The di!Ierence in the 18 and IC bus loading between extemally cold day and typical summer day,932 KVA di!Terence in load for the IB Bus and 1680 KVA differen.c in load for the IC Bus can be attnbuted to operadon of the connected heating load. Using this assumption a load factor for the heating load connected to each Bus can be determined by dividing this seasonal difference in Bus loading by the connected headng load to each Bus, Bus Seasenal Loading l Total Connected Heatmg Heating Load Factor Difference Load .

IB 4160V Turbine Plant 930 KVA 1142.5 KW 0.81 Bus IC 4160V Turbine Plant 1,680 KVA 2328.4 KW 0.73 Bus l he abose factors are used to determine the calculated cold weather loading for the IH and Iht 480V Buses.

References:

AlJ G/C Dug. 201049, Rev,19,480V Control C,:nter I A & IB Fuel Handling Bldg. Hig. & Vent.

Al.2 G/C Dug. 201054, Rev.1.5,480V Control Center L A Ausilkry Bldg. Htg. & Vent.

Al] G/C Dug. 201055 Rev. II,480V Control Center IB Ausiliary Bldg. Htg. & Vent.

A 1.4 G/C Dug. 201061 R:v,25,4 ROV Control Center IB Senice Bldg. Hig. & Vent.

Al.5 G/C Dug. 201067, Rev. l$,480V Control Center Senice Water Post Coolinflower Al.6 G/C Dug, 201072, Rev,16,430V Control Center IC Turbine Plant Htg. & Vent.

A 1.7 G/C Dug 201073. Rev.19,480V Control Center ID Turbine Plant Hig. & Vent.

AIS U/C Dug 206021. Rev.10, One Line & Relay Diagram 6900V & 4160V Switchgcar Al.9 G/C Dug. 206031, Rev.18. One Line & Relay Diagram 480V Switchgcar A l.10 G/C Dag. 206032, Rev.12, One Line & Relay Diagram 480V Switchgcar Al.Il Kotteamp (Source 01448) Dwg. E 1, Rev. 3, Secunty Processing Center Electrical Lir,hting Plan A l.12 Kotteamp (Source 01448) Dwg. M 1, Rev. 3, Secunty Processing Center HVAC Floor Plan i

mm

C-l10/- 779-n +Eo St$ CD.o Mf M V 8,I M ts; m i. ,*. y e.wo.e... e. p3. is. C o.. we, e. e . reos coe..*, re .e 9,s.....e 1

s _ __. .

$3ElhW11 A.pWdd.hlltihile A' o ! '

~~

.4 1

M TA A .,ei1r-t= ~ - i 1 we ies% ,As.e,siee.go A.,e , ,c,., 'e em m. ,3 3, A4 s i v 134 a . Ao

. a b -'e F Ct.se sirfs r i .c .ce e ae+ee eio e.Ot!Y.7N ere ;

1 a: - p, w:o m egegm 1

irr;;e g eji.ijTr" ;  ; ,

[,9 Fl!Id asygd%Jy 5H $

icpw A :e+ ed

. . i i.e.,

iu ruu i s

i _

i i IhMYN1?,ai

<a4 Le=ye_

Ikie' Ail} A+n

!IA Fw begagiseg geog 6egQ ;puwg ?Si.04e per 4i i)  !

4t .E w - g sw wT

  • w.agkwye iw n NAs a4
c,e&.peae7

.~rni  : g.d L'e' L"n'w MM r

'A

aart r -

E ;

w  % o. +rew i inhn tw a

i i c i, 4 t F3 m 'If iic i AwC.?ity ! iO3fiD3 m 9635: .

lA4 M-7_i

  1. c, c ffMrw A ik  : AncfEc I 45+Tmrw , ioc n! i a

t; i &- : a i izem i er m i il 4 40 li ^l KW 4 57 l'5 144 , J5 e iO0iiDOerw , $7 43i p G4 hMA'5 lq t i gn i iSHW"*"**

ii W l0 AM4 JC I 37 43 is -ac 5T by i hi trW rw i s s, op Anc ;p i iaomrmrw ero i io AM s@ 1 4) i:A ;Ance sg iO55Ew -

om it 14 4 ;4Ye ne6" re EiT Tapa rw t

vs is, 17 MMJ 4;I?w W in Pai P M i i 5 30!

ew

'rgaseen Las 1 ve tw v WA visen u rew 1 eas sr A i i5 :ww 1

i 1

w 4m &J tspec+a.s7"iTTPmayetsip~ei.aehavim o ec Ai vi ee 5 WM 4 i

I i 7 74 A .4 { 145 i li ,8hped 7 - ^ ^ ^

fa ,

sae EU3LI IF F.eme a er*v v' L*FM'g88nst taist . . I i

i

.awaiea r he pee hem is frv pe are di G.. M8' .

i safic fiep I Q @ @Femem cc is re .an s ."

'pe a .

i iHi > 4A amee a sigVe u7 s ways .

. i TBAve pase Men CC  ! Peg M6 il 4 6testMma gata *N 4 beat Cci P=g Mi een Por Ai 4 pat '?ompeaent I sessin W3P,W e6 Ai H A*M _ vna iconiggaent seee fests aa geoe iA, A 576 t' ~ g *T.'us erw de ir 146 1r= r + l g*n ti i G4 _ AnM7""f** 44 di Fw as ap y ' Aft ER 3ee. P.s r* *

! 1 ic hg i3 i ) er 55: is i AkO'up i soi mw sc adi ic3' JAL , A>+4 M i 3414 4tw FU h t r ir i Aw0 ut i 'iO3 uW ED a4 scai flu An c7w 54'4 KW 461 7! IID  : Anc up ! ;TWsM lo es ic3:

}s , p64 etw gy HI na wTyy 1isp aw i 17 ei doi

',An Anc g.7H

}c in W 64p de api :3 4H.4 Jg iUO uw 3 gi i'JD

)p . As g i t i 4TTer 44!  :' t Ef~;H iFu*w JIi s a6t""

frA.

. 3Ag 74'A  !:0 330 . , Ji .

inp uw _.nr ei @

'7eeni hesten 6ase HiW _iA G17 Bass 1 45 uvA unn,'0IntW  ! 7 Bi '00 '

a ~ rut Ebasa . es gut

""*J" W~A~iW

  • i i 04 v aq, ~ ~-

i m ip A

_, Total hoews Leed 3 509 KW

! i I l is 490v r es, caneg Tomet put-  ! @s .I i TaTil e r siYaems T mase GGi i

~455 Ampe 4 WV e  :

  1. 4 3' i

~

i I Pew Cy4emos cc I mum 11i-157 Def Ai 5) J ,I i

  1. . .e.seace i itew Amp 1 1 IA 5R T A I REDIiF m opesBIma IA 54 E 15 m EA4evet i tifl'Yh_ _. .

i 95DHD 775 7 I I ZW s

1A DETTc 'OO Mr I

1*ITh i

(A He i

! I I (a Anc.3i - ' saw s og i Q MY,r. i 15 0tVT ~ ila 1

C Pai DF 1 .5 Eva (ht  ! '

iM mp 70 amp pet 50 gbneeses bees br iFU% of tot asetet quod t fg I4lig ilIMr 5 0il I.  !

7p AnG?$ IT 5 Kw g 02 i i  !

7F GUgetrungsq pidg 1'I emp 544 54 M ,mg ge$geef eagg6 i)5% W espaegies need istA> i i < I i des fM i

!  ! I 1 I

! ( I IF48W 4,4 qi yg setg ( Yeai Bye tep ,aq 4med Ref puse .S)) pef Ai ig) i I Witrit%A sis m - :=v p nisonceatui 7e Av in e us ew Ai m 4 iff'l e"~~

& veas CGe7 e mai e aese ee ease NFPege_sdom o ee'* ear Nd a ese' essa i ete, o s's% i , l

, I i  ! + i i i i IU Wy; h 5 5esw P4 MLtpwe *aeste9 Lead Ref Das 8 g 20H3 eef Ai 5) i I i@ NME st!vse,o av y .g & DJ,o,,,E C t 70s.06i pe# Ai di i i

.iTI C. , i1rAir- e Aisi g fw't.ee P aus & weat Cc i 410 M .

ITil 1 i l t iTeal 1234 4'stW.

1 i I 4

. i I

"  ! . I i i i I i , i ._ '

l _

  • i' i I

=

f j h 1

. an. . ee>= ,.s ee..

i I I

]

4

C -t!6t ~ 1 h -stto-otg gu, o JI N f T d./ /4(,A 3 sp y l

j i , 3

{

rtWM ,g_syg;de

~

l 3

) TET.Tli se E.3.3 w 93<; cc Je ve f w.at w

ipy,,,9 ra n4 y , .,E..3 g

.w tr ist ys 1 g - tc agr. ipAT" c  % 4a pc 1 e og ai$ bg i

  • ~ it' 5D ' asp (T' (?' 34 as 5il*Til l')

ic ad6 N" d' '74 Ad *.7 { #l k 5'f IS -AE U {'fj: i III fa -AJ5NU 1 eri "is aAc TCG! 57 o 1* aspiTJT - ~T9 'i s aa~Mir i: 5 : M .asO('$ii s f~ii 10 .EDi'a i i FI

!A aEEhs 57 1'  ::o adT:TI4,7 57 1 h ra7 Mil i rf l 6- E5143 '!( :W a- ETii' , b Ts *ERMil ;f

!s AsiEs.7 1

% -Ma Istfir i 50 '1' LEnk .

25

, -*v.# 70'76

+- 36s EL m i M! >o "la7 Up 7  !

it Ine s, 4 TT -1ECDs i l':

i i i i I :T ess

~ 53I*TW

~3F A" TIN if 2

i i ,

Y.i.. avi r

i i i 1

1 1 .N TFEL Tr.%. rg L..e fiOTid7Le Tc.i m.+g L..e i i ir1MVO. m.ieg L.3e -i si s ir16N EiWii, i;w ei T7145VLi%.iss i..a i t est,i TWildiLTii..i.,j tisi 4 i i

i T* we. i siTy 5 w .,Teie,ce,- mi ' <w e

e t

9--

4

GPUN Cablo Routing Threo Halo Is1cnd Unit 1 .

Printod:8/29/96 Timot 07:14:46

. Report: CKSR1060u Page 1 Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.)

Trays 590 1 CG 11 1 CG 83 1 CO 43 1 LP 2 -1 LP 6 I,

t C-//Of- 770-Et2D *DI6 12Lv. o

$2-k(1/cnx!>%

027eJs//L

l GPUH Ceblo Routing Three Milo Island Unit 1 Printed:8/29/96 Time 07tl$ 16 Report: CK3R10(Ou Page: 1 Circuit Routed in Tray Circuit No. (Interim No.),

Circuit No. (Interim No.) Circuit No. (Interirn No.}

~

Trays 732 l MD 11 9

. C.jgot-17V04W N'S (2LU <

  • an 'b *L pg v,//L

GPUt1 Cablo Routing Thrso Milo Islcnd Unit 1 .

Printedi8/29/96 Timot 07t15:49

, Report: CKSR1060u Paget 1 Circuit Routed in Tray Circuit flo. (Interim No.) Circuit No. ' Interim No.) Circuit No. (Interim tio )

Tray 733 1 MD 11 I.

4 6

9 c-t 10f- 7Jo'54WW Gl\).O

).ppJ.>EL

, , fns5oll'

GPUN Ceble Routing Throo Mito !siand Unit 1

  • Printed:8/29/96 Time: 07: 16:18 Report: CK3R1060u 'Page: 1 Circuit Routed in Tray Circuit flo. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.)

1 l Trays 735 1 ME 11

[~ll/l~i20-EAU. M9 pstu.o

&L 4

gyub 4 s/ n-fy

l l

CPUti Cablo Routing Three Mile Island Unit 1 -

Printed:8/29/96 Timot 07: 16:43

, Report: CKSR1060u Page: 1 Circuit Routed in' Tray Circuit 110. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim 11o. )

Trays 736 1 ME 11 9

'e 0

e 6

e 4

gipl-770 -6W (2_sta. O h tt'a a:>. 7L L fyz 7 dt

WUN Ceblo Routing Thrse Mile Island Unit 1

  • Printed 9/ 9/96 Time: 09:06:52 Report: ,CKSR1060u Page 1 Circuit Routed in Tray i

Circuit No. (Interim No.) _

Circuit No. (Interim No.) Circuit No. (Interim No.) '

Tray 745 1 ME 1 1 ME 2 1 ME 4 1 ME $

I, a

p-g pse.V.o fppW) 2 '

fly p dt"

GPUN Ccblo Routing Three Mile Island Unit 1 Printsd:B/29/96 Tims: 07 17:38 Circuit Routed in Traf _

Circuit No. (Interim No.) Circuit No. (Interim No ) Circuit No. (Interim No.)

Trays 751 ,

1 MA 9 1 MB 9 1 MB 11 1 MB 13 1 MC 12 1 ME 6 1 ME 7 1 ME 9 1 ME 10 1 Fi 11 4

9 9

e 9

e 4

9 W

pso. o pp,J:p gL (6p.e f oak

GPUN , Cable Routing Three Mile Island Unit 1 , Printod:8/29/96 Time: 07: 18:12 Report: CKnR1060u Page: 1 ,

Circuit Routed i'n Tray Circuit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.)

i Trays 756 -

1 MA 9 1 MB 9 1 MS 13 1 ME 10 1 ME 11 4

9 9

(2ft.U O U' ,j t.

ni-5 e

GPUN Ct.ble Routing Three Mile Island Unit 1 -

Printed:9/29/96 Time: 07:22:14 Repor t : CKSR1060u Page: 1 Circuit Routed in Tray Circuit No. (Interim No.) Circuit !o. (Interim tio. ) Circuat No. (Interim No.)

Tray: 1019 1 CH 61 1 ED5033 1 Et5033A 1 ED5034 +

1 ED5034A 1 ts 5 1 LS 7 e

  • W 9

6 0

f g gyi -77o - E+fo -06 g/cv. o

. jppwcI'7 [' '

f,p n d

GPUN .

Cable Routing Three Mile Islangi Unit 1 Printed:8/29/96 . Tiro 17:23: 01 Report: CKSR1060u Page 1 Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim Nc )

l Tray: 1020 i

1 CH 61 1 ED 307A 1 ED5033A 1 ED5034A 1 LS S 1 LS 7 4

e V

, c ,g g g ~ ~j7 0 ~ P M O ~

@. 0

/y wh t. L D br' / L 0[ /

-FSBROWSE ASB. CIRCUIT----------------------------------------Obs 6878 Scroon 1 Command ===>

===========- ELECTRICAL CABLE INFORMATION SYSTEM ================

i - NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 --

CABLE NO.: CGil VOLT: -

CABLE DESCRIPTION: 1-3-10 l STATUS: ASB B/M: EK- 3A BOP OR DIV: A EQ REQ.: N SYS: AH GPU SYS: 832 l BA: CKT NATURE: PWR. JOR AH-E-15A

'EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~


FROM --------------------------------------

j EQUIP. TAG NO.: lA ES MCC 1F EQUIP. DESCPIPTION: 1A ENGD. SFGDS. CONT. CTR. UNIT 1F TERM. CABLE LENGTH: --

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: ITE CKT BRKR CO 85-C-70013 SH 89


TO ----------------------------------------

EQUIP. TAG NO.: AH-E-15A EQUIP. DESCRIPTION: AIR COOLING FAN FOR DECAY HEAT & NUC. SERV. PUMPS (AH-E-15A TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG:

5 h

a c_-glot 170-fLgo-cfB f2.U. O

[f2EE 3.4_j e~ er U. s o gyp//sy s t cet- ?,

FPra~rso l l i

s/w A7zJ l

-FSBROWSE ASB. CIRCUIT--------------------------- ------------Obs 6878 Scrocn 2 Command ===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM =======================


NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: CGil CABLE REEL #: l l __ __ l l _l PO: ACTUAL LENGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMfNTARY: G/C INC.SS-208-630 SPECIAL INSTRUCTIONS:

ROUTING: (10B + 18.0) 538,537,536,539 (EL. 303.,7) (H3 + 6.0) 554,556,557,590 (EL. 319.0) 130' e

e e

e 4

  • ggu. o lV/" /Ir t P.oj" A 3 Ap

-FSBROWSE ASB.C'IRCUIT----------------------------------------Obs 7070- Scroon 1 Command ===> -

=========== ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - guit: PF3 --

= CABLE NO.: CGB3 VOLT: 480 CABLE DESCRIPTION: 1-3-1/0 STATUS: ASB -B/M: EK- 3F BOP OR DIV:X EQ REQ.: N SYS: IC GPO SYSt- 542 BA: CKT NATURE: PWR. f0R IC-P-1A EST LENGTH:- 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- T EQUIP. TAG NO.: 1A ES MCC11A EQUIP. DESCRIPTION: 1A ENGD. SFGDS. CONT. CTR, UNIT 11A TERM. CABLE LhPGTH: --

1 CONDUIT SIZE: 0 0 CONDUIT-LENGTH: 0 0 -

TERM = REFERENCE DWG: I.T.E. BRKR. CO 85-C-70013, SH 91_


TO ----------------------------------------

EQUIP. TAG NO.: IC-P-1A EQUIP. DESCRIPTION: A INTERMED. CLG, CLOSED LOOP PP. ('.:C-P-1A)

TERM. CABLE LENGTH: -

K CONDUIT SIZE: 2.5 0 CONDUIT LENGTH: 20 0 TERM REFERENCE DWG:

5 e

'I C-1/o/~77& c4 & M S FCV. c2

, jy he ?

fy e J bIio e

-FSBROWSE-ASB. CIRCUIT----------------------------------------Obs 7070 -Scrosn'~2 L Command ===> 4 l_ .-=================' ELECTRICAL CABLE INFORMATION SYSTEM =2=====================


NOTE: Previous: screen: PF10 Next screen:-PF11 - Quit: PF3. ----------

CABLE :- NO : CG83. .-- .-

CABLE REE,L:#1 l l l __ l l APP R PO:- ACTUAL'LENGTML DATE PULLED:

MAX. TENSION-MEASURED BY:-

MAX TENSION MEASURED:- (lbs.) _

ELEMENTARY: G/C INC SS-208-257

,SPECIAL INSTRUCTIONS:

ROUTING: (10B-+ 10.0)-373 (10 + 0.0) T-47-8 (EL. 318.0) 539 (EL. 304.0)-UD3249

-(H3-+-7.0) 554,556,557 (6C + 16.0) 1:CG ' 83 (EL. 302.-0) 590 (EL. 319.0)

T-54-24 175' 9

O g

  • 0 C-f(of-7 7s-9 tL.* ~6

, 4%o lg(nl!M P. 3 As-Yol1<

4

~ . . .

-FSBRCWSE ASB. CIRCUIT-----------------~~---------------------Obs 7319 Ecreen 1 Command ===> .

j -================= * ' ELECTRICAL CABLE INFORMATION SYSTEM

==========

l

--NOTE:'Next screens PF11 - To find a cable # type: S ' NUMBER' - qttit : PF3 --

-CABLE NO.: CH61 VOLT:-480 -CABLE DESCRIPTION: 1-3-2/0 STATUS: ASB B/M::EK- 3G BOP OR DIV: X EQ REQ.: N SYS: IC GPU SYS: 542 BA: 'CKT NATURE: PWR FOR IC-P-1B EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~


FROM --------------------------------------

EQUIP. TAG NO.: IB ES MCC10A EQUIP, DESCRIPTION:'1B ENGD SFGDS CONT CTR UNIT 10A TERM, CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: I.T.E. CKT, BRKR. CO. 85-C-70013 SH 97


TO ----------------------------------------

-EQUIP. TAG NO.: IC-P-1B , .

EQU!P.' DESCRIPTION: IB INTERMED COOL CLOSED LOOP PUMP MOTOR (IC-P-1B)

TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG:

6 4

CAlb/~77D4M (2sV. o

)ppads r.Y f,p r ol7:

-FSBROWSE..ASB. CIRCUIT------- --------------------------------Oba 7319-- Screon- 2:

Command ===>-- ,

===========' ELECTRICAL CABLE INFORMATION SYSTEM =================

NOTE:: Previous screens PF10 - Next screen: PF11 - Quit: PF3. -----------

CABLE NO: CH61-

. CABLE REEL #- l l l l l APP R P O : --. ACTUAL LENGT!+: DATE PULLEDT' MAX." TENSION MEASURED BY:

MAX. TENSION MEASURED:- -

(lbs.) ELEMENTARYt G/C INC SS-208-528 SPECIAL INSTRUCTIONS:

ROUTING: CABLE ONLY (F3 + 12.0) 1020,1019 (G3 + 19.0) CS2051 (G3 + 24.0) 1018,--

-1027-(G3-+ 40.0) UD3461 (11A + 5.0) 955-(10A + 23.0) (H3 + 40.0) 597 (K'+ 11.0) T-54-26: 100'

,- g 4

r'

(-l101- 770-2.go-a f l Q50.o hftab!

A, < 4 <

-FSBROWSE ASB. CIRCUIT----------------------------------------Obs 7538 Screen 1

- Commandi===> .

= = = = = = = = = = = = = = = = ' ELECTRICAL CABLE INFORMATION S*.' STEM =====================

- NOTE: Next screen PP11 - To find a cable.# typen S ' NUMBER' - quit: PF3- --

-CABLE NO.: CL43 VOLT: -

CABLE DESCRIPTION: 1-3-1/0- -

-- STATUS: ASB -B/M:~ EK- 3F BOP OR DIV: X EQ REQ.: ~ SYS: AH GPU SYS:

bat-- CKT NATURE 'PWR.-

EST LENGTH:- 0 MAX PULL TENSION:- TENSION MONITORED


FROM ---------------------------- '-------- !

SQUIP. TAG NO.:-

- EQUIP. DESCRIPTION: 1A REACTOR BLDG. H&V CONT. CTR, UNIT SC TERM, CABLE LENGTH:

~~

CONDUIT SIZE: 5 0 CONDUIT LENGTH: 40 0 TERM. REFERENCE DWG: ITE CKT BRKR-CO 85-C-70013 SH 52


TO ---------------------------------------+.

EQUIP. TAG NO.: AH-E-7A

- EQUIP. DESCRIPTION:

  • REACTOR BLDG. PURGE EXHAUST FAN A MOTOR (AH-E-7A)

TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 3 0 CONDUIT LENGTH: 50 0 TERM. REFERENCE DWG:

+

+

i e

E R

. 94 y 0 Q p l:P V-)

/G,<74 10:

-FSBROWSE Command ===>

ASB.DIRCUIT----------------------------------------Obs 7538 Scroon 2 4

-================= ELECTRICAL-CABLE INFORMATION SYSTEM =======================


NOTE:, Previous screen: PF10 - Next acreen PF11 - Quit PF3. ----------

CABLE NO -CL43 CABLE'REET. # l -l l l l PO: ACTUAL LEEDTH: DATE PULLED -

-MAX. TENSION-MEASURED t i ~~~

MAX._ TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-618

! SPECIAL INSTRUCTIONS: VIA 6" TRAY U.D. 3460-ADD-3" CND PER DCR-2-251, FIELD ADD BEFORE.H T FUNCT TEST ROUTING (H + 0.0) 416,672,673,525,526,527,528 (G3 + 20.0)-

(10A + 16.0) 597 M

N e

4 t

S 9

e

. G-i ta t-77o-64to-ot 8 (22.u.o pgaa de r..

147 4dp i

e

-FSBROWSE ASB. CIRCUIT----------------------------------------Obs 7644 Scroon-1 Command ===>-

L =====n=========== ELECTRICAL CABLE INFORMATION SYSTEM ======================

NOTE:"Next-screens PF11 - To find a cable # type: S_' NUMBER' - quit: PF3 --

. CABLE NO.:_CM43 VOLT: - CABLE DESCRIPTIONi 1-3-1/0 l- -STATUS: ASB -B/M:1EK-- 3F BOP OR DIV: X EQ REQ : _ SYS: AH 1GPU SYS:

bat CKT NATURE -PWR.-

EST LENGTli: 0 MAX PULL TENSION: -TENSION-MONITORED


FROM ---------------------------------------

EQUIP. TAG-NO.:

EQUIP, DESCRIPTION: IB REACTOR BLDG. H&V CONT. CTR. UNIT SC TERM CABLE LENGTH:

CONDUIT SIZE:

0 0 CONDUIT-LENGTH: _ 0 0 ,

TERM. REFERENCE.DWG: ITE CKT BRKR CO 85-C-70013 SH 55

~


TO ----------------------------------------

EQUIP. TAG NO.: AH-E-7B EQUIP.: DESCRIPTION: REACTOR BLDG._ PURGE EXHAUST FAN B MOTOR (AH-E 7B)

' TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 3 0 CONDUIT LENGTH: 60 0 TERM.- REFERENCE DWG:

5

_ 1 d

C-Ital-770 Et20-c gav. c A;ykt

- j'ry< 7 0/7 I

- - - ~ -

g

l'

-FSBROWSE ASB. CIRCUIT----------------------------------------Obs 7644 Scroon 2

Command ===>. .
===========* ELECTRICAL CABLE INFORMATION SYSTEM =================

NOTE:. Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: CM43 CABLE = REEL'#: l l l l l PO: ACTUAL-LENGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-618 SPECIAL INSTRUCTIONS: VIA 6" TRAY CL43 U . D .- 3460 ROUTING: (H + 11.0) 416,672,673,525,526,527,528 (G3 + 28.0) (10A + 16.0) 597 (L=+ 23.0). 155' 5

9 9

4 GtItr-770-E42HIb OsV. O

$ppe nl*

  • t.)

f e. to $10

-FSBROWSE ASB. CIRCUIT----------------------------------------Obs 8283 Screen 1 Command ===>' ,

=========== ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTEi Next screen: PFil - To find a cable # type: S ' NUMBER' quit: PF3 ---

CABLE NO.: CQ43- VOLT: -

CABLE DESCRIPTION: 1-3-10

. STATUS: ASB B/M: EK- 3A BOP OR DIV: A EQ REQ : Y SYS: NS GPU SYS: 541-BA: CKT NATURE: PWR. -FOR NS-V-4 EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- !

. EQUIP. TAG NO.: 1A ESV VCC7D EQUIP. DESCRIPTION: 1A ENGD. SFGD. VALVES CONT. CTR. UNIT 7D TERM. CABLE LENGTH: ~~

DONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM.-REFERENCE DWG: ITE CKT BRKR CO 85-C-70013 SH 103


TO ----------------------------------------

EQUIP., TAG NO.: NS-V-4 EQUIP. DESCRIPTION: R.C. PUMP MOT. CLG. RET VALVE CONN. BOX (NSV-4)

TERM. CABLE LENGTH: ~~

CONDUIT' SIZE; 1.5 0 CONDUIT LENGTH: 60 0 TERM. REFERENCE DWG:

6 4

+

64/6/-770-fA4 ~#l6 FEv.o

/N" };,w f. )

pyl n< o/10

  • FSBROWSE ASB. CIRCUIT----------------------------------------Obs 8283 Screen 2 Command ===>. .

f- ================= ELECTRICAL CABLE INFORMATION SYSTEM =======================

l. .------- NOTE: Previous screen: PF10 - Next screen:-PF11 - Quit: PF3. --------- .

CABLE NO: CQ43' CABLE REEL #:-_5115 _

l

-l - l: _ l _l PO:- ' ACTUAL LENGTH: 164'  ! ATE PULLED: 01/30/73:

MAX. TENSION MEASURED BY:

~ MAX. TENSION MEASURED: _

(lbs.) ELEMENTARY: G/C-SS-208-455 SPECIAL INSTRUCTIONS: INSTALLED RAYCHEM WCSF-200-N HEAT SHRINK TUBING OVER SPLICES / CONNECTIONS AT VALVE CONN. BOX (NSV-4)

' ROUTING .(J + 21.0) 556,557,590 (EL. 319.0) CQ43 85' FCN-C088139 5

9 dP 4

k C-t tol-7h-E+His

, (25N.o jMg).y T. 3

/,r / ' g p

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11587 Scrosn 1 Command ===>

u================* . ELECTRICAL CABLE INFORMATION SYSTEM =============a========

- NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 --

CABLE NO.: ED307A VOLT: 125 CABLE DESCRIPTION: 1-2-8 STATUS: ASB B/M: EK- 4B BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS:

BA: CKT NATURE: PWR -

EST LENGTH: 0 HAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- !

EQUIP. TAG NO.: 1F ES DC 7 EQUIP. DESCRIPTION: INVERTER RM 1B DC ENGD SFGDS DIST PNL 1F, SW 7 TERM. CABLE LENGTH:

I CONDUIT SIZE: 0 0

~~

CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC SS-201-254


TO ----------------------------------------

EQUIP. TAG NO.: 15 ES SWGRlR EQUIP. DESCRIPTION: 1S 480V ENGD SFGDS SWGR - UNIT 1R TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 2 0.

CONDUIT LENGTH: 50 0 TERM. REFERENCE DWG: WESTIN3 HOUSE 591F714 i

&(til ~770--SMomC18

. (?Jiu O

/t'f

  • c(3#jI"
  • J:> f. 3 79 ,y l

._~-

-FSBROWSE ASB. CIRCUIT-----------------------------------~~--Obs 11587 Screen 2 Command =e=> ,

o=============== ELECTRICAL CAELE INFORMATION SYSTEM ======================

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: ED307A l l l l l l APP R CABLE PO: REEL 1: - ACTUAL LENGTit: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY:

SPECIAL INSTRUCTIONS:

ROUTING: 1 ED 307A (F3 + 17.0) 1020 (F3 + 6.0) 1 ED 307A 20' C

\

[-fl0/-l70-6% -dV8 ffv, Q en E", S* b p,, ir b

-FSEDZT/ASB. CIRCUIT------------- ,---------------------------Obs-11588- Segeen-1--

. Command ===> ,

-o============r=== ELECTRICAL CABLE INFORHATION SYSTEM ======================

- NOTEi.Next screen: EPF11 - To find a cable # type: S ' NUMBER' - quit: PF3 --:

.- CABLE - NO . 1 ED308A VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS:-ASBL B/M:-EK-- 4J BOP:OR DIV:^B -EQ REQ.:.N SYS: MT _GPU SYS: .733 BA ': -CKT-NATURE: PWR EST LENGTH: 0 MAX PULL TENSION:. TENSION MONITORED


FROM ------------------------------------- !

EQUIP.- TAG.NO.: T847

. EQUIP, DESCRIPTION: TERM BOX T847-NR COL H3-12 AUX BLDG _EL. 281'-0"

. TERM. CABLE LENGTH: ~~

CONDUIT; SIZE:= 0 l 0 CONDUIT LENGTH - 0- l 0 TERM._ REFERENCE DWG G/C INC SS-211-001 SH T847

_______....... ~....__._________. leo ... ____ __......_ ......_____ .. ______

EQUIP._ TAG NO.: E-10 EQUIP. DESCRIPTION: ELECTRICAL MANHOLE E 'O TERM, CABLE LENGTH: ~~

CONDUIT-SIZE: 4 l 0 CONDUIT LENGTH: ,_ 20. l 0 '

TERM. REFERENCE DWG: GPUN 1A-741-18-1034 5

s c yot-770 4+to-otB (2An. c Appe-k 9.3 Pkge IS of ,o-

_1

-FSEDIT ASB. CIRCUIT----- -------------------------~---------Oba 11588 Screen 2 - '

Command ===> .

! ================= ELECTRICAL CABLE INFORMATION SYSTEM =======================


NOTE: Previous screen: Fr10 - Next screen: PF11 - Quit: PF3..----------

CABLE NO: ED308A CABLE REEL #:

PO:

_ l_'

ACTUAL LENGTH:

l__ j DATE PULLED:

l i APP R MAX. TENSION MEASURED BY: ~~'

MAX. TENSION ME.\SURED: (lbs.) ELEMENTARY:

SPECIAL INSTRUCTIONS: *HOMAC FTP/5-4 TYPE CONN

  1. BUTT SPLICED WITH PEAT SHRINK TUBING ROUTING: 1 ED 308A,T-52-54,UD4913, BOX P2,UD4913, BOX P8,UD4913 520' FCN-C116663 V

Cd/6l-~77649'b4/8 ftS4 0 kfha kt,x 8'b' (kg (Q st 7e

-FSEDIT ASB. CIRCUIT-------------r---------------------------Obs Commar.d ===>

11589 Screen 1

=====

ELECTRICAL CABLE I:iFORMATION SYSTEM ======================

- NOTE: Next screen: PF11 - To find a cab'e # type: S ' NUMBER' - quit: PF3 --

CABLE NO.: ED308B VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS: ASB B/M: EK- 4J BOP OR DIV: B EQ RLQ.: N SYS: MT GPU SYS: 733 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- !

EQUIP. TAG NO.: T847 EQUIP. DESCRIPTION: TERM BOX TB47 NR COL H3-12 AUX BLDG EL. 281'-0" TERM. CABLE LENGTH:

CONDUIT SIZE: 0 l 0

~~

CONDUIT LENGT3: 0 l 0 TERM. REFERENCE DWG: G/C INC SS-211-001 SH T847

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - TO ----------------------------.-----------

EQUIP. TAG NO.: E-10 EQUIP, DESCRIPTION: ELECTRICAL MANHOLE E-10 TERM, CABLE LENGT!!:

CONDUIT SIZE: 0  ! O CONDUIT LENGTH: 0 l 0 TERM. REFERENCE DWG: GPUN 1A-741-18-1034 5

b ,

v C-t tof ~37o-642D -#IO

. MV. c)

A p d w 6.3 (k g(? sF 90 1

e .

_ _ _ _ _ _ _ . _ _ _ _ _ . _ J

l

- FS E D I T AS B . C I RC U I T--- - - -- - - -- - -,--- - - --- - - --- - - ------- - -- --Ob s 11589 Screon 2

! Command ===> ,

i

=========== ELECTRICAL CABLE INFORMATION SYSTEM =================

. NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

CABLE NO: ED308B -

CABLE REEL #: l l j j l APP R PO: ACTUAL LENGTH: DATE PULLED:

MAX. TENSIGN MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY:

SPECIAL INSTRUCTIONS: *HOMAC FS175-4 TYPE CONN

  1. BUTT SPLICED WITH HEAT SHRINK TUBING ROUTING: ED308A,T-52-54,UD4913, BOX P2,UD4913, BOX PB,UD4913 540' FCN-C116663~

CrfIo(-7 ?p-f+2e-vl8 -

&:W. o b f(A' ADc b.3 pcgeIB#70 i

-FSBROWSE ASB. CIRCUIT--------------- -----------------------Obs 11617- Screen l'-

  1. Command ===>' .

l

===========- ELECTRICAL CABLE INFORMATION SYSTEM- ================

l - NOTE Next screen: PF11 -- To find a- cable # type S ' NUMBER' - quit: PF3 --

L CABLE NO.: ED5033 VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS: ASB- B/M: EK- 4J- . BOP OR DIV: B EQ REQ;: N SYS MT GPU SYS: 734 BA:- CKT NATURE: PWR

  • EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED

FROM- ------------------------------------- !

EQUIP. TAG NO.: S-29 EQUIP. - DESCRIPTION:-SPLICE BOX S-29 IN CONT BLOG AT EL.306'-0" MTD ON CEILING N R COL 10B TERM. CABLE LENGTH:

CONDUIT SIZE: 4 0

-~

CONDUIT LENGTH: . 40 0 ,

= TERM. REFERENCE DWG: G/C INC -211-007 SH S 29


TO ---------------------------------------- -

EQUIP.-TAG NO.: T847 .

EQUIP. DESCRIPTION: TERM BOX T847 NR COL H3-12 AUX BLDG EL 281'-0" TERM, CABLE L3NGTH: ~~

CONDUIT SIZE: 2.5 0 CONDUIT LENGTH: 10 0 TERM. REFERENCE DWG: C/C INC SS-211-001 SH T847 5

t e

e P

Lenol-7714Vw &l8

. . f6). o jpps./:, 1. 3 p%;rx t 1 ob ?"

1

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11617 Scrocn 2 Commend ===> ,

==========d ELECTRICAL CABLE INFORMATION SYSTEM =================

l NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: ED5033 CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

) MAX. TENSION MEASURED: _ (lbs.) ELEMENTARY:

SPECIAL INSTRUCTIONS: *NSR/ITS BUTT SPLICE WITH HEAT SHRINK TUBING

  1. HOMAC FS175-4 TYPE CONN ROUTING: (G3 + 12.0) 1019 (G3 + 19.0) CS2049 (G3 + 24.0) 1018,1027 (10B + 13.0

) 1 ED5033 (EL. 319.0) 543,558 (H3 + 12.0) 1 ED5033 97' 5

4 9

1 C-Ilo t-Tio-E9+/8 S(v. o

/)pjaJ:~ f.j7 o

i o,x L '

f L

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11618 ScrcOn 1 Commnnd ===>

===========. ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 --

l CABLE NO.: ED5033A VOLT: 125 CABLE DESCRIPTION: 1-2-2 i

STATUS; ASB B/M EK- 4J BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 734 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PUL'L TENSION: TENSION MONITORED ~


FROM --------------------------------------

l EQUIP. TAG NO.: 1F ES DC 8 EQUIP. DESCRIPTION: INVERTER RM 1B, DC ENGD SFGDS DIST PNL 1F, SW 8 TERM. CABLE LENGTH:

CONDUIT SIZE: 0 0

-~

CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC SS-201-254


TO ----------------------------------------

EQUIP. TAG NO.: S-29 EQUIP. DESCRIPTION: SPLICE BOX S-29 IN CONT BLDG AT EL. 306'-0" MTD ON CEILING NR COL 10B TERM. CABLE LENGTH: ~-

CONDUIT. SIZE: 4 0 CONDUIT LENGTH: 40 0 TERM. REFERENCE DWG: G/C INC 211-007 SH S-29 6 5 /-77e- W '-oI8 M.o

$ppnJty1,3

/?qre L / el 70 1

9

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11618 Scrocn 2 Command ===> .

  • ~

================= ELECTRICAL CABLE INFORMATION SYSTEM =======================-

NOTE: Previous screen: PF10 - Next screen: PF11 --Quit: PF3. ----------

CABLE NO:-ED5033A CABLE: REEL-#: ( { \ _l l: APP R

- PO - ACTUAL LENGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY:

SPECIAL INSTRUCTIONS: *NSR/ITS BUTT SPLICE WITH HEAT SHRINK TUBING ROUTING: 1 ED5033A (F3 + 17.0) 1020,1019 (G3 + 7.0) 30' Y

e k c:--(t si-770 mE 426 ASAI. O ypp<ar J:x ?.e J 79 ,,, t u os t o

- _j

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs Command ===>

11619 Scroan 1

=========== . ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 --

CABLE NO.: ED5034 VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS: ASB B/M: EK- 4J BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 734 BA: CKT NATURE: PWR -

EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- !

EQUIP. TAG NO : S-29 EQUIP. DESCRIPTION: SPLICE BOX S-29 IN CONT BLDG AT EL. 306'-0" MTD ON CEILING NR COL 10B TERM. CABLE LENGTH:

CONDUIT SIZE: 0 . 0

-~

CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC 211-007 SH S-29


TO ----------------------------------------

EQUIP. TAG NO.: T847 EQUIP. DESCRIPTION: TERM BOX T847 NR COL H3-12 AUX BLDG EL.281'-0" TERM. CABLE LENGTH:

CONDUIT SIZE: 2.5 0

~~

CONDUIT LENGTH: 10 0 TERM. REFERENCE DWG: G/C INC SS-211-001 SH T847 f

4 4

(2sa. o O

ps L1 dhl0

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11619 Scrcan 2 Cormnnd ===> .

I

=========== ELECTRICAL CABLE INFORMATION SYSTEM =================

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: ED5034 CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED:

. MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY:

SPECIAL INSTRUCTIONS: *NSR/ITS BUTT SPLICE WITH HEAT SHRINK TUBING

  1. HOMAC FS175-4 TYPE CONN

-ROUTING: (G3 + 12.0) 1019 (G3 + 19.0) CS2049 (G3 + 24.0).1018,1027 (10B + 13.6

) 1 ED5034 (EL. 319.0) 543,558 (H3 + 12.0) ED5033 136' 5

a

&ll0I -716-fA**#'8 (htv. O P. 3 py e ,, J.'.o (9pyc 2n's),1b

-FSPROWSE ASL. CIRCUIT------------------------------------.--Obs 11620 Scrocn 1 Command ===> ,

= = = = = = = = = = = = = = =

  • ELECTRICAL CABLE I!1 FORMATION SYSTEM ======================

- NOTE: Next screen PF11 - To find a cable # type: S 'NUMLER' - quit: PF3 --

CABLE No.: ED5034A VOLT 125 CABLE CESCRIPTIO!1: 1-2-2 STATUS: ASB B/H: EK- 4J BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 734 BA: CKT 14ATURE: PWR -

EST LENGill: 0 MAX PULL TENSION: TE!1SION MONITORED


FROM ------------------------------------- !

EQU*..P. TAG NO.: IF ES DC 8 EQUIP. DESCRIPTIO!! INVERTER RM 1B, DC ENGD SFGDS DIST PNL 1F, SW 8 TERM, CABLE LENGTil: ~

CONDUIT SIZE: 0 0 CONDUIT LE!1GTil: 0 0 TERM. REFERENCE DWG: G/C INC SS-201-254


TO ----------------------------------------

EQUIP. TAG NO.: S-29 EQUIP. DESCRIPTION: SPLICE BOX S-29 IN CONT BLDG AT EL. 306'-0" MTD ON CEILING NR COL 10B

  • TERM. CABL' LENGTil -

CONDUIT SIZE: 0 0 CONDUIT LENGTil: 0 0 TERM. REFERENCE DWG: G/C INC 211-007 S11 S-29 S.

o 9

e e

hN ,

I P. 7

$ppen J:s (67 c L F ol 70

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11620 Scrcan 2 Commend a=a>

me=============== ELECTRICAL CABLE I!1 FORMATIO!1 SYSTEM =======================

110TE : Previous screen: PF10 - 11 ext screen PFil - Quit: PF3. ----------

CABLE 110: ED5034A CABLE REEL # l l l l } APP R PO: - ACTUAL LEIIGTIh DATE PULLED:

MAX. TEt4SIO!1 MEASURED BY:

MAX. TE!1SIO!i MEASURED: ~ (lbs.) ELEMEliTARY : ^

SPECIAL ItiSTRUCTIONS: *tiSR/ITS BdTT SPLICE WITil HEAT SHRI!1K TUBI!1G ROUTI!1G : ED5033A (F3 + 17.0) 1020,1019 (G3 + 7.0) 30' 4,

t c 41st-710 4 V I#

y%', O

} }l n' fb

'N 6 7s ' g )70 m 14 ,mi _. . _ . _ _ _ _ _ _ _ . _ _ _ _ _ _

-TSBROWSE ASB.CIRCUlT----------------.----------------------Obs 13268 Screon 1 >

Command ===> ,

=========== ELECTRICAL CABLE If1 FORMATIO!1 SYSTEM =========,======

- 110TE: 11 ext screen: PF11 - To find a cable # type: S '!10MBER' - quit: PF3 --

CABLE 110.: LP2 VOLT -

CABLE DESCRIPTIOti: 1-3-2/0 STATUS: ASB B/M: EK- 3G BOP OR DIV: A EQ REQ.: 11 SYS: DC GPU SYS: 543 BA: CKT 11ATURE: PWR,-FOR DC-P-1A i EST LE!1GTil: O PAX PULL TEllSIOti: TE!1SIO!1 MO!1ITORED


FROM ------------------------------------- !

EQUIP. TAG 110.: IP ES SWGR2A EQUIP. DESCRIPTIO!1 IP 480V E!1GD. SAFEGUARD SWGR. U11IT 2A TERM. CABLE LE!1GTil: -

cot 1DUIT SIZE: 0 0 CO!1DUIT LEt1GTH: 0 0 I

TERM. REFERE!1CE DWG: WESTI!1GHOUSE 591F711 .


TO ----------------------------------------

EQUIP. TAG 110.1 DC-P-1A EQUIP, DESCRIPTIO!1: DECAY llEAT CLOSED CYCLE PUMP 1A MTR. (DC-P-1A)

TERM. CABLE LE!1GTil: ~~~

cot 1DUIT SIZE: 0 0 CONDUIT LEt1GTil: 0 0 TERM. REFERE!1CE DWG:

5 4

, C-IIs!-770-E%-d 8

/24U,o

[5 0/T ^ ). M fpf4 -7 ? # f y

- F S B ROWS E AS B . C I RCU IT--- ------------------------------------Ob s 13 2 6 8 Scroon 2 Command ===> ,

i ================= ELECTRICAL CABLE It1 FORMATIO!1 SYSTEM =======================


110TE : Previous screen: PF10 - 11 ext screen PF11 - Quit: PF3. ----------

CABLE 110: LP2 CABLE REEL #1 l ~~ l l l l APP R PO: ACTUAL LEt1GTii- DATE PULLED:

MAX. TEt1SIO!1 MEASURED BY:

t itAX . TEt1SIO!1 MEASURED: (lbs.) ELEME!1TARY: G/C SS-208-340 SPECIAL I!1STRUCTIO!1S ROUTit1G: (9 + 27.0) 536,539 (EL. 303.7) (113 + 6~.0) 554,556,557,590,396 (K +

10.0) 140' amu-n .

I.

l 4

(q qof- 77s-M-o!8 (2ht/. c7 ppp < n d'"

p,p t2 o

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13290 Scroon 1 Command ===>

===========. ELECTRICAL CABLE I!1 FORMATION SYSTEM ================

- NOTE: 11 ext screen: PF11 - To find a cable 6 type: S ' NUMBER' - quit: PF3 --

CABLE NO : LPSA VOLT: - CABLE DESCRIPTION: 1-4-350 STATUS: ASB B/M: EK- 30 BOP OR DIV: C EQ REQ.: N SYS: MT GPU SYS: 733 BA:

E S T L E li G T II: 0 MAX PULL TENSIOti: ~

TENSION MO!1ITORED


--------------- FROM ------------------------------------- !

EQUIP. TAG NO.: 1C ESV VCC EQUIP. DESCRIPTIO!1: 1C ENGD. SFGDS. VALVES CONT. CTR AUTO TRA11SFER SW.

~~

TERM. CABLE LENGTH: '~

1 DO!1DUIT S'ITE: 0 0 CONDUIT LE!1GT!!: 0 0 TERM. REFERENCE DWG: AUTO SW GS 213-689


--..--- TO ----------------------------------------

EQUIP. TAG NO.: 1C ESV VCC 1 EQUIP. DESCRIPTION: 1C 211GD. SAFEGUARD VALVES CONT. CTR. Ut11T 1 TERM. CABLE LENGT!!! ~

CONDUIT SIZE: 3.5 ,

O CONDUIT LENGTH: 25 0

'I E RM . REFERENCE DWG:

e t

PA J . O ynd*'k  ?* 5 f.,y e 2 T o

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13290 Scroon 2 Command ===>

wo=======o======= ELECTRICAL CADLE It1 FORMATIO!1 SYSTEM ==*====================

110TE: Previous screen PF10 - 11 ext screen PF11 - Quit PFs. ----------

CABLE 110: LPSA CABLE REEL # l ~

l l l l APP R PO: ACTUAL LE!1GTiit DATE PULLED:

IMX . TEt1SIOt1 MEASURED BY:

MAX. TE!1SIO!1 MEASURED: (lbs.) ELEME!1TARY:

SPECIAL I!1STRUCTIO!15:

ROUTI!1G (F3 + 1.0) 553,551 (EL. 303.0) (H3 + 6.0) 579,578,954 (7D + f2.0) '

110'

)

4 C-IIof-770-EMo~Cl8 CEv. o j)pp nl # f.J (11p J ' 'N i

-FSBROWSE ASB. CIRCUIT------------------------------------ --Obs 13291 Scrocn 1 Command ===> ,

m

=====

ELECTRICAL CABLE I!1 FORMATIO!1 SYSTEM ======================

- 110TE : 11 ext screen: PFil - To find a cable # type: S '!1 UMBER' - quit PF3 --

CABLE 110.: LPSB VOLT: -

CABLE DESCRIPTIO!1: 1-4-350 STATUS: ASB B/M EK- 3U BOP OR DIV: C EQ REQ.: 11 SYS: MT GPU SYS: 733 y BA: CKT 11ATURE: PWR.-

EST LEt1GTil: 0 MAX PULL TE!1SIO!1 TE!!SIO!1 MO!11TORED


FROM ------------------------------------- !

EQUIP. TAG 140.: IC ESV VCC

-EQUIP. DESCRIPTIO!1: IC E!1GD. SFGDS. VALVES CO!1T. CTR. AUTO TRA!1SFER SW.

TERM, CABLE LE!1GT!!! '"~

CO!1DUIT SIZE: 0 0 CO!1DUIT LEt1GT!!: 0 0 TERM. REFERE!1CE DWG AUTO SW GS 213-689


TO ----------------------------------------

EQUIP. TAG 110. 1C ESV VCC 1 EQUIP. DESCRIPTIO!1: IC E!1GD. SAFEGUARD VALVES CO!1T. CTR, U!1IT 1 TERM. CABLE LENGTil -

cot 1DUIT SIZE: 3.5 0 CO!1DUIT LE!1GT!!: 25 0 TERM. REFERE!1CE DWG:

I.

g ( .-77o -6Mo -o( 6 (We V. o jppear J:b 8, .1 (4p 3( N 10 i

-FSBROWSE ASB. CIRCUIT------- -------------------------------Obs 13291 Scroon 2 Comand ===>

a=============== ELECTRICAL CABLE I!1 FORMATION SYSTEM ======================


NOTE: Previous screen: PF10 - Next screen PF11 - Quit: PF3. ----------

CABLE 110: LP5B CABLE REEL #1 l l l l l APP R PO: ACTUAL LE!JGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: ~

SPECIAL INSTRUCTIONS: _

~

ROUTING: (F3 + 1.0) 553,551 (EL. 303.0) (H3 + 6.0) 579,570,954 (70 + 22.0) 110' 4

4 N

I.

e 4

C 1tet 770-E440"Ol&

Vt V . O ppjuJ:s 2l37

o

. fsp 3L

-PSBROWSE ASB. CIRCUIT-------------------------------------- Obs 13300 Scrocn 1 Command ===>

~

=====

ELECTRICAL CABLE I!1FORMATIOt1 SYSTEM ======================

- 110TE : Next screen PF11 - To find a cable # type S '!10MBER' - quit: PF3 --

CABLE NO.: LP6 VOLT: 480 CABLE DESCRIPTION: 1-3-4/0 STATUS: ASB B/M: EK- 3 11 BOP OR DIV: A EQ REQ.: N SYS NS GPU 3YS: 541 BA: CKT NATURE: PWR . TOR 11S-P-1 A EST 'LE!1GTH: 0 MAX PULL TENSIO!1r TE!1SION MONITORED


FROM ------------------------------- ----- !

EQUIP. TAG NO.: 1P ES SWGR EQUIP. DESCRIPTIO!1: IP 480V ENGD. SAFEGUARD SWGR. UNIT 3C TERM. CABLE LEM TH:

CO!1DUlT SIZE: 0 0

~"~

CONDUIT LENGTil: 0 0 TERM. REFERENCE DWG: WESTINGilOUSE 591F712


TO ----------------------------------------

EQUIP. TAG NO.I NS-P-1A EQUIP, DESCRIPTION: NUC. SERV. COOLING PUMP 1A MTR. (NS-P-1A)

TERM. CABLE LE!1GTil: ~~

CO!1DUIT SIZE 4 0 CONDUIT LENGTH: 25 0 TERM, REFERENCE DWG:

6 m (gr(.A 76-GKo4W f-SU,o

////"J.'x & 3 f,p n d"

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13300 screen 2 Command ===>

~

=========== ELECTRICAL CABLE It1 FORMATIO!1 SYSTEM =================

110TE: Previous screen PF10 - tiext screen: PF11 - Quitt PF3. ----------

CABLE 110 LP6 CABLE REl;?ti f l l l l l APP R PO: ACTUAL LE!1GTil: DATE PULLED:

MAX. TE!1Slott MEASURED BY:

MAX , TE!!SIO!1 MEASURED: (lbs.) ELEMEllTARY: G/C SS-200-351 SPECIAL I!1STRUCTIOt1S

. 4. ) UD3246 (H3 + 7.0) 554,556,557,590 (EL.

3 L 6 ,T 4 14 i,

C-((4-77o-rdwWs F4.o jppa s/ h 81 3 (by.c3Yol7'

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13385 Scroon 1 Command ===>

===========. ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTE: Next screens PF11 - To find a cable # type: S ' NUMBER' - quit PF3 --

CABLE NO. LS5 VOLT: 480 CABLE DESCRIPTION: 1-3-4/0 STATUSi ASB B/M: EK- 3H BOP OR DIV: B EQ REQ.: N SYS: NS GPU SYS: 541 BA: CKT NATURE: PWR..FOR NS-P-1C EST EINGTH: 0 MAX PULL TENSION: TENSION MONITORED ,


FROM ------------------------------------- !

EQUIP. TAC NO.: IS ESSH SWGR EQUIP. DESCRIPTION: 1S 480V ENGD. SAFEGUARD SWGR. UNIT 3C TERM. CABLE LENGTH: ~

CO!1DUIT SIZE: 'O O CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 591F717


TO ----------------------------------------

EQUIP. TAG NO.: MS-P-1C EQUIP. DESCRIPTION: NUC. SERV. COOLING PUMP 1C MTR. (NS-P-1C)

TERM. CADLE LENGTH: ~~

CONDUIT SIZE: 3 0 CONDUIT LENGTH: 85 0 TERM. REFERENCE DWG:

e 4

Cdf oH720 SWA

(?2v.o A/'f"ftp f, 7 7,,, . s.r oj t o

l

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13385 Scrocn 2 Command ===>

o.=========== ELECTRICAL CABLE I!1 FORMATION SYSTEM =========n=4======

110TE: Previous screens PF10 - 11 ext screen: PF11 - Quit: PF3. ---------

CABLE NO: LS5 CABLE REEL #1 l { l l 'l APP R PO: ACTUAL LEt1GTH: DATE PULLED:

!MX . TEt1Sf5!1 MEASURED BY:

MAX. TEt1SIO!1 MEASURED: (Abs.) ELEME!1TARY: G/C SS 200-354 SPECIAL I!1STRUCTIOt1S:

~l(OUTit1G: 1 LS 5 (F3 + 6.0) 1020,1019 (G3 + 19.0) CS2051 (G3 + 24.0) 1018,102 7 (G3 + 40.0) UD3454 (11A + 5.0) 955 (10A + 22.0) T-54-17 (10A + 15.0) 597 (6C + 21.0)'l LS 5 ,P-111,1 LS 5 ,T-54-31 160' I.

e gum m w fLV. O t.J

$ tsp'e n .t:n (9,y e 3 d * ( l,

- F S B ROWS E AS B . C I R Ct l I T - -. 4. -- - -- - - - - - - - -- - - - --- - - - - -- -- - - - - - - - - Ob s 13 3 9 4 Command ===> Scroon 1 i ==============a==' ELECTRICAL CABLE Il1FORMATIOll SYSTEM ======================

- 110TE: 11 ext screen P711 - To find a cable # type: S ' t10MBER ' - quits PFS --

CABLE 140.: LS6 VOLT: 480 CABLE DESCRIPTIOtJ: 1-3-4/0 STATUS: ASB B/M EK- 3t! BOP OR DIV: C EQ REQ.: 11 SYS: 11 S GPU SYS: 541 BA: CKT 14TURE: PWR. FOR 14S-P-1B EST LEl1GTil: 0 MAX PULL TEllSIOt1: TE!1SIO!1 MO!1ITORED


~~~~~~~----~~-- -~~~-~~~ FROM ---~~------~~~~~-----~~-~~----------- :

EQUIP. TAG 110.: 1S ESS!! ShGR EQUIP. DESCRIPTIO!1: 1S 480V E11GD. SAFEGUARD SWGR. UllIT 3D TERM. CABLE LEt1GTH:

cot 1DUIT SIZE: ~0 0 CO!1DUIT LE!1GTil 0 0 TERM. REFERE11CE DWG: WESTI!1GHOUSE 591F716


TO ----------------------------------------

EQUIP. TAG 110. : 115-P-1B EQUIP. DESCRIPTIO14: 11UC . SERV. COOLIllG PUMP 1B MTR. (11S-P-1B )

TERM. CABLE f.E!1GTil CO!1DUIT SIZE: 0 0

~

C0110UIT LEt1GTil: 0 0 TEPJi . REFEREt4CE DWG:

9 J

C-tIbl-990-E9w fl8 Rev . o g w ).s la ]

fay.e S 7 olI#

-FSBROWSE ATB. CIRCUIT---------------------------------------Obs 13394 Scroon 2 4 Commend ===>

===========' . ELECTRICAL CABLE I!1 FORMATIO!1 SYSTEM =================

110TEt Previous screens PF10 - 11 ext screen PF11 - Quit PF3. ---------- ;

CABLE 110: LS6 l CABLE REEL # l l l l l APP R pot ACTUAL LEt4GTil: DATE PULLED: )

MAX. TE!1SIO!1 MEASURED BY:

MAX. TE!1SIO!1 MEASURED: (lbs.) ELEME!1TARY: G/C SS 208-353 SPECIAL IllETRUCTIOllS:

OUTIti (F + 1.0) 553,551 (EL. 303.6) UD3252 (113 '.6.0) 579,580,584,593,601 4

C -t(o f 7 70-2A To-of E (2-7V.O l} pf< 1/

  • f*3 I#

l6,s.3Yo J

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13395 Scroon 1 Commend ===>

=========== ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTE: Next screen PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 s. -

CABLE NO.: LS7 VOLT: 480 CABLE DESCRIPTION: 1-4-500 STATUS: ASB B/M: EK- 3V BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 733 BA: CKT NATURE: PWR ~

EST LE!1GTE: 0 MAX PULL TENSION: TENSION MONITORED


FROM ---------------------------------------

EQUIP. TAG NG.: 1E ESSil SW4C EQUIP. DESCRIPTION: ES 480V ENGD SAFEGUARD SWGR UNIT 4C TERM. CABLE LEt4GTil ~-

CO!1DUIT SIZE 0 0 CONDUIT LENGTil: 0 0 TERM. REFERENCE DWG: WESTING!!OUSE 591F718 TO ----------------------------------------

EQUIP. TAG NO.: S-26 EQUIP. DESCRIPTION: SPLICE BOX S-26 ABOVE TRAY 597 EL. 305 '-0" Fil BLDG TERM. CABLE LEt4GTil ~~

CO!JDUIT SIZE 4 0 CONDUIT LENGT!!! 10 0 TERM. REFERE!4CE DWG: G/C INC 211-007 Sil S-26 4

  • em AALv . o p p .,J. > P. J (bp.c 3 V d76

-FSBROWSE ASB. CIRCUIT---------------------------~~~---------Obs 13395 Scroon 2 Commend ===> .

=========== ELECTRICAL CABLE INFORMATION SYSTEM w================

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit PF3. ----------

CABLE NO: LS7 CABLE REEL #: l_ l l l l APP R PO: ACTUAL LENGTil: DATE PULLED:

MAX. TENSION MEASNRED BY:

MAX. TENSION MEASUPED: (lbs.) ELEMENTARY:

SPECIAL INSTRUCTIONS: EXISTING CABLE CONFIGURATION IS AS FOLLOWS: (3) 500 MCM' S& (3) 1/O'S ROUTING: 1 LS 7 (F3 + 6.0) 1020,1019 (G3 + 19.0) CS2050 (G3 + 24.0) 1018,102 7 (G3 + 40.0) UD3455 (11A + 5.0) 955 (10A + 23.0) (H3 + 40.0) 597 (H3 + 52.0) '

CABLE ONLY 85' e

6

. gtpl-170 -E+w&B Rfw.s

, j)y.e,eJ'x f. 3 ny 10ho

-FSBROWSE ASB, CIRCUIT---------------------------------------Obs 13543 Scroon 1 Commend ===>

====,

ELECTRICAL CABLE I!1 FORMATION SYSTEM ======================

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 --

CABLE NO : MA9 VOLT: -

CABLE DESCRIPTION: 1-3-4/0 STATUS: ASB B/M: EK- 2A DOP OR DIV: X EQ REQ.: N SYS: SR GPU SYS: 732 BA: CKT NATURE: PWR. -FOR SR-P-3A EST LEtJGTH: 0 MAX PULL TE!1SIO!1: TE!1SIO!1 MONITORED ~


FROM --------------------------------------

EQUIP. TAG NO. 1A TP 4KV EQUIP. DESCRIPTION: 1A 4160V TURB. PLANT SWGR. Ut1IT 1A8 TERM. CABLE LE!1GTil: ~~

CONDUIT SIZE 0 0 CONDUIT LENGTil: 0 0 TERM. REFERENCE DWG: WESTING 110USE 623F337


TO ----------------------------------------

EQUIP. TAG NO.: SR-P-3A EQUIP. DESCRIPTION: SERV. WATER POST COOLING TOWER PUMP MOTOR 1A(SR-P-3A)

TERM. CABLE LEt1GTil ~~

CONDUIT ~ SIZE: 4 0 CONDUIT LENGTH: 10 0 TERM. REFERENCE DWG:

I.

C-U bl ~7?o. E-?D-ti$

A.(v O pg # 'S p ,, o vf o l?*

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs Commend ===> .

13543 Scroon 2 8o======

........" ELECTRICAL CABLE I!1 FORMAT 1011 SYSTEM =======================

110TE : Previous screens PF10 - tiext screen PF11 - Quit PF3. ----------

CABLE 110: MA9 CADLE 9. EEL #: l l l_ _l l PO: ACTUAL LEt1GTH: DATE PULLED:

MAX. TE!1SIO!1 MEASURED BY:

MAX. TE!1SIO!1 MEASLRED: (1bs,) ELEME!1TARY : G/C SS-208-189 SPECIAL I!1STRUCTIO!1S: VIA UD5303, 5403, 5503, 5803 ROUTItJG : (B+ 1.0) 710,737,738,739,751,756 (EL. 289.0) (SWA + 32.0) 778 (EL.

317.0) 1120' l

5 c itq-77o-FVtO-ot8

(? rov . o lpp < asl*'h 5. ]

f,p y 2. sl 70

-FSBROWSE ASB. CIRCUIT---------------------------------------Obo Command ===>

13601 Scroon 1 an=============== ELECTRICAL CABLE Il1FORMATIOtl SYSTEM ========5=============

1401E : Next screen: PF11 - To find a cable # type: S '!4 UMBER' - quit: PF3 --

CABLE 110.: MB9 VOLT: - CABLE DESCRIPTIO!1: 1-3-4/0 STATUS: ASD 3/H: EK- 2A BOP OR DIV: X EQ REQ.: N SYS: SR GPU SYS: 531 BA: CKT tiATURE: PWR.'FOR SR-P-3B EST LENGTU: 0 MAX PULL TE!!SIO!1: TE!1SIO!1 MONITORED


.-------------- ....------ FROM ----------- ------------------------- !

EQUIP. TAG !40. IB TP 4KV EQUIP. DESCRIPTIO!1: IB 4160V TURB, PLANT SWGR. UllIT 1B8 TERM, CABLE LEt1GTH:

~~

CO!1DUIT SIZE: 0 0 C O!1 D U I T L Et1 C T H : 0 0 TERM. REFERE:1CE DWG: WESTIt4GHOUSE 623F344


TO ----------------------------------------

EQUIP. TAG NV.: SR-P-3B EQUIP. DESCRIPTION: SERV. WATER POST COOLING TOWER PUMP MOTOR 1B(SR-P-3D)

TERM. CABLE LE!1GTH: ~~

CO!4DUIT SIZE: 4 0 CO!1DUIT LE!1GT!!: 10 0 TERM. REFERENCE DWG:

S.

4 g g g 76 -.tE G L& -olS

$ VU. o

} perul!W S']

pj e. t' 3 0/ 7o

-FSBROWGE ASB. CIRCUIT---------------------------------- ----Obs 13601 Scroon 2 Commend a==> '

on=============== ELECTRICAL CABLE IllFORMATIO!1 SYSTEM =======================


NOTE: Previous screen PF10 - Next screens PF11 - Quit: PF3. ----------

CABLE NO: MB9 CALLE REEL #1 l _

l l l l PO: ACTUAL LEUGTli: DATE PULLED:

MAX. TENS 1011 MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS 208-190 SPECIAL INSTRUCTIONS: VIA UD5304, UDS804, 005404, UD5504 ROUTING: (C + 15.0) 710,737,738,739,751,756 (EL. 289.0) (SWA + 32.0) 778,779 (EL. 317.0) 1120' i

6//o/-770-Eth -o/8 (2su. o pppeerJ!,x /, 3 p?,, , er os e ?'

-rSBROWSE ASB. CIRCUIT------------------------ ---- .--------Obs 13547 Scroon 1 Commend ===>

===========' ELECTRICAL CABLE INFOR!!hTION SYSTEM ===*============

- !10TE: Next scroon PF11 - To find a cablo # type: S ' NUMBER' -

quitt PF3 --

CABLE 140. Mall VOLT: -

CABLE DESCRIPTIO!1: 1-3-350 STATUS: ASB B/M: EK- 2B BOP OR DIV: X EQ REQ.: 11 SYS: MT GPU SYS: 732 BA: CKT 11ATURE: PWR. -FOR I!1-02 & 111-05 EST LE!1GTil: 0 MAX PULL TE!1SIO!1: TENSIO!1 M0!11TORED ~


FROM ----~~--------------------------------

EQUIP. TAG No.: 1B TP 4KV EQUIP. DESCRIPTIO!1: 10 4160V TURB. PLA!1T SWGR. U!1IT 189 (H1-02)

TERM. CABLE LE!1GTil __

i CO!1DUIT SIZE: .0 0 C0!1DUIT LE!1GTil: 0 0 TERM. REFERE!1CE DWG. WESTI!1G110VSE 623F345


TO ----------------------------------------

EQUIP. TAG 110. 111 TP SWGR EQUIP. DESCRIPTIO!1: 110 LOAD DISC . SW. (111- 05 ) ( AT 111 4 80V SWGR. )

TERM. CABLE LE!1GTil ~~

C0!1DUIT SIZE: 0 0 t

CONDUIT LE!1GT!!! 0 0 TERM. REFERE!1CE DWG: GPU 1D-600-18-1004 DETAIL Z c.-jpf. 970-t%20 cm M t/. 0

f. 3 hIV"):p y 5 ol7p faj 4

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13547 Scrc0n 2 Command ===> .

a=========u====== ELECTRICAL CABLE INFORMATION SYSTEM =======================


110TE ; Frevious screen t PF10 - Next screen PF11 - Quit PF3. ----------

CABLE 110: MB11 CABLE' REEL #: l } } l l PO: ACTUAL LENGTil: DATE PUfLEDt MAX. TENSION MEASURED BY:

MAX TENSIOt1 MEASURED: ELEMEllTARY: G/C SS 208-155 SPECIAL INSTRUCTIONS: VIA 6" TRAT (lbs.)

ROUTING: (C + 17.0) 710,737,738,739,751,752 (K + 6.0) 40'

? .

C -IPI-9?o-# +20 4 8 M .o p,,, J. r,3'"

ny rs o U

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs Coramand ===>

13549 Scroon 1

=========== ELECTRICAL CABLE INFORMATION SYSTEM ================

- !!OTE : Next screen PF11 - To find a cable # type S ' NUMBER' - quit PF3 --

CABLE NO.: MB13 VOLT: - CABLE DESCRIPTION: 1-3-350 STATUS: ASB B/H: EK- 2B BOP OR DIVt X EQ REQ.: N SYS: MT GPU SYS 732 bat CKT NATURE: PWR, TOR U1-02 EST LENGTili 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- !

EQUIP. TAG NO.: IB TP 4KV EQUIP. DESCRIPTION: IB 4160V TURB. PLANT SWGR, UNIT 185 (U1-02)

TERM. CABLE LENGTH:

CONDUIT SIZE: 0 0

~~~

CONDUIT LENGTit 0 0 ,

TERM. REFERENCE DWG: WESTINGHOUSE 623F346


TO ----------------------------------------

EQUIP. TAG NO.: 1U XFRMR EQUIP. DESCRIPTION: TRANSFORMER 10 (AT 1U 480V SERV WTR. POST CLG. TWR. SWGR.)

TERM. CABLE LENGTH: ~

CONDUIT SIZE 4 0

, CONDUIT LE!1GTil: 20 0 TERM REFERENCE DWG:

l I.

4 4

4 G-tIof 4o-29@,-9 2 m, .

p,p n 0/70 I

s em -

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13549 Scroon 2 Commend ===> .

> ================= ELECTRICAL CABLE I!1FORMATI0t1 SYSTEM =======================


110TE: Previous screens PF10 - 11 ext screen PF11 - Quit: PF3 ----------

CABLE 110: MB13 CABLE REEL #1 -

l l l l l PO: A C T U A L L E 11 G T il: DATE PULLED:

MAX. TE!1SIO!1 MEASURED BY:

MAX. TE!1SIO!1 MEASURED: (1bs.) ELEME!1TARY: G/C SS 208-179 SPECIAL I!1STRUCTIO!1S VIA UD 5301, 5401, 5501, 5801 ROUTIt1G : (C + 9.0) 701 (E + 10.0) (E + 10.0) 710,737,738,739,751,756 (EL. 29 0.0) (SWA + 33.0) 778 (SWA + 15.0) 1130' C-tt01-770 -E+to-tt8

/sv .o E3

$ pfe ndlM hys 97 ol 7*

l l

-FSEROWFE ASB. CIRCUIT---------------------------------------Obs 13613 Scroon 1 Command ===>

==a======== ELECTRICAL CABLE INFORMATION SYSTEM =============u==

110TE: Next screen: PF11 - Tc find a cable # type S ' NUMBER' - quit PF3 --

CABLE 110.: MC12 VOLT: - CABLE DESCRIPTIO!1: 1-3-350 STATUS: ASB B/M: EK- 2B BO? OR DIV: X EQ REQ.: N SYS: MT GPU SYS: 732 BA: CKT NATURE: PWR TOR L1-02 t. M1-05 E S T L E!1 G Til : 0 MAX PULL TENSIO!1: TENSION M0!11TORED


FROM ---------------------------------------

EQUIP. TAG NO. IC TP 4KV EQUIP. DESCRIPTIO!1: IC 4160V TUIB. PLANT SWGR, UllIT 1C10 (L1-02)

TERM. CABLE LENGTH: ~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F332


TO -~--------------------------------------

EQUIP. TAG 110.1 1H SWGR EQUIP. DESCRIPTION: NO LOAD DISC. SW. (M1-05)(AT 1M 480V SWGR.)

TERM, CABLE LENGTH: -

CONDUIT SIZE: 0 0 CONDUIT LE!1GTH: 0 0 TERM. REFERENCE DWG: GPU 10-600-18-;004, DETAIL Z I.

e i

C -lI of-77b -6 +2s -cis 250.O n,nl, gye wJl* $

(

-TSBROWSE ASB. CIRCUIT---------------------------------------Obs 13613 Scrcon i Comm:nd ===> ,

~

n================ ELECTRICAL CABLE I!1 FORMATIO!1 SYSTEtt =============.====.====


110TE : Previous screens PF10 - 11 ext screen: PF11 - Quit PF3. ----------

CABLE 110: MC12 CABLE REEL # l l l l l PO: ACTUAL LEt1GTH: ~

DATE PULLED: ~

MAX. TE!1SI"511 MEASURED BY:

MAX. TEtJSIO!1 MEASURED: (lbs.) ELEME!1TARY: G/C SS 208-157 SPECIAL I!1STRUCTIO!1S ROUTI!1G: (E + 8.0) 710,737,738,739,751,752,753 (7D + 18.0) 40' l

I.

I

(-j jof -770-E4-t s 68 f2A). o p y .cnJ:n E 3 (19 , a F $ ol 7 '

-FSBROWSE ASB. CIRCUIT---------------------------------------Obc Command ===>

13678 Scrcan 1

u=========== ELECTRICAL CABLE INFORMATION SYSTEM =================

NOTE: lioxt screens PF11 - To find a cable # type: S ' NUMBER' -quitt PF3 --

CABLE 110 : MD11 VOLT - CABLE DESCRIPTIO!1: 1-3-350 STATUS: ASB B/M: EK- 2B BOP OR DIV: A EQ REQ.: 11 SYS: MT GPU SYS: 732 BA: CKT tiATURE: PWR 'FOR EST LENGTil: 0 MAX PULL TEllSIONt TE!1SION MONITORED


. FROM ------------------------------------- !

EQUIP. TAG NO.: 1D ES 4KV 11 EQUIP. DESCRIPTION: 10 4160V ENGINEERED SAFEGUARDS SWGR. UNIT ID11 TERM. CABLE LENGTil -

CONDUIT SIZE: 0 0 CO!1DUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F366


TO ----------------------------------------

EQUIP. TAG NO 1R XFRMR EQUIP. DESCRIPTION: TRANSFORMER 1R (AT 1R 480V SWGR.)

TERM. CABLE LENGTil CONDUIT SIZE: 0 0

~

CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC E-20*i-031 6

1 C-flof -T10 4419"olB l120. 0 p pp<d> E }

fays Si ol ?:

-FSDROWSE ASS. CIRCUIT---------------------------------------Obo Command ==n>

13678 Scrocn 2

. . . . . . . . . . . ... . .' ELECTRICAL CABLE It1 FORMATIO!1 SYSTEM =======================


110TE : Previous screen: PF10 - tiext screen: PF11 - Quit: PF3. ----------

CABLE 110: MD11 CABLE REEL #: l_ l _ , , l l l APP R PO: ~ ACTUAL LEllGTH: DATE PULLED:

MAX. TE11SI611 MEASURED BY:

MAX. TE!1SIO!1 MEASURED: (lbs.) ELEME!1TARY: G/C SS-208-160 SPECIAL It1STRUCTIO11S:

ROUTIthTi' ( 10B + 4. 0 ) 747,740 (EL. 303.7)U.D. 3233 (H3 + 6.0) 750,757

( 113 + 5 6. 0 ) U.D. 4509, PULL BOX P4,U.D. 4509, mat 1 HOLE E-6,U.D. 4 609, MAtillOLE E-7, U.D. 4 7 03, MA!1110LE E-8, FD-106-4 (EL. 313.0) 732,733,734 (EL. 319.0) 800' C-fle(~270-E.+? O-91k' (2[=\). O ppg at<NP S* 3

}fy1 52 *A ?"

- 40ESd ASB. CIRCUIT---------------------------------------Obs Commar.d === >

13739 Screen 1

  • ================' . ELECTRICAL CABLE INFORMATION SYSTEM ==== 'u===============

~ NOTE: Next_ screen: PF11 - To find a cable # type: S ' NUMBER' - quit PF3 --

CABLE NO.: ME1 VOLT: -

CABLE DESCRIPTION: 1-3-500 STATUS: ASB B/M: EK- - 2C BOP OR DIV: B EQ REQ.: N SYS: EG GPU SYS: 732 BA: CKT NATURE: PWR -FOR G11-02 EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~


FROM ------------------ -------------------

EQUIP. TAG NO.: IE ES 4KV 3 EQUIP, DESCRIPTION: IE 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E3 (G11-02)

~~

CONDUIT SIZE: 0 -0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F373


TO ----------------------------------------

EQUIP. TAG NO.: EDG B EQ CAB EQUIP, DESCRIPTION: DIESEL GEN. B ELECTRICAL EQUIPMENT CAB.

TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: COLT IND. D11866669 6

t

=

C-//o(-776 Esto-otB fft).O m)!M ?E

, y.3 d) 10 j'ay A

-F S B ROWS E AS B . C I RCU IT----------------------------- ------ ----Ob a 13739 Screan 2 Command ===> ,

============== ELECTRICAL CABLE INFORMATION SYSTEM ============= - ,=as


NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. - - - - - - - - -

CABLE NO: ME1 CABLE REEL #: l j l l l APP R PO: ACTUAL LENGTit: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-164 SPECIAL INSTRUCTIONS: VIA: UD, 3006, TRAY 777 I

ROUTING: (F3 + 5.0) 745 (EL. 319.0) 440' C-llot-770-E.+tc-018

, @22.o ppps):<* P.3 p,y rf ol 70

- - - _ - - - - - i

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 137SO Screen 1 Command ===> -

,======

ELECTRICAL CABLE INFORMATION SYSTEM ======================

-NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 --

CABLE NO.: ME2 VOLT: -

CABLE DESCRIPTION: 1-3-500 STATUSi ASB B/M: EK- 2C -BOPf0R DIV: B EQ REQ.: N SYS: EG GPU SYS: 741 BA: CKT NATURE: PWR.'FOR G11-02 EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- T l EQUIP. TAG NO.: lE ES 4KV 3 EQUIP. DESCRIPTION: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E3 (G11-02)

TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F373


TO ---------------------------------------- i l

EQUIP. TAG NO : EDG B EQ CAB EQUIP. DESCRIPTION: DIESEL GEN. B. ELECTRICAL EQUIPMENT CAB.

TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: COLT IND. Dll866669 M

a 9

C.-ttal -m -E+to-ot C

@JEA).O

$.1 F3 ^ff p), p A l'ajs T S cf 70 a

-FSBROWSE=ASB.hIRCUIT----------+----------------------------Obs13750 Command ===>

Screen 2

l. ================= ELECTRICAL CABLE INFORMATION SYSTEM =======================

l ------- NOTE: Previous screen: PF10 - Next screen PF11 - Quit: PF3. ----------

! CABLE NO: ME2 CABLE' REEL #

PO:

l ACTUAL LENGTH:

\_ l l .l APP R DATE PULLED:

MAX.-TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-164 SPECIAL INSTRUCTIONS: VIA: UD. 3007, TRAY 777 ROUTINGt (F3 + 5.0) 745 (EL. 319.0) 440' I.

4 9

~

C-ito(- 7?o -G+te'oIe g2G. o I'");>. f. I h r*f,ys s b o) 7" a

-FSBROWSE ASB. CIRCUIT--------------~~------'----------------Obs-13780 Screen 1 Command ===>

=========== ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' -

quit: PF3 --

CABLE NO.: ME4 VOLT: -

. CABLE DESCRIPTION: 1-3-4/0 STATUS: ASB B/M: EK- 2A BOP OR DIV: X EQ REQ.: Y SYS: EF GPU SYS: 424 BA: CKT NATURE: PWR.'FOR EF-P-2B EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- T EQUIP. TAG NO : 1E ES 4KV 5 EQUIP. DESCRIPTION: lE 4160V ENGINEERED SAFEGUARDS SWGR. UNIT lES.

TERM. CABLE LENGTH:

CONDUIT SIZE: 0 0

-~

CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG WESTINGHOUSE 623F374


TO ----------------------------------------

EQUIP. TAG NO.: EF-P-2B EQUIP, DESCRIPTION: EMERG. FDWTR. PUMP MOTOR 1B (EF-P-2B)

TERM, CABLE LENGTH:

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG:

a r

C-tIof -7?o-Eqto' #18 '

RJE.\l . O

[gul'N $

hp s 7 00 7'

-FSBROWSE ASB. CIRCUIT---------------------------------------Oba 13780 Scrssn 2 Command a==> .

=====

ELECTRICAL CABLE INFORMATION SYSTEt{ =======================


NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

CABLE NO: ME4

'ABLE REEL #: l_ l l \ j APP R PO: ACTUAL LENGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-205 SPECIAL INSTRUCTIONS: VIA: U.D. 3106.

MOTOR CONNECTION INSULATION CHANGED TO KERITE TYPE S-5NS-NUC-DISC (KIT DS-7445)

ROUTING: (9 + 23.0) 744,745 (EL. 319.0) (EL. 305.0) 773,774 (H + 34.0) 300

=

5 C-flol -72 D 4A~@ ~ #IS FEU. o

) pp ,che P. ]

% 1y s) 70 .

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13788 Screen 1

-Command ===>- ,

=========== ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTE: Next screen: PF11 - To find a cable # type S ' NUMBER' - quit: PF3 --

CABLE NO.: MES VOLT: -

CABLE DESCRIPTION: 1-3-350 STATUS: ASB B/M: EK- 2B BOP OR DIV: B EQ REQ : N SYS: MT GPU SYS: 723 BA: CKT NATURE: PWR.-

EST LENGTH: 0 MAX PULL TENSION: ~

TENSION MONITORED


FROM ------------------ ------------------ !

EQUIP. TAG NQ : 1E ES 4KV 6 EQUIP. DESCRIPTION: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E6 TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: .

0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F375


. TO ----------------------------------------

EQUIP. TAG NO.: 1S-480V SWGR EQUIP. DESCRIPTION: TRANSFORMER 1S (AT IS 480V SWGR.)

TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC E-207-031

\

C-t toI-776 -M-ol9 N .o p ga.l:8 S3

/,g yr M 7" l

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13788 Screan 2

-Command ===>

================= ELECTRICAL CABLE INFORMATION SYSTEM =======================,


NOTE: Previous screen PF10 - Next screen PF11 - Quit: PF3. ----------

CABLE NO -ME5 .

CABLE REEL #: l l l l l APP R

, PO: ACTU7% LEMGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-161

! SPECIAL INSTRUCTIONS:-VIA: 6" TRAY A

ROUTING
(9 + 23.0) 744,745 (EL. 319.0) 60' a

k

i, e -

1 t

i i

T 4 .

j .

1 i.

C-//o /-774 O-"O l r3~.M.6 c

j pppeard:o !. 2 l'of " cr 0 010

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13797 Scrasn 1

-Command ===> ,

j

===========* ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' , quit: PF3 --

CABLE NO.: ME6 VOLT: -

CABLE DESCRIPTION: 1-3-4/0 STATUS: ASB B/M: EK- 2A BOP OR DIV: B EQ REQ : Y SYS: DH GPU SYS: 212

.BA: -CKT NATURE: PWR.-FOR DH-P-1B EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- !

EQUIP. TAG NO.: 1E ES 4KV 7 EQUIP. DESCRIPTION: 1E 4160V ENGINEERED SAFEG.UARDS SWGR. UNIT 1E7

. TERM. CABLE LENGTH:

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHQUSE 623F375


TO ----------------------------------------

EQUIP. TAG NO.: DH-P-1B EQUIP, DESCRIPTIOM: DECAY HEAT REMOVAL PUMP MOTOR 1B (DH-P-1B)

TERM. CABLE LENGTH: ~~

CONDUIT' SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG:

S.-

e 4

4 9

w Eng P-2A) . o

, f. 3 p pp sj "

ol?*

?'Y 4(

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13797 Screen 2 Command ===>

=========== ELECTRICAL- ABLE INFORMATION SYSTEM =================

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: ME6 CABLE REEL #: l j l l l APP R PO: ACTUAL LENGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MCASURED: (1bs.) ELEMENTARY: G/C SS-208-212 SPECIAL INSTRUCTIONS: VIA: 6" TRAY ROUTING: (9 + 28.0) 744,743,739,751,752,753,728,729 (K + 19.0) 40' I.

e 4

e A

(2 c=al.a

. //h'^ j ^ s. n3

{I314 91. OF 70

-FSBROWSE-ASB. CIRCUIT---------------------------------------Obs 13806 Scroon 1 Command ===> ,

=========== ELECTRICAL CABLE INFORMATION SYSTEM ================

- NOTE: Next screen: PF11 - To find- a cable # type: S ' NUMBER' - quit: PF3 --

CABLE NO.: ME7 VOLT: - CABLE DESCRIPTION: 1-3-4/0 STATUS: ASB: B/M: EK- 2A BOP OR DIV: B EQ REQ,: Y SYS: MU GPU SYS: 211 BA: CKT NATURE: PWR, TOR MU-P-1C EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~


FROM -------- -----------------------------

EQUIP, TAG NO : 1E ES 4KV EQUIP, DESCRIPTION: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E8 TERM, CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F376 -


TO ----------------------------------------

EQUIP, TAG NO.: MU-P-1C EQUIP. DESCRIPTION: MAKE UP PUMP MOTOR 1C (MU-P-1C)

TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 l CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG:

C -(IO(-770 - M IA ~DlQ

%V. o 44 l  ?

yrgy, c 3 od 70

i

-FSB SE ASB. CIRCUIT------------ .-------------------------Obs-13806; Screen 2

===========* , ELECTRICAL CABLE INFORMATION SYSTEM =================

NOTE . Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

C M T 3._N O: ME7-CABLE _ REEL, #: l. l l l l APP R PO:~ ACTUAL LENGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.-) ELEMENTARY: G/C SS-208-214 SPECIAL INSTRUCTIONS:

-ROUTING: (10B + 0.0) 744,743,739,751,752 (J + 29.0) 50' 5

s 4

- C-Itot-776 ER6-qs 84U . o plot *E

' LYo 10

(" 27 e

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13829 Screen 1 Command ===> ,

= = = = = = = = = = = = = = = = - ELECTRICAL CABLE INFORMATION SYSTEM ===========e=========

- NOTE: Next screen: FFil - To find a cable # type: S ' NUMBER' - quit: PF3 --

CABLE NO.: ME9 VOLT: -

CABLE DESCRIPTION: 1-3-4/0 STATUS: ASB B/M: EK- 2A BOP OR DIV: B EQ REQ : Y SYS: BS GPU SYS: 214 BA: CKT NATURE: PWR.-FOR BS-P-1B EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- !

EQUIP. TAG NO.: lE ES 4KV EQUIP. DESCRIPTION: lE 4160V ENGINEERED SAFEGUARDS SWGR, UNIT 1E10 TERM. CABLE LENGTH: -

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F378


TO ----------------------------------------

EQUIP. TAG NO.: BS-P.1B EQU.'.P. DESCRIPTION: REAC. BLDG. SPRAY PUMP MOTOR B (BS-P-1B)

~ TERM. CABLE LENGTH: -

CONDU I'l SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG:

f Cm61-7?c-tw -&

Wo p ,,p,, J: o !. 3 fly 45oll' 1

"SBROWSE_ASB. CIRCUIT---------------------------------------Obs 13829 Scrcan 2 Com2na nd a = = > ,

=u============.,=='

l ELECTRICAL CABLE INFORMATION SYSTEM =======================

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: ME9 CABLE REEL #: _ l l l l l PO: _ ACTUAL LENGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-208 SPECIAL INSTRUCTIONS:

ROUTING: (10B + 3.0) 744,743,739,751,752,753,728,729 (J + 26.0) 40' S.

e 9

D C--(tor -7?o-W&of $'

hed.o fppmJ.'>*?3 f.,7.c C6 ol7*

l -FSBROWSE_ASB[ CIRCUIT---------------------------------------Obs-13740 Screen-1 Comnand ===> .

==========d ELECTRICAL' CABLE INFORMATION SYSTEM ================

- NOTE:-Next screens PF11 - To find a cable # type: S ' NUMBER' "- quit: PF3 CABLE NO. -ME10' VOLT: -

CABLE DESCRIPTION: 1-344/0

-STATUS: ASB B/Mi EK- 2A BOP OR-DIV: B EQ REQ.: N SYS: RR GPU SYS: 534 BA: CKT NATURE: PWR.-FOR RR-P-1B EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


FROM ------------------------------------- !

, _ EQUIP. TAG NO.: 1E ES 4KV EQUIP. DESCRIPTION: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E11

. TERM, CABLE LENGTH: -

CONDUIT SIZE: 4- 0 CONDUIT LENGTH: 70 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F377


TO ----------------------------------------

EQUIP. - TAG NO.: RR-P-1B EQUIP, DESCRIPTION: REAC. BLDG, EMER, COOLING-RIVER WATER PUMP MOTOR B (RR-P-1B

,) TERM. CABLE LENGTH: ~

CONDUIT' SIZE: 4 0

-CONDUIT LENGTH: 5 0 TERM. REFERENCE DWG:

5 4

1 9

i C-( f o(<270-ERO -018 Rav . C>

/ppnh > r. .7 b yx 47 d7o

- F S LROWS E AS B . C I RCU I T----------------------------- ----


Ob s 13 7 4 0 Screen 2 Commend ===> .

~

=========== ELECTRICAL CABLE INFORMATION SYSTEM =================

NOTE: Previgus screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

! CABLE NO: ME10 i

CABLE REEL #: { \ l l l PO: ACTUAL LENGTit: DA*E PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-210 l SPECIAL INSTRUCTIONS:

ROUTING: (10B + 4.0) 744,743,739,751,756 (12 + 11.0) 800' C-f fo f.-7?D-2%Lo -Ol 8 GSV. O

! S' f pp-c nd:

p,, edn

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13742 Screen 1:

Command ===>:

==================* ELECTRICAL CABLE INFORMATION SYSTEM =====================r

, NOTE: Next screen PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 --

CABLE NO.: MEll VOLT: -

CABLE DESCRIPTION: 1-3-350

-STATUS: ASB B/M: EK- 2B BOP OR DIV: B EQ REQ.: N SYSt MT GPU SYS: 732 BA: CKT NATURE: PWR TOR - T1-02 EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


FROM - 2------------------------ --------- T-EQUIP. TAG NO.: 1E ES 4KV EQUIP. DESCRIPTION: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E12 (T1-02)

TERM. CABLE LENGTH: ~~

CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F379


TO ----------------------------------------

-EQUIP. TAG NO.: 1T XFRMR EQUIP. DESCRIPTION: TRANSFORMER IT (AT IT 480V SWGR.)

TERM, CABLE LENGTH: ~~

CONDUIT SIZE: 0 0

. CONDUIT' LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC E-207-031 a

w C-(td- 77o-Esw -of g peu . o guk t1 ofU 70 (91f4

-FSBRCWSE ASB. CIRCUIT---------------------------------------Obs 13742 Scroon 2 Commend ==a>

=================-

ELECTRICAL CABLE INFORMATION SYSTEM =======================

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE !!O: MEll CABLE REEL #: l \ \ \_ l APP R PO: ACTUAL LENGTH: DATE PULLED:

MAX. TENSION MEASURED BY:

MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-162 SPECIAL INSTRUCTIONS: _

ROUTING: (10B + 6.0) 744,743,739,751,756 (12 + 11.0) (EL. 312.0) 735,736 (EL

. 319,0) 790'

. =

a C-y/ og -7? P-64W -e/g e

(24U. o jpclY 4 70 o l70

/ 77

,,'a. -

l llCl-T70-6@ -Clb (t.Ev. o .

Fau s.s I

  • ~ - WN C?

y < a J.*N " '",l

,s 500bv 1

Kerite ET Insu1'ation NS Jacket' 3 Conductor in interlock' Armor Cond. Size O .D . - . Insulation Jacket Amoscity 1000 MCM 4.53" ' 10/M" 8/M" .

745 750 MCM 4. 20'.' 10/64" 8/64'? 639-500 HCM 3.61" 9/64"- 7/64". 508 =

- 7/64" 350 McM 3.31" 9/64" 412-- .

250 McH 3.02" 9/64" 7/64" 333 4/0 McM 2.79'? .

. 8/64" 6/64" 301 2/0 McH 2.52'! 8/64" 6/64" 226 4

}

. 1000 V-I . . s Kerite BT Insulation FR Jacket 3 Conductor in Interlock Armor .

Cord. Size Q Insuistion' Jacket Amoscity ' '

500,000 2.96" 7/64" 4/64" 510 350,000 2.65" 7/64" -

4/64" 407 150,000 2.41" 7/64" 4/64". M9 3 M M 4/0 2.16" 6/64" 3/64" 295 EY 2/0 1.91" 6/64" 3/64" 217' 1/0 1.81'?

6/64" 3/64" 188 -

2 1.55" 5/64" 3/64" -139 -

4 1.41" 5/64" 3/64" 103

-6 1.31" 5/64" 3/64" 78 3/64" - 58 8 1.22" 5/64" '

10 1.08 4/64" 3/64" 34 .

Note: Ampacities based on 4000, no jacket on interlock armor and spacing ,

10" or more. If conditions apply use the following factors:

For 500C ambient multiply .89-

- For PVC jacket on_ interlock multiply 1.09.

6 4

1 . . . . . .

. (/ 2,4 s. 9 9

. ,. c- i . co CI tol-770 -EH.0-ot8 >

UNuclear

  1. L ~ memorandum =

APWVIV3.5 PM I eF-9 3"#C' StallOper41onofAH-E-7A/BFans Date:

March;L.G-1986 Evaluation of Test Results MSS-86-079 From; Engineer, Mechanical Systems Location:

(L. O. Carin) Parsippany - CHB 1 To.

Project Engineer (E. Eisen)

Attached is the evaluativn of the test performed in accordance with STP 141/14 As inoicated in the evaluation, the Reactor Purge Exhaust Fans AH-E-7A or AH-E-7B is not operating in a stall condition for a single fan operation with AH-0-82 make up damper operable (open). However, for two-fan operation, the exhaust fan AH-E-78 is operating at the critical point of the '.

fan performance curve. With a slight' increase in the system static -

pressure, AH-E-78 fan will definitely be operating in a stall condition.

Therefore, in order to prevent AH-E-78 fan from operating in a stall condition (in a two-fan operation), it is recommended that the Operating Procedures 1104-15A and 1102,-14 be revised to provide instructions that during the Reactor Building purging and venting operation, the AH-0-82 makeup damper shall be fully open and AH-0-73 and 86, makeup dampers to Aux, and FHB exhaust fans, shall be fully closed. This will increase the exhaust flow rates of the RB purge exhaust fans. Increasing the exhaust flow of these fans will move the operating point of each fan to the right of the fan performance curve and prevent th? AH-E-7B fan (in a two-fan operation) from operating in a stall condition.

If you have any further questions, please call me on Ext. 2402 in Parsippany, s

. . arin Engineer, Mechanical Systems LOC:fg Attachments cc: Director Engineering & Design (O. K. Croneberger)'w/o attach.

Manager, Mechanical Systems (M. O. Sanford)

Manager, TMI-l Engineering Projects (J. W. Langenbach)

Manager, TMI-l Projects (P. Moor)

Manager, TMI-l Start Up & Test (T. Hawkins)

Building Services Manager (Acting) (M. R. CalbureanuYrI .

Engineer II, TMI-l (R. Runowski)

W _?0$ _

4 Gll4l ~/74-Et2o-o@ P4w;>

A PfihvPi)/ g,5 A##~ I #" #7 Evaluation of Test Pei STP-141/14

- 1.

Summary'of STP 141/14-Test Resul_t AH-E-7A Fan Operating- ,

A. -One Fan Ooeration:

54/53/51 Amps (3 phase); Ave Amps = 52.7

  • 1. Motor Current = = 17500 cfm
2. Total Exhaust (FR14BA Reading)6000 CFM
3. RB Exhaust (FR148B Reading) =
4. Fan Suction Pressure = (-) 9.0 to (-) 9.5" W. 3.
5. Fan Disch. Pressure = (-) 0.1 t (-) 0.5" W. G.
6. Delta P Across Fan (Measured) = 8.7" W. G.

7.- Delta P Across Fan (Suct + Disch.) = 8.9 to 9" W. G.

B. One Fan Operation: ' AH-E-78 Operating 62/63.5/62.5 Amps (3 phase); Ave Amps = 62.7

1. Motor Current =
2. Total Exhaust (FR148A Reading) = 15000 CFM ,
3. .RB Exhaust (FR148E Reading) 5000 OcM -

s =3" W. G. *

4. Fan Suction Pressure = (-)' 9.
5. Fan Disen. Pressure = + 1.02" W. G.
6. Delta P Across Fan (Measured) = 12.1" W. G.G.-
7. Delta P Across Fan (Suct + Oisch) =,10.32" W. '

Two Fan Operation: AH-E 7A Was Started First C.

1. Current Readings:

AH-E-7A Fan Amps = 67/68/63 Amps ( Ave. Amps = 66.0)5)

AH-E-7B Fan Amps = 63/64.5/63 Amps (Ave. Amps = 63.

2. ~ Total Exhaest (FR148A) = 25000 CFM
3. RB Exhaust (FR1488) =.8000 CFM
4. Fan Suction Press:

AH-E-7A = -) 9.0". W . G . -

-) 8.8" W. G.-

AH-E-78 =

5. Fan Discharge Press:

AH-E-7A = 1.5 3" W. G.

AH-E-78 = 2.5" W.-G. .

6. Delta P Across Fan (Measured)

AH-E-7A = 10.0" W. G.

AH-E-7B = 13.1" W. G.

7. DeltaPAcrossFan(Suct.+Oisch.)

AH-E-7A = 10.53" W. G.

AH-E-7B = 10.5" W. G.

4 4

l

C-I/ ol ~17& -G.920 -o/6 44v. O t APfh mk G.7 /%sc 5 ,pq Evaluation of Test Per STP 141/14 - Page 2.

O. Two Fan Operation: AH-E 7B Was Started First

1. Current Reading AH-E-7A = 58.5/60/66.5 Ave. Amps = 61.7 AH-E-7B = 55/64/59 Ave. Amps = 59.3 Note: Item 2 thru 7 as indicated in C aDove were not measured.

Notes:

1. During the test, the weatL;r was colo. To maintain the required Nil Ductility Transition Temperature (NOTT), the purgu supply was reduced. Tnis affect the exhaust flow of AH-E-7A/B fans.
2. H. Mitchell had indicated that during the test, the make-up damper AH-0-82 was partially closed as compared to the previous 5 tests (STP 141/11 and STP 141/12) with tne make-up damper fully .

open. This also affect the exhaust flow of AH-E-7A/B fans.

3. H. Mitchell had also indicated that as previously measured, the power supply to tne motors is approx. 470 volts.

4 For 75 HP motor the power factor (PF) 1s .88 and motor efficiency (EFF) is 90%.

5. Fan Performance curve for AH-E-7A & AH-E-78 was cotained from Suffalo Forge Co.

II. Evaluation - Determination of Air Flows and HP Requirements A. One Fan Operation of AH-E-7A Exhaust Fan

1. Using fan performance curve and fan ciff. press. (Delta P1
a. At 8.7" W. G. fan Delta P (measured across the fan):

Exhaust = 25200 cfm BHP at 25200 CFM = 56 BHP

b. At 9.0" W. G. fan Uelta P (suction + Oisen. press.):

Exhaust = 25000 CFM BHP at 25000 CFM = 56 BHP anae j

C Itot-77a-EQ2p-ots fav. o A PP. 9. s~ fuse. 7. + y Evaluation of Test Per STP 141/14 - Page 3,

2. Using Motor Current Reading:
a. BHP Calculation

{ '

)= f x AMPS x Volts X P.C. x Motor Eff.

74 o Where: Volts = 470V P.F. = .8 8 EFF = .90 BHP = .864 x AMPS BHP = .864 x 52.7 = 45.5 HP

b. Air flow determination using calculated BHP From HP curve (f an performance curve): (using BHP of 45.5)

Exh. Air Flow = 29000 CFM-

3. Measured Flow (Reading from FR148A) = 17500 CFM B. One Fan Operation of AH-E-70 Exhaust Fan
1. Using Fan Performance Curve and Fan Delta P
a. AT 12.1"'W. G. Fan Delta P Exhaust = 11800 CFM Note: 12.1" W. G intersects 15200 CFM the curve at three 21000 CFM points BHP , 50 BHP at 11800 CFM BHP = 51 BHP at 15200 CFM BHP = 58 BHP at 21000 CFM
b. At 10.32" W. G. fan Delta P (suction + Disch. Press)

E riaust = 23600 CFM BHP = 57 BHP

2. Using Motor Current Readings:

BHP = .864 x Amps = .864 x 62.7 = 54.2 BHP EXH = 9000 CFM EXH = 16500 CFM EXH = 26000 CFM (NOTE:

54.2 BHP intersects tne curve at three points.)

3. , Measured Flow (Reading from FR148A) = 15000 CFM

^' _ _ _ _ _ _ _ _ _ .

' C~/loj ~7*7b ~2 F2e- cV8 Jacg o 6

/4PP.- 8 5' pac;e 5~ se g l

Evaluation of- Test -Per .STP.141/14 - Page 4.

C. Two Fan Oceution: AH-E-7A Was Started First '

1. --Using Fan Performance Corve and Fan Delta P I a. Using the measured fan Delta P:

AH-E-7A at 10".0 W. G. - Exh. Flow = 24000 CFM-AH-E-7B at 13.1" W. G. Exh. Flow = 18000 CFM

= 10600 CFM (Note: 13.1" W. G. S'.P. intersects the curve at two points. )-

Brake Horsepower:

AH-E-7A BHP = 37 BHP at 24000 CFM AH-E-7B BHP = 56 BHP at 18000 CFM BHP = 51 BHP at 10600 CFM ,

b. 1.fsing the fan Delta P taken by adding suction and discharge press .

AH-E-7A at 10.53 - Exh. Flow = 23200 CFM AH-E-78 at 10.5 - Exh. Flow- = 23200 CFM 6, Brake Horsepower: .

AH-E-7A BHP-= 58 BHP at 23200 CFM AH-E 7B BHP = 58 BHP at 23200 CFM

2. Using Motor Current Readings:
a. BHP Calculation:

AH-E-7A BHP = .864 x 66 = 57.0 BHP AH'-E-7B BHP = .864 x 63.5,= 55.0 BHP

b. Air flow determination using calculated BHP and Fan Performance Curve.

AH-E-7A Exh. Flow = ~7400 CFM

=< 18400 CFM-24200 CFM j

(at 57 BHP)

-8400 CFM AH-E-7B Exh. Flow =< 17200 CFM

= 25600 CFM (at 55 BHP)

(Note: l BHP of 57 & 55 intersect-the HP curve at three points.)

- 3. Measured' Air Flow (from FR148) = 25000 CFM

b. Two Fan Operation: AHE'-78 Was Started First
1. Using Motor Current Readings:
a. BHP Calculation AH-E-7A BHP = .864 x 61.7 = 53.3 BHP ,

AH-E-7B BHP = .B64 x 59.3 =_51.2 BHP 4330d

, C-1Io I- 710 ~E1-7.0 --olB ftv. o

. A U O.5 /%6f- A op:g Evaluation of Test _Per STP 14l/14 - Page 5.

b. AirTiow determination using calculated BHP and Fan Performance Curve.

I AH-E-7A Exn. Flow = T'9400 CFM

=%16200CFM

=

(at 53 .3 BHP) 26800 CFM AH-E-7B Exh. Flow =?l0200 CFM

=#15200 CFM (at 51.2 BHP) = J7400 CFM (Note: BHP of 53.3 and 51.2 intersect the HP curve at 'th'ee points.

II. riscussion Due to the system configuration and location of the pitot tube sensing element of FR148A, the air flow reading taken from FR148A-(FT148A) is unreliable. The air flow indication of FR148A (FT148A) will cepend upon the fan line-up. Different fan line-up will create a different velocity profile in the discharge pler um where the Ditot tube sensing 6, element'is located. AH-E-7A Fan oper.iting alone will create a .

' different velocity profile than AH-E-18 operating alone and definitely ,

different velocity profile when both fans are operating. Based on this, the air flow read from FR-148A (FT-148A)-will not be considered in this evaluation. ., Note that if this exhaust flow rate is consicered correct, the exhaust fans (AH-E-7A & 78) are always operating in a .

stall condition in any mode of operation. The reason for.not considering the measured exhaust to the stack (reading from FR148A).is.

further illustrated in the following discussions of different fan line up.

A. One Fan 00eration of AH-E-7A Exhaust Fan: ,

Based on the Fan Deita P of 8.7" W. G. and 9.0" W.G., the exhaus t -

flow from the Fan performance curve is approximately 25000 CFM.

The power requirement at this flow is 56 BHP (max HP. requirement is 59 BHP as indicated in the BHP curve). Based on the measured motor current, the BHP of the operatiy fan is 45.5 BHP and whan this is.

plotted in the HP-curve, the exhaust flow is 29000 CFM-approximately. Both these flows When plotted in the Fan.

Performance curves show that the AH-E-7A fan is not operating in a

- stall condition with AH-0-82 operable (open). This also indicates that the exhaust flow of 17500 CFM as read from FR148A (FT14SA) does not reflect the actual flow rate. -

Q S

8 8

All

C-1Io l- 97c -M20-oIS /t v, a l*

Mf' s. S- pan 7 a9 I - Evaluation of Test.Per STP 141/14 - Page 6. ~ . . ,

B. One Fan Operation of. AH-E-78 Extutust- Fan m, , ,

(hefanDeltaPof12.1"W. G. (measured across the fan), when plotted against the f an performance curve, intersects the SP curve at three (3) points which provided 3 different exhaust flows as indicated in item !!.B above (11800, 15200 & 21000). However, tht f an Delta P of 10.32" W. G. (suction + Oischarge Press) indicates an air' flow.of 2360 g fMjat Si BHP. Comparison of 23600 CFM to the 3 air flows provided by the'Mn Delta P of 12.1" W.b., the 23600 i CFM is closer to 21000 CFM. The HP requirement at 21000 CFM is 58 BHP. The exhaust flow can bF verified further by.the motor current reading of 62.7 Amps. At 62.7 Amps, the BHP of the operating f an is 54.2 BHP and.when this is plotted against tne HP-curve, three exhaust flows 9000, 16600 and 26000 CFM are obtained. Of tne three

  1. ~

4 -

exHaus'ts," 26000 CFM is"closeW to 21000 CFM and 23600 CFM. At 21000 CFM,.the AH-E-78 fan is not operating in a stall conoition. This flow indicates also that the exhaust of 15000 CFM as read from FR148A (FT-148A) does now reflect the actual flow rate. 5,

"" C; Two F W 0peration W 'Ed From fan performance curve and based on the measured Delta P across the f an (10.0" W. G. for AH-E-7A and 13.1" W. G. for AH-E-78) the

> - T exhaiJstiflow for' AH-E-7A"isT4000 CFM and for AH-E-78 (13. )" W. G.

intersects the curve at two points), exhaust flows of 10600 CFM and 18000 CFM are obtained. The BHP requirements of the fans at these air flows are 57 BHP for AH-E-7A'and 51 and 56 for AH-E-78. On the otner hand, if fan Delta P is taken Dy adding the fan suction press and the fan discharge press, the exhaust for AH-E-7A (at 10.53" W.

- " G.)cidFAM' 78'(at 10.5" WA.) is 23200 CFM with HP requirements -

of 58 bhp. Comparison of the' exhaust airflow and bhp requirement of each unit indicates that the exhaust and ohp of AH-E-7A at' 10.0" W. G. and-10.53" W. G. are approximately tne same. This indicates

. that fan AH-E-7A is' exhausting approximately 23000 CFM and'tnat tne

" f aF i t*ffe tTbpe r a t'i n g"9P a " s t11 1 c o n d i t i o n .

However, the exhaust flow' rate ano hp requirement of AH-E-7B at 13.1" W. G. and at10.5" W. G. are very mucn oifferent. Tne exhaust flow rate at 13.1" W. G. (whicn 1.ntersect the curve at two points)

- are 10600 CFM and 18000.CFM as compareo to the exhaust flow rate of 23200 CFM at 10.5" W. G. At 18000 CFM, the fan is operating at the critical point of the fan performance curve, in order to determine '

m ch exhaust flow rate is correct for AH-E-7B fan, tne Hp requirement of 55 BHP (calculated from the motor current reading of 63.5 amps) is compared witn the power requirement of 56 BHP (at - 3 t

9

  • $$$OJ

b I -

e-n.:+7?a -e % * - ol8 p.sy, o JPf,85 fpas. 9- ef' *1  %

Evaluation of Test'Per STP 141/14 - Page 7.

18000 CFM)_'and 58 BHP (at 23200 CFM). Tne comparison indicates that the calculated 55 BHP is closer.to_56 nHP (at 18000 CFM).

. @ is verifies and inoicates that the exhaust of AH-E-7B is close to-

~

8000 CFM and the fan (AHE-78) is operating at tne critical point of the curve.- With a slight increase in the system resistance, AH-E-78 fan can be operating in a stall condition. Bast.d on tne above flow rates, the total exhaust-to the stack is-10000 (for

-AH-E-78) plus 23000 CFM (for AH-E-7A) = 41000 CFM. Inis indicates that the exhaust flow of 25000 CFM as read from FR148A (FT148A)

-does not reflect-the actual flow rate.

IV.

Conclusion:

For a single fan operation, either AH-E-7A or AH-E-7B exhaust fan is not operating in a stall condition with AH-D-82 make-up damper operable (opert) .

For _two-f an opefation, the exhaust of AH-E-7A f an is 23000 CFM. At -6 this flow the. fan is not operating 'in a stall condition. - However, the .

exhaust capacity of AH-E-7B fan is only 18000 CFM. At this flow, the f an is operatinn at the critical point of the pressure curve as indicated in the attached fan performance-curve. With a slight increase in the make-op air system resistance, AH-E-78 will cefinitely be operating in'a stall condition.

These exhaust flows,'however, are based on the make-up camper partially closed as indicated in tne notes of item I above. Opening tne make-up damper fully will increase the comoined exhaust flow and move the

. operating point of tne fan 'B' to tne right of tne fan performance curve (away from the stall operation). Therefore,-for two fan operation, the make-up-air damper AH-0-82 must ce fully open in order to prevent stall oper ation of AH-E-7B exnaust' f an.

V. Recommendation:

Based on-the critical condition of one fan in parallel operation (two fan operation) and in order'to prevent one fan from operating in a stall condition, it is recommended that the Operating Procedures

.-- 1104-15A and 1102-14 be revised to provioe instructions tnat during Reactor Building y ging and venting operation, AH-0-83 make-up' camper shall be fully open and AH-0-73 and-86 make-up -dampers to Aux and FHB exhaust-fans shall be fully closed. This will increase the exhaust flow rates of RB purge exhaust fans, increasing the exhaust flow of-each fan will prevent AH-E-78 fan (in a two-fan-operation) from operating in a stall condition.'

. C Ildt-77s -gpo /lB j2gy, o g A FT 8.5' PscE 9ep 9' i .

c co'; , p Oe.-.-_ - -.. ._.o. - s. . .. : . _o :p

} fy::p,itiij.!:.';.

. . c. . _ _ :.__g ._ r._.. ,, ; ; .

g e

at!" j' , .

.l; (M@@ l: __

l,  ; ;g,,,,

g ;j...

7.

! e

. j.. ; l ,  : ;

[...l. . k" ..l:. l ....hi { _ _ , . ),

j. -

T

lh

.:::!.lL,ib. '::-l:'.;!..:.' ' ,1l::i E

b.J;;;. d 2" ::

. l t. h lll , , ,,AHOtihi-MGiiGE

'.!.n c l;.

-l.... l.,. j ;;;; ji.g. .p;.....gg,,j  ::

. . I . . . .l.:,:. d y g j 9:,..,.:--

d W gg  ;,

!. :: !!:*  : ; :!.n.::.. ;;*

..i!'.. '- .g*.., I p,. , . - .

.i :n1 .h.;...... 1: . S N vw .. - .. .

. HHf  ;

( }"jllI*.h' Jfl.u h;:.j{ti;;\M - - ~ -- y}-.-

, e % ns=ue... *imsL=,_.

= .

.s Q..p-) #.%. e ,-i3iE-;.MHW.Ed" S M '.

4

c. E = = gs_ =._.its.. .p. q. . .. i. iii.i M e.=.

.iiip.u a : 10 y. . -

.N5i .3kii i[!I!! g Ygl

.u .

u -+ -

[ . k-m5. .

an. . ..

.m _.. c. .:u,.en. - -

.,=_ . -4u ff,h[,:thhh.g.4; 4 - * -

t'

- m u Me .m:.!

I

u:  :. mq.
e. u.apn.:. nu o i% og 7 m:i ...

u.n7m. n 3o $ an g ts g "tu.3=.:=

n Dn;r i ;ih.1-I y, ... L ;u.i...ft .(

J p ;g

.: u :: !a n.

gg u:.

. .t i; : n !. .. - "

g g e4 "n e v: :": :". -

.cj hs '

n t; .g. /-,j y;;y g ..j p: g.. o:

O.l;;g, i -

5iiii4!!nilli7ilDkg{@ g[ Aggggga j

74 7:

.a iglirij  :

giie )

Q1" I"k !idINIIM!!\!Mi UHHi!1!MiHF/ !!:! iH! il l i M,lli  %;;plijkff;! Hj,Vigi,iiiij" - .

i g!!!!!!!: Wihm diiHMi@! Wi !!!! 'i WigD inuM!iiih!il WUlM. WiWu

'.w.

  • M@9 I . qijeihn!H rF91Wi!Vi: !!A!;ilpi HD 0 0 .l!Fi diyilipl}nimijmgj palg [

3 7 $ .ididiW-inic "!. !!+ilh+ 4 iiW idM lMEiiiiiiH@iiipfMMiiHH$ '

y h~ C2 p-

%;4, M#iMilii m e.?:

- n.p?:.n .n e-".. . .~

n iMl!W5WWinil!5fissinigtig[Mimp

... ng M.:

m r

n y;!

_;h 5

< . x. .

4.s an

=  % e.

n,g n .3 ; . . . . . . . , , , , . ; { ,, .

i G c,.3 C !E in.lin p, aA g !!!iiiiiiifMMEi"iMii@ WoN.a #friWilliiii91-*??.

< uu

. m4s4E \.

g,g g = z =u= p:-- n.":pu: p.c ,

p. ..: p u : :..; n.. . m a I, u. :n.tr: nm c
n. nnn. -n..i or q- l :-

1 .:t r -

r uu m.f..:. il: n.. u:

u:t :-- !,m. ; l:u. n .: .=. = nt nu ...

'%m%

c,,3 .

mn4 .t:" .

u

"! . ,
: - . i. r.f- .:pj "ff:. ! :n.

. n.; :n: un n.:p: : ,

un "n."

... 3-"

(

< N iI. .  !*!!!!! ) il!

.N '

! !h! kNNb *b;fi!! !Ui ifliki kfUl.

$4 I T  !@["!;ij: IUti

  • I

^

'"4

[U{ g _!h fri!}III :ik p:dNji Idip;; lIj!Q Q  ; _ j :*. . .

". :: y l .. u .n --".. . lM:: a n f"i: .n. ; .f-. .d.*': . . un ' :n. U.. n.

lh. r -

i 'A Hlk ) CN; ^ '

L.J >=.

F: .

.6-

,t ' l' 3i.:t F.t nn- l " t : y . . . , ... .. .. % .ll5 i i.o .

) O h'..:.f4 CC '~# iN!!'IN I1I! I I M D NNl0N  ? h - N!! *I! Ni!lliilNNi ,ili4lIll i 3!(

EDb i

-e i. @ : W i W ii4 M ili M ii!! iiD "i'

@Vs l" 4ifiliiF *nHri!!! '!iinf Ml!!!iFEi.7 1 s i4 n.i. J_.

ji ;"j H.i i: lnp :. :ii:p:nl!:!!p.i!!pp.i.h.i.i.:.

p l0 --

, g g,y :n..:lii.!.!li.i..H.l"8.ii

.t, nl 'ii.ii . !. l

.... ...  :!F!g .

ul g i. .. . .. ..., i..,

'- .,. 1 1 4 , ,..,. . . . .

gp;; u. .-t:j ., ...

g .

a .m.y. g u,M' .: 11. " .. I t g lu, .-a.::_.:

. .i. .h. 34,h"!!:li...- " dl M "ny . . c --

t .

% fN e [f.i 4 Z f. N,, F. .U

. i N Nil *t:. ". :m [.i.ih.lE:iii. .

' i. . l.ii  : [il.j . lli: :".!. U if!ii:l

- .. h ' -l E. . i:. N.N !. l!! i j g,

$d.itn -I ?: n

<-3 t.w II . a:..:  :

w c; {

. 4 '

6. +  :.:H::r.Enohu":: "u :H m..- n ,h ,f..m .:t. " "..:"u" n" "ln j 8"":.+ .  ;.. :..:

1 :,9 c.= _g

29. h..g _y.-%y .i
m- an-  : w w o e o: .u-n:4. ::::h:.:::p:- np.;.-h_ a(p"..n ; .

c::: *2,, t.LJ  :. . et :.

ca c -:aeg i . .. ....

. y St mi ..

. "n 8:

--} > 3... ..

sf "

u. ::. . %< .p4 r :E . .a.. n. t .M. ;. ; .1.;l.

n  ;

L. .;.

-: n.--- "i l: n"' >u:j :,;-[ .1.,

t :. . 3. ."d u.t' ..

  • e c g -- --

..- p : L::.. . t ,

g e4 CE ilin un i n U p P iiM N...HNN h 'MiI'M.

I. i p .:! W . t b!g!IN tn rp? ."-

u

" cm ~ w ppl!n-lIH"lu m n n.

o lI!' N ~.. li b l!mlP")7:a

.ni u n un .:n di n.: .a e n uni,e 3

do.i '":n v "g. "' rf. ". :

a

.. d ;

te n p:n an O

, NI5l!Hil!!oM lt!ii/i Ul!!0i IIU'I!!!/ lId Nl!UiE"II AiiDI!:E "dII *!li"09 I Mihis!!!!isN Yl!!!ii!lliiiiM* ii!/lf i R thinMilMkisNi uhliidh!MF!

,, Eiisliitilsi Piii!!!)inill5 liiMiffl*eMi i!i I" l$_.iinlHiiiiiiiiiii!9MM!Wil .

Q Q .lHilH!il!!Ulil!!Liiill% !iUUili lIlli!UiU:~jlii lil

-o l hiihn!hu!!!!!!!!UU"nHNil nHh .

.:n.,p=tmnm

.... au aunu : n:wdl, n... u n 'm:n";h"m e  : un h: :In e n@o. P" m n::.p m n r m=

- m n m . "- "" " mnt

, d. . - -

.[ . -

.=ri!!i .!:liii;i/.Ii2 . -..f5HhTi!! NIM M!%MMIiiiII ~~E ',"tiEEb. Y"~r

n, "mu u.a..= [L=+ u: gp: n :: nr .c

_ . _u :- - = . . . . .u ;:.: =r u . p g.- 3: Inll: ".g::.=:3]=t=y.!i.!!-ia.

,. m m : -a-.~---. THg -

b":.. . . .

ll J .u. j.~e ..*.,.. <a. . ,

a. w_. + e -- - ed - o ec

& S. 9. (

d-fibl-17* .%20-ol8 Z L V. O Affw ply 6,0 To: Dick Bensel b" l #^ /

cc: Padmensbha R Penicket, M&e Kapil, Randall C f as irem: Tom Ako Date: 09/10l96 09:50:53 AM Subk.' TSt. CABlt CURRINT DETIRMINAtl0N Per your request on 915l96,I performed a DAPPER voltage drop onelysis to determine the current in the feeders to motors NS P 1 Alle and NS P.18 to addsosa the TSIlesse. Note that WS P 18 is nettnsjly,ng1, nn.1 shifted the equivalent lead f rom NS P 10 to errive et the current, The felicwh.g condittees were assumed:

2 Auxiliary Treneformer Operation, Plant at Normallead Using DAPPER Normal Lead

- Mode!s From TDR 995, Rev. 3 Grid Voltese et 232 KV. The following are the results:

Meter Terminel V.ellett feeder Amaj

!. lib 1 A (RED TRAlN) 450 V 143 A S, MS P.10 (GRFEN TRAIN) 440V 146 A NS P 18 (GREEN TRAIN) 440 V 146 A Please let me know if you require any further information.

e 4

9 l

\ .

bTS.&-

a d ~tt01 -770- BW- olB P& U. O c: dmanab R Panichw, Mke Kapil, Randall C ino 8*

From: Tom Akes Deto: 09/11/96 01:38:30 PM subject: OC P 1 A FUlll0AD CURRENT Per your request en 9l10190,I performed a DAPPER voltage drop enelysis to determine the current in the feeder to meter DC P 1 A to address the TSi leeve. The following conditlens were sesumed:

2.Auxillery Transformer Steady State Operation, Plant et LOCA Lead Uelng the DAPPER LOCA "A" Sidi Model For The Red Train From TDR 995. Rev. 3 Grid Voltage et 232 NV. The foliewing are the results:

Meter TermlatLYthens Feeder Aian QC P 1 A (RED TR AIN) 446 V 106 A '

i Please let me knew if you require any further information.

l 1

4 4

1 e

9 4

/

C."/Idl-7 74 -E4 7.o -og g W 0x$ fecG. lop l

((Ho - L'T4' '/ Cart. M & f-g'gYIf.N5PNLIIFiFYidI.nWy=IMU J5ai' V

,c F T U f n T L *sseee F D'd

'li PARA &g'TYR iAccurTANCEiRY I CRfftRE I VALUG INfT COtMNT11 i am avaunts om wam tee b v./ 7 at ( l ggg , f,,,,,,,g wuw avaa n .s a ces um yEM me,tutw_ A~CfD m+j ggj u f g g eton ne v a rv e - tcao aus uns nem im mGiu2 iy bth7~ a el C 54' .e ina > '.

9 a / !.or ,i g 3.* g weaa == oacs unso em A/AC w s.1 d /o s e SF e c , o / ( 7g,g vuom trunw. e t- .ine tu NA W1 SSEC

""o'"**"****

h, ""t**

(f.[,3 ,e gg , , og M ,,/ og

      • "u* wet as annaos au==.o cu==<v oas. :e i /. y in m de 3 u e**A d o'ss? i lstcem ed er *s A avsmaos avises assiert noes a se I /, f.$ Tel A1 Fj. N g M y' eaa ==ue cu=orr er. < tees wan m .ne I d.W.s 1 M
  • O 9# # l' f , ' g g eru aue.asemewt noes rtees won un .ue lC.// Lai,1 0/ e** COF d' cunaewe at escue itsee na= t=> .ue i 2. cd 7 Ld:aj g, gp : , C /42.5 NQhall / .wr ~l ..C"/*4 ** /

~ 4r'^

c - ase,s. . - e .

w.-. a. o e . .. u.- 8 P 5's.,s ,s. m ..,' a O.

noseer=osevu.assamm e = esc m s .2f.14 mLI one. tant marro. e saaneens. al. msJ '

i arve=oemantaanes ervasil 66 'N p d / /.a-a.y

,_,, u,,,. , o,, o ee 5*/ se Mespr<j/os,y e s/ d na= ===

  • as o c.

u='t**===

ta a sine - s=6y, N. c.u,c.if xi es aime sac,v tas er i." clay e %3 Se S A . #7,e,,y det,

/u * "a>4 "

  1. *d 4 e o,e,, ,, es,,,. ,_ ,e .,

- ,. -n nome omstacauste a tot

.-, . e ses

i. s

.o909 m%fu ,a.,:fa , haes ~

aose__teeruceuert vara aose teacus a ter se

- er e

./c?7 wmL tcS w st y a f.yCg43 aA dos /g I4.4

  • etonecr , -as e, c.e, - t- c c i c,r - o = l een svue is:rt somsoer M a>m. ,

e era fuso v4 estyr euw a J. mwn, toose naam - or eenso,e ne =%

_e_..-.,., . m ,

wan .oa nome v=w eacron t et w verri m i _

,p> ev= cme sweeno op ee.i = '

aom emc=c swec,o on era m opeeV1 tv*ase n.a

{ va vt PR1 eTeone9 op M sea i van nuu remes ness a.e enste a y v iThe purpaeo of true st= armed le to provide e But af Rome out must be chhted pur isparebEy thatng en artWnserhg ruftse of MOV W4 Al tems must to crected and conoems renehed m a ensey evenner two mey hcmass renseens, e more seemand review w e eenemones resnese.no need enonser lmust rwens escrane som m to preened spese ruseedme met he has r*'ess.d me bem and lound Ile he accepteen Emepenne to any era som we to

'te numbered and described m me ostenaren escmerL Omar eheervenere may esse he reeereed h me conensree escuerL ADO (TXmHL M

  • C1101 MNM REV 0 'GL $810 MOVS. TNERNAL OVEALOAD HEATER DETEReeNAT)O8f CiiOi.9045310419 REV 4 W1 WEAN UNK ANALYSit*

C11015415310413 REV 4 *NS V-4 REQUIRED THRUST CALCULATIOff .

MEMO 5310 44443 *AT7215 4 5TS$33 UteTORQUE TECHN6 CAL UPDATE 9342 TORQUE SPRING PACK RELAXAT)ON" MEMO 531040 381 *TMLt VALVE ThMUST*. TDR 790 MEMO 33304SC083 'NS V 4 DMGNOSTIC TEST

  • SETPOINT SCREEN . .

MEMO 5310-92 233, *fT1 MOVAT* OMONOSTIC EQUtPMENT ACCURACT AND TASMTY' EER 954157 *MOV SETPOIN* SCREEN UPDATE 3*

ig m _

4 OAft: /I /~~

_ c6 A f p = f r/Es~

l l

.~l~GL& y W 17th f5tFA 76ypygyp g C~ t16 *17 MO*C&

m.. a . v.

O M / Y /C]

, ,'. [

f

,. (, c ; m .z.  :.s-,

) 6

  • % ,.a=*

g .

/.' ((M U .I.0.W.UI.$!@Y' fW 'P If't? . . . . WI

' J. Stola

!.nuthern Californii Cdl>9 f,v. iter.y LM Annics. (4)ifcanta I [

hiS!.'id the cliemle tur* en'. which tr.ty bt: carried ty 4 1.le (behich tienuate. net.itytt)c hes't) iri 6 trey.

9ht" .s tMu*ler site cab 1w las tqen tterca* hly invu. /ill the thove v;rtet,1cs un te, sad are .et.

ti,;t.te c 19 tinst every con;at able tyre bl cJSic tr.-

$t 1 % titti. (A erta v.htth I tt fint hJd 4"vth ctuntion tounted for in the .t tthog <mrit,td t.gevit .

wi to n u 15 tav allovsable currtnt t.htth can bt tar. r

( kMI C11 l t f ("'t,},,,q

  • Nf t 'f far. *# e
  • rief. i.y t nt,10 Ir. rable trafs , er troghn. This pp. *6'* "I"" M p e r p eurts a cet41ctcly knarol ref9d for calco lhe fir'st of oacy verletM ta to etttit1. 3 #**"

itu ri ti.t v;uitto 3 8 c s's t '.: in tahic tr6vs t it tal the taltnl 10 .stM.h t'ic rahlst it tny ttfy arc pter. ceri.ad fewa ele.ngntary heat transfer theery at.d en .tly t e rutcJ with t=any full ltale 10$M. The etthCd pided. It ($ tpctrset t?.at CWitt iri a sety lo*.tt StrangCNat ert ellt'lt!(11y termerlitt in e r sho-t (* t roatratly f,uulishit tem:tittet (0r $u11 t coles 1:1 hiply filled trayn :utt be reduced. Lut the which a tray. con At fretyata tr.6 y flo.< t%rvif.elkles betwven tre totalit statt in is redwetf.

. laret cable t.'tatitit:t car.1+ tafely tocrt., sed. rail.ing c4t.let tit ter toptlaa r. freu flot if air b{irough i U.t! pett 1: <;ter% lly rest'ictos. Tekir; g iffitt.,:ittf t :f3 this to the pulht t. hire adjattat cables 4*e tNth. .

. tr. the iMiet shich her; hen made on tbc tur. ing tach cth'tr O'I 6 7 ) S t JJ5, Cat ($*it1*.t.o.!. f f tt t ent Grryl'n .ibilit/ of eitt'ric power cahics. the 6 pace betwi.en otr let 1.et :t.it in'etticc11y ten.

existant and er.ly st cM cir p.ci6s remain t,etaten.

rMt fir ple et e of one Cs'a'e teerating fe' #ir has the cables.

be.in s.t s t.1 *

  • J r: *14,1tiple tultf itt a conduit.It 'ulti.

fh s tMts ve ar.cuitt in tutud parasil tr.d several e.pplylw this rectoning to !.nt fita frc s cities ,

e, le, tviled :nts steel raf tweys.3 The results of in t. c*ble. ;tr:r w sco Wt t trae f actits is re.

ie tst 6t5dit 6 are k.cerparatet.' io varical t:. stents in firab1v' tilde a't p,4 s Aturelle fico amr4 catn tmh O 2 i:1ri lMM Fr..tr table Arapact ues vid tY.- table. The trat will thrn i B': wt of t't* r;e. and ,

0Ucf41 f.lectrit CJi!. #

lC PCE14CC Wit!8 f?dtr Air f101 t?.e trJIst**. h*f J'.

Ct.ths tactcc tightly patt06 ther't il no air f1&8 Tr.c ry tt.iti 5. or c'eratimt fatters. td.ith he?2 throtg. the bgr.dly. Md thrt '.il!t :t630119 tarried teti t'etartt!N' se far W (M Cabich v.hl:t are in ,0vt 0/ tha buntilt Ly L.e tus al Jit fluu. In f att, t.ht '

,' ,; wgntrw tthe fees of i t,rdtirly (tran,1ttentt a furtt;vr sim. cr.ly w3j for heat t0 J1t.tf nat OT 164 tif 8". bWu in plific4 d er..-' e i

  • u hia* m i k

',.qg[ 4" H d '" t L* by helt f.out!at tir1 t".b.f t% .?'elluterallob y .co.

es t is 11 'ra cr e t- - e m mr - '** W me bit C0nA: tart e iraitAthn and til p?ttin. >

, , , . a ret a .a n imi s M t f rino t'en'ent m-N;.. te wi ti'ier s en ent ' a'rtr e especities et ren.

Cable #m titiet (*1 rendhi,y 'illed t'syl t% 3t a : . u v c .wsw c c le s t.i t r w . be t'esed on tne ass. .ptit,n tr.tt etMas art ti3%)y packed ar.d that w t tor.U. $rgtM o't hwat thy A tyric)) ut'14 t'ay installation &. tilth 15 frand terried ust of the ht=dle ty ir flowint 'ne.1*

in the citetric rt%tr 1,te? ration and distrilution in* it. Without t!ur.I')? . this 1.it,htly f au t.' Cn: f'l *

. d f try un tt Yht.tlised as

  • 3 inth t'ern M in*5 -ide rretal trent teetM an e v.%re f rom 6 to @0 ' an- ~ tien dom t.ct edt ; Un everl* f Sit tray..n.t it o tel
  1. $-n. r, m ... oc or n ui.conw n er .en randt'aly tricor ofM enuq*i that. for safety. tty

?. s . 4 t6,'" *s r;*ging tr. $12!' f rod 812 k.f.e L e h'JPC. (P.casit 3 ts t'a<!!Q'.t vit a entyt I, Il P01 M00 00 Cili 4f7tc u ut.c :t us n.s ly 771*.4 e

--h Then err troy to tivtly test ed, gt &

, t u n .o rt cakle6.15 .ntm.ounw utually mve sc;uredsne c ain 416 9airu 0 4 Ca*sy ,ts.f n te.the c:ttire etP1*/ . -

in LM tray fr o. t hi t tif.; if sis. tier 41 Cabl;' $l a,Of T i t i . .. r t !'

  • rNmit 4 m a5:Mu in t v.:- m ot !*

N " r.oat". .s1

< be !viiri t'.10 l'It' trap. h*e:* i n *

  • N). t h. r t i o1 !' f. a . ( s ..; .

b i ta! J'911*.*** i' ' " ' - M' ' N U f' B - M#

gc + bt : ,: e t : .a it9'Dt f i n w t o ne .,t, thn. 54e it *l

, { t h ll,, g4 't;ri;;ct Of (ight (7:10 pJ rl i.',! ( t i d t'*

  1. ic . ert.lc!% ( .r y fy. .te r e t ? LI PtI**. L 11's l i$ hCd. i t, il G.4f' " * $84 rt d J QttM M M .' N

$:s i.f t144 g : i .. pr L.4 ag.ty t ] violatten t h'th il L %it ytegrativu it i St"it'Jte.1 i' ("P f rh % r0*%*

f r ! $ t re'. ,n (.0!! Didhti. tYt.n Tirty of 11.4 initIIII J  % ItiCn. bf ru y Cl, !C 114) $Ulihtc. iph IWit tk's #"r:ys can Lt e rlitivd to Settle St.C !.'...e Sh ilt isd ra)@;c:".ccto. . and etO terr 14, 9 tit CCf.; *'t*'. Or,1f)t f rS t t ' G t lN) 13 C i r fl0*!.

dit' forent te*ri".' M 1. r?*ti) Ntl it blR Cif*

'Nif fil uS?e Vari #blM tfrd to torplicott tit (J. neun 20 r:ru .nule arrenti en sur' a 4: tert, pt;-uS Oh.Ur.I . lir.t u r. led.in. .! W pg N gs, .'lssi: big 110'. vf voi.;itivt f.f Cah1C s in' trayt . D tt O f

  • prCaltr: 'rn* the it..t* ?0iDI I".01 c (Jo :?*. ** t th? en c.wed cnn an the ruit w. t of t. trey, inv : of sp.sts ;c the catds tr:1. tae t, ret'm u r te J h W.7 t0vet 1.i's t.f 147.d!ql of ;4110 lu a tr y, d?t*" biiq t tM e d .

< po,f.1 Ar, tbt it:t.tien ti

  • h4 ha tit') t %.*St M r (*.r t r.y

. C'. p 1 4 ( *

  • l .lf. . ard ;I . 4' % **.1 C f p *,..O r C D *. C ( h i (!) I" W r
  • l.o t *.pt' t !. In a (1 l'd ) *gJ'.ta tre p m M (*

vi., f.t et)

  • d. f re,* ort t Cn 10 ti c g.uw:lt of (t n.. el ( b h.Ju l ly i n M -. vl ! *'.' t t 0 4 rCi'l ; t i. l . In ti.ry p( a

- - .=- = =

9 ___ .- 4

<*~Ite t- 77c-re%c,g QAv. o A U 8.'1 /%Q qw of the cabir tray we Ciunt ethnir. ate Such (onditioni. *

  • n other urrds, the heat generated.in (very area of a cable trey cross.nection r.' ult lic un! form. 1his is.

tre (ty in the entire prohlon of upar.itics for ran. ,-

f N

%f[

\2AbtES ewly arranyd tables in cable trayt end th0 Cuntipt / g

. t,r unifoi.e test generation cannot be over.cniplianited. / ,, ,$ deg Consider fi ure 1 shnuing a hyptith*tical $1itt of 'N.-  ;

' \

arca (tvi a typ cal tightly pact ed cally tray, lhe g j t \ s

\ /

s. ) '

\

Deflectn.. * .

I

\

Figure t . Phytical $lte Coinparison of i)pical ht.t.

ber Insulated Ct.bles.

they tually,are all all 114ted cables should in a b: comon worked rer.dr uniftray.emlyAtyt . ',

rigure 1. Cross $ection $ lice from a f:6ndomly Ar.

' +

rar.ged. Closely Packed Cable Tray, coming to the stee operating temperature in the trar.

best intensity within each unit area, expressed in MAL YTICAL,yg,(

t

% i.itts/f t, rir twre inch ef cross sectional area. Whenever cable amp:citics can b2 esti.b11ste.1 Mt !se et,nttar.t all the way down to the smallest . with calculations, instead of an cepirical art,rhach.'

etitt arc & i.Aitie the tray, unich is the smallest ca. a better understanding of the overall heat tr6esf ar t.le iri Re trey. We the ref ore piece e*patities of nchenism is cessible. A simple entlytics) tridivi cabitt such as Sho.vn in Figure 1. in prnportion to to the heat transfer fro.1i the general, hyto'.Htt*.41 tlw overall tross.ttttion.*1 area of the indivirtual Table tray in Figure 3 has been r.ede, as.J W.4 (avic5 Ito,)uding the con:t.: tor and tr.tulation. rather subtle findings frta the analysis stil t,(

if v.c Inow the allentablu'hcat inttnsity for a pointed out, t iven cabic tray, we cro, ifr.tediately place ampacitics en overy table in the tray by (nowing the cross.

Stcticine) sres of each tu..Tesite tal,1c, Thus, th) t.rG1tm nCo. ret *atas to cttab)ith the allomable heat intensity fer various cabit tray configurations. ,

The reasoning presented thut f ar it $lghtficantly W A ciffertnt frca that us.d foi cable tray ratings we s A t w 6te. To sho.. this , consider a large cable tray I1 ATo d( #,,

rancerly ii11cd with, s >y 300 tiChtly g.a: Led 600 valt l/'"6Tg 4 0 je cables nf asserted sitet, settedinn te the ratir.es m.b11ths:1 96 (&". earv eP'.le in th14 trev must be

..etri i_ $3_ cf ti e w rity fu a b eereertar ca.

te 54 e i r_. " . a .k . . [6gtsrc j sho..s that tesen (timid g g g.gpg g ca" U t*_ 81? W1H ca. 0;Cupy abr<ut the Same erca HE A1 GtNERATION in tre traj M r n e / / n < R i e_. (rpparing the heat r','iG t t werat
d un th 1 tre equel artes of cabics Figure 3 . $1r.plified Analytital tiocal (c' Hef t

),

Ifanif tf Ero* 8 Tinhtiv_ Patted Cable T rey (or..

t i ..

. , i g ,

Sichit .// ) Gulf, ever in%v.,sh the tur. Configurations 0;CLfy L e sauc 4tc4 in the ft11ed tra), This effect Before protecding with the analysi%. two ad*

11 et ctt ; whtt oc rant to climitate in a Cable tray ditional conditionn tust be n'etified. the' firt_t Y.

irdtallation (Ctaunc 11 is postsbic to get bynd10% of condition it t&bles in iny trav must bt_inttc H M Fall Lebl*t uht;h Irodut0 locally inttosc heat at a constent, or unif em, c:Ptn, This % to pre.

5 5 sult in hot trcts within the cabit tray vent cables tioi being hesped on one ilk ti a tiay with a resulting vacant tr. ace on the ener SW.e.

This to74ri.r'n can tc t Ede cycr's.nd ov.:r with

.\

t. nt u.y oes ur ca.in in toy,. 1h,. re. g , ,7 a ,,, " , y, $,. . ,,, , ,, , ,, , ,,,a , n 1, ,

s.y3 s p. : y . . c..re .: tor tire cana ,re a n., .ed to 4 /5 Lia G r U.tn t..e large 512? Catit s e.Nn nese concuoilt 4% m rer.u eii< v un-

-t -

hM =_ _ _

C -//M -770~E slu.syg

. MMo W $?? PNT 3 ef ft i

to be treat *o as a Fe eqcnceus rectangular e. ass with The tenceraturo drop throbeh the air (>f 6

)a une fero he at rener.it t un. Obtained f rcu e ta'at balance between ceriyttttun .a.d

. raJIHiph best flott. L) sing b ote equations fe<*

. 1hetnl ere it Ao stimly find th+. allevahir Lect r.c Ade r .av oc find ,

inter:lity (0) f or trtys cepit atning v.triat.10 airost.ts "

of cable. fine e we find the l est intui>1ty, the htet V*Ikota+vAs:(fc.Ta) e 8 (bl which can It t narded by roch indivlC.41 conductor (4) con bt calc 616ttd froii whfire hAs t.f4

  • the heat loss f r oai the tray dSe to convection q
  • Cl) ,

(1) oAit(Tg4 .fe4h the beat tott from the tray doe t..

H radiation rhete n

  • W er uf condsetors l'i W < and h a cretall convettion heat tratisfer to.

A

  • crnss tectional area of the v w .tv efficient for tray ceble Age larf ace area of ctble mass f er unit Qe allc. table heat per unit area gn nerG6J in tray length tha tray o
  • Stefan..Doltariann constant c
  • effective thr:n.41 emissivity Gf and. of course.

cehle mass enet tray surfact ice avtrage cabic ness surface te per.

q*!R? (2) 4ture w4cre !

  • c.saircuw cllo.*able current for a conduttor the three ecuattoris (4) ($). and (6) have three un.

k

  • a.c. reatstance of conductor at the u s. Lnowns and they can be loived to get the total i r.nai ote et M **"ae**ture tf <,he ins allowable heat dich can be generated in a catit sulatit.n snantrtas in tne cable tray. tray (i.') . $1nce equation (6) is quite non.lineer.

the solution to the three equations inust to ob.

= 11:41 yertrated in any 1;nbtly pat ted geble troy tair'ed by iteration; thus, for general apolica.

ri.st scss P.rcs;h teto me.11a; IJ the cat tion the solutiri for W is done ncst easily or. a

2) ine air treediatcly econd tru trer. 'leain.c oats,heat and con puter , ,

fic.,s throvf. the fLedia there is c resultleg te.tper-sturc drop i . dach, as shown in figure 3. !.Tc through Having the total heat generettd in the tabic the ca!1tS .nf !.fg through the air. tray, the heat ge'.eration per Enit area is $1r9 1y

'le d?t** lot the totc1 amount of heat (WJ tvhich " '

(7) can be ciwireta Dy a cnir tray in an a,r;acnt tein. 0 * (d)(W) peratute (i ), a.sd reintain its highest ter@erature at or bele.. the operstit.n te ?ersture (T g,) of the The airpacity of es:h cable in the tra cal,lc intulatisn ui toe tray, we set limit the sys. nally deteraiined rith quottons (1) I, (2)y . is it.

tem tt*0 erat;;re drop (.'.T) to , ,

, . Myn!TICAL RIstr.TS t f.1

  • Tm la (3)

The solutits to equations (4). (5), and (6) for The systea terperature drop is the Su.1 of the W and seseral degre.es of cable tray fill vill result 5 d~cp throu;h the patted cable ryss (.ig) and the drop in curves sihiilar it, those thoun in Figure c. It t'irough the air (;Tg) arcurd it'e CeDle tray. is see n that at _ tte rahin trw eerent fill in'"" l-creales tne allesable beat 1 M eatite decrep t_* f5j_t IbcrefCrc f to crea ter tementure dre in the ticM b r e '?

c ele rat t, figure 4 was a:ade for an ef fective JI';T c'4T 4 (4) h ther.*.41 resistivity of the cabie rats beir.;

T (00*c.redwat h ard the test ref ults to be tiresarted Tho 6 c; Mros95 the ccble tuss (tf gl can bc cb. later show this ulve to be valid for eitt er ce taintd i'ii t*e vGuation given 1y llole.nc fer a rec- ter er telvethyliny insulated tables wMch ere taa;.1 U stat with uniform internal heat ne ration.. tight 13 pacteo.

~

a

.c - 4

It
  • h" '

N p(/

W r

(5)(<h At this point vqr plust define cable tray percent /

f fil.1 as the sut of the crets sect 4nal **er r> *1L whe rt : a i f f c c ti vs* ther.?al resis tivit) of cable tools .cet.les in m tm L including.ronouctor. InsulMici. ,

d6 r,'pth of cable r e ss and MC6.C t) f t s m =d t v tM ttd '1 ' v d i e l f- f rM 8 w a ut4*h of cable fuss and trcy ter'Wal am in the cat le tery (wistn uacs

, Wa the L0tal bcat generated in the tray pcr Tie n ght ) . It cn te scen that a cable tray thith is vnit Ichgth pacted en tight al gscssibit and levt1 across er top 15 filled to atat 75%. because about W. cf (Que tiU'. (1-) is sf t cif t telly f or cne diriet.s teinal heat the tray trea is sold area betecen the circular fire c,ut the top cric tettv t,f the tray ad it inaves cabics. fi n tr e at eve eeer et trav fiH "'- -

env t u t fit s %t the tii:S t,f the trav. ThE in o ' fritten it 41 rar e ,t that e ( w h fce" *M Mit iNYsi nct hi tat bres ..

l 6 t i t e '. t v.6 w . e.t,1e . c.,c, t.h i W U O C f .f'J t i- f o e'20' E f.))

  • das t%*3a%* 4 " t r_ o f N C i e d C ." ' c c 5 e 3.mh ecir tro m th a 'm.

3

_ .=

. o

l

+

i CW /~ 770-E m .q l f?v. O w 3.g m , w .

1 an cmpacity of 14 erips; l'.c Same conducter impi te,;

With crosslinlad tolytthylene would havc a dici.' Pr p3 of only about .ll inchys and therefure, fron.

s .

eJ,,::* ion (9), se a .pacity of 16 amps, it thug 1.e.

ED. \ comes necessary to disti'.guish beteiten thiri v.all and thich wall insulated cibicli throughcut thit P s pe r, referente to polyf4hyler-e tabit imitet

,l f, ,,, ). ..

thin al_1 insulation era . mer ireplies ti.iu .,.11 w .

ins ul a tt en ._ .

,;;e_

'; g, The above differente in ampacity cents f ror'. the

'N ;3 .,_

,T i. ,

fact that for a given percent tety f11), e..trt cross.

N s-- goec 8 9 x \ T / A 7.'i'r lint ed polye thylere (thir, tea 11) insulatc r,' fj %tt.rs D ~'~ ~~""~

tan be packed into the tray than rutber (iniE'IlilTi C 0 lN V f / 60'c insulated conduiters. $ince the tot 61 e m.o.t_(f,,

G 7  %

/Vaf l3a t _ tni ch av r.e c'e'nera tad ir. the ti ee.g. v r e t rp

.',- p

.__ '\ N ,'/'\

main cor.s t er.t . the heat r# r r nno tre ig 9 ., e~

Y \; Tor the small dia L.ter uhlet than f or tM_ )erge-8I r, .

h(\/ / \

\

\

\

ones.

"==.

e4 __

Wit 6) the slic.atale heat intensities f rcin Firw 'r a

\N } '

4 and using t6..ee in equation (9), the anpacitiu; w of severt.) cable sf res and percent tray 11115 car.

j e be obtained. The results are shown in figere 5.

< ," 'g \ \

1000 _ g- y .

_._7__ . , , . . en m.rr. L rmev re.

N

\

T.

+

Y1..-[g..m=_g=$j I

I E -,drwh,< .ipt't uc A

ib ._ ._. .

M I

'lQ-f

\ $*. 4

\

% e e

in >  ;

ill -.l .t ..f.n.I r.f.,4 .s _y=i i I l '

7/gul d,

~' i&O

_ ag : -. f, . .. -

t _

e . .. ..... . . . _ . .

N. __ e D iti 2J D Soi, 40 DOi3(0j,70 00 \ y . .

cy_~ .p. ..F.m* G' -~ '"~.*/

e)..M, . . ~ ....  ; .r 2 .{.

y . J .L. ], C .J .-

1L

".r.'

' -- - L.

PF.fli Cfit TFt AY F:1.1. cc cr u _ i_. I W .* s .

,i, L l-fi urc 4 . Allowable Hea.i Intensity (0) to thir.tain u l j lll@

k l ij '. {_

  • Imter Li&c or f ri1retnvlere tabla at.the $pecified w 10 ._ , , , , .

', leirNratuic tri a.inchot Decp by 24. inches Wice Treyl E!

---'.;v' 8.; - p:::hgh. i

' -: : i' b,_7 ~

.i.

0; e rn t >ig in a 40*C ArN.tr.t. -

_J

-~ R @: > -

"L I'~

In appl.,ing equattor.s (1) and (1) to get the om. j - -J .'J .I. .. .

4]

!acity of specif ft condui, tor tires in a given cable tre;'. an thtcrestin i.,t,servation can be sash. The I

('l' l f l [

U M* N " '

cabic rr;aity (1) f given ty CONOLK. TOR Sl!E (MCf.il +

1e (8) ligure T . hpgities of Tyr.ics) Rubber Insulated f%"' fr.pper M ies te P 20 Treys as Oster leed by With iTU.fi an:t 'M 141.0 and sch,ututing of each casle B ) re get for the circular cross.tecticwl aree T51s 5tsc'y 1.nd (c.'s ter:for Trc>t Contaisir.g Orc 'han a Operating Temerature in a t 't Art *t.t, 1E D (9) which it a gra;tirel HMcity table N ini:: 1

" 2 DU It 's ven th3t tha minity of e 9?.le H * 'V single cut.d'ctt,P rt,1.ber travit sed coaper ccrd.:t:ct

-A intillled in 3 inct.1.yJ4 ir.:h cable tr.ys. for

a. M rtiir J :. iti cieli tir eter (r,1, u n , in.

'fj;;,3,la,,U r i r t v l e u rm t o i c . nc s s o. a r) 6 v s., . on. ~

co .parison, the trt settiy putilish:d .:tefaci tic'. ,f >

cot t y 1.tre m s ite ci- o tre te tm wrm < at i ' '. it.c saiia type cole arit also plotted; 19y are .Jr ien ira *pl):1 in i r *

  • 1e t 1", fcr 4 g l yt.n the assu6.ed Cais tf limitr.ux (IeratiL; .hiCh is W i M i's pere.cn t t. sy h il to . tna l er.4 t en;u re t.irc 1 mi ts , 43 or raere tone::t: rt it. the trey, ene ti"A are 50,.

pf the aripacity of' 4 .brce to1Ju; tor geble in o r.

IN ec ri r.v:t Lr po'ntic out

  • hat the a+te'itics of 114 %)ky s ubbr.r n u l6ted cabirt in tre,n crt tot Ibis graphiol cen.pSrison, along L.ith test rt-at ali Lte sew u v raities f:r the 3r 011 cre:t. . suits ;iretente l lat er, r a' et i t e d "' r ' m " "

i 'c' ent ##N!iimt i 'O;'I Wth '"'P'" " ' Gi I.I lir.l PC r slyethylty 4 .t ulf t ed t o'elr*, .il t h i .*r;. ' Sin t*"

t r.s w i r u ei . ) ,r t - pt:, ~ne 'n r it Iliis.^'c* in+

t ~ fil a r - ' t r'

"'"l" " ' ' ' '

t: ew;te r c t' J 4 Int c; * , I- s. k uit.r eTi g 1**

c hl * ". -

191t te el r criv u 11. '.7 '.r t n i .: 1 ) a f u s 1,. M' a n ., i l s ..ebic I t t *, ;nt i tity (fre,Fipr 4) to CD: f41". P.f t f o r 4.

4

CTel'77c- W ts-MB

, AJW. o b W f,*7 N W .t~e$;lO the epatities are tven 10.ser than for the thitt wal) TMLt' 1. hum ry of tests Condutt d to tutMrt rubt tr c abits , end th e s a h'h of t he ni M *" m. , , , , , ,

A.nalytital.Retvits i t t es wti d h M " ~ " ' ' " * - .

TPAY PC T1CLU T (cit $12[$ liff t'L AT IC1 this point is trade to supplement one 9f the favor. _$12 t f li t tr37f t, ""*

tyrr able l'rtporties of the small disinctrr itF cables.

Specifica11y. rnre ILP cablet ca.n be installec in 4 3*x24* 20 #12 to 4/0 Ruliber thich ubic tray than other birds of insulated (tbics, and 3M4' H fit to 4/0 eea,

}/ g.H Z M eer waM ta vs there is ecor ry ir, utin, feuer cable trevs. ' 3'a)r t.0 i.nor.g nitn tcu.; oit u, inst m r9re cauts in a 3*s12' 40 3/t.#12 ILP thin tray it is essential that the thin wall ethits carry 3's.12' 50 1/C.t:0 ILP waH less current into the heavier insulated cables. If tris is not dene. there will be overheatinD of the

. TtP cables 4t.d the acetiert.ted Icss cf cable life re.

sulting in stecature cabic failures. ~..~,....r.m......

I.,,,,,

The best cbservation to te triade f rem the theory' M er-is reisted to l'ttt generation in cab)e tr#ys blir$ ' : M *? Y e .4."$.,h'ffI'.

e Ma . ' * '

in pro;ortinn to the cross.stational area of each ' Qp l . 3 g cabit. A scrtuntt evident justificttion for this re. 4. M* .

'

  • h . . : , .t' lf*r ',., j'?. O .; . 7,

. c, circ .ent can t'c teen f ron the f oils.ving ret.scriing. .

. . (:qf....,,,,',...

The t'est elemtntary cc.uatien describing ceavae. . i.- , 9 tica nait fle.< is ,,.' ,, ,',,,.( .s * + ,

d .,,j .... , . j., _

~

.:j

. q ..' . . .

4'..

t . , ,, ,l i .><, .' ') . v }4 d_;

q . hk st.T ..

where h is the c'anvettien httt transfer ccefficient.

[A. . .t'1,*,./, 5

  • ,[. 3,

. 1 15 is the surf cc area ccnva: ting heat to the air. .. e . .s g(

.3 and e,T is tr' ptreture difference between the cabic '

stef ace er.4 the 4.41sst air. The basic (quation for ,

. :o' .. , f.4

' c/. ' *

  • condue m n heat treetfer is +. s ..u 11 . .

.4 q e lag )a.1 x Fleure (i . Over.11 Vie,: of Test h ca ther..in*, 24 f t, l.ong Ctble 1 ray Loadiep Transferrcers on utgnt, a.id

. ettre h is the therwal renductivity of the heat con. Therv.occuple P.aco* der in the Center, ducting r.'edival. Ac is the cross.secticnal area through which heat flows, and t.T is the temperature easily. lo 1:.sure that there was n:. heat fic.. frora drop over a di:.tance 4.x in the ellrection of heat the tray center cut tN ends of the tray, a rirg t.f flow. I!ot e th!Le * *1verti nn 6an t fleis it erm.h1 fiber;1tst building irsulatio'n was w~tpDyd,around

    • I' the cables et each end of the trcy. This serged to ta .urbepaget e*iin ~~'"- m w
  • W 11 r.co.

g 4 rt m in to crest.ieette.91 rrea. 5tnce conosction mate a short hot spot at each end schere tre rables a the sp<erning o.etboo of heat flow within a tightly ran about 5'c hotter ther. the ett,les inside the patted cable n.ans, we should 12 conce ned with cross. tray, and thrs rio heat could fl.v 091 the tray ends, i sectional tru s of cabit.s rtther than peri p aral c-surfacc creas.

All testir.g was tv. ducted with 3trole %e CO hertr siterMtino currert. (4her irivest {cuors3 T F

  • T l'R2,C,C DURE Tiave snmin (not essentit.nly no dif ference exists bt. \

twecn t'irce ghete and single phatt test results.

Five different cable trey arrangem:rits have bten Thus, test curicut vas tiplitd to each cor.'.'uctcr thoroughly testc<,; in order to detennine the heat si:e by p nt.inb it thrc4h a long cratinutus 'en*fth trat'sfCr prc;,tetits of each arrangem3nt, ho of the Gf wire folded t,4ct arft ferth in tP.* ttfy the rc.

tests involveo rat hiv Arrarned cables of various quired ncbef of tiets to act tne preper rE'.htity ef

  • itts in 24. int.h widt trays anff three tests were pcr. cebit in each test tray. _ Ibc Volta 90 eDplied to tht-fonte t.n 12.tuch wide trays with only one cible site sible was caly erwth to ov:rcome Pio el:ctrica)

.in ti.J tray. Tablu I sumarines the verlocs tests inredence et the long continuous wire.

i.htsh wen perfonrad and figure (, sh'ows the overall Tc'aperaturer, probd by the test currents tes t setv*. were r:casured uith I;o. 2L' 1:!G iren.censtar. tan

$cac detetis of the testing which Vere torm'on in therr.ocourits ccnr.ected to a 24 f oint thert:occuple all testt can be seen froic. Figure C 600 volt rated recorder. Calbrctier, of each thermcounic was .

copper cnvu: tor cabics were jald in a 24 foot leng chect ed etiainf t a sterdard themcteter ty cw,artag cabic trey and treperatures were e.casured at three then.:::ovple readings at roo~i tegerature end in dif ferent trey cr:ss sectient; one as to the t.ild. bn11teg oder. tlc deviation was lest than 1*C '

length of the trav and tw t.thers ct the Quarter frc 6 the 6 no.:n Mpertturcs in entry case. .lM.

leng th> . in ney casvs cehics ertented out t oth ena e u o m .. m mtcrir a of tl.e tray in ordar to n: ate uit coenn tlenn p#ri' ici iar a nir* W 111t t it 5 t "", *a l . ' ' - _!

b i

C1/c/~77c-G42d~0/8

/tt te e, A U <$.'] /%$$ l' d-/O

[ enou':h to f ett fit the t 44 tef' W nf tbt ther oun1 S t.h t ch c a n (st a t t r buted to a i r fle.s t h rt. in t he f .,y .

th.,5 CMWing it in the table thtulation. 1his per. Cut it riu:.t Le nosed that'wnen a st.ect of Mu. iea.

  1. 111% #Cculate 4..aalkrement of the r:aatriU*tt teirl+raturu thitLt+56 polyythylene wal plattd und'lr the tra t ' 's tri a table tray. Providad thetT.otopples are plated on leal tiie ventilatin) hoict in ill 10110m, the t ot tr.

. the side of tiblet 41 tht mid. depth of the patled sturel (ane up 10 the taltulated valvet , at $ht,.:t. by Cabic f*enn, the (, pen data pteints. 'The reason for tht air f16 through the itsy is that rhth it wa$ altttbleft, a'l flaally in ore r to closely pact the cables in the cablet were first laid loostly in the tray #a each it sted tray. Die.tte tie strt.r.s alsout 0.2.inth then later tied down. This secuence did not ef f e.

wide were used e'iere retiutret'. The tic. straps were tively f orm trapped air pockets it. the areas i.74rt generally pasled thro'JCh orie of the venttiating l'olcl thermotouples pert plated. SubscQuent 18.51 traft in the tray bottom. cvur the tahics to be held d:r.vn. were attemi. led by glating and tying a legt hted.

and hatt throup's the tray bo'.tos and $ctured, ful of cables at 6 time, SMth 16 more represtoteive of how tables are installed in the field. Mott TC$f Rist'LTS thtt even though the majority of cables in the $!, /

(111ed trty ran ct;oler than Cnitulated, tht'e we'. a p The data from tatt heatleg telt is suertiariacd in group of 110. 6 M cables within the t rt/ iMict 5"d.

figsrcs 7 threvch 11 In each figure tne theeretical reach the calculated mazieum terottature. TMs.

. s tep h state te.rae rat ura r<se fer 'he Indicated stole Doints out the fact thit_a)) cahlet in a rands-1/

l s t a n i s crci.n e s a t e h e ' ine and has 1. ten obtained ~ arrancen trav ran mt hm erneues to nave ti t s'T ; t

. from tre allodet'le heat intecOtics in figure 4 The iTit rm.al l y adverse _environrent. but so're si tl.ec.

! theoretical ampacitiert are all based on an average will.

cabit mass therrr.41 resistivity of 400*t-ta/ watt Tett data is indicattd by the rittted pothts. I The set of trianole points in Figure ?

Is data tal:en fron, an unpublished report made by The first test.which was run to establish the the Underwriters' Laboratories interrorateG ire validity of this rethod was on the $$T filled tray. October 1957. The reporf is stLttential'y th*s figure 7 shows an appreciable amount of data' scatter basis for the table tray deratir.g factors gmblisted,

' ALL. CABLCS LCIADED o TRAY 00TTOM SC/.LCD A U.t.. TCST C50 #G CABLES - 6 LAYERS CORRCCTED TO 40'C AMBl[NT p,0 s ., l / / / ; /

/

. t .

3

't w

/ / . .

g so- '

/

i l'

/

h w -h 9 .c n i/0 z/g d. .

1" i

  • s 6 . 7 0 to 10 to 50 40 10 60 tio 4M 200 303

~

CUNRCNT (Amps) ff sset 7 . Test P.tsults for the M rereert Fill 24. Inch k'ide Tray Containing the rollouirg thict n:allir.

~

sulated Cables ,

CfA3,CT!!! OUT510! O! A"!TCR odAnttiv IS in

.25'

  • 78 al?'

10 .27" 9 17 8 .36"' 46 6 40=

4 .45" 8

.G5" 6 1/0 3

2/0

  • i'0"

.00" 6 4/0 To fill T *a,

-It,1ti.

Cowuner a12 to H l'ea-(tri 6

c - /to f-7 o -mate elb

v. o APP 4 9 tM7 mio thW6 f ar f0f trayl in which cable Spacing is not maj0rity of the pointt being nearly CSIncident o.aintained, lhe two triangle paints arc talen with thf calculated ValuCl. All the cablti caw dirtetly frois figurc ? pf the U.(. rep 0rt. and art up to the prtelcttd (tfnperaturel linCt Cart was for a 6. inch wide tray filled with $4r even layer $ taken t0 lay the cablti clost tnowgh 10 prever.1 of single conductor 140. 6 rubber insulated cable, air inovement through the cable taals, it it im. '

The c0rrelation between the U.L. Itst data and the portant 10 n0tt that the tellteraturts in the 10/

. theoretical calculatibel is ren.arkable. filled tray remalted estantially constant eten a

. layer Of polyethylene thest 6:41 placed On the tray The data in figure a for the 20f, filled tray bottom. ,

sh0ws much less scatter than the $55 data, with the

  • ALL CABLt3 LOADED
  • TRAY BOTTOM $t&LCD

& OlvtR$17Y veiTH Ot4LY 3 Sr7tl LCADED 0

l' ./ 1)

E ,$0 / / Y

t. , e

. r. ,

i 30 Y [ .

! I

/ /

it 810 'B '6 84 , I/O t/0 to W

10 to 30 40 50 60 . 80 'l00 200 300 400 CURRENT ( Arr.ps)

Figure 8. Test Results for the 20 Percent Fill 24 inch Wide Trey Centaining the icilowing inici: Wall in.

I go pgg sulated Cables CA3tI' 517f Ot1751DE DI AETER QUANT!TY IN TRLY_

, t12 .25" *" # IC J A F' 10 .27' Nf' *1 6 de f r/

s 8 .36" 9.t! 6 6 c.'nr 6#

  • 40" vitt#8 10 f. H 4 ,45" o '1* 25' 8 l.4 L -

1/0/ .65" o.*h a C 6 *t .t y 2/0 .70" o W 3 1. '+ 7 4/0/ , ' 80*

. s, ,c .9,, J 6

  • 4 Ik'I t i-  ?

it i ,

di q t ". j ' 2- (}ToFil) Tray'TT ,'

Conductor #12 .

to 20 Fercent Possibly the e;ost irportant information vhich tray. Thus. It seems ir'ptssihic to apply a gener, E tar.c directly frca the data is in referer.cc to increase in the a.pacities of smaller cebics d.'c to.s dittisity within the tray. The triangle reints diversity because there is no gcnaral ticy to ensure g @

plctted for the 130. 6. 1/0. and 4/0 cables arc for that sr.ull cabits woald retain separated fr:m latte only those three cable sites carrying current, and cahics in rando:nly filled tri.ys, tua I;o.12.10. 8, 4. end 2/0 ccbles being unloaded.

The !!o. 6 cabit.s ran ahnut l$'Q cooler than rhen all .figura g shtas results for two dif ferent tests

.caulta were energiaed bi.t the 4/0.:able only ran l'C on trays with 40; f 411. one with 3/C.it thitL wall cooler. ~

rohkcr insulated table and th? other .ith thin tall nsulated tat,1t contained within a ner.prene

, ,1 .It is f rom this erperir.. ental finding that it ap. The sa-e intal ainount of heat was ge'nercted 4' pears to be unvise to increase cable ripacitics on the basis of diversity. The cables in the above

,e, each cable tray, but the smaller diaieter ca.

s ,5 generated Its: heat r:r conductor bccavsc thtr2 diversity test eccre separated by about 6. inches of wr r; taore sthall cahles in the tray. This shows inat

, " dead' cabic. tat it is centtivable that the I;o. 6 all 3/f.12 CaSles do not have the saAa aQacity cibles cowld be- pl.;ted 43jacent to.' or bettWn. sote' tehen installed in trays, and far a niven trq fi_11 h 4/0 cabics, if the cebics in this confiteuration 1.ad the wilar tha rM' ein eter the lot er it, eme incrotted capacities L'ased on assvyd diversity, tiier* tray upacitr. in ncnrence uiti. ouatswi (9). .

woulo ;.ndoubtedly be a 10cel hot spot in-tht (abir 7 .

c -/ /kt- 7% ~M204/t

. V26 4 0 N/' ,f,cf & $4 9 #f/*

Figure 10 4180 shWs etteller.t e.orrelation be. .

tween talcultted ar.d itsted articities for only oN tightl fill. y pattet later of tuelve c&bles, thatwhich it a PCs This examplo again shu.ts the pressrt co =

derating f actors for cablu ire trays are enuch tou lua f4 e

for the Isrge Cabits insta11cd in wide trays,

.~/.< 7 u 40 -

L '

S0 uw ./ - i f

/,

E  !. f ,, ,

l { .

w

"/ . w E' w

/ _ ._

D.

. 20 11 W ThC: "

$ ~

g

{ { 20 T-g 1.D'/. 26'4 g

i.

a '.

6 78910 IS 20 M h!

CURRCHT (Afrps) figure 9 . I?nt P.clullt for 12. inch Wido Trays fl11ed 10 3 iM 200 2M '.*.,0 @D SO3 000 00F to a's Ferrer.t Containing Thict Mall and Thir. Wall In.

  • CUNRENT (aaps) ',

sulated 'f/L.12 Cabics as Sho.in Oc10ws figure 10 Test Results for the 500101 Thin #411 Insulated Cab 1cs in 12. inch Wit'v Trays Filled to

  • THIN WLLL - THICK WALL Percent and 26 Percent at $wn Be%

THCPHOC00PLF.S e-

%_% .* d $ 3 \

  • M *E9 M ' MtfttAOCCUPLC$ -

i r.-ryws t. -_ __

"' ~ ~'"""

Cable 0.D.. t.7t= Cable 0 D. 70" Quantity . C1 f)uantity 38

, -Cable 0.D. 1.01' Cable 0.0..).01" It is irteresting to note that in'the tests pro. Quantity . 23 Cuantity 12

'g du:itig bo*C rise in Itgurc 9. the two thetytotopples One last esteple of this samt idea can be taktri closest to the teay sides c.'ily ran 2 to 3'C cooler directly from the data of the unpub11thed unscr.

than the otner the in 1,h3 tray. ) lith the vtttical writers' i,aboraterfos report, which is the basis

44. temperature ;r6dient thecugh the order of Ib'C. it u ,.ulte evident 9at most ofthe cabic pass being on for the present der 6tir.g factors for cables in

. trays. Figure 11 staas calculated empetitics .for the hart in a cele ten flM verMeal 'v. rather than rubber insulattJ. Siegle conductor 500 HCH cabits 1 orus'itally, as assumed in cquation (bj. From the above findlug, it becorces clear'that cable amoscities gn g 30;, gg g). tray and a 00". fill tray. In both cases the data frein figure 4 of the U.l., report uvelt.oaa cit'. this r1ctbod tre valid for trays 6 Shows the cat,1e ampacity to be even greater than kt,t.es or i., ore in wittt.'

the calculatedypac:ity. The ressori that the cables The fit.el test was run nn single conductor 500 ran cooler in tre test is ecst likely dee to &lr flow through the trey becaisse of air gaps t etwn"t ici thin :all XLF insulated cable, figure 10 shout the tabits.

eHolle'it e3rcment between calculated and test arapac.

litt's f u P.e >1P cables.- Although the reswits are A11 the results prestt.ted thvs f ar are for cabit for a 12.ti cn victi tray, a 24.inth wide tray v Duld trays which have act.leved steady state thernal respor-C tbt seTe if twice the rwrcer cf cables would equilibrium, figurie 12 shcus that it requira about.

oc in it.. Using the preser.t.deratino f actors inr sin hours for a c4He trsy to reach steady state more the. 43 concstters in the tray (46 in this case) conditions, n.hener it is fil)ed to 70 or 40m one half of t'te three con'luctor-cable empacity wuuld ' These results can be used to calculate transiert result; this t.ould tc one half of either 40? a@s. or npacitics of tabler, in trays *Alch rey tet 19tMn3 3!Je t os, deM:nding on whether IPCCA or lletio341 for, say, only one k.our at a tira, lhis would he

()(uric Lt4t rnotctivel 506, toth of these possibic, of ctersc, only if all the cable 5 in tS'

'valutt art significeritly @y. han the 32' peere 4H tray were inaded and unicaded skultanctusW. and petity t$tch enrics irtal ce culations and testing on I if a preche hnN10J)4 of the panimtrl lutdtog dyre.

the !A.J 101 trcy. , tion cou)d by assure (.

tM\C

.g '

  • f ~f/ H ~ 776 ~E 4?/4 -t/g

/ke4/. t:n I

l M J.*7 /V n f M .

m- _ . , .

sittet t utt l'e ccoverted to 4.pacitv 'for a given 50 - -- cabltr dian,eter with equation (9). Ihis hat f.ect.

I3

-~-

done in lable il for 73. 40. end 000, fl11ed trays l' Ig g 40 1. _ i / ' ebntaining typical ditMter *LP and rutbtr in. Mi 1,,

'. Aulated cal,les, f or attual tabit9. i.htch may bne

[_ 4 different dlaucter, the actual ampatity is ob.

"m E. -.- .. s ~ ~ tained froui the simple proportion, y e Irctual, , I ypical l

a Pactual Dtypical {

y 20 .

- e-u M% M%

{ visualittna a tray stith r.any $rall ct,bles' are. Anothe

  • ' three P,0 r.CM cabits. When the tray is filltr' tt.

a unifera de (about 31%) pth up to the top 9f the large c blev the criterion for the therry is ful.

filled. Liut il a tray would c:r.tain the thete 7t0 2 I' HD1 cables 'and enough snatirenain!t.)1 table to bring the fi CURREr mp )

would stand abo 61 twice as high as the Sr.all cablet ,

and 11.e theory would not be satisfied.

Figure 11 . Underwriters' Laboratories Test Results ure 4 for a 16: tray fill would assier.e a uniformUsir.g fig. '

for a ?t..i.sch undo Tia trs of 1/M,00 P4M Pubber y Contairting Lite Cable Uitt. en Assuried Ot.e and Iwo intoLa[sver-depth ar.d would a rectangular effectively shore, rather than circu er shen flatten the 1e al) Olaetter of 1 16 inenes. The calculated smacity would then be for a 100 -

. y

  • rectangular would leo r.taningless.etble* of 7f,0 MCM crcss section 08 E' g

[8

it,,,,
  1. 7-N C% M'.L (5d **GM) 1 s that unicss e AM " P aa aengint.ered,y.

srecifically M .Hinn m M be ma n 1

\ t le in -

any ti,htly patted c3 bit tray shal_1 la allou .c f'b 4 0% flL ,. 3/C 12 i 0 (,0 l l l DJ C'mnt naar man tMLof et e use siac three.cc.nduc r rga 1 r i r et m t i nu e t int- sav l 3 , , s TempereGirT E" j PO% FlLL ftAND>A m ts. 1his is because it turnt cute' f that bnc layer pr sightly pacLed single ennductor i

%g I g_ cat,1c has about the s;At am,$4c1*y as that of a i 1 three concyclor C&t,14 given in reference 5. j 1

6- f f, It i,tunt alt.o t.e made citar that the certent g y 30 -

-- f t)15 s, sed in this reper are soepificelly for 3 t8 / itch deep trays only. Tre tray width is vertable-without error, but a 3. inch dect, tray with 334 fill

. weuld only have ha)f the depth of cehis in it tat a 0~ 6. inch deep tray with the stric partent till. Ob.

0 l* 2 ) .) S 6 7 C '9 to- vicusly, for the'sa $2 percent f tll the 6 inch cetp CL APSED T4ME (H0VR$) tray would run cu,ch twtter than the 3. inch , deep Fig',,rc 12 . Tcoperdure Resbonse of Thret Olf ferent tray bet.*V%e heat wwld have to. flow through twice Cahie 1.sy 1.ise @ lics.

  • as rtuch pacted cable. Thus, to simplify the ap.

pitettit*i cf this esthod. f.arer" 801 " % k RUM 0J figured hv eividies !*.e total area e trole in a trev by tr.e a re a a v. . 4. 31,- *a to ta a ,'rta " t it is seen th!! th? 4TD3citics of rand 0nly ar. _3.into crer tm. enn if ti.c tray so oc 4sec rannd tightly p?cted cables in trays can bc cal. Fould oc o Wcr (140 .binches decp.

culett d wit'; about 'M ctron . Iha bethod 15 safe for ary r.rl4 r of cabit,s in a tray as lorg 45 they arc Tha reluits preseat;d in this parer are for pact.cd te a unifer.r ocpth across the tray, open trtys without u.y cover, in locations where thosld Le s:,iti th+t this is a cteditiva t.hich (It is A(nytrs it. ;, t be _ _ush tu ber w r i t e rs ' O.T_T1T6i'1c s caly to tes;ect 45 cen,truction progrw$sts in ihe gynd inat enn Jable t rby "~ ". ' "s t be re.

ficid.) Althewyh this f.ethod was oevelcred and (u.tgDy & bout a to Lc- Since tovered cable taats testf d for r.:ry (00 voit cicss calles in a tray it are t,st.clly found outdosrs where they may 1 c ca.

ein 31cids reall> tic Anpacitics ser 4 LY c1m,cabics posed to the sun's r diation. o re should be taken ritAcd with 10w veltago cable, in spct.lfying the crielcat tP:terature for outcoor trays. $pcCiflCally, a>bient tetDeratur3 for a table. lu saaly this ret'if.d end fonn a workable ava. ity cable 14715 the hightst temperett.r0 Uhlth will bv W<.$ Mccautions Nst ht, observed. Fic Ft. t reached in he tray dse to all cate rnal hast scur:n is the t:/,t pigrel usy io prc!cnt U ble tray t . . . cacept thi I IR heat frro the cahic9 withir tN t r.y .

Pacitikb t.ut it is e..lward to Vse sin's h0et li ten.

, . 4

G//0/-P70%yfg. m

< o* [GA/ O p1['l'8.9 ('AM /f @/p 1Atti 1) . N'#Atlilts f0R C0i'TIR CNilt5 til 3.lNtil Ottr C/ct: Tru5, 93'r cr[PUlHG T[ft$(RAllt.V. In /,io'(

. #Di[lii 1YPICAL CADLC PyAf17Y fn* ( ACit C0f1DUCTM f 0T.M*,1Ch + Q151QL,,J1.'rCTlR

_ $17f Wl%

"' T 4 F1Lt W6),t R

^ ~TU"711T~~ @"TTt

[JZ Sf, IW 593 1/C 14 .22 TDT Q

.17 11 9 3/( 14 .57 46 17 13 7 6 5 4 11 9 1/C 12 .24 .19 15 8 7 12 10 8 3/C.12 , .62 .51 23 19 15 7 6 12 11 9 1/C 10 .26 .22 3/C 10

  • 21 lb 13 11 10

.69 .57 32 26 21 9

1/C. 0 17 16 13

.36 .20 37 20 3/C. B .94 .74 $$

21 10 in 14 43 36 28 27 21 1/C. 0 40 .32 51 3/C. 6 1.00 .62 41 33 ffi !b 20 74 C0 48 39 1/C. 4 .45 .37 72 . 60 3G 3';

3/C. 4 4) 38 35 29 1.15 .93 1(i7 86 69 f,6 L2 at 1/f. 2 .51 .43 104 07 3/C. 2 1.28 67 "4.

51 43 1.07 150 125 97 81

  • 73 61

' 1/C-1/0 .65 .54 167 139 108 69 1/C.7/0 .70 .59 202 170 01 LB 130 110 98 1/C 8/0 .80 .G9 287 252 83 188 162 142 123 1/(.250 .92 .77 St0 304 234 196 177 laa 1/C 350 1.03 .88 394 394

  • 310

,1.01 265 235 201 1/C.f.00 1.16 407 487 419 1/C.D3 365 317 C76 1.38 1.24 615 615 610 542 461 (15 N'JTC 5 : i) lepatities are for any width tray filled to a uniferin depth.

. 2) A 0* deep tray with 20'. fl11 has the same arpacities as a 3' tray with 40" fill.

3) Correction for different ambient or dif ferent optrtiting te ;traturt is.done Ly the v$tablished IPttA nethods in reference 5.
  • 4) The above ampacities are specifically for, the cable diameters shown; account for

, deviations with equation 10. ,

I 1his definition of er.:bient temperature can be CONCt t 510'15 useful for a f,irst apurer.1mation in handling cases of er.utual bettin3 of several trays Stackc4 in a vertical row, the ertent to which liv..cr trays will affect lt has been deronstratcd that the ter cretures tea 35 above ther.. will depend on how much total heat produced in tightly perled cable trays c4n be f.re.

dicted with good accurtcy. and empacities car. ,te is generated within each tray. For trays containing - calculated for redocly arranged caliles pacttc to t,eth poser anc control cable, tna ef f ect of aiutual a unifom depth across a tray. Cables are per.

hectirg v.ill usuelly bt tauch less than with trays nitted to generate heat in proportio's to their it'.

cordsicinc ell p>:er et,bic. An arbient increase of dividual cioss. sectional areas, and thus caelt en.

ako.1 ? to 10*C for nojerate and extrece cases re. pacity it, directly proportMs1 to each cabit dia.

arccthcly, would pr:baply be the simplest way to noter. '

accom fcr eutual hcsting, if necessary.

The de'atirl f actors put'lished 11'.ss f ar f or thc last observation to L.e raade involves the cabies in trays care le!.d to serious c'.criioatit0 vi idca of ceter.aining seue 'optitue percent 1, ray fill, 50411 cantor slies t:hile resulting in si;nif t.

F4vre 5 a'id istle 11 show that cable arpacity drcos cantly us.derloaded large conductor staes. t <cn off t yeificantig v.ht n going from )ce to high percent trav fills. Cn.binin3 this with the,fect that the though the previe.31y publishcd deratin; factors haec dif. tinct Iliettstio:is, the unschlithed t,alic cou of i.atalling a tray is usually less than just deta which was used to fern the f actors strees ont 16tge tept.cr coMutter which wsuid lay in the very wv11 uith ar;scitics calculatkd in tuis rep.mrt.

tray, iri tMy cos'es il nay be potr econouy to fill trays rcer, than ene cable deep. 1his "ould very with A sitrple uble of derating facters u%ict, un t t*

each in' tallation cad would be pri.e.arily s'epenc:r:t on . applied to oisttr1 ampJcity tables to get tsh!c-the eva t hiile htad room in a partics,let area of a trcy cmpacities 5(es it.i;'Lisiple. Trble 11 is ;.best

$ .; t . 04 ih C a ch ( a se , d's op t is;J3 tray 'ill Lould the only 6.af to st!7.lifY c'pNitics of CB1cs in prc' ;k1;' uis t. ,

trays , at.J i t car. 20 e4'a'Wed f or di f f d rH ti dy 10 .

~- n 1

OC7-07-89% 1385S Mt1 10 0'7 t 4 P . 0M . 005

  • C~llel~?iO-Q9to-Of6 ff k c - _ . __

PP 8.Ib l'*Gk. I re 5 (ptF 10) '

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .N.9.@ 9 .@.9.d.

\G U NUCLEAR subject: COMPARISON OF TMI TIIERMO. Daw: October 4,1996 LAGITRE DARRIERTEST ~

CONFIGURATIONS WITH .

TU AND TVA CONFIGURAT10NS

' From: F. P. Barbieri . Engineering Support 1 ocatiom Morris Corp. Ctr.

E546 96-002, Rev. 2 To: R. Bemd - Engineer. EPA 1. TMI l l

References:

1. Electrical Test To Determine The Ampacity Darstmg of a Protective Envelope for Class IE Electrical Circuits, Project No 12340 94583,95165 95168,95246, dated March 19,1993.

r 2. Fire Endurance and Ampacity Testing of One and Three Ifour Rated Therm > Lag Electrical Raceway Fire Barrier Systems.

'g Revision 2 is to resneve the last sentence la the last Paragraph of item A. Distritmtion is only neccesary la R. Bensel.

The purpose of this memo is to provide a comparison ofinstalled Thermo-Lag configurations at TMI with those tested by Texas Utilities (TU) for Comanche Peak and those tested by TVA to detennine Thermo lag ampacity derating factors.

The above Reference ! yielded ampacity derating values for one hour fue rated conduit, cable tray and air drop fire barriers. TMI uses Thermo-Lag on condu;t air drops and cable tray.

TM1 uses one hour and three hour rated fire barrier confagurations. For three hour rated conduit and cable tray configurations, companson is made with testing performed by TVA as documentedin the above Reference 2, De latest NRC letter of July 5,1996 requires responses which umy lead to the need to .

establish derating margins for each circuit currently protected with Tlermo-Lag, in order to do so, we must be able to show that ThG Thermo. Lag fire barrier construction is bounded by r7msroc:ar vra ,.

OC T-07-19% 1349 '7ES3 P.02

_ _ _ _ _ _ _ _ _ _ . _j

007 0?-19 % 13:59 FKf1 TO 0711 P.003 G Il#' /~ 770 R. Bonal . Engineer, EP&l, TMI.t October 4,.1996 NO E540 96 002, Rev. 2 W 6.I8 h t'M Page 2 TU arid TVA fire barrier construction which was used to establish derating factors acceptable to the NRC. If we don't rely on this type of approach, h rnay be necessary to conduct unnuessary site epao6c derating testing. Attributes of constmetion which are important are as follows.

Size of any air pap (s)

Barrier Thickness Barrier Geometry Raorway Emmissivity Imervening thermal resistanoeil e., Plexi. Blanket used in CPSES test:)

The following we the results of my evaluation:

The TU tests for conddts was conducted on 3/4 inch,2 inch and 5 inch conduks.

At ThD, the size of protected conduits ranges fmm .75 to 5 inches. We follovAng is a comparison of TMI and TU constmetion attnbutest .

A 1 Itour Barriers-Conduit DdL ,

Ill Size .75,1,1.25,1.5,2" dia. Slac 75 2' dia.

RacewayMaterial Galvanined Steel Raceway Material Galvanized Steel TSI Thickness .5" TS!Thicknass .75"

. P.vformed Condurt. Yes Preformed Condd Yes

, Topcoat No Topcent.TSI 350 Yu Air gaps NA . Air Gaps NA SteelBands Yes. Max.12' Spadng SteelBands Yes.12" Spacmg Size 2 5,3,3,5, 5" dia. Size 5'dia. '

RacewayMaterial Galvanized Steel Raceway Matedal Galvanized Steel TSITtuckness .5" TSI Thickness .5" LJuc :iConduit Yes Preformed Conduit Yes Topcoat No Topcoat TS1350 Yes Air Gaps NA Air Gaps NA SteelBands Yes. Max 12" Spadag SteelBands Yes.12" Spacing in comparing TMI with TU tested configurations, the presence or lack of an air gap is considered not applicable for configuratio6s since preformed TSI conduit sections are applied around the conduits with no pre-buttering of the inside surface of the TSI. The barrier is not in uniform contact with the conduit in both the ThU and TU one hour conduit barrier cases.

ItBMSWWJ1RLVM CCT-07-1996 1349 ?ES3 P. 03

OCT-o?-1936 t3t O) FRCr1 To 8714 P.oO46 R. Censel . Engmeer, EP&l, TMI,1 C -//g /-? ?o -6 (2o-O/3 October 4,,1996 gg, o E540 96 002, Rev. 2 gj,p ji, ,, p,g, 3 , g Page 3 Therefore, this aspect of hl construction can be considered representative of TM1 construction. Note that TU did not test the derating effect atound condulets.

The differences between Th0 and TU con 6gurations are in the thickness of the TSI for conduits up to 2" diameter. Because the TU configurations used .75* of TSI vs .5" at TMI, the additionalinsulating effect of the TU con 6gurations should result in the TU test bounding the TM1 configurations. The results of testing on the $" diameter conduit should be comparable with TMI configurations ranging ftom 2.5 to 5" as they are the same with the following exception. The presence of the topcoat on the TU configurations is the one common difference between TU and TM1 configurations. Ilownw, the presence of the topcoat should l tend to result in higher derating values. It is therefore rusonable to apply derating vrlues obtained in the TU tests for conduit con 6 urations at TMI. NOTE: In discussing the test results with TU, the NRC accepted the resuhs for application against installed TU con 6gurations; however, NRC required W to add an additional 6% deratmg over the 11%

used for existing conduit configurations for any new confgurations TU installs.

'B l HourBarriers Airdrops (TU)

In t.omparing TMI sad TU configurations, a specific comparlsnri is not doeurnented here as in the case of the 1 Hour Barrien for conduit. There is a difference in the two configurations which shotdd be overriding in establishing that the TU tests bound TMI configurations. Ws configurations use 3 layers of TSI flexi-blanket material while TMI con 53urations use 2 layers of TSI flexi-blanket material. Based upon this, I believe the TU test data on air drops will bound the TMI configurations.

. C. 3 Hour Barriers Conduit (TVA)

Ihil. IM

" Size .75-4' dia. Size 1b" dia.

RacewayMaterial Galvanized Steet . RacewayMaterial Galvanized Steel TSI Thickness 1-1.25" TSIThickness 1.25" Prefonned Conduit Yes Preformed Conduit Yes Upgrade No Upgrado Yes' Air gaps NA Air Gaps NA Steel Bands Yes Max.12" Spacing Steel Bands Yes 12" Spacing The TVA con 6gurations were reinforced with extemal stainless steel stress skin and Thermo Lag 7701 trowel grade material. Then at least two layers of 3/8" thick Thermo-lag 770-1 Mats buttered with Thenno-lag 7701 trowel grade material were installed over the reinforced base Thermo Lag 3301 assembly.

Irn mwanREvr3 CCT 07-1M6 14100 TES3 F' . D4 I

___-_j

07-07-194 14103 FKs1 10 CM4 P. N',i/Duts R. Densel

  • FTre, EP4 Th01* C' //# l' 77# ~E-92A+/B Octobw 4,1996 M V.O E540-96-002, Rev. 2 A// cy, g, ,4 q , g Page 4
    • TVA did not perform taalog for 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> conduit barrier configurat c as. ThU does have

.75' conduit protected by three hour barriers, l{owever, we rwed not pursue derating factors for tiis size ba: Tier since the .75" application is protecting a control circuit for which derating caused by Therino Lag is not a concem.

The differences between the ThG and TVA conSgurations are in the upgrade employed by TVA. Because the TVA con 6 urations 3 used addidonal snats and trowal grade material, the additional insulating effect of the TVA configuradons should result in the TVA test boundmg the TMI configurations. Note that as with the TU con 8gurations, the presence or lack of an air pp is considered "Not Applicable" for 3-hour conduit coa 6gurations because the TVA 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> barriers were applied around the conduits with no pre buttering of the inside surface of

' the TSI The burier is not in uniform contact with the conduit in both the ThU and TVA 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> conduit barrier cases. Therefore, this aspect of TVA construction can be considered tepresentative of 7MI construction. Note that TVA test resuhs in Tabic 13 of the above Reference 2 are expressed in terms of a correction factor, not percent derating factor.

Cable tray testing results are more varied than condult. A combination of 6te barrier con 63urations Gom TVA and TU is discussed as follows:

D. One hour barriers . Cable Tray (Note that test results are not size dependent per Reference 2). In the TU test which was perfonned for a one-hour barrier con 6guration, on a 4x24 inch tray, the TU barrier design utiliaes a 1/2 inch thick layer of the Thermo.

Lag 3301 panels with various upgrades that ultimately increase the panel thickness to varying degrees such that the thickness is approximately 5/8". The cable mass consisted of 1263K#6 AWO 600 volt copper cables arranged in four layers. The TU correction factor ACF (wnpped amps.taseline amps)is conservative for use at Thu as TMI utilizes 1/2 inch thick Thermo La83301 panett Therefore, the TU results are bounding when

's considering the TU fire barrier con 6guration for cable tray .have inherently higher insulating properties due to thicker Thermo-Lag panels.

E. ThreeHourBarriers CableTray Three hour banier configurations consisted of 1 1/4 inch hhermo Lag 3301 panels. The' con 6guration added extemal stress skin and additional trowel grade matedal. Additionally, the con 6gurations were augmented with layers of Thermo Lag 770 1 mats at 3/8 inch thick each.

The TVA configurations clearly bound TMI cable tray fire barrier configurations with respect to ampacity deratinE as the insulating effect of the additional TVA material should result in higher derating factors rrtemwo2nv24 CCT-07-t996 14:CO 7ES3 P.C6 I

o e

0; -c?-1 M 14 ' N FMai 10 c'u P.M m YO l' ' ~#

R. Bensel Engineet,I r Al, TMI l October 4,1996 N 'O E540 96-002, Rev. 2 W Myo be,A y e y Page5 This completes my comparison of the TU and TVA Thenno443 barrier construction details with TMI details. To summarize, I believe it is reasonable to apply ampachy test results from TU and TVA for those configurations discussed above. The TU and TVA barrier construction bounds TM1 configurations with respect to amraasty testing.

Please callifyou have any questions.

. ME F. P. Barbled Extension 7358 FPBlamd cc:

D. J. Distel Engineer, Licensing R. C. Ezao EnMr, EP&l, TM1 1 R. L McGoey - Manager, Mechanical / Structural Engineering T. O'Connor . Engineer, Equip. Reliability Programs, TMI 1

!!. B. Shipman Manager Equip. Rehbility Programs, ThS1 3

t rF.W WW2R EVN

. -4

  • N -1 .,f ,

,,,_ g nT,rd f.006 CCT-07-1%6 14101 ?ES3 P.06 i

, C-Ilol- 776-ggq_o . ctg IE V. o M/'. ADL / c/: 2

{

h Olt IRT AllOCIAfil, INC.-PELE y 9

, TH ",,,#1LC 1 SL Ata 4 3 G P O.) 6 t. /

,I wo CW CONDVClot) $# 11(M g C g g ine COh 1 av &1 s tN;,t

  1. l 1-3-O/0 hK- 0G 8 -

<o

- w s

(- ) 12 th h e- d L T 10A

...' n= ds&W

    • 1u41 08 Ciecuit ( V % V A s@ tyuA ecy.  ;

c..a.g y

p c y) .10

,I & k 5 )[,

v l

l A EL .

't a. Y

+ 4!4.

\SM 07 1 3 + li.

) U3344 1

.0) 55.

(,1 + (f.3 + G (K + -2o ALG' p A A Rs. . L cCT A ELi- CP y ) AT L.TF L..c .

Ah Mc  : F l. la . .s  % hAis. hih L ALL .;. C F..: 1 Ac

/ 1 .', AT .

l "lNTERIN ORAtlNG"

', , P,0P03[0 O!$lCN CHANC[B/A412364

' ~

IMPORTANT T ni e n4.mo.2,8 w3.,ns

. . .c w o uo. .cy ..

Dat, isson'o UO issvio e,

\YM-<9-rc  :

o.,, ,ou,o

, . O sc a s.c A i ouio 4'n ' I q<m- s. n a '

F. t ,

l 's . .

/4.~~r i/o

, , n2 S Y -30 3 s4

.CD ee&

VC O ,

(--(f b (_o7 f o G 4 p2RN (Ypj g m. Doc.3 G/c M L e.r p APl' 9.1I J%E. W 2.

1 E D M '1 as u o~

^

- PKGE._12.01 c, w_

, ^

- ^J -

( _'m

. _ . . _ . .__._.__._. _ - ._.= - ._. - __

04L&4RT A860CI Aft $. INC. - M41 RJP i

8 g peoteC1: w .0. M il of sun CacCuit wo

{3 THREE MILE ISLAND 419200 07/.8/46 1 ED 307 A -

o. c-ou . . iw c== .<. m - ca it == ca ., i m ,.

o .

,_,-. -- .. . . . .... . .... (> >

i A \

O g

, ,,,,,,,, ,,, ,, oc ,,,,, ,,,,,, , ,,,

O 'f; , ,, ,,,, , ,q3 ,, ,,,,, y" fo

\

m G . 1 O V 'o o by ""*Atv o

a a ~

O y,,""3 ,, ,,3 .

O I , @ ,,,, g g g ,p [ ,, ,,, 3

.O I

n, $/*r9 h q O

'*n>) *

. z Q.1 .., 'g.gr u o.

O ^";V s h 'u C

', f 4 et.cr e -

waew,at gav  ?*-

g -
  • l t . ,, P.O'.os9s1E'9 , . , , I C

's) l s'

% ,,, . ., /-/6 -27 t l I < v_

q 2V2577 (

i

\.

O u,.om . /25 \

p ==

[' IE *^'"' i.1/. STER i i e ... ,. ~ , t .

w c.I

_ g __

w _~ -

r .

i

) -

/o-M

'f(l ) b"A-Ar'; / "S: . 6M .

WA # A25Y 303 84

/'~

ag , . .

' m e et.aee.es; (e gg r. ,es q,g q,gy,g TWK NO. 71g_440-2248 PHONE: 203-456-8000 -

c TELEE NO. 99-4444 PAGE 1 DF I

~E 06 05 86 87431 06 13 86 tunuttt Ext "I I 8-TP-038388  % [ e===e= =

STATE ,

-] [GPU NUCLE AR CDRP. 37 ma

[EPU NUCLEAR CDRP ACCOUNTS PAYABLE DEPT

    • TMI NUC.EEN.5TA. -

' RTE.441,50UTH,WHSE. 51 _

PG BOX 1018 RIBpLETDWN, PA. 17057 ,um READING PA19603

_i t a __

O t_

- + . c. .

n . -. -

-m .

CDLLECT* I/2% 10.DaysuNet_30 Days ..

07332 98 03 CTD/ Source /C_of.C..__. s'."*".""' ' *o" ?. .a s .-: ',

SUI %la .

c. ___ o l

b

. . co .

IO 3/W DEL.R-F B4 3:30 -,

.' *** _C

. u.-........

7 53507 01 2,500 FT T-45157 43/199 IA-3A et EK-3A {

B '

C2 2,500 FT Y-63157 (2/199 In-See em EE-4A 7 5350s g IA-3K CU ( [ 3350 D op[. - h2 5 7s op h 2,500 FT T-63157 (3/500MCM3 e ho2 704,2--sg 7 53518 /

2,500 FT T-43157 42/989 EK-4s N 04 EP aMRIL FRT. BILL TD: GPU 1 IE8 CLEAR,CASS TRANS.5ERW.

l P.S.30X 67 r ST. LOUI5, NO. 63166 30 .'

(M,h, ,.. n o. , .

4 m*

gc.c,r;.,,;;; - -

- h *beJ C-  % Q ,~

Sh4. g

~ - r ,

$-gy" sh <[ $

SPEC:SP-9000-31-201, REY.1 AND pee-5 8/25 OR SNR. ' O QEV.1* w C6 :

1000 FT. RIN.LGTHS. P72 L86 .? . . .

f/

trP A2 *% 06:53 trove ptx p,3

&llet 97s 2%-c48 t su,o t BICC CABLES .

we,z ca z.,%

B/CC Brand-Rax Company Fax Transmission 1soo west usin street W&nantic, CT 062261128 Tel (860) 4564000 Fax (860) 450 7004 Page: 1 of 1 Including Cowr Sheet To: Randy Ezao @ GPU Nuclear Fax. No: 717.948.8714 From: Ed Aberbach xGrl ec:

Product FWr Date: 9.12.%

Message: RE: BICC Brand-Rex Part Number T-63157 (2/08)

To answers your ;*s:

Insulation - cross linked polyethylene l Jacket - chlorosulfonated polyethylene Armor - galvanized steel interlocked Ampacity - 55 amps per NEC Table 310-16 J:erW,

. Ed Aberbach Product Engineer b

SEP-12-1996 09126 203 450 7009 .P.01

The ROCKBESTOS Company (ff,c-""i-7r-ef 2of. fluo c/gTA,o. uyo s .... ... .. . .., i n i ,, unn e s i .

.. .., o isn. n a, 7d? ~

c hj '

c .i,v. . . o.v. . =o . ov.i. .o= =o c o h i $ ]" ' 'W.Y~ "hl;" .... ., =o o ii . .,,i o

...ci ao e ,o, ,,,,

044730 //.", c/ 9 f)-/<.*I/. N.H. L. _

PAC ( of

$.o m ... ..c uoi.

r - .....i ... consci . .., c o .

$ h gg, ' c <. P.O. 044730 C IT.1044 0 3/Cy/0 FM. M'e*

v P 2

s s GPU iAXLEAR CORP.

O H TM1 TAX 1. EAR GEfERAT10f4 STA.

o P ROUTE 441 Sol.TTH

, M10DLETCW4, PA.17057 o o

- .. h- - r e r_x x -r =

CTR C00 MJCLEAR

'Uo" oua IfrI $ #ME *accact eoot i*j erscartio. S",$h*,

01 C S32-3183 2/0 3/C 2/0 FWL !!! PLUS GSIA iO4. O.D. 1.54 tl y 78 48x24 1325 D-56655-B T-04284 6 03806 ' g  ;

1,052- 3,017 g 574 48X24 1692 D-56655-A T-03802 bO3228 " ,

I d

A $d a w.il12 x1 M u M # w M P li d .

- G c_ ;. w . . ..c....

.oav o .e, THE ROCKBESTOS CO.\1PANY s . i..i ..r i n t: si unim i.not s' ..t u nu oli.-

C~liOt~ 770 -Enc >-ets ko .

APP 9.lu focx y 99 p, ,,, , c ,,i,i . 90*C*, 600 Volt

.- Class IE Nuclear NEC Type TC UL Listed IXI VI /t hPI ) spec. Rss-3-021 Three Conductors (With three ground wires)

Nominst

. Insulation Size of Jacket Overall Approximate Product Code Conductor Number of Thickness Ground Thickress Diameter Net Weight Size Strands (Mils) Wires (Mils) (in) (Lbs/M')

P62 0084 8AWG 7 45 314 AWG 60 .66 360 P62 0064 6AWG 7 45 312 AWG 60 .74 500 P62 0044 4AWG 7 45 312 AWG 80 .88 7N P62 0024 2AWG 7 45 310 AWG 80 1.01 1070 P62 3119 1AWG 19 55, 3-10 AWG 80 1.14 1280 P62 0104 1/0 AWG 19 55 310 AWG 80 1.22 1560 P62 0204 2/0 AWG 19 55 310 AWG SO. 1.30 1950 P62 3421 3/0 AWG 19 55 3 8 AWG 80 1.42 2300 P62-0404 4/0 AWG 19 55 3 8 AWG 80 1.54 2S00 P62 3422 250 kemit 37 65 3 8 AWG 110 1.77 3500 P62 0354 350 kemil 37 65 3 7 AWG 110 1.98 4550 P62 0504 500 kemit 37 65 3 6 AWG 110 2.26 6200 g P62 3423 750 kemit 61 80 3 5 AWG 140 2.83 9200 Four Conductors (With two ground wires)

P62 5036 8AWG 7 45 212 AWG 60 .72 420 P62 5037 6 A'W G 7 45 210 AWG 60 .82 610 P62 5038 4AWG 7 45 210 AWG 80 .97 930 P62 3974 2AWG 7 45 2 '8 A,WG 80 1.11 1320 P62 5039 1AWG 19 55 2 8 AWG 80 1.26 1640 P62 5040 1/0AWG 19 55 2 8 AWG 80 1.34 1930 P62 5041 2/0 AWG 19 55 A8AWG 80 1.44 2340 P62 5042 ' 3/0 AWG 19 55 2 7 AWG 80 1.57 2900 P62 5043 - 4/0 AWG 19 55 2 7 AWG '110 1.77 3600 P62 5044 250 kemil 37 65 2 7 AWG 110 1.94 . 4400 P62 5045 350 kemil 37 65 2 6 AWG 110 2.20 5700 P62 5046 500 kemit 37 65 2 5 AWG 110 2.50 S100

  • Rated 90*C for normal operation in wet and dry bcanons.130* C for emergency overload conddens.

and 250*C for short circu t coretens t H,palon is a regatered trademerk for the Du Pont Cornpeny's chloroswilonated polvethviene (CSPQ '

UP 2 co t15 m *The Rockbestos Company 285 Nicoll Street New Haven, Connecticut 06511 (203)772 2250 800 327 765

C , ,. .,

a *

,, T Hat t E f1t L E 15tRN3 p g g.gy g ,,, , ,

UNIT $

, es s e n J05 NO. GI L B E R T -C OMMoritJC A t ill COMPANIES retOLM an t i t *.s ten t s ,., s 3 04-4292-000 3 CABLE RouitHG *

SUMMARY

OF TRAY DATA RUM MO. 218 X-DIRECTION Y-DIRECTION DIMEMSION INTERSECTING PLANT 7D2 COL. DIS 72 COL. DI E ELEVATIDE WIDTM X DEPTH TRAYS AREA SUPPORTS FIRE AREUZO*th 1 9 23 7 F e 8 317.888 6.88 6.88 553 . CR-FA-1 2- 9 23 7 F 6 8 314.417 6.48 6.88 CCD-CT829

-3 9 23 7 F & 8 389.417 6.88 6.80 CCD-CTS 29 4 9 23 7 F 6 8 384.417 6.88 6.80 CCD-CT829 5 9 23 7 F 6 8 383.758 6.88 6.88 '

6 -

7 8

9 0

1 2

3 4

5 .

J 7

9 J

g4  :

D

,t B -- T V w l o5 N 5

a

- 7% . M I

Y $

0 1

1

(

2 3

WEIGHTS

- - WEIGHTS --

AREA CABLE MAX. INSUL. COORD. AREA CA8LE MAX. INSUL.

CLAS$t 3 SAFEGUARD X 43.38 16.974 108.088 8.808 17 8.88 8.888 8.888 8.888 43.38 16.974 27.G00 0.000 18 8.88 0.888 8.808 8.888 LAYING TYPEt C 43.38 16.974 27.000 0.000 19 0.08 8.000 8.898 8.888 CONTRACT CODE:

43.38 16.974 27.000 0.000 20 0.88 8.008 0.088 8.008 VERTICAL RISER: V 0.00 0.000 300.000 8.000 21 8.00 0.008 0.808 8.888 .

0.00 0.000 0.000 0.000 22 8.80 8.000 8.808 8.888 TRAY LENGTH 13.25

.0.00 0.000 0.000 0.000 23 0.08 0.000 8.088 0.888 MAX. ALLOWABLE % FILL: 68.8 0.00 0.000 0.000 8.000 24 0.88 8.000 0.888 8.000 0.00 0.000 0.000 0.000 25 8.00 0.000 0.000 8.080 0.0C 0.000 0.000 0.000 26 0.08 0.809 0.888 0.008 REMARKS

  • 0.00 0.000 0.000 0.000 27 8.08 8.000 8.889 8.888 0.00 0.000 0.000 0.000 28 0.80 0.000 0.000 8.808 0.00 0.000 0.000 0.000 29 8.08 8.800 0.808 8.808 DRAWING REFERENCE 8:

0.00 0.000 0.000 8.000 38 0.88 S.800 8.800 8.000 REV DATE: 81/27/88 -

0.00 0.009 0.000 0.800 31 8.88 8.803 8.608 0.000 REV8 TRAY 551 0.00 0.000 0.000 0.000 32 0.80 8.000 9.800 8.000

\

W 7

g '.

s tear E E PSI L E ISL At83 CL** cat s ty ,seeg g em g On,,i D JOB MD. UNIT CILCCIT-COf1PtONt!Ect1H COrtPCCIES Prorg.: Lit untDat -

. .t/3 3 04-4292-000 2 CABLE ROU11HG

SUMMARY

OF TRAY DATA RUM NO. 218 X-DIRECTION Y-DIRECTION DIMENSION tNTERSECTING PLANT

Q. COL. DIST. CDt. DIST. ELEVATION WIDTH X DEPTH TRAYS AREA SUFFORTS FIRE AREA /Z0MES I 9 27 5 F3 8 IS 318.167 9.88 6.88 C8-FA-1 2 9 27 5 F3 8 8 318.167 9.88 6.88 1CCDCT231 i 9 27 5 F 21 5 318.167 9.88 6.88 ICCDCT232 i 9 27 5 F 28 12 318.167 9.80 6.88 3 9 27 5 F 18 1 317.8CS 9.08 6.88

~. 9 27 5 F 13 8 317.888 9.88 6.88 CCD-CTS 28 .

? 9 27 5 F 11 5 317.888 9.88 6.88 i 9 25 11 F 9 7 317.008 9.88 6.88 CCD-CTS 13

) 9 23 7 F 6 8 317.008 9.88 6.88 551 1

L

?

?

, 1 .

.i p

a 1

! )sQq e 93-7 ih l ' M

? Y,

!, N6 5 - 4 P.

?. 4

~~

y I YY 1 4

i On

---WEIGH T S

--WEIGH T S AREA CABLE MAX. INSUt. COORD. AREA CABLE MAX. INSUL.

CLASS: 3 SAFEGUARD: X 28.92 16.974' 188.808 8.888 17 8.88 8.888 8.888 0.888 28.92 16.974 100.000 8.808 18 8.00 8.880 , 8.888 8.888 LAYING TYPE: C 28.92 16.974 100.000 0.008 19 8.80 8.088 8.000 9.800 CONTRACT CCDE:

28.92 16.974 100.000 0.008 20 0.88 0.088 8.800 8.888 VERTICAL RISER:

28.92 16.974 100.000 8.800 21 8.88 8.000 8.000 0.888 28.92 16.974 26.900 0.000 22 8.88 8.880 8.000 8.008 TRAY LEMGTH: 22.33 28.92 16.974 100.000 8.008 23 8.00 P SOS 8.008 8.808 MAX. ALLOWABLE % FILL: 68.8 25.92 16.974 27.000 0.000 24 8.00 0.088 8.088 8.888 0.00 0.000 100.000 8.800 25 8.88 0.000 8.808 8.808 0.00 0.000 0.008 8.800 26 8.08 8.898 0.080 9.888 REMARKS 0.00 0.000 0.000 8.008 27 0.00 8.008 8.808 8.888 0.00 0.000 0.000 8.008 28 8.88 8.008 8.800 0.888 0.00 0.000 0.000 8.Sts 29 0.88 0.000 9.808 0.880 DRAWING REFERENCE 8: E-214-836 '

0.00 0.000 0.800 0.06- 30 8.88 8.000 8.000 8.000 REV DATE: 01/27/88 O.00 0.000 0.000 0.800 31 8.88

  • 800 . 0.000 8.808 REV: TRAY 553 0.00 0.000 0.000 0.008 32 8.89 8.888 8.000 0.008

_Nr '

o a e e o o o o o i s o , , ,

I > ,,, c,noI~ ~rp -gnto -o t 6 ?" '

y APP Col's .

N ' ('A c a 5e .F-/t .

A e e 4 e W M e W

a mM i I a e

e q

N A W W h W >

, W e 4 4 M e O **

e 4 4 4

  • eg ed 6 W O .J *e A eM e
  • eut Mb oc
  1. d e n wg 40 H U%
    • *e zh

(#

.d eo O

> W"W W a W WN d w N e N & M e d C W" # MM E" 4# We e A W W 5ax y a M wa Ea HE o se Wu W

  • S, e um W es n or b, z a e 3 a 4 > W WM 4>>

.J 4 W er 4 yWW U ed u > WE IL s ed W H

E4 4W

.e u A*

I d m e s m e s e s se m e ss e m es e l J esse e m m esses m esse neses

@ D e ss es s e m m e ss e e o m es e m E en e e e e e e e e e e e e e e e e M E en s e m es as es s e m e s a m m e

> M e U@

i l W WP w @d rt WW ert e n e m m e ss e e ss e m as s e m e3 We M e m es s e m o s e ss em as se e ss an o

c. 4 > N e EM eessmeemmesesemasones g > E art e o er e e e e e e e e *
  • e e e e e e o e M m en ME em e s e e m e m e m e s ep e e m Du A W z o 3 s, ,zMzat >

ei es > W 2 se e m s massememessesommem

= ag o n- > m e ss e W enemmesseessassannom WO EA e **e w m e ss en e es es s e e m e s m o es

.J ;i ld 6 OW edee o e e e e e e e e e e e e e e e e wt O MO e sammemememmememo

=0W E .J M EM M 'u mW W

'WQ44 EE en e e es wuU MM e m e es a s e e e ss en e e e a e m a ss as e 8 9A e e e

  • W e sp es e es o e e op e e as es o es as
  • M NNNN w e e * * *
  • e e e e e *
  • e * *

"]u W 3 MMMM e commememmemamose

.a

    • F 99 M en e a 0 C eoso m as A M toerne a w W e * *
  • O N ed e e M N M e m e N e0 s o se N
  • M M art e O MMMNNNNNNNNNNMMM M e e ss M u ene NNMM ,

W 00 e0 00 00 e s e e m m e o o ss o a o m an s o Ek J m es m e es n e ss es o es as a o ss u Om D m o****e e sp e c o. m o esse oe ne e* a* ss MM MMMM e * *es

  • A O

M e m m e e sseses m es e m e es n o W

GC

.e A .

ert e mesesse o c o neno ccao n w la e a omosoooooooooooo

%" >O EM memoomeooooooooo g u WWWW og

  • e e e e e e e e e e * *
  • e a ME ooooooooooooooom W onom a 3 MMMM o y eNNN f* Om meemoooooooooooo 2N MM eMMM W co m ari ss o o o o o o o o o cs o o WA s emooooooooooooom n, , U W

e e e e e e e e e e e e *

  • e e e Og '

Ne#emo#######o##

Si W M

u* MM

  • Q .

MO 0000 4 e o n cs o o o a o o rs n o c es a O eeee , W gg gg M. ee ee cs e o

  • a*o e es
  • *o ss. o. a e eo o. o. o.

.g

  • Nemooooooooooooo

- MeM

t .#

p.

. u mu n....

Jl,1, ,.. . ur site m -c - ao a c = == n

~~.a.....m.......,

w. .

se/3sess 84-4192-e s s 1 Caste ROUTING -

SurTtARY OF TRAY DATA awn tee. 214 X-DIRECTIf Y-DIRECTIest DIMENSION INTERSECTING FLAMT i

COORD. cat. D *S T. COL. DIST. ELEVATIBM MIDTM X DEPTM TRAYS AREA SUFFSRTS FIRE DREAR 19 tees 1 S1 6 9 SA 8 1 312.898 9.se 6.96 ISPM-FZ-2

~

2 51 6 9 SA 9 1 312'889

. 9.90 6.99 ISH9CTSS5A 3 S1 6 9 SA 8 1 319.583 9.es 6.08 ISMDC108SC 4 S1 & 9 SA 9 1 322.800 6.99 6.00 5 S1 6 9 SA 8 1 324.833 6.88 6.09 ISMDCTSS5D 6 S1 6 9 SA e 1 327.759 6.99 6.08 7 $1 6 9 SA 8 4 327.758 '

6.es 6.se -SMD-CTG 21 8 51 6 9 SA 8 9 327.758 6.00 6.88 733 9 s IS 11 .

12 .

13 14 15 O h s, 16 17 %m 18 yyS 19  %

28 '1 21 N A bg 22 '

23 24 25 T

g%

g 4 t I

26 27 3@N 28 29

_4 pg3 q 3e 31 32 @

33 .

"ZIGM15 "ZIGHTS COURD- AREA CABLE MAX. INSUL. COORD- AREA CABLE M4Y- INSUL.

CLAS$1 2 SAFEGUARD: X i' 1 18.03 3.368 198.000 0.000 17 S.80 9.993 8.808 S.809 2 18.83 3.368 199.998 8.000 18 8.99 9.998 S.Ott 8.889 LAY 1MG TYPE A 3 18.03 3.368 195.000 9.098 19 3.00 9.989 S. Set 8.800 COMTRACT CDDE 4 27.84 3.368 100.889 8.588 28 S.es e.ges 3.ses 8. set VERTICAL R15ERs V 5 27.54 3.368 188.808 9.998 21 8.es e.ges s.Ses 3.005 6 27.94 3.368 108.588 3.008 22 8.se 3.998 S.888 0.000 TRAY LEMGTMs 24.42 7 27.94 3.368 12.999 S.880 23 8.se 3.908 8.000 s.988 MAX. ALLOWASLE 2 EILLs 69.8 8 0.88 8.888 108.988 8.880 24 0.00 9.800 S.889 0.009

^

9 S.88 8.888 ^0.009 9.998 25 0.88 s.ess e.See 5.00s It 8.09 8.999 S.990 S.990 26 S.98 8.850 S.989 8.905 REMAtttS t 11 8.98 9.889 0.009 9.998 27 S.es 3.333 3.890 8.008 12 s.se s.ees s.ses a.ess 28 e.es s.Ses s.sse s.ess 13 e.80 0.000 8.008 S.000 29 8.50 5.888 8.SSS 8.588 DRAWING REFEREJCE st 14 9.88 8.889 9.988 S.888 38 8.se 0.888 8.839 8.888 REV DATE8 81/27/88

. 15 S.58 8.888 S.883 0.000 31 3.38 s.ess 3.839 e. set REVS TRAY 732 16 3.89 8.888 0.999 9.988 32 8.Se 3.898 8.808 S.888 I

y _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ .

J w 4 '

t &

8'*88 IMREE Mitt EstaMO mi rese s tv.weset ga m*.s

'Os MD IMig c1 L s ER T -COfT10M64E A L T H 00f1P Aft 1 ES 1 FROGR M titStbat c', 84'4192-888 1 #

jlE y O G -

X-DIRECT 1DM Y-DIRECT 1DM DIMEMSIDM INTERSECT!M8 PLANT c CDORD. C0t. DIST. C0t. DISL ELEVATION WIDTM X DEPTH TRAYS .. AREA surreRTs EERE.. kttwZenES 1 $1 6 9 SA 8 9 327.758 6.90 6.08 737 ISPM-FZ-Z 2 51 6 9 SA 7 11 327.083 6.98 6.00 3 $1 6 9 SA 8 4 327.983 6.00 6.89 SMD-CTS 21 4 51 6 9 SA 15 1 327.883 6.00 4.08 SHD-CTO21 5 S1 6 9 SA 21 11 327.08! 6.99 6.00 SHD-CTG 21 6 51 6 9 SA 28 9 327.983 6.95 6.80 ISMDCT844 7 51 6 9 SA 32 5 727.983 6.99 6.98 SMD-CTS 23 8 51 6 9 SA 37 9 227.883 6.88 6.88 SMD-CT G24 9 51 6 9 SA 44 9 327.883 6.08 6.80

  • le 51 7 It SA 43 8 .h27.883 6.98 6.00 SMD-CT325

. 11 $1 11 4 SA 44 0 327.083 6.00 6.80 SMD-CTS 26 12 51 16 6 5A 44 8 327.983 6.00 6.88 SHD-CTS 27 .

13 51 22 6 SA 44 8 327.883 6.88 6.08 SHD-CT327 14 $1 38 ! SA 44 8 327.883 6.00 6.99 SHD-CT327 -

15 51 36 le 54 44 8 327.883 6.80 6.93 SHD-CTS 28 16 51 41 6 Sf 44 9 327.883 6.88 6.00 SHD-CTS 2; 17 S1 43 3 SA e. 4 8 327.883 6.00 6.88 ISPM-FZ-1 18 52 8 3 5A- 44 8 327.083 6.08 6.08 SML-CT871 -

19 52 1 8 SA 44 0 327.583 6.00 6.08 . SHD-CTS 72 b 28 52 9 2 SA 44 8 327.883 6.00 6.80 15HDCT121 J.

21 52 16 le SA 44 0 327.883 6.00 6.88 SHD-CTO74 -*

22 23 52 52 24 6 33 8 SA SA 44 44 8

8 327.883 327.083 6.08 6.00 6.98-6.00 15HDCT123 SHD-CT876

> *'cD -

24 25 52 34 3 SA 44 0 327.083 6.08 6.80 734 'h Yy g-26 27 V) N 28 29 g .D 30 33 M$ -

3 WEIGHTS WE10MTS Ots -

00RD. AREA CABLE MAX. INSUL. CDORD. AREA CASLE MAX. INSUL.

CLAS$s 2 SAFEGUARD: X 1 27.04 3.368 100.900 8.000 17 27.84 3.368 100.998 0.089 2 27.04 3.368 180.989 9.800 18 27.04 3.368 13.400 0.885 LAYING TYPE: A 3 27.04 3.368 12.988 8.088 19 27.04 3.368 13.40s 8.888 CONTRACT CODES 4 27.84  !.368 12.989 8.088 20 27.84 3.368 108.898 8.005 VERTIC4L RISER

  • 5 27.84 3.368 12.900 0.880 21 27.94 3.368 13.498 0.888 -

6 27.84 3.368 198.888 8.000 22 27.04 3.368 103.959 8.000 TRAY LEMGTH: 109.93

. 7 27.04 3.368 13.488 S.005 23 27.04 3.368 13.458 0.000 MAX. ALLDWABLE X FILL *' 60.8 8 27.84 3.368 13.498 S.888 24 8.08 S.000 108.800 8.808 9 27.94 3.368 100.000 0.880 25 8.80 0.888 8.008 8.000 10 27.04 3.368 13.400 8.998 26 0.00 0.008 0.000 0.808 REMARKS:

11 27.04 3.368 13.400 0.000 27 0.88 0.005 8.589 B.000 12 27.84 3.368 13.488 B.005 28 8.08 0.088 8.088 8.888 13 27.04 3.368 13.488 0.080 29 0.80 8.888 0.008 0.850 DRAW 1HG P:EFERE'tCE 8:

L4 27.84 3.368 13.40s 8.000 30 0.00 0.000 8.888 8.000 REV DATE: 81/2?/88 15 27.84 3.368 13.400 9.988 31 8.88 5.888 0.000 8.880 REV8 TRAY 733 16 27.84 3.368 13.489 0.000 32 9.88 0.000 0.888 0.088 ,

pw .

.p~ ~

e

_ ,Md '

T eem t E Matt t st aseo e. g ,.g,., , g,.,,%,,, ..,, g g.gsg ..

- #TI N f E D jog NO. (fMI T GIL 9tR T-COMNesenst at f M COf1PANIES estocm an t a t *,t en t e4-4192-e99 1 Castt acetases I se/Je/as SuomARY OF TRAY DAT A Cwse set. 218 Y-DIRECTFGet DIMENSISM- INTERSECTIIst PLAKt

. X-DIRECTION TRAYS AREA SGIPPSRTS FIRE AREFZeWES COL. 91Sim Cet- BIST. ELEVATION MISTN X DEPTM

[00RD.

II 8 332.9e9 '9.00 6.99 1SPN-FZ-I 1 52 41 'S SA See9-CT998 2 52 41 '8 - SA 31 8 313.099 9.99 6.08 SND-CT996 3 52 41 'S $4 11 8 318.917- 9.00 6.99 SA 11 8 324.917 9.99 6.09 SND-CT995 4 52 '41 :S S 52 41 8 SA Il 4 327.083 9.99 6.00-

6. 52' 39. 3 SA 11 4' 327.983' 9.00 6.90 7 $2 '39 3 SA 14 =0 327.083 '9.99 6.00 736 S

9

  • it 11
  • 12 13 14 "

15 16 E

M.p c t

l 19

$4 g\

22 23

~

.yg ,

8-24 )gM 25 _

26 W t 29 39 k-31 th '

32 33 ~

'::'194T5 ~~ ~

-WEIGNTS AREA CASLE MAX. inset. COORD. AREA . 3ASLE . MAX. INist.

!?R D . .

CLAS38 2 SAFEt9+44' X 0.000 37 9.90 0.999 9.950 9.999 1 18.93 3.368 198.998 IS 9.00 0.000 - 0.999 9.999 LAYIseS TYPE 8 2 18.83 3.368 33.490 9.999 COceTRACT C99Et 21.600 0.009 19 0.09 0.00f 0.000 9.999 3 18.03 :3.358 9.999: 0.000 0.990 VERTICAL EISEtt V 4 28.93 3.368 4.889 9.999 29 0.00 3.368 190.000 9.900 21 9.95 9.988. S.SSS 8.998 S 18.03 S.999 8.900 9.999 TPf " LENGTMs 19.83 5 18.03 3.368 189.000 0.9*O 22 0.08 IU r allee 4ASLE E FItt* 60.9 7 9.00 '9.000 100.000 9.999 23- 0.00 9.e00 9.800 0.000 0.999 9.099 24 0.00 0.990 9.999 0.000 3 9.08 0.000 O.000 0.999 9 9.90 0.998 0.999 0.800 25 0.00 9.000' REMARKS 8 26 0.00 0.000 9.999 9.900 to 0.99 s'.000 -0.000 0.999 8.000 O.998- 8.000 81 0.00 9.999 '9.990 9.999 27 0.00 20 0.00 0.006 'S.888 .8.898 12 0.00 9.000 0.999 8.590 9.880 9.999 DRAWING REFEREleCE es !

9.000 0.000 9.000 29 9. 99 ~ 8.000 13 8.89 9.969 30 9.50 0.998 0.000 9.990 REV DATES'01/27/SS .

14 0.00 9.000 9.999 REva ' TRAY 735 85 S.99 'O.P98 0.000 0.999 31 0.99 9.900 8.999 9.999 l

is 9.00 0.en S.889 . 000 22 0.00 9.000 a.s00 . 90 __

l .

E____ _ . . . . . . . . . . . _ . . . . . . . . . . _ . _

-3

c . .

E -

p<

e m- 4 1t $ 7

,. ,. .s...ry g.,.._,

  • ro a .

E Q Un*,*,y O*,'"*

  • Cst stEUMNE AUs'eloneawsu Caste RouttnG RUM HO. 218

/d e'e sp Jos no. owir spess a+-+392-900 1 Suf1riARY OF 1 RAY DATA =

IMIER$E*, TING PLANT FIRr AREArzeMES SUPPORTS Y-DIRECTION DIMENSIDM TRMf _ _ AREA -_ _

X-DIRECTION DIST. ELEVAftDM WIDTH X DEPTH ISPH-FZ-1*

DIST. Cot. .-.

g pa Cot.

6.80 735 SHD-Cit 99 327.983 6.99 39 3 SA 24 8 6.84 6.48 1 52 SA 15 2 327.883 6.pt 6.80 SHD-CTISO 2 S2 39 3 21 0 327.883 S2 39 3 SA 327.083 6.S t: 6.98 SHO-CI181 .

3 38 3 ' SA 28 3 6.99 6.88 SHD-CT182 4 52 SA' 21 S 327.833 6.98 SHD-CT183 5 52 32 4 21 8 327.883 6.98

$2 25 5 SA 327.883 6.99 6.80 SHD-CT194 6

17 2 SA 21 9 6.88 6.89 SHD-CTISS 7 $2 21 0 327.883 6.99 8 52 18 1 SA 21 8 327.883 6.88 SHD-CT 186 ISPH-FZ-2 2 4 SA 6.99 6.89 9 S2 SA 21 9 327.883 6.88 SHD-CT939 ,

10 52 0 3 21 0 327.883 6.se S1 43 3 SA 327.883 6.89 6.88 SHD-CT031 11 41 6 SA 21 8 6.89 6.08 327.083

12 13 52

$1 37 6 SA 21 8 21 e 327.883 6.88 6.00 6.08 SHD-CT832 .hb 14 $1 35 8 35 6 SA SA 22 1 3??.883 6.09 6.99 6.88 ISHDCT859 15HDCTO68 p .f,~-

15 $1 25 5 327.883 q ~D 16 51 35 8 SA 31 5 327.083 6.00 6.8s -

$1 35 8 SA 327.883 6.00 6.88 ISHDCT963

~

17 18 $1 35 8 SA SA 35 6 35 6 323.917 6.88 6.08 d.as 19 20 51

$1 35 8 35 8 SA 35 6 319.008 6.80 s % $' * -

14I 21 01

  • [

$4 PL g$ ~~

25 W OI E D

~~

28 29 D

30 '

31 1 32 -- ----WEIGHTS 33 --

M4X. TNSUlm SAFt' GUARD 8 X

---WEIGHTS-- AREA CASIE CLAS$8 2 sLGED.

MAX < INSUL.m AREA CABLE S.899 8 iR D .

17 27.84 3.368 189.898 8. set LAYING TYPE:

3.368 100.000 0.885 27.84 3.368 180.00s CONTRACT CODES t 27,04 13.488 S.088 18 3.368 100.000 s.000 VERTICAL RISER V 27.04 3.368 0.055 19 27.04 s.888 27.04 3.368 180.808 20 0.00 s.008 190.0089.888 0.808 78.23 i

3.368 13.438 e.see 0.C8 9.800 TRAY LENGTH:

27.04 S.000 21 e.ess 3. sos MAX. ALLOWABLE X FILL 8 69.e i

27.04 3.368 13.409 22 8.80 e.803 8.888 8.888 5

3.368 13.408 0.000 0.08 8.808 6 27.04 0.000 23 8.808 8.890 0.800 27.04 3.368 13.480 24 S.00 0.898 8.889 7

3.368 13.400 0.000 0.99 8.800 REMARK $t 1 27.C4 13.400 0.000 25 0.000 0.000 8.080 9 27.84 3.368 0.005 26 8.99 0.000 9.808 .

27.84 3.368 13.400 27 8.00 4.000 8.808 0

3.368 100.000 0.0C8 8.59 0.088 0.808 DRAWING REFERENCE gr 27.04 0.000- 28 8.000 0.800 e.800 REV 9 ATE: 01/27/88 1

27.84 3.368 13.309 e.sep 29 0.00 8.888 8.380 TRAY 736

?

27.04 3.368 13.400 38 0.09 4.095 0.089 REV8 3

3.368 180.000 8.000 0.00 0.888 8.000 e.ege

'. 27.04 13.408 0.800 31 e.e00 e ece 5 27.84 3.368 8.ees 32 0.00 6 27.84 3.368 200.808

4 t oestt e rin g e- sstano m e s .w e ... g gg . . . . . . ,

, [sNi p Jsp p N f3. tf M I y GI L S E R T -CDP 1'10tttdE AL T H COMP AMi[5 s pot.or ati e n t*,t s,a s .,

verJp/J3 94-4392-000 3 CA8tE ROUllNG

$Ur1M4RY OF 1 RAY DATA RUH 980. 218

  • X-DIRECTION Y-DIRECTION DIMEM51DN INTIR$ECTING PLANT (00RD. COL. DIST. C0t. DIST.' ELEV4 TION ' WIDTH X DEPTH TR&YS AREA SUPPORTS FIRE AREA / ZONES I 9 19 8 F3 6 6 332.333 12.80 6.08 C8-FA-28 2 9 19 8 F3 6 5 332.333 12.88 6.88 CCE-CT142 3 9 19 8 .F3 5 8- 332.333 12.88 6.88 744 4 9 19 8 F3 1 8 332.333 12.80 6.88 CCE-CT142 j 5 9 19 8 F. 25 9 332.333 12.88 6.00 6 9 11 9 F 25 9 332.333 12.00 6.80 CCE-CT142 7 9 6 1 F 25 9 332.333 12.80 6.00 8 9 6 1 F 25 9 329.800 12.es 6.C8 CCE-CT119 .

9 9 6 1 F. 25 9 324.258 12.88 6.88 CCE-CT119 le 9 6 1 F 25 9 322.800 12.89 6.08 CS-FA-1 11 9 6 1 F 25 9 319.800 12.00 6.88 O

.4 u .t l

15 16 b

b i

28 21 fCsI -

00 Ui +%

~

H 24 .

25 I 26 )  %

27  %

28 .

29 30 31 32 33

---WEIGHTS -

WEIGHTS =--

00Rn. AREA CA8tf MAX. INSUL. C.9.QEP. AREA CAptE MAX. IN3UL.

CLAS$8 2 SAFEGUARD X l 1 0.00 8.008 180.000 9.818 17 8.08 8.308 0.000 0.000 0.00 0.000 9.600 8.000 18 8.08 8.008 0.880 9.885 LAYING TYPE 8 8 2

55.16 15.811 180.80f 0.888 19 8.80 9.880 9.800 9.800 CONTRACT CODES 4 55.16 15.911 15.08E 8.800 28 0.88 0.888 8.000 9.888 VERTICAL RISER Y 5 55.16 15.811 100. Sed 8.800 21 8.08 8.SSO 8.888 0.888 6 55.16 15.811 9.688 8.008 22 8.80 8.000 9.888 0.000 TRAY LENGTHt 34.25 7 55.16 15.811 100.000 8.085 23 0.08 8.908 8.808 8.898 MAX. ALLOWA8tE X FILL 68.8 3 55 16 15.811 25.000 9.888 24 8.88 8.000 8.888 0.888 9 55.16 15.011 25.808 8.808 25 8.88 8.800 0.000 9.800 15.811 100.098 8.888 26 8.00 0.000 0.888 0.888 REMARK $s le 55.16 11 0.00 8.000 100.000 8.808 27 8.88 0.000 0.800 8.808 12 0.00 0.888 0.000 0.000 28 8.88 0.008

  • 8.000 8.868 13 0.00 9.800 9.000 9.800 29 8.00 8.000 9.888 0.880 DRAWING REFERENCE 8:

li 8.88 0.888 8.000 8.898 38 8.08 8.000 8.000 0.880 REW DATE: 81/27/88 8.000 0.003 8.808 31 0.80 8.880 9.888 8.808 REva TRAY 745 15 0.08 8.00 0.000 0.888 0.000 32 8.80 8.800 8.000 8.000 15

.,, . . . . . . , . . . . ~ . . . . . . _ . . . . . . . . . . . . . . _ . . . . ... . .. . . . . . .. .

. .. .. . . . . . . . . . ~ _ . . . _ - . . _ ..~ .. . . _ . . . . . . ~ . . . . . . .. . . . . . . .. .

~

C' mA

, d.dd

],* %f

, , > . . a. sat =. ,

, '7 8^**

,, p, , .o. unga ostst$sIkom EmbtUt'ab'Io"ransas U* *E. en "s*s s$Ie 7e's *

, s',".l$ 3 ee-ete:-egg a Caste noustHG SUNNARY OF TRAY DATA mun no. 218 .

X-DIRECT!DN Y-DIRECTION D!MENSION INTERSECTING PL4NT

[RQER, CDt. Of5T. Cot. DIST. ELEVATIDH WIDTH X DEPTH TRAYS _ AREA SU? PORTS FIRE AREArZOMES I IBA 3 1 H3 1 8 297.167 30.00 6.00 739 FH-FZ-1 2 10 11 3 H3 8 1 297.167 38.00 6.08 AXC-CT325 3 10A 3 1 H3 8 9 297.167 30.09 6.80 756 4 10 11 3 H3 14 3 297.167 30.98 6.88 AXC-CT326 5 10 11 3 H3 18 11 297.167 38.88 6.08 AXC-CT330 6 IS 11 3 H3- 23 9 297.16F 38.88 6.89 AXC-CT338 7 18 11 3 H3 29 11 297.167 -38.30 6.98 AXC-CT339 8 184 3 I H3 39 3 297.lL7 38.80 6.89 AXC-CT308 9 10A 3 1 H3 41 8 297.167 30.9R 6.80

  • 10 9A 24 6 H3 44 3 297.16? 38.89 6.88 AXC-CT339 11 9A 18 9 H3 58 9 297.167 30.88 6.98 AXC-CT311 12 9A 12 7 H3 50 9 297.167 38.00 6.00 AXC-CT312 13 9A 6 5 H3 50 9 297.167 38.50 6.00 AXC-CT312 f) 14 9 18 3 H3 58 9 297.167 39.8e 6.00 g

!$ 9A 3 4 H3 50 9 297.167 30.08 6.88 AXC-CT313 --

16 8C 17 11 H3 . 50 9 297.167 30.88 6.90 AXC-CT383 gg .q 67 17 8C 10 11 H3 50 9 297.167 30,00 6.09 AXC-CT393 -as IS 8C 6 2 H3 58 9 297.167 S0.09 6.03 t 19 20 8C SC 6

6 2

2 H3 J

52 B

6 8

217.167 297.167 30.00 30.00 6.08 6.50 AXC-CT383 AB-FZ-3

-0)>4 h-21 22 8C 6 2 J 1 8 297.167 30.00 6.00 AXc-CT049 l} 'g54d 8C 6 2 J 3 IS 297.167 39.08 6.08 I 23 ~8C 6 2 J 6 6 298.508 38.98 6.80 .Obp 24 8C 6 2 J 8 4 298.500 38.88 6.08 AXC-CT848 25 26 8C 8C-6 2 6 2 J

J 9 8 14 6 298.500 298.509 30.88 38.89

.6.88 6.09 752 AB-FZ-2C gd 27 b 28 1 29 b

3e 0'-4 31 -

32 33 .

WEIGHT 5 -

. WEIGHTS

'00RD. AREA CABLE MAX. INSUL. C00RD. AREA CABLE MAX. INSUL.

CLASS: 2 SAFEGUARD: X 1 44.51 25.739 100.000 0.000 17 22.26 12.865 12.980 9.999 2 44.51 25.730 35.700 8.000 18 22.26 12.865 10s.308 8.ses LAYING TYPEr 8 3 22.26 12.865 180.000 0.488 19 22.26 12.865 12.938 0.000 COMIRACT CODES 4 22.26 12.865 22.900 0.080 20 22.26 12.865 100.000 -8.ste VERTICAL RISER:

5 22.26 12.865 12.908 0.888 21 22.26 12.865 22.980 9.880 6 22.26 12.865 12.900 8.000 22 22.26 12.865 100.008 8.000 TRAY LENGTH: 112.52 7 22.26 12.865 12.900 8.800 23 22.26 12.865 188.f88 8.808 MAX. ALLOWABLE

  • FILLt 48.8 3 22.26 12.865 22.900 0.080 24 22.26 12.865 22.908 8.000 9 22.26 12.865 100.000 0.008 25 22.26 12.865 180.800 0.808 10 22.26 12.365 22.900 0.000 26 8.90 9.088 108.999 8.088 REMARK $t 11 22.26 12.d65 22.908 8.000 27 9.08 0.000 0.088 0.888 12 22.26 12.865 22.908 0.000 28 0.80 0 OSS 8.880 0.088 13 22.26 12.865 22.900 0.000 29 0.00 8.808 0.888 8.000 DRAWING REFERENCE 88 14 22.26 12.865 100.000 0.000 38 8.38 0.80s 8.000 9.888 REV DATE: 81/27/88 15 22.26 12.865 22.998 8.008 31 e.se 0.000 3.000 8.800 REVS TRAY 751 16 22.26 12.865 12.900 0.000 32 8.08 8.000 0.000 0.000

y

. n_.,. . .... -. .. .. :.

- - ~

.#.;g

_r ..m._,. .. .. . ,

Jos me. UMar Git 9E IIbOMNDbbER IH OMPAMltS ' u h'an g*g^gI,)),A g ' ' " " '

rIs'N e a rs CatLE ROUffMG 89 99/33 84-4892-890 1 RUM MO. 218

SUMMARY

OF TRAY DATA X-DIREC7 ION Y-DIREC7 ION DIMEN510W INTERSECTING PLANT CopRD. Col. DIST. Cot. DIST. ELEVATIOg WIDTH X DEPTH TRAYS AREL S'JPPORT S F1RE ARE A/ZDMES ISA 3 1 H3 8 9 297.167 18.00 6.88 751 FM-FZ-1 1

2 18 12 11 H3 8 9 297.167 18.00 6.88 AXC-CT326 4 3 10 22 1 H3 8 9 297.167 18.88 6.00 . AXC-CT326 4 10 27 10 H3 8 9 297.167 18.50 6.80 AXC-CTS 27 5 11 & 9 H3 8 9 297.167 13.30 6.88 AXC-CI527 6 11A 5 9 H3 8 9 297.167 18.85 6.88 FN-FA-7 ,

7 IIA 7 9 H3 8 9 297.167 18.89 6.88 AXC-CT321 8 IIA 9 0 H3 8 9 297.167 18.88 6.00 9 II A _ 14 8 HS 8 9 297.167 18.09 6.OP AXC-CT328

  • 10 IIA 16 8 H3 8 9 297.167 18.85 6.09 AXC-CT328 ,

H3 8 9 297.167 18.88 6.80 FM-FZ-1 11 11A 16 le AXC-CT319 12  !!A 19 3 H3 8 9 29T.167 18.00 6.88

  • 11B 3 9 H3 8 9 297.167 18.89 6.99 AXC-CT318 13 AXC-CT3I7 14 12 3 11 11 3 8 9 297.167- 18.00 6.09 .

5 1 8 9 297.167 18.88 6.00 AXC-CT316 IS 12 H3 12 8 8 H3 8 9 297.167 18.89 6.08 16 17 12 8 8 H3 8 9 291.417 18.88 6.00 AXC-CT314  %

8 9 289.500 18.00 6.09 Jb -. ,

IS 12 8 8 H3 . CP 19 12 11 0 H3 8 9 289.800 18.08 6.00 ~~~~

28 8 21 O

  • 22 ew k '%a

- Q ),, b l Ob [b hh I 25 ,

26 l> 0D .g:

27

,p 'C'53 k 30 ..-*

31 ~.

32 WE10 HTS --WEIGHTS ,

'pR D . AREA CABLE MAX. 1HSUL. COORD. AREA. CABLE MAX. INSUL.

CLASS: 2 SAFEGUARD: X 1 37.09 12.865 100.000 S.888 17 37.89 12.865 22.988 0.000 18 15.37 5.411 108.800 8.000 LAYlMG TYPE: 8 .

2 37.09 12.865 22.999 9.080 CONTRACT CODES 3 37.09 12.865 22.900 9.098 19 S.00 0.0C0 108.000 0.009 4 37.09 12.S65 19.608 8.908 28 0.00 0.008 1.088 0.800 VERilCAL RISERS V 37.09 12.865 19.608 8.008 21 S.88 0.800 S.800 0.988 5 8.000 TRAY LENGTH: 65.92 6 37.09 12.865 100.800 8.000 '22 0.90 0.000 0.000 12.865 23 0.0e 8.058 8.000 0.30s MAX. ALLOWABLE

  • FILLS- 68.9 7 37.09 22.900 0.000 0.808 0.088 3 37.09 12.865 199.880 0.000 24 0.00 8.889 37.09 12.865 22.908 8.000 25 8.08 9.008 9.000 8.003 9 8.800 0.098 REMARKS 0 57.39 12.865 22.900 0.000 26 0.00 8.000 _

12.865 '308.800 0.008 27 8.80 9.888 0.000 0.080 I 37.09 5.SuO 8.000 2 37.09 12.865 22.908 8.0R9 28 0.00 8.000 29 9.00 0.000 8.808 0.000 DRAWING REFEREMCE 8:

3 37.09 12.865 22.900 0.000 S.680 0.089 REW DATE 01/27/88 .

37.09 12.865 19.180 8.808 30 8.09 0.000 .

'4 0.888 31 9.80 8.998 0.000 9.388 REV8 TRAY 756 5 37.09 12.865 22.800 12.865 100.000 S.800 32 a.e6 s.eOS 8.000 8.P60 37.09 ,

1 l

c-

  • p~

.O ~

e e e #

.rM9Mr ..in.p... *t+ ' ~ ~ . . .G ;. " ^ ^ ^ ~~ - -

  • Y

' S?aretARY OF TRAY DATA Rt.M MO. 218 X-DIRECTION Y-DIRECf!0N DIMEMS10M INTERSECTING PLANT .

.. TRAYS AREA SUPPORTS FIRE AREA /Z0MES C00RD. Cot. DIST. Cot. DIST. ELEVATION WIDTH X DEPTH 1 G3 19 6 ISS 6 3 319,883 18.40 6.99 C5-FA-1 2 G3 19 4 ISS 6 3 319.883 18.00 6.08 1CCDT3 w g,

3 G3 12 le Its 6 3 319.083 18.00 6.00 ICCDT4 4 G3 4 4 100 6 3 319.883 18.88 6.00 3CCDTS 5 G3 5 0 108 6 3 319.083 18.08 6.00 6 G3 3 3 100 6 5 319.883 18.00 6.80 w g

7 G3 3 4 ISS & 5 319.333 18.90 6.80 8 F3 18 11 185 6 5 319.333 18.08 6.80 ICCDT6 9 F3 18 1 ISB 6 5 319.333 14.90 6.80 .

g 10 F3 17 1 ISB 6 5 318.417 18.88 6.00 1928 4 11 ,

12  ? O 13 I w 14 Q =

15 . v

^

16 ,

_I 17

  • N 2%M" i' s  %*
  • !! T i. di -

~

g 26 f} w 1

21 1 28 g 29 g 38 v w

.g 31 32 33 ,

- -- WEIGH T S g WEIGH T S --

COORD. AREA CABLE MAX. INSUL.

COORD. AREA CAttE MAX. INSul.

CLA558 3 SAFEGUARD: X 1 s.es e.Oss tet.00s a.c:s 17 e.se e.Ost s.Ses e.000 LAYING TYPE 8 ,

i 2 17.57 16.766 100.889 0.999 18 8.08 8.809 9.000 8.000  ;

4 3 21.74 18.458 100.008 8.000 19 0.00 0.000 0.000 0.008 CONTRACT CODES

I 4 17.57 16.766 150.000 8.000 29 0.00 8.000 0.9 88 0.000 VERTICAL RISER
V

..Su zi 0..e . 00. 0. 0 c.. e i- 56 17.57 17.57 i6.n6 10... e 16.766 190.000 22 s.se s.000 0.000 0.880 TRAY LENG1H 22.89 ,

!v 7 17.57 16.766 100.000

0. set 9.090 23 0.08 0.088 0.000 9.005 MAX. ALLOWABLE
  • FILin 59.0 l 8 17.57 16.766 150.018 0.000 24 S.98 0.000 0.000 0.889 9 17.57 16.766 190.008 U.000 25 0.00 0.999 e.ett 8.000 gp 10 0.00 0.000 100.000 8.000 26. 4.08 0.000 8.000 C.003 REMARKS* ,

11 0.80 0.000 9.000 8.900 27 8.80 0.000 0.000 0.000 12 0.00 0.000 0.000 9.889 28 0.08 9.800 8.000 0.988 9.000 0.000 29 e.00 9.800 e.000 9.800 DRAWING REFERENCE gr E-214-8361F 7 13 9.00 9.000 8.000 REW DATE: 01/27/88 =

GP 14 0.00 0.000 0.000 0.000 30 8.89 8.000 8.000 15 . 0.88 8.008 8.800 0.000 31 0.00 9.800 0.803 0.000 REV TRAY 1819 16 0.0c e.605 0.800 S.000 32 0.se 8.000 0.e80 0.000 _

l Y

O a I J l__________ -

0 O

T ,o l o 6

) '

. M . M>* *** M- $$

x-DIRfCTION Y- Ditt EC T I ON DIMEMSION INTERSECTIMS ?tAMT . e l e

DIST. 191., . 9IST. ELEVATION WIDYH X DEPTH TRAYS AREA SUPPORTS FIRE AREA /ZOMES j f7CRD. 101 .

1 73 17 1 190 6 5 318.417 18.00 6.80 1819 C5-FA-1 6 5 318.417 18.40 6.08 1CCDF7 g>

, 2 F3 14 8 100 3 F3 9 5 188 6 5 318.417 18.98 6.00 3 4 F3 8 6 108 6 5 319.333 18.00 6.00 5 F3 6 3 100 6 5 319.333 18.00 6.09 1CCDTS

} , 6 F3 5 6 155 6 5 319.333 18.80 6.09 e 7

8 9

, 10

  • w 11 h

! 12 13 14 e 15

.N

- -_a -

!= a 2.

y D 21

., 22 1 e n s en 25

. 26 T* .h r+4

,,_ t) e 27 2

3 fY\1 -

31 S 32 33


WEIGHTS --

WEIGHTS &

, [QORD. AREA CARLE MAX. INSUL. COORD. AREA CABLE MAX. INSUL.

CLAS$t 3 SAFEGUARD: X 3 18.86 17.357 100.000 8.000 17 '4.80 8.000 5.099 0.000 e, 2 14.78 15.665 100.008 0.000 18 8.00 0.000 0.000 0.000 LAYING TYPE: 8 WP 3 11.89 12.957 180.000 0.000 19 0.00 9.089 0.000 0.000 CONTRACT CODES 4 11.89 12.957 180.808 0.000 28 S.00 0.009 0.000 0.000 VERTICAL RISER: V 5 11.89 12.957 188.500 0.008 21 .8.00 8.889 8.000 9.800 0.000 22 0.00 0.000 9.800 0.000 TRAY LENGTH: 11.96 &

g, 6 0.00 0.000 198.900 7 0.00 0.000 0.000 0.000 23 8.00 0.000 0.999 0.000 MAX. ALLOWASLE X FILL: 50.0 8- 0.00 9.880 0.000 0.999 24 0.00 8.000 0.000 0.888 9 0.00 8.000 0.000 9.800 25 0.88 0.000 9.800 0.000 op 10 0.30 0.000 0.009 0.000 26 0.00 9.800 9.608 9.008 REMARKS GP 11 0.99 0.000 8.000 8.000 27 8.00 0.000 0.005 8.089 '

12 S.00 0.000 8.909 8.909 28 0.00 0.000 0.000 0.000 7 13 0.00 8.000 8.008 0.980 29 0.08 0.000 8.000 8.088 CRAW 2NG REF %ENCE 8 E-214-836IF y 14 9.we 0.000 0.908 0.005 39 8.00 0.000 0.000 0.080 REW DATE 01/27/88 (P 15 0.00 9.000 0.008 9.090 31' O.00 8.800 0.000 0.000 REW TRAY 1829 16 0.00 0.000 0.000 0.039 32 0.P9 0.000 0.980 0.808 0 9 "E .. . . . . . .. . .. ... . . .

f .e *

Ft*T.CU A3P3 D*?TJ (ff lo(J7 yo -Qgo-0 l8 7 .~' -

PUP. CHAM CA*.t'. MV. I W 8. ht- 'C:

sis.m :en . PM -l oFl3 ~'

.K.4. !!.'g r,. g .:.-, . t '. T.^..' ' 'm. - .' ~.' '. " ,'

. . . e.~' .' . r. . '. .' iu' ' '.a' - . . , ' - " ' , ,

om f* Pas P 0.3 . tro, c. y p c. ; p h/22,/G i.-1M.I.F./..'.i 30 TW.G P/J DE-r.I; 135'nD To >-,a6i <

I I"~ ~~I SI:1:' in . U, Yl Id ". - [

W'I 11 SI'"; C . . Cll.! WT..ON'.!Tf>: '.0::'" ? ::0....- ct 1.9 T.!J' .~..1, ~ .' C/0 U.II2D *.JCI;.~ ".'.7, . C':2r.7?; ;; . ..,

CJJ1:Ci.m, c'X.I CTICUT 05hB3 1.

g 'EdiCf. :2LE ICI A D .'Et, ;Jr'. 0 .'; 7G. -

, D0'J.'4 li'41 , U.T.*

Ohr/a.T ,. t M . */ 94J YW MI"~r L L'- 17017.__.-... _-.

S2 E!I//l M ST U/J .

,m - =t -

a~..... . . . . . , .

t'{5 oume y,o, 3,.go o s a e a e , t i o ee OAT V.O. Lift } " 4'

!c'd'J-IL1 AI4 8 KV T0H_CA3Lt., l'J3I':':, A3 FCLimS l,

. Sch.il)

(A) h,000' 500 l*C'I, 3/C, D'i, IIr *,ItCUI:DED TC.UGAL, lh/O IUC3 l T.;:nnam:: Ir.surx2c3 ---------------- 00,Gs.33/x

.(B)' 1,000' 5001CI, IE*.: A3 S'J3-I'i2:1 (A) ECCEUT I:0 IU10.I4X:i; cu -

3.27"--------'--'-.----------- h.cM.d.:/:' .

RCL I110I::5 - 1,000' TAO: FJ 'i :-1 UI?t _CO-lTmitT;LI: 3 C"JB-In*! ATD f't.BT.'s l 12 ;iCU O.1 i'ACH P!'i.f,- .

ELIV'.3Y TM.UIED: CI'.TI-b,5Y59' P

,j , , . a p; .-' W - -

g 3:. -2 ALL 5 L7 PCrI. R C.C2 ,,g KTRIT' , AS' FGE&O'.B: ' N viEi (32h.?1j ._ -

  • P- -

n dr* '. ~

(A) 30,0f,0' 1/0 K:3,: -3/0 3 3-3:v ~ 8/A"~ d.'EILT'P.tt3'RA5UP3  ;

21.T'IJ.TI.'X:,

J CABII.0, 'u?c; 6/n" F44:2 PJ.TAlmT J1.C.::".g 03,35 5.1'/?"

RJ!.L JP/DOTKd - 2,000 Ft

}

6,0N,'

(3) 350 kiffM371:Cflh':Ud/d%fdE*.~'EHl.Tm

. 4.- LINUL.tETIE!,

NN GFJ, T/A" FIK3, M.DAI?2 J1.CG.T $5."CO.N/.I',

rE'!3rLE.025, .1,500 FT. - .

o. _ , . . .

(C)

~ '

2, , IT7e; 3/C. L'C:T r N A . 9/ #"* E GE TC P I TJ.D

'ILT,UI*31GT, 4:r:!.'D, TX'::Da T/Cb!. ILcr*. 221J41.T JacF.'1 ?6,'J33.r/."

  • - ~

R*/'L TJ.T.3CS - 1,000 iT ,

- .'E0t'. I'":7!'::T,.2

.L.;i:'.*at o i ; *..:. 7:.7

  • .. Int C'. :r_TODrj2 ran ITt AiU ,CMLE- - -

g i

, K. LIV.'  ? .! !U/ 'JI C.:Dr S!2: T UI,ISC2: ( T :"M '.. )

.e-- -.

,; , ,.s. v . . . - ... - ..,.. .: . _ . =. : _ w .

. i: g... f, ... 4.g ..:. ,...a y- -: g

. f -7,,DP E. . , . ..--. . . , .

i. conis :ninn.ve, .

h 542 bee . Fa, .19%b. . .y nm , si vrasu. se p. o. sex,d i'

e

~l! 2. Cr tse Ns.',P.8A PW s t-4 v . . 93 esme en et lavstets, 37'. . .. . , ,. . . , . . . .

. -b "*" " * ' .'.

~

-- . m ' . . : . .vt. . .;.' -- :. n . - - ~= -

,. .- . ., ..=

~ ..

C -Ilpl-i'l0442-c- s't8

  • l; -

runce.:.:n. c:n: arv. t nr. a.:1 z::. 5

" - -i- .

w.#n cua N- '**O  %. r

~m.n :.a .

u M ?.Th CI'OUT/:0 ' i?l.".OM C0MP,M !Y J-~ em.--~j DAT:

ftt#.3 F.O.S. ago. t o.

rae e h/23/(*) b - 10 T.Ay0/ n.7 W P/3 97099 mr t c .

mumio . ~ .-. . , I f~ ~l $Hi? TQ ra'/tOYOrNb L3 li?.IG. CC:Lo. AUY f.13f.4*OR(M4 EL150:1 CC.'.'."'.'.NY h) D.'.'.' 62' '1.T Lir;71n, co:r:cTIcDr 06h83 N A8 NE E L J Dtu/st(A Z Tita . ##P ViA ~~

SI2 CLO'.I BI.ST UAI WJ' rumn u,o, hong .

oeecairtio" GAI V.O. h1')2 mt o'SW Pt.ct T'.73 E*e 3 AT.T. f.00 VOI@,Hp CEI afdM. A3. FOI.IES:

324.71) 4 (A) 66,003' 7 STn/JiD. 3/CETf.3D.'

h/Ch" EIOU  !

1012:3,h/O'6" C.GC, FIJ13 CIT TEGERAN JAci..T EGUIATICJ

- - - - - - - - - - h 575 0;t/1!'

R::, I."I*GT.3 - 3.C00 FT. -

(D) 3,000' 8 N 0, Th/A" CATJi.:D, C'2.AIID, 3/C, h/6h

FIES RT.TAf.tDA'T JACO.7 EICH TCTZRA'Itt.J

- ----- J Ir.3UIATI0",,$ 77h 2CL TCIG'28 3,000 FT. .

. *(C) 8,0038 6. ro, T c71Wto, 3/C, 4/64" EIcn 'aE2ERATDIC ETUIATIO';, .

f s

Crrdu, 57A" FIKG READLA7. ? JACCE - - - - - - - -

$ 912 7./:1' REEL LU;CES - 2,000 FT. ,.

(D) .6,000' k. AEG., T WFMD.' 3/0,'%/c"4" HIOR' TCIPI:RATUnB IBOUIATICL.

Ct.3 LID. 5/ R" Ff# 3 ICTARLAUS JAC:iETS- - - - - - - - - f.il.233,.*4/:I' M E k 1E:515E3 - 3,000 FTs . . / .

, L..

< (E) 7,3

.T s@.AUS. 3/C, 4/%" EM TCL"/.:U:G II.3UIATIcji, \

t 4

l 5/Ch" FIKIS R2.UWP JACKIF - - - .- - - - - 41,I !/3.N/.;'

5ds:tsumsr-2,50oFr g

s - '

" . ' . .T: j.i. -' .

-_ 3:. \

.k,000' ' 1/S,19, STRAND; 3/C, 5/Ch"' II1IK TL'"lPERAm:::n 214ULATIos, (F)  !

ct.s1.D;.. C/6h" FLA'O FJ.TY::UC!T JAENG - ,-.- - - - .

$2,11'i .12/..'

Ic3, 22li;tE53'- 2'000 FT. ' ' i's. ..

. >:3$' . 6' r.,' - .'

.i (G) '2,000*

h[0g, gf.jDg/S.,,.5ffh" 2 '

  • IG

_ . . .$32 }h* jgam&IE3 '----=---- ICUL*.TIO3,l2s,.. , D * ,." , j,. ,.,

nsa.wer

.g-------  ; ,j . , ,)

g nm.c.:

.r . . u-I.,... j ./.u.

, >..e ==.wr j , gggh,h3.,. -

. I.:._va-t t IJII C

a. y

. r-

. ,4.

7, t. Ann 1 l>f.'OT.I3 in TMI:CAtt ka: Sus medi WURILL to P. 9. R&.4,

s. C43 t*-d.c.p. Pe. 19403. -

C.}..anr- %.1. *Oder . .:,Wai(.O 8..Po's .=:: -- A .tpws to espise et as levoicea. r g g ;tf,*,p g*, yj 7 i . ,* " , , .

.  :: : ,* - - - - .: . : 1. .s

,Q r,

p.,- -T- -.;:~7 ~-

, . PuacHA5+G N K c-/ /o I.j -/%

[gg,v, Al f,, -AeW-o/3

,ig y; , .{

sis.m nu '

PUkCHA3 ORCER /9e E 3 of.". (3  % ..

MEROPol.lT.S.14 2DiSOM CC:/JN"! j 9:m. .?

1 t.m mxs F.C.B. 21Q. No.

P.'.E !

h/23/69 4 - 10 TAYS/im' 33. P/3 E!I-12:

..97099 155U3D To aim 4 'a o f~ ""I SHP 10 elesUiSN!Y s'.

TIG LTT.!TJ CCMiY PAtin0PouTAtt ED!:CM CCP. tat;Y h9 L.W C.C.T CI!C7Jil, C0~.;CCTICUT 06hS3 U:IE AS FAG': il L .J peuvm asans u >=, va SE. E*:LO'J BEST VAT '

7E **"l'Wo.ko00 eeaeaenio" (tar v.o. hios "* -

PA03 T:CCC REEL LECES - 2,000 FT. ,

(H) 2,o00' h/0,'19 STRAED, 3/C,' 5/04" !!Ic'.1 T=PF;tAruR3 245UUSI03, ca3L D, 7/64" FIN 2 Ju ARD.u:T JAC:32. - - - - - - - .L $2,703 9.t/;','

, Rri:L miGIES - 2,000 FT.

(J) 6,000' 35o l'A:,'37 CWAt:D,' 3/C, 6/64" UIan em.w.P.AIUttr ErJIN, CAPI:3, 7/C4" Fre:m m.TcanT JAc::IT --- $5,010.%/H' ICs LT.:0TE3 - 1,50o n.

1. .

(K) 2.%00' 500 2:ct. 37 SSAUD. 3/c, .6/6%" H205 'CMI21.TCP.E 22UI.W2(n, ccL:.D, 8/6h" FZ43 IrtABI&.hr <7Ac=2 --- $5,D1.S4' /:1' a::n, rr.: ass .1,soo na - -

(L) p,000' 10 K;5, T ST: I

% yp.tAID.Frxz .

3/8. 7mns 4/W YLM acta EENM - -- - DNN'8 - - - i3F6 03/i',

.- EEIE W - 3,0o0' M i,

' ..m. .

rearm, 3/c, */W P!WB REMIN.UT E3MIO3 (3.) a* ..

, y/w rxxs mansa acm .- - - ,- - - - , 6 (t3.o.* . ,

a.mm 2 ,e a n .. -: - , ,

(o- ) e,oco', r Wmg y enen, 3,w bM5n.su2 n=:sm 2UsuS3, v,, 99Mjf..,

m- sma rwm umr.nes z.

acust :. - - - - - .- - -

acs, sxaTu - e,oco.n.

.;:g ,.

.(k) e,oco' a mio, 7 saren. 3/c, 'I/w nm= xmW n:m3Io".,

c.es::3, sm" ner:: n=/ .ca:T ms. ---- -- - - A,,2 n.., , e_..3 -

7.,

.m_,.... . ......c,....

. . . . .,,.= - -= _e-Iu maan s:.::x: :- r j .

t. . .p ..3.

. . .e.., I., 4 ) .,-.=,

)

, geeste.s. , A.

j l. Msii I,r.'CI .*3 in 7 JuCAft ,,,;4sr V.aln'wAYdttL to P. O. Sckg';

s Mt tenAng.Pe. 1968$.

,jp

! 2. 'Osdsr Pte.. P.O.P. Pets # ed farm, ao er;,ar en er pe.

0.'r , -

. - : .' ' -r=~.==',--- ~~_-~* , ,

,gr,,,,gy ,g.syg. 7,.; . .

t .. e -

x .- . ,ru.. .a ... -~s ,;p.w. w e.g. ,gs L?,?"-,' '

M!" CIM c-ust no-mo o te.

KG V. I Ah* 9.ts] .-%? . .

a;5 121 3;Li PURCHASE 0t33 jge.g 9 o g. g3 '._3__

. v.

e . . r' Pi . C ." C4' .TI'. , ". . e". ",.. . ' S O ."i '% cyi n".)m' . ",", l pa..g,#'g Daft HUAS F.O.R. p*. . ".., ,6 83Q. NO.

4/23/@ b - 10 Da s/m:T 30 P/3 tc-M . 97099 135ttD TO

,,evs .- e n.

.I 1 ,s no:n..,enan

$Hl? TO _ao c. .s n auas. s THE '~T.Id: CC:':LT h9 Dc.Y u r.:'t.T JMTRorOLITM1 ECl:0:1 COM.".'.!!Y S3,;.'/J9, CCT'?CTICUT 06hS3 A0 NE N L _J

- ceuvw an,r.no se va e

SG PIIC.T BE3T WAY YE "

U.0. It0M *'8888P"

  • an V.O. k192 "'en o s=$,$

PAGE P003 ,

mn IrcTa - 2,000 rT. .

(4) 2,oco' h/o,19 srma, 3/c, 5/A" nx$ RITeoAn nacIATrar

, C.GTJD. 7/A" FIA:0 RETARDA:JT JACEEY. - - - - - - - ,- $2,309 30/11'

. R2L m GTH - 2,000 F.T.. .. .

(n) 1,500' 2/0.19 GT?x!D, 3/C, 5/%" MK3 PhTAnck:e IsscIArmt, CIA'I;'D, 6/W FIK3 BEI!.3%".T JAC2. '

De* M M f*' te -

P.m:1. Iro n -1,5co PT.? A

= ,

AIrmr uIca -

i (a) (r.w:2) .

(T) 2,000' Tdo 1:llMs 61 iCArDs:3/C. 7/A" FIArt m:trJtacrr I:sutscIou, CMI.I3r 8/A" FIAME M*.2AZIL11P2 JACCE ~

. $9,921.C0/.I'

. D.

a m . I m mu s ;. 1 ,00 0 F r.: . *

. . 3,( . .

a * .

.h.' L-IT2t EK-1 UIELw. c.r.wna.::9 CUS 7520AND CAM -

1

%,. LITGTJ 03 LAC ~d - .

RE.f, . .:. . - . -

., j ,Russar naqurnm a - sm=m..a, asce  ;.

s.~. ... ,

Et,-% f.IJ, ~

se FCT.ic,V4:i M.2I'tE. A3 IQLLC::St l 'i,.t d.

324.71) .,

. . . . f t ...w;.l. -

. : ~ . g. .w ~.,

.(A) (me uzn ~'.

, ' y;.

. u --

.(r.) (:.o2 un ). '

7'.J, v. J...

(cc:.;1:.u: o)

... - % ,.. _ _  % =--- -- ----,

~~~

- . --u .-. . r : . . .. . '- : . . ::. . e. :::.

. . n. .- e u m = u .

- MINO70'.!TAH ID:0G!1 a.7. .s

.. 4 a. g .,.,.saaaw 1 p.,v. .,.s. . . %. '

4 ,

's 1 Med L'fmeC5 h TTLICAM tipAe m WAYsitt to P. O. SCX, SIADW3. P A 1 $41 Rasubs Fe. 19h. tt

. ' ,,' k/ . .

p.+, w un . ,, mn, , ,e w,.r o'12. - ou ew v.o.v.

. __..-.. : a. . .::. .-

- el .

.:-.a:= :. : . .') +2 - Y---itW.:ATJ.0-0.?-I. *l. 2. " 7" tr -

p y- -

C-//c(-77o-/E%-otti g-...-+e ,

PUCCHAE.'O DU?. 84 M l Af P, g, f 4 . .@:;]

D3 PURCHASE OTDER OA GE 1~' CF- D m.n, u:n .

=_

l METaOPCI.iTAM 201.9OM COMMN'/ l ..r. cm. ,.

i l PACO 5 ma n '.'s r.o.a. .

no. so. .

I h/23/69 b .10 I w /n.T 30 - P/8 . c.:I.g 97099 '

its*J2D To a,m com ro. .!

I 7 SHIP To

'eE UYYeEb

" 23T!I"'" C '

Z.,9

  • D,,,.f -..-.'..',."4.'!P E T MITr.OPOLITAN :D130:1 Col.*JAtu M
g. *, t,0 PAE fl.

C!.m:*/UR, CL*.;;.UCTICUT 05483 .

L .J BE S BI L Ctf D2CT UM .

'T

, *N W.O. 14000 *88C8T"

Q&I W.O. h192 "8 D'5W~;

PAE FIY3 -

(C) (*:00 US ) -

(D) (EOT US D) *'

(L') 9,000' 10 E'G, T 0 RX3, 2/C .k/6h" hZGE T:l:NEREUli!ESUIATIC7 CX1LTD, h/6h" FLtJ2: RETATD. tit JAc:er - - - - - - - - - h 273.00/i? .

E':CL JE:*GT13 -3,000 FT. , ,

(F) .G,0008 '

8CALL #10,*D, 7 STRAl'D, h/6h" FLAl.tg 2/C,F h/64" wanna'FA HIOS JACCE T2:STEATURE ------.'--

3EDULt.TIO.1,$ 37T

- Ic2L L!:aon:s ' 3,000 FT.- . .

o .

(c) 6,0c0' 4 L's, T stranr,. e/e, h/sn='azna scissauxes, caara,.

4/6e La: n n'. amer Jacar - - - - - - - - - - . 4 52o.l.:Ae mzar, m w r.a - e, coo vr.

.  :. 's .

.--(u). a,0co' 4'm, muuc:s. eJea n/6e sxcs rairenassan, enara,

v. E'.JARB52 JAC:::X ai - .- . v...-

- - - - -  % TT1 9 f.?

.. [, ..... ..

- e,eco rsw -

. ' i .. .

' p :... .m. -

e.r.. u .es:,wm - wic.i erta

"~

- <P 4;. , 37.L2 . - r:

l. -

. . . L.  :; .[ g Mig &.

n 2xys:w use a ros.+2r:r : HM..%y v. ,

ar-- -== a

, i @ '. . anguaggra.  ?, .

,- . . u .3-u . ; . , ,..

wy, n-5 Art. . (oo vem tarm.x;p g.m muG.A ..

a/e,1s.esriar h/c, nick" e 6 25sma ' d4. ppm $. ". ,6.?

(f.) s. owc c .

d i aitm

a. w r02

, (c ,, i. . ,)

.... . <. _. . ...., ....,_....___..w . . .

- . . METEO.*0UTAII E0b.,, v.. * .

p . 4. 4e . k .2 -

  • 5' -*'
s. or*.i tk., p.c.t. r :,.: a.e v,., e, .,u , ,. d weese,, .  :. .g

. g gILv1f,g ,1,n (a L*sg . ,-

. C3

.- --m. --- - - --

. = : - ~: : :- _1 '

M -. .~ '

.___ _ _ _ _ _ _ _. - g C-v /o/ .7 po J $ 7 o -os s ____ _

PURCHAllNG OEPT. M W/ N'f. 8. / & - Il

.h.

w.pk. by,,/ . .--

PURCHA52 07.0ER " b*O ~

.=.

T.'l's" 'P.DE'."J METP.OPOL17AM ED1SOM C0MPANY *

Ci;'n l PHONE 215-929 3601 PAGE 20 oAtt fit 4 P0L 810 NO-3/19/T0 h/10/30 97099

-P/S DII-DC ,

liMID to 0%UW.L \

l""*'*""'.

M EM CGM WO PE!!!GYLVARIA PLAZA MET'tOPOUTAN EDISON CCl.W.NY ITEW YOIZ, CW YORK 10001 SA'dE AS PA03 #19 L l or, via, esoasno SEE BELOW- '"*"*

BEST VAY mJ oawn , W.O 4000 oasc irtion GAI W.O. h192 rs't l o>scom O PAGE TWE!TY DELIYZRY R QUIRED: AS SOON AS P'OSSIBLE REDUCE SUB-ITD8 (T)ASFOLI#.fS rR0x 5,000 TO 2,000' 750:!C"!, 61 STRAUD, 3/C, 7/6k" HICH Trel:RATURE

" M ' (T)

INSULATIO3, CA3 LED, 8/M" FLAME RETARDAL'i' JACKET ADD TEii: FOLLOWE:0 GUB nt'7

' 3X-3

. (U) 7,500' 's50 !!CH 37 2 5

r O '

_ =

_. m L I m iS 1500 rT. .

(V) 9,60(*' 500 WCW, 37 STRA3D, 6/C, COUSISTIE0 OF.3.500 MCM TINIED CCFFER.6/6k" ETI IISULATION CABLED AMD 8/6k" FLAME RETARDA5T JACEET AUD 3,1/0 C03DOCT03S, STRAUD Tn3ED COPPE, IN TEE Drn.mnCES WITH GALVAUIZED STIEL lit:RLOCIED AR:40R.

REEL LI*a'OTES - 1200 FT.

REFER ALL bdu;3i$N '

  • i

_ .ws , == = =.u

_ m as. -. a w - . =. .

~

L'40 nim'lN01:"3 .I momuTAN E0!$0N C "' U -

O f TF,lPLIC TI segeshee ensin WAYBl'.L te Asievais .j stA:tra. PA.

le D.p nm.ss, P. O. 89X $42 Reeding, P. 19433. ,,

t .;,l.,C2 der. S- -. .F.C 3, Peias .ei tasas .. .;,.ne en et! Irvslees.

j , g7py , , n,, , . ., . . g ,, .

c/IC/-770 -g no m 3 PURCHAr..!G D3PT. MM# / AM 8  !

@g I.E.."_. . .U' -

ruRcHA:,:: Onorit / 4GliL 7 or- 0 E__ _.

I*l7t"?d'l"Uf;."," ME7ROPOLliAM EDISOM COMPAW/

PHONE 215-f:7-3601 l  ;;;g g GE 2l

]

DATI- 1ItMS F.C.s. RIO. HQ.

3/19/70 h/10/30 -P/S mI.m 97099

. #".', f 7". P..

13:UD TO rotu Ano eam.h' I l Sti;? TO m mT: ccam ).mo;outui t r >"-"' ca"-"r/ '" "

T40 P3'.TSILVMiIA PLAZA -

EW YOM, LT4 YORK 10001 EEE AS PAGE N9 L .J C ounut uswa SE BELOW smo m BEST PAY II II I -

m

. cuAmn l W,0, 4000 o e s C t i P f 10 N GAI W.O. k192 nu lo new PAGE TVL*'TY-01:":

O (W) k,000' T50 MCM, 61 STPJL!TD, 6/C, CONSISTD0 CF 3,750 MCM THED COPPER 7/64 ETK IllSUIATIO:I CABLED AliD 0/64" FL&tE RETARDANT JACE AliD 3,1/0 CO !DUCOTR'3, STRAND TD! FED COPPER, IN TE IUTERSTICE5 WITH GALYNIILED STD:L ETERLOCCD AR:'OR.

O.M10VNt. 6 g . , .

RD1 LGOTES - 1000 7T. .

TAO: IT*2! EK-3 3 TITH CORESP0"DI:'O Str3-ITrM frn CA3LE

, LE!NT1 O'l CAC.i Q DELITERY REQ b e AS 880tt AS POSSIBM EF2 TO ITD! C*-k ALD ADD TH2 FOLLO7 ISO SUB'-ITCT.1:

Er.,-k ' ALL DC POWER CAB 2 , m m . A8 70LLOWS (A) 15,004' 10 AWO, 7 STRAND, 2/C, h/6k" ETK IKSUIATION, CABLED 0 -

4/64" FLA12 RETARDAET JACM, GALVARI2D STE1L DITS-IDCEED AR:0R. ,

REIL LL"JOTd - 3000 Fr.

.(2) 6,000' 8 AVO, 7 STRAND, 2/c, h/6h" ETK HISULATION, CABLED h/6%" FLA;tE RETARDALT JACKET, CALVAITIZED STEI'L IHTER-LOCDQ AR::0R.

REFE3 ALL tinutR$$ 40: '

(CO*TII'!Uq' _)_.. ,

._.-.. _ e I.T. -

ET NOTiil l d o.So u M r I m C O.' T. W

'"'

  • T~Igt c enin.,  ;+ r Ayatt.t. i. A <em.

'j s etAnw. Pa.

x vet n..:..:. P., um. ); .

.... . .o. a. P.ai 3. f r.s . i. m m .. .it t.w.s in. .

Ir 42. Tris enat 7o :s sc: csn. 30 AT em:s. 9 -

tr EIDEt3U?.E 0C LA37 P/ Ta -. -

c-//o/-7 7o-ap eg of g .., Y PURCH AllHG DEPT. N V. / ,4 /f. !!P . / t/. N $535 runCHA:E ORDER O /3 _-

. @4f^1.!!G... ~

!!L"T.f"I'??E'" METROPOLliAM EDISON COMPANY [~;;;l;n j

, PHONE 215-629-3601 Daft TitES, P.O.B. 313.113. .

' NZ 22 3/19/70 ' 12 /10/30

  • P/S 97099

'DG-EK tssuto to #iid!#'s1 -

I 'l 5Hi? TO

"" n * * "c a w)

' LIE XERITE CC:ElY METP.0FollTM1 EDISON Cou.PANY WO PECISYLVAUIA PIAZA NE'4 YORK, LTJ YORK 10001 g 33 pg gp L .J O -- + . _, --

m,,,

Q" ovemrr W.O. k000 o i a e a i P 710 N GAI V 0, klg2 FNc3 ltuu O REEL LERGTES - 3000 M.

(C) 2,000' 6 AWG, T GTREJD, 2/C b/6b" HTE INSULATION . CABLED h/6k" FLA?2 RETARDAi!T JACKET, GALVA!!IZD STEEL INTI:RLOCIED ARMOR.

,,, N "

REEL LE30TH8 - 2000 FT.

(D) 2,000' b AWG, 7 STRAUD, 2/C, h/6k" ETE IISULATION, CABLED 5/6k"

~

, FLA!.(E ReTARDLT JACEET, GALVAllIZED STEEL Ilii1314C"ED A1 EOR. '

s

~

O REEL LEMITH3 - 2000 FT.

1J) 3,0008 2 AWG, i STRAND, 2/C, b/6k" ETE IE80LATION, CABLED 5/6h" FLAME IlmmtiT JACKET, GALVAXIEED STIEL INTERIDCED O =

%c

=- ' '

'* M '

REEL LE'OTh8d - 1500 FT.

(K) 1,500' 2/0,19STRAED,2/0,5/6k"'hTKkJ8UIATION,CABL2,6/6k" FLAMI RETAPJ1 ANT JACELT, CALYE'IEED 8 TEEL IliTi2IhCKED ARMOR.

REFER ALL INQuiRIE5 T0;

,. . vv m ers m r..i-REEL LECTHS - 1500 M. '

"'.- W . (CO..r wbm) i 1

l

-.2-

...w...-_..- . -.

lL1 gg7;tg .t- M2TROPOUTMI E0!50N CO!.W.NY

1. *

..m i.h UAY RILL ** Aa.unu . . ,(@NC. F A.

.P ..dia Pe. lH03. t

  • 2. .e er.1 uma re ss,w ett tu slus. '

(. a .3.Y .

e r.o. c.a. Acx.a. cut.t.oc o A.T..o.se.s

. . . = - ..i

., Br gJgnNIUP.E O?.LLt.S.UJLGI .

r: c: ._ PufCHA51tlG DP.PT.

C -//o / 7 M -g R o f _

w(t.rj_.,. h. /.. ..

PURCHASE ORDER M/ A Ma 8. / Y "'" --2.

=e-

=%T"r2:,l%".' ' T *F- / 3  :.

METP,O?OLITAN EDiSOM COMPANY .

. Daft 115 %8 PHONE 215-929.*401 * * [- ; d '/," ~

F.01 .

3/19/70 ItQ. HO. PAGE 23

/10/30 -

P/8 TMI-EK 97099 135VID l'O :N

, I'" *??"

    • "*E.  ?..

WE ).*ERITE CO.'3'A!&

WO PE ulSYLVUIA PLAZA METROPOUTAN ED15',H COMAN/

KLV YORK, TIW YOPX 10001 SAKE AS PAGE (19 L

J h

ma'"" " "

  • su BEra *"""

azst WAY 8;'g ) m.mn Woo. k000 oIe c 1P7 ION GAI W.Q. k192 N'C3 CIMCM O (L) 1,500'

""""~""

FLANE RETARDA!.'T JACIET, CALVAh1 ZED S ARNOR.

Ove v u.ar m.u.x ..v. , . " " ^ ^^"

REEL LENOTES - 1500 PTe TAO:

ITEMOil LI2IGRI elk EACH VITH PILL CORP 2SP02.'DINO SU3-ITIN CD CASLE DELIV RY REGIR.iD AS 800lf AS POSSILLE

^= REFER TO ITDI EL5 AND AUD THE POLIMIJG SUB-ITD!St O u-5 (B) 3,000' m vote tran= o c^>tt tr=zrs. ^= rotr"'== -

2 AWQ, T STIUutD, h/C, h/64* EIGH TEMPERATQsE I!rSULATION HN, 6/6k" rwentiw:'n g.10R FLANE R22ARDOT JACKET, GALVANIZED ,

STiZL REEL IEJ028 - 1500 FT. '

(1) 3,000' CABLED, k/64" PLAME RETARDAIIT JACIET, OA HTTrty m AL*0Re -

~

O. D. - OVI3 JACKET 0.8k", CVER AR10R 1.07 '

REFER ALL INQUIRIE5 TOMS IIIOTd* B - 1,500 FT.

(00STInUED)

,g-. w- ~ ~, , , i

. gg,, ,.

, , . . . ~ . . . .--_, ~u,;;;;,,

. -~. i

! p.gz --

. P }

METROPOUTAN E0121 CC /l.TY

.I Per  ; ether with WAYS!!.L te Attevats !

( 3. Or, esdise. Ps. 19403. R8A2 W S. 74.

Tgtg c90 go TM 2 .lat 9

  • and tsvea to apper om alllavslaes.

1

3. *W9** ****a * * * * *
  • I g

..m.____.___.___._.._--________._._______.___c.-f/4/-770.-fE9 PURCHA$;HG DEPT. gg g/g .

PuRCHAstoRDER A.qN. ,( t P. B , __ ,

.. .,!. 4..;./., ym ..

.ng, ~... . . . .

tT.t.??r2.'."."':" .* t."."'

  • METROPOLITAN PHONE 215 921 360)

EDISON COM ANY *;

.s s2 ,' "a .;.'.;. is

  • PAGE 33 P/8 l TItI.EK 97o99 t 11/03/70 i /10/30 l

+r ~"_T** ~Ns r > T' r *E 2' t_ _."'M , T "7 '('._~, " - '~ W.~ ~ 7 U" l

5 HIP TO 155UED TO

' METROPOLITAH EDISON COMPANY TEE 13' RITE COMPA'.TY C/0 UNITED I3GIlfEERS & CO:i3'30CTORS.

TWO PEmlDYLVA'ilA PLAZA

  • EU l

NEW YOEK, NEW YORE 10001 TICt3 MILE ISLAND IUCLEAR STATIO:t -

U;;IT

,,,,j ROUTE hk1 ,

L FAIN 00TE, PA. 17057 4<c V.O.-h000 QAI W.0. h192 ewcoa No. .

ottivent v'A EEST MAY v.,suvr av atoutstro SEE BELOW , ,___

a. riu e ;:: u eram ountiT v u i sTo:r svnset em Tr,: .i l l [ PAGE THIRTY-TERER

)*

i i  ;

TEIS 2p PJplE 33 TO XR ORDER #97099 DATED b/23/69 .

i

{ , I COVE lt1NG .* POWEF,CAELI i i i I

i i . _

1

" REFER !!0 p'IN El; 2 AND IECREASE AND CIAEGE 'AS FOLI4W5:

i i i I I

f  ! ,

ZE 2 ALL  ! ssi' #d%CABLEj $ERT2R ,

i i i FRold

  • l l l

30,000' 8

l 1 20  !

32,000' 4/0AWO'. 3/C NOU 8HIELDED, 8/A" EIGE TRtrERATUP.E INSULAT DE, l1 (A) 6/6k" BB JACErf f CABLED, TAPED, GALVANIZED STEEL INTER-

  1. , l Io9ED. A: mon. , I i OD)- OTERIJACIEW 2.39", OVER ABER 2.62" ' $3.396 12/M' m I.tNGTits - 2000 FT; i

] ,

TAoTEEA6DITrorAI, i,00o' - Im But. sus Im (AL i l

l l '

20N l l -

6,000' l

] (s). 9,000' 35cMCN, 3/C, non-wme, 9/A" EzGE TmPERATURE INSUME

05, j 7/6b" US JACKETj CABLED, TAPED, GALVAllIZED STEEL ZETER. j IACEED ARMOL -l --

ODt- CTIRIJACERT 2. h", CVER ABEIR 3.12" 65,350J88/Mt REEL .

50) FT.

t TAG TER ADDITIO)AL 5,000' - ITDI EK-2. SUE-ITIN (B) I I

i i

_a r. l - l

. n ~..g, mml = .

. -a, _

_L IMPORT AN1 HOTICE METROPOLITAH EDISON COMPANY READ M.PA- .

l. ns.it INVOICE $ en TRIPLIC AT E i...eh., . sh W AYSILL t. Ass. wats e.p.u. o. .. r, o. acx S u n di . r.. itsas.

L - . . .. ... .. .. .eit ..i.... .

SIC 3ATURE OU 'IACT _ PACE,__,

--- --_--- _.-.. ~

. . . ~ . . . . PURCHA5tHC DEPT. G//0 / -~7"/o -Ef 2p,. of d PURCHASE ORDER M 'I ' 8*

'=E w . ..: iM.... n euc-(I op a, "P,"?."."d'i.'",f.'"*2 METR OI'OLiT A N EDlS ON CO MP A NY ' " " " * .

PHONE 21$.929 3601 fe*.','.'o$ .'((.7, P/.0E 34 l 11 /. 05/T. I P/S 'MI-EK ., 7, 0. n,.3

) . , . . .0 I

h./.10/30

.,,_ jt .,

E,. ,,,,,,,,7,, -.

a

_ _. m .. ___

- - -.,_~,/ .

155UED TO $ HIP To

'CI3 KCRIT : CO'IPANY , METROPOLITAN EDISON COMPANY TO IG:SYLVA!!IA PLAZA NEW YORK, LEW YORK 10001 SAlG AS PAGE #33 L J .

tN oo R vio. ue W.0e k000 QAI W.0. k192

%ELivtRY REQutlTED g gy DFLivtRY vlA gg

$5[

ITtu Q U A'N T i T V Ui SY0 Cat 5YuBOL uc ::TRu i DE SC RIP fl0N P RIC E PAbE TEIRTY-FOUR i e

l i i

FRG4 l l l 2,000' -

  • i l l 10 i l

(C)- 3,000' 50Cr!C:t', 3/C, NO: GHIELIED, 9/6k" IIGH TD(FEIUmmE INSULAT;;05, i T/6k" US JACEET CABLED, TAPED, GALVANIZED STEEL INTER- l 14CED lJUOR. 1 001. OVER l

_u.. __.iJACKET 3..;LT.".,. CVER AltKR 3.k0" n,..... - -

e i

. .v. . w, .a f,,. . ,

g '

TAD TEK ANDITIO AL ;L,000 FT. - ITD4 EK-2. RTB.-ITut (C).  !

: l REFER 70ITENEIW3 AND ENCREASE AS F0LI4W5:  ;

. I i i i IK.3 ALL 600 votT POWER CAELI i

  • i i i' 1 I

FRot! t l

144,000' l l l 20 i i . i 26T,000' 10 AWd, Tl STRAND, 3/C, h/6k" IICE TE:@ERAIURE INSULATION, j (17 CABLED, h/6k" FLAE RETARDANT JACET, GALVANIZED STEEL j IETERLOCKED ARi!OR. .

i CD)- d72Rl JACKET .70", OVER AltIDA .93" i Ess,Im ons - 3,003 ,,,

  • 575p3/n' i i 1 TNThADDITIONAL L23,000' - ITD4 EK-3. 5131TE!! (A) I, l i rRat I, i i 6,000' l  ! . I b ,000' 8AQ3, T ,- 3/C, h/6k" IIIGE TntPIRAWRE INSUIATION, I cimD,.k/ck" rtum RETArmT JAcut, OALVANEED STEEL l Il!!E:t A7.::CR. I i ODr - OVER JACh.T .7.T", OVm AR!90R 1.00" W __"** *[ bia.. M3i ' REI.L E!iGTIIS - 3,0-)0 FT. $ TT b /1'

'tO r . (COiT U C*)"

- = - = - -

~ ~

-=.

~~~_ ___ _ - _ _ _ _.. __.

IMPORTANT N0ilCE METROPOLITAN EDISCH COMPANY

1. MellINvotCtl w TRIPLIC AT E se,eees w68. W AYSILL se Assevais R E ADINC. PA .

Perebt.e Depeetmeae. F. O MC A 542 Reedkg. Ps. 19403.

1 Dedee No. P C.D. Pe6ae end ee,me se eeeeee en olt lavelee. , , g g , , gy, g . .

M_ __. -- Af rou vsri PURCHA5E ORDER W//3/-~7MQ

% (/,/ ,4 f f. 8. / y-M3-[ :iii=

}:.:h * ~m, ~ ~ ~ < (by }zogf3

~

'" '?.' M'".!*" ".N"'

METHOPOL1 TAN EDISON COMPANY ',: ',,?,,',',,',

P'10NL 215 929 M01 et.i.66encia.6.

PAGE 5) '

( l T/17/Ta j h/10/30 i P/s j TMI E 97o99

, es a _ c  :: x:: _. =  :.z w e a v s. = *m => .-

155UED TO ' $ HIP TO TER EERITE COMPANY METROPOLIT AN EDISON COMPANY TWO PENSYLVANIA PIAZA SAME AS PAGE #86 NEW YORE, NEW YORE 10001 L _J Enoon no. A/C W.0e b000 GAI W.O. h192

  1. ptLiVERY REQUt1YE0 g ggy 'O titVE RY VI A gg i T l an Q U Ali T ;T Y Ul IT O C K 1Y'4 9 0L HO .?"F. '

. a .i .a PA'Of >

) Fnow 16,000?

l I

l l

{i i

l AGB P IIGIET-FIVE i

l To l  : i

(C) 16.000' 6 AWO,' T STRANE, 3/C, b/A " EIGE TE WERATURE IIStLATION,  !

CABLED, 5/64" FLAME NETARDART JACKET, GALVANIZED STEEL -

l.

m m oCEED . . ARu a. i

. . i .

I i

OD - OVER' JAM' .$", OVER ABOR 1.08" l

; i t
  • g
IEEL LEs0rEs - 2,000' i
!PRICECEADDITICEAL2,000' ----------

i . $1,015,65/N' ygg  ! l-I 6,000'  ;

1 TO li

  • F) '8.000' 1/6,19 SERAND, 3/C', 5/A" IIGE TENFERATURE IISULATICE, I CABLED, 6/A" FLAME RETAIDART JAMEt, GALVAI!EED STEEL '

. ....e. Angs l

{ i, i i i,

OD - OVER'JACEE' 1. u.", CVER ANDR 1. A" I ii ,

uns,ipsaps-o,00"  ;

I I EsrImeEDlFRICE 05 h wmAL 2,000' ---------- $2,117jl2/M' j i i Fuou i 22,000' i l

i i TO i l  ! I f1L 24.000' h/0,19 STRAID, 3/C, 5/A" IIGE TEMPERATURE IE5ULATION,  !

CABLED T/64" FLAME'RmTAnnas? JACKER, GALVANIzRD sisEL i

......__.1 <00,,I,,E,3  ;

IMPORTANT NOTICE NETROPOLITAN EDISON COMPANY I h.it INVOICtl en TRIPLICATE ve,*' hee with WAYSILL se Assevat.

g gigggg, ya Poveble Depeameat, P. O. 80X #42 Reed 6a,. Pa. 19603

( Mll OR tR T St AC 0 to I AT CE. If ~~~

c +//o /-77o -E % ._q .=

' g

./ A P P B ,/4/- =!!;

E. z.; k M . m 7. . . .r . PURCNASE ORDER M.ct is e a -

'.=:*f?" ."""J METROPOL1 TAN EDI5ON COMPANY ':.',,'";' ,3 P@ht 315 929-3601 * .s. s.....esi l

Pt.GE 66 ~

l l T/17/7s t 4/10/30 l P/S l THI-EK

,- , r=,sm a. 7 r"nZ_ '"O W- mm 2 ~- r -

'"- U 9,3 o 93mg 155UED YO $ HIP TO THE EZRITE COMPANY METROPOLIT AN EDISON COMPANY TWO PENESYLVANIA PLAZA SAME AS PAGE #84 N W YORK, m YORK 10001 L .._........J..............._.....-.....

awoon Ao. A/c W.0. b000 GAI W.0. bl92 4tuvent atoutsito ' " " " ' '

SIR M M MAY item' cuestivv v i steer sv. sot.co 'stw ot te nie no. raier e i,

) 'FAS EIGHTY 8II

!  ! i l l l  !

OD - O7ER JACERT 1.77", OVER A30CR 2.00" l

,  ! i i REEL LEEGTES - 2 ' .

ENTIMATED PRIS W AEDITICIAL 2,000' - - - - - - - - - - - $3,133,70/M' '

Paon l l l^

6,323' l 1 -

l TO l l 1 (E) 7.523' 500 NON, 37 STRAND. :3/C, 6/64" II S TEMPERATURE IISULTATICI, .l l CABLED; 8/64" FLANE mannauf JACIET, GALVANIIED STEEL I INTERIACEED ANCR l

i CD - 0]IR JAMET 3.50", CVER ABOR 2 73" \

.  : i < i l

t .) '

nEmiuitans-1,s0e l l I l l

.__ nsTIMaqED PaICE in AtarTIMAL 1,200' - - - - - - - - - - - $6,891.8b/M' i i j L

EEFER 'j0 IIBf EE4 AND IECERASE AS FOLLOU5: -

l i l I  ;

ALL W . FT'6 MISC. OlsTROL CAELE i j , . _ .. I PR2i i i l

22s,0 w -l l 30  : i i (3) 137.000' 10 AUGJ T irTRAND6 2/C, 3/6h" PLAME NETmDart IIsutATIs, 3, PRI q h/64" FIA M RETARDANT JACERT I mumamma

  • ' i i OD - 0;65"' i N- / l l l- .

l V EEIL LEEGTE8 - 3,000 ' i E27UG'5i. lH ;3?S Di 2 (M) l 1

IMPORTANT NOTICE METROPOLITAN EDISDN COMPANY I M.il INVOICES na TRIPLIC AT E s...A.e w61st WAtsitL e. Aes.v.t. p, P.r.bl. o.,.,em.ne, P. O. se x 542 R 46a,. P., 19403.

, 3. o.4.. n . P o s . P.i.. ..d .. . .. . . ii s. ... .

3. vnis oneen to se acuwowtrocso at once. s, ATnEA'Ptma nu YMP.PAGE-

' C-lIol-7 70 -E4 y--otg MuI APP. 8.tg Peu i n 7_,

. A Technical Evaluation of the Three Mile Island Unit 1 I

Fire Barrier A=.r+:!ry Derating Assessments ALatterRaport to the USNRC Revision 0 April 10,1997 e

Steve Nowlan ,

SandiaNationalLaborstories

. Albuquerque,NewMaulco 87185 0737

., (505)s45 9850 .

3 Prepared Ibr:

Ronsido Jenkins ElectricalEngineeringBranch osce otNuclearRaastorRasulation U. S. Nuclear Rasulatory r wA Washington,DC 20555 USNRC JCN J-2503 ATTACMENT 1(a)

' ' C-1tol-770-G%-otg PK v. I A f f. d . g

  • TABLEOFCONTENTS:

Pfox 1 of zy ,

+

l .

Section East FORWARD . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1.0 INTRODUCTION

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 1.2 otientiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 1.3 Orsenindon orRepor t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 -

OVERVIEW OF 11E UTILITY APPROACH . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Application of P-46-426 to Random Fill Cable Treys . . . . . . . . . . . . . . 3 2.2.1 An Overview ofPast and Current Methods . v . . . . . . . . . . . . . . 3 2.2.2 Example Case 1: Trey 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.3 Example Case 2: Trey 551/553 . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.4 sununary of tmisbts and A ottapam . . . . . . . . . . . . . s 2.2.5 Findia.gs and P h . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Tr==*=am of All Installations as Trey tamanM i aaa . . . . . . . . . . . . . . . 10 ,

3.0 ASSESSMENT OF SPECIFIC LICENSEE RAI RESPONSES . . . ; . . . . . . . 12 3.1 RAI Itsen 1; %w C.M . . . . . . . . . . . . . . . . . . . . . . . . . 12 -

3.2 RAI Itan 2: LJoensee Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 RAI Item 3: Ampacity Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 RAIItem 4: Baaaaeilimiaa with the NEC or ICEA Tables . . . . . . . . . 13 3.5 RAI Item 5: Use ofICEA P-54 440 . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6, RAI Item 6: Cable Physical Characteristics . . . . . . . . . . . . . . . . . . . . . 14

. 3.7 RAI Item 7: Trey 590 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.8 3 RAIItem 8: ADF for Fire Barriers . . . . . . . . . ... . . . . . . . . . . . . . . 14 ,

3.9 RAI Itan 9: Banier System ibr Trays $51/553 . . . . . . . . . . . . . . . . . . 14 3.10 RAIItem 10: Cable Versus Conductor Counts . . . . . . . . . . . . . . . . . . 15 3.11 RAI Item 11: Assessments Ar Nominally Overloaded Cebles ' . . . . . . . 15 3.12 RAI Item 12: Degraded Vokage and Overload . . . . . . . . . . . . . . . . . . 15 3.13 RAI Item 13: Brunker Setting Tolerance . . . . . . . . . . . . . . . . . . . . . . . 16 '

3.14 RAIItem 14:Imed Aassesmeses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.15 RAI Item 15: Separation ofMA9 and MB9 . . . . . . . . . . . . . . . . . . . . 17 3.16 Summary ofRAI Response Assessments . . . . . . . . . . . . . . . . . . . . . . 17 4.0

SUMMARY

OF FINDINGS AND RECOMMENDATIONS . . . . . . . . . . . . 18

- Appendix A: ICEA P-54-440 Based Analysis ofCable Tray 590 and for Trey 5 51/5 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C -tl o t - 7 7 o - g <;c t o _ ,( g .

MM/ Af'P. 6. C

[ACd 3 ep y_ 7 FORWARD ,

The United States Nuclest Regulatory CW 4 (USNRC) has solicited the mapport of Sandia National Laboratories (SNL) in the review of utility submittals associated with Sre protection and electrical engineering. This letter report represents the second in a series of l

hamts assodated with the review of m bmittals torn the Three Mile Island (Th0)

Unit I nuclear plant. These submittals deal with the manaammaat of ampacity loads for cable trays and conduits protected by Thermo-Lag 3301 Sre barriers. These hwe were submined by the utility in response to USNRC Generic Latter 92 08, and in response to a subsequent USNRC RAI ofJuly 5,1996. The marrant work was perfonned as Task Order 2, Subtask 4 ofUSNRC JCN J 2503.

s M

'l-

.e 1*..

b e

  • e
. . l

.M.

C 4tol~7 7e _p=yu INV. ! Mf e. LS~

1.0 INTRODUCTION

pgpgg l.1 Background 41 ,

In response to USNRC Ooneric Latter 92 05,' the 'I1res hGe Island (TMI) nuclear plant provided daa-a===+taa of the liemanas posiden regarding ampacity'derating thetors aseodated with ha instaBed Thorno Lag 330-1 are barrie systems. Tbs initial submittals were forwarded to the USNRC doomment control desk urder cover letter dated March 29, 1995. SNL reviewed this subalual as daa-aa*=d in a kater report to the USNRC dated Apr9 25,1996.8 Based in part on the M review Sadings, a Raquest for Addidonal Information (RAI) was ibrwarded to the. licenses on July 5,1996.

1.2 Objecdves The.objeceive of the'cuneet review is to assess the adegancy of the licensee response to this RAL The releveng Anamanee ggyjgwgd under the Current efforts are:

- Iaeter, October 22,1996, J. Kaubel, GPU Nuclear /TMI to the USNRC Document Control Desk, kam 6710 96-2336 with two me*=aha=*, as follows:

- Attaciunset 1:" Response to the Raqoset ihr AdditionalInformation Related to Thermo-Las Assodated Densing Issues" (9 pages).

- At*achensae 2: Y lamaaaa Calculahion C' 1101 770-E420 018, Revision 0, on"TSIDerating of Cable Ampanty."

SNL was requested to review these'adwaktale unds' the tenne of the general technical support contract JCN J 2$03, Task Order 2, Subtask 4'. This is'ter report documents SNL's Gndings and r=aa===aad=*iaaa regarding the aiospeability of this lia===== submittal

. to darnaanrate that cables are operating within appropriate aspecity limits.

's '

~

1.3 Organiassion c(Report -

Seedon 2 af tbis report provides a discussion of the udlity approach f.o ampedty

========*

This fascussion includes the idanetaa=*iaa of potendal points of concern reganting the licensee's approach to mana====* Section 3 provides point by-point assessments of the licensee's speci$c RAI responess. Section 4 surnmerians the SNL findings and provides escoannanda*iaan reganling the need Ibr ad4itional infonnation to support the Saal assessment of the utility analysies.

~ 'The original SNL review efforts were perfonned under USNRC JCN J-2017.

1 L

C --// o t - 7 7 s _ g e,g o _ o ,g .

2.0 k ./ / W 2 . g --

OVERVIEW OF THE UTEJTY APPROACH g 7 2.1 Ovwview The licenses approach to ampacky derating is acawwhat differet tom that considered typical of such assesaments. In particular:

he lia=aa== epproach is based on use ot'Os IPCEA P-46-426 methods for cable trays rather than the ICEA P 54 440 anothods that are considered by SNL to be more typical Dis aspect of the licenses approach is discussed antherin semion 2.2 below.

All cable ampackylimits have been analysed as if the cable were in a clad cable tray regardless of the aceual lastaBation. This aspect of the liaaneae

--R '-M is discussed Anther in Section 2 3 below. -

As noted abovg Anther discussion on how these assumptions wlH lunpact the analysis is provided below. For now, given these two aritical starting assanptions, the licenses ampacity assessment proceeds as foBows: .

The initial base line ampacity of a given cable is takan tons ammanbewer recommended aspecky limits fbr embles instatied in open air. Dese values appear to correspond closely to the IPCEA P 46 426 ampacky tables, .

again, assuming operation in open air.

c.

nis vaka of the ope air ampacky is then a4usted for the asumed .;

ambient temperature. A value of either 35'C (95'F) or 40*C (104'P) has '?

been assumed ihr aR cables with one excepdos that involves a winter .

, heating load, and ihr winter aaaniaan assanption of a lower ambient

?

. appears appropriate. "'

The corrected open air base line ampacity is then ihrther a4usted to '

annount ihr the placement of the onble within a omble tray. This is based on the application of an ACF value takaa tem Table VH1 of the IPCEA P -

426 standard. His ACF is based on the total number of ooeductors in the /

tray. (See Anther discussion of thsee Sistors in Section 2.2 below.) De .

reauk is an estimate of the geble tray instaRetion base line ampacity.

The cable tray base line ampacity is thest a4usted ihr tbs pressoas of the Are barrier system. AB asseransats bave assumed a Ere b.-.rier ADF of 32% (ACF of 0.68). The reauk is an estimets of the derated ampacity limit for a given cable in a gNon cubie tray includes abs Srs barrier impact.

Finery the dorated ampacky limits are compared to anual in plant cable lands for an initial assessment of acceptabGity. Dis a- has included consideration orpotatial under-voltase conditions of operation.

2 W.

O

&(If/O -7?o N'/,' p 8.yz, U"',,(g Por three embles aoshaDy Lt-em=8 as owedonded, t liom$e#se$1nt a

~ has goes on to apply en abernate NBC bened approach. For this particular case the NEC approach eBows ihr slighdy bisher ampacity limits. (Sm trther discussion of abis eens in Seedon 2.2.2 below.)

2.1 Applicesion ofP 46-426 to Random FIR Cable Trays 2.1.1 - An Overview ofPast and Current Methods One very unique aspect of the Heerces's treatment is that cable tray base line ampacity lieits have been determined on the basis of the cable tray analysis approach outlined in

'IPCEA P 46-426, Power CsWe'Anyectifer la general, P-46426 is widely used to determine the bem iime ampacity of emble la open air, omeduits, duet banks, buried no magurations, and sbr irays wkh maintained speslas. While the standard does discuss ,

ap pucation of the reeks a random 85 cable tray instaleelons, this is the arm instanos in SE's experience in which these provisions beve been levoked. As will be clari6ed below, SE Sads the P-46 426 random SE tray correction &ctors to be inappropriate to thl analysis.

In order to explain Arther, a briefreview of the history of these standards is la order. In

' 1959 the ICEA (then stiE known as the IPCEA) puMished P-33-440, Facsorsfor Celestarig Ampaciales q(CsNr Immanadh Imdder.Sipporst, Dupr, and Doinghr, a little known standard no longer =aimaiaa'l by the ICEA. Den in 1962, the more coamonly recognised IPCEA P 46-426 Power CmWe A ; J45 was pubushed. In so. tion "D" ofP 46 426, the oorisceion famors tr ceWes in cable tray (both with and wl:hout ==imala=8 spesing) taken diremly som P 33-440 were ruiterated. FinaDy, in 19161CEA Standard P-54-440, "Ampecity ofCable in Open Top Cable Trays" was published.

- In considering the TMI l approach,'k is appropriate to ocasider tbs hilowing statement t

quoted diready som page 'iii' ofP-54-440 under the sesion endded 7m/': '

~Ampe#ty tabin dbr cables la trgn were pubashed in IPCEA Publication No. P 33 440 Apr52,1959, which assumed e load eversity but 6d not speciscany deems the eversity. De demands of moders gensating plants, both nuclear and fassE beled, regnire a more presise deAniden of operating wa*ia= per the deserusimation ~ef cable ampesidea.

Esperimental work with various embles and the loading of trays by J. Stolpe (citation provided) and the theory develosed by.Stolpe, Underwdters laborstories

' Inc., and others (citadoes provided) provided a more accurate meses ofcalculating mapachies of cables in trays. His work was utEsed by ajoint aa==ia= of

' IPCEA and the IEEE ta=Immt Conductors Committes la propedng tha. ampacity tables which were published la the IPCENNEMA Standards Publication for A ;r?45 qfCmWar h Opme eny CsWe Dupr, (IPCEA and NEMA citations provided), and which saperseded the beters in Table B for cables 'withoet saalstained spacing in the IPCEA " Factors for Calculating Ampacities of .

Cables Instated in ladder Supports, Treys, and Tronghs," P 33 440, April 2, 3

ffg}4 1959. Table A of that PMa=*taa covering thesars for cables whh u n#Niined N 2. 7 .

spacins is not shoted." (P.mphasis in bold fbes added.)

The mitical points to be taken Rosa this discussion are:

1. P-33 440 included cred4 for an unspecined level afinad diversity that has been removed in P 54-440.
2. The P-33-440 provisions were not considered acauste enough for use in modern ganarating plants. ,,
3. The P-54 440 tables agatada the P-33-440 non samlatalaad spacing, or random flR, cable trey ampacity correction ibcsors.
4. Tbs P-46 426 mapedty correction hators ihr rendosa f15 trays derive directly toma the P 33 440 tables, and hence, have been maparended by the P-54 440 anpaary tables and methods.

Given these obsersazions, SNL finds thatah is hany inappropriate fbr the licensee to base hs ampacity ========== for anble trays on the P-46426 random E tray correction fbetors when that methodology has been superceded by P 54440.

SNL does note the foBowing comment made in certain of the individual trey anlada+iaan provided in the original subminal (see, for namnple, the discussion ofTroy 1019/1020 on page 7 of Menehmam 2 to the lian==== subektal of March 29,1995):

9 "An additional ampedty caladesion was perflienned using ICE $'P54-440 Pi.

-9~W-;;y, the current depth of flu was calculated to be one inch. ThE 1 cables  ;)

and the P 54-440 rubberjacketed cable tray SH may sat be =MLdamly similar to provide an engineering basis ihr using this standard. Utilizing the interlocked f:

i armor cable dienster in the calculations yields cable aspechies in a one inch fill depth which approaches the Karise tes air aspecity."

Clearly the licenses has somme recognition of the role of7 54440 in such malailmiaan ,

However, the licanoes appears to ben neglected to consider that F-54 440 also sets a i limit of 50% of open air ampedly he any random 115 tray (see Semion 2.2 of the standard). For unaB depth of a values k is expoeted that the Stople/P 54 440 heet intensity method wE yield unrealimic resuha, and the 80% of open air limit wE correct this known femurs of the approach. In ganaral, tMs " problem" is likely to occur fbr any cable whose amuel diameter is yester than the onionised depth of SR ibr, the tray as a whole. This provision should address the lionseee's apparent concern regarding applicabihty of the P 54 440 standard.

m.

SE also notes the % matensa *mciudada' dre Eemises rp to RAI iten 5 of the aarrest submittal: .

4 w

- (Eoq C -ub/-

l'4M77o I st p/. 8, q-

"lCAA P.54 440 was appued la seen of the e,ases as an ehrrt vNonTf D the ampacky values enlaulate by IPCIA P 46 426 mJthodolopy. Where ICEA P.

54 440 us used, la er as oness more margia was ladiented an'. mi other anses less margia wasindicesed?

De liomanes goes on to sense that the Seal asseumsass are based on the P 46426 r d+'-n.;y. SNL Bads that the P.54 440 approach is appEemble to the liosas.e's onble troys. As wil be dissussed Anther below, INL recomanseds that the noeness's assessments abound ladude the seasiderudos of the P 54 440 approach and the resulting

  • Pachylinha.

Howwar, in mandag this im - '"' , INL also rrogained that a legitimate question that should also be considered is has the Rosasse obtained a sommervaehe resuk la the Seal analysis? 5NL has emplored this queados la some desau as dissunned la esadoes 2.2.2 and 2.2.3 below. In particular, there are two (and only two) eases est which a direct compadson of the P-46 426 oorression faasore and the anpasky lents set la P.54-440 can be made by sNL band to the evaBebie inAmmados. De erldeal vehm that is not reponed by the noenses ihr the rest of the appusadone is the local ashle SR depth Ar each any Oncluding smodnuous land enhies). Assunny, given simply the width of each trey, the 8til depth can buedly enlaulated given the other imemandoa la the loanese subad'.tal.

L2 Example Cse 1: Trey 590 De Bret case for wblah the liosassa has given the leAmeetion needed Ar sNL to complete a P 54 440 analysis is" Troy 590', he "mora"inAmmodon was actually presented in the oometent of the liosasse's abernate analysis based on the NEC approach to l troy aspecky assamments as da=== mad on Pass 17 of the omlaulados. Hemos, a

! comparison to the NBC approach is also poestda.

For compahison purposes, ENL bas an'. lysed this troy unist the P.54 440 approach. The det.11s of the calculados: are prwided in Appendir. A to this report. The ruuks of tids SNL analysis for ensk of the ibur onble sians oossained la Troy 590 are presented in Table 2.1. All values la this table are base line* ampacity links ihr the cable la a tray hafats anooussing Sur the f!re border ACF, As shown in this table, the liesasee's F 46-426 reseks are at conservedve la comparison to F 54 440. De lissesse's NBC based aanlyses are unifbrady noh in ooreparison to the P.54 440 value6, but wkh the mospdos of the 10 AWO nomeuctcr, the differssoas are quke modest (no more than 3,3% devission).

For the 10 AWO anble the NBC based resuk appears to be elendy queadomable because the open air limit shed by the Bonesse ihr this ashle is just M A (ase lioerees table 4).

Hmos, the Ecemen has asemDy concluded that sa angedty, M A, that asseds 1: own sited open air link of M A is annuany noospenbla. Ttis is an *n c 'n resuk and should not have base credpad by the licenses. .

c Jol "?o s-Ryto c:yf yW*o t/ar.tr~

"I o r- t_ ~j ,

Table 2.1: A sempedson of the llosasse W mapeaky limbs derived torn P 46 426 to those dertved by SNL tom P 54 440 lbr Trey 590. 4 Cable 51ss: IJsssessdied IJoenses skad base ' Trey baseline limit baseline traylink line traylink tres DomP 54-440 tom P.42-426 NEC Anicle 318 (by SNL) 3/C #10 24 36 27 3/C#1/0 132 155 150 3/C #2/0 152 177 _ 174 3/C #4/0 207 237 236 I

The observed conserveden of the P 46 424 " " 2.y Ibr this pulauter ones can be .

direcdy , attributed to two obearvanoas: -

1. The tray Eli ihr Trey 590 was reisdvoly low, As a resuk, the eBowable empedty links dertved toe the heat intensity seethod are only sEgndy lower than the open air limita. Hence, la this case the 80% of open air limit l was daalaam le the P 54-440 analysis. -
2. The cable di===s at TMI l are signifonndy larger than monantly expected ihr such embles. Por example, the #10 AWO cable is sited as having a diameter of 1.08', la comparison, P 54<440 sites 0.48' to 0.64" as typioni of a 2/C #10 AWO omble. The P 54 440 approcAils .

~.

Ibadamcatally based on ab conospt of heat Istaasky, or the eBowable -

volumstdc heating rate. Under this method a physionDy larger emble of a .,-

givna wire gauge is eBowed a ,,, gat-: rij bisher esapneley Emit. P. ..46-426 does not a(utt for oeblo diameter because k is not bened on the .;.

, heat intensky apprendi. Hence, Air the rather Pwei, diennster oubles at 'l.

nG 1 this is a souros of conserveden ild P 46426 as cosapered to P 54-440. .

The bcmom line on this example is that even under the P 54440 approach the 80% of in open air ampecify limit turned out to be the undeste linklag honor. Further, bessuse the  !?

licenses actually applied a 70% oorvoodos 6stor to the cpes air lindes, a more conservedve resuk was obtained, la this unse the Bosness's P 46-426 approach actually c Save a commervadve resuk. Homos, there is no impost on the ukimate soaslusion regarding acocptability e(the actual ampacky loads.

%e NEC based analysis did yield an appaready -ta= resuk Ser the unauer #10 AWO onble, assuaDy giving an empedty limit higher than the lissesse alted spam air limit.

The liosasse should not have credised this resuk, however, given the very amat load on this cable, 4 A, there is plenty of margin available reganBess of wblah resuk is considered.

4 6  ;.

c; f,

. C -UO/~ T7o ,A gzo ~old 2.2.3 Emanple Case 2: Trey $51/553 fEV. I A N' & s~

pg g /o p p t,7 The see'ond case that aan be esaminsJ using F 54-440 based on tin available Information is Troy 551/553. In the March 1995 licenses sube ittal, Trsy 531/533 was identised _as a 6' wide cable troy (6om both Attenbmaet 2 and Anachment 3 of the earlier mbelttal).

An analysis of this once is easily a:::;"" using e informa los plus the emble aim infonnedos ecstained in Table 3 of the ammt subseinal Again, the details of the anaiyah are prm4ded la Appendia A to this report.

la de analysis prosess, INL did note two apparus - yr.

Pint, the lisensen's March 1995 .a nmJ had sited s depth of M of 2.6' hr this tray. Given the leAmmation provided in the amat submittal, and assanies a 6' wide tray, INL has enlaulated a depth of M of 4.43". The basis for the licensee's -= of a 2.6' depth of M is unclear. -

However, k would appear that the lineases bas only allowed Ibr one 4/C 350 MCM emble la the troy rather than the two cables appaready present.

Using this namepdos INL does get a depth of SE of 2.6* as cited by the h .

Second, the linesses has sited in Table 5 of the surrumt abnimal that ths total ooeductor couet ihr this esse is 9. However, the lafbnnation I

provided in Tables 3 and 4 of the surrumt submittal imply a aaaAwar count of 11 should apply. In sostrut, if there is only one 4/C 350 MCM emble and one 3/C 4/0 emble, onesistemt 34th the 2.6' 88 assumpdon, then the conductor count should be 7. Hones the sondmetor nones of 9 is not oossiment with skher of these two M : , ~' x of the emble loading.

. Table 2.2 summerless thi ranks of the ENL analysis of this essa. The aseend enhana

, provides the liceners aired base line ampeeky Burk ihr the troy appusadoes (oolumn 6 of g liosases Table 4). Its third solumn presents INL's analysis remits asemming that the infbnnation in Tables 3 and 4 is correst, and that the depth of AB br this tray should be 4.43" The anal column presents the veaults obtained by SNL if k is samuned that the depth of M is 2.6* as shed in the March 1995 submittal

'feble 2.2: C-: 7; _ * :: ef usesses results based on F 46426 to thoes obtained by SNL using P 54 440 beibre appilaation of the Are barrier dorating hator.

Cable Sies UsensesP 46 426 ~ INLP 54 440 ENL P 54 440 AmpaaltyUnit Lhak (4.43' PIB) unit (2.6* Fill) 4/C 350 MCM 299 239 342 3/C #4/0 217 142 '207 Given these results, in ekher case the licenses nessannant of the ampacky limit for the 4/0 cable appears unifbanly = :-: ::N.04 la the ease of the 350 MCM emble wbsther or act the licensee's P-46-424 analysis is conservedve depends on what the ammi depth of

. . 7 4

C~//of-7?O~ /EWe ~c P-t w / A M o.

M is.14 as in&stal by Tables 3 and 4 of the surrent '? subahid, .

then the licens w's andyah ihr this embl6s is also signi6enady songooservedvs.

For the Anni as.essment one anus also include the Are barder darating fbetor of 32%.

Table 2.3 IDuserstes the reauks of this azardes, and includes a comparison to the died dreuit loads for thsee esbles. ,

Table 2.3: Comparison of are barrier dereted ampadry lindts and no plant emble loads Cable slas P 46-426 P 54 440 P.54-440 Chad in plant based dorated derated limit dereted limit anspecityload .

limit (4.43'AR) (2.6'an) -

^

4/C 350 MCM 203 162 233 to A 3/C #4/0_ 147 96 141 140/146 A Oiven thses resuka, fbr the 4C 350 MCM emble adBeiset margin is eveBable to aBow for .

even the most ceaservedve of these resuks. However, ihr the 3C 64/0 emble, the lleensen l margin is not suf5 dent to allow tbr ehbar of the two P.54 440 deret6d ampedty limits. '*

'IN: discrepancy is ::; ?"y signinoent fbr the case of a 4.43' depth of SE, that esse that '

appears to most accurately reosce the indbnnation provided by the lineases. -

2.2.4 SummaryofInsightsand AW ofhnpest SNL has tvviewed the liceasse's se64e aspecky ========ms medad which is based on the random AD tray correndon fbetdrs toen TPCEA P 46-426. Two spedSc cases were analysed in an drort to assess whether or not the liosasse's trasemmat is oneservedve in $'

relation to the P.54440 methods which supersede those applied by the Hosasse. For one .f-idh case, the licensee's mana====nen were oneservadve (Trey 590). However, hr tim escond 3:

case, (Trey $31/533) the licensee's assessments were Sound to be songaaervedvs fbr at . W "'

last one of the two cable sians contained in the way, and potemdeBy tbr both emble dass. -

In seneral, SNL does note that given the very large emble desaters that pih at 4' TMI.1, the P.54-440 metted wlB generally reauk in rester generous empedty Embs being 'f,' '

derived for any case levoMas a depth of 88 that is anaBar then the diameter of the onbles s.l'.

pnment in the troy. Is these esses the 80% of opet air aspecity limit *G come lato play, J-and the licensas's P-46 424 apprendi has generally bounded this lindt already. Hanos for .-

thm. Iow an depik ease inw iioensa analysis is skdy ;

g depth of Alle are ihr the various tnrys, other than the two spedSc asses analysed above.

, 'ne only factor preventing SNL tom analysing the belanos orthe esses was that no infonnedon on the cable trey width was provided, again, acompt Ihr the two cases examined by SNL. Al of the other regvired indbanation appears to be readDy avaBable la the sen . m . m ai 7

e g w.

!.ih

. RN..

3.

~

  • ?,7e 2 ~ ey Ths 5m. a.alyses hevs .o.a .st br e iensi nome essa e derrie.ro not be conservedvs. This wB lildj ievolve cases wkh desper All depths. Hemos, cases ,

levolvius just one or two embles in a tray wB act likely be impacted by a re analysis using P 54 440 la hot, hr thsee cases P 54-440 may weR yloid a more seasrous ampachy llant depeeding on the sesductor count. It is also likely that say emble ihr which a margin of 30% or more has been demonsrated unies F 4M26 would sdil be ibund adequate under theP 2440 method as wet.

2.15 aP' dings and awh the ':-f-:':s appled by the 5camese was takes tesa lPCEA P-46 426, which la tum altes IPCEA publicados P.3M40 as the heels br the alted aspechy sorreadon ibetors for random M trays. ICIA P 54 440 sped 8enty states that the P 33 440 (a.k.a., the P 46 426) -': f:':s for reados SB trays is superseded by the P 54440 approach. Hence, INL flads that the Essasse has applied and oundstad and 'q;. 'r methodology to the analysis of hs cohne tray ampneity limbs. While the Meanses approach may actuaDy be conservedvs br some of the esses ammined, SNL also dersonstrated that the approach een lead to amweaservedvs reauka es well SNL also notes that da,lesasse response to RAl ltess 5 (see related dissuasion la section 3.5 below) died that P.M-440 analyass were perfbnned ibr some seems, and that ibr a subset of thoes cases a more onesavadve reauk war obtelmed. Pleally, INL antes that the i

Heemese did she oneosras related to some unrenBationlly high ampeeky resuhs deriving tora the P 54 440 method in ks March 1995 subtaistal, and besse, questioned the technical vaBdity of applying that H+i':s to TMI l embles. However, consideration of the Ibst that F 54 440 enabliebes 90% ofopea sir aspecity limit u a general upper bound of ochle aspecides hr random 811 trays should address these teaseras. .

SNL 6 ads that the P 54440 r'-st' :y is apploalde to the Rosanes esses and abound be inciated la'the evaluedom.~ lt is recommended that the USNRC ask the Boneses to provide

  • - a re-assessment of k empedty liseks which laelules ocasiderados of the teks imposed using the ICEA P 54 440 methodology. In particular, k is W that' re be requested 6r any emble in sfeeble tray wkh three or score embles present -

and br which a margia of 30% or less was demonstrated. This inalmles the hilowlas seven circuits: - '

LS6 (see SNL analysis of tray 531/533,844 omble), MEl, ME2, MB11 (winter coa 83urados. only), MCl2 (wister modipurados only), CH61, and LSS.

Given the apparent depth of SB and omeductor count deerspenales noted by SNL in the review of the Trsy 3M/533 ease, k is W that the Econses should aim be asked to document these anneuladoes to a adBeiset enest that both the depth ofE and -

aspecity limit eniculadoes een be vesiSed. This supplemental analysis abound be easily _

Wu by the liommen. 'ne ameple analyses provided la Appendix A Bustrate all of the importam hatures of such an analysis. -

e p .

C-//4 / - 7;u gg .

W / / M a.IS' 2.3 Treatment of AR Immanadoes as Trey lasausdoes ,

ACC Ila

  • P t'
  • ne licenses has shed that au of the embles have been assessed as if those embles were located la a emble way wkh a gaaeral tray benior i nad This is shed la panieular as indelint esses la wNdi a single emble has been wrapped ladividusDy, rather than having wrapped the troy as a whole (as sirwirr;like instrJintion) and conduits. his approach is considwed sonswhat unique, and human, warrants some enesiderados. As wul be noted below, in the case of the TMI l nadyses this approach has likely resuhed in a conservstive adrect.

The lisenses has not identiSed which of the esses analysed involve either a airwirop syne lamanastaa or a wrapped seeduit. Hemos, k is dHBouk to assess doesidvaly whosher or not this treatment is, la Amt, oneservative. As a esmeral obearvados SNL ayees with the lisenses assessment that this approach wlB be eneservedvs. ENL oSws the R"--4 rationalibr this osedusion:' '

Conduhr ne ADF associated wkh %snao4ag sind omeduits la typical pro-fonned conduk iemanados sama s uradoes ofiin type used at ns 1 how generaDy been Ibund to be quits modes; on the order or 10% or less ihr reliable test resuhs. la IPCEA F 46 426 tables, as ampesity oorrendon hr embles in ooed.Jt of about 17 20% (0.00<ACF4.83) is typionRy ahearved when the open air and conduk aspecity limits br equivelset embles are compared. Hemos, combining a 0.9 ACF br the Gro barrier with a 0.8 ACF hr the oosMiuit heelf, the open air ernpachy links would be dorated by an e5sative ACF of(0.9*0.8=0.72) for a clad conduk. His is bounded by the licenses appucados of a minimum ACF ,,

oro.68 based as a anble tray are barrier he al auqueides in its analysse.

7. .,

Airlksas For air drop type Im=Ha'taan the ACF of the Sre banier system may S easily equal or esosed that of a cable tray am benier syntess. However, the base ,il, c

line for the air drop is thnepen air osedstion, wherens the base line he the smy is 0;.

,', the random 85 open trey, a more restdetive enedidna. For random M trays, P 54- .

440 sets an overal limit on emble empedty of 80% ofope air Hait. As noted in

  • Seedon 2.2 above the lissesse has, is eSect, h r M mash a lindt la ks .

sanlynes, akhough ibey new not caplicidy shed this etienive sense, combining is the 0.8 ACF he en random a way and the 0.m conseien hr en way benier, na 9 "

edreadw ACF of(0.8'O.604.544) or yester has been applied to these .

lastaBadoes as aosqmrod to the open air limit. His aan be suposted to

+- : ld bound i the ACF of a Denno44g air drop style listanasioet

.//

De single sanspdon to this observadonis the case af drault MDi t la 9 Trey 731/732. His case appaready involves only a single sable la the tray, and M hence, de open air angiacity link he not been a4used a nSect the emble way 80% of opes air ibnit hr this lastallados. However, even if this ease lavobes as air .

drop myle banter, the emble tray doradag heter should bound the impact. This is t' beceum there is only it, one able and no numal headas ashas sa andsipated. '

la this case, the kapaat of the Sre border aloes aboukt be as wores than dm -

combined impact of a conduit plus a are banier, and as acted above, this impact .'

has also been bounded by the licamm's. andysen.

)$.:n.

'N, 10

.[.

l&.;

e

~ ~

[

C-flo(~77o-ggg]h'E W. / AH o, oivan these :trer. sNL. ands that the anni;de gd histatiedon($Ythey N # 27 onble treys wBI provide for a eoeservedve assessment of the ooeduk and individual wrap lamallah at TMI 1. This asennes, oroowse, that the emble trey base line ampeciry vabes are detendmed appropriesely (see related dinouselon la Section 2.2 above). No 'i spense modons on this aspect o(the endyds are W 9

0 i

e 4

g I$*I e

9 4

4 4

4 0

4 4

e 4

4 4

  • 4 11 6

C"1/'/~ 7?o-syes, &

3.o AssEsnatuT or srsciric ucINSEE RAI RESPONIES I MP B. (2-pAe,f, j De USNRC KAI of Ady 5.1996 included Sheen spesisc queadoes. De ibuowing sendams prodh poist+f-penst twiews of the Eseness's responses to theos RAI keins as h-ad in Attadenenc 1 dahe Esensee submittal.

3.1 RAlltan 1: h="ama* Orgenlandon 8

SwasiLof.lbsAR RA! Item I ched that the Eossese's h=====*ta= was not wou org.mised and was didBouk to ibliow. A more ooedse est of doomentation was requested. ','

svnnpah nfthe Unmesalmpansa: De Eosman repones laduda en updated enlauladon iba ampenhy links of nereo4ag sind embles.

~

Annansmam af Ramponna: The updated hh is very complete, wee organland, and is Amy adequate to ruoin the idendsed amenerns.

Edings and Ramanunandadana SNL Ands that the RAIitem has been adequately -l resolved. No thrther assions regarding this RAI kam are curready raaa===adad 3.2 RA!! tem 2: Liomese Testing Synapnin of the RAF RAl ltem 2 noted that the od$sel Esenses subehtal Gosa March 1995 indude the dieaussion of a test plan. The licenses was asked to disoues verlous aspects of the status of the plassed tests.

s.==s af A t ' --- n==E -- De Eossess respones skes that no tests have been .';

perfonned at DG 1, and that none are an*Wraead The licenses has deed that it will ,i depend on ACF values tem other industry tests.

s '

.g Annaamnant af Raspanna De licanese's response is ibDy adequate to resolve the ,,

idemi6ed concerns.  !

U i :.

Findings and Ranonunandadana SNL Ands that tbs RAI item has been adequately f resolved. No Ibrther assions regarding this RAI itemi era eurvesdy rana ==maded '

3.3 RAIItem3

AsapacityBasis Evnnpait af the RAI: RAl ltem 3 requested that the licameso more sleedy identify the basis used to establish base lies mapacky limits Amr the instaBed cables.

1 = 7': of th. m 'u7 no Eommes resposes died menudissurer data is the piimary source ofks mapachylimits.

Annaamnam afRaspanna: De licensee's repones is Adly adequate to resolve the .

identined concerns. The Econees's use of manufhcturer data is ocasidered appropriate, .;.s

n
s 12

.U fitt P.:

C+-Itot-77o -equ eg[

R.cu,/ y(, g, ig-i

. hog /g ,a 2 7 espedaDy given that the cables used at n6 1 are somewhat unique (very large overall dia==ams br a gives ambie is comparison to thoes asesidered typical).

Findinas and Rannemendatlans SNL Sads that the RAI hess has base adequately resolved. No Anther andcas regarding this RAI hem are curready renommandad-3.4 RAIhas 4:um ith theNEC w orICEA Tables Evnnpain of thalA1: RAI Item 4 requested the Boseems to reonedle the died base line ampedty limbs wkh the ladustry NEC or ICIA standards.

1.== ar.61 ' - n - --- . ne Essenes respones shed, agela, the use of manubcaurer data, and conduded that resonalliedom with'the induswy standards was not required.

Aammament af Rampanan, no Bosanee's response is Asty adequate to resolve the id aetaad concerns. Given the Eoeness's ransman on manutsourer data, reconsilladon is not annaldered amoessary. At the time this queados was raised, k was unclest where the ampadty limits had been obseined (see rnisted RAl lama 3). His point has been adequately clarined by the liosasse. .

Findinp and kannemendadama? SNL Sads that the RAI lien has been adequately resolved. No ihrther actions regarding this RAI hasa are curready rean==andad

3.5 RAIIteni5

Use ofICEA P 54440 .

Evnnpain of the RAlt RAI Itas 5 cited that the Rosases solculations, which apparently derived tosa P 54 440, were " 7"9 doomasated i to parent smisw.

, g.== nh6 i * - - - n = - ^2 De Bosnese response eben that the assessments have bem based on the random All troy methodology of P464126 or the NBC rather then P.54 440. De attached enlaulation also provides a signiSeest expension of the available hdbrention. . _

Annamment afkampanan De Booness was very respoedve to the ideadaad concerns.

De updated enlaulados inalmied la the subminal la particular prm4 des a much beproved level ofdated ihr review. ENL has also provided a esperate discussion of the lioasenes appliendon of the P-46424 methodology la Semies 2.2 above.

reain, n.d u.ap=ma. dado.r sNL Sads that the concerns raise hi the sped 6c contea of this RAI kom have been adequately resolved. No Arther endons regarding this RAI kam are amedy rama==== dad Note the reisted dissuasions la Senion 2.2 have identised one area hr which some additional blow.ap has been rennemandad e

13

-L .

C tlot-77s-g m ,,,

hi A W. 9, c >

3.6 RAI Item 6: Cable Physleal Chanumeristics f@ /7,e L7 Synneds of tha 12 RAl lteun 6 rupiested that the lesens provkle suore detaBed indbreation on the physioni charactsristbs of the embles analysed. .

s=.r.a. oriki b----- n= '-- The noensee resposes has inohaded a table of properties as a part of the attached enkadation.

Annannment of Rampanaa! De Eseness's reopease is Adly adequate to resolve the identiSed sooneras.

mainy and tsennunandadonnt, SNL Ands that the RAIitana has been adequately ,

resolved. No Arther annons regarding this RAI kam are aumetly :=aa===adad '

3.7 RAIItma 7: Troy 590Emperbesea Synopsinnf1halAI RAllessa 7 eited that the Boesses esperismaet Ar emble troy 590 was not adequately doo.unented.

synapnin of theIannaan Rampamen: De Econess resposes indicates that this emperbnent is

' no longer included as a part of the assamments.

Annamnment afkampenna! De liceness's response is AaBy adequate to resolve the '

m.ma conearns, ,

mainy and Ramanunandadans SNL Sads that the RAI kan hee been adequately -

resolved. No Aarther andoes regarding this RAI item are ammatly renaminandad

3.8 RAIItemi8

ADF thrFire Barriers  ?

Evanpals af thalA1: RAlltem 3 alted that the Eseness's assumed Mrs border ADF of 28.04% was not conservative la comparinos to nears recent industry tests, s = .='. nrt h i E -- - ti 7- De Econess response ladiostas that a medlSed value .

o(32% has been appued to at emble troy analyses based on testing by TUE. '

Annannment aflampensar De lossese's resposee is Aaly adequate to resolve the identised soneerus.

Findinp and Raennunandations* INL Ands that the RAIitems has been adequately resolved. No Anther actions regarding this RAIitens are survently reannmaandad 3.9 RAl ltees 9: Border System ihr Troys $51/555 Svnapda of tha 1AI RAl ltam 9 requested that the licanese deemibe the tre barrier systemninstalled on Treys 551/553. '

e 14 f

. C 1/oI-??o-Evto A%. I ro o. fr- 4e Evnanais af the 13ammann Raapanna De Boonese mopones indentes#* that E7hh barrier systeun is shauer to an other 1 br wrapped trays.

Ammanernant af Ramponnat The Ec.mase's resposes is Amy. adequate to resolve the identined oceoerns. -

mainy and Ramanungpdadanr 5NL Snds that the RAI hem has been adequately ruolved. No Auther assions regareng this RAI hasa are surnedy recomannded.

3.10 RAI Itasa 10: Cable Ve sus Conductor Counts synapdid1halAl RAI Itsen* 10 edted that the Bosases had based hs obrrection ibetors on a cable count rather them a conductor sount.

Synopolidtheunennen.Raspanna De Esamese respones ladiestes that the updated analyses have used a conductor count.

Amamanment of Ramponnat ne licemene's response is Any adequate to resolve the idendSed oceoerns.

Edinp and Ramansnanviatinar SNL finds that tiis RAI ham has been adequately resolved. No Auther actions regarding this RAI hemi are curready r=aa====adad.

3.11 RAIItem 11: Aa=======*= fbr NomineBy overloaded Cables -

EynapalaMiha RAl RAIItem 11 requested that the toenese provide a doenitive technical basis for ks mana ====* ofnomineBy overloaded embles that included en '

assessment ofliAilsupass.

, s. . = J h ' - - - - m - --_- -

De Bosness respones ches that the updated analysa show that no oeblos are cd.eded, and hemos," measures for moskoring for signs of accelerated age related degrededon win not be required."

Amennenant dRaspensa The Eoeness's resposes is Amy adequate to resolve the identi5ed concerns la the oostant of this particular RAI itsen. However, the concerns Waeinad by SNL in Seedon 2.2 above may impact the Boemese's essesmeset Air certain

, embles. .

Ediny and Ranonunandatlant SNL Sads tidt the RAl leens has been adequately resc4ved. No Anther andoes regarding this RAI hema era eursuedy ruan==nandad

. 3.12 RAI Itsui 12: Depeded Vohage end Ovedoed Synapala of the RAI RAI Item 12 requested that the Beamese ladede the consideration of a 10% under vokage somedom of operation, and a 15% overleed oceedon ibt applicable loads.

15

C-//4/-7M -Ens q W / Att O.tS~

s_==a. nre61 b --- n------~ hs Eoenese respaans has povided an assumment of8A G the availabic margins in the contest of the identi6ed under vokage end overload

  • oceditions. All were found noseptable to some level of margin.

Annaammant af Rampanne he liceness's resposes has included considerados of deyaded voltage conditions and ==i=== motor loads. Als is comendered adapete to resolve the identified comoerns. Note, however, the a licenses r==aaa====== of ks cables in response to SNL's concerns idees18ed h Sacsion 2.2 above may hepast this acessement as well m

r.ai

.s n= = eE== SNL Seds that the RAI hem has been adapetely resolved. No Auther actions regarding this RAI kan are surready rean==madad 3.13 RAI Item 13: Breaker Setting Tolerance -

Evnnpain af the RA1' RAIItan 13 asked the licenses to ocasider breaker setting uncertainty in the assessment of ampachy loads that are based on the airsuk breaker uning. +

s.==a. nria r 9 - n=y -- - De Eoensaa respones has demonstroemd that use of -

the actual breaker setting wkhout consklarados of the unserteimry band provides a conservative assessment of the esenhpan poselble cirouk loads.

Aameement afR ae~ aae SNL agrees whh the lioeness's assessment that the actual breaker setting does pnyvide sufBoiset ooneervatism for this ease. De empenby assessment is not latended to address breaker overload, but rather, actual nonnel operating losas, ne licenese has adequately demonstrated that ihr this case, the analyels .

has been performed in a conserveths manner, ,

pain.. .a R=

_ 4.*E= . gNL Sads that the RAIitant has been adapetely 2

, resolved. No ibrther assions regardies this RAI kemi are curready =aa===aadad .';

s 3.14 RAI Itan 14: Land A ========== -

1-ala af eka RAI' RAl ltemi 14 eited that the emble load asseamments should be based i.Y on ehher the ammal surrent Bowleg or the breaker setting +10%.

Evnannte of the t '----- a" -

no Econese respones cites that actual ourvent loads have been used in the updated analyses. In all cases, theos values were appaready less than the nossal nip meting of the Iweaker. ~

Assamanant afRmpaana.' De liceness's reopense is Any adapete to resolve the IdaseiAnd conceres. Actualloads have been used in the analysis.

Findinp W Ramanenendadana ENL Ands that the RAl leen has been adequately resolved. No Auther aedoes regenlies this RAIitem ars curtsedy rean==mandad e

.e 16 b f.

ir ,

C 4tbt-776-/E9t* ~ ofs M L, f dt. 8,ts-3.15 RAIItan 15: Separados ofMA9 and MB9 ,

pGR p Evnnpain af tha 1AT' RAl lten 15 acted that the two sirouks MA9 and MB9 were located la a anesans tray and appeared to be rubadent aireuha. The Besance was asked 2 clarWy how the separados erkeria wars nobieved.

1 - .t 'at h 1 t - eI _

- The licensee respones dies that these are non safety Balance oficiant Cirouks, and homas, separadon is not rapdred.

Annant .21UkCAMBangg 1he licensee's response is Adly adequate to resolve the Hend8.d concerns. sepermion of Appendia R sysimas is not required Findings and Ibeammandadanr INL Ands that the RAI kan has been adequately resolved. No thrther andons regarding this RAI kan are curready W

, 3.16 Sununary ofRAI Response Assessments SNL Snds that the licenses has adequately responded to a5 of the RAI hems raised in the USNRC RAI of Ady 5,,1996. No Anther andons. on these RAI , -

kann is c.urready Note that SNL kna recanunended that some r=========** be requestal as maanaamd in Seedon 2.2 above. Thess'rinasessaments may identHy addhional embles that are nominally overloaded. Hence, this raamaaaamaae may impact the licensee's respones to RAI hem 11, which is related to how the liaaname wiH handle nomineDy overk.W ombies. ,

. .I ..

O g *

.-v' W

e e

17

c -g o/ p g p o , y,4 NE v, / m, gs,,p 4.0

SUMMARY

OF FINDINGS AND RECOMMENDATIONS

(@G E W oc a7 In general, SNL Ands the limaam's sulaittal of October 22,1996 to represent a signi6 cant improvement ove,' the original sulaittal ofMarsh 1995 that was reviewed by SNL in Apr0 of 1996, The current submittalis much more complete and concies. It is now possible for SNL to follow and understand the Eoens~ee's ampacity ananammata la the specisc context of the USNRC RAI of Ady 5,1996, SNL Sods that the licenses has adequately responded to all of the speci6c kems of concern Ida dAad it is recomunended that no Auther aedons on these RAI kans is needed at the current time. Some re-.

====laattaa of the licensee respones to RAI kam 11. reganling the tr==amana of neednaUy overloaded cables, may be warranted in the Anure given that the SoBowing SNL Sading may impact the licensee's overload asessamenta.

SNL Ands that the licenses has applied an outdated metho6 logy to ks andysis that has been speci8cany superseded by the ICEA P 54 440 matb dology, For at least soene of -

the Boensee cables this has apparently resuhed in the ass.eeent of oo Nonservative ampacity limits. Further, SNL ands no basis est concluding @t the P.54 440 procedure is not appucable to the TMI.1 andyses. It is W that the USNRC ask the licenses to reezamine ks assessments and to include the consideration of P 54440 random fdl cable troy ampacity limits. In partlaular, INL raaa===ada that the USNRC ask the licenses to provide and namaldar P.54-440 based asessements 9er the P"-:n,, seven cirants:

L36, MEl, ME2, MBi l (winter con 8prados only), MCl2 (winter oca83uration only), CH61, and LSS.

. .~ .4 .

The USNRC should also ask the licenses to docuinant these analyses to a adBoient extent that both the cable tray depth of all and base line empedty celeulations can be vari 8ed. .l7

, For the balance of the licenses cables either no impact is anticipated, or the Econses has Q.

., demonstrated an adequate margin to anow for the M -f-:'-:-g ddllerenose.

f Given these 6ndings, INL recommends that a R"-: p RAI be prepared by the USNRC, However, SNL also raaa===ada that this RAI can be Emited to a single queadon J requesdng a P 54440 based re missnination of the seven onhies died above. SNL also -

notes that the requested analyses can be assuy completed by the licenses based abnost '

endroly on the inrormadea already contained in the subminal.

Le M'

I 4  ?;

18

]

n

C -t/01- ??o g c/go -dg NC V. I Arp s.e~

. Appendix A: .

(e m u ,e 2 7 ICEA P 54-440 Based Analysis of Cable Tray 590 and for Tray 551/553 .

A.1 Tmy 590 The application of P 54440 to the analysis of Tray $90 is quhe straight brward and can be sununariand as huows:

Destlul[All Trey $90 is shed on pean 57 of the selouission as a 12?. wide tray with a total of 5 embles appersedy lastalled. From P.$4 440 section 2.2, the depth M is enkadated as:

ni dl + n,d,8 + . . . . n,d,8 d f,3 3 ,,

,888F where de, is the depth of E la lashes, g is the number of cables pruneet with a diameter of d, and w ,,is the tray width.8 Udes the Beanses veksen, the 85 depth is enlaulated as:

d,,,, = f((2) (1.0s) 8+ (1. si) 8+ (1. 91) 8+ (2.16) 8) l Using this empression a B depth of 1.16' is calculated. .

n= 1i== tahuinted ==pader oivun this depth of a ihe seminal hese lhe empnetry limit can be assuy derived tosa P.54 440. To do this, SNL has takes the empeeley limits tom Table 3 12, has portrand a linear estrapolation of tae values at l' and 1.5* to get the value et 1.16'. The teamks br each anble are as huows:

Cable l' aillink 1.S* All5mit 1.16' 85 limit 44 229 229 229 24 172 165 . 170

. 14 149 139 146

  1. 10 24 . 19 22 Diamatar enemnian The tabulated ampanky is som.ated tr the assual cable diameter as per P 54440 Section 2.5 as abows in the hBowing tabis:

4 8

Note that la the enlaulsalon of a depth P 54 440 uses the equivalent crose-emotice of a square surrounding the cable rather than the asemal circular moes-maion.

This is a aa==aan souros ofmistakes. Areas aust be treated commisteady.

j 19 6

_J

' Ckev.

~//o/- 77o-Eghq

/ AM e.w Cable Tabulated taak Diameser Correedon Carmned undt 3 (asmaalhable)

    1. E7 4/0 229 * (2.1&l.87)=1,155 264 24 170 (1.91/1.56)=1.224 208 14 146 (1.81/1.47)=1.231 150
  1. 10 22 (1.084.64,* l.688 37 UspechoundJimk PS4 440 establishes an upper bound limit of 80% of the open alt aspechy as per seedon 2.2, and this maast also be seasidered as a poteadal ampadty limit.

la this step, SNL has udliand the liesases sneeubceurer based open air empedty limits ruber than the ICIA vehnes. Note that la ensk ease, the 80% of open air limit was ibund l to control mapedty fbr these esses.

L Cable P.$4 440 Limit 80% Open Air Umk Bounding unit 44 .

264 236 236

~

24 208 , 174 174

, 14 ISO 150 150

  1. 10 37 264 264 Tenparnrurn Camanian 11ds troy is cited as havies a 40'C ambient, ao no temperature ll; corresdon is required, and these final values, column 4 above, are the soneet P 54 440  ;- 4 based ampacitylimits ihr this case. . 1 tk

, AJt Troy $31/$33 '

Troy 551/553 was alted la the Ilma=ama's March 1995 a mittal as a 6' wkle troy with a .

2.6' depth of all(see either the llosasse's Anh 2 or Attaciunset 3). In the ennent l.

subminal, the troy is ched as containing three cables, two 4/C 350MChi anbles and one  :

3/C #44 cabis (see licenses Table 3 la the Alah setaebed to the ament submittal).N,; .

Given the dii,==aars of thans cables (also as speci6ed in licenses Table 3), the ICEA depth "

of Allis calculated as foBows:

du33 = ((2) (3.31)8+ (2.11)') = 4.43" J-Note that SNL has obtained a depth of All of 4.43' as compared to the Beamese sited value

' of 2.6', If one ammanes that there is only one 4/C 350 MCM omble and one 3/C #4/0 anble present, then a depth of All of 2.6* is obtained. However. Tables 3 and 4 of the current .

Eossess = Mal appear to clearty indicate that there are, in ibet, two 4/C 350 MCM embles presses.

C e

4 20 . ' .:

7 .

Critet-7,*knr~n o eja

  • MV. I. A M O ls-t*Aovt. t % *e 2'y A croso4heek of the condusser sous shed in Table 5 of the aumes ahnktal was unable to clarify the correst answer. Isi penisular, the sonduetor soues shed in Table $ is 9.

However, if there are, in hat, two 4C 3$0 MCM embles and nas 3C #4m omble (as per Tables 3 and 4), then the soneet oouet should be 11. If on the other hand, there is jus one 4C 350 MCM ombie and one WC #4/0 omble (oossiment v4th a 2.6" depth of B), then the correst count should be.7. Nekher' , J':: appears semelstemt wkh a oseducsor count of 9.

SNL will initialy preosed on the nemmeption that the correst depth of 811 is 4.43" as omiculmed above. Howner, a es and of this esseios, sNL wW also onlaatste the .

allowable empeeky assuming a 2.6' depth of M.

Given a depth of 5 of 4.43', the troy aseneBy Is outalde the nominal lindte of the ICEA

' tables which do not eenend beyond 3' ma. Homes, some twersion to the original Stolpe but imen*y approach is required. This is amey assouplismL

~ '

x call the the smaammatai basis ofF s4 440 moederd is stolpe's andet of heet intensity, or hesdng rate per unit volumn of the sable asas, bened surreen lindts. De ICEA provides a table of heat lesensky Emits versus depth of B hr Ms rengles tom 1 to 3 -

inches (see table in Appendla B of the maniard). When plotted, thsee vabes represent a roughly linser surve on a nos los seale. This is Busasted in Flpre A.I. Henes, to a Bret order g.; ' ^^'-:+, we oss marapolate the values out to 4.43' depth of 8ll using a linear "

entrapo!ation of the ICIA log-los plot.

For this purpose, INL wlB aamune that the log 4eg curve is roughly Emser, and hence, can ]

be cxpressed using the hurming linier Aw a: ' '

~

1o9 ,(0) = A*lov3,(dn33) + 8 3

~

I i nis rM oss also be sapresed is inn muowing awa:

'., toe i ieni 4 o

.3 l

i nie mynesson oss be simpaled somewbet by menaies es powers and los arms as follows: 7. .

o = 10*ho**'a'd* f = 10** (ctnas)" -

ne prehism now is a duenmine the persamer venues er 'A' and 'n' nelas da known value pairs er 'Q' and 'dn', cheerving the behavior in Pipre A.1, note that the ICEA vahms are em asunny neeer en eis log 4ag plot. Rather, ibe slope of en anve w semper et higher heat latensky links (this is also observed la Stolpe's original plots).

Oiven this obser inion, the most aneurste approach is to use the inst two values in the ICEA table, usamly, the values at 2.5' and 3' depth of 8Es, so as to preservs the slope at 21

C-f/4/- 770 ~R*yt'o cf g 192 4. / Mt*. O. / g-~

the and of the ouve 8st -., :'"E to higher 5 depdm. Using these two points, onePAqs, een obtain twov"'m with two unhaowns (A and B) that are ensuy solved:

log 3,(1.704) = Aelog3,(2.s) + 3 ,

4 loga(1.377) = A.logi,(3.0) + 3 Solving these two equations ihr A and B SNL aamalami the ibuowing ramalts:

A = -1. 4 2 0 3~= 0.0145 -

substituting law tin da,iised emprenden above, sNL propose tim Ib5owleg simple modd tw extrapoiados of the ICIA hast intensky lindi. beyond a an depth of 2.s': .

o,,,,,,, = 10* aa.d;l;l** = s.ss3.dt *a t Note that this expression should only in applied to depth of Ms of 2.5' or yester.

Appucados to loww E depda would rudt is an over admusbe of the best ineshy because of the changing surve slaps. To Ibustrate the efRiots of this Sedag of the ICEA tables, the SNL kneer model has been maperimposed on the plot ofFigue A.1 Ser depth of Sus up to 5'.

Using a depth of Su of 4.43' la dds Anal expression yloids a host latensley limit of 0.79 W/Mn'. This value can now be used to estimate the ampacky lindt Air a given emble .

based on cable diameter and on the elocuinal resiannos of the conductors using equation 8 from Stolpe's paper: (

b.<. ..

,, o n u. . o d'.u. . ':;

, $ n ,,,,,,,, A., $ n ,,,,,,,,A,, -

Some caudos enust be mereiend boosues we have used tbs ICIA enemidos of depth of 811, .

and the ICEA heat latensity sabis. Hemos, we abound also use the ICIA impiirJ d=Aniriaa 4 of emble cromwestional area, that based on a arrounding cube as dianmad above. This is - (,

re6ecs d in the sight most aupression where d' , has base subakuted ist A ,.

For the 4/C 350 bdCM emble, with an electrient resistanie of approulmstely 4.18E 5 oluss per foot at 90'C and a diameter of 3.31", the eBowable aspecky Ensit ist each conductor -

is given by: '

y 0.79 * (3.31)8 mem , $ 4 , 4, ggg. 5 = 227 A -

4 22 f0.

g .

g ..

. . . . _------_----J

. C -// u l- 7'7 0 - g g e o . c f g f% i Nt* 7. t.C~

  • Siedlady br the 3/C 64/0 amW wkh an eioserical resistamos of obras per hot at 90'C and a dianister of 2.14', the mapasky of each esedumor is t bl[5 esthmated as:

0.19 * (2.1618) = 135 A y , $

8 3

  • 6.112-5 i

As an addidonal mereise, k is also quhe shople to rupset this prosess based on the" assumption that 2.6' is, in hat, the sorruet depth of M In this ease, a modised best

. latensky thnit of 1.687 is obtained. The corresponding 350 MCM survent limit at this depth of 88 would be: '

e 4rEl I 1.687 * (3.31)s

  • ssemer " $ 4 4, g gg.5 In which ones the 80% ofopen air link (0.t*407A=336A) would apply. The my" ;4/0 eurrent Emit would be: *

! i I

1.687 * (2.1'6)8) ,g,,3 j_ _.1_, _

y*/' ,i 3

  • 6.715-5  ;

which is lower than the 80% of open air Emit (0.t*295AW l ).

As a Anal step, e5 ofthe shove values must be corrested hr an ambisme of 35'CIrether ,

than the nominal 40*C assumed in tha tables. A corresden estor of1.05 aossaglishes '

this The anal resuks are presented in the huewiss table: E-

. i i Cable slas: Sourse / tray B 40*CIJumit 35'C Emit j 4/C 350 MCM P 54 440 /4.43' SR 227 23I P 54 440/2.6* E -

326 3W < F, 3 9

3/C #4/0 P 54 440 /4.43' E 135 142

~~

. P.54440 / 2.6' M 198 207~

By ocuparison, note that the Escenes ested 299A Apr the 350 MCM eshie and 217A lbr the 410 enkle as the tray base Iles empasily Embs. Homen, the assessment ofwhether or act the lineases analysis is conservedve wE depend on the asemi emble B. If2.6' is correct, then the Rosesse amenanset is assearveehe. If the asemel E is 4.43', then the Esenses assessment is non conservetho.

e 4

. 23 M.

4 C

7fof-77o- 29emg MU.I A T'P. 8.17

?A% 27 op zy 4

Figure A.1:

10 I

I T^ M %

^

X . . . . . gag. Bahamsteen Mand

~~

\ tmEarum 1.g --

\

%N 4

0 t 1j 6e

'a A

g 1 g.

+

5.x.

o .

s . :.,

i.

. 4 gi i 1

g ..

ese ernu M w

4

  • e ee 8 .

24 n

.. t.

L E:li

~ .

J