ML20154P894

From kanterella
Jump to navigation Jump to search
Non-proprietary Rev 1 to Psat 05653A.04, Formulation of OTSG DF for Radioiodine (as I2) to Be Credited for TMI-1 Mlsb with Ais/Pas
ML20154P894
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 05/13/1998
From: Leaver D, Metcalf J
POLESTAR APPLIED TECHNOLOGY, INC.
To:
Shared Package
ML20138L375 List:
References
PSAT-05653A.04, PSAT-05653A.04-R01, PSAT-5653A.4, PSAT-5653A.4-R1, NUDOCS 9810230097
Download: ML20154P894 (65)


Text

__ =.. ._. . . . . . - . . . . - . . . . . _ . . _.

ENCLOSURE 4 Non-Proprietary Polestar Calculation No. PSAT 05653A.04, Rev. I 9810230097 981019 PDR ADOCK 05000289 P PDR

PS AT 05653 A.04 Page 1 of 20 Rev. Oh 3 4 CALCULATION TITLE PAGE I

CALCULATION NUMBER
PSAT 05653A.04 l 1

l CALCULATION TITLE: Formulation of a Once-Through Steam Generator DF for Radiciodine (as I2) to be Credited for TMI-l MSLB w/ AIS/ PAS 1

( ORIGINATOR CHECKER IND REVIEWER Print / Sign /Date Print / Sign /Date Print / Sign /Date l

REVISION: 0 3 y 'eq6 ~0. . . a L- ~0.a Lu~

-/y7 DElm- n./r/n 95 L "/r/n 1 .

> }1eAcati D a d la, ~<  % . . A La.---

Qicx,},jg Q E w r/n/n b s w r/uln 2 /

3 4

REASON FOR REVISION: Nonconformance Rpt 0 - Initial Issue N/A 1 - Change in Attachment I spread-sheet to reflect 0.25 ppm Li N/A instead of 0.25 ppm LiOH (change in Reference 3)

Minor correction to Attachment 2 spread-sheet Addition of pre-accident spike case (note title change), including Attachments 3 and 4 2

, 3 l

i 4

PSAT 05653 A.04 Page 2 of 20 Rev. 0@2 3 4 Table of Contents Section Page Purpose 2

Methodology 3 Assumptions 3 References 6 Calculation I

Flashing and Evaporation to Dryness 6 12 Deposition on Steam Generator Tubes 15 Results 16 Conclusions 18 Appendix A: HNO3 Production as a Result of Nitrogenated Water Injected in the RCS,5 pages Appendix B: 12 Deposition on OTSG Tubes as a Function of Tube Temperature and Mass Leak Rate,6 pages Attachment 1: Spread-Sheet for Evaporation to Dryness, AIS Case,8 pages Attachment 2: Spread-Sheet for Final Release Fractions, AIS Case,8 pages Attachment 3: Spread-Sheet for Evaporation to Dryness, PAS Case,8 pages Attachment 4: Spread-Sheet for Final Release Fractions, PAS Case, 8 pages Purpose The purpose of this calculation is to calculate the overall radioiodine DF for the affected (and, if necessary, the unaffected) TMI-l Once-Through Steam Generator (OTSG) as a function of time for a Main Steam Line Break (MSLB) with pnmary-to-secondary leakage of 2.5 lbm/sec (corresponding to 3228 gallons of reactor coolant at operating conditions leaked over two hours).

This calculation considers both an Accident-Induced Spike (AIS) of radiciodine in the reactor coolant and a Pre-Accident Spike (PAS) of radioiodine in the reactor coolant.

PSAT 05653 A.04 Page 3 of 20 l Rev 0@2 3 4 l

Methodology The overall approach is to apply the Reference I assumption that the radiciodine released from the affected OTSG is equal to the flashing fraction of the reactor coolant being released (in this case to the affected OTSG), but not less than a fixed percentage. For the unaffected OTSG the intact path to the main condenser and the condenser, itself, is credited which makes its contribution to offsite dose negligible (see Assumption 1).

The calculation also neglects the contribution to radiciodine release ofliquid carryover (release of entrained liquid with radioiodine in solution). This is based on the very small entrained liquid l release fractions expected after blowdown (see Assumption 2). The radiciodine release would, instead, be controlled by the release ofl2 I2 is a volatile substance which has moderate solubility in water and exhibits a propensity for adsorption onto metal surfaces (see Appendix B). Thus, when considering the transport of radioiodine into and through the OTSG as a result of primary-to-secondary leakage following a MSLB, the following need to be evaluated:

. 12 appearance as the result of partitioning as liquid flashes,
2. 12 appearance as the result of evaporation-to-dryness of unflashed liquid, l
3. 1 apwarance 2 as the result of stripping ofliquid remaining in the steam generator,
4. 12 deposition in the steam generator, primarily on the Inconel-600 tubes.

The first two items dominate the behavior of radioiodine in the affected OTSG throughout most of the cooldown. The third item is important only if water begins to accumulate in the affected OTSG. This is not expected (see Assumption 3). However, the discussion ofItem 3 is relevant to the behavior in the unaffected OTSG and the main condenser (see Assumption 1). Item 4 is important late in the cooldown; i.e., once the tube surface temperature drops below about 300 F, significant I2deposition on the tube surfaces will occur.

Assumptions i

Assumption 1: The contribution of the unaffected OTSG to offsite dose is negligible.

Justification: This assumption is based on the fact that I2 si moderately soluble, its solubility is inversely proportional to temperature, it has an affinity for cold, metal surfaces, and once deposited, it can be once again dissolved in surface condensate (as r) and

washed away (Reference 2). There are two places where this behavior can be i .

_ . _ - - - -- - . _ . -- . -~ ---- . - - - . - - - - - - -

PSAT 05653 A.04 Page 4 of 20 Rev. 0@2 3 4 effective as a retention mechanism: in the unaffected OTSG and in the main  !

condenser. l In the unaffected OTSG the Emergency Feedwater (EFW) and leakage will be entering the OTSG and collecting near the bottom of the secondary side. The  ;

operator will maintain a level of approximately 30" above the tubesheet (Reference 1 3, Item 2.2). This level will vary b >th as decay power drops and primary coolant temperature drops; however, since both are dropping together, it will be assumed that this volume is a constant. Because of the quantity ofliquid entering at the top of the OTSG and the fact that most of the heat transfer is occurring at the bottom (where tubes are covered) it can be further assumed that whatever radiciodine does not escape with the flash will eventually be deposited in this water. The question is "how much will remain"?

l Consider the situation near the end of the first day for the AIS case (which bounds i the PAS case in terms of maximum iodine concentration in the coolant). Consider that the I-131 source rate into the primary coolant is about 162 Ci/ min (Reference 3, Item 4.6) so that the I-131 activity in the primary system is increasing at a rate of about = 500 pCi/L-min for a primary system volume of about 11,500 ff or 3.25 x 10' L (Reference 3, Item 3.1). Since there are about 3 x 10* g ofiodine/pCi of I-131 (Reference 3, Item 4.7), the coolant iodine mass concentration is increasing at about 1.5 x 10 g/L-min or about 1.15 x 10* g-atom /L-min. This means that at 4

the end of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, the coolant iodine concentration would be about 1.7 x 10 g-atom /L.

To be very conservative, assume that the unaffected OTSG steaming rate at this time is 1% power or about 26 Mw. This yields a steam flow of about 26 lbm/sec, most of which is coming from EFW. This would result in a volumetric steam flow out of the OTSG of about 20,000 Usec. Meanwhile, a volumetric primary coolant leak of about 1.1 Usec is bringing iodine into the OTSG at a rate of about 1.7 x 4

10 g-atom /sec. If the DF were unity, the g-atoms ofiodine leaving would have to ,

equal those entering, so the iodine concentration in the steam leaving the unaffected OTSG would have to be about 17,000 times less than that entering. If the iodine concentration in the exiting steam flow were 34,000 times less, the DF would be two, and so on.

The Islative iodine concentration of the steam flow exiting the unaffected OTSG and the water remaining in the unaffected OTSG is dependent on two things, the pH and absolute iodine concentration in the water. Let us assume that no iodine has left that system and that the water in the unaffected OTSG has a pH of 7 (Reference 3, Item 5.6). The amount ofiodine in the OTSG would be equal to the average iodine concentration leaving the primary system over the first day (about 4

8.5 x 10 g-atom /L) times the 1.1 Usec leak rate times 86,400 seconds, or about 0.081 g-atoms. Since 30" oflevelir! the OTSG corresponds to about 3,000 L

PSAT 05653 A.04 Page 5 of 20 Rev. 0@2 3 4

, (Reference 3, Item 2.3), the concentration in the liquid would be about 2.7 x 10" g-atom /L, for the most part as F.

The iodine in the steam would be in the form of1,2 and the ratio of12 in the gas

! phase to r in the liquid phase has two parts. First, the 12 concentration in the liquid phase will about 5.4 times greater than that in the gas phase (Reference 3, Item 5.7); and secondly the ratio of f in the liquid phase to 12 in the liquid phase would be about (see Reference 2):

l (T/I2 ) = (6.05 x 10* + 1.47 x 10*(10 '")}/{(10")2(r concentration) l = 2.25 x 10' i

Taken together the r concentration in the liquid phase would be more than 600,000 times greater than the concentration ofiodine in the gas phase, even taking into account that there are two g-atoms ofI for each g-mole ofI2 . This means that the DF for the OTSG under these conditions (not including the flash) would be at least 35, and in reality, a good deal more. The effect of flashing would certainly decrease this value somewhat, but that, in turn, does not take into account the effect of the main condenser.

Assuming that all of the flow from the unaffected OTSG makes its way to the main condenser, the main condenser will greatly attenuate the release. It must be remembered that the tube surfaces will remain relatively cold (at a temperature near that of the Susquehanna River) and the condenser will be maintained at a vacuum. One would expect a DF in the main condenser at least as great as that in the unaffected OTSG. Therefore, one would expect that not more than one percent of the radioiodine passing into the unaffected OTSG would be released to the environment. In comparison to the release from the affected OTSG, this is negligible.

Assumption 2: Only a very small entrained liquid release is expected after blowdown.

Justification: There are a number of reasons to expect negligible liquid entrainment after blowdown. The most important of these is that the leak path from the primary side to the secondary side of the OTSG is by way of a very small (sub-mm) annulus between the tube and the tube sheet. Thermal and mechanical fragmentation at the point of pressure reducticn (the actual leak through the tube) will be attenuated by boundary impaction and droplet agglomeration effects within this extremely l confined annulus. Therefore, the droplets are not expected to be within the 10-100 pm range normally expected from a primary system blowdown; rather 100 pm would be expected to be at the lower end of the droplet spectrum. Since the 2

l cross-sectional area of the OTSG riser is about 43 ft (Reference 3, Item 2.1) and the volumetric steam flow coming up from the bottom of the OTSG (assuming all

PS AT 05653 A.04 Page 6 of 20 Rev. 0@ 2 3 4 of the liquid is settling) would be about 63 cfs (corresponding to 2.5 lbm/sec), the average updraft would be about 1.5 fps or about 46 cm/sec. This is the settling velocity of a 150 m water droplet. Therefore, since one would expect the mass fraction less than 150 m to be minimal, the droplet carryover contribution would be expected to 5 'ninimal, as well.

Assumption 3: Water accumulation in the affected OTSG is not expected prior to near-completion of the cooldown.

Justification: The tube surface in the affected OTSG during cooldown will be well above ,

saturation temperature at atmospheric pressure, and since the leak rate is small

{

relative to the decay power of the core (2.5 lbm/sec boiloff corresponds roughly to 2.5 Mw or about 0.1% of full core power), one would not expect water accumulation in the affected OTSG until cooldown is virtually complete.  !

References i Reference 1: NUREG-0800, NRC Standard Review Plan, Section 15.6.5, Appendix B,

" Radiological Consequences of a Design Basis Loss of Coolant Accident: Leakage i from Engineered Safety Features Components Outside Containment" Reference 2: Weber, C.F., Beahm, E.C., and Kress, T.S., "Models ofIodine Behavior in Reactor Containments", ORNL/TM-12202, October 1992 I

Reference 3: PSAT 05653A.03," Project Data Base for the Calculation of Steam Generator DFs l for a Main Steam Line Break at Three Mile Island Unit 1", Revision 1 Reference 4: NUREG/CR-5950, " Iodine Evolution and pH Control", November 1992 Reference 5: Chang, R, Chemistry, Random House, New York,1981 (Second Edition)

Reference 6: NUREG/CR-5732," Iodine Chemical Forms in LWR Severe Accidents", April l 1992 i I

Calculation I

Flashing and Evaporation to Drvness This is the first of two calculational sections. This calculational section deals with the model for i iodine release to the OTSG gas phase that results from the initial flash, and then further from the evaporation to dryness that is assumed to occur on the OTSG tubes (Assumption 3). Key in this model is the question of what happens to the pH of' leaked coolant as evaporation to dryness

i i

PS AT 05653 A.04 Page 7 of 20 Rev. 0@2 3 4 occurs on the OTSG tubes. This last point is the subject of a spread-sheet which is partially displayed as Attachment 1 (for the AIS case) and Attachment 3 (for the PAS case) and which is discussed further below.

The model for the initial flash is based on the fact that the post-MSLB OTSG pressure (i.e., in the affected OTSG) will be near atmospheric. Therefore, in the course of the flash a fraction "x" of the coolant will become steam (where "x" is the flashing fraction) and it will have a volume (relative to the unflashed liquid) of:

Vols/Volo.,3 = x(Sp Vol,,/Sp Volug)= ' ;/(1-x) = 1603x/(1-xT On a concentration basis the iodine entering the OTSG can be defined as [I]r where the units are l

g-atoms /L Most of this iodine will be r, but some will be 12 By definition:

[I]4 = [r]A + 2[I2]A After the flash the concentration ofiodine remaining in the unflashed liquid may be dermed as [I]u and that leaving the affected OTSG with the steam as [I]c. The iodine " balance"is:

[I]A * ( "X)[I)s + 1603x[I]c.

And the DF for the system is:

DF = [I]r/1603x[I]c = [I]r/3206x[I2]c.

Therefore, the DF is a function only of the flashing fraction and the ratio of the concentration in the liquid phase prior to the flash to that in the gas phase after the flash. As the cooldown progresses, the pressure and the temperature are decreasing, decreasing the flashing fraction and i the ratio of the 12 concentration in the gas phase to that in the liquid phase ([I2]c/[I2]s) which is l the inverse of the partition coefficient (PC). Both of these effects tend to improve the DF.

However, as time goes on, [I]r is increasing, and the increasing [I]r also increases the ratio of

[I 2]s to [I]s. This effect tends to worsen the DF.

The PC may be obtained from Reference 4 as-PC = 10(2onum = [I2}s/[I2]c Substituting this into the equation for DF, 2

DF = [I]4/3206x[I 2 ]c = 10 mu"*[I]4/x[I2}s Equation 1 This means that the DF during the flash is a function of the flashing fraction, the iodine

concentration in the pre-flash liquid, the temperature of the post-flash liquid, and the 12 concentration in the post-flash liquid. The first thre' evariables are known; but the 12 concentration i

PSAT 05653A.04 Page 8 of 20 Rev. 0@2 3 4 in the post-flash liquid is a function of pH and overall iodine concentration in the post-flash liquid.

While the pH is known (being primarily a function of the post-flash boric acid concentration), the post-flash liquid iodine concentration is reduced by conversion and release of12 .

The functional relationship between 12 concentration and overall iodine concentration in the post-flash liquid can be derived from the following expression given in Reference 4:

[I2] = [H*]2[7j2/ (6.05 x 10'" + 1.47 x 10*[H*])

Rewriting:

[I2]/[r] = [H*]2[r]/(6.05 x 10'" & l.47 x 10*[H*])

Or:-

't

[T]/[I 2] = (6.05 x 10'" + 1.47 x 10*[H*])/([H*]2[r]) = ([I] - 2[I2 ])/ [I2] = [I]/[I 2] - 2 So that:

[I]/[I2] = 2 + (6.05 x 10'" + 1.47 x 10*[H*])/([H']2[7j)

= (2 [H*]2[r] + (6.05 x 10'" + 1.47 x 10*[H*])}/([H*]2[pj)

And:

{121= IH*l 2(IIl - 2II,1)

[I] 2[H*]2([I] - 2[12]) + 6.05 x 10'" + 1,47 x 10*[H*]

If one applies this to the post-flash liquid (subscript "B") and assumes that [I]s = [r]a + 2[I2]s, then:

[I 2]n = IH*la27;j,2 - 2fH'In2ry,lnIlla Equation 2 2

2[H*]a [I]s - 4[H*]s#[I2]s + 6.05 x 10'" + 147 x 10*[H*]s To solve this equation, it is necessary to know the hydrogen ion concentration in the post-flash liquid. From Referer.ce 3 (Item 3.5) it is known that the maximum boron concentration in the coolant (as H3BO3 or orthoboric acid) is 1900 ppm or about 0.176 g-atoms /L which corresponds to 0.176 g-moles /L of H3BO3, as well. Orthoboric acid is known to be a Lewis acid which dissociates in water to form H* and B(OH)i with an acid ionization constant of about 7.3 x 10

(Reference 5). Therefore, the H' concentration corresponding to 0.176 g-moles /L of H3B03

- would be about 41.3 x 10 = 1.14 x 104g-atoms /L or a pH of about 4.94. However, the post-flash H* concentration would be greater. To obtain this concentration, the following expression may be used:

O

PSAT 05653 A.04 Page 9 of 20 Rev. 0@2 3 4

[H']s = 4(7.3 x 10 {0.176/(1-x)} Equation 3 Even knowing x, [I]r, and [H*]s, one must iterate on [I]s, [I2]s, and DF in order to obtain a final result for DF. Since there are three unknowns, an additional independent n:lationship among [IJs,

[I2]s, and DF (in addition to Equations 1 and 2)is needed to solve the equation set. That relationship is the following:

[IJs = [I]A{ 1-1/DF} { 1/(1-x)} Equation 4 This equation states that the iodine concentration in the unflashed liquid will be related to that in the pre-flashed liquid in the following way: it will be reduced by that which leaves with the steam

({ l-1/DF}) and it will be increased by the reduction ofliquid volume ({ 1/(1-x)}). This relationship suggests an iterative scheme to solve the equation set with a spread-sheet.

Let it first be assumed that the DF is large enough that 1-1/DF = 1. This means that Equation 4 becomes:

[I]si = [I]r{ 1/(1-x)} Equation 4a where [I]st represents the first estimate of[I]s.

Then, assume that [I2 ]s is very small relative to [I]s. Using that assumption and [I]si from Equation 4a, Equation 2 becomes:

[I2]si = IH*la77j,,2 2

Equation 2a 2[H*]s'[I]si + 6.05 x 10 + 1.47 x 10*[H*]s where [I2]si represents the first estimate of(I2]s.

  • Similarly, DFi can be calculated as follows: ,

2 DFi = 10 73.ui4m[I]4 x[12]si / Equation Ia With a preliminary estimate of DF (as DFi) Equation 4 can be recalculated in an unsimplified form:

[I]s2 = [I]A{l-1/DFi} {l/(1-x)} Equation 4b whcre [I]s2 represents the second estimate of(I]s.

With a refined estimate of[I]s (as [I]e2) Equation 4 can be recalculated in an unsimplified form:

[I2]s2 = fM*la 2fila,2 - 2fH'1n 77,q,,773,,

2 Equation 2b 2 2 2[H*]s [I]s2 - 4[H*]s [I2]si + 6.05 x"10" + 1.47 x 10*[H*]s

l PS AT 05653 A.04 Page 10 of 20 Rev. 0@2 3 4 I where (I2}s2 represents the second estimate of(12}s.

i Using [I 2}s2, DF2is calculated:

2 DF2 = 10 73.ui49no[Il.dx[I2]a2 Equation Ib l

The need for additional iterations can be assessed by comparing DFi and DF2 If these DFs are close, then DF2 may be considered the final result, and the release fraction associated with the i

flash may be taken to be 1/DF2 Before a spread-sheet can be prepared to solve the equation set described above for 12 released during the flash, it is necessary to consider the subsequent evaporation-to-dryness of the unflashed l liquid and the 12 resulting from that source, as well. l l

l See Proprietary Version f

l

PSAT 05653 A.04 Page 11 of 20 Rev. 0@2 3 4 See Proprietary Version

1 PSAT 05653 A.04 Page 12 of 20 Rev. 0@2 3 4 l

l See Proprietary Version i

I l

l

I PSAT 05653A.04 Page 13 of 20 Rev. 0@2 3 4 1

l l

See Proprietary Version l

l 9

4 I

PS AT 05653 A.04 Page 14 of 20 Rev. 0@2 3 4 l

l l

i

)

1 See Proprietary Version j 4

0 4

PS AT 05653 A.04 Page 15 of 20 l

Rev. 0@2 3 4 I

l l

l l i See Proprietary Version ,

l l

l 1

1 i

l The iodine release process is now completely described. First, a variable amount will be released during the flash (depending on pH, flashing fraction, post-flash temperature, and overall iodine concentration), followed by a release during evaporation to dryness of not more than 22% of that l remaining in the unflashed liquid.

12 Deoosition on Steam Generator Tubes I 2released during the time that the OTSG tubes exceed 300 F will most likely escape that steam generator. This is because the residence time of the 12 relative to the time-constant corresponding to the rate of12 deposition on the tubes is simply too short. Once the temperature of the tubes falls below 300 F, however, the situation changes dramatically.

Appendix B establishes the following expression for the OTSG DF for I2 deposition:

DF% = exp f g d L. # J The mass flow rate of vapor, #, (assuming the entire leak either flashes or evaporates to dryness) l is equal to approximately 2.5 lbm/sec or 1.13 Kg/sec. The total tube surface area can be obtained l from the OTSG data sheet (Reference 3, Item 2.1). It can be calculated as follows:

i A = xdLn -

f t

PSAT 05653A.04 Page 16 of 20 Rev. 0@2 3 4 where d is the tube OD, L its length, and n the number of tubes.

Since d = 2 x 0.3125 inches = 1.59 x 10-2 m, L = 52 ft = 15.85 m, and n = 15531:

1 2

l A = x(1.59E-2)(15.85)(15531) = 1.23E4 m And DFa ,= exp [1.09E4p,V 4) for p,Va in units of kg/m 2-sec. Equation 5 The following expression for Va is also developed in Appendix B:

t Va = (3.6E-10)e ""*" in em/sec = (3.6E-12)e'""*"in m/sec Equation 6 where R = 2 cal /g-mole-K and T(K) = temperature, K Appendix B also provides the following expression for p,(where the units are kg/m'):

p, = 219.2/f(K) Equation 7 Equations 5,6, and 7 completely define DFa,.

Results The spread-sheet shown as Attachment 2 (for the AIS case) and Attachment 4 (for the PAS case) contains the final results of this calculation. This spread-sheet is eight pages long, and all eight pages are presented. Pages 1-4 contain the first nine columns, and Pages 5-8 contain the last nine columns.

The first column is time (in hours) expressed as 10 minute time-steps between t = 0 and t = 23.33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />. The next two columns of this spread-sheet are the percentage flash and time data (corresponding to Column 1 times, but in seconds) from Reference 3, Item 1.4, followed by the

. primary system pressure (psia) and the primary system temperature (F) from Reference 3, Item 1.3. Column 6 is the percentage flash converted to a fraction.

The next two columns are the fractional release ofiodine (as I2) to the OTSG and the overall release fraction to the environment, respectively. These represent the results of the calculation and will be discussed further below.

The last column on Pages 1-4 is the hydrogen ion concentration in the post-flash liquid. It corresponds to the pH in the first column on Pages 5-8. This pH, in turn, is calculated from the ppm B (as orthoboric acid) on Page 1. The 1978 ppm value appearing on Page 1 is assumed to

.- ~ . - - _ _ .

PSAT 05653 A.04 Page1 of20 Rev.0 234 be constant based on the initial 1900 ppm B in the primary coolant and the 2500 ppm in the BWST (Reference 3, Item 3.5). During the first 10 minutes of the accident the total injection is approximately 12840 gallons (see Page 1 of Attachment 1) or 13% of the total volume of the primary system (volume = 85820 gallons, Reference 3, Item 3.1). Therefore, the ppm B at the end of the first 10 minutes is 1978 ppm. The water volume injected beyond the first 10 minutes would not be expected to have significant effect on the results.

The hydrogen ion concentration is equal to the ppm B divided by (1-flashing fraction) to obtain the post-flash ppm B concentration, divided by the atomic weight of boron (to obtain g-moles of orthoboric acid per 10' grams of water), divided by 1000 to4 convert to g-moles of orthoboric ac per liter, multiplied by the orthoboric acid ionization constant 7.3 x 10 , and finally,taken to the 1/2 power. The corresponding pH is shown on the next column, as noted above.

The pre-flash iodine concentration is shown on the second column of Pages 5-8. It is equal to the initial concentration plus the rate of addition associated with the spiking. The initial concentration (Attachment 2 or 4, AIS and PAS cases, respectively, Page 1, in g-atoms /L) is obtained from the initial pCi/g of1131 (see spread-sheet Attachment 1 or 3, AIS and PAS cases, respectively, Page
29) multiplied by 3 x 10# grams ofiodine/pCi 1131, divided by 129 (the assumed atomic weight of fission product iodine), and multiplied by 1000 grams of water / liter (to obtain the pre-flash concentration after being cooled to the post-flash temperature). The iodine addition rate is calculated by dividing this initial "equ% im" concentration by the removal rate. The removal rate, in turn, is the letdown rate (Refem.x 3, Item 3.2) divided by the volume of the primary system (Reference 3, Item 3.1) in units of / min. Both the removal rate and the addition rate are shown on Page 1 of Attachment 2 or 4.

The next six columns on Pages 5-8 (i.e., the third through eighth columns on Pages 5-8 which are Columns 12 through 17 for the spread-sheet) are Equations 4a,2a, la,4b,2b, and Ib. Inputs to these equations are shown on top of Page 1 of Attachment 2 or 4 (the volume ratio of steam to liquid at the assumed post-flash temperature of 373 K). A comparison of Columns 14 and 17 (DFl and DF2) shows the effectiveness of the single iteration, and in no case is difference more than about 15% of DF2.

The last column on the spread-sheet (Column 18) is the deposition DF calculated using Equations 5,6, and 7. Inputs to these equations are shown on top Page 5 of Attachment 2 or 4 (the tube length, deposition area per foot of tube, the mass leak rate, and the specific volume of the flashed steam). These have already been discussed in the main body of the calculation, although the spread-sheet uses English units while those used for illustration in the calculation are SI.

The final results are shown on Columns 7 and 8. Column 7 is simply the inverse of DF2 (Column

17) and represents the fraction of the iodine in the leaked coolant which becomes airborne post-flash. Column 8 is that quantity plus 22% of one minus that quantity (which represents the addition of the ETD contribution) divided by the deposition DF of Column 18. This is the final 3 result.

1

PSAT 05653 A.04 Page 18 of 20

~

Rev. 0@2 3 4 Figure i shows the primary system (" Reactor Coolant System" or "RCS") pressure and temperature, the flashing fraction, and the total release fraction as functions of time for the AIS case. Figure 2 provides that same information for the PAS case. Note that for the AIS case the total release fraction briefly exceeds 25% between about 7000 seconds (about 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />) and abbut 30000 seconds (about 8.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />), but never exceeds 27%. Therefore, using 25% for the AIS case release fraction for both the 0-2 hour period and the 2-23.33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> period is demonstrably l conservative. For additional conservatism (and to cover any question regarding liquid carryover l during the first 10 minutes), a release fraction equal to or greater than the flashing fraction will be l used during the first 10 minutes for the AIS case.

For the PAS case the total release fraction exceeds 25% for only the first ten minutes, and during that tirte the total release fraction is considerably less than the flashing fraction. Therefore, using 25% for the PAS case release fraction for both the 0-2 hour period and the 2-23.33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> period is i demonstrably conservative as long as the first ten minutes is covered. For additional conservatism l (and to cover any question regarding liquid carryover during the first 10 minutes), a release fraction equal to or greater than the flashing fraction will be used during the first 10 minutes for the PAS case as well as for the AIS case.

l

\

Conclusions e The iodine release fraction to be used for the affected OTSG for the TMI-l MSLB with AIS should be the flashing fraction (or greater), but not less than 25%.

. The iodine release fraction to be used for the affected OTSG for the TMI-l MSLB with PAS should be the flashing fraction (or greater), but not less than 25%.

l

. The unaffected OTSG may be neglected in terms ofits contribution to the iodine release. The conservatism applied to the affected OTSG release fraction more than covers the >l% release fraction expected for the unaffected OTSG.

1

=

0

.- a ,. _

l PS AT 05653 A.04 Page 19 of 20 i Rev. 0@2 3 4 Figure 1 - MSLB-AIS - Cooldown and Release 1200 0.3 l

1000 1

/ '

O.25 i RCS Pres  !

! - RCS Temp l

3 Flash Frac

-Tot Rei Frac l 800 O.2 l

l l

E '

l l

A 600 \ .!

l

0.15 5

\ g l u ,. \ L l

l 400 0.1 N

l k \

~ 3 200 3 k 0.05 0 0 0 10000 20000 30000 40000 ,50000 60000 70000 80000 90000

Time (sec) l

1 PSAT 05653 A.04 Page 20 of 20 Rev. 0@2 3 4 Figure 2 - MSLB-PAS - Cooldown and Release 1200 0.3 a

1000 O.25 RCS Pres

- RCS Temp Flash Frac 800 \ -Tot Rel Frac O.2 E

l 8 E 600 g 0.15 ir \ c E s k

\\

400 \' y\\ ,

( 0.1 N x

\ \

200 3 O.05 N \

0 '

O 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 Time (sec) l L

PSAT 05653A.04 Appdx A Page Al of A5 Rev @l 2 3 4 l APPENDIX A APPENDIX TITLE: HNO3 Production as a Result of Nitrogenated Water Injected into the RCS ,

CALCULATION TITLE: Formulation of a Once-Through Steam Generator DF for Radioiodine (as 2I ) to be Credited for TMI-l MSLB w/ AIS Table of Contents I Section Eage 1

Purpose 1 Approach 1 Assumptions 2 i

References 3 I

Calculation 3 )

l Results 4 1

Conclusions 4 l Purpose The purpose of this appendix is to re-analyze test data re7orted on in Reference I to establish the relationship among the rate of HNO3 production, the coccentration of dissolved N2 in water, and absorbed radiation dose.

l See Proprietary Version I

PSAT 05653A.04 Appdx A Page A2 of AS Rev hl 2 3 4 See Proprietary Version

PSAT 05653A.04 Appdx A Page A3 ofA5 Rev (0)12 3 4 References Reference 1: Beahm E.C., et al., " Iodine Chemical Forms in LWR Severe Accidents - Final Report", NUREG/CR-5732, April 1992 .

Reference 2: Handbook of Chemistry arul Physics, 518 Edition, The Chemical Rubber Company, Cleveland Ohio, 1970-1971 I

See Proprietary Version l

9

PSAT 05653A.04 Appdx A Page A4 of A5 Rev @l 2 3 4 See Proprietary Version e

9

PSAT 05653A.04 Appdx A Page A5 of AS Rev (0jl 2 3 4 1

l See Proprietary Version l l

. . . __ -- . - . - . - . . . - - . . . - - . . - . - - .- - . . . - . _~

PSAT 05653A.04 Appdx B Page B1 of B6 Rev @l 2 3 4 APPENDIX B l

APPENDIX TITLE: 12 Deposition on OTSG Tubes as a Function of Tube Temperature and Mass Leak Rate CALCULATION TITLE: Formulation of a Once-Through Steam Generator DF for Radioiodine (as I2) to be Credited for TMI-1 MSLB w/ AIS

! Table of Contents Section East l

l Introduction 1 Methodology 1 l Derivation ofI2 Vapor Deposition Velocity 2 Derivation of the Residence Time and DF Expression 3 l Calculation 3 l

Results 5 Conclusions 5 References 5 l

Introduction l As I2 vapor is convected with a gas flow through a once-through steam generator l (OTSG), diffusion will bring the 12 molecules in contact with the metal surfaces along the

flow path (primarily the Inconel-600 tubes). Chemical and physical reactions will then l occur at the contact surface between I2 and the metal, resulting in a removal ofI2 from the l flow. The rates of reaction determine the rate of removal ofI2 vapor, which is what is to L be obtained from the model i

i Methodology 4

Based on the fact that, on average, the residence time of all the I2 molecules in the flow system under consideration is the same, the problem to be solved can be considered as j equivalent to the following: ,

i PSAT 05653A.04 Appdx B Page B2 of B6 Rev @l 2 3 4 A certain amount of the I2 vapor is placed in a volume for a certain period of time that equals the residence time (the average time a flow element travels from the inlet to the outlet of the steam generator). During this period, the I2 vapor is l l experiencing deposition so that the amount of the I2 vapor in the volume is decreasing. At the end of the residence time, the 12 vapor that remains suspended in the volume is assumed to be immediately released.

l l Using this description, the differential equation for the change of the 12 vapor in this volume is:

\

d(m) = - mVgA (1) j l where m = the mass of the I 2vapor in the volume under consideration l A = the deposition area in the volume under consideration V = the volume of the system under consideration Va = the deposition velocity of the 12 vapor By integration over the residence time ( r), equation (1) becomes:

1 mo ~Vs Ar '

- = exp (2) mn _V _

where moand mi are, respectively, the I2 vapor mass in this volume at the beginning and the end of the residence time. The ratio on the left-hand-side of the equation is often referred to as the decontamination factor (DF).

Derivation ofI2 Vapor Deposition Velocity ne I vapor 2 deposition velocity correlation with system temperature is based on l

Reference 1 data. Much of the data for I2 in Reference 1 (including all of the Inconel-600 data) is for high temperature; i.e,1000/T(K) $ 1.75. However, Table 2 of Reference 1 shows that at 1000/r(K) = 0.71, the 12 deposition velocity for stainless steel and Inconel-600 are about the same, at 1000/T(K) = 0.85, stainless steel is about three times greater, at 1000/r(K) = 1.15, stainless steel is about two times greater, and at 1000/r(K) = 1.75, the stainless steel is at least an order of magnitude less. Therefore, the general trend is that as temperature decreases (and 1000/r(K) increases), Inconel400 exhibits greater 12 deposition velocity than stainless steel. Use of stainless steel data, therefore, for values of 1000/r(K) greater than 1.75 is conservative.

For values of 1000fr(K) corresponding to high temperature, the air environment data appears to be generally comparable to the steam environment data. However, at low

PS AT 05653 A.04 Appdx B Page B3 of B6 Rev @l 2 3 4 temperatures, the air data is consistently below the steam data. Since the OTSG is steam-filled, only the steam data will be considered in the range of temperatures seen in this analysis (l.8 < 1000/T(K) < 2.7).

Over this range, the data is lower-bounded by the expression: .

I2 Deposition Velocity = (3.6E-10)e""** (3) l where R = 2 cal /g-mole-K and T(K) = temperature, K l

l This expression is used to determine the 12 deposition velocity. The curve of this expression is shown on Figure 1 along with all of the data from I2 deposition velocity data l from Reference [1].

l Derivation of the Residence Time and DF Expression The residence time ( r) in a steam generator should be obtained from the length or height (L) of the steam generator and the average flow velocity (U) in the steam generator.

The latter is, on the other hand, obtained from the total gas flow rate (8 into the steam generator, the gas density (p,) in the steam generator and the average flow area of the steam generator ( A,). The ultimate expression for the residence time is:

P,A,L r= (4) g Substituting Equation (4) into Equation (2), we obtain the expression for DF, i.e.,

~

Ps 4V ALA,"

DF = exP yp (5)

Calculation From Reference (2), we obtain the following geometry data for the steam generator under consideration:

Leak rate = 2.5 lbm/sec (= 1.13398 kg/sec),

Tube outer diameter (d) = 0.625 in (= 0.0159 m),

Tube length (L) = 52 ft (= 15.85 m),

l Number of tubes (n) = 15531, l Tube bundle inner diameter (D) = 118.375 in (= 3.007 m).

l O

=. . -. - . _ . - - . .. . . . - - - - ~ . - .- __ .-

PSAT 05653 A.04 Appdx B Page B4 of B6 Rev @l 2 3 4 Based on the geometric data above, we can calculate the flow area ( A,), the deposition area (A) and the volume (V).

A, = ED2 _ y Ed2 (6) 4 4 A = nmil (7)

V=ALc (8) 2 2 A, is calculated to be 4.026 m , A to be 12277 m and Vto be 63.814 m'.

To present some typical DF values as a function of primary system temperature, the following assumptions are made:

1. The gas in the secondary side of the steam generator (superheated steam) is assumed to be an ideal gas, and
2. The pressure in the secondary side of the steam generator is atmospheric and the temperature is that of the primary side.

Based on the ideal gas law, the steam density in the secondary side of the steam generator can be calculated by the following expression:

p' = # (9)

%T where p and T are the bulk pressure and temperature in the secondary side of the steam generator, A and M are the molecular weight of steam and the universal gas constant.

In SI units, p = 101325 Pa, A = 18 kg/kgmole, W = sl7 J/kgmole K. Since the ,

steam flow rate into the steam generator is 1.134 kg/sec and Vs = (3.6E-10)e"3""

cm/sec = (3.6E-12)e"'"" m/sec, the following spread-sheet table can be prepared:

Table 1 - Typical 12 DF in the OTSG Time (hrs) Temp (F) Temp (K) 1000/T(K) Vd (m/sec) tho (ko/m3) Typical DF 0 601 589.4444 1.696513 4.36643E-07 0.372152 1.001761 0.17 450 505.5556 1.978022 3.04583E-06 0.433905 1.014411 11.5 300 422.2222 2.368421 4.5039E-05 0.519544 1.288307 24 212 373.3333 2.678571 0.00038282 0.58758 11.41817

'i e

PSAT 05653A.04 Appdx B Page B5 of B6 0

Rev(0)12 34 Results In Table 1, the time is given in hours in Column 1, the temperature on the primary side of the steam generator as a function of time is shown in F and *K in, respectively, Columns 2 and 3. Column 5 is embedded with the Equation (3) to calculate the vapor deposition in meters per second. Column 6 contains calculations of the steam density using Equation (9). Finally, Equation (5) is used to calculate typical I2 vapor DFs in Column 7 Conclusions It can be concluded that the I2 vapor DF is almost negligible until the temperature drops l below 300 F.  !

I The above model is used in the spread-sheet in the main body of the calculation to obtain a DF for I 2vapor deposition on the OTSG tubes.

References

1. NUREG/CR-2713, " Vapor Deposition Velocity Measurements and Correlations for 12 and CsI", May 1982
2. PSAT 05653A.03, " Data Base for the Formulation of Once-Through Steam Generator DFs for Radioiodine (as li) to be Credited for TMI-l MSLB Analyses", Revision 0 l

l 9

Figure 1 - Comparison of 12 Deposition Velocity 3 H

8 1.00E+00 D $

0 -

~

- Range g A Inconel d

.gs 1.00E-01 ,

4 e inconel(Neglected)

A Sin Stl- All Stm 5

)

to o Sin Sti- All Air 2' .0 O Stn Stl- 90%+ Stm U 1.00E-02 Low Temp Correlation I ,

O 4

e .

u e u:

)*1.90E-03 '

  • o.

1.00E-04 '

A i } l3.'

A. 4' A A 1.00E-05 O PC 2 2%

@g 1.00E-06 0 0.5 1 1.5 2 2.5 3 "k w to 1000/T(K)

PSAT 05653A 04 Se Proprietary Version 1 of 8 Attachment i Revision 1

I PSAT 05653 A.04 See Proprietary Version .>of8 Attachment 1 Revision 1 e

4 er 9

PSAT 05653 A.04 See Proprietary Version 3 or8 Attachment i Revision 1 l

l O

O W

G l

PSAT 05653 A.04 See Proprietary Version 4 or8 Revision 1 e

PSAT 05653 A.04 See Proprietary Version 5 of 8 Attachment 1 Revision 1

PSAT 05653 A.04 See Proprietary Version 6 or8 Attachment i Revision 1 l

I f

PSAT 05653A.04 See Proprietary Version 7 of 8 Attachment I Revision !

P

PSAT 05653 A.04 See Proprietary Version 8 or8 Revision 1 1

l 1

l l

l l

l l

9

PSAT 05653A.04 1of8 Attachment 2 Revision 1 FLASH 2 XL Spread Sheet for TMI MSLB with Accident-Induced Spike - Final Release Fractions Initial I conc 1.32E-09 g-atom /L. Rem rate = 1.630E-03 per minute. Vratio = 1604 ppm 8= 1978 Add rate = 1.076E-09 g-atom /L-m Post-fl T(K) 373 Time (hrs) % flash Time (sec) Press (psia) Temp (F) Flash frac Flash rel Rel frac [H+]B 0 44.85 0 2160 601 0.4485 0.0033303 0.2221937 1.557E-05 0.1666667 25.77 600 961.05 449.71 0.2577 0.0074028 0.2224477 1.342E-05 0.3333333 25.76 1200 846.16 449.71 0.2576 0.0137962 0.2273611 1.342E-05 0.5 25.76 1800 846.16 449.71 0.2576 0.0200185 0.232143 1.342E-05 0.6666667 24.8 2400 787.33 441.37 0.248 0.0242836 0.2349141 1.333E-05 0.8333333 24.06 3000 743.93 434.92 01406 0.0282008 0.237464 1.327E-05 1 23.49 3600 711.21 429.86 0.2349 0.0319212 0.2399109 1.322E-05 1.1666667 22.99 4200 684.07 425.52 0.2299 0.0353694 0.2421664 1.318E-05 1.3333333 22.56 4800 660.56 421.66 0.2256 0.0386343 0.2442892 1.314E-05 1.5 22.18 5400 640.79 418.33 0.2218 0.0417309 0.2463051 1.311E-05 1.6666667 21.83 6000 622.95 415.26 0.2183 0.044848 0.2481851 1.308E-05 1.8333333 21.51 6600 606.72 412.4 0.2151 0.0474223 0.2499555 1.305E-05 2 21.21 7200 591.88 409.74 0.2121 0.0500494 0.2516153 1.303E-05 2.1666667 20.93 7800 578.29 407.26 0.2093 0.0525534 0.2531834 1.300E-05 2.3333333 20.67 8400 565.46 404.87 0.2067 0.0549558 0.2546665 1.298E-05 2.5 20.41 9000 553.17 402.55 0.2041 0.0571926 0.2560144 1.296E-05 2.6666667 20.16 9600 541.67 400.33 0.2016 0.059316 0.2572723 1.294E-05 2.8333333 19.92 10200 530.61 398.17 0.1992 0.0613386 0.2584445 1.292E-05 i 3 19.68 10800 519.79 396.03 0.1968 0.0632256 0.2594989 1.290E-05 1

3.1666667 19.44 11400 509.13 393.88 0.1944 0.0649839 0.2604351 1.288E-05 3.3333333 19.21 12000 499.07 391.82 0.1921 0.0666684 0.2613124 1.286E-05 3.5 18.99 12600 489.2 389.77 0.1899 0.0682881 0.2621234 1.285E-05

)

3.6666667 18.75 13200 479.28 387.67 0.1875 0.0696999 0.2627479 1.283E-05 3.8333333 18.53 13800 469.7 385.61 0.1853 0.071109 0.2633573 1.281E-05 4 18.3 14400 460.5 383.61 0.183 0.0723684 0.2638466 1.279E-05 4.1666667 18.08 15000 451.46 381.61 0.1808 0.0735864 0.2642837 1.278E-05 4.3333333 17.86 15600 442.59 379.62 0.1786 0.0747156 0.2646347 1.276E-05 4.5 17.65 16200 433.96 377.65 0.1765 0.0758149 0.2649457 1.274E-05 4.6666667 17.43 16800 425.36 375.66 0.1743 0.0767781 0.265127 1.272E-05 4.8333333 17.21 17400 416.82 373.65 0.1721 0.0776629 0.26522 1.271E-05 l 5 16.99 18000 408.58 371.68 0.1699 0.0784723 0.2652433 1.269E-05 l 5.1666667 16.77 18600 400.39 369.69 0.1677 0.0792093 0.265181 1.267E-05 l 5.3333333 16.56 19200 392.4 367.73 0.1656 0.0799358 0.2650932 1.266E-05 l 5.5 16.34 19800 384.41 365.73 0.1634 0.0805365 0.2648721 1.264E-05 5.6666667 16.12 20400 376.68 363.76 0.1612 0.0810723 0.2645843 1263E-05 5.8333333 15.91 21000 369.14 361.81 0.1591 0.0816067 0.2642728 1.261E-05 6 15.7 21600 361.8 359.89 0.157 0.0820818 0.263899 1.259E-05 6.1666667 15.49 22200 354.43 357.92 0.1549 0.0824995 0.2634328 1.258E-05 6.3333333 15.28 22800 347.37 356.01 0.1528 0.0828615 0.2629177 1.256E-05 6.5 15.07 23400 343.49 354.09 0.1507 0.0831695 0.2623266 1.255E-05 6.6666667 14.86 24000 340.3 352.18 0.1486 0.083425 0.2616681 1.253E-05 Page1

PSAT 05653A.04 2 of 8 Attachment 2 Revision 1 FLASH 2 6.3333333 14.65 24600 337.08 350.25 0.1465 0.0836295 0.2609286 1.252E-05 7 14.45 25200 333.96 348.37 0.1445 0.0838503 0.2601878 1.250E-05 7.1666667 14.24 25800 330.75 346.45 0.1424 0.0839572 0.2593092 1.249E-05 7.3333333 14.04 26400 327.61 344.57 0.1404 0.0840841 0.2584264 1.247E-05 7.5 13.84 27000 324.6 342.7 0.1384 0.084166 0.257478 1.246E-05 7.6666667 13.63 27600 322.08 340.81 0.1363 0.0841353 0.2563989 1.244E-05 7.8333333 13.43 28200 319.6 338.95 0.1343 0.0841295 0.2553128 1.243E-05 8 13.23 28800 317.12 337.09 0.1323 0.0840816 0.2541547 1.241E-05 8.1666667 13.03 29400 314.7 335.26 0.1303 0.0839922 0.2529431 1.240E-05 8.3333333 12.84 30000 314.7 333.44 0.1264 0.0839334 0.2517151 1.239E-05 8.5 12.64 30600 314.7 331.61 0.1264 0.083764 0.2503592 1.237E-05 8.6666667 12.45 31200 314.7 329.8 0.1245 0.0836278 0.2489933 1.236E-05 8.8333333 12.20 31800 314.7 328 0.1226 0.0834541 0.2475617 1.234E-05 9 12.07 32400 314.7 326.23 0.1207 0.0832435 0.2460798 1.233E-05 9.1666667 11.88 33000 314.7 324.44 0.1188 0.0829965 0.244509 1.232E-05 9.3333333 11.69 33600 314.7 322.68 0.1169 0.0827136 0.2428882 1.230E-05 9.5 11.5 34200 314.7 320.94 0.115 0.0823951 0.2412104 1.229E-05 9.6666667 11.32 34800 314.7 319.2 0.1132 0.082118 0.239509 1.228E-05 9.8333333 11.13 35400 314.7 317.5 0.1113 0.0817303 0.2377192 1.227E-05 l 10 10.95 36000 314.7 315.75 0.1095 0.081386 0.2358591 1.225E-05 10.166667 10.76 36600 314.7 314.01 0.1076 0.0809303 0.2338808 1.224E-05 10.333333. 10.58 37200 314.7 312.27 0.1058 0.08052 0.2318753 1.223E-05 10.5 10.4 37800 314.7 310.57 0.104 0.0800775 0.229833 1.222E-05 10.666667 10.22 38400 314.7 308.88 0.1022 0.0796028 0.2277244 1.220E-05 10.833333 10.04 39000 314.7 307.21 0.1004 0.0790963 0.225561 1.219E 05 11 9.86 39600 314.7 305.53 0.0986 0.0785582 0.223309 1.218E 05 11.166667 9.69 40200 314.7 303.86 0.0969 0.0780715 0.2210416 1.217E-05 l 11.333333 9.51 40800 314.7 302.19 0.0951 0.0774711 0.2186445 1.218E-05 l 11.5 9.33 41400 314.7 300.55 0.0933 0.0768394 0.2162062 1.214E-05 11.666667 9.16 42000 314.7 298.92 0.0916 0.0762618 0.2137541 1.213E 05 j 11.833333 8.99 42600 314.7 297.33 0.0899 0.0756546 0.2112781 1.212E-05 12 8.82 43200 314.7 295.73 0.0882 0.0750179 0J.087129 1.211E-05 12.166667 8.66 43800 314.7 294.13 0.0866 0.0744394 0.2061218 1.210E-05 12.333333 8.49 44400 314.7 292.53 0.0849 0.0737446 0.2034028 1.209E-05 12.5 8.32 45000 314.7 290.97 0.0832 0.0730204 0.2006667 1.208E-05 12.666667 8.16 45600 314.7 289.42 0.0816 0.0723569 0.197922 1.207E-05 12.833333 7.99 46200 314.7 287.84 0.0799 0.0715748 0.1950053 1.205E-05 13 7.83 46800 314.7 286.32 0.0783 0.070855 0.1921602 1.204E-05 13.166667 7.67 47400 314.7 284.81 0.0767 0.0701075 0.1892601 1.203E-05 13.333333 7.52 48000 314.7 283.35 0.0752 0.0694255 0.1864244 1.202E-05 13.5 7.36 48600 314.7 281.9 0.0736 0.0686233 0.1834901 1.201E-05 13.666667 7.21 49200 314.7 280.45 0.0721 0.0678883 0.1805395 1.200E-05 13.833333 7.06 49800 314.7 279.01 0.0706 0.0671271 0.1775419 1.199E 05 14 6.91 50400 314.7 277.6 0.0691 0.0663398 0.1745364 1.198E-05 14.166667 6.76 51000 314.7 276.17 0.0676 0.0655262 0.171432 1.197E-05 Page 2

_ _ . . _ _ _ . _ _ _ _ _ _ _ _ - _ . . . _ _ _ _ _ _ . . _ _ . _ _ . _ ~ _ __ _ _ _ _ _ .

PSAT 05653 A.04 3 of 8 Attachment 2 Revision 1 FLASH 2 14.333333 6.61 51600 314.7 274.76 0.0661 0.0646864 0.1683049 1.196E-05 14.5 6.47 52200 314.7 273.35 0.0647 0.0639195 0.1651662 1.196E-05 14.666667 6.32 52800 314.7 271.98 0.0632 0.0630279 0.1620025 1.195E-05 14.833333 6.18 53400 314.7 270.61 0.0618 0.0622108 0.1588317 1.194E-05 15 6.04 54000 314.7 269.25 0.0604 0.0613691 0.1556286 1.193E-05 15.166667 5.89 54600 314.7 267.89 0.0589 0.0603997 0.1523288 1.192E-05 15.333333 5.75 55200 314.7 266.55 0.0575 0.0595074 0.1490688 1.191E-05 15.5 5.61 55800 314.7 265.22 0.0561 0.0585901 0.1457843 1.190E-05 15.666667 5.47 56400 314.7 263.88 0.0547 0.0576479 0.1424338 1.189E-05 15.833333 5.33 57000 314.7 262.56 0.0533 0.0566805 0.1390859 1.188E-05 16 5.2 57600 314.7 261.24 0.052 0.0557952 0.135742 1.188E 05 16.166667 5.06 58200 314.7 259.93 0.0506 0.0547783 0.1323408 1.187E-05 16.333333 4.92 58800 314.7 258.63 0.0492 0.053736 0.1289292 1.186E-05 16.5 4.79 59400 314.7 257.34 0.0479 0.0527783 0.1255518 1.185E-05 16.666667 4.65 60000 314.7 256.06 0.0465 0.0516859 0.1221289 1.184E-05 16.833333 4.52 60600 314.7 254.78 0.0452 0.0506798 0.1187219 1.183E-05 17 4.39 61200 314.7 253.51 0.0439 0.0496497 0.1153165 1.183E-05 17.166667 4.26 61800 314.7 252.25 0.0426 0.0485957 0.1119165 1.182E-05 17.333333 4.13 62400 314.7 251 0.0413 0.0475176 0.1085253 1.181E-05 17.5 4 63000 314.7 249.75 0.04 0.0464153 0.1051223 1.180E-05 17.666667 3.87 63600 314.7 248.51 0.0387 0.0452888 0.1017355 1.179E-05 17.833333 3.74 64200 314.7 247.28 0.0374 0.0441377 0.0983685 1.179E-05 18 3.61 64600 314.7 246.05 0.0361 0.0429622 0.0950006 1.178E-05 18.166667 3.48 65400 314.7 244.83 0.0348 0.041762 0.0916601 1.177E-05 18.333333 3.35 66000 314.7 243.61 0.0335 0.0405371 0.0883262 1.176E-05 18.5 3.23 66600 314.7 242.4 0.0323 0.0394089 0.0850596 1.175E-05 18.666667 3.1 67200 314.7 241.21 0.031 0.0381351 0.081823 1.175E-05 18.833333 2.98 67800 314.7 240.02 0.0298 0.0369597 0.078635 1.174E-05 19 2.86 68400 314.7 238.83 0.0286 0.0357611 0.075467 1.173E-05 19.166667 2.73 69000 314.7 237.65 0.0273 0.0344136 0.0723185 1.172E-05 19.333333 2.61 69600 314.7 236.47 0.0261 0.0331671 0.0692274 1.172E-05 19.5 2.49 70200 314.7 235.29 0.0249 0.0318971 0.0661681 1.171E-05 19.666667 2.37 70800 314.7 234.13 0.0237 0.0306034 0.0631911 1.170E-05 19.833333 2.25 71400 314.7 232.97 0.0225 0.0292858 0.0602529 1.170E-05 20 2.13 72000 314.7 231.81 0.0213 0.0279443 0.0573572 1.169E-05 20.166667 2.01 72600 314.7 230.66 0.0201 0.0265787 0.0545303 1.168E-05 20.333333 1.89 73200 314.7 229.53 0.0189 0.0251888 0.0517966 1.167E-05 20.5 1.77' 73600 314.7 228.41 0.0177 0.0237747 0.0491359 1.167E-05 20.666667 1.66 74400 314.7 227.32 0.0166 0.022471 0.0466131 1.166E-05 20.833333 1.55 75000 314.7 226.25 0.0155 0.021145 0.0441845 1.165E-05 21 1.44 75600 314.7 225.2 0.0144 0.0197963 0.0418502 1.165E-05 21.166667 1.33 76200 314.7 224.2 0.0133 0.0184249 0.0396693 1.164E-05 21.333333 1.23 76800 314.7 223.21 0.0123 0.01717 0.0375775 1.163E-05 21.5 1.13 77400 314.7 222.24 0.0113 0.0158943 0.0355752 1.163E-05 21.666667 1.03 78000 314.7 221.27 0.0103 0.0145977 0.0336247 1.162E-05 Page 3

PSAT 05653 A.04 4 of 8 Attachment 2 Revision 1 FLASH 2 21.333333 0.93 78600 314.7 220.32 0.0093 0.0132801 0.0317634 1.162E-05 22 0.84 79200 314.7 219.39 0.0084 0.012085 0.0300043 1.161 E-05 22.166667 0.74 79800 314.7 218.45 0.0074 0.0107261 0.0282653 ,1.161 E-05 22.333333 0.64 80400 314.7 217.53 0.0064 0.0093459 0.0266134 1.160E-05 22.5 0.55 81000 314.7 216.61 0.0055 0.0060913 0.0250276 1.159E-05 22.666667 0.45 81600 314.7 215.7 0.0045 0.0066692 0.023498 1.159E-05 22.833333 0.36 82200 314.7 214.78 0.0036 0.0053746 0.022019 1.158E-05 23 0.26 82800 314.7 213.87 0.0026 0.0039102 0.0205977 1.158E-05 23.166667 0.17 83400 314.7 212.96 0.0017 0.0025754 0.0192417 1.157E-05 23.333333 0.07 84000 314.7 212.05 0.0007 0.0010682 0.0179303 1.157E-05 Page 4

. . - - . _ - - - - - - - - ~ _ . - - . - . - . - - . - - . - - - . _ . . - . . - - .

PS AT 05653 A.04 5 of 8 Attachment 2 Revision 1 FLASH 2 Ltube = 52 ft Mdot = 2.5 lbm/sec Adep/ft = 2541.25 ft Spvolsat = 26.8 ft3/lbm Post-fl pH [l]a (g-at/L) (l]b1 (12]bi DF1 (l]b2 (12]b2 DF2 DF (depo) 4.8077101 1.320E-09 2.393E-09 1.646E-14 298.2579 2.385E-09 1.635E 14 300.27213 1.0018182 4.872227 1.208E-08 1.627E-08 5.877E-13 133.05202 1.615E-08 5.789E 13 135.08455 1.014954 4.8722563 2.264E-08 3.076E-08 2.1E 12 70.430569 3.032E-08 2.04E-12 72.483883 1.014954 4.8722563 3.359E-08 4.525E-08 4.544E 12 47.879262 4.431E-08 4.356E 12 49.953747 1.014954 4.8750462 4.435E-08 5.898E 08 7.633E 12 39.089886 5.747E-08 7.246E 12 41.179999 1.017143 l 4.8771726 5.511E-08 7.257E-08 1.146E 11 33.355093 7.039E-08 1.078E-11 35.459973 1.0190876 4.8787964 6.587E-08 8.609E-08 1.602E 11 29.207817 8.314E-08 1.493E-11 31.327094 1.0207898 4.8802109 7.663E-08 9.95E-08 2.127E-11 26.140011 9.569E-08 1.967E 11 28.273028 1.0223884 4.88142 8.738E-08 1.128E-07 2.722E-11 23.737383 1.081E-07 2.497E 11 25.883766 1.0239285 4.8824829 9.814E-08 1.261E-07 3.386E 11 21.803658 1.203E-07 3.081E 11 23.963063 1.0253547 4.8834574 1.089E-07 1.393E-07 4.115E-11 20.225391 1.324E-07 3.716E-11 22.397398 1.0267557 4.8843445 1.197E-07 1.524E-07 4.91E-11 18.902817 1.444E-07 4.401E-11 21.087123 1.0281407 4.8851729 1.304E-07 1.655E-07 5.768E 11 17.783994 1.562E-07 5.134E 11 19.980249 1.0295026 4.8859432 1.412E-07 1.785E-07 6.69E 11 16.820343 1.679E-07 5.914E 11 19.028272 1.0308402 4.886656 1.519E-07 1.915E-07 7.676E-11 15.977037 1.795E-07 6.739E 11 18.196437 1.0321951 4.8873666 1.627E-07 2.044E-07 8.718E-11 15.254424 1.91E-07 7.606E-11 17.484778 1.0335755 l 4.8880476 1.734E-07 2.172E-07 9.82E-11 14.617853 2.024E-07 8.514E 11 16.8M849 1.03496 4.8886993 1.842E-07 2.3E-07 1.098E-10 14.051597 2.137E-07 9.463E 11 16.302959 1.0363698

, 4.8893492 1.950E-07 2.427E-07 1.219E 10 13.555119 2.248E-07 1.045E 10 15.816378 1.0378308 l 4.889997 2.057E-07 2.554E-07 1.346E 10 13.11773 2.359E-07 1.147E-10 15.388419 1.0393665 4.8906161 2.165E-07 2.68E-07 1.478E 10 12.719718 2.469E-07 1.253E-10 14.999621 1.0409049 l 4.8912066 2.272E-07 2.805E-07 1.616E-10 12.354899 2.578E-07 1.363E 10 14.643832 1.0425044 4.891849 2.380E-07 2.929E-07 1.757E-10 12.050222 2.686E-07 1.476E 10 14.347226 1.0442173

! 4.8924362 2.488E-07 3.053E-07 1.905E-10 11.757733 2.794E-07 1.593E-10 14.062909 1.0459747 4.8930483 2.595E-07 3.176E-07 2.056E-10 11.505552 2.9E-07 1.712E 10 13.818194 1.0477576 4.8936323 2.703E-07 3.299E-07 2.213E 10 11.269485 3.006E-07 1.835E 10 13.589462 1.0496199 4.8942147 2.810E-07 3.421E-07 2.374E-10 11.057185 3.112E-07 1.961E 10 $ 3.384085 1.0515559 4.8947691 2.918E-07 3.543E-07 2.541E 10 10.856277 3.217E-07 2.091E-10 13.190013 1.0535579 l 4.8953484 3.025E-07 3.664E-07 2.71E-10 10.684686 3.321E 07 2.223E 13 13.024544 1.0556711 4.8959262 3.133E-07 3.784E-07 2.884E-10 10.530581 3.425E-07 2.359E-10 12.876163 1.057903 4.8965025 3.241E-07 3.904E 07 3.062E-10 10.392436 3.528E-07 2.497E-10 12.743345 1.0601906 4.8970773 3.348E-07 4.023E-07 3.244E 10 10.268931 3.631E-07 2.638E 10 12.624777 1.0626071 4.8976245 3.456E-07 4.142E 07 3.43E-10 10.149287 3.734E-07 2.783E-10 12.510043 1.0650966 4.8981962 3.563E-07 4.259E-07 3.62E-10 10.051801 3.836E-07 2.93E-10 12.416735 1.0677548

, 4.8987665 3.671E-07 4.376E-07 3.812E-10 9.9659402 3.937E-07 3.08E 10 12.334676 1.0704956 f 4.8993095 3.779E-07 4.493E-07 4.01E-10 9.8813519 4.039E-07 3.234E-10 12.253901 1.0733348 j 4.8998511 3.886E-07 4.61E-07 4.211E 10 9.8069612 4.14E-07 3.39E-10 12.182973 1.0762595 l 4.9003914 3.994E-07 4.726E-07 4.415E-10 9.742163 4.241E-07 3.549E-10 12.121291 1.0794009 4.9009303 4.101 E-07 4.841E-07 4.623E-10 9.6864273 4.341E-07 3.711E-10 12.068332 1.0825896 4.9014679 4.209E-07 4.956E-07 4.834E-10 9.6392907 4.442E-07 3.875E-10 12.023637 1.0859447 4.9020041 4.316E-07 5.07E-07 5.048E-10 9.6003485 4.542E-07 4.043E 10 11.986808 1.0894393

Page5 i

I L _. -

l PS AT 05653 A.04 6 of 8  :

Attachment 2 Revision 1 I FLASH 2 4.3025391 4 424E-07 5.183E-07 5.265E-10 9.569249 4.642E-07 4.213E 10 11.9575 1.0931382  ;

4.9030473 4.532E-07 5.297E 07 5.487E 10 9.5358727 4.741 E-07 4.387E-10 11.92602 1.0969123 4.9035797 4.639E-07 5.409E-07 5.71E 10 9.5195152 4.841 E-07 4.563E 10 11.910832 1.1009504 4.9040855 4.747E-07 5.522E-07 5.937E-10 9.5002464 4.941E-07 4.743E-10 11.89286 1.1050944 l 4.9045901 4.854E-07 5.634E-07 6.168E 10 9.4876652 5.04E-07 4.925E 10 11.881286 1.1094132 4.9051188 4.962E-07 5.745E-07 6.399E 10 9.4917078 5.14E-07 5.11 E-10 11.885615 1.1139888 4.905621 5.069E-07 5.856E-07 6.635E-10 9.4920786 5.239E-07 5.298E-10 11.88643 1.1187103 4.9061221 5.177E-07 5.966E-07 6.873E 10 9.4986854 5.338E-07 5.489E-10 11.893211 1.1236607 4.906622 5.285E-07 6.076E-07 7.114E 10 9.51143 5.438E-07 5.683E 10 11.905866 1.1287674

)

4.9070959 5.392E-07 6.187E-07 7.36E 10 9.5196725 5.537E-07 5.881E 10 11.914213 1.1340917 j 4.9075936 5.500E-07 6.290E-07 7.606E-10 9.5443593 5.636E-07 6.081E 10 11.938304 1.1397061 l 4.9080654 5.607E-07 6.405E-07 7.857E-10 9.5641883 5.735E-07 6.284E 10 11.95775 1.1455314 I 4.9085361 5.715E-07 6.513E-07 8.11 E-10 9.5896898 5.834E-07 6.49E 10 11.982634 1.1516065 4.9090058 5.823E-07 6.622E-07 8.365E-10 9.6208472 5.933E-07 6.7E-10 12.012946 1.1578764 4.9094745 5.930E-07 6.73E-07 8.623E 10 9.6576641 6.033E-07 6.912E-10 12.048696 1.1645267

)

4.9099422 6.038E-07 6.837E-07 8.883E 10 9.7001636 6.132E-07 7.127E-10 12.089913 1.1713891 4.9104089 6.145E-07 6.944E-07 9.146E 10 9.7483883 6.231E-07 7.346E-10 12.136644 1.1785072 4.9108501 6.253E-07 7.051 E-07 9.413E 10 9.7905624 6.331E-07 7.568E-10 12.177592 1.1859766 l 4.9113149 6.360E-07 7.157E-07 9.679E 10 9.8502302 6.43E-07 7.792E 10 12.235366 1.1936335 4.9117543 6.468E-07 7.263E-07 9.951E 10 9.9035977 6.53E-07 8.021E 10 12.287121 1.2019086 4.9122171 6.576E-07 7.368E-07 1.022E-09 9.9750601 6.63E-07 8.252E 10 12.356313 1.2105553 4.9126546 6.683E-07 7.474E-07 1.05E-09 10.039996 6.729E-07 8.486E-10 12.419273 1.2196455 4.9130913 6.791E-07 7.579E-07 1.077E-09 10.110781 6.829E-07 8.724E 10 12.48791 1.2289812 4.9135271 6.898E-07 7.664E-07 1.105E-09 10.187553 6.929E-07 8.964E-10 12.562367 1.2387349 4.913962 7.006E-07 7.788E-07 1.134E-09 10.270471 7.03E-07 9.208E-10 12.642809 1.2488647 l 4.9143961 7.113E-07 7.892E-07 1.162E-09 10.359715 7.13E-07 9.456E 10 12.729422 1.2595789 l 4.9148052 7.221 E-07 7.996E-07 1.191E-09 10.441369 7.23E-07 9.707E 10 12.808772 1.2707825 4.9152376 7.329E 07 8.099E-07 1.219E-09 10.543561 7.331E-07 9.961E 10 12.90804 1.2825725 4.9156691 7.436E-07 8.201 E-07 1.248E-09 10.652742 7.432E 07 1.022E-09 13.014159 1.294758 4.9160759 7.544E-07 8.304E-07 1.278E-09 10.754026 7.532E 07 1.048E-09 13.112724 1.3075036 4.9164819 7.651E-07 8.407E 07 1.307E 09 10.862112 7.633E-07 1.074E-09 13.217962 1.3205847 4.9168871 7.759E-07 8.509E-07 1.337E-09 10.977267 7.734E-07 1.101E-09 13.330148 1.3344359 4.9172678 7.867E-07 8.612E-07 1.387E-09 11.083475 7.835E-07 1.128E-09 13.433743 1.3490217 4.9176716 7.974E-07 8.714E-07 1.397E-09 11.213242 7.937E-07 1.156E-09 13.560313 1.3643905 4.9180746 8.082E-07 8.815E-07 1.428E-09 11.351031 8.039E-07 1.183E-09 13.694799 1.3801787 4.9184532 8.189E-07 8.917E-07 1.459E-09 11.479545 8.14E-07 1.212E-09 13.820378 1.3967037 4.9188548 8.297E-07 9.017E-07 1.489E-09 11.63406 8.242E-07 1.24E-09 13.971395 1.4144659 4.9192321 8.404E-07 9.118E-07 1.52E 09 11.779112 8.344E-07 1269E-09 14.113325 1.4324867 4.9196087 8.512E-07 9.219E-07 1.552E 09 11.932806 8.447E-07 1.298E-09 14.263811 1.4513563 4.9199612 8.620E-07 9.321E-07 1.584E-09 12.075749 8.549E-07 1.328E-09 14.403924 1.4705794 4.9203366 8.727E-07 9.421E-07 1.615E 09 12.247498 8.651E-07 1.358E-09 14.572307 1.4906865 4.9206879 8.835E-07 9.521E-07 1.648E-09 12.408254 8.754E-07 1.388E-09 14.730082 1.5118736 4.9210386 8.942E-07 9.622E-07 1.68E-09 12.578332 8.857E-07 1.419E-09 14.897111 1.5340558 4.9213888 9.050E-07 9.722E-07 1.713E-09 12.758249 8.96E-07 1.45E-09 15.073916 1.5569529 4.9217384 9.158E-07 9.821 E-07 1.745E-09 12.948572 9.063E-07 1.481E-09 15.26107 1.581446 Page 6

PSAT 05653 A.04 7 of 8 Revision 1 FLASH 2 4.5220875 9.265E-07 9.921E-07 1.778E-09 13.149924 9.166E 07 1.513E-09 15.459201 1.6069371 l 4.9224128 9.373E-07 1.002E-06 1.812E-09 13.338227 9.27E 07 1.545E-09 15.644676 1.633853 I 4.9227607 9.480E-07 1.012E-06 1.845E-09 13.562848 9.374E-07 1.577E-09 15.865988 1.6614664 l 4.923085 9.588E-07 1.022E-06 1.879E-09 13.774139 9.477E-07 1.61E-09 16.074368 1.6906221 l 4.9234088 9.695E-07 1.032E-06 1.913E-09 13.997575 9.581 E-07 1.644E-09 16.294859 1.7211989  ;

4.9237552 9.803E-07 1.042E-06 1.947E-09 14.262471 9.686E-07 1.677E-09 16.556362 1.7535214 I 4.924078 9.911E-07 1.052E-06 1.981E-09 14.513728 9.791E-07 1.711E-09 16.80463 1.7872003 l 4.9244003 1.002E-06 1.061E 06 2.016E-09 14.779818 9.895E-07 1.746E-09 17.067718 1.8225577 ,

4.9247221 1.013E-06 1.071E-06 2.051E-09 15.061806 1E-06 1.78E-09 17.346697 1.8602699  !

4.9250435 1.023E-06 1.081E-06 2.085E-09 15.36087 1.011E-06 1.816E-09 17.642756 1.8996235 l 4.9253415 1.034E-06 1.091E-06 2.121E-09 15.643418 1.021E-06 1.851E-09 17.922699 1.9413316

]

4.9256619 1.045E-06 1.101E-06 2.156E-09 15.979117 1.032E-06 1.887E-09 18.255416 1.9852309 l 4.9259819 1.056E-06 1.11E-06 2.191 E-09 16.336152 1.042E-06 1.924E-09 18.6095 2.0314567 i 4.9262786 1.066E-06 1.12E-06 2.227E-09 16.676386 1.053E-06 1.96E-09 18.94719 2.0801538 l 4.9265977 1.077E 06 1.13E-06 2.263E-09 17.079694 1.064E-06 1.997E-09 19.347631 2.1314779 I 4.9268935 1.088E-06 1.139E-06 2.299E-09 17.466255 1.074E-06 2.035E-09 19.731738 2.1860356 I 4.927189 1.099E-06 1.149E-06 2.335E-09 17.878004 1.085E-06 2.073E-09 20.14109 2.2436229 l

4.927484 1.109E-06 1.159E-06 2.372E-09 18.317177 1.095E-06 2.111E-09 20.577939 2.304439 )

4.9277787 1.120E-06 1.168E-06 2.409E-09 18.786297 1.106E-06 2.15E-09 21.044819 2.3686985 )

4.9280729 1.131E-06 1.178E-06 2.446E-09 19.288216 1.117E-06 2.189E-09 21.5446 2.437198 l 4.9283668 1.142E-06 1.188E-06 2.483E-09 19.826171 1.128E-06 2.229E-09 22.080538 2.5096969 l 4.9286602 1.152E-06 1.197E-06 2.52E-09 20.403855 1.139E-06 2.269E-09 22.656344 2.5864726  !

4.9289533 1.163E-06 1.207E-06 2.557E-09 21.025492 1.149E 06 2.31E-09 23.276265 2.6685148 )

4.929246 1.174E-06 1.216E-06 2.594E-09 21.695941 1.16E-06 2.35E-09 23.945188 2.7555546 4.9295382 1.185E-06 1.226E 06 2.632E-09 22.420819 1.171 E-06 2.392E-09 24.668758 2.8487453 j 4.9298077 1.195E-06 1.235E-06 2.67E-09 23.127919 1.182E 06 2.433E-09 25.374982 2.9478037 l 4.9300992 1.206E-06 1.245E 06 2.708E-09 23.976318 1.193E-06 2.476E-09 26.222589 3.0522619 i 4.9303679 1.217E-06 1.254E-06 2.746E-09 24.810549 1.204E-06 2.518E-09 27.056483 3.164351 j 4

4.9306364 1.228E-06 1.264E-06 2.785E-09 25.717399 1.215E-06 2.561E-09 27.963314 3.2847943 4.9309268 1.238E-06 1.273E-06 2.823E-09 26.812101 1.226E-06 2.605E-09 29.058315 3.4132697 l 4.9311945 1.249E-06 1.283E-06 2.862E-09 27.903295 1.237E-06 2.649E-09 30.150327 3.551634  ;

4.9314619 1.260E 06 1.292E-06 2.901E 09 29.102442 1.248E-06 2.693E-09 31.350791 3.7008732  ;

4.9317289 1.271E-06 1.302E-06 2.94E-09 30.425865 1.259E-06 2.738E-09 32.676116 3.8592548 ,

4.9319957 1.282E-06 1.311E-06 2.979E-09 31.893374 1.27E-06 2.783E-09 34.146212 4.0303959 l 4.9322621 1.292E-06 1.32E-06 3.019E-09 33.529244 1.281E-06 2.829E-09 35.785479 4.2156246 4.9325282 1.303E-06 1.33E 06 3.058E 09 35.363551 1.292E-06 2.875E-09 37.624144 4.4146357  ;

4.9327939 1.314E-06 1.339E-06 3.098E 09 37.434012 1.303E-06 2.921E-09 39.700117 4.6266996 4.9330594 1.325E-06 1.348E 06 3.138E-09 39.788575 1.315E-06 2.968E-09 42.061587 4.8547848 l 4.9333024 1.335E-06 1.358E-06 3.179E-09 42.220815 1.326E-06 3.016E-09 44.501708 5.0957218 4.9335452 1.346E-06 1.367E-06 3.22E-09 45.002085 1.337E-06 3.064E-09 47.292599 5.3524027 4.9337877 1.357E-06 1.377E-06 3.261E-09 48.212274 1.348E-06 3.112E-09 50.514557 5.625808  !

4.9340299 1.368E-06 1.386E-06 3.302E-09 51.957704 1.359F M 3.161E-09 54.274445 5.9081372 4.9342498 1.378E-06 1.396E-06 3.344E-09 55.908344 1.371E-a 3.21E 09 58.241224 6.2109724 4.9344696 1.389E 06 1.405F-06 3.386E-09 60.563169 1.382E-06 3.26E-09 62.915767 6.532576 4.9346891 1.400E-06 1.414E-06 3.49E-09 66.127155 1.393E-06 3.31E-09 68.504102 6.881430; Page 7 l

I

PSAT 05653A.04 8 of 8 Attachment 2 Revision 1 FLASH 2 4.9349084 1.411E-06 1.424E-06 3.472E-09 72.893445 1.404E 06 3.361E-09 75.300878 7.2523282 4.9351056 1.421E-06 1.433E-06 3.515E-09 80.305324 1.416E-06 3.412E-09 82.747298 7.6464475 4.9353244 1.432E 06 1.443E-06 3.558E-09 90.738986 1.427E-06 3.463E-09 93.230235 8.0793759 4.9355431 1.443E 06 1.452E-06 3.601 E-09 104.44097 1.438E-06 3.515E-09 106.99824 8.5404163 4.9357397 1.454E-06 1.462E-06 3.646E-09 120.95128 1.45E-06 3.568E-09 123.58989 9.0424649 4.9359579 1.464E 06 1.471E-06 3.689E-09 147.17408 1.461E-06 3.621 E-09 149.94302 9.5838985 4.9361542 1.475E-06 1.48E-06 3.734E-09 183.10856 1.472E-06 3.674E-09 186.05884 10.181772 4.936372 1.486E 06 1.49E-06 3.777E-09 252.43674 1.484E-06 3.728E-09 255.73898 10.828856 4.9365678 1.497E-06 1.499E-06 3.822E-09 384.31553 1.495E-06 3.783E-09 388.29313 11.53787 4.9367852 1.507E-06 1.508E 06 3.866E-09 929.38641 1.507E-06 3.838E-09 936.16346 12.316222 l

9 Page 8

PSAT 05653 A.04 See Proprietary Version 1 or8 Attachment 3 Revision 1 9

PSAT 05653 A.04 See Proprietary Version 2 of 8 Revision 1 4

l l

0 l

PSAT 05653 A.04 See Proprietary Version 3 or8 Revision i l

l l

l l

PSAT 05653 A.04 See Proprietary Version 4 of 8 Revision 1 l

l l

l l

l i

l l

l 1

I l

l 1

l l

(

l l

i PSAT 05653 A.04 See Proprietary Version l 5 of 8 Attachment 3 ,

Rev..ision 1 l i

5 0

l l

PSAT 05653 A.04 See Proprietary Version 6 of 8 l

Attachment 3 Revision J l

l t

l 8

PSAT 05653A.04 See Proprietary Version 7 org Revision 1 1

1 l

I 1

1 1

4 4

0 0

PSAT 05653 A.04 See Proprietary Version 8 of 8 Revision 1 e

4

PSAT 05653 A.04 1of8 Attachment 4 Revision 1 FLASH 2 l XL Spread Sheet for TMI MSLB with Pre Accident Spike - Final Release Fractions I Initla! ! conc 7.92E-08 g-atom /L. Rem rate = 1.630E-03 per minute. Vratlo = 1eo4 ppm B = 1978 Add rate = 1.291E 10 g-atom /L-m Post-fl T(K) 373 Time (hrs) % flash Time (sec) Press (psla) Temp (F) Flash frac Flash rel Rel frac [H+]B 0 44.85 0 2160 601 0.4485 0.1282091 0.3194223 1.557E-05 1 0.1666667 25.77 600 961.05 449.71 0.2577 0.0451574 0.2514624 1.342E-05 l 0.3333333 25.76 1200 846.16 449.71 0.2576 0.0457718 0.2519346 1.342E-05 l 0.5 25.76 1800 846.16 449.71 0.2576 0.0464151 0.2524289 1.342E-05 0.6666667 24.8 2400 787.33 441.37 0.248 0.0440093 0.2500408 1.333E-05 0.8333333 24.06 3000 743.93 434.92 0.2406 0.0423282 0.248277 1.327E-05 1 23.49 3600 711.21 429.86 0.2349 0.0411761 0.2469826 1.322E-05 1.1666667 22.99 4200 684.07 425.52 0.2299 0.0402343 0.2458779 1.318E-05 1.3333333 22.56 4800 660.56 421.66 0.2256 0.0394958 0.2449455 1.314E '05 1.5 22.18 5400 640.79 418.33 0.2218 0.0388974 0.2441497 1.311E-05 1.6666667 21.83 6000 622.95 415.26 0.2183 0.038379 0.2434227 1.308E-05 1.8333333 21.51 6600 606.72 412.4 0.2151 0.0379394 0.2427612 1.305E-05 2 21.21 7200 591.88 409.74 0.2121 0.0375492 0.2421445 1.303E-05 2.1666667 20.93 7800 578.29 407.26 0.2093 0.0372081 0.2415722 1.300E-05 i 2.3333333 20.67 8400 565.46 404.87 0.2067 0.0369162 0.2410345 1.298E-05 l 2.5 20.41 9000 553.17 402.55 0.2041 0.0366161 0.2404861 1.296E-05 2.6666667 20.16 9600 541.67 400.33 0.2016 0.0363366 0.2399538 1.294E-05 2.8333333 19.92 10200 530.61 398.17 0.1992 0.0360779 0.2394327 1.292E-05 3 19.68 10800 519.79 396.03 0.1968 0.0358116 0.2388954 1.290E-05 3.1666667 19.44 11400 509.13 393.88 0.1944 0.0355378 0.238337 1.288E-05 3.3333333 19.21 12000 499.07 391.82 0.1921 0.0352852 0.2377954 1.286E-05 3.5 18.99 12600 489.2 389.77 0.1899 0.0350539 0.2372575 1.285E-05 3.6666667 18.75 13200 479.28 387.67 0.1875 0.0347587 0.2366479 1.283E-05 3.8333333 18.53 13800 469.7 385.61 0.1853 0.0345136 0.2360675 1.281 E-05 4 18.3 14400 460.5 383.61 0.183 0.0342334 0.2354572 1.279E-05 4.1666667 18.08 15000 451.46 381.61 0.1808 0.0339751 0.2348475 1.278E-05 4.3333333 17.86 15600 442.59 379.62 0.178C 0.0337105 0.2342188 1.276E-05 4.5 17.65 16200 433.96 377.65 0.1765 0.0334679 0.2335942 1.274E-05 4.6666667 17.43 16800 425.36 375.66 0.1743 0.0331909 0.2329219 1.272E-05 4.8333333 17.21 17400 416.82 373.65 0.1721 0.0329078 0.2322218 1.271E-05 5 16.99 18000 408.58 371.68 0.1699 0.032619 0.2315082 1.269E-05 5.1666667 16.77 18600 400.39 369.69 0.1677 0.0323244 0.2307655 1.267E-05 5.3333333 16.56 19200 392.4 367.73 0.1656 0.0320525 0.230027 1.266E-05 5.5 16.34 19800 384.41 365.73 0.1634 0.0317468 0.229231 1.264E-05 5.6666667 16.12 20400 376.68 363.76 0.1612 0.0314358 0.2284175 1.263E-05 5.8333333 15.91 21000 369.14 361.81 0.1591 0.0311478 0.227604 1.261E-05 6 15.7 21600 361.8 359.89 0.157 0.0308545 0.2267729 1.259E-05 6.1666667 15.49 22200 354.43 357.92 0.1549 0.0305562 0.2258974 1.258E-05 6.3333333 15.28 22800 347.37 356.01 0.1528 0.030253 0.2250135 1.256E-05 6.5 15.07 23400 343.49 354.09 0.1507 0.0299449 0.224097 1.255E-05 6.6666667 14.86 24000 340.3 352.18 0.1486 0.029632 0.2231542 1.253E-05 Page1

l PSAT 05653A.04 2 of 8 l Attachment 4 Revision 1 l FLASH 2 6.8333333 14.65 24600 337.08 350.25 0.146s 0.0i93148 0.iiI17Is 1.25sE-Os l 7 14.45 25260 ssi.98 348.s7 0.1445 0.0290203 0.221199 1.250E-05 7.1666667 14.24 25800 330.75 346.45 0.1424 0.0286937 0.2201563 1.249E-05 l 7.3333333 14.04 26400 327.61 344.57 0.1404 0.0283907 0.2191168 1.247E-05 7.5 13.84 27000 324.6 342.7 0.1384 0.0280833 0.2180477 1.246E-05 7.6666667 13.63 27600 322.08 340.81 0.1363 0.0277438 0.2169143 1.244E-05 7.8333333 13.43 28200 319.6 338.95 0.1343 0.0274279 0.2157787 1.243E-05 8- 13.23 28800 317.12 337.09 0.1323 0.027108 0.2146059 1.241E-05 8.1666667 13.03 29400 314.7 335.26 0.1303 0.0267841 0.2134112 1.240E-05 8.3333333 12.84 30000 314.7 333.44 0.1284 0.0264839 0.2122028 1.239E-05 8.5 12.64 30600 314.7 331.61 0.1264 0.0261521 0.2109304 1.237E-05 8.6666667 12.45 31200 314.7 329,8 0.1245 0.0258442 0.2096481 1.236E-05 l 8.8333333 12.26 31800 314.7 328 0.1226 0.0255325 0.2083306 1.234E-05 l 9 12.07 32400 314.7 326.23 0.1207 0.025217 0.2069904 1.233E-05 9.1665487 11.88 33000 314.7 324.44 0.1188 0.024898 0.2055946 1.232E-05 9.3333333 11.69 33600 314.7 322.68 0.1169 0.0245753 0.2041753 1.230E 05 9.5 11.5 34200 314.7 320.94 0.115 0.0242492 0.2027263 1.229E-05 9.6666667 11.32 34800 314.7 319.2 0.1132 0.023947 0.2012508 1.228E-05 9.858353s 11.13 35400 314.7 317.5 0.1113 0.023614 0.1997422 1.227E-05 10 10.95 36000 314.7 315.75 0.1095. 0.0233051 0.1981665 1.2isE-05 10.166667- 10.76 36600 314.7 314.01 0.1076 0.0229655 0.1965322 1.224E-05 10.333333 10.58 37200 314.7 312.27 0.1058 0.0226499 0.1948656 1.223E-05 10.5 10.4 37800 314.7 310.57 0.104 0.0223312 0.193183', 1.222E-05 10.666667 10.22 38400 314.7 308.88 0.1022 0.0220093 0.191459, .'.220E-05 10.858553 10.04 39000 314.7 307.21 0.1004 0.0216844 0.1897033 1.219E 05 11 9.86 39600 314.7 305.53 0.0986 0.0213564 0.1878866 1.218E-05 11.166667 9.69 40200 314.7 303.86 0.0969 0.0210525 0.1860436 1.217E-05 11.333333 9.51 40800 314.7 302.19 0.0951 0.0207185 0.1841303 1.216E-05 11.5 9.33 41400 314.7 300.55 0.0933 0.0203816 0.1821944 1.214E-05 11.666667 9.16 42000 314.7 298.92 0.0916 0.020069 0.1802319 1.213E-05 11.833333 8.99 42600 314.7 297.33 0.0899 0.0197534 0.17f2602 1.212E-05 12 8.82 43200 314.7 295.73 0.0882 0.0194351 0.1762238 1.211E-05 12.166667 8.66 43800 314.7 294.13 0.0866 0.019141 0.1741484 1.210E-05 12.333333 8.49 44400 314.7 292.53 0.0849 0.0188172 0.1720016 1.209E-05 3 12.5 8.32 45000 314.7 290.97 0.0832 0.0184906 0.1698495 1.208E-05 12.666667 8.16 45600 314.7 289.42 0.0816 0.0181884 0.1676712 1.207E-05 12.833333 7.99 46200 314.7 287.84 0.0799 0.0178566 0.1653827 1.205E 05 13 7.83 46800 314.7 286.32 0.0783 0.0175491 0.1631347 1.204E-05 13.166687 7.67 47400 314.7 284.81 0.0767 0.0172391 0.1608471 1.203E-05 13.333333 7.52 48000 314.7 283.35 0.0752 0.0169533 0.158593 1.202E-05 13.5 7.36 48600 114.7 281.9 0.0736 0.0166382 0.1562889 1.201E-05 13.666667 7.21 49200 314.7 J280.45 0.0721 0.0163474 0.1539487 1.200E-05 13.833333 7.06 49600 314.7 279.01 0.0706 0.0160542 0.1515735 1.199E-05 14 6.91 50400 314.7 277.6 0.0691 0.0157585 0.1491963 1.198E-05 14.166667 6.76 51000 314.7 276.17 0.0676 0.0154605 0.1467386 1.197E-05 Page 2

PSAT 05653 A.04 3 of 8 Attachment 4 Revision 1 FLASHi 14.333333 6.61 51600 314.7 274.76 0.0661 0.01516 0.144i65 1.196E-Os 14.5 6.47 52iOO 314.7 273.35 0.0647 0.014884 0.14175t7 1.196E-05 14.666667 6.32 52800 314.7 271.98 0.0632 0.0145789 0.139fs74 '1.19sE-05 14.833333 6.18 53400 314.7 270.61 0.0618 0.0142983 0.1367264 1.194E-05 15 6.04 54000 314.7 269.25 0.0604 0.0140154 0.1341693 1.193E-05

( 1s.16sso7 5.89 54600 314.7 267.89 0.0589 0.0137035 0.1315574 1.192E-05 l 15.333333 5.75 55200 314.7 266.55 0.0575 0.0134162 0.1289529 1.191E-05 15.5 5.61 5s800 314.7 265.22 0.0561 0.0131266 0.1i63273 1.190E-05 15.666667 5.47 56400 314.7 263.88 0.0547 0.0128349 0.123644 1.189E-05 15.835333 5.33 57000 314.7 262.56 0.0533 0.012541 0.1209619 1.1882 05 16 5.2 57600 314.7 261.24 0.052 0.0122717 0.118ss49 1.188E-05

! 16.165687 5.06 58200 314.7 259.93 0.6566 0.6119737 0.1155228 1.187E-05 l 16.333333 4.9s 58800 314.7 258.63 0.0492 0.0116736 0.11i7789 1.186E-05 16.5 4.79 59400 314.7 257.34 0.0479 0.011398 0.1100354 1.185E-05 18.886487 4.65 60006 s14.1 is6.06 6.0465 6.6110958 0.1072745 1.184s-6s l 16.833333 4.52 60600 314.7 254.78 0.045i 0.0108143 0.1044974 1.183E-Os

17 4.39 61200 314.7 25s.s1 0.0439 6.616s3i7 0.1017174 1.18sE-6s l 17.166667 4.26 61800 314.7 25I.2s 0.0426 0.0102492 0.098937 1.18sE-Os 17.363583 4.13 6i400 314.7 251 0.0418 0.0099637 6.096156 1.181E-05 17.5 4 63000 314.7 f49.75 0.04 0.0096764 0.0933644 1.180E-05 17.668887 5.87 s3600 314.7 I48.s1 0.6887 6.6693871 6.0965774 1.179E-05 17.833333 3.74 64200 314.7 247.28 0.0374 0.0090969 0.087801 1.179E-05 18 5.81 64800 314.1 246.6s 6.6861 6.0088029 0.0850159 1.178E-05 18.166667 3.48 65400 314.7 I44.83 0.0348 0.0085081 0.0822471 1.177E-05 18.33s335 3.35 66000 314.7 i48.61 0.6535 6.6082114 0.0794753 1.176E-05 18.5 3.23 66600 314.7 i4i.4 0.0323 0.0079394 0.07673i6 1.175E-05 1s.6666s7 s.1 67i60 314.7 i41.i1 6.031 6.60768si 6.0746f94 1.1tss-05 18.833333 2.98 67800 314.7 240.02 0.0298 0.0073637 0.0713396 1.174E-os 19 i.86 68400 s14.1 i38.88 6.6i66 0.66t6664 0.668658 1.173E-05 19.166667 i.73 69000 314.7 237.65 0.0273 0.0067809 0.0660039 1.172E 05 1s.353s38 f.61 86606 314.1 i36.47 0.Di61 0.0065002 0.0633709 1.172E-05 19.s i.49 70iOO 314.7 23s.29 0.0249 0.0062177 0.0607559 1.171E-05 1s.666687 f.si 10000 314.1 i34.13 6.6ist 6.6656s38 6.0582051 1.170E-05 19.833333 i.is 71400 314.7 232.97 0.0iss 0.00so478 0.05s6782 1.170E-05 20 2.13 72000 314.7 231.81 0.0213 0.0053604 0.0531786 1.169E-05 20.166667 2.01 72600 314.7 230.66 0.0201 ' O.0060713 0.0s07303 1.168E-05 iO.ss5585 1.ii is200 314.7 f29.si 6.6189 6.064ti66 6.6468s6 1.18ti-65 50.5 1.77 73800 314.7 ii8.41 0.0177 0.0044883 0.0460372 1.167E-Os i0.68666i 1.66 74400 314.7 227.32 0.0166 6.664i208 6.04ss19s 1.166E-05

! 20.833333 1,55 75000 314.7 fi6.i5 0.015s 0.0030517 0.0416789 1.165E-05 l 21 1,44 75606 314.1 225.2 0.6144 0.0036811 0.0396159 1.165E-05 ii.166667 1.33 76iOO 314.7 , 224.2 0.0133 0.0034089 0.0376868 1.164E-05 i 21.333333 1.53 76800 314.7 223.21 0.01is 6.0031617 0.0358182 1.163E 05 i 21.5 1.13 77400 314.7 222.24 0.0113 0.0029129 0.0340252 1.163E 05 21.666667 1.03 78000 314.7 221.27 0.0103 0.0026626 0.0322719 1.162E-05 Page 3

PSAT 05653 A.04 4 of 8 Attachment 4 Revision 1 FLASH 2 21.833333 0.93 78600 314.7 220.32 0.0093 0.0024109 0.0305944 1.162E-Os 52 0.s4 19200 314.7 $19.39 6.0684 6.0021841 0.0is9948 1.161$-Os 22.166667 0.74 79800 314.7 218.4s 0.0074 0.0019294 0.0274161 1.161E-0$

22.555836 6.64 80460 314.7 517.s3 6.6664 6.001673s 0.65siist i.1668-6s i2.5 0.55 81000 314.7 f16.61 0.005s 0.00144i2 0.0544s41 1.1s9E-Os 2s.668687 6.45 sisd6 314.7 its1 6.0648 6.66iissi 6.6fs6 sis 1.issi.6s ii.833333 0.36 8i200 314.7 i14.78 0.0036 0.0009493 0.0i166 1.166E-Os 53 .26 82800 314.7 I18.sf 6.66f6 6. 006874 6.0568888 1.issE-Os i I3.166667 0.17 83400 314.7 fii.96 0.0017 0.0004s08 0.0190981 1.is7E-0s i is.356363 6.67 84066 614.7 f12.0s 0.6661 6.660issi 0.0178744 1.157E-05 l

4 l

l i

4 Page 4 i

_ _ _ . _ . . . -_ _ ___ _ _ ____ _ . ~ . _ . . _ _ _ . _ . _ _ _ . _ _ _ . _ . _ _ _ . . . . _

l PSAT 05653 A.04 5 of 8 ,

Attachment 4 Redsion 1

. FLASH 2 I Ltube = 52 ft Mdot = 2.5 lbm/sec Adep/ft = 2541.25 ft Spvolsat = 26.8 ft3/lbm i Post fl pH [1]a (g-at/L) [1]b1 [12]bi DF1 [l]b2 [12]b2 DF2 DF (depo) 4.8077101 7.920E-08 1.436E-07 5.922E 11 4.9749997 1.147E-07 3.777E 11 7.7997593 1.0018182 4.872227 8.049E-08 1.084E-07 2.609E 11 19.973173 1.03E-07 2.353E 11 22.144748 1.014954 4.8722563 8.178E-08 1.102E-07 2.692E 11 19.673289 1.046E-07 2.424E-11 21.847518 1.014954 4.8722563 8.307E 08 1.119E-07 2.778E-11 19.367714 1.061E-07 2.497E-11 21.54473 1.014954 4.8750482 8.436E-08 1.122E-07 2.761E 11 20.555246 1.067E-07 2.498E-11 22.72248 1.017143 4.3771726 8.565E 08 1.128E-07 2.767E 11 21.464306 1.075E-07 2.514E 11 23.624904 1.0190878 4.8787964 8.695E-08 1.136E-07 2.791E 11 22.129769 1.085E-07 2.543E-11 24.285936 1.0207898 4.8802109 8.824E-08 1.146E-07 2.821E 11 22.701822 1.095E-07 2.576E 11 24.854438 1.0223884 4.88142 8.953E 08 1.156E-07 2.858E 11 23.169282 1.106E-07 2.615E 11 25.319174 1.0239285 4.8824829 9.082E-08 1.167E-07 2.899E 11 23.5609 1.118E-07 2.657E 11 25.708631 1.0253547 4.8834574 9.211 E-08 1.178E-07 2.944E-11 23.910042 1.129E-07 2.702E 11 26.055933 1.0267557 4.8843445 9.340E-08 1.19E-07 2.992E 11 24.213491 1.141E-? 2.749E 11 26.357853 1.0281407 4.8851729 9.469E-08 1.202E-07 3.042E 11 24.488725 1.153E-07 2.797E 11 26.631755 1.0295026 4.8859432 9.598E-08 1.214E-07 3.093E 11 24.733945 1.165E-07 2.847E-11 '26.875836 1.0308402 4.886656 9.727E-08 1.226E-07 3.147E 11 24.94744 1.177E-07 2.898E 11 27.08838 1.0321951 4.8873666 9.856E-08 1.238E-07 3.201E 11 25.170425 1.189E-07 2.95E-11 27.310389 1.0335755 4.8880476 9.986E-08 1.251E-07 3.256E 11 25.381361 1.201 E-07 3.003E-11 27.520432 1.03496 4.8886993 1.011E-07 1.263E-07 3.312E 11 25.57952 1.214E-07 3.056E-11 27.717779 1.0363698 l 4.8893492 1.024E-07 1.275E-07 3.368E-11 25.786512 1.226E-07 3.11E-11 27.923936 1.0378308 I 4.889997 1.037E-07 1.288E-07 3.424E 11 26.002516 1.238E-07 3.164E 11 28.139083 1.0393665 4.8906161 1.050E 07 1.3E-07 3.481E 11 26.204737 1.25E-07 3.218E 11 28.340528 1.0409049  ;

4.8912066 1.063E-07 1.312E-07 3.539E 11 26.392409 1.263E-07 3.274E 11 28.527506 1.0425044 4.891849 1.076E-07 1.324E-07 3.595E 11 26.63559 1.275E-07 3.326E-11 28.769769 1.0442173 4.8924362 1.089E-07 1.337E-07 3.653E 11 26.840623 1.287E47 3.384E-11 28.974069 1.0459747 4.8930483 1.102E-07 1.349E-07 3.71E 11 27.078616 1.299E 07 3.439E-11 29.211208 1.0477576 4.8936323 1.115E-07 1.361 E-07 3.768E 11 27.30146 1.311E-07 3.495E 11 29.433282 1.0496199 4.8942147 1.128E-07 1.373E-07 3.826E 11 27.533343 1.323E-07 ~ 3.551E 11 29.664377 1.0515559 4.8947691 1.141 E-07 1.385E-07 3.885E 11 27.749042 1.335E-07 3.608E-11 29.879371 1.0535579 4.8953484 1.153E47 1.397E-07 3.943E 11 27.999271 1.347E-07 3.665E-11 30.12878 1.0556711 4.8959262 1.166E47 1.409E47 4.001E 11 28.259228 1.359E47 3.721E-11 30.387902 1.057903 4.8965025 1.179E47 1.421E-07 4.059E 11 28.529182 1.371E-07 3.777E 11 30.657006 1.0601906 4.8970773 1.192E47 1.432E 07 4.117E 11 28.809423 1.383E47 3.834E 11 30.936388 1.0626071 4.8976245 1.205E-07 1.444E-07 4.176E 11 29.072649 1.395E47 3.892E 11 31.198838 1.06509H 4.8981962 1.218E47 1.456E47 4.234E 11 29.373909 1.406E-07 3.948E-11 31.499215 1.0677548 4.8987665 1.231E-07 1.467E47 4.292E-11 29.686424 1.418E 07 4.005E-11 31.810836 1.0704956 4.8993095 1.244E-07 1.479E47 4.351E 11' 29.981434 1.43E-07 4.063E-11 32.105035 1.0733348 4.8998511 1.257E 07 1.491 E-07 4.409E-11 30.287376 1.442E47 4.121E-11 32.410159 1.0762595 4.9003914 1.270E47 1.502E47 4.468E 11 30.604606 1.453E-07 4.179E 11 32.72656 1.0794009 4.9009303 1.283E-07 1.514E-07 4.527E-11 30.933498 1.465E-07 4.237E-11 33.054615 1.0825896 4.9014679 1.295E-07 1.525E-07 4.586E 11 31.274453 1.477E-07 4.295E 11 33.394727 1.0859447 4.9020041 1.308E-07 1.537E-07 4.645E 11 31.627899 1.488E-07 4.353E 11 33.747323 1.0894393 Page 5

PSAT 05653 A.04 -

6 of 8 Attachment 4 Revision 1 FLA$H2 4.9025391 1.321E 07 1.548E-07 4.703E 11 31.99429 1.5E-07 4.411E 11 34.1128$8 1.0931382 4.9030473 1.334G-67 1.$6G-67 4.763G 11 32.346812 1.511G- 7 4.471G-11 34.458609 1.096912$

4.9038797 1.347E-07 1.$71E 07 4.822E 11 32.73388$ 1.$23E-07 4.529E-11 34.880797 1.1009$04 4.96468$$ 1.360G-67 1.582G-07 4.882G 11 33.106676 1.634G-07 4.$88E 11 $$.222827 1.10$0944 4.904$901 1.373E-07 1.$93E-07 4.941E 11 33.493031 1.$46E-07 4.648E 11 38.608398 1.1094132 4.9651188 1.386G-67 1.66$G-07 $G 11 33.92M36 1.6678-07 4.7066-11 $8.044131 1.1139888 4.90$621 1.399E-07 1.616E-07 $.0$9E 11 34.346464 1.569E-07 4.766E-11 36.4$9169 1.1187103 4.9061221 1.4i2G-07 1.627G-07 $.119E 11 $4.7765$4 1.68G-07 4.826G 11 $6.8894$ 1.1236607 l 4.906622 1.425E-07 1.638E-07 6.179E-11 36.223477 1.$91E 07 4.886E 11 37.335603 1.1287674 4.9076959 1.437s-67 1.649E-07 6.24E-11 35.647383 1.603E-07 4.947E 11 37.7588 1.1340917 4.9075936 1.450E-07 1.66E-07 $.299E 11 36.127182 1.614E-07 5.007E-11 38.23781 1.1397061 1 4.96806$4 1.463G-07 1.671G-07 5.366 11 36.583$01 1.626G-07 5.06sE 11 38.693421 1.1455314 4.9085361 1.476E-07 1.682E-07 5.421E 11 37.056601 1.637E-07 5.129E 11 39.16581$ 1.1$16085 1

, 4.9090058 1.486E-07 1.694E 07 5.482E 11 37.$47207 1.648E-07 5.191E-11 39.655717 1.1578764 4.9094745 1.502E-07 1.705E-07 5.$43E 11 38.056092 1.66E-07 5.252E 11 40.163902 1.164$267 4.9099422 1.515E-07 1.715E-07 5.604E-11 38.584083 1.671E-07 $.313E 11 40.691197 1.1713891 )

4.9104089 1.528E-07 1.726E-07 5.664E-11 39.132062 1.682E-07 5.375E-11 41.238485 1.1785072 4.9108561 1.541E-07 1.737E-07 5.727E 11 39.65301 1.694E-07 5.438E 11 41.758822 1.1859766 4.9113149 1.564E-07 1.748E-07 5.787E 11 40.242572 1.705E-07 5.5E-11 42.347706 1.1936335 4.9117$43 1.567E-07 1.759E-07 5.85E 11 40.804572 1.716E-07 5.563E 11 42.909107 1.2019086 I 4.9122171 1.579E-07 1.77E-07 5.91E-11 41.439784 1.727E-07 5.624E 11 43.543658 1.2105553 4.9126646 1.592E-07 1.781G-07 5.972E-11 42.046929 1.738E-07 5.688E-11 44.15022 1.2196455 )

4.9130913 1.605E-07 1.792E-07 6.034E 11 42.677635 1.75E-07 5.751E 11 44.780353 1.2289812 4.9136271 1.6188-07 1.802G-07 6.096E 11 43.333086 1.761E-07 5.814E 11 45.435242 1.2387349 4.913962 1.631E-07 1.813E-07 6.158E 11 44.014553 1.772E-07 5.878E 11 46.116159 1.2488647 )

4.9143661 1.644E-07 1.824E-07 6.22G 11 44.723404 1.783E-07 5.941E 11 46.824474 1.2595789 '

4.9148052 1.657E-07 1.83$E-07 6.284E 11 45.399695 1.794E-07 6.006E 11 47.500302 1.2707825 4.9162376 1.670G-67 1.8468-07 6.346G11 46.166923 1.805G-07 6.07E-11 48.266024 1.2826726 4.9186691 1.683E-07 1.856E-07 6.407E 11 46.96418$ 1.816E-07 6.133E 11 49.063797 1.294768 4.91607$9 1.696G-07 1.8478-07 6.471E 11 47.728983 1.828G-07 6.198E-11 49.82818 1.3076036 4.9164819 1.709E-07 1.877E-07 6.$34E 11 48.525277 1.839E-07 6.264E 11 $0.624077 1.320$847 4.9168871 1.721G-07 1.8888-07 6.$48811 49.354831 1.86E-07 6.329E 11 51.453253 1.3344369 4.9172678 1.734E-07 1.899E-07 6.663E 11 $0.146726 1.861E-07 6.396E 11 $2.243838 1.3490217 4.9176716 1.7478 07 1.9096-07 6.7276 11 51.04$168 1.872E-07 6.4618 11 $$.142966 1.3643906 l l

4.9180746 1.760E-07 1.92E-07 6.79E 11 $1.983963 1.883E-07 6.$27E 11 $4.08142 1.3801787 4.91846$2 1.773i-07 1.9316-07 6.85$E 11 52.882908 1.894E-07 6.594E-11 54.986133 1.3967037 4.9188$48 1.786E 07 1.941E-07 6.919E 11 $3.904743 1.90$E-07 6.66E 11 $6.001712 1.41446$9 '

4.9192$i1 1.799G-07 1.9526-07 6.984E 11 $4.886168 1.9166-07 6.727E 11 $6.98294 1.4$24867 4.9196087 1.812E-07 1.962E 07 7.049E-11 $$.911186 1.927E 07 6.794E 11 58.00781 1.4613563 4.9199612 1.825E-07 1.9736-07 7.116E-11 56.8890$7 1.9388 07 6.863E 11 58.985566 1.4705794 4.9203366 1.838E-07 1.984E-07 7.182E 11 58.006236 1.949E 07 6.931E 11 60.10267 1.4906865 4.9206879 1.851E-07 1.994E 07 7.249E 11 59.075314 1.961E-07 7E-11 61.171716 1.5118736 4.9210386 1.863E-07 2.005E-07 7.316E 11 60.192629 1.972E-07 7.07E 11 62.289033 1.5340558 4.9213888 1.876E-07 2.016E-07 7.383E 11 61.361263 1.983E-07 7.139E 11 63.457706 1.5569529 4.9217384 1.889E-07 2.026E-07 7.451E 11 62.584576 1.994E-07 7.209E 11 64.681097 1.581446 Page 6

PS AT 05653 A.04 7 of 8 Attachment 4 Revision 1 FLASH 2 4.9220875 1.902E-07 1037E-07 7.518E 11 63.866232 2.005E-07 7.279E 11 65.962874 1.6069371 4.9224128 1.915E-07 2.048E-07 7.587E-11 65.08937 2.016E-07 7.36E 11 67.18619 1.633853 4.9227607 1.928E-07 2.058E-07 7.654E 11 66.495092 2.027E-07 7.42E-11 68.592125 1.6614664 4.923085 1.9415-07 1069E-07 7.724E-11 67.841150 1038E-07 7.4925 11 69.938461 1.6906221 4.9234088 1.964E-07 1079E-07 7.793E-11 69.262638 1049E-07 7.564E' 11 71.3502$9 1.7211989 4.9237$$2 1.967E-07 109E-07 7.86E 11 70.875943 2.06E-07 7.634E-11 71 973945 1.7535214 4.924078 1.980E-07 2.1E-07 7.93E 11 7143866 1071E-07 7.706E-11 74.636998 1.7872003 4.9244003 1.993E-07 2.111E-07 7.999E 11 74.082228 2.083E-07 7.779E-11 76.181166 1.8226577 4.9247221 iOO6E-07 2.122E-07 8.068E 11 76.813112 1094E-07 7.851E 11 77.912618 1.8602699 4.92$0435 2.018E-07 2.132E-07 8.138E-11 77.638023 110$E-07 7.923E-11 79.738174 1.8996236 4.9263415 1031E-07 2.143E-07 8.21E 11 79.387338 2.116E-07 7.998E-11 81.488177 1.9413316 4.9266619 2.0446-07 2.163E-07 8.279E-11 81.414965 2.127E-07 8.071E-11 83.516601 1.9862309 4.9259819 1057E-07 1164E-07 8.348E 11 83.561139 2.138E-07 8.143E 11 85.663688 10314$67 4.9262786 2.070E-07 1174E-07 8.42E 11 86.631092 2.149E-07 8.218E 11 87.734$41 1 0601638 4.9265977 1083E-07 2.18$E 07 8.489E 11 88.035456 2.16E-07 8.291E-11 90.14007 2.1314779 4.9268936 1096E-07 2.195E-07 8.561E 11 90.364627 2.171E-07 8.366E 11 9147040$ 1 1860356 4.927189 2.109E-07 2.206E-07 8.633E 11 92.835244 2.182E-07 8.441E 11 94.942303 2.2436229 l

4.927464 2.122E-07 2.216E-07 8.70$E 11 96.460191 2.193E-07 8.517E 11 97.56866 2.304439 i 4.9277787 2.135E-07 2.227E-07 8.776E 11 98.253977 1204E-07 8.592E 11 100.364 2.3686985 l 4.9280729 2.148E-07 2.237E-07 8.848E-11 101.233 2.216E-07 8.667E 11 103.34472 2,437198 1 4.9283068 2.160E-07 2.247E-07 8.92E-11 104.41585 2.226E-07 8.743E 11 106.52946 2.5096969 4.9286602 2.173E-07 2.268E-07 8.992E 11 107.82373 2.237E-07 8.819E 11 109.93941 2.5864726 4.9289533 2.186E-0~ 2.268E-07 9.063E 11 111.48088 2.248E-07 8.894E 11 113.59884 1 6685148 4.929246 2.199E-07 2.278E-07 9.135E 11 115.41516 2.259E-07 8.97E 11 117.53$64 2.7655646 4.9296382 2.212E-07 2.289E-07 9.207E-11 119.66877 2.27E-07 9.046E 11 121.78203 2.8487453 4.9298077 1226E-07 2.299E-07 9.281E 11 123.82749 2.281E-07 9.125E 11 126.95359 1 9478037 l 4.9300992 2.238E-07 1309E-07 9.353E 11 128.7746 2.292E-07 9.201E 11 130.90409 3.0522619 4.9303879 2.251E-07 132E 07 9.427E-11 133.6691 2.303E-07 9.279E 11 135.8020$ 3.164361 l

4.9306364 2.264E-07 2.33E 07 9.502E-11 138.97894 2.314E-07 9.358E 11 141.11572 3.2847943

! 4.9309268 2.277E-07 2.34E-07 9.573E-11 145.332 2.324E-07 9.434E 11 147.47338 3.4132697 l 4.9311946 1290E-07 13$1E-07 9.648E 11 151.69641 2.335E 07 9.513E 11 1$3.84253 3.551634 4.9314619 2.302E-07 2.361E-07 9.722E 11 158.6793 1346E-07 9.692E-11 160.83071 3.7008732 4.9317289 2.315E 07 2.372E-07 9.797E 11 166.3745$ 2.357E-07 9.671E-11 168.53185 3.8592548 4.9319957 13288-47 1362E-07 9.871E-11 174.89603 1368E-07 9.75E 11 177.05996 4.0303969 l

4.9322621 ' 2.341E-07 2.392E-07 9.946E 11 184.3833 2.379E-07 9.83E-11 186.55469 4.2156246 4.9325262 1 3648-07 1 4028-07 1.002E-10 195.00924 139E-07 9.909E 11 197.18909 4.4146367 4.9327939 2.367E-07 2.413E-07 1.000E 10 206.99064 1401E-07 9.989E-11 209.18013 4.6266996 4.9330$94 13808-07 2.423E-07 1.017E 10 220.60308 14128-07 1.007E 10 22180364 4.8547848 4.9333024 1393E-07 2.433E 07 1.02SE 10 234.7106 2.423E-07 1.015E 10 236.92273 S.0967218 4.933$452 2.4066-37 1444E-07 1.032E 10 250.82786 2.434E-07 1.023E 10 253.0$$$2 5.3524027 l 4.9337877 2.419E-07 2.454E-07 1.04E-10 269.41562 2.448E-07 1.032E 10 271.65691 5.625808

( 4.9340299 2.432E-07 2.464E-07 1.048E-10 291.08663 2.456E-07 1.04E 10 293.3462$ 5.9081372 4.9342498 2.444E-07 1475E-07 1.056E-10 314.00835 2.467E-07 1.048E-10 316.28761 6.2109724

[ 4.9344696 2.457E-07 2.485C-07 1.064E 10 340.99743 2.478E-07 1.057E 10 343.29994 6.532576 4.9346891 2.470E-07 2.496E-07 1.072E 10 373.23836 2.489E-07 1.065E 10 375.56878 6.8814307 Page 7

l PSAT 05653 A 04 8 of 8 Attachment 4 Revision 1 FLASH 2 4.9349084 2.483E 07 2.506E-07 1.08E 10 412.42511 2.5E 07 1.074E 10 414.7896 7.2$23282 l 4.9361066 2.496E-07 2.$17E-07 1.089E 10 45$.44647 2.512E-07 1.083E-10 467.84871 7.6464475 I 4.93$3244 2.$09E-07 2.$28E-07 1.097E 10 $15.83453 2.623E-07 1.091 E-10 $18.28968

  • 8.0793759 4.9355431 2.522E-07 2.$38E-07 1.10$E-10 595.11089 2.634E-07 1.1E 10 $97.83673 8.6404163 4.93$7397 2.$3$E-07 2.549E-07 1.113E 10 690.77238 2.545E-07 1.109E 10 693.38184 9.0424649 4.93$9679 2.648E-07 2.$$9E-07 1.121E 10 842.44419 2.$$6E-07 1.118E-10 845.18789 9.683898$

4.9361542 2.561E-07 2.67E-07 1.13E-10 1050.4683 2.567E-07 1.127E-10 1053.4164 10.181772 4.936372 2.574E-07 2.68E-07 1.138E-10 1461.4303 2.578E-07 1.135E 10 1454.7141 10.828856 4.9365678 2.586E-07 2.$91 E-07 1.1465 10 2214.5245 2.$9E-07 1.144E-10 2218.4871 11.53787 4.9367852 2.599E-07 2.601E-07 1.164E 10 5386.9377 2.601E-07 1.1$3E-10 $373.7036 12.316222 .

l l

l 9

Page 8

l ENCLOSURE 3 Proprietary Polestar Calculation No. PSAT 05653A.04, Rev. I 1

l l

l l

I l

I