ML20083N666

From kanterella
Jump to navigation Jump to search
TMI-1 Once-Through Steam Generator Repair Process Update & Return to Svc Overview
ML20083N666
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 10/19/1982
From:
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20083L719 List:
References
FOIA-82-552 NUDOCS 8302020448
Download: ML20083N666 (102)


Text

JVbnVNV (enW EE Nuclea6

~

TMI-1 OTSG Repair Process Update and Re~ turn to Service '

Overview

~

October 18/19,1982 -

l ggg2O 48 821130

-_ " """"-"*f" _ _ _ . _ _ _ _ .. _ _

s

f

,,,b

NRC OTSG Update

[ 10/18/82 m

1. O.ualification Program Update D. Slear

} 11. Final Eddy Current Test Results N.Kazanas Ill. Return to Service Safety 7 Evaluation. Overview _._ P . W a ls h .. .

L IV. Interpretation of ECT Results D. Slear L

E ,

~10/19/82 -

IV. Plant Performance Analysis with Plugging N. Trikorous '

F L

VI. Sulfur Removal Test Program

, Status W. Greenaway

) Vll. Corrosion Test Program S. Giacobbe

~

r L

Vill. Steam Generator Post Repair '

Test Program -

P. Walsh .

J

b 3,

i W

PULLOUT LOAD QUALIFICATION & PREQUALIFICATION DATA l .4

,_a PULL-0UT LOAD OF 3140 LB.WITH 99% PROBABILITY AT 99% CONF 10ENCE LEVEL 35 _

  • f-PREQUAL 30 -

n = 109 (PREQUAL)

N = 39 (QUAL)

~

l l E 25 -

QUAL C PREQUAL

$ 20 - og = 245 LBS l E Tg = 4737 LBS M.-QUAL

$ ePR = 450 LES

~

TPR = 4708 LBS 10 -

g 4 l_-

= l s g -

5 -

, , , , ,l H ;

h e

h e ,

0 1000 2000 3000 4000 5000 8000 PULLOUT LOA 0 LBS.

PULLOUT STFIAIN QU ALIFICATION DATA a

N = 39 g _

iYg = .838% _

TQ= 5.85%

10 3 -

g 8 -

E s -

g cs 3 4 -

~ ~

.16% -

2 -

i n , ,

4- 5 6 7 7 n 8

0 1 2 3 PULLOUT STRAIN. %

10/18/82

T

-r 1

i oC$af.}!-

i w

w '

g o' ?l c jf. h,f) r e" #p,* y# #*/r, h' ?

  • T 1

r+,"'e4t 4* 'I'4+,,4ly 4': $ , 'j,,k f

1 p

s \ s s j

s 1

o s s -

s s j

~

1 1

3 m

=

s s

s s

m s r =

s N s s s 1

y N _

1 i

i 1

t 1 t ~%' _

w ,

1 _

b C 1

.T 1

J mhwT .

T

'I

( . N u  ; , ' .

J ' -  :

LEAK RATE DATA QUALIFICATION PROGRAM 10 TUBE TEST BLOCKS CO DD TCST3 800 e, 80 ~

  • ., A8 LOCK O - 700 s00 E

% !i sa _

E LOCK G 1

  • - 500 g LU 8 LOCK E 4 $ h:

40 BLOCK C 4

- H0 , M gj 8 LOCK 0

~

1 48 LOCK G gr/

A8 LOCK C ,,

a.

~

200 ,

20 w32,Hlg 100 8 LOCK A A8 LOCK SP1

/u/[

, , , , , 1- -

3,8t0CK A O *3/MN/N 40 80 80 100 120 ft O 20

- TIME (HCGTIS) k*I A

q T I

r l' - *I /^ h31/b G O ?^' f . 9

%r -

,, ,7j-r

~

~

\ 8 LOCK O r ,

A HOT TEST .

500 BLOCK O 2

g -

400 F 40 -

300 k

j 8 LOCK A 2nd SHOT

- 200

- 20 -

SP 11 OAYS) BLOCK A 2nd SHOT l -

N1 (AFTER STANDING - 100 i

4 SP1 (AFTER STAN'0ING 11 OAYS) '

I f g 1 1 I f Q I e t f 60 80 100 120 0 20 40 ]

TIME (HOURS) 10/18/82

l Comparison of Rockwell Hardness Rockwell "C" Effective Range 70-20 70 .

60 -

Tube Region Tested so - Unexpanded Transition Expanded 40 -

Rockwell "B" .

Effective Range 100-0 30 -

105 ~

ID .

I Roll 20 - 97 - Roll OD- 1 OD OD CMI OD/ID  :-

89 -

OD K'inetic ID New Tube F ID .

81 -

73 I

) es -

~

- 0-s 10/18/82

D E

E

    • * " ' * * * **ew-*-- . . = . . . m. . . . . . . , , , , , ..

N.

,. s l .

. )

1 1

1 >

I 0

T(O l (n c) '

l .O , .

3 p .

% [ %s m

. 4

(' CL

. . / M 9

C - a

=

0

=

b o

(1, = 8 8

a 2 .

4) E .

"O C -

N  : .

C. 3 .~. .

M

4) -

C n

~

"3 .

d 1

N O

I ' 6 1,

e 4

e

- ~ ~ - -

' Roller Expanded Tuc' e m

.o O Transition Zone

~

I I

e '

~

l /

\

~

1 m . -

1

) D.

~ '

. Kinetically Expanded Tube '

g,9, Transition Zon' e T

hh' '

4

~

h ,

1

] 1D ~

~... ,

~

l

,1 . p l -

rJ Transition M


E----....--

a

?

Roller Expanded Tuba ~

Away From Transition Area I I i

4

- Kinetically Expanded Tube Away From TFansition Area

<E> <g> . .

~

<8> <8> 1  :

e I

. ,  ? -

l~ .N

, l  ! .

r% -

>j Expanded

\ . __.. .

)

e

~ .

~

~

- lMMUNOL APPLICATION g

//

~

A l

' ~

!MMU'NOL SUPPLY Y ^

/,

Mm yy A wd.) . y'

~

IMMUNOL ,

[ -

OIW 10I

I R&. Ga . ,

i

  • 1 W/ *

- N--*--

c AIR PRESSURE BUBBLER SYSTEM

~

W G

O e

st\\*\ *

~

D

?  :.

SUMMARY

OTSG ECT PROGRAM TASK l l 4 l .

V )

STANDARO DIFF. GEN A B ASSOLUTE ECT 1P y V 1r lg ' re DEVELOP di S D.

DWEW CALIBRATION STANDARD (I I CALIBRATION STANDARD if 9P 1P DEVELOP INSPECT DEVELOP OPERATING EXPANDED OPERATING PARAMETERS AREAS PARAMETERS ,.

if 1f

  • f .

i DRAW

  • DRAW CONCLUSIONS ASSOLUTE CONCLUSIONS PROM THESE 4X1 PROM THESE PARAMETERS PARAMETERS. , ,

!. I .

ASORT 'N l l INSPEC. l TIONS l'

OPTIMlZE

> DUAL '

, TECHNIQUES '

1 m EVALUATE m I r SulTAalLITY '

3g POR TEST PROGRAM m AND ENGINEERING ,

3I r CRITERIA ,

EXAMINE

  • EXAMINE ADVANTAGES & ADVANTAGES &

DISADVANTAGES 'f DISADVANTAGES l

RECOMMENDATION l

)

?

,. FiguroV 2 OTSG TUBING DEFECT MOCKUPS SAMPLE #1 (4) NOTCHES LENGTH 0.060" 1.o.CIRCUMFERENTIAL NOTCHES NOTCH DEPTH - (RADIAL)

PERCENT THROUGHWALL 80% 80%

20% 40%

FROM 1.D. ,- - --

f a i a }

( '

. i

  • I

-J2" MIN e LJ2" MING-

5" MIN M L.D . 5" MIN t SAMPLE #2 (4) NOTCHES LENGTH 0.100" 1.0. CIRCUMFERENTIAL NOTCH NOTCH DEPTH - (RAOIAL)

PERCENT THROUGHWALL 20% 40% '80% 80 %

FR0a l.a. t I

  • 1 4

1

}. l l t -- -

42" MIND l s h2'1 WIN 6

' N 5" M1N (

) 5" MIN ' ,

SAMPLE #3 (4) NOTCHES LENGTH 0.187 1.o CIRCUMFERENTIA'L NOTCH NOTCH OEPTH - (RAOIAL)

"C'"T THR GHWAR

,','g g, 20% 40% 80% 80% __ _

1 I I I I I

( I 1 s

a . s JZ" MIN (4 l ', e32" MIN 4 y 5" MIN M 5"Mili(

SAMPLE #4 (4) NOTCHES LENGTH 0.060" 1.o LONGITUDINAL, NOTCH l NOTCH DEPTH - (AXIAL) 7 IRCEN "" "

,', g , D. 20% 40% '00% #0%- _ ,,

r r,

1 1

~

42" MIND [ g h 2" MIN 4 -

5" MIN -J L6 5" MIN {

t

~ ^ ~ ^ ' ~ * * * * ~ ~~~'

_- - --- - ~ ,

-_ l

o - -

,e t ,

i . .

FILL FACTOR COMPAR10CN'

I Standard l l 1 l I 1 3 3

' I Ditforential l l l l018l*~l l .04 l l l.05 l l l .07 l l l.09 l l l .11 l l l.13 l l 1.15 1 I I l 161 1 1 l 18

.187.h-

= ~ - ----

q~ - -<

1 .510,35 + RA 400 KHZ 84% FILL FACTOR

, 2 .540,35 + RA 400 KHZ 94% FILL FACTOR ' DETECTABLE UNDETECTABLE i

O a .20 .24 .27 .31 .34 m

, i .100. . 5 .-~.034 ~ ~ ~

.068 ~ ~

.10

- - ~ ~

.14 17

- - ~ - ~ - - ~ ~ ~ ~ --- er o- E Z- 3

, a 2 o 5 o 5 su -

V

g. ,

5 .

.06 .11 .17 .23 .28 .34 .39 .45 .51 .57

.E , .060.

a- 2. 1 f

increasing Aspect Ratios a/L

, Note: Response 0.150 Volts Min. Sensitivity l

i Lab Condition

! I '

!  ; * (Probe Dia.)2

,I '

i (Tube ID)2 il lllllll l I'l l l l i 11lllll 1llllll I l l l l '1 1

, ii

Through Wall 20% 40% 60% 80% 100%

I f .

s.I

'l

  • ~

.% - - - . - - - - - - - _ _ - - - - - - - - - - - - --_ _ _ - - J

m ) i  ; 1 , i 1 i i i rw 1 , r i - - - ~

~

i e,

i GAIN COMPARISON FOR DETECTION PROBABILITY i

Standard lllllll l l l l l l l l ll l l Differential .187. - v0 ,g,,,,,,,,.,0j l1 l l 05 l l l .07l l l.09 l l l .H l l l .13 15 l l 16 l l l 38 100 MV/Div. . s 2 3 4 s

!j

1. .540, 50+ R A, 400KHZ
2. .54 0, 45+ R A,400KHZ
  • e

. **P *O

3. .540,40+RA,400KHZ . 6 m m O A * *e'o
4. .540,35+RA,400KHZ O O 8, *O O

o ?, *o

5. .510,35+ RA, 400 K HZ g g *g S G,*,

s a a a 1

'. j 17....... .2 0. ..... 2. 4..... . 2 7........ 3.1...... 34

, .i OO. . ...... 0. 3. 4....... 0. 6 8. ....10...... ... .14..... . .

' O

z. N;;

. 2 5 O w

=

O

.c se .0s0. ........:9.8.........!!...... 1.?...... 23.........28,,,,,,,g4,, , , ,,39,,,,,,,,4 5,,,,,,,,j],,,,,,,,5 7 N  % 3 4 5 e

. i 1 a N \

!* \g N i 1 N -

i' N N

'i .

, *'"*-=i..,,,,,,

s Note: Response 0.300 Volts Min. Sensitivity '

.'  : Field Conditions llll lll lllllll lllllll lllllll l lllll1 Through Wall 20% 40% 60% 80% 100%

I i,

< > > , , , i r r, .r > > > 1 i i i i o r-i OPTIMlZING FREQUENCY MIX '

Standard lllllll , 'l 2..l..l...l..l...l...l... '

Differentiat .187. ..................... ..l...l...l ..l...l..l...l......l ..l...l..l ..l...l...l .....l ..l...l...l ..l...l..l...

540.45 + RA
1. ID MIX (ONI.Y)

I (400 - 200) 800 KHz l 2. 400 KHz f

b I

.100. >....... 0.. 3 4... =.0 6==8 .- 1 ...... 1. 4- ...... .17....... 2 0.r ~.... 2 4........ 2 7.......

3 1....... .

34 3.

o t c 6 '

+ I o e

.c En c L e

a .060. ........ . 0. 6....... . 1.1....... .

1 7........ 23

... .2. 8....... 3. 4....... .3. 9....... 4. 5....... . 5.1.. ...... 5 7 NN N \g N N Ns i

N i N <

2 l

' RESPONSE 0.300 VOLTS MIN. SENSITIVITY lllllll lllllll lllllll lllllll l llllll i Through Wall 20%' 40% 60% 80% 100%

l l

i 5%

L__.---____ _ _

I .

i

'l .

~

l

, AMPLITUDE RESPONSE l STANDdRD DIFFERENTIALVS 8x1 ABSOLUTE

+ SIMULATED DEFECTS 0.005" WIDE l

i l

',f ABS 8x1 (2 RUNS OF 4x1) j 53 GAIN

! 5 -

SD .540 60 GAIN I .

I; 4 _

1 h

! t

s 3 -

'l ..

E c.

I t

E il 4 ,kt l

. 2 - .t* 1 1

. g* (kI

! 1 -

.st1' 0 Noise Level

-W t

V d' n 10 20 30 40 50 60 70 80

f lll  % Thru Wall 1

,l

)i i, i;

i '

I RESULT COtCIlJSIOS STANDARD DIFFEIEfrIAL MAGEPIC OIART FILL F1CIOR GAIN FREQUENCY SA'IURATIOi SDEITIVITY l OPTIMIZED -

, PARA!EIERS .540 PROBE 60 - 65 40010lZ BASE PERMANDTP MAG- 100 MV/DIV NE7f AFFIXED i

BD1EFITS INCEASED ID MIX EDR REDLCED PEINE- REREASED ANAINST'S SENSITIVIW TSP ABILIW SIG1AIS ABILITV EUR RH'ER-PRETATIQ1 FIO1 S.C.R.

! EDtXED PICBE SMALIER IE . ID MIX 'IO RE-

.  ! OIATIER FECIS IE- DUCE NOISE (NOISE) TEC'IED (40%

, 'IllIU HALL 2007 i

l I 0.060" CIR- 400[ N N 800 MrX CUMPERENCE)

INCREASED

,' ELIABIIZ."I

. IN REPEA'IED I, RESUL'IS k ,

ABSOIDIE 1

COIL MAGETIC OIARP l OPTIMIZED CDVERAGE GAIN FREQUENCY SA'IURATION SDEITIVITY 1 8 00IIS 4'O - 53 380 - 420 IUP ADAPTABLE 100 MV/DIV

FOR PERMANEtTP MAGET

, i 1'l f BENEFI'IS INCREASED llIGI IE- MINIMIZED RES- INCREASE ANALYST

[

'IO 360* SPCNSE SIG- OIANCE AND CROSS ABILITY EUR IIIPER-COVERAGE NAL TAIK BE'IWEEN PRE 7PATIOt1 FDOM S.C.R.

00IIS I IELL ADOVE NOISE.

8, j

l U

E g Recognized Characteristics ,

l l

i S.D. Absolute Advantages Disadvantages Advantages Disadvantages

'e Durability e Poor in expanded e Expanded areas e Podr durability areas l e Reliable zercentage

  • Overly sensitive thru-wal. to some surface
  • High response signals e Coil to coil variation for calls anomalies response g

amplitude e 360* Coverage e Low voltage e Not overly e Unreliable response sensitive to percentage surface thru-wall calls , ,

  • Maintenaa:e e Si,gnal distoration a Maintenance of and analysis of minimal data analysis data well (probe design) established -..

8 d-d

~

E s

g .

1 .

1 - .. _

_ ' ~

~ ~

. ' ~ - - - . . - . _ _ _ _ , _ _

ew "n

Recommendation for Production Examination b

I. S.D. 540 hi-gain most suitable for full production testing.

Ai Why?

1. Excellent durability
2. Reliable percentage thru-wall calls
3. Maintenance and analysis of data well understood
4. Expanded area of tubes was not a factor

_ B) Recognized limitations can be resolved by second method

1. Over sensitivity to surface anomalies can be resolved by absolute

-l

2. Low amplitude signals can be interrogated by absolute f!

4

11. Absolute as a dispositioning instrument. -,

A) Why not for production?

1. Poor durability (O to 100 tube coverage) i
2. Unreliable percentage thru-wall calls B) Why as a support technique? '
1. Excellent support to S.D. limitations
a. Surface anomalies '
b. Low amplitude '
2. Signal distortion is minimal r *

( '

we _he gw = ee. += mag ** O * *

  • 5* **"

we e.

I 1

FLOW CIIART ON GPUN ECT PROGRAM FOR DISPOSITIONING OTSG TUBES

~

l 3: 540 SD

' 100% TUBES III GAIN > POR FULL LENGTH

) ACCEPTABLE A

(RETURN TUBES WITil SURFACE ANOMALIES)

\/

INDICATIONS TO ( 8x1 BE EVALUATED f ABSOLUTE V

TUBES FOR ENGINEERING DISPOSITION I

i ENGINEERING I DISPOSITION AT 40% T.W.

) 40% - TAKE OUT OF SERVICE r

(40%-IN-SERVICE, SUPPLEMENTARY ISI PROGRAM 9

3

?

EDDY CURRENT METALLOGRAPHY

SUMMARY

I i

l l

l CRACKS PULL 3 540 ED l IN E/C .5101D. I DEVELOPM'EN GEN. A & 3 SELECTION Y if TECHNIQUE l QUALIFICATION PULL TU8ES TO DETERMINE EVALUATE CANDIDATE FAILURE V 1f E/C .51010. - EXAMINE SAMPLES TO SELECT WITH .540 S D. 1 CANDIDATES l I

v v

  • l a

PULL 1 & 2 LOOK FOR I EVALUATION THRESHOLD ID INITIATED i i

CIRCUMFERRENTIAL 100% THRU-WALL UPPER TU8E' 4 AREA

. DEVELOP LAB INDUCED CRACKS II. If PA AL THRU E{ALUATE DRAW WALL AND CORRELATION r COMLUSION LOWER GEN.'

O e

J O

"*- * - * * - no m me w. , , , , , _ , ,

i S.D. BELOW ROLL TRUSITION METALLURGICAL CORRELATION f NO. INDICATION CONFIRMED TUBES IN REPORTED INDICATIONS 9 M 8g')"[{

GEN. SAMPLE BY E/C BY E/C MISCALLS OVERCALLS q.n n

/-}#'[p, 7

+-

A 12 23 23 0 0 g*,

. B 3 5 5 0 0 15 28 28 -

0 D

. NO. INDICATIONS CONFIRMED

, REPORTED BY E/C 28 INDICATION BY METALLOGRAPl!Y 28 OVERCALL -0 l MISCALLS 0

, 28 28 a

l 15 TUBE SAMPLE 100% AGREEMENT S.D.

it

+i I f ,1.

l, .

i. .

t

ABSOLUTE METALLURGICAL CORRELATION '

I Below .25" From Top of Tube

'.NO. INDICATIONS CONFIRMED TUBES IN REPORTED BY INDICATIONS BY MISCALL OVERCALLS GEN. SAMPLE E/C METALLOGRAPHY BY E/C BY E/C A 16 25 22* 2 3 B 2 2 2 0 0 18 27 24 2 3 NO' INDICATIONS CONFIRMED REPORTED BY E/C 27 INDICATIONS BY ,

METALLOGRAPHY 24

', OVERCALLS -3 MISCALLS +2 24 26 18 TUBE SAMPLE (INCLUDING ROLL TRANSITION) 92% AGREEMENT ABSOLUTE 18 TUBE SAMPLE (EXCLUDING ROLL TRANSITION) 100% AGREEMENT l

0 - Work performed with 4xl We

,s 9 Q.. ,. .. . .,. - - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ --

El 'E 3 E cm 52e ouna 4

--o3E =o a a .2 ca E Ea o -

E o

g .eo co .

mea cn l I Multiple Crack Region Single Crack Region O c o m >. r y "

o l

l

< g

=2

u. u p. % -E wo h,7;"f 'g.- W*f.f. _ QCnw:g u .,,

bkI $$3W&h49t n:s Ow 9W.

O

$l>

~

~

! 5! EI  ?$$dg4h@ .EDhYk $$[$M y% $$ $$$'NM EI

@%@$7f$Y456j@{i$s M n,d,a@%#eM>w~msa n

~ m%1 =-

F.E a

=o  :::-

i n UN aw n'aw. kENN$vJwsow dD g . v~ -

i o

0 y

ce z UIW a= u[$x$f5

@M . .T s

.n u E.$s.p.x,er%.r yf@m$i'*

I iY

. m$ k ~=dOk'h h n w t'hM5ff,y n -

kkh e

W

.e, 3

o

. .=

c$.$5=.w'?w. . :.c N'O '. ' M

$ $m '.'X'?. 2^ a ~ ,*;.G{+@+a

~ ,-

UO ?mlf 7t Ce. +

p, -

><~wg Lh.',%;dp. /e*lf* 4;.'jF ") ^$.< .3 -

y %w 3f ~ 5 g

we mee~nsa$n%naniggsigt 49 em.w n

gg

""mi&%eg263f%~g%.ggh'sN6 trig m

~

1 '

N J. .a z

-~~-- ----

--.-~~

.,, o

>m - ,

. m  : # NobD o ._ _ - - - Q N M

EsW 1 4 ~- '

% k k. o j

o o e

  • o h o O O O O * [A f o W m N W

" n m m e

  • e y Il

'**UO3 leUUo2apuno2gg f

=-

F L

= S gw l L.A aE j Enu 3 -

LO ** g .

N l Q

P m.w

.. 5 1k O o

2 4 .. . 4*.ai$ui W66 -

  • w,m--

F u ,

6 F

LAB INDUCED CRACKS r

o 8 SAMPLES TESTED o HIGH GAIN SD TECHNIQUE

- REPORTED INDICATIONS 7*

-

  • 5 SAMPLES WERE WITH 540 HIGH GAIN

- , - CONFIRMED BY METALLOGRAPHY $

o ABSOLUTE TECHNIQUE

- REPORTED INDICATIONS 5

- CONFIRMED BY METALLOGRAPHY 5 7 . i, i

g , '

e o USING GPUN RECOMMENDED ECT PROGRAM

~

8 SAMPLES TESTED

_ - NO. DISPOSITIONED AS ACCEPTABLE 4 METALLOGRAPHY CONFIRMATION 100% .

(includes two samples with (40% thru wall) l' P

u - NO. DISPOSITIONED REJECT 4 .

_ METALLOGRAPHY CONFIRMATION 100%

m M

F -

t .

W

'** * = - - .- -* . . . . - - - ... . ...._. ..

,y y , , , , ,,,, , , ,yyyy A:

yq"3eb.ac LOWEST DEFECT 7 BY ELEVATION i 350- , PLuc-

~

,g en m $$

'l 3aa-i ic ,,

l f G 25o- -f l -,,

l t .

@ l l

! R 200- l l

8 i 5 l g 15o- 1 i

i

- o I

! I 100- l

,le>h l

1

/

l3 3, So-l -- -

8 -

t I;v%p'S-pggyggpppg4A+

gej yg w s&r M 9 ELEVATION RANGE g~

/

h. 9 6bi

.e n +:

.O O E E E E E E E E E E E E E E E E E PLANT RETURN TO SERVICE SAFETY EVALUATION OVERVIEW

. PLANT SAFE TO OPERATE FAILURE MEASURES RCS AND STEAM NO ADVERSE MECHANISM TAKEN TO SUPPORTING GENERATORS ENVIRON.

UNDERSTOOD PREVENT SAFETY SYS. OPERABLE IMPACT RECURRENCE IINDAMAGFD

- METALLURGICAL '

- OXIDIZE AND/0R - RCS INSPECTION -REPAIR QUALIFICATION - APPENDIX l TESTS REMOVE SULFUR EXPANSION PLUGS CALCULATIONS

- CORROSION - REMOVE THIOSULFATE SYSTEMS - UNREPAlRED TUBE

- PREVENT FUTURE CONTAMINATION - TESTING PROGRAM

- IMPROVE CHEMISTRY CONTROLS

FAILURE MECHANISM ADEOUATELY UNDERSTOOD METALLURGICAL TEST RESULTS

- STRESS ASSISTED INTERGRANULAR CORROSION

~

- INITIATED FROM TUBE INSIDE SURFACE

- SULFUR PRESENT ON FRACTURE SURFACES

- SENSITIZED TUBING MATERIAL CORROSION TEST RESULTS

, - THIOSULFATE CAN PRODUCE SIMILAR CRACKING

- - AN OXIDIZING POTkNTIAL IS REQUIRED r

- TUBING MATERIAL PROPERTIES HAVE STRONG EFFECT

- ON CRACKING SUSCEPTIBILITY

' - CRACK GROWTH RATES ARE RAPID "

"a

~

r e e

[

e r *

[

' * * * " ' * ' " * - . = = + . . . . . , _. . , _ .

PREVENT RECURRENCE

  • PROGRAM UNDER DEVELOPMENT TO OXIDIZE AND/OR

, REMOVE SULFUR

  • THIOSULFATE REMOVED FROM PLANT f 1

PREVENT INTRODUCTION OF CONTAMINANTS

  • INCREASE SAMPLING FREQUENCY ON SOME ANALYSIS l i
  • NEW SPECIFICATIONS ON: )

- LITHlUM i l

- CHLORIDES

- SULFATE

- SODIUM

( - PH -  ;

- CONDUCTIVITY

- SILICA

- CALCIUM I

l

- MAGNESIUM l

)

f

)

l l

L r

r RCS INSPECTION r

  • LARGE NUMBER OF COMPONENTS INSPECTED

~

WIDE RANGE OF MATERIALS REPRESENTED l

WET, DRY AND INTERFACE AREAS INSPECTED r

  • UT, PT, ECT, VISUAL AND DESTRUCTIVE EXAMINATIONS USED NO EVIDENCE OF ANY INTERGRANULAR CRACKING SUPPORTING SYSTEMS INSPECTION

~

^

SYSTEMS INSPECTED IN 1982 AS PART OF THREE YEAR SUPPLEMENTARY ISI PROGRAM WHICH WAS INITIATED DUE TO IGSCC IN SPENT FUEL SYSTEM IN 1979

^

- SPENT FUEL '

{ - DECAY HEAT

- BULDING SPRAY #

VISUAL AND UT METHODS USED m

NO DISCREPANCIES NOTED IN THESE SYSTEMS OTHER SYSTEM INSPECTIONS IN PROGRESS W

[ -

N

, . m - - . .. . . . _ _ . . . . . . , - - - -

STEAM GENERATOR REPAIR KINETIC EXPANSION

- JOINT MEETS DESIGN BASIS PLUGGED TUBES l - THREE TYPES OF PLUGS WELDED TAPERED PLUG WlTH STABILIZER p EXPLOSIVE PLUG ,

ROLLED PLUG

- ALL TYPES PREVIOUSLY QUALIFIED AT OTHER UNITS

- ROLLED PLUG QUAL. PROGRAM FOR TMI-1 COMPLETED IN FEBURARY 1982

- INTERACTION BETWEEN WELDED AND EXPLOSIVE PLUGS AND EXPANC.10N ANALYZED - N0 IMPACT ,

- INTERACTION BETWEEN ROLLED PLUG AND EXPANSION - TEST PROGRAM'iN PROGRESS .

- OPERAT10N WITH PLUGGED TUBES ANALYZED - NO IMPACT ON -

OPERATIONAL OR SAFETY LIMITS l

e d .

G 1

L'

f L ,

L UNREPAIRED TUBE SECTIONS ARE OPERABLE

[

  • DAMAGE MECHANISM ARRESTED

-CORROSIONTESTS-SHORTANDLONdTERM

[ - FLAW GROWTH PROGRAM l

~

  • DEFECTS THAT COULD PROPAGATE BY MECHANICAL LOADS ARE DETECTABLE AND REMOVED FROM SERVICE

- ECT CAllBRATION PROGRAM -

[ - CALCULATIONS OF THRESHOLD FOR PROPAGATION r -

L

  • UNDETECTABLE DEFECTS ARE ACCEPTABLE

- SMALL CRACKS WILL NOT PROPAGATE MECHANICALLY

- LOCAL l'A IS ACCEPTABLE '

( -

.=

I

  • A SMALL NUMBER OF " MISSED" DETECTABLE DEFECTS IS ACCEPTABLE '

L

- SMALL PROBABILITY WITH 100% INSPECTION

~

p - WILL LEAK DETECTABLY BEFORE FAILURE L

  • TEST PROGRAM

- LEAK TESTS

) - C00LDOWN TRANSIENT TESTS

- ~

" SOAK" TIME TO DETECT LEAKS AND ANY CRACKS THAT PROPAGATE. -

e

=

0 e

^

ENVIRONMENTAL IMPACT ASSUMPTIONS

- 6 GPH LEAKRATE (50 TIMES REPAIR LEAKRATE GOAL)

.03% FAILED FUEL (MAXIMUM EXPERIENCED AT TMI-1)

- BASED ON EXISTING PROCESSING CAPABILITY l

  • RESULTS

- MAXIMUM HYPOTHETICAL OFF-SITE DOSES:

APP. I LIMIT CALCULATED DOSE FOR TMI 1 SOURCF, 1.5 MREM /YR 15 MREM /YR IODINE & PARTICULATES ,

~

NOBLE GASES 4.2 MRAD /YR 10 MRAD /YR GAMMA 3.4 MRAD /YR 20 MRAD /.YR BETA l

LIQUID EFFLUENT 3 x 10-4 MREM /YR 3 MREM /YR WHOLE BODY 5 x 10-4 MREM /YR 10 MREM /YR LIVER ew e we e

  • * * * ' -e_

STEAM GENERATOR POST REPAIR TEST PROGRAM LEAK TESTS

- COLD: .

DRIP TEST SECONDARY SIDE FLOODED AT 150 PSIG PRIMARY SIDE DRY BUBBLE TEST SECONDARY SIDE PRESSURIZED WITH NITROGEN AT 150 PSIG PRIMARY FLOODED AB0VE UTS

- HOT:

OPERATIONAL LEAK TEST (1500 PSI DELTA P) l '

PRIMARY 2285 PSIG - SECONDARY 785 PSIG ,,

PRECRITICAL OPERATIONAL TESTS .

.e

- HEATUP

- SOAK TO MONITOR LEA'KAGE

- C00LDOWN.AT 70-100*F/HR FOR 1-2 HRS. (500-1100 LB. TENSION)

- HEATUP

- SOAK TO MONITOR LEAKAGE

- ACCELERATED C00LDOWN AT A RATE AND FOR A PERIOD TO OBTAIN ~ 110% OF NORMAL C00LDOWN LOADS

- HEAT UP .

- SOAK TO MONITOR LEAKAGE

- C00LD0WN AT 70-100*F/HR TO COLD SHUTDOWN CONDITIONS (1100 LB. TENSION) 3 3

UM M .M M M .

I STEAM GENERATOR POST REPAIR TESTING SEQUENCE l REPAIRS LOWER UPPER I ECT TUBESHEET COMPLETE TUBESHEET  % lUfs%^j"$$'3'"S DRIP TEST BUBBLE TEST CLEANUP IF REQUllffD HEATUP FOR NORMAL HEATUP TUBING STRESS

-%- SG TESTING C00LDOWN LEAK TEST AND TEST TRANSIENT THERMAL SO*

. (THERMAL TRANSIENT) t COMPLETc h THERMAL COOLDOWN HFT SOAK ESCALATION TESTING OPERATION OPERATION g -

CONTINUOUS 90 CALENMH DAYS

' L SHUTDOWN CONTINUED E UhlON Ll ER ECT OPERATION -

NOTE:

DOUBLE LINE BOXES INDICATE NORMAL' PLANT TESTING OR OPERATIONS

  • .3 4 '- S6 ~ o a.+ ' -,; . g., g, ; ,. ,

O F,.-

c .

L 0

r Flow induced Vibration

[ .

Analysis Overview

[

m Objective Calculate the threshold between stable and and unsta-r ble crack growth based only on mechanical loading in a PWR environment Compare this threshold to the ECT detectability and demonstrate that'ECT has located cracks which would y be unstable (ie: fail by fatigue crack propagation within L 40 years) l t

{ Basis

~

~'

r Precriti' cal hot functional testing wIil confirm that a rapid-r ly progressing corrosion process will not cause tube leaks once critical

'_ Prior to criticality we require assurance that FIV will not

, cause rapid failure of OTSG tubes '

I l -

l -

i 3

5

r .. .

r c- -

~

FLOW INDUCED VIBRATidN

- A) FRACTURE MECHANICS MODEL r

r OTSG TUBE

- w &

c 1r I

c _s 2a

~

A p .

3 c '-

1r -

h e

n e c

N .

M M r

GEOMETRY 7

e PART THROUGH-WALL CIRCUMFERENTIAL FLAWS IN TUBES L

e ASPECT RATIO VARIED

~

g T

-g

.2 .4 .6 .8 h 1 2 4 8 m .

10/18/82

~

P

+

O

~

hemmuG S em=

g g.g .

4

-emeenw. g,m , , .

)

- FLOW INDUCED VlBRATION B) FRACTURE MECHANICS MODEL LOADING P1 3

Myly Y

r r ihk i

r  %

e r

c p _-

e Mply b 1) P1AXIAL LOAD y p'g

~

~

2) BENDING STRESS DUE TO FLOW INDOCED' VIBRATI0li(Mply) c
3) INTERNAL PR' ESSURE ACTING CN PARTING FACES OF CRACK
4) SOLUTION OF STRESS INTENSITY PROBLEM BY PR9F. F. ERDOGAN, LEHIGH

+

UNIV., BETHLEHEM, PA.

~

r 16/18/82 o,e A m-me** **

P .

Y _

al l

El ,

Flow Induced Vibration I

C) AxialTube Load Reflects l

1. Stretch of steam generator due to pressure in heads on primary side  ;
2. Elastic deformation of tubesheet at center-line (opposing stretch)
3. Tube longindinal stress from internal pressure l (poisson's effect) '
4. Residual axial load from fabrication

.\

5. Shell-to-tube temperature difference, including  !

g higher than design basis superheat

!

  • used + 500 lbfaxial tensile load El ~~

. mi-Tinstrumentation shWyeJ

~

~

0 ti+5061biat > 40% power 10/18/82 3

~

1 3 .

L e

~

.. J

~

TMI-1 SUPERHEAT- DESIGN BASIS VS ACTUAL

~

100%

A 8% 4 15%

, I DESIGN BASIS ACTUAL VALUE RC OUTLET TEMP 610 -

(607.5)

- 600 -

n STEAM TEMP.

590 -

~

580 -

AVG. RC. TEM P. I 570 -

560 RC INLET TEMP.

(556.5) 550 -

540 -

j~

530 -

TSAT

[

I I I I I O 5 10 15 20 25 30 TIME, MINUTES 10/18/82

-- ~~ - n .. -- -. . . . . . .. .

8 FLOW INDUCED VIBRATION -

E

0) FIV BEN 0 LNG STRESS - TMI-2 INSTRUMENTATION i

\ U \

g

  • UPPER TUBE SHEET x STRAIN GAGE y e x"-

g MAXIMUM STRAIN

\

ACCELEROMETER SURED hfNhEROME ER MMAX / aMID-SPAN DISPLACEMENT O ,/

/

/ A I I ISTH S.P. @

L=0 l

\

g \ ,

\

@ l \ l 14T.4 S.P. @\

\ i

\

"\

\~' +

1 \ s k, @ l \ l 10TH S.P. A 8 \ \

O\ >

\

DISPLACEMENT MEASURED

^

.56 MMAX l bl /

//l s \

@ l STH S.P. 6 i l l

I

  • DEFECT CONSIDERED TO BE.AT L=0 - LOCATION OF MAXIMUM BENDING STRESS e TMI-2 FIV RESULTS FROM EPRI NP-1876 10/18[82

TMI-2 FIV INSTRUMENTATION LOCATION i

w i

O O

o A-3 o A3 TANGENTIAL O

A-3 J L z 000 oo ao o o o o k ~

RADIAL TUREl l TUBE 50 l

El A - ACCELERATION .

~

SG - STRAT1 GAGE --

O - SLEE5/ED TUBE

-- A - ACCELEROMETER LOCATED BETWEEN -

I 9 AND 10 SUPPORT PLATE l

f a 15STRUMENTATION BOTH ON TUBE LANE AND IN QUADRANTWITH MAIN STEAM OUTLET e LANE TUBES EXHIBITED HIGHEST FIV RESPONSE e HIGHEST RESPONSE VALUES USED IN GPUN'S ANALYSIS 10/18/82 1 - - - - - --- _ _ -

?

E E .

E TMI-2 FIV INSTRUMENTATION RES'ULTS - STEADY STATE TANGENTIAL DISPLACEMENT 1.1 1.0 -

E 97% POWER h 0.8 -

vi g 0.7 -

[ 0.6 -

0.5 -

75% POWER v 0.4

  • O"s

_ E .0.3 - '

r - 0.2 -

O.' 1. - 40% POWER 1

)

H 0

OTSG g 15 n f 30 A AAA 45 a f 60 i

- 50 40 35 30 23 2119 4 1 LANE TUBE LOCATION,glNCHES (ARROWS SHOW ACTUAL TUBE LOCATIONS)

^ '

,

  • MILS.

STEADY STATE DEFLECTION FOR FRACTURE MECHANICS ANALYSIS =

  • MAXIMUM ONE CAN SAY WITH AMPLITUDE A CONFIDENCE WILL NOT EXCEED THREE TIMES LEVEL

~ -

OF 98% THAT FOR THE RMS.

c  :

u

(,

r L 10/18/82 .

m

- = =. - - - - - - - - - - x

P TMI-2 FIV Instrumentation Results - Transients  !

75% POWER,

$ PEAK HALF-AMPLITUDE PUMP A1 3 RC PUMP 90% POWER, 97%

UNBAL. OTSG

~

POWER, TURBINE REACTOR / ~

DISPLACEMENTS, MILS

~~ ~

TRIP OPERATION (a) TURBINE TRIP ~

TUBE 77001 (LANE) 3.7 3.0 3.8 3.4

$ 77050 (LANE) 1.5 1.9 l14.9 l 5.4 40113 (BUNDLE) 2.4 2.4 3.3 9.1 g 12068 (10TH SPAN) 0.6 1.0 0.8 1.7 d

n 3

i _

10/18/82

- =- -

= = - - - - - - - -

p .. ;

a g TMI-2 FIV INSTRUMENTATION -

BENDING STRESS TRANSFER FUNCTION VS ESTIMATED AXIAL LOAD 280 r 260 -

240 - Ct.AgpED.CLA 220 -

ED SINP _

d d 200

/ ,. s -

g i1:0 -

. ', ,,9, _

160 -

o - .

E 140 -

"" / ~

$ ./ -

a***

$120 - . -

l n  :

5 100~ -

80 -

l 77030R 60 -

. - . ~ . - . - . - 77 030T -

.-------77035R 40 -

.. . . .. . .. .. ..... .. . .. 7 7 0 3 31 _

l 20! - _

r O' l I l' I I I l l

,300 -200 -100 O_ 100 200 300 400 500 t TUBE AXIAL LOAD (Ibg)

  • RELATION TO DBTAIN BEN 0 LNG STRESS AT TUBESHEET (L=0) BASED ON TUBE DEFLECTION IN ORDER TO OBTAIN BEN 0 LNG MOMENT 10/18/82 I

\ . . . -

(

Flow Induced Vibratiou 1

l

~

E) OTSG Tulie Fracture Mechanics Evaluation l

  • Loads 1 Axial tension, Fax = 500 lbf

~ '

Bending Moment = 23.73 in - Ib (FIV) @ 75 Hz .-

~

~

Pressure acting on parting faces '

Ap=12451b/in2 e Propagation threshold, AKTh The threshold AK implies a stress intensity

[ factor range below which an initiated crack

~

will not propagate F

E -

l

~

l a

l FLOW INDUCED VIBRATION

. F) LOAD CYCLE APPLIED e FOR FAX =500 lb, ALTERNATING LOAD IS FIV ONLY e 40 VEARS OF LOAD CYCLING

$ 1107 -- - - -- - - - - - - - - - - - '

8 500 ---- 0 -

2.365 x 10 9CYCLES /YR '

I

/

' 100*F/HR .

C00LDOWN. "

HEAT UP.

TO STEADY STATE h 6 CYCLES /YR'/

8 TIME 8  !

10/18/822 8

8 .

l l

l E

E GENERIC THRESHOLD STRESS INTENSITY -

E E  :

l DATA UPPER  !

I BOUND  !

i 2 -

i (D

9 8 AK BASED ON LINEAR EXTRAPOLATION OE UPPER BOUND / ,

n l =

l

' KNEE' REGION

$ I

/

AK BASED ON DATA s l

\

l LOG AK

  • NUREU/CR 1319 DTD JAN.1980 1
  • SCHEMATIC REPRESENTATION OF THE LINEAR EXTRAPOLATION OF THE UPPER BOUND LINE TO APPROXIMATETHETHRESHOLD AK 10/18/82 1

l

h. . . .-

W Inconel 600 Threshold Stress Intensity g (MIT Corrosion Laboratory Data) 10-3 e FREQUENCY = 5 Hz e R (PMIN/PMAX) = 0.05 a 554 F PURE WATER l 10-4 - e 77 F AIR

.I 2 /

?  !

E  !,

10-5 -

ff l l

!! l

= i !

: 1 LINEAR  !!

s EXTRAPOLATION #ff I (KNEE REGION) / /

x  : :

>= l

, R  !! I E 10-6 -

// '

to 1 M  : :

o  : :

.a:  : :

ac  : :

u  : :

l l l 8 '

ii 10-1 -

f!

s

!I '

ff M e 608*F, TMI-1 PWR CHEMISTRY d /~f e Hz AND R SIMILAR TO OTSG TUBE LOADING i !

i 2 -

i 10-8 .

I' 2 3 5 10 100 n

THRESHOLD STRESS INTENSITY AKth (M PaM 10/18/82

Stress Intensity Calculation n

l E

G) Execution of Stress Intensity Solution

  • The L.E.F.M. computational code, "BIGIF",

developed for EPRI, was used to integrate over a range of stress intensities following a modified

' PARIS' equation:

da dN7.4 x 10-10AK3.5 e The modification was that of applying a test for (AK)Th e Different R values were used when calculating crack f propagation due to high or low cycle loading to m

i capture the effect of mean stress l

B

$ ~

~

10/18/82 l

L 4

~

7 ECT DETECTABILITY VS.

FLOW INDUCED VIBRATION r

r 1

< 500 -

FIV (2) ai M-FIV (1) c 2 \

7 *400 -

\ UNSTABLE w STABLE \ AREA O ,

AREA E *300 -

TABLE

$ g AR EA ._ . N s 5 STABLE AREA

! .200 I (

M ECT-- DETECTED

.100 -

-* g

~ NOT DETECTED I l t I i  ;

O 20 40 80 , 80 100

% THROUGHWALL (l/h) l .

V I 2a h

.. I g

FIV (1): AKth = 2'.2 MPaVm ECT: DEFECT - 4 Mll WlDE NOTCH l PROBE - OlFFERENTIAL DEFLECTION = 14 MILS .

.540 IN DIA.

FIV (2): AKth = 1.1 MPaVm GAIN - 40 + RA DEFLECTION = 3 MILS SENSITIVITY - 300 MV IN LAB EQUlVALENT .

TO FIELD 10/18/82

i i

i g Flow Induced Vibration Conclusion g 6 The .540 inch diameter high gain standard differential W probe used at TMI-1 has detected those defects which would propagate unstably from only the mechanicalloads anticipated over a 40 year service life g

  • Once the threshold stress intensity is exceeded and crack growth commences the crack progresses through wall in about 60 hours6.944444e-4 days <br />0.0167 hours <br />9.920635e-5 weeks <br />2.283e-5 months <br />

,d 1

5 1

3

Leak Before Break Analysis Overview Objective Calculate leakage rate from circumferential cracks to establish leakage as a function of crack geometry Compare calculated leakage to the detectability limits '

for leakage, to conclude that leaking tubes can be detected and taken out of service prior to tl 3 crack becoming unstable due to plastic tearing or ligament '

necking during the cooldown following leak detection l '

Basis Ensure that tubes can be taken out of service bcfore they are degraded to the point that a double ended rup-ture will occur during cooldown e

s 1

3

l  :

i ._

f PRI-SEC LEAK RATE VS. DETECTABILITY 30 26 - ' ASSUMED CRACK GEOMETRY 24 - Ap = 2200-900 psi n

't 22 -

20 -

Pi = +1100 #

I'~

z

@; ] CRACK' 16 - /

g w -

14 - y\ 1 STRETCil 12 - T 10 -

J/

Pg xX

. 8- s ao 6- '

l Veh +

Pt = +500 #+

4- ,

Pi = +100 #w 2- _

- LlMIT DF / ?M?;'""sbwxN\\\\MMMMMMMMA\M\MN'? $ fG 1 p i$ 2BUB LE E i DETECTABILITY ' ' ' ' ' ' ' ' ' ' ' '

i .02 .08 0.10 0.14 0.18 0.22 0.28 0.30 0.34 0.38 no.42 0.45 0.50 l 1.D. ARC LENGTH -2a (INCHES) 0 30* 60* 90*

O .

12h CRACK 10/18/82 s,

3 .

N

$ Small ECT ID Indications N

n Objective To leave in service a limited number of small cracks to provide inspectability for crack growth rate studies ECT Results N Cracks identified with < 40% through wall Identified cracks are acceptable:

I e Cracks will not propogate by FIV e Cracks are too small to initiate ductile tearing g e Small number (~76) ,

g Conclusion g ECT identified cracks < 40% through wall will not be plugged N .

N O f

10/18/82 K1

l I

d i

Steam Generator Tube Plugging Plan g e Tubes with defects in high cross flow areas will be

. plugged and stablilized j e Tubes requiring plugging, but with no defects in high cross flow areas will be plugged but not stabilized e Plugging plans l

Area of

__ Crack Location Number Stabilization '

~~

Stabilized: UTS + 4'415th TSP 551 UTS + 24'414th  !

TSP i l j Being_ evaluated: LTS +1 st TSP 6t LTS*1 st TSP  !

$ Not Stabilized: UTS + 4+UTS + 8 246t

~ ~ ~ ~ ~ ~ ~15tiiTSP+1st TSP 3431

~~

h Total Plugged Tubes 11461 1 d l l

e 10/18/82

.m m --

1

..l DESIGN BASIS ANALYSIS CONSIDERATIONS OF TMI-1 SG TUBE PLUGGING l PLANT PERF RMANCE PARAMETERS

- REACTOR COOLANT SYSTEM FLOW RATE

- REACTOR COOLANT PUMP FLOW COASTDOWN RATE LOCA ANALYSIS CONSIDERATIONS

- SMALL BREAK LOCA

- LARGE BREAK LOCA FSAR TRANSI'ENTS i

I

=

i

~

I ,

l I

I I

B

RCS FLOW RATE E

MINIMUM CALCULATED RCS FLOW RATE AT TMi-1 = 109.5%

E OF DESIGN FLOW k

  • MAXIMUM ERROR ON CALCULATION = 1.5%

g

  • MINIMUM AVAILABLE FLOW RATE = 108% DESIGN FLOW REQUIRED IN TMI-1 TRANSIENT ANALYSIS = 106.5% DESIGN FLOW MARGIN = 1.5%

FLOW REDUCTION FROM 1500 PLUGGED TUBES = 0.8%

8 I

El 1

0 3

1 l

0

L l

[ . .

l L TOTAL RC FLOWRATE VERSUS TOTAL -

NUMBER OF TUBES PLUGGED  !

1.5 W

i e

V w

M L

1.0 -

Y 2,

a, -

=m

-d u a Eg -

5- -

55 m u t/3 M e 52

=.

0.5 -

m N

L _

~

~ '

w I I I

& 0 ,

0 500 1000 1500 2000

  1. -TUBES PLUGGED l

h

_j

4 RC PUMP FLOW COASTDOWN RATE 1

ANALYSIS PERFORMED WITH B & W " PUMP" CODE

- HYBRID DIGITAL AND ANALOG CODE CASES ANALYZED

- CASE 1: 1 PUMP TRIP WITH ZERO PLUGGED TUBES

- CASE 2: CASE 1 WITH 1500 PLUGGED TUBES l - CASE 3: TRIP ALL RC PUMPS WITH ZERO PLUGGED TUBES

- CASE 4: CASE 3 WITH 1500 PLUGGED TUBES L

RESULTS -

1500 PLUGGED TUBES HAS NEGLIGIBLE EFFECT ON SINGLE l PUMP TRIP AND TRIP OF ALL RC PUMPS c

n d-d n -

8 8

l 8

FLOW C0ASTDOWN FOR ONE PUMP TRIP W CORE FLOW (%) CORE FLOW (%)

E TIME (SECONDS) (ZER0 PLUGGED TUBES) (1500 PLUGGED TUBES) 0 99.73 99.74 0 1 98.87 98.92 2 97.42 97.55 3 95.61 95.75 5 91.88 91.94 7 87.88 87.93 9 84.63 84.87 b

J' n

8 . .

d .

~

I 1 .

3

^

i

..a I

h FLOW COASTDOWN FOR FOUR PUMP TRIP l

CORE FLOW (%) CORE FLOW (%)

TIME (SECONDS) (ZERO PLUGGED TUBES) (1500 PLUGGED TUBES) l 0 99.92 99.83 1 98.24 97.82 2 94.0 93.24 3 87.67 86.74 8 5.5 71.8 71.09 7.5 62.4 61.6 9.5 54.6 54.34 8

f 8

g C

i I

8  : ,

I i

J

g E n

j SMALL BREAK LOCA U

  • l CONCERNS U A.

l STEAM GENERATOR HEAT REMOVAL IN BOILER - CONDENSER MODE

% B. EMERGENCY ,EEeWATER SPRAY HEAT REMOVAL

> c. E,,Ecze e,eEcecEe ece L,em,e ,NVE~TeeY em ceeE UNC0VERY TIME i

M .

El El G -

El .

H

, , l

~ .

r .

STEAM GENERATOR HEAT REMOVAL IN BOILER-CONDENSER MODE r

  • i L GENERIC LOCA ANALYSIS POWER LEVEL WAS 2772 MWT I
  • b 1500 PLUGGED TUBES APPROXIMATELY EQUAL TO 5% SG AREA REDUCTION E

y HEAT REMOVAL CAPABILITY OF SG WILL BE DEGRADED BY APPROXIMATELY 5%

E i b

  • HEAT REMOVAL CAPABILITY REDUCTION E CAN BE OFFSET BY POWER REDUCTION L

- 5% POWER-REDUCTION FROM GENERIC VALUE REQUIRED ~

~

MAXIMUM ALLOWABLE GENERIC POWER

~

LEVEL OF 2633 MWT TMI-1 LICENSED POWER LEVEL OF 2535 MWT

{ PROVIDES ADDITIONAL 4% MARGIN r

GENERIC SMALL BREAK LOCA ANALY3IS IS APPLICABLE TO TMI-1 WITH PLUGGED TUBES E

w

~

W

R p

SMALL BREAK LOCA EMERGENCY FEEDWATER HEAT REMOVAL SMALL BREAK LARGE ENOUGH TO DEPRESSURIZE SYSTEM (WORST CASE SB LOCA)

E l

- PRIMARY AND SECONDARY TEMPERATURES EQUAL AT ABOUT 300 SECONDS (SG HEAT l REMOVAL CEASES) l g - CORE UNC0VERY BEGINS AT 1350 SECONDS l

- PEAK CLADDING TEMPERATURE OCCURS BETWEEN l l 1600 AND 1700 SECONDS l

g - CORE RECOVERED AT ABOUT 1750 SECONDS

- EFFECT OF SG COOLING ON THIS ACCIDENT l IS NEGLIGIBLE (SG ACTS AS HEAT SOURCE  !

FOR MOST OF THE TIME DURING THIS EVENT) '

- EFFECTS OF REDUCED EFW HEAT REMOVAL Af?C

} NEGLIGIBLE .

SMALL BRSAK WHICH REQUIRES SG HEAT REMOVAL TO DEPRESSURIZE SYSTEM S

-THESEBREAKSIZESDONdTRESULTINCOREUNCOVERY

- REDUCED SG COOLING WILL RESULT IN ADDED

) PRIMARY SYSTEM INVENTORY 80ll 0FF h - INVENTORY REMAINING IS SUFFICIENT TO PREVENT CORE UNC^'!ERY 5.

- PEAK CLADDING TEMPERATURE REMAINS AT SYSTEM SATURATION TEMPERATURE (500 - 650*F). ,

- REDUCED EFW COOLING NOT EXPECTED TO RESULT l IN CORE UNC0VERY 0 .

. . l SMALL BREAK LOCA -

RCS L10UID INVENTORY FOR WORST CASE SB LOCA ANALYSIS PERFORMED AT 2772 MWT CORE UNC0VERY OCCURED AT APPROXIMATELY 1350 SEC WITH 1500 PLUGGED TUBES:

1

' CORE UNC0VERY WILL OCCUR APPROXIMATELY 3 SECONDS

, EARLIER

2. PEAK CLADDING TEMPERATURE WILL INCREASE BY ABOUT 10*F
3. PEAK CLADDING TEMPERATURE WILL REMAIN AT APPROXIMATELY 1100*F '

cONctUS,oN GENERIC SMALL BREAK LOCA ANALYSIS APPLICABLE FOR TMI-1 WITH PLUGGED -

TUBES . - - '

G e

G

- -l

S s , ,

)

LARGE BREAK LOCA CONCERN ALTERATION OF LOOP AND CORE FLOW PATTERNS DURING EARLY PHASE OF LB LOCA EVALUATION FLOW REDUCTION OF 0.8% FROM 1500

) PLUGGED TUBES

) ,

FLOW RATE USED IN GENERIC LOCA ANALYSIS WAS 137.9 x 100 LBS/HR I

)

TMl-1 DESIGN BASIS FLOW RATE IS 106.5% OF '

CYCLE 1 DESIGN FLOW OR 139.8 x 106 LBS/HR.

REDUCED FLOW = 138.7 x 10b LBS/HR.

TMI-1 REDUCED FLOW RATE GREATER THAN LOCA ANALYSIS VALUE -

~~

B5WSENSITIVITYSTUDIESHAVESHOWNTHAT HIGHER INITIAL RCS FLOW RESULTS IN LOWER PEAK CLADDING TEMPERATURES l

CONCLUSION '

9 GENERICiLARGE BREAK LOCA ANALYSES ARE APPLICABLE TO TMI-1 WITH PLUGGED TUBES.

O O

O e

9

l FSAR TRANSIENTS TRANSIENT EFFECT

1. UNCOMPENSATED OPERATING REACTIVITY CHANGES REACTIVITY AND RADIATION RELEASE TYPE OF EVENTS
2. STARTUP ACCIDENT /CRA ARE UNAFFECTED BY WITHDRAWAL AT POWER TUBE PLUGGING
3. MODERATOR DILUTION
4. COLD WATER ACCIDENT
5. STUCK / DROPPED R0D
6. FUEL HANDLING i
7. ROD EJECTION
8. MAXIMUM HYPOTHETICAL i 9. WASTE GAS TANK RUPTURE 9

eeo e

,, ,m,

I E

FSAR TRANSIENTS (CONT'D)

E TRANSIENT EFFECT

10. LOSS OF COOLANT FLOW UNAFFECTED SINCE FLOW COASTDOWN RATE UNCHANGED E FROM ZERO PLUGGING CASE.

FSAR ANALYSIS ALSO BASED ON MINIMUM RC FLOW.

11. LOSS OF ELECTRIC POWER ,FSAR RESPONSE UNCHANGED.

I 12. STEAMLINE FAILURE FSAR ASSUMPTION OF SG INVENTORY WAS VERY CONSERVATIVE (55.000 LBM).

FSAR BOUNDING.

13. SG TUBE RUPTURE FSAR ANALYSIS WILL BE t UNCHANGED.
14. LOSS OF FW/FEEDLINE '

I NO EFFECT OF TUBE FLUGGING BREAK ON PEAK PRESSURE IS EXPECTED.

LONG TERM DH REMOVAL CAPABILITY WILL NOT BE l , EFFECTED. -

E CONCLUSION: PLUGGING OF 1500 TUBES WILL HAVE NO IMPACT l ON FSAR ANALYSES. FSAR REMAINS BOUNDING.

E .

1 E

i R

t. ..:

s I

$ ROS C:eanu:a

$ Purpose - Eliminate Possibility of Future Attack I

t I.

  • Convert sulfur to innocuous form I:SO4) as quickly as possible under protective g 1: alkaline:I conditions g
  • Remove as much as the SO4 from the  !

system as possible 8

$ Options '

$ e Steam generators only

$ e Entire primary system '

i g

  • Core in or out I

Use known, safe technology ~

I 10/18/82

E r

g. . .

e

$ Extent of Su; fur Contamination g

(pgm SO4/ft2) .

E g Fuel Rod I: Clean? 533 g Grid 418 I RNS Retainer 530-700 1

I RNS Spring 144 l

l N l Tubes - upper SG plenum 970-3600 g Tubes - lower SG plenum 770-930 g

Tubes - during fabrication < 250 L i: Method sensitivity - 250) l -

g . .

10/18/82

~

[0 l --

D. ..: '

os G

L BMI Ni S Tests l

lI E

l NiS 17 ppm SO4 EB [r == 5 X 10-3cm?

I 0 H 22 200 ppm, O ppm Temp 25 C,33 C Cover gas air, argon .

pH 4.5, 8, 9 e 6 -

b __

b~

~

h SO4 = FORMATION RATE MEASUREMENTS FOR REACTION BETWEEN NiS AND H 022 IN AQUEOUS MEDIA AT pH8.

8 . . . . . . . . . . . _ . _ . . . . .

RUN ND. 7 RUN NO. 5 MAXIMUM SO 4 CONCENTRACTION 8 15 - .

RUN NO. I a

)* g" RELATIVE STlRRING REACTION TEMPERATURE, E NO' RATE 'C

$ 10 - 1 1 2s E 5 1/2 2s a

g 7 1 33

=

E i s

.5-RUN NO. 7 (BLANK) g / .

RUN NO.1 (BLANK)

RUN NO. 5 (BLANK) a p i!!!::~~..-

i i i i 8

i 0 50 100 150 200 250 REACTION TIME. HOURS E -

E R

I 10/18/82

~

h

..,._.?~~~~~ ~ ~ ~ ~ - - - -

4 SO4 = FORMATION RATE MEASUREMENTS FOR REACTION BETWEEN NiS AND H 022 IN AQUEOUS MEDIA AT ROOM TEMPERATURE, pH8, AND RELATIVE STIRRING RATE OF ONE.

I 15-RUN NO.15 MAXIMUM SO 4 ONCENTRATION d _ RUN NO.1 I y RUN NO.13 E _

U H22 0 CONCENTRACTION Eo R O. g

~

h 1 INITIALLY 200 PPM AIR 13 INITIALLY 200 PPM ARGON 5 15 MAINTAINE0 AT 25 PPM AIR a

= ,a RUN NO.15 (BLANK)

RUN NO.1 (BLANK) a ups......... .. .. . . . - . ----- RUN NO.13 (BLANK)

E O 50 100 150 200 250 REACTION TIME. HOURS f

, 10/18/82

)

8 d

~ H022 CONCENTRATION MEASUREMENTS FOR THE REACTION BETWEEN NiS AND H 022 IN AQUEOUS MEDIA AT ROOM TEMPERATURE, pH 8, AND RELATIVE STIRRING RATE OF ONE

~9 300 -

l E

'n a

u 200 -

x

=

" RUNNO.13 5

E

  • o

=

8 100 -

E H02 2 TARGET LEVEL (H 0 , ADDED AT VERTICAL DASH MARKS) 22 RUN ND.15 '

i i l i i i i 100 150 200 250 0 50 REACTION TIME, HOURS l

l d

b . 10/18/82 5@ . . _ _ _ _ _ _ _

I' l '

E = E4 F1M NW--O PMS h

1 s Conclusions from NiS Reaction Rate Measurements l 1. With H202 i

l e Decreasing stirring rate increased SO4 formation rate

~

l

  • Increasing temperature increased SO4 formation rate
  • SO4 formation rate the same at pH 8 and pH 9 but u initially about 4 times slower at pH 4.5 l e No difference in SO4 formation rate between air and argon ,

l 11. Without H202 g

  • SO4 formation rate decreased with decrease in stirring rate e increasing temperature increased SO4 formation rate S. . SO4 formation rate decreased with decreasing pH l
  • SO4 formation rate approximately zero in argon. -

l h

  • Initial and final conversion rates made slower than with H2O2

. 10/18/82

-y 5

E Consultants E GPUN Workshop - RCS Cleanup Battelle-Columbus E

August 9-10,1982 E l Name Company E

Jack H. Hicks Ba' block & Wilcox Company 5 Yale Solomon Westinghouse Electric Corp.

5 Fred Pement Westinghouse Electric Corp.

Marv Miller Battelle-Columbus E Arun K. Agrawal Battelle-Columbus l Henry Leidheiser Lehigh University '

g Warren E. Beriy Battelle-Columbus g Merl J. Bell NWT Corporation g R.H. Barnes Battelle-Columbus Paul Cohen Consultant (EPRI)

Joan Lathouse Battelle-Columbus .

Afaf Wensky Battelle-Columbus 10/18/82 3 -

~~

PHASE II f

Priority Description pil H02 2 (ppm) B (ppm) S Form Temperature f

f 1 Zero Run-1 8 (Nil3 ) 200 (unstablized) 2300 N1S (17 ppm) Room Temperature Zero Run-2 8 (NII3 ) . 200 (unstablized) 2300 NIS + I-600 Room Temperature Zero Run-3 8 (Nil3 ) 200 (unstablized) 2300 Tetrathionate (20 ppm) Hoom Temperature Zero Run-4 8 (Nil3 ) 200 (unstablized) 2300 NiS + I-600 130*F 2 Tubes Run-1 8 (NII3 ) 20 (maintained) 2300 Tubes (3"-7") 130*F #

l Tubes Run-2 8 (Nii3 ) 20 (maintained) 2300 Tubes (3"-7") 130*F

Tubes Run-3 10 (Lioll) 20 (maintained) - 0 Tubes (3"-7") 130*F Tubes Run-4 10 (L10ll) 20 (maintained) 0 Tubes (3"-7") 130*F 3 Tubes Run-5 8 (Nil3 ) 02 (cover gas) 2300 Tubes (3"-7") 130*F

, deleted Tubes Run-6 8 (Nil3 ) 02 (cover gas) 2300 Tubqs (3"-7") 130*F Tubes Run-7 10 (L10ll) 0 (cover gas) 0 Tubes (3"-7") 130*F Tubes Run-8 10 (LiO11) 0 '(cover gas) 0 Tubes (3"-7") 130*F

. 4 Corrosion Run-1 8 (Nil3 ) 20 (maintained) 2300 L U-tubes, C-rings, 130*F i Corrosion Run-2 8 (Nil3 ) 20 (maintained) 2300 land tetrathionate 130*F Corrosion Run-3 10 (Lioll) 20 (maintained) 0 (20 ppm) 130*F l Corrosion Run-4 10 (Lioll) 20 (maintained) 0 130*F I

5 Corrosion Run-5 8 (Nil3 ) 02 (cover gas) 2300 LU-tubes, C-rings, 130*F deleted Corrosion Run-6 8 (N113 ) 02 (c ver gas) 2300 130*F Corrosion Run-7 land tetrathionate 10 (LiOll) 02 (cover gas) 0 i (20 ppm) 130*F Corrosion Run-8 10 (Lioll) 0 3 (cover gas) 0 130*F i -

6I ") Immunol Run-1 8 (Nil3 ) 20 (maintained) 2300 3-1, 3-2, 3-3 130*F Immunol Run-2 8 (Nil3 ) 20 (maintained) 2300 3-4, 3-5, 3-6 130*F ,

Immunol Run-3 8 (Nil3 ) 20 (maintained) 2300 3-7, 3-8, 3-9 130*F l Immunol Run-4 8 (Nil3 ) 20 (maintained) 2300 4-1, 4-2, 4-3 130*F (a) = All samples (12 pieces) should be rinsed with DI 110 2 (pil 9-10 with Nil 4 0ll). Use 100 ml from a squirt bottle for each piece and as much as possible treat thei identically.

l I

nA' _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I g .

I l

E Corrosion Tests

] Conditions - like cleaning except 02 cover Specimens - 304SS (Sens.) U-bends,1-600 1

U-bends [TMI Heat Treat),

C-rings from TMI tubing

]

NaS added as corrodant at same rate as released in first test -

~

E Test length twice time of SO4 release ~140 hrs

) ,

=

}

]

] -

O M

10/18/82 I

h

~

~~'~.. ..".~' ~_!_Z - _ - E I - ~ - ' ~ ~ ~

, u- - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

~

I f

TUBE CLEANING EXPERIMENTS H0 22Concentration. Reaction Type of Test Sample pH ppm

  • Temperature, of Cover Gas

{

e Sulfur Cleaning Inconel Tubes pH 8 (H3803/fH4 0H) 20. maintained 130 Air l pH 10 (L10H) 20. maintained 130 Air e Corrosion inconel C-Rings pH 8 (H 80 /NH 0H) 20 maintained 130 0 and U-Bends 3 3 4 2 l pH 10 (L10H) 20. maintained 130 0 2

e e Sulfur Cleaning of Ismunol Treated Inconel pH 8 (H 80 /NH 0H) 20. maintaind 130 Air Isaurol treated Tubes tubes 4 feet from 3 3 4 g

expanded region pH10(L10H) 20. maintaine'd 130 Air

! e Sulfur Cleaning of Transition region of pH 8 (H B0 /NH 0H) 20 maintained 130 Air expanded Inmiunol treated Inaunol treated 3 3 4

. tubes Inconel tube i Transition region of pH 8 (H 80 /NH UH) 3 3 4 20 maintained 130 Air untreated expanded Inconel Tube

~

  • Isaunol Treated Inconel pH 8 (H 80 /NH 0H) 20, maintained 130 Air tube 20 inches from 3 3 4 l .

expanded region i

Untreated Inconel Tube pH 8 (H B0 /NH 0H) 3 3 4 20. maintained 130 Air 20 inches from expanded region

  • Unstabilized H220 i

l l l f l i

M M M M M ~M M M M M M M M M M M M M "M t

e

  • e 1.0-SO4 Concentration Equivalent to Sulfur In Tubes E * '

h2 .

g '0. 5 -

o 5 -

t'

~

t$ '

8 -

8 8 '

e 0 , . . i i i

0 50 100 150 200

. Reaction Time, Hours PRODUCTION OF S0 DURING CLEANING OF SULFUR CONTAMINATED INCONEL-600 TUBE SAMPLES WITH H 0 4 ppm (Tube A 78-32-2)

MAINTAINED AT 20 22 e

  • '4.p 9

1,.

m _

C h h b b b be b bbbI-- I I 1 I, . 1 Addition of H 0 22 ~

i 1, t r ir ' '

l' {' f H0 Target Level l

t 20

+----------------------*-----22 - - - -

e e

I e

~

,I I -

10 - -l e e -

e e e 0- , , , ,

0 50 100 150 200 Reaction Time Hours H0 22MEASUREMENTS MADE DURING CLEANING OF SULFUR CONTAMINATED INCONEL-600 TUBE SAMPLES WITH H 0 MAIN 1AINED AT 20 ppm'(Tube A 78-32-2). 22 i

I P

! s ,

Ii !iI l

l . -

l I

X -

0 L 5 .

0 E

%y' p: f ,y-}3 4

. E .

4 N,

rs

, <Q 5 N O

s. '..? s

. ,. s

.. -e

t.
  • Y .n

. . .i. i. ..} C l *g'

'; i .,6

}3.n9ef's.' i .. .'j., - m:

' , ' f. 9,, .

N

. j .,j <.,1,( ,.. ? - f p .

f*:

l

. r .. - ., . . , , -' ,

f.u. .

i. W;..., . I 3.' . >g,:;' g -

a, : .

- . }.. l

.'.!o D

E uf:,. ' .- ',,.,'.t. ;. f;,,& )'=y'; f ? . .b,q d

.; [~ . V 0

. [. s .

,- I

< n;. ' , . ..i.

s

)g Vy:.

f .- E

,y gty , ,' ,

, '.:: , { . c.[b .'. .  !. . .;,.:....,.'_ -

. .' &. .' . ..  : y . C

' g;%

( - .

t

f. ;;. :' . . h.

E f'4 h.(4.,l,n.e,;,&. jqp.. L's 1 .- . - .

. R

t. m , i f ,. .

- . g9;...3.. .k*~ g b ' Nh. . .# .q:<..% :s. '., r. . .

f I

.'S

[ * .

S

,.r

, Q.r; f;:.:;,.'n' A

) .- ;f s%< s .

j .

l

F

.3 , i .vh - . c :.s[,..

9'

6. .- . r .,).,;% } g ,.

- . f;:. . . . y O Qs, g .:Q -. ., ~ , y' 4* Q* ' ' ' . ' ,

a g

h} ..;'e I .

R N

,:nyy Y:h, ::.

. -\._f. ._ . 1'

. k

  • , ~

l,y;':9,W&. - O

  • . c ..  :

'y,,,,^..

X I l'a

. * , \ ::} 4 ')

.y' .: p' ' ..

. . ,l . -- -. 6. .

. '. .q .

r T

st.V;3-l-

., e  ! ; ,

tv.4;. 7.lt^

=

..j . .

u C

E (1 . dt . . ,.

f

^ . ., a

.,';_.1 <. .

i t..

f S y..

[~ - ., '." .. .-.' :.,;

?':; . .. l

..;c_>r'

,*o  : . . . u S S S

. ; t,--

qh. :,,., v.,f ,i..yp ' s

~

-8,

,,* ,g. . ,- - ' l

.. .l. '. ' .- O

' ,.* . q . .. R fh.g. .t n, C

'$_. ..,. - ,:, ?

.. . , . . , .l q,,,+A, . .;

g * ' . . N

.'. .. . _.. ;3?  :.

4

,. I

.%'wg.x t Q

. .1 .

'-.y .

o'-, ;,pk.,u. .

' i .

f, A

.: ) {' [ ;. S '

f

. ;. , .' 2 E

- . . . - . . b. . -

3 , 1 R

, 2 A 6

3 D f

E T

A

, N I

M f A T

X N' 3 0 O

,i 0 C a 5 N.

e R U

e F a

  • L U

S t-

, R O

F 4

4 V

Yf}

1-h a

p P

A M

Y r A g R e o -

  • . r X

,* ' c o D No N A

t e

g .

o n

H P

P A a

  • . j 1 R .

e h.g- s .-

GE 0L RP e CM 8

4 ' IA MS

.U% g .,. ' :t(h y.

0

  • 5' f5 K .<

<+ '

TE OB HU r

= , * . ,

6 PT

.. 9 2 M0 6 E0 3 S6 5

,j4 ,

' .4 .l lI j i ,l

. 1 .' . , ' i

!l LT= 200 SECS 1000X GENER'AL SCAN i ri ii .

i 5000 -

1, .

N g

~

c i .

R ,

. 1 4000 -

i.

. Element Weight Percent AL 0.9 3000 -

SI 2.2 5.2

, g S

' F- -

TI 0.7

, Z .

, D CR 27.8 ,

i CD -

O FE 5.9

.l 2000 -

. NI 57.4

-l .

S I

i

. p 1000 -

E N g .

R  ;

AI T j i I F  !

NL E 1

b+.-A J J j g a

- - - - - - - - -= -

e.000 s.eBa 18.000 is. sea 20.00s ENERGY (kev) i ENERGY DISPERSIVE X-RAY SPECTRUM FOR SULFUR CONTAMINANT AREA (AREA C) IN CROSS SECTION OF AS-RECEIVED INCONEL-600 TUBE.

4; l

yn A .. at 7 >

4 y* .w  ; . -

,_ 2_ __ ___ _ _ _ _

LT= 1000 SECS '

! ll TEST TUBE 1

- N

~~

i l t .[

! i

(

I

\ . .

Element Weight Percent 2eK -

AL 0.9 SI 0.9 C s o.2 R

TI o.2 y) h CR 19.3

'{ ' '

z FE 12.1 a

a - -

NI 66.4 o '

lek -

F E

N' L . C I

' NAS S CT F {

ILI RI f E a - - -

J JAJm - - - -

'a. sea s. 000

- - - i la.see 1s.000 20.000 ENERGY (kev) .

AT p!!8.

ENERGY 0!SPERStVE X-RAY SPECTRUM FOR ID SURIACE INCONEL-600 TUBE SAMPL

, 2

- - _ . e

- LT= 1000 SECS EXEC (2-V) DATA LABEL y

i I .

~

j 20.K Element Weight Percent AL 0.9

~

SI 1.6

. P 0.3 .

C- .

- ,, o.,

R .

~

CR 19.0 W

1-- FE 12.4 Z .

NI a . 6S.4 a s U 10K -

F' .

. E

t. .

-N '

C I R p N P CT ,

l I R I E g .

- m J

u A . J. u . . . --. . .

6.000 5.800 10.800 15.800 20.000

. ,i ENERGY (kev)

ENERGY 11 220 AT pli 10. DISPERSIVE X-RAY SPECTRUM FOR ID SURFACES INCONEL-600 TUBE SAMPLE p

1

l . 9. M E . E . E .E . E E .E . E . E. E . E~ E . _

E M E M 'M

!' LT= 1000 SECS #3 X SECTION AREA 2

.N ..

. I i .

. i 40K - C .

I i R Element Weight Percent l .

AL 0.5 l

SI 0.9 P 0.2

! 30K -

TI 03 CR 23.1 f

, FE 14.2

~

Z NI -

60.3 I.

' D .

o F o 20K -

E 6

C N '-

10K -

R I F

P I

N

^

} E j g . . . .

U VL 0.030 5.000 10.000 15.000 20.000' ENERGY (kev) -

ENERGY DISPERSIVE X-RAY SPECTRUM FOR SULFUR CONTAMINATED AREA (AREA 2) IN CROSS SECTION OF INCONEL 600 TUBE SAMPLE AFTER CLEANING WITH H 0 AT pH 22 8 4

l, i

[ki,

. l

' 36632

- 5000X 36634 5000X Photomicrograph Nickel X-Ray Map SEM PHOT 0MICR0 GRAPH AND X-RAY MAP OF SULFUR CONTAMINATED AREA IN CROSS SECTION OF IMMUNOL C0ATED INCONEL-600 TUBE EB14-PitGi ABOUT FIVE FEET FROM EXPANSION ZONE AFTER REMOVAL OF SULFUR BY H 0 CLEANING AT pH 10 (Area 2).

22 I

't_

n '-%

,- - '. .' l -- 4 *

' . t , ' -' ', . -

LT= 300 SECS RUN #3 X SECTION-2A ,

N -

I ..

i i .

l 10K -

Element Weight Percent

! C n .8 R sr 0.4

{i CR 22.8

. FE 8.7 m -

NI 67.3 l- - .

Z 3

O o 5000 -

t F

E gi

~

~

C I R

F f N As I LI E g M. . . . ML . .

0.000 s.000 18.aBa is.cas 2a.000 ENERGY (kev) .

ENERGY DISPERSIVE X-RAY SPECTRUM FOR AREA 2, POINT A'IN CROSS SECTION OF IMfiUNOL C0ATED INC0flEt.-

600 TUBE sal 4PLE FR0H ABOUT FIVE, FEE 1 FFUM EXPANSION ZONE AFTER Reft 0 VAL OF SULFUR BY 110 CtIA!IIItG AI pil 10. ,l 72

~

3 & & ,8AY' 1

'i, Preliminary Conclusions from TMI Tubing Cleaning &

Corrosion Tests

1. The process works about as anticipated
2. Cleaning time appears to be <100 hrs ,

~

3. No indication of corrosion has been seen
4. Presence of immunol does not sppear to >

l be detrimental to the process .

l O

~ . . . - .

'n -

, I.s

+. '

f4 Y1ork in Progress h s

1. Loop tests LJ a
2. Preparation of plant procedure
3. Completion of radwaste considerations 1
4. Confirmation of IX performance
5. Method development on reduced sulfur on swipes B

1 e

10/18/82

~'""**~- _ _ - . . ~ . ,

_q

D f ,

'4 t

4 i CORROSION TEST PROGRAM $

g-e OTSG RECOVERY i

i TUBE STATUS FAILURE MECHANISM

'r ENVIRONMENTAL REPAIR 1r ASSESS IF PRIMARY 7 COOLANT STILL SCREENING TESTS AGGRESSIVE TO OUPLICATE CRACKING MODE

,r VERIFY C'ORROSION SCENARIO WILL CRACKS A 'I

- PROPAGATE IN PRIMARY COOLANT 'f REPAIR QUAL -

PARAMETRIC STUDIES TESTING M

S B.

LI . T 02 o' I

E' VALUATE CRACK l ARREST TECHNIQUES l 1r

' SHORTg M e PRIMARY ESTABLISH OPERATING eSECONDARY PARAMETERS

'r 1r y

>' LONG TERM LEAD TESTS -

< > OP DN m, m ONG TERM r TESTING e PRIMARY 9

10/18/82 e

I-

s P  :

Long Term Corrosion Test Program -

Objective:

Duplicate HFT sequence and typical reactor operation in the laboratory to assess environmental effects on tube performance. This test will lead actual OTSG operation and attempt to duplicate planned operational sequences Test Duration: . . . . .

Approximately 17 months Test Specimens:

Lead Test Full section tubes Actual TMI tubing C-rings Actual TMI tubing and archive  :

tubing (heat M2320)

Repair O.ualification #

Single tube /tubesheet mockups using actual TMI tubing Test Parameters:

Chemistry - Typical primary water chemistry with contaminents at maximum specification levels Temperature- Ambient to 600 F with temperature cycling Load .C-rings stressed at 90% Y.S.

Full section tubes loaded 500-1100 lbs Pressuin Actual primary and secondary operating pressures 10/18/82

k:

TEST LOOP SCHEM ATIC I!

g. :

y SAMPLE AXIAL MAKE LOADING PRESSURE T K a

CIRCULATION PUMP 3r

^

. 1,. . . d -

I * '

. , ,, _ ' '_"7 i

if

/ "

A j ,

AXIALj "CAN" \

LOADED F0d . -

SAMPLES. C-RINGS

'i

  • AS SHOWN = LEAD TEST (FOR REPAIR TEST, .-- c-WITHOUT CAN OF C-RINGS)~

CATCH TANK .

10/18/82 -

y.

7

~

,J SAMPLE LOADING FIXTURE

~q

,J

<- LOADING BELLOWS

.,n

~

~""

UPPER wLOADING PLATES II I I t A Ej[ NTFROM d

g w SAMPLE LOADING FlXTURE ACTUAL OTSG TUBE SAMPLE

. E~

E E ,

LOWER r -

n l l hpjNG - INFLUENT LINE l

F g

INSPECTION CAP 10/18/82

) .

I .= -

==_._. . _

~ ,

4 Summary of Specimens-f Long Term Corrosion Testing Lead Test h F

Solution 1 Solution 2 .,

(thiosulfate) (sulfate) 4 Full Tube Sections y

w/o indications

  • as-removed 1 1 Immunol treated 1 Immunol and H202 1

treated w/ indications as-removed 1 1 Immunol treated 1 s

Immunoland H202 1 #

treated l

ID stressed C-rings actual TMI-1 tubing 15 15 archive tubing 4 4 i

Repair Test all actual tube sections without defects

- as expanded - 4 loaded,2 unloaded

-Immunol treated, expanded, H 02 2 cleaned - 2 loaded,1

  • unloaded 7

10/18/82

?

' 41 0 od SOLiffl0N CIEMISTRY LEADTEST (fADTEST S0urrION 1 SOLUTION 2 REPAIR IDa BOR0r1,PPMASB 2350-100 2350-100 1200-100 m o r-- -

LI,PPMASll 0.7-2.5 0.7 - 2.!,

W 0.7-35 v L.>

CHLORIDE,PPMASCL .05 .15 .05 .15 .05 .]'.

FLUORIDE,PPMASF .05 .15 .05 .15 .05 .]',

THIOSULFATE, PPM AS SO4

.05 .15 SULFATE, PPM AS SO4 .05 .15' .05 . I' .

IlYDRAZit1E, PPM (idhil) 2 - 10 2 - 10 2 - 10 02 PPB ( 10 (10 (10 112 cc/xo 15 - 40 15 - 40 15 - 40 Il 022 TO BE Dlil Iut 11 9

e i , ' i,\'-

, g_. .,

A -

. .[ ,.

-4 l  :.

.s

~

h

. . . ~

3 J ' u O .; ; v , s H a .'i O n

, i i

e i

1 - Precondition

  • No samples in place  :

i.

  • Establish 550-600 F in autoclave e Flush with demineralized water until conductivity is acceptable .<
  • Run test solution until: -

Outlet SO4 is 190% of inlet concentration 2 - Insert Specimens 3 - Operate System e Run simulated cycles - HFT and operationai e Specimen load - 500 lb during heatup and hold,1100 lb during cooldown L

I e

  • 10/18/82
  • eM*- 4 " ' " "* ,a==mh --

l i LEAD TESTS ~

i

)  ;

r- ,-

e

! p---- a

// , /f'-- ,- -

8 n 8 8 i 1 COO - '

8 g ,

l' .

TEMPERATURE g y 1

I '

3 I - - - - - - LOAD 4 "

'l a il '

it (a gy

'l it 3

's ,

il ,

$ HFT CVELE II OPERATING CYCLES il ,1 i it

' It ,,

' }-- _ ll il 8' gl'  !

s ll 'I  ;,;

  • I
  • 6:q -

I r 's b 800-h:ll

~

t_,

E - g - ._ - - - - _._. ____ _ J 9i n i /<

r -- - l '

F

, a 500o I g I:

E .:20 l I ADD l

" i Q ' NEW -

2 WEEKS '

> ... I E- I H SOLUTION

, -I -

7 DAYS I I

l >!,

I '

y : - AMBIENT I 2:0 1

,  ! < I 8

AMBIENT 8 g - i I

50a D 8 150*

-: 30 D AJ '. ,

8 2 WEEKS l% ,' 1 WEEK +l }<-- -j i 0

0 2

4 I '

6 I ' l 8

' l 10

' . ld I '

24 l ' I' l - I' I i f .,

I I ,. s .1 1 26 28 30 32 34 36 '

51 58 LI 90 24 DAYS - > f l'_, ' ' 66 DAYS ,

11 RUN) 1 ' ' '

(SIX RUNS = 396 DAYS)

\

4 1 .

i t.

REPAIR TESTS I

E 3 l = 2

10N f

f I g l

1 i

/,

i II gl i g i

t

3 1 / 3 l'i I ,8 g 8 I i ,e t --

g II ll

' TEMPERATURE 8: ;I Jb0 gg

- -- LOAD lI il Ig 3

3: .

lI Il I,

= 18 .

g,' II- I C

ii ,, ii i 8

P 3 l -

I il s, d -CrA 8 ll I i

c 1 r; r lg

,'; il a, i I  ;

i f i 8 I'I 8[ g! i; I l

_. __ _ __ _l . _ _ _ _ .I ,,_ _ _

l ,L i _ .

__ _. _ __ _ __ _2 l _. _ _ _ . I IEXAMINE

$' .p

- "q ' < >- 1 > <

SPECIMENS y 2 WEEKS

> AND EDDY

! ' 4 WEEKS 4 WEEKS 4 WEEKS . CURRENT il i I t ;

i TEST I y l

j '.'

I -  ;

200 I .

' 1 WEEK l i 5 1

l m e -

l

l- l le

/ -

g

" 1300 I ,

o AMBIENT

  1. 1
TEMPERATURE ;  ;

1 8 9 23 24 54 61 91 121 124 DAYS

, . . . _. .. Repeat 2 to 3 Times s

.~ 1 r*

LONG TERM CORROSION TEST SCHEDULE i .

LEAD TEST 1st 2nd 3rd. 4th 5th 6th HFT Operational Operational Operational Operational Operational Operational Evaluate Data Cycle :ycle Cycle Cycle Cycle Cycle Cycle I i l I I I I

l l Interim Interim Interim Final Repos a Report Report Report 14-17 monal...

! 30 day 90 day 8 months Data Data REPAIR TEST 1st 2nd. 3rd Cycle C Cycle Evaluate Data 1

- lycle l l l l l 1 Interim Interim Interim Final Repor t

, Report Report Report 14-17 monn..

60 days 4 months 8 months I I l i I I I I I I I I Oct Dec Jan Mar May July Sept Nov Jan Mar May s i ..l y i 1982 1983 1984

's i./ s u/u2 e

9 .s . W *

~

'e ~s - . 6 t .

.e *$* $ ,y -

.Y

i h

t

.c '

rt Q^;-.

5 -

Specimen Evaluation 1 - Full Tube Specimens

!

  • Eddy current prior to operation with 0.540" std.

differential probe

  • Eddy current after each testing cycle e Metallurgically evaluate at end of program i 2 - C-Rings e After each cycle, visually inspect all specimens e At end of each cycle, remove one C-ring and metallurgically evaluate
  • Metallurgically evaluate all specimens at end of program e

10/18/82 g _ , , _ _____ _____-__.. __ ______ ----

___ em . m-