ML20071J047
| ML20071J047 | |
| Person / Time | |
|---|---|
| Site: | Crane |
| Issue date: | 04/07/1982 |
| From: | GENERAL PUBLIC UTILITIES CORP. |
| To: | |
| Shared Package | |
| ML20071J046 | List: |
| References | |
| NUDOCS 8204260331 | |
| Download: ML20071J047 (95) | |
Text
_
i
((AEl Nuclear TMI-1 OTSG Status Review April 7,1982 4
e b
O
~.
t TMI-1 OTSG STATUS REVIEW I'.
INTRODUCTION J R. F. WILSON II.
FAILORE ANALYSIS
- DR. R. L. LONG III.
STEAM GENERATOR REPAIR
--J.
PEARSON IV.
OTSG REPAIR PROGRAM OVERVIEW - D. G. SLEAR
.V.
CONCLUSIONS /SUPNARY
- R. F. WILSON l
BETHESDA, MARYLAND APRIL 7, 1982 4
e m_______.______.___.___
9 ORGANIZATIONS ACTIVELY WORKIfE WITil GPUN ON STEAM GENERATOR PROGRAM -
o e BtW, LYNCHBURG AND ALLIANCE RESEARCH LABS t
i i
e.EPRI AND CONSULTANTS e
e BATTELLE LABORATORIES e
e MIT e ORNL 4
m e =
4/7/82 e
TMI-1 Steam Generator ELEVATION CROSS SECTION W
PRIMARY SIDE 7
, sg.fA
~~ T M. ** '11.. * ~
(INSIDE TUBES)
L s
UPPER
" ' r- - - -
' ' - ~ '
W^'
TUBESHEET (UTS)
- ~
AUXILIARY I
- 'b-X NDZZLES
' 3d__
Z (AFW)
- y,j pT'f y ;.;
.F P4 e,...
- 5. 4::;
a
- = -
1 e isip
.s 4
=
- * * ~
w 3.2..,
- a...,
k $
.C,3 W" Git %
W
' STEAM OUTLET l
~
l@'
u, m
~.
,)
tms MAIN FEEDWATER I d"d e
OTUBE NDZZLES (MFW) y a a l s 94 "
C l k, A*. m D
SECONDARY SIDE (EXTERNAL TO TUBES) j a
.m.
l l I.'j,"l' Weight, operating.............. 637 tens 6m-
....................... 7 3 f act Prhaary flew.................. 6 9 X 106 #/hr.
Steam flew.............'...... 6.1 X 106 #/hr.
SUP PLATES
- i Number tubes................. 15 5 31 1.
Tube size, material............ 0.625" od,.034 wall inconel 600 LOWER f
Manuf acture date.............. 5/69 to 11/70 SECONDARY i'
HANDHOLD i
l
-2585 550-2350 500-f
-2115 450-
{
-1880 ?
400-p i
-1045 l i
l350- li p!
g, l'
[
-1410 g g 300-li
[250- hi
[
h
-1175 t
1
-900 i
l1 i
200-
[
i u
g i
-905 li 150-
-470 100-50- l9 g
-235 l
...................c.........:..,
^
AMJJASONDJFMAMJJASONDJFMAMJJASOND 1979 -
1980 e
e m
.TMI-1 STEAM GENERATORS l
l EXitnT OF ATTACK N
.)
l e STEAM GENERATOR 200 TO 500 e NIEBER OF LEAKING TUBES e NUMBER OF TUBES WITH INDICATION 8000 TO 10,000 0F SIGNIFICANT DEFECTS e' UNRESOLVED AREA AT SURFACE OF UNKNOWN UPPER TUBESHEET e ELSEWHERE e MATERIALS POTENTIALLY SUBJECT TO SIMILAR ATTACK USED ELSEWHERE IN REACTOR
- EXAMINATION PROGRAM GETTING UNDERWAY
\\
- ATTACK, IF ANY, REQUIRES RIGHT COMBINATION OF MATERIAL CONDITION, STRESS, LOCAL ENVIRONMENT
' 4/7/82
S 4
' 2 D
L E
6 S T
' 1 E
s EN H
W DE C
O U C N
LA I
L 4
E CJ T
B XD W
EA E
S "2
O T
E E
H L
C T
S W
E E
O E
O B
F B
E N
' U L
S E
T D,
B C
L
' 2 T
/
1 S
E A
E C
E O
B T
F T
U E
D T
T F
L 9
N E
A 9
' W D
T 4
O L
O
__' D A
T
?
T 9
E O
2
-' C T
7 N
r 5
eA o
2 T
1 S
t 1
. sI a
D
.i r
?
e 5
ng en L
i i
Gk 4
c i
ma r
o aC
~
o 0
o o
0 0
0 o.
0 g
7 e
-4 3
1 ee 0
1 t b wO 5
o SuT 1
T E
I EH M
S E
T B
N E
U O
C T
I A
T F
E I
C S
R T A
N U E S
F A
E R
R MH D U T
L O S S
L TE E
L TB WP O
OU O
L R
BT A
E N
N x
S M
'A N
N N N N
\\x N
k
\\
"0 i "4
"5 3
S l
l I
I l
,\\
f l
l i
b l
Potentially Defective Tubes l
(Projection of Ecidy Current Data)
OTSG-A w
l
,,,.g~ ~y,2 :.t bh) 10 TUBE
/ PERIPHERY
~
j
.c+-
ps -
. t;,,,
..T s.,
a
.x
. -:c.
l 5
.9-sic
.[ M 1% j.
3,y l
20 %
28 %
h%
-x i
(LANE) z-h., !,
W i
l
-d j
10 TUBE # Y, j
PERIPHERY i
g i,
11 TO 20 TUBE
. a*n*<' c
-4 'f;
$.: 4.-
i PERIPHERY
.o W
i i
I h
t 4/7/82 l
6 i
I
s Potentially Defective Tubes (Projection of Eddy Current Data)
OTSG-B I.
cp> p TyEOOF!tqq
- YlP N
VERY FEW I DINIDE 50 %
~
40%
<2%
-X t
(LANE) z-15 %
/
10 TUBE l
PERIPHERY l
Y e
4 4/7/82 e
j i
o
Potentially Defective Tubes (Projection of Eddy Current Data)
OTSG-B I.
OI? TY;o9p,m
'"~ 7 NLy 1
b I
VERY FEW 50 %
INDICATIONS 40%
j
<2%
i r
-x (LANE) z-is%
10 TUBE PERIPHERY I
Y 1
e e
4/7/82 S
Potentially Defective Tubes (Prcjection of Eddy Current Data)
OTSG-B i
68",
I Y
VERY FEW
(~.'
INDICATIONS g.3 h.
(
S.W.
.< 2%
$?
5):~.-x (LANE) z-
=-
.a: !
tt.'m !
16 %
%..~
R 10 TUBE PERIPHERY i
I Y
e b
4/7/82 i
FUTURE )R)RK/ DECISIONS REMAINING e FINAL ECT AT ROLL. TRANSITION AND UPPER END P
e RCS INSPECTION e' FINAL RCS/S6 CLEANUP ETHODS/ APPROACH v
e REPAIR, DEVELOPENT/ QUAL. TESTING OF S.S. REPAIR e FINAL TUBE SAMPLES / LABORATORY SIMULATION TESTS 4
9 4
i M /82 e -
TMI-1 TECHNICAL BASIS FOR REPAIR LICENSING e TE S.G. REPAIR APPROACH IS
- ROLL SEAL EXISTING TUBE TO.TUBESHEET.T INITIAL ISOLATE LEAKS / TUBE DEFECTS LONG RA%E - SLEEVE OVER DEFECTIVE TUBE ROLL SEAL) TO ISOLATE LEAKS / TUBE DEF INITIAL REPAIR, IF AND AS REQUIRED e S' 6',' DA8 AGE IS UNIQUE IN INDUSTRY IN TWO IPPO
~
- LOCATED WITHIN THE UTS
- DAMAGE ECHANISM OPERATES COLD / REACT SHUT DOWN e TE REPAIR APPROACH ISOLATES TE FAIL S.G. TUBE TO ITS ORIGINAL FUNCTIONAL /
e BELIEVE NO INCREASED PROBABILITY F TUBE RUPTURE OR ACCELERATED DEGRAD I UED e THERE ARE INSPECTION / SURVEILLANCE SATISFACTORY PERFORMANCE OF THE S.G.
4/7/82
1 1'
l TMI-l STEAM GENERATORS i
i GENERAL INTERGRANULAR STRESS CORROSION CRACKING FAB HISTORY ME-TQB MATERIAL D
STRESS OPERATING HISTORY
~
-v STRESS F
ENVIRONMENT
+
b OPERATING HISTORY CHEMISTRY DESIGN IMPURITIES FAILURE t
MUST EXPLAIN - TIMING OF CRACKING
- MATERIAL FAILURE MODE, I.E., 'INTERGRANULAR
- CONTAMINANT SOURCE FORM
- AXIAL / RADIAL CRACK DISTRIBUTION
~
(
- 4/7/82
.a TMI-1 OTSG TUBt MAKING PROCESS' m
o ALL TUBES MANUFACTURED BY PATCO NO FORMAL PATC0 RECORDS AVAILABLE GPUN/B&W REPS VISIT TO PATCO (1982)
MPR TRIP REPORT TO PATCO (1968) o BASE MATERIAL SUPPLIED BY B&W TUBULAR PRODUCTS o
GENERAL' PROCESS BASE MATERIAL - ROUND HOLLOW BARS + 2" 0D, M.'088" WALL
~
ONE COLD DRAW THRU ROCKER TYPE REDUCER DIE TO ~1h" OD, +0.080" WALL FOUR COLD DRAWS OVER FLOATING MANDRELS THRU A DIE T0-0,625" OD,e0,034" WALL TUBES CLEANED, ANNEALED IN HYDROGEN ENVIRONMENT AT 1650 F 250F TUBES STRAIGHTENED AND CENTERLESS GROUND - MINIMUM WALL IS 0,034" o
OTHER DATA EXTREME CARE TO PREVENT CONTAMINANT CONTACT WITH TUBE NDE TESTS INCLUDED UT, PT, EC, HYDRO, METAL COMPARATOR CHECK INTERMEDIATE CLEANING, ANNEALING AFTER EACH DRAWING OPERATION 4/7/82
m OTSG POST WELD HEAT-TREATMENT o
BASIC CYCLE'TO PERFORM ASME CODE HT HEAT TO 1100-11500F fl0LD FOR WELDS,1 IIR. PER 1 INCil 0F THICKNESS FURNACE COOL TO BELOW 600 F MAX. HEATING / COOLING RATES ~100 F/HR
~
WELD THICKNESSES, 98 IN. AND 7 IN.
o ACTUAL RATES 0
HEATING <20 F/HR FOR T7600 F COOLING <15 F/HR FOR T2600 F o
FURNACE l
85' x 18' x 18' l
ELECTRIC HEATING ELEMENTS - CAR FLOOR, ROOF, EACH WALL
.ARGbNGASCIRCULATED I..
4/7/82 I
n FINAL FULL VESSEL PWHT IN OTSG ELECTRIC FURNACE IN BARBERTON 0TSG - A
- ALL SHELL AVG
~
-~~ ALL TUBE AVG 1100
~
1000 f'
800 _-
i.
s
/
'N.,
s W'
~
.../
400 200 g
M i
i i
i i
i i
i i
i i
i i
i i
i i
i i
s' i i
i i
R 8
8 8
8
?
8 8
'8 a
o n
n TIE IN HOURS 11/7/82 9
4
OTSGPbSTWELDHEATTREATMENT d
L HEATUP TIME
~ TIME AT
~
C00LDOWN TIME U
. 0TSG 200 F.TO 1100 F G.T, 1100 F/850 F 1100 F TO 200 F 4
A
+ 128 HRS
~
~
B
.m 68 HRS
3 e
i
.~.
t' u
e p
/
I4/7/82
/
i
.d
.-m-ww.,
==wv+,e-+-
+tr---erew--<---
--7 M e r ** m wfw--
+-r
+
rm-d w
w t?-+-++w---
-vr--wm-s e we r
-'wr-w-3--
w-t
---a+w
-ze-
- -.+ ---
b THREE MILE ISLAND NUCLEAR GENERATING STATION UNIT 1 STEAM' GENERATOR A i
S
(=E>.,
1.
c ep I
ce ?,
l-s Ei> >
- (
- 3 :s 4
- L
.d..
s
- .v..
- .<t..; : :
3
,1, g
.....z-
\\
"~ j'
~
v.-
3
+.:
t e
,p.
gg,; <c,
.t *-
E e
i v.
..s.
x,:k-::.
l::
} * "I.4 e
s m.s.,,,,
g, c.
c
...s, >#
EQ.
. P>.
d: :
ll*'
'.l-4., :,? i 8) u.
c <.
- g..
-l
,2-i l 5,),d p :,
Id:
- A:
s
~
e.:.
w)-..
.+.
l
- 5 r.: v
- h.
ll.
l ll
- E *
. e:
s 4 ca.s
't :. 4. *'
. <f.< r if,.:.
I.%
. ss
.s
>+
ll, :.:
s,:.
5, a.
- .\\
<.q.
,,7, c
a,
/
e cr.:,,s A.s
- 4.,-
- ..i.'
'=a, g
a e,
s
'en,
\\-
a n,. '.
list..
p( ),
n::::
N
,;,,.<[p:,:..
$< g
- . 3 ch P
9 I#g[(2. f g:. :
- p; ek.
,5
- d l,,
- c. ;4X:.
lk
, < 9 :.:
I_..$#8/
TLBE LOCATIONS F All. TtBER
~
FOR T1EE EAT 1090t8
.sases t
l mm l
4/7/82 lL- -
I THREE MILE ISLAND NUCLEAR GElERATING STATION UNIT 1 STEAM GENERATOR A l
6 h
e
.c N
/4 g
R k
l
\\
e I'!
W s
,2 u
+ s
- s a
,u x
s y
N O
8 k
EM e
NN f.
k j
9 e
K
% let N N
N.
,g
=
- p.'t
~
{=.
'; g
=
3' r
X." \\
s 5
8' FDR E lEAT MkeOt3
\\
14/7/82
8 THREE MILE -ISLAND NUCLEAR GENERATING STATION UNIT I STEAM GENERATOR B
(.
C:....:
,~ ::
j' :::
'l.
py;
.< p,
- .v
.m r.'
< ~ -
y.
c.
u.
s.
>.e s.
<q, p
)
4>
n.>
~
+
<r>
4
'.l : Sn' $c
$l
%W':::4.,
.. O },c-
. w, c
.e
% }>.
a.
l.:=
.-. e. % r.
,m m
=
N a..
,/c a..
~
...;~.
%1
... i <,,..
- rsurma,
.D> t 9.
'.g.
~:
.*.n:..< <l,.
a f.,.a.
.1 s>..;: to.
e
, m.-
= <
- ,,, a, 'n, n,
m.
e
. s.s.
% (c!....s, r,
e,:
. ~.
. w*
~ ~ ~ <.
- =. -
~ **
. $. ~<:8.:,.
.:::.:.u.>
?
- .y 2::t
.c*
E g::;:"
a?
- s,
- ::: :.t c* :. : 4,,
'A a
(* :.
'y 4::=
c:*
2
, %..E c
.:::t...;
~
2
\\.
n*
sud-c
\\r
- - \\> ;
,e 4,
c*
i~,..
s; 4
~.
.;~. %.
c-c
' e ?v~.,' <C s :.
~-. %:
~~. :.
E
<.~
4'Q:::
- g. '~.,,..
%~. <
5.
>g
- c. <,.
.::::f >.
.c, a
. T v :.. -
- v.<,
.u >. *. ce
),
.#v.*
~=*.. c,.
p
-. i.
, 7. ~~
-p
. ~:.
e, g==*
c:
g.
} *.
. */ '3
%p
'a
.p t
. */
.:~.
c.
I.,~%. p <
g ;;;,
e.
.. u e,
e y%
J. *:,.
- c. >
- b c
.c :
- J3*
m
- q. *
- c.:
x*
.g
?
f,,::. :.:
w.
- r.. *
..c
- ~
?>
eg..
w
.x,.*
- 47
- e..,..
1, g. :.
.,. A g*
g-g, - l:
e TLBE LOCATm:s GF ALL TLBE3 FOR TtBE lEAT NkeGts M'!788 t
mass 4/7/82
--v
9 THREEMILE5SLANDNUCLEAR GENERATING STATION
(
UNIT I STEAM GENERATOR B
/..
A:
c*
A : * :.
9 V
\\,
f.;
y
=
f -
.,.t y
4
-l;
=
y
~
o M
,0 M
/
M g
o x
l X
4
[y W
k fx y
9
)
y
)
M
- = "
k W
.d e,M y
n r >
4 se a y
y E
v u :: s k
yJ k.:.
A:
m:.
\\
h N
l w y
.=
i f
l M
W W
itet LocATIes ran Dem:Trw 1taER ftR 115E W.AT MaeSts
(
m es
..'.i s 't f*.2808 -
10 4
HEAT VS DEFECT CORRELATION APRIL 2,1982
SUMMARY
o TUBE FAILURES ARE ASSOCIATED WITH SPECIFIC LOCATIONS IN THE GENERATOR NOT HEAT RELATIONSHIPS.
o THE DEFECT PAT, TERNS IN THE TWO GENERATORS ARE DIFFERE.NT ~AND THIS WILL NEED TO BE EXPLAINED BY A PARAMETER OTHER THAN HEAT NUMBER.
o HEATS OF MATERIAL EXIST WHICH HAVE HIGH DEFECT FREQUENCIES IN BAD AREAS AND THE.SAME HEATS WILL HAVE LOW DEFECT FREQUENCIES IN GOOD. AREAS.
[
s 4
i 14/7/82
!C
11 ci STRESS RELIEF DATA REVIEW,."B"~0TSG UTS i
o CENTER OF BUNDLE IN UTS IS 10 - 20 F HIGHER IN TEMPERA-TURE DURING HEAT UP AND HOLD BUT IS 5 - 10 F LOWER IN TEMPERATURE DURING C00LDOWi!
o NO SIGNIFICANT TEMPERATURE VARIATIONS EXIST AROUND BUNDLE
- PERIPHERY o
NO SIGNIFICAtlT DIFFERENCES IN TIMES AT TEMPERATURE EXIST i
ARO.UND THE PERIPHERY o
MAXIMUM TUBE TEMPERATURE ACHIEVED DURING STRESS RELIEF WAS 1140 F 2
l o
OVERALL THE TIMES AT TEMPERATURES INDICATE THE TUBES WERE HELD IN TEMPERATURE REGIONS WHERE SENSITIZATION WOULD BE EXPECTED TO BE SEVERE e
n
=
0 9
e I
(
4/7/82
TMl-1 Steam Generator Typical Cracks
~
INCONEL TUBE--+-
1.
.,___g, '
c.-.
s#
T L
,A TYPICAL CRACKS k h ROLL TRANSITION sf,F C
e t
/ STEEL TUBE 3HEET h
h CRACK CHARACTERISTICS: CIRCUMFERENTIAL NOT FULL ARC GENERALLY VERY TIGHT INSIDE INITIATED 11/7/82
~
~'
13 1,
TUBE-ANALYSIS
SUMMARY
NO. OF N0, 0F.
ANALYSIS TUBES SAMPIFS METALL0 GRAPHIC-8 38 BEND TEST 15 19
)
SCANNING ELECTRON MICROSCOPY (SEM)
-15 15 15
[
ENERGY-DISPURSIVE X-RAY ANALYSIS (EDAX)-
15 f
~
AUGER ELECTRON SPECTROSCOP '(AES) 5 "' '
7
~
ELECTRON SPECTROSCOPY FOR CHEMICAL.
ANLYSIS (ESCA) 5 6
' SCANNING' TRANSMISSION ELECTRON MICRO-
~
SCOPY (STEM) 5 7
ELECTROCHEMICAL POTENTIOKENITIC
~
REACTIVAiION (EPR) 4 5
,r.
HUEY TEST 1
3 SECONDARY-ION MASS. SPECTROSCOPY (SIMS) 2 3
ELECTRON DIFFRACTION 1
.1 TRANSMIS~SION ELECTRON MICROSCOPY (TEM) 2-2.
TENSILE TEST 3
3 RESI. DUAL STRESS 1
1 S0DIUM AZIDE SPOT TEST 3
5
)
l-4/7/82 J
GPUN FAILURE ANALYSIS INVESTIGATIONT$AM BABC0CK & WILCOX TUBE FAILURE ANALYSIS LYNCHBURG RESEARCH CENTER BABC0CK & WILC0X CORROSION TESTING ALLIANCE RESEARCH CENTER BATTELLE COLUMBUS LABORATORIES TUBE FAILURE ANALYSIS 0AK KIDGE NATIONAL LABORATORIES CORROSION TESTING METALS & CERAMICS DIVISION l
MASSACHUSETTS INSTITUTE OF TECHNOLOGY TUBE ANALYSIS FOR SENSI-TIZATION
' OHIO STATE UNIVERSITY ANALYSIS OF SULFUR COR-ROSION MECHANISM CLEANING /PASSAVATION ELECTRIC POWER RESEARCH INSTITUTE FAILURE ANALYSIS REVIEW ADDiTibNEEdBUIiAidIiY59 WESTINGHOUSEELECTRICRESEdRCH INDEPENDENT TUBE FAILURE
& DEVELOPMENT LABORATORIES ANALYSIS 4/7/82
15
- JBE UTILIZATION SUMARY APRIL 2,1982 TOTAL TUBING AVAILABLE
37.8 FT.
TOTAL TUBING EXAMINEB:'
13.1 FT.
TUBING ALLOCATED FOR TESTING:
.o WESTINGHOUSE FAILURE ANALYSIS -
.35 FT.
o TENSILE TEST OF DEFECT TUBE
.67 FT.
o CORROSION TESTING 7.10 FT.
c.
o ROLLING / SLEEVING TESTS 7.10 FT.
L TOTAL 15.22 FT.
UNALLOCATED TUBING o
PIECES W/0 DEFECTS 7.9 FT.
o PIECES WITH DEFECTS 1.6 FT, TOTAL
. 9. 5 FT. -
e-e e'
4/7/82
SUMMARY
OF FAILURE ANALYSIS APRIL 7, 1982 o
ALL CRACKS ARE STRESS ASSISTED INTERGRANULAR CORROSION WITH INITIATION ON THE ID SURFACE o
EDDY CURRENT EXAMINATION HAS BEEN A RELIABLE INDICATOR OF CRACK LOCATION o
INCIPIENT CRACKS HAVE NOT BEEN DETECTED IN CLEAN SECTIONS (N0 E.C. INDICATIONS) 0F TUBING BY VISUAL AND DESTRUCTIVE EXAMINATION o
CARBON IN THE FORM 0F A HYDROCARBON APPEARS AS THE MAJOR CONTAMINANT ON FRACTURE SURFACES.
SULFUR AND CHLORINE ARE PRESENT AS SECONDARY CONTAMINANTS l[
o RESIDUAL STRESS MEASUREMENTS IN ROLL AND ROLL TRANSITION REGION E
SHOW NO STRESS PEAKS BUT RATHER A UNIFORM DISTRIBUTION 1
l o
CHROMlUM LEVELS IN THE GRAIN BOUNDARIES VARY FROM 8.WT. %
. TO 20 WT. %
o THE INCONEL MICROSTRUCTURE APPEARS TYPICAL FOR STEAM GENERATOR l
TUBING WITH DISCRETE CHROMlUM CARBIDE PARTICLES IN THE GRAIN BOUNDARIES i
'o SMALL AREAS OF INTERGRANULAR CORROSION SEVERAL GRAINS DEEP HAVE BEEN OBSERVED ON THE ID AND OD SURFACES AT RAND 0M LOCATIONS l
L o
NO RELATIONSHIP HAS BEEN ESTABLISHED BETWEEN MATERIAL HEATS AND DEFECTIVE TUBING o
MECHANICAL TESTING OF UNCRACKED TUBES SHOW THAT THE MATERIAL
(
EXCEEDS MINIMUM SPECIFICATION REQUIREMENTS
~
A/7/82
t F I 'G U RE II
,4 i
l OTSG Longituciinal Section Elevations (Typ.D PRIM ARY SIDE (INSIDE TUBES).
f ATION TUBESHEET UTS)
FEET
~ MsetG M,
- r -
~~
- 346'6" AUXILIARY hremmmanu 3
---342,8,,
i FEE 0 WATER
%')$1ljljikilligg
"* 7 N0ZZLES (AFW)
.' f.kibA, $ WelO,)
- 339 9
. um 7 q'l 'l EL,.stap
- 336'5" im
'3'4,i.I.h 333'8" STEAM QUTLET im
\\.,I il'TT"'jy
-330'6" nm*
MAIN FEEDWATER ll.til5 Itlilt
327'4" N0ZZLE$ (MFW)%, g__
g liga 11146
- 324'4" a
i eil,,g p i:
O o
- 321'1" SECONDARY SIDE
- d. ;g,,,,
(EXTERNAL TO TUBES)
~
~
.. g, j ?,*,,
~
T 317'9" i
ea..
- 314'6" s
- m-ij 'it * ~ i,,i
-- 311'8" (w jm -
- J.
308'5"
~[
- 3 0 5,1,,
TUBE SUPPORT
~ ". -
i '"
PLATES
- 301'10" k y v.o k%.
'i
~ '.
LOWER SECONDARY "y
~ ~_
LOWER SECONDARY M ANWAY HAN0 HOLE ql i J.h :.1,i
- 294'5" NLOWER 1
I TUBESHEET (LTS) 8 1
REACTOR BLOG. FLOOR 0"
4/7/82
TMI-1 STEAM GEllERATORS - STRESSES o STRESS MAXIMUM IN ROLL TRANSITION AREA,~ 34 K$1 e STRESS MAXIMUM ON OUTER EDGE OF GENERATORS e STRESS EXPECTED T0.BE QUITE VARIABLE IN ROLL TRANSITION AREA eMAXIMUMSTRESSESAREkXIAL
(
e STRES5ES SAME IN UPPER AND LOWER TUBESHEET eSTRESSESMAXIMUMDURINGC00LDOWN', COL 5 e AT OPERATING TEMPERATURE - HOOP STRESS > AXIAL STRESS O
5 4
8 4/7/82 e-
- - _ - +
==
A
-.e j
i e'
e 64=40 i l l l l l i n i i i i i n i i n i n u i n n,k fl l
5 in niu m ul1n til Illlllllllll'Illlllllllll'IIIII,1
).1!i til I
lllllllll lillil llillIlllllllillllI!Ills
=
intillt 111111!!
,Illll IillllillllllllllllIIIII,
3 1
Itit llllll11 Ill I
gliill l
II' l
ill lilllilllllllllllllllllIII 1 l
ll111 lilllll 1111111 Illllll; lll
'i Il lilli I
I IHI II'llllllli 1111111111ll111a tilil t
111111 k
jl 1
,ill IllllllillllllllllllllI ;t yl ;l;l l lt i l 1
,1ll1ll 1 1lll11 lll Il it'll 1111111111511111111 ll a litj l-l l
l ll ll1 tilllllllMllllll-Illi -t titj l
l il 11 l i l.!
I l l l D i l l l l.I II r
l_..'l71 1 4llll iiti ll l
Ill
,1 11 (: I I A l'f i l} l l l l l l l',e l
l l
jl l
l a
l l
ij 1
ji'
'l N.llWll'Ill ll w' wi s
1,,
i Jllilllllll'll ll :
jji;; ll l
l l
lill i
I 11/1111111111111 ' l 1 a ltillllll II I W illlllllllllll 1
111111111llll4 m itii l
lll
'i, il 11 Il
--bos o ll I'
ji' tillli 9 flilli
('
lll Iq i
l l l l l-l i
Il 11 Il MM-fi l l l l l l l l l l l ! I l l l l l l l I I s'
llllll
[
,l!llllD 6lIlllll IlllllllllllIIIIIIIIIII+
l.l l l l !
}
lj, tTTi l l'l'
' l l- 'llllIllllll'Illl!IIIIII
- lllll l
1 l) 11 lilli p
lilll illllllllli r
ji 11111111111111111111111 llllll lll il, 1
l lil il 111 1111ll111111111111111ll u
-s ll1,l@l4
-llll 1111111ll11111lI1111I1
.'i ll l
111
!Illi 111 It'llllllillillllll,.
I ll' i g']
1 11 1
l
.s o sg 5
li t gll ll ll
'l l i i
l'IIHillllllllllilllll a E
I ll yll1,1lll l
11
'll, 11, 11111111111I111111II1 inii
'iniiliilillililllllliI l l i 1 1 I t t l l l 1 1 1 l ! ! H l l ' ' ' i ' ' ' ',j ' " '., o,,,3 lu
=
i' iiiiia j
t,ti T'giiiu,,iLci i
k
?
\\
' 7"N f,7,[,
Illl
> r'w a
...iiiit nu,m m uun,u miai' iII 3'
.illi a i i i ! 1 1 'i 1 ?
et 9 it,
3..
i::t 5 t : : 2 y t4Aa I
5!
i n u u n i
i n u i,r
,i n i t t i i n i i n n i u ;i t u 'n' 'n' 'i i u'
"'!....',','..'^...
'ei+ii C
OPERATING HISTORY.0BSERVATIONS-1
~
o LOWER END GENERATOR ALWAYS SUBMERGED (WETTED), UPPER END' ALTERNATE WET AND DRY WITH AIR.(0XYGEN) INTERFACE o
WATER LEVEL IN THE PRIMARY SIDE OF OTSG.WAS IN UTS FOR BETWEEN 31 AND 243 DAYS o
SOME DIFFERENCES IN AMOUNT OF FLOW SINCE FEB '79 TOTAL PUMP HOURS OTSG - A = 681 HRS TOTAL PUMP HOURS OTSG - B = 393 HRS BACK Fl.0W IN'0TSG - B FOR 10 HRS DURING SEPTEMBER '81 C00LDOWN o
E 4
4 I
4/7/82 e.www
a 2
3 Cs c3-j I up g
.i Uw MJ L
I' Q
E C1 C2 ww w
H F-dd w
~ cc w
Wm 1
C3 c.D MM M
F-I--
H OM w
Cc U2 V3 c: w CO o
O O
go c"
3 L
c2 E
L O-b g
=
"3 H
a w
M U
w A
Z C3
>m P
L 2>
w c'y H
O 3
a M
P
-g y -g g g g
H Q-d c22
<D g
CW wq 12 E._ M
~
y
$_ _w, sw b-to m
,Q h
2
$2 8-
"e h cc L 2
>=
V3 O L <2
>0 a
en C
L
$s gn e
>O z
~..
as Cc w
c3 o 5
CD Eg a.)
Qo c3 w 2
,,7 w
JJ ww MN O
am E
- a C3 (c=
=
h.,
m
(
u)
We OP w
p<
m Q
c A
ce W
ea O
=
w U
H s
P g
z w
w O
3 c:
w M
J 3
W J
CC 7
L w
V3 V3 O
2 L
m O
O
=
W
- Z' s
>J D
~~3 I
f I
I 1
I-I '
m o
m o
m m
n
.t~)
~
OPERATING HISTORY OBSERVATIONS-2 o
POTENTIAL SULFUR SOURCES PRESENT '
SOME OIL INTRODUCED INTO RCS IN MAR '79 SULFURIC ACID ADDED TO RCS IN OCT '79 SODIUM THIOSULFATE ADDED TO RCS AT VARIOUS TIMES OVER LIFE OF PLANT o
SODIUM THIOSULFATE THOUGHT TO BE PRIMARY CONTRIBUTOR ACCUMULATED IN BUILDING SPRAY PIPING - 1979 AS A RESULT OF VALVE LEAKAGE JUN,AUG,SEP'8iOPERATIONOFSPRAYPUMPSADDEDSOLUTIONTOBWST INJECTION INTO RCS OCCURRED DURING SEP '81 C00LDOWN 4
9 4
e 4 /7/82
- ==-*--e-en.-.-.
em ep
gp a
v TMI-1 STEAM GENERATORS - SULFUR SAMPLES m
TOTAL SULFUR
~
SYSTEM DATE SULFATE (PPB)
(PPB AS SO4) 1,500 REACTOR COOLANT DECAY HEAT 7/31/79
<600 8/07/79
<660 11/01/79 730 12/04/81 400
~
1/18/82 2/04/82 100
<100 B0 RATED WATER STORAGE TANK 1/20/82 15,000 REACTOR BUILDING SPRAY PUMP OUTLET 1/20/82 3/17/82 2,876 3/20/82 764 176,000 INTERC0flNECT BETWEEN BUILDING SPRAY 1/20/82 AtlD DECAY HEAT 3/17/82 2,465 3/20/82 752 400 SPENT FUEL POOL 1/18/82 3/17/82 246 3/20/82 149 4/7/82
L1 CORROSION TESTING
SUMMARY
o TEST WITH ACTUAL DECAY HEAT COOLANT ON SENSITIZED INCONEL AND STAINLESS STEEL BENT STRIPS.
RESULTS - NO CRACKING IN TWO WEEKS o
TEST WITH Ar;UAL DECAY HEAT COOLANT ON AN ACTUAL TUBE SAMPLE REMOVED WiiH AN INCIPIENT DEFECT.
RESULT - NO CRACK GROWTH o
34 ELECTROCHEMICAL CORROSION TESTS WITH VARIOUS CONTAMINATED PRIMARY COOLANT ENVIRONMENTS AND VARIOUS SPECIMENS BORIC ACID (PPM) '- 13,000, 5,000 THIOSULFATE (. PPM) _ 100, 10, 1, 0 HYDRAZINE (PPM) - 200 l
MATERIALS - M5442, M2320 - ACTUAL M2320 - ARCHIVE TEMPERATURE - 550, 100 F ATMOSPHERE - AIR, HYDROGEN ri e
t 9
0 4/7/82
25 i
~
PRELIMINARY CORROSION TEST. RESULTS' o
CORROSION TESTS IN ACTUAL PRIMARY COOLANT INDICATE IT IS i,
CURRENTLY INNOCUOUS o
REDUCED SULFUR SPECIES CAN REPRODUCE THE TYPE OF CRACKING OBSERVED IN STEAM GENERATOR TUBES o
THE DEGREE'0F SENSITIZATION (I.E., PR.IOR HEAT TREATMENT)
IS A KEY PARAMETER IN DEFINING THE MATERIALS SUSCEPTABILITY TO IGSCC I
o T5EPROPENSITYFORASULFURCONTAMINATEDPRIMARYCOOLANT ENVIRONMENT TO INITIATE CRACKING VARIES INVERSELY WITH THE BORIC ACID AND LITHIUM HYDR 0XIDE CONCENTRATIONS 4
I CRACK INITIATION APPEARS TO BE THE RATE CONTROLLING PAR-o AMATER o
CRACK GROWTH RATE IS VERY RAPID.0N THE ORDER OF 1m/ DAY o
CRACKING APPEARS TO BE A LOW TEMPERATURE OCCURRENCE o
CRACKING TENDENCY IS REDUCED BY RAISING THE PH e
O l
4/7/82
^
1
~
KEY ELEf1ENTS I!1 EXP' R$i!IEN g
o IGSCC 0F I-600 OBSERVED AT 575 F IN SULPHATE CONTAINING WATER; UNLIKELY TO OCCUR UNDER PWR PRIMARY SYSTEN REDUCING EllIVRONMEltT NOT ASSOCIATED WITH DEGREE OF SENSITIZATION
~
o IGSCC 0F I-600 OBSERVED AT 75-225 F IN SULPHUR OXYANION (E.G. THIOSULPilATES) CONTAINING WATER; MORE LIKELY TO OCCUR IN PNR PRIMARY SYSTEM CRACKING IS RAPID
~
SUSCEPTIBILITY DEPENDS Oil SENSITIZATION, PH, TEMPERATURE, AND ELECTROCHEMICAL POTENTIAL o
PLANT AND MODEL BOILER EXPERIENCE IS ENTIRELY RELATED TO SECONDARY SIDE PROBLEMS o
il0NE OF PRIMARY SIDE INDUSTRY EXPERIENCE IGSCO 0F I-600 ATTRIBUTED TO ATTACK BY BULPHUR SPECIES s
11/7/82 t
me
r3 HIGHLIGHTS OF STRESS ANALYSIS o
TUBING AXIAL TENSILE STRESSES LARGEST DURING C00LDOWN; f4AY-APPROACH. YIELD STRESS
~'
o SIGNIFICANT AXIAL TENSILE STRESSES ALSO EXIST DURING COLD SHUTDOWN o
LOCALLY HI AXIAL TENSILE STRESSES POSSIBLE IN -SEA,L WELD HAZ AND NEAR ROLL TRANSITION
.o AXIAL STRESSES GENERALLY LARGER AT PERIPHERY THAN IN CENTER OF TUBE BUNDLE 9
S 4
4 e
S e
f1/7/82
y---------------------------------------------------------------------
.i R
SUSCEPTIBLE MATERIAL MICROSTRUCTURE i
~
o FAB HISTORY SHOWS TUBING TO BE. MILL ANNEALED PLUS STRESS RELIEVED-oo HIGHLY SENSITIZED o
MET EXAMS CONFIRM EXPECTED MICROSTRUCTURE J
CORROSION TESTS SHOW PULLED TUBES SUSCEPTIBLE TO CRACKING IN L
o THIOSULFATE / BORIC ACID SOLufl0NS 9
=
4 i
e e
D I4/7/82 S
~~-
~.
s
,.+.
g AGGRESSIVE ENVIRONt1ENT S0 -~ AND S 0 -
CONTAMIllATION PROBABLY.PRESENT 4
23 CHANGES IN S-SPECIES EXPECTED DURING HOT FUNCTIONAL -- DIFFICULT:
TO PREDICT SPECIES PRESENT AFTERWARDS
~
~
I!/7/82
- -., - ~
~ ~ ' "
AQUEOUS SULFUR SPECIES 30
~
Sulfur Formula Structure Oxidation Number
- Name
-2 sulfide H S or S 2
i I
~
H3'S S-S
-1 22 2
H3'3 S-S-S'
-2/3 polysulfides f-23 3
f 9
m S-S--
-2/x H S,,
g 1
)
sulfur 0
3_
S S rings g
=
01 0
0-5-S
+2 thiosulfate S,3"3 0
S0" 0- -S-S- -0
+2.5 tetrathionate 46 0
L.
.=
SO "
0- -0
+4 sulfite (sulfurous acid) 3
+4 sulfur. dioxide S02 E
~
99 S0 0- - 0
+5 dithionate 26 SO "
0- -0
+6 sulfate
~
4 0
- 0xidation number is the formal electrical charge assigned to the sulfur on the assumption that H is +1 and 0 is -2 in these compounds.
[
4/7/82
r:
~
17 PROPOSED FAILURE' SCENARIO S0 -~ AND S 0 -- (POSSIBLY OTHERS) ADDED DURING LAYUP 1.
4 23 2.
REDUCEDES-SPECIESFORMEDDURINGHOTFUNCTIONAL 3.
WATER LEVEL DROPPED.
HIGH CONCENTRATION OF AGGRESSIVE S-SPECIES FORMED IN DRY-0UT REGION 4.
CRACKING OCCURS IN DRY-0UT ZONE S.
CRACKING TERMINATES DUE TO REDUCTION OF CONCENTRATION 6.
CRACKING IS DISCOVERED WHEN OTSGs ARE PRESSURIZED e
t 1
o 9
4/7/82
~.
nT
9 g.
FEATURES GOVERED.BY SCENARIO TIME OF CRACKING MODE OF CRACKING AXIAL DISTRIBUTION 0F CRACKING RADIAL DISTRIBUTION OF CRACKING (0'TSG-A)
CORROSION TEST RESULTS s
e e
w e
4/7/82 e
e m ei s.
4
--e* w
..e
JMPLICATIONS OF SUENARIO SULPHUR REDUCTION NECESSARY TO PREVENT RECURRENCE
-- OXIDATION TO SOLUBLE FORM
--- REMOVAL VIA DEMINERALIZER ATTACH OF OTHER PRIMARY SYSTEM COMPONENTS, IF ANY, MOST PROBABLE IN VICINITY OF WATER LINE LOCATION FOLLOWING HOT FUNCTIONAL
-- INCONEL X-750
-- SENSITIZED TYPE 30ll STAINLESS STEEL s
3, l\\/7/82
54 REACTOR COOLANT SYSTEf1 REVIEW i
0BJECTIVES o
REVIEW REACTOR COOLANT SYSTEM COMPONENTS FGd CONTINUED SAFE OPERATION o
CLASSIFY ITEMS FOR MATERIAL CONDITION, EllVIRONMENT EXPOSURE AND APPLIED STRESS o
SELECT CANDIDATES.FOR INSPECTION AND TESTING THAT ARE REPRESENTATIVE OF WORST CONDITIONS o
Mll11MIZE EXPOSURES o
EMPLOY STANDARD ACCEPTANCE TFSTING BUT SELECT SUSCEPTIBLE MATERIAL'S FOR DESTRUCTIVE METALLURGICAL EXAMINATION e
9 e
n l
4/7/82 l
35 l
1
- \\
t REACTOR COOLANT SYSTEM REVIEW
-)
PROGRAM PLAN i
i O
CLASSIFY ALL MATERIAL TYPES USING FABRICATION
~
HISTORY AND LOCATION IN RCS O
IDENTIFY ASSOCIATED STRESS LEVELS AND SAFETY CONSIDERATIONS FOR APPLICATION t-I O
EVALUATE RCS MATERIAL CORROSION SUSCEPTIDiLITY c
l O
IDENTIFY POTENTIAL PROBLEM AREAS FOR RECERTIFICATION INSPECTION AND TEST O
DEVELOP INSPECTION PLAN O
PERFORM INSPECTIONS AND EVALUATE RESULTS PROVIDING AS NECESSARY ANY CONTINGENCY TESTING O
DOCUMENT ACCEPTABILITY OF PRIMARY SYSTEM FOR SAFE RESTART e
9 e
4/7/82
l 1
REACTOR COOLANT SYSTEM REVIEW l
INSPECTION PLAN l
INCONEL 600 O
DESTRUCTIVE METALL,URGICAL INCONEL X-750 ANALYSIS
- SS 304
- INCONEL 718 O
EDDY CURRENT
- I-600 (NOT AXIALLY LOADED) l f
O ULTRASONIC TESTING
- SS 304 - BOLTS
- INCONEL X-750
~l'
- SS 304 TUBING l
- I-600 SAFE ENDS
RADIOGRAPH TESTING
- I-600 SAFE ENDS
PENETRANT INSPECTION
- SS 304 CLAD
- I-600 CLAD i
i O JUNCTIONAL TESTS
- IN-CO,RE DETECTORS-
- VENT VALVES 4
4/7/82
~
,n.,
J/
INSPECTION PLAN (CONT'D)
O VISUAL EXAMINATION
- CORE. COMPONENTS
- PLENUM
- HOLU DOWN SPRINGS
- END FITTINGS
- FUEL RODS
- SPACER ASSEMBLIES
- CONTROL RODS
- SHELLS AND BOLTING RINGS
- BAFFLE PLATE REGION
- LOWER BOLTING RINGS
- LOWER VESSEL HEAD O
OVERALL
- INSPECT OR TEST APPROXIMATELY 1000 j:
i ITEMS 5
9 e
0 s
e
(
9 fu7/82 y
l Repair Criteria 1
1:
[1) The maximum allowable primary-to-secondary leakage rate for normal operation shall be as low as ' reasonably l
achievable and allow plant operation within the radioactive effluent limits of the technical specifications.
l l-r l
l e
L 4/7/82
1 4
Repair Criteria (2) Repaired tube shall sustain, with adequate margins, the design basis loads Loads Generic 177F'A TMI-1 LOCA
+ 2641lb
+ 2641lb MSLB
+ 3140 lb
+ 3140 lb (being reanalyzed)
FWLB
- 620 lb
- 620 lb Normal cooldown:
+ 1107 lb
+ 1107lb
+ = tension
= compression e
o S
4/7/82 o
[..
i
.1 Repair Criteria K3) The effects of both repaired and plugged tubes on the thermal and hydraulic performance of the plant and on the structural and vibrational f
adequacy of the steam generator shall be evaluated and shall be within the acceptance criteria for both normal operating and design basis accident conditions as specified in the licerising basis documents.
l e
l l
4/7/82
Preliminary Repair Process Q.ualification Criteria i
- Result in a process capable of providing a leak-tight joint
- Produce a joint capable of carrying the design basis loads
- Maintain the tensile preload in the free standing portion of the tubes within allowable limits
- Result in minimal tensile stresses
- Produce an expansion capable of being non-destructively examined
- Be adaptable to remotely operated tooling
- Permit future sleeving a
+
l 4/7/82
i e
Origin ~al ~ Configuration of OTSG Tubos Seal weld h[-
'l Ah
\\ n Original shop roll ti
~1 1/2" w
m M
- r m
5
_y..
e-24" tubesheet E:s4 k-s.
E l
- .y i
s x;
by Ei i
35 Crevice
'y
.002 to.008 radial ev i
E
.)
l lL.
te lUs j
~2 V
(
f}
M A,
r l
l s.
l I.
4 / 7 /P
E:
I l
1 l
4/7/82 i
I l
e
Repair Configuration of OTSG Tube Seal weld N
s
/
A A
i
\\.
Original shop roll
. ~ 1 1/2" s,
h E
1 Wh v,
x
- .1 m
~ 10,,
M Crevice closed
~E to (0.001 (radial)
\\'
il 42 is.Ea New leak limiting /
$ 4 load carrying hard j
roll expansion
\\x k@h es
<~4..--=c~~ ;4 _.x. m. :
.a.m.k.....
..,... s. - -
.~
%n i.. g.a..e.- x:---
a-
..p
- a
., - j',
.. : x- -=,
~... -
.. /
. c.:.~.
. 4.
^ g.:., * >--r
..~., -
-_.. - >.,.c r
e-
.=,
=
\\
g
. e.
10% Chromic 100X i
- Figure 8 -
Rolled portion of a tube showing the amount of cold work present in the overlap area using standard rolls.
I Depth of -
3.c.
, : n.
3_., 4., % s h.., L q C
^.:.
c01d work
... f... c. w.
- ........n.
p.o,. l %
j s
N
.L i
.~.
. s.
< 5.-::.
s.;...., n-
......n..
,.nn.
.~p'n..- -w.,;**
...:g % w.-
._+n.
a.~. - -
c
'.\\. - y
- 4.....:.. i.:&;.. -..'.....
..r.
g....s M...
' s 10% Chromic 100X Figure 9 -
l Depth of cold work produced by increasing the leading radius to 2-1/2 inches.
4/7/82 l
Experience with Mechanical Joints e Industry SG experience with mechanical joints
- Doel-2 Tube /tubesheet rolls About 100 rolled in 1980 (repair)
& 1981
- Point Beach-1 Rolled sleeves (repair)
About 12 sleeves in 1982,
- San Onofre.1 Rolled sleeves (repair)
About 7000 sleeves in 1981
- Obrigheim Tube /tubesheet rolls 12 years service (original)
- Palisades Hydraulically expanded Installed commencing 1976 sleeves (repair) e Other industry experience with repair hard roll
- Big Rock Point RTR vessel /CRD housing 4" tube in 1979. No leakage
- Dyster Creek RTR vessel /in core flux 2" tube in 1975. No monitor tube leak ~ age
- Gargli~ no
- Ditto -
2" tube in 1966. No a
leakage e Standard heat exchanger manufacturing process 9
~
4/7/82
Preliminary Tube Expansion Process Comparison Mechanical Hydraulic Explosive Roll Expansion Expansion Residual stresses ID '
Greater Base Equal DD Less Base Equal Effect on tube Decrease increase Little change Load carrying capability Greater than Base Greater than Leak tightness Greater than Base Greater than l
i Supporting data based on:
e B&W Canada and B&W USA R&D and production work accomplished on both once-through and u-tube steam generators
~
t I
l
~
Points to Be Addressed by O.ualification Program Adequacy of repair process
- Leak tightness following thermal cycling
- Load carrying capability following
~
thermal cycling
- Tubesheet hole ovality
~
- Water or moisture in crevice
- Statistical leak tightness margin determination o Roll torque / length vs leak tightness l
- Roll torque / length vs load carrying capability
- Inspectability '
4/7/82
(
Points to Be Addressed by O.ualification Program Effect of repair on total OTSG performance
- Primary water in crevice and tubesheet corrosion
- Change of tube preload
- Residual stresses in tube
- Effect of trapped contaminants.
- OTSG performance with specific tubes plugged
- Confirm adequacy of existing operating and accident analyses i
e 4/7/82
~
e O
)
N D
G E
OG R
NI R
"GI I S NI l U SA O Oi TP CRS Q "0E E
R NRE R
O OI C'
l S
F G
N
(
'PI 8
N
)k I
T
]
"E A R
0 3 mr T
LA T
C R A
O O
P P
N E
.O R
S m
IT E
G y
RAN UR I T a
T S S
r m^
CNT E
g O O R
P o
r NW GE m
P f
I I A
SV EE n
OR E
D o
D E
i A
R 4
R,I t
U T
G Q
a P
E U
R c
N i
G IO f
SS TG E
AN R P Y
D CI A U m^
l SO A
P K a
L&A I T I
EC F S N
AE O NB L L
RD mr N
I M u.
E G
S IT TO T
Q E
A O C m^
GI n
V I B R
N o
LA OF O
i T
s S
&^
E S n
NE I
C a
O F
ED R p
P x
E u"
e b
N u
W OG A
I N T
V I T E
S I VA A
RE OT C
mr
&^
G S
N SS 0I R
T E
EI A
RS 0 S TY LE E
D TY t
L T
MU SL L
O A
K R AT I
L N
L P
P
~
)
G T
O I
NR I P
OTSG Tube Rolling Top View-Manipulator MANWAY j
I
^
ROLL EXPANDER VERTICAL TABLE O
l R
[PlVOT o.
e MANIPULATOR l
oo 1-
- _fA, f
- O ci R CARRIAGE CLUTCH 0
4/7/82-4 4/7/82'
1 OTSG Tube Rolling - Elevation E
O u
O e
6 g DRIVE MOTOR DRIVE MOTOR AND "RIGHT ANGLE AIR CYLINDER (FOR TABLE VERTICAL DRIVE)
DRIVE
. /m 5 m:
R CARRIAGE (WITH ENCODER AND DRIVE MOTOR)
L
/
=
=
LM
\\
~
DRIVE WHEEL
\\
f MANIPULATOR ARM ROLL EXPANDER PlVOT 4
0 0
l 4/7/82 1
i 4/7/82
Currently Planned Process Monitoring and Inspection Tube identification E/C manipulator record
- Video record Depth of rolls
- Automated insertion tool
- Toollocation feedback
- Video
- Transducer feedback Torque Air pressure alarm Periodic calibration Frequent equipment inspections and cleaning 1
l 4/7/82
~
OTSG Repair l
Program Overview
- 1. Tube expansion / testing complete det. '82
- 11. Projected total repair exposure
< 500 man rem III.100% ECT examination in affected area i
IV. Plug or repair all tubes with inside diameter ECT indications in the roll, roll transition or tubesheet crevice V. Plug / stabilize all tubes with inside diameter ECT indications that are not within the tubesheet l
VI. RCS cleanup to reduce the amount of sulfur on sudaces Vll. Sensitive leak tests following repair
. Vill. Sensitive and continuous leak rate monitoring during operation 0
4/7/s2
OTSG Repair Program Pian / Schedule 1983 1982 MAR APR RSAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 6/82 OTSG/RCS INSPECTIONS N, i
i TUBE EXP ANSION 67/82i QUAllFICATION M
i!-i f Y>
Y 10/82 OTSG REPAIRS i
ePLUGGING i
e EXP ANSION i
eLEAK TESTING lM"S Oh?'"
6 9
4
(
i 1
4/7/82
i I
Preliminary Cumulative Man Rem Exposure i
- 11. Estimated additional ex'posure
~230 min rem A. RCS inspection N SOR B. Eddy current testing N 10R N 10R C. Tube samples D. Tube plugging
~100R E'. Tube expansion N 50R 111. Projected total OTSG repair exposure with 200 man rem contingency
< 500 m.an rem 1
I
+
4/7/82
OTSG Tubing Eddy Current inspection Program oldentify scope and extent
- l. Objective of tubing damage and soundness of tubing areas accepted for service
- Repetitive in'spections to detect new defects and/or defect growth
- 100% of affected areas l
ll.Sc. ope e Statistical sample below affected areas ill. Techniques
- Standard differential probe imulti-fre-quency system -
increased gain settings?
tubing areas between lower and upper tubesheet roll transitions
- Absolute probe upper tubesheet roll transitions and roIIed areas (4 coils
- 2 orientations - 360 degrees coverage?
... _. 4R
,l
~
Standard Differential Eddy Current Technique O.ualification
- l. Metallurgical
- 100% correlation on Analysis 29 E/C defects located.at or below the roll transition II.Other destruct
- Laboratory testing of Testing
~ 13 feet of tubing verifies soundness of
~
portions of removed tubes accepted by eddy current examination Ill. Correlations
- Circumferential among E/C coils vs pancak~e coils designs /
- Standard differential vs techniques absolute techniques IV. Production
- Evaluation of all E/C data intelligible signals interpretation irrespective of amplitude to account for crack orientation and geometry O
4/7/s2
N m
~
s a,
~
b s.
e m
.-.=g.___..
-___43,e g
- g.______
_ _ _ _ _ _ _.g : :-
.o
_m O
~
b
,~a a,
M u
O
=g.-___
_ _ _ _ _ - g ~=
O L,,
.U.
CD 6
l 3
n
~
-e g
g o.______.....
___________g-l O
E
.j.g._______
. _ _ _ - _ _.gg g
%F O
~
-~_
W a
.f-a.
a
- p.,
,O
~;:
.,: :t-ggg.___._,~. g_..,-g_.____
- - - - - - -,-e ::,.
o.
_ _ __ _ q =._ _.g.,- - = _ _ - g ~a :
.a t------,------
- - - - - - - r- - - - - e =
0 f
- s e. _ _.~u _.
.a - _ - _.
_-._-_---------e.
a
.s.p.-___________.
_ _ _.___ - _ 7 _ _ _ _ _ _ g.s E
r e- _ _ _ _ _.
_q:
O 2
0
~
~
?
r-
~
=
g_____
-_ _ g g
=
s-mg g._____..
...-.____.g aw
<w mz m v3
~
4
. =
- - g a.# ? =,.
?.,
a.
~s ww
~
- a. w Am
...s ~....
~.
f
=
As S. - _ - - = $_ - - _ _ - _ _
l
-.______.-G
- - O :.e -O : -- ee:
sr d8)
- IQ
~
't l
N.
e SN011V310N11N3HHn3 A003 lV31DunllV13W lVASIA AH01VH0HV1 4/7/s2 4
i 1
(
=
r A
N
.s
~
-s a
s-
_ _ _ _ _ - _ _ _ _e.
g
=,. _ _ _. _ _ _ _ _ _ _
L.
- ~
.$ p_____
._____. __.g =
=
A mw s u
w g =c w z
e e
.O *a m
~
~
e-
-e
_ _ _ _q =
vjg g e_ _ _ _ _.
o
- oo O""
u u
O O
..~.
.m O
.o tn
=-
h.
l l5 i
1 o
-s g,. g.... _____. :..________g;=
O E
N e
i p
=
O
.s.
=.
w
~
~ - ~ ~ ~ ~ ~ ~O..'"
..#---~~~~ ~~
~. ".
O
.s i
e s
_ - _ _ _ _ _ _ _ _g.:
+3 g
.g._________.,
~
~
~
~
- s
.s.
Or
=
~ ~ =
,.-@==.,__g.s a.~
e w
1
- =
.eg?
CL r
___._s..
e - tr -.. ----_e. e
.it
.~
E i
=
- g e-- - ---
m-e __ g:.,. _ _g =-
- g. _, p, _. _____ o..
o.
... - g _ _. =
g
=
2
. _ _: __ _ _ _ _ ga, =
O g
- .g.______~:.. -.
9' s '~ G-. _ _ _ ' _ __
.__.en.__g~=
x w s
~.
- :. g.. _ _ _ _ _, ~..
~
4 = ~ _ _ _== - _.g _
uw
~a oc.
, :.g..
...g 4
^
- u. z
=
w n
0-__
a m O=,O., #' = p 9-m
~
- -=_=:...-=
mm
_ _ _ _ _ _ _ _ g. 4~_q
.~
= O ~ y=.e-_g.________
- n. m
~
- j
==._-___.
=s
- a. o e-.
.... _ _ _ _... _ _ _ _ _4_ _. J -. O' A.,,,...,,
l; 1
.T
.T
.T f
~
~.,.,
N
~
SN011V310NIIN3HHn3 A003 )'1V31SHn11V13W -TVnSIA AH01 r
T 4/7/s2 l
. = -_ _
Correlations Among Coil Designs
~
- 1. Scope
- Standard differential vs 4X absolute
~435 tubes full length N4500 tubes partial length
~
- Standard differential vs 3X pancake differential
~100 tubes full length II. Conclusions
- in all cases there was goad correlation i
einconsistencies can be explained by:
-low level signals 4 <1 volt) drop in and out by both techniques
-resolution of multiple defects that are close together O
4/7/s2
TMI-1 OTSG Absolute Eddy Current Technique O.ualification
- 1. Metallographic
-100%. correlation 4
analysis on 30 E/C defects Ltop 0.25 inch excluded due to.
alignment problems which we are correcting) ll. Tube /tubesheet demonstrates mockup detection testing of simulate ~d cracks located at the primary tube seal weld and below 4
4 6
4/7/s2
G 9
9 u
.m
~.
.e m
p u
k i*
c o
~
,,8, M
4 d
,, lO
- l 4 >;.,, '
a d
u A
-q n
I
=
e b
~
s o
8 r
P
,y h' J'
T C
E j' -
q u
t e
l L
u l
o s.
s N.6 A
I b
9
- s.i.!
f*:s...
m p
p$
l, i
g
- 9; c
f
^
p$
c.
,v,..
l p
g.
~
.s g
h i
.I.
e ve..
(
.i l
l Ang" i
ll l
l
\\l
\\;
TMI-1 Eddy Current Defect Mockup Absolute Technique O.ualification
,I ROLL TRANSITION f
c)-------
l
~
l [.....................D - 1 D-2 D-3 D-4 D-5 I
,Y
-7fY,1 f
[
[ TUBE l
h 5EA lCLAB
, D UNROLLED i
TUBE TOP l
e
. 1/4" '
SURFACE l
!" jus.
TU8ESHEET M
1" (MIN) ROLL --+
- Defects #1 thru 5 (D1 -DS) are I'D defects located as shown
'o Extent of defects varied from 20% thru 100%
of tubing wall thickness - defects are 3/16 inch long (EDM notches)
- 40% and greater defect depths were detected 4/7/s2
\\
OTSG Tube Plugging Plans M
M b"
=
E M
l s
y" 5
5*
g 4
'30
~499-301 (TSTAL
~-
DEFECTS BELOW 5-1S**
~134iTOTAL DEFECTS WHICH MAY BE BELOW 211/2"WHICP PLUGGED)
- WILL BE Pl.UGG20) e i 2 3 4 5 8 12 94 34 DetTANCE DOWN TUDE/TUSESHEET 14CM 4
9 4/7/s2 O
4/7/82
4 Analysis of Tube Plugging Affects on OTSG Performance
- Reactor cooldnt system flow rate
- Safety analysis for LOCA
- OTSG exit steam quality G
0 t
l
~
t 4/7/s2 l
~RC Flow Results o Calc RC flow w/o plugging:
109.86 %
o Error in calc:
1.50 %
-l o Resulting. flow:
1.08.36 %
o Tubes plugged:
500/OTSG o RC flow reduction:
0.25%
i
~
o Resulting flow:
108.11 %
o Tech spec limit:
-106.50 %.
o Margin:
1.61 %
Conclusion The reduction in RCS flow is acceptable g
t 4/7/s2
-1
,e.n.-. - - -, -,,
4 J-f.
I LOCA Results Considerations e Boiler - condenser mode hea~t transfer e initial RCS liquid inventory-eEFW spray cooling e RC flow rate
- Core cooling j
Conclusion No effect on licensed power level of 2568 MW f
T or up to 500 plugged 1
tubes per SG l
~
l
F OTSG Exit Steam Superheat
. (100% Power Results)
- Normal superheat = 54 F-e 300 tubes plugged in one SG -
l Iuniform Dist'nll
-average exit superheat = 49 F e 300 tubes plugged 1:25% of tubes plugged in a peripheral region t
-central region superheat = 54 F
-peripheral region superheat = 11 F
-average exit superheat = 49 F
Conclusion The reduction in OTSG exit steam superheat is acceptable O
Q --. -
,,-s
,.w,
Removablo Plug Development l
- 1. Objective einstall removeable plugs in tubes which may be returned to service by sleeving II. T y p e
- Roll plugs similar to those used at San Onofre Ill. Qualification
- 100 thermal cycles (120 F to 650 F?
- Leak tests at AP = 2250 psig
- Rapid cooldown from 650 F
- Simulated circumferential crack in roll
- Ejection / pull-out tests,
- Leak rate.03 drops / minute IV. Results (avg. all tests)
- 6200-12,000 psi plug ejection pressure
- 3510 lb average pull-out load V. Conclusion.
- Roll plug qualified for intended use at TMI-1 4/7/82 e
_. _._. _.. __.. - - _. _.. ~. _ _ _
(
l l
l Primar~y System Cleanup I. Sulfur in RCS water has been reduced from 750 ppb to 100 ppb il. If analysis shows it is required, we plan to reduce the amount of sulfur on.the surfaces of primary system components and OTSG tubes.
j lll. Cleanup method identification will consider:
- H O2 2 concentrations of 0,10,100., and 1000 ppm i
~
s.pH of 7.0,8.0, and 9.0 with LiOH or NH40H additive
- Normal RCS chemistry 4/7/s2
Preliminary OTSG Pre-Service Testing Plans
-Statistical baseline examination of the new expansion and transition l
o Drip test
-150 psi on OTSG secondary
'ide (H O) s 2
- Bubble test
-150 psi on OTSG secondary side (N
)
2
-Sensitivity ~.1 gpd/ tube
- Leak test
-2155 psi on primary side A P E 125% of normal
( 21500 psi)
-Sensitivity N 10 gpd' (after 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />, current RCS activity level)
- Power
-Natural circulation cooldown escalation Main feed pump trip (40%
testing power) l Turbine trip (100% power)
~
4/7/s2 1
OTSG In-Service Monitoring i
I e Continuous leak rate monitoring using activity, mass balance and/or chemical concentrations
-sensitivity ~10 gpd
- after 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> of leakage f
03% failed fuel
- condenser vacuum pump discharge activity
- Basis for corrective action l
-total leak rate
-rate of change of leak rate l
j I
4/7/s2
...-m-m---
OTSG Repair Program Overview We expect that th.e overall bTSG repair program, including inspections, repair process qualification, primary system cleanup, leak testing and differential pressure testing, will provide assurance that th,e probability of abnormal primary to secondary leakage during operation is very low.
9 9
h t
9 4
O 4/7/82
SlM%RY e THE REPAIR ETHOD IS EXPECTED TO SHOW CmFORMANCE TO. EXISTING LICENSE AND PEGULATORY REQUIREMENTS e TECH SPECS FOR APPENDIX I MAINTAIN NORMAL OPERATIONAL CONDITIONS WELL WITHIN ACCIDENT ASSUMPTIONS e THE REPAIRED STEAM GENERATOR IS EXPECTED TO PRESENT NO SIGNIFICANT HAZARD TO STATION OR PUBLIC e
t 4/7/82 e
REMAINING WORK e KVELOP, TEST, QUALIFY THE TUBE - TUBESEET REPAIR ETHOD MD PROCESS ETAILS E
e RESTORE ADEQUATE STATE OF CLEANLINESS e INSPECT OTHER PRIMARY SYSTEM INTERNALS e C0&LETE DETAILS OF FAILURE ANALYSIS AND TECHNICAL AND SAFETY ANALYSIS OF REPAIRED -
STEM SEERATORS O
e
- 4/7/82 l
e
Curro'nt TMI-1 Opo'rcting and Effluont Liniito
%'/
'o%
5X103 fo g
f
'A 4
n
- 'e, "o,
r
'#++c
- '9,
- 'o 5X102
- 4 102 g
- 4 1 GPM LEAKAGE LIMIT
\\
50 E
E a
10
=m O
1.0 I
I I
.02.03
.05 0.1 0.3 0.5 1.0 5.0 FRACTION FUEL FAILURE (%)
l 4/7/s2
_ SAFETY EVALUATION PARAMETERS - STEAM GENERATOR REPAIR e TUBE PLUGGIfKi - AFFECTS PRIMARY SYSTEM FLOW
- AFFECTS LOCA ANALYSIS (EAT TRANSFER) 51000 i TUBES MY BE PLU66ED WITHIN BOUNDS OF EXISTING SAFETY ANALYSIS / TECH SPEC'S e TECHNICAL SPECIFICATION LEAXAGE - UNIDENTIFIED 1 GPM STEAM GENERATORS 1 GPM e TECHNICAL SPECIFICAT10fl RELEASE - 5 0.06 m/MO WITHOUT TREATMENT e DESIGN BASIS STEAM GENERATOR RUPTURE - 435 GPM e APPENDIX I - LIQUIDS 5 3 E/YR
- GAS 5 5 MR/YR e ALARA CONSIDERATIONS FOR SECONDARY SYSTEMS ACTIVITY, IF ANY ACTIVITY PRESENT l
4/7/82 e
l l
SAFETY REVIEW e WILL PERFORM A COMPLETE INTERNAL REVIEW UNDER THE PROVISIONS OF 50.59 e WILL HAVE THE INT 5RNAL SAFETY ASSESSENT/ REVIEW FURTER EXAMlHED BY
- THE GPUN GENERAL OFFICE REVIEW BOARD (G0RB)
- AN EXTERNAL (T0 GPUN) FURTHER INDEPENDENT REVIEW GROUP e THE REVIEW WILL BE BASED ON MEETIllG ESTABLISHED NRC REGULATORY REQUIREMENTS AND EXISTING TMI-1 TECH SPEC'S L
e i
4/7/82 i
4 CONCLUSIONS - STEAM GEERATORS e FAILURE E CHANISM THEORY IDENTIFIED e BASIC STEAM GENERATOR TUBE MATERIAL REM e REPAIR WILL NOT DEGRADE THE,0RIGINAL DESIGN MARG e CAUSATIVE CHEMICAL SPECIES DEPLETED BE e EVEN WITH LARGE NUMBERS OF TUBE FAIL I
BASIS. TUBE RUPTURE ACCIDEHT IS NOT A e OPERATIONAL EXPERIENCE SUGGESTS TIGH PATHS CLOSE'DURING OPERATION e METHODS EXIST TO CONFIRM CONTINUED STEAM GENERATORS AFTER REPAIRS ACCOMPLISHE e ECT e ABSOLUTE LEAKAGE AND LEAKAGE TREND MO eSECONDARYSAMPLING/RdDIATIONMONITORING e LIMITED PLANT THERMAL CYClf TESTING i
~
4/7/82 l
--m
- -