ML20129E994

From kanterella
Jump to navigation Jump to search
Rev 0 to Calculation C-1101-770-E420-018, TSI Derating of Cable Ampacity
ML20129E994
Person / Time
Site: Crane Constellation icon.png
Issue date: 10/10/1996
From: Bensel R
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20129E967 List:
References
C-1101-770-E420, C-1101-770-E420-018, C-1101-770-E420-18, NUDOCS 9610280224
Download: ML20129E994 (136)


Text

{{#Wiki_filter:G E8 NUCLEAR Calculation Sheet Subject C.lc No. Rev. No. Sheet No. TSI Derating of Cable Ampacity C-1101770-E420 018 0 I ofIk6 W on,n.i gw.sEmsc//lNM o.t M 7/99 R. vie o ey NQg o.t./#/@g Ra-s.su / R.< %, to/7/ art

c. 54 o'r/e'&

i sa/r/r x "0 V-llo l- ? ?o - off 1.0 Problem Statement Power cable ampacity at TMI-l is derated for use in cable trays in accordance with IPCEA P-46-426 (Ref. 3.6) as reported in the TMI-I Final Safety Analysis Report (FSAR), Ref. 3.1I section 8.2.2.11. Power cables whose tray is wrapped with Electrical Raceway Fire Barrier Systems (ERFBS) to meet 10CFR50 Appendix R (Ref. 3.12) requirements require an additional derating factor. At TMI-1, Thermal Science Inc. (TSI) Thermo-lag 330-1 one-hour rated ERFBS is used for cable trays (Ref. 3.13). The Gilbert /Conunonwealth Cable Sizing Criteria for Cycle 6 Routing (Ref. 3.14) used ERFBS derating factors provided by TSI. These factors have been revised by testing performed for nuclear plants at Texas Utilities (TU) whose ERFBS configurations bound configurations at TMI-l (Ref. 3.13). The problem is to calculate ampacity of power cables in trays protected by ERFBS, revising the ERFBS derating factor from 13% to 32% and compare the revised ampacity against the expected load currents. 1 t 0 9610280224 961022 PDR ADOCK 05000289 F PDR

%u \\ suctrAn Calculation Sheet 1 Subject Calc No. Rev. No. Sheet No. TSIDeratingof Cable Ampacity C-1101770-E420 018 pj 2 of 18, onginator Wh. (*e k^ W58l-Date Reviewed by Date / / 1ec G4s o/5Ec w to/4/qg ( JL h /g =f n/rfu VU ( 2.0 Summary of Results Table 1: Circuit Revised Ampacity and Comparison Against the Expected Load Current Ctrcutt IPCEA NEC . Degraded Load Current Load Revised Revised Gnd Load (A) Ampacity Ampacity (A) Current (A) (A) CG11* 16 24 4 AH-E-15A CG83 89 105 91.9 82.7 IC-P-1 A CH61 107 91.9 82.7 IC P-1B CL43' 89 75 66 AH-E 7A CM43* 89 72 63.5 AH-E-7B CQ43* 16 24 <2.3 N S-V-4 ED307A 29 7.5 DC Food to 1S Swgr. ED306A 76 3.75 DC Feed to 1T Swgr. ED3088 76 3 75 DC Feed to 1T Swgr. ED5033 69 3.75 DC Food to 1T Swgr. ED5033A 69 3.75 DC Feed to 1T Swgr. ED5034 69 3.75 DC Feed to 1T Swgr. ED5034A 69 3.75 DC Food to 1T Swgr. LP2' 103 133 106 103 2 DC-P-1 A LP5A 203 80 1C ESV MCC LPSB 203 80 1C ESV MCC LP6 140 161 143 141 NS-P-1 A LS5 147 146 144 N S-P-1 C LS6' 147 146 140 NS-P-1 B LS7 255 139 8 1B ESV MCC MA9* 123 66.1 SR-P-3A MB11* 168/181 <70/176 1H Transformer MB13* 168 56 1U Transformer MB9' 123 66.1 SR-P-3B MC12* 168/181 <50/178 IM Transformer MD11 280 69 4 1R Transformer ME1 254 235 18 Diesel Generator ME10* 123 48.7 R R-P-1 B ME11 168 70 1T Transformer ME2 254 235 1B Dessel Generator ME4 150 67 EF-P-2B MES 206 144 I S Transformer ME6' 123 47.4 DH-P-1 B ME7 123 91.1 MU-P-1 C ME9' 123 32 BS-P 1B Table I shows the summary of results of the calculation from Table 4 sorted by circuit number. Column I lists all power circuits that are located in cable tray that is wrapped with Thermo-lag. The circuits with asterisks (*) are non-Appendix R circuits. Column 2 lists the corresponding ampacities derated for tray and for Thermo-lag in amperes using IPCEA (Ref. 3.6) methodology. Column 3 shows the revised ampacity using NEC (Ref. 3.7) methodology from the end of section 7.0 for cables in tray 590 only. Column 4 lists the degraded grid load current to obtain a conservative maximum expected load current for marginal cases only. Column 5 lists the corresponding expected load currents in amperes and Column 6 identifies the corresponding loads. For MB11 and MCl2 the summer values are given first, winter values second.

G E8 NUCLEAR Calculati:n Shret Subject Calc No. Rev. No. Sheet No. TSI Derating of Cable Ampacity C-1101-770-E420-018, 0, 3 of p, N/7[!

  1. h O* D*WM Date Rewewed by Date onginator Rt. Ek to / fLC 1u W9f?C 6 f l.. d r N &

/ s /r/s / oa 1 The ampacity of power cables in trays protected by ERFBS is calculated, revising the ERFBS derating factor from 13% to 32% and the revised ampacity is compared against the expected load currents. l For 32 out of 35 cables the maximum expected load current does not exceed the revised ampacity. There are three (3) cables, CG83, LP2, and LP6, out of 35 for which the maximum expected load current may slightly exceed the revised ampacity when calculated using the IPCEA P-46-426 (Ref. 3.6) methodology. These circuits CG83, LP2, and LP6 are routed in tray 590 along with circuits CGI1 and CQ43. The NEC (Ref. 3.7) is used to provide a closer evaluation of these circuits which takes credit for the actual physical configuration. ] In conclusion, all 35 circuits in this calculation are acceptably sized with respect to ampacity even with increased deratine due to Thermo-lan fire barriers. No changes are required at this time except for documentation. Documentation will be reviewed including but not limited to the FSAR (Ref. 3.11), the FHAR (Ref. 3.1), arid ES-023 (Ref. 3.3) and any necessary changes will be incorporated. 1 Because this analysis shows that the revised ampacity of cables installed in trays protected by one-hour fire barriers is acceptable, it follows from assumption 4.2 that the revised ampacity of cables installed in conduits protected by one-hour fire barriers is acceptable as well. With the IPCEA (Ref. 3.6) methodology the worst case was LP2 where the maximum expected current exceeded the ampacity by 3%. From Table 2 the cables in conduits protected by one hour fire barriers have 14% to 15% higher ampacity than cables in trays protected by one hour fire barriers. Thus, it is inferred t. hat cables in conduits that have been sized using the IPCEA (Ref. 3.6) methodology are acceptably sized with respect to ampacity. i 9

G $8 NUCl. EAR Calculation Sheet Calc No. Rev. No. Sheet No. Subsect TSI Derating of Cable Ampacity C-1101-770-E420418 0, 4 of 18 Date f I ( M 8"*" D NN Date Revwwed by Onginator /*f9ffC C TL<-fr /C / W/n IU GkA:9 / V.C %, u 3.0 References 3.1 GPUN TMI-l Fire Hazards Analysis Report (FHAR), Rev.16. 3.1.1 Attachmer' 3-1 "TMI-l Appendix R Cables" 3.1.2 Fire Area Layout Drawing 1-FHA-001, " Legend and Notes", Rev. 3, dated 3/89. 3.1.3 Fire Area Layout Drawing 1-FHA-026, " Aux. and Fuel Handling Bldgs.-El. 281", Rev. I1, dated 3/94. 3.1.4 Fire Area Layout Drawing 1-FHA-027, " Aux. and Fuel Handling Bldgs.-El. 305", Rev. 6, dated 3/89. 3.1.5 Fire Area Layout Drawing 1-FHA-034, " Control Room Tower-El. 306", Rev. I1, dated 3/94. 3.1.6 Fire Area Layout Drawing 1-FHA-046, " Intake Screen & Pump House-El. 308", Rev. 8, dated 3/92. 3.2 GPUN Cable Routing Computer Program PC-CKS, Report CKSR1060u, dated 9/9/96 (App. 8.2). 3.3 GPUN Standard ES-023, " Selection and Sizing of Power, Lighting, and Control Cables", Rev. 2, dated 11/94. 3.4 GPUN Electrical Cable Information System, printed 9/9/96 (App. 8.3). 3.5 Kerite Cable Information (from design basis recovery effort) circa 1967 (App. 8.4). 3.6 IPCEA P-46-426, " Power Cable Ampacities; Volume I-Copper Conductors" Copyrighted 1962 w/ cumulative errata of 9/1/66. 3.7 National Electric Code Handbook,1996, Seventh Edition, published by National Fire Protection Association. Omega Point Labs Test Report, " Electrical Test to Determine the Ampacity Derating of a Protective 3.8 Envelope for Class IE Electrical Circuits ", Project No. 12340-94583,95165-95168,95246, dated 3/13/96. 3.9 Load Current

References:

3.9.1 TDR No. 836, Rev. 6, Loading for Emergency Diesels 3.9.2 TDR No. 995, Rev. 3, Voltage Drop Study on Degraded Grid 3.9.3 Calc. No. C-1101-734-5350-004, Rev.1, TMI-l DC System Calculation Final Report 3.9.4 Memo No. MSS-86-079, Stall Operation of AH-E-7A/B Fans Evaluation of Test Results (App. 8.5) 3.9.5 Lotus Notes, Tom Akos to Dick Bensel dated 9/9/96, TSI Cable Current Determination (App. 8.6) l I 3.9.6 Lotus Notes, Tom Akos to Dick Bensel dated 9/10/96, DC-P-1 A Full Load Current (App. 8.'/) 3.9.7 GPUN Vendor Manual VM-TM-0718, Rev. 4, dated 1/24/94, Westinghouse AC Motors and Westinghouse (Source 00919) Dwg. 267C795, Rev. 2. 3.9.8 GPUN Job Order 99494,1420-LTQ-7 data sheet, date.d 9/15/95 (App. 8.8) 3.10 GPUN Standard ES-010 "TMI-l Environmental Parameters", Rev.1, dated 11/90 1

~ El NUCLEAR C:lCulstian Sh:ct Subject cale No. TSI Derating of Cable Ampaci y Rev. No. Sheet No. t C-1101-770-E420-018 onginator f(C ,0, 5 of(8 12 r-- @h #** A EM Date Reviewed by Nd Date/ O I O, / ttc t.. WWft' C. SA.a b // f A / vf / ah/u f 3.11 GPUN TMI-l Final Safety Analysis Report, Update 13, dated 4/96 l 3.12 USNRC 10 CFR 50 Appendix R 3.13 GPUN Memo E540-96-002, Rev. 2, dated 10/4/96, " Comparison of TMI Thermo-la Test Configurations With TU and TVA Configurations" (App. 8.10). 3.14 Gilbert / Commonwealth Design Input DI-217-012, "600 Volt Cable Sizing Criteria Routing", Rev.1, dated 12/19/86. 3.15 GAI Dwg. E-215-052, Rev 60, Electrical Conduit and Cable Layout Auxiliary Buildin 3.16 GAI Dwg. E-215-054, Rev 57, Electrical Conduit and Cable Layout Auxdiary Buildin 3.17 GAI Bill of Material EK, dated 10/71 and Met-Ed Purchase Order 97099 and l$erite O 3.18 GAI Pull / Term sheets for power cables in this calculation that have been changed' construction (App. 8. I1): 3.18.1 Pull / Term sheet I CH 61 date pulled 12/19/86 (Appendix R modifications) 3.18.2 Pull / Term sheet 1 ED 307A date pulled 1/16/87 (Appendix R modifications) 3.19 Packing Slips for GPUN Purchase Orders for cables under 3.18 (App. 8.12): 3.19.1 BICC Brand-Rex Order 87431 packing slip, dated 6/13/86 for GPUN Order TP-03838 dated 9/12/96) 3.19.2 Rockbestos Order 64213 packing slip, dated 12/15/86 for GPUN Order 044730 (w dated 11/90) 3.20 IEEE Transaction Paper 70 TP 557 PWR, "Ampacities for Cables in Randomly Filled Stolpe, dated 1970 (App. 8.9)

G E8 NUCLEAR Calculation Sheet Subloct Calc No. Rev. No. Sheet No. TSI Derating of Cable Ampacity C-1101-770-E420-018 0, 6 of 1,8 bh#"bbM Date Reviewed by Date T[ onginator TL&6tko /Rt % (b/9/16 LSGb/rf fo/rfec / Of ( 4.0 Assumptions 4.1 Derating of control, control power, and instrumentation cables is not to be considered because neither type of cable carries any significant load near its ampacity rating. These words are adapted from the FSAR (Ref. 3.11) section 8.2.2.11 b. fifth sentence. However, in cases where power cables are routed with control power cables, then the control power cables are considered because they can affect each others' ampacity. 4.2 At TMI-l there are no 480 VAC or 4160 VAC power circuits that are protected by three-hour rated fire barriers as per the FHAR (Ref. 3.1). For 4160 VAC power circuits, the one-hour rated fire barriers are ins:alled over cable trays or over cables that are in cable trays. For 480 VAC power circuits, fire bar:iers are installed over cable trays or over conduit Testing performed for Texas Utilities (TU) showed one-hour fire barrier derating factors of 31.6% for cable trays and 10.7% maximum'for conduit (Ref. 3.8). The one-hour fire barrier configuration at TU plants bounds the one-hour fire barrier configuration at TMI-l (Ref. 3.13). Conduit is not included in this calculation because cable tray derating associated with the addition of Thermo-lag is considered the bounding case. Table 2 shows the comparison between cable trays and conduit. Table 2: Comparison of Tray and Conduit Ampacities With One-hour Thermo-lag Derating AWG "Y ^mPaa4 w/o by Ampany w/ Conha Ampety w/o Con &d Ampmty w/ nermo-lag ( A) hermo lag ( A) hermo-lag (A) hermo-lag ( A)

  1. 8 41 28 36 32 350 MCM 285 194 253 225 Values in columns two and four of Table 2 are taken from Ref. 3.14 which is based on Ref. 3.6 for a 90 C conductor rating operating in a 40 C ambient when installed with a total of 7 to 24 current canying conductors inclusive. Columns 3 and 5 are calculated by multiplying the respective values in columns 2 and 4 by 0.680 and 0.890 representing derating factors of 32.0% and 11.0% respectively. When comparing columns 3 and 5 it can be seen that the ampacity for cables routed in tray protected by a one-hour fire barrier is significantly less than that for cables in conduit. Thus, the analysis of ampacity of cables installed in trays protected by one-hour fire barriers is bounding when compared to that for cables in conduit.

4.3 All original power cables are manufactured by Kerite (Ref. 3.17) except as noted in Table 3. This is reasonable since our research found no other vendor, except as noted, and the free air ampacity values given by Kerite are comparable to those given by Ref. 3.6 or Ref. 3.7. 4.4 Unless otherwise noted all cables are assumed to be installed without maintained spacing. This configuration is more conservative than with maintained spacing or installation in accordance with NEC (Ref. 3.7) Article 318-9. 4.5 For cables MB11 and MCl2 the ambient temperature in the winter is less than 90 F (32.2 C). The winter ambient is correlated with the heavy heating loads in the winter. The ambient ofless than 90 F

(Bou iVUCLEAR Calculation Sheet Subject Calc No. Rev. No. Sheet No. TSI Derating of Cable Ampacity C-1101-770-E420-018 0 7 of 18 Date Reviewed by (( Date/O /* f f Onginator kbh E#P b IW e l2.f-MelfLC SCA.a /bf4N

c. S /, s6 f

-f fanh / i ev i ( 90 F is reasonable since the worst case aging temperature for the Auxiliary Building given by ES-010 (Ref. 3.10)is 90 F. 4 e

Qou NUCLEAR Calculation Sheet Subject Calc No. Rev. No. Sheet No. TSI Derating Of Cable Ampacity C-1101-770-E420-0,18, , f 0 8 Of,18, onginator 4., Nb.N Reviewed by k Date /D 7 [ DNe M u c. rM A'rd x-w/ ec s xw y g i v 5.0 Design Innut There are no 480 VAC or 4160 VAC power circuits protected by three-hour rated fire barriers (Ref. 3.1) at TMI-1. That leaves only one-hour rated fire barriers at TMI-l for 480 VAC or 4160 VAC power circuits. Table 3 gives the identification number for the one-hour fire barriers that are protecting cable trays. Table 3: Basic Data of Cables in Trays Protected by One Hour Rated TSI Fire Wrap Fire Bamer Tray (s) Location Max. Normal Circuit Manuf. Rated Volt. Cab 6e o.D. Ins. Type .:acket Temp. (F) (volts) (in.) j 1CCD-FB02 551,553 CB 95 LP5A Kente 1000 1-4-350 3.31 HT (EPR) FR in IA I CCD-FB02 551,553 CB 95 LP58 .Kente 1000 1-4 350 3 31 HT (EPR) FR in IA I CCD-F802 551.553 CB 95 LS6* Konte 1000 " 3-4/0 2.16 HT (EPR) FR in IA 1 AXD-FB02 590 AB 104 CG11' Konte 1000 1-3-10 1 08 HT (EPR) FR in IA 1 AXC-FB01 590 AB 104 CG83 Konte 1000 1-31/0 1 81 HT (EPR) FR in (A 1 AXD-FB02 590 AB 104 CQ43* Konte 1000 1-3-10 1.08 HT (EPR) FR in IA 1 AXD-FB02 590 AB 104 LP2* Konte 1000 1-3-2/0 1 91 HT (EPR) FRinIA 1 AXD-FB02 590. T-54 28 AB 104 LP6 Konte 1000 1-3-4/0 2.16 HT (EPR) F R in IA I SHD-FB06 732,733 ISPH 104 MD11 Konte 5000 1-3-350 3 31 HT (EPR) NS in IA l I SHD-FB05 735.736.751.756 ISPH 104 ME11 Kante 5000 1-3-350 3 31 HT (EPR) NS in IA I CCD-FB09 745 CB 95 ME1 Kante 5000 1-3-500 3 61 HT (EPR) NS in IA 1 CCD-FB09 745 CB 95 ME2 Konte 5000 1-3-500 3 61 HT (EPR) NS in IA 1CCD-FB10 745 CB 95 ME4 Konte 5000 1-3-4/0 2.79 HT (EPR) NS in IA 1CCD-FB11 745 CB 95 ME5 Konte 5000 1-3-350 3 31 HT (EPR) NS in IA 1 AXC-FB04 751,756 AB 104 MA9* Konte 5000 1-3-4/0 2.79 HT (EPR) NS in lA 1 AXC.FB04 751,756 AB 104 MB9* Kante 5000 1-3-4/0 2.79 HT (EPR) NS in IA 1 AXC-FB04 751 AB 104 MB11' Konte 5000 1-3-350 3 31 HT (EPR) NS in IA j 1 AXC-FB04 751.756 AB 104 MB13' Kante 5000 1-3-350 3 31 HT (EPR) NS in IA 1 AXC-FB04 751 AB 104 MC12' Konte 5000 1-3-350 3 31 HT (EPR) NS in IA j 1 AXC-FB04 751 AB 104 ME6' Konte 5000 1-3-4/0 2.79 HT (EPR) NS in IA 1 AXC-FB04 751 AB 104 ME7 Konte 5000 13-4/0 2.79 HT (EPR) NS in IA 1 AXC-FB04 751 AS 104 ME9' Kerite 5000 1-3-4/0 2.79 HT (EPR) NS in IA 1 AXC-FB04 751,756 AB 104 ME10' Kerite 5000 1-3-4/0 2.79 HT (EPR) NS in IA ICCD-FB01 1020 CB 95 ED307A Brend-Rex 600 1-2-8 0 805 XLPE CSPE in IA I CCD-F B01 1019 1020 CB 95 CH61 Rockbestos 600 1-3-2/0 1 54 XLPE CSPE in tA 1 CCD-F B01 1019 CB 95 ED5033 Konte 1000 1 2-2 1.50 HT (EPR) FR in lA 1CCD-F B01 1019.1020 CB 95 ED5033A Konte 1000 1-2-2 1 50 HT (EPR) FR in IA I CCD-F B01 1019 CB 95 ED5034 Kente 1000 1-2-2 1 50 HT (EPR) FR in IA 1CCD FB01 1019,1020 CB 95 ED5034A Kente 1000 1-2-2 1.50 HT (EPR) FR in IA 1 CCD-F B01 1019,1020 CB 95 LS7 Kente 1000 1-4-500 3 61 HT (EPR) FRinIA 1CCD-F B01 1019.1020. T-54-31 CB 95 LS5 Kente 1000 1-3-4/0 2.16 HT (EPR) FRinIA 1 AXD-FB01 T-54-31 AB 104 CL43* Konte 1000 1-3-1/0 1 81 HT (EPR) FR in IA 1 AXD-FB01 T-54-31 AB 104 CM43' Konte 1000 1-31/0 1 81 HT (EPR) FR in IA 1 FHC4805 T-52-54 FH 104 ED308A Konte 1000 1-2-2 1.50 HT (EPR) F R in IA 1 FHC-FB05 T-52-54 FH 104 ED3088 Konte 1000 1-2-2 1.50 HT (EPR) FR in IA 5.1 Column I shows the fire barrier identification number from FHAR Att. 3-1 (Ref. 3.1.1) that is protecting 4160 VAC and 480 VAC power circuits in tray (Assumption 4.1). Control power circuits that are routed with the 480~ VAC circuits are included (Assumption 4.1). When more than one fire barrier is protecting a circuit, the fire barrier that is in the highest ambient temperature is given. 5.2 Column 2 shows the tray identificatior. numbers with power cables that are protected by fire barriers in Column 1. The FHAR Att. 3-1 (Ref. ?.l.1) is used to identify the tray that is wrapped with Thermo-

(bu Calculaticn Shrt nruct.EAn Calc No. Rev. No. SheetNo. Subject C-1101-770-E420-018 TSI Derating of Cable Ampacity 0, 9 of 18 oste Reviewed by [ Date[C O h EM (Jv. 8M u ewm. whm e. u.-+ uu m v - ( lag. Where FHAR Att. 3-1 (Ref. 3.1.1) does not identify a tray number, the FHAR fire area dra (Ref. 3.1.2 through 6) are used to get the tray numbers. Column 3 shows the location of the TSI one-hour fire barrier per Ref 3.1.1 through 6. CB= Control 5.3 Bldg., AB= Auxiliary Bldg., ISPH= Intake Screen and Pump House, and FH= Fuel Handling B Where the tray has more than one fire barrier located in more than one building, the building with maximum ambient temperature is listed in Column 3. Column 4 shows the maximum design ambient temperature in F for the location of the TSI one-hour 5.4 fire barrier. These values are obtained from the FSAR (Ref 3.11) Table 9.8-1 whic HVAC design temperatures for different buildings in the plant. Since the control building maxim HVAC design temperature is less than 104 F, or 40 C, the ampacity given at 40 C is increase account for a 95 F, or 35 C, ambient. Column 5 shows the circuit number of the cables in the trays of column 1. Appendix R circuits ar 5.5 identified from Ref 3.1.1. Circuits with an asterisk (*) are non-Appendix R circuits. TMI-l Elec Cable Information System (Ref. 3.4) and TMI-I PC-CKS (Ref. 3.2) are used to identify the non-Appendix R circuits which are not listed in the FHAR Att. 3-1 (Ref. 3.1.1) but are route which is wrapped. This approach covers all trays that are not " field run" trays. Ref. 3.15 and used to identify cables in " field run" trays. Note that circuit numbers beginning with "M" are operating at 4160 VAC nominal, "ED" are o at 125 VDC nominal, and the remaining are operating at 480 VAC nominal.125 VDC control cables would not be considered if they were routed by themselves (Assumption 4.1). However they are run with 480 VAC cables they are considered in this calculation (Assumption 4 Column 6 shows the manufacturer of the cables in Column 5 (Assumption 4.3 and Ref. 3.17) F 5.6 cables that are manufactured by those other than Kerite (cables that were modified since ori construction) the Purchase Order (PO) (Ref. 3.19) was retrieved from the pull / term (Re and the information was taken directly from the packing list from the PO or obtained from Column 7 shows the cable rated voltage in volts (Ref. 3.5 for Kerite, Ref. 3.18 and 3.19 for 5.7 manufacturers other than Kerite). Column 8 shows the cable configuration. For example "l-3-4/0" is one cable with 3 cond 5.8 at 4/0. Ref. 3.4 gives the cable configuration. Column 9 shows the cable-outside diameter in inches (Ref. 3.5 for Kerite, Ref. 3.18 and 3 5.9 manufacturers other than Kerite). The outside diameter is given for the galvanized stee conductor cables are treated the same as the 3-conductor cables with fourth conductor is the neutral and is neglected since it carries comparatively much s the other conductors in the cable (Ref. 3.7 Article ~ 310-15 Note 10 of Notes to Ampac

) G EE Cricul;tisn Sh;;t NUCLEAR Calc No. Rev. No. Sheet No. Subject C-1101-770-E4204)18 ,0, 10 of 18 TSI Derating of Cable Ampacity Date / O i8 fi %M"/L.L. $h5El. Date Reviewed by Le E t t o /f24 t/1, fo/981

f. J7 m & /f f te/Wt/

\\ c vo t 2000 Volts). Also, from Ref. 3.20, page 4 the ampacity of a cable is directly proportional to its overa diameter. Thus, using the smaller diameter is conservative. Column 10 shows the cable insulation type (Ref. 3.5 for Kerite, Ref. 3.18 and Ref. 3.19 for 5.10 manufacturers other than Kerite). Column 11 shows the cable jacket material (Ref. 3.5 for Kerite, Ref. 3.18 and Ref. 3.19 for 5.11 manufacturers other than Kerite). 4 i l l l e 1

G U Calculation Sheet niuctres Rev No. Sheet No. Calc No. 0 1I of I8 Subject C-1101770,-E420 018, TSI Derating of Cable Ampacity Date/O /C7 p g hfO 8 (/[ / s ' 8M Dre Re ongnator h ae no / M%. l /9hl (..St..r// f we f 97 i ( 6.0 Overall Anoroach and Methodology The methodology used is that given by Ref. 3.14 which is based on IPCEA P-46-42 Ref. 3.14 are used in this calculation since the TMI-l licensing basis (Ref 3.11) us i as for 90 *C conductor temperature in a 40 C ambient given by the manufactur ofIPCEA P-46-426 (Ref. 3.6) free air ampacity values. Where the ambient tempe ampacity free air ampacity is first uprated using correction factors from Ref. 3.6. The ampa accordance with Ref 3.6 for the number of current-carrying conductors in the tray. derated for Thermo-lag materialin accordance with derating factors from Ref. 3.8. compared against the expected load currents. Where revised ampacity is less than the expected load current using the IPCEA P ; j methodology, the NEC (Ref 3.7) methodology is applied to allow more margin b factor for an installation in tray. The NEC (Ref. 3.7) methodology allows more ma physical configuration is taken into account. In IPC For cables installed in accordance with NEC (Ref. 3.7) Article 318-9, there is l tray fillis controlled. Thus, the NEC (Ref 3.7) revis NEC (Ref. 3.7) the tray becomes a special case and is listed in standard any future changes to the special case tray. 9 9

Geu suctrAn Calculation Sheet Subject Calc No. Rev. No. Sheet No. TSI Derating Of Cable Ampacity C-1101-770-E420-018 0 12 Of !). b @M onginator Og/Lc4,w Reviewed by d Date[ /D f Date/~r/WC. ff., n l' W& Arfr/rr i (* 9.c Etq d uv ' i r 7.0 Calculation The basic data in Table 3 is used to perform calculations in Table 4. Each row in Table 3 corresponds to the row in Table 4 with the same circuit number. Table 4: Ampacity Calculation for Cables in Table 3 1 Tray (s) Circuit Cable Free Air <40 C Uprate Tray Derate TSI Derate Load Current (A) Load Ampacity (A) (A) (A) (A) 551.553 LPSA 1-4-350 407 427 299 203 80 (ref. 3 91) 1C ESV MCC 551.553 LP5B 1-4-350 407 427 299 203 80 (ref. 3 91) 1C ESV MCC 551,553 LS6' 1-3-4/0 295 310 217 147 140 (ref. 3 9 2) NS-P 1B . [146 (ref. 3 9 5)1 590 CG11* 1-3-10 34 34 24 16 4 (ref. 3 9.1) AH-E-15A 590 CG83 13-1/0 188 188 132 89 82.7 (ref. 3 9.1) IC-P-1 A [919 (ref. 3 91)] 590 CQ43* 1-3-10 34 34 24 16 <2.3 (ref. 3 9 8) N S-V-4 590 LP2* 1-3-2/0 21 7 217 152 103 103 2 (ref. 3 91) DC-P-1 A J [106 (ref 3 9 6)) i 590. T 54-28 LP6 1-3-4/0 295 295 207 140 141 (ref. 3.9.2) NS-P 1 A [143 (ref 3 9 5)1 732.733 MD11 1-3-350 412 412 412 280 69 4 (ref 3 91) 1R Transformer 735.736. 751.756 ME11 1-3-350 412 412 247 168 70 (ref. 3 91) 1T Transformer 745 ME1 1-3-500 508 533 373 254 235 (ref 3 9.1) 1 B Diesel Generator 745 ME2 1-3-500 508 533 373 254 235 (ref. 3 91) 18 Diesel Generator 745 ME4 1-3-4/0 301 316 221 150 67 (ref. 3 91) EF-P-28 745 MES 1 3-350 412 433 303 206 144 (ref. 3.91) is Transformer 751,756 MA9" 1-3-4/0 301 301 181 123 661 (ref. 3 9 7) SR-P-3A 751,756 MB9* 1-3-4/0 301 301 181 123 66.1 (ref. 3 9 7) SR P-3B 751 MB11* 1-3-350 412 412 247 168/181 <70/176 (App 81) 1H Transformer 751.756 MB13* 1-3-350 412 412 247 168 56 (App. 81) 1U Transformer 751 MC12" 1 3-350 412 412 247 168/181 <50/178(App 81) 1M Transformer 751 ME6' 134/0 301 301 181 123 47 4 (ref 3 91) DH-P-1 B 751 ME7 1-3-4/0 301 301 181 123 91.1 (ref. 3 91) MU-P-1 C 751 ME9" 1-3-40 301 301 181 123 32 (ref. 3 91) BS-P 1B 751,756 M E10" 1-3-4/0 301 301 181 123 48 7 (ref. 3 91) R R-P-1 B 1020 ED307A 1-2-8 59 62 43 29 7 5 (ref 3 9 3) DC Feed to 1S Swgr 1019.1020 CH61 ~ 1-3-2/0 215 226 158 107 82.7 (ref. 3 9.1) IC-P 10 [919 (ref 3 91)] 1019 ED5033 1-2-2 139 146 102 69 3 75 (ref. 3 9 3) DC Feed to 1T Swgr. 1019.1020 ED5033A 1-2-2 139 146 102 69 3 75 (ref 3 9 3) DC Feed to 1T Swgr. 1019 ED5034 1-2-2 139 146 102 69 3 75 (ref 3 9 3) DC Feed to 1T Swgr 1019 1020 ED5034A 1-2-2 139 146 102 69 3 75 (ref 3 9 3) DC Feedto 1T Swgr. 1019.1020 LS7 1-4-500 510 536 375 255 139 8 (ref 3 91) 1B ESV MCC 1019.1020, T 54-31 LS5 1-34/0 295 310 217 147 144 (ref. 3 9.2) N S-P-1 C [146 (ref 3 9 5)1 T-54-31 CL43* 1-3-1/0 188 188 132 89 66 (ref. 3 9 4) AH-E-7A [75 (ref 3 9 4)1 T-54-31 CM43* 1-3-1/0 188 188 132 89 63.5 (ref. 3 9 4) AH-E-7B [72 (ref 3 9 4)] T-52-54 ED308A 1 2-2 139 139 111 76 3 75 (ref 3 9 3) OC Feed to 1T Swgr T-52-54 ED308B 1 2-2 139 139 111 76 3 75 (ref 3 9 31 1OC Feed to 1T Swgr 7.1 Column I shows the trays with power cables that are protected by TSI one hour fire wrap from Table 3.

G E8 NUCLEAR CCiculati:;n Shret Subj.ct Cale No. Rev. No. Sh.et No. TSI Derating of Cable Ampacity C 1101-770-E420-018 0 13 of,18 ,g EC}y A h% R.vi oey M o.t.y/yp ( M b'y'/d4& Wrre / (, on,n o.t. W1C f2 c G m 7 L c w to/ i ou i t 7.2 Column 2 shows the circuit number of the cables in the trays from Table 3. Circuits with an asterisk (*) are non-Appendix R circuits. l 7.3 Column 3 shows the cable configuration from Table 3 (i.e.1-3-4/0 is one cable with 3 conductors sized at 4/0). 7.4 Column 4 shows the free air ampacity in amperes for a 90 C rated conductor temperature operating in a 40 C environment. Ref. 3.5 is the source for Kerite. For cables manufactured by those other than Kerite (see Table 3 for manufacturers other than Kerite), the table on page 309 of Ref. 3.6 for i KV 90 C rated conductor temperature in air at 40 C is used for Column 4. 7.5 Column 5 shows the ampacity in amperes corrected for ambient temperatures less than 40 C given in Table 3. Ref. 3.6 Equation SA is used to correct for ambient temperatures other than 40 C. l' = Id(Tc'-Ta'-D:ltaTd')/(Tc-Ta - DeltaTd) in Amperes where: I'=ampacity at new ambient temperature Ta' and new conductor temperature Tc'in Amperes I=ampacity at old ambient temperature Ta and old conductor temperature Tc in Amperes Tc'=new conductor temperature in C Tc=old conductor temperature in C Ta'=new ambient temperature in C Ta=old ambient temperature in C DeltaTd'=new dielectric loss temperature rise in *C DeltaTd=old dielectric loss temperature rise in C From page 309 of Ref. 3.6, DeltaTd' = DeltaTd = 0 C for 1 KV and lower cables and <0 30 C (negligible) for i KV to 5 KV cables. Also, Tc' = Tc = 90 C and Ta = 40 C. The maximum design ambient temperatures for the control building from Table 3 is 95 F (35.0 C). Plugging in the values for the Control Building: f = IJ(90-35.0-0)/(90-40-0) = I(1.05) in Amperes Thus the free air ampacity values in Column 4 for the Control Building are multiplied by the above correction factors for ambient temperatures less than 40 *C to obtain the values in Column 5. For circuits MBI1 and MCl2 the ampacity are calculated for summer and winter operation since these cables carry a significant heating load. The ambient temperature given in Table 3 is for summer. During winter the ambient temperature in the Auxiliary Building is not expected to be greater than 90

  • F or 32.2 C (Assumption 4.5). Plugging in the values for MBI1 and MCl2:

f = Id(90-32.2-0)/(90-40-0) = I(1.08) in Amperes

G II NUCLEAR Calculation Sheet Subject Cale No. Rev. No. Sheet No. TSI Derating of Cable Ampacity C 1101-770-E420-018 0 14 of 18 onginator h0h bd* h. b Date Reviewed by ,k Date/ O /0 ff $2 c EM:o /(2C% /*Yi C.fL.C//*Z/ 4 n/r/ r a vu <c i 7.6 Column 6 shows the ampacity derated according to the number of conductors in a tray in amperes. The derating factors are taken from Ref. 3.6 Page V Table VIII Factors for Cables Without Maintained Spacing as follows in Table 5. Table 5: Current Carrving Conductors Tray Number of Current Factor Carrying Conductors 551,553 9 0.70 590 15 0.70 732,733 3 1.00 745 12 0.70 751 30 0.60 756 15 0.70 1019 17 0.70 1020 15 0.70 T-54-31 9 0.70 T-52-54 4 0.80 Trays 735 and 736 are not listed since only one cable passes through those trays and the same cable passes through 751 and 756. Likewise, tray T-54-28 is not listed since only one cable passes though that tray and the same cable passes through tray 590. The tray containing the higher number of cables is used to set the ampacity of cables passing through. 7.7 Column 7 shows the ampacity derated to account for TSI one-hour fire wrap. Since configurations at TU bound Thermo-lag configurations at TMI-1, the testing performed for these utilities is used for establish a conservative derating for Thermo-lag. Ref. 3.8 provides a value of 31.6%. We will use 32% l derating or a factor of 0.68 for conservatism. For MBI1 and MCl2 the revised ampacity in the winter is 168(1.08) = 181 A using the 1.08 multiplier calculated in 7.5. 7.8 Column 8 shows the maximum expected load current value in amperes for each protected circuit with the reference in parentheses. While degraded grid low voltage is not expected, the current at degraded grid is given in brackets [ ] and is taken as the conservative expected load current where the ampacity is less than 125% of the full load current for motor loads. Circuits LP5A and LP5B are parallel circuits to the IC ES Valves MCC. The load current (160 amps) is evenly split between the circuits (80 amps per circuit). Circuits LS6, LP6, and LS5, for pumps NS-P-1 A, IB, and IC respectively are loaded to near the derated ampacity with the 230 KV grid voltage at 235 KV. Two out of three of the pumps are normally in operation. The grid voltage is monitored and verified to be greater than 232 KV 99% of the time. At 232 KV the NS-P-1 A, IB, and IC load currents are 143 amps,146 amps, and 146 amps,

G U NUCLEAR CalculatlOn ShGet \\ Calc No. Rev. No. Sheet No. Subject TSI Derating of Cable Ampacity C-1101-770-E420-018 0 15 of 1,8 Date Reviewed by h S0h " bMMEL i Date /0 r onginator llc Etso / 9% h&{

d. f/d/ k f*/r/t c I

00 ( L respectively (Ref 3.9.5). This evaluation shows that at the low end of the normal grid voltage operating range the motor load currents are less than the ampacity for the associated cable for NS-P-l l IB and NS-P-lC. For NS-P-1 A the degraded grid load current may exceed the derated ampacity for the associated cable by approximately 1% of the derated ampacity. A closer evaluation of this cable's revised ampacity in accordance with the NEC (Ref 3.7) is given at the end of this section. J Circuits CG83 and CH61 are for pumps IC-P-1 A and IB, during normal operation one of two pumps is in operation. The degraded grid currents are shown in brackets and come from Ref. 3.9.1. For IC-P-1 A the degraded grid current may exceed the derated ampacity by about 2% of the derated ampacity. A closer evaluation of this cable's revised ampacity in accordance with the NEC (Ref. 3.7) is given at the end of this section. Circuit CQ43 ampacity is generally neglected per FSAR (Ref 3.11) since operation of motor 9perated valves is infrequent when compared to operation of continuous duty motors. However, for conservatism it is included in this calculation. Circuit LP2 for DC-P-I A is loaded to the derated ampacity of the cable. At 232 KV the load current for this pump is 106 amps (ref. 3.9.6). DC-P-1 A is shutdown during normal plant operation and mns for periodic testing and when the plant is shutdown. This evaluation shows that at the low end of the normal grid voltage operating range the degraded grid load current the ampacity for the associated cable may exceed the derated ampacity by about 3% of the derated ampacity. A closer evaluation of this cable's revised ampacity in accordance with the NEC (Ref 3.7)is given at the end of this section. Circuits MEl and ME2 are parallel circuits for the IB Diesel Generator. The diesel generator is loaded for periodic testing and LOOP events only. The diesel output of 470 amps is split between the circui (235 amps per circuit). Circuit ME4 for EF-P-2B is de-energized during normal plant operation. EF-P-2B runs only for periodic testing. Circuits MA9 and MB9 for SR-P-3 A & B Post Cooling Tower pumps are normally de-energized. During the past year the Post Cooling Tower was in service 22% of the time. When the tower is in operation one of the two pumps is mnning. Ref. 3.9.7 references Westinghouse drawing 267C795 which lists 52.9 A for fullload current. Multiplying the fullload current by 1.25 to account for service factor we get 66.1 A. Circuit MBII power feeder to the IH Bus and circuit MCl2 pow:r feeder to the IM Bus are normally lightly loaded, except during cold weather when they can be loaded to beyond the cable derated ampacity at 40 C. The heavy loading is due to heating load during cold weather when the ambien temperature is less than 90 F or 32.2 C. During periods of heavy loading the derated ampacity at 32.2 C is higher than the expected load current. Aux 1 Fuel Handling Bldg. Exhaust Fans, AH-E-14A-D are powered from the IH & IM Bus. Two fans are normally in service, either the 14A & C fans

G U NUCLEAR Calculati:n Shret Calc No. Rev. No. Sheet No. Subject C-Il01-770 E420-018 0 16 of 18 TSI Derating of Cable Ampacity N b Date Reviewed by Date JD g' onginator %h F8/ Lee m / rte w PArlis c zm/,

uAA, i

GV ( powered from the IH Bus, or the 14B & D fans powered from the IM Bus. The calculated load values assume (2) fans (49 amps) are operating from each Bus. For MBI1, the load of <70 amps is based on a 4 KV feeder breaker ammeter reading obtained on 9/03/96 with the plant at 100% power. The IH Bus and IG Bus are supplied through a shared breaker therefore the measured load is the total load for l'oth buses. Load of 176 amps is a calculated value based on cold weather space heating load (see Appendix 8.1). For MBl3, the load of <10 amps is based on a 4 KV feeder Breder ammeter reading obtained on 9/03/96 with the plant at 100% power. Load of 56 amps is a cah:ated value based on operation of the Post Cooling Tower (see Appendix 8.1). For MCl2, the load of <50 amps is based on a 4 KV feeder breaker ammeter reading obtained on 9/03/96 with the plant at 100% power. The IM and IL Buses are supplied through a shared breaker therefore the measured load is the totallor.d for both buses. Load of 178 amps is a calculated value based on cold weather space heating load (see Appendix 8.1). Circuit ME6 for DH-P-1B is normally de-energized, DH-P-1B is a standby pump for Low Pressure Injection. It operates for periodic testing and when the plant is shutdown. Circuit ME7 for MU-P-lC is normally de-energized. MU-P-lC is a standby pump for High Pressure Injection and is normally operated for periodic testing only. Circuit ME9 for BS-P-1B is normally de-energized. BS-P-1B is a standby pump for Reacto Spray and is operated periodically for testing. Circuit MEIO for RR-P-1B is normally de-energized. RR-P-1B is a standby pump for Reactor Building Emergency cooling and is operated periodically for testing. Circuits ED5033/ED5033 A/ED308A are paralleled with circuits ED3034/ED3034A/ED308B for the 125 VDC control power feeder to the IT 480V Bus. The load current of 7.5 amps is split (3.75 amp between the paralleled cables. Circuit ED307A has a similar load but it is not split. Circuits CL43 and CM43 degraded grid load currents do not exceed the derated ampacity of 89 A a are therefore acceptable. Column 9 shows the tag number of the load (Ref. 3.1 and 3.4) corresponding to the current in C 7.9 S.

GPU caiculation Sheet NUCLEAR Rev. No. Sheet No. Calc No. TSI Derating of Cable Ampacity C-1101-770-E420-0,18 0 17 of,18 Subject DatfD /0 [' &sk l C h 6 A "' W Date Reviewed by Mnr onginator acetWRev nhAs

c. L W I i 0/

Thus, for 32 out of 35 cables the maximum expected load current does not exceed the revised ampacit There are three cables, CG83, LP2, and LP6, for which the maximum expected load current may slightly exceed the revised ampacity when using the methodology given in IPCEA P-46-426 (Ref. 3.6). These th circuits are routed in tray 590 along with CGI1 and CQ43. The NEC (Ref. 3.7)is used to provide a closer evaluation which takes credit for the physical configuration. From a walkdown on 10/3/95, tray 590 is a 12" wide and 6" deep tray. The cables are arranged in one la fastened to the tray with tie-wraps in accordance with the NEC (Ref. 3.7) Article 318-9(a)(3). The sum cross sectional areas of cables smaller than 4/0 using diameters from Table 3 is: A = nr = (3.14)(l.08/2)2 = (3.14)(0.540)2 = (3.14)(0.292) = 0.917 in: 2 CG11: A = nr = (3.14)(l.81/2)2 = (3.14)(0.905)2 = (3.14)(0.819) = 2.57 in2 2 CG83: A = nr = (3.14)(l.08/2)2 = (3.14)(0.540)2 = (3.14)(0.292) = 0.917 in 2 2 CQ43: A = nr = (3.14)(l.91/2)2 = (3.14)(0.955)2 = (3.14)(0.912) = 2.86 in 2 2 LP2: IA = Sum of cross sectional areas for cables smaller than 4/0 = 7.26 in 2 Table 318-9 Column 2 of the NEC (Ref. 3.7), for a 12 inch tray, requires that IA $ 14 - (1.2Sd), whe the sum of all diameters, in inches, of all Nos. 4/0 and larger multiconductor cables in the same the smaller cables. For tray 590 there is only one cable that is 4/0 or larger and thus: 14 - (1.2Sd) = 14 - [(1.2)(2.16)] = 14 - 2.6 = 11 in 2 Since 7.26 is less than or equal to 11, the cables in tray 590 are installed in accordance with the Article 318-9. Therefore, in accordance with Article 318-11(a) we can use table 310-16 to account for ampacity derating due to installation in tray. The column for 90 C with correction in accord same Table 310-16 for ambient of 40 C by multiplying 0.910 gives: AWG 10: 40(0.910) = 36 A AWG 1/0: 170(0.910) = 155 A AWG 2/0: 195(0.910) = 177 A AWG 4/0: 260(0.910) = 237 A Taking the additional derating due to Thermo-Lag, the revised ampacity for circuits in tray 5 methodology in the NEC (Ref. 3.7) becomes: CG11:(36)(0.680) = 24 A CG83: (155)(0.680) = 105 A CQ43:(36)(0.680) = 24 A LP2: (195)(0.680) = 133 A LP6:(237)(0.680) = 161 A

1 (2ou NUCLEAR CalCul2ti':n Sheet Subject Calc No. Rev. No. Sheet No. TSI Derating of Cable Ampacity C-1101-770-E420-018 If, of 18 O wwWOr D.M phk Dateh/p f(, onginator bC- . Date Revi c.ewed byus. - w, ~ / w o u .t 8.0 Appendices 8.1 IH & IM 480V Bus Heating Load and Load Factor Determination 8.2 GPUN Cable Routing Computer Program PC-CKS, Report CKSR1060u, dated 9/9/96 (Ref. 3.2). 8.3 GPUN Electrical Cable Information System, printed 9/9/96 (Ref. 3.4). 8.4 Kerite Cable Information (&om design basis recovery effort) circa 1967 (Ref. 3.5). 8.5 Memo No. MSS-86-079, Stall Operation of AH-E-7A/B Fans Evaluation of Test Results (Ref. 3.9.4) 8.6 Lotus Notes, Tom Akos to Dick Bensel dated 9/10/96, TSI Cable Current Determination (Ref. 3.9.5) 8.7 Lotus Notes, Tom Akos to Dick Bensel dated 9/11/96, DC-P-1 A Full Load Current (Ref. 3.9.6) 8.8 GPUN Job Order 99494,1420-LTQ-7 data sheet, dated 9/15/95 (Ref. 3.9.8) 8.9 IEEE Transaction Paper 70 TP 557 PWR, "Ampacities for Cables in Randomly Filled Trays" by J. Stolpe, dated 1970 (Ref 3.20) 8.10 GPUN Memo E540-96-002 Rev. 2, dated 10/4/96, " Comparison of TMI Thermo-lag Fire Barrier Test Configurations With TU and TVA Configurations" (Ref. 3.13). 8.11 GAI Pull / Term sheets for power cables in this calculation that have been changed since original construction (Ref. 3.18): Pull / Term sheet 1 CH 61 date pulled 12/19/86 (Appendix R modifications) (Ref. 3.18.1) Pull / Term sheet 1 ED 307A date pulled 1/16/87 (Appendix R modifications)(Ref. 3.18.2) 8.12 Packing Slips for GPUN Purchase Orders for cables under 3.18 (Ref. 3.19): BICC Brand-Rex Order 87431 packing slip, dated 6/13/86 for GPUN Order TP-038388 (with FAX dated 9/12/96) (Ref. 3.19.1) Rockbestos Order 64213 packing slip, dated 12/15/86 for GPUN Order 044730 (with catalog cut dated i1/90)(Ref. 3.19.2).

GIIM-?7s-E4-20 -sjg 01v. o l FPtn+ctyan.t PV-A I on i 1 IH & IM 480V Bus Heating 14ad and Load Factor Detennisation l Load measurements for the IH & IM 480V Buses during cold weather are not available. During moderate weather conditions these Buses are lightly loaded since the large space heating load connected to the Buses, (IH Bus - 1112 KW { and IM Bus - 1128 KW) is not energized. To reasonably calculate the impact of the heating load connected to these buscs, i the difference in load for the upstream 4160V bus during cold and moderate weather was evaluated. The IH Bus is powered from the IB 4160V Turbine Plant Bus and the IM Bus is powered from the IC 4160V Turbine Plant Bus. The total heating load connected to the IB Bus is the summation of the heating load connected to the IF and lH 480 V Buses. i The total heating load evaluated fro the IC Bus is the summation of the heating load connected to the IK and IM Buses. (Reference IH, IM, and IU Bus calculated Load Section). The MVA loading for the Balance of Plant (BOP) 4160V Buses (I A, IB & IC 4160V Turbine Plant Buses), Reference Drawing E-206-021(ref. Al.8) is monitored weekly. To determine a loading factor for heating loads, the difference in BOP Bus loading for the lowest ambient temperature day monitored was compared to a typical warm day monitored. DATE BUS MVA Loading 1/21/94 (ambient temp -16 'F) IB 4160V Turbine Plant 5.25 MVA 7/25/94 IB 4160V Turbine Plant 4.32 MVA AMVA = 0.93 MVA l/16/94 (ambient temp -16 'F) IC 4160VTurtune Plant 10.15 MVA 7/5/94 1C 4160V Turbine Plant 8.47 MVA AMVA = 1.68 MVA The total connected heating load for the IB 4160V Turbine Plant Bus is 1142.5 KW and the total connected heating load for the IC 4160V Turbine Plant Bus is 2328.4 KW. The difference in the IB and IC bus loading between externally cold day and typical summer day,932 KVA difference in load for the IB Bus and 1680 KVA difference in load for the IC Bus can be attributed to operation of the connected heating load. Using this assumption a load factor for the heatmg load connected to each Bus can be determined by dividing this j seasonal difference in Bus loading by the connected heating load to each Bus. i i Bus Seasonal Loadmg Total Connected Heating Heating Load Factor Difference Load IB 4160V Turbine Plant 930 KVA 1142.5 KW 0.81 Bus IC 4160V Turbine Plant 1,680 KVA 2328.4 KW 0.73 I Bus i The above factors are used to determine the calculated cold weather loading for the IH and IM 480V Buses.

References:

A1.1 G/C Dwg. 201049, Rev.19,480V Control Center I A & IB Fuel Handling Bldg. Htg. & Vent. Al.2 G/C Dwg. 201054, Rev.15,480V Control Center I A Auxiliary Bldg. Htg. & Vent. Al.3 G/C Dwg. 201055 Rev.11,480V Control Center IB Auxiliary Bldg. Htg. & Vent. A1.4 G/C Dwg. 201061 Rev. 25,480V Control Center IB Service Bldg. Htg. & Vent. A1.5 G/C Dwg. 201067 Rev.15,480V Control Center Service Water Post Cooling Tower Al.6 G/C Dwg. 201072, Rev.16,480V Control Center IC Turbine Plant Htg. A Vent. A1.7 G/C Dwg. 201073, Rey,19,480V Contml Center ID Turbine Plant Htg. & Vent. A1.8 G/C Dwg. 206021, Rev.10, One Line & Relay Diagram 6900V & 4160V Switchgear A1.9 G/C Dwg. 206031, Rev,18, One Line & Relay Diagram 480V Switchgear A1.10 G/C Dwg. 206032, Rev.12, One Line & Relay Diagram 480V Switchgear A1.11 Kottcamp (Source 01448) Dwg. E-1, Rev. 3, Security Processing Center Electrical Lighting Plan Al.12 Kottcamp (Source 01448) Dwg. M-1, Rev. 3, Security Processing Center HVAC Floor Plan

e C~/lol-776-6+Zo-410 RKJ.0 Mfwv 8. I f%L 2.m 1H, tu and 1U 455V Bus Caisuissedi Lead for Cold Weelhor and Post Caellne Tauer OpereNon i I I t i t i e 3 1H 440V Aun & Fuel Bode His & Vent Bus Lomems Dwg E-2064" 1(ref A19) I i I

Lond (ampo) i Vne 2A ASE tea i 212 meer nemopaste empo

, Ampe a KW X Hamena Load Faceir M }5 An[I~C { 212 j meet.-, ampo 1 732 1 440 4 MD .O$fBoosier XJermer 0:normesy suppelad from 13 JerV Det sys Vnd2C 1A Aus 86cg His CC 215 98 f l UneIC [1A Fuel Handing Bdte Hte CC 448 82 I i fotel i j i 1525 flN75 A r empe 34100v= 176 378004 i 1A Aus tede His CC i Chg 201-06d (ret A12) 1 A Fuel Hendime Beis His CC then 201041l(ret At i) j Vnt ! Component i Heatmg LoadLoad iAmpo Une . - ;Heegng LeedLoad

Amps i5 AnC 2A i i

14}II4}KW 138 36 1AR Pnt FW1 !21 KW 25 26 1 1C

ASE 12 I

i !5 HP 6 80 is ! ANC 2KA 103;103 KW 100 35, JAL , AWC-2C i 3!3 KW 2 92 1C ASC-2KB 1MitTl3 KW 100 35l l W w-C 20 l 20;20 KW 24 06 1D i ANC-2KC 103!103 KW 100 36l 2C afUN217 i l 2A ! ASC 2JA 100I100KW 07 431 'fDL

ANC-50 Si5 KW 4 87 25 i ASC-2JB 100i100KW 97 436 2GA B &C 12112 KW 19 89

!2C I ANC-2JC 100T00KW 97 43! iA ASC MDE6F ASC-12i t2 KW 11 40 12D i AnC 2JD 1001100KW B7 43i 35 iD A&C-2MN 8:8 KW 7 79 i 3A i ASC 2JE 100!100KW 97 43I 3E !AnC-20H 4:41(W 3 00 i38 i ASE 12 72iT2 KW 70 15i 3F ASC-24J dieKW 3 OO !3DL Pnlb S I 5 001 i Tosed i 210 ?KW 215 00 A Teest 8411MW 888 62 A i fossi Heeeng Lead 1091, KW l I i 1W 480V Awa & Fuel BLleg Hig & Vent Bus Leading Dwn E-20H41(ref A191 I Total hosens need T 10e0 KW i Vna 2A I ASE 145 212:meest. ampe Unitil i ASE-14D 212ymotor nameplete empe Vnd2D iOSF Booster X-former 0 normally eup shed from 13 2KV Det Sys Vnd2C 1B Aux Bede His CC 348 24 4 Vne1C 15 Fuel Hendkng Sidg Hqi CC 799 31 { Totai 8 1541648 A .ampo G 410N e 177 esuus, I I I 18 Awa Side Hig CC Dag 201-050(est At 5) 1B Fusi Handimg Sieg Hgi & Vent CC 'Dag 201-0416(ret A11) i Una iComponent

Heeeng

! Load Ampo Unit iC.. _ Lead ' Am6,s

Meseng Load 1AL
ANC-25 55 55 KW 48 17 1AL iP6i Fn2 38KW 45 71 1AR i AH-C-2D 41!41 KW 35 00 1AR
RoH up Deer 1C
ASE-13 i3 HP 5 00 15 i AH42KD 103 KW 90 44 103I 2AL i ASC-2E 34;341(W 20 85 1C

! AH.C-2KE 103 KW 90 44; 103: 2AR

AWC-2F 56i50 KW 40 17 1D t AH C 2KF 103 KW 90 44 1 63]

fB ' ASC-2H 94iO4 KW 82 54 2A i AnC-2JF 100 KW 87 81 1C'Oi 2C

ASE-10 i40 HP 40 00

!25 i ANC-2JG ifilIMN 87 81 106i 2D , AWE-11 i40 HP 47 50 12C !Anc-2JH 100 KW 87 81 100i Total l l 348 24 A i 2D i ANC-2JI 100 kW 87 Bf 100; i 00 KW 8751 1D(b iTotes homeng load 261iKW !3A !AnC-2JJ 1 i3DL Hdenen Oldg 46 KVA Xfnir 37 $$ 3DR FITVA Xfmr 21 05 Tomi 7N 31 A i Tomi Hesimg Lead 800 KW tU 440V Poe:CoolsgTenorSue Ampo i Une 1I70st Coolme Tomar CC 488 Ampse dietV = 56 31 i Post Coolms Tower CC Dug 201-057 (ter A15) i Vrut Component ! Lead Ampe i 1A SW-E-1 A

20D HP 225 001 Assume 1 of 3 fene e oporseen

'fA SR-E 15 3 200Hp 225 00 3A

SK-E 1C i200 HP 225 00 4A ASE42 12 Np 7 10

'58 A+C-21 i !7 6 KW 9 02 RL PnI6F 1 i !15 KVA 18 04 W Pni DF-2 5 KVA 6 01 SFR Sewage pump 70 amp Bei 56 00 assume tireener enand for 125% of connected iced i 7A AwC 21 A : 10 KW 12 03 1C ASCli5 1 5KW 6 01 1 7D AH.C-28 i7 5 KW e 02 7F Waste Treatment Side 175 amp Blir 140 00:essume tiresnor enaed 125% of connected load i I 486 24 ? A Total i + i I if480V Reactor Bede Hte & vent Bue Hestme Load Ref Dws E-235432(ret At 10) i l l l l Pne SED _SEC-5HA 515 KW imof Dag's " r E-1(rar A111)& E1(ref A112) 18 R Beds Htg & vent CC seed a not coneinered emco Mb Purge flystem o normesy nee e opersmen j iTotal 515!KW i 1K 480V Ture & Sent Pn His Bue Heeeng Load Re D=g e E-206431(eef All) IF$en_tB8g 200:Ref Dag 201-001(cet At 4) ICT5ftMne}3 & Ltg CC 539:Re7 Deqi 201072 (ref At 8) i It H7tgvent CC i 1D Turbone Pit Hte & Vet CC 430 4:Ref Dag201-073 (ref At 7) i otal 1238 4:KW T i i i I i t I t i r 2 i l

_. ~ _ _. _.. _._ _. _ _.._ _ _ _ _. _. _ _. _..... C-H6/- 7 79 fle-0/9 PAU,e MfMiv 8./ Pd6A 3 CF.7 I l t I i 18 Seev Beg His & Ltg CC 1C Turinne pit Hg & Vent CC 1D Tvegene Pit HW & Vent CC l Une Component ! KW iunt . Component KW Una . Component . KW i e 1A ASC.}4A i 10 i1C ANC.187A1 67 2 1AL i ASC-31C 50 98 Anc.748 15 i10

A%16TA2 67 2 2A
A%16751 57 6 i

IC AEf4C 15 l2A

A & 167E3 67 2

!28 i A%16752 57 6 1D A%l4D 6 12 5 2B

ASCrii44 ST6 2C iAwC 187Jl 57 6 1E A*C15E t 12 5 r 12C

>ANC 16701 57 56 120

A%167J2 5T4

'2A AM.C.24F 1 i 12 5i ' 2D ! ASC 18702 67 2i i 3A ! AAC-32A 25 }B R14G 12 5i 7 3AL

ASC-31E 50;
38 i ASC-32B 26 2E Waronouse i.

179! 3AR . AM.C3 tF 50i 3C AAC-32C 26 ' Totes 269'KW 3BL AM.C-310 50! 'iD i AAC 32D 26 1E ' ASC30 5l + 3E

ASC-32E 25

.Tolol 530 kW

3F ASC 32F 25 l

Toist 456 4 l KW 18 4160V Bus Total Heeeng Load 1C 4160V Bus Tele! Heeeng Lead IF 480Vbus Homeng Load 5t 5 9K 400V Bus Hessne Lead 1238 4 E440 V Bue Heeenglood 1001 iM h Hemime Land 1000 ~ 1

Totsi 1942 5 KW i

ITomi 2328 4 KW l l f f h l l

C( s c Ccble R:uting GPUN Thrse Mile Island Unit 1 Printsd:8/29/96 Time: 07:12:29 R: port: CKSR1060u Pag 3: 1 Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interin'No.) Circuit No. (Interim No.) Trays 551 1 LP SA 1 LP SB 1 LS 6 G 9 e e S s c,,ot-77o-C+2a-me peo o Fase. s.@ ! ' p /r g,for i *N ' i

' Cable Routing GPUN Printsd:8/29/96 Time: 07:13:32 Thrsa Mile Island Unit 1 Rap 3rt: CKSR1060u Pigs: 1 Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.) Tray: 553 1 LP SB 1 LS 6 1 LP SA 4 C- )a1-770-Et20~018 V. O /3p 2.o/tL h

m Cabla Rauting GPUN Time: 07:15:16 Throo Mile Islcnd Unit 1 Print:d:8/29/96 Rsport: CKSR1060u Pag 3: 1 5 . Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (InterLa No.) Trays 732 a 1 MD 11 I 4 f e a t a h 1, i l l s u U z 4 4 m gv.o '*N N g 2y v,//L

GPUN Ceble Routing Thr33 Mile Islend Unit 1 Printsd:8/29/96 Time: 07:15:48 Report: CKSR1060u Page: 1 Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.) Tray 733 1 MD 11 e 9 O O 9 1 4 c-t sol-77o-f9

  1. Ev. o EL g g.%

f y 5ollL

~.. - - -. ~.. -- ) GPUN Cable Routing i Thrs3 Mile Island Unit 1 Printed:B/29/96 Tim 3: 07:16:18 Riport: CKSR1060u ' Pag 2: 1 j Circuit Routed in Tray Circuit No.-(Interim No.) Circuit No. (Interim'No.) Circuit No. (Interim No.) Trays 735 f 1 ME 11 O I 9 1 1 t 9 e t ().Au.D g,3 g r_ AW g s/ a. Yy

Crble Rauting GPUN Printid:8/29/96 Time: 07:16:43 Thres Milo Islend Unit 1 R; port: CKSR1060u P2g3: 1 i Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interks No. ) ' Circuit No. (Interim No.) Trays 736 1 ME 11 t 5 O t e e O e 4 8 cq st-77 pfru.o h ff"a;> r. L (2)e l Jn

GPUN Cable Routing l Thras Mile Island Unit 1 Printsd:9/ 9/96 Time: 09:06:52 Report:,CKSR1060u Paga: 1 Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.) I f Tray 745 1 ME 1 1 ME 2 1 ME 4 i 1 ME 5 l 1 I \\ ) i 1 1 n N i f i i ) b 4 k i k a I i 4 e 4 i .i s ) c, pi-Mo-m" w.o l // / j f y f ol & i 4

GPUN Ccble Routing { Throo Mile Islcnd Unit 1 Printcd:8/29/96 Time: 07:17:38 I RIport: CKSR1060u Pag 3: 1 l Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.) 1 Tray 751 i l'MA 9 1 MB 9 1 MB 11 1 MB 13 1 MC 12 1 ME 6 1 ME 7 1 ME 9 1 ME 10 1 ME 11 i 1 3 a f 1 t C_(pl-7 W 6 W ~ l WO 4:), g L (6p 1 ohb e

. ~ .. - - -. - -. =. ~.. -... .. ~ ~ GPUN Ccblo Rruting Threo Milo Island Unit 1 Print"d:8/29/96 Time: 07:18:12 R port CKSR1060u Paga: 1 Circuit Routed in Tray

==:r.. Ciredit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.) Tray 756 1 MA 9 1 MB 9 1 MB 13 1 ME 10 1 ME 11 ] l 1 \\ i I 4 e e i i l (, o g o I -no-Ph?* (2m o Maa):e f. L f>ya / o e// L

.. -. ~..... _ -... GPUN C blo Routing Thrc3 Milo Islend Unit 1 Printsd:8/29/96 Time: 07:22:14 Report: CKSR1060u Page: 1 Circuit Routed in Tray Circuit No. (Interim No.) Circuit No. (Interim No.) Circuit No. (Interim No.) Tray: 1019 1 CH 61 1 ED5033 1 ED5033A 1 ED5034 1 ED5034A 1 LS 5 1 LS 7 e 1 I b e l 1 (_;y -Y10-EAdo-10 PEM 0 i ml1Xl' l (4, y A / ' y l

l 1 Cchio Routing GPUN Thrco Milo Island Unit 1 Printed:8/29/96 . Time: 07:23:01 Report: CKSR1060u Page: 1 i Circuit Routed in Tray 1 Circuit No. (Interim No.) Circuit No. (Interim No.) - Circuit No. (Interim No.) i Tray: 1020 l 1 CH 61 1 ED 307A 1 ED5033A l 1 ED5034A 1 LS 5 i L3 7 i i I' i 4 1 i ) l e e c.l)ol"WND @. 0 !#nd.e / ' t s/ / - 2 f f3y'

Scrosn 1 -FSBROWSE ASB. CIRCUIT----------------------------------------Obs 6878 Command===>

==========

================= ' ELECTRICAL CABLE INFORMATION SYSTEM PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 - NOTE: Next screen: CABLE DESCRIPTION: 1-3-10 CABLE NO.: CG11 VOLT: STATUS: ASB B/M: EK-3A BOP OR DIV: A EQ REQ.: N SYS: AH GPU SYS: 832 i CKT NATURE: PWR, FOR AH-E-15A TENSION MONITORED BA: 0 MAX PULL TENSION:------------------------------------- ! EST LENGTH: FROM EQUIP. TAG NO.: 1A ES MCC IF EQUIP. DESCRIPTION: 1A ENGD. SFGDS. CONT. CTR. UNIT IF TERM CABLE LENGTH: 0 O CONDUIT SIZE: O CONDUIT LENGTH: 0 TERM. REFERENCE DWG: ITE CKT BRKR CO 85-C-70013 SH 89 TO EQUIP. TAG NO.: AH-E-15A EQUIP. DESCRIPTION: AIR COOLING FAN FOR DECAY HEAT & NU TERM. CABLE LENGTH: i ~~ ) 0 0 CONDUIT SIZE: 0 0 CONDUIT LENGTH: ) TERM. REFERENCE DWG: i l } t i C-llOI ~176-E426-cfB \\ QV, o WM 3.+j [iTiK$ / A'pp 4i k 10 aso t m/7ML I 9

Screen 2 -FSBROWSE ASB. CIRCUIT----------------------------------------Oba 6878 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

===========
=====

NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

l CABLE NO: CGil CABLE REEL #: l l l l l PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY:'G/C INC SS-208-630 SPECIAL INSTRUCTIONS: ROUTING: (10B + 18.0) 538,537,536,539 (EL. 303.7) (H3 + 6.0) 554,556,557,590 (EL. 319.0) 130' i l l C -lib 1-? w "E & b "Io ' gjev.o/& P, 3 ///'d 7" i',,< t o i

- -. - -. _ = -. -. ~ -FSBROWSE ASB. CIRCUIT----------------------------------------Obs 7070 Scrocn 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: CG83 VOLT: 480 CABLE DESCRIPTION: 1-3-1/0 STATUS: ASB B/M: EK-3F BOP OR DIV: X EQ REQ.: N SYS: IC GPU SYS: 542 BA: CKT NATURE: PWR. FOR IC-P-1A EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM


T i

l EQUIP. TAG NO.: lA ES MCCllA ? EQUIP, DESCRIPTION: 1A ENGD. SFGDS. CONT. CTR. UNIT llA TERM. CABLE LENGTH: l CONDUIT SIZE: 0 0 { CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: I.T.E. BRKR. CO 85-C-70013, SH 91 TO EQUIP. TAG NO.: IC-P-1A EQUIP. DESCRIPTION: A INTERMED. CLG. CLOSED LOOP PP. (IC-P-1A) TERM. CABLE LENGTH: -~ CONDUIT SIZE: 2.5 0 CONDUIT LENGTH: 20 0 TERM. REFERENCE DWG: C-flo(~77&E&ofs 9tv.c J:

f. 3 fy/sy e I 10

Screen 2 -FSBROWSE ASB. CIRCUIT----------------------------------------Obs 7070 Command===>

===========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

CABLE NO: CG83 CABLE REEL #: l l l l l APP R DATE PULLED: ACTUAL LENGTH: PO: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C INC SS-208-257 SPECIAL INSTRUCTIONS: ROUTING: (10B + 10.0) 373 (10 + 0.0) T-47-8 (EL. 318.0) 539 (EL. 304.0) U (H3 + 7.0) 554,556,557 (6C + 16.0) 1 CG 83 (EL. 302.0) 590 (EL. 319.0) T-54-24 17 5 ' C-((bt-77b4tL* ~M

  1. 3E% o pen /'r f. 3 jp,by*Yol1

-FSBROWSE ASB. CIRCUIT----------------------------------------Obs 7319 Screen 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE lH). : CH61 VOLT: 480 CABLE DESCRIPTION: 1-3-2/0 4 STATUS: ASB B/M: EK-3G BOP OR DIV: X EQ REQ.: N SYS: IC GPU SYS: 542 BA: CKT NATURE: PWR FOR IC-P-1B EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED 1 FROM 7 EQUIP. TAG NO.: IB ES MCC10A 4 EQUIP. DESCRIPTION: 1B ENGD SFGDS CONT CTR UNIT 10A TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: I.T.E. CKT. BRKR. CO. 85-C-70013 SH 97 TO j EQUIP. TAG NO.: IC-P-1B EQUIP. DESCRIPTION: IB INTERMED COOL CLOSED LOOP PUMP MOTOR (IC-P-1B) l TERM. CABLE LENGTH: i CONDUIT SIZE: 0 0 i CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: I i s t i 1 1 4 h ( i i I 1 I i G f16/-77D-16HD-ol ' i (2EU. O fyads r.1 i. NysrolD'

-FSBROWSE ASB. CIRCUIT----------------------------------------Obs 7319 Screen 2 Command===> l

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

3


NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3'. ----------

CABLE NO: CH61 CABLE REEL #: 'l l l l l APP R i PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C INC SS-208-528 SPECIAL INSTRUCTIONS: 1 i 1 2 ROUTING: CABLE ONLY (F3 + 12.0) 1020,1019 (G3 + 19.0) CS2051 (G3 + 24.0) 1018, i 1027 (G3 + 40.0) UD3461 (11A + 5.0) 955 (10A + 23.0) (H3 + 40.0) 597 l (K + 11.0) T-54-26 100' l i i i i i 4 i 4 j C-lIof-770-16t-U-NE l 950.o pppJ:H. 1 for e4 k

~ ~ -FSBROWSE ASB. CIRCUIT------------- ---Oba 7538 Screen 1 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

==========
=====

1 - NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 1 CABLE NO.: CL43 VOLT: CABLE DESCRIPTION: 1-3-1/0 STATUS: AC6 B/M: EK-3F BOP OR DIV: X EQ REQ.: SYS: AH GPU SYS: BA: CKT NATURE: PWR. ~ EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM EQUIP. TAG NO.: EQUIP. DESCRIPTION': 1A REACTOR BLDG. H&V CONT. CTR. UNIT SC TERM. CABLE LENGTH: ~~ CONDUIT SIZE: 5 0 j, CONDUIT LENGTH: 40 0-TERM. REFERENCE DWG: ITE CKT BRKR CO 85-C-70013 SH 52 TO EQUIP. TAG NO.: AH-E-7A EQUIP. DESCRIPTION: REACTOR BLDG. PURGE EXKAUST FAN A MOTOR (AH-E-7A) 1 TERM. CABLE LENGTH: CONDUIT SIZE: 3 0 J CONDUIT LENGTH: 50 0 TERM. REFERENCE DWG: i } i 1 A i W e k i + 3 5 4 i T CNb (~ 779 -21D-ME mmc jyp/:e V.p i 1ryx7ofto' / i

Scresn 2 -FS*ROWSE AS3. CIRCUIT----------------------------------------Oba 7538

Command===>
===========

.-ELECTRICAL CABLE INFORMATION SYSTEM


NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

=====

CABLE. REEL #: l l l l ~l I CABLE NO: CL43 DATE PULLED: ACTUAL LENGTH: PO: ' MAX. TENSION MEASURED BY: J MAX. TENSION MEASURED: (lbs ) ELEPENTARY: G/C SS-208-618 SPECIAL INSTRUCTIONS: VIA 6" TRAY U.D. 3460 ADD 3" CND PER DCR-2-251, FIELD ADD BEFORE HOT FUNCT TEST ROUTING: (H + 0.0) 416,672,673,525,526,527,528 (G3 + 28.0) (10A + 16.0) 597 (L + 23.0) 115' l I o l d-(tet-77o-f44o.sE' (2en.e !? 5 fl9fd gn l l

-FSBROWSE ASB.CIKbUIT----------------------------------------Oba 7644 Scrosn 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: CM43 VOLT: CABLE DESCRIPTION: 1-3-1/0 STATUS: ASB B/M: EK-3F BOP OR DIV: X EQ REQ.: _ SYS: AH GPU SYS: BA: CKT NATURE: PWR. EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM EQUIP. TAG NO.: 1B "EACTOR BLDG. H&V CONT. CTR. UNIT SC R EQUIP. DESCRIPTION: TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: ITE CKT BRKR CO 85-C-70013 SH 55 TO EQUIP. TAG NO.: AH-E-7B EQUIP. DESCRIPTION: REACTOR BLDG. PURGE EXHAUST FAN B MOTOR (AH-E-7B) TERM. CABLE LENGTH: ~~ CONDUIT SIZE: 3 0 CONDUIT LENGTH: 60 0 TERM. REFERENCE DWG: i l I 1 i C4 tbl~77&Etu-on fEv. o AnAr..: ' />g40/s

-FSBROWSE ASB. CIRCUIT----------------------------------------Oba 7644 Scrasn 2 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

CABLE NO: CM43 CABLE REEL #: l ,l l l l PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-618 SPECIAL INSTRUCTIONS: VIA 6" TRAY CL43 U.D. 3460 ROUTING: (H + 11.0) 416,672,673,525,526,527,528 (G3 + 28.0) (10A + 16.0) 597 (L + 23.0) 155' 1 .j i GIllf-770 st2HW W. O jfpe n Ao f.,3 f>yc.t0$10

-FSBROWSE ASB. CIRCUIT---------------__________---------------Obs 8283 Screen 1 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

==========
=====

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: CQ43 VOLT: CABLE DESCRIPTION: 1-3-10 STATUS: ASB B/M: EK-3A BOP OR DIV: A EQ REQ.: Y SYS: NS GPU SYS: 541 BA: CKT NATURE: PWR. FOR NS-V-4 EST LENGTH: 0 KAX PULL TENSION: TENSION MONITORED FROM


.. T EQUIP. TAG NO.: 1A ESV VCC7D EQUIP. DESCRIPTION: 1A ENGD. SFGD. VALVES CONT. CTR. UNIT 7D TERM. CABLE LENGTH:

~ CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: ITE CKT BRKR CO 85-C-70013 SH 103 TO EQUIP. TAG NO.: NS-V-4 EQUIP. DESCRIPTION: R.C. PUMP MOT. CLG. RET. VALVE CONN. BOX (NSV-4) TERM. CABLE LENGTH: ~~ CONDUIT SIZE: 1.5 0 CONDUIT LENGTH: 60 0 TERM. REFERENCE DWG: i 9 e + 0+(bl-770-fAl* -DI6 (Ev.o ,o /tr f. } g,, if ol7*

Screen 2 -FSBROWSE ASB. CIRCUIT----------------------------------------Obs 8283 Command===>

===========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3.

1 CABLE NO: CQ43 l CABLE REEL #: 5115 l _l l l l j PO: ACTUAL LENGTH: 164' DATE PULLED: 01/30/73 MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C.SS-208-455 SPECIAL INSTRUCTIONS: INSTALLED RAYCHEM WCSF-200-N HEAT SHRINK TUBING SPLICES / CONNECTIONS AT VALVE CONN. BOX (NSV-4) i ROUTING: (J + 21.0) 556,557,590 (EL. 319.0) CQ43 85' ). 4 FCN-C088139 i i t C-i tol-7>-R+2*4 W 29.o l gen 'N r,f

-FSBROWSE ASB. CIRCUIT---------------------------------------Oba 11587 Screen 1 j Command===> 4 i .================= ELECTRICAL CABLE INFORMATION SYSTEM

==========

l - NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO,: ED307A VOLT: 125 CABLE DESCRIPTION: 1-2-8 STATUS: ASB B/M: EK-4B BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 4 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~ FROM EQUIP. TAG NO.: 1F ES DC 7 EQUIP. DESCRIPTION: INVERTER RM 1B DC ENGD SFGDS DIST PNL 1F, SW 7 TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC SS-201-254 TO EQUIP. TAG NO.: 1S ES SWGRlR EQUIP. DESCRIPTION: 1S 480V ENGD SFGDS SWGR - UNIT 1R j TERM. CABLE LENGTH: CONDUIT SIZE: 2 0 CONDUIT LENGTH: 50 0 TERM. REFERENCE DWG: WESTINGHOUSE 591F714 1 &fpl-770-Mto48 (2rw.o lp9t<< J:s f. 3 c13ol10 /sy

-FSBROWSE ASB. CIRCUIT---------------------------------------Oba 11587 Scrosn 2 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: ED307A CABLE REEL #: l l l l l APP R .PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: SPECIAL INSTRUCTIONS: ROUTING: 1 ED 307A (F3 + 17.0) 1020 (F3 + 6.0) 1 ED 307A 20' l 1 [-lIDI-l70-Ib 46 2CV, 0 1:* f 3 fppn /ryei1'A10

-FSEDIT ASB. CIRCUIT-----------------------------------------Obs 11588 Scroon 1 Command===> ) 4 }

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

l - NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 ~ { CABLE NO.: ED308A VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS: ASB B/M: EK-4J BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 733 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM


T EQUIP. TAG NO.: T847 EQUIP. DESCRIPTION: TERM BOX T847 NR COL H3-12 AUX BLDG EL. 281'-0" l

TERM. CABLE LENGTH: CONDUIT SIZE: 0 l 0 4 l CONDUIT LENGTH: 0 l 0 TERM. REFERENCE DWG: G/C INC SS-211-001 SH T847 TO EQUIP. TAG NO.: E-10 1 EQUIP. DESCRIPTION: ELECTRICAL MANHOLE E-10 TERM. CABLE LENGTH: CONDUIT SIZE: 4 l 0 1 CONDUIT LENGTH: 20 l 0 I TERM. REFERENCE DWG: GPUN 1A-741-18-1034 i l 4 1 i I

  • / lO {# OYYA Of (2Au. o Aff e-Anc 9,3 Pa.geiS e,o

-FSEDIT ASB. CIRCUIT-----------------------------------------Obs 11588 Scrazn 2 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: ED308A CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: SPECIAL INSTRUCTIONS: *HOMAC FS175-4 TYPE CONN

  1. BUTT SPLICED WITH HEAT SHRINK, TUBING ROUTING: 1 ED 308A,T-52-54,UD4913, BOX P2,UD4913, BOX P8,UD4913 520' FCN-C116663 t

C4/6/-77esW4s P&s o hefy e3 f9 (Q d 7o

-FSEDIT ASB. CIRCUIT----------------_------------------------Obs 11589 Screen 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: ED308B VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS: ASB B/M: EK-4J BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 733 BA: CKT NATURE: PWR l EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~ FROM EQUIP. TAG NO.: T847 EQUIP. DESCRIPTION: TERM BOX T847 NR COL H3-12 AUX BLDG EL. 281'-0" TERM. CABLE LENGTH: ~~ CONDUIT SIZE: 0 j 0 CONDUIT LENGTH: 0 l 0 TERM. REFERENCE DWG: G/C INC SS-211-001 SH T847


~~

TO EQUIP. TAG NO.: E-10 EQUIP. DESCRIPTION: ELECTRICAL MANHOLE E-10 TERM. CABLE LENGTH: ~~ CONDUIT SIZE: 0 O CONDUIT LENGTH: 0 l 0 TERM. REFERENCE DWG: GPUN 1A-741-18-1034 c-1tof-,7o4W -'I8 91W.a 4 63 {}y (7 sF 70 i ]

-FSEDIT ASB. CIRCUIT-----------------------------------------Obs 11589 Screan 2 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

. NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

CABLE NO: ED308B CABLE DEEL #: l l l l l APP R 'PO : ACTUAL LENGTH: DATE PULLED: MAX. TEI4SION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: SPECIAL' INSTRUCTIONS: *HOMAC FS175-4 TYPE CONN

  1. BUTT SPLICED WITH HEAT SHRINK TUBING ROUTING: ED308A,T-52-54,UD4913, BOX P2,UD4913, BOX P8,UD4913 540' FCN-Cll6663 l

not-77s-t+ Ode (6A/.0 ArP x93 A f age IB # 70

-FSBROWSE ASB~. CIRCUIT---------------------------------------Obs 11617 Scrosn 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

'30TE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CAisLE NO.: ED5033 VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS: ASB B/M: EK-4J BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 734 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM EQUIP. TAG NO.: S-29 EQUIP. DESCRIPTION: SPLICE BOX S-29 IN CONT BLDG AT EL.306'-0" MTD ON CEILING N R COL.10B TERM. CABLE LENGTH: ~ CONDUIT SIZE: 4 0 CONDUIT LENGTH: 40 0 TERM. REFERENCE DWG: G/C INC -211-007 SH S 29 TO EQUIP. TAG NO.: T847 EQUIP. DESCRIPTION: TERM BOX T847 NR COL H3-12 AUX BLDG EL.281'-0" TERM. CABLE LENGTH: ~ CONDUIT SIZE: 2.5 0 CONDUIT LENGTH: 10 0 TERM. REFERENCE DWG: G/C INC SS-211-001 SH T847 J &ust-77s 44w-dfB 3 /sv. o jguk f. 5 A l" Apt 1

-FSBROWSE AS3. CIRCUIT----.----------------------------------Obs 11617 Screen 2 Command===> .================= ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3.

CABLE NO: ED5033 CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: SPECIAL INSTRUCTIONS: *NSR/ITS BUTT SPLICE WITH HEAT SHRINK TUBING

  1. HOMAC FS175-4 TYPE CONN ROUTING: (G3 + 12.0) 1019 (G3 + 19.0) CS2049 (G3 + 24.0) 1018,1027 (10B + 13.0

) 1 ED5033 (EL. 319.0) 543,558 (H3 + 12.0) 1 ED5033 97' e LiloI-77o-E94lg 84v. o jyuJ:, t.1 p,p t.

  • ol 70

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11618 Screen 1 i CommInd===> 1

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable i type: S ' NUMBER' - quit: PF3 CABLE NO.: ED5033A VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS: ASB B/M: EK-4J BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 734 1 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~~ FROM l l EQUIP. TAG NO.: 1F ES DC 8 l EQUIP. DESCRIPTION: INVERTER RM 1B, DC ENGD SFGDS DIST PNL 1F, SW 8 TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 I CONDUIT LENGTH: 0 0 i TERM. REFERENCE DWG: G/C INC SS-201-254 1 TO EQUIP. TAG NO.: S-29 O EQUIP. DESCRIPTION: SPLICE BOX S-29 IN CONT BLDG AT EL. 306'-0" MTD ON CEILING NR COL 10B TERM. CABLE LENGTH: j CONDUIT SIZE: 4 0 2 CONDUIT LENGTH: 40 0 TERM. REFERENCE DWG: G/C INC 211-007 SH S-29 1 1 1 i y 4 l 4 i ii 4 0 0 G H M 91o-9 9 -ot8 %.o $pyedf> f 3 (4 L I ol 70 p

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11618 Scrosn 2 Command===> i

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

CABLE NO: ED5033A l CABLE REEL #: l l l l l APP R 1 PO: ACTUAL LENGTH: DATE PULLED: i MAX., TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: l SPECIAL INSTRUCTIONS: *NSR/ITS BUTT SPLICE WITH HEAT SHRINK TUBING i } ROUTING: 1 ED5033A (F3 + 17.0) 1020,1019 (G3 + 7.0) 30' i i 1 i i 1 l 1 I 4 j i i I i. 3 'i 3 1 i CMI6I-77? 44U~## 25v. O 3 pp < < J:" 1 p,,,1.u o

~ -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11619 ScrcNn1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: ED5034 VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS: ASB B/M: EK-4J BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 734 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM EQUIP. TAG NO.: S-29 EQUIP. DESCRIPTION: SPLICE BOX S-29 IN CONT BLDG AT EL. 306'-0" MTD ON CEILING NR COL 10B TERM. CABLE LENGTH: -- CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC 211-007 SH S-29 TO EQUIP. TAG NO.: T847 EQUIP. DESCRIPTION: TERM BOX T847 NR COL H3-12 AUX BLDG EL.281'-0" TERM. CABLE LENGTH: CONDUIT SIZE: 2.5 0 CONDUIT LENGTH: 10 0 TERM. REFERENCE DWG: G/C INC SS-211-001 SH T847 i 1 a 1 1 9 4 I I psu. o J f.1 Jyu :p (1,p L1dId

= _ _ _ _ _ ___._ _ _ _ -FSBROWSE ASD. CIRCUIT---------------------------------------Ob3 11619 Scracn 2 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

l


NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

1 CABLE NO: ED5034 CABLE REEL #: l' l l l l APP R ~ PO: ACTUAL LENGTH: DATE PULLED: ) MAX. TENSION MEASURED BY: ~ 1 MAX. TENSION MEASURED: (lbs.) ELEMENTARY: SPECIAL INSTRUCTIONS: *NSR/ITS BUTT SPLICE WITH HEAT SHRINK TUBING

  1. HOMAC FS175-4 TYPE CONN i

I ROUTING: (G3 + 12.0) 1019 (G3 + 19.0) CS2049 (G3 + 24.0) 1018,1027 (10B + 13.0 ) 1 ED5034 (EL. 319.0) 543,558 (H3 + 12.0) ED5033 136' i i 1 i i i l i 1 l i i 4 i i l i i i ~! 1 I 3 i i 0 t i i i i i i 2 ) i i l &[IOI ~716-W@~#IE 1

t..t i

); esj:, i z.9 to ,p

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11620 Screen 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE'NO.: ED5034A VOLT: 125 CABLE DESCRIPTION: 1-2-2 STATUS: ASB B/M: EK-4J BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 734 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~ FROM EQUIP. TAG NO.: IF ES DC 8 EQUIP, DESCRIPTION: INVERTER RM 1B, DC ENGD SFGDS DIST PNL 1F, SW 8 TERM. CABLE LENGTH: ~~ CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC SS-201-254 TO EQUIP. TAG NO.: S-29 EQUIP. DESCRIPTION: SPLICE BOX S-29 IN CONT BLDG AT EL. 306'-0" MTD ON 2ILING NR COL 10B TERM. CABLE LENGTH: -~ CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC 211-007 SH S-29 i ~

f. 7 pp,, J:s 9

f,p. 2. F ol 7

Screan 2 -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 11620 Command===>

===========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

CABLE NO: ED5034A CABLE REEL #: l l l l l APP R ACTUAL LENGTH: DATE PULLED: l PO: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY SPECIAL INSTRUCTIONS: *NSR/ITS BUTT SPLICE WITH HEAT SHRINK TUBING l i ROUTING: ED5033A (F3 + 17.0) 1020,1019 (G3 + 7.0) 30' i l i i l cmst-7164%#~0# .O /;.s ltyud:xz. 4 e/ Ay4

-FSBROWSE ASB. CIRCUIT---------------------------------------Oba 13268 Screen 1 Command===> l ELECTRICAL CABLE INFORMATION SYSTEM

==========
=====

- NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: LP2 VOLT: CABLE DESCRIPTION: 1-3-2/0 STATUS: ASB B/M: EK-3G BOP OR DIV: A EQ REQ.: N SYS: DC GPU SYS: 543 BA: CKT NATURE: PWR. FOR DC-P-1A EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM EQUIP. TAG NO.: 1P ES SWGR2A EQUIP. DESCRIPTION: IP 480V ENGD. SAFEGUARD SWGR. UNIT 2A TERM. CABLE LENGTH: 1 CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 591F711 TO EQUIP. TAG NO.: DC-P-1A EQUIP. DESCRIPTION: DECAY HEAT CLOSED CYCLE PUMP 1A MTR. (DC-P-1A) TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: 4 C-1lal-7704fts-d 8 /kEU, o 0 fy ). M $$ / /'il'op<,L7'fgo

-FSBRbWSE ASB. dIRCU IT--------------------- - ----------- ---- -Oba 13 2 6 8 Scrcen 2 Comm:nd===> ELECTRICAL CABLE INFORMATION SYSTEM

===========
=====

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: LP2 CABLE REEL #: l \\ \\ \\ l APP R PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-340 SPECIAL INSTRUCTIONS: ROUTING: (9 + 27.0) 536,539 (EL. 303.7) (H3 + 6.0) 554,556,557,590,596 (K + 10.0) 140' i C-(tot-17s-Efo-ot8 (21W.o 1.1 pppahr f,pz)ol7#

~. - - -FSBROWSE ASB. CIRCUIT---------------------------------------Oba 13290 Scroon 1 i Command===> l ELECTRICAL CABLE INFORMATION SYSTEM

==========
=====

- NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: LP5A VOLT: CABLE DESCRIPTION:'1-4-350 i STATUS: ASB B/M: EK-3U BOP OR DIV: C EQ REQ.: N SYS: MT GPU SYS: 733 . BA: CKT NATURE: PWR. EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED 4 2 FROM EQUIP. TAG NO.: 1C ESV VCC EQUIP. DESCRIPTION: IC ENGD. SFGDS. VALVES CONT. CTR. AUTO TRANSFER SW. TERM. CABLE LENGTH: i CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: AUTO SW GS 213-689 4 TO EQUIP. TAG NO.: IC ESV VCC 1 i EQUIP. DESCRIPTION: 1C ENGD. SAFEGUARD VALVES CONT. CTR. UNIT 1 i i TERM. CABLE LENGTH: I CONDUIT SIZE: 3.5 0 CONDUIT LENGTH: 25 0 TERM. REFERENCE DWG: 4 3 1 i I I I k i O Glist-720-g420-@ kU. O P:I jppsed.').zfel70 foye

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13290 Screen 2 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3.

CABLE NO: LPSA CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: SPECIAL INSTRUCTIONS: ROUTING: (F3 + 1.0) 553,551 (EL. 303.0) (H3 + 6.0) 579,578,954 (7D + 22.0) 110' s i C-t tal-7?o-6446-ol8 2%v. o Jy <,< J. 8 P.,1 p,,, p oI? o

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13291 'Scrocn 1 Command===>

=====

ELECTRICAL CABLE INFORMATION. SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE DESCRIPTION: 1-4-350 CABLE NO.: LP5B VOLT: STATUS: ASB B/M: EK-3U BOP OR DIV: C EQ REQ.: N SYS: MT GPU SYS: 733 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED - FROM EQUIP. TAG NO.: 1C ESV VCC EQUIP. DESCRIPTION: 1C ENGD. SFGDS. VALVES CONT. CTR. AUTO TRANSFER SW. TERM. CABLE LENGTH: CONDUIT SIZE: 0 ~ 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: AUTO SW GS 213-689 TO EQUIP. TAG NO.: IC ESV VCC 1 EQUIP, DESCRIPTION: 1C ENGD. SAFEGUARD VALVES CONT. CTR. UNIT 1 TERM. CABLE LENGTH: CONDUIT SIZE: 3.5 0 CONDUIT LENGTH: 25 0 TERM. REFERENCE DWG: i I i g g (.-77o-6Mo -olB A2LM o j,4 <ar at:<> Sa 3 JfN10 ap

-FSBROWSE ASB. CIRCUIT---------------------------------------Oba 13291 Screen 2 Command===> i

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

7 CABLE NO: LP5B CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: 4 MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: SPECIAL INSTRUCTIONS: q i l t ROUTING: (F3 + 1.0) 553,551 (EL. 303.0) (H3 + 6.0) 579,578,954 (7D + 22.0) i 110' i 7 4 I 1 s 5 i i 1 a i e cqtor 770-E4e*IA r<v, a fW g np n o

~ ~ -FSBROWSE ASB. CIRCUIT---------------------------------------Oba 13300 Screnn 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable i type: S ' NUMBER' - quit: PF3 CABLE NO : LP6 VOLT: 480 CABLE DESCRIPTION: 1-3-4/0 STATUS:. ASB B/M: EK-3H BOP OR DIV: A EQ REQ.: N SYS: NS GPU SYS: 541 BA: CKT NATURE: PWR. FOR NS-P-1A EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~ FROM EQUIP. TAG NO.: IP ES SWGR EQUIP. DESCRIPTION: IP 480V ENGD. SAFEGUARD SWGR. UNIT 3C TERM. CABLE LENGTH: l CONDUIT SIZE: 0 O CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 591F712 TO EQUIP. TAG NO.: NS-P-1A EQUIP. DESCRIPTION: NUC. SERV. COOLING PUMP 1A MTR. (NS-P-1A) TERM. CABLE LENGTH: CONDUIT SIZE: 4 0 -~ j CONDUIT LENGTH: 25 0 TERM. REFERENCE DWG: ~ 1 C1is{d76-646el8 SksU, o ) y.e J.> t 3 foyz 13 ol I'

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13300 Scroon 2 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

===========
=====

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3.

CABLE NO: LP6 CABLE REEL #: l l l l l APP R .PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-351 SPECIAL INSTRUCTIONS: ROUTING: (9 + 28.0) 536,539 (EL. 304.0) UD3246 (H3 + 7.0) 554,556,557,590 (EL. 319.0) 1 LP 6 ,T-54-28 140' t e C-(to(-770-M* *8 FC=v o s/ n 9? I pypa (4 p 3 Y k "

. ~. - -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13385 Scronn 1 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

==========

i

=====

l - NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: LS5 VOLT: 480 CABLE DESCRIPTION: 1-3-4/0 STATUS: ASB B/M: EK-3H BOP OR DIV: B EQ REQ.: N SYS: NS GPU SYS: 541 3 BA: CKT NATURE: PWR. FOR NS-P-1C EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED 4 FROM EQUIP. TAG NO.: IS ESSH SWGR EQUIP. DESCRIPTION: IS 480V ENGD. SAFEGUARD SWGR. UNIT 3C 1 TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 2 1 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 591F717 TO 1 i EQUIP. TAG NO.: NS-P-1C ] EQUIP. 05SCRIPTION: NUC. SERV. COOLING PUMP 1C MTR. (NS-P-1C) TERM, CABLE LENGTH: I CONDUIT SIZE: 3 0 l CONDUIT LENGTH: 85 0 i l TERM. REFERENCE DWG: i i. i 1 J l C-Il01-7JWFAM8 PEv.o 5;I ppgand!!

5) "llc f:,p

-FSBROWSE ASB. CIRCUIT-------------------


Obs 13385 bcrbbn2

) 4 Command===> 1 1

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Pr'evious screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: LS5 CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS 208-354 SPECIAL INSTRUCTIONS: ROUTING: 1 LS 5 (F3 + 6.0) 1020,1019 (G3 + 19.0) CS2051 (G3 + 24.0) 1018,102 7 (G3 + 40.0) UD3454 (11A + 5.0) 955 (10A + 22.0) T-54-17 (10A + 15.0) 597 (6C + 21.0) 1 LS 5 ,P-111,1 LS 5 ,T-54-31 160' l &lIot ~] 7o -G+to-of g hv. o j pp<r J:

f. 7 bya.1/ o$ 7o

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13394 Screan 1 Comm;.nd===> 2 4 ELECTRICAL CABLr INFORMATION SYSTEM

==========

===e

==

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: LS6 VOLT: 480 CABLE DESCRIPTION: 1-3-4/0 4 l STATUS: ASB B/M: EK-3H BOP OR DIV: C EQ REQ.: N SYS: NS GPU SYS: 541 BA: CKT NATURE: PWR. FOR NS-P-1B EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM


T EQUIP. TAG NO.: IS ESSH SWGR EQUIP. DESCRIPTION: IS 480V ENGD. SAFEGUARD SWGR. UNIT 3D TERM. CABLE LENGTH:

1 CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 4 TERM. REFERENCE DWG: WESTINGHOUSE 591F716 I TO EQUIP. TAG NO.: NS-P-1B l EQUIP. DESCRIPTION: NUC. SERV. COOLING PUMP IB MTR. (NS-P-1B) TERM. CADLE LENGTH: 2 CONDUIT SIZE: 0 0 j CONDUIT LENGTH: 0 0 + TERM. REFERENCE DWG: 1 4 t 1 1 1 1 l i 1 4 4 1 4 4 C.-t y>(-196 -E4w-ci8 ~ te.V, o ,y ). s d '* ] $ 7 ol10 f?f4 t

-FSBROWSE ASB. CIRCUIT------.---------------------------------Obs 13394 Screan 2 Comm:nd===> 4 ELECTRICAL CABLE INFORMATION SYSTEM

===========
=====

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3.

1 CABLE NO: LS6 CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS 208-353 SPECIAL INSTRUCTIONS: ROUTING: (F3 + 1.0) 553,551 (EL. 303.6) UD3;lT2 (H3 + 6.0) 579,580,584,593,601 (L + 14.0) 110' C-f(o( 770-6+20-Of8 (2SV. O $ycAS" I' (4p Mot I ~

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13395 Scrosn 1 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

==========
=====

- NOTE: Next screen: PFil - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO': LS7 VOLT: 480 CABLE DESCRIPTION: 1-4-500 STATUS: ASB B/M: EK-3V BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 733 BA: CKT NATURE: PWR EST LENGTH: 0 MAX PULL TEN 9 ION: TENSION MONITORED PROM EQUIP. TAG NO.: lE ESSH SW4C EQUIP, DESCRIPTION: ES 480V ENGD SAFEGUARD 2WGR UNIT 4C TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 591F718 TO EQUIP. TAG NO.: S-26 EQUIP, DESCRIPTION: SPLICE BOX S-26 ABOVE TR,4Y 597 EL. 305'-0" FH BLDG TE'Uf. CABLE LENGTH: CONDUIT SIZE: 4 0 CONDUIT LENGTH: 10 0 TERM. REFERENCE DWG: G/C INC 211-007 SH S-26 4 ( -Itat ~770 - 5 4 W 4 2 QALU.o ppp< */:M f] (9,,.c 3 9 ol76 )

Screen 2 -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13395 Command===>

===========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3.

CABLE NO: LS7 CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: MAX.-TENSION MEASURED BY: i MAX. TENSIOM MEASURED: (lbs.) ELEMENTARY: SPECIAL INSTRUCTIONS: EXISTING CABLE CONFIGURATION IS AS FOLLOWS: (3) 500 S& (3) 1/O'S l 4 ROUTING: 1 LS 7 (F3 + 6.0) 1020,1019 (G3 + 19.0) CS2050 (G3 + 24.0) 1018,102 ) 7 (G3 + 40.0) UD3455 (11A + 5.0) 955 (10A + 23.0) (H3 + 40.0) 597 (H3 + 52.0) 4 CABLE ONLY 85' j 0 i 1 9 5 e l i l f i i 9 l 4 Qju(-778 *24@&S 1 i [?Sv. s-jj,pr.ePr f.1 A yo h f

Scronn'1 -FSBROWSE ASD. CIRCUIT---------------------------------------Oba 13543 Command===> 1

==========

ELECTRICAL CABLE INFORMATION SYSTEM ' - quit: PF3 I

=====

PF11 - To find a cable # type: S ' NUMBER' - NOTE: Next screen: CABLE DESCRIPTION: 1-3-4/0 CABLE NO..: MA9 VOLT: STATUS: ASB B/M: EK-2A BOP OR DIV: X EQ REQ.: N SYS: SR GPU SYS: 732 BA: CKT NATURE: PWR. FOR SR-P-3A TENSION MONITORED 0 MAX PULL TENSION:------------------------------------- ! EST LENGTH: FROM EQUIP. TAG NO.: 1A TP 4KV EQUIP. DESCRIPTION: 1A 4160V TURB. PLANT SWGR. UNIT.lA8 TERM. CABLE LENGTH: 4 0 O CONDUIT SIZE: CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F337 TO EQUIP. TAG NO.: SR-P-3A WATER POST COOLING TOWER PUMP MOTOR 1A(SR-P-3A) EQUIP. DESCRIPTION: SERV. TERM. CABLE LENGTH: ~4 0 CONDUIT SIZE: CONDUIT LENGTH: 10 0 TERM. REFERENCE DWG: t c-u smo-aumg lQv o

  1. Se I p

vfol?* f yys 9

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13543 Scrssn 2 Command===>

=====

ELECTRICAI, CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: MA9 CABLE REEL #: l l l l l PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-189 SPECIAL INSTRUCTIONS: VIA UD5303, 5403, 5503, 5803 i ROUTING: (B + 1.0) 710,737,738,739,751,756 (EL. 289.0) (SWA + 32.0) 778 (EL. j 317.0) 1120' j 4 4 e i al i = 4 i e u 4 9 c -fiq-976-E+ tom (8 pe.o ,<.,J:s 5. 3 ),fap.+'2'Il'

Scrsan 1 -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13601 Command===>

==========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

- NOTE: Next screen: PFil - To find a cable i type: S ' NUMBER' - quit: PF3 CABLE DESCRIPTION: 1-3-4/0 CABLE NO.: MB9 VOLT: STATUS: ASB B/M: EK-2A BOP OR DIV: X EQ REQ : N SYS: SR GPU SYS: 531 BA: CKT NATURE: PWR. FOR SR-P-3B TENSION MONITORED 0 MAX PULL TENSION:------------------------------------- ! EST LENGTH: FROM EQUIP. TAG NO.: IB TP 4KV EQUIP. DESCRIPTION: IB 4160V TURB. PLANT SWGR. UNIT 1B8 TERM. CABLE LENGTH: ~"- CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F344 TO EQUIP. TAG NO.: SR-P-3B WATER POST COOLING TOWER PUMP MOTOR 1B(SR-P-3B) EQUIP. DESCRIPTION: SERV. TERM. CABLE LENGTH: 4 0 CONDUIT SIZE: CONDUIT LENGTH: 10 0 TERM. REFERENCE DWG: i C-1101-774 -2419-ete Rev. o o l 10 aje t' 3 O

-FSBROWSE ASB. CIRCUIT-------- ------------------------------Ob2 13601 Scrasn 2 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

CABLE NO: MB9 CABLE REEL #: l l l l l PO: ACTUAL LENGTH: DATE PULLED. MAX. TENSION MEASURED BY: i MAX. TENSION MEASURED: (lbs.) ELEMENTARY:.G/C SS 208-190 SPECIAL INSTRUCTIONS: VIA UD5304, UD5804, UD5404, UD5504 I ROUTING: (C + 15.0) 710,737,738,739,751,756 (EL. 289.0) (SWA + 32.0) 778,779 (EL. 317.0) 1120' l 4 C-1/o/-770-St'2 0 -o/a rew. o f.3 p pparJ!P r1 ol 7" p,p

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13547 Screan 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE DESCRIPTION: 1-3-350 CABLE NO.: MB11 VOLT: STATUS: ASB B/M: EK-2B BOP OR DIV: X EQ REQ.: N SYS: MT GPU SYS: 732 BA: CKT NATURE: PWR. FOR H1-02 & H1-05 EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM EQUIP. TAG NO.: IB TP 4KV EQUIP. DESCRIPTION: IB 4160V TURB. PLANT SWGR. UNIT 1B9 (H1-02) TERM. CABLE LENGTH: ~-- CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F345 TO EQUIP. TAG NO.: 1H TP SWGR EQUIP. DESCRIPTION: NO LOAD DISC. SW. (H1-05) (AT 1H 480V SWGR.) TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT' LENGTH: 0 0 TERM. REFERENCE DWG: GPU 1D-600-18-1004 DETAIL Z I i C-ffol 770-E+2o eyp ML/. o

f. 3' f pp, J:xy S olTo p.,p

i -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13547 Scresn 2 Command===> l ELECTRICAL CABLE INFORMATION SYSTEM

===========
=====

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: MB11 CABLE REEL #: l l l l l PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (1bs.) ELEMENTARY: G/C SS 208-155 SPECIAL INSTRUCTIONS: VIA 6" TRAY ROUTING: (C + 17.0) 710,737,738,739,751,752 (K + 6.0) 40' 1 l C -IPl-970 @ ~#I8 geV. = ppf a J:" !;3 # fy s t'6 *

-FSBROWSE ASB. CIRCUIT------


------------- -- Ob 13549 Screen 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE DESCRIPTION: 1-3-350 CABLE NO : MB13 VOLT: STATUS: ASB B/M: EK-2B BOP OR DIV: X EQ REQ.: N SYS: MT GPU SYS: 732 BA: CKT NATURE: PWR. FOR U1-02 EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED ~ FROM EQUIP. TAG NO.: IB TP 4KV EQUIP. DESCRIPTION: IB 4160V TURB. PLANT SWGR. UNIT 1B5 (U1-02) TERM. CABLE LENGTH: j CONDUIT SIZE: 0 0 J CONDUIT LENGTH: 0 0 1 TERM. REFERENCE DWG: WESTINGHOUSE 623F346 TO EQUIP. TAG NO.: 1U XFRMR EQUIP. DESCRIPTION: TRANSFORMER 1U (AT 1U 480V SERV. WTR. POST CLG. TWR. SWG 4 TERM. CABLE LENGTH: CONDUIT SIZE: 4 0 i CONDUIT LENGTH: 20 0 j TERM. REFERENCE DWG: 1 i 1 1 ? 1 I 4 4 0 i h ( -ffOf 4 *74 Y @ ~ N E pfy. ~ yYo f,, c Y ?

  • 7 #

-FSBROWSE ASD. CIRCUIT---------------------------------------Oba 13549 Scrosn 2 Comm2nd===> ELECTRICAL CABLE INFORMATION SYSTEM

===========
=====

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: MB13 CABLE REEL #: l l l \\ l PO: ACTUAL LENGTH: DATE PULLED: ' MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS 208-179 -SPECIAL INSTRUCTIONS: VIA UD 5301, 5401, 5501, 5801 ROUTING: (C + 9.0) 701 (E + 10.0) (E + 10.0) 710,737,738,739,751,756 (EL. 29 0.0) (SWA + 33.0) 778 (SWA + 15.0) 1130' t C-flof-TM-Esto-us MN.o !3 ) ppnJ:x Vf u Y 7' f,y,

...__.m -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13613 Screen 1 Command===> i

=================- ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE DESCRIPTION: 1-3-350 l CABLE NO.: MC12 VOLT: STATUS: ASB B/M: EK-2B BOP OR DIV: X EQ REQ.: N SYS: MT GPU SYS: 732 BA: CKT NATURE: PWR. FOR L1-02 & M1-05 EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM EQUIP. TAG NO.: IC TP 4KV l EQUIP. DESCRIPTION: IC 4160V TURB. PLANT SWGR. UNIT 1C10 (L1-02) TERM. CABLE LENGTH: i f CONDUIT SIZE: 0 0 f CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F332 TO EQUIP. TAG NO.: 1M SWGR j EQUIP, DESCRIPTION: NO LOAD DISC. SW. (M1-05)(AT 1M 480V SWGR.) TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 4 TERM. REFERENCE DWG: GPU 1D-600-18-1004, DETAIL Z 1 4 W 1' 4 i i J 9 4 i 4 1 i ll #l-77b -6g BeV.o /$ y n. % l' ] I I fif4 Yf ab 10 i'

m+- w

  • .~,

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13613 Scroon 2 Comm2nd===> l

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: MC12 CABLE REEL #: l l l l l PO: ACTUAL LENGTH: DATE PULLED: MAX.. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS 208-157 SPECIAL INSTRUCTIONS: l 1 ROUTING: (E + 8.0) 710,737,738,739,751,752,753 (7D + 18.0) 40' i i 4 4 1 i i 2 i e 4 i i i j i 4 A C-llof-770-EA~Lo -6Y8 4 9 ly. calm # 7' f,y < F 1

-FSBROWSE ASB. CIRCUIT---------------------------------------Oba 13678 Screen 1 Command===>

=================~ ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' quit: PF3 CABLE NO.: MD11 VOLT: CABLE DESCRIPTION: 1-3-350. I STATUS: ASB B/M: EK-2B BOP OR DIV: A EQ REQ.: N SYS: MT GPU SYS: 732 J BA: CKT NATURE: PWR. FOR EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM 1 EQUIP. TAG NO.: 1D ES 4KV 11 EQUIP. DESCRIPTION: 1D 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1Dll 1 TERM. CABLE LENGTH: CONLUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F366 TO EQUIP. TAG NO.: 1R XFRMR EQUIP. DESCRIPTION: TRANSFORMER 1R (AT 1R 480V SWGR.) TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 l CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC E-207-031 1 4 .I I I l s i C#flo{ -]20 -E42PMIB ICfd. O a pp<d> f 3 Y 21A Sl o/ v

-FSBROWSE ASS. CIRCUIT---------------------------------------Obs 13678 Scrson 2 Command===> I

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO:,MDil CABLE REEL #: l l l l l APP R ' PO : ACTUAL LE'.4GTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-160 SPECIAL INSTRUCTIONS: ROUTING: (10B + 4.0) 747,740 (EL. 303.7)U.D. 3233 (H3 + 6.0) 750,757 (H3 + 56.0) U.D. 4509, PULL BOX P4,U.D. 4509, MANHOLE E-6,U.D. 4609, MANHOLE E-7, U.D. 4703, MANHOLE E-8,FD-106-4 (EL. 313.0) 732,733,734 (EL. 319.0) 800' 1 i C -//b ( ~ 1 7 0 - F-. W ' O I E j (2 (=-i / O $ ff<*A )1s s SL

  • f,y

L Screen 1 -FSBROWSE ASB. CIRCUIT----------- -----------------------..---Obs 13739 Command===>

==========

ELECTRICAL CABLE INFORMATION SYSTEM PF11 - To find a cable # type: S ' NUMBER' - quit: PF3

======e

- NOTE: Next screen: ~ CABLE DESCRIPTION: 1-3-500 CABLE NO.: MEl VOLT: STATUS: ASB B/M: EK-2C BOP OR DIV: b EQ REQ.: N SYS: EG GPU SYS: 732 BA: CKT NATURE: PWR. FOR G11-02 TENSION MONITORED 0 MAX PULL TENSION: ~ EST LENGTH: FROM 1E ES 4KV 3 lE 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E3 (G11-02) EQUIP. TAG NO.: EQUIP. DESCRIPTION: TERM. CABLE LENGTH: 0 0 l CONDUIT SIZE: 0 0 CONDUIT LENGTH: TERM. REFERENCE DWG: WESTINGHOUSE 623F373 TO EQUIP. TAG NO.: EDG B EQ CAB l EQUIP. DESCRIPTION: DIESEL GEN. B ELECTRICAL EQUIPMENT CAB. TERM. CABLE LENGTH: 0 0 CONDUIT SIZE: 0 0 CONDUIT LENGTH: TERM. REFERENCE DWG: COLT IND. D11866669 a i t 1 i l 1 1 1 1 i C-//ot-776 EW-oIB (AV. o hf/" />1' i

E -FS!ROWSE AS3. CIRCUIT---------------------------------------Oba 13739 Screen 2 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

=='========

I


NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: MEl CABLE REEL #: l l l l l APP R 1 PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-164 SPECIAL INSTRUCTIONS: VIA: UD. 3006, TRAY 777 ROUTING: (F3 + 5.0) 745 (EL. 319.0) 440' a 1 k e i C-t/ef - 77o -s.+to-c/g ge.v. o P !. 3 ppp.,J: p4, rf ol70

Scrcan 1 -FSBROWSE ASB. CIRCUIT------- -------------------------------Oba 13750 Command===> 4

==========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 - NOTE: Next screen: CABLE DESCRIPTION: 1-3-500 CABLE NO.: ME2 VOLT: STATUSi ASB B/M: EK-2C BOP OR DIV: B EQ REQ.: N SYS: EG GPU SYS: 741 BA: CKT NATURE: PWR. FOR G11-02 TENSION MONITORED 0 MAX PULL TENSION:------------------------------------- ! EST LENGTH: FROM 1E ES 4KV 3 EQUIP. TAG NO.: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E3 (G11-02) EQUIP. DESCRIPTION: TERM. CABLE LENGTH: 0 0 CONDUIT SIZE: CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F373 TO l EQUIP. TAG NO.: EDG B EQ CAB j EQUIP, DESCRIPTION: DIESEL GEN. B. ELECTRICAL EQUIPMENT CAB. TERM. CABLE LENGTH: 0 0 CONDUIT SIZE: 1 CONDUIT LENGTH: 0 0 i TERM. REFERENCE DWG: COLT IND. D11866669 1 l a i j 1 4 3 d i 0-l(&lQ f 446-of S 900.0 k l'/',,J: >>

f. 3 t

5 1 or 70 ^ l'>f s

Scrosn 2 -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13750 l , Command===>

===========

ELECTRICAL CABLE INFORMATION SYSTEM d j================= ious screen: PF10 - Next screen: PF11 - Quit: PF3. ---------- j ------- NOTE: Prev l CABLE REEL #: l _l l \\ l APP R CABLE NO: ME2 DATE PULLED: ACTUAL LENGTH: PO: MAX. TENSION MEASURED BY: (1bs.) ELEMENTARY: G/C SS-208-164 MAX. TENSION MEASURED: SPECIAL INSTRUCTIONS: VIA: UD. 3007, TRAY 777 i ) j ROUTING: (F3 + 5.0) 745 (EL. 319.0) 440' L i l i i i 4 i i 1 i 1 1 i o i t i C-tfot-77D-6 WD'ol8 e 7V. 0 ht*f,yP ) a;>

f. 1 ol1" 1

a f

Screen 1 -FSBROWSE ASB. CIRCUIT-------_____ -________-----------------Obs 13780 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

==========
=====

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3.-- CABLE NO.: ME4 VOLT: CABLE DESCRIPTION: 1-3-4/0 STATUS: AS'B B/M: EK-2A BOP OR DIV: X EQ REQ.: Y SYS: EF GPU'SYS: 424 BA: CKT NATURE: PWR. FOR EF-P-2B EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED


. FROM EQUIP. TAG NO.: 1E ES 4KV 5 EQUIP. DESCRIPTION: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1ES TERM. CABLE LENGTH:

~ CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F374 TO EQUIP. TAG NO.: EF-P-2B EQUIP. DESCRIPTION: EMERG. FDWTR. PUMP MOTOR 1B (EF-P-2B) TERM. CABLE LENGTH: ~- CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM REFERENCE DWG: C-ilof-7?o-EW-l8 r2.s V. o j y u ):x f3 f>p S 7 of 7'

Scrosn 2 i -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13780 j ,i Command===>

===========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: ME4 CABLE REEL #: l l l l l APP R T T M LENGTH: DATE PULLED: l PO: ~ MAX. TENSION PJ.ASURED BY: 1 MAX. TENSION MEASURED: (lbs.) ELEMENTARY:.G/C SS-208-205 SPECIAL INSTRUCTIONS: VIA: U.D. 3106 5 MOTOR CONNECTION INSULATION CHANGED TO KERITE TYPE S-SNS-NUC-DIS i ROUTING: (9 + 23.0) 744,745 (EL. 319.0) (EL. 305.0) 773,774 (H + 34.0) 300 4 5 k ) i i i s i 1 '$~ J C-(l0I ~~I] *w.. r. 3 ppa:e ysh70 s g i ('sy 1 i t

-= Scrocn 1 -FSBROWSE ASB. CIRCUIT----------- ---------------------------Obs 13788 Command===>

==========

ELECTRICAL CABLE INFORMATION SYSTEM PF11 - To find a cable #. type: S ' NUMBER' - quit: PF3

=====

- NOTE: Next screen: CABLE DESCRIPTION: 1-3-350 CABLE NO : MES VOLT: STATUS: ASB B/M: EK-2B BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 723 CKT NATURE: PWR. TENSION MONITORED BA: 0 MAX PULL TENSION:------------------------------------- ! EST LENGTH: FROM d 1E ES 4KV 6 EQUIP. TAG NO.: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E6 EQUIP. DESCRIPTION: TERM. CABLE LENGTH: 0 0 CONDUIT SIZE: 0 0 CONDUIT LENGTH: TERM. REFERENCE DWG: WESTINGHOUSE 623F375 TO ---------------------------------------- EQUIP. TAG NO.: 1S 480V SWGR EQUIP. DESCRIPTION: TRANSFORMER IS (AT IS 480V SWGR.) TERM. CABLE LENGTH: i 0 0 CONDUIT SIZE: 0 0 CONDUIT LENGTH: 4 TERM. REFERENCE DWG: G/C INC E-207-031 t i 1 i I I i i 1 C-tlot-77 -W-olB reFA). o f3 p q.a,, J : >07* fy.1f

Scrosn 2 -FSBROWSE ASD.CIRCU:T---------------------------------------Obs 13788 Command===>

===========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

1


NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

s ) CABLE NO: MES-CABLE REEL #: l _l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: 1 ' MAX. TENSION MEASURED BY: ~ MAX. TENSION MEASURED: _ (lbs.) ELEMENTARY: G/C SS-208-161 1 SPECIAL INSTRUCTIONS: VIA: 6" TRAY i a ROUTING: (9 + 23.0) 744,745 (EL. 319.0) 60' s i J i J 1 C-ilot-7705 CGM.b S'# jpp cnl ! fvy

  • t f s h 10 4

i

Scrobn1 -FSBROWSE ASB. CIRCUIT--------- ----


Oba 13797 Command===>

==========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO : ME6 VOLT: CABLE DESCRIPTION: 1-3-4/0 STATUS:. ASB B/M: EK-2A BOP OR DIV: B EQ REQ.: Y-SYS: DH GPU SYS: 212 BA: CKT NATURE: PWR. FOR DE-P-1B TENSION MONITORED 0 MAX PULL TENSION:------ --~~~------- ----------------- ! EST LENGTH: FROM 1E ES 4KV 7 EQUIP. TAG NO.: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E7 EQUIP. DESCRIPTION: TERM. CABLE LENGTH: ~ 0 0 CONDUIT SIZE: CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F375 TO EQUIP. TAG NO.: DH-P-1B EQUIP. DESCRIPTION: DECAY HEAT REMOVAL PUMP MOTOR 1B (DH-P-1B) TERM. CABLE LENGTH: ~~ 0 0 CONDUIT SIZE: 0 0 CONDUIT LENGTH: TERM. REFERENCE DWG: b w 92A). o

r. 7 k N# #y' 4( ob?'

(),p

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13797 Sercan 2 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

===========
=====

NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

{ 1 CMLE NO: ME6 CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-212 SPECIAL INSTRUCTIONS: VIA: 6" TRAY ROUTING: (9 + 28.0) 744,743,739,751,752,753,728,729 (K.+ 19,0) 40' t C-Ilol-726-Etto-ol}3 Pz-4.o !2 ppjado 07 hp.c 6'0

-FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13806 Screen 1 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

==========

- NOTE: Next screen: PF21 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE DESCRIPTION: 1-3-4/0 i CABLE NO.: ME7 VOLT: STATUS: ASB B/M: EK-2A BOP OR DIV: B EQ REQ.: Y SYS: MU GPU SYS: 211 BA: CKT NATURE: PWR. FOR MU-P-1C EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM EQUIP. TAG NO.: 1E ES 4KV EQUIP. DESCRIPTION: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E8 TERM. CABLE LENGTH: ~ CONDUIT SIZE: 0 O CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F376 TO EQUIP. TAG NO.: MU-P-1C EQUIP. DESCRIPTION: MAKE UP PUMP MOTOR 1C (MU-P-1C) TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 ) TERM. REFERENCE DWG: i C-(10(-770 C{G ggg), o 4 gl* M 63 0070 f/,ya

-rS BROWS E AS B. b r RCUIT------------------------------ -----. ---Oba 13 8 0 s ~ ~ Screan 2 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

= = = = = = = = = = = = = = = = = = = =

=====

NOTE: Previous screen: PF10 - Next screen: PFil - Quit: PF3. ----------

CABLE NO: ME7 CABLE REEL 4: } l l l l APP R 4 PO: ACTUAL LENGTH: DATE PULLED: MAX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-214 SPECIAL INSTRUCTIONS: ROUTING: (10B + 0,o) 744,743,739,751,752 (J + 29.0) 50' \\ C-Ifor ~77g E w.qg MVe

  • E b$

f4M L *f o l 7 o jf,,, i l l J

Scrsen 1 -FSBROWSE ASB. CIRCUIT---------------------------------------Obs 13829 Command===>

==========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

- NOTE: Next screen: PF11 - To find a cable i type: S ' NUMBER' - quit: PF3 CABLE NO.: ME9 VOLT: CABLE DESCRIPTION: 1-3-4/0 STATUS: ASB B/M: EK-2A BOP OR DIV: B EQ REQ.: Y SYS: BS GPU SYS: 214 BA: CKT NATURE: PWR. FOR BS-P-1B TENSION MONITORED EST LENGTH: 0 MAX PULL TENSION: ~ FROM EQUIP. TAG NO.: 1E ES 4KV 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E10 EQUIP. DESCRIPTION: TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F378 TO EQUIP. TAG NO.: BS-P-1B EQUIP. DESCRIPTION: REAC. BLDG. SPRAY PUMP MOTOR B (BS-P-1B) TERM. CABLE LENGTH: ~~ CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: i C4 tot-7?b-E4zs -die Aswo p,, p,. J: x !. 3 ~ (1,p C F ol1'

^' ~" N~ Scresn 2 -FSBROWSE ASB. CIRCUIT-----------


Oba 138 i

Command===>

===========

ELECTRICAL CABLE INFORMATION SYSTEM


h0TE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3.

=====

CABLE REEL #: l _l l l l CABLE NO: ME9 DATE PULLED: ACTUAL LENGTH: PO: MAX.7 TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-208 SPECIAL INSTRUCTIONS: ROUTING: (10B + 3.0) 144,743,739,751,752,753,728,729 (J + 26.0) 40' 1 s n I de " hsa bed.o ?* I ffpub? Cf oh* h

Scrsan 1 -FSBROWSE ASD. CIRCUIT------------------- -------------------Oba 13740 Command===>

==========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

- NOTE: Next screen: PF11 - To find a cable i type: S ' NUMBER' - quit: PF3 CABLE DESCRIPTION: 1-3-4/0 CABLE NO.: ME10 VOLT: STATUS: ASB B/M: EK-2A BOP OR DIV: B EQ REQ.: N SYS: RR GPU SYS: 534 BA: CKT NATUhE: PWP.. FOR RR-P-1B TENSION MONITORED EST LENGTH: 0 hAX PULL TENSION:------------------------------------- ! FROM EQUIP. TAG NO.: lE ES 4KV 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1 Ell EQUIP. DESCRIPTION: TERM. CABLE LENGTH: CONDUIT SIZE: 4-0 CONDUIT LENGTH: 70 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F377 TO EQUIP. TAG NO.: RR-P-1B EQUIP. DESCRIPTION: REAC. BLDG. EMER. COOLING RIVER WATER PUM TERM. CABLE LENGTH: ~~ ) 4 0 CONDUIT SIZE: CONDUIT LENGTH: 5 0 TERM. REFERENCE DWG: l 1 4 1 l Cet f c>(<170-E%c -DI8 p. c> l'. 3 k/f'"Ji v p,p G7 d7*

Screan 2 -FSBROWSE ASB. CIRCUIT-------- ------------------------------Obs 13740 Command===>

===========

ELECTRICAL CABLE INFORMATION SYSTEM

=====

NOTE: Previqus screen: PF10 - Next screen: PF11 - Quit: PF3.

i CABLE NO: ME10 CABLE REEL #: l l l l l PO: ACTUAL LENGTH: DATE PULLED: 14AX. TENSION MEASURED BY: MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-210 SPECIAL INSTRUCTIONS: .l ROUTING: (10B + 4.0) 744,743,739,751,756 (12 + 11.0) 800' .. - ~. ._ OYh

WmW t

$5tg +% -~y J l j t 5 k 5 6 c4 tot-775-tuo -BW & V. O ?- } \\ f yx as): P h

  • tr olio

/

-FSBROWSE ASB. CIRCUIT---------------------------------------Oba 13742 Screen 1 Command===> ELECTRICAL CABLE INFORMATION SYSTEM

==========
=====

- NOTE: Next screen: PF11 - To find a cable # type: S ' NUMBER' - quit: PF3 CABLE NO.: MEll VOLT: CABLE DESCRIPTION: 1-3-350 STATUS: ASB B/M: EK-2B BOP OR DIV: B EQ REQ.: N SYS: MT GPU SYS: 732 BA: CKT NATURE: PWR. FOR T1-02 EST LENGTH: 0 MAX PULL TENSION: TENSION MONITORED FROM EQUIP. TAG NO.: 1E ES 4KV EQUIP. DESCRIPTION: 1E 4160V ENGINEERED SAFEGUARDS SWGR. UNIT 1E12 (T1-02) TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: WESTINGHOUSE 623F379 TO EQUIP. TAG NO.: 1T XFRMR EQUIP. DESCRIPTION: TRANSFORMER 1T (AT IT 480V SWGR.) TERM. CABLE LENGTH: CONDUIT SIZE: 0 0 i CONDUIT LENGTH: 0 0 TERM. REFERENCE DWG: G/C INC E-207-031 l i C-(td-77o-Esw-of 8 %.o 70 [7 f4

i -FSBROWSE ASB. CIRCUIT---------------------------------------Oba 13742 Scraan 2 Command===>

=====

ELECTRICAL CABLE INFORMATION SYSTEM

===========

NOTE: Previous screen: PF10 - Next screen: PF11 - Quit: PF3. ----------

CABLE NO: MEll CABLE REEL #: l l l l l APP R PO: ACTUAL LENGTH: DATE PULLED: ' MAX.. TENSION MEASURED BY: i MAX. TENSION MEASURED: (lbs.) ELEMENTARY: G/C SS-208-162 SPECIAL INSTRUCTIONS: ROUTING: (10B + 6.0) 744,743,739,751,756 (12 + 11.0) (EL. 312.0) 735,736 (EL 319.0) 790' 1 c.it at-7'V49tD -o(8 '(2sv.c>A7 )p7<,*/4 70 p f 70 A }" 2y4

C4tol-770W Mlb l.'.. (lev. O f/ Zee 3.5 / ~ )pp< l} / 5000 7 Karite BT Insul'stion NS Jackat' 3 Conductor in faterlock' Armor Cond. Size Q Tasuistion Jacket Amoscity i 10/64" 8/M" 745 4 1000 MCM 4.53"- l 750 MCM 4.20" 10/M" 8/64" 639. i 500 MCM 3.61" 9/M"- 7/64"- 508= i 350 MCM 3.31" 9/M" - 7/64" 412-250 MCM 3.02" 9/M" 7/M" 333 l 4/0 HQi 2.79" 8/64" 6/M" 301 2/0 McM 2.52" 8/M" 6/M" 226 i 1000 Y Kerite BT Insulation FR Jacket 3 Conductor in Interlock Armor t l Insuistion' Jacket Amoscity Cond. Size; Q l 2.96" 7/64" 4/64" 510 2.65" 7/M" 4/64" 407 500,000 i 250,000 2.41" 7/64" 4/M" 9 59a 3 M 350,000 4/0 2.16" 6/64" 3/64" 295 2/0 1.91" 6/64" 3/M" 217' )g% 1/0 1.81" 6/64" 3/64" 188 l 2 1.55" 5/M" 3/M" 139 i 4 1.41" 5/64" 3/M" 103 j 1.31" 5/64" 3/M" 78 3/64" 58 i 6 8' 1.22" 5/M" 34 10 1.08" 4/64" 3/M" Ampacities based on 4000, no jacket on interlock armor and spacing 1 If conditions apply use the following factors: ) Note: 10" or more. For 500C ambient multiply.89-For PVC jacket on_iaterlock multiply 1.09_ f e

f&c S. T 4 n -- i, l-O CI toI-770 -Eno 4IS Nuclear inemorandum ao A PP k ptW s.g PM I or-9 Date: smect: StallOperdionofAH-E-7A/BFans March,15J 1986 MSS-86-079 Evaluation of Test Results l Engineer', Mechanical Systems Location: Parsippany - CHBI From. (L. O. Carin) To: Project Engineer (E. Eisen) l Attached is the evaluation of the test performed in accordance with STP As indicated in the evaluation, tne Reactor Purge Exhaust Fans 141/14. AH-E-7A or AH-E-7B is not operating in a stall condition for a single fan operation with AH-D-82 make up damper operable (open). However, for two-fan operation, the exhaust f an AH-E-7B is operating at the critical point of the With & slight increase in the system static fan performance curve. pressure, AH-E-7B fan will definitely be operating in a stall condition. Therefore, in order to prevent AH-E-78 fan from operating in a stall condition (in a two-fan operation), it is recommended that the Operating Procedures 1104-ISA and 1102,-14 be revised to provide instructions that during the Reactor Building purging and venting operation, the AH-0-82 makeup damper shall be fully open and AH-0-73 and 86, makeup dampers to Aux. and FHB exhaust f ans, shall be fully closed. This will increase the exhaust Increasing the exhaust flow of flow rates of the RB purge exhaust fans. these fans will move the operating point of each fan to the right of the fan performance curve and prevent the AH-E-7B fan (in a two-fan operation) from operating in a stall condition. ~ If you have any further questions, please call me on Ext. 2402 in Parsippany. arin Engineer, Mechanical Systems LOC:fg Attachments Director, Engineering & Design (D. K. Croneberger) w/o attach. cc: Manager, Mechanical Systems (M. O. Sanford) Manager, TMI-l Engineering Projects (J. W. Langenbach) Manager, TMI 1 Projects (P. Moor) Manager, TMI-1 Start Up & Test (T. Hawkins) BuildingServicesManager(Acting)(M.R.CalbureanuN Engineer II, TMI.-l (R. Runowski) Acco0648 8 9 4330d

G loI-778-E+20-de Ego A Pf b otk' s.s

    1. T Evaluation of Test Per STP 141/14 Summery of STP 141/14 Test Result _

I. AH-E-7A Fan Operating One Fan Operation: 54/53/51 Amps (3 phase); Ave Amps = 52.7 A. Motor Current = = 17500 cfm Total Exhaust (FR148A Reading)6000 CFM 1. RB Exhaust (FR1488 Reading) = '2. Fan Suction Pressure = (-) 9.0 to (-) 9.5" W. 3. 3. Fan Disch. Pressure = (-) 0.1 t (-) 0.5" W. G. 4 Delta P Across Fan (Measured) = 5. 6. 7. AH-E-78 Operating One Fan Operation: 62.7 8. 62/63.5/62.5 Amps (3 phase); Ave Amps = Motor Current = Total Exhaust (FR148A Reading) = 15000 CF 1. 5000 CFM 2. RB Exhaust (FR1488 Reading)=3" W. G. / ) 9. 3. Fan Suction Pressure = (1.02" W. G. 4. s Fan Disen. Pressure = + Delta P Across Fan (Measured) 5. 6. j 7. AH-E-7A Was Started First_ j Two Fan Operati n: C. Amps (Ave. Amps = 66.0) 5) 1. Current Readings: 67/68/63 AH-E-7A Fan Amps = 63/64.5/63 Amps ( Ave. Amps = 63. AH-E-78 Fan Amps = Total Exhaust (FR148A) = 25000 CFM 2. RB Exhaust (FR1488) = 8000 CFM 3. 4. Fan Suction Press: 9.0" W. G. AH-E-7A = 8.8" W. G. AH-E-78 = Fan Discharge Press: 5. AH-E-7A = 1.53" W. G. AH-E-7B = 2.5" W. G. Delta P Across Fan (Measured) 6. AH-E-7A = 10.0" W. G. AH-E-78 = 13.1" W. G. Delta P Across Fan (Suct. + Oisch.) 7. AH-E-7A = 10.53" W. G. AH-E-78 = 10.5" W. G. 4 4330d

C-Ilol-7 7o -F_.Fzo -ofg g o i APMW 8.S~ PAe6 5 or:ey Evaluation of Test Per STP 141/14 - Page 2. D. Two Fan Operation: AH-E-78 Was Started First Current Reading AH-E-7A = 58.5/60/66.5 Ave. Amps = 61.7 AH-E-7B = 55/64/59 Ave. Amps = 59.3 Item 2 thru 7 as indicated in C above were not measured. Note: Notes _: To maintain tne During the test, the weather was cold. required Nil Ductility Transition Temperature (NDTT), the purge 1. This affect the exhaust flow of AH-E-7A/B supply was reduced. fans. H. Mitchell had indicated that during the test, the make-up damper AH-0-82 was partially closed as co 2. This also affect the: exhaust flow of AH-E-7A/B fans, i open. H. Mitchell had also indit.ted that as previously measured, the power supply to the motors is approx. 470 volts. 3. For 75 HP motor the power factor (PF) is.88 and' motor 4. efficiency (EFF) is 90%. Fan Performance curve for AH-E-7A & AH-E-7B 5. Buff alo Forge Co. i Evaluation - Determination of Air Flows and HP Requirements i II. One Fan Operation of AH-E-7A Exhaust Fan _ t A. Using fan performance curve and fan oiff. press. (Delta P) 1. At 8.7" W. G. fan Delta P (measured across the a. Exhaust = 25200 cfm BHP at 25200 CFM = 56 BHP At 9.0" W. G. fan Delta P (suction + Disch. press.): b. Exhaust = 25000 CFM BHP at 25000 CFM = 56 BHP 4330d

CmoI~77s -E+2p-ogg pgy, o AfP. g.5-y,p. Evaluation of Test Per STP 141/14 - Page 3. 2. Using Motor Current Reading: BHP Calculation g a. 6xAWSxVoltsXP.F.xMotorEff. BHP = 74 6 Where: Volts = 470V l P.F. =.88 EFF =.90 BHP =.864 x AMPS BHP =.864 x 52.7 = 45.5 HP Air flow determination using calculated BHP b. (using BHP of 45.5) From HP curve (fan performance curve): Exh. Air Flow = 29000 CFM-Measured Flow (Reading from FR148A) = 17500 CFM 3. One Fan Operation of AH-E-78 Exhaust Fan B. Using Fan Performance Curve and Fan Delta P 1. AT 12.1"'W. G. Fan Delta P 12.1"'W. G. intersects a. Note: Exhaust = 11800 CFM the curve at three 15200 CFM points 21000 CFM BHP = 50 BHP at 11800 CFM BHP = 51 BHP at 15200 CFM BHP = 58 BHP at 21000 CFM At 10.32" W. G. fan Delta P (suction + Disch b. Exhaust = 23600 CFM BHP = 57 BHP Using Motor Current Readings: 2. BHP =.864 x Amps =.864 x 62.7 = 54.2 BHP EXH = 9000 CFM EXH = 16500 CFM EXH = 26000 CFM 54.2 BHP intersects the curve at three points.) (NOTE: Measured Flow (Reading from FR148A) = 15000 CFM 3. 4330d

C-jjot 77e-E 17)~ CV8 Kv. o la FP. s.7 PA 4 5'of 9 Evaluation of Test Per STP 141/14 - Page 4. AH-E-7A Was Started First Two Fan Operation: C. Using Fan Performance Curve and Fan Delta P 1. I Using the measured fan Delta P: AH-E-7A at 10".0 W. G. - Exh. Flow = 24000 CFM a. AH-E-78 at 13.1" W. G. - Exh. Flow = 18000 CFM = 10600 CFM 13.1" W. G. S.P. intersects the curve at two points.) (Note: Brake Horsepower: AH-E-7A BHP = 57 BHP at 24000 CFM AH-E-7B BHP = 56 BHP at 18000 CFM BHP = 51 BHP at 10600 CFM I Using the fan Delta P taken by adding suction and discharge l b. press.AH-E-7A at 10.53 - Exh. Flow = 23200 CFM AH-E-7B at 10.5 - Exh. Flow = 23200 CFM Brake Horsepower: AH-E-7A BHP = 58 BHP at 23200 CFM AH-E-78 BHP = 58 BHP at'23200 CFM Using Motor Current Readings, 2. BHP Calculation: a. AH.-E-7A BHP =.864 x 66 = 57.0 BHP AH-E-78 BHP =.864 x 63.5 = 55.0 BHP Air flow determination using calculated BHP and Fan b. Performance Curve. AH-E-7A Exh. Flow = ~7400 CFM 18400 CFM =4 (at 57 BHP) J4200 CFM F8400 CFM AH-E-78 Exh. Flow =< 17200 CFM 25600 CFM (at 55 BHP) = BHP of 57 & 55 intersect the HP curve at three poin (Note: Measured Air Flow (from FR148) = 25000 CFM 3. AHE-78 Was Started First D. Two Fan Operation: Ik4ngMotor Current Readings: 1. fHP Calculation AH-E-7A BHP =.864 x 61.7 = 53.3 BHP s. AH-E-7B BHP =.864 x 59.3 = 51.2 BHP 4 4330d

.=. C-Ilo i-710 '~E14.0 -ola @Ev. o W' W / 64 Cof4 Evaluation of Test Per STP 141/14 - Page 5. j b. Air Flow determination using calculated BHP and Fan Performance Curve. f AH-E-7A Exh. Flow = [16200 CFri 9400 CFM =$ (at 53.3 BHP) ]6800CFM = AH-E-7B Exh. Flow = 110200 CFM 4 =115200 CFM (at 51.2 BHP) = 137400 CFM (Note: BHP of 53.3 and 51.2 intersect the HP curve at three points. II. Discussion Due to the system configuration and location of the pitot tube sensing element of FR148A, the air flow reading taken from FR148A (FT148A) is unreliable. The air flow indication of FR148A (FT148A) will depend upon the fan line-up. Different fan line-up will create a different velocity profile in the discharge plenum where the pitot tube sensing element is located. AH-E-7A Fan operating alone will create a different velocity profile than AH-E-78 operating alone and definitely different velocity profile when both fans are operating. Based on this, the air flow read from FR-148A (FT-148A) will not be considered in this evaluation.. Note that if this exhaust flow rate is considered correct, the exhaust' fans (AH-E-7A & 78) are always operating in a I stall condition in any mode of operation. The reason for not considering the measured exhaust to the stack (reading from FR148A) is further illustrated in the following discussions of different fan line up. A. One Fan Operation of AH-E-7A Exhaust Fan: Based on the Fan Delta P of 8.7" W. G. and 9.0" W.G., the exhaust flow from the Fan performance curve is approximately 25000 CFM. The power requirement at this flow is 56 BHP (max HP requirement is 59 BHP as indicated in the BHP curve). Based on the measured motor current,.the BHP of the operating fan is 45.5 BHP and when this is plotted in the HP-curve, the exhaust flow is 29000 CFM approximately Both these flows when plotted in the Fan Performance curves show that the AH-E-7A fan is not operating in a stall condition with AH-0-82 operable (open). This also indicates that the exhaust flow of 17500 CFM as read from FR148A (FT148A) does not reflect the actual flow rate. 4330d

Cd Io I-970 -MN20-of s /4 V. O N Y 9-7 haf 7 M9 Evaluation of Test Per STP 141/14 - Page 6. B. One Fan Operation of AH-E-78 Exhaust Fan J (hefanDeltaPof12.1"W. G. (measured across the fan), when plotted against the fan performance curve, intersects the SP curve at three (3) points which provided 3 different exhaust flows as indicated in Item II.B above (11800, 15200 & 21000). However, the fan Delta P of 10.32" W. G. (suction + Oischarge Press) indicates an air flow of 23600 CFM at 57 BHP. Comparison of 23600 CFM to the 3 air flows provided by the fan Delta P of 12.1" W.G., the 23600 CFM is closer to 21000 CFM. The HP requirement at 21000 CFM is 58 BHP. The exhaust flow can be verified further by the motor current reading of 62.7 Amps. At 62.7 Amps, the BHP of tne operating fan is 54.2 BHP and wnen this is plotted against tne HP-curve, three exhaust flows 9000,16600 and 26000 CFM are obtained. Of tne three At 21000 exhausts, 26000 CFM is closer to 21000 CFM and 22600 CFM. This CFM, the AH-E-78 fan is not operating in a stall conoition. flow indicates also that the exhaust of 15000 CFM as read from FR148A (FT-148A) does not reflect tne actual flow rate. C. Two Fan Operation From f an performance curve and based on the measured Delta P across the f an (10.0" W. G. for AH-E-7A and 13.1" W. G. for AH-E-78) the exhaust flow for'AH-E-7A is 24000 CFM and for AH-E-78 (13.1" W. G. intersects the curve at two points), exhaust flows of 10600 CFM and 18000 CFM are obtained. The BHP requirements of the fans at these On the air flows are 57 BHP for AH-E-7A and 51 and 56 for AH-E-78. otner hand, if fan Delta P is taken by adding the fan suction press and the fan discharge press, the exhaust for AH-E-7A (at 10.53" W. G.) and AH-E-78 (at 10.5" W. G.) is 23200 CFM with HP requirements Comparison of the exhaust airflow and bhp requirement of 58 bhp. of each unit indicates that the exhaust and bhp of AH-E-7A at 10.0" This indicates W. G. and 10.53" W. G. are approximately the same. that fan AH-E-7A is exhausting approximately 23000 CFM and tnat tne fan is not operating in a stall condition. However, the exhaust flow rate anc hp requirement of AH-E-78 at-The exhaust 13.1" W. G. and at10.5" W. G. are very much oifferent. flow rate'at 13.1" W. G. (which intersect the curve at two points) are 10600 CFM and 18000 CFM as compared to tne exhaust flow rate of 23200 CFM at 10.5" W. G. At 18000 CFM, the fan is operating at the In order to determine critical point of the fan performance curve. which exhaust flow rate is correct for AH-E-7B fan, tne Hp requirement of 55 BHP (calculated from the motor current reading of 63.5 amps) is compared witn the power requirement of 56 BHP (at e 9 4330d

c-not--776 -e %* - oI8 gy, c> APf,85 jyat 9 # 9 Evaluation of Test Per STP 141/14 - Page 7. 18000 CFM) and 58 BHP (at 23200 CFM). Tne comparison indicates that the calculated 55 BHP is closer to 56 DHP (at 18000 CFM). W is verifies and indicates that the exhaust of AH-E-78 is close to 8000 CFM and the fan (AHE-78) is operating at the. critical point of the curve. With a slight increase in the system resistance, AH-E-78 fan can be operating in a stall condition. Based on the above flow rates, the total exhaust to the stack is 18000 (for AH-E-78) plus 23000 CFM (for AH-E-7A) = 41000 CFM. This indicates that the exhaust flow of 25000 CFM as read from FR148A (FT148A) does not reflect the actual flow rate. IV.

== Conclusion:== For a single fan operation, either AH-E-7A or AH-E-7B exhaust fan is not operating in a stall condition with AH-D-82 make-up damper operable (open). At For two-fan operation, the exhaust of AH-E-7A fan is 23000 CFM. this flow the fan is not operating in a stall condition. However, the exhaust capacity of AH-E-7B fan is only 18000 CFM. At this flow, the fan is operating at the critical point of the pressure curve as indicated in the attached fan performance curve. With a slight increase in the make-up air system resistance, AH-E-78 will cefinitely be operating in a stall condition. These exhaust flows, however, are based on the make-up aamper partially closed as indicated in tne notes of Item I above. Opening tne make-up damper fully will increase the comDined exhaust flow and move the operating point of the fan 'B' to the right of the fan performance curve (away from the stall operation). Therefore, for two fan operation, the make-up air damper AH-0-82 must be fully open in order to prevent stall operation of AH-E-78 exnaust fan. V. Recommendation: Dased on the critical condition of one fan in parallel operation (two fan operation) and in order to prevent one fan from oper.ating in a stall condition, it is recommended that the Operating Procedures 1104-15A and 1102-14 be revised to provice instructions tnat during Reactor Building purging and venting operation, AH-D-82 make-up damper shall be fully open and AH-D-73 and 86 make-up dampers to Aux. and FHB This will increase the exhaust exhaust fans shall be fully closed. flow rates of RB purge exhaust fans. Increasing the exhaust flow of each fan will prevent AH-E-7B fan (in a two-fan operation) from operating in a stall condition. 433t,d J

<~~)I d I - 7 7 o._ g 4. g g * & a i 2 ATAf N:E 4 o r 9 - i p, p. a. ogi ~ 1., Os...t :....0 3.o...__ _ r -.- _ d.i. 08;. CCT I c m ;p

.upy;n. u np s e s s p..

4.. n. a p. #... q... m.., e I i. 4 <r

p;g.... %' "..
p 4..:i...R 4.. i

.c. 9 F . p". s". 7*. 4'".. ....i...t..."" + l T Ji.i.1 "ji.n..

n..!i.g...@.n.1 ' p.'

'....k.:.m... lp.MUEi3Gid-M GG:Idrl:i.p.p.:.i..."r.p.q:.u. a. g 3, g I n......,. i. n f.i..

n..
i. j n. :. p.

a. .....r. iY..i. i.O. lD.i..: n...a.p. {H..U{i_ii.:_:.i.W.,._. ". y y 4 liti!sil:!i!N. :i}i.!iiDii!imdiniliu:

:s
  1. i @g._1 ii hN giggggig=upi _ut== q ce EE6 EMi ;dMi s j

? 8g .e. 3. o, b,.i ' tilndigigMggg julg: g a; a , a..n a m.,, m._.2:._ qm..p.. .. a..e. q=.s..idu s E E =., _=_sa.i_iis. u..i..hi r...-- c i .. u q -il d#. L ..... k..

==:r:En=ilm...i ..: 3 e t an ni itri 1e,,... X.Wih- @ ~- i.-Mpui.,J..Q W*

=n =m 3-g n

o m .:i.u,=- e4..- 4 p g miE!= n i 22 t it t 3o g p y -. a u. au m un = n y r.r!.l:u:; /-n. g j.n.m..itp*,,j,j eg .j n.

nga.en : ~

u.;.lpn:i..: :. he - a 1: um unj n ,;k:. g iil H:.!L._.. E n ,n .n e 8%rh.../.

W u.

a c h, ~ .n ii "Mt:m '":i.=un ='n h it: =m :. n ggtr t/ nn n <m2C: 4 m .e ,@;p ipfij; gj,,,g[ ;iii[g .g ,jj: 3 ti !!!!H!r";!nf ;t;j..ip! .. ;g {}. i g lit :~"...il.....p!!I....!Hi iB "@ID,h.. 7a l- !!!il!!nli!!!!!it niilinW!!!!! HH '. i#MiHMi!!!yliilliliisijig 9.iin M R ; Q J.. !.!.::. "F.p::..I.!..! H. i.,/. ,i ( l ~ .. : pH.. f-.,:E. yi. l.ii.i.}H..i.i.i._i_it.!,i.!.!i.i""-.,. 3 c 1< C. ,g.i.n.ih..:ih..t.jHinii.li.ii. ...,.i

4..

u.n- ;;< :aug pfn- :-di:ne..:'i::n. p -r - E(.g-(! p f. - -d : ~:._. u.- QC Y n.gn:.d'An1pu :~ 1p-n... n n::

n n:

s u. .su

.m n

t i !.=it.E.E.Ei i.i.E..JE..:.15 i.f.:3 i_f.p.i.E.1.7g g v $i!. : g*

K. :l.i.Q. i.H..i.E..

rii.{i.$.. H..E..('.F. l ! ~pg.43..f i b. r-N.,,. N %b airr m W.. d..n.m...,........,n.... l. - r s CX: g gi. ., p 4, r :pu t : :pn: i

r..

r - ir

u nn g

. n n "i. r =.:. s ' nUH : m ::n esm W mrre men. mm t

n. m g

6.8 p. M!Emm - t :u = M 8g aisn w .mta. =tu Ig,Ig-W .: m.: e:: p nl:.. 4 r: a a i.p:i.0

s uu. :t:. un.

.,y ':- am at m w:ku. y g==nM =: g ml:u~,mk: :" u 9 e

.:p:..: unp~p-g9 u

.m n: r:j:njpg>: m -. of i i iupq pw mA,. L ~~

m

. ". i.t, .m ~ . t i...n. n..:.:t.pI I .mj = a :u:ll..h.u... 1 y h.,h..=.H..n. . Is $ .n n. .@...h.... i 2: @j 1.].g .., u. 7m... j ! 4.. .n j.i.

i. q h.

K

.r.

.a 5 p. ...;n..j u..p. j .cc e, p=n}ii? iii V, t: :.:- F. i. i.i. siihi:.1.Fi:lp ( n.; % Eiv H.gi.in.. : i.i.lM."_nM. i.i.i.i.F. - j!.i.t. i.i.!.j ii.i.j M...J!.< 2... %..

p....4

~.

i
h..]

i.n..jlp. - a g* b.j i : i t.i.i.h..i.:.i(@jjji i.s..t p.:.i i .j n..i. li.i.n.. i. 'I 3 iill NikiE iiff hiWi tia iWr 5( C"l3 p-C2::*-* iMifi8Ml-biit" iihlilii h ' itii< $4M IN !Nildi liii D' ' i.; siffi!F Niihd! iiNiiii! INilIW !Nl? 4l I W @O :::: i

p. r. !!.D.!ii. ii..!!hdi. i.i.H.g H

l p..

m.. p. ii.r i.i.i. c m ii.!.i.li.i.h.. p:i.i..:ij tti i.P. :i.i. !. !.i:

gn..jup:i i.m. p^. i.e. M. n., ;p,un ti.p g..j

n. n. l" i

r-u n %= el Tra .un m n-1 1l>lqlke .une a.a W !.jp r i . r m u ....,.. - -n-ii - r g!....i iiq;;;,.,, gr!.j r.....Jn: in))-.'..lii;garliiuli.c hpl!......)t,p...,. 5 --- <g. : n : 4 v W ! N ;! W" C rn t! . o. =.... h.,.. : n. :n.,.. l.=.. n :. q2-N g$ i t

t......

l.; I_._ f h. u.. y v. r.'w ..u. 1c :.s.m... ,u.n.. =... ..n c a u. h 12. tu

  • 3: b

! N!OWilEINN! II'N *IN W' : W g.. i

i.hih *:

ii .,u n.li i @t h n, u. h s.' i .. u..p......... I~ Ii i.h..ii'f.l..:.i[

i. tli.f..

q qi.jic gip i n. I ta i.n t.iqi.t.u..p t ~ m. 4 .a na w. g, 0i. h: d. I t.t: .e v " r: m t-ih u.::"N nu lm r-n e .m e tri 4 u in: apury: as cc Timine my I.

l. a unpip "-di n a p"m ~J a

g n :a:n J o :m a

r. " na "n:

r o Ipr.hF"/. Emjpn n r . pe llt..! One n u I

l. i hjl

.m u ^bgW Iil95!h!!ill!b g I!!!/I NillIN It!I!N!3 'I k Ni N!NY'ENNNO INN N u u "0 ini@lilipikitk Oin iilutiiW W!N R td Hii iMIMkkiiN" iiiiMisi!T p;p.n;w: :0"!!jpJ:%o.nyit"ihjd. jwgri. p.j,l [ f lij.jiji.jitj i.jiijiiB "HijjiEdi[Q. ni b .n. p p 3 mt w.rm 1l ll! !!!!!!!!! lild/i !ll!'l!E lld !}h hMO! II[ lli M INNIO!M $i lim E! ' h m: Miiiii?si Et!!i !!ili!? !#iliii H/iiii lii@ilui fHiIdiM iniM ENiili5 MtUM"$ N n. ;; u a::i!.:0"ndt: :Np":r a a: am= w f....PfiEiHt fili' N, im p,,mpmb=u:gi!.ym mc3W=ElEiK~ ;

Elip isE BH 13 rem =m- -

m'.,;:pu.W:.ug yyy.. M;' ~ ns m:c a m 3 4.* 3 & #lP ~ ~~ f & d llll .f.,

%.T *.,..

.. m..,

.5fsi '5

k 3. To( d-//ol-778-EtZo-o/g 2Lv. o AffMI){ gh 8" l #7 / To: Dick Bensel Padmanabhs R Panicker, Mike Kapil, Rendall C Ene es: From: Tom Akos Dets: 09/10/9609:50:53 AM Sobiest TSI CABLE CURRENT DETERMINATION Per your request en 915l96,1 performed a DAPPER voltage drop analysis te determine the current in the feeders to meters NS P 1 Al1C and NS P 1B to address the TSI issue. Note that NS-P 18 is normally not 33,I shifted the equivalent lead from NS-P 1C to arrive at the current. The fellewing senditions were assumed: 2 Auxiliary Transformer Operation, Plant at Normal Lead Using DAPPER Normal Lead Models From TDR 995 Rev.3, Grid Voltage at 232 KV.The following are the results: Meter TerminalVoltage Feeder Amps NS P 1 A(RED TRAIN) 450V 143 A NS-P 10(GREEN TRAIN) 440 V 148 A NS P 1B(GREEN TRAIN) 440 V 146 A Please let me knew if you require any further informaties.

/ 3 A ls 1 & ~ttpl -770- B&2#- Ol8 R2 u. O To: Dick Bensel es: Padmanabha R Panicker, Mike Kapil, RandaR C Eno D 'I A' From: Tom Akos j Dets: 09/11/96 01:38:30 PM ] Sobiest DC-P 1 A FULL LOAD CURRENT l Per your request on 9110/98, I performed a DAPPER voltage drop analysis to determine the current in the ) feeder to meter DC P 1 A to address the TSI issue. The fellowing senditions were assumed: j 1 2 Auxiliary Transformer Steady State Operation. Plant at LOCA Leed Using the DAPPER LOCA "A" Side Medel For The Red Train From TDR 995, Rev. 3, Grid Voltage at 232 KV. The fellewing are the results: Motor Terminal Voltage Feeder Amps l } DC-P 1 A (RED TRAIN) 448 V 108A Please let me knew if you require any further information. I l 4 a i t 4 i i 4 O W

- _ _-_ _--- ~ _ - - - - - - - - - l C"If oi-776-E41 o -ogg b EHM 8 $ fp66. IoF l W-2.o - LT4 '7 DarA SOEEr 17.( kyu.vu nce xa.va mn= m-, nm snm-mm m-- m sease.., um - --- u i i u. - weca

newm, ussi i

PAR METER I CRrTERIA VALUE 1957i E. asaw.a =ectoss I amma tes t./Eg ry as+ aoves r,.wJ,, -,, s ed ~~ MSb s 4 lus iy d/7t~1 .a / t'S.4' 4/a4 4. i aose v=urr a rst i ass m otes evnene tono cess os 94/ .sFsai gg,3 l .-- no nomes emme. A/4 mm -i. I d" /o s s SF =

. O I ( 7(,5 ver= o tam mamu u.

cumus N4 wi SSfo m= ctoss taas man mean ten g> < cop,. o gs 4 sag o+ I ver .mo Las psen5a r af disftces.,ed er *s n$ I aaenece cunnen ts I /.r ,.ArI /,,,.,f Mg g l A avenans r - cumenopen te j avenansnuessecumen noms to l asan --cumen eso etens mm un uo I d. tV.S I M , gg g f, f,, /c g iG.// Ime,1 O CO, i 2. oir. 7+ o/'*** nem -cumen-naus mm un .ns p,,, g g,, o fa g-a n nr.cse aos m uo . vi s l N. (y.ns ( 4* i one veemenstem am ins m a auss i J#. 7 ses '7'u aV/**s a Y ^ j ones smoe tuss as osmoso a see.* m u l 25.SM ses.] g, g j,g,,p 7, a y aceserno e vem asosmaan a sec.* a s t.7f.24I Al l 124lN S'/f Sfroj /k l'hel'dA one uer owsoe seurenamecem I d4 w=rwm ~ ser no us. ass l cas,y sr % l me se 4 s. o,,,,._.. o,, u.s, e.s u. o i cu=s saca= u======e I

  • W la

-.r m e.16 y, N. c.u,.,.af asone eacciam usesensame I M thi se nose sancciou unneensemus d' "j* '4 #* S S* 8 A. 8-l ,,[u, e, ~/b s'**yI p I c^88 l i omeu re ssvene i-ve=*e w[m fu/a, beCS I""C ] noenveastree i=ve=*e I /.5 I sh.I ,d: aoss assi ar===n a ver een I.o 909 I-a I I.N.drrisolldy a M a% MS/*f IM-d nous oms =.= toras. m etoes vanous a tur -ee I t C1 l#1tl aoss con 1 en omatm me v.a cw:ve stei serususen

  1. .7 l

j eensrw ees sassest I af lebl 4 - ne =ve norasuuse I a4 II I i tooss e seasme eorsanser i a4 I s%d l toose sem isur tocmatt

e. -,on e - s.,eso a

aanmass son most wave pacton comarr op teen een 1 I I I cae smons es rte op end m i I I i ctoss stuosa epactop op pe m I I l ca e rs e **ss m t i I i va6ve putt sr.ones one ess .l l l i va6ve ata.t a.womas etess ase emnte een I i/ l VI ^

The p. ;;.mo of true chocient le to provede a Ist W Emme 9ts must be J.,
tur'iperstmy c.,, m _,, _., restsw of MOV tusEng. As Rome must y crectand and conceme resolved h a amner fruretur. This may hohele relmatig e mero dalmAnd restuur er e eenmoral ressoas.The f Emespenne to arvyIrve tem are to
must Irwoul each one esm in sie prestiled speos meestig test he lies redsmed tie bem and lewid a to he escapheleL be numeered and descreed h the esmmeres esemen. Omar stannalene may asse to recensed h gu sammares essman.

ADomOM4L enasyy3mpWWGR C1101 7304380002 REV 0 *GL 510 MOVE, THERMAL OVERLOAD HEATER DETEMbsNATIOff' C1101-9004310419 REV 4 "TM61 WEAX UNK ANALYSIS

  • C11014418310413 REV 4 *NS V-4 REQUIRED THRUST CALCULATIOff' MEMO S31044 043 *AT7215 & BT3333 La5 TORQUE TECHNICAL UPDATE $542 TORQUE SPRDIG PACK RELAXATIOW MEMO 531040 201 *Tle 1 VALVE THRUST *. TDR 7M MEMO w as nnee *NS-V-4 OLAGNOSTIC TEST
  • SETPOINT SCREEN MEMO 531042 233. *lTI MOVATS DIAGNOSTIC EQUtPRENT ACCURACY AND TABIUTY" EER 954157 "MOV SETPOINT SCREEN UPDATES
  • m A_

"asm Ylf (~~~ ~ e-d_ 8.zf',,9esecut one f/&dts-n v ( i

f.6 & E f" S**=floM f%i29. 76 TP5'5'1P W ' N '~ ' ' " * ~ W - n 'f.' pMEp ~ !il ' -~ ?. /.- - (3yo 89 V4GEjsc pD f.- L I n .r.i@ ' WP 5. n 3 S. R ,,. y s,. , S. y s s-.-' - , i tr.pAtlllr5 rme car.re. ::: pp;t w e Fi!.tre Tr.*W'- f';;* J. Stols,o Snuthr rn California Ediser (utgar.y ~ I los Apr.iles, C4iifornia Ad K T the ellor'::lc curren* v:hich rr.a; be carried by & 1.ic (which generete: negliyi!,le hea't) iri a trey. yhe c'ductm site cable IJs twen thororhly invcs. All the above v:rictsics can L.0, and arc n-Li; tr c in i.l.;st every corepinable tyre s.f cahic in. co.arited for in the.r ethod c%scrited hereir. i stol %titn. (..e crea hich I is nat had rn:ch cttention u;. to nr.' is the allowable current 0:ith can bb car-FROXUt ({r!MY!r': - TWurcv re u e r,W - W8 WLeu -~ rted by t a'. les tr. cable trafs. er tro:se,hs. This pa-p er r prewnts a cogictcly wnaral r..ctnad for calc;;- 1he firs of navy variM6 ta le cyt. ten. lt Ictir.i ths;.c;;wi tics o' cable.: in cable tr6yst it has the cxt:nt it, at.ich t',c cgbbs it, tcv trty are I beer, corived fre-elementary heat transfer theery ar.d prehed. It f r. r;, cars.nt tMt cob!:s 'in a scry en aly ver"icJ with rany full-scale ter1%. The erthed 10.50 ct ran';cNnt art essent'sily irr:aerse' in :' r sito s th:t corrently puolished rt.tp titics for strall which can freely flo.at thro' p. tre vacant fpact in ct.bles ir. hi;'ily filled trays uust be reduced, i,ut the a tr:,y. As the spaca betwven oMes is redt ced. large cable cacitir:s can t e safely it. crc;. sed, by r.act.ing citt le ricser to;.tler, free flot :.f :fr through the rect: is tre Aally resteicted, ic:irg INT C 'E.i:C'! this to the nuint uhe-e adjacf at ccbles

    • e tasch.

ing cach cther on t,11 51425, i;ic cc stim.o;.. f ret in the W dies ablch have Sten made on the cur-space bets.en cuter,1.ece:r.ts I,rectically ren-rent.arrying.sbilit/ of elettric power cahles, the existent' cud e::ly sri.cIl cir 1,ncLc"s remain t,et,.een r.ut $1rple et.ac of one esb'e onerating ir, air has 1.hc cables. been eroc.1? d :e multiple cabler in a.ronduit.I rulti-r!' c olcs er 0;.r.duite in 't ackd bar.xs.2 ar.d several P.pplyin'; this rasonirig to h:tt fics from c!bles ~ re;les p.'110d :ni, s.tect racways.J The results of in t. cabir: tr:y w ne thet t Icese rect i.:g is re-10 esc st.,di's arc lr.corporated to varic:,5 c.ttents in t irable' b.cc air (t.c4 etureliv ficw ac:;ro ace. tor 5 tLe I.lff IP5f, Ptar f eb;r Ampacitics end t% cable. Ti e trat di:1 th;n ri.- out of t'" p*> and itcticr.cl "Irctric Cad:. be rcplaced with rMar air fier t?.c t,att:.. k'r.- ctelts become tightly pache:', there is no air flat ir.c ?qct.itics. or c'eratirg factors, which have throt.gh the bandiv. Md tht.s Unt cer.not t e urried teen e'ctarr trag se far are for cables v.hich are in . cut o.' the buur:le t'y httural s h flow. lo fact, the' j,teg tJtT >a*e Oc e fcre of e Orderly trearge'::enti a furthur sim-or.ly w.sj for heat to aleet out o. th: tich bWit is g plifice.!or. M & u bm-re i h he ti'4-d ;a the by he:t r.rnductir, t-ea.g tho ;a.nclu.aratf or: ci a a ,.y pas t is eli "e co'oxt, - r ec@rr 6 mra w w ie ble conictJr!. irshtti0n. and lit pickets. 2 3 r v t.ed_ety tM* si plifying trectment can. Esf te ws ti'ie ..h-n erm.tartna atiracities ei ren-Cable em: cities in rends.0,y 'illed tecys esst be bPsed nn tne ass 6c ptir,n tait etMes art tijatly a s cv uy arrange: c.:eles ta tr us. ~ packed and that w c.ennot. depM o't heat :Lin; A typical ccDie t-ay installation which is feand carricd :rJi of the h= idle by ir flowinC inc. :P in tht. electrlc rewer !;tr: ration and distrilution in-it. Witt.out quretter, this tQhtly pacie.: cc: ci-dat try un te vi%!1 ired as a 3 inch deen '4 in*S wide ticn does oct ces. Un evara c !.le tray..a.t it c:es rretal treagh certaNne arvAs.re f rora Mr to 400 ran-randconj (,ccer of.er. enou;5 that.for safety.ts:f da-la e rra' --L ' H 11e or ru s ti-conductor nov e ano caic trai. rust h i'3.jp cd cs irc.qh it m gf.g as r:rging ir, size froa dl2 415 ta 7tU PC:. Le L; tightly per.ci. It is not Over, nectssary t ec- " <: 4" This errey rt c;;les is usually sccured alco;; the ca-ts.r-t tiac r:ntire ed 1*c tray t,e tigrtly crct ed,1,44,;e @ t,it t.:y.:4th sc.6 tiet to pi 6 ent tne c&Licf, aircacy e n 9,.J iri d+ h F e-

  • cb:;t t r

.u ir. :* es i s < c - in tM toy fr. shif tir.; if ed;.';tice.al cablu si m.i t T i N.r t.* m od ;3 4 *c snt u sr. etm r.::,c. si be ;vilro ie.to :Se traf. irr4 n a em t r e t i r.1 " U-t r.:. ble! are it - " 1 i " C's- " o "v c?oun-DW -cc 3 1.e : e c.g. rcett t i vit ene -ei tha' rir it 'dith th.. u 't :ri:;.9 of ticSt Ocle Preli es tat-e .e irr.ict+ t r.r:r e.te c.as ? e f r e l o t-W i th lithed, it is t;,st. a n,ui r e d to G t ermi a.e t. p r. ...;.>i a, s -. c... Ua nom:1 vieration v.h*ch is h sit ;ergrativ.: ' u st"ii'utra. ir twe tre (ress-fr:ser.. n ric:t plarits, cyt.n re,y of the initially s:cticn. Toe n:.:.y c;. :c sihes pusihlc..ith

  • :c:".vetoe, ard edi carr;i:.;, a twse etMc e rr:ys c.in Lc r <r:c.ted to settle ct.c t'....

si nic vd ra16 te cer.: :.. or. less rrth dcting to cir floit, dii forent c.'*r. *.* ar 2 4 rer.t y Mts it tui:. ci.f-l ileult to Hrec.lle..dle cur. cat < ca %F 4 kverel oth?r variable; tend to c6rplicate the.'c-Ntcrc :.'r:us r'i::.rra. H:w u r. Ic:Al%.t M - .g % te er inttic. of c*os. cities cf cabics in trays. ',n e of pecaler: ' rom tne : t.."it oi nt t'W 6.c do. :t. e.e - th? rcr; erparei.t cr.cs art the rulin,*,'. of t. trty, env hnt spats lp the cable tr y, tne pret:W ve te h # Moi versi ty E.! 14a.'.h.g (.f : t ic s in a tr :s. det " toing s c.I. e d. 4.of 9.75 We ict.at S Li ths hattqt 5;'ot our the tr;y cras- .;t tion. and R. c %..t cf p;..er c:V.e (wh kh :. r-liot :.;;ct. in a F 3.wl sys icx tre pre..se: L.' ct. t.tc.t} ia pre ort'.cn to the o;ount of es c ol cb I Nally int;... !m s o;rces. tt.s. in, eu ry. r a 1

C~-Its i-77o-rey Zo -c/g j GEV. o NF 8.9 PuQ, new i of the cable tray we must climir. ate such conditions. In other words, the heat generated in cycry arca of y%y

  1. N a cable tray cross-section r:tust be uniform. This is f

N I it.e Ley in the entire prohltm of ampar.itics for ran- ,/ CAL 4LES g i de,mly arran;ed cables in cable trays, and the concept of unif orm t. cat generation cannot be over.cmphasized. ,/ s 3, ggg CACLE Consider figure i shnuing a hypoth^tical slice of l \\ area f rora a typical, tightly pacted cet k tray. The g j \\ / \\ N' s' s %Y \\ Ceffectew ' Figure 2 - Physical Size Comparison of Typical b.t-ber Insulated Cables. they are all f ated in a common rer, dor.. tray. Ac-l tually, all cables should be worked unif or.mly hy ricure 1 - Cross-Section Slice From a Randomly Ar. coming to the same operating to:rperature in the tray. rar.ged. Closely Packed Cable Tray, ANALYTICAL _MODrt beat intensity within cach unit area expressed in watts /f t, per square inch of cross sectional area, Whenever cable amp:citics can be es tt.blished nutt be ec,nftant all the way down to the smallest . with calculations instead of an cmpirical approach.' I unit arcc i Aide the tray wnich is the smallest ca. a better understanding of the overall heat tri,esf ar tie in U'e tery. We the ref ore place a-pacities of snechanism is possible. A simple anclytical selation cabl+r. such as shoen in Figure 1. in proportion to to the heat transfer from the general, hy;ott4ti W. thu overall cross section.1 area of the individual cable tray in Figure 3 has been made. and 50 4 caules, irn.luding the condactor and ir.sulation. rather subtle findings from the analysis i.iel t,( pointed out. J f we Inow the allouablu'hcat intensity for a given cable tray, we can immediately place ampacitics on re ery cable in the tray by knoiving the cross-v scetional area of each cogosite cal,le. Thus, th) Drol,ltm now. remains to establish the allowable heat h intensity fcr various cable tray configurations. h i W 8t Th'e reasoning presented thus f ar is~ sign' ficantly dif feri.nt from that us'ad fot Cabic tray ratings we To sho. this, consider a large cable tray ATg #'8'e [' cow i.s e. randtriy filled with, s)y 300 tightly pa: Led 600 volt cables nf asserted size!.. Actr;rdino to the ratir.as ATc publisbad in fe*. even t.rtle in this trav enust t c tt c m ity for a 3-ronenetar ca-C ABLE MASS 3.r r u j ' - 2 e f t)e in air. J A.*, figurc 2 sho'..s tnat sesen di al. WilH UNIFORM p,,,,' \\ c m r 812 ca'Aes ca. 00cupy abr,ut the same erca HEAT GENERATION rie. /A t ele-Co:aparing the heat in, tcr trej e' whic, it ryeras:d witton tre equal arcas of cables Figure 3 - Sinplified Analytical ltodel (ce Hert ore heat is ircnsfer From a._Tichtly Pacted Cable Trey Con-m b:,ger. trat thr e to h th " . tmoem d in W v.. n e :.t e rw nn ru o t.n as in a yp sic;h ,/J c:ule, ever. tn.u9h the tw configurations e o:cury ti.c sano u ca in the filled tray. This effect Before proceeding with the analysis, b.o ad-T he' f i rs t / 15 eucti; whrt we want to climinate in a cabic tray ditional conditions n'ust be srecified. instellation tecause it is possibic to get bundler. of condition is cables in any trav must be instau gd This is to Pre-5: all utles which produce locally intctesc heat at a constent, or unifem. depth. sources and result in hot spcts within the cable tray vent cables trom being hetced on one side of a tray # Ei""' with a resulting vacant srace on the ot'acr side. The second condition is to assurne, at firt t, tj,1. ' ', un'ch inis co pi.rnor, can te rude over and ov r with W.mm in the trav n e m xe hal)ill unifor ly contrate heat tarovo.out tN tra.. Tht re-sul,. p sent nfig tics ii.,r ca!.lcs in trays.seni, cord.: tor site cat its rre alio.ed Thesc'conditioni allow the renhi rature of cele tae p to ' wc/t ;he:i.are r then 1.c large 51:'.' catit s v.hcn 5* NE

C-Itb7-770-24tc opp huo MF F.? Fw 3 eto ta be treated as a hemo'tenceus rectangular mass with The temperature drop through the air ( Ta).- uniform h' at generation. obtained f reu a h' eat balance between convective...nd I'.cAdarasgn heat flow. Using basic equations fr<e.. radiati The tc;l IW is to simply find the allwebic lcat we find intensity (0) f or trtys cnntaining variahic amounts of cable. Once we find the beat intensity, the heat W = hl.i.Ta + un c[ic -Ta9 (fd 4 s which can t e cenarated l'y rach individLal conductor where hA aTa = the best loss frori the tray due to (q) can be calet.latcd f rom s convection 4 4 q.9 (1) oAst[Tc -Ta ) the beat loss f rom the tray dot-t.. radiation whetc n = nuiter of conductors in cabic and h = crerall convection heat transfer :o-A = cross-sectional area of the n-condu: tor efficient for tray ceble ' As= surface area of cable mass rer unit Q = alic.nble heat per unit area generated in tray length the tray o = $tefan-DoltZr: ann constant c = effective thermal emissivity of and, of course, cable mass and-tray surface Tc= average cable ness surf ace te per-2 q=1R (2) atarc where ! = c.adreuir ellowable current for a conductor The three equations (4), (5), and (6) have three un-R = a.c. resin ance of conductor at the max-knowns and they can be solycd to get the total in um oteratinn Mersture (.f the in-allowable heat which can be generated 'in a cabic sulaticn materias in the cable tray. tray (W). Since equation (6) is quite non-lin'sr, e the solution to the three equations must te qb-lleat gertrated in any _ tightly pacted cable trJy tained by iterationi thus, for general applica-nust pass threw;h two me.11a: 1) the cable mass, end tion the solutici for W is done most easily on a

2) the air irrmdiately arornd the tray. Since heat
computer, flows throup. the n.edia there is a resulting temper-through Having the total heat generated in the table ature dro; in each, as shown in figure 3, t.Tc the cable". :nd lTc through the air.

tray, the heat ge'.eration per unit area is sic: ply N ~in dete-mine the total amount of heat (Wj which Q. (7) (d)(w) can be dnsiracd of a catie tray in an amuent tem-peratur e (h.), and c'aintain its highest tec:perature at or beleu the operatir,q ternerature (T.) of the The ampacity of each cable in the tray is fi-cabic insuletiun :n tna tray, we must limit.the sys-nally determined with cquations (1) 1. (2), tem tt.,setature drop (;T) to TMORETICAL REstf.TS t.1 = Tm T a (3) The solutics to equations (4), (5), and (6) for Th? systen terperature drop is the su'a of the W and several degress of cable tray fill will result drop throu;t the pacted cabic r.inss (.Tc) and the drop in curves sitnilar to tho c shown in Figure C. It throu;h the air (;Ta) arourd the cable tray. is ser n that as e= "'la tr w e r ent fill in ' L creases, the alle..able beat intensitv decream due Thcr2 fore f to orca ter f e"ne<zittre dre in the tiehtiv ** M cable m t-Ficure 4 was made for an effective aT=.T nT (4) M theraal resistivity of the cable reass beir.g e a 400'C-eri/wath erd t.he test reruits to be trescried a The e c;: t, rough the c&ble mass (t.T l can be ob-lator show tnis value to be valid for eitter ru'a. e tained f + cr tac equation given t.y llolcar.5 fer a rec-ber or Lolvethy1:ne insulated cables wnich ere tag ls r '. lab d th uni font, internal heat generation. ' tightly pacted. ~

Tc = %

(5) At this point we must define ceble tray ;creent fil.1 as the su of the cross-sectitnal arm c' *ll where. = i'f active ther.'ai resistivity of cable mass cables in tm. h gincluding renouctor, insula'.ici, d5 rep de of cable mass and Jacket) divad by the to=al A vd l abl e. e r*'u - serHnnal a ea in the cable trev (width times r w = 'vidth of cable rass and tray W = the total i. cat generated in the tray pcr lunght). It car. te seen that a cable tray which is unit lent,th pacted es tight 4A possible and level across the top is filled to about 75%, because about ?F. cf Equativi (t-) is sgcifically for cne dimer.sionel heat the tray crea is void area l'etween the circular firc out the top and t;cticr cf the tray and it iemorts cabics. Fra tr.e at eve eerrect trav fill M-

  • ganteet f1(< eut the si.Os cf the tray. This u a inition it is emr mt that o 0-irch dcen *M rea list i c s ii,,li s itat w nnicrr a s,ccur at? for 6 _

2T (111 Ms th? san.e mir of eacted crt le es a l i n ch e nd s. i s* *.. c ble tray,. 3-inch 7 cop trn with 406 fill. "'E-3

N/~770-Em q 1299.o .W M [dcli Yef /p an cmpacity of 24 arips; the same conducter insulated with crosslinkcd rolyethylene would have a diaw:ter of only about.lf inches and therefore, fron. s\\ equation (9), er av,pacity of 16 amps. It thus tc. 20 comes necessary to distir.guish between thiri wall and thich wall insulated cabics; throughcut this p a pe r, reference to polyethylene cable iielies x . '.D~' ~ thin wa.11 insulation ar.d cubber imolies thich m.11 insulation. - my,,,, f S \\ The above difference in ampacity ccets f roni the E &.3 Y,_, _ \\ go*e fact that for a given percent tray fill, r orc cross. 8 'a ' \\ \\ /f 75*e linked polyethylene (thin wall) insulat(d conduttr,rs 9 N N N,/ /'p GOc can be packed isto the tray than rubber (tnick walTi 3 8 l' T ly \\ insulated conductors. Since the total amo;nt of

i

\\ \\ M heat which may oe generated it the tray r.:sst re- ], ;__ N \\a'j' main constant, the heet per conductnr mu;t bc l'ts 5 h N for the small diarieter ctbles than for the large e N ones. \\ /\\ \\ / \\ \\

  • , 4 With the a11 cable heat intensitics from Figu*c
c

. \\ 4 and using them in equation (9), the ampacitics \\ ' ( of several cable sfres and percent tray tills can w 5 t \\ \\ \\ be obtained. The results are shown in rigere 5, \\ \\ i ( 1000

    • 2

\\ \\ \\ ..*=";:tm==:- di'{,~,, 'T"-[P Po%Frot. . ::t tv: 5C%rt;, c -j-+-~.i H .ipccA

Hm

\\ \\, i .fiEC g,j j 1.5 f = M'y g - - +. __- --l,_t.==.lg.g-3..y,,w13 i lI I! "10 0 ...g b ' k7}. ' 10 IS~~~ 23~~h5~30 40 50 60 70 80 y f'[M'.f4T.a PERcCNT TRAY F:1.L E i 6 Y _I g l. l j p!i 1emperatuic in.1-inches Deep by 24-inches Wide Trays 2l ',M. ' Figurc 4 - Alloitable Heu Intensity (0) to Maintain u _q hubter-i.ike er polyetnylere Cabics at the Specified w to m h... .4, ::M. h .F n

7,c 0;ereting in a 40*C /#Ner.t.

j.pJ ... 3 __I'..A $y .-i.1 I i ((io00 In appl.'ing equatier.s (1) and (2) to get the am-pacity of specific conhctor sizes in a given cable ( l l f l 'o 10 0 /' tray, en it.teresting ct,scrvation can be raade. The I, t W W cabic e.;M.ity (1) is given ty CWi0tJCTOR SIZE W.CM) (8) Figure G - Ampacitie.s of Typical Rubber Insulated 1= Copper Cobles te 3" x 24" Trays as Deter ined by and ti.b',tituting for the circular cross-secticnal area This St#y and tevo 3ref'a'ith IM.!A and 'E '.'a h c5 for Treys Coi.teintr.9 Marc 1han 43 Coan*ters, EC cf each cable ( A) we get Operating Temperatue in a c0'c Artient. !*E D (9) 2 nn which is a graptirri sa.;izeity table fcr typic 1 4 It is seen that the-anner.ity of a cable is <iir*tly single cond.ictor rt.1.b?r ir.*.uleced coaper cont::ces c r :.6 r t u r. ) to i ts ana t i :.JeTeter 101. Thut in. Installed in 3-fact by 24-inch cable triys. for creesia, er trw1ation toica.ess or. a given con- - cor.parison, the presently published afcpscitic'. fr the sana type cabic are also plotted; te.ey are f ar oveter ircrencs its e+ atne and tw ivrnnne itt F riti min i r.s

  • a l i t.d i n i. e r ' l a
  • o v for a given the assutr,ed case cf n.arierur. deratil.g.hich is for,

43 or fuere cone:rcters it. the trey, ene thus ari 50. percent tesy in1 eat t;ra sar.c tenperature limits. pf the acipacity or a three conductor c bic in air. Ikre ii r.u:1 Le pof nt?d out that the anpesitics This graphical co:@arison, eloeg with test rc-of 11.6 %1ky s u!.ber imlated ca' lcs in trays crc not sults ;wesented later, rol es it aat t e rir ar

  • at all the senu es Mt.:itics fer the mall cre:s-.

M hm cir a it lirled ralyethylens 4 sul.tt+d cables.tiih very thin the p*e*.ent aroni t hs 9r tem ir.si.1 m ?%. For cir plc. : n.y'. r 12 t/Ri..' 5 e r in-fi!.s ,.,e too e. we m e t ce,.e ,,-,A~c- <im. '- mc ).ro, T,hj;e itej q in. suletr d t able with. c.e,eter cf.T 4 inchet r..g I.,s fit tc U.at for t':e inin call Atr insulated ca;N. an.,ile..eble i.ee; _nt i.sity (f rcm Fig. ire 4) to giec 4

C'Wf~77c -gr zo -pfg AfU o b W f,9 ME.Ver 10 the ampacities are even lower than for the thick wall TABLE 1 Suntror' of 4sts Condutted to Support rubber cabics, ed the safety of the nrne w - " - Analyti-41 Re*,ults ities would N ce "~ ~ "-m TRAY PERCEM CA3LE SIZES INSllLATION 4 ' " ~ " - l This poin* is trade to supplernent one of the favor- $12C FItt TESTED TYPF ""~ ~ able prrperties of the shall diamoter XLP cables. spect fically, r ore XLP cables can be installec in a 3"x24" 20

  1. 12 to 4/0 Rubber thick c:ble tray than other kirds of insulated C6bles and 3"F24" E5 512 to 4/0
pubbe, waH ttus th re is ecorory ir. oc h feuer cable trevs.

3"x12" 40 3/c slZ P.ubber Along nitn Lcu.; me to m.t al core cables in a 3"x12" 40 3/C 812 XLP } thin tray it is essential that the thin wall cables carry 3"x12" 50 1/C E3 XLP J wall less current then the heavier insulated cables. If this is not done, there will be overheating of the TLP cables cr.d the accelercted loss of cable life re-sulting in premature cabic.~ailures. t-: ' *i l~. ~, s ~' r.?.~1.l1.;.1Tq.3, f- - The best observation tu be made from the theory N .. -bg is relcted to best generati:n in cable treys being > '

  • di f g * ' ~ 7 i
  • ?

~ h-4' 3, ';e. r;]9 i 1 in proportion to the cross sectional area of each t cable. A sc ewntt evident,justificction for this re-a,% s i [**N,[ 7,h quire.ent can bc seen fro:n the follo.ving reasoning. . A,.e.. j,,,, ( .7 -f <.- The reest elementary equation describing cenvec- ,4 - - M.~ ". ~ 4 - 1 ti e heat flow is .e.+, " y,...

t. _. e

. t : 1 q. t.A,a 3-!.. f", - g[b,! )1. where h is the cor.vcetien heat transfer coefficient. J / is the 1,urfecc area ccny:cting heat to the air, .#[' .} cod tT is te per6ture difference between the cable scrf ace end the voitnt air. The basic equation for /;e },;f.f,,,M;. ,A,_,,,,d.,;h;,,,,,j;,, conduction heat trartfer is q = kAc d Figure 6 - Overall Ylew of Test Aica Shnuin; 24-f t. ax Long Cobic Tray, Loadirg Transferrers on Rignt, and . v. tere L is the themal renductivity of the hvat con-Themoccuple P. acceder in the Center, ducting r.!cdium, Ac is the cross-sectict'al area through which heat flous and t.T is the temperature casily. To insure tht there was n:. heat fice from drop over a di,tance ex in the direction of heat the tray center cut the ends of the tray, a ring of W flou h n e r* h 1 fiberglass building irsulation was w-apord.around flow. Pte tm emvertinn the cables at each end of the tray. This served to ta sur4ce crer

  • M in - '"-ti on m e h i s pro- _

hertmd to crost-scetional trea. Since conduction make a short hot spot at each end where tre cables is one governing metnoo uf heat flow within a tightly ran about $'C hotter ther. the ceb'es inside the packed cable n. ass, we should b2 conce-ned with cross-tray, and thus no heat could fle.r 09t the trty ends. 1,,, sectionci areas of cables rather than periphoral or All testing was co*. ducted with siecle he surfact treas. 60 hertz alternatino currect. Other it.vestycuers. Tiave shown that essentially no dif ference exists be-TFST PROCCOURE ~ tween three rhese and single phase test results. Five dif ferent ccble trry arrangetacnts have been Thus, test curicat was applied to each conductor si:e by p?scing it thrcugh a long cc9tinuous length thoroughly tastec in order to deten.1ine the heat of uire folded bact ard ferth irt the troy the re-trar sfer prc;r.:rties of each arrcngernant. Two of the tests involvec randomly arranged cables of various quired number of times to Oct tne prcper ec..ntity of cable in each test tray. Ibc voltage applied to the

  • i:.s in 24-inch wide trays antf three tests were per-for. ec' cr INoch wide trays with only one cable size uble was only erop;h to overcome the electrical Tablu I su inarizes the various tests inpcdance of the long continuous trire.

.in ti.a tray. which werc pcrfonted and Figure 6 sh'ows the overall Tc'nperatures produced by the test currents test setup. were measured with (;o. 20 AWG iren-constantan Scac deteils of the testing which were common to tnerr.ocouples cenr.ccted to a 24 point thercocouple recorder. Calibretice of each thermocouple wcs all test" can be seen from Figure 6. 600 volt rated copper conc'uctor cahics were laid in 4 24-foot lcng chected against a star.dard theit.cmeter cy m;,aring thcn.:scouple readings at room temperature and in cable tray and teraperaturcs were r.casured at three . boiling water. The deviation was lest. than l'C different troy crcss sections; one was in the mid-frc i the tnoun tN.peraturcs in every case.,].h,L ' length of the tray and two others at the Quarter t ' ed ' m alred on tM tett N"le' N length!. In n.any cases cables ertanded out both end> e of ti.e tray in ord;.r to n ake-up coen:ctions n.cre m4ii r : narre.: sli: in tx im ul si n 5

CitM-77c -242d ~oje /Est v. o .9 /%6E 6 # fe enouch to accent the tv istert nr.e nf the therentounle. v.hich can t>e attributeri to air flow throah the t i.v. thus cr Ndding it in the cabic insulcuon. This per-But it mu:.t tae noted that when a sheet of .00.ir.u,-- r:lts accurate s..castrement of the maximum temperature thici.e.ess polyuthylene was placed under the tra f *r, in a cable tray. Providad therr.occupics are placed on seal the ventilatinJ holes in its botto4, that tor cr. the side of ci:bles at the nod. depth of the pacted atures.came up to the calculated values, as shc.:n by the open data pnints. 'The reason for the air f16 cabic cass. through the tray is that ehen it was asse1. bled, a'l finally, in order to closely pack the cables in the cables were first laid loosely in the tray r.: each tested tray, ple'. tic tie-straps about 0.2-inch then later tied down. This sequence did not ef f e. wide were used where requiret'. The tic-straps were tively form trapped air pockets it. the areas t.here generally passed through one of tFe ventilating holes thermocouples were placed. Subsequent test tra/s in the tray bottom, over the cahics to be held down, were assembled by placing and tying a la*ge hcn.J. and back througn the tray bo'.tou and secured, ful of cables at 6 time, which is more reprenntvive of how cabics are installed in the fic1d. ;;ote TEST Rest'LTS that even though the majority of cables in the 5!. / filled trcy ran eccler than calculated. the c wa', a p The data from cach heatirg test is sum 5rized in group of flo. 6 AM cables within the trt/ which ("d figurcs 7 through 11. In eacn figure tne theoretical resch the calculated maxtrum terperature, Tnis s t e e <'y state te.ry ratura r' 50 for the indicated ceble points out the fact that all cables in a rand =1/ sizcs is dret.n as e toTTc ' Me and has been obtained arranged tray canr.ot ha expected to have the ecst I from the allowet1c neat intensitics in Figure 4 The' themally adverse environcent, but soer.c si ther. theoretical ampacities are all based on an average will. Cable mass thermal resistivity of aCO*C-tm/ watt. The set of trianale points in Figure 7 ) Test data is indicated by the plotted points, t is data taken from an unpublished report made by The first test.which was run to establish the the Underwriters' Laboratories IncorporateG in I October 1957. The report is substantial *y the validity of this rethod was on the 55% filled tray. figure 7 shows an appreciable amount of data scag , basis'for the cable tray derating facturs publisted j ALL CABLES LOADED o TRAY UOTTOM SCALED a U L. TEST ON #5 CABLES - 6 LAYERS COT 4RECTED TO 40*C AMBIENT 'u' -/ / / / / ^ - 50 u.O / / g g 30- ) l i ? E j f / ) l f 5 20.di?, ,O

  • p
  • e
  • 4 VO 2/q M,

p 1", I 5 6 7 0 9 10 20 50 40 50 60 80 8:0 200 303 CURRENT (Amps) Figsre 7 Test Rcsults for the GS-pereeri Fill 24-inch L'ide Tray Containing the followir.g Thict k'all__lr. t sulated Cables CAME !!?E OUTSIDE DI AMETER OUA:ITITY IS Tr/t 78 el? .25= 9 10 .27" II 8 .36" 46 6 40a 8 4 .45" 6 1/0 .65" 3 .70" 2/0 6 .00= 4/0 To Fill T-a, 11; 111 to 55 Pe.ccrt Conductor $12 6

1Ih- --G.n o -etsi APP d 7 F M 7 n=to thus far for trays in which cable spacing is not majority of the points being nearly coincident maintained. The two triangle points are taken with the calculated values. All the cables cam directly from Figure 2 of the U.L. report, and are up to the predicted temperatures sinet care was for a 6 inch wide tray filled with six even layers taken to lay the cables close enough to prevent of single conductor lio. 6 rubber insulated cable. air movement through the cable mass, it is im-The correlation between the U.L. test data and the portant to note that the temperatures in the 204 theoretical calculations is remarkable, filled tray remair.ed essentially constant when a layer of polyethylene sheet was placed on the tray The data in Figure 8 for the 20% filled tray bottom. shows much less scatter than the 55% data, with the e ALL CABLES LOADED O TRAY BOTTOM SEALED e OlVERSITY WITH ONLY 3 S!2ES LOADED 60 y - 50 0 t,, / / ,/ V ./ D Y / / a e j j' y / / )

  1. 0 88

'6 '4 t/O 2/O 40 20 $2 1 "g' 10 20 30 40 50 60.80 '100 200 300.400 ~ CURRENT (Amps) Figure 8 - Test Results for the 20 Percent Fill 24-inch Wide Tray Containin2 the Following Tnich Wall in-sulated Cables I OLITSIDE DIAMETER QUANTITY IN TRI,Y_ CtJLE $1ZE 14 .25" el2 6 .27* 10 6 .36= 8 10 .40= 6 8 .45= 4 6 .65= 1/0 3 .70" 2/0 6 .80a 4/0 To Fill Tray 14elti-to 20 Percent Conductor #12 Thus, it seems impe:sihic to apply a general Possibly the most important inforr.ation ::hich tray. increase in the a pacities of smaller cabics due to cere directly from the data is in referer.ce to diversity because there is no general way to assure diveisity within the tray. The triangle points that small cables would rerain separated fr:n lcrge pictted for the llo. 6.1/0 and 4/0 cables are for cables in randomly filled trt.ys. only those three Cable sites carrying current, and I:o. 12. 10, 8, 4. and 2/0 ccbles being uploaded. . Figure 9 shows results for two dif ferent tests in: The ::o. 6 cables ran about 15'C cooler than when all on trays with 40; fill, one with 3/C-l? thick wall caules were energized bt.t the 4/0. cable only ran l'C rubber insulated cable and the other with thin wall cooler. XLP insulated cable contained within a neoprene The sare intal amount of heat t.as ge'ncrated j act.e t. it is f rom this experir.. ental finding that it ap. within each cable tray, but the smaller diameter ca. pears to be unwise to increase cable ampacitics on the basis of diversity. Thi Cables in the above bles generated less heat per Conductor bcCause there This shows (nat were more snall cables in the tray. diversity test were separated by about 6-inches of all 3/r-12 ca51rs do not have the sanie ar.;'acity " dead' cabic, in.t it is conceivable that the llo. 6 when installed in trays, and (nr a niven tra) [ill cables enuld be pl ced adjar.cnt tol or between, some" the wilcr the r^la Neter the loter its oMe k 4/0 cebics. If the cables in this configuration I.ad tray amoacitv. in acenrdance mth wustion Q). increased capacities based on assumed diversity, ti. era ~ would yndoubtedly be a local hot spot in the table 7

C -l/of-77c -renznjg Mr. o AO jf,7 &M 9 #ff Figure 10 also shows cr.c'eller.t correlation 14-tween calculi.ted af.d ttsted arp cities for cr.ly ore tightly packed layer of twelve cables, which it a 2CX fill. This exampir! again shu.es that the present CO derating factors for cabics iri trays are much tou 10.1 for the large cables installed in wide trays. TO ~u 40 50 f /, uw ,. 0 i 5 f f g / / 7* 2 g30 d Ti liti ' ThiCI; i N O 20 2 g 00% 26 % 6-t x 6 7 8 910 15 20 30 M CURRENT (Amps) Figure 9 TMt Rcsults for 12 inch Wide Trays Filled 03 60 200 250 Ko dio3 5o0 000 000 to 4't Fercent Containing Thict Wall and Thin Wall In-CURRENT (Amps) sulated ?/C 12 Cabics as Shc.m Selow: Figure 10 - Test Results for the 500 MCII Thin Well

  • Insulated Cables f r> 12-inch Wit's Trays Filled to 50 Percent and 26 Percent as Siiown Below:

THitt wit.L THICK WALL. THERHOCO#LES hMI5 $ \\ UNb HERMOCOUPLES f em o o L_ ' " " ~ " " Cable C.D..I75-Cable 0.D..70" Quantity - C1 Quantity - 38 Cable 0.D.1.01* Cable 0.D.-l.01" Quantity - 23 Cuantity - 12 It is irteresting to note that in the tests pro-ducing 50*C rise in figurc 9. the two thermocouples One last example of this same idea can he taken closest *o the tray sides only'ran 2 to 3'C cooler directly from te data of the unpublished Under-than the otner five in the tray. With the vertical writers' Caboratorict reports which is the basis tercera*i,re gradient thrcugh the cabic esss being on for the present dera. tr.g factors for cables in Y the order of Ib'C, it h nuite evident that most of trays. Figure 11 sb;:r.vs calculated a'npecities.for the bart in a caMe trav flews vertically, rather than rubber insulateJ. f4ngle conductor 500 HCli cabiss toruc,tslly, as assumed in cqsation ($J. From the in a 307. fill tray and a C0", fill tray. In botn above finding. It becomes clear that cable ampacities cases the data from figure 4 of the U.L. report (wr.1:a:o ei t's this retncd Prc valid for trays 6* shows the C&ble ampacity to be even greater th3r. teu es c,r. ore in width. the calculated cr' pac'ity. The reason that the cables ran cooler in tre test is ecst likely dva to eir The fir.el test was run nn single conductor 500 flow through the triey because of air paos betwec't 17.h thin wil XLF insi,1eited cabie. Figure 10 shows the cables. euclient e,rcernt bet.ecen calculated and test arapac-itt es f v P.e ).LP cables. M though the rest.lts are All the results prescr.ted thus far are for cable for a 12-itch vide tray, a 24-inch wide tray would trays which have act.ieved steedy state thertal resporc the sa e if twice the nuraber cf cables would equilibrium. Figurie 12 shows that it requires about oc in it, l' sing the presert derating f actors fnr six hours for a cabTie tray to reach steady state more the' 43 conderters in the tray (46 in this case) conditions, n.hether-it is filled to 20 or 40. one-half of tne three conductor cable ampacity wuuld ' These results can ue used to calculate trans'rrt result; this v.ould be one-half of either 407 ans, or ampacitics of cables; in trays which m:y see Iceding 305 c os. der.ending on whether IPCEA or H;tional for, say, only one k.our at a tire. Tiets weuld he Clutric Ctde respectively is used. Cot.h of these possib1c, of Chrse, only if all the cables in the t > values a<c significchtly less than the 324 ampere am* tray ucre loaded and unicaded simultanccusly, cod 'patity'i/Mch cnnes f ra calculations and testing on ' if a precise Lunicipe of the caximum !o: ding dura-I the W fill trey. Lion could be asture d. 8

4 1 R ~(/u(~ 776 -tEQM-9/g /244/. D M d.9 pc& 76p sities ru:t be ccuverted to a?petity for a given cable diameter with cquation (9). This has teer, donc in Table 11 for P3, 40, end 607, filled trays containing typical ditmeter XLP and rubber in. i 50 [, / sulated cabics. Ior actual cabics which may bac q a different diameter, the actual teQ4 city is ob-G 40 ~ [ tained f rom the simple proportion. I 1., ss Iactual itypical I 50 30 I9 ~ Da ctual Utypical M + Another precaution ran best be explained by o E 20 60 % 50 % visualizing a tray with many trail cables and three E0 l'CM cables. L.' hen the tray is filler! to a unif era droth up t0 the top of the large cet,1cp o. 3 (about 31%) the criterion for the theory is ful-filled. But 11 a tray would c:r.tain the three 7'O HCH cables and enogh rcneinir.g small cable to bring the fill to enly about l'Z, the largo cables 00 200 500 400 SC,0 w uld stand about twice as high es the small cables, CURRErdT (Amps) and tLe thcory would not be satisfied. Using Fig. ure 4 for a 15: tray f411 woul! asswr.e a uniform Figure 11 - Underwriters, Lahoratorics Test Results depth ar.d would ef fectively flatten the large cables for a 24-lach Wide Tiay Contcining Orie and 1wo Layers into a rectangular snare, rather than circuler shepc. of 1/f r,00 IZH Rubber-Like Ctble With en Assur ed Over* The calculated aTacity would then be for a all Diareter of 1.16 inenes. " rectangular ceble' of M0 MCM cross section.ichich would 1:e meaningless. 100 For the above recson a limitation tiratt b2 rade. \\26% FILL (500 MCM) that unless specifically engincered, na cable in 689 4 any tipitly packed cabie tray shall be allored to "g g'40% MLLl3 cam c current greater tnan the.t of +Le same siec i / h, 2 three-conductor celle ln air cDerating at tne safe M f C m t s [ l j temperature limits. This is because it turns cut O C,0 that one layer of tightly packed single conductor s 20% FILL RANDM cabic has about the ssrae ampacity as that of a 2; ,7, three concuctor cat le given in reference 5. G 4 i g I It raust also be made citar that the scrcent / fi'Is used in this paper are specifically for 3-i- 2 inch deep trays only. The tray width is veriable p 20 / without error, but a 3-inch deep tray with 30; fill g l wculd only have half the depth of cehle in it cs a 6-inch decp tray with the same parcent fill. Ob-viously, for the sa-se percent (111 the 6 inch ceep 0 0 l 2 L 1 5 6 T C 9 10' tray would run cu.ch ti.;tter than the 3-inch fiep CL APSED TIME (HOURS) tray because heat wauld have to flow through twice Figurc 12 - 1crpersture P.esconse of Three Different as much pacted cable. Thus, to simplify the ap-plicatio9 ct this rithod, r.arrent m1 i' Mt -)l CaMc i a/ f.:se @ lics. ficured by dividha the total area of (cete in a w ta ufE 7rev or the area av.r. w e in te v 3 DisctSt!0:t .3-inen deer tm even 11 the tray to be used It is seen thtt the ctpacitics of randomly ar-would be oWcr than 3-inches deep. ranpd, tightly prcked cables in trays can be cal-The results presented in this paper are for culated witi ebout % errot. 1he.aetnod is safc for In locations where open irtys without try cover. any nv !tr of cabics in a trey 65 long as they. arc rovers m.'51 be uted. the bndcruriters' LcLoratorica (It pacted to a unif er cepth acrats the tray. found tnac open cabic tray ampscities cost be re. should te iMed th+1 this is a condition t.hich is duced by & bout a tch '.,%. Since covered cable trays caty to irspect v. cen:truction progresses in the arc i.si.cily found outdoors where they may be es-ficid.) Although 11,1s rcthod was oeveloped and posed to the sun's radiation, care should be taken tested for ic.ry C00 volt cless cables in a tray, it in specifying the a-iicnt temperature for outcoor alsc yicids realistic ampacitics for 413 class cables Specifically, atient temperature for a trays. mixed with low voltage cabic. cable trey is the highest temperatt.re which will bv reached in the tray due to all external Vat scurm To agly this nathod atd form a trorkable e macity ' cxcept the 1 11 heat f ren the cables withir '.N tr.9 2 Fic:r"c 4 teble. seu precauttoct mu;t be observed. is the net general way io prct.ent U.ble tray h-pacities t,ut it is o..tward to use sina. heat isten-L'

C #//4/-7'/O-6920 -cyg MA/. o jpf 2.cf Pks 10 f/D \\ l 1 TAILI. Ii - N'PACITICS TOR COPTIR CritLCS !!! 3-!NCil DCCP C/CLC TPAYS, 90*C CpCR411tlG TC@CRATUE !!! A 40'C i AGlCliT i TYN CAL CADLC AM.oACITY FO* CACil CONDUCTOR COTJJCTCf' 0t115100 OfAMCTER ~76: HLt I.O. fil.F cor, nts **** $ 17 f. WKlit 3LZ EDliLE R XLP lEMT T RUbhER fQ j 1/C 14 .22 .17 11 9 7 6 5 4 3/(-14 .57 46 17 13 11 9 8 7 1/C-12 .24 .19 15 12 le 8 7 6 3/C-12 .62 .51 23 19 15 12 11 9 1/C 10 .26 .22 21 18 13 11 10 9 3/C-10 .69 .57 32 26 21 17 16 13 1/C-G .36 .20 37 28 24 18 18 14 3/C-8 .94 .74 55 43 36 28 27 21 1/C-6 40 .32 51 41 33 26 2S 20 i 3/C 6 1.00 . 82, 74 00 48 39 36 33 1/C-4 '.45 .37 72 60 4) 38 35 29 3/C-4 1.15 .93 107 86 69 56 52 . 42 1/C-2 .51 .43 104 f.7 67 56 51 43 3/C-2 1.28 1.07 150 125 97 81

  • 73 61 1/C-1/0

.65 .,54 167 139 108 69 81 68 1/C ?/0 .70 .59 202 170 130 110 98 . 83 1/C a/0 .80 .69 287 252 188 162 142 123 1/C-250 .92 .77 ? "T., 304 234 196 177 148 ~ 1/C 350 1.03 .88 394 394 ' 310 265 235 201 1/C. f.00 1.16 1.01 487 487 419 365 317 I76 1/C-753 1.38 1.24 615 615 610 548 461 415 WJTES: 1) '/unpacitics are for any width tray filled to a unifonn depth.

2) A 6* deep tray with 20; fill has the same arpacities as a 3' tray with 40: fill.
3) Correction for different ambient or different operating terverature is.done by the established IPCEA methods in refercnce 5.
4) The above ampacities are specifically for, the cable diameters shown; account for deviations with equation 10.

This definition of ambient temperature can be CONCLUS!0 l$ useful for a f,trst apnroximation in handling cases of trutual beatin; of several trays stacked in a vertical It has been deconstrated that the tem;cratures row. Itc extcnt to vehich lower trays will affect produced in tightly pacted cable trays can be pre-trays above ther.. will depend on how much total heat dicted with good accurccy, and ampacities can,Le is getcrated within each tray. For trays containing calculated for raMacly arranged cables pa: Led to t,cth power and control Cable, tne effect Cf mutual a unifom depth across a tray. C3bles are per-heating will usually be r.:uch less than with trays nitted to generate heat in proportion to their in-cor't s i ni t.: ell p>er ccbic. An ar'bient increase of dividuni cioss-sectional areas, and thus caolt an-abo.:: 0 to 10*C for coderate and extrer.e cases re-pacity is directly proportional to each cabic dia-spec' vely, would pr:baoly be the sitt.plest way to

meter, accer; fcr mutual I.ccting, if necessary.

The deratire factors published thus far. for The last observation to Le raede involves the cables in trays ca<.1=:.d to serious escrh'atir.g on idee of cetemining.some *optimurr. percent tray fill. small conductor sites t:hile resulting in signifi-Figure 5 erd Tatte Il show thct cable arpacity drcps cantly underloaded large conductor sizes. Even of f significantly v.hcn going from low to high percent though the previc sty publishcd derating factors tray fills. Cn-bining this with thc. fact that the havr* distinct Ifuitations, the unpubli! bed basic ] cou of i'. stalling e tray is usually less than just data which was used to form the f actors agrees one large ecpper cor.cuctor which wwli ley in the very well with ampacitics calculathd in tnis repert. l tray, in stav cases it nay be poor econouy to fill trays r; crc than ene cabit deep. This would vary with A sirple uble of derating facters which can tr 'each installation cod would be prir.arily dependent on, applied to cristir.1 empJcity tables to get cahic-the available hcad room in a particulet-arca of a tray ampicitics secs irgo;siDlc. Tcble 11 is :.best plant. Cut in caci. case..en optimi tray fill would the only way to sir;1tfy empacitics of celes in pretf.l't ( Ais t, trays, ar.d it car. te n;'anded for different ticy 10 r

OCT-67-1996 13:e3 rF01 TO G714 P.002,005 ) C -Il e l-770 -E9 2.0-0/8 Pnv 0 QP s.to hsk I <F5 (F'AF 3.0 ) ..........................................................@.9.@ GU NUCLEAR subject: COMPARISON OF TM1THERMO. Date: October 4,1996 LAG FIRE BARRIER TEST CONFIGURATIONS WITH TU AND TVA CONFIGURATIONS From: F. P. Barbieri - Engineering Support Location: Morris Corp. Ctr. E546-%002, Rev. 2 To: R. Bensel - Engmeer. EP&I. TMI-I '

References:

1. Electrical Test To Detenmne The Ampacity Derating of a Protective Envelope for Class IE Electrical Circuits, Project No 12340-94583, 95165-95168. 95246, dated March 19,1993.
2. Fire Endurance and Ampacity Testing of One and Three Hour Rated Thernn-Lag Electrical Raceway Fire Barrier Systems.

Revision 2 is to remove the last sentence in the last Paragraph ofItest A. Distribution is only necessary to R. Benset. The purpose of this memo is to provide a comparison ofinstalled Thermo-Lag configurations at TMI with those tested by Texas Utilities (TU) for Comanche Peak and those tested by TVA to determine Thermo L.ag ampacity derating factors. l The above Reference 1 yielded ampacity derating values for one hour fire rated conduit, cable tray and air drop fire barriers. TMI uses Thermo-Lag on conduit air drops and cable tray. TMI uses one hour and three hour rated fire barrier configurations. For three hour rated conduit and cable tray configurations, companson is made with testing performed by TVA as documented in the above Reference 2. The latest NRC letter of July 5,19% requires responses which may lead to the need to establish derating margins for each circuit currently protected with Thermo-Lag. In order to do so, we must be able to W w that ThG Thermo-Lag fire barrier construction is bounded by FFB443WOU2RD T1 DCT-07-1996 13:59 7883 P.02

'8714~ P.002ie%~ ' - - - i 'XT -O~+ 17M 13:59 rg TO 1 ~ ll# l' 770 R Bensel - Engineer, EP&I, TMI-l N' O October 4,1996 WP g.js hsk. '2 oM E540-96-002, Rev. 2 i Page 2 TU and TVA fire barrier construction which was used to establish derating factors accep% to the NRC. If we don't rely on this type of approach, it may be necessary to conduct i unnecessary site specific derating testing. Attributes of construction u+'t are importam are as follows Size of any air gap (s) i Barrier Thickness Barrier Geometry Raceway Emmissivity intervening thermai resistance-{i e., Flexi-Blanket used in CPSES tests) The following are the results of my evaluation: The TU tests for conduits was conducted on 'i/4 inch,2 inch and 5 inch conduits. At TMI, the size of protected conduits rages from.75 to 5 inches. 'Ibe following is a comparison of TMI and TU construction.ittnbutes: A. 1-Hour Barriers-Conduit El Ddl. Size .75,1,1.25,1.5,2" dia. Size .75-2" dia. Raceway Material Galvanized Steel Raceway Material Galvamzed Steel TSIThackness .75 TSIThickness .5" Preformed Conduit Yes Preformed Conduit Yes Topcoat-TSI 350 Yes Topcoat No Air Gaps NA Air gaps NA SteelBands Yes. Max.12" Spacing SteelBands Yes.12" Spacmg Size 5'dia. Size 2 5,.1,3.5, 5" dia. Raceway Material Galvanized Steel Raceway Material Galvanized Steel TSI Thickness .5" TSIThickness 5" Firfvis.e.d Conduit Yes Preformed Conduit Yes Topcoat-TS1350 Yes Topcoat .No AirGaps NA Air Gaps NA Steel Bands Yes. Max.12" Spacing SteelBands Yes.12" Spacing In comparing TMI with TU tested configurations, the piw or lack of an air ga considered not applicable for configurations since preformed TSI conduit secti i around the conduits with no pre-buttering of the inside surface of the TSI. The barri uniform contact with the conduit in both the TMI and TU one hour synswoo2RI.v2a p.03 7883 CCT-07-1996 13:59

~~ OCT-O'l'-195 ~ 12:% ~POM TO "3i14 P. 0044% ~ ^ ~ ~ c R. Bensel - Engineer, EP&I, TMI l c, -//g /- N -EMo-p/g October 4,1996 g.gu, o E540-96-002, Rev. 2 M FW 3 M 5 Page 3 i Therefore, this aspect of TU constmetion can be cWared representative of TMI construction. Note that TU did not test the desting effect around condulets. The diferences between TMI aad TU con 6pations are in the thickness of the TSI for conduits up to 2" diameter Because the TU configurations used.75" of TSI vs.5" at TMI, the additional insulating effect of the TU configurations should result in the TU test bounding the TM1 configurations. The results of testing on the 5" diameter conduit should be comparable with TM1 configurations ranging ftom 2.5 to 5" as they are the same with the following exception. The presence of the topcoat on the TU configurations is the one common diderence between TU and TMI configurations. However, the presence of the topcoat should tend to result in higher derating values. It is therefore reasonable to apply derating values obtained in the TU tests for conduit configurations at TML NOTE: In discussing the test results with TU, the NRC accepted the resulta for applicanna against instaBed TU configurations; however, NRC required TU to add an additional 6% derating over the 11% 1 used for existing conduit con 6gurations for any new cMn=ations TU installs. B l-Hour Barriers-Air Drops (TU) In comparing TMI and TU configurations, a r,pecific comparison is not documented here as in the case of the 1-Hour Barriam for conduit There is a difference in the two contigurations which should be overriding in establishing that the TU tests bound TMI conftgurations. TU's configurations use 3 layers of TSI flexi-blanket material while TMI configurations use 2 layers of TSI flexiblanket material. Raw upon this, I j believe the TU test data on air drops will bound the TMI configurations. C. 3-Hour Barriers-Conduit (TVA) TMI LY.A

  • Size

.75-4" dia. Siae 1"-4" dia. Raceway Material Galvardzed Steel Raceway Material Galvanized Steel TSI Thickness 1-1.25" TSIThickness 1.25' Preformed Conduit Yes Preformed Conduit Yes Upgrade No Upgrade Yes' Air gaps NA Air Gaps NA Steel Bands Yes Max.12" Spacing Steel Bands Yes 12" Spacing J i The TVA configurations were reinforced with external ses.h:! ass steel stress skin and a Thermo-Lag 7701 trowel grade material. Then at least two 'ayers of 3/8" thick Thermo-lag 770-1 ' Mats buttered with Thatuo-La6 770-1 trowel grade material were installed over the reinforced base Thermo-Lag 330-1 assembly. i Fm MSWWC1REVT3 P.04 OCT-07-1996 14:00 7883

D~~ 19:6 14:20 FFD1 TO 834 P..T 5.4106 1 R. Bensel - Engmeer, EPAI, TMI-! U //#l' 77# -E 9f*e/B October 4,1996 %.O E540-96-002, Rev. 2 A// g./o ,4 4 y q Page 4 TVA did not perforni testing for 3-hour conduit barrier configurations. TMI does have

  • a 75" conduit protected by three-hour baniers. However, we need not pursue derating factors for this size banier since the.75" application is protecting a control circuit for which derstmg caused tiy Thenno. Lag is not a concem.

The differences between the TMI and TVA codcurebiw are in the upgrade employed by TVA. Because the TVA con 6 urations used addnional mats and trowel grade material, the 3 additional insulating effect of the TVA configurations should result in the TVA test Wadas the TMI configurations. Note that as with the TU con 83urations, the presence or lack of an air gap is considered "Not Applicable" for 3-hour conduit configurations because the TVA 3-hour barriers were applied around the conduits with no pre buttering of the inside surface of the TSI The barrier is not in uniform contact with the conduit in both the TM' u TVA 3-hour conduit banier cases. Therefore, this aspect of TVA construction can t~ considered representative of TMt construction Note that TVA test results in Table 13 of the above Refenace 2 are expressed in tenns of a correcuon fhetor, not pucent dorating factor. Cable tiny testing results are more varied than conduit. A combination of Bre barrier con 6gw ations from TVA and TU is discussed as follows: D. One-hour barriers - Cable Tray (Note that test results are not size dependent per Reference 2). In the TU test which was perfonned for a one-hour barrier configuration, on a 4x24 inch tray, the TU banier design utihzes a 1/2 inch thick layer of the Thermo-Lag 330-1 penals with various upgrades that ultimately increase the panel thickness to varying degrees such that the thickness is approximately 5/8". The cable mass consisted of 12631G6 AWG 600 veh copper cables armaged in four layers. The TU correction factor ACF (wrapped amps / baseline amps) is conservative for use at TMI as TMI @bs t/2 inch thick Thermo-lag 330-1 panels. Themdbre, the IU resuhs are bounding when consderms the TU fire barner configuration for cable tray have inherently higher insulating properties due to thicker Thermo-Lag panels, E. Three Hour Barriers - Cable Tray Three hour banier configurations consisted of 1 1/4 inch Thermo-Lag 330-1 panels The configuration added extemal stress skin and additional trowel grade material Additionally, the cordigurations were augmented with layers ofThermo-Lag 770-1 mats at 3/8 inch thick each. The TVA configurations clearly bound TMI cable tray fire barrier configurations with respect to ampacity derating as the insulating effect of the addinonal TVA matenal should resuh in higher derating factors. rrsuswcezatvu DCT-07-1996 14:00 78g3 P.05

~~ ~ D~ 4T.'-19G 14:03 FROM TO r;4 p.m.4)e6 c -(fol-77c -Ef 20 ~ Ot& R. Bensel - Engineer, EP&I,IMI-l gg October 4,1996 W 6,/o hGre r 4e g-E540-%-002, Rev. 2 Page5 This completes my comparison of the TU and TVA Thermo-Lag barrier construction details with TMI details. To summarize, I believe it is reasonable to apply ampacity test results from TU and TVA for those configurations discussed above. The TU and TVA banier construction bounds TMI configurations with respect to ampacity testing. Please call ifyou have any questions. i F. P. Barbieri Extension 7358 j FPBlamd cc. D. J. Distel-Engmeer, Licensing R. C. Ezzo - Engineer, EP&I, TMI-l R. J. McGoey - Manager, Mechanical / Structural Engineering T. O'Connor - Engineer, Equip. Reliability Programs, TMM H. B Shipman - Manager - Equip. Reliability Programs, ThH-1 tra m wvm arv2e TOTAL F.006 P.06 OCT-07-1996 14:01 7883

C-Ilol-770-gqz_o.cyg M V. O Aff. 8.I / W l c p g__ O SILBERT A550CIAffl, INC. - PULL THR E WILC ! sL A?u 419?OJ 0 S t. / 1 No os con VCfotn .m site C t-MNGYM

  • CON T

obei aust ' l ~ 1-3-2/0 tK-CG i e n j) l ) to th he L T 10A B= 2#4&eV A @ Natues os Ciecuit ( %s y p p A b l 1 \\ v a n v c y v ABLL '!4L Y ).10'O 101 G2 + 1s. 1 + 24. ': 7 ) U3344 A+ .G) S5L (1 +A (h3 + C L (K+ -2o AG68 L cCT

  • AELc CP

- ) AT E,TP E..c. p AARs. Ah nc

t i. it.

J hays. hEls LAsLe C h.:1 Ae / 1.:. T' "INTERIN DRAWING" PROPOSED DEsisN CitausEBA412384 IMPORTANT T PER WA 04.s#3o.2ia/ eta 4R-lol4 ..:.o.. <v.. A M73o i ,,m., ..,,,,m., \\ Nyd-n-rc i,, d,, N g o s c a r r 4 <4 s ' l1 m,,

s. ws

,l.,... 1 + H. 'r / /, R2 SY -303 N

. 5(_=( _G % yid l Q C-tI o t-77o-G+-&sig arv. ooc., 52]E A/. O We hst g.z p APR s.tl M trez I Enxnv na u g i, JAGE_.Ja of c, ., J . - MRA RAP ( _'- esLSSET ASSOCIATES INC 8 i I secueen w.o. eafs e sum cecue =o.

g
,

THREE MILE I SLAND 4,9200 07/04/46 . ED 307 A ~ i no. e comouctoes em ifann caeu esovn - cosewt aan camount useorie .-a-s Ex-es

a. 4 a.oo s so.o lG J

A jol {,,

m...

. oc.,. .. o g i,. G, g io 'r. v lo

o..

o t m I. 'O !O V h 'O y '*""*u" v* a r";. ,,..,a...o A.Pr..... % Yo

o

,o

p.., T r
o,., (

,o f+o 1 i

c, n e 8. -.

i _t s. '- t C' 4 o.,, J P.o. osuN I c' l K ih /-/4 -27 n,uu. ~~ t m_ e l i-0 /zs .um. t- ## *^'"' r-i.:/. STER l: ~^" I <. m.,,, I v v a-. I. E^ 11 -p W P I cK-50814

P

'DY F WA # 25Y 303 34

F f er,. n. SRAND-REX

  • _s,...=,_,,

W*g t e..Niet Ca gwyg f gig q,g ggy3 TWXNO. 710-440-2243 PHONE: 203-456-8000 ( - TELEX NO. 9y_4444 PAGE 1 0F I N M [E 87431 06 13 86 ECI I g* "'*h O TP-038388 06 05 86 ,E E N 4 answas v m s [EPG NUCLEAR CDRP ~] [5PU NUCLE AR CORP. STAJE 37 TRI NUC.EEN.5TA. 5"'e san ACCOUNTS PAFABLE DEPT RTE.441,50GTH,WNSE. El ~ PG SOX 1018 r REABINE PA19603 MIB9LETDWN, PA. 17057 1 a t 3 O t 'i o e sweei=6 po.=1

  • 7Es 1

i=v .=serci64 - se nua= ~~ # ~ ~i-6m=6 ' 51 air lA COLLECI* 1/2% 10 Days,_Netj0 Days _ "*"5" "' ^ N CHARGES novi cowiz_ac, =o__.07332_%_ S._CTD/ Source /CofC OIO! 7 7 #/ O 9 WHSE P $HtP VIA i 'O s/W DEL.R-F B4 3:30 . ~ ~~ ,_.EEE m mmmmmmmmmemennenne 4 { un-sa en ex-sa 7 ssser on 2.soo er v-es157 as/tos S t re-see en en-6a i sssee o2 2,see Pr 1-6sasi sa/nes M-c$4 5 In-3r Cu (T sssoB i "&) of 70 6a co / 2,s00 rT T-63157 <3/s00ncns bp; g EE-43, 7 53510 94 2e500 FT Y-6s157 42/988 ED

  • RRIL FRT. BILL TD: GPU t

InfCLEAS,CA55 TRANS.5ERW. o q ST. LOUIS, ND. 63166 - ~ ~ m ovi siin nait - g 4 { ~g g $tu

r....ne:u.cri,ar

+ ///-87, 4<SV 5 SPEC:5P-9000-31-201,REW.1 AND pee-S 8/25 DR SNR. D0 DEU.1. ~ % co i '1000 FT. MIN.LETH5. P72 L86 ~'~ .i

EEP 12 '% 06:53 EMWiD REX p.1 C--tIst-97o &@-dB GSv.o BICC CABLES w,.,z g a t MCC Bm c'P x Company i Far Tramtmission 1800 west usin sir se WiNimantie,'CT 08226-1128 Tel (860) 456 8000 Fax (8606 450 7004 4 Page: 1 of 1 Including Cover Sheet i To: Randy Ezao @ GPU Nuclear Fax. No: 717.948.8714 Fresa: Ed Aberbach XGl2. oc: Product Fj-Date: 9.12.% Message: RE: BICC Brand-Rex Part Namher T-63157 (2/08) i i To answers your quesdoos: I Insulation - cross linked polyethylene i Jacket - chlorosulfonated polyethylene I Armor - galvanimi steel interlocked Ampechy - 55 amps per NEC Table 31016 l Ed Aberbach Product E+,;irex 4 1 i l 1 i i i ] i i i SEP-12-1996 09:26 2B3 450 7009 P.01 j

N I The ROCKBESTOS Company c-"' '7 7-5'm - o/B = o

    1. ' 8'7
f. w E^5'."c7b s.....me

,..< u n. u s R uns e, e.,r i nur on.3 g E [k3 iN N,,..,, OM i...., _. .o...._.,_..o___,..c,_ 044730 // s c/, 9 i /J -fi,.(/. N.H. W!EPAct _op __ l im, m ...encuou ,=io.n ,=,.cou cr ,,,,. co, I kuds.f/ ec< P.O. 044730 $ IT.I 044730 3/C 2/0 FWL M/vc

  • P g

1 p R 4 s GPU NUCLEAR CORP. i 4 5 J 7 TMI NUCLEAR GEPERATION STA. l 0 P ROUTE 441 SOUTH i MIDDLETOWN, PA. 17057 1 r gL o o as e CustoutR S INSTRUCTIONS i CTR COC MJCLEAR i. y, ocseneriou ggu j '" U'Yrv y ou'QF paoouctcaos oua r 3 y oATE j SDE l 'g 01 C S32-3183 2/0 3/C 2/0 FWL 111 PLUS GSIA, ll l NOM. 0.D. 1.54 l l i \\ J ~ l ,,>478 48X24 1325 D-56655-B T-04284 a-03806 ' h i 1,052' 3,017 g l 574 48X24 1692 D-56655-A T-03802 B-03228 ' l A i i Qb/0 /S }$ ilh A. (, AbIb 5 OA ~ l l i i I l c ecxso s, ..cuo s, THE ROCKBESTOS COMPANY g memb.r of THE M tRMO% CHot P of untP OIE= ,oau no ior: rwawwauus

C-LID 1-770-Ew-org as. \\ l APP 9.IL fac,t go99 90*C*, 600 Volt j Class 1E Nuclear l NEC Type TC UL Listed l Spec. RSS-3-021 I r l Three Conductors (With three ground wires) Nominal Insulation Size of Jacket Overall Approximate Product Code Conductor Number of Thickness Ground Thickness Diameter Net Weight i Size Strands (Mils) Wires (Mils) (In) (Lbs/M') ) P62 0084 8AWG 7 45 3-14 AWG 60 .66 360 j P62-0064 6AWG 7 45 3-12 AWG 60 .74 500 i P62-0044 4AWG 7 45 3-12 AWG - 80 .88 770 l P62 0024 2AWG 7 45 3-10 AWG 80 1.01 1070 l l P62 3119 1AWG 19 55, 3-10 AWG 80 1.14 1280 P62 0104 1/0 AWG 19 55 3-10 AWG 80 1.22 1560 l P62-0204 2/0 AWG 19 55 3-1C AWG 80. 1.30 1950 P62 3421 3/0 AWG 19 55 3-8 AWG 80 1.42 2300 l P62-0404 4/0 AWG 19 55 3-8 AWG 80 1.54 2800 1 F62 3422 250 kemil 37 65 3-8 AWG 110 1.77 3500 P62 0354 350 kcmit 37 65 3-7 AWG 110 1.98 4550 { P62-0504 500 kemi! 37 65 3-6 AWG 110 2.26 6200 1 P62-3423 750 kemil 61 80 3-5 AWG 140 2.83 9200 l Four Conductors (With two ground wires) P62 5036 8AWG 7 45 2-12 AWG 60 .72L 420 P62-5037 6AWG 7 45 2-10 AWG 60 .82 610 P62 5038 4AWG 7 45 2-10 AWG 80 .97 930 P62 3974 2AWG 7 45 2 '8 AWG 80 1.11 1320 P62 5039 1AWG 19 55 2-8 AWG 80 1.26 1640 1 P62-5040 1/0 AWG 19 55 2-8 AWG 80 1.34 1930 P62-5041 2/0 AWG 19 55 2-8 AWG 80 1.44 2340 P62-5042 3/0 AWG 19 55 2-7 AWG 80 1.57 2900 P62-5043 4/0 AWG 19 55 2-7 AWG 110 1.77 3600 P62 5044 250 kemil 37 65 2-7 AWG 110 1.94 4400 P62-5045 350 kcmit 37 65 2-6 AWG 110 2.20 5700 t P62-5046 500 kcmil 37 65 2-5 AWG 110 2.50 8100

  • Rated 90*C for normal operation in wet and dry locations 130*C for emergency overload conditions, and 250*C for short circuit conditons.

p t Hypaion is a registered tradernark for the Du Pont Company's chlonsulfonated pok ethylene (CSPE) / UP-2 co uno m *The Rockbestos Company 285 Nicoll Street New Haven, Connecticut 0651'1 (203)772 2250 800 327 7625 /}}