ML20203P597
ML20203P597 | |
Person / Time | |
---|---|
Site: | Diablo Canyon |
Issue date: | 12/31/1985 |
From: | PACIFIC GAS & ELECTRIC CO. |
To: | |
Shared Package | |
ML20203P584 | List: |
References | |
NUDOCS 8605070510 | |
Download: ML20203P597 (200) | |
Text
e TI-ERMAL EFFECTS MONITORING PROGRAM 1985 ANNUAL REPORT DIABLO CANYON POWER PLANT O
PACIFIC GAS AND ELECTRIC COMPANY APRIL 1986 8605070510 860501 E6-122.0 ADOCK 0500 5
$DR
r i
p TABLE OF CONTENTS
\
k Section Page E XE C UT IVE SU M M AR Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 1.0 I NTR O D U CT I ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 P lant Ope ra t ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 1.2 1985 Samp ling E f fort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 1.3 1986 Samp ling Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 2.0 S U RVE Y RE S UL T S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1 Diablo Cove Water Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.2 Diablo Cove Biological Monitoring ....................... 2-14 2.2.1 Intertidal Observations .......................... 2-14 2.2.2 Subtidal Observations .......................... 2-16 2.2.3 . Fish Observations ............................... 2-18 2.3 Diablo Cove Thermal Ef fects ............................ 2-19 2.3.1 Recent Natural Changes ......................... 2-20 2.3.2 Pre-Sea Otter Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 f 2.3.3 2.3.4 Sea Otter Effects ..............................
Power P lant E f fec t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-23 2-24 3.0 L ITER ATU RE C I TED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 APPENDICES A Monitoring P rogram Maps and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 B Intertidal Band Transect Dato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 C Intertidal Point Contact Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1 D Subtidal Arc Quadrant Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-l E Subtidal Fixed Quadrat Data ................................. E-l F Subtidal Line Contact Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F-1 G F ish Ob se rvat ion Da t a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G-1 H Crab Trapping, Bull Kelp and Sea Ot ter Counts . . . . . . . . . . . . . . . . . . . H-1 1 Sur face and Subtidal Light Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 E6-122.0 li
LIST OF FIGURES Figure P_oge 1-1 Unit I and Unit 2 Cooling Water Volumes . . . . . . . . . . . . . . . . . . . . . . . . 1-4 l-2 Diablo Canyon Power Plant intake and Discharge Temperatures (oF) for 1985 ......................... 1-5 ,
2-1 Surface isotherm Areas with Downcoast f Cu r ren t a nd W ind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 2-2 Surface isotherm Areas with Upcoast Cu r r en t and W ind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 I 2-3 Subtidal Weekly Mean Temperatures in North Diablo Cove ................................................ 2-8 ,
i 2-4 1985 Intertidal Monthly Maximum, Minimum, and Mean Seawater Temperatures for North and South Diablo Cove and Field's Cove ........................................... 2-10 2-5 1985 Subtidal Monthly Maximum, Minimum, and Mean Seawater Temperatures for North and South Diablo .
Cove and South Cove ........................................ 2-1I f 2-6 Percentage Frequency cf Temperatures in ;
S outh Diablo Cove for 1985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 i,
f i
r E6-122.0 iii !
l O 1 (D TIERMAL EFFECTS MONITORING PROGRAM 1985 AteRJAL REPORT DIABLO CANYON POWER PLANT l
i EXECUTIVE
SUMMARY
l The results of the Thermal Effects Monitoring Program (TEMP) for 'he Diablo Canyon Power Plant are summarized and reported for the period fonuary to December 1985. A brief review of activities and data obtaine ; since the program's inception in 1976 is included as background infc motion. The monitoring program currently includes 18 biological and e eanographic study subtasks, one of which (sea otter observations and survey) was initiated in 1985.
The status of all subtasks is briefly described. The 1985 thermal effects monitoring efforts included:
o Intertidal bond transect sampling of cigal and invertebrate populations, random point contact sampling l of algol populations, station photography, algal scroping, and block obalone survey.
o Subtidal are quadrant sampling of algal and invertebrate populations, fixed quadrat sampling of invertebrate populations, line contact sampling of algal populations, rock crab tropping and tagging studies, fish observation transects, settling plate sompling of algae and invertebrates, bull kelp population estimates, and sea otter counts.
o Physical oceanographic sampling of continuous in situ temperature, light, and tide recordings at the TEMP routine monitoring stations.
o Intensive short-term plume mapping studies of the power plant's Unit I thermal discharge performed at various power generating levels and receiving water tide and ocean current conditions.
This first year of power plant operation produced a number of new study findings that are reported in the monitoring program results. A summary of these findings include:
)
E6-122.0 l. . . .
N o The intensive thermal plume mapping studies demonstrated a high degree of general correspondence between the measured field potterns and the plume patterns predicted from the prior physical model studies.
o Field studies of the thermal plume during low tide periods also revealed on unexpected fine-scale pottern in the trajectory and dispersion of the plume in Diablo Cove. It was observed that during low tide,' underwater channels in the cove bottom shifted the discharge angle and caused the Unit I plume to contact more of the northern Diablo Cove shoreline than anticipated from the physical model studies.
o Patterns in the routine temperature monitoring dato from Diablo Cove stations clearly reflected discharge temperature fluctuations associated with the various combinotions of the power plant's operating conditions (e.g., number of pumps, number of powered units, and
, power generating levels).
o Diver-observed discharge temperatures revealed several fine-scale plume dispersion potterns, including a distinct downwelling of the discharge plume os it encountered the shoreword side of Diablo Rock of the cove's entrance.
The divers also observed the oppearance of cold ocean water currents flowing into the cove along the bottom of the cove's entrances. This bottom water inflow is apparently induced by the ospirating effect of the counter-directional surface flow of the buoyant discharge plume.
o The heated water discharge from the Diablo Canyon Power Plant has produced some effects on a few of the common species in Diablo Cove. No effects were observed outside of the cove. The influence of thermal plume on the cove's benthic communities has been detected in a decrease in the low-growing oorweed kelp canopy cover in shallow areas of the cove (depths less than 10-15 ft) and in the surface canopy of bull kelp throughout the cove. The - bull kelp plants growing beneath the plume in the deeper creas of the cove were unaffected.
o The biological influence of the heated water extends to the lower depths (20-25 ft) on the shoreword side of Diablo Rock which con be attributed to o downwelling ^l l
l E6-122.0 1 i
O flow of the discharge plume os it encounters the rock Q obstacle. -
o No other changes related to the thermal plume have been observed in any other area of Diablo Cove or among any other of the cove's numerous species. The populations of several' intertidal species in South Diablo Cove have not recovered from the damage caused by the severe 1983 winter storms.
o The discharge velocity has caused a shift from a kelp community to o more conspicuous assemblege of inverte-brotes in the area immediately in front of the outfall.
o Midwater fish distributions have changed in areas near the plume. The most obvious changes involved a tendency for rockfish to avoid the warmest discharge water. The normal midwater fish and even those fish typically located closer to the bottom appeared to prefer the boundary areas between the heated and ambient water masses in the cove.
The preceding list of the first evidence of thermal change in Diablo Cove includes field observations from a broad area surrounding the TEMP fixed
() sampling stations. A number of thermally-related changes that have been noted in this wider area have not yet been manifested in the quantitative dato collected at a finer scale fixed station sampling program. If the changes continue in 1986 over a broader oreo, they are expected to appear in the quantitative TEMP fixed station data base.
The detailed quantitative findings from the TEMP sampling stations are sum-morized graphically in the report's Appendices B through I. The graphs of the selected species abundances from the TEMP fixed sampling sites illustrate o number .of population changes, but none of the changes con be related to the presence or influence of the Diablo Canyon Power Plant (DCPP) thermal discharge.
l E6-122.0 l
. - - . - . _ . .,J.
l.0 INTRODUCTION
, The 1985 Thermal Effects Monitoring Program (TEMP) is submitted in accordance with Provision D.3 (Compliance with Monitoring and Reporting Program) and D.4(a) of the NPDES Permit (Order number 85-101, adopted on July 12,1985) issued by the California Regional Water Quality Control Board, Central Coast Region, for the operation of the Diablo Canyon Power Plant (DCPP). A report summarizing the results of the TEMP is submitted annually.
Unit I of the power plant began commercial power operation in May 1985. An 85 percent generating capacity during the remainder of the year resulted in the presence of normal discharge temperatures in Diablo Cove. Initial testing of Unit 2 produced low-level thermal discharges in October which steadily increased through December. Unit 2 did not reach commercial power operation in 1985. Data describing the operating history of the two units are presented in Section 1.1.
The TEMP field studies are designed to yield on extensive data base on the spatial distribution of the major populations of marine flora and fauna. This data base will permit comparative evaluations of populations before and after the discharge of the power plant waste heat and will allow assessment of any potential effects of the thermal discharge on these species. Intertidal and subtidal algal, invertebrate, and fish abundances have been quantitatively monitored at regular intervals since 1976. Sampling is conducted at permanently located sampling stations in Diablo Cove and in population reference areas to the north and south of the Cove.
The 1985 TEMP sampling program continued 15 of the 17 subtask activities of the 1984 monitoring program. One new sampling subtask, sea otter survey, was added in 1985. The TEMP field study design and methods are discussed in detail in previous progress reports: December 1976 (Koiser Engineers,1976); October 1977, May 1978, February 1979, November 1979, August 1980, January 1983, N January 1984, and March 1985 (PGandE, 1977, 1978, 1979a, 1979b, 1980, 1983,
\
E6-122.0 1-1
(~] 1984, and 1985). Study creo maps showing the location of the intertidal and V subtidal sampling stations, other sampling efforts, and a table outlining the types of data collected at each station oppear in Appendix A.
With DCPP Unit I beginning commercial operation and the resulting introduction of thermal effluent into Diablo Cove, the focus of this report is to provide information on the species changes detected in Diablo Cove in 1985 that may be associated with the operation of the power plant. The detailed quantitative data summaries of the long-term trends reported for selected species in the previous progress reports are included as Appendices B through H. These data,'ond other observations by the monitoring program's field biologists, include some changes in certain species populations during 1985. A discussion of these changes and their occurrence in Diablo Cove is presented in Section 2.0.
This 1985 annual report is the tenth in the series of progress reports to the Board required under 316(o) and other NPDES Permit guidelines. The progress reports included in this series are referenced in Section 3.0, Literature Cited. In addition to these progress reports, three special reports directly pertaining to k
the DCPP thermal discharge have been submitted to the Board: " Assessment of Alternatives to the Existing Cooling Water System", " Thermal Discharge Assessment Report", and " Compendium of Thermal Effects Laboratory Studies" (PGondE 1982a,1982b, and 1982c).
Thermal discharges from DCPP Units I and 2 began in 1985. The operation of the power plant related to these discharges is reviewed in Section 1.1 to provide on orientation to the monitoring results presented in Section 2.0. A detailed report of the power plant discharge characteristics was presented to the Board in January 1986 (PGondE 19860). Section 1.2 provides a summary of TEMP sampling activities in 1985, and Section 1.3 a summary of activities proposed in 1986. !
(3 V
E6-122.0 1-2
h i
1.1 PLANT OPERATIONS ;
i i e Startup testing of the DCPP Unit ! resulted in thermal discharges In early
- February 1985. Testing continued through March when a continuous four-day
! test at 100 percent power was completed. Unit I operations were then curtailed until o commercial operating license was obtained in May and the unit was brought to full power. The unit ran at on 85 percent capacity factor during the remainder of 1985. Two periods of downtime occurred in early November and early December (FIGURE l-l). ;
4 I
DCPP Unit 2 began reactor tests which produced a thermal effluent in late l l October. A 100 percent power level was reached on December 19. Completion l
) of the remaining tests and receipt of a commercial operating license' for Unit 2 is expected in 1986.
i FIGURE l-2 shows DCPP intake and discharge temperatures during 1985. This j figure illustrates that the power plant discharge temperature varies with the-
\ number of cooling water pumps operating, the number of operating power plant units, the unit power output levels (heat rejection), and the ambient water temperatures.
i l 1.2 1985 S AMPLING EFFORT I
i The scope of the 1985 TEMP field sampi'. .g program is presented in this section, j A total of 18 subtasks were scheduled for. the 1985 monitoring program. -Two of l 1
these subtasks, subtidal abalone survey and subtidal ' video survey, were not '
conducted because of poor sea conditions during the planned sampling periods, i The following 16 sampling subtasks were conducted:
I 1
o Intertidal Bond Transects (IBT) o Intertidal Random Point Contact Guadrats (IPC)
]
o Intertidal Algal Scropings
{ o intertidal Black Abalone Survey a
- E6-122.0 l-3 i i
.."r
f'N 1 O J (1 m
I FIGURE 1-1 R!
b UNIT 1 AND UNIT 2 COOLING WATER VOLUMES BILLION GALLONS PER DAY FOR 1985 1.4
_ UNIT 1 UNIT 2 1.2 --
y-- : -
r .q y, -
.- IJ- N--
7 1.0- .
7 o .
l u w S 0.8- ,
j l w
I Jf
,4 '
3 0.6- 1 ,a A ,
(- - ^
&' ' J o -
4 o.4- 1 o.2-0.0 .- . . .
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TIME (MONTHS)
-- _. .,A - - E 4"--a g+.u e1.-. - .-%ea$4-A4 4 w h w . . - . u a .2 O O O e
i !$
o l FIGURE 1-2 DIABLO CANYON POWER PLANT
- INTAKE AND DISCHARGE TEMPERATURES (F) FOR 1985 INTAKE DISCHARGE A
- \
+ v s
E S^%
50-A r N _
40 .... . .... . . .. .... . .... ............
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC-TIME (MONTHS) t
t o intertidal Station Photography o Subtidal Arc Quadrant (SAO) o Subtidal Fixed Quadrat (SFO) o Subtidal Line Contact (SLC)
- o Subtidal Crab Trapping and Tagging ;
j o Subtidal Fish Observations
- o Subtidal Settling Plates o Bull i<elp Population Estimates i
o Sea Otter Survey and Observations .
! o Temperature Measurement I
o Light Measurement o Tide Measurement i
Maps showing the location of sampling stations and tables summarizing sampling i
O\ efforts at each station are included in Appendix A.
e i
Six bimonthly surveys were conducted in 1985 of the 15 intertidal sampling j locations identified in the tables of completed sampling efforts and maps in Appendix A. An additional five locations were sampled on alternate bimonthly i surveys. Together, these five stations and the 15 bimonthly stations represent i the total number of' intertidal stations origmally sampled in 1976. The I?85 j intertidal monitoring program also included IBT and IPC samples from additional locations, the " Ten-Mile Stations", to the north and south of the Diablo Cove l
study area. These five (5) remote monitoring sites were established in the early. l 4
baseline sampling stages in order to acquire data that could be used to calibrate the local ambient conditions observed in Diablo Cove to the oreowide patterns in the ten mile stretch of rocky headlands which include arcos further north and i south of Diablo Cove. The combined 1985 intertidal sampling effort collected l 535,1/4 m square Intertidal Point Contact (IPC) samples and 1,860, I m square Intertidal Bond Transect quadrat samples. Routine photographic samples were j e
E6-122.0 1-6 I
3 taken of the intertidal fixed station sites. The intertidal block abalone survey v was initiated in 1985 and will be completed in 1986.
Six subtidal surveys were conducted bime,thly at the 12 sampling locations also identified in Appendix A'tobles and maps. The majority of the sampling stations
,, are in depths of 10 or 15 feet with three deeper stations at depths of 20,32, and 55 feet. Each sampling station is a circular area approximately 28 sq m marked i
of the center by a railroad wheel fitted with settling plates, a temperature recorder, and line o"tochments for sampling lines and marker buoy. The circular 3 area is sampled by counting the number of organisms in quarter-circle quadrants i
and in 1/4 sq m quadrats and the number of organisms which contact a line i
strung along rodii inside the circle. The combined 1985 subtidal sampling effort i, collected 240,7 sq m Subtido! Arc Goodrant (SAQ) samples and 240,1/4 sq.m
! Subtidal Fixed Quadrat (SFO) samples. Subtidal Line Contact (SLC) samples l were also collected. Standard efforts of fish observation were performed in 4 X l 9 50 meter band transects along the bottom and in midwater during four of the six subtidal surveys. Six crab tropping and togging surveys were conducted on o
) bimonthly schedule at the 39 fropping stations shown in the Appendix A crab tropping map. The subtidal settling plates at the shallower subtidal stations (10 ft) were sampled every other month throughout the year. The study area's -
4 physical parameters of light, temperature, waves, and tide . were sampled continuously every twenty minutes throughout the year (waves were sampled at a much higher frequency).
t l
t From the monitoring program's inception in 1976 through 1985, 59 intertidal and i
52 subtidal biological surveys have been completed with strictly stondordized I
sampling procedures. These survey efforts have resulted in a data base of 20,903
!. intertidal quadrat samples of algol species and 18,333 samples of intertidal
! invertebrates. The subtidal dato base is composed of 1,648 orc quadrant samples I
of algae and invertebrates and 494 transect samples' of the fish populations.
During the course of the study, over 1,100 species of algae, invertebrates, and j~ fish have been identified from the collected samples. Water temperature dato j
have been recorded every 20 minutes at a number of locations in support of the biological thermal effects monitoring. Continuous measurements of E6-122.0 1-7
-. -_~ - - .. -. - .- --, - . - - . - _ = . . - - . - . - - - . - _ - . - ~ ~ . . - _ . - -
l photosynthetically active surface and underwater light, tide height, and wave
, \s frequency, period, and height have been added in recent years to the list of physical parameters that are monitored in the study creo.
l.3 1986 SAMPLING PLAN ;
l 1
The 1986 Thermal Effects Monitoring Program design will be essentially the some os the 1985 Thermal Effects Monitoring Program design. In addition to the l quantitative sampling performed in 1985, the 1986 sampling plan includes o l qualitative dato gathering subtask (OD). The objective of the new subtask is to collect qualitative information on the general conditions of the TEMP study creo and on changes which may occur outside the framework of the systematic sampling protocol. The OD subtask will be implemented with a procedure directing the onsite research staff to record their general impressions and specific findings in the study creo os observed during the regimen of quantitative sampling. The QD subtask procedure will provide for the systematic logging and retention of individual diaries and large study creo maps for note making and sketching the location and nature of the noted change. The procedure will also provide for follow-up special studies to confirm or further investigate any unusual qualitativa observations.
1 I
l 1
-J l
s 4
E6-122.0 l-8 4
.._,m_, - - . . - . - ..- , ,_.
1 4
-( 2.0 SURVEY RESULTS -
4 The previous progress reports of the Thermal Effects Monitoring Program (TEMP) have described the physical and biological characteristics of Diablo Cove
- with an emphasis on the patterns of natural change in the abundance and distribution of species observed in the study area. These previous observations provide o baselire of information on the natural abundance and distribution patterns of the cove's species and enable a thermal effects assessment based on changes in the abundance and distribution of species following the introduction 4
of warm water effluent to the cove. This progress report focuses on the biological changes which occurred in response to the 1985 thermal discharges of
- Unit I and 2. The description of these first thermal effects monitoring results a
are' intentionally general due to the preliminary nature of the findings. Because the majority of the observed thermal effects were observed in seaweed species which exhibit marked seasonal changes in growth and abundance, the evidence of a thermal effect must be based on abundance dato throughout a complete annual growth cycle.
I i
in this section, the general chorocteristics and patterns of the thermal discharge 4
and the associated biological changes are described. The monitoring results are 2
reported in two different formats: narrative reviews in the text of the report and summary graphs in appendix form. The detailed quantitative results are reported
- graphically in Appendices B through I. The results of the 1985 thermal plume
{ temperature studies and monitoring efforts are presented in overview and in i
graphical detail in Section 2.1. Surface and underwater light monitoring results
- are reported graphically in Appendix 1. Several detailed results of the 1985 ;
monitoring program are summarized in Section 2.2. The spejific results of the l intertidal observations are presented in Section 2.2.l; subtidol observations are
- ' presented in Section 2.2.2; and observations on fish abundonce and distribution are presented in Section 2.2.3. An overview of the~ preliminary 1985 thermal effects are presented in Section 2.3. The observed effects are discussed in a general narrative which begins with a description of recent changes in the cove's 1
ecology that preceded the thermal discharge and ends with a description of the l 1985 thermal effects changes.
, E6-122.0 2-1 l
!~
I h l 1
~ . . , .,o._.- ._m. m-,_.o.__m- , ., __, , ..,_,,,_.,.,.y,__.,.,7 .,,_,m,..,w_,,,_.w_,~,,,~.,,%.r,,. -, ,'.,_,y'.,r w,-m,,,.y-
l 2.1 DIABLO COVE WATER TEMPERATURES V
Intertidal and subtidal water temperatures in Diablo Cove were significantly warmer in 1985 than previous years due to the addition of heat from the Diablo Canyon Power Plant's discharge. During 1985, startup tests were performed on the power plant's Units I and 2, and commercial operation of Unit I was begun.
Discharge temperatures from Unit i varied with the unit's power level, but were generally 190F (100C) warmer than the intake water temperatures during full power conditions. During most of the year, Unit 2 discharged a 100 percent cooling water volume at ambient water temperature during the no-load condi-tion. This ambient water discharge from Unit 2 mixed with the warm discharge water from Unit I in the discharge zone to produce slightly cooler combined discharge temperatures than are expected when both units are operating.
A summary of the power plant's recorded overage daily intake (ambient) and discharge water temperatures is presented in previous FIGURE l-2. These power
~
plant temperature dato are measured in the power plant's cooling water system at the points of intake and discharge and recorded separately for each enit.
Significant increases in the reported discharge temperatures during March and May mark the beginning of Unit I startup tests and subsequent commercial operation, respectively. Periodic increases in the Unit 2 discharge temperatures beginning in October are associated with the unit's startup tees.
The initial effects of the Unit I discharge on the receiving water temperature regimes were studied extensively during the 1985 operatio,al period. These special studies of the thermal plume were conducted to evoluote the tempero-ture mixing and decay process, and to mop the thermal plume's geometry and dispersion potterns. These operational survey data will be compared to the earlier experimental results obtained from the mothematical and physical model tests. During the thermal plume field studies, dedicated research vessels were equipped with specialized electronic temperature sensing and navigational instruments for the precise and concurrent collection of temperature and location data. The discharge plume was mapped both inside the Diablo Canyon study creo and in the area offshore of Diablo Cove. The thermal plume surveys O
m E6-122.0 2-2
- 1. . ___
. +-
% were repeated at several electrical power levels as the power plant's Unit I tests ascended through startup tests to full power.
Sample results of the Unit I thermal plume studies are illustrated in FIGURES 2-I and 2-2. In these examples, only the Unit I cooling water pumps wera operating. The power output level of Unit I was at 100 percent of gene sting capacity during Test 6-4 and'at 90 percent of capacity during Test 4-1. The surface delta-T isotherms were measured out to a region where temperatures were less than two degrees F obove ambient. The temperature records were graphically contoured by extrapolation. During Test 6-4 shown in FIGURE 2-1,
- the wind and ocean currents were moving from northwest to southeast, causing a deflection of the surface thermal plume in a southerly direction. During Test 4-I shown in FIGURE 2-2, the direction of the wind and ocean currents were reversed from the Test 6-4 conditions. As con be seen in both figures, the effect of the offshore wind and ocean currents is to deflect the offshore trajectory of the surface thermal plume in the direction of the prevailing wind and currents.
The magnitude of the deflection depends mainly on the strength and direction of 1 the wind and water currents.
Thermal plume studies similar to the Unit 1 investigations were repeated at the end of 1985 during the startup and power ascension tests of Unit 2. The analysis of the Unit I studies have been completed (FIGURES 2-1 and 2-2 are draft samples) and the final report is in preparation (PGondE 1936b). Analyses of the results from the combined Unit I and Unit 2 study conducted in late 1985 are in progress and are expected to be completed in 1986. l l
Results from the Unit I thermal plume studies, in addition to confirming the general plume patterns that had been predicted by the physicola and l
mothematical model studies, provided further insight into the characteristics and behavior of the discharge plume under various conditions of sea state, tide height, and offshore currents. Though the Unit I study results are not representative of the combined Unit I and 2 operating conditions (Unit 2 was j either not discharging or was discharging ambient temperature water during the
, Unit I thermal plume studies), the preliminary results revealed several new
?
E6-122.0 2-3 '
\
l l
, _ . _ . _ _ . 1 -- ..-
~\ g k 5 /
V Diablo Canyon a
Power Plant M
8 (
o 0 00e Discharge o . tructure
.g , e d*O y I e
,g I.
~~l O
p
- O
, O'
.. 1 il o
- p Wind
.. m,,j...:: o '
aw' :*', -')., .f.QQC-/-
,.1.Q'l ' e
'5
$%fffh.h ' 'j,.j.}:j_
- 5 *
- '82
.h *
'* A S, . . ,if , '5.y2' ? . f ,','h , . ',' ..
e-Drogue m
1,
- .4 -- g,fis
.n , i..9.
~
LEGENO 'N
., p , . g g* a,( ;
E . c.. 1.
O- 1.9
.r...r. ,
2- 3. 9 4-5.9 6-F.9
. . 0-9 e 10-11.9 u= 12-13.9 14-15.9 16-17.9 Shaded are.e re resent h4m f
....n .........n9 ................
Surface isotherm Areas of Test 6-4, (from PCondE,1986)
FIGURE ?-l SURFACE ISOTHERM AREAS WITH DOWNCOAST CURRENT AND WIND (UNIT I - 100%, UNIT 2 = 0%)
O O O Di.blo Canyon IT) LEGEND Pow.f Plant O
E sc.s. Tempee.tur. *F N o- u Disch.f g.
o . . 2-39 o ,
aggs$. . ,.$P' 4-59 . , . _ _
e 6- F.9 8-99 ,
g Io-1 f.9 . - _
j p ,
= .: 12-13.9 , ,
ij.g 14-15 9 . # 0 O
18-17.9
\ Diam hk ; 5
/ "; T p
9 .... ..... .......nl e_ e- '".
.st.nt of bo.t s.mphn0 Appees o mete .cese f9; I
" r e
g
..I,
/ q : ...
- .t y
h "
- Wind I.9.', .
i
'p Drogue
...c.
'9:6 -
,',.; .59 3
s'
i i m i
, 4 Surface isotherm Areas of Test 4-l,(from PGondE,1986) ,
FIGUREA2 y
SURFACE ISOTHERM AREAS WITH UPCOAST CURRENT AND WIND (UNIT l = 90af,, UNIT 2 = 0%)
1 4
[
N details on the nearshore characteristics of the discharge plume. The following points summarize a number of these general findings.which will be presented in detail in the forthcoming thermal plume study report (PGondE 1986b).
o The trajectory and dispersion of the thermal plume from its point of shoreline discharge is strongly influenced by both tidal depth and underwater features (bedrock chann-els and pinnacles) in Diablo Cove.
o The dispersion and decay of the thermal plume also varies as a function of the tidally varying amounts of ambient temperature mixing water volume in the cove.
o During high tide conditions, the thermal plume trajectory is generally perpendicular to the shoreline; during low tide conditions, the plume shif ts to on angle of trajectory north of the high tide trojectory.
o The Unit I low tide plume trajectories and mixing charac-teristics have increased the area shoreline contact of the thermal plume in north Diablo Cove more than was expected from the physical model tests.
o The surface thermal plume is occasionally bifurcated by J the midstream presence of Diablo Rock of the exit from Diablo Cove .
o The thermal buoyancy of the discharge plume causes it to remain at the surface and therefore lose contact with the cove bottom as the cove's seaward depth increases to approximately 25 f t (8 m).
o The strong exit velocity of the worm surface plume from Diablo Cove causes on aspiration of cold deep ocean water flow into the cove by means of an induced counter-current flow beneath the plume.
The Diablo Canyon TEMP studies have maintained on in situ temperature monitoring system that has been collecting seawater temperature data from July i
1976 to December 1985. These baseline temperature data were gathered to ;
I evoluote the power plant's discharge effect on the ambient receiving water 1 temperature regimes and to provide on historical temperature data base for use in assessing potential biological responses to the discharge.
A h
E6-122.0 2-6 l
l I
_ .- . ,_ . . . _.. ._. ,~ _
r
( During 1985, intertidal and subtidal water temperatures were recorded synchronously every 20 minutes among 28 sampling stations. The sampling stations are concentrated in Diablo Cove and the immediate vicinity (see map FIGURE A-7). Stations located outside of Diablo Cove provided reference dato on ambient water temperatures not influenced by the thermal plume. These temperature data have been collected by consistent procedure and at repeated locations for more than nine years.
An example of the natural seasonal temperature patterns seen in the long-term -
temperature monitoring results is presented in FIGURE 2-3. This figure summarizes the subtidal (-10 ft) overage daily temperatures recorded in north Diablo Cove over the entire nine-year TEMP study from July 1976 to December 1985. Typically, the historical water temperatures are seasonally warmest in the fall and winter months in conjunction with the cessation of spring and summer cold water upwelling and the beginning of the Davidson Current flow of warm water from areas south of the Diablo Cove region. The 1985 Diablo Cove water temperatures decreased in the summer with the onset of the normal upwelling cooling period and steadily increased into the fall warm water period.
v However, in the 1985 warm water period, the Diablo Cove water temperatures reached higher maximums and remained at higher levels than have been previously recorded. Though the cove's water temperatures in the fall were strongly influenced by the elevated thermal discharge temperottres, Ornbient water temperatures have remained warmer for a longer period of tim
- than normal in the winter months. . There are some conditons in the Pacific Ocean basin which appear similar to conditions preceding the previous El Nino/ Southern Oscillation (ENSO) warm water period and may indicate a 1986 warming period. ;
i A comparison of the north and south Diablo Cove water temperatures with ambient water temperatures from reference stations north and south of the cove Om E6-122.0 2-7
a'---m
- 4- - z,. s.k- a a .-J~~- m.--W --D--,4 s a L. r - m n kb O O O
=
FIGURE 2-3 i
SUBTIDAL WEEKLY MEAN TEMPERATURES IN NORTH DIABLO COVE JULY 1976 TO AUGUST 1985 i
22
_ 20f 8 18-
@ 16- I f
l*1h y 10-l fg/YA y $1 f%
F 8-I 6 ..... ......... .
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 TIME (YEARS)
,,. e
t i
! is illustrated in FIGURES 2-4 and 2-5 for the intertidal and subtidal sampling j stations, respectively. Inspection of these figures reveals several points.
I, o North Diablo Cove overage intertidal and subtidal te_mperatures were higher than south Diablo Cove overage
- intertidal and subtidal temperatures. - The two creas typically differed by 3.5-4.50F (2-2.50C).
i o During the spring and fall months, the Diablo Cove
- maximum subtidal water temperatures were higher than i the maximum intertidal water temperatures; the Diablo Cove subtidal averages were the some or lower than the intertidal average temperatures.
1 o Water temperatures among the north and south Diablo Cove stations dropped significantly in April and increased in May to their previous March levels. These temperature changes corresponded to the Unit I startup tests in March, shutdown in April, and commercial operation in May.
o A significant decrease in the monthly maximum subtidal temperature in south Diablo Cove occurred during August.
This decline in subtidal temperature oppears to match the period when the Unit 2 cooling water pumps were operated at full flow without heat.
o The overage south Diablo Cove intertidal temperatures in August and October were lower than the ambient water temperatures measured at the intertidal reference station, illustrating the effect of the unheated Unit 2
~
j
- cooling water flow to import deeper and colder intake j cove water.
Past annual progress reports have reported the percent frequency distribution of
- subtidal temperatures (-10 ft) as measured at a selected monitoring station in J
'l l south Diablo Cove. The 1985 results from the same location are summarized j j graphically in FIGURE 2-6. The 1985 monthly results when compared to the j l previous years' findings clearly demonstrate the influence of the power plant I
1 thermal discharge on the natural temperature regimes of Diablo Cove. The
] Influence of the thermal plume has raised the cove's average water temperature i
values and has increased significantly the normal frequency of high temperatures I
(greater than 6loF,160C). The ambient temperature frequency distribution curves are typically skewed to the cooler values; the addition of the thermal plume temperatures has skewed the monthly temperature frequency curves
- toward the warmer values.
E6-122.0 2-9 a
g., 7 9 - --sg.- yw---- - -y-y~,. p..gv.,-_,m y. g y,_.+.m .
y .-wrw7-' =w' wee t w g- Wam -yWF=u'-t e + - sy v- w-
O O O J.
i8
'o FIGURE 2-4 1985 INTERTIDAL MONTHLY MAXIMUM, MINIMUM, AND MEAN SEAWATER TEMPERATURES FOR NORTH AND SOUTH DIABLO COVE AND FIELD'S COVE 30
'I' 5 g 25-m 20- x x
- x x * " " x 15 - - "
m a.,,I_.
_so o m
, ,, , ,"m .", ,
,, E
- n. 10 o oe e o
, o,,
g -
H 5-0 . . . . .
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TIME (MONTHS) eNORTH DIABLL COVE MEAN TEMPERATURE eFIELD'S COVE MEAN TEMPERATURE (AMBIENT) 4 ASOUTH OIABLO COVE MEAN TEMPERATURE xMAXIMUM TEMPERATURE
- MINIMUM TEMPERATURE
L O -
O O E
l8 4
FIGURE 2-5 1985 SUBTIDAL MONTHLY MAXIMUM, MINIMUM, AND MEAN SEAWATER TEMPERATURES FOR NORTH AND SOUTH DIABLO COVE AND SOUTH COVE 30
'I' g 25-x x , x x 20- *
.x x x x x n x x tu , n ,
5 -
x x n o xx o un n n m
~
* I " '.' ! "
". .J. "
- ll "
. . .. "{"
ll * "
S" '
" I.' *I H 5-0 . . . . . . . . . .
JAN FEB -MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TIME (MONTHS)
. BNDRTH DIABLO COVE MEAN TEMPERATURE
- SOUTH COVE MEAN TEMPERATURE (AMBIENT)
ASOUTH DIABLO COVE MEAN TEMPERATURE xMAXIMUM TEMPERATURE
- MINIMUM TEMPERATURE
l l
4 I I 20 a-10 - 10 -
0< 0<
0.0-5.0 7.0-7.5 9.5-10.0 12.0-12.5 14.5-15.0 17.0-17.5 19.5-20.0 0.0-5.0 7.0-7.5 9.5-10.0 12.0-12.5 14.5-15.0 17.0-17.5 19.5-20.0 TDRMM Q TDFEMM Q ,
g FENUW 1985 g M Y 1985 40 - 40 <
30 < 30- l
- n. a.
'l 0.0-5.0 7.0-7.5 9.5-10.0 12.0-12.5 14.5-15.0 17. 0 17.5 19.5-20.0 TDFEMM Q
'l 0.0-5.0 1 7.F7.5 9.5-10.0 12.F12.5 14.5-15.0 17.0-17.5 19.5-20.0 TBFEMM Q MA041985 JUE 1985 g g 40 - 40 -
,a. ,a.
W W g a. a.
g 0.0-5.0 7.0-7.5 9.5-10.0 12.0-12.5 14.5-15.0 17.0-17.5 19.5-20.0 0.0-5.0 7.0-7.5 9.5-10.0 12. 0 12.5 14.5-15.0 17.0-17.5 19.5-20.0 TDFEMM Q TBFEM M (Q FIGURE 2-6 PERCENTAGE FREQUENCY OF TEMPERATURES IN SOUTH DIABLO COVE FOR 1985 I
E6-122.0 2-12 i
g m 19ss g Oc7aBER 1985 m- m-30 - 30-W W a- a-10 - 10 -
0- 0-0.0-5.0 7.0-7.5 9.5-10.0 12.0-12.5 14.5-15.0 17.0-17.5 19.5-20.0 0.0-5.0 7.0-7.5 9.5-10.0 12.0-12.5 14.5-15.0 17.0-17.5 19.5-20.0 Teseum a Teseum m
, August 19ss y mesER 1955 40 - m.
l 30- 30-g i W W i 20- 20 -
l 10 - 10 -
1 0- 0-0.0-5.0 7.07.5 9.5-10.0 12.0-12.5 14.5-15.0 17.0-17.5 19.5-20.0 0.0-5.0 7.0-7.5 9.5-10.0 12.0-12.5 14.5-15.0 17.0-17.5 19.5-20.0 Teseum a Tassum a y SEPTBeER 1985 g ECBER 1915 m- a-30 - 30-W W 20 - a-0- l 0.0-5.0 7.0-7.5 9.5-10.0 12.0-12.5 14.5-15.0 17.0-17.5 19.5-20.0 0.0-5.0 7.0-7.5 9.5-10.012.0-12.514.5-15.017.0-17.519.5-20.E2.0 22.5 Tassum u Tessum n FIGURE 2-6 PERCENTAGE FREQUENCY OF TEMPERATURES IN SOUTH DIABLO COVE FOR 1985 (Continued)
E6-122.0 2-13
Many of the recorded temperature patterns described above have been observed by the biological monitoring SCUBA team during the course of their surveys. In addition to the recorded dato patterns, the divers have reported a noticeable downwelling of thermal plume water temperatures on the shoreward side of Diablo Rock. This phenomenon produces warm subtidal water temperatures in the creo of Diablo Rock at depths greater than expected. The divers have also-confirmed the presence of new bottom water currents of cold ocean water moving into the cove through the cove's north and south entrances. These strong bottom currents of cold water flow into the cove beneath the outgoing flow of the surface thermal plume.
2.2 DIABLO COVE BIOLOGICAL MONITORING The biological results of the 1985 Thermal Effects Monitoring Program are summarized graphically in Appendices B through H. The species abundance plots are reported for selected species and according to the various types of sampling method. Some highlights of these intertidal, subtidal, and fish monitoring results Q are discussed in the following sections 2.2.1, 2.2.2, and 2.2.3, respectively. An historical and summary overview of these and other changes in Diablo Cove and its environs is presented in Section 2.3.
2.2.1 INTERTIDAL OBSERVATIONS Data from the intertidal band transects and intertidal random point contact quedrots on selected stations were analyzed graphically for five seaweeds (Endocladio muricota, Gastroclonium coulteri, Gigartina canaliculata, E papillata, and Iridaea flaccida) and five invertebrates (Anthopleuro elegantissimo, Holiotis crocherodii, Collisella scabra, Pogurus spp., and Tegula (
funebralis). The results are presented in Appendices B and C. Also included are comparable data for the entire period of the study. A review of these graphs revealed on obsence of any change that could be attribFed to increased I temperatures.
E6-122.0 2-14 r-r - - - . - _ - _ - - ---w, -r.-+y -
A number of the more apparent 1985 shifts in the abundance plots of the previous years' dato are pointed out and briefly discussed for the reader who has been following these plotted long-term trends in previous reports. A description of these graphical features is not intended to ottoch any ecological importance I to the plotted results, but only to review for the purpose of continuity changes which have been previously noted. At this time there is no indication that any of the patterns are related to the presence of the DCPP thermal dischc;ge.
A close examination by sampling location of the 1985 abundance curves in Appendix B reveals several population shifts in the following species. The intertidal red seaweed, Gigartina papillato, increased in abundance to its highest recorded level at south Diablo Cove Station 12+1. Iridaea flaccido, one of the crea's dominant intertidal red cigae, declined in abundance along transects at north Diablo Cove stations 8+3, 9+1, and 9+3. These declines appear to have started before the presence of warmer water temperatures from the thermal discharge; the abundance levels of this species will be carefully monitored through the next growing season for signs of further population shifts. Two G species of invertebrates, i.e black turban snail, Tegulo funebralis and the limpet
'lisello scabro, have exhibited long-term abundance increases at several ato Cove sampling stations. These increasing trends are still evident in the 1,85 data. The limpet continued a 1984 trend of increasing abundance at the lower tide levels (+1 f t) of the north and south Diablo Cove stations 8, i1, and 12 and at the higher tide level (+3 ft) of the north Diablo Cove Station 9. The population of the black turban snails doubled its previous population densities recorded at Station 12+1.
In the remaining dato summaries for 1985 which are presented in Appendices B and C, the species abundance potterns appear normal and consistent with abundance patterns recorded in earlier years; and therefore, show no quantita-tive evidence of a thermally induced change. There have been no reports from biologists working in Diablo Cove throughout 1985 of any noticeable change in the qualitative appearance or condition of the intertidal communities which might be related to warmer water temperatures.
O E6-122.0 2-15 l
i 1
l l
2.2.2 SUBTIDAL OBSERVATIONS v
Subtidal data from are quadrants, fixed quadrats, line contact sompling, crab tropping, and tagging in selected stations were analyzed graphically and are i
presented in Appendices D through H. Data were analyzed for six seaweed species (Botryoglossum farlowianum, Calliarthron/Bossiella/Serroticordia (CBS-complex), Cystoseira osmundoceo, Laminoria dentigero, Nereocystis luetkeano, and Pterygophora californica) and for 18 invertebrate species (Acmoea mitro, Anthopleura elegantissimo, Astraea gibberoso, colonial / social tunicates, Holiotis rufescens, & walallensis, Mitrella spp., Pagurus spp., Patiria miniato, Pisoster ochraceus, & giganteus, P. brevispinus, Puggetia producto, P. richii, Pycnopodio helicnthoides, Strongylocentrotus francisconus, & purpuratus, and Tegulo brunneo). The crab trapping data provide information on the rock crob, Concer antennarius. There appear to be no obvious changes in the abundance of the seaweed species quantitatively sampled at these TEMP monitoring sites. How-ever, the TEMP biologists in the course of performing their underwater moni-toring surveys have reported a number changes in the qualititative oppearance and distribution of several seaweeds found in the TEMP study areas influenced by the thermal plume. These thermal plume related changes are discussed in Section 2.3, Diablo Cove Thermal Effects.
c The abundance curves of selected subtidal species presented in Appendices D through H contain a variety of trends and patterns which document the wide range of population changes observed in the Diablo Cove marine species over the past ten years. Examination of this year's abundance curves for invertebrate species reveals several shif ts in the species' long-term trends at specific sites.
At this time, there appears to be no consistent pottern to.these changes. The subtidal limpet, Acmaea mitra, the brown turban snail, Tegula brunneo and the small snail, Mitrello spp., exhibited notable increases at several Diablo Cove stations. The increase in limpet densities appears to o continuation of a trend begun in 1984. Natural variation and the patchy distribution of these species i tend to mask the significance of short term changes. Most of the specific !
population shifts mentioned had originated prior to the presence of the elevated discharge water temperatures, but the abundance levels of these particular 1 E6-122.0 2-16 4
~ _ . . _ , _ __ _ . , . - _ , . _ - - . - . . , _ _ _ _ . . - _ _ .__ . . _ _ . , . . _ _ . - , .--_._.,_-..I
O / species will be examined through the next monitoring period for signs of further population shifts.
The crab trapping results for 1985 (see Appendix H) revealed no notable change in the rock crob populations in the TEMP study creo.
Qualitative areawide observations during the underwater TEMP surveys revealed a number of changes not found in the quantitative data base that con be directly ascribed to the thermal discharge temperature increases. These qualitative changes are not evident in the 1985 quantitative dato, because the effects have been observed on on areawide scale which includes the areas adjacent to and surrounding the TEMP sampling stations. These larger-scale effects are expected to express themselves in the 1986 quantitative data trends. The primary effects observed involved the loss of blades in two common kelp species.
In the oorweed kelp, Laminario dentigera, offected plants exhibited a nearly complete loss of their broad leafy blades from the stipe (stalk) which resulted in g the oppearance of an unusual proportion of " bore stipe" plants in the shallow subtidal areas of Diablo Cove. None of the other species common to this shallow area have shown any evidence of thermal effects as of December, 1985.
Geographically, the effects appear to be limited to the Diablo Cove area, on area extending to the headlands of the north and south points of the cove.
The second species that exhibited evidence of thermal effects was the bull kelp, Nereocystis luetkeana. Dull kelp reproduces annually by a sporophyte stage that is found at most depths in Diablo Cove. Once the sporophytes are established, they begin growing in the spring in response to increased light levels and colder nutrient-rich water. Once established in the spring, the sporophytes grow up through the water column until by the fall, most plants reach the surface where they mature and reproduce by the release of spores from their surface blades. In l
recent years, the species was found in surface-canopy forming beds primarily ;
along the shoreward side of Diablo Rock and at the headlands marking the north l
and south points of Diablo Cove.
)
E6-122.0 2-17 i
i j
Thermal effects were observed in the surface portion of the bull kelp plant which interacts with the buoyant worm water discharge that normally occurs as a surface layer in the upper 10 to 15 ft of the Diablo Cove water column. When the vertical height of the 1985 bull kelp population reached this surface layer of warm water in the late summer and fall, the plants become bleached and begon to degenerate. The flotation provided by the plant's gas blodder was lost in the degeneration stages; and consequently the plants sank to the bottom where they were observed by the underwater survey team. At the some time, normal
'oppearing plants were observed in a healthy condition at depths of 10 to 15 ft below the surface thermal plume. The thermal plume's effect on the surface conopy of the Diablo Cove bull kelp population was not observed beyond the boundaries of Diablo Cove.
Ovalitative observations did not reveal any effects on the subtidal invertebrate '
populations that could be attributed to the thermal discharge. These diver observations are in agreement with and confirm the results of the dato collected in the quantitative sampling program.
A marked change was observed in the area immediately in front of the discharge structure, extending to o depth of about 10 ft. In this area, the high velocity of the discharge water hos removed many of the naturally occuring seaweed species. This turbulent removal of plant cover revealed and made more conspicuous the firmly attached invertebrate species, such as onemones and bornacles. Such on invertebrate species assemblege is typical of high velocity habitats, such as wave swept tidepools.
2.2.3 FISH OBSERVATIONS The fish that occur in the midwater (the water column above the bottom and extending to the surface) have shown distinct behavioral patterns relative to the discharge plume, in the obsence of the discharge plume, the midwater region has normally been occupied by several species of rockfish and the senorito fish. The rockfish were present in relatively low obundance when compared to the senorito l
which school in greater numbers. In areas influenced by the thermal plume, the E6-122.0 2-18
Ns rockfish have tended to remain outside the plume. What has been more obvious i j is that the fish species normally found close to the bottom have been attracted to the margins of the discharge plume. This attraction phenomenon has been quite evident to the biologists when diving in the areas along the plume margins.
The benthic survey data presented for ten fish species in Appendix G include:
black-and-yellow rockfish, block surfperch, blue rockfish, cabezon, gross rock-fish, olive rockfish, pointed greenling, senorito, striped surfperch, and kelp boss.
The abundance of pointed greenling appeared to be unusually low on the benthic transects at Stations 8 and 10 when compared to 1984. Black surfperch were unusually abundant on the benthic transect at Station 6 in early 1985. Senorito
- oppeared in relatively low obundances on Stations 9 and 10 when compared with 1984, but within the range of abundances observed during the course of the study.
2.3 DIABLO COVE THERMAL EFFECTS i
The heated water discharge from the Diablo Canyon Power Plant has offected several common seaweed species and some aspects of fish behavior in the Diablo Cove study area. No thermal effects have been observed outside of the Diablo Cove area. The primary influence on the benthic communities has been a decrease in the oorweed kelp (Lominario dentigera) canopy cover in shallow areas of the cove (depths less than.15 f t) and in bull kelp (Nereocystis luetkeona) surface canopy throughout the cove. Elevated water temperatures and associ-ated biological changes in Diablo Cove have not been recorded at depths below 20 feet except in the bottom areas along the plume centerline and at Diablo Rock. The presence of heated water at lower depths (20-25 ft) on the shoreward side of Diablo Rock is attributed to o downwelling plume flow caused by the rock obstacle. In the area immediately in front of the discharge and extending out to depths of 10 to 15 feet, the discharge velocity has made the existing inverte-brote species more conspicuous by reducing the algal cover. No other changes have been observed in other areas of Diablo Cove or among the cove's other i numerous species. The populations of several intertidal species found in south E6-122.0 2-19
e i-Diablo Cove remain unchanged from their depauperate conditions following the f . severe 1983 winter storms. .
j'8 a
Midwater fish distributions have changed in areas near the plume. - The most j . obvious changes involved a tendency for rockfish to avoid the warm water and ;
j for the m'dwater i and near-bottom fish to relocate to the cove's thermal mixing ]
- j. areas between the boundaries of warm plume water and cooler ambient water. )
2.3.1 RECENT NATURAL CHANGES -i The ecological setting of Diablo Cove has been significantly modified by several i natural environmental events in the decade prior to the manmode changes I associated with the operation of the power plant's cooling water system. This ;
, discussion of integrated biological observations in Diablo Cove following the I 1
thermal discharge includes a description of the preceding natural events which l shaped the cove's ecological setting up to the DCPP discharge-related change in the cove's water temperature. Results from the past 15 years of routine
~
biological monitoring have defined a number of repeating annual cycles in the obundances and distributions of species in the cove's marine community. Pot-terns of long-term population increases and declines in a number of species have been discerned in addition to the repeating _ annual cycles. In several cases, j
i consecutive changes in the abundance of two or more species appear to be i related to each other. The ecological mechanisms of these apparently inter-
! related population shifts will be under investigation through the course of this
! study. !
i J
A primary ecological change occurred in Diablo Cove during the pre-operational l monitoring period which produced a number of interrelated ' shifts in the abundance and distribution of several invertebrate and seaweed species. The ;
1974 arrival of the southern sea otter in Diablo Cove had on immediate and measurable impact on the cove's populations of abalone and sea urchins, the !
I otter's preferred prey species. The otters' predatory removal of these inverte- !
brote herbivores, particularly the seaweed-grazing sea urchins, has induced other i
i f
f- E6-122.0 2-20 1
3
)'
I secondary population changes in both the distribution and abundance of several species of the cove's subtidal seaweeds, p i The ecological structure of Diablo Cove in 1985 was also preconditioned by other ,
large-scale environmental events which occurred during . the preoperational ,
monitoring period. In the winter of 1982-83, severe storm waves pounded the cove's rocky headlands and shallow subtidal areas. The ecological results of the
) storm waves were to thin the existing mature s. . ds of underwater seaweed, to open up space for the recruitment of new seaweed and invertebrate populations, f
j and to generate rock debris which smothered some intertidal areas. Many of the -
l cove's ecological features which were altered by the storm waves have not returned to their earlier ecological potterns. y l
l In 1983, the ambient ocean water temperatures increased significantly along the
- entire California coast due to large-scale changes in ocean current throughout
- the eastern Pacific basin associated with the ENSO event. Several ecological -
).
+
changes occurred during this worm water period which may have been related to ,
- water temperatures or nutrient levels; one noticeable change was the premature j senescense of the bull kelp before reaching fertility. The ENSO-induced changes j in the direction of ocean current patterns may have also affected the transport i of adult and larval forms of many marine species, and altered the source and I
amounts of seawater. nutrients for seaweed production. During this period,' o j number of fish species from southern waters, which were transported by the shift in offshore current directions and sustained along the way by unusually warm water temperatures, made their appearance along the normally cooler central i California coast, including the area in and around Diablo Cove. The majority of the ecological changes observed in Diablo Cove during the ENSO period were
- transitory and were reversed in the following years of normal ocean tempera-e l tures. Previously in 1976, a similar warm water ocean year in Diablo Cove had been observed in the monitoring studies with relatively few temperature-related j biol_ogical changes. These relatively minor biological changes produced by the 1976 warm water period were observed to reverse quickly in the subsequent year _
- ;
to their pre-worming condition.
}
1 E6-122.0 2-21 l
i 1
4 -.....mcr,~,,,_,-.1, .-,-..m--m,m,,,,..e..,,.-...m.~,. - - . -,-,...,,.,-.m.r.,ew.- . . - , 4#-.=--,-,v- .
, . - - , - - - - . , , - - , . , . -,---w.m.
I
! i The ecology of Diablo Cove was altered by three major no? ural events which
' }' preconditioned the cove prior to the 1985 influence of the powee olont's thermal discharge. This year's preliminary observatioas on the biological int!uence of the
] ~
- thermal discharge are integrated in the following discussion'with a description of
! the natural changes which modified the cove's ecological condition prior to the l i' discharge.
l 2.3.2 PRE-SEA OTTER CONDITIONS i
j The ecological chorocteristics of Diablo Cove prior to the oppearance of the j southern sea otter were reconstructed from data token from the 1966-1971 I observations of North (1966) and Burge and Schultz (1973). Bull kelp was found j in thinly scattered patches near the center of the cove, near the north and south j cove entrances, close inshore of Diablo Rock, and occasionally in the shallow i area offshore Diablo Creek. Burge and Schultz found the plants mainly on the j tops of rocky reefs. Beneath the surface canopy-forming bull kelp were dense ,
t stands of the medium height oor kelp (Lominario dentigera) and tree kelp i
i (Pteryaophora californico).- These two species were found in various mixed j proportions, but from the ovallable descriptions (North,1966 and Burge and -
) Shultz,1973) tree kelp was apparently the dominant kelp in south Diablo Cove
- and oar kelp was dominant in north Diablo Cove. Numerous species of smaller
!; red seaweeds were scattered beneath the larger kelp plants and in shallow open i
areas on bedrock and boulders.
4
- j. The red seaweed (Botryoalossum forlowianum) was commonly abundant in the cove's shallow subtidal areas (depths less than 15 ft) where surface light penetrated through the lower densities of overshadowing oor kelp and tree kelp i
plants. Burge and Shultz (1973) reported that Botryoalossum was an important i seaweed in the shallow subtidal areas of Diablo Cove. ,
j Red abalone (Haliotis rufescens) and sea urchins (Stronaylocentrotus francisconus and & popuratus) were common in Diablo Cove. Sea urchins were present in
" swarms" in a shallow seaweed barren zone (10 to 15 foot depths) and in a deep l seaweed barren zone (depths greater than 50 ft)(North 1966). Burge and Shultz
\
E6-122.0 2-22 i
l
. - - _ - . _ , , _ . _ , - . ~ . . . _ _ _ . , _ . _ , _ _ _ _ _ . _ . , . , _ . . - _ _ _ . _ _ _ . - _ . . _ - , - _ __
i (1973) reported finding sea urchins in their highest concentrations at the 20 foot
) j depths and in decreasing abundances with increasing depth. Red abalone were
- . scarce or absent in the seaweed barren, sea urchin zones and common near the kelp forests and shallow subtidal areas (depths less than 15 ft) throughout the CoV6.
l l 4
l 2.3.3 SEA OTTER EFFECTS 4
The southern sea otter (Enhydra lutris) began immigrating into the Diablo Cove l area in 1974; and so,.: thereafter, a large herd-(opproximately 100 animals) l established residence in the Diablo Cove vicinity. The otters' voracious feeding j habits quickly reduced the Diablo Cove abundances of obalone and sea urchins, the otter's preferred prey. The cove's seaweed community responded rapidly to I;
the sea otter's removal of seaweed-grazing sea urchins. Several red seaweed and j kelp species significantly increased their density and distribution in the cove.
These seo otter-induced changes played on important role in establishing the ecological setting of the cove prior to the water temperature changes caused by 3 the power plant's cooling water discharge. The pre-thermal discharge ecological l condition of the cove was also influenced by changes resulting from the physical impacts of the 1982-83 winter storm waves and the elevated temperatusa of the 1983 ENSO.
Shortly offer the sea otters' predatory removal of sea urchins in the shallow i
' seaweed barren zone, the bull kelp oppeared in luxuriant surface-blanketing t
! growths in these some shallow cove areas as well as in many other areas of the l cove. Since this time, bull kelp has steadily diminished its obundance and j *l a
j distribution. This areawide decline in bull kelp may be due to the delayed !
! success in the competition for space and light by the smaller statured seaweeds
{ which also invaded the areas previously dominated by sea urchins. These successful seaweeds included the red seaweeds and the perennial brown kelp j species, oar kelp and tree kelp. During this period, the bull kelp was also j affected by the 1983 ENSO elevated water temperatures.
E6-122.0 2-23 i
- _ , . _ _ _ . _ _ . _ - _ _ _ . _ _ - ~ . _ _ . _ ~ . _ . _ _ _ _ _ _ . . _ _ _ _ . . . . - _ _ , - . _ . . _ _ _ _ . _ - . _ _ , . . , _ _
3 ..
- . However, in the following year, the bull kelp population returned to a physical- .
I~
condition and ' appearance'similar to conditions in the bull kelp population prior to
{ .- the ENSO warming period. The resulting 1984 Diablo Cove bull kelp distribution
- pottern and density were similar to the reduced density and d' istribution patterns q I observed in the pre-seo otter period. ' Oar kelp abundances have rapidly increased on occasion in response to the' colonizing opportunities in the discharge velocity j zone following cooling water pump shutdown events. , Red seaweed has steadily
]- increased its distribution and abundance in the shallow south Diablo Cove zones, _ ,
j apparently taking advantage of the decline of tree kelp in these oreos. ,
2.3.4 POWER PLANT EFFECTS L ;
The warmer water temperatures and new current patterns produced by the power
! plant's cooling water system discharge produced several notable changes in the
] cove's 1985 marine communities. The .1985 startup testing and commercial i'
operation of Unit I began producing elevated water temperatures in the spring f months and continued through the remainder of the year. - The warmest >
} temperatures in Diablo Cove were measured in the path of the plume trajectory - l l which varied with the tide height in Diablo Cove. In general, the area inshore of .
1 Diablo Rock was the most persistently exposed to the warmest discharge water.
I i l'
f Bull kelp growth in 1985 occurred in the same general areas os seen in 1984, but in lower densities. By late summer, the surface portions of bull kelp plants
. l
~'
- inshore of Diablo Rock were showing signs of thermal stress, as had been.
previously observed during the 1983 ENSO warm water conditions. Similar signs ,
of thermal stress in bull kelp had been observed in the onsite thermal effects '
i laboratory studies conducted in the temperatures ronge of 18-200C. The cove's i {
plants continued to deteriorate in the fnll months. By October, the majority of j the bull kelp plants in Diablo Cove exhibited some sign of thermal stress.
j The shallow water (depths less than 10 ft) distributions and densities of oar kelp .
j were similar to their population patterns during the pre-discharge period. .
) However, the proportion of plants-without blades (fronds) increased. The bare .
b stalks (stipes) of these plants are capable of producing new fronds when '
~
favorable growth conditions prevail. A higher proportion of bare stipe oar kelp hos also been observed in the area of thermal plume downwelling at Diablo Rock.'
{
E6-122.0 2-24 w eev,w-w ww w ,aww mwm m e,+ v ,we . . e,w-s- -w o - .,- e , m-w mw e -. m w-m +r ,+-- w w - , ww e,w- vre w m e, w =,. , -,~
The only other change in the Diablo Cove marine community observed in N
association with the 1985 power plant operation was that the presence of the sea onemone (Anthopleura) was made more conspicuous in the high velocity areas of the discharge zone by the watershear removal of seaweed cover. In the period preceding the 1985 ther nal discharge, operation of the cooling water pumps had also removed most of the upright seaweed from the high velocity region immediately in front of the discharge structure. Upright seaweed in this area may have previously masked the occurrence of sea onemones.
The t,Miogical communities of Diablo Cove have changed significantly in response to natural phenomeno several times in the ten years prior to 1984. The cumulative effect of these natural phenomeno, such as the immediate and continuing impact of sea otter foraging, has induced some significant and relatively stable shifts in the species abundance and composition of the cove's i
predominant communities. Other natural phenomena such as the increase in water temperatures during the ENSO period produced only short-term changes in the cove's ecology which later returned to its earlier state. Prior to the 1985 i
O 4 power plant warming of Diablo Cove water temperatures, the basic structure of
>O the cove's marine community had been altered by the sea otters' foraging and physically damaged by severe winter storms.
The changes observed in Diablo Cove during 1985, particularly in the shallow zones, reflect in part the increased water temperatures due to the DCPP -
thermal discharge. Many other 1985 populotion changes were observed without any obvious relationship to the warmer discharge water temperature; these observed changes appear to be natural population shifts as the affected species continue to adjust to the effects of the natural changes of the previous years.
Several changes in seaweeds and in fish behavior in Diablo Cove, which were not observed in outside reference areas or in cooler areas of the cove, appear to be related to the warming effect of the DCPP discharge. However, these i
observations are preliminary, and the additional 1986 findings and data from the TEMP monitoring program are expected to provide greater resolution to these changes and a better understanding of underlying causes.
O d E6-122.0 2-25
3.0 LITERATURE CITED C) Burge, R. T. and S. A. Schultz.1973. The Marine Environment in the Vicinity of Diablo Cove with Special Reference to Abalone and Bony Fishes.
California Department Fish and Game, Marine Research Technical Report l9. 433 pp.
Kaiser Engineers. 1976. Pacific Gas and Electric Company Diablo Canyon Nuclear Power Plant 316(o) Demonstration Program Nine Month Progress Report. December 1976.
North, W. J.1966. An Evaluation of the Marine Floro and Fauna in the Vicinity of Diablo Cove, California. Marine Advisers, Lajolla, CA. 38 pp.
PGondE. 1977. Diablo Canyon Power Plant 316(o) Demonstration. Nine Month Progress Report. October 1977.
. PGondE. 1978. Diablo Canyon Power Plant 316(o) Demonstration. Nine Month Progress Report. May 1978.
PGondE. 1979a. Diablo Canyon Power Plan 316(a) Demonstration. Nine Month Progress Report. February 1979.
PGandE.1979b. Diablo Canyon Power Plant 316(a) Demonstration. Nine Month Progress Report. November 1979.
5 PGondE. 1980. Diablo Canyon Power Plant 316(o) Demonstration. Nine Month Progress Report. August 1980.
^
PGondE. 1982a. Assessment of Alternatives to the Existing Cooling Water System. Diablo Canyon Power Plant. April 1982.
PGandE. 1982b. Thermal Discharge Assessment Report. Diablo Canyon Power Plant. April 1982.
PCandE. 1982c. Compendium of Thermal Effects Laboratory Studies. Diablo Canyon Power Plant. April 1982.
PGondE. 1983. Thermal Effects Monitoring Program. 1982 Annual Report.
Diablo Canyon Power Plant. January 1983.
PGondE. 1984. Thermal Effects Monitoring Program. 1983 Annual Report.
Diablo Canyon Power Plant. January 1984.
PGandE. 1985. Thermal Effects Monitoring Program. 1984 Annual Report.
Diablo Canyon Power Plant. March 1985.
PGondE. 1986a. Annual Summary Report on Discharge Monitoring at Diablo Canyon Power Plant During 1985. January 1986.
jO PGandE. 1986b, in preparation. Characterization of Receiving Water
\") Temperatures During Power Ascension Testing of Unit i Diablo Canyon Power Plant. PGandE, Dept. Engineering Res. Report 420-85.748.
E6-122.0 3-1
APPEFOIX A 1
MONITORING PROGRAM MAPS APO TABLES Appendix A contains a set of mop figures which illustrate the locations of the various subtask monitoring stations and other study area features; o chronological table of the TEMP survey completion dotes by subtask, including i the number of samples collected; bor charts of the sample periods through time for each sampling location; and a tabular outline of the 1986 sampling plan by l station and subtask.
i 9
1 1
J l
k i
i 4
f I
4 E6-122.0 A-l
m -
. -- . , , - 2s ,
,s2 + . . . ..
b3 o e,,,4 c
'I 4.,
- , ~ ,, .4- . '. [' ' g s
.* r* c, g og,4 4,y = e,
., ,J.
a- l' g'5
+== + * *
+
, . EE w; . fig, =,,:,c are
%.p .,* 6, ,' 1 pi:=r.: -
'A
-'e e<
~"')A,- )_ m c~ *%
.4-40 %- t'#> -, otABLO CANYON
+ * *
,y ' ,
. ,' g POWER PLANT cf ,'e .
- t. . ,'.. 8-12 . -- q, / o '\..
, 1 \'
,y. t .
.. A* / ', Q. 8-10 .
m T
--S, c% -s 4-30, 7-10 ,e / ~-
- =
~ ~ ~ '
Li
... , . . 7-15 l8-15 9-10 sv,. , ,
9-15 '
7-12 9-12 g3 . . . ' , ' ' T i
- ...I. .
P'-.6-11 *5-25
','j 9 4 tEGENo p '.m.mer # 'N~x 10-15 10-12 'oisCHARGE STRUCTURE ^C'"'*
w . . . e, 13-3 2 .
11-15 x./ 10-10 ,,.
14_4 5
-r
...,tt, al4-65 ..-
12-15 ~x*
..r,11-12
. ll-lOf',.
- l. . , , , , , , , , _ , ,
- a -
12-12j,,,.>,,'j i < ,n.tvconotocicat rowtn . c ,,,,,
2, ,. el2-lO -, '
O
, .r,- (,. ' -,. o M ' - , , ,f '
' INTAKE STRUCTURE
-p> .
~-
+/
"S-
' ', h, y; n.
'-:t
. . . . - . . . , .t.' .
O 15-7 0 '
L ** ',
l 1 BREAKWATERS ,/
c)) 15-60 eg'l5'50 h, -
l' I^
y' '[
s *'**'**'"."
.m . . . .
ii,, j . .
. v ., . s
,'s. .
2 0-10 o-lO ', s ;-
17-30. 'g. .j
. . ----: ,' - - ' B-12 eiasto ca=o'. m <a ataa.t
' ' gr+,,,'tiv,s ./', 1-10 nCtRE A.?
17-45. ' ' F;s, g%-sl-
'1 . e tocarious or
,- s 19-15 ' came raamma starous 17-4 0 ' ' . 'n. *~a'A %
. . . . . . + .
. s rn c . , ,- 3 _--
n -__--
3 I I, 2 0-16
-- m - ___ -- A
. I. - * .21-2 0
- 3 3 3 1
' 21-2 5 -
'20 20 -- -
m m ..
_s_
.:..', - 2:r.,
m . . . .
~ :
o vs.m em ,'
, .. .,e . .:.= - %
'.* p '***-' %,
4c.' ..
c%
. . 8 .w . .
- ,. . n_=
C' D t , , - =14% = --
.-> g,.i> ,
., ,. __ .Ru, CA,m, y,
,,1'
.s ll M kW SC
.,~',%
mm
-( -%, s ,.
a s s%,
/ /p/c '
/ oO i# i. "^ s 1 7 f.' PORTH g
' ' ' !s e-c#4- s s %,
i, . ,
g COVE s
+ meno . + + -'N . '
h t
. - ?s .....-::: -
T. g ;
- e , ) c, ~
lased, \ g LEGEND
'=ce \,
',, j '-- x 7
try + . . * + , ,
')
' DISCHARGE STRUCTURE
^ 0"' 5
,--- aseen segher eagn unse, g i t
e
-tearness Zee
. . , . assen w w unas to m *e as + cess,.nermtrn a
' + 3,'* '
- )}'
M comessee so > IAETEOROLOGICAL TOWER
'fa s
- .,' ,'; -o /
.m- O.,, .....s,'eN._~
_ . . J'
- WTAKE STRUCTURE
-s-7
\
". . e ;, ; s l o , v, *s , /
~~~~
/ ,~ ,
.~~ .
, c% .
I g e o ,rBREAKWATERS /
f I
ey 4,
.' t~'I , *
/ <a ..u 7, ,
,, g .......
. mee. . . . . i',<.
- . x .i < , , ,. , ,._,.
e.$ %..# g *,
- '%- c- #
eases een an etseme sessant t
',----"; ',, cansLO CAffv0M 90WER PLANT
'w['#
. - C,s -s. s s ., ' q. ;- .%
s9 f',
FIGURE A-4
- .Q , (';s, g% '
'f,';,
'* * ,, Y s,8 5 LOCATIONS OF POTEhTIAL
- '.e, , , .
g SUBTcht RED ABALDBC
' .0 , . , Sumo SAWtM PONTS
. . + . ._
. . . . ~
. s anc~ . , n -
g g g g -..- ----~- %
g ,
i-- i
- 4, y f
N i
& ~
- t c, ,. -..'- .
. 2:r.
' -} www. .
w . . . . ,.
b8 ! 4, o n,os c 4a,
-':},j'
~~ os
- 11. . . . , / . . ,
m~ + +
. .M: < *
.a. - _ ,. . ' w = e~*
p ~'*>.'~'* . , ,
ags =:: -
- l ,,/ , i U n s.am s ', ,%
'Nl'j! ,c
+o,,4 \
,'?
$ .-#f:,. ' . . -,
/
DIABLO CANYON y ,f / g ,' % * '
POWER PLANT . g
.m,_ o.
t
. %s / *ce4,g, '
t.'*~'.~
n;yj> % -
/
. . s.
/. . . ,
~
~
, es
.m . < >
,, Y. q + ,...
T }
', /, -
, , ,/, , g,..,,-
, ..- u .. . .
{<', j // //
y p n,N 1Ma , /'O/ABLO : CO,VE.*%.y f- LEGEND
, 'd,
'. s D'SCHARGE STRUCTURE ^C'"*
'8 . . . ',- 4 ,
., , ,a . ---- m.s.m,., e w am.
/. --to rnem u Zane
// ,J
- * * - Mme.t Laus (4.s M
'/
LIMIT OF '
?!' . ces ooooon STUU( AREA 9 'E.,g / f ,/ "8', ""*"*"
f ,;',.
' /
e'
, METEOROLOGICAL TOWER $ oteeven,. sne
/- , ,- y : se.e, a,s.
O -% *
-p>..,
~ s' ~ ~ '. ,. - W' ~/
~~
3x.8 ,
,1NTAKE STRUCTURE 9;,
. . . -a, ;
o y, ~.,
y ,_.- ,-
/-
i *5"c- . s
+ s,
,, 4
, , . + /
cs
,, . ,- / . < -+~s,.,..
.y .< ,' ,
fINTAKE' COVE / /,., '/;~,
O
,s . . , ,-e
. BREAKWATERS ,,,/
c'c. 4,
. i
- , .,f
<a . aue
.m . . . . , ., .. .
n i ,, .,_< ,
u . ,. . ,.._,,.
.. . suces ans amo nuevos enesese LIMIT OF .o2, -j ; ---'; '- .' mastocamo ro=u etant
_' .. , ,s,s .,.. ,
y STUDY AREA '.
- at, . .~~ ;f.
- ' g' s ','
',7.';.
* , , f' "'t -
Sl' nCURE A4 SEA 0TTER OBSERVATION
- .-*! s,- i >
, .4 SITES AND STLEyr ARE A
~.- a.,T"%
g . . . . . _ , _ . _
. so..e ca . , *- ,,
.. - .. -~
g g g g g , "**"'.**'.*". *amma T f _y . 1 .- - _ ._ _ . .._..
. . .- - - - - - - . . - - - .- - ~
i
's \ (
TABLE A-1
SUMMARY
OF COMPLETED TEMP INTEIMIDAL SAMPLitG +1 FT (MLLW) TRAtr>ECTS Algoe Invertebrates Band Point Algol Std. Inveris. Precise" "T'9"b" 1
Survey Dateo Transect Contact Scraping Count Count j
4 No. No. No. No. No. No. No. No. No. No. No. No.
Stations Goodrats Stations Quadrats Stations Quadrats Stations Quadrats Stations Quadrats Stations Ovodrats
- 01 April 1976 15 450 16 48 15 45 15 375 0 0 15 75 02 June 1976 15 450 16 48 15 45 IS 375 0 0 15 75
! 03 August 1976 15 225 16 48 15 45 15 150 15 75 15 75 04 October 1976 15 225 16 48 15 45 15 150 15 75 15 75
! 05 December 1976 15 225 16 48 15 45 15 ISO 15 75 15 75 06d February 1977 19 285 20 60 19 57 19 190 15 75 19 95 07 May 1977 15 225 16 48 15 45 15 150 15 75 15 75 08 June 1977 7 105 8 24 7 2I 7 70 7 35 7 35
. 09 July 1977 7 105 8 24 7 21 7 70 7 35 7 35
! 10 November 1977 7 105 8 24 7 21 7 70 7 35 7 35 11 December 1977 7c 305 7c 21 0 0 7c 70 0 0 7C 35 l
12 February 1978 7 104 7 21 0 0 7 70 1 5 7 34 13 April 1978 9 135 10 30 0 0 9 90 1 5 9 45 14 June 1978 9 135 10 30 0 0 9 90 1 5 9 45 15 August 1978 9 135 10 30 0 0 9 90 I '5 9 45 16 October 1978 9 129 10 28 0 0 9 86 I 5 9 43 17 D m ..- M 1978 9 135 10 30 0 0 ? 90 l 5 9 45 18 February 1979 9 135 10 28 0" 0 9 90 1 5 9 45 19 April l??? 9 135 10 30 0 0 _- 9 90 1 5 9 45 1 20 June 1979 9 135 10 30 -O O 9 90 1 5 9 ~45
- 21 August 1979 9b 135 10b 30- b 9b 90 1 5 9b 45 22 October 1979 8 105 9 27 7' ^^ ' 65 1 5 8 .O
, 23 December 1979 9 135 10 30 9 - 90 I 5 9 45 -
) 24 February 1980 5 66 6 I6 5 42 -1 5 '5 24
( 25 April 1980 9 90 10 30 9 45 1 5 9 45
, 26 June 1980 9 90 10 30 9 45 l 5 9 45 l 27 August 1980 9 90 10 30 9 45 I 5 9 45 1 28 October 1980 9 90 9 27 9 45 1 5 9 45 i 29 December 1980 9 90 10 - 30 9 45 I 5 9 45 i o Months indicated for surveys are approximate. Sampling of any station actually may have occurred during ,
the preceding or following months. ,
b New subtosk, see TABLE A-6.
c Two stations outside of work plan were sampled.
- d Includes "10-mile" stations, i
i l
E6-122.0 A-9
I TABLE A-2
SUMMARY
OF COMPLETED TEMP INTERTIDAL SAMPLING: +3 FT (MLLW) TRANSECTS a
1 Algae le ertebrates Bond Point Algal Std. Inverts.
Survey Dateo ' Precise" Transect. Contact Scraping Count Count ,Teyslo" u a n no. n ~ n n u n Stations Quadrats Stations Quadrats u no.
Stations Quadrots Stations Quadrots Stations Quadrats Stations Quadrats
- 01 April 1976 19 570 21 68 18 54 19 480 0 0 02 June 1976 19 570 21 61 18 90 18 54 19 480 0 0 03 August 1976 19 285 18 90 21 61 IS 54 19 195 18 90 04 October 1976 19 285 21 61 18 90 18 54 19 195 18 90
- 05 December 1976 19 285 21 18 90 61 18 54 19 195 3
18 90 18 90 06d February 1977 23 345 25 73 22 66 23 235 22 1 07 May 1977 19 285 21 61 18 110 54 19 195 18 90 18 90
, 08 June 1977 0 0 4 0
' 12 0 0 0 0 0 0 0 09 July 1977 9 135 9 27 0 0 9 90 9 45 9 45 10 November 1977 0 0 4 12 0 0 0 0 ll December 1977 0 0 0 0 7C 105 7c 19 0 0 7c 75 0 0 6c 30 12 February 1978 7 105 8 22 0 April 1978 0 7 75 1 5 6 30 13 10 150 10 28 0 0 10 105 I 5 9 14 June 1978 10 150 45 10 28 0 0 10 105 l 5 9 15 August 1978 10 150 10 28 45 0 0 10 105 5 9 16 October 1978 10 150 1 45 10 28 0 0 to 105 I 5 9
- 17 December 1978 10 150 10 45 28 0 0 10 105 I 5 9 45
) 18 February 1979 10 150 10 28 0 0 10 105 5 9 45 1 19 April 1979 10 150 10 28 0 1
0 10 105 5 9 45
! 20 June 1979 10 150 10 28 0 0 10 1
21 Augsst 1979 105 1 5 9 45 l IO 150 10 28 b
- 10 105 1 5 9 45 22 October 1779 10 140 10 28 I 9 95 I 5 9 45 23 December 1979 10 150 10 28 10 105 I 5 9 45 24 February 1980 7 105 7 19 7 75 1 5 6 30 j 25 April 1980 10 100 10 28 10 55 I 5 9 45 26 June 1980 10 100 10 28
- 27 Aupsst 1980 10 55 1 5 9 45 10 100 10 28 10 4
28 55 1 5 9 45 October 1980 10 100 10 28 10 55 I 5 9 45 j 29 December 1980 10 100 10 28 10 55 1 5 9 45 i
- Months indicated for surveys are approximate. Sampling of any station octually may have occurred during the preceding or following months.
b
, New subtask, see TABLE A-4.
c Two stations outside of work plan were sampled.
[ i d ncludes "10-mile" stations.
l' l E6-122.0 A-Ii 1
1 :
TABLE A-3 COMPLETlON SCHEDULE OF BT SAMPLING BY SURVEY, DATE, STATION AND LEVEL -
Year 1976 1977 1978 6979 49W) e, .-
- . 2 3 . 5 6 2 . , ,011 12 ,) 1. ,516 ,,1 1, 20 21 n n 2. n u n up I.1 13 - -
i 21 ,
23 I 31 i 33 ,
s.t s.3 \
51 53 61 63 ,
l 78 -
73 - -
81 l s.3 -
98 93 ===
10 1
$ 10 2 i ...,
i
' b ' ' '
12 1 t
e
,2.,
d 15 3 ,
7 17 3 -
5 '*' -
q 19 1 0; 19 3 -
, nt -
20 3 l
2i.i 21 3 .m 22 3 23 1 23 3 25 1 -
25 3 -
26 1 -
26 3 -
27.i -
27 3 -
28 1 28 3 29 1 -
2,.3 -
30 1 30 3 E6-122.0 A-13
TABLE A-2
SUMMARY
OF COMPLETED TEMP INTERTIDAL SAMPLING: +3 FT (MLLW) TRANSECTS Algae Imertebrates Bond Point Algol Std. Inveris.
Survey Dateo Transect Precise" Contact Scraping Count Count "Iegub"
% % % % % % A 5totions Quadrats Stotions Quadrofs No. No. A No. A 5tofions Ovodtofs Stotions Quadrats 5totions Quodrofs 5tations O -8 of s 01 April 1976 19 570 21 68 18 54 19 480 0 0 02 June 1976 19 570 2I 61 18 90 18 54 19 480 0 0 03 August 1976 19 285 21 61 18 90 18 54 19 195 18 90 04 October 1976 19 285 21 61 18 18 90 54 19 195 18 90 05 December 1976 19 285 21 61 18 90 18 54 19 195 18 90 18 90 06d February 1977 23 345 25 73 22 66 71 235 22 07 May 1977 19 285 21 61 18 llo 54 19 195 18 90 08 June 1977 0 0 4 18 90 12 0 0 0 0 0 0 0 09 July 1977 9 135 9 27 0
0 0 9 90 9 45 10 t h ;m u s1977 0 0 4 9 45 12 0 0 0 0 0 0 11 December 1977 7c 105 7c 0 0 19 0 0 7c 75 0 0 6c 30 12 February 1978 7 105 8 22 0 April 1978 0 7 75 1 5 6 30 13 10 150 10 28 0 0 10 105 1 5 9 14 June 1978 10 150 10 28 45 0 0 10 105 l 5 9 15 August 1978 10 150 10 28 45 0 0 10 105 5 i 16 October 1978 10 150 1 9 45 10 28 0 0 10 105 l 5 9 45 4
17 December 1978 10 150 10 28 0 0 to 105
' 1 5 9 45 18 February 1979 10 150 10 28 0 0 10 105 I 5 9 4 19 April 1979 10 150 10 28 0 45 0 10 105 5 9 45 20 June 1979 10 150 10 28 1
0 0 10 105 5 9 21 August 1979 10 150 1 45 10 28 b 10 105 5 9
{ 22 October 1979 10 I40 10 1 45 28 9 95 5 23 December 1979 10 1 9 45 150 10 28 10 105 1 5 9 45 I 24 February 1980 7 105 7 19 7 75 I 5 6 30 25 April 1980 10 100 10 28 10 55 I 5 9 45 26 June 1980 10 100 10 28 10 55 5 9 45
, 27 August 1980 10 100 10 28 1
28 10 55 I 5 9 45 October 1980 10 100 10 28 29 December 1980 10 10 55 l 5 9 45 100 10 28 10 55 I 5 9 45 i
o Months indicated for surveys are opproximate. Sampling of any station octually may have occurred during the preceding or following months.
b New subtosk, see TABLE A-4.
j c Two stations outside of work plan were sampled.
i d ncludes "10-mile" stations.
E6-122.0
' A.I1
TABLE A-2
SUMMARY
OF COMPLETED TEMP INTERTIDAL SAMPLING: +3 FT (MLLW) TRANSECTS (CONTitRJED)
Algae Invertebrates Bond Point Algol Std. Inveris. 'T'recise" Survey Doteo Tronsect Contoct Scroping Count Count "Tegulo,,
No. No. No. No. No. No. No. No. No. No. No. No.
Stations Quadrats Stations Goodrots Stations Quodrats Stations Quodrots Stations Quadrots Stations Quadrots 30 February 1981 10 100 10 28 10 55 1 5 9 45 31 April 1981 10 100 10 28 b 10 55 I 5 9 45 32 June 1981 10 100 10 28 10 55 I 5 9 45 33 August 1981 10 100 10 28 10 55 I 5 9 45 34 October 1981 10 100 10 28 10 55 1 5 9 45 35 December 1981 10 100 10 28 10 55 1 5 9 45 36 February 1982 10 100 10 28 10 55 I 5 9 45 37 April 1982 14 140 14 40 14 75 1 5 13 65 38 June 1982 14 140 14 40 14 75 I 5 13 65 39 August 1982 14 140 14 40 14 75 I 5 13 65 40 October 1982 11 110 II 31 11 60 1 5 10 50 41 December 1982 10 100 10 28 10 55 1 5 9 45 42 February 1983 9 90 9 24 9 50 1 5 8 40 43C April 1983 14 140 14 39 14 75 I 5 13 65 44 June 1983 15 150 14 39 15 80 1 5 14 70 45 August 1983 15 150 14 39 15 80 1 5 14 70 46 October 1983 12 120 12 33 12 65 I 5 11 55 47 December 1983 13 130 12 33 13 70 1 5 12 60 48 Febroory 1984 10 100 10 24 10 55 1 5 9 45 49 April 1984 13 130 12 34 13 70 1 5 12 60 50 June 1984 20 200 20 57 15 80 1 5 19 95 51 August 1984 15 150 14 39 15 80 1 5 14 70 52 October 1984 15 150 14 39 15 80 1 5 14 70 53 December 1984 II I10 10 27 II 60 1 5 10 50 54 February 1985 15 150 I4 39 15 80 1 5 14 70 55 April 1985 15 150 14 39 20 105 I 5 14 70 56 June 1985 20 200 21 60 20 105 l 5 19 95 57 August 1985 15 150 14 39 IS 80 1 5 14 70 58 October 1985 20 200 21 60 20 105 l 5 19 95 59d December 1985 18 180 18 49 18 95 I 5 17 85 o Months indicated for surveys are opproximate. Sampling of any stoi;c,: actually may have occurred during the preceding or following months, b New subtosk, see TABLE A-6.
c Three quadrots on the 7+3 transect were replaced in Survey 43.
d includes "IO-mile" stofions.
O E6-122.0 O
A-12 O
- - - m -- m - +- a 1-s *- + A TABLE A-3 COMPLETION SCHEDULE OF BT SAMPLING
, b BY SURVEY, DATE, STATION AND 1.EVEL Yet 1976 1977 1978 1979 19tg) w = w sewr 1 2 3 4 5 6 7 8 9 10 16 12 13 14 15 16 87 18 19 20 21 22 23 24 25 26 27 2s n 81 13 === .==
21 -
23 3.t 33 41 43 51 53 61 63 ==
76 -
13 =
s 1 S.3 - === .
' I 9.t 0 '
93 .=.
10 1
$ 10 2 t l l g
- i , , ,
-s g g g 12 3 -
. 14 3 -
15 3
$ 17 3 -
,5 3 -
5 Q 19 1 E 19 3 -
j i 1 e 20 3 tiet 21 3 22 3 23 1 23 3 25.t -
25 3 -
26 1 -
26 3 -
27 1 -
27 3 -
28 1 26 3 29 1 -
29 3 -
30 1 30 3 s
E6-122.0 A-13
TABLE A-3 COMPLETION SCHEDULE OF IBT SAMPLING BY SURVEY, DATE, STATION AND LEVEL (CONTINUED)
Yes itse 1,et 1983 198. 1995 h k b kk h k
- m 3, n u , 35 x v = 3, . ., .2 3 .s .> .. ., s0 si s2 s3 s. is s. si s. 5, i.i l
i.3 ,
2.l 23 31 - - -
33 - - .-
..I - - -
..) - - ===
51 - - -
53 - - -
61 63 71 73 S.1 -
83 ;
9.t ===
93 10 4 I 10 2 g 11.t
- n.3 a it.l
,2 3 t
- l
.. 3 _
ls*3 -
- 17 3 - - -
h 18 3 - .- -
2 ,,.,
3 i93 20 1 20 3 ti.I 21 3 22 3 - -
23 1 23 3 1s.1 -
2s.3 26 1 26 3 27 1 -
27 3 -
28.t -
28 3 -
29 1 -
29 3 -
30 1 -
30 3 -
E6-122.0 A-14
TABLE A-4 COMPLETION SCHEDULE OF RANDOM POINT CONTACT
+1 FT (MLLW) QUADRAT SAMPLING BY SURVEY, DATE, STATION, AND OUADRAT -
Year 6976 6977 1970 1979 19 9 kk h w E w w w 5muy 1 2 3 4 5 6 7 8 9 to il 12 63141516171819 20 24 22 23 26 45 26 27 28 21 A
118 C
A 21B C
A 36B C
A
. 418 =
C A
518 C
A 61B '
C A -
788 -
C -
A S.I B C --
A .
91B i
A 1 7 10 1 8 l
A 8 n.1 B '
k i i i I210 .
E C 4 A -
E 14.I B C - -
^ -
i,.1 c .
A 1
20 1 8 '
A '
21 1 B C
25 6 B 2 C -
A -
l 26 1 B -
l C -
A -
17 l B -
C -
A 28 1 B C
A -
29 1 B -
C -
A 30 1 B C
E6-122.0 A-1S
TABLE A-4 COMPLETION SCHEDULE OF RANDOM POINT CONTACT o f FT (MLL'#) QUADRAT S AMPI. LNG BY SURVEY, DATE, STATION, AND QUADRAT (CONTINUED)
Yee 1981 1987 1983 1984 1995 wwamu8wu8munmun 5,wy 30 3132 33 34 35 34 37 M 39 40 4142 43 44 45 44 47 48 49 50 5152 53 54 55 54 57 58 59 A
11B C
A -
21B
~
3.i$ C C C - - -
41B C - - -
56B -
C - - -
A 61B C
A -
71B C
A S.1 B i
A ,
918 <
C E 10 8 8 C
A 8 n.i B C 1 A
,5 ' *C -
j
- i A - ; -
14 1 B - . - i
' l C - -
A ^
19 8 8 C
A 20 1 8 C
A 21 1 B, 251 B C
C A
26 1 B C
271 B C
C 28 1 B C
C 29 8 8 C C -
301 B C C -
E6-122.0 A-16
TABLE A-5 COMPLETION SCHEDULE OF RANDOM POINT CONTACT
+3 FT (MLLW) QUADRAT S AMPLING BY SURVEY, DATE, STATION, AND QUADRAT
,. ,,,. ,,,, ,,,, ,,,, i.
W ikiil!!k:nis!thiil!talilitalii
=8 , 3 s . . . , i. ,, 3 8. is i. o .. . = >i re n i. ai u v a o
~~
i.3 : ; -
c -- ,
338 a
338 A
.3;
.3:C C
33: l C
A
, 9 ,
S.38
.3jj = '
10 3 e C!
it.3 -
it.3 j '
~
13 3 A =
i.38 I ~
C, =
is.3 .A 5
5 A
=
- 8. 3 g a.3 (
=
- i. 3 :
C i,.3 j m.3 C ;
A 2138 C
A 2238 23 3 ( E u.3 j E v.3 $ E A
2938 r,.3 j E A
3038 E6-122.0 A-17 1
COMPLETION SCHEDULE OF RANDOM POINT CONTACT o3 FT (MLLW) OUADRAT S AMPLING BY SURVEY, DATE, STATION, AND OUADRAT (CONTINUED) l W !alliI!11is3!11133!11Is2314122
% 30 3132 33 3a 35 h 37 M 39 40 tt 42 43 en as 4647 se at 50 $11213 Se SS 56 57 58 59 1
I l
. 3 .& - -
e, ,
l.38 e -
33 :
C l
..) ;
C
.3 :
C 4
639 -
c b 1 3 .& i Cl
.3.-
C 938 C :
... .A 1 '
C'
. . 3 .&
A 62 3 IS e
ii.) ;
l C
A ===
5 is.3 s -
g e
% & .ma
+ , $. 3 e .
E C -
! ..3 C
=
A -
1738 C - - -
a .- - -
,038 - -
C - - -
A
.938 C
- 20 3 "
A 2,.3 S C
s -
2238 -
C A
2538 .-
C -
a 2639 2738 -=
C ==
A 28*3 0 --i C -
4 =-a 2930 ===
C ==
A .mu 3035 -
C .--
E6 122.0 A-I S
N TABLE A-6
SUMMARY
OF COMPLETED INTERTIDAL ALGAL SCRAPING PROGRAM
(+ 2 FT MLLW) ,
i Station 0 Survey and Date ASI AS2 AS3 AS4 1 August 1979 X X X X 2 November 1979 X -- -- -
2 December 1979 -- X X X 3 January 1980 X -- -- --
3 March 1980 -- X X X '
4 May 1980 X -- -- --
4 June 1980 -- X X X 5 August 1980 X X X X 6 January 1981 X X -- X 6 February 1981 -- -- X -- .
7 June 1981 X X X b .
8 December 1981 -- X X b 8 February 1982 X -- -- b 9 June 1982 X X X b 10 January 1983 X X X b II July 1983 X X X b 12 January 1984 X X X b 13 July 1984 X X .X X 14 January 1985 X X X X l5 July 1985 X X X X o 25 scrapes were taken at each station marked "X"; for loco- l tions, see FIGURE A-l in Appendix A. '
b Station AS4 deleted from program. ,
5 l E6-122.0 A-19 i i
, . _ - . , - - , , _ - . _ . , _ . . . - . - _ . . . _.-,_,_.-_,,,,.-_,.....m.,,.,_..wn,w,..-,,oc_,,,.,w.,-m.., ,,...,,-,-...,_..-,.,.e-, , - , . . , , ..
TABLE A-7
SUMMARY
OF COMPLETED SUBTlDAL TEMP SAMPLING
"** No.of No of No.of No.of No.of S"'**Y . ' 7m2 Arc Ouadronts 7 mi Arc % m2 Algol % m2 Fish Observations
$ "Y Goodtonts Quadrofs Scropings Quadrof No. Stations (2 rept.)
Sumpled Sompted Sampled Token Photos (SLC) (SAO) (SFO) 01 May-Aug 1976 32 --
128 128 93 02 Sept-Dec 1976 28 l12 112 IIS 84 14 116 13, I (I repl.) -(I station w/l replicate) 03 Jon-April 1977 28 112 112 IIS 84 12 04 May-Aug 1977 17 68 68 69 Si 2 14 OS Sept-Dec 1977 14 3 12 12 12 9 0 13 06 Feb-Mor 1978 5 20 20 21 0 07 April-May 1978 2
9 36 36 08 June-July 1978 9 36 36 37 37 0 0 (
0 0 4 (2 rept.),2 (I rept.)
09 Aug-Sept 1978 9 36 36 37 0 0 6 10 Oct-Nov 1978 6 24 E 2S 0 10 Il Dec-Jan 1978-79 4 6 16 16 17 0 0 0 12 Feb Mor 1979 8 32 32 32 0 0 13 April-May 1979 9 6 36 36 36 0 0 14 June-July 1979 6 S 20 20 20 0 0 IS Aug-Sept 1979 9 6 36 36 36 0 0 16 Oc t-Nov 1979 9 6 36 36 36 0 0 17 Dec-Jon 1979-80 7 6
28 28 28 0 0 6 18 Feb-Mor 1980 5 20 20 20 0 0 19 April-May 1980 9 0 36 36 36 0 0 20 June-July 1980 6 4 16 16 16 0 0 21 Aug-Sept 1980 8 0
32 32 2 0 0 22 Oct-Nov 1980 0 5 20 20 M 0 0 6 23 Dec-Jan 1980-81 2 8 8 b 0 0 6 24 Feb Mor 1981 1 4 4 4 0 0 2S April-May 1981 9 0
36 36 36 0 0 6 26 June-July 1981 9 36 36 36 0 27 Aug-Sept 1981 0 0 0 0 0 0 0 0 28 Oct-Nov 1981 6 (I rept.)
7 28 28 28 0 0 29 Dec-Jan 1981-82 0 4 16 16 16 0 0 6
- Months indicated for surveys are approximate. Sampling of any station octually enoy have occurred during the preceding or following months, e
E 6-122.0 9
A-20 4
q TABLE A-7
SUMMARY
OF COMPLETED SUBTIDAL TEMP SAMPL NG (CONTitRED) i No.of No of No.of No.of No. f Survey and Dole" S ti s 7m2 Arc 7 mi Arc % m2 Algol %m Fish Observations QuadronIs Quadronts Goodrats Scropings Quadrat S"*P led Sampled Sampled Sampled No. Stations (2 rept.)
Token Photos (SLC) (SAQ) (SFO) 30 Feb- b r 1982 7 2R 28 28 0 0 31 April-Wy 1982 6 10 40 40 40 0 0 32 June-July 1982 6 10 40 40 40 0 0 33 Aug-Sept 1982 7 0
28 28 28 0 0 34 Oc t-Nov 1982 0 2 8 8 8 0 0 2 (2 repl.),4 (I rept.)
35 Dec-Jan 1982-83 2 8 8 8 0 0 0 36 Feb- W r 1983 0 0 0 0 0 0 37 Apr May 1983 0 10 40 40 40 0 0 38 Jun-Jul 1983 IO 9 (I rept.)
40 40 40 0 0 II (I rept.)
39 Aug-Sep 1983 10 40 40 40 0 0 40 Oc t-Nov 11 1983 4 16 16 16 0 0 0 41 Dec-Jan 1983-84 10 40 40 40 0 0 6 (2 repl.),10 (I rept.)
42 Feb-Wr 1984 4 16 I6 16 0 0 0 43 Apr May 1984 8 32 32 32 0 0 44 Jun-Jul 1984 14 8(I rept.)
56 56 56 0 0 45 Aug-Sept 1984 0 12 48 48 48 0 0 46 Oc t-Nov 1984 4 16 3(2 repl),11 (I repl.)
16 16 0 0 8 (I rept.)
47 Dec-Jan 1984-85 10 40 40 40 0 0 11 48 Feb-Mor 1985 4 16 16 16 0 0 49 Apr-May 1985 0 11 44 44 44 0 0 11 (I rept.)
50 Jun-Jul 1985 12 48 48 48 0 0 SI Aug-Sep 1985 48 8 (2 repl.),1I (I rept.)
12 48 48 0 0 11 (I rept.)
52 Oct-Nov 1985 11 44 44 44 0 0 0
- Months indicated for surveys ore approximate. Sompling of any station octually may have occurred during the preceding or following months.
E6-l 22.0 A-71 e______ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - -
TABLE A-8 INTERTIDAL DATA COLLECTION STATION LOCATIONS, STATUS AND TYPES OF DATA COLLECTED IN 1985 e /4 /
ST ATION NUMBER 5 8
/
LOCATION 4Y*'r/
Q[8Qg+ J * [v[
%h BIOLOGICAL SAMPLING FREQUENCY 641, 286.56N I +3 1,141, 551.08 E O O O $ - 2 month 641, I I l.13 N O - 4 month I +I I,141,776.62 E O O O Q - 6 month 640, 883. N O - 12 month 2 +3 1,141,843.37 E O O O O - inactive 641,073.07 N 2 +2 1,141,762.57 E O O 641, 010.79 N 2 *I 1,141,800.04 E O O O .
640, 561.92 N 3 +3 1,141,986.35 E O O O 640, 598.83 N 3 +2 1,141, 964.80 E O 640, 528.23 N 3 +1 1,141,963.43 E O O O 636, 208.64 N 4 +3 1,146,101.17 E O O O 636,225.90N 4 *2 1,146,097.29E O 636,280.92N 4 *I I,146,103.88E O O O 636,176.50 N 5 +3 1,146,025.12 E O O O 636,173.93N 5 +2 1,146,001.34E O l active temperature recorders sample @ 20 min. intervals Ol l l
l E6-122.0 A-22 l l l I
l
TABLE A-8 INTERTIDAL DATA COLLECTION STATION LOCATIONS,
/m\ STATUS AND TYPES OF DATA COLLECTED IN 1985 U (CONTINUED) e /b /
ST ATION 8
/ 40
[8 + '
' T
- / BIOLOGICAL NUvbER b LOCATION Ng Q g & %5[ SAMPLING FREQUENCY 636,153.01 N 5 +1 1,145,920.06E O O O . - 2 month 636,060.93 N 6 - 4 mon 2h 6 +3 1,145, 920.06 E O Q - 6 month 636,071.08N @ - 12 m nth 6 +2 1,145,934.61 E O O - inactive 7"
6 .i f'hiS!5.5e O O O O ' '
t'h'*h.e" e O O 635,383.74 N O
7 *2 1, I46,053.23 E O 635,375.21 N 7 +I I,146,060.72 E O O O e +3 f hfiff.4>e O O O 635,471.44 N g 8 +2 1,146, 203.19 E O 635,446.99 N 8 +1 1,146,207.34 E O O O 635,433.89 N g g
, 3 I,146,313.76 E g
635,431.16 N g 9 +2 1,146,303.16 E l 635,414.24 N !
9 +1 1,146,328.81 E O O O I O ,e .,., 634. e19.e5 N I, I47,169.43 E . . . lactive temperature recorders sarnple @ 20 min. Intervals E6-122.0 A-23 i
TABLE A-8 INTERTIDAL DATA COLLECTION STATION LOCATIONS, STATUS AND TYPES OF DATA COLLECTED IN 1985 (CONTINUED) l N
J// " y/
C &
5 * ' 0" E BIOLOGICAL NUMBE R D LOCATIOt4 S AMPLING FREQUENCY 10 *2 634,536.58 N g g I,147,175.99 E $ - 2 month
~
634,516.10 N 10 +1 1,147,162.28 E O O O Q - 6 month 634,184.75-N O - 12 month lI +3 1,147,106.09 E O O O O - inactive 634,164.00 N 1I +2 1,147,086.22 E O 634,176.41 N II *I I,147,066.92 E O O O 634,043.94 N 12 +3 1,146, 882.96 E O O O 12 +2 634.054.14N g g I,146,864.86E i2 i f h 'h'i.8 e O O O 634,040.37 N 13 +3 1,146,371.45 E O O 634,046.82 N I3 +2 O
1,146, 361.57 E 14 +3 l$ ,359.79E O O O 14 +2 633,979.20N g 1,146,397.96E 634,011.70N I4 +I 1,146,332.60E O O 633,956.52 N 15 +3 1,146,406.01 E O O O lactive temperature rumsers sample @ 20 min. intervals E6-122.0 A-24
TABLE A-8 INTERTIDAL DATA COLLECTION STATION LOCATIONS, STATUS AND TYPES OF DATA COLLECTED IN 1985 (CONTINUED) i bl /
t VBE D LOCATIOr4
- L CFREQUENCY 632,708.29 N 16 +3 1,147,783.23 E O O g - 2 month 16 632,663. I N O - 4 month
+2 1,147,747.3E O g .6 mon,a 632,681.I N O - 12 month 17 +3 1,147,735.2E O O O O - inactive 2,
18 +3 ffi4 82 OE O O O 632,684.3N
+2 18 1,147,816.0E O 632,922.59 N 19 +3 1,148, 958.64 E O O O l l
632,891.36 N I9 +2 O 1 1,148, 977.59 E l l
632,937.94 N I9 *I I,149,143.33 E O O O 632,995.41 N 20 +3 1,149.086.69 E O O O 20 .i ;3g9"fo!"s s . . .
632,903.7i N 21 +3 i, i49, i70.0i E O O O 632, 871.80 N 21 +2 1,149,158.64 E O 632,921.37 N 2i +i O O O ,
l I, I49, !46.83 E i,,,,,,,,,,,,,,,,,,,,,
ew sample @ 20 min. interv,ts E6-122.0 A-25 l
i TABLE A-8 INTERTIDAL DATA COLLECTION STATION LOCATIONS, l STATUS AND TYPES OF DATA COLLECTED IN 1985 l (CONTINUED) !
0 %$v O 8
s1 ATiON h)
/ W*v )/ o' l BIOLOGICAL NUvBE R b LOCATION Y" S AMPLING FREQUENCY 634,077.445 N 22 +3 1,146,673.926 E O O O $ - 2 month ,
(approx.) '
g - 4 month 22 +2 634,081.00N I,146,687.00E g Q - 6 month 635,016.70N @ - 12 month 23 +3 1,146,931.9 l E O O O - inactive 634,954.44 N 23 +2 1,146,931.92 E O 23 +1
- f, '3[930.09 E O O (approx.)
24 63'4,082.00 N
+2 1,146,800.00 E (approx.)
25 +3 651,500 N I,133,900 E g g g (approx.)
25 +1 651,500 N I,133,900 E g g g (approx.)
646,500 N 26 +3 I,135,600 E Q Q Q (approx.)
646,500 N Q Q 26 +1 I,135,600 E Q
(approx.)
27 +3 642,800 N g g g I,138,830 E (opprox.)
27 +1 642,800 N g g g I,138,800 E (approx.)
28 +3 629,500 N g g g ' active temperature recorders I,154,200 E sampie @ 20 min. Intervois E6-122.0 A-26
TABLE A-8 INTERTIDAL DATA COLLECTION STATION LOCATIONS, O STATUS AND TYPES OF DATA COLLECTED IN 1985 -
(CONTINUED) r/ /
v ER BIOLOGICAL D LOCATION L SAMPLING FREQUENCY g ,,,,,3 28 +1 629,500 N g g g I,133,900 E $ - 2 month (approx.)
g $ - 4 m nth 29 +3 627,000 N Q g Q -6 month I,158,800 E 9 - 12 month 29 +1
,0d0N g g g 1,158,800 E O - inactive (approx.)
30 +3 622,300 N g g g I,167,600 E (approx.)
622,300 N g g g O 30 +1 1,167,600 E ' active temperature recorders sample @ 20 min. intervals i
i i
(
l lO E6-122.0 A-27
TABLE A-9 SLBTIDAL, AND MISCELLAbEOUS DATA COLLECTION STATION LOCATIONS, STATUS, AND TYPES OF DATA COLLECTED IN 1985
$3 ACTIVE Q sINAC'
- , / ./
MBER d LOCATIOfJ 641,024.83 N I -10 i,iai,398.45 E O O O O 9 I -i5 j4j,j,7p,2lo o5NE O O O 640,921.06 N 2 -iO i, i4i,477.33 E O O O O O 2 -is f40'486g,46 .,2NE O O O i
l 640,467.21 N 3 -10 i, ici,73i.43 E O O O O O l 640, 368.17 N j 3 -15 1,141, 506.05 E O O O 635,104.83 N 4 -32 1,145, 423.72 E O O O
{ (0pprOX.)
) 5 -25 634 870 N O O O I,ld6,050 E
} 634,781.25 N l
6 -lI I,145, 778.19 E O O O O O 635,246.87 N 7 -10 l,146.125.85 E O O O O 9 9 7 -15 f '4 2 .48 E O O O 8 -iO f h"i#.48e e e o ee 8 "
-is f'h2 is'.i7 e O O O 9 -10 3l7 .9 E O O O O O O f '4235' E6-122.0 A-28
TABLE A-9 SUBTIDAL, AND MISCELLANEOUS DATA COLLECTION STATION LOCATIONS, STATUS, AND TYPES OF DATA COLLECTED IN 1985 (CONTINUED)
$. ACTIVE Q s INACTIVE hNER d' OCATION % k 635, I82.55 N 9 -15 I,146,216.87 E O O O 634,416.17 N 10 -10 I,146,916.25 E O O O O O 10 -15 f '46 8l0.42 E O O O 634,314.51 N ii -10 i, i46, 904.89 E O O O O O O 634,362.19 N ii -15 i, i46, g19.88 E O O O O $
634,259.73 N 12 -10 I,146,877.20 E O O O $ O 634,333.87 N 12 -15 I,146,788.58 E O O O 634,504.38 N 13 -32 1,146,257.59 E O O O O O 634,262.07 N 14 -55 I,145,818.10 E O O O 633,417.91 N 15 -50 l,146, 277.12 E O O O O O O 17 -10 f, 'gh,483.5 E O 632,447.55 N 17 -20 I,147,549.99 E O O O 49 -i 0 f3h;333.,"e E O O O O O e o o o O -
f.' e.e~2>.2 E6-122.0 A-29
TABLE A-9 SUBTIDAL, AND MISCELLANEOUS DATA COLLECTION STATION LOCATIONS, STATUS, AND TYPES OF DATA COLLECTED IN 1985 (CONTINUED)
$a ACTIVE C a INACTIVE _
/ -
l dstth i / / l' ME h LOCATION % 4' 6 632,741.83 N 20 10 i, i49,04fr.99 E O O O O O -
632,464.93 N 20 -20 i, ig9,080.70 E O O O 632,553.18 N 2i -i 0 I,149,179.27 E O O O O O 632,373.35 N 2i -2 i,149,269.94 E O O O 634,681.51 N 25 -15 I,146,613.17 E O WAVE sfe 65,"536.00 N g RECORDER I,146, 761.00 E (appros) 32 INTAKE
-32 633,515.00 N g g 1, I47, 280.00 E (apor >
99 SIMS
+103 633, 100.00 I,148, 578.00 E g
(appron) 99 633,421.00 N OFFSHORE -30 I,144,645.00 E O O 9 l
9 E6-122.0 A-30
m I APPEFOIX B INTERTIDAL BAto TRANSECT DATA e Appendix B contains a set of abundance plots of selected species sampled in the Intertidal Bond Transect (IBT) sampling subtask. The dato represent the percent cover in the cose of seaweeds and the densities in the cases of individual macroinvertebrates sampled in o number of I m sq quadrats at fixed sites along a permanent band transect tide level monitoring station. The survey is repeated every other month as weather and sea state allow.
The locations of the intertidal band transect monitoring stations are illustrated in Appendix A which otso contains a chronological log of the IBT survey dates and number of samples collected and a bor chart illustrating the IBT sample periods through time for each sompting location.
N l
1 l
i O E6-122.0 B-1 ;
____ _ _ .. _ ~ . , _ _ ____ _ .__ . _ _ . . _ _ , _ , . _ _ _ , , , _ _ . - __ . _ . _ ..A
g Stetton 00 +0i ft u gn.
g 40-W r a0 5
y 0 _===---__=_- _
__ _ _ _ =___
1976 1977 1978 1979 1980 1983 1982 1983 1984 1985 g Stetton 09 +01 ft w
a ts0 -
o O
g 40-W r 20 5
Y 0 ---__z _ : _ =_----::, : :--_:-_ - --- , __:. _ _ - .
1976 1977 1978 1979 1980 1982 1982 1983 1984 1985 Station it +03 ft Y
o u g, M
g 40-W W 20 5
I O _ _ _ _ _ __ ____1_: ; -_ : - _ _
_ : -_ _ ; _ 1: __.__;_____ : : -_ - -
1976 1977 1978 1979 1980 1983 1982 1983 1984 1985 g Station 17 +0! ft Y
60-IE 40-5 r ,0 5
I O
_- _ _ _ _ _ _ _ _ : : = - _ _ _ :. -;: _;::_- _ _- - =
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 TI8E (YEARS) i
Sampling Intervals >2 Monthe FIGURE B-l ABUNDANCE VERSUS TIME FOR ENDOCLADIA MURICATA AT +1 FT MLLW (IBTMETHOD) l E6-122.0 B-2 1
, St*tton OS +03 ft u
60-Y
- t 7 / '
'N Y 0 1 1976 1977 1978 1979 1900 1981 1982 1983 1984 1985 Statson 09 +03 ft u
60-V E 40-20 D --- WY \
5 Y o 1976 1977 1970 1979 1900 1981 1982 1983 1984 1995 Stetton it +03 ft Y
o u
60-g .0-W W to-5 W 0
- ^ * "* ^ === - "" ** * ^ -- - - - - - -
'N 1976 1977 1978 1979 1980 1981 1982 1983 1984 9985 g Station 12 +03 ft
" 60-g 40-W W 20-3 Y 0
\ # - M
- A
- W __ - - - -
1976 1977 1978 1979 1980 1981 1982 1983 1904 1985 l
I g Stetton 14 +03 ft u \
gn, I
g 40-W E 20-5 W 0 =-- - =-_==- _ =; ===== ===:-- = :_- - ----
1976 1977 1978 1979 1900 1981 1982 1903 1984 1985 TIE (YEARS) l
Sampling Intervals >2 Months S FIGURE B-2 ABUNDANCE VERSUS TIME FOR ENDOCLADIA MURICATA ,
! AT +3 FT MLLW (IBT METHOD)
E6-122.0 B-3
, St
- t t on OS 401 f t Y
o u
60-40-N Y 0
./ D -X __,- '__ _ _ A - -
1976 1977 1978 1979 1980 1981 1982 1983 1984 1995 Station 09 +0i ft u sn, h 40-W
% 4'
- v' 1976 1977 1978 1979 1980 1981 1982 1983 1964 1995 Stetton it +01 ft u
60-40-a E 20-ha +~ _ J s. A s . /
1976 1977 1978 1979 1960 1981 w=_ = _ -
1982 1983 1984 1985 g Stetton 12 +01 ft 5
u 60-
% 40-5
' A-#^8'wA 1976 1977 1978 1979 1980 1988 1982 1983 1984 1985 TIME (YEARS)
Sampling Intervals >2 Months FIGURE B-3 ABUNDANCE VERSUS TIME FOR CASTROCLONIUM COULTERI AT +1 FT MLLW (IBT METHOD)
E6-122.0 B-4
l Stet ton 08 **3 f t 30 a
u .0 ,
E e 1 i
E 40- !
E !
s r m.
I t 0 = -_ = ; : ;---====== ;=-_=====---======------ - =-
1976 1977 1978 1979 1900 8982 1982 1983 1984 1995 Stetton 09 +03 ft Y
O u
60-N E 40-E r ,0 5
y 0- :----- - ----- - -- - ^ ^ ^ ^ -
~~I ~
1976 1977 1978 1979 1980 1983 1982 1983 1984 1995 Stetton il +03 ft Y .
O u
60-5
- h 40-N
- Y 20-5 Y 0 :-.-, _= ;-_-_-----_: --: _-----_-----_:: ::-:: --- ---;-
1976 1977 1978 1979 1980 1983 1982 1983 1984 1985 g Stetton $2 +03 ft Y
o u g,
=
h 40-W r 20 5
Y 0 :- - 1- - ----- 2_-- _2 .-------.-;-_--_---------- --
1976 1977 1978 1979 1980 1981 1982 1983 1944 1995 g Station $4 +03 ft T
O u g, W
[ 40-W r 20
,, ~_s . .~% .rs%e - -~ .' /%
1976 1977 $978 1979 1980 1901 1982 1983 1984 1985 T!tE (YEARS)
Sempling Intervals >2 Months FIGURE B-4 ABUNDANCE VERSU3 TIME FOR CASTROCLONIUM COULTERI AT +3 FT MLLW (IBT METHOD)
E6-122.0 B-5 J
St-t ton 08 4 09 f t j Y
O u g, 5
40-a y- /\s %h' . .
1976 1977 1978 1979 1980 1981 1982 1983 1984 Sirs Stetton 09 +01 ft u g, ,
5 5* !
2
' s ..
T 0 1976 1977 1978 1979 1990 1981 1982 1983 1984 1995 Station it +01 ft u gn,
{ 40-N
'f f U f ^
1976 1977 1978 1979 1980 1961 1982 1983 1984 1985 Stetton 12 +0s ft 80 5
u g,
5 40-w E 20
, M%W%<*W _ _ _ _ _ _ _ _ _ _ __
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 TIE (YEARS)
Sampling Intervals >2 Months FIGURE B-5 ABUNDANCE VERSUS TIME FOR GIGARTINA CANALICULATA AT +1 FT MLLW (IBT METHOD)
E6-122.0 B-6
Stet ton OS <03 f t 6
u s
60- .
c- g 40-f W s r a.
Q" , A_ _
_n s .- _ m .- - - -
$976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Station 09 +03 ft cc S0 u gn, 5 ~
g .0 W
W e0 l A, 1976 1977 g
1978
<W = #%#
1979 1980 1981 1982 1983 1984 1985 Station it +03 ft 6
8 u gg, W*
5 40-W t 20 5
I O 7
-- -- 1 r- -
1- i= 1 - -
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
% Station 12 +C3 f t
!u 60-
$ 40-W t a0 5
y , ___ _ _ __
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
, Station 14 +03 ft
!u 60-3 40-W r 20 i , ______.____% w .-.. _ .e -"\
1976 1977 1970 1979 1980 1981 1982 1983 1984 1985 TieE (YEAftS)
Sampling Interv81s >2 Months m FIGURE B-6 (L./) ABUNDANCE VERSUS TIME FOR GlCARTINA CANALICULATA AT +3 FT MLLW(IBT METHOD)
E6-122.0 B-7
St*tton OS +01 ft 60-W
$ 40 h mM __s _+__%.*.. A O
1976 1577 1978 1979 1990 1988 1982 1983 1984 1995 Station 09 +01 ft u gg, W
$ 40 E
r ,0 5
y n .e =_ _ h _ . - _ . - . _ _ - _ . _ m_ . w a -
1976 1977 1978 1979 1980 1988 1982 1983 1984 1985 Station St +09 ft b
u gn, g .0 8
Y .
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 g Station 12 +01 ft i
u gn,
!s
.0 E .
I";
Y 0 V ._:I 1976 1977 1978 1979 1980 1988 1982 1983 1984 1985 TIIE (YEARS) l l
I i
l Sampling Intervals >2 Months FIGURE B-7 ABUNDANCE VERSUS TIME FOR GIGARTINA PAPILLATA AT +1 FT MLLW(IBT METHOD)
E6-122.0 B-8
St*tton 00 +03 ft et SO 60-E da. a 30 ,
{ . b 0 g-1976 1977 1970 1979 1980 1981 1982 1983 1984 1985 Stetton 09 +03 ft w
a u sn, s .0 l*~ M 'A6m 1976 1977 1970 1979 1980 1981 1982 1983 1984 1985 Stetton 11 +03 ft
!u 60-5 g 40-v -
A/ N ., AA _
1976 1977 3978 1979 1980 1981 1982 1953 1984 1985
()
, ,, stetson 12 +03 ft u g, W
g 40-M a f 30 /N 3
r 0 1976
-[/\
1977 1978 1979 1990 1981 1982 1983 1984 1985 80 Stetton 14 +03 ft b
u <
y, W
5 40-W W a0 5
~ ~
1976 1977 197e' 1979 19e0 19e! tes2 1983 1984 19e5 TIE (YEARS)
Sampling Intervals >2 Months FIGURE B-8 V ABUNDANCE VERSUS TIME FOR GIGARTINA PAPILLATA AT +3 FT MLLW (IBT METHOD)
E6-122.0 B-9 e
l l }
g Stetton 00 +03 ft o
u 60-U i 40
\
197S 1977 1978 1979 3930 39st 1982 1983 19e4 1985 Stetton 09 +09 ft 80 u
60-M
$ 40, a' \, l \
=
0 1976 1977 1973 1979 19e0 1981 1982 1983 1934 3985 g Stetton il +0S ft u go, N
$ 40-W W 20
$ , e_A f_e__A A_A 1976 1977 1978 1979 1990 1983 1982
.N % _
1983 1984 3985 g Stetton 12 +01 ft i
u g, W
$ 40-5 2 20 5
W g ,_;_ _ _ __ _ - - _
_ z____
1976 1977 1978 1979 1980 1961 1982 1983 1984 1985 TIE (YEAMS) !
I l
1 Sampling Intervals >2 Months l FIGURE B-9 l ABUNDANCE VERSUS TIME FOR 1RIDAEA FLACCIDA AT +1 FT MLLW (IBT METHOD)
E6-122.0 B-10 l
, .-,--,c-- , - - , , ,, - . -
St*tten 00 +03 ft 8 ,,
V s 40 O E r ,0 0 -
Y
$976 1977 1970 1979 1980 1981 1982 1983 1984 1985 g Stetton 09 +03 ft u 60-W
$ 40-
~
N .,
1976 1977 1978 1979 1980 1981 1982 1983 1984 1995 g Station is +03 ft u
60-g .0 <
W r e0 5
1976 1977 1970 1 79 1980 1981 1982 1983 1984 1985 O g Station 12 +03 ft u g, Y
O g 40-W W 20 0 - - - - -- - - - - -
1976 1977 1970 1979 1990 1981 1982 a983 1984 1985 g g Stetton 14 +03 ft b
u g,
! \
E 40 \
g N *
\
r s - 'g- .
,0 s'
5 Y 0 1976 1977 1970 1979 1980 stet 1982 1983 1984 1995 T M (YEARSs
Sampling Inter valt >2 Months FIGURE B-10 s ABUNDANCE VERSUS TIME FOR 1RIDAEA FLACCIDA AT +3 FT MLLW(IBT METHOD)
E6-122.0 B-l 1
9t tton De +09 ft g m.
. m.
[ a00-150-100-30-
-- - - - - - - - --^--- - " ------- - ---- -- - --
0 1976 1977 1978 1979 1990 19e 19er 19e3 1984 1995 g Stetton 09 +01 ft p m-as0-3 a00-150-1200 I O r ;- = - rc r:r: 1- :=:-n:::.--- 2 --- :- 2 1 - - - - - - -
I 1976 1977 1978 1979 19e0 1951 19er 19e3 1984 19e5 g Station 11 +01 ft g300-
-. a50-ago.
150-1.
g I
W 197s 3977 197s 1979 19e0 stat stoa 19e3 19s4 19es j, station 12 +01 ft O y m-
, m-ao0-150-1100 5 , ._
W 1976 1977 1979 1979 19e0 stat 19ea 19e3 19sa 19es TIE (YEARS)
Sampling Inter vals >2 Months FIGURE B-l l ABUNDANCE VERSUS TIME FOR ANTHOPLEURA ELEGANTISSIMA AT +1 FT MMLW (IBT METHOD)
E6-122.0 B-12
, Stetton OS +03 ft g m.
~. m.
150-l200-100-WW-1978 1977 1978 1979 1980 1981 1982 1983 1984 1985 g 9tetton 09 +03 ft g300-
~2s0-150-lago-100-90-5 o .====== -------====;===;_:==---==;:=- -- - -- =-
I 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 j, stetton 11 +03 f t p m- .
~ 200-150-100-50-I O W $976 1977 197e 1979 1980 1981 1982 19ss 1984 1985
\ j g stet ton 12 +03 f t g m-
~250-200-150-5 0 _
W 1976 1977 1979 1979 1990 1901 1982 1983 1984 1905 j3,, Stetton 14 +03 ft y m-
~. m.
ano-iS0-i,50-I O I 1976 1977 1978 1979 1980 1981 3932 1983 1984 1985 TIME (YEARB)
Sampling Intervels >2 Months FIGURE B-12 ABUNDANCE VERSUS TIME FOR ANTHOPLEURA ELEGANTISSIMA AT +3 FT MLLW (IBT METHOD)
E6-122.0 B-13
st-tion os +of et j ,,
h e$
2 s I
4-2- l
- m _ i 5 g W 1976 1977 197e 1979 19e0 1981 ste2 19e3 8964 19e5 f i
l j ,,
stetten 09 +ot et i l
$ e-2 s$
I *~
Ng NA.% f__
Y 1976 1977 197e 1979 19eo stat 19e2 19e3 19e4 19e5 j ,,, _
station is +ot et
@ e-2 s-I 4-2-
5 a - --- -_ -_- - - Am% ' _ = _ _ u_ f _ _ _ _ _ .
Y 197s 1977 1970 1912 19e0 19el 19e2 19e3 19e4 1995 j ,, Stetton 12 +ot et
$ e-2 s-4-
2-3 0
-*--="-------;---------------
W 197s 1977 1978 1919 steo 1933 19e2 19e3 1984 1995 TIE Mans)
Sampling Inter'vals >2 Months FIGURE B-13 ABUNDANCE VERSUS TIME FOR HAllOTIS CRACFERODil AT +1 FT MLLW (IBT METHOD)
E6-122.0 B-14
! so stetten ce +os et j
$ e-2 s-4-
2-5 , --- - -- == A -_ A K _-_ --
1984 ' 8955 W 1976 1977 1978 1979 1980 1908 $982 1993 g ,, statson oo +os et I e-2 6-ll 3
W o
ss76 is77 1s7s ss7s teso Wh sees ses2 sees ass 4 iss5 Stetton 11 +o3 ft to t ..
2 s-e-
i 3
2-o
-- =---------===-;---=--=-=-=-----_-------
W 1976 1977 1978 1979 1930 test iger 3333 1984 1985
! so stetton 32 +os et i a- l 2
s-4 l2-3 o --
+ - - - - - - - - - - - - ---
I 1976 1977 1973 1979 1930 1981 1982 1953 1954 1985
{
- , ,, m eti.e .. .o ,t E s.
2 s-d l
Ie- d
.. W A __%... g w W im i.n i.7. im i- ....2 . . .
TM MAms) j ---- Sampling Intervals >2 Months
' FIGURE B-I4 ABUNDANCE VERSUS TIME FOR HAllOTIS
) CRACHERODil AT +3 FT MLLW (IBT METHOD) 1 1
E6-122.0 B-IS
l j, 9tetton ce +os et e
. ~.o.-
2
- 200-
) \
{ 150-Itoo-So-g , ___ __ _ __ --__ __ _
A_- --N W 197s 1977 197o 1979 19eo stat 19e2 19e3 19s4 stes j 33, stetton o9 443 ft a '
E s too.
5 0 - - - - - ----=--:-:-----=--:=--- - =--
W 1976 3977 1978 1979 1980 1981 1982 1983 1984 1985 j ,,, stetten is +on et I
3 100-so-E o I 1978 1977 1978 1979 1990 1981 1982 1983 1984 1985 j ,, station 12 +ot et k
a too-I so-o m _ --_
1976 1977 1979 1979 1980 1981 1982 1983 1984 1985 TIE (YEARS) l l
)
l I
Sampling Intervala >2 Months i FIGURE B-IS ABUNDANCE VERSUS TIME FOR COLLISELL A SCABRA AT +1 FT MLLW (IBT METHOD)
E6-122.0 B-16
g ,, st-tson oo +os et I
s soo-o j z
E ss7s is77 is7e is79 sono ases near toes tesa sees j ,, stetton os +os et E
3 soo-I g-W ss7s ss77 ts7e is79 seso test tese sees need teos j ,, stetson is +03 ft E
a soo-so-3 o W 197s ss77 is7e is7c teso seet tesa assa tend sees j 3, stetson sr +os et E
E .
s 100-w so<-
5 o W 1976 ss77 ss7e 1979 seSo a se', iss2 1963 feed toes j 33, stetton s4 +c3 ft E
[ s 100-l 1-I o = = - ' - - - - -- -----_ " ^ ^^=- ^- - :z _ - - - -
W ss7s is77 is7e ss7s teso test ssee teos ass 4 sees TIME (YEANs) l
Sampling Intervals >2 Months FIGURE B-16
% ABUNDANCE VERSUS TIME FOR COLLISELLA SCABRA AT +3 FT MLLW (IBT METHOD)
E6-122.0 B-17 i . - - - _ _ . _ . _ _ , _ . - - . . _ . , . , . - . . _ . . , . . _ _ _ _ _ _ ._. - _ . . _ , - _ _ _ . . _ . . _ . , _ . _ - . _ _ _ . . _ .
ste3s t os +et 't -
=- w- -
l eo$
3 ao.
e-
!"~
W sets as77 ss7e ss7s teso sees tasa WVf4V toes ten 4 seen j 3,,
stetson on +on et l so-a :
4o-W h/ &
ts7s 1977 ss7e is7s asso sees tasa s'
taas need sees G ,, stetton is +os et l so-2 so.
do-
! "o' V ss7s MM 1977 197e 1979 isso toes assa sees need ages j ,, station 12 +os et l eo-2 .
e-
!~~
W 1976 1977 is7e 1979 tsoo asas snea toss W assa teos T]E (YEARS)
Sampling Inter vale >2 Months FIGURE B-17 ABUNDANCE VERSUS TIME FOR PAGURUS SPP.
AT +1 FT MLLW (IBT METHOD)
E6-122.0 B-18
,, stetten ce <os et k Do-S so-U) 4o-5 o _
W 1976 1977 is7s 1979 tsoo test test less feed toes j ,,,
stetten og +os et
[ eo-2 so:
h 40-MA.._ ___ __
- MA Y 1976 1977 197e 1979 into test tes2 19e3 feed 1so5 g ,,, stetten is +cs et I so-s so.
40-20-
~
5 o W 1976 1977 as7e 1979 isso test tsee sees tes4 teos C\ j 3, station s2 +03 ft
$ so-so.
5< 40-20-x
< o.k V
W 1976 1977 is7e 197s teso test tes2 tes3 seed tee 5 y ,, stetten 14 +os et
(* so-eo.
ao-I20-5 o e A e - ~-- -
- _c d#.
I 1975 1977 sets is7s teso seet see2 fee 3 seed sees Tite (YEAme)
Sampling Intervals >2 Monthe FIGURE B-18
) ABUNDANCE VERSUS TIME FOR PAGURUS SPP.
w/ AT +3 FT MLLW(IBT METHOD)
E6-122.0 B-19
--- .~, . .. . . . .. ..
\
g Stetton 00 +0! ft y m- .
200-150-M ____- D. ._A A_
1978 1977 1978 1979 1980 1981 1982 1983 1984 1985 Stetton 09 +0! ft
, m.-
m
~ 200-150-1100-50-I -- M -- -- --- * * ^ ^ ~ -
- ^ -
0 -
W 1976 1977 1970 1979 1980 1981 1982 1983 $984 1985 g Stetton il +0i ft 300-
~, 250-200-150-5 --- -
I 1976 1977 1978 1979 1900 1981 1982 1983 1984 1985 900 Stetton 12 +01 ft O l 400-m:
200-100-3 0 W 197s 3977 397a 3979 19o0 19es s9s2 19s3 sto4 19es TIset (YEARS)
Sampling Intervals >2 Months FIGURE B-19 ABUNDANCE VERSUS TIME FOR TEGULA FUNEBRALIS AT +1 FT MLLW (IBT METHOD)
E6-122.0 B-20 l
i
9t*tten OS +03 ft 300-
~ 200-( 150-
.) 100- *\.
50-W 1976 1977 1978 1979 1980 1981 1982 1983 1954 1985 station 09 +03 ft 300-
, 2s0-
[ 200-
{ 150-j..._ .. M V 1976 1977 1978 1979 1990 1981 1982 1983 1984 1985 Stetton 11 +03 ft g300-
-, 2s0-poo-k-.
5 0 W 1976 3977 197s 1979 :9oo 19e 3982 983 tend 19e5
- Stetton 12 +03 ft m-
- 250-
- 2o0-150- -
i 50-3 0 W 1976 3977 197s 1979 39ec s9st s982 19s3 1984 19e5 l j , stetten 34 +03 ft y m- -
, 200-
, k 150-i 100-50- 1 5 0 .=:. ^^ -- ---- : z _---,_____2- _ , :_ _ l W 1976 1977 1970 1979 1980 1981 1982 1983 $984 1985
]
71* tytAnsi )
Sampling Intervals >2 Months FIGURE B-20 O ABUNDANLE VERSUS TIME FOR TEGULA FUNEBRALIS AT +3 FT MLLW (IBT METHOD)
E6-122.0 B-21 l
/ APPEbolX C IPTIERTIDAL POINT CONTACT DATA Appendix C contains a set of abundance plots of selected species sampled in the Intertidal Point Contact (IPC) sampling subtask. The dato represent. the percentoge of contacts by species in a sample set of random point tries in o l/4 m sq quadrat at three fixed sites along the permanent band transect tide level monitoring station. The survey is repeated every other month as weather and sea state allow.
The locations of the intertidal point contact monitoring stations are illustrated in Appendix A which also contains a chronological log of the IPC survey dates and number of samples collected, and a bar chart illustrating the IPC sample periods through time for each sompling location.
E6-122.0 C-l t __,
too Strtion o8 col ft h 80-8 l g so- I E do-o --?====2==t========_==============================
1976 1977 1978 3979 39eo sget 1982 1983 1984 1985 Stetton o9 +ot it too
$ so-8 6"'
s l E do-U Po-g E
o 1976 1977 1978 1979 196o 1981 1982 1983 1984 198S
,,, St. tion :: +oi ft
@ so-8 g so-E '4o -
E y 20-o ===E==================================================-
1976 1977 3978 1979 198o 1981 1982 1983 1984 1995 too Stetton 12 *ot ft I8 so-so-E do- c E 2o-g o ====== =
1976 1977 =========:=============_e___======--------b---
1973 1979 198o 1981 1982 1903 1984 39 Stetton 14 +ot ft too
@ so-8 g so-E 4o-E 2o-g o : : = = = = = = . : : : : :: : = = - = = : = = : : = = = = = . ::= .=== ===::=
1976 1977 1975 1979 19eo 39st 1982 1983 1984 1985 TIE (FEARS) 00uaarat A eouaarat e nouaarat c FIGURE C-l Overprinting of above symbols appear to be different symbols ABUNDANCE VERSUS TIME FOR ENDOCLADIA MURICATA AT +1 FT MLLW (IPC METHOD)
E6-i 2.0 C-2
St*tton 08 v 3 ft 300 j
4 y 60- "M
~ g- / r 0 _________ _ _ _ .
1976 1977 1973 sg7g 19g0 1983 1982 1983 1984 19e5 Stetton og +03 ft 300 h 90-8 Y % e Q d 0
^^
"??&: ; :: : ^ ,::: l __ R. ; ;
ig76 sg77 1973 sg7g 1900 1981 1932 3333 1934 igeS Stetton is +03 ft 300 h 80-8 60-E 40- er b ,* .g 4 k 1976 1977 1978 1979 1980 1983 1962 sgg3 sgg4 igg 5 Stetton 32 +03 ft 100 f
e0-I
!.0 g
40 1 s
sg76 1977 3373 sg7g ig80 W: .W ^ ^___
1981 1982 fee 3 tes4 3385 900 Stetton 14 +03 f t f" e0-s0 Y s E 40-A
~
0 02::::.:: ..::::::::---w ;-_=__ _
1976 1977 1973 3g73 1930 1981 1982 1983 IgS4 1985 00uadrat A eQuadrat B
& Quadrat C O
\
overprinting of above symbols appear to be FIGURE C-2 i different symeals ABUNDANCE VERSUS TIME FOR ENDOCLADIA ,
MURICATA AT +3 FT MLLW (IPC METHOD) !
l
- E6-122.0 C-3
St'tlon 00 +0i ft 100 g
5 30- .
/
60-s ..
't9f6i977 '978 t9[9
t 't900' iN1 't N2 ' ' 't U3' ~ 't 984 'th '
gag Statton 09 +0s ft l 80' l
.O.
T "
P-0 5 : : : : = . : . : : : : : _ : ^ ; :^ - ^ - - O'#****-
1976 1977 1978 1979 1980 test 1982 1983 1984 1985 Station it +01 ft 100 h 80-8 W
- ' i
- e d \,
0 ::::r- N:*^^IIN ;;; _: M __ W i: : :
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Stetton 12 +05 ft 100 h 90<
8 s0 s ..
E 20' g < ,
0: II_
1976
-^
^
2_:0_:_--
3g79
- - _ _ :::: d::::: :::::::: ---- :::
1977 1978 1930 gget 3952 1983 1984 1985 )
l' l Stetton $4 +09 ft i 100 l
I h e0 8
g $0- l a i 5 l f 20-0 :::::: = .:. :::_ :::: : :::.:: ::::::::_ ::: _ _ . : :: ._:: ;
1976 1977 1970 1979 1980 1988 1982 1983 sted 19e5 f !IE (YEARS)
DOuadrat A eQuadrat B AQuadrat C l Overprinting of above FIGURE C-3 l symbols appear to be different symbols ABUNDANCE VERSUS TIME FOR GASTROCLONIUM l COULTERI AT +1 FT MLLW (IPC METHOD)
E6-122.0 C-4
Stetton 08 M 3 ft 100 h 80-8 8
g l 40- l
% g H-0 :::::: = =r :::::::::::::::::::::::::::;;;; : -_7_;
1976 1977 1973 1979 1900 1981 1982 1983 1984 1985 100 Stet ton 09 +03 f t S
y 30-8 g so-E 40 E 20-g 0 :::::::: . :::: _ _ r_ : _: _ ::::;;::::::: _ _ ;; _ _ ::: _ __ _
1976 1977 1973 1979 sg80 1981 1982 1983 1984 3935 Stetton 11 +03 ft 300 30 60-g 40-g e0-0 = = :: = : ::::::;;:::::::::::::::::::::::::; ;_;;; _--_ -_
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 goo St et t on 12 +03 f t 90-60-40-E a0-g 0 ::::::-= =::::::::::::::::::::::::::::_e_ _ : ; _ _
1976 1977 197e 1979 1980 1981 1933 1333 1984 1985 Stetton to +03 f t 100 h 80 8
a0- p I1 -- /,
y 20-
- dl '
g 0 - ::: :: .::::::::::_: ::::::::::::: _. ;__ _ _ _ _ _ _ _ _ _ _
1976 te77 is7e 197s tee 0 test tesa toes tas4 teos SQuadrat A eQuadrat B
) aQuadrat C
, Overprinting of above FIGURE C-4 d n Do ABUNDANCE VERSUS TIME FOR GASTROCLONIUM COULTERI AT +3 FT MLLW (IPC METHOD)
E6-122.0 C-5
g, Stetton De 401 ft e0-60-s .0-30
\
0 .. __
1976 1977 1978 1979 1930 19st 19e2 19e3 SJe4 1985
$00 Stetton 09 +0! ft e0-i .
0 M.
1976 1977
..e, 197e 1979 3930 sget 19e2 19e3 19e4
[/Vi 1935 300 Stetton it +01 ft e0-60-s 40- %
E 20-g 0 2;:=;_ e __ _?_-_: ;_ :=;;;:_ __ -
- J_- A
- :::____:^_
3976 1977 197e 1979 1S80 19et 19 2 19e3 19e4 19e5 100 Stetton 12 +01 ft ge0 s .0
- A J 9ma.
i9i6 i9fe' 'i979
~ - ~
1977 i9 0 ' ~ i9ei ' ~ i9 2~ ~i9e3 ' ~ ite. 19eS l 100 M etton 14 +01 ft e0-60-s .-
E 20-g 0 ::::: = .:. :::::::::-: ::: ::. ::::::::_ _:.____~_____. ~ ~ ' ~ ' '
1976 1977 397e 1979 ges0 Seet 39e2 8983 sted 1985 T1sE (YEARS)
OGJadrat A eOuadrat B aousarat c Overprinting of above FIGURE C-5 l symbols appeer to be l difforent symDols ABUNDANCE VERSUS TIME FOR GICARTINA !
IQ TA AT +1 FT EW W C@@ l E6-122.0 C-6
St*tton 08 +03 ft 100 80-8 -
s0-s O
.0 is a- v r
0 :_:r"* e c h_r_c h _ree?r A _ _Y r_r t ?"-b -
Mb 1976 1977 1973 1979 iggo test 1982 5983 1984 1995 Station 09 +03 ft 100 90-60-g .0-M ,a-
_ m&m% _ .- -. _y _
1976 19h7 19'7s 1979 19'e0' 1998 1982 1983 1984 1985 Statton 1i +03 ft 300 80-
.0 g .0-l l 20-0 :::::: :: . :::::::::::::::::::::::::::::: ::::;- - ,_ ;-
1976 1977 1973 1979 1930 1981 1982 IN3 1984 1935 St et t on 12 +03 f t 100 h 30 8
60-E .0-5 20-g O e r? ^ _^ :::::::::: m 1976 1977 1978 3373 sge0 iMt 1982 IM3 1364 1985 Stet ton 14 +03 f t 100 hg *b l 0 l 1976 1977 1970 1979 1930 iMt 1982 1983 1954 1995 l
cIGuadrat A eQuadrat 8
& Quadrat C FIGURE C-6 O overprinting of above symeols appear to be difforent symeals ABUNDANCE VERSUS TIME FOR GIGARTINA CANALICULATA AT +3 FT MLLW (IPC METHOD)
E6-122.0 C-7
St"tton 00 +03 ft 800 30-60-g E 40-20-a
\
4
- M e r 1976 1977 1978 1979
-- A 1990 1981 a _.
1982 1983 1984
__7__
1995 h
Stetton 09 +01 ft 800 h 80-8 60-E .0-E 20-g ~
0 2 . : -^ _:::*: "*- r r ^ r r "" . -^ - r - ^ ^^:==:
1976 1977 1970 1979 1990 1981 1982 $983 1984 1985
.t.t on it I ,t g ..
~ -
.0 E 40-a ,__ at_ 1 h ~
976 1977 197'8~ 1979 t 1 i t952 1983' ' 1984 1995 Stetton $2 +01 ft 100
.8 .0 60-40-
, 20-W 5 - - i Ma o> , _ - _ -
1976 1977 1978 1979 1980 1901 $982 1983 1984 1985 Stetton 14 +01 ft 100 80-60-y E 40-f 20-0 :::::: = .:. ::::::r:: : :::.::.::::::::. ::: . . . ::: . :::::
1976 1977 1970 1979 1980 1981 1982 1983 1984 1985 ilm tytaAS) eQuadrat A 00uadrat B AQuadrat C overprinting of soove FIGURE C-7 symbols appear to be different sysools ABUNDANCE VERSUS TIME FOR GIGARTINA PAPILLATA AT +1 FT MLLW (IPC METHOD)
E6-122.0 C-8
St* t ton OS 403 f t 100 5 x Vt 1 ..
O I40 : -
~
~r J.. . e .) A ____ n =, --
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Station 09 +03 ft h 30 s .
20<
s
_ : O c = ~ :; ~
0 1975 1977 1970 1979 1980 1981 1982 1983 1984 1985 Stetton il +03 ft
$00 30-60< f h\ \
L 1976 1977 W 1970 1979 1960 h,
1981 1982 1983 1984 s
1995 O 100 II*II'" II +C M t h 80-6 I
s .0-0-
l 1976 1977 1978 1979 1980 1988 1982 1983 ffh id 1985 Stetton to +03 ft 100 80<
S0-E 40<
E 20<
g 0 =====?== .=========================== =============
1976 1977 1978 1979 1980 1981 1982 1983 1984 1995 TIE (7tAA51 DOuScrat A eQuadrat B a ouserat c FIGURE C-8 O
Overprinting of above n o ABUNDANCE VERSUS TIME FOR CIGARTINA PAPILLATA AT +3 FT MLLW(IPC METHOD)
E6-122.0 C-9
gg St tion 00 +09 ft 80-g 80-e '
i ,
i g ei ao- \ . e * \ ee, r m h k h eI** I I*2f _*f br _ $ 7. t ), a. d m e 1976 it7k 1978 1979 1980 1981 1982 1983 1984 1985 Stetton 09 +0i ft 100 h 80-8 g 60-E 40-1976
^
1977 1970 1979 1980 1981 1982 1983 8984 1985 gg Stetton 19 +01 ft 80-80-9 40-5 'a-r / MAM _ ____A__
1976 1977 ~ ' 19[0 ' '19f9' ' '8980' 190't 1982 1983 1984 1985 '
100 e Sq t +01 ft 80- '
g 60-
< 9 0 ===_=^
1976
-==================-==b.Y=' "
n 0.
1977 1970 1979 3000 1989 1982 1983 1984 1985 8'**I'" Id *08 'I 100 h 80-d 60-s .0 E 20-g 0 ====== - =. ======= & = ===.== ========. === = . = = = = = = = = -
1975 1977 1970 1979 1980 1981 1982 1983 1984 $985 TIl4 (YEARS) eQuadrat A ecuadrat e
& Quadrat C overprinting of Geove FIGURE C-9 a$ ef n SymooIS ABUNDANCE VERSUS TIME FOR IRIDAEA FLACCIDA AT +1 FT MLLW (IPC METHOD)
E6-122.0 C-10
g St"tton 00 +03 ft h 80-8 ;
O l:e0 ; g ... m % ._ . .
.s 0
"" - D I-- I c rN:::: II ---- - EI d - - - - -
1976 1977 1978 1979 $900 390 1982 1983 1984 1985
)
gg Stetton 09 +03 ft 80<
GO-s .0 20-1976 1977 1970 1979 1980 1981 1982 1983 1984 1985 gg Stetton il +03 ft h 80-8 60<
s .0 E
r a-3 Nis [s57 iS/s 19 /9 ~1980 I9dt 1985 ~ isI - ~19s4 IIms Stetton 12 +03 ft 100 80-
.0 s 40-Y - - - - 1 -
LA - - _ _ -
'tSi8 i977 itit'stit't d ~ 'titt~'t502 1983 1984 9d Stetton 14 +03 ft 100
!*' f k-
- I d. [::o
\., g s 40-ft N, .\. j '
E N 'f e '\ . y g 20- s 0
1976 1977 1978 1979 1980 itet 1982 1983 1984 st*S i 00uadrat A 00uadrat B a Quadrat C O overprinting of above symbols appear to De different synocis FIGURE C-10 ABUNDANCE VERSUS TIME FOR IRIDAE A FLACCIDA AT +3 FT MLLW (IPC METHOD)
E6-122.0 C-l I t.
APPEtolX D St.BTIDAL ARC QUADRANT DATA Appendix D contains a set of abundance plots of selected species sampled in the Subtidal Arc Quadrant (SAO) sampling subtask. The dato represent the densities of subtidal seaweeds and macroinvertebrates recorded by species in 7 m sq quadrants at fixed underwater monitoring stations. The survey is repeated every other month as weather and sea state allow.
The locations of the subtidal are quadrant monitoring stations are illustrated in Appendix A which also contains a chronological log of the SAO survey dates and number of samples collected.
O E6.122 D-l
j ,, stetton os -to et 9 ": do-3 N s' 80' o
,,_f %.. y ..,,,, , x, -*..g .,..g I 1976 1977 1978 1979 1960 1983 1982 1983 1984 1985 j g station o9 -to et e ": 40-3 g so 20-g .
_ _ . m ^ .... .._ - % .. d ... _ _ _ m _
W 1976 1977 197s 1979 19eo 19e1 19e2 1983 1984 1985 j ,, station to -to et g so-1 do-g so-ho I 1976 1977 1973 s g7g' 1980 J
1981 AA- v.
1982 1983 1984 1985 j so station 12 -to et 01 g so-3 do-g so-0 20-
-3+* _
I 1976 1977 1973 1979 1900 1981 1982 1983 1984 1985 TIE (YEARS)
Sampling Intervals >2 Months FIGURE D-l ABUNDANCE VERSUS TIME FOR SUBTIDAL CYSTOSEIRA OSMUNDACEA IN DIABLO COVE (SAQ METHOD)
E6-122.0 D-2
j ,,
stetson os -ss et
- i g so-a 40-g so-20- / /
I d so- m N ,.. * .. j ,
l ..f I o W se7s so77 ss7e se7e seso sees sesa sees ses4 sees stetson to -ss et j ,,
g so-a 4o-so-g 20-yb A _
W se7s se77 so7e se79 sooo sees sesa sees ses4 sees j ,, stetson s2 -ss ft g so-3 so-w 30-
\.. *
/
W se7s se77 se7e so7s seso sees seer sees ses4 sees stetson s3 -32 f t so g so-3 40-y 30-a l3o.so-5 o ==- ~
~______--.._>
W so7s se77 se7e se7e sono sees sse2 ' 'sess' ~~ses4' sees flee (YEARS)
Sampling Intervals >2 Months FIGURE D-l
( ABUNDANCE VERSUS TIME FOR SUBTIDAL CYSTOSEIRA OSMUNDACEA IN DIABLO COVE (SAO METHOD)
(Continued)
E6-122.0 D-3 1
_ _ - - . .. -. . - - . . _ _,,_ --.-.w._-- ,,m,_ _ , . . , . , - - . m ._.. . . , . .y_ _ . _ - . _ . . _ , -
st'ttrn ce -to ft So g so-3 4o-
"'N %,q ,
- o T 1976 1s77 1978 1s79 198o 1981 1962 1983 1984 1985 g, station o9 -to et g.
3 4o-g so-ao-to- .- N--. . 'OQ.._., ,b #h W 197s 1s77 is7s is7s teso test les2 tess tas4 less station to -to ft 60 g so.
1 40 g so-1 M ..A y W 197s 1977 197a 1979 isso 1981 1962 1963 1984 1985 y ,, stetton 12 -to ft g so-2 40-3o-2o-to-Q$. " * .
Y ts7s 1977 1978 1979 19eo teet 1982 1963 1984 198S TIME (YEARS)
I l
l l
1
Samplin0 Intervals >2 Months l
FIGURE D-2 ABUNDANCE VERSUS TIME FOR SUBTIDAL LAMINARIA DENTIGERA IN DIABLO COVE (SAO METHOD)
E6-122.0 D-4
I l
l
%/
{ ,, sten en o9 -15 et n I g so- l 1 40-w 3o.
20- __
,^,.- -
/
4 Y 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 S au n to -15 f t 60 g 50-3 40-g 30-20-80' / -@
Y 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Stau on 12 -15 ft 60
[ 50-40-1 g so-g , , _ _ . . -
Y 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 gg stetton 13 -32 et g se-3 40-g 30-6 20-g , ""-----.._.._.._.._,,_,,_,,_j.
5 o W 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 TIIE (YEARS)
SOmpling Interv81s >2 Months FIGURE D-2 ABUNDANCE VERSUS TIME FOR SUBTIDAL LAMINARIA i
DENTICERA IN DIABLO COVE (SAO METHOD)
(Continued)
E6-122.0 D-5
. _ . . ___ . . _ - _ _ _ . - _ , . ._. ~
j , st tton os -to et g: -
. so-So lPo3. 17 y
--- % - % g ,
W 197e 1977 ts7e is7s aseo test assa ases tes4 lee!5 y ,, station os -to vt g 50-3 40-So-ao-to- ,
-*~e ' ,,
W 197s 1977 is7e is7s teso test tasa toss tse4 tese j , station to -to et h "d .
3 ao-so-5 o Y 197s 1977 ts7e 1979 tsoo sees assa toes 19e4 teos j ,, station 12 -to et O g so-3 4o-g 30-1ao,to- -%.. ..,
I o
W 197s 1977 le7e 1979 teso test its2 1983 1984 1935 TIME (YEAAS)
Sampling Intervals >2 Honths FIGURE D-3 ABUNDANCE VERSUS TIME FOR SUBTIDAL LAMINARIA DENTIGERA, WITH BLADES, IN DIABLO COVE (SAO METHOD)
E6-122.0 D-6
nV j go station og -ts et g so-3 4o-g so-20- --
f'
- ', -A A W 1976 1977 se7e is7e sono ases ses2 sees tes4 tese j go stattaa to -ts et i Sa:
1 4o-w 3o-20-h --Q W 1976 se77 is7e is7e isso sees sesa toes ten 4 sees k j so stetson 12 -ts et g 50-3 4o-30-g l20'to-I o W se7s 1977 ts7e 1979 naco ages assa sees tasa sees y so, stetton 13 -32 ft g so-1 40-N 30-g -
o 20-t0- *---.....,_~~~--~--------..h 4 o W 1976 1977 1978 1979 igeo 19st 19e2 19e3 iged 39e5 T!aE (YEARS)
Sampling Inter' vale >2 Nonths ;
FIGURE D-3 ;
ABUNDANCE VERSUS TIME FOR SUBTIDAL LAMINARIA DENTICERA, WITH BL ADES, IN DIABLO COVE (SAQ METHOD)
(Continued)
E6-122.0 D-7
y ,, st* tion os -to et Q so-3 ao-30-5 g 20 g so-g , ; ~. -
.n_- ;
- - -= =_h W is7e is77 as7e is7s seeo seen assa sees tes4 sees
,, station on -to et g so:
3 4o-w 3o.
20-g 3 so-5 o . _
~_ "'. - z^* : 2. _ ^^' W : ** ~ _ - .: ? "
^
W 1976 ss77 is7e is7e isso 1 set 1se2 les3 Seed toes
~j ,, station to -to et g so-3 4o.
30-20-W
':' 1976 1977 1978
' A s w 1979 seso' ~s 'se s tear see3
,- n tes4 sees
~j so - station sa -to et O g so.
3 4o-3o-20-g g to-5 o = = . ; = = : _ - b, = = h . & = _A - - ? ^
W 1s76 ss77 as78 ss79 aneo test assa taas ses4 toes TIIE (YEARS)
Sampling Inter'vals >2 Months FIGURE D-4 ABUNDANCE VERSUS TIME FOR SUBTIDAL LAMINARIA DENTICERA, BARE STIPES, IN DIABLO COVE (SAQ METHOD)
E6-122.0 D-8
(~
i j go stetson os -ts et g so-3 4o-30-20-g 5 to-5 g ; p '^s ---_ =_d -_
y W se7s se77 is7e 1s79 tsoo see seer ise3 ses4 toss j go stetton to -ts et g so-3 40-So-ao-10-E o = = = A =_^=====._ M ==~~__=--p W 1976 1977 sg7e gg73 19eo 19st iter 1983 gged iges y so stetton 12 -ss et g ..
s 40-30-20-g 5 to-I W
o se7e is77
___=_.=._- A - =_- ^= - m se7e is7e seso see ssa
._ _M_ toes=
ases ses4 i
j go stetton 13 -32 et g so-3 4o-30-20-10- 1 I - - - - A -- - *-
o = '
W $976 1977 sg7e 1973 ggeo gggg iter 1983 1884 39es T!IE (YEAme)
Sampling Intervals >2 Months FIGURE D4
\j ABUNDANCE VERSUS TIME FOR SUBTIDAL LAMINARIA d
DENTIGERA , B ARE STIPES, IN DI ABLO COVE (S AQ METHOD)
(Continued)
E6-l 22.0 D-9
So Stetton os -to ft 50-3 ao-l":
} g - -
2.___..***%.___
$l W 1976 1977 1978 3979 teso test 1932 1983 3984 1985 l
$h So station o9 -to ft I I
g so-1 .o.
g so-g.
$ so-W 5 o \_^
ts7s se77 ss7a
_ _ _ =-
is7s aseo seen
- f sesa a___;_==
sees ass 4 seen l
G so station so -so ft g so-1 40-g so-20-o ._
_- ===^ =======- =- = = = = = - === -_==:==== _
Y 1975 1977 1978 3979 seeo sees 19e2 19e3 19e4 19e5 i 3, . _ station se -so ft
, ,o.
3 4o-w 3o.
20-to-I W
o - -. h ss7s 1977
=K-sg7e ag7s
W=================:--=
igeo ages s9e2 sees need 19e5 TIME (YEA %)
I
Sampling Intervals >2 Months FIGURE D-5 ABUNDANCE VERSUS TIME FOR SUBTIDAL NEREOCYSTIS LUETKEANA IN DIABLO COVE (SAO METHOD)
E6-122.0 D-10 l
\ l 1
i l
Stetton 09 -15 ft 60 g 30 1 40-g 30<
20<
.a 10-I O 2- A * ::: - - :: - __
^
A :: ::: _ ::
Y 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Stetton to -15 ft 80 y 50-3 40<
g 30-20-4 10-I O - : .: - : ::: :: r r =::: ::: : . :: - :__ _:: ::- : ;- _ ::
I 1976 1977 1978 1979 1980 $981 1982 1983 1984 1985 60 Stetton 12 -15 ft g0
- 3 40<
g 30<
20-
{ 0 Y 1976 1977 1978 1979 '1990 1981 1982 1983 1984 1985 60 St et ton 13 -32 f t g 50 S 40-g 30-
,0 10-I O ^.:2 -- - ---
Y 1976 1977 1978 1979 1980 1981 1g8, gM3' " ' ge4-----
i 1985 TIME (YEARS)
Sampling Intervals >2 Months FIGURE D-S ABUNDANCE VERSUS TIME FOR SUBTIDAL NEREOCYSTIS LUETKEANA IN DIABLO COVE (SAQ METHOD)
(Continued)
E6-122.0 0_l l
I
- I Strttrn De 30 et k 150 h IPOI 90 y .
\
- n 60-
)
30$ ..-
L .. . . .. -
g n' ~~-+=o.......
T 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 g ,, station o9 -10 et e i20:
90:
60:
5 0
&/Y' . . . . _ , . - -
W 1976 1977 1978 1979 1900 1988 1982 1983 1984 1985 y,3n stetton to -10 et e i,0:
90:
w W ** '
l
< 0
'[N..%, .- '
Y 1976 1977 1978 1979 1980 agst 1982 $g83 $934 1985 150 Stet ton $P -10 f t h120$
90:
5
< 60' <
305
~ % ., ..~
< 0 Y 1976 1977 1978 1979 1980 $981 1982 $983 1964 1985 TIME (YEARS)
Sampling Intervals >2 Months FIGURE D-6 ABUNDANCE VERSUS TIME FOR SUBTIDAL PTERYGOPHORA CALIFORNICA IN DIABLO COVE (SAO METHOD)
E6-122.0 D-12
\
gg Stetton 09 -15 ft h1205 905 y .
. 60<
~ W' p_ _
d +,
a 0 T $976 1977 1978 5979 1980 1981 1982 1983 1984 198S gg Stetton 10 -15 ft h1205
- 90 A =
W I
605 30 5 T $976 1977 1978 1979 1980 1983 1982 1983 1984 1985 1
150
I*" II 'I "
h1205 3 90' 60-l30: m-I
~
A -e@---yp 0
T 1976 1977 1978 3979 1980 1981 3982 1983 1984 198S Stetton 13 -32 f t
$50 h 1205 3 90' 5- .0 b..-..-..-..-..-.. ._.._.._..-
l,0: ...%
I 0' Y 1976 1977 1978 1979 3900 1981 1982 1983 1984 198S f!ME (VEAR$1 sempting Intervals >2 Months FIGURE D-6 ABUNDMICE VERSUS TIME FOR SUBTIDAL PTERYCOPHORA CALIFORNICA IN DIABLO COVE (SAO METHOD)
(Continued)
E6-122.0 D-13
y ,, stetson os -so et h 36-8 se-Y ~
I:
i W
, = _ _ _ _
3976 3977
_ _ . . . ~ ... t
__ g-v 397s 1979 39eo 198: 39ea 39e3 39e4 39es j ,, stetson os -so et
@ is-st-i a:
l .-
5 W
, _ ; , _ _ f _ -.=
is7s son is7e
- A _ _...see:. d . ..- .. A .__ b a is7e seeo seea y ;
sees ses4 sees j ,, stetson to -so et
$ is-ar-e-
w y% ./ /
W 1s76 is77 inte se7e aseo ases seea sees ase4 sees j ,, st tion se -se et
$ is-8 e-l ..
5 , m _A/ ..= [ ' N .._ -
W is7e is77 is7e is7s aseo see : ma sees ass 4 ases f!E (TEARS)
- -- Sampling Intervale >2 Months FIGURE D-7 ABUNDANCE VERSUS TIME FOR SUBTIDAL ANTHOPLEURA ELEGANTISSIMA IN DIABLO COVE (SAO METHOD)
E6-122.0 D-l 4
1 l
I l
\v) l g Station 09 -15 ft h 16-12-1 ..
llw k,y . . \&.4..~% ...
W 1976 1977 1970 1979 1990 1901 1982 1983 1984 1995 Station to -15 ft h 16-
$2- j I
II I O D
W 1976 1977 1978 1979 1980 1901 1982 1983 1984 198S O 20 Station 12 -15 ft h 16-12 i ..
Q- -%.- ~%
4 0 W 1976 1977 1970 1979 3500 1981 1982 1983 1984 19e5 20 Stet ton 13 -32 f t h i6-12-0- o 4- . . - - - . . - .
_....-......_..n.. ,,
W 1976 1977 1978 1979 1990 1981 1982 1983 1954 1995 TIME (YEARS)
- - - - Sampling Intervals >2 Months FIGURE D-7 ABUNDANCE VERSUS TIME FOR SUBTIDAL ANTHOPLEURA ELEGANTISSIMA IN DIABLO COVE (SAO METHOD)
(Continued)
E6-122.0 D-15
- _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ - _ _ - _ . _ _ _ _ _ _ _ _ . __ ___ _ . _ _ .~
{ g st-tion o8 -so et h is-12-a 5 , M~. _ - _ . % _ p ..) '_ _ _ __ _ __ _ _
W 1976 1977 s978 1979 198o 1981 1962 1983 1984 1985 g, station 09 -so et
$ is$
12-Is-g 4-
__.,___J.___ ._ m - , _ _ _ _a__- ___ ; __
W 197s 5977 1975 1979 19eo 1981 1982 1983 1984 1985 G ,, station to -so et
$ ts-E 12<
e-l ..
g o -
"* ^ - 2 ' - ^^
W 1976 1977 1978 1979 1960 1981 1962 1983 1984 1965 g ,,
stetson s2 -to et O
$ to-8 sa-e-
1 5
s
'-% b..e _ - ----- ....*.- ' ' '
.e W 197a 3977 197e s979 59eo 19et 1982 19e3 t9e4 59es TIME (YEARS)
Sampling Intervals >2 Months FIGURE D-8 ABUNDANCE VERSUS TIME FOR ASTRAEA GIBBEROSA AT -10 FT IN DIABLO COVE (5AQ METHOD)
E6-122.0 D-16
O b
Stetton 09 -15 ft 20 h 16-12-1 ..
l ..
b *'-- - - -- -
5 0 - - 4 r ---* +>%---
T 1976 1977 1978 1979 1980 1981 8952 1983 1984 1985
{ Stetton to -15 ft 20 h 16-it-I ..
i4
{ o
/ x , y ..& h h ,
Y 1976 1977 1978 1979 19e0 1981 1982 1983 1984 1995 y 20 Stetton 12 -15 ft h 16-12-8-
g _
'% m _ . _ _ ,
W 1976 1977 1978 $979 1980 1901 1982 1983 1984 1995 20 8I'" II ~3# 'I h 16-
- 32-8-
, , m .. ..-.. ..-..-..-..-. - w - ~ .. A j W 1976 1977 1978 $979 1990 1981 1982 1983 1984 3905 TIME (YEARS)
--- Sampling Intervals >2 Month 6 FIGURE D-8
\O ABUNDANCE VERSUS TIME FOR ASTRAEA CIBBEROSA AT -10 FT IN DIABLO COVE (5AO METHOD)
(Continued)
E6-122.0 D-17
St-tton 08 -10 ft 10 Q e-O 6 4-
_,- % *~g m_ . _ . _ ..% /
W 1976 1977 1978 1979 1980 SJ01 19f2 1983 1984 1985 g ,, station 09 -10 ft
@ e 6
4-i W
I==_=-/sA-w 1976 1977 1978
\
1979 1980 1988 1982 1983 A
1984
^m1995 Stetton to -10 ft 10 l a-8 s.
4 2
I O = = - = = - : = = r r - !t = = = = - = .- -* *- _
^
_ _" = ==
T 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 to Stetton 12 -to ft 8 6-4-
2-5 0 = - = = = ====== = === _=-- = = = : -n = = = = = = = - = - - - S Y 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 TIE (YEARS)
Sampling Intervals >2 Months l FIGURE D-9 i
ABUNDANCE VERSUS TIME FOR SUBTIDAL HAllOTIS RUFESCENS AND H. WALALLENSIS ~
! IN DIABLO COVE (SAQ METHOD)
E6-122.0 D-18
O b
g ,, stetton o9 -ts et l e-E s-4-
l .
_ _ _ _ _ _ .- - _ > N.__
_ __ m _A_ ___ - - __
5 _ _ _
T 1976 1977 1970 1979 1980 1981 1982 1983 1984 190s g ,, stetton to -is et
, @ e-I 3 s-k 4-2-
5 o = = - = = = = = = = = = = = = = = = = = - = = = = = = = . == = = = = = - - = = -
T 1976 1977 1978 1979 1980 1981 1982 1983 1984 190s G ,, stetton 12 -ts et E e-E 6-4-
l I
2-o = = = - - ^ = = = = = ^ = ^ ^ ^ - ^ ^ = ^ = = = = = = = = = = = ^ ^ - - - - = = =
W $976 1977 1978 1979 1980 1981 1982 1983 1984 190s j ,, station 13 -32 et i .-
3 s-4-
i 2 I o = = . = = == - =-- = = = = = = = = = -
l T 1976 1977 1978 1979 1980 1981 1982 1983 1984 190s TIME (YEAN5)
Sampling Inter vals >2 Months FIGURE D-9 ABUNDANCE VERSUS TIME FOR SUBTIDAL HAllOTIS RUFESCENS AND H. WALALLENSIS IN DIABLO COVE (SAfMETHOD)
(Continued)
E6-122.0 D-19
stetson os .to ,,
! so -..
I s 20-so-5 W
, - m .A _..A.../' W -- T---
ss7s 1977 is7e 1979 seso ages assa ases assa
~--___
nes y so stetton os -io et i
3 ao-A .,f*' v ' -
W is7s is77 ss7e is7s tsoo sees sesa assa sua taas j y ___
stetton to -to et E
1 ao-
'~
5 e : -- - - -
W is7s is77 is7e is7s aseo ases snea toes seed sees j , stetton 12 -so et i
1 20-Ito-g W
is7s 1977 is7e is7s tsoo soon tesa
\_M____---_.
toes need toes T!E (YEARS)
Sampling Intervals >2 Months FIGURE D-10 ABUNDANCE VERSUS TIME FOR SUBTIDAL PATIRIA MINIATA IN DIABLO COVE (SAO METHOD)
E6-122.0 0-20
1 k
j , stetton os -ts ft I
s 20-
. /
to- -* g I o e W 1976 is77 ts7e is79 tsoo test issa toes toe 4 toes j , station to -15 ft E
3 ao-
{
'\
to-5 o
W 1976 1977 is7e 1979 isso test tes2 tes3 feed toes g ,,_ station 12 -ts et E
s to-A
/
1to-
/
5 o -
W ts7s is77 is7e is7s isso isos tesa toes tee 4 sees g, stetton is -se et b -
s to-
.~~~~~~~..
to-g ,
W W ts7s is77 ss7e t479 isso test tesa toes seed toes its tytAns)
- - - Sampling Intervals >2 Months FIGURE D-10 O v ABUNDANCE VERSUS TIME FOR SUBTIDAL PATIRlA MINIATA IN DIABLO COVE (SAO METHOD)
(Continued)
E6-122.0 D-21
f to station os -to et g e.
g, 4-i 5
2-o =-
- : .---6='- - -= +=#=. .:=" - >= ===
I 1976 1977 1970 1979 1990 1981 1982 1983 1984 1985 g ,, stetton 09 -to et h e-6-
4-
, 2-g , -.
___ % _- -..y_ _
_-A_ K __- - __
Y 1976 1977 197e 1979 1990 1981 1982 19s3 1984 1935 g 3, stetton to -10 ft
@ e-s-
e-2-
5 o ?": r*: = = ' - = % : r. : -- 1*= *
- r: 2 -:#* : r ; - r ::
Y 1976 1977 1970 1979 198o 19et 1982 1983 1984 19eS g 3, station 12 -to et
, S.
3 s-4-
l ..
5 o : =^_ :_ _: s._. __- [ \ = =_:== ; :=r =s.a.a %
Y 197a 1977 197e 1979 19eo 19et 1982 19e3 19e4 19e5 TIME (YEARS)
Sempling Intervele >2 Honths FIGURE D-Il ABUNDANCE VERSUS TIME FOR SUBTIDAL PISASTER OCHRACEUS, P. GIGANTEUS AND P. BREVl5 PINUS IN DIABLO COVE (5AO METHOD)
E6-122.0 D-22
y ,, Stat,on 0. ... ft E .. s E
6-w 4<
5 0 = -_A % ' *'= :_=r*':_
^ - __
^' & 5 ==
T 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Stetton to -15 ft 10 E ..
6-4 lSa I O r :A- _
^
-2: :: ?A: __ ^ ^ *M_ :
I 1976 1977 1978 f979 1980 1981 1982 1933 Sted 19e5 S
6
,, stetton 12 -is ft m e.
s-4 t-I O : : *~"-" i'-- -
_ N rf'* = : = 2 : - % = h "* " _^ _ :
W 1976 f977 19st 1979 1900 1981 1982 1983 1984 1995 10 Stetten 13 -31 f t E ..
I s-4
-..- -..-.. .. .. .._.._,._.. p -
T 1976 1977 1970 1979 1980 1901 1982 1983 1984 1995 T!st (YEMIS)
Sempling Inter'vals >2 Months FIGURE D-lI l
ABUNDANCE VERSUS TIME FOR SUBTIDAL PISASTER OCHRACEUS, IN Dl %BLO COVE (SAO METHOD)P. GIGANTEUS, AND (Continued)
- E6-122.0 D-23 l
l
l l
f 10 Stetton 08 -to ft I
@ e-3 s-W 1978 1977
_.-_m_
1978 1979 e .
19e0 V 16_ . m 1981 1982 1983
^-['7 1984 1986 G Stetton 00 -10 ft to i ..
3 6-4-
I' 5 0 = = _
- _ .._-e Y "* = % '1 ;/ ' _- h ~'" V W 1976 1377 1978 1979 1980 test 1982 1983 1984 1985 G ,, station to -to ft n .-
3 6 4-l 9-5 W
0 =
1976
^_ . : : ;f AA? U . bra '
1977 3973 1979 1980 1931 1982 1983 1984 3905 Stetton 12 -10 ft to i ..
3 6-g _ _ - .
j h. m ,
Y 1978 1977 1978 1979 '3900 1981 1982 1983 1984 tees TIst (vtMts)
Samolino Inter vals >2 Months 1 FIGURE D-12 ABUNDANCE VERSUS TIME FOR SUBTIDAL PUGETTIA :
PRODUCTA AND PUGETTIA RICHil IN l DIABLO COVE (SAQ METHOD)
E6-122.0 D-24
O 8tetton os -is et f so l
e-s.
4-5 _ __
~~
_ .. m . . =[N ""~"\ _ .A ~'
A . ~~
- .^ .
W s76 sen se'7s se7s seso see assa ases ass 4 sees j ,, st. tion to -se et l
e-s-
4 i
5 a-o
- ~ - - - - - ~
^ - A AM
~
~
b- '
W is'7s '~ss77~' is7e is7s' isso sse 'seea sees sana sees s
y ,, st.tt.n sa -is ,a E e-8 s-4-
5 W
- - = =
se7s ten sets umnasis aseo test seea sees ass 4 sees j ,, stetton is -sa et g e.
8 s-4 la-E o
= = ._ ------------ -
== ;.==: := -
_=?
W se7s ten se7e is7s sono see seea tees ased esos T!IE (YE5Ael 1 -- - Samolino Intervels >2 Months FIGURE D-12 ABUNDANCE VERSUS TIME FOR SUBTIDAL PUGETTIA PRODUCTA AND PUCETTIA RICHil IN DIABLO COVE (SAO METHOD)
(Continued)
E6-122.0 D-25
y ,a stction os -to et l e5 3 s-E o 6 ~ ^/';=- - ===e:9 ^ 4 =
W 1976 1977 197e 1979 19eo 1981 19e2 19e3 19e4 19e5 g ,, stetton og -to et i
@ e-2 s.
E. ' 4-a-
W 5 o ;
1976
. _ -- - _ A cN-4 1977 197e 1979 19ec
~~ A _ ' ~ % - [ _ ----
19e 19ea 19e3 19e4 19e5 g ,, stetton to -to et l e-s-
4- l 1
- ' l
$ n
~
Jf. ' - W _ =..J.f . ___
' t9eo W 197s $977 197e 1979 19e1 19e2 19e3 'n'9e4 19e5 y 3, stetson 12 -to et O l e-3 s-e 4-2<
$ n
% - - s k P- % '
-a nM~' - ___
Y 197s 1977 197e 1979 1980 19el 19e2 1983' 19e4 1985 TIE (YEARS)
Sampling Intervals >2 Months FIGURE D-13 ABUNDANCE VERSUS TIME FOR SUBTIDAL PYCNOPODI A HELIANTHOIDES IN DIABLO COVE (SAO METHOD) i E6-122.0 D-26
O
{ ,, __
station os -ss et
@ e-E s-4 I~
g , _
_M -*s _z__- A_ _._.e . A..%-
W 197s ss77 sn7e 1979 sono toes seea ases s9e4 sees
{ ,,
station to -ts et t .-
8 s5 4-5 o ___:!
t is7s 1977 197e is79 seeo test assa 19e3 19e4 19es
{ ,, stetton 12 -15 ft
@ e-E s.
4-2-
g , _
-* - _ _ M~._ __
m __ y AJnyp W 197s 1977 197e 1979 19eo SW1 19e2 19e3 19e4 19e5 1
{ ,, stetson is -32 f t l e-2 s-4-
W
, u _
197s 1977 197e 1979 1980
-.- - - D-19el 1982 $9e3
_ f -..d Sted 19es tim (vrans)
-*-- Sampling Intervals >2 Months FIGURE D-13 ABUNDANCE VERSUS TIME FOR SUBTIDAL PYCNOPODIA HELIANTHOIDES IN DIABLO COVE (SAO METHOD)
(Continued)
E6-122.0 D-27
1 l go st*tton oo -to et E e- l 8
6-g .
5 4-t-
E o 2 - - - - , _ - 7 - __
W $975 1977 1978 1979 3900 19et t982 1993 1984 1985 stetton 09 -to et i .-
S 6-4-
3-I o = = .===_- ^ - == .:: :: : : = :: . = = = .- : :==
W 1976 1977 1978 1979 1900 19et 1982 1983 1984 1985 g g, stetton to -to et l e-E 6-4-
l .-
5 o . _ - - ===--:::_= . = - ---:- --- - r--- s W 1975 1977 1978 1979 1990 1981 1962 1983 1984 1995 j to stetton 1r -to et e-4-
3-I o : : --- r-- :::: : :: : r - - -:: : ::-:---. .a6 I 1976 1977 1978 1979 19eo 1901 1982 3933 1964 1985 TIME (YEARS)
Sampling Intervals >2 Months FIGURE D-14 ABUNDANCE VERSUS TIME FOR SUBTIDAL STRONGYLOCENTROTUS PURPURATUS AND S. FRANCISCANUS IN DIABLO COVE lSAO METHOD)
E6-122.0 D-28
Stetton 09 -15 ft to E 8-S 8
4-
~
I>:
$ n
- - --- - _ .2 Y 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 stetton to -15 ft to g 8 8:
4-i I
2-O
- r - : = : : . - - : : :: : . : - -- _
- ^
Y 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Stetton 12 -15 ft to E 8 E 6-4-
l2-I O : ::::.-r= O - ::: -
- :- = . : : :: : : : : : : =_ : : :
Y 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Stetton 13 -32 f t to E 8:
4 l6-.
I 2-O I 1976 1977 1978 197t' 1980 1981 1982 1983 1984 1985 T!sE (VEARS) s ---- Sampling Inter vals >2 Montt1s FIGURE D-14 ABUNDANCE VER' SUS TIME FOR SUBTIDAL STRONGYLOCENTROTUS PURPURATUQ AND S. FRANCISCANUS IN DIABLO COVE lSAQ METHOD)
(continued)
E6-122.0 - D-?? j -
-4 A
_ , , - - _ . - . - . . a. . . . , _ ,, g.,, .,. . . . , . ,,. ..,n ,,. .
.,ny,w- - -
,3, stettm os -to f t g 120-j w: j
\.,f--- - ..__../4 Y 5 o I 1976 1977 1978 1979 19eo 1981 1982 1983 1984 1985 Stetton o9 -to ft 15o a; .
g 120-i .o:
g so:
y p ..----% . . A- A' I 1976 1977 1978 1979 198o 1981 1982 1983 1984 19e6 gg Stetton to -to ft n; .
g 120-j 9o:
Iso: NA
\
5 o -
I 1976 1977 1978 1979 198o 1981 1962 1983 1984 1985 15o Stetton IP -to ft sto:
a .
90-g so:
[ so:: Ne.
y 1975 1977 1978 1979 198o 1981 1962 1983 1984 1985 TIME (YEARS) 1 l
Sampling Intervals >2 Months FIGURE D-15 ABUNDANCE VERSUS TIME FOR SUBTIDAL TEGULA BRUNNEA IN DIABLO COVE (SAO METHOD)
E6-122.0 D-30 1
O Stetton 09 -15 ft 150 1205 a
5 j 90 y 60'-
30 %
,, E. 7 b Y 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 gg Stetton 10 -15 ft 120 5 i -:
y 605 30- ~
=
W 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
)
gg Stetton 12 -15 ft 4 .
g 120-g .0 5 g Sc'-
1 w~
1976 1977 1978 1979 1980 2OWN 1981 1982 1983 1984 1985 ,
I station 13 -32 ft l 150
~
120-i ~i k* ;
I 1976 1977 1978 1979 1980 1981
_A ~~A
$982 1983 1984 1985 TIME (VEARS) j
Sampling Intervals >2 Months l
FIGURE D-15 O ABUNDANCE VERSUS TIME FOR SUBTIDAL TEGULA ty \
BRUNtf A IN DIABLO COVE (SAO METHOD)
(Continued)
E6-122.0 D-31 1 I
APPEtolX E SUBTIDAL FIXED QUADRAT DATA Appendix E contains a set of abundance plots of selected species sampled in the Subtidal Fixed Quadrat (SFO) sampling subtesk. The dato represent the densities of subtidal seaweeds and macroinvertebrates recorded by species in permanently located 1/4 m sq quadrats at fixed underwater monitoring stations. The survey is repeated every other month as weather and sea state allow.
The locations of the subtidal fixed quadrat monitoring stations are illustrated in Appendix A which also contains a chronological log of the SFO survey dates and number of samples collected.
1 i
l i I
O E6-122.0 E-l ,
i P
.v_.. - , , _ . . . . _ , , , , . . , ,....,..._,,,,,._....,,,,_,....-,,,,,m.v...,-.-m-.-~. . - -. . ..-,., .-_ --.m...,,., ,,c-
R k so st-tion os -so et a
et e-W 3 6-h 4-0 2 o~ ~ ~ ~ ' ^ - - - - - - " -- W 1976 1977 197e 1979 198o 1961 1962 1963 1984 1985 a
( ,, statson o9 -lo et a
a e-W 3 6-h/~[%""*\ _,,.. * -. _ *W ~"
y 1976 1977 5978 1979 19eo 1981 1982 1983 1984 sees n
{ ,, station so -so et 6
a e-E 3 6-4-
l 2-
$o-g 1976 1977 3978
_== h === %." _
s979 3960 1981
_K 19e2
__ =-
1983 3964 39e5 o
station er -so et a e-E 3 6-4-
$ 2-g o
s976 5977
=== = = = = _ A _ == _m . = = =m-___
397a 3979 39eo 1981 1982
.\___
1983 1964 1985 TIME (YEARS)
- - - - Sempling Intervels >2 Months FIGURE E-l ABUNDANCE VERSUS TIME FOR SUBT!DAL ACMAEA MITRA IN DIABLO COVE (SFO METHOD)
E6-122.0 E-2
\
R
{ 20 Station 09 -15 ft 6
a 8-W 3 6-4-
1976
-%... ..n../' ,WN .g..[
1979 1980 3981 3982 1983 3984 1985 g 1977 3978 gg Station so -15 ft a 8-W 3 6-Y .
-[ \.
g 1976 1977 3g78 gg7g 3g80 1981 1982 3963 3984 1985 O\ E f
b gg.,_ Station 12 -15 ft a 8-
. W 3 6-4-
2-0
"~"~' _:. :: A __ W -__ __ "N _ __ ;
r 1976 1977 1978 gg7g gg80 1981 1982 1983 1984 1985 Statson 13 -32 ft to 6
a 8 W
3 6-4-
2-
"~~~-------.--...._.._,______ ___,
, ,f g 1976 1977 sg78 1979 1980 1981 1982 1983 1984 1985 TIME (YEARS)
Sampling Interv81s >2 Months FIGURE E-l ABUNDANCE VERSUS TIME FOR SUBTIDAL L ACMAEA MITRA IN DIABLO COVE (SFO METHOD)
(Continued)
E6-122.0 E-3
E k to St'tlon 08 -10 ft o'
a 8<
W 3 6<
h4
?
g z
4-0< . :
1976 1977
- = ::
1978 1979 22:
1980
=
1981 1982
=== = :::
1983 1984
==:'
1985 e
E k to -.
Station 09 -10 ft I
a 8-W 3 6-U 4<
i 1
$ 2< l t
, 0- :.-- 2 : = .1 :: - 2 :: 12 :::: :: : : = = = = +
g 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 E
k to Statson to -10 ft o
a 8-W 3 6-y 4-O g 2-0< - 2 : : 2 - :: 6**WM - - - " * -
-- r===~ :r - *- * *
- g 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 E
{ 10 Station 12 -10 ft o
a 8-a 3 6-U 4-5
$ 2<
m 0<--M = - - - ===Ar^*W: - : - W ^-: : ^ 1-
^
h g 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 TIME (YEARS)
S8mpling Intervals >2 Months I FIGURE E-2 i
ABUNDANCE VERSUS TIME FOR SUBTIDAL ANTHOPLEURA i ELEGANTISSIMA IN DIABLO COVE (SFO METHOD) l E6-122.0 E-4
\
m
{ Station 9 -15 ft O
a 8-t 3 6-y 4-0 P-3 m
)* 0-.. -,--sit ** -t-%+1Mttfeest.21twh&Wa5 EM _- _D-N 1976 1977 2978 1979 1980 1981 1982 1983 1984 1985 Y
a g ,, station to -ss et O
a 8-t 3 6-8 4-5 o
g 2-m l o- W C "_M M ;;*S-7, C J g 1976 1977 1978 1979 1980 , 1981 1982 1983 1984 1985 s
{ 3, station s2 -15 et O
a 8-E 3 6-y 4-a 5 2-f o -, h--
1976 1977 M--s^-
3978 1979 N x^
1983 1981 1982
_ -- _ w 1983 1984 198S g
a k so -
8'*" 83 ~32 't O
a 8-t 3 6-U 4-5
$ 2-
< .._..-..--.--------- . ..p ,_.
s976 s977 1978 1979 1980 1981 1982 1983 1984 1985 g
TIME (YEARS)
Sampling Intervals >2 Months FIGURE E-2
(' ABUNDANCE VERSUS TIME FOR SUBTIDAL ANTHOPLEURA ELEGANTISSIMA IN DIABLO COVE (SFO METHOD)
(Continued)
E6-122.0 E-5
R g ,g _ , ,
stet ten o8 -10 f t 6
a 8 W
3 6-
's. [ -
y * %,, / h .~. 4 ,, j ..m g 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 R
g ,g station 09 -10 ft 6
a 8-W 3 6-y 4-2- ..*..
'A '
..~..A......- - [ "--
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 R
{ ,, station to -10 ft 6
a 8-W 3 6-y 4-1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 E
g ,, station 12 -to et 6
a 8-t 3 6-y 4-M f,/
1976 1977 1978 1979 1980 1981 T
1982 1983 1984 1985 TIME (YEARS) i S8mpling Intervals >2 Months FIGURE E-3 ABUNDANCE VERSUS TIME FOR SUBTIDAL COLONIAL / SOCIAL TUNICATES IN DIABLO COVE (SFO METHOD)
E6-122.0 E-6
/'N
[ I m
{ St.tlon 09 -,5 ft s
a .-
W 3 6<
y 4<
8
\,,,, q,, ~~~ -a [
. 76 . 77 . 7. . 7. s0 ., .2 .3 .4 .S j
b
. . .. ,o -is ,,
E .-
W 3 6-4 h
2-
[\ N.
g ; . 7. . 7, ,.7. . 7. ,_ ., ., .3 .. .,
b a a
E .-
W 3 6<
4-l
A ..... - y M / V W
- ' is7. - . 77
. 7. i.7 . ,., ,- ,. ... .
[ ,, si. >> - n ,.
a a .-
W 3 6<
y
- a. ,,,..***
l 2<
- ..>. . 77 i.7. i.7. .0 .. .. ,-3 .. .
TIME (FEARS)
- - - - Sampling Intet'vals >2 Months FIGURE E-3
! ABUNDANCE VERSUS TIME FOR SUBTIDAL COLONIAL / SOCIAL l TUNICATES IN DIABLO COVE (SFO METHOD)
(Continued)
E6-122.0 E-7
3 station os -to et to l"! j-I \ \ zwr1/VN O is76 is7e
{ is77 197s seo ages ase2 ines assa ages a
g, station os -to et a
b 20 '-
S
^
h j . . . .
\,i is7s is77 is7e 197s seo ages assa iges need 39e5 f, station to -so et
$ 20'-
3 5
< 1 o '- a
] AA
,- '~%& /\b/
is'7s is77 is7e 3s79 seo seen 's~ssa tsas 19e4 sees s
g, stetson 12 -se et b
$ 2o'-
S 5 -
- A _...-
1976 is77 is7e 1979 seo asas ase2 iss3 sed ases TIME (YEARS)
Sampling Intervals >2 Months FIGURE E-4 ABUNDANCE VERSUS TIME FOR SUBTIDAL MITRELLA SPP.
IN DIABLO COVE (SFO METHOD)
E6-122.0 E-8 l
L
s N
)
J f, stetton o9 -is et a
E E ac s
5< t o '-
o' -
w ...M '~~~% An.. ..M 1976 1977 1978 1979 1900 1981 1982 1983 1984 1985 s
g, stetton to -ts et b
E E po:
a 5
< to-1 c'
1976
. _ = _ ^ - = _ _ = _M L A = = ^ P-__-
1977 1978 1979 1930 1931 1982 1983 1984 A1985 f, station 12 -ts et d
E E po:
S E
< to-z o
. p* ,f A_
g- 1976 1977 1976 1979 19eo 1981 1982 1983 1984 1985 stetton is -32 et 3n . _
s E
E po:
2 -
5, to-
- 1 .
z o- = :.== .==. = === :: :: : ====
1976 1977 1978 1979 1990 1981 1982 1983 1984 1985 TIME (YEARS)
Sampling Intervals >2 Months FIGURE E-4
) ABUNDANCE VERSUS TIME FOR SUBTIDAL MITRELLA SPP.
V IN DIABLO COVE (SFO METHOD)
(Continued) l l
E6-122.0 E-9 1
1
E g3 station o8 -10 et o 3o. !
k 25-2 20- k
...- N. ,,
\
~
5-1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 E
$ 35 Stetton o9 -10 ft 6 30-r 2.-
2 20-y 15-l - '
g 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1
3 Stetton to -to it o 3o, h 25- !
2 20-
[
5-1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
,, stetton 12 -to et b
y 30-N 20- ! \
1 V \ \
g so-i \
, o 1976 1977 1978 1979 1980 1983 g 1982 1983 1984 1985 7tME (YEARS)
Sampling Intervals >2 Months FIGURE E-5 ABUNDANCE VERSUS TIME FOR SUBTIDAL PAGURUS SPP. '
IN DIABLO COVE (SFO METHOD)
E6-122.0 E-10
f \
O E
{ 35 Stetton 09 -15 ft d 30 h as-2 20-0- - *-:
1976 $977 1978 1979 1980 1981 1982 1983 1984 1985 E
{ 3 Stetton to -15 ft d 30 h 25-2 20-W 15-1976 1977 1978 $979 1980 1981 1982 1983 1984 1985 j 3, Stetton 12 -1s ft d 30 2 25-2 20-
~~
g 15-10-1 z 0 --
1976 1977 1970 1979 1980 1981 1982 1983 198e 1985 g Stet ton 13 -32 f t d 30 hn 2 20-y 15-10-
~~#
1976 1977
. . _ _ . . . _ . . - . -- --- % 1 g 1978 3979 1980 198$ 1982 1983 1984 im T1ME (YEARS)
Sampling Interv81s >2 Months FIGURE E-S
[' ABUNDANCE VERSUS TIME FOR SUBTIDAL PAGURUS SPP.
IN DIABLO COVE (SFO METHOD)
(Continued)
E6-122.0 E-ll l
l
10 Str't ton OS -10 f t o -
g l '-
0 : ="
i r.] / . / ~.. \l"
\
\/ 'N
..Y /\v[ $j 1976 1977 1978 1979 19e0 1981 1982 1983 1984 1985 g, Station 09 -10 ft 6 1 g
3 6-4'
\ j
'N l
I_ %-y ..h 1976 1977 1974 1979 1980 1901 1982 1983 1984 1985 Stetton to -10 ft 10 o
I e-g 2 5-4-
l * '
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Stetton 12 -to ft gg. __
a 8- j r .\ -
S 6- 'g 4-l >: A 1976 1977 1975 1979 1980 1981 1982 8983 1984 1985 TIME (Yf dS) l
Sampling Intervals >2 Months FIGURE E-6 ABUNDANCE VERSUS TIME FOR SUBTIDAL PUCETTIA PRODUCTA AND P. RICHil IN DIABLO COVE (SFO METHOD)
E6-122.0 E-12
O station o9 -ss et 6 -
e-3 6-l- ',.*
Q 3976 1977 197a 1979 s9eo 19e 19e2 19e3 19e4 19e5 stetson to -ts et a e-r -
3 6-
-W 4-l
1976 s 2M/
1977 197e 1979 19eo 19st 19e2 19e3 19e4 19e5
,, stetton se -ts et e-a s-4-
~
1976 s977 197e 1979 s9eo s9es staa stes 19e4 80e5
,, station is -32 ft a
e-g 3 s-4-
2-1 ," , _[ - - - - - - -
-.. ~ ..__ _
- _md h>
1976 1977 197e 1979 19e0 Stet 19e2 19e3 Sted 19e5 Tite (YEARS)
Sempling Intervals >2 Months FIGURE E-6 1 ABUNDANCE VERSUS TIME FOR SUBTICAL PUGETTIA N
PRODUCTA AND P. RICHil IN DIABLO COVE (SFD METHOD)
(Continued)
E6-122.0 E-13
. _ _ _ _ . _ _ - - _ . ~ . - _ - - - _ _ _ - . . . _ - . . - _-- _ . . _ - _. ___ _.
5 l k 20 Station 08 -to ft I
o 1 a 16-r 4 3 32- l t
\ % g m' .y 1976 1977 1978 1979 1980 1981 1982 1983 $984 198S E
{ 20 Station 09 -10 ft b
a 16-W 3 12-y 8- : \ '
j
/e
/
.. ". v " x f -
\
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 C
gg Station to -to ft b
a 16-E 3 12-y 8- 5.
1- 1976 1977 1978 1979 1980 1981
%/ 'V 8962 1983 1984 1985 20 Station 12 -10 ft o
a 16-E 3 12-8-
f[_
g 1976 1977 1978 1979 1960
^'\s^M1981 1982 1983 1984 1985 TIME (YEARS)
Sampling Interv818 >2 Months FIGURE E-7 ABUNDANCE VERSUS TIME FOR SUBTIDAL TEGULA BRUNNEA IN DIABLO COVE (SFO METHOD)
! E6-122.0 E-14 l
U R
f 20 Stetson 09 -35 ft 6
a s6-W 3 s2-y e- \ %
h
W. '",.. f's..,. -%&~ ~
l o -
s976 3977 3978 3979 3900 390s 3982 3983 3964 39e5 g
R g ,, stetten so -ss et 6
a 36-E 3 32-e-
[ .-
}
o g 1976 1977 1978 3979 3980 398: 3962 3983 1984 3985 pn station se -s5 et 6
a s6-t 3 se-E e-lg 3 J s976 1977 e&n-197e 3979 19eo s9es 39e2
_M s9e3 s9sa s9e5 m
{ po stetson 13 -32 et 6
a 36-t 1 sa-y s-
- \
l a-a_ = ;
_ _ . . . . . - . . . . . - . . _ =&. S& l g s976 3977 3978 3979 3900 19e3 3982 1983 sted 1985 l
TIME (YEARS)
Sampling Intervals >2 Months FIGURE E-7 l 1
h ABUNDANCE VERSUS TIME FOR SUBTIDAL TEGULA BRUNNEA IN DIABLO COVE (SFO METHOD) I (Continued) l E6-122.0 E-15
APPENDIX F SLETIDAL Lite CONTACT DATA Appendix F contains a set of abundance plots of selected species sampled in the <
3ubtidal Line Contact (SLC) sampling subtask. The dato represent the percent cover of subtidal seaweeds and sand estimated by the number of individual contacts with a sampling line for each species at permanently located under-water monitoring stations. The survey is repeated every other month as weather and sea state allow.
The locations of the subtidol line contact monitoring stations are illustrated in Appendix A which also contains a chronological log of the SLC survey dates and number of samples collected.
p 4
1 l
l l
1 l
O E6-122.0 F-l
5 r ,,, st tson os -so et 80-b 6o-
} f- *"^&N~
o s975 1977 s97e 1979 1980 19es 1982 1983 1984 1985 5
[ gg station 09 -so it r
{ eo-9
.., ,/ N \ j
-/
ro- / \
l 1976 s977 197a 1979 s9eo s9es s982 19e3 19e4 s9e5 5
station so -so et r
y 80-
$ so- , k
- ' ,/ V' '
\ .
> 20-o 1976 s977 1978 s979 39eo s90s 1982 19e3 19e4 1985 s
( ,,, station s2 -to et r
g so-
! so-
~
[ 4o$
1 20- 2 % j\\ *-
l 1976 1977 197e s979 19eo s9es 19e2 s9e3 1984 3985 Tite (YEARS)
Sampling Inter'vals >2 Months FIGURE F-1 ABUNDANCE VERSUS TIME FOR SUBTIDAL BOTRYOGLOSSUM FARLOWIANUM IN DIABLO COVE (SLC METHOD)
E6-122.0 F-2
1 I
m
\
(-J l
5 station 09 -15 ft l r -
so- ,
/ \ '
a 20-o 5 1976 s977 1978 1979 1940 1981 1982 1983 1984 198S y
G stetton so -ts et 80-8 so-e
\
r j
o 1976 w-[\ 1977 1978 1979 1980 1981 1982 1983 1984 1985 5
- ,,, stetton 12 -ts et r
y so-so-
=
do.
20-
\
1976 1977 1978 1979 1900 1901 1982 1983 1984 1985 i
- r ,,, station ts -32 et j 80-e w 40-Y 20-h 1976 1977 s97e 1979 19eo stat 1982 ' 's9e3 ' stod igos TIE (YEARS)
Sampling Intervals >2 Months FIGURE F-l ABUNDANCE VERSUS TIME FOR SUBTIDAL O() BOTRYOGLOSSUM FARLOWIANUM IN DIABLO COVE (SLC METHOD)
(Continued)
E6-122.0 F-3 l -
l __ _ _ - , _ . _ . . . _ _ . _ . _ _ __. __ _- , _ _ . . _
S
" ~
too W \
5 I So-
- ,,. Af A.. ..... . ---Jr __
20-o 8976 1977 1978 1979 1980 1983 1982 1983 1984 1985 S
- ,,, station o9 -10 et r
N 8'
. A /~5 ... .. 'N \,, g
. ,o.
I o 5 1976 1977 3978 3979 198o 1983 1982 1983 1984 1985 V . ,,
station to -to ft 5 80-3
' \
N[s, Po. b o
1976 1977 1978 1979 198o 1981 1982 1983 1984 1985 S
- ,,, stetton is -to et r
- So.
60-g./N.. \,
20- s-o 1976 1977 1978 1979 398o 1981 1982 19o3 1984 1985 f tw tytuis)
Sampling Intervals >2 Months FIGURE F-2 ABUNDANCE VERSUS TIME FOR SUBTIDAL ARTICULATED CORALLINES (C.B.S. COMPLEX)
IN DIABLO COVE (SLC METHOD)
E6-122.0 F-4
v l
Stetton Og .35 ft g 100 E 80-l* ~.. f .. ] \ . .. -- - + - 4 m i 20-5 1976 1977 1978 1979 1980 1981 1982 1983 1984 1995 Y
f Stetton to -15 ft g 100 E 80-t .0
- o- [
20-0 5 1976 1977 1978 1979 1900 1981 1982 1983 1984 1985 2
[r Stetton 12 -15 ft W eo.
60-t .0
\
20- "%.. h 0
1976 1977 1170 1979 1980 1981 1982 1983 1984 1985 i Station 33 -32 f t g 100 t
8 e0-
$ 80-an.
I 20- J
%---....._.._--------......._ __ _s.A ,
1976 1977 1978 1979 1980 1981 1982 1953 1984 1985 )
TDE (YEAA51
Sampling Intervals >2 Months FIGURE F-2 ABUNDANCE VERSUS TIME FOR SUBTIDAL ARTICULATED l CORALLINES (C.B.S. COMPLEX)
IN DIABLO COVE (SLC METHOD)
(Continued)
E6-122.0 F-5 :
I ,,, stetton os -to ft i 80-u 60-e .
g 40-l*
20-
, \x_ _ p.. u . A . . . .. = -~ . . + _ p . . - y _ y--
y 1976 1977 1978 1979 1980 1901 1982 1983 1984 1985 5 ,,, station 09 -to ft r
a so-I l 60-y 40-l 20-
. O
_ A , _ "**--* 'N h ._
_f._ _A T 1976 1977 1978 1979 1990 1981 1982 1983 1984 1985 I ,,, station to -to ft a so-I u
so.
e g 40- l
?-+=v*s'
/
f20-5 0 Y 1976 1977 1978 1979 1960 1981 1982 1983 1984 1995 a
station 12 -10 ft d
- Iu so- . ,
e l
- j l
! O T 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 TIME (YEARS) l l
Sampling Intervals >2 Months FIGURE F-3 ABUNDANCE VERSUS TIME FOR SUBTIDAL SAND IN DIABLO COVE (SLC METHOD)
E6-122.0 F-6
g J
Stetton C9 -15 ft h
a 90-I u 80 5
40-f; 20-h .. , * ~-__ -
. O
__ ,.. - Q -o z_? M 3. f .
V 1976 1977 1978 1979 1980 1981 1982 1983 1984 1995 fg Stetton 10 -15 ft i
, 30-g %.
u 80-5 -
= 40-k
- e0-l - "~
0
{ 1976 1977 1970 1979 1990 1901 1982 1983 1984 1995
% 5 Stetton 12 -15 ft
- 100 h
a 90-50- g -
~ e- /
20-5 0 W 1976 1977 1970 1979 1900 1981 1982 1983 1984 1995 Stetton 13 -32 ft 100 S
s a0-I u so.
_ 40 _.._ _.._ ___- D yp_.
! O y 1976 1977 1978 1979 1000 1981 1982 1983 1984 1985 TIE (YEAAS)
Sampling Intervals >2 Months ,
FIGURE F-3 l ABUNDANCE VERSUS TIME FOR SUBTIDAL SAND IN DIABLO COVE (SLC METHOD) l (Continued) j 1
E6-122.0 F-7
_ _ . _ _ _ _. _ _~. . .. - . _ . _ - _ _ -- _ _. _
^
APPEtolX G U SUBTIDAL FISH OBSERVATION DATA Appendix G contains a set of abundance plots of selected species sampled in the Subtidal Fish Observation (SFO) sampling subtask. The dato represent the densities of fish observed along a subtidal sampling band of 50 x 4 m for each species at permanently located underwater monitoring stations. The fish observations along the transect are repeated by the diver at a midwater depth and near the bottom. The survey is repeated every other month as weather and sea state allow.
The locations of the subtidal fish observation monitoring stations are illustrated in Appendix A which also contains a chronological log of the SFO survey dates 1 and number of samples collected. !
O l
l l
1 E6-122.0 G-1
..,.,,_,_.,,_----.,_.....y,. , , , , _ , , .,,,,, -.--., _,._,,, ._,. ,.,,_,,-- -,_, ,._.._,,,.. _. ,- -. m_-, , , _ _ . , .
STATION 00 0 3o.
E, 25-G
- go.
E 15 a "
10- la , ,
5- o o a
- O --
" !:- 2 - - - -- - ='
1975 1977 1978 1979 1980 1981 1987 1983 1984 1985 3 STATION 05 U 30 E e5-g
~
eo.
E 15 *
- a io. a 4
- g 5- o og **
, o .
o _ @ .I . ; _ E;, _ _ _ _2 2. 2 :
1975 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 06 L 3o.
E ~
E o .
~ po.
E t 15-
$ 10- , o o gg g
, o a 5' * =
h g= * = gl = E - - - - - - = as - a s o so 0
1975 1977 1978 1979 1980 1981 1982 1983 19e4 1985 3 STATION 07 u 30- * '
h< 25- '
20-t 15- .
. y -
8 10- o * '
.. , , g . . ., e 5- g o B B *
- o o
- o o
E" - -
8 --- -- - -- - - -- - - -
1975 1977 1978 1979 1980 1981 1982 1983~ 1984 1985
/ ,
i 3 STATION 08
- ]
30- ~
i g 25- ._
20-E )
t 15-a * ' l to- -
1 S' , o o
- o __ _
- _ _ _ _ o _ m _ _ n_ o ao o _ o __o _ _ . . _ _ _ _ _ _ _ _
1975 1977 1978 1979 1980 1981 1982 1983 1984 19e5 TIIE (TEARS)
- Midwater 00servation o Bentnic ceservation FIGURE G-1 overprinting of above NUMBER OF ADULT BLACK-AND-YELLOW ROCKFISH symools appear to be OBSERVED IN 50 X 4 M SUBTIDAL BAND different symbols TRANSECT SURVEYS E6-122.0 C-2
. .n ,
STtTION 09 30-g 2s-20 ,
a i a g ,
N o z
0 oo o e* oo l 30
_o_
1976 1977 1978 1979 1980 1981 1982 1983 1984 198S STATION 10 U 3a.
I 2s-g ao.
h 15-E 10- o , , , g O'
- O
- D
, , o o g o Bo* oo , o 0 ::. = = = = ?,: = 9 = 9 - :==:=;==- . --
. = = - ="
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION $$
30-h 5 25- 1 5 20-
$ is-a go.
S-0 : . E .?. r - .: = : . : : : :
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 12 3
U 3o.
E as-g ro.
E r ts-E 10-
- o
- s- o . ,
0 -
. 8 IS S= :---=-
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION $3 35 0 3o.
E 2s-go.
\
E o r 151 o**eb, ,
- o oo o ,
I
0 1976 e.$
1977 1978 1979 1980
. =
1981 1982 1983 1984 1985 TIME (YEARS)
- MidNater Observation o Ber.thic CDservation FIGURE G-l overprinting of above NUMBER OF ADULT BLACK-AND-YELLOW ROCKFISH O)
( symbols appear to be different symbols OBSERVED IN 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS (Continued)
E6-122.0 G-3
, ; l 9
'N O.
\
35 $13Tya to 30-
, n-
- O 3
h 15-a 10- o a
5- %
8 8 o,- - - 0 o*
- o o 0
" " - - -- - - "E - - - - - -- - - --
19[6 1977 197a 19[9 1980 1981 '1982 1983 1984 1985 TIst (Y4ARS) ,
f
/
s
- Midwater obseevation o sentnic acservation i
FIGURE G-1 overprinting of above NUMBER OF ADULT BLACK-AND-YELLOW ROCKFISH symbols appear to be different symbels ' OBSERVED IN SO X 4 M SUBTIDAL BAND-TRANSECT SURVEYS (Continued)
E6-122.0 G-4
\.
l STATION 04 30 h -
! 2o:
/"N { 10 5 o
0, f a v So o a o no g ,
==. - = - = = = :. _=. === :
o 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 05 30 U
h .
a 20-a E -
a 10-g . :
0' -"" . :. n n .:_ _=
1976 1977 3978 1979 1980 1983 1982 1983 1984 1985 STAT 10N 06 30 *
- h 20-o a
a E
a to-o o , , o , o * *o
? - - o *
- o' E ? m cB ?- _0 _So _g nE_, _ an g___ _
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 07 V 30 G
h :
$ 20-a E -
a 10- 8 .
O o
" ' ' - "II '0- " ?I
- O' Q - := . _ o.m ? =
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 08 30 U
w g 20-a E -
a to-
~
0
" - - ""'"Q- 8 ? m- mE o .n . _,2 o
1976 1977 1978 1979 1980 1981 1982 1983 3984 1985 TINE (YEARS)
- Midwater ODservation a sentnic coservation FIGURE G-2 m
overprinting of above NUMBER OF ADULT BLACK SURFPERCH OBSERVED IN
(,,j) symools appear to de 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols E6-122.0 G-5
Stat:0N 09 30 5
y 20-10:
f O' E .9 . : :- a o "? 2 "o
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STA I to 30 O
tX Z -
3 20-G U -
o a to-w oo o Bo
- a e' _B __ ? _oo ? no _ 98 a _ _ _ _ __ _o 8___ _a_ B mo __o_
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 30 STATION 1$
e-5z -
2 20-a E -
a 10-o o **
O' E $.
- 2-
- - . - . = SI=
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 g STATION 12 0
5 -
2 20-a h r 10-g o
- o 0
~
- S . : : _ ; "a .=. .a 27 -
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 3o STATION $3 b
g 20-to: o 5 o o o o
a *
- 1 o o o o gg a O "".S: 5"" S: 22 _:_ ?! _:. _
- : E _ . _ E_ .8, _$. ,c o; 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
- Midwater observation o Bentnic observation FIGURE G-2 overprinting of above NUMBER OF ADULT BLACK SURFPERCH OBSERVED IN symbols appear to be 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols (Continued)
E6-122.0 G-6
I i
y STATION 14 0
w i
s .
g co-G g 10< a .
- a
. =
l o
.= _ ae !__.s g ; ,
_, ,g ,,7_
.... 7 , __
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 TIME (YEARS) 1 1
I
.l l
l
- Midwater Oeservation !
o sentnic oeservation FIGURE G-2 ;
i overprinting of emove NUMBER OF ADULT BLACK SURFPERCH OBSERVED IN l symeals appear to ne 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols (Continued)
E6-122.0 G-7 >
1
---n,---,c a - - - . . ., , - ,.- ,- - ,en n ----,a vn,-,,,,,nn,-~,---,-,---,,,,nna,,,,,,,nm.a.<.ana, ,..~-,--,,,m,-,,,nvn ,,
l 80 STOTION 00 60-a Y , *.
w 20- . o .
1 .
.- . o .
O S:. 9- :-
9 . " 19 "
1976 1977 1978 1979 1980 1981 1982 3983 1984 1985 STATION 05 0
$ 60-i a 40-W 5 20 I O ::. : :t er r I.: :r:
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 06 U
w a
{ 60-a a 40-W e a
- W M- e o o . o
- g 0 %e 1977 1976
- -e8 1978 s =:e n e- .
= .. -
_e. . s= . = . -
$979 1980 1983 1982 1983 1984 1985 00 A 07 0
w
{ 60-e a 40-E 20-e- 2 2.
. o
_ f .o
- f. ca o
". 2,*e-O a *.B - o _o_o 1976 1977 1978 3979 1980 1981 1982 1983 1984 1985 g STATION 08 0
5 60-a a 40- l E '
L 20-I O :. : .:. :: = :: = e:
- :- a. : : .: . . : :: . - . =.2:;
I 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Tiet (YEARS)
- Midwater oDservation a sentnic ceservation FIGURE G-3 overprinting of above symbols appear to be NUMBER OF ADULT BLUE ROCKFISH OBSERVED IN different symDols 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS l
E6-122.0 G-8 l l
g STATION 09 0
fa so-a 4o-r
/
t 20-o .=2. = .= = ==:==.====
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 10 0
$ so-a i
a 40-W 5 Po-I o : : : .: 2 = ::= era .:. = .:: - 1 2 -: . = r . :. : :
1976 1977 1978 1979 1980 1981 1982 1983 1964 1995 STATION 11 U
h so-8 m ao-U
- S Po- . o
~
o_ _ _ _
~~
_ _n _ _a '
f___
197's ' ~1977 ' 1978 1979 1980 1981 1982 1983 1984 1985 G 80 STATION 12 0
5 so-E a 4o-E Po-8 o .5=. 3.. *A =
. :. 8 2.
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 l
80 STATION 83 0
g o E so-a 40- o l E
- o ,
a i , ,,
I20- , e : ! . . . : . . . .: . _ . . s.- _s . - . _ .:
1976 1977 1978 1979 5900 1981 1982 1983 1984 1985 T!st (YEARS)
- Midw8ter oDservation o sentnic ceservation FIGURE G-3
' overprinting of amove NUMBER OF ADULT BLUE ROCKFISH OBSERVED IN symeals appear to ce 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols (Continued)
E6-122.0 G-9
l l
l l
O\
l i
g STATION 14 U
60-E a 40- * **
E 6 2o. o
[ E_ a a ! _ E. e _
? e, e?l..o
__ ? . a I.
o, 19[6 1977 I938 19f9 I980 1981 15k2 ' 1983 1984 1985 TIME (YEARS)
- Midwater Observation o sentnic observation FIGURE G-3 overprinting of above NUMBER OF ADULT BLUE ROCKFlSH OBSERVED IN symbols appear to be 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols (Continued)
E6-122.0 G-10
STATION 04 30 "o .
Mz 20- l a
G
/% \ E
[1 a 10-o
- o o *
- a 2
0 g
- -- . g m .: _
n ,m_on:
1976 1977 1978 1979 3980 1981 1982 1983 1984 1985 STATION 05 30 U
~
9 .
$ 20-l I
a -
a 10-w I 0 :c. ;:$ _$ 9 7. 9 o_;$
1976 1977 1978 3979 1980 1981 1982 1983 1984 3985 STATION 06 30 U
N z .
0 20-
)
a l W .
a 10-I 0
" - - 0 DI on 0 _ ;_ $ B r. ,
n _B
- o* *_ogg D 1976 1977 3978 1979 1980 1981 1982 1983 1984 1985
% STATION 07 3o U
w E 20-E W .
a 10-w a 0
-- 0 I QO - 0 0 QD I.n__ g , *n _ - _a , g _ g o g 1976 1977 1978 sg79 1980 1981 1982 1983 1984 12 1 i
STATION 08 30 U
j
$ 20-G W .
m 10-0 : 9. $ - - -- Q Q S:$ m _ _ n_ _=___ 8 _a , o_* a __
- B_o_
1976 1977 3978 1979 SE 1981 1982 1983 1984 3985 TIME (YE ARS)
- Midwater Observation o Benthic Observation FIGURE G-4 Overprinting of ecove NUMBER OF ADULT CABEZON OBSERVED IN
'd symeals appear to be 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols j l
i E6-122.0 G-l I l
30 STATION 09 E .
2 20-5 a -
g 10-o o o 0 : . 9 _m ; o oo o _o _ _ _ _
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 30 STATION to O
5 -
a 20-E E 10-O' e.E=. 8 e8 " =I J e E = a8 . :. o e I e =. " of B *o o . e =_= E 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 11 30 U
h .
2 20-E E 80-o
- 0. :9 :E "Se 2.
o c.: :9:
1976 1977 1978 3979 1980 1983 1982 1983 1984 1985 30 STATION 12 O
h .
a 20-E E :
g 10-o o *
- o _ o O' 22. 9 -: : _
~o gf3' 1976 1977 1978 gg7g 1930 gggg gggy ggg, g985 3o STATION 33 U
E a 20-E E .
'*~
5 ,
o c'
1976 2.
8 3977
.E ! :!*'9E gg79
% $. M .: a B g ,= , _ , 8 g, _ ,_ , _g=g 1978 1980 1983 1982 1983 1984 1985 TIME (YEARS)
- Midwater oeservation a Bentnic observation FIGURE G-4 l overprinting of neove NUMBER OF ADULT CABEZON OBSERVED IN symeols appear to be different symbols 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS I (Continued)
E6-122.0 G-12
9 i
I y STATION 34
. O W .
4 i*
e 10<
- a a
__ e e=" 5 aa m e ." _=a .. .." . _ _ _o_
1976 1977 1978 3979 39eo 1981 1982 1983 1984 19M TIME (YEARS) i 4
i l
)
I I
i
- Midwater Observation o Benthic Observation FIGURE G-4 i overprinting of above NUMBER OF ADULT CABEZON OBSERVED IN symeals appear to ne 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS difforent syncols (Continued)
E6-122.0 G-13 i
30 swim m h .
y 20-to' I' o :=.;:- - :: I . = = .:. e:
1976 1977 1978 1979 1980 1983 1982 1983 1984 1985 STATION 05 30 U
E .
y to-a a to-o' : .: .: ; o o* _ __
1976 1977 1978 1979 1980 1983 1982 1983 1984 3985 30 STATION 06 O
h .
y to-a E -
a 10-c' :. -" -
- : 9: = = = o8 $ y; g_ *_ !a; =o .o _ _o [,_oyo 3976 1977 1978 3979 1980 1981 1982 1983 1984 1985 U
30 sTAftow 07 0 5 -
y to-a N -
a to-1' o
_- ? o o ____m__
- _I o? _ _ oo_ o _ I_ =
o_ _ =__o 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 30 STAT!ow 08 U
E j 20-E E -
a to-
! o'
__ _ _ _ _8 _ _a l o $ o_ ? o8 __ 8g_g _ _g g,,,__,
1976 1977 3978 1979 3980 1981 1982 1983 1984 198S TIME (VE ARS) m Nidwater ODservation o Bentnic Observation FIGURE G-S Overprinting of above symeols appear to be NUMBER OF ADULT GRASS ROCKFISH OBSERVED IN different symbols SO X 4 M SUBTIDAL BAND TRANSECT SURVEYS E6-122.0 G-14
STATION 09 g
U 2 20-
[ $ .
\v. a 10-
_? _a B _n B m _ no 1976 19fk 1978 1979 1980 1981 1982 1983 1984 1985 STATION to g
U N
z .
$ 20-a E .
a 10-o *g o o
- " 0 o
o O'
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STAft0N ti y
U E .
$ 20-E 0 :. 2 . . : :: . 2 .:__:
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 12 30 U
h 2 20-E e so-0' 92. : *: .* _ . $ _ . 8_ : "
1976 1977 1978 1979 1980 1981 1982 1983 1984 1995 S ATION 13 30 U
5 .
2 20-I .
m 10-0' - - - --
152 ' -1983 19[6 ' ' t9ff 1978 - 19
'79 1980 1981 1984 39r[
TIME (YEARS)
- Midwater Observation o sentnic ceservation FIGURE G ,
overprinting of above NUMBER OF ADULT GRASS ROCKFISH OBSERVED IN symeols appear to ne 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols (Continued)
E6-122.0 G-15
6-O 30 $ I '#
U E .
g 20-a so-i '
1976 1977 9ie 1979 1980 198 h 1983 1984 1985 TIME (YEARS)
- Midwater Observation o sentnic Oeservation FIGURE G-5 overprinting of above NUMBER OF ADULT GRASS ROCKFISH OBSERVED IN symbols appear to be 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols (Continued)
E6-122.0 G-16
STATION 04 U
12-
.- 9-E
{
v i
' 22 "- 2' ";
0 2 2 -
1975 1977 1978 1979 1900 teet 1982 1983 1984 1985 STAT 10h 05 U
g $2-9-
E E 6-E 3- ,
0 :.2 :--
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 06 U
g 12-9 E
E 6-E 3-
- 1976 1977 1978 1979 1980 1981 1982 1983 1984 1995 O
100 .
u g 80-E =
40-E 1>9- 0 1976 1977 1978 $979 1980 1981 1982 $983 $984 1985 STATION 08 0
12-9 i G E 6 E
- 3- .
1976 1977 1978 1979 1980 1989 1982 1983 1984 1995 TieE (YEAR 5)
- Midwater Observation o sentnic ceservation FIGURE G-6 overprinting of above NUMBER OF ADULT OLIVE ROCKFISH OBSERVED IN
( symbols appear to be different symbols 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS E6-122.0 G-17
i 15 STATION 09 f l
y" st-9-
G r 6-E 3<
,97v =, A = ,978 .9,9 .9 0 ,98, ,9., .9.r,9.c =,w STATION 10 U
y 12-E 9-E r 6-a 5-
{ ,
o 1976 1977 1978 1979 1980 1988 1982 1983 1984 1985 STATION ll U
f 5
s2-9-
E r 6-G J-
- f r o .
1976 1977 1978 1979 1980 1981 1982 1983 1984 1983 15 STATION 12 U
g sa-E 9-a r 6-a
- g. .
0 ;c. ; :L -
1976 1977 1978 1979 1980 1981 $982 1983 1984 1985 M0 STAtt0N t3 U
V .
f 200-E r
a 100-1 0 c. ; :- ; : : :: = 00 -- :- c: 2 cc^ : :: .- :- 12-^
1976 8977 1978 1979 1980 1981 1982 1983 1984 1985 f!IE (YEARS)
- MioNater oeservation o Benthic observation FIGURE G-6 overprinting of above NUMBER OF ADULT OLIVE ROCKFISH OBSERVED IN symeols appear to be 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symeois (Continued)
E6-122.0 G-18
t l
l j
l l
l l
t i
?
l l STATION 94 0
12-1 a . o 4
f E 6- o i = .
J 3 n a 1 '
f O
no 2.-- .
o .
-.========-===.:.
"n e o o
- =-.. .: -
os u z.
o o
, 1976 1977 1970 1979 1980 1981 1982 1903 1984 1985 j TIME (YEARS)
.i 1
i l
a i
i 1
i l
i i
- Midwater observation o senthic oeservation FIGURE G-6 overprinting of soove NUMBER OF ADULT OLIVE ROCKFISH OBSERVED IN symeals appear to ne 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS -
different symeols (Continued)
E6-122.0 G-19
,-.--.--,-.v, --+w,.v. , . , - < -----m,-.,.~n.--p. .-.,-,-r, -,m---,-,,,e m ,,-- - -,,-..- n n e, - w ,, ,- w- - ,r- .r-ver,-me-,,-
y STATION 00
!20: o
- o o 10
- a o
- t. 0 9=.
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 05 U
5 .
a 20-a E
I ~
$ o , o o o o
- a "**o 0 -
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 06 0
5 -
a 20-o o
o
'O' o )
k , oo o , J o o o
- 8 *
, oo og oo oo co ,=:=2; 0 : 9. :-. : . = . =; .o= ;,,, - _ _ __,;_z_z; 1976 1977 1978 1979 1980 1988 1982 1983 1984 198S STATION 07 0
h -
a 20-a
- r 10-a o.
' *
- 8 "
s o a ,o o
- g o, "
- g ,
g
- o o* p 8. , o8 ,
' ~
1976 1977 ~1958 1979 1980 198 1983 1984 196S y STAft0N 08 U
Ia 20-a r 10-a 0' c. ; - S E * " = "" 0 - - - -E *! 1. ? r$ . dc. ::
1976 1977 1978 1979 1990 1981 1982 1983 1984 198S TIE (YE ARS) 8 Miawater oeservation o Bentnic Oeservation FIGURE G-7 overprinting of aeove NUMBER OF ADULT PAINTED GREENLING OBSERVED IN symeols appear to be 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symeols E6-122.0 G-20
, STATION 09 U
Y -
! 20:
a E -
C g
o ,o
- o o o o' _E_.: B_[ __a .
gf o_ o n 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION to G
w y 20-1 a
a 10- o o
, o o o i
a o
_a o
- _ o B ? " _o J o _ B, B,,o o _ o_8 __
o o, a _ ___
1976 1977 5978 1979 1980 1982 1982 5983 1984 1985 STATION 11 O
N z -
$ 20-a **
o W .
o o o a 10- o 8
- W ,
e o
, o * *
- O -
-".8 r; -2 =- - 2 :22 1976 1977 1978 1979 1980 1985 1982 1983 1984 1985 g STATION 12 u
Y -
E 20-k -
.. 10-
- o g o, o .:*.
- 1976 5977 1978 1979 1980 1985 1982 1983 1984 1985 30 ' ' I U
Y . o a 20- 0 ,
o h ,
o o o
a 10- , , o *o , o
- g
, , o , a o* ,, o o ao o, * *
-"=.; = - - o "o ***---
( * :* : " - 2; o
O :: : 2 = -: .: - - .::: :
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 TIME (YEARS)
- Midwater oeservation a sentnic oeservation FIGURE G-7
)/ overprinting of aeove NUMBER OF ADULT PAINTED GREENLING OBSERVED IN symeois appear to ce 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symeals (Continued)
E6-122.0 G-21
O STATION 34 ti E -
y 20-E W -
- o *o
- o g 10< o e ,
o o * *
,o, 8 o 8o o a' o* _ ?o ___am___ ?
- __ _ ?__
o _ _ o__
19[6 19ff 19I8 19f9 $980 1981 1982 1983 1984 1985 flot (YEARS) l w Midwater ODservation o sentnic coservation FIGURE G-7 overprinting of aeove symeols appear to ce NUMBER OF ADULT PAINTED GREENLING OBSERVED IN different aymeols 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS (Continued)
E6-122.0 G-22
ST* TION 04 U a g 400-4 300-G E 200-g O .
).
W o v 100- o. ,
" -^
- 0- E' 0 - -
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 STATION 05 U
E a 200-o a 100-o 0 : . : " * *
." I -
1976 1577 1978 1979 1980 1982 1982 1983 1984 1985 STATION 06 U
E o y 200-E W o a 100- .. e
- o o l ,
=.
_ o _ n _ ;. ,.p, s. ;.
a _ _;._.
e_
. e.
. .:e 1976 1977 1978 1979 1980 1983 1982 1983 1984 1985 A
\ TA 07 V / 300 e-u y 200- ,
a 100- .
1 . . . .
0 :.2 E - " I" "?
E ** " -
8 " "9 J ." ' - -
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 MO STATION 08 U
E .
{ 200-( 8 o
a 100- -
e .
g . .
0 - . : 8-8 : " 07 g _ . _a ! $g _, .)
- m _, , 7_ . a .
1976 1977 1978 $979 1980 1981 1982 1983 8984 1985 TIME (YEARS) m MidNater CDservation o sentnic cesersation FIGURE G-8 overprinting of above NUMBER OF ADULT SENORITA OBSERVED IN symeals appe8r to ee 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS diff8 rent symbols E6-122.0 G-23 1
300 STATION 09 U l
@ l
} 200-a W
g 100- o a 1 0 ." : S^ : .. r 9._08:
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 300 STATI m to U
U y 200- ,
g a a t#- *a 8 e o o o g
OC o*
- O 2
0 2. . : _e :; e e r - o .: - ; . e. _ _ _ _ . _ _ _ _ _
.eo-o 1976 1977 1978 1979 3980 1981 1982 1583 1984 19eS 300 STATION 11 U
V e a
200-a a
W o a 100- o e a a e a a g a 0 .22 : . a _ o, _ _ _ _ _o _ _ , ,
1976 1977 1973 1979 1980 3982 1982 1983 1984 1985 300- STAT!oH 32 U
j 200-a E a a 100- o o
- o*
0 .23.: !- _ - !*
1976 1977 1978 1979 1960 1983 1982 1983 1984 ' ' tm 300 STATION 33 0
I g 200-a W '
a 100- a h , a o p a a o
- o 0 - - = _ _ _ I_ E m a_ . .a .__o o_ '
__a = o ra a 1976 1977 1978 1979 19e0 gget 1982 1983 1984 3905 TIME (YEARS)
- Midwater Observation o sentnic observation FIGURE G-8 overprinting of above NUMBER OF ADULT SENORITA OBSERVED IN symeols appear to ee 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols (Continued)
E6-122.0 C.24
i 4
l 4
4
, STATION 84 Ia 200- -
i a o j E o a loo.
1 l .-
__ _ m _ m _ Ba m != *o
_a-
__ e a
1976 1977 1979 1979 1980 1981 1982 ste3 1984 1995 TIME (YEARS) i d
I
~
i i l l
l
? i i ;
I ,
I i
1 l
i W Midwater C0servation 6
- o sentnic oeservation FIGURE G-8 l i
1 overprinting of ecove NUMBER OF ADULT SENORITA OBSERVED IN I i symeols appear to ee 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS l j different symbols (Continued) j
! i
! E6-122.0 G-25 ;
[
. , _ . , _ . . _ _ _ , . _ _ - , .,-_....._.._ _ _- ,___._ .__.....,,,___,_-,_...--._,--m.-..,_,,..__,,, . , , . _ , _ . , , - .
l i
1 So STO?!ON 00 U
g 40-4 E
e 3-i _
E to-
- I O 3 ,e
, y e* ,
9,:
1 ig75 1g77 sg7e 1979 39eo 1981 19e2 tW N N '
50 STAf!ON 05 0
g 40-4 E 30-E t ' 20 -
E o
- O a
, o a. . "o a o ._ = -
. l_ ?
1976 1977 gg7e 1979 19eo 1981 1982 teo3 1984 19e5 STATION 06 e
u g 40 E 30-E D W 20-
. =
, _l", 7 .
h . $. S. -- =
' ^*
- 1976 1977 197e 1979 19eo 1981 19e2 1983 t#8 IE So- 5 fail 0N of U
g 40-30-E E 20-E O to- * *
- oo * *
- 88e e e- i ; _9 e =og_-- ago o. 8 E* e2= . * * * *
, a; 2. ;_,_.-_ - .
1976 sg77 ag7e 1979 toeo toet sua sus tn4 IMS .
sfAftoN oo u
Ml4 o g 40-
!E o-W po-E
{r 10-
, o
, __ ,g g . n.a AB E *R. =! . l E ! !=. " 'I " " -
ts76 is77 Ig7e ag7e toeo test ines ins tes4 toes ttut titAAsl m Midwater Observation o Benthic 00servation FIGURE G-9 -
Overprinting of above NUMBER OF ADULT STRIPED SURFPERCH OBSERVED symuels appear to ee IN SO X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symbols E6-122.0 G-26
STATION 09 u -
40-
- 30-4 E 20-V =
10-o O ---_a ._Q- - - -
1976 1977 gg73 1979 1980 1981 1982 1983 1984 1985 STATION 10 e
o g 40-9 ,0 a
E 20
_ a 2. : 1.2 $8 $ n- 9 I ; :- h=-"I".Igg 2 -
"' =5 ==""
1976 1977 gg7e 1979 1980 1981 1933 sted 1995 STATION 91 50 u
g 40-4 30 a
E 20 a
10-z ,' .. .;_;. ::e : = '.: -!:
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 Staf!ON 12
" u 40-i - m-
!' a .
t n-
j 'a-0
=-
e-*
3: .: :
o 1976 1977 1978 1979 1980 1981 1982 1983 1984 1995 STATION $3 e
u 40-
- 30 a
- t n- o a o a o%e la-
- a * =*
t . :;IE=-
=** .
0 ." -
- **=S! I S- ?= '= "
1976 1977 1970 1979 1980 1981 1982 1983 8984 1995 TIIE (YEARB)
- Midwater Observation o Benthic Observation FIGURE G-9 overprinting of aeove NUMBER OF ADULT STRIPED SURFPERCH OBSERVED 1 symeals appear to ce IN SO X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symeols (Continued)
E6-122.0 G-27
O STATION 14 u
40-e 30< .
a g... . . . . . .
0 - -
- - - 2-1976 1977 $978 1979 1980 1981 1982 1983 1988 198S TIME (YEARS)
I
- Midwater Observation o Benthic 00servation FIGURE G-9 '
i Overprinting of aoove NUMBER OF ADULT STRIPED SURFPERCH OBSERVED symools appear to ce IN SO X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symDols (Continued)
E6-122.0 G-28
Siffl0N 04 U
so-g r ir *
( a -
20-
- .- - - - - 2 =r.2 r:
0 1976 1977 8978 1979 1980 1981 1982 1983 1984 1986 STATION 05 U 8 l
W 60-a
- E 4-
=
a 20-0 =^ = x= = = . = = = =
1976 1977 1970 1979 1980 1983 1982 1983 1984 1985 STATION 06 U
e0-
- 60 a
- E 40-a o
0 1976 1977 197e 1979 1980 1981 1982 1983 1984 1985 STAf!ON 07 100 0
e0-
- 60-a E O 40- "
a
- y. 0 =.: :2 : : : = :: :: : 2: : :- : ::. .:: - .- = c .
22 :
1976 1977 1970 1979 1980 stet 1982 1983 1984 1985 StAf!ON 00 100 U -
e0-
- 60-a E 40-a 1- 0 22 1 :: : : = :: c : - 2: : :- : 2
- c; _: = 2 . :c :
1976 1977 1975 1979 1980 1981 1982 1983 1984 1985 TIsE (YEAms)
- Midwater Observation o Benthic 00servation FEE G-10 l
Overprinting of enove NUMBER OF JUVENILE KELP BASS OBSERVED IN Symeals appear to ne 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different sym001s E6-122.0 G-29 l
_ -_.- _ _ _. - _ , - . . _ . _ - _ . _ -- _. . . _ -. .. _ _ . ~ . _ . - - - -
100 57aTION 09 .s e0-
- .0 40-20-0 ==. = -L
- 2 22 #- = " ' - 7; 1976 1977 1978 1979 19e0 1988 1982 1983 3954 1995 STATION 10 U
so-
> 60-E W 40-K <
a 20- a f o .=2 = . = - . = = = = = = = = = . .= == = = = = = -. --- -- - - -----
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 I
STAT!ON 11 U
e0-
- 60-E U 40-a
^ '
pg.
o . = = . = =_z .=== ;. =-.z.===
1976 1977 1978 1979 1960 1981 1982 1983 1984 1985 STATION 12 u
e0-
- 60-a 40-a 20-0 ==.=a.= :? :- =- . = = = .
1976 1977 1978 1979 1980 1981 1982 1983 1984 198S
, )
M0 STAf!ON 13 -
U e0-
- 60-a E 40-a 20-0 ==, = . = . = . = = = = = = = = = . = . = = . = . = = = = = . = = = . - . = . = . = = =
1976 1977 1978 1979 1990 1981 1982 1943 1984 1995 i
i14 (YEAAS)
- kidwater 00servation o Benthic Observation F RE G-m overprinting of soove NUMBER OF JUVENILE KELP BASS OBSERVED IN symeals appear to ce 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS different symDols (Continued)
E6-122.0 G-30 t
i
{
i i
4 1
STATION 14 100 U
b f"'
n H-i e
! E e-i a 30-O 22 : .-; .: ; ;; 2 ; n .:.;,.;.1 ;;;2, :;e ; _ , ; _ ;; ;
' 1976 1977 1373 3g73 ige 0 1988 1982 1983 3934 Iges TITE (YEARE)
I l
5 i
i 1
!
- Midwater oceervation i o sentnic ooservation FIGURE G-10 overprinting of aeove NUMBER OF JUVENILE KELP BASS OBSERVED IN symbols appear to De 50 X 4 M SUBTIDAL BAND TRANSECT SURVEYS difforent symbols (Continued)
E6-122.0 c-31
- 4. . ..- - .... .. _ _ ..- . - , .,.. - - - . - ,. . - - ... - -
~
(
APPENDIX H N
CRAB TRAPPING, BULL KELP COUNTS, AND SEA OTTER COUNTS 4
Appeadix.H contains data on the results of the crab trepping survey, annuct i counts of the surface density of bull kelp plants, and o sea otter observation subtask. ,
j The locations of the rnonitoring stations for each of these three subtasks are illustrated in Appendix A.
s- I t
a s
r 1
J F g
I f
k ,
. / ;
- / l l l 1 1 I
_4
% Y,56-122.0 H-1
/
l s
+- r ,~,,s,raa- --,~,,--n -,- , - - - - - - - - .--c-e~-, - - - , -n- - - - , - - - , , - - - ~ - ---e~-----, ------.---~wr..w---r---,--w---e-+=<e-+,--,e..,-ww --m+-~~,s~-
IT1 I
G N
o
,g. l Vertical ture represent 95% cnnfide ee intervals een= t the encans.
E
.E a
- , io- .I l
[ -. .
l 6
~
< l
" l i .l l r .
! l I.
e '~ ' .
i r -+l\pi'. i i i
Vi i'.vis.i i i- i/ /iN.I l/i
' ' 's '
, j I I'Ni,f 'h'I '
w i .i. 4, J J. , in d., . ; ."' e n ,' . . .' ' , .'. ; . .', i .', . .' J , ,'. . '.. ..' . . . r . . '
. . . J. . . . . . . . . .' 4, .'.. J.. . .'s , c ek .,',. ,' . ' .,', eit- ein i,- .'.......'s.., res .m i J.c s ,oie
- .m . em . . _ _ _ _ _ . . . _ _ _ , . _ . . _ _ _ _ _ _ , , ,,,,, ,, ,,_ ,,,,
ilhE Die 0 NTH 5)
FIGURE H-I BIMONTHLY SUBTIDAL CANCER ANTENNARIUS CATCH PER UNIT EFFORT (CPUE) FROM AUGUST 1976 TO DECEMBER 1985 O O O
.m_ m-__m4;- -,s~ M em.p a, * - -- _4 _m-- k-A4__..AAaa___,=.-_a-> Sw, -1A**
4 4
TABLE H-1
SUMMARY
STATISTICS FOR CRAB TRAPPING SUBTASK i SURVEYS 47-53 (FEBRUARY - DECEMBER 1985) i !
! CPLE I -
Total No. Percent N Upper Lower Survey Date Crabs Males (No. sets) Meon 95% ci2 95% ci2 47 02-85 125 63.7 71 1.79 2.29 1.29 48 04-85 94 81.9 72 1.3I f.77 0.85 49 06-85 113 75.2 72 1.57 1.94 1.20 50 08-85 135 57.8 72 1.86 2.33 1.39
! SI 10-85 281 52.7 72 3.90 4.59 3.21 1
! 52 12-85 175 58.3 72 2.43 3.16 1.70 I
Catch per unit of effort.
2 Confidence interval.
i i
- i l
F l
r E6-122.0 H-3
! L M
'o C
z j 20,000-o.
u_
O 15,000-7 W
3 10,000-'
1- Z 5,000- $ $
- E o o o o 1970 1971 1972 1973 1974 1975
..............P 1976 1977 1978 1979
. ". . . M ,
1980 1981 1982 1983 1984 1985 TIME (YEARS)
.~
I A
l FIGtJFtE H-2 NUMBER OF bEREOCYSTlS LUETKEANA INDIVIDUALS OBSERVED IN DIABLO COVE FROM CLIFFTOP VANTAGE POINTS, FALL 1970-1985 O O O t- - -
4
> SEA OTTER ABUPOANCES 4
< 2.0 R
o -
h 1.5-W -
8 1.0-er 0.5- 'N. .m .. "'" .c f
.,......--#**~~-..,g.*
~' ;
h 0.0 JUN JUL AUG SEP OCT NOV DEC -
TIME (MCNTHS) y INTAKE COVE
DISCHARGE COVE i
FIGURE H-3 :
i' SEA OTTER MEAN DAILY !
ABUNDANCE AT DIABLO CANYON,1985 ;
\
t t
e
- r i
i 4
i A E6-122.0 H-5 f
' t i ;
i
-t,,.-~- - - , , - - - . . , , , , - - - . ,,-----,.,.~,.,,..,e -,.,w,,.,ww---_,-w-.-n--r-,,n,,,,->w,,,,,,,~,.
.-es,,--,yw,.nwe-,,4.,e.r
n APPEtolX1 U SURFACE Ato SUBTIDAL LIGHT DATA Appendix I contains data on the results of the TEMP light monitoring stStask.
Incident phototsynthetically active radiation (PAR) light is measured by fi;tered photosensors at three underwater stations and at a shore station. The light values are sampled synchronously every 20 mintues and magnetically recorded for later data reduction. The light values are corrected for dark current and individual calibration factors for each sensor and reported in microEinsteins per meter squared per second.
The locations of the light monitoring stations are illustrated in Appendix A and in this Appendix.
W s
i I
t E6-122.0 1-1 t
l '
t f
- ...---.--..-m-a-,. . . . - , , . .,,.~-,-.y. --.,,,,...m, . , , . . ,, -,,-.m.
, , ~ _ -, , . , - - - . - , . _ _ -w. - - -
- w w y r -= -
- we---
,,,, JANUARY t905 STAT 10pt 99 APMiL iOSS 5T AT10pt FD see - es. . *
/ ,, \
? *' y m.
,, \
3 m4 U m. /f \\
g-a 4
//
\'\
//
//
N h *I
.* /
s\ h. "'
. /f W *e1 '
,/ \\ W me /j i
E gw E gm ,/j s see. /
l 3 eso .
See <
sce '
bee ' esbo ' e4e ' esas ~ eene ' sees ~ iise ' she ' seine ' see ' some ' ases ks. ~ eine ' eie. ' ein ' sine ' seine ' A. ' see ' isee ' sin ' esse ' sies '
Tite 0400RS) TIE W M) l
, FEBRUARY t905 5 TAT 10pt 99 IsaY t905 STATj0pt 99 l
see. eee
)
(3m".
N r "s
/ /,. , s\
s [3m '". /,
/
f s
s
- N //
. ene, / / \\ ? ese. //
k /,
/l \\ k //
g eso. f \\ g see. //
/ \\ //
W me. / \ W me //
E E g =s . g m. ,/
a m. o m, ist. see .
' eine ' eine ' Moe ' ens ' lies ' sies ' flee ' .500 ~ As 'sies ' eine S
TIME 040URS) T!tE (HOURS)
,,,, MARCH i985 STAT 10pt 99 JLSE I985 ST AT10pt 99 me .
,e -3 .
p eso. / r'N g
/j
\
p eso. ,, %
' u 3 m. / f \\
\g u
3 m. /
/ / ,\s
/!
s
\\ / 'f
.N sm.
f/ .D g\
x
\g , en /j
//
// \g s g eso. f \ g see. //
~
/ \ ~ / //
W me.
i[ W me. /
E
" '" y 9 C "' //
/l
= m. = m. ,'
- m. m.
La ' ein ~ .4e ' eies ' ese ' i ' iAs ' sim ' iin ' .i. ' mio. ' eine L ' es. ' ein ~ edee ' ein ~ ii.e ~ iie ' iin ' itse ' see ' ed e ~ eie.
T18E 040URS) TITE (HOURS)
- - ? STANDARD ERROR VALUES ME AN VALUE
-2 STANDARD ERROR VALUES FIGURE l-l MONTHLY MEAN SURFACE LIGHT VALUES VERSUS TIME OF DAY AT DIABLO COVE E6-122.0 I-2
,,,, JULY 1985 STATIOpt 95 OCTOBER 3905 ST;.710pc 90 see . ees .
, m. ,::g m.
k N' / \\ $ *'
jl f E,.
. ene \ . ene \
\ /
ene. g see . /' \\
h ame. ll h one. /,I g / g gm / g m. /
I a m. a m.
lee . SN.
" G[te ' edee ' edge ' ede ' siee ' the I Ae ' gene ' see ' #dee 7800 este ' edee ' eNo ' eise ' eNo ' line " $de ' SNe ' sdee ' $Me ' 3400 ' #Me TIE (MouRS) TIE (HOURS)
,, AUGUST 1985 STATIOpt 90 NOVEpeER 1985 STAT 10pt 99 ene . see .
n ese. ,e p ene.
U %, /'h\
f gm.
& l/ O s
," eso . // .N see .
4 l/ 4 g "' l/ g "'
,# [m han /
/f h ans. /// (g g\
I g e ss' /
f
/ I g see . // \o a see. / 3 see . /
- m. sw.
esse ' GIse ' edee ' Skee edes SNe $/ne idee ' tese ' 3det ' 3det IIDS este ' G[ee ' ehe ' eM ' SNe ' fees $/ee $No ' tece ' the ' 3 des PIte
/
TIDE (HOL5tS) TIE (HOL5tS)
,,,, SEPTEDGER 1985 STATI0pt 99 DECDeER 1985 STATION: 99 ene . ene .
N eas' es ees.
t U m.
/h U
< m.
.a me.
/f '/ys ,a g
4 /
/
/ 4 g one. f g see.
h *** ' I' E
g "'
!/
t $ noe.
I '&A
\\
/ g "' ,/ \
a no , a see les ' te. -
e- 'See' Sin'ed 'ed 'id ~ime i4e ' ise ~ ee'ada ~ri. s Lee ' GAS ' ese ' eseeae .4e' Ae'ilme ide.' ae'edu' rim TIE (HOURS) TIE IMOLstS)
- - +2 STANDARD ERROR VALUES MEAN VALW
-2 STANDARD ERROR VALUES MONTHLY MEAN SURFACE bs h
\
LIGHT VALUES VERSUS TIME OF DAY AT DIABLO COVE (Continued)
E6-122.0 l-3
, JAMJARY 1985 STOTIOpt 07 APRIL 1985 STATIOpt 07 e.,
e.e
,N m:
pw U
U* /h \
e m' * * ' g e e'_ s g h "* h "; f
/' \\
c *: ; "' //
/
\
h"
_m h "l s\
\
_ m ,/j s A< / ,% /
- ,y- , . ,
) : '
~ .i ' ' in ' . ' . ' .4
~ a.= ' = *
' .4= ' in ' .4= ' .4 .in ~ ei '
t .m ' .= ' .i ' .A ' .4 ~ is T!( (HOWts) TIE DCILAISI FESRJARY 1985 STATIOpt 07 seAY f985
,,, STATI(>t 07 r^g s
N m.
- m /
g:
,a
/ r ^]\ \
e m' !" // \g m<
N*
- // \g h a a. // \
y .u ^
f s h m] // ,
yh ."; /
/j'
's \
\\ h g ."- j/ /
- m. \
3 // g m. /
,' 3 ...
- W
- .u / ,4 , ,u :
TIE (HOLEtS)
,, .m .
TIE (H0t#tS)
,= .m .
.q
,,, MARCH 1985 STAT 10pt 07
, JAE 1985 STATIOpt 07 e
s.
. *: " m-V m- .
g m:
$ m."I .$ ~I
. m.
h "f h m.f /
c* =: /
, ,\ em
/ ,\
I "; / ,- s \ I ", // s\
- m; ,, \\ g m; ,/ / / \
\\
3 n.
..: 5 ,' '
/'
gg s
3m
. y
/'f
.. g
- '.=~.i '.i '.in'.' ' A,'iin' in'.4 ~4 ~,= *
' ./ ' .i. ' ' .i. ' .i ,4,. ' .4. ~ ,4. ' .4 ' ,4 ,4,.
T18E (HOURS)
TIME (HOURS)
+2 STANDARD ERROR VALUES ME AN VALUE g _
-2 STANDxRD ERROR VALUES MONTHLY MEAN UNDERWATER l LIGHT VALUES VERSUS TIME
{
OF DAY OF NORTH DIABLO COVE 1
E6-122.0 l-4 l
, .ALY 1995 STATIST 07 , OCTOBER 1985 STATIOR 07 age . see .
es. . es. -
N M. f one w 's "; !"!
) N "; .N " '
\ 's m. ea h* #
e\ j hm; %
y See; f e's \ Um /
'N\
h "; f
// \ h"; /
\
g y" /,' \ U *: //
, =
see - /
, 2 ..
see
,/
- e. . ee .
ese esim ' .ise 'sie. ' edes ' sies ' sie. ' sine ' esies ' sais. ' mise ' ,ies ese ' sise ' eine ' eies ' esb. ' sies ' iAs ' idee ' seios ~ isise ' ,e'ee ' ,ies TIE (MOURS) TIE (M0tmS)
,,, AUGUST 1905 STAT 10pt 07 NOVEteER 1985 ST&T10pt 07 age . see .
es. . es. .
f M' M g- f' eg s
e y .' :
e m' f f' \ ,
y me f/ \\ m m-
// ,/
\
h me U =; f U=
h "; f'/ h "; ,O U ": / U ": j ',# sN\Ng a m- '
/ s sw /,' sg m m. /' \
es w.
i se. eA. .4.'ee. e6 '.e. .ie. .4e ee ,e. ,s ,As :e.e e4. .is. sie. eie. is. ,As ,40s ,ise ,e. ,ies ,A.
TIeEE (MOURS) TIE (MOURS) m EPTDGER 1995 STAT!ast 07 , DECEteER 1985 STATIOR 07 ans . es. .
? "; ? *'
= g -.
- "; 7 -S $ ";
e /,3\
e
- e ";
g see. /j g\ g see.
U ", /
/ \
g U "'
h "; f
//
\
h*
U "; /j# U ";
3 ew- 3 ise r, les see - ,(( \
w .. ff'
== '.As'.4.'es.'ese' in ' e J
.A.'.As'.s.'is. ,s. ,A. esse .ies .A. ' sie. ' e.e .i. ' A. 4. .ies ' is. ' ,4. ,ve.
TIE (MOURS) TIeEE (MOURS)
-- +2 STANDARD ERROR VALUES MEAN VALLE
-2 STANDARD ERROR VALUES FIGURE l-2 p j MONTHLY MEAN UNDERWATER LIGHT VALUES VERSUS TIME
'v OF DAY OF NORTH DIABLO COVE (Continued)
E6-122.0 1-5
25.
g re,id ce . %
m :.:f, L ,, u .,, - ,
w F i;, . %:,.- ..- '
~
... . + *
. ~ . .
w.=r c%,
,,. j ,.9y
- w.
'g. -
--i g = =: -
wa .,,
%,1 ;c, a c~
- %, jf(5',
./ l'y,T,-;;g,* ,. "owER p N %, ""
' R.h /
- w ., ;7n .eo'7,s , oc
-l%..,-.,,. T +9-0 . . , ,
e%
.. . + ' ,
.. S Q(A -
1 23 ' g .. . ',- , f,, g n
! ..x i
f'N .6-il e25-15 N. ' , LEGENO
.*:lllt . \ DISCHARGE STRUCTURE
-~c'"',**
+ + '
4(3-32* ' 'g , ,...,,,n.
11-F 6
.0-0 i. _1
! .u ma
[ * #11-0./'
.c c
,$,-12-0llI/ METEOROLDG8 CAL MR . -
. n,
<z, l e 7 O ups ==.=
4
' .-- + ,
o, A. ,
.q,{,,s,...,p.hig,,i' ' * - .-
>/
INTAKE STRUCTURE o Ti ,
5- '
. N.
e o-
.o
~ .4 r,
a v ' '.:= = '"1 ->
- ~N,-~~
o,3 ,, . .
0 99-30 o . .
,' u
, u 32 2 ....:. ,
o ,.3REAKwATERS ,',' n O ', - ggg3 csy .t ,'
,a
'3-
.'. t,;s,
.,,s s
he,g ,.,,,.
. + + + .
Q.y. -
",t -
~ , , . x.h.,
. n.
e .
.... . ,.t9 a ,,w, : -cu, .a. .
- s. ,
ca o= co== sum i
8/ gn s
g,% .3
V ,j h,,.. o.d6,'., ncune -i LOCAtsoses or stTERTOAL
- 4. , ^Q. ~~p,., e ',>, d e
+
age SueTWAL FttvSICAL
. . + + '
A.s ft fE, CORDER +
- .- , Serre Care i
~%
- ganTA smart 3G STATOS dk a ., n i- I f
g I g g
,e '.
- .- MM5.E ra A'".e.
P*'
i
, a 1 1 1 :wA->=
E 1
4
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ . _ ___ - -__ __ _ _ _ - - - _ _ _ - _ _ _ _ - _ - - _ _ - _ _ - - - - - _ _ - - - - _ - - - - -