ML20138K031

From kanterella
Revision as of 16:17, 29 June 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Containment Sump Zone of Influence for Coatings
ML20138K031
Person / Time
Site: Zion  File:ZionSolutions icon.png
Issue date: 01/22/1997
From: Peterson R
COMMONWEALTH EDISON CO.
To:
Shared Package
ML19355E605 List:
References
22S-B-040M-002, 22S-B-040M-002-R01, 22S-B-40M-2, 22S-B-40M-2-R1, NUDOCS 9702140147
Download: ML20138K031 (70)


Text

_-__ __ _ _ _ . . _ _ _ . _ ._.

M ZION CALCULATION COVER SHEET Zion Calculation No.: 22S-B-040M-002 DESCRIPTION CODE.: M00 SYSTEM CODE: Primary Containment ZION NUCLEAR STATION TITLE: Containment Sumo Zone ofInfluence for Coatines REFERENCE NUMBERS Type Number Type Number AEDV S&L 202 DIT ZDE-97-002. Rev. 0 & I DIT ZDE-97-004. Rev. 0 & 1 COMPONENT EPN: DOCUMENT NUMBERS:

EPN Comp Type Component Number Doc Type Document Number l CALC 22S-B-008M-092. Rev.1 CALC S&L NSLD 3C4-0790-001 PROC ZPEOPW-ES-1.3. Rev.18  ;

CORR NFS:PSA:95 056 j DWGV Enclosed see Section 5.13  ;

REMARKS:

REVISION APPROVED DATE REV.

NO.

OriginalIssue Robert J. Peterson 1-17-97 <

O l 1 Included sump walkdown data and outer sump screen as-built dimensions ,

[ //pg7 f-32 fy V  ;

U'

~ n/ /

9702140147 970205 /VO, /

PDR ADOCK 05000295 p PDR ,

l i

Exhibit C NEP-12-02 Revision 4 COMMONWEALTH EDISON COMPANY CALCULATION TITI E PAGE CALCULATION NO. 22S-B-040M-002 PAGE NO.: 2

@ SAFETY RELATED 0 REGULATORY RELATED 0 NON- SAFETY RELATED CALCULATION TITLE: Contamment Sump Zone ofInfluence for Coatings l

1 STATION / UNIT: ZION 1 and 2 SYSTEM ABBREVIATION: N/A EQUIPMENT NO.: amo PROJECT NO.: amu 09432-778 REV: 1 STATUS: Approved QA SERIAL NO. OR CHRON NO. N/A DATE:

PREPARED BY: MarkHandrick ?/f&zM //M DATE: @J/9,7 REVISION

SUMMARY

Complete revision.

Changed assumption for specific gravity for undocumented coatings per Commonwealth Edison NDIT No. ZDE-97-004, Rev.1. The assumed values now considered are 1.5,1.7 and 2.0. Revised zone ofinfluence correction due to missile barrier based on walkdown data provided in NDIT No. ZDE-97-004, Rev.1. Revised outer sump 2

screen total area to new value of 27.94 ft , and RHR pump NPSH available to 21.44 feet, per NDIT no. ZDE-97-002, Rev.1.

ELECTRONIC CALCULATION DATA FILES REVISED:

(Name. ext /sizc/date/ hour: min /vcification method / remarks)

DO ANY ASSUhWTIONS IN THIS CALCULATION REQUIRE LATER VERIFICATION YES O NO @

REVIEWED BY: Susan Miller ML7/JN_/u DATE: I/#lU REVIEW METHOD: Detailed Review COMMENTS (C, NC OR CI): CI APPROVED BY: Robert J. Peterson j DATE: //kf7 l

i

-]

Exhibit C NEP-12-02 Revision 4 I

COMMONWEALTH EDISON COMPANY CALCULATION REVISION PAGE CALCULATION NO. 22S-B-040M-002 PAGE NO.: 3 REV: STATUS: QA SERIAL NO. OR CHRON NO. N/A DATE:

PREPARED BY: DATE:

REVISION

SUMMARY

I l

ELECTRONIC CALCULATION DATA FILES REVISED: -

(Name. ext / size /date/ hour: min /vedfication method / remarks) i 1

DO ANY ASSUMPTIONS IN THIS CALCULATION REQUIRE LATER VERIFICATION YES O NO O j l

REVIEWED BY: DATE: l REVIEW METHOD: COMMENTS (C, NC OR CI):

J APPROVED BY: DATE:

REV: STATUS: QA SERIAL NO. OR CHRON NO. N/A DATE:

PREPARED BY: DATE:

REVISION

SUMMARY

I l

ELECTRONIC CALCULATION DATA FILES REVISED:

(Name. ext / size /date/ hour: min / verification method / remarks).

DO ANY ASSUMPTIONS IN THIS CALCULATION REQUIRE LATER VERIFICATION YES O NO O REVIEWED BY: DATE:

REVIEW METHOD: COMMENTS (C, NC OR CI):

APPROVED BY: DATE:

Exhibit D NEP-12-02 Revision 4 COMMONWEALTH EDISON COMPANY CALCULATION TABLE OF CONTENTS PROJECT # 09432-778 CALCULATION NO. 22S-B-040M-002 REV. NO.1 PAGE NO. 4 DESCRIPTION PAGE NO. SUB-PAGE NO.

COVER SHEET 1 TITLE PAGE 2 REVISION

SUMMARY

3 TABLE OF CONTENTS 4 j

1. PURPOSE / OBJECTIVE 5
2. METHODOLOGY / ACCEPTANCE CRITERIA 5
3. ASSUMPTIONS AND LIMITATIONS 5
4. DESIGN INPUT 7
5. REFERENCES 9
6. CALCULATIONS 12 l
7.

SUMMARY

AND CONCLUSIONS 23 ATTACHMENTS:

A Commonweahh Edison Zion Station NDIT No. ZDE-97-002 A1 B Commonwealth Edison Zion Station NDIT No. ZDE-97-004 B1 l i

J

Exhibit E hTP-12-02 COMMONWEALTII EDISON COMPANY Revision 4 CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAOE NO. 5

1. PURPOSE / OBJECTIVE The objective of this calculation is to determine the zone ofinDuence for the containment sump.

The zone ofin0uence is defmed as the radius extending from the center of the sump enclosure projected onto the water surface into which fallen debris would be transported to the sump screen by the fiow of water rather than settling on the contamment floor. See Figures 1 and 2 for a schematic view of the sump enclosure and surrounding outer screen. *Ibe debris considered in this calculation includes various types of paints and coatings which may flake or peel off containment structures or components.

2. METHODOLOGY / ACCEPTANCE CRITERIA

~

In order to determine the zone ofinfluence, the nummum water velocity regmred to move a debris particle along the containment floor is calculated. This velocity is computed for various particle configurations with respect to the water velocity directed toward the sump screen. He mmimum velocity calculated in this step will determine the maxunum distance from the center of the sump enclosure along the contamment floor for which particle movement is possible.

Debris particles falling onto the water surface will tend to be transported in the direction of the sump, as well as sinking toward the contamment floor. Tids transport mechardsm will extend the effective capture radius, enlarging the zone ofinfluence.

He model for calculating the zone ofinfluence assumes a unifonn velocity 6 eld surrounding the sump in cylindrical geometry. Imge obstructions in the flow fpid, the missile barrier wall for example, will affect the local velocity field surrounding the sump. If the calculated zone of influence encompasses the missile barrier, a geometric correction will be made to the zone of inficence to account for the obstruction, as shown in Figure 2. This will be accomplished by preserving the flow area surrounding the sump, thereby preserving the nummum local velocity at which particle movement is predicted.

With the maximum zone ofinDuence determined, th: amount of material available for transport to the sump screen can be calculated. From this information, the increased pressure drop across the sump screen can be computed and the resulting reduction in NPSH margin determined.

3. ASSUMPTIONS AND LIMITATIONS 3.1. The drag coefficient between water and the debris particle when modeled as a circular disk orientated normal to the flow is assumed to be 1.17, and when modeled as a sphere is assumed to be 0.47, based on a review of Table 10.3 of Reference 5.14. In addition, the debris was modeled as a circular disk parallel to the floor based on the relationship between Reynolds number and skin friction drag coefficient presented in Reference 5.20.

R.EVISION NO. 1

1 l

Exhibit E NEP-12-02 ,

COMMONWEALTII EDISON COMPANY Revision 4 CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO. 6 l 3.2. The maximum dimension of the failed paint chips are assumed to be equal in size to the outer ,

sump screen mesh opening, or 0.5 inches as shown on Drawing No. B-278 Rev. H (Reference l 5.13). This is consenstive since a larger particle size would have a smaller zone ofinfluence, and a smaller particle would pass through the sump screen mesh spacing.

3.3. 'Ihe static and dynamic coeflicients of friction between failed paint chips and concrete are assumed to be 0.40 and 0.35, respectively. This is consen2tive with respect to Reference 5.16,  ;

which uses the values of 0.6 and 0.42 for static and dynamic coefficients of friction for calculating debris transport along the containment floor. For comparison to other surface combinations, the following coefficients of friction are extracted from References 5.8 and 5.9.

Nylon on steel 0.5-0.3 Zinc on zinc 0.65 - 0.35 Iron on stone - static' O.7-0.3 Dry masonry on brickwork - static 0.7-0.6 Masonry on dry clay - sta6e 0.51  ;

Hard steel on hard steel- static 0.78 '

Hard steel on hard steel-dynarnic 0.42 Mild steel on mild steel- static 0.74 Mild steel on mild steel-d>mamic 0.57 Mild steel on cast iron -dynamic 0.23 Lanunated plastic on steel- dynamic 0.35  ;

Steel on steel- static 0.423 Steel on steel- dynamic 0.351 Steel on Teflon - static 0.269 Steel on Teflon - dynamic 0.269 1

3.4. Per Reference 5.9, water is considered to be an ineffective lubricant and the coefficient of friction for wetted surfaces will be the same as for cican surfaces. Based on water being an ineffective lubricant, these ranges given above will not change when the materials are under water.

3.5. The contamment floor is assumed to be flat in the location of the sump screen. The floor has a grade of 1.65* sloping downward towards the missile shield wall from the inner contamment wall per Drawings B-265 Rev. U and B-271 Rev. M (Reference 5.13). This slope has a negligible effect on the result and was therefore ignored.

3.6. The nummum distance from the sump screen to the inner wall of the missile barrier is assumed to be 7'-3%" for both Units I and 2, based on Unit 2 walkdown data supplied in Reference 5.22.

3.7. The nummum containment sump water temperature at the start of recirculation is assumed to be 100 'F. At this temperature the density of water at atmospheric pressure is 62.0 lb./ft', per Reference 5.11, and the kinematic viscosity of water is 7.383 E-6 ft'/sec, per Table B.1 of Reference 5.10.

REVISION NO. I

1 Exhibit E l NT P-12-02 COMMONWEALTH EDISON COMPANY Revision 4 i CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO. 7 l

I 3.8. The minimum dry film thickness of Carboline 195 Surfacer is assumed to be 2.0 mils. This is  !

conservative with respect to Reference 5.21, which recommends a muumum dry film thickness of l 10 mils per coat.

l 1

4. DESIGN INPUT '

Il 4.1. The RHR pumps have a mammum flow rate of 4500 gpm during recirculation (Reference 5.3). l To maximize the zone ofinfluence, it is conservative to use the manmum possible flow rates from j the containment sump to the RHR pumps. Therefore, the total flow rate of 9000 gpm is used in j this analysis.

l 1

4.2. He manmum contamment flood level is 5.06 feet above the containment floor based on ]

Reference 5.5. This reference is a letter justifying a reduction in the mammum flood height from 5.84 ft to 5.06 ft, where these cases and corresponding values are documented in Sargent &

Lundy Calculation No. NSLD 3C4-0790-001, Revision 0, Contamment Flood Level (Reference 5.6).

4.3. He minimum contamment flood level at the start of recirculation is 1.0 feet above of the contamment floor based on Reference 5.4.

4.4. The maximum containment sump temperature at the start of recirculation is 225.75 'F based on Reference 5.2.

4.5. Based on Reference 5.3, the required NPSH for the RHR pumps during recirculation is 20 feet, and available NPSH is 21.44 feet per Reference 5.23.

)

j 4.6. Based on Reference 5.23, the outer sump screen has a total area of 27.94 ff.

4.7. Based on Reference 5.1, debris with a specific gravity of 1.05 or more, will be likely to settle on I the contahunent floor before reaching the sump screen if the velocity ahead of the sump screen is l at or below 0.2 ft/sec.

4.8. Per Reference 5.12, the following documented coating systems are used in containment for Units 1

& 2.

Surface Coatina Tyne Minimum Drv Film Thickness (mils)

Steel Carboline Carbo-Zine 11/ Inorganic zinc 3.0 Steel Carboline Phenoline 305 Finish 4.0 Concrete Wall Carboline 195 Surfacer N/A Concrete Wall Carboline Phenoline 305 Primer 4.0 Concrete Wall Carboline Phenoline 305 Finish 2.5 Concrete Floor Carboline Phenoline 305 Primer 6.0 Concrete Floor Carbohne Phenoline 305 Finish 6.0 REVfSION NO. 1 I

i Exhibit E hTP-12-02 COMMONWEALTH EDISON COMPANY Revision 4 CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO. 8 4.9. Per Reference 5.15, the specific gravities for the documented coatings are listed below.

_Cratinn Tvoe Minimum Soecific Gravity Phenoline 305 Primer 1.00 Phenoline 305 Finish 1.40 Carboline 195 Surfacer 1.70 ,

Carbo Zine 11 5.60 l

l 4.10. Per Reference 5.15, the following undocumented coatings with known specific gravities are present inside contamment and available for transport to the sump screen.

h Comoonent Average DFT Minimum Specific (mils) Gravity 1 Source Range Detector 5.76 2.48 2 Gray Electric Cabinet 2.02 2.28 3 U2 Control Box 7.36 1.75 4 Electric Motor Hoist 8.38 1.71 5 Dry Type Transformer Box 1.88 2.73 6 MS Counter Poise Snubbers 4.74 1.61 7 Stud Hoist Trolley 3.98 1.88 8 Red Fire System Coating 2.90 1.98 9 Yellow Handrail Coating 4.86 1.70 10 Air Tanks 010,011 3.32 1.70 11 Grinell Pipe Struts & Spring Cans 3.56 2.70 4.11. Per Reference 5.15, an additional 36 undocumented coating systems are present in containment, he specific gravides of these systems are unknown. To determine the sensitisity of the zone of influence on the speciSc gravity, values of 1.5,1.7, and 2.0 will be assumed to calculate the zone ofinfluence for these coating systems, as directed by Reference 5.22. The dry film thickness for these 36 coatings range from 0.6 mils to 4.56 mils. Per Reference 5.22, only coating thicknesses of 1 mil or greater will be considered. Calculations will be performed on a subset of the 36 coatings, spanning the range of thickness from 1 mil to 4.56 mil.

4.12. Dimensions of the outer sump screen structure are taken from Zion Drawing No. B-278, Rev. H, listed in Reference 5.13 and shown in Figure 4.

2 4.13. The effective contamment floor surface area with the reactor cavity full is 10638 ft , per

- Reference 5.6. Reference 5.5 states that the case documented in Reference 5.6 using a floor area 2

of 10496 f1 is not credible due to modifications made after the issue of Reference 5.6.

REVISION NO. I

Exhibit E NEP-12-02 COMMONWEALTH EDISON COMPANY Revision 4 CALCULATION NO. 22S-B-040M402 PROJECT NO. 09432 778 PAGE NO. 9 4.14. Reference 5.18 provides confinnation of the correct references for Design Inputs 4.1 through 4.4, 4.8,4.12, and 4.13.

h REVISION NO. I

Exhibit E NEP-12-02 COMMONWEALTH EDISON COMPANY Revision 4 CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO.10

5. REFERENCES 1

5.1. Regulatory Guide 1.82, " Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident", Revision 2, May 1996.

5.2. Transmittal of Sump Temperature Data, from K. N. Kovar to K. Ainger, May 16,1995, NFS:PSA:95-056,

Reference:

Zion LOCA Contamment lategrity Analysis, NFS Calenote PSA-Z-95-03, A. J. Patterson, March 8,1995.

5.3. Zion Calculation 22S-B-008M-092, RHR pump available NPSH during the post-LOCA recirculation phase, Revision 1.

5.4. Transfer to Cold Leg Recirculation, ZPEOPW-ES-1.3, Revision 18, Page 4.

5.5. Letter to Kenneth N. Kovar from Brian Jelke,

Subject:

Evaluation of RWST Level Setpoint Uncertainties on Zion Maximum Containment Floodmg Analysis, January 29,1996. This letter reduces the maximum flood height from 5.84 ft to 5.06 ft, where these cases and corresponding values are documented in Sargent & Lundy Calculation No. NSLD 3C4-0790-001, Revision 0, Containment Flood Level.

5.6. Sargent & Lundy Calculation No. NSLD 3C4-0790-001, Revision 0, Contamment Flood Level.

5.7. Zion Calculation 22S-B-006X-070, Revision 0, Evaluation of Zion Containment Spray System pH Design Basis,7/15/96.

5.8. Marks' Standard Handbook for Mechanical Engineers, Ninth edition, ed. Eugene A. Avallone, McGraw-Hill Book Company, New York,1987.

i 5.9. Standard Handbook of Lubrication Ennineerinn. James J. O' Conner, Editor-in-Chief,1968.

5.10. Fundamentals of Fluid Mechanics, Bruce R. Munson, Donald F. Young, and Theodore H.

Okiishi, Second Edition,1994.

5.11. ASME Steam Tables,1967.

5.12. Sargent & Lundy Specification X-2340, Revision 4, Field Finish Coating and Painting Work, Zion Station Units 1 and 2.

5.13. Zion Station Drawings B-223 Rev. L B-242 Rev. J B-278 Rev. H B-265 Rev. U B-271 Rev. M REVIslON NO. 1

)

l Exhibit E NEP-12-02 COMMONWCiLTH EDISON COMPANY Revision 4 CALCULATION NO. 228-B-040M-002 PROJECT NO. 09432-778 PAGE NO. I1 5.14. Mechanics of Fluids. Irving H. Shames, Second Edition, Fourth Printing,1988.

5.15. NDIT No. ZDE-97-004,

Subject:

" The following information is design input for the contamment coating transport calculation, Zion calculation No. 22S-B-040M-002", Rev. O,1/14/97.

5.16. Gibbs & Hill Report, " Evaluation of Paint and Insulation Debris Effects on Contamment Emergency Sump Performance", June 1984.

i 5.17. " Safety Evaluation Report related to the Operation of Comanche Peak Steam Electric Station, Units 1 and 2", Docket Nos. 50-445 and 50-446, NUREG-0797, Supplement 9, TI85 901305, US Nuclear Regulatory Commission, March 1985.

5.18. NDIT No. ZDE-97-002,

Subject:

" The foll,owing informeion is design input for the containment coating transport calculation, Zion calculation No. 22S-B-040M-002", Rev. O,1/10/97.

5.19. Fluid Mechanics, Frank M. White, Second Edition,1986.

5.20. Boundary Laver Theory. Hermann Schlichting, Fourth Edition,1960.

5.21. Carboline 195 Surfacer Specification Data, November 1989.

5.22. NDIT No. ZDE-97-004,

Subject:

"Contamment coating transport calculation, Zion calculation No. 22S-B-040M-002", Rev.1,1/21/97.

5.23. NDIT No. ZDE-97-002,

Subject:

" Contamment coating transport calculation, Zion calculation No. 22S-B-040M-002", Rev.1,1/20/97 i

l 4

. I REVISION NO. I

I Exhibit E -

NT P-12-02  !

COMMONWEALTH EDISON COMPANY Revision 4  !

j CALCULATION NO 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO.12

6. CALCULATIONS l

'Ile methodology used in this calculation is based on the approach used in the " Evaluation of Paint and Insulation Debris Effects on Contamment Emergency Sump Performance" performed for the Comanche Peak Station (Reference 5.16). This methodology was been previously reviewed and accepted by the US NRC as documented in Appendix L of Reference 5.17.

I 6.1. Symbols, Subscripts A, Area cf particle normal to flow l

A. Surface area of particle Cn Drag coefficient Cr Drag coefficient for skin friction based on surface area I d Diameter of particle F4 Force available to cause motion l Fo Lift force j Fu Force required to cause motion l Fu Normal force g Local acceleration of gravity

g. Newton's constant h Flood levelheight L Length scale for use in Reynolds Ntunber Q Total pump flow rate in recirculation mode r Radius of zone ofinfluence Re Reynolds Number Re = VUv t Thickness ofparticle V Velocity of flow V. Volume of particle REV1510N NO. I

Exhibit E l NTP-12-02 l COMMONWEALTH EDISON COMPANY Revision 4 l CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO.13 l 1

6 Thickness of bc,undary layer for flow parallel to floor pa Coefficient ofdynamic friction  ;

I

p. Coefficient of static friction j

, i i p. Density of material .  ;

pw Density ofwater l

l v Kinematic viscosity of water l 6.2. Zone ofInfluence  !

l i The zone ofinfluence is defined as the radius extendmg from the center of the sump enclosure projected onto the post-LOCA floodmg water surface in which debris can land such that it would j not settle on the contamment floor and remam in place, but rather would be transported to the l sump enclosure by the flow of water towards the sump, bemg retamed on the outer sump screen.

l l He zone ofinfluence is determmed by calculating the maximum horizontal distance traveled by a l l particle that starts at the water surface and ends at a location on the containment floor at elevation i 568'-0" where the flow of water provides enough momentum to carry the particle to the containment sump. Separate zones ofinfluence will be deternuned for each type of coatmg system.

De zone ofinfluence for each type of debris will be determined in two steps. The first step is to determine the maximum distance from the center of the sump enclosure where the flow of water will provide enough force to move the debris along the floor towards the sump. _nis distance is identi6ed as radius ri , shown in Figure 1. Generally, debris is transported towards the sump if the

fluid drag caused by local water velocities are sufficient to overcome frictional forces when buoyancy and lift forces are considered. %e paint chips will be modeled as circular disks for the purposes of calculating the distance ri. The distance along the containment floor from the center of the sump in which the force required to cause motion is equal to the force available to caus

!_ motion is considered the furthest point from where the sunken debris can be transported to the sump. Any debris which settles on the containment floor farther away than this distance will be considered outside the zone ofinfluence. To determine the force required to cause motion, the sunken debris is analyzed as tumbling, sliding, and stationary. De water velocity required for each of these potential motions is deternuned using the following equations provided in Reference

! 5.16.

l l . 6.2.1 Water velocity required for debris to tumble i

i REVfSION NO. 1

___ __ . _ . - _ . ~ . _ . _ _ - _ _ _ . . _ . ~ . __ - _ _ _ _ _ _ _ _ _ _ _ .

! Exhibit E l

! NEP-12-02 l COMMONWEALTH EDISON COMPANY Revision 4 CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO.14 i

To determine the lowest water velocity required to cause the debris to tumble, the debris is l assumed to have its maximum surface area orientated normal to the flow, and the lift force is  ;

assumed to be zero. The lowest expected water temperature is used to determine the density and j kinematic viscosity of the water, conservatively muumizing the water velocity required to cause j the debris to move. j l

i f

Fu= p,Fg i

Fy = (p, -pa)V, E-Fi l 8e j

- t l

F=0 t l t

p _ coa pp w Y,'a 2g, )

i where Co = 1.17 for circular disk nonnal to flow per Reference 5.14 i

at Fu = Fa l V, = (W4)dt Ar = (d4)d  !

2 8P,(P.-Pw)t V.a _) C o p,  :

r i

6.2.2 Water velocity required for debris to slide along the containment floor  !

To determine the lowest water velocity required to cause the debris to slide along the contamment  !

floor, the debris is assumed to have maximum surface area parallel to the contamment floor, and the lift force is set equal to the available force. 'Ihe lowest expected water temperature is used to determine the density and kinematic viscosity of the water, conservatively muumizmg the water velocity required to cause the debris to move.

Fu =psu F 1

N= P. -Pw)V, E-Ft j

z.  ;

i REVISION NO. 1 i

Exhibit E NEP-12-02  !

COMMONWEALTH EDISON COMPANY Revision 4 i l

CALCIILATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO.15 l J

Fo = F, -

p ,CApw,L op V 2e.  !

In this orientation the paint chip is similar to a thin plate parallel to the direction of flow, and the primary contribution to drag is skin friction rather than pressure, or form drag. He equation for FA presented in Reference 5.16 uses the projected area normal to flow, and therefore the value of Co should include the dominant effect of skin friction drag acting on the exposed surface parallel to the flow, as well as any contribution from pressure drag acting on the projected area of the particle.

Reference 5.20 provides the following equation for calculatmg the skin friction drag coefficient for lanunar boundary layer flow over a flat plate:

1 Cf = y.328 The appropriate length scale for use in the Reynolds number is that associated with the containment floor, rather than the paint chip diameter. He flow field at the floor is detemuned by the boundary layer induced by the floor, and the presence of the paint chip has almost no effect on the boundary layer.

For the purposes of computing a skin friction drag coefficient, Cr, a Reynolds number of 10' will be assumed, with justification provided below. To comert the drag coefficient based on skin friction to one based on pressure drag acting on the projected area, the following relation is used.

CrAs = CoAp He wetted surface area and projected area normal to the flow for a paint chip on the containment floor are respectively given by:

2 As = (x/4)d Ap = dt 3 The drag coefficient based on projected area is then computed as Co = Cc4txd REVISION NO. 1 i

l Exhibit E NEP-12-02 j l COMMONWEALTH EDISON COMPANY Revision 4 !

CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO.16 l

l This coefficient represents only the effect of skin friction acting on the paint chip. While skin

( friction is the dommant contribution in this geometry, a small pressure drag component should be included, and the value of Co calculated above will be increased by 10 percent. This is l conservative with respect to Figure 7.12 of Reference 5.19, which illustrates the relative l contributions of friction drag and pressure drag to the total drag for flow past a streamhned l cylinder at varying aspect ratios. For the paint chips exanuned in this calculation, an upper bound I

on thickness is 10 mils, resulting in an aspect ratio of 0.01/0.5 = 0.02, and corresponding to a pressure drag contribution ofless than five percent per Figure 7.12 of Reference 5.19. Including ,

the effect of pressure drag results in the following equction for the drag coefficient.

Co= 1.1Cf nd . j 41 To calculate the muumum water velocity required to slide the paint chip across the containment floor, the force required to cause motion is equated with the force available to cause motion.

at Fu = Fa V,, = (m'4)d't Ar=dt l

1/2 2gp,(p, - pw)Ed 4

V=

Copw(1 + p,)

Using this velocity and the assumed value of 10' for the Reynolds number, the length scale L can be computed. This has a value on the order of one foot for the range of paint chips considered.

This implies that a boundary layer is initiated approximately one foot upstream of the paint chip i for the boundary layer to develop to the point where the local Reynolds number reaches 10' at the location of the paint chip. It is judged that a boundary layer will develop further upstream than one foot, considering the size of the contamment floor and the possible flow of water over ,

irregularities on the floor which would result in boundary layer formation.

To confum the assumption that the presence of the paint chip has negligible effect on the boundary layer induced by the floor, the thickness of the paint chip will be compared to the boundary layer thickness at the assumed Reynolds number value of 10'. The thickness of a l !ammar boundary layer is given in Reference 5.20 by the equation.

! 1

. SL S =3/Ret I

REVISION NO. I

Exhibit E l '

NTP-12-02

( COMMONWEALTH EDISON COMPANY Revision 4 f CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO.17 l I

A typical boundary layer thickness for the paint chips considered is on the order of 100 mils, many times that of the paint chip.

6.2.3 Water velocity required for debris to remam stationary on the contamment floor  :

1 l

To determine the lowest water velocity required to cause the debris to start moving once it has ,

t become stationary, the orientation of the debris is such that the center ofgravity of the debris is j closest to the floor. Ec greatest surface area of the debris particle to contamment recirculation  ;

flow that is exposed is consistent with this location of center of gravity. Therefore, the maximum i surface area is orientated parallel to the contamment floor. Ec approach in this case is identical  !

i to that of Section 6.2.2 except that the static coefficient of friction is used instead of the dynamic j value. 1 l

Fu = p,F, l Fu = (p, -pa)V, E--Fi e,

Ft = F, V'

F,_ coa,pw

? 2g, at Fu = Fa I V, = (m'4)d's l Ar = dt

- "* I d'

2gp,(p,- p,) 4 V, =

Cop,(1+ p,) ,

i e

r l

REVISION NO. 1 ,

Exhibit E NEP-12-02 COMMONWEALTH EDISON COMPANY Revision 4 CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO. I8 i l

In order to determine the maximum distance from the center of the sump for which a particle may move along the floor, ri, the nummum of V,u, and V,w is used. The velocity required for tumbling is much lower than these, and will not be considered. Once a paint chip in water with local velocity Va tumbles 90

  • forward, it is in the orientation used in the calculation of V,w, ,

requiring a much greater local water velocity to continue motion towards the sump screen. It is unlikely that the momentum of the paint chip will result in a large displacement at local water velocity of Va In addition, NRC Regulatory Guide 1.82 (Reference 5.1) states that at water velocities below 0.2 ft/sec, debris with a specific gravity of 1.05 or more is likely to settle before reaching the screen surface. Finally, this approach is consistent with Table 6.2-23 of Reference l 5.15 which ignores tumble velocity when presenting the critical velocity for various paint i

. particles. l The second step in deternunmg the zone ofinfluence requires calculating the horizontal distance a debris particle could move as it travels from the surface of the water to the contamment floor. l His distance is identified as x in Figure 1. He vertical distance h is equal to the flood height. He i zone ofinfluence is then given as r2 where:

r2 = r; + x In order to calculate the value ofx, the ternunal velocity of a sinkmg debris particle must be determined. In addition, an average horizontal water velocity between points r, and r2 must be computed. Once these are known, then by geometry the distance r can be calculated using the relation

] x=h V'"

V.

6.2.4 Temunal velocity of debris sinking through water The ternunal velocity of the debris as it sinks from the surface of the water to the containment

> floor is determined by writing a vertical force balance on the particle as it sinks at constant velocity. He chip will be modeled as a horizontal disk and also a sphere for calculating the

terminal velocity. He nummum of these velocities will be used to conservatively maxrmize the zone ofinfluence. Equating the drag force to net body force (gravity minus buo32ncy) results in the following:

i 2

coa,p,V 2

For a circular disk aligned parallel to the floor the following are applicable.

Y,,, = (d4)d't Ar = (d4)d' RE ISION NO. 1 i

Exhibit E NEP-12-02 COMMONWEALTH EDISON COMPANY Revision 4 l CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO.19

- Co = 1.17 per Assumption 3.1-2E(P"-pw)t For a disk:

V=\ Co p, If the particle is modeled as a sphere, preserving the paint chip volume, then the ternunal velocity is calculated using an equivalent diameter, d .

1 i

-1/3 d, = d't 2 .

V. - (W6)d!

Ar = (W4)d!

Co - 0.47 per Assumption 3.1 n

2g(p,-p,) 3 j For a sphere: V=

C o p,

i 4

! 6.2.5 Calculating average horizontal velocity v

With the assumption of cylindrically uniform velocity fields, the volumetric flow rate (ft'/sec) of l

the RHR pumps during recirculation is preserved at all radii from the center of the sump.

Q = V2 A, = V i A, V22xr 2h = V i2xr i h r2 = r, + x V2 = V,1 = V, r '+' x r2 i

'lh log-mean average water velocity between ri and r2 is given by I

l REWSION NO. 1 i

Exhibit E NEP-12-02 COMMONWEALTH EDISON COMPANY Revision 4 CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO. 20 I'

V, 1-

. V=-- ' r-y, 2-3- r r+x'

'+*-

i in In (Vs 2 ( r, s By geometry, l-i h r, + x 1= V - -

Vx ' r, + x' s r, s When the right hand side of the a~oove equation is equal to 1, the correct value ofx, and therefore

the correct extended zone ofinfluence has been determined. This procedure will be performed in an Excel spreadsheet, detennimng the zones ofinfluence for the various types of coatings listed in

. Sections 4.8,4.10, and 4.11.

i The water height will be varied through the possible range of flood levels as specified in Sections 4 4.2 and 4.3. To address the possible variation in flood height during the time a coatmg particle

. moves from the outer radius of the zone ofinfluence to the sump, this change in flood level will be calculated as a function of RHR pump flow in gpm Q, effective contamment floor surface area in ft2A and the water velocities calculated from above.

he velocity of the particle as it moves to the floor, using horizontal and vertical velocity components r

_x' '

I V ,=./V,2_ + y2 = (y )2+y2 =y 3+

e The distance along this path, d, is given by 2

i d = dx2 + h i The time required for the particle to move from the water surface to the floor is called Ati and is computed as d

. Ati =

V,

%c maximum time required for the particle to move to the sump once it reaches the floor is called At 2and is computed as

- REVISION NO. 1

. . . ~ .. . .- - . - . - . - - - - - . . - - . , .. - -.-. - - -. . . - - - . . _ - . - . . ,

I Exhibit E  !

, NEP-12-02  !

COMMONWEALTH EDISON COMPANY Revision 4 l CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO. 21 i e,

i l At: =V,l

'Ihe total transit time of a particle as it moves from the maxunum zone ofinfluence radius at the water surface to the sump is given by the sum of Ati and At 2. The change in water height during i e the particle transit time is calculated as follows:  ;

. At = Ati + At 2- - *

&= At'"*'

(7.4805)(60)A %

This change is'small compared to the initial value used in the spreadsheet calculation, and .

l l therefore the local water velocities determmed from above can be considered as constant during

the transit time of the particles.

6.3. Geometric correction to zone ofinfluence to account for missile barrier 4

[ If the calculated zone ofinfluence extends to the missile barrier, then the assumption of a cylindrically uniform velocity field cannot be ==i'*=iW In this case, the zone ofinfluence must be skewed away from the missile barrier towards the center of the reactor building to namintain a

constant surface area for water flow, presemng the volumetric flow rate required by the RHR pumps. Per Reference 5.22, a walkdown of the Unit 2 sump enclosure gives the mimmum distance i F from the outer sump screen to the inner wall of the missile barrier as T-3% ". In addition, the

! sump screen structure is 4'-9" wide, per Zion Drawing No. B-278, Rev. H (Reference 5.13) as

! shown in Figure 4. With the zone ofinfluence model based on the center of the sump structure, the nunimum distance to the missile barrier wall is taken to be 2'-4%" + 7'-3%" = 9.69 feet. If any calculated zone ofinfluence exceeds this value, a geometric correction will be applied as I shown on Figure 2.

To preserve the volumetric flow rate based on inward flow of water at velocityV2 at the zone of l influence radius r2, the followmg equation must be satisfied for the corrected zone ofinfluence

! radius r3 2xr2 h = (2x-24)r h 3 -  !

E

Simplifying- 3
r = r x-$ -

i '

l.

REVISION NO. I 1

t .* + W>e rw w up q '

y. M - - -

Exhibit E NEP-12-02 COMMONWEALTH EDISON COMPANY Revision 4 l CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO. 22 i

i Since both r3 and 4 are udnown, the following approach will be used. The coordinates of the center of the sump enclosure (xo, yo) are estunated from Zion Station Drawings B-278 Rev. H and i B-233 Rev. L, Figures 4 and i respectively. To match the mmimum distance to the missile barrier l given in the walkdown data, tle sump enclosure centerpoint coordinates will be adjusted so that the distance a of Figure 2 is equal to 9.69 feet. With the distance ofleg a known, the point (xi, yi)

{ is determined. The following m :thodology is then used to determine the corrected zone of influence radius, r3

  • Guess a value of the angle 0 x2 = R cos(0) y2 = R sin (0)

. Compute length of triatigle legs b and c b = ](x, - x )'o +(y2 - Y,>)'

c = ](x 2- x )*i +(y2 - y,)*

  • Compute 4 from the Law ofcosines 2 2 2 c = a + b -2abcos$

'a' + b2 - c2-

$=cos_i 2ab .

Since b = r3, iterate on 0 until r3 - b = 0 using current values of b, c, and 4 Ris procedure was performed for a range of values of r2 to determine the corrected zone of influence r3, with the calculations shown in Table 17. These results are plotted in Figure 6, with a polynomial curve fit to the data for use in Tables 4 through 13. As shown in Figure 6, the correction becomes very large for values of r2 greater than 19 feet. Beyond this range, the curve fit is not applicable and the corrected zone ofinfluence is conservativelyjudged to be unbounded.

l 6.4. Particle retention on sump screen l .

l The ability to retain particles on the sump screen is related to the water approach velocity in the l vicinity of the screen. The nummum water velocity required to hold a particle against the screen l can be obtained by performing a force ba!ance on the particle. He force balance consists of l

equating the body force to the sum of the friction and buoyancy forces, as shown in Figure 3.

REVISION NO. 1

Exhibit E NEP-12-02 COMMONWEALTH EDISON COMPANY Revision 4 CALCULATION NO. 22S-B-040M-002 PROJECT NO. 09432-778 PAGE NO. 23 p,V,g / g, = p,Fo + p,V,g / g, ne drag force due to the approach velocity of the water is given by the equation coa ppwV 2 F=

o 2g, where Co = 1.17 for a disk oriented normal to the flow.

Substituting and solving for the nununum approach velocity which would retain the particle on the screen yields:

2g(p,-pw)t y"" __ ) Co ,p,

~

For approach velocities greater than the retention velocity, a paint chip would be retamed on the sump screen.

7.

SUMMARY

AND CONCLUSIONS The results of the calculation are summarized in Tables 1 through 3 for the coatings considered in this analysis. He zones ofinfluence for the undocumented coatings with known specific gravities are presented in Table 1, with a maximum value of 16.5 feet. The zones ofinfluence for the undocumented coatings with unknown specific gravities, with assumed values of 1.5,1.7, and 2.0, are presented in Table 2, spanning the range of coatmg thickness. Table 2 shows that the zone of influence is panicularly sensitive to the value of specific grasity. For the nummum coating thickness of 1.0 mil, the maximum zone ofinfluence is 49.1 feet for a specific gravity value of 1.5. Table 3 presents results for the documented coatings.

Tables 4 through 13 include the detailed calculations for the zones ofinfluence at the bounding flood level heights of 1.0 and 5.06 feet for the coating systems considered. To demonstrate that the maximum zone ofinfluence occurs at one of these bounding flood levels, Tables 18 through 20 include the zone ofinfluence calculation for all coating systems at an intermediate flood level height of 3.0 feet. For all coating systems, a flood level height of 3.0 feet produces a smaller zone ofinfluence than the value calculated at one of the bounding flood level heights.

He retention velocities, or muumum water approach velocity required to keep the failed paint chips on the sump screen, are calculated in Tables 14 through 16 for all of the coating systems For all coating systems, the retention velocity is less than the water approach velocity at the sump screen at the total pump flow rate of 9000 gpm. Therefore, all paint chips within their respective zone ofinfluence will be retained on the sump screen.

REVISION NO. I

Calculation No. 22S-B-040M-002 Revision 1 Page 24 Table 1 Summary of Results for Undocumented Coatings with Known Specific Gravities Specific Thickness Maxunum Zone Retention Coating Systems Gravity (mils) ofInfluence (ft) Velocity (ft/sec) 1 2.48 5.76 9.0 0.31 2 2.28 2.02 16.0 0.17 3 1.75 7.36 9.6 0.25 )

4 1.71 8.38 9.5 0.26 l 5 2.73 1.88 15.1 0.19 l 6 1.61 4.74 15.5 0.18 7 1.88 3.98 14.9 0.20  !

8 1.98 2.90 15.6 0.18 9 1.72 4.86 14.9 0.20 10 1.70 3.32 16.5 0.16 11 2.70 3.56 9.5 0.17 l Note: "Ite retention velocity is the rninimum water approach velocity at the sump screen that will retain the paint chip on the screen.

For a rectreulation flow rate of 9000 gpm and a sump screen area of 27.94 ft*,

the water approach velocity is 0.72 ft/sec.  !

t l

l 1

l l

l l

i I

l 1

l

4 v

Calculation No. 22S-B-040M.002 4

Revision 1 Page 25

Table 2 Summary of Results for Undocumented Coatings with Unknown Specific Gravities l

Specific Tidckness Maximum Zone Retention

. Coating Systems Gravity (mils) ofInfluence (ft) Velocity (fVsec) 1 1.5 1.0 49.1 0.08 2 1.5 1.5 32.4 0.09 3 1.5 2.0 27.1 0.11 4 1.5 2.5 23.4 0.12

5 1.5 3.0 20.5 0.13 l 6 1.5 3.5 18.2 0.14 l 7 1.5 4.0 17.3 0.15 8 1.5 4.56 16.6 0.16 i

1 1.7 1.0 34.1 0.09 2 1.7 1.5 26.4 0.11 4

3 1.7 2.0 21.6 0.13 4 1.7 2.5 18.3 0.14

{

. 5 1.7 3.0 17.1 0.16 2 6 1.7 3.5 16.3 0.17 7 1.7 4.0 15.7 0.18 8 1.7 4.56 15.2 0.19 1 2.0 1.0 27.2 0.11 4 2 2.0 1.5 20.6 0.13 3 2.0 2.0 17.3 0.15 l

4 2.0 2.5 16.2 0.17 5 2.0 3.0 15.4 0.19 6 2.0 3.5 14.9 0.20 7 2.0 4.0 14.6 0.22 8 2.0 4.56 14.3 0.23 Note: The retention velocity is the minimum water approach velocity at the sump screen that will retain the paint chip on the screen.

2 For a recirculation flow rate of 9000 gpm and a sump screen area of 27.94 ft ,

the water approach velocity is 0.72 fVsec.

4

. - - ~ . - . . .. . -

Calculation No. 22S-B-040M-002 Revision 1 Page 26 Table 3 Summary of Results for Documented Coatings 1

Specific Thickness Maximum Zone Retention Coating Systems Gravity (mils) ofInfluence (ft) Velocity (ft/sec)

Steel Structures j Carbo Zinc 11 5.6 3.0 8.4 0.40 Phenoline 305 Finish 1.4 4.0 19.5 0.14 Concrete Walls 195 Surfacer 1.7 2.0 21.6 0.13 Phenoline 305 Primer 1.00 4.0 Unbounded 0.02 Phenoline 305 Finish 1.4 2.5 27.0 0.11 i l

Concrete Floors Phenoline 305 Primer 1.00 6.0 Unbounded 0.02 ,

Phenoline 305 Finish 1.4 6.0 16.3 0.17 l Note: The retention velocity is the minimum water approach velocity at the sump  !

screen that will retain the paint chip on the screen. l I

For a recirculation Gow rate of 9000 gpm and a sump screen area of 27.94 ft ,

2

)

the water approach velocity is 0.72 ft/sec. l l

l 4

Project No. 09432 778 Cciculation No. 22S-B.040MC2 Revision 1 Table 4 Page 27 Zone of Influence for Undocumented Coatings - Flood Level of 1.0 foot Total Recirculation How(gpm) 9000 Area of Outer Screen, A (fta2) 27.94 Water velocity at Outer Screen (ft/sec) 0.72 Coating Systems 1 2 3 4 5 6 7 8 9 10 11 Reference density of water @ 40*F (Ib./ft') 62.427 Specific gravity ctpaira 2.48 2.28 1.75 1.71 2.73 1.61 1.88 1.98 1.72 1.70 2.70 Density of paint (ib./A') 154.82 14233 109.25 106.75 170.42 100.51 11736 123.60 10737 106.13 168.55 Diameter of chip (in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

'Ibickness ofchip (mils) 5.76 2.02 736 838 1.88 4.74 3.98 2.90 4.86 332 3.56 Density of water @ 100*F (ib./ft3 ) 62.0 Kinematic viscosity of water @ 100'F (ft'/sec) 738FA6 local acceleration of gravity (ft'/sec) 32.2 Static coefficiend of friction, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 l Dynanuc coefficient of friction, pe 035 035 035 035 035 035 0.35 035 035 035 035 i l

Drag coefficient for disk normal to flow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Velocity required to tumble (Wsec) 0.13 0.07 0.10 ' 0.11 0.08 0.07 0.08 0.07 0.08 0.07 0.11 Skin friction drag coefficient based ch surface area at R. =

10 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 Arca ratio As/Ap 68.18 194.41 5336 46.86 208.88 82.85 98.67 135.41 80.80 118.28 110.31 i Drag coefficiera for disk parallel to flow 1.00 2.84 0.78 0.68 3.05 1.21 1.44 1.98 1.18 1.73 1.61 ,

Velocity required fram stationary position (ft/sec) 0.95 0.52 0.77 0.80 0.59 0.56 0.61 0.55 0.61 0.50 0.80 Velocity required for sliding along ooor (ft/sec) 0.91 0.50 0.73 0.76 0.56 0.53 0.58 0.52 0.58 0.47 0.76 1 length scale for Re = 10' based on flow along Door (ft) 0.08 0.15 0.10 0.10 0.14 0.14 0.13 0.14 0.13 0.16 0.10 1 12nunar boundary layer thickness at Re = 10'(usis) 50.0 90.8 62.0 59.7 81.0 85.6 77.9 86.6 77.9 95.6 59.4 Tmninal velocity for horizontal disk (ft/sec) 0.199 0.110 0.160 0.167 0.123 0.116 0.128 0.115 0.128 0.104 0.168 Equivalent diarneter for sphert (in) 0.129 0.091 0.140 0.146 0.089 0.121 0.114 0.103 0.122 0 108 0.110 Drag coefficient for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 Terminal velocity for sphero (ft/sec) 1.214 0.948 0.902 0.897 l 088 0.757 0.881 0.882 0.825 0.763 1.200 l Flood heigid (feet) 1.00 1.00 1.00 1.00 ?no 1.00 1.00 1.00 1.00 1.00 1.00 Distance from sump for possible movemad along containment 0oor, ri (feet) 3.52 639 437 4.20 5.70 6.03 5.49 6.09 5.48 6.73 4.18 cSolve this cell for value = 1 by varying the extended zone increment, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Extended zone increment, x (feet) 333 3.66 3.45 3.43 3.60 3.63 3.58 3.64 3.58 3.69 3.43 Radius ofzone.of. influence, sr (feet) 6.8 10.1 7.8 7.6 93 9.7 9.1 9.7 9.1 10.4 7.6 Make geometric correction Distance frorn center of sump enclosure to missile barrier (ft) 9.69 Maximurn radius for zone ofinfluena including gearretry correction for misaile wall, r3 (ft) 6.8 14.6 7.8 7.6 93 9.7 9.1 14.2 9.1 15.2 7.6 V, ,(fUsec) 0 69 0.42 0.58 0.60 0.46 0.44 0.47 0.43 0.47 0.40 0.60 Glide distance (ft) 3.47 3.80 3.60 3.57 3.74 3.77 3.72 3.77 3.72 3.82 3.57 ot i(sec) 5.03 9.13 6.23 6.00 8.14 8.61 7.83 8.70 7.83 9.61 5.97 C3(sec) 3.89 12.80 5.97 5.54 10.19 1138 9.43 11.63 9.42 14.18 5.48 Total transit time (sec) 8.91 21.93 12.21 11.54 1833 19.99 17.26 20.33 17.25 23.79 11.45 Cha~ d floor surface ares (A^2) 10638 10638 10638 10638 10638 10638 10638 10638 10638 10638 10638 Rats of change of water height (ft/sec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 Mi during total transit time (ft) 0.017 0.041 0.023 0.022 0.035 0.038 0.033 0.038 0.033 0.045 0.022 Percent change in water height 1.7 4.1 23 2.2 3.5 3.8 33 3.8 33 4.5 2.2 4

Project No. 09432 778 Calculation Na 22S-B-040M402 Revision 1 Table 5 Page 28 Zone of Irtfluence for Undocumented Coatings - Flood Level of 5.06 feet Total Recirculation Flow (gpm) 9000 Area of Outer Screert A (ft*2) 27.94 Water velocity at Outer Screen (Nsec) 0.72 Coating Systems 1 2 3 4 5 6 7 8 9 10 11 Referenos density of water @ 40*F (IbdA') 62.427 Specific gravity ofpaird 2.48 2.28 1.75 1.71 2.73 1.61 1.88 1.98 1.72 1.70 2.70 Density of paird(lbsa') 154.82 14233 109.25 106.75 170.42 100.51 11736 123.60 10737 106.13 168.55 Diameter ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Thickswas orchip (mits) 5.76 2.02 736 838 1.88 4.74 3.98 2.90 4.86 332 3.56 Deesity ofwater @ 100*F(1bsAs) 62.0 8

Kinematse vismaity of water @ 100*F (ft /sec) 738E 06 local acceleration of gravity (ft'/sec) 32.2 Static coefficierd of friction, pg 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Dynamicmemeiersoffrictiors a 035 035 035 035 035 035 035 035 035 035 0.35 Drag coefficiers for disk normal to flow 1.17 1.17 1.17 , 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Velocity required to tumble (Wsec) 0.13 0.07 0.10 0.!! 0.08 0.07 0.08 0.07 0.08 0.07 0.11 Skin friction drag coefficierd based on surface area at R. -

10' 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 Arca ratio As/Ap 68.18 194.41 5336 46.86 208.88 82.85 98.67 135.41 80.80 118.28 11031 1

Drag coefficient for disk parallel to flow 1.00 2.84 0.78 0.68 3.05 1.21 1.44 1.98 1.18 1.73 1.61 Velocity required frem stationary position (Weec) 0.95 0.52 0.77 0.80 0.59 0.56 0.61 0.55 0.61 0.50 0.80 Velocity raguired for sliding along floor (Wsec) 0.91 0.50 0.73 0.76 0.56 0.53 0.58 0.52 0.58 0.47 0.76 Imsth scale for Re = 10* based on flow along floor (ft) 0.09 0.17 0.11 0.11 0.15 0.16 0.14 0.16 0.14 0.18 0.11 i ammar boundary layer thickness at Re - 10* (mits) 55.4 100.5 68.6 66.1 89.6 94.7 86.2 95.8 86.2 105.7 65.7 l

Terminal velocity for horizontal disk (ft/sec) 0.199 0.110 0.160 0.167 0.123 0.116 0.128 0.115 0.128 0.104 0.168 Equivalent diameter for sphere (in) 0.129 0.091 0.140 0.146 0.089 0.121 0.114 0.103 0.122 0.108 0.110 Drag coefficient for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 Terminal velocity for sphere (ft/sec) 1.214 0.948 0.902 0.897 1.088 0.757 0.881 0.882 0.825 0.763 1.200 Flood height (fect) 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 Distance from sump for possible rnovement along mutammentfloor ri(feet) 0.70 1.26 0.86 0.83 1.13 1.19 1.08 1.20 1.08 133 0.83 8 Solve this cell for value = 1 by varying the extended zone unement, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Extended zone increment, x (feet) 831 9.50 8.72 8.64 9.26 937 9.18 9.40 9.17 9.61 8.63 Radius of zoneef-influence, rs (feet) 9.0 10.8 9.6 9.5 10.4 10.6 103 10.6 103 10.9 9.5 Make geometric conection Dunance from center of sump enclosure to missile barrier (A) 9.69 Maximum radius for zone ofinfluence including geometry conectioc for missile wall sr (ft) 9.0 16.0 9.6 9.5 15.1 15.5 14.9 15.6 14.9 16.5 9.5 Vg(fVsee) 038 0.23 032 033 0.26 0.24 0.26 0.24 0.26 0.22 033 Glide distance (ft) 9.73 10.76 10.08 10.02 10.55 10.65 10.48 10.67 10.48 10.86 10.01 at i (sm) 25.44 46.18 31.55 3038 41.20 43.54 39.63 44.01 39.62 48.60 30.21 at (sec) 0.77 2.53 1.18 1.09 2.01 2.25 1.86 230 1.86 2.80 1.08 Total transit time (sec) 26.21 48.71 32.73 31.47 43.22 45.79 41.49 4631 41.48 51.41 31.29 CA-me

  • floor surfacc area (fla2) 10638 10638 10638 10638 10638 10638 10638 10638 10638 10638 10638 Rate ofchange of water height (ft/sec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 MI during totaltransit time (11) 0.049 0.092 0.062 0.059 0.081 0.086 0.078 0.087 0.078 0.097 0.059 Percent change in water height 1.0 1.8 1.2 1.2 1.6 1.7 1.5 1.7 1.5 1.9 1.2

1 Cdeulation No. 225.B440M402  !

Revision 1 Table 6 Page 29 Zone of Influence for Undocumented Coatings with Assumed Specific Gravity of 1.5 (Flood Level of 1.0 foot)

Total Recirculation Flow (gpm) 9000 ,

Arcr. of Outer Screen, A (ft*2) 27.94 Water velocity at Outer Screen (Wsec) 0.72 Coating Systems Reference density of water @ 40*F (IbdA') 62.427 Specific gravity ofpaire 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Density of paint (Ibdft') 93.64 93.64 93.64 93.64 93.64 93.64 93.64 93.64 Diameter ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 "Ihicknessofchip (mits) 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.56 l

Density ofwater @ 100*F(Ibdit3) 62.0 Kmematic vismaity of water @ 100*F (ft*/sec) 738506 lecal acceleration of gravity (A'/sec) 32.2 Static ocefficierd of friction, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Dynamic ceefficiers offdction, pe 035 035 035 035 035 035 035 035 I Drag coefficiers for disk normal to flow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Velocity required to tumble (ft/sec) 0.03 0.04 ' O.04 0.05 0.05 0.06 0.06 0.07 Sk.in friction drag coefficient based on surface area at R. = 10' O.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 Arca ratio As/Ap 392.70 261.80 19635 157.08 130.90 112.20 98.17 86.12 Drag coefficient for disk parallel to Dow 5.74 3.82 2.87 2.29 1.91 1.64 1.43 1.26 Velocity required from utationary position (ft/sec) 0.23 0.28 033 037 0.40 0.43 0.46 0.49 Velocity required for sliding along floor (fWec) 0.22 0.27 031 035 038 0.41 0.44 0.47 Imgth scale for Re = 10' based on flow along floor (ft) 034 0.28 0.24 0.22 0.20 0.18 0.17 0.16 laaunar boundary layer thickness at Re = 10* (mils) 205.7 167.9 145.4 130.1  !!8.7 109.9 102.8 96 3 Terminal velocity for horuordal disk (ft/sec) 0.048 0.059 0.068 0.076 0.084 0.091 0.097 0.103 Equivalent diameter for sphere (in) 0.072 0.083 0.091 0.098 0.104 0.109 0.114 0.120 Drag coediciers for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 Terminalvelocity for sphere (Waec) 0.529 0.566 0.594 0.617 0.636 0.652 0.667 0.682 Flood height (feet) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Distance from sump for possible movemers along contamrr ent floor,ri (feet) 14.48 11.82 10.24 9.16 836 7.74 7.24 6.78

' Solve this cell for value = 1 by varying the extended zone mcrement, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Extended zone inaement, x (feet) 4.04 3.96 3.90 3.84 3.80 3.76 3.73 3.69 Radius ofzorwef-inDuence, r (fect) 18.5 15.8 14.1 13.0 12.2 11.5 11.0 10.5 Make geometric correction Distance from center of sump enclosure to missile barrier (ft) 9.69 Maximum radius for zone ofinfluence including geometry correction for missile wall, rs (A) 49.1 32.4 27.1 23.4 20.5 18.2 16.6 153 Ve(ft/sec) 0.20 0.24 0.28 030 033 035 037 0.40 Glide distance (ft) 4.16 4.08 4.02 3.97 3.93 3.89 3.86 3.83 At:(sec) 20.67 16.88 14.62 13.07 11.93  !!.05 1033 9.68 ot:(sec) 65.66 43.77 32.t3 26.26 21.89 18.76 16.41 14.40 Tc altransit time (sec) 8633 60.65 47.44 3934 33.82 29.81 26.75 24.08 Ceh floor surfacc ares (ft*2) 10638 10638 10638 10638 10638 10638 10638 10638 Rate of change ofwater height (Wacc) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 AH during totaltransit time (ft) 0.163 0.114 0.089 0.074 0.064 0.056 0.050 0.045 Pertent change in water height 16.3 11.4 8.9 7.4 6.4 5.6 5.0 4.5 4

\

l Calculation Na 22S-B440M.002 Revmon I l Table 7 Page 30

- Zone of Infhaence for Undocumented Coatings with Assumed Specific Gravity of 1.5 at a Mood Level of 5.06 feet Total Recirculatior, Flow (sym) ' 9000

, Area ofOuter Screen, A (Aa2) 27.94 Water wlocity at Outer Screen (Waec) 0.72 I. Contmg Systems S

Reference density of water @ 40*F (11VA ) 62.427 Specific 8revity ofpain 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Density ofpaim(ib./As) 93.64 93.64 93.64 93.64 93.64 93.64 93.64 93.64 themster ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 .

Thh ofchip (mils) 1.00 -1.50 2.00 2.50 3.00 3.50 4.00 4.56 Densityofwater@ 100*F(ib rfts) 62.0 Kasmatic viscossey of water @ 100*F (ft*/nac) 7.08FA6 lace! acosteration of pavity (ft'/sec) 32.2 Static onsf5cient offhetson, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Dynanuc coedicient offrictaan, p. 035 035 035 035 035 035 0.35 035 Drag oceSicism for disk normal to flow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 j Velocity required to tinnble (Wesc) 0.03 0.04 ~ 0.04 0.05 0.05 0.06 0.06 0.07 1 I

Sida friction drag ocefficies based on surface area at R. = 10' 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 I Area ratio Aa/Ap 392.70 261.60 19635 157.08 130.90 112.20 98.17 86.12 Drag cosHicies for disk parallel to flow 5.74 3.82 2.87 2.29 1.91 1.64 1.43 1.26

. Velocity ruquired fram stationary position (Waec) 0.23 0.28 033 037 0.40 0.43 0.46 0.49 '

Velocity required for sliding along floor (ft/sec) 0.22 0.27 031 035 038 0.41 0.44 0.47 Imagth scale for Re = 10' based on Sow along floor (R) 038 0.31 0.27 0.24 0.22 0.20 0.19 0.18 1Anunar boundary layer thickness at Re = 10* (mils) 227.5 185.8 160.9 143.9 131.4 121.6 113.8 106.6

- Terminal wlocity for heruantal disk (Waec) . 0.048 0.059 0.068 0.076 0.084 0.091 0.097 0.103

. Equivales diameter for sphers(in) 0.072 0.083 0.091 0.098 0.104 0.109 0.!!4 0.120 Drag ooedicient for sphere 0.47 0.47 0.47 0.47 0.47 ~ 0.47 0.47 0.47 Terminalwiecity for sphere (Weec) 0.529 0.566 0.594 0.617 0.636 0.652 0.667 0.682 j Flood height (feet) 5.06 5.06 5.06 5.06 5.06. 5.06 5.06 5.06 l

Distanos from surnp for possible movement along contamment floor ri(feet) 2.86 234 2.02 1.81 1.65 1.53 1.4.' 134 i

' Solve this cell for value = 1 by verymg the extended zone immement, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -

FM oneincrerned 2 x(feet) ' 11.46 10.94 10.58 1031 10.10 9.92 9.77 9.63 Radius ofzene of.inGuence, r3 (feet) 143 133 12.6 12.1 11.8 11.5 11.2 11.0 Maks geomstric correction l Distamos from comer of sump enclosure to missile barrier (ft) 9.69 M*===u=i radius for zone ofinfluence including geometry cervectaon for missile wall,r a (ft) 27.7 243 22.0 20.4 19.1 18.1 173 16.6 V,,u,(ft/sec) . ' O.12 0.14 0.16 0.17 0.19 . 0.20 0.21 0.22 Olide distance (R) '

12.52 12.05 11.73 11.49 1130 11.14 11.00 10.88

. 4(sec) ' 104.59 8539 73.95 66.15 6038 55.90 $2.29 48.98 at:(sec) 12.98 8.65 6.49 5.19 433 3.71 3.24 2.85 -

Total transit time (ese) . 117.56 94.04 80.44 7134 64.71 59.61 55.54 51.82 Contasuuss floor surfacc ares (ft*2) - 10638 10638 10638 10638 10638 10638- 10638 10638 Rate ofchange ofweier height (Weec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 AH abaring sonaltransit time (ft) 0.222 0.177 0.152 0.134 0.122 0.112 0.105 0.098 Perses change in weder heigle 4.4 3.5 3.0 2.7 2.4 2.2 2.1 1.9 4

_ . _ _ _ _ _ _ _ _ - . _ .____m _ _ _ ___ -- . . . _ _ _ _ _ . _ _ _ . _ _ - - , . - _ _ - - - -

l l

Calculation No. 22S.B-040M 002 -

Rension I Table 8 Pass 31

~

Zone ofInfluence for Undocuniented Coatings witti Asstuned Specific Gravity of 1.7 at a Flood Level of 1.0 foot Total Racirculation Flow (spm) 9000 l' Area of 0 uter Scrosn, A (A^2) 27.94 jt Water velocity at Ouser Screen (Wesc) 0.72 Costang Systems .

8

Referenus density of water @ 407 (Ib /R ) 62.427 i Specific yevity ofpaint 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

)' Density ofpaint(ll@') 106.13 106.13 106.13 106.13 106.13 106.13 106.13 106.13 Diamstar ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Ba- ofchip (mils) .

- 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.56

~

l Dummityofwater@ 100T(IVAs) .

62.0 8

Kansmetac viscosity of weser @ 100T(A /nec) 738E-06 8

1Acal accelerstaan of yevity (A /sec) 32.2 Static cosGicient of tictaan, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Dynanue coeGicient ofinction, m 035 035 035 035 035 035 035 035 Drag condicism for disk nornial to Sow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17

- Velocityrequiredtotunable (Weec) 0.04 0.04 ' 0.05 0.06 0.06 0.07 0.07 0.08 l

Skin friction dras coef5cies based on surface area at R = 10' O.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 ' O.0133 Area retio As/Ap 392.70 261.80 19635 157.08 130.90 112.20 98.17 86.12 Drag cos8icient for disk parallel to flow 5.74 3.82 2.37 2.29 1.91 1.64 1.43 .1.26 l

1 Velocity required inna stationary position (Weec) d.27 033 039 0.43 0.47 0.51 0.55 0.58 Velocity equired for sliding along 6oor (Wasc) 0.26 0.32 037 0.41 0.45 0.49 0.52 0.56 Imsth sale for Re = 10' based on flow along floor (A) 0.29 0.24 0.21 0.18 0.17 0.16 0.15 0.14 i- boundary layer tha- at Re = 10' (mils) 174.2 142.2 123.1 110.1 100.6 93.1 87.1 31.6 l

Tenniaal velocity for heruomal disk (Wesc) 0.057 0.070 0.081 0.090 0.099 - 0.107 0.114 0.122 Equivalent Awar for sphere (in) 0.072 0.083 0.091 0.098 0.104 0.109 0.114 0.120 Drag condicient for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 Tenniaal velocity for sphere (Alese) 0.625 0.669 0.702 0.728 0.751 0.770 0.788 0.805 Flood beishi(fest) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Dusance frue sump for possible movement along contaanmcw Soer,ri (fest) 12.26 10.01 8.67 7.75 7.08 6.55 6.13 5.74

' Solve this cell for value = 1 by verymg the extended zone inarumsm, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 . 1.000  !

F=e==t=4 zone increment, x (fest) 3.97 3.88 3.82 3.76 3.72 3.68 3.64 3.61 Radius of= f " - ; ri(fest) ' 16.2 13.9 12.5 11.5 10.8 10.2 9.8 93 j Make geometric correctaan l Datamos from contar of sump enclosure to missile barrier (R) 9.69 j Ma====t red'us for aans ofinousnoe including geometry .

l estractaanforminilewall rs (A) 34.1 26.4 21.6 183 16.1 14.8 14.2 93 j i

Vos,(Wasc) . 0.23 . 0.28 032- 035 038 0.41 0.43 0.46  !

' Olide distanos (A) . 4.10 4.01 3.95 3.89 3.85 3.81 3.78 3.74 l

Ati (esc) 17.50 14.29 -1238 11.07 10.10 936 8.75 . 8.20 Ms(sec) 47.08 3139- 23.54 18.83 15.69 13.45 11.77 1032 Total transit time (sec) 64.58 45.64 35.92 29.90 25.80 22.81 20.52 18.52 Comanenes floor surfeos ares (A*2) 10638 10638 10638 10638 10638 10638 10638 10638 Rate ofchangs ofwater height (Wesc) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 ali duringiataltransit time (A) .0.122 0.086 0.068 0.056 0.049 0.043 0.039 0.035 Fwass changs in wassr height 12.2 8.6 6.8 5.6 4.9 43 3.9 3.5 4

Calculation Ns. 22S-B-040M402 Revision 1 Table 9 Page 32 Zone ofInfluence for Undocumented Coatings with Assumed Specific Gravity of 1.7 at a Flood Level of 5.06 feet Total Recirculation Flow (spm) 9000 Area ofOuter Screen, A (fta2) 27.94 Water velocity at Outer Screen (ft/sec) 0.72 Contag Systems Reference density of water @ 40*F (IbJft') 62.427 Specific gravity ofpaint 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 Density ofpaint(ibdit') 106.13 106.13 106.13 106.13 106.13 106.13 106.13 106.13 Dieuwter ofchip(in) 0.5 0.5 0.5 0.5 0.5 3.5 0.5 0.5 4 71uckness ofchip (mils) 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.56 Density ofwater @ 100*F(lbsits) 62.0 F6==aw viscosity ofwater @ 100*F (ft*/sec) 738E.06 Imal acceleration of gravity (ft'/sec) 32.2 Static coefficient offriction, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Dynanue coeflicient of friction, p. 035 035 035 035 035 035 035 035 Drag coefficism for disk nonnal to Dow 1.17 1.17 , 1.17 1.17 1.17 1.17 1.17 1.17 Velocity required to turable (Naec) 0.04 0.04 0.05 0.06 0.06 0.07 0.07 0.08

. Skin friction drag coefficient based on surface area at R. = 10' O.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 Area ratio As/Ap 392.70 261.80 19635 157.08 130.90 112.20 98.17 86.12 Drag coefficient for disk permJlel to flow 5.74 3.82 2.87 2.29 1.91 1.64 1,43 1.26 Velocity required from sationary position (ft/sec) 0.27 033 039 0.43 0.47 0.51 0.55 0.58 Velocity required for sliding along Door (ft/sec) 0.26 032 037 0.41 0.45 0.49 0.52 0.56 Imsth scale for Re = 10' based on flow along floor (ft) 032 0.26 0.23 0.20 0.19 0.17 0.16 0.15

!anunar boundary layer stuckness at Re = 10' (mils) 192.7 1573 136.2 121.9 Ii1.2 103 0 96.3 90.2 Terminal velocity for horizontal disk (Wiec) 0.057 0.070 0.081 0.090 0.099 0.107 0.114 0.122 I Equivalent diameter for sphere (in) 0.072 0.083 0.091 0.098 0.104 0.109 0.114 0.120 Drag coefficient for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 Terminal velocity for sphere (ft/sec) 0.625 OM9 0.702 0.728 0.751 0.770 0.788 0.805 Flood height (feet) 3.06 5.06 5.06 . 5.06 5.06 5.06 5.06 5.06 Distance frorn sump for possible movement along -W Gear,ri(feet) 2.42 1.98 1.71 1.53 1.40 1.29 1.21 1.13 4 ' Solve this cell for value = 1 by varymg the evi-lai zone increment, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Fuiand=1 zone increment, x (feet) 11.03 10.53 10.18 9.93 9.72 9.55 9.41 9.27 i e  !

1 Radiusofzoneof-inDuence,rs (fect) 13.5 12.5 11.9 11.5 11.1 10.8 10.6 10.4 Make geometric correction Distance frorn center ofsump enclosure to missile barrier (ft) 9.69 Mammum radius for zone ofinfluence including geometry correction for missile wall,rs(ft) 24.9 21.7 19.6 18.1 17.1 163 15.7 15.2 V,s. (A/sec) 0.14 0.16 0.18 0.20 0.21 0.23 0.24 0.25 Olide distance (ft) 12.13 11.68  !!37 11.14 10.96 10.81 10.68 10.56 A (sec) 88.56 7231 62.62 56.01 51.13 4734 44.28 41.47 At:(sec) 930 6.20 4.65 3.72 3.10 2.66 233 2.04 Totaltransit tinw(sec) . 97.87 78.51 67.27 59.73 - 54.23 $0.00 46.61 43.51 Contamment floor surface arca (ft*2) 10638 10638 10638 10638 10638 10638 1063? 10638 I Reas ofchange ofwater height (ft/sec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.001^ 0.0019 Miduringtotaltransit time (11) 0.184 0.148 0.127 0.113 0.102 0.094 0.08 0.082 Percent chan8e in water height 3.6 2.9 2.5 2.2 2.0 1.9 1.7 1.6

_ _ .___ m _ . . - . . . . _ _ . . . . _ - _ _ _ . _ - _ = _ _ _ _ _ . _ - ..__. .

Calculation No. 225.B440M 002 Revision 1 Table 10 Page 33 Zone ofInfluence for Undocumented Coatings with Assumed Specific Gravity of 2.0 at a Flood Level of 1.0 foot Tctal Recirculation Flow (sprn) 9000 Area ofouter Screen, A (A*2) 27.94 Water velocity at Outer Screen (Waec) 0.72

. Costing Systerns i I

S Reference density of water @ 40*F (IbdR ) 62.427 Specific gravity ofpairs 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ' 2.0

Desityofpaint (IbdR*) 124.85 124.85 124.85 124.85 124.85 124.85 124.85 124.85

. IS% ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 i

11uckness ofcbip (rnils) 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.56 1

4 . Density of water @ 100*F(IbdA3 ) 62.0 Kanernatic viscossey of water @ 100*F (ft'/sec) 738E 06 Imel acceleration of pavity (A'/nec) 32.2 Static coefficient of fhetson, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 j

l Dynanuc coefficient offriction.pe 035 035 035 035 035 035 035 035 l

. Drag coefficient for disk narinal to Dow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 i V:locityrequiredtotumble (Waec) 0.04 0.05 ~ 0.06 0.07 0.07 0.08 0.09 0.09 i

l Skin friction drag coefficient based on surface area at R = 10' O.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 l 1

Arearatio As/Ap 392.70 261.80 19635 157.08 130.90 112.20 98.17 86.12 Drag coefficiers for disk parallel to flow 5.74 3.82 2.87 2.29 1.91 1,64 1.43 1.26 l l

Velocity required frorn stationary position (ft/sec) 033 0.40 0.46 0.52 0.57 0.61 0.65 0.70 V.locity required for sliding along flonr (ft/sec) 031 038 0.44 0.49 0.54 0.58 0.62 0.66 l

1Angth scale for Re = 10' based on flow along Door (ft) 0.24 0.20 0.17 f.15 0.14 0.13 0.12 0.11 lanunar boundary layer thi4== at Re = 10'(mils) 145.9 119.1 103.2 923 84.2 78.0 73.0 68.3 I Terminal velocity for horizontal disk (Naec) 0.068 0.084 0.096 0.108 0.118 0.128 0.136 0.146 Equivalent daamster for sphere (in) 0.072 0.083 0.091 0.098 0.104 0.109 0.114 0.120 Drag ooefficient for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 Terminal velocity for sphere (Waec) 0.746 0.798 0.837 0.869 0.896 0.919 0.940 0.961 Flood heigla(feet) 1.00 1.00 1.00' l.00 1.00 1.00 1.00 1.00 Datance frwa sump for possible movement along containment

' floor,ri(feet) 10.27 839 7.26 6.50 5.93 149 5.14 4.81

' Solve this cell for value = 1 by varying the extended zone insement, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ht A=t rone inaernent, x (feet) 3.90 3.80 3.73 3.67 3.62 3.58 3.55 3.51 Radius ofzone of-influence. rs (feet) 14.2 12.2 11.0 10.2 9.6 9.1 8.7 83 l Make geomsene correction i Datance from center of sump er.lasure to missile barrier (A) 9.69 l Mamanum radius for zone ofinfluence including geometry I correction for missile wall, r3 (ft) 27.2 20.6 16.7 14.7 9.6 9.1 8.7 83 l l

V,(Wenc) 0.27 0.33 037 0.41 0.44 0.47 0.50 0.53 Olide distance (ft) 4.02 3.93 3.86 3.81 3.76 3.72 3.68 3.65 Al i (asc) 14.66 11.97 1037 9.27 8.47 7.84 7.33 6.87 l At:(sec) 33.05 22.03 16.53 13.22 11.02 A44 8.26 7.25  ;

47.72 34.01 26.90 22.50 19.48 17.28  !$.60 14.12 l Totaltransit time (sec)

Containment floor surface ares (ft^2) 10638 10638 10638 19638 10638 10638 10638 10638 Rate ofchange ofwater heigis(Waec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 AH during total transit time (ft) 0.090 0.064 0.051 0.042 0.037 0.033 0.029 0.027 Percent change in water height 9.0 6.4 5.1 4.2 3.7 33 2.9 2.7 l

. 1 i

Cakstation Na. 22S-B440M402 Revision 1 Table 11 Page 34 Zone ofInfluence for Undocumented Coatings with Assumed Specific Gravity of 2.0 at a Flood Level of 5.06 feet Total Recirculation Flow (gpm) 9000 Area of Outer Screen, A (A^2) 27.94 Water velocity at Outer Screen (ft/sec) 0.72 Coating Systems Reference density of water @ 407 (IbJft') 62.427 Specific gravity of paint 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Demity ofpaint (Ibdit') 124.85 124.85 124.85 124.85 124.85 124.B! 124.85 124.85 Diarneter ofchip(in) 0.5 0.5 03 0.5 0.5 0.5 0.5 0.5 Thick. ness ofchip (mils) 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.56 Density of water @ 1007(Ib,/ft3 ) 62.0 Kmematic nscosity of water @ 100T (ft'!sec) 738E46 1mcal acceleration of gravity (ft'/sec) 32.2 Static coefficient of friction, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Dynanne coefficient of friction, pe 035 035 0.35 035 035 035 035 035 Drag coefficient for disk normal to flow 1.17 1.17 , 1.17 1.17 1.17 1.17 1.17 1.17 Velocity required to tumble (ft/sec) 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.09 Skin friction drug coefficient based on surface area at R. = 10' O.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 Area ratio As/Ap 392.70 261.80 19635 157.08 130.90 112.20 98.17 86.12 Drag coefficient for disk parallel to flow 5.74 3.82 2.87 2.29 1.91 1.64 1.43 1.26 Velocity roquired frem stationary position (ft/sec) 033 0.40 0.46 0.52 0.57 0.61 0.65 0.70 Velocity required for sliding along floor (ft/sec) 031 038 0.44 0.49 0.54 0.58 0.62 0.66 tength scale for Re = 10' based on flow along floor (ft) 0.27 0.22 0.19 0.17 0.16 0.14 0.13 0.13 Lammar houndary layer thickness a: Re = 10'(mils) 161.4 131.8 114.2 102.1 93.2 863 80.7 75.6 Terminal velocity for boruontal dirk (ft/sec) 0.068 0.084 0.096 0.108 0.118 0.128 0.136 0.146 Equivalent diameter for sphere (in) 0.072 0.083 0.091 0.098 0.104 0.109 0.114 0.120 Drag coefficient for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 Terminal velocity for sphere (ft/sec) 0.746 0.798 0.837 0.869 0.896 0.919 0.940 0.961 Flood height (fect) 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 Datance frorn sump for possible movement along containrnent 2.03 1.66 1,44 1.28 1.17 1.08 1.01 0.95 Door ri(feet)

' Solve this cell for value = 1 by varying the extended zone unement, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Exisoded zone increment, x (feet) 10.59 10.11 9.78 9.53 934 9.18 9.04 8.91 Radius ofzone of-influence, rs (rect) 12.6 11.8 11.2 10.8 10.5 103 10.1 9.9 Make geometric correction Dtstance from cerner of sump enclosure to missile barrier (ft) 9 69 Maximum radius for zone ofinfluence including geometry correction for missile wn!!,rs (ft) 22.1 19.1 17 3 16.2 15.4 14.9 14.6 14.3 Vp(ft/sec) 0.16 0.19 0.21 0.23 0.25 0.26 0.28 0.29 Olide dutance (ft) 11.74 1130 11.01 10.79 10.62 10.48 1036 10.24 74.20 60.59 52.47 46.93 42.84 39.66 37.10 34.75 ol i(sec) ats(sec) 6.53 435 3.27 2.61 2.18 1.87 1.63 1.43 80.74 64.94 55.74 49.54 45.02 41.53 38.73 36.18 Totaltransit time (sec) 10638 10638 10638 10638 10638 10638 10638 10638 cmde==* floor surfacc area (ft^2)

Rate of change of water height (ft/sec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 AH during totaltransit time (ft) 0.152 0.122 0.105 0.093 0.085 0.078 0.073 0.068 Percent change in water height 3.0 2.4 2.1 1.8 1.7 1.5 1.4 13 4

.-. -- .. . . . - _ - _ . - - - - -.- . _ _ - ~_ - ~- . .- . . ..

Calculation Na. 225-B.040M402 Revision I T-hb 1 Page 35 Zone of Influence for Documented Coatings with Flood Level at 1.0 foot Total Recirculation Flow (spm) 9000 Area ofOuter Screen, A (fta2) 27.94 Water velocity at Outer Screen (Weec) 0.72 Coated Surface Steel Steel Concrete Walls Concrete Walls Concrete Walls Concrete Moore Concrete Floors Costang Systems Carbo Zinc 11 Phenoline 195 Surfacer Phenoline Phenoline Phenolme Phenotine 305 Finish 305 Primer 305 Finish 305 Primer 305 Finish Reference density of weser @ 40*F (itw/A') 62.427 Specific ysvity ofpaint 5.6 1.4 1.7 1.0 1.4 1.0 1.4 Density of paint (Ibdit') 349.59 87.40 106.13 62.43 87.40 62.43 87.40 Diemeser ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ndness ofchip (mils) 3.0 4.0 2.0 4.0 2.5 6.0 6.0 Density ofweser @ 100*F(IbdA3 ) 62.0 Kmemstac visoassy of water @ 100*F (ft'/nac) 738F 06  ;

l.acal saceleration of pavity (A'/sec) 32.2 l Static costliciers offriaion, pr 0.4 0.4 - 0.4 0.4 0.4 0.4 0.4 j Dynamic coefficiers of friction, p. 035 035 035 035 035 035 035 i 1

Dres coefficiers for disk normal to flow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Velocity required to turnble (ft/sec) 0.16 0.05 0.05 0.01 0.04 0.01 0.07 o fu.rt .ag .oeu.on ed or, su,f_ .,ca at R. =

10* 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 Area ratio As/Ap 130.90 98.17 19635 98.17 157,08 65.45 65.45  !

Drag coefficiers for disk parallel to flow 1.91 1.43 2.87 1.43 2.29 0.96 0.96 Velocity required frorn stationary position (Wesc) 1.21 0.41 039 0.05 033 0.07 0.51 Wlocity required for sliding alms Door (Weec) 1.15 0.40 037 0.05 031 0.06 0.48 f.angth scale for Re = 10* based on flow along Door (A) 0.066 0.191 0.205 1.476 0.242 1.205 0.156 Larmnar boundary layer thickness at Re = 10* (mils) 39.4 114.8 123.1 885.6 145.2 723.1 93.7 Terminal velocity for horizarsal disk (Waec) 0.253 0.087 0.081 0.011 0.069 0.014 0.106 l Equivalers diameter for sphere (in) 0.104 0.114 0.091 0.114 0.098 0.131 0.131 rirag eoefficwra for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 l Terminal velocity for sphere (A/sec) 1.916 0.597 0.702 0.077 0.552 0.083 0.639 Ilood heigla(feet) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Dunance from sump for possible mov=mers along 6.60  ;

aam-ment Soar, ri(feet) 2.77 8.08 8.67 6233 10.22 50.89

  • Solve this cell for value = 1 by varymg:he extended zone sacrement, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Eanended zone increment, x(feet) 3.18 3.78 3.82 4.40 3.89 437 3.6%

- Radiusofzone+f.hinuance,rs (feet) 6.0 11.9 12.5 66.7 14.1 553 103 Make geomeinc correction l

Desence frorn center of sump enclosure to missile barrier (A) 9.69 Maxunurn radius far zone ofinfluence including geometry currectionformissilewall,rs (A) 6.0 19.5 21.6 N/A 27.0 N/A 14.9 0.84 034 0.32 0.05 0.28 0.06 0.40 l Ve (ft'sec) 334 3.91 3.95 4.52 4.02 4.49 3.81 l Glide distance (ft) 3.96 11.53 1238 89.00 14.5) 72.67 9.42 ,

ot (sec) 2.41 20.45 23.54 1217.43 32.72 811.62 13.63 os:(sec) 637 31.98 35.92 1306.43 4731 884.29 23.05 Totaltransit time (sec) 10638 10638 10638 10638 10638 10638 10638 Consamment Boar surface area (A*2)

Rene ofchange of water beight(Weec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.012 0.060 0.068 2.463 0.089 1.667 0.043 AH charing totaltransittime(ft)  ;

Pervers change in weser beists 1.2 6.0 6.8 2463 8.9 166.7 43 J . ._ __1

l i

Calculation Ns 22S-B.040M402 Revision i Table 13 Page 36 Zone ofInfluence for Documented Coatings with Flood Lesel at 5.06 feet Total Recirculation Flow (gpm) 9000 AresofouterScreen. A (A^2) 27.94 Water velocity at Outer Sween (Nsec) 0.72 Coated Surface Steel Steel Concrete Walls Concrete Walls Concrete Walls Concrete Moor Coating Systerns Carbo Zine 11 Phenoline 195 Surfacer Phenotine Phenoline Phenoline Phenoline 305 Finish 305 Primer 305 Finish 305 Prirner 305 Finish Reference density of water @ 40*F (IbdR8 ) 62.427 Specifie gravity ofpaint 5.6 1.4 1.7 1.0 1.4 1.0 1.4 Demity ofpaint(thdft') 349.59 87.40 106.13 62.43 87.40 62.43 87.40 )

Ihameter ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 i 7hackness ofchip (mils) 3.0 4.0 2.0 4.0 2.5 6.0 6.0 Density of water @ 100*F(IbdA3) 62.0

, Kmematic viscosity of water @ 100*F (ft'/sec) 738E-06 local acceleration of gravity (A'/sec) 32.2 Static coefficient offrictiort par 0.4 0.4 -

0.4 0.4 0.4 0.4 0.4 l Dynanuc coefficient offriction, pe 0.35 035 035 035 035 0.35 035 Drag coefficient for disk normal to flow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Velocity required to tumble (ft/sec) 0.16 0.05 0.05 0.01 0.04 0.01 0.07 Skin friction drag coefficient based on surface area at R. = 10' O.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 j Area ratio As/Ap 130.90 98.17 19635 98.17 157.08 65.45 65.45 Drag coefficient for disk para!!ct to flow 1.91 1.43 2.87 1.43 2.29 0.96 0.96 Velocity required from stationary position (ft/sec) 1.21 0.41 039 0.05 033 0.07 0.51 Velocity required for sliding along Door (ft/sec) 1.15 0.40 037 0.05 031 0.06 0.48 Imsth scale for Re = 10' based on flow along Door (ft) 0.073 0.212 0.227 1.633 0.268 1333 0.173 i

Lanunar boundary layer thickness at Re = 10'(mils) 43.6 127.0 136.2 979.8 160.6 800.0 103.7  !

Terminal velocity for horizontal disk (ft/sec) 0.253 0.087 0.081 0.011 0.069 0.014 0.106 Equivalent diameter for sphere (in) 0.104 0.114 0.091 0.114 0.098 0.131 0.131 Drag coefficient for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 Terminal velocity for sphere (fUsec) 1.916 0.597 0.702 0.077 0.552 0.083 0.639 flood height (feet) 5.06 5.06 5.06 5.06 5.06 5.06 5.06 Distance from sump for possible movement along containment floor, ri(fed) 0.55 1.60 1.71 1232 2.02 10.06 130

  • Solve this cell for value = 1 by varying the extended zone increment, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Extended rone increment, x (feet) 7.89 10.02 10.18 15.72 10.58 15.10 9.57 Radius ofroneef-influence,r (fect) 8.4 11.6 11.9 28.0 12.6 25.2 10.9 Make geometric correct 2on thstance from center of sump enclosure to missile barrier (A) 9.69 Maxunurn radius for zone ofinfluence including geometry correctice for misade wall.r3 (ft) 8.4 18.6 19.6 N/A 22.0 N/A 163 Yp(ft/sec) 0.47 0.19 0.18 0.04 0.16 0.04 0.23 Glide dtstance (ft) 937 11.23 1137 16.51 11.72 15.92 10.82 41 (sec) 20.03 5837 62.62 45035 73.83 367.71 47.66 at (sec) 0.48 4.04 4.65 240.60 6.47 160.40 2.69 Total trans time (sec) 20.50 62.41 67.27 690.94 80.29 528.11 5035 Nah door surface area (Ita2) 10638 10638 10638 10638 10638 10638 10638 Rate of change of water height (ft/sec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 All & ring total transit t[me(ft) 0.039 0.118 0.127 1302 0.151 0.995 0.095 Percent change in water height 0.8 23 2.5 25.7 3.0 19.7 1.9

I Calculation No. 33S-B440M403 Revision i Table 14 Page 37 Relention Velocities for Undocumented Coatings with Known Specific Gravities Total Recirwlation Flow (spm) 9000 l Area ofOuter Screen, A (A*2) 27.94 Water velocity at Outer Screen (R/ esc) 0.72 Cashns sysisms 1 2 3 4 5 6 7 8 9 10- 11 Reference density of weser @ 40*F (IA/A') 62.427 Specific gravity ofpaira 2.48 2.28 1.75 1.71 2.73 1.61 1.88 1.98 1.72 1.70 1.70 Density ofpaint(IA/ft') 154.82 14233 109.25 106.75 170.42 100.51 11736 123.60 10737 106.13 106.13 D-ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Timanssa ofchip (mils) 5.76 2.02 7.36 8.38 1.88 4.74 3.98 2.90 4.86 332 3.56 Density of water @ 100*F(IA/ft,) 62.0 Iscal acceleration of yevity (A'/sec) 32.2

- Static confliciais ofihchon, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 i l

Drag cosMicant for disk normal to flow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Muunnan weser velocity required to keep debris on sump screen (Alasc) 031 0.17 0.25 0.26 0.19 0.18 0.20 0.18 0.20 0.16 0.17 I

l 4

2 l

i k '

4

. - . - , ,- m. _ w

I Calculation No. 33S-B-003M-003 Revision I l Table 15 Page 38  !

Retention Velocities for Undocumented Coatings with Unknown Specific Gravity l Total Recirculation Flow (gpm) 9000 Arts of Outer Screen. A (RM) 27.94 Water velocity at Outer Screen (Niec) 0.72 For Specifle Gruvity of 1.5 Reference density of water @ 40*F (Ibdft') 62.427 Specific gravity ofpaint 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 S

Density ofpaint (IbdA ) 93.64 93.64 93.64 93.64 93.64 93.64 93.64 93.64 Dumeter ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

'Iluckness ofchip (mils) 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.56 Densrty ofwater @ 100*F Obsft3 ) 62.0 Imal acceleration of gravity (ft'/sec) 32.2 ,

Static coefficient of friction, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Drag coe5ciern for disk normal to flow I.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Minimum water velocity required to keep debris on sump screen (Waec) 0.08 0.09 0.11 0.12 0.13 0.14 0.15 0.16 For Specisc Gravity of1.7 Specific gravity ofpaint 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 8

Density ofpaint (1b% ) 106.13 106.13 106.13 106.13 106.13 106.13 106.13 106.13 Dumeter ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 "Ihickness ofchip (mils) 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.56 Deonity ofwater @ 100*F Obdfl3) 62.0 S

local acceleration of gravity (ft /sec) 32.2 Static coc5cient offrictiaat pr 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 Drag eoc5cient for disk oormal to flow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Minimum water velocity requand to keep debris on sump screen (Nsec) 0.09 0.11 0.13 0.14 0.16 0.17 0.18 0.19 For Sperlac Gravity of 2.0 Specifie gravity ofpaint 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Density of paint (16%') 124.85 124.85 124.85 124.85 124.85 124.85 124.85 124.85 Duuneter ofchip (in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 71uckness ofchip (mils) 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.56 Density ofwater @ 100*F (1bsfl3 ) 62.0 local acceleration of gravity (ft'/sec) 32.2 Static coc5cient of fdction, pr 0.40 0.40 0.40 0.40 0 40 0.40 0,40 0.40 Drag coc5cient for disk normal to flow 1.17 -1.17 1.17 1.17 1.17 1.17 1.17 1.17 Minims.rn water velocity required to keep debris on sump aaneen(Niec) 0.11 0.13 0.15 0.17 0.19 0.20 0.22 0.23 i

. - . ~ ~ . . .. .- . - . -_ - - . - . . . - -. . . - . . . . . - . -- .

4 J

Calculation Na,22S-B.040M&2 Revision 1 i Table 16 Page 39 l Retention Velocities for Documented Coatings I Total Recirculation Flow (spm) ,

9000 Area ofOuter Screen A (fta2) 27.94 Water velocity at Outer Screen (ft/sec) 0.72 e

Cooled Surface Steel Smel Concrete Walls Concrete Walls Concrete Walls Concrete Floors Concrete Floon Costing Systems Carbo Zinc 11 Phenotine 195 Surfacer Phenoline Phenoline Phenotine Phenolme 305 Finish 305 Prirner 305 Finish 305 Primer 305 F~mish ,

Reference density of water @ 407 Ob/ft') 62.427

, Speci6c gravity ofpaint 5.6 1.4 1.7 1.0 1.4 1.0 1.4 Duneity ofpaint (Ib,/ft') 349.59 87.40 106.13 62.43 87.40 62.43 87.40 Dumeier ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Thr*= ofchip (mils) - 3.0 4.0 2.0 ' 4.0 2.5 6.0 6.0 Density ofwater @ 1007 Obsit3) 62.0 j Imal acceleration of gravity (ft'/sec) 32.2 ,

Static coefficient of friction, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4  !

1 Dras coefEcient for did normal to flow s.17 1.17 1.17 1.17 1.17 1.17 1.17 l

. Memmum water velocity required to keep debris on sump ~

scenen(ft/sec) 0.40 0.14 0.13 0.02 0.11 0.02 0.17 1

i i

= i l

s a

E 1

h 4

4 -

m_s

.._.c. ~.,m.._..-_.m..- - _ - . - - - -m . . < . . . -~ ~ _ _ - . . _ . ...m

. m.m . _. . -_m...-m- . . . . . - . ..-m _ <.m .

b.

s i - Calculadon Na 22S-B440M402 Project No. 09432-778 Revision i Table 17 Page 40~

Geometric Cornetion to Zone ofInfluence to Account for Missile Barrier Wall Data taken from drawings of Reference 5.13, See Figures 2 and 5

i:

MissHe benter recBus, R (R) 50.88 Coordiente for corder of sump enclosure, x (ft) 19.2 Coordiente for center of sump enclosure, y. (R) 34.20 Radius to center of sump enclosure, r. (R) 39.22 l 9.(rediens) 1.059  ;

t' Distence from center of sump enclosure to rniesne benter (R) 11.7 Adjust centerpoint of sump enclosure bened on date from j wsNedown of sump structure -

Wkith of sump enclosure. (R); See Figure 4. Drawire No. B-278, Ref. 5.13 4.75' One-half of sump enclosure width (R) 2.38

[

t Minimum distance from sump screen to missas barrier weg, L 7.31  ;

obtained from walkdown (R); See Attachment B I

Dietence from center of sump erw4amare to miselle benter, using .

j walkdown date (ft) 9.69 j

Adjusted centerpoint coordinates .,

20.16 j x.* (ft) ,

y.' (ft) 35.91

[

r.* (R) 41.19 xi(R) 24.91 yi(R) 44.36 10.00 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 18.5 18.75 18.95 f Calculated redlus for zone ofinfluents. ar (ft)

Itershon paramehr,0 (*) 73.96 78.65 83.03 87.43 92.03 96.99 102.53 100.04 -117.54 123.63 128.08 135.34 l 1.29 1.37 '1.45 1.53 1.61 1.89 1.79 1.90 2.05 2.16 224. 2.36  :

0 (radiens) 14.1 10.0 8.2 2.3 -1.8 -6.2 -11.0 -16.6 ' -23.5 -28.2 -31.4 -36 2 l

, x2 (ft) 48.9 4.9 50.5 50.8 - 50.8 50.5 49.7 48.1 45.1 42.4_ 40.0 - 35.8 [

ya (ft) 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 i e(ft) 48.77 51.71 56.35 ' l 14.34 17.27 20.21 23.28 26.56 30.12 34.09 38.73 44.64 b (ft) 11.75 15.89 19.71 23.53 27.48 31.69 36.33 41.67 48.43 ' 53.12 56.45 61.70 [

c (ft) 0.95 1.14 1.28 1.39 1.4 - 1.58 1.67 1.76 1.87 1.95 2.00 2.09 .j 9(rediens) 114.73 119.47 g (*) 54.4 85.33 73.12 79.4 85.11 90.35 95.53 100.99 107.42 111.71 Corrected redlus fot zone of influenos, rs (R) l 14.34 17.27 20.21 23.28 26.58 30.12 34.00 38.73 44.64 4.77 51.71 56.35 l 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00  !

rs- b (ft) E t

v

- - - . _ , - .~. - -~ . . . . . .- --

1 Project No. 09433 778 Calculcion No.335-B403M403 Revision 1 Table 18 - Page 41 l

Zone of Influence for Undocumented Coatings - Flood Level of 3.0 foot l

Total Racirculation flow (spm) 9000 i Area ofOuter Smeen, A (A^2) 27.94 Water velocity at Outer Screen (Wesc) 0.72 l

Centing systems 1 2 3 4 5 6 7 8 9 10 11 l Reference density of water @ 407 (!bsA*) 62.427

( Specific arevity ofpaire 2.48 2.28 .l.75 1.71 2.73 1.61 1.88 1.98 ' l.72 1.70 2.70 j' Density ofpaint(1bdA )

8 154.82 14233 109.25 106.75 170.42 100.51 11736 123.60 107.37 106.13 168.55 Duunster ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Thickasesofchip (mils) 5.76 2.02 736 838 1.88 4.74 3.98 2.90 4.86 332 3.56 l Density ofwoner @ 100T(%) 62.0 8

Lnsmatic viscosity of water @ 1001(A /sec) 738006

(

8 32.2-incel acceleration of gravity (A /sec)

Static cosHicism of friction, pr 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Dynamic coseicism of friction, p. 035 0.35 035 035 035 035 035 0.35 035 035 0.35 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Dres oneHicies for disk normalto Cow l - Wlocity required to tumble (Wasc) 0.13 0.07 0.10 ? 0.11 0.08 0.07 0.08 0.07 0.08 0.07 0.11 Skin friction drag oneHiciera beasd on surface area at R. = l 10 3

0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 Area ratio Aa/Ap 68.18 194.41 5336 46.86 208.88 82.85 98.67 135.41 80.80 118.28 11031 Drag ooeSicient for disk parallet to Dow 1.00 2.84 0.78 0.68 3.05 1.21 1.44 1.98 1.18 1.73 1.61 Velocity required from stationary position (Wsec) 0.95 0.52 0.77 0.80 0.59 0.56 0.61 0.55 0.61 0.50 0.80 Velocity required for sliding along Soor (Weec) 0.91 0.50 0.73 0.76 0.56 0.53 0.58 0.52 0.58 0.47 0.76 length scale for Re = 10' based on flow along Goor (A) 0.09 0.16 0.11 0.10 0.14 0.15 0.14 0.15 0.14 0.17 0.10 l

! Lanunar boundary layer thickamas at Re = 10* (mils) 52.5 953 65.1 62.7 85.1 89.9 81.8 90.9 81.8 1003 62.4 Terminal velocity for barizontal disk (Wisc) 0.199 0.110 0.160 0.167 0.123 0.116 0.128 0.115 0.128 0.104 0.168 Equivalene diamensr for sphere (in) 0.129 0.091 0.140 0.146 0.089 0.121 0.114 0.103 0.122 0.108 0.110 l

Dragcoe51cient for sphere 0.47 0.47 037 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 .

0.825 0.763 Terminal velocity for sphere (Wesc) 1.214 0.948 0.902 0.897 1.088 0.757 0.881 0.882 1.200 f

Flood height (fast) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 Deanos from sump for possible movement along

>=nse lloor, ri (feet) 1.17 2.13 1.46 1.40 1.90 2.01 1.83 2.03 1.83 2.24 139 l

l

  • Solve this cell for value = 1 by varying the extended zone .

inmement, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 )

Fm-M aone inwernant, x (feet) 6.24 7.16 6.56 6.50 6.97 7.06 6.91 7.08 6.91 7.24 6.49 j Radius ofzone of-inDuence,ra (feet) 7.4 93 8.0 7.9 8.9 9.1 8.7 9.1 8.7 9.5 7.9 Maka geometric corromion Deance frorn osraar of samp enclosure to missile barrier (A) 9.69 l Mammum radius for zone ofinGumoe including geometry 7.4 93 8.0 7.9 8.9 9.1 8.7 9.1 8.7 9.5 7.9 currection for missile wall.rs (A)

I V,se,(Wesc) 0.46 0.28 039 0.40 031 030 032 0.29 032 0.27 0.40 6.93 7.76 7.21 7.16 7.59 7.67 7.53 7.69 7.53 7.84 7.15 Olide distance (A) '

15.08 2738 18.70 18.01 24.43 25.82 23.50 26.09 23.49 28.82 17.91

% (sec) 130 4.27 1.99 1.85 3.40 3.79 3.14 3.88 3.14 4.73 1.83 At:(sec) 1638 31.65 20.70 19.86 27.83 29.61 26.64 29.97 26.63 33.54 19.73 l Totaltransit time (sec) i Contaanmem floor surfam area (A^2) 10638 10638 10638 10638 10638 10638 10638 10638 10638 10638 10638 r Rate ofchange of watsr beight (Weec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.031 0.060 0.039 0.037 0.052 0.056 0.050 0.056 0.050 0.063 0.037 i AH duringtotaltransittime(A) 1.0 2.0 13 1.2 1.7 1.9 1.7 1.9 1.7 2.1 1.2 Percent change in woest baight I

. - . - - . . - .. - . . - . - - . - .- -~

Calculation No. 325-B 040M.003 Revision 1 Table 19 Page 42 Zone ofInfluence for Undocumented Coatings with Assumed Specific Gravity of 1.5 at a Flood Level of 3.0 feet Total Recirculation flow (spm) 9000 Ares of Outer Screen, A (R^2) 27.94 Water velocity at Outer Screen (Wiec) 0.72 i Contag Systems l

Reference density of water @ 40'F (lb,./R') 62.427 Specific grevity ofpaint 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

! Density of paint (ib,/R') 93.64 93.64 93.64 93.64 93.64 93.64 93.64 93.64 Daneter ofchip(in) u.; 0.5 0.5 0.5 0.5 0.5 0.5 0.5 hkness ofchip (mils) 1.00 i.:4 2A 2.50 3.00 3.50 4.00 4.56 Desity of water @ 100*F (IA,/R ) 62.0

( lunamatic viscosity of water @ 100*F (ft'/sec) 7.38D06 2

Imoal acceleration of gravity (ft /sec) 32.2 ,

Static coeflicient of friaiosuir 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Dynamic coefficient of friction, p4 035 035 035 035 035 035 035 035 '

Drag coefficies for disk normal to flow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Velocity roquired to tumble (Waec) 0.03 0.04 ' 0.04 0.05 0.05 0.06 0.06 0.07 Skin friction drag coefficient based on surface area at R, = 10' O.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133

, Area ratio As/Ap 392.70 261.80 19635 157.08 130.90 112.20 98.17 86.12 Drag omflicient for disk parallel to flow 5.74 3.82 2.87 2.29 1.91 1.64 1.43 1.26 l

Velocity roquired fram stationary position (ft/sec) 0.23 0.28 0.33 037 0.40 0.43 0.46 0.49 Vdocity required for atiding along floor (R/sec) 0.22 0.27 031 0.35 0.38 0.41 0.44 0.47 langth scale for Re = 10' based on flow along floor (R) 036 0.29 0.25 0.23 0.21 0.19 0.18 0.17 Lanunar boundary layer thickness a: Re a l0* (mils) 215.9 1763 152.7 136.5 124.6 115.4 107.9 101.1 Terminal velocity for horizontal disk (Usec) 0.048 0.059 0.068 0.076 0.084 0.091 0.097 0.103 Equivalent diameter for sphere (in) 0.072 0.083 0.091 0.098 0.104 0.109 0.114 0.120 Dras coefficient for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 Terminalvelocity for aphore(Wiec) 0.529 0.566 0.594 0.617 0.636 0.652 0.667 0.682 i Flood height (feet) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 Datance from sump for possible movement along contamment floor.re(feet) 4.83 3.94 3.41 3.05 2.79 2.58 2.41 2.26

' Solve this cell for value = 1 by varying the extended zone inaumont, x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Estended zone inaurnant, x (feet) 8.57 8.20 7.95 7.76 7.60 7.47 736 7.25 Radius ofzone of-influence,r (feet) 13.4 12.1 11.4 10.8 10.4 10.1 9.8 9.5 l Make geometric correction Deance froen center ofsump enclosure to missile barrier (ft) 9.69 Mammum radms for zone ofinfluence including geometry correctionformissilewall.rs (R) 24.7 20.4 17.8 16.2 15.2 14.6 14.2 9.5 tt,,,,, (Wase) 0.15 0.17 0.19 0.21 0.23 0.24 0.26 0.27 Glide distance (ft) 9.08 8.74 8.50 832 8.17 8.05 7.95 7.85 4 (sec) 62.01 50.63 43 85 39.22 35.80 33.14 31.00 29.04

&(sec) 21.89 14.59 10.94 8.75 730 6.25 5.47 4.80 j Totaltransit time (sec) 83.89 65.22 54.79 47.97 43.10 39.40 36.47 33.84 l

' W - floor surfacc ares (R*2) 10638 10638 10638 10638 10638 10638 10633 10638 Rats of change of waser height (ft/sec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019

. All duringtotaltransit time (R) 0.158 0.123 0.103 0.090 0.081 0.074 0.069 0.064 i Penunt change in water height 53 4.1 3.4 3.0 2.7 2.5 23 2.1

l l

l Calculation No. 325-B440M-003 Revision 1 l Table 20 Page 43 Zone ofInfluence for Documented Coatings with Flood Level at 3.0 feet Total Recirculation Flow (spm) 9000 I Area ofOuter Screen, A (A*2) 27.94 Water wlocity at Outer Screen (ft/ser) 0.72 l

Coated Surfam Swel Steel Concrete Walls Concrete Walls Concrete Walls Concrete Floors Concrete Floors Contang Systems Carbo Zine 11 Phenoline 195 Surfacer Phenoline Phenoline Phenotine Phenoline l 305 Finish 305 Primer 305 Finish 305 Prirner 305 Finish l Reference density of water @ 40*F Oh,/ft') 62.427 i

l Specific aravity ofpaint 5.6 1.4 1.7 1.0 1.4 1.0 1.4 2 S

Density ofpais ObsA ) . 349.59 87.40 106.13 62.43 87.40 62.43 87.40 De ofchip(in) 0.5 0.5 0.5 0.5 0.5 0.5 9.5 j 11mckness orchip (mils) 3.0 4.0 2.0 4.0 2.5 6.0 6.0 l Density ofwater @ 100*F(Ibdas ) 62.0 kmematic viscosity of water @ 100*F (ft'/sec) 7.38FA6

!. mal acceleration ofpavity (A 8/sec) 32.2 l Stado coeHicient of friction, pe 0.4 0.4  ? 0.4 0.4 0.4 0.4 0.4 Dyuamic coeficient of friction, p. 0.35 035 035 0.35 0.35 035 035 Drag coeHicient for disk normal to flow 1.17 1.17 1.17 1.17 1.17 1.17 1.17 Velocity required to tumble (ft/asc) . 0.16 0.05 0.05 0.01 0.04 0.01 0.07 Skin friction drag coeHicient based on surface area at R, =

10' O.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 Area rado An/Ap 130.90 98.17 196.35 98.17 157.08 65.45 65.45 Dres coeflicism for disk parallel to flow 1.91 1.43 2.87 1.43 2.29 0.96 0.96 Velocity required fram stationary position (ft/ma:) 1.21 0.41 039 0.05 0.33 0.07 0.51 Velocity required for sliding along floor (A/sec) 1.15 0.40 037 0.05 031 0.06 0.48 Lacath scale for Re - 10' hased on flow along Door (ft) 0.069 0.201 0.215 1.549 0.254 1.265 0.164 l

Lanunar boundary layer thickness at Re = 10* (mils) 413 120.5 129.3 929.7 152.4 759.1 98.4 j l

Terminal velocity for horuomal disk (ft'sec) 0.253 0.087 0.081 0.011 0.069 0.014 0.106 Equivalent diameter for sphere (in) 0.104 0.114 0.091 0.114 0.098 0.131 0.131 l Drag coefficism for sphere 0.47 0.47 0.47 0.47 0.47 0.47 0.47 j Terminal velocity for sphere (ft/see) 1.916 0.597 0.702 0.077 0.552 0.083 0.639 I

! Flood heigla(feet) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 Distance from sump for possible movemern alons contammesfloor,ti (feet) 0.92 2.69 2.89 20.78 3.41 16.96 2.20 l ' Solve this cell for value = I by varymg the ewzone imaremen, x l.000 1.000 1.000 1.000 1.000 1.000 1.000 FW cneincrement,x(feet) 2 5.91 7.54 7.66 11.12 7.95 10.80 7.21 Radiusofzono.of-inousnoe,r sf. feet) 6.8 10.2 10.6 31.9 11.4 27.8 9.4 1 l Make geomeenc correction i

Distance from carner of sump enclosure to missile barrier (A) 9.69  !

l Mammum radius for zone ofinfluence includmg geometry

! correctionformissilewall,rn (A) 6.8 14.9 15.5 N/A 17.8 N/A 9.4 I

y V,4(Alsec) 0.56 0.23 0.22 0.04 0.19 0.05 0.28

.  : Glide distance (ft) 6.63 8.12 8.23 11.52 8.50 11.20 7.81 4

4 (sec) 11.87 34.60 37.13 267.00 43.77 218.01 28.25 i'

A(sec) 0.80 6 82 7.85 405.81 10.91 270.54 4.54 j Total transit time (sec) 12.68 41.42 44.97 672.81 54.68 488.55 32.80 Casemanment floor surface ares (f*^2) 10638 10638 10638 1063R 10638 10638 10631 l Rete ofdiense of water firight (fi/nec) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 AH aharing totaltransit time (A) 0.024 0.078 0.085 1.268 0.103 0.921 0.062 Peroom change in water height 0.8 2.6 2.8 423 3.4 30.7 2.1 l

Calc 3. For Calc.NAygg.g.oyog.,

Sar' Dent $Lundy"8 Date Rev./ i l Safety-Related Non-Sofety-Related Page yy of '

f Prepared by Date Cilent Project J / g g 7 p-/gg Reviewed by Date Equip. No. Approved by Date Prol.No, gy)) . 77g F/G URE il

, . I l

. i i i l i!

i l i

!  ;  ! I i i  ! i  ! I  ! l i I I I I i i I  ;  ! i  ! i i i  : .

! I i i l i Ii I  ! l l l i +

i  ! l  ! i l I

i  ! I I ii

^  ! l l t  ; .

i  ! i= l  ; i

.  ; i ii

i
i ,i -

L i , .V.t  !

l 1  ! l_ !i l l 1 i  ! i  !

! i 1

__ - . t WRTER LEl/EL:

  • i i '  ; ' i l i" i . i l i  ! i t 1 i l i i  : I i / I i l I l i

! I l l l l 1 l l l i i l i i l I /! t i l l l l

l l i l i l I i  ! I lI Il l 1 1 I/! i

/ l l l ik l  : l l l 1 I l lI ll l l 1/ P' I76RM' l l l' ' l '

I l I  ! I I I l'l I I k' i l  !  ! I l ll l l i i I I I l 1 I i i l I i i i i  !/l i  ! I i

! I I!l l l

i ,.GNrga l I i  ! I 1/ I i  ! i t I  !  !  !

l  !

l i l ' o r .ruk p  ! I i i  :

i/* l

'  !  ! I  :

i i l i  !  : I  ! l  ! i/l  ! i i .

i  !  ! i i i i \lephd 8 I i i i li l/! l I i i  !  !  : I l l l I

i i l ifscReswi I I i l.. I/ i i i l i I l l l l l l l

I i  ? I 1 I i l I J. /i I I i l I I i l i i i l i j i. I d' !:  : i I i  ! I V! l  !  ! I I i I i  ! I L1 L l j;  ! 1 I I i i l I  !, ,!  ! !6i  !

i  :  ; i i fI li

.o . .,

i

, I, i i

- n i e i i

A

, e, i

, i, I1 i

- ' i I

I

- . i s

' Jlll .

1

. I

, I

. i l l l

ll n_

. l

. i  ; i i i l .

i i l i I l  ! l l  ! l I i  ! l I l l l

! l l i

Calc 3. For Calc.N2.pg g.pyog

.Sar gent &\ Lundy * *

  • _

Rev.. / Date Safety-Related Non.Selety-Related Page. of 1

Propered by Date Cilent Reviewed by Date Project J/pg gj7/gA/

Approved by Date Prol.No. gf y]) - 77g Equip. No.

f/Gu2 2 2. .

i g

\

~~

~~

. - . .~ _ ..

- ~h Nr. . . _

L __ L __

\

/ -_

1 b_

l 7

\ / i....- N_ ._

p_

f / -

,,M/.ssa.

\ __ _

) i /_ N~ N r, '

NJ N

M aan i j ii~~ N -7 J  !

i

\ > l\ N ues) --2= t u\\

l

.) 0 \ /N / /G 1h i\ t \i / _rse /

/! X

,/ 6

\\ i \ / escuses

.~~~

\$  ; _

/

/

/ /

/

l

> \

fi

~

li i / f l l \1 A / / . i,

,( .i,i

\: N / . .

N. / / i:

j I '

Y- / '  :  :

J .'

/_ N

~

i \

i-l 8

E L /- ,

.t

= _ . . _ . . . . _ . G_= Cdilut.dfGB. 2pWE c+._/h'ES.u_Bi \

I . _ _ _ . . _ _ . _ _ _ _ _ . _ _ .

Gj CORRECTED ZoWF_.<4.J.WEwsyc.

~~

R~= kissas_ederme noias iii.

- . . . . - . . - . ~ . - - . ~ . - . - . . - -- . - - . . . - - . - . . . . - . _

>l casca. Ftr Cele.Ns.gp3.g.pyng.cc.

l Date l Sar gent GALundy +6 8 _:. ,,

Rev. [

>f I

) Soloty-Related Non-Sofety Related Pege g t Date .

Prepared by

.i Client Date Project ]/Og JQ7/(/g Reviewed by ,

I Approved by Date j 7 g Equip. No.

Pro).No. Of //,3Q _ !

l -..

flSUAN 3 l 2

i

, I s

s 1

F02C5 l [ 50MP i

n... . @UDYAA'CY rV e '

j JcEG6v -

1r g[ -

  • i ,

i i .

I  !

)

l FbenoW forcs lu ._,.

0 ras FoRcG1 .' '

\ \ I I \

Er f u

V '

,.a.

p:

',cur_, tr JI Jw

// l' - . .

i l

l l

i

?j g .

i .

j { .

! . x h. '

i i i i
4
6. saoi mee: oue ro & w ry

?'

' n , u' e (M '" Y

. i .  !

v '- - . -

. j . .

. i.

l l 1 l

! l  !  ! l

, . 1  ; .

j

. . 1 g

.l 4O6 O*.OG gJ M W .e@ M Se Wh gemme o e=em ese emana.o e e een.com-.

re m .m M+

we h 4e & N 88 .I. .

eule.8D k _

i  : i  ! i i

-j

Project No. 09432-778 Calculation No. 22S-B-040M-002 i l '

Revision 1 i

Page 47 Figure 4 l l '

! Plan View of Sump Enclosure, Zion Drawing No. B-278, Rev. H 1

I 2 $ 4 l SL2-G 1 si d s i s .< s l

, ~ . <,

/ '.. l f ,.*

.// ,

I

,' ,s . , ~~ ,

'" ~

~

k . , 4, , '4, '

\

+ i i i, 1*~  ?~,  %

l  ; '/, . 's e's%'

/  %

' \ \J#

l

  1. , ,0 * '/

l y s

, ,/

3

/ . . . - / /k - .

g o, ' D's )s , ,

1 I

../

,,- ,.=,~-, ,. . .

'y ..

~

\

. i ,. ~c auy 5 y

,t .

'V. . S,i ,/

' i , y n /

y ,Y / i jk '

,ff , y , 'f N

, ~, // j ,

,,t ,

/ l

/ -

' g,

/ e

/ /

,  % )

s s

( \ '

's 'hm;f="a / ,' ,'

','s., ' -"

\'q,,.. , s ,

,f ,, .

'$ s // ,

e'/ .t.0.404W

+,,%, '

'N ';, ' -

jl/ ,' /

4'* ,N, 1 l 's@- l

% N'h l v Q

X.

~

'u

. RE CIRCUL AT M G c.U M P PL A U ew- 6. .-3w e e.

. u t T

  • 1 OP P ** * ** O L D-ETI) i

'k I

Project No. 09432 778 Calculation N2. 22S-B 040M-002 Revision 1 ,

Page 48 Figure 5 Plan View of Reactor Building Floor, Zion Drawing No. B-223, Rev. L

.= . :.e .. ..... ... .

p .g,,h

,' ' ' E. .] , "" ^\, ~..T,-

. .r

' v$

~y. ..-

k . . .'/M~l*~

n .a-

- '. r . >,

, ff;:.;[]f..jlp:>;'_1.; =.." .. .

'y \

~ ,'. .e::.:n . x. ; -~~.::. 4; .'.:.:.3:)4. ,.y- . f y'. 3. .p.'.<;,$.

'.' , Y a. .; s. ,,. ,

.,; q . .w$. . w-'-- .-.

~

,.w . . . .e. .-_.:: ~ y s \,

. ,, e - .. . ...

.:::: .;. . . . . <.;. i :n . . .

\..

',." .f". . ?[n -g *.:yC: (,,6 '. l .  !

.97: ..

s. Er. [':c -

. W t',v. h'.s u

. .v - a .

, . , , . ' .h

':' / ,p q_,,/ s ,: ;'

V +s

' 9%

[f.n.O e t

'I /?

a l

.- *- / ,

.t -

. -fi e, .

. 3. Ef.x r.
  1. ; 8. -

is. . .

' v.[ . ,

4i..,p .

p.

.g e,/ . g'.9 g (b.2 . ' .

-  ?-'

ff ,

~ .

5 ,

/

9e

=e sh - '

,. . . . ,. - . . .: . - .- . .y, .- , .g , .

. ,.y-i 1

.. ! ; .- l,;-  ; s.. v3/ r',L . 44..

, /6 W*e

,0 4 ,

. .s ' . . .. .,' . -

'..m

-- u, . -

. .3. .e_. .

.p.

.. . a. ... .

+ v I. g; . .

'n .<.s '

~"1 s .

. .l.g .. ' .

r...v. s ,..E

.,1 ... ~ . . .. . .

. c :c . .. .._. .,

r.

w

. A ..gg..., y W-t- + ,.- .. g :2 (':s

'L

p. Q .c....

.. i .

. ... . / . ... . . .;;.

., n, .....

c. .,. . c.:. 2 - ..

.e;.: . s__  :

x ,. .. ., . ... . , .

N. '.. <- .. /

  • G 1

av . ; w c f - . .

. \

e . .

h

b. ,. : N .:fk\ $ ,

3, .,

y . m __
; ._ .,.,.;-~.%....
  • . . . . . . . A ./ $.

. es

.. . ...y '

s

. .. .s

. :v ,. m ,; - .

8 N

g) 'f *~ ' ~~

. ? &-'g!-

. ~

l'

,l}D ~ .< m

  • i . .

?

.l...

v.

' j.

-.. o, m.

1.

, /n,~! .

~:

~

h 1-- -

i a .: .. s. :. . . . .

.m,,, . . .

. ...7..

... r ------r---------J

'.-l

.= L * . , _* , ' .

(*

.s

3. -,..
  • i. -

+- j

, jy

. ..' :. t

- - - . _ . .. - 7 J. -.:.w,, U.f;f,'/fr @- - -- ,

'.-  ; 3 ..

k

' //

s

'$ I = S 6./'. .

um 11 I - ._

U

Project Na 09432-778 Calculation No. 22S-B-040M-002 Revision 1 Page49 Final Figure 6 Geometry Correction to Account for Missile Barrier Wall 60 e

50 y = 0.0168x'- 0.90682 + 18.227x 2- 158.38x + 514.39 /

/

R2= 0.9979 i

l 40 E

e 4

Y 30 20 '

  • Data Points from Table 17 Polynomial Curve Fit to Data ,

l 10 0

10 11 12 13 14 15 16 17 18 19 Calculated Zone of Influence (ft)

_______m_ _ _ __-_ _______ _ . _ _ _ _ _ _ _ _ . - _ _ _ _ _ . _ _ . _ _ _ - . - _ _ _ - _ __ _ ._ . - - _ _ _ . . _ - = _ _ _ _ _

__ _ . _ ___ . - - - - .- - - --- -- ~ - - - - - - - -

! rnon Ecs-we N Ho 8 N N M" Calc. No. 22S-B-040M-002 l Revision 1 Attachment A

ATTACHMENT B, PART 1 Page Al l __

COMED NUCLEAR DESIGN INFORMATION TRANSMITTAL l 00 SAFETY RELATED Originating Organization NDIT No. ZDE-97-002. Rev.1 ONON-SAFETY RELATED GD Comed (Zion Engineenng) i -OREGULATORY RELATED Dother (specify)

Station Zion Unit (s) 1 & 2 '

__ Page 1 of 1 Design Change Authonty No.:__ N/A System Designation:_ RH l To: _Saraent and Lundy

Subject:

Centainment coatina transoon ca!culation. Zion ca!culation No. 22S-B-040M-002.

Bnan Jefke kepw Desian Eneineer Nsn.on e

Fre:ews S;neve M'N Cete Jee Zecca At.aeav-

_Desian Encineer Potince DUr /Na/f7

{Ws Scnr re "Ar Status of Information:GD Approved for Use O Unvenfied OEngineering Judgment Method and Schedule of Verification for Unvenfted NDITs:

Desenption of Information:

This NDIT contains revised RHR system cesign laformaton and field measurec recirculation sump screen treas from unit 2 for use in the containment coating transport calcu'ation, Zion calculation No. 225 B 040M-002. This NDIT supercedes the similar information provided in NDIT ZDE-97-002 as describec below.

Outer Sump screen total area 27.94 ft 2

Outer sump screen free area 16.76 ft 2

RHR pump NPSH available 21.44 ft Purpose of Issuance:

The purpose of the NDIT is to supply Sargent and Lundy with design input for the containrnent coat:ng transport calculation, Zion calculation No. 22S-B-040M-002.

Scurce of Information:

Comed Calculation 22S-B 008M-092, Rev. 2.

Distribut on: Central Fi!e West Brian Je!ke. Design Engineering Zion Station Bob Peterson, Sargent and Lundy File No.; ZDE 97-003 - - - CHRON No.: c tD/- G AC 1 _

a

_= . - . . - _- - - - - - . _ . - - - . - . . .-._-. -

4 raon Ecw-we rax so.i res 746 ssi g gg,gggg Revision 1 Attachment A l

ATTACHMENT B, PART 1 Page A2 f

'T COMED NUCLEAR DESIGN INFORMATION TRANSMITTAL X SAFETY-RELATED Originating Organization NDIT No. ZDE 97-002 i DNON-SAFETY RELATED QREGUI.ATORY RELATED OOther (specify)l X Comed (Zion Engineenng) -

i Station Zion Unit (s) 1 & 2 Page .1 of 3 s Design Change Authority No,; N/A 3

System Designation: RH j To Sarcent and Lundy 1

- Subject The followine information is desian input for the containtnent coatino transport calculation . Zion l

! calculation No 22S B-040M 002 1

i Joe Zecca er.o .,

Desion Encineer po.sen db x ,6ris.eniue.

/ [e /97 c.4 i

Brian Jelke _Deslan Enaineer pacen M

www s.6n.tn

/!/0/97 ca.

ne.

l Status of Information:X Approved for Use O Unvenfied OEngineering Judgment Method and Schedule of Verification for Unverified NDITs:

Desenption of Information:

The information contains RHR system desen information, recirculation sump screen areas, containment water  !

levels, applicable structural drawing references, and paint coatings material thickness, specific gravity and mixing ratios.

A review of EWCS and other cesign documents has determined that no other design calculatons are affected by this work I,

l Purpose of issuance:

The purpose of the NDIT is to supply Sargent and Lundy with design input for the containment coating transport calculation , Zion calculation No. 22S-B-040M-002.

Source of Informaton:

. Design l0tters and calculatons and Cargboline vendor information and UFSAR. See References on next page. ' M @8/U Districution: Central File West Brian Jelke, Design Engineering Zion Station.

Bob Peterson, Sargent and Lundy File No i ZDE-97-003 CHRON No.: C2DE-97-024 _.

raon: rew-wo rax ho.: res 746 asia Cale. No. 22S-B-040M-002  ;

Revision 1 Attachment A E

ATTACHMENT B PART 2 J

COMED NDIT No. ZDE-97-002 NUCLEAR DESIGN INFORMATION TRANSMITTAL Page _2_ cf 3

References:

a

1. Transnut:al of Sump Temperature Data, from K. N. Kovar to K. Ainger, May 16,1995, NFS.PSA;95-036 Reference; Zion LOCA Comamment Integrity Analysts, NFS Calenote PS A E-95-03, A. J. Patterson, March 8,1995.

2 Zion Calculation 22S-B-008M-092, RHR pump available NPSH during the post-LOCA recirculation phase, Revision 1. dated I/6/97, 3 UFSAR 1996. Section 6.0.1.4 Engineened Safc6 Features Performance Capability 4 Letter to Kenneth N. Kovar from Brian Jelke,

Subject:

Evaluation of RWST Level Setpoint Uncertainties on Zion Maximum Containment Floodmg Analysis, January 29,1996, Chron # 0313373. This letter j reduces the maximum flood height from 5.84 ft to 5.06 R, where these cases and corresponding values are l docum::nted in Sargem & Lundy Calculation No. NSLD 3C4-0790-001, Revision 0, Containment Flood Level.

5 Zion Calculation 225-B-006X-070, Revision 0. Evaluauon of Zion Contatnment Spray Sys:crn pH Lesign Basis,7/15/96.

i 6 Sargent & Lundy Specificauon X-2340 Revision 4, Field Finish Coating and Pa:nting Work Zion Station

Units I and 2.

7 Zion Station Drawings B-223 Rev. L

! B-242 Rev. J B-278 Rev. H B-265 Rev, U B 271 Rev. M 8 Carbo!ine Company Material Safety Data Sheets and Application Sheets Phenotine 306 Finish Part A (0607AiNL)

Cartoline 195 Surfacer Part B (094581NL)

Carboline 195 Surfacer Part A (094SAiNL)

Phenotine 305 Finish Part B + (060781NL)

Carbo Zine 11 Base (0250AINL)

Zinc or Special Zine Filler (023iB1NL) i s, 1

i F it 0 M i ECN-NC FAX Ho.I 708 706 alla Calc. No. 22S-B-040M-002 Revision 1 Attachment A ATTACHMENT B, PART 2 Page A4 Final 1

4 COMED NDIT No. ZDE 97-0C2 l

NUCLEAR DESIGN INFORMATION TRANSMITTAL

,Page 3 of 3 l l

Desian Inotit Current Value Reference 2 pumps at 4500 gpm each 2 RHR max flow rr.e 28.75 ft^2 2 Outer sump screen total area 20.30 ft^2 2 Outer sump screen free area 20.0 a 2 RHR pump NPSH required 21.45 ft 2 l RHR pump NPSH available l

11.5 min 5 Minimum time for start of recirc Max sump water temp @ start of recire 225.6 *F ,

1 3  !

Min containment flood level @ start of recirc 1.0 ft 4 I Max containment flood level 5.06 ft B-278 Rev.H 7 Drawing of sump structure, Units 1 & 2 B 223 Rev. L 7 Drawing of sump / missile shield, Unit 1 B-242 Rev. J 7 Drawing of surnp/ missile shield, Unit 2 B-265 Rev U 7 Slope of containment floor. Unit i B 271 Rev. M 7 Slope of containment floor, Unit 2 Pnatino Tyne Minimum Dry Film Thickness (mils) Reference Surface Carboline Carbo Zine 11/ Inorgame zinc 3.0 6 l Steel 40 6 l Steel Carboline Phenoline 305 Finish Carboline 195 Surfacer not specified l Concrete Wall 4.0 6 l Con: rete Wall Carboline Phenoline 305 Primer l 2.5 6 Con:rcte Wall Cart)olinc Phenoline 305 Finish 6.0 6 Concrete Floor Carboline Phenotine 305 Primer 6.0 6 Concrete Floor Carboline Phenoline 305 Finish ,

i Contina Twc Sectific Gravity Reference Phenohne 305 Pruner not specif.ed 1.38 8 Phenoline 305 Finish Part A 0.90 8 ,

Phenoline 305 Finish Pan B '

1,74 8 Ca:boline 195 Surfacer Part B 1.67 8 Ca:boline 195 Surfacer Part A 1.07 8 Carbo Zinc 11 Base 7 11 N Zinc or Special Zinc Filler Ratio by Reference Coniirm be . Mixinn Ratias not specified Phenoline 305 Primer Volarne &

Phenoline 305 Finish Part A and Part B 4 pan 305 A /1 part 305 B 1 part 195 A /1 pan 195 B Volume S Carboline 195 Surfacer Part A and Part B Weight 8 Carbo Zinc 11 Base & Zin: or Special Zinc Filler 100 part CZ 11/ 220 pan Zn filler

d FROMs CCH-Ho FAW ho.: 708 746 2112 Calc. No. 22S-B-040M-002 l i Revision 1 I Attachment B ATTACHMENT B, PART 1 Page B1 i COMED NUCLEAR DESIGN INFORMATION TRANSMITTAL

! 00 SAFETY-RELATED Originating Organization NDIT No. ZDE 97-004. Rev 1 ONON-SAFETY RELATED 00 Comed (Zion Engineering)  !

I h OREGULATORY RELATED OOther (specify)__ age 1 of i l

Station Zion Unit (s) 1 & 2 To Saraent and Lundy j

Design Change Authonty No.: N/A i 4

System Designation: RH

Subject:

Containment coatino transoort calculation. Zion calculation No. 22S-B-040M-002.  !

I l

Brian Jelke Fecerer Desian Enoineer Natoi

[h P egerers 3 gnetud I/o//f 7 ore

.7, 'y no..e .

Arl/d '/

Deslan Enoineer w a.

M

,jn eacwe ,/

W / O7 on.

Status ofinformation:00 Approved for Use O Unvenfied O Engineenng Judgment

[

Method and Schedule of Verification for Unvenfied NDITs:

Description of Information:

l This NDIT contains revised containment coating system assumption informat;on and recirculation sump dimensions for use in the containment coating transport calculation, Zion calculation No. 22S-B 040M-002.

This NDIT supercedes the similar information provided in NDIT ZDE-97-004 as described below.

Calculation 22S-B-040M-002 Table 2 snould be reviseo to include a parametric study of undocumented ]

1 coatings with Specific Gravities of 1.5,1.7 and 2.0. Only coat.ng thicknesses of 1 mil or greater need to be l considered. This shou!d replace the data previously provided for specific gravities of 1.2,1.4 and 1.5 ano ce

clearly stated as an assurrption in the body of the calculation.  !

j 1 Furthermore, assumption 3.6 regarding the minimum cistance fecm the sump screen to the innerwall of the l missi!e barr er should be revised. Field wa!kdown data has been obtained from Unit 2 and is attached.

Purpose of issuance

l The curpose of the NDIT is to supply Sargent and Luncy with design input for the containment coating i transport calculation , Zion calculation No. 22S-B-040M-002.

i Source of Information: Drawing B-271 Rev. M (dated 2/4/86),'Nalkdown data (attached) i Distnbution: Central File West Brian Jelke, Design Engineenng Zion Station.

l Bob Peterson, Sargent and Lundy File No.: ZDE-97-004. Rev.1 CHRON No.: N/A 4

l i

i I

rpg H,gg ,,, 7,0,0, 7,.6,6, 2f1A

'My E$th$,2 ,y /

Calc. No. 22S-B-040M-002

" ~ Revision 1 Attachment B

?I Page B2 I 4* I N ' ,

s s

oe w m w ,

ep s.

/

I( a t

, % d n'

- i;

= 4. r c i

is a,

l I fl  ;

~1-10 ,

/

/

/

/

/

0 y

edc db M,

\.

~ ~ -

3%s'E &*'r ,

NAlus.@ By*

\ u 2.  %;n C.,4

F 9 %t. . E cs .g., _ ,,,,,,, rax

""^ 4",*,* 7,9'pu *** g y, Calc. No. 22S-B-040M-002 Revision 1 Attachment B Page B3 WALKDOWN OBSERVATION RECORD Type of Wakdown: *$4vb _ __ Dek er w u_2 ;_ ,, _ i/i7/y y pendr. D= user's. bd an's, users)

Design Change No.: YA Partidpanta:

l Deps1mnant Masse (Pr6 mead) signature ffN;nr &

  • E $6PN A . EsNULN $$ - kk: ',W W Al-.rr 3sn-a s. Gu-tr' A%W' I N 4

l i

1 Significast Obearvedeas:

[ues ami psy. it m. Now, tr -- h- er. .=p.o.4 i. 6. w .. u.d % 4.p 5.r dian- 6m, demonsioast dets, sec.). them the sitechphtets tungt be pfpperly psyggmd and NWed/WeggRed.)

M V #

  • d m g'55 t t.0- , p wp .Y 7 ,

S  % W. y

'\,

e x, ,i .~

y g- g' W 2 __ i r g7 K gg, ,,

[ - S *

  • P 8"% v s z.

% ir,, a w u~~-

um s= "-

u M w ,<j 6p -r.4.s. mea Iaps 1 i

r eoru Ecs-we * " ""

Calc. No. 22S-B-040M-002 Revision 1 Attachment B ATTACHMENT B, PART 1 Page BRy COMED NUCLEAR DESIGN INFORMATION TRANSMITTAL UD SAFETY RELATED Originating Organization I NDIT No. ZDE 97-C0_4 ONON-SAFETY-RELATED CD Comed (Zion Engineering)

OREGULATORY RELATED j OOther (specify)

Station Zion Unit (s) 1 & 2 Page-- 1 of 4 Design Change Authority No.' N/A System Designation: RH _

To Sargent and Lundv Subject The fellowina informatior' is desion inout for the containment contino transport calculation . Zien l calcutation No. 22S-B-040M-002 Desien Enaineer 04_,# __

es. s / <v /o } Nr '!

) Joe 2ecca crec.- penon M r-BWT b%m _Chemistrv Deoartment " '

T$. - - / / Y i ht 7 p- ., p, JouN C+ rvono SMAD h es. (//4 / 9 7 e

om' p ... , no.w .r.so w .

Brian Jelke Desian Encineer Mb f/N/F pn ., po.iion ~ n , e. so it,. e Status of Information: GD Approved for Use O Unverified 00 Engineering Judgment Methoc and Schedule of Venfication for Unvenfied NDITs:

Description of Information:

The NDIT contains the conta:ns the following three items to be used in calculation 22S B-040M 002:

1) The Minimum Spec:fic Gravity for qualified coatings insido containment.
2) Tbc chemistry results (spec:fic gravity), dry film thickness and estimated square foetage of unqua!ified paint with known specific gravity (UPSG). The cata is summarized in Table 1 " Zion Station Unit 2 Containment Coatings, Specific Gravity and Dry Film Thickness (DFTT
3) The DFT, assumed specific gravity and estimatea square footage of unqualified paint with unknown specific gravity (UPU). The data is summarized in Table 2 *Zlon Station Unit 2 Containment Coatings, Dry Film Thickness Readings of Unsamp!cd Coated Components.

Purpose of issuance:

The purpose of the NDIT is to supply Sargent ana Lundy with design input for the contairment coating transport calculation . Zion calculation No. 22S-B-040M-002.

Source of Information: Zion Station Chemistry Results. tr/e- /eied '/4/P hem N '

  • I'/*15 Letter dated 1/10/97 From SMAD to Zion Design Engineering. 6 c.~td. Er -e r-v Letter dated 1/14/97 From SMAD to Zion Design Engineering. f,i '-'N Letter dated 1/g/97 from Carboline to Commonwealth Edison Central File West Brian Jelke, Design Engineenrig Zion Station.

j Distnbution:

Bob Peterson. Sargent and Lundy

, Peye 3 A '
E 8

. ZION STATION UNIT 2 CONTAMIIENT COATDiGS 3 SPECIFIC GRAVITY AND DRY FILM'THCIGESS (DFT) is U o.

CQ AVERAGE SPECFIC GRAVITY [GICtt3) AfEA  % (Q 7 ITEM COWrONENT LOCATION DRY FILM THtCKDESS READOdG PS)

I 2 3 4 5 DFT 1 2 (SOFT) N, O, c

, - - buuMw. tvuvUt; UtInIvis 1 RAcx atacxcoAnNG tMSl588 0 0068 0.0053 0.0007 9.C046 0.0054 0.00576 1 48 2.53 58  % .$ g 2 GRAY liLLC CASDET ODATING 5eWZ25 0 0027 0.0014 0.0023 0.00tB 0.0010 0.00302 2.28 2.29 240 y ] y $!)

i U2 GUNINUL.UmI (,,) g g 4 3 GRAY COATING 61DZ31 0.0073 a0075 0.0072 Om75 4c073 0.00736 f 75 f.78 15 EL W 4M U M U3Utt HDISTI 4 617/Z31 0.0073 0.0089 0 0101 0 0053 0.0093 0.00838 1.71 20 GRAY COATING DRY TYPE INAMbiUMNt.R BOX f 0.0019 000188 2.73 2.73 74 5 BLUE COATING 617tZ28 0.0021 0.0016 0.0010 0.002 M5 GOUNitM Putht.; PMb-6 SNUBBERSiGRAYCOATING 617f228 0.0048 0.0052 0.0044 0.0044 0.0048 000474 1.81 80

.n

'-- EIUU HOISI IIKALFT 1 Oco42 0.cosas 1.84 1.88 200

.% 7 ORANGE COATeeG 617219 0.0048 0.0035 0.004 O m 3s

!y e.

8 RfD F1HE SYSTEM COATING IW4DIUUL UUAllNU /

ALL LEVELS 0.0033 0.0632

'~

0 0027 0.0028 40025 0.0029 f.98 1.90 32 00044 0 0057 0.00488 8.72 1.7 1057

. 9 YELLOW COATNG Au.LEWLs 0.0u44 0.0034 0.0050 E AIR TANKS 010,011/ SiACK NBtPUMP 0.0027 0.0028 0.0037 &C045 a00332 1.7 400 10 COATING DECK Q.3029 OR8NELL MPE STRUT 3 & SPRNG VAHackJS 11 CANSIGREEN CO4 TING 0.0043 0.0324 0.0047 0.0032 E0032 1 0.003W 2.7 350 d LEVELS S

Z S '

~

TOTAL SQUARE FOOTAGE OF SAMPLED COATING TO TRANSPORT 2514 vi N

Co

' (A Z

o O

$. T O

Page1 w 2

f

rnoni scw-sc * " * **"

Calc. No. 22S-B-040M-002 I Retision 1 Attachment B ATTACHMENT B, PART 2 Page BB 6 COMED NDIT No. ZDE 97-004 NUCLEAR DESIGN INFORMATION TRANSMITTAL Page l of 4 t

ITEM 1
Minimum dry film Specific Gravity (SG) for Qualified Paint. l j The fo!!owing specific gravity were supplied by Carboline the paint manufacturer:

Carbo Zinc 11(SG) SG 5.6 minimum Carboline 195 Surfacer SG 1.7 minimum  !

4 Phenoline 305 Primer SG 1.0 minimum , l SG 1.4 mmimum Phenotine 305 Finisn l ITEM 2: Specific Gravity, DFT and Estimated Area of UPSG.

i The data in Table 1 was obtained from actual paint samples imm Unit 2 containment. The SG were analyzed by the 2. ion 4 Station Chemistry Department. The SG for item 10 (black air tank coating) was provided by Sherwin Williams, the paint i i

4 manufacturer. The SG to be used in calculation 22S-B-040M-002 should be the lowest SG tisted in Table 1 for each component. The DFT and the estimated area of UPSG was supplied by the SMAD department. The average DFT shall be used in calculation 223-B-040M 002.

I The attached Chemistry data sheets obtained by the Zion Chemistry Department and SMAD include the SG rest.;tts and 4 l lead centent analysis results. l ITEM 3: DFT, SG and Estimated Area of UPU The data in Table 2 was obta.ned from actual paint samples analyzed by the SMAD department. The average DFT shall be used in calculation 22S-B-040M-002. The only item which is Engineenng Judgement in this NDIT is the apecific gravity assumed for UPU of 1.2 N

t a

l i

i.

4 i

s b

a 4

. . . . - . .. . - - _ = . . - . - _ . . _ . . . . . - . - - . - - . . . . .

FAX No.s 708 746 3113 81 P 11:30 P.89 F il0 M t ECH-NQ i

l,

!I'l l*':

i j :! ' l l l

li

  • li il  !

l l

..i_ HICMWB4 kWN MMYtS NG&d I s o o ~ ,n

'? '

u

!l I

';l .l. !.

ll!.

"l. ,

g i

4 i

l , ,

4

_1.IEsisds ss! E !E5 E x: E sdrie d Es s a sissis s!Esif 5i i 8R IB

. (($.$._$$_W CCW o"y""]@]dM855 88.!MMMR8 w

$88 g. gggd =~ Q Mj

. .o , ,.

j .j, I Eh! $h f! $ N a xag-han, <hn l2,a o N M ;g k k 5 i

qM u.mE sr RA '

i e-ampag"MMSf"ng 6Ho M EE " s i s --- edE!

- i i at 5555g4a_jj "j "o.ogBRl%Q""*Fl ga ys A ,.

Hill!iiiiillR  !!B@in$a

..  : a - E

! 1!!M.i! i 4' 1

i.< <

hi;;~',l': i i:

i i

. 4;;'

< <pc I .l; 7 n 3 ih my

{ t i 1

! i'! $yM d

l .! li l i i

. .l..'.;,h . yllJajJJ ,. ,

.: 3- q ,- .] , j! -

.'l! '.! *

!4 ', l < t

! i l ,

, ; pi a m e'. ' y o! a 7 l_ {lH29lE!No ,

oolodsoodsl. oooioiojoic;ocoado,'d!

!Il55BBlil ! .$!;E!HIIB!GRHE 5  ;  !  ; li;: i, 's .-  !>

o;

. !h E do oo o d e a o o d olo o o oloc E I

h

'i 50 EI! M III555EllllEE!$h.

o oo oopoloocicole! u.E! !Q

,g'E o lIRIS $$EEh l

{;',1 i- , i l- i

- - i

, 3  : , i i.

I' ' '

l . ' j! '

i L!  ;  ! l t

, (d o co co cs o o d o ci o o o. oi cs o o o o o n d a d o o pl e .

I

. I j; j i i ;" i j.;

! 1

3 i l'; F 70 '

in . l' 8 -

i .

i t:  : , ,

i l a 'o O OO b oopooo ci el em' rt o o c' d , o**N#* l k...,h h h k h h k k h h bh $h hbh b .h.k .!,h..k... ... __2.. 3 h

l j' Il i! i: !i

' i '"

l! t ,

a doaN.do cidooidold so o ' d oio of d d 'o'o da d o  ;

i  ;

HEE $$$$$  !

$$$$k$h $$b!$$khhhhk'!!  ! ii- !$.5.5,h ', i

'gvzO

, , g .

ii. $

  • ! l .

l' l i. I i a 13?  !;

l ,

l t el ' p l

- oo t o o e!a o o ' o' ooi a i oi ci o' es , e o ei o d ,1,!?

  • l { eH

!l - -

I i! -

i i

i i

i i .: I:

' - I I :i

! i ,

l' l

's i ~

Calc. No 22S-B.040M.002 Revision 1 Attachment B

~ Page BW 7

! FROM: ECH-HQ g.

FAX H0.: ?8: 706 2112 s Hit ay- Calc. No. 22S-B-040M-002 Revision 1

Attachment B j , O ENOIIMS, Page BNF  ;

1  !

300 HerWoy todusartel Court i i St. Louis, h40 a3144 Phone
$14444 4000 out. 2572 Fac 31444448FJ i 4 l

Tor Mr.Joka Catarano '

Company: Comanoawealth Edison 1 Phone: Voice Mau: 630-783-3663 i Pager:708-206-5549

! Fax: 847-731-4265 l Date: January 9,1997 i I

From: Mary Ann Watuer - Technical Service Department i

SUBBCT.Eo*ARe Gnuvuv afDry Pt1== efRa a r'arholine Mdure l

i Dear Mr. Catarano.

Due to the urgency of your requend and with your perudsalon, I wHl be sapplying information calcu!stad from Carboline products as they are currently saan=factured. This fadutates the process of supplying you with leformaation regarding the specise gravity of the dry fihas of several Carbellas coatings. The 1970 to 1975 vintage predact forunnlations are retained la archival storage and not readily necessible.

We disenssed and agrood'that the specise gravity leformation for the dry Dim of the coatings as they exist today would be fairly representative of a 1970 fetuslation if we consider these current speciSc gravity figures to represent an approximados and most probably a antalmata specise gravity. Data follows.

Carbo Zinc 11(SG) Speelde Gravity 5.6 anlaimam i Carboune 195 Surfacer Sped 5c Gravity 1.7 udainaam i Pkesoline 305 Primer SpedSc Giavity 1.0 salaimum  ;

Phenoline 305 Finish SpeeUlc Gravity 1A seinimum I trust that this information is helpful. Please call rue if you have any questions related to this data.

462<

Tsch Service Engineer

, cc:jos/jha '

's E99999991Et LT.91 4661/01/;0 la 39sd MS H331 341timmr) ,

- . . . - .- . - - . -. . . . _ . . _ _ ~ _ . . . _ . . .. ..

F R o t1 s m No.: Ms 746 2112 j ECN-HO ... -..,. w mo tasas i:::r.-w u.tm n<o tsas ta No: sic, m6 Calc. No. 22S-B-040M-002 Revision 1 i

Attachment B Page B59 l

j 1

} . _ _ _ . _ _ _

Industrial anni Marine coatings i

Janmary 15,IWi Mr. setas Jand l ce==esweakh Edison Company i Zeos Massear rower Plane i 101Skssk ated.

28sa,IE. 68099-2727 f

! . re: Metalastic r.m.mes. 5pecine Gravity Rating -

Dear Briam; i

Per your aquest, please find below the spectee gravky rating for Medslastie Emannel Casting. It is Sherwta WISla:as' understanding that this product was used by {

Caminemwsakh Estaos daring the said 1970's. The assumpdam bns been made that the prodmet would also have been manufsciared durtag that period.

Mahdmotic F-==el Conting Spedse Gravity Rating: apprezimately1.7 (+/-10%)

I hope this imenrunation sationes your inquiry. IfSherwin-Willimans can be offurther assistance, please contact N.ilot Phlulpe, Industrial and Marine Sales Manager at 547 330-1558.

56 % _

" ' Todd

. ' . R.

5

. .Hart industrial And Mariae Conting 216 5H 2897 cc: DFisch SW EFhB8P 8 8W JCaturnas CE g ggyg 14S1 OCE 044 803 syy g.3 g gn w g nassus

  • WOM.4 Ar. e m t /.M 'I t - wwr

._. .m _- __ . _ . _ _ - _ . _ _ . _ . _

708 746 *112

  • ma FROMs ECN-HO fax No.:

Calc. No. 22S-B-040M-002 j Revision 1 a ent B j

. 1/10/97 Page Bar/0 4

i

, To: B. Jelke Design Engineering Zion Station

Subject:

Zion Station Unit 2 Containment Coating Dry Film Thickness

]

Measumments.

From 1/4/97 through 1/10/97, numerous dry film thickness measurements were taken on various carbon steel components and structural members throughout the Unit 2 contaimnent. The measurements were taken in accordance with SSPC-PA2 specification for j dry film thickness measurernents, "Ihe incasurements were taken using a Positector 6000 coating thickness gage (scrial #16400), manufactumi by DeFelsko Corp. Prior to testing, l

calibration checks wme performed using DePlesiio provkled standards.

1 I

Reported By:k#_ M'oj Prank Ouctrieri IAvelI Coatings Inspector SMAD 1

Reviewed By: .f - v S. Caturano velIII contings Specialist SMAD I

k ss

l ,

fb s,a.Nt "2/5 5 $ 5 T' L ,L M 57o' $ .T E

=, r u.,

l ax= tim . ae. rmoem ,

ia = tion ,

y;, - .

l _ '

I JakuerEd K3/ REB Calhk= 3(97-

= n.,i. , m o

! .. e==r.e wet.

anavne w a t. an==.a wo.=

\ .#VW, PN iM17 j .== u ==1ya. ey na nr.e. u . 2- wum uwe 1. -y, th. ==utt.r

. aust ratify the M. Any easque with a It casult or <1.0 mg/L aust be run m the GPM.

sample sa.ple . Dilutim aseding m.sult d Lit.c. gd

} maandeur. e(u n===  !

m =t e =t i pctr  ;

W%

i (A) f I rAA opfyg

  1. 1 Rhok -

09 '- 0.67- -

7 '

"liW I:SD 9 ab o.Mel 3C3 I(,9 E3 OK I:co E G- 0.t% TCI 12 .I 12.D% = led

& Xh%" oro ces o.ne itM 1.M Y $NY l :)b 9.W 0 Rin7- f.R.C 00 4.TET Ye}{ca i 0.$/8 1 Cd-  : / 8,9  !.

E6 '?$*#

n /. loo 57 7.)-

Ub'Y,  ; Orasal.

4*l- 1:l% CCl- s.30M '(6i (P).1 (8.bYo '

$8 icda ' 1:1 R.T , o ot4L t?. t o I II.lo 96.7% l 64 is%/a I. L 'M / c o64 /5.O- //, A 93 496

%wlae = l1 %5WYA u

\

- l calculations: .

merutor - x v zooo me., m x . - t in . o .

1 pg/m3 = m M11+=r x 1000 um

x. 1. - utors ce air samana i  % Recovery Cmtrol - b /rn ter x loot = xloo=l t True valu. (g )

j.

11/23/93 1.- ..

' Calc. No. 22S-B-040M-002 Revision 1 Attachment B l' age BW //

F R 0 rt s ECH-H3 .

FAX 0.8 700 746 2112 ,,,,,, ,p, gg.1,5-j7

, ti g a sargrr REUGE:D 12M < . s.

. O-RINGS DENSITY DY HYDROSIATIC WKIGHItGS ..  ;

(AETD4 D297) *;(j j' .' / '.'

FORM D ' .'g j ' ' ,

7',

ggg Aj[4 M. *C / 6 3 /21T Station /Div. DoA - - - -

'lherficmater # , _ K3 / 46W submitted By R QL,rw u- Balance.# ' '

I/WW , ]',,. '.Ij ' '  : .-

Date Rec.

  • i Pro:inct Nann [ M M I'd' I ,

- Mil:1 .

Evaluation # --

~ *- \

RZH 0 GL l ccore's Item # . .

. Purchase order #'

- .P'. .

Iot/ Batch #

5 56$ T/lf/3' 566 ch, chi N5

&ac .fource,lkfuhr PackC (A) o }13 0.

c (et Mass of Specimen (A) 0.3399 (at oo (gl 0 /CW- (cL Bouyancy.of Spec (P) 0 09%'

Bouyancy of Spec (P)

Density at 25'C (g/cd) .1 %'

-h =ity at 25'c

, t1,(s/qm )

i 2G

0. hb (at _

O.M AI' (g)

Ma S }

D,12 K (at Bouyancy of Spec (P)__ C. f/tfT-P- fgl Bouyancy of Spec (P)

Density at 25'C Density at 25'C O @3 M. N- .(g/cd)__

'5 - (g/cd) '

$c;. /4r/# T 6 @ T31 h k fI? ' 3;y3 O,/86 fg).

Mass of Specimen (A) O IM b- (al Mass of Specimen (A); n.r4 w fe)

(at Bouyancy of Spec (P)

Bouyancy of Spec (P)___n 0.9i-Density ac 25'C .-

Derisity at 25'c (g/an') ,l hi (g/ati') bN Density at 25cc in ch/cm' = A( (C.%/i%.gh

For liquids and solids Specific Gravity (25'C/4'C) is numerica equal to Density (25'.C) .

t Analyst

'." Date lIY Calc. No. 22S-B-040M-002 165. FORM Revision 1 )

Attachment B Page BW /4

)

FROMs ECH-HD ,,. rAx No.: 788 746 2112 ,, 81-1,5-97 tig P.

g gg' h

,. O-RINGS -

DENSITY BY 1himCumTIC ,WEIGHINGS .

(ASTM D297)'p.y '. .

FORMDjh,;.'". . , ,.

i D v. 8 -

h enhnitted By k - Wad'# - - -

  1. **f* jY . .

4 Bate Rec,

' NW -

~.

~

i Product Name Evaluation #

___ ParoV d p r

[

i[: .- l  !

,I h.. d . '.

aIu.#

.j' Stiores Item # ' -

Parchase Order #' - .

Int / Batch # E

& NAh ..

N UWCk Masd of Specinen(A) ONb Mass of Spacin=n(A) O W (at (at (al D < / 54 014 O. I M -6 Igt Douyancy.of Spec (P)

Bouyancy of Spec (P)

Density at 2580 Density at 25*c / / O8 / . (s/czn') / 0)Q /

(g/an') .

t h r . g' 9 1, .

Mass of s-inan(A) O. W-h tot Mass of Specimen (A) O.NO (e)

O ./6 4 , fgL Jc) Bouyancy Iaf Spec (P)

Bouyancy of Spee(p)_ 4Li1Oh Density at 25'C  != 7O .

Density at 25'C .(g/cnf)

'C' (g/cn9) _ ' ' !* .

$c<uqc.UMost. C.MbD faL OBouyancy of Spec (P)_ % d-(A)_

ro m c L C' 6DC6 fal Mass of Specimen (at Mass of Specimen (A) fal O. A /OP Bogyancy of Spec (P)

! [. / f) eb -

g/c. }

cAmxrrcn . N il W C. h /k h r Ag d

~

Density at 25'C in g/en = A L 9fPtI)

' For liquids and solids Specific Gravity (25'C/4*C) is nuneric equal to Dens 2.ty (25'C) ,

Analyst [ Nb4 pace l 5 __ ,

Calc. No. 22S-B-040M-002 165.. FORM Revision 1 Attachment B Page BF/3

FROM ECN-HO FAX NO.s 788 746 2112 3),- 1 % ,9 7,, 1,1,8ji ,Pg, L2 f . ..., ,, ,,

l ,

M 'di TIgM - P .

! r., -

o-Rnus 7 "- ~

ussszTy sy nynaosarIc wissinGS l a -

l, .

i (AS'IM D297) %jll ,ic'.,- -

/: !

PORM D ;;p . ,

i  : ,

5

' feWMof wmeansTerp *C ')()C ' -

sMAD lab # M/4 /NW Thessemater #'

i Station /Div. h E 3 / *'B l

j ha'T nel mnm .# '

  • ggggnitted By . p .p .

<(5 M ..>.y~

naee nec. ' '

' Proauce name 3 valuation #

- A-@O -

i if,; .

~ '

at-'y,.- , -

' ars.n --

m l

i Stores Item # '

C .T',

l Puzxhase Ordexf ~ .-

u t/ Batch #

1 MI 2MP./5'l O, 4//Y 9 (c)

Mass?AP i lofSpecimenfA)o,.2 72.'7 (al Mass of Sybn(A) fa1

! O o 9 4 ial Bouyancy.of Spec (P) m. /4 3G l

Bouyancy of Spec (P) '

Density at 2sec ,/ nansity at 25*c 2. #

J,2 7 , ,,, gg/cm )

i _

(g/an')_ _

, ~. c

()lh'ca,,Jep/ Do x '

'l ' y.g Gdro f Bov.-

I O.NYG lal Mass of Specimen (A) O . /'b M fa) fo)

Mass Bouyancy of of Sg=((A)

Spec P) W.06V3 Io)

Bouyancy of spec (P) _ o i O W _

l Density at 2s'c A TE .

AW .(g/cm')-

l naip<sity (g/cd) at 25*c '

L .

l

, )

Mass (A n.2n0R (al k) f$) n /D FP fal Mass of o e3oI (al Bouyancy of Spec (P) j BopyancyofSpec(P)

Density at 25"C .. [g l$daityat25'c /Sb (g/asi'L -

(g/en )2 _

. . . c

{JLTITTT J\TICN Density at 25aC in g/czn' = A (.9971)' Q f /// k M p

" Ebr liquids and solida specific Gravity (25"C/4*C) is numeric equal to Density (25'C) .

'1 Analyst o,ee tIMF Calc. No. 22S-B-040M-002 165.ICRM Revision 1 Attachment B Page BG//

.. . . . . . - - . . .- . . =_ . . - . - - . - - . ._ -,

FRONT ECN-HD F Att N o . : 708 746 alla gig p5,9gil2? D .13 ,

Rev. O  !

- JUL 241995 TABLE 32 HISCELLANEOUS DATA FORM

~

Date: /' / 97 Analyst; d/

f/

Misc. Sanoles

[:s';" } '[, 4 l Sample Time 7 6 cd a

14*s;k+mtarc-A

' 0 b 2.5-9 Avune. n.53

/

l

  • These cut of spectfication analyses were brought to the attentien of:

h t> a l

$ l on /,,,,_,,) at kf j Reviewed by:

-g WJ e7n j (datec) )

/

l

. l l

l FINAL Calc. No. 22S-B-040M-002 ZPZCPW\401 T32 l Resision 1 Attachment B Pace _BJ /5

raons- ccN-HD rax No.s 790 706 2112 [

Calc. No. 22S-B-040M-002  ;

Revision 1  !

Attachment B January 11,1997 Page BS4 Final  ;

t i

Brian Jelke Design Engineering Zion Staten i

Subject:

Specific Gravity Values for Untested Coatings in Unit 2 Containment at Zion Sta: ice l

l l

l Due to inaccessible areas, inegular and small surfaces, some undocumented coatings were not )

sampled for analysis, therefore, an estimate was established for the specific gravity of several

. undocumented coatings in containment. His estimation-is based on the results of specific gravity values of components analyzed from throughout Unit 2 containment.

Analysis shows that specific gravity values obtained en eleven coating samples in Unit 2 containment are a minimum of 1.6 3'cc. Based on vendor informatinn, most of these coatings were alkyd based or epoxy conting materials.

Considering these values, and the assumption that the ur. tested materials are also alkyd or epoxy based coatings, an estimated specitic gravity of 1.2 g/cc is bring tsed for undocumsmed coatings on miscellaneous components (totaling approximately 85 sq. ti.) where coating samples were not remcved.

His value is below the minimum found on any other undocumented coating ir. containment.

During the time most of these coatings were opphed (late 60's to early 70's) many coating materials used as shop primers and other industrial coatings contained lead based pigments (i.e. red lead alkyd primer), which would result in specific gravity values above 1.20 gece, dependmg on the amount of lead present in the formulation.

=f l

/Jdha 5. Ca:urano

. levelI!! Coating Specialist .

V System Materials Analysis

  • 4

_- . -- . . _ _ . - - .- _ .. _. - _ = . _ _ _ _ - --. .

1 1

l l

O 1

ATTACHMENT B i

ZION STATION CALCULATION NO,22S-B-008M-092, REVISION 2,"RHR PUMP ,

AVAILABLE NPSH DURING THE POST LOCA RECIRCULATION PHASE" (

4 i

i l

I