ML20058P615

From kanterella
Jump to navigation Jump to search
Organic Iodine Recirculation Spray Removal Rate
ML20058P615
Person / Time
Site: Zion  File:ZionSolutions icon.png
Issue date: 11/30/1992
From: Hubner R, Johnson W, Lahti G
SARGENT & LUNDY, INC.
To:
Shared Package
ML20058P067 List:
References
ATD-0206, ATD-0206-R00, ATD-206, ATD-206-R, NUDOCS 9310250113
Download: ML20058P615 (85)


Text

{{#Wiki_filter:7 UNTT NO.: 1&2 PROJECT N AME: Zion Stanon ntE NO.:4.6,13.1 3 5 ARGENT 9LUMDY rROsEcr NO.: 39u.io 5 5YSTEM: C5 CLIENT: Commonwealth Edison Company DIVislON: ATD CALC. NO.: ATD-0206 h DESIGN CONTROL $UMMARY TTTLE: Organic lodine Racirculation Spray Renewat Rate DEslGN VERIF1 CATION NON SAFETY RELATED { SAFETY RELATED Pages I mrough 81, all new calculanon. D R. S. Hubner 11/17/92 l (~Wu,elll i g W.>;>a-f,p2 STATUS: Verified Deu REVIEW METHOD: See page 81. ol 5

c. P. Lahn 113d92

{ u s 5 5 9 8 .f

  1. s 5 2

STATUS REVIEW METHOD l 2 f B" 5 B B< l 1 h STATUS REVIEW METHOD l 2 s l l E 5 h I

  1. a E STATUS l

5 REVIEW METHOD E'u " ~ ~ 9310250113 930901 PDR ADOCK 05000295 P PDR

taics. r r anic lodne caic. No. E-02% SARGENT & LUNDY ENGINEER $ Recirculation Spray Removal Rate nev. O Date X Saf ety-Related Non-Safety Related Page 2 of Date Commonwealth Edison Company Prepared by citent Date Zion Station, Units 1 and 2 Revtewed by Project Date Proj. No. 8986-10 Equip. No. Approved by TABLE OF CONTENTS Page 1 DESIGN CONTROL

SUMMARY

SHEET 2 TABLE OF CONTENTS 3 LIST OF TABLES 3 LIST OF ATTACHMENTS 4

1. PURPOSE

- 4

2. DESIGN INPUT 4

2.1 Containment Data 4 2.2 Spray Drop Size Data 8

3. ASSUMPTIONS 9
4. APPROACH 12
5. CALCULATIONS 47
6. RESULTS 48
7. REFERENCES SO ATTACHMENTS 81 REVIEW METHOD SHEET i

7 I ATD-0206.WPD

h cales. r r anic lodne cale. no. ATD-0206 SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate Rev. O Date X Safety-Related Non-Safety Related Page 3 of client Commonwealth Edison Company Prepared by Date Zion Station, Units I and 2 Reviewed by Date Project case Prof. No. 8986-10 tou to. t<o. Approvee by LIST OF TABLES Page 5

1. Containment Data 7

c

2. Measured Mean Drop Sizes 17
3. Calculated Drop. Size Means and Standard Deviation of the Geometric Mean 41 i
4. Maximum and Minimum Geometric Means and Standard Deviations 46
5. Organic lodine Recirculation Spray Removal Rates From SPIRL, LIST OF ATTACHMENTS Page 50
1. Drop Size Means and Distribution Experimental Data 72
2. Microfiche of SPIRT Input and Output 73
3. Controlled File Information 74
4. Reference 3 79
5. Reference 6 i

I ATD-0206.WP0 i

C''"^ ~ "" C U "* SARGENT & LUNDY l O' cate ENGINEERS Recirculation Spray Removal Rate Rev. X Safety-Related Non-Saf ety Related Page_,4 of Date client Commonwealth Edison Company Prepared by oate Zion Station, Units 1 and 2 Revie ed by Project Date Prof. No. 8986-10 Eauip. he. Approved by

1. PURPOSE The purpose of this calculation is to determine the containment spray removal rate for organic iodine during the recirculation mode.

i

2. DESIGN INPUT 2.1 Containment Data t

Table 1 gives the data required to obtain spray removal rates during the recirculation mode except for the geometric mean drop size and the standard deviation of the geometric mean drop size. 2.2 Spray Drop Size Data Attachment I contains the results of spray drop size distributions obtained at several pressure drops (Reference 1). Table 2 gives the number, surface, and volume means at each pressure taken from Attachment 1. Distributions and means were obtained more than once at each pressure drop. t ATD-0206.VP0

98" "I*' SARGENT & LUNDY ENGWEERS POCirculation Spray Removal Rate Rev. O Date X Safety-Related Non-Safety Related Page 5 or P client Commonwealth Edison Company Prepared by Date Project Zion Station, Units I and 2 Reviewed by Date Prof. No. 8986-10 couto. No. Approved by Date Table 1 Containment Data Value Reference Item SPRACO 1713 Ref. 2, Table 6.5-5 i Spray Nozzle Ref. 3 Spray Nozzle 1713A Has Same Characteristics as 1713 Westinghouse Design Pressure (psi) 40. Ref. 4, p. 5 Geometric Mean Drop Size (cm) at .0282 Ref. 4, p. 23 Westinghouse Design Pressure Logarithmic Standard Deviation of .7021 Ref. 4, p. 23 t Geometric Mean Drop Size at Westinghouse Design Pressure Recirculation Spray Flow Rate (gpm) 2460. Ref. 5, p. I of 1, Section VII 171. Ref. 5, p.1 of 1, Section VII NumberofSprp)yNozzles .005 Ref. 5, p.16 of 31, Flow Area (ft Section VI Resistance Coefficient 126.9 Ref. 5, p. 21 of 31, Section VI Water Specific Volume (ft /lb) .0162 Ref. 5. p. 17 of 31, 3 Section VI Containment Free Volume (ft ) 2.715E+6 Ref. 2, Subsect. 15.6.5.4.4.3, j 3

p. 15.6-34 Fraction of Volume Sprayed

.85 Ref. 6 Spray Drop Fall Height (ft) 147. Ref. 2, Table 68-1 Height (ft) of Wall That Has Laminar 10. Ref. 7, p. 16 Flow Collection Efficiency (1.0 is Most 1.0 Ref. 7, p. 157 Conservative) Elemental Iodine Partition Coefficient 10000 Ref. 8, p. 12 ATD-0206.VP0

ales. r r ganic lodne caic. ha. N O206 SARGENT & LUNDY Rev. O oate ENGINEERS Recirculation Spray Removal Rate X Safety-Related Non-Safety Related Page 6 of Date citent Commonwealth Edison Company Prepared by Date Zion Station, Units 1 and 2 Reviewed by Project Date Prof. No. 8986-10 Eauip. No. Approved by Table 1 (Cont'd) Value Reference Item Normal Temperature at Which Spray Water 62. Ref. 2, Table 15.6-2 Is Stored (deg F) Max. Post-accident Temperature (deg F) 263. Ref. 2, Subsect. 3.8.1.2.5,

p. 3.8-7 Methyl Iodide Hydrolysis Rate (sec)

7.7E-8 Ref. 9, p. 14 Methyl Iodide Partition Coefficient 5.0 Ref. 9, p.14 .4 Ref. 4, p. 23 Maximum Drop Size (cm) 2) Wetted. Surface Area (ft 410000. Ref. 10, p. 19 .05 Ref. 8, p. 8 Spray Water Wall Flow Fraction Temperature Difference Across Wall / Gas 1.0 Ref. 7, p. 17 Boundary (deg F) Containment Inside Diameter (ft) 140. Ref. 2, Fig. 3.8-1 and Ref. 11, Subsect. 5.4.2,

p. 297 I

i -l ATD-C206.WP0 {

ales. F r an c lodne caic. No. G -02% SARGENT & LUNDY new. O oate ENGINEEM Recirculation Spray Removal Rate X Safety-Related Non-Safety Related Page 7 of Date citent Commonwealth Edison Company Prepared by Zion Station, Unita 1 and 2 Reviewed by Date Project Date Proj. No. 8986-10 Eautp. no. Approved by Table 2 Measured Mean Drop Sizes (Sce Attachment 1) Measured Size (Microns) SPRACO Run Pressure Number Surface Volume Experiment Number (PSI) Mean Mean Mean "25-1" 26_ 25. 831.9 901.2 968.0 "25-2" 27 25. 854.0 918.7 983.4 "30-1" 24 30. 803.5 882.2 955.2 "30-2" 25 30. 803.5 876.1 944.9 "30-3" 33 30. 763.7 835.1 904.9 "35-1" 28 35. 794.6 850.3 907.4 "35-2" 29 35. 799.3 852.6 907.6 "40-1" 30 40. 763.3 829.9 894.4 "40-2" 30 40. 780.9 849.6 916.4 "45-1" 31 45. 696.3 770.9 849.4 "45-1" 32 45. 698.9 770.9 846.5 l 1 ATD-0206 NPD

C'' 9"" ~ SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate Rev. O cate X Safety-Related hon-Safety Related Page 8 of Date Client Commonwealth Edison Company Prepared by Zion Station, Units 1 and 2 Reviewed by cate Project Date Proj. No. 8986-10 Eculo. No. Approved by

3. ASSUMPTIONS No assumptions were made.

The following Engineering Judgement was made. Measurements of spray drop sizes in the densest part of the spray cone can be used to determine the behavior of the mean diameters with pressure. This is justified because the outer zones of the spray give a conservative representation of the spray (larger drop sizes result in smaller iodine removal rates, Ref 4, page 19 and Figure 2 on page 7). h i i 1 ATO-0206.WP0

manblodne cale. ho. NM cales. r r SARGENT&LUNDY ENGINEERS Recirculation Spray Removal Rate Rev 0 Date X Saf et y-Related Non-Safety Related Page 9 or Date citent Commonwealth Edison Company Prepared by Date Zion Station, Units 1 and 2 Reviewe:J by Project Date Prof. No. 8986-10 Eaufp. No. Approved by

4. APPROACH Microsoft EXCEL, Version 4.0 (Reference 12), is used to obtain least squares linear fits to and plots of the measured mean drop size parameters as a function of pressure The means obtained from those linear fits are used to calculate the drop (Table 2).

geometric means and standard deviations of the geometric means at each pressure drop. The relationship between the various means and the geometric mean and standard deviation are taken from Reference 13, Equation 5, page 11; however, the diameter instead of the volume is used, and tbare is no time dependence. Let D,- number mean drop. diameter (microns) D, - surface mean drop" diameter (microns) D, - volume mean drop diameter (microns) D, - geometric mean drop diameter (microns) - stan8)arp deviation of D, - in(D p o - [in(a)) u N - 1.0 (total number for a normalized distribution) and, from Reference 13, X first moment X, - sec,ond moment 2X - third moment. ThenfromReference13, X, - exp[p+ u/2] i X2 - exp[2p+2u] X3 - exp[3(p+3u/2)]. But by definition, X, - D, X, - D,2 X - D,3. 1 Therefore, EQN. 1 D, - exp[p+u/2] EQN. 2 D, - exp[p+u] EQN. 3 D,- exp[ +3u/2]. Any two of these three equations can be used to solve for p and u, and, thus, for D, and a. Thus, using the number and surface means (Equations 1 and 2), EQN. 4a D,- D,/D, ATD-0206.WP0 j

9#" SARGENT & LUNDY Emm Recirculation Spray Removal Rate Rev. O cate X safety-nelated non-safety ne1ated Page 10 of Date citent Commonwealth Edison Company Prepared by Date Zion Station, Units 1 and 2 Revie ed by Project Date Proj. No. 8986-10 Eculp. No. Approved by and EQN. Sa =exp{[2*In(D/D,]2). Using the surface and vol,)me means (Equations 2 and 3), a u EQN. 4b D, = D,3/D,2 EQN. Sb a - exp([2

  • In(D/D,)]t/2).

~ The experimental drop size distributions consist of the total number of drops in microns width; thus, the measured distribution is the actual 50 bins of 39.6502 In order to compare the experimental distribution integrated over each bin width. data with a log-normal distribution, the log-normal distribution must be integrated over the drop size bin width., Let d = drop diameter (microns) at the center of a drop size bin ad - drop size bin width (microns). Then, the integrated log-normal drop size distribution can be approximated by N exp(-[1n(d/D,)/ln(a)]2/2){Ad/d)/((2x)t/2

  • In(a))

EQN. 6 For each pressure drop, the experimental drop size distributions along with an evaluation of Equation 6 can be plotted to show that the data is adequately represented by a log-normal distribution. The data and evaluation for each drop size bin can be plotted at the center of the drop size bin. 1 After the geometric mean and standard deviation are determined for each test pressure When this drop, both items must be shown to be linear functions of pressure drop; This is established, the most conservative slope for these items must be determined. can be done by using the " standard error for the y estimate" provided by the EXCEL LINEST function. Thus, each of the drop size means determined by the least squares linear fit at test pressure drops of 25 and 45 psi must be increased or decreased by the " standard error for the y estimate" and the corresponding geometric mean and standard deviation of the geometric mean calculated. The slopes of these two items must be selected such that in going from the design pressure drop (40 psi) to the spray recirculation pressure drop (lower than 40 psi) when normalized to a geometric mean of 282 miccons and a logarithmic standard deviation of.7021 at 40 psi (Table 1), the geometric mean and standard deviation will result in a calculation of the lower organic iodine spray removal rate. Calculations of organic iodine spray removal rate are done ising the SPIRT program (Reference 14). ATO-0206.VP0

calco r r gan c lod ne calc. No. AE-0206 SARGENT & LUNDY new. O case ENGINEERS Recirculation Spray Removal Rate X Safety-Related Non-Safety Related Page 11 of i cate Commonwealth Edison Company Prepared by client Zion Station, Units 1 and 2 Reviewed by Date Project cate Proj. No. 8986-10 Eauto. No. Approved by The pressure drop for the spray recirculation mode can be found using the methods of i Reference 5. Let Q = flow rate (gp ) for one nozzle; F = flow rate (ft sec) for one nozzle; A - flow area (ft ); V - velocity (ft/sec); 2 - acceleration of gravity (ft/sec ); g K - average resistance coefficient; Ah - head loss (ft); 3 - specific volume (ft /lb) of water; y AP - pressure drop (psi). Then,F - Q/[60 (sec/ min)

  • 7.48 (gal /ft ),

Ref. 5, Subsection VI, p.18 of 31; 3 F - Q/448.8. Al so, Ref. 5, Subsection VI, p.17 of 31. V - F/A, Substituting the equation for F, V - Q/[448.8

  • A].
Now, Ref. 5, Subsection VI, p.16 of 31, i

z where g - 32.2 (ft/sec{,. Substijuting the equation for V, Ah - K

  • V /(2
  • g

) 2 Ah - K

  • Q /[(1.29715E+7)
  • A J.
But, Ref. 5, Subsection VI, p.17 of 31.

l Ah - 144

  • AP
  • y, for Ah equal, Setting the two equationy/[(1.29715E+7)
  • A ),

2 144

  • AP
  • r - K
  • Q Solving for AP, 2

2 EQN. 7. AP - X

  • Q /[(1.8679E+9)
  • r
  • A ].

i j ATD-0206.VPD


._-_j

9"" SARGENT & LUNDY ENGWEERS Recirculation Spray Removal Rate Rev. O oate f X Safety-Related Non-Saf ety Related Page 12 of citent Commonwealth Edison Company Prepared by oate i Project Zion Station, Units 1 and 2 Revie ed by Date Prof. No. 8966-10 tauio. No. Approved by Date-

5. CALCULATIONS The following four pages contain the results of the analysis of Table 2 experimental data using Microsoft EXCEL (Reference 12).

The DROPS 4.XLS spreadsheet contains the following information.

1. Cells Al-All, Cl-Cll, El-Ell, A13-A23, 013-D23, and G13-G23 are the test pressure drops (psi) (see Attachment 1).
2. Cells B1-Bil, D1-Dil, and F1-F11 are the test number, surface, and volume means (microns) respectively (see Attachment 1).
3. Cells B13-B23, E13-E23, and H13-H23 are the same. as those described in Item 2.
4. Cells Cl3-C23, F13-F23, and 113-I23 are the results of the EXCEL TREND function for the number, surface, and volume means (microns).
5. Cells A25-A29 and B25-B29; D25-D29 and E25-E29; and G25-G29 and H25-H29 are the results of the EXCEL LINEST function for the number, surface, and volume means.

In particular, cells B27, E27, and H27 are the " standard errors for the y estimate" for the number, surface, and volume means respectively. The NEANI.XLC chart shows plots of Items 2 and 4 as functions of Item 1. This chart shows the apparent linear behavior of the various drop size means with pressure drop. 1 l t i i ATD-0206.VP0

DROPS 4.XLS l Calc.No.ATD0206l lRev.0 l lProj.No. 8986-10 l lPage13 ] I I A l B l C l D l E l F l G l H l l 1 25l 831.9l 25l 901.2! 25 968 2 251 854l 25 918.71 25 983.4 3 301 803.5 30 882.2 30 955.2 4 30l 803.5 30 876.1 30 944.9 5 30! 763.7 30 835.1 30 904.9 6 351 794.6 35 850.31 35 907.4 7 351 799 3 35 852.61 35 907.6 8 401 763.3 40 829.91 40 894.4 9 40! 780.91 40 849.6l 40 916.4 10 45! 696.3i 45, 770.91 45 849.4 11 45i 698.9i 451 770.91 451 846.51 l 12 i l i + 13 251 831.9 838.14781 25l 901.2 905.5852 25 968 969.97 14 251 854 838.14781 25 918.7 905.5852 25 983.4 969.97 15 301 803.5; 808.1609l 30 882.2 875.8739 30 955.2 941.8 16 301 803.51 808.16091 301 876.1 875.8739 -30 944.9 941.8 17 301 763.7l 808.1609 30l 835.1 875.8739 30 904.9 941.8 18 35 794.61 778.1739 3 51 850.3 846.1626 35 907.4 913.63 19 35 799.3! 778.1739 35l 852.6 846.1626 35 907.6 913.63 20 40 763.31 748.187 401 829.9 816.4513' 40 894.4 885.46 21 401 780.91 748.187 40l 849.6 816.4513 40 916.4 885.46 22 45i 696.31 718.2 451 770.9 786.74 45 849.4 857.29 23 45 698.91 718.2 45l 770.9 786.74 45 846.5 857.29 24 1 l 25 -5.997391 988.0826 -5.942261 1054.142 -5.634 1110.82 26 1.049044l 36.95418 0.890885j 31.38279 0.802013 28.25215 27 0.784091l 23.98453 0.831744l 20.3685-0.845753 18.33661 28 32.68418 9 44.48981 9 49.34811 9 29 18801.82 5177.318 18457.741 3733.883 16592.39 3026.083

l Calc.No.ATD-0206l lRev.0 l lProj.No. 8986 10 l lPage14 l 1 1 ,,i w-aa_ >i xaRax i.lW.!W.t&d&. k I o &LE\\EIE din'n:n\\n oio!cto;o cfclcicic O oIQioloJQ i

in@nCn

!, j,

i w!w w!wiw

' I c!c:c:c'c ,{

  • ll WEEEE ElE!E{$E l

I l w ,w,wtw n n R R Rts!n. sis clei ?:gdii?lI n, n,-i-n....:. i siisi!!$ia!EE! bib exannweduxn Ri2Vi2l2i2Ri2iRi2iR Dic c;c:cto c:c;c:c:c <l< A K K K Si< K K!<. n n a ntn n n n n ntn m e m!a a m;m!mim me o cic!c!clc!c'c c!c c a m m>m mee m meem e a'u m e:e a s crR Ranne ? ve 7:7 717 77 77777 g j E!EN W {W fW. W.W. EjE.!EAn nR n,nsn UlklU'N N clotc c c Al,$.5< a ~ nn n 2lBe m e c c\\" 0 EEEEJE ElEiEIGIE i gigjwg2..

a. m.5., w g x. g!p.~

.in n n.g a,~,ai,s e.~,s,.t.s.,s. p,g.~.nnant. s

2. g g.a,a s a,~,s e. s

~~ ~~~ ~. 1 I E!ElsE 8 E'E!E E>E ssss!s na WJWJW.t"e.' W. n nint n n\\nin n n a N NNS n n:n:n n l mlmim m m '{ c" clo c eseee El. ele!EIE w wtwiw w n n R R R n.n.S;?,C.0 A n,R R R R nl? S.$i@ I -H"H-H- -l->>>>>>>> > >> > n> n>>>>

t e I i jtale.No.ATD-0206l l !EEEEEEEEEElE l 1*a 0 l 0 Olc lProj.No. 8986-10 l 0;0'0lc::010!0lce:l00 I f

"=, : :":c, c

lPage15 l Q)Q'0lQ!QlO!Ql41Qlq}' i q ORN>"'"E'Nl0OCRIN l l l z;zziEl lziz!z!c!ce l ziz;z c e!c!c e r c e i Iz m ou.two 1. I i I i l li,l !I '5. :5 :5. m*5. i.

5. l'E.5. '5. '5 l5 l

W~ada Iilli i!!! ijl11i } l }I 5!5!5!5j5 $13:aato i;' ;l;*l) il' lI'! fl, t 1' i;p!sl sis l j eie m elm !?!2?iO; ElEjU'3 G 0'0l0 0,0 U!E!O3lN l z 2j2isl2E C dOjC C dELat l j l GIG!Gla G gggg y , i i io n.. i i ,i H @ 3 !a s ;s ! !,il$ vv v v y fillill j ll l' !i ( $$,l3tsa i t i: I'),'i!,i.l i i I !l mir.e a m

r. -J.

4 ' $ $$ W !,2 r,1 ;I reed e d' ~ i I .r.ir. ir. RNlR;"E'O "C'C.2{,0 Q Oio 0 $x 0 QQl4QlQ G 2IN "N "26z 9z 8 I ccic aa at!Eqt GGGGG i ? 5 b' W.?g W .ntn.n n,s.n n e s e,c $&kRiNNR{RRiNR 8l8lBj8!818:8iSIB!8'8 25000!C'00'"S " 4:Q:AlA;QlA!Q!Q!Q!o.A n2Ran nl n2nc,wwwwwiwIww www

"Oci &ccc c wiw w}uww-w-w w

, n.. , e, 'a'E "8:8.3 *:%.l*3 5. 'E.5 5. '5. I5. f5. '5. '5. '5

5..

~ Eisl*"s t 8 a 88 @ x x x x 8.3.-_.. -. 5$l$ 55 5 5# 0in.'* 0 O!O 0 n n.i* n n 9* Pt 9* QQlQ QQ n.n,n R n mww ww h hhh h egee GLG G w w g w: ~~ ~ - -n e.. $,2 R R.R $ A ?>S;Cl4 .5 $ $ $!b E b $!b k. v ?!. h -l"H-H-Hl->:kkkkb>>>>>>>:>>>>: l t ?

MEAN1.XLC Mean Diameter Surface = Number - - - - Number Linear Fit a Volume - - Volume Linear Fit Surface Linear Fit 1000 -r u

r-( '--

950 ~, u - - ~.. N 5-900 ,,,,,,,'u e N 5 --l n ~ ' ' ' .2 N --a .a 2 u-850 ", o

.?

3 o i $ E y 's .y 800 n , m l 8 d a 2 n o 750

o g ;

700

a
r i &

t 650 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 : 8 2.

o Pressure, PSIG
7

!_8

Calco For Mank Mne Calc. No. OM SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate Rev. O cate X Saf ety-Related Non-Safety Related Page 17 of citent Commonwealth Edison Company Prepared by Date Zion Station. Units 1 and 2 Re<te ed by Date Project Proj. No. 8986-10 Equio. No. Approved by Date results of this EXCEL analysis are given in Table 3 which also contains The calculations of the geometric mean and standard deviation of the geometric mean using Equations 4a, 4b, Sa, and 5b. Table 3 Calculated Drop Size Means and Standard Deviation of the Geometric Mean EXCEL Least Squares Calculated Geometric Mean (Microns) Linear Fit to Drop and Standard Deviation of Geom. Mean Size Means (Microns) Pressure Eqn. 4a, Eqn. Sa, Eqn. 4b, Eqn. Sb,

Drop, Number Surface Volume Geom.

Standard Geom. Standard PSI Mean Mean Mean Mean Dev. Mean Dev. 25 838.1 905.6 970.0 775.6 1.482 789.3 1.449 30 808.2 875.9 941.8 745.7 1.493 757.6 1.464 35 778.2 846.2 913.6 715.7 1.506 726.0 1.479 40 748.2 816.5 885.5 685.6 1.519 694.2 1.496 45 718.2 786.7 857.3 655.7 1.532 662.5 1.514 In Table 3 the results of Equations 4a and Sa are not significantly different from Since log-normal distributions constructed using the those for Equations 4b and Sb. results of Equations 4b and 5b have the same surface and volume means and are thus more descriptive of larger drop sizes, attention will be focused on the results using these equations. This is justified because larger drop sizes need to be well defined in order to be conservative; larger drops tend to remove smaller drops by agglomeration leading to a conservatively smaller iodine spray removal rate. The linearity of the geometric mean and of the standard deviation of the geometric mean with pressure drop can be ascertained by examining the slopes between consecutive pressure drops. Such slopes should be equal for linearity. Thus, for the geometric mean (from Table 3), the slopes are (757.6-789.3)/(30-25) = -6.34; (726.0-757.6)/(35-30) = -6.32; (694.2-726.0)/(40-35) - -6.36; (662.5-694.2)/(45-40) - -6.34. For the standard deviation of the geometric mean (from Table 3), the slopes are (1.464-1.449)/(30-25) .0030; (1.479-1.464)/(35-30) =.0030; (1.496-1.479)/(40-35) .0034; (1.514-1.496)/(45-40) =.0036. ATD-0206.VP0

a lco an c lodne cate. ho. N O206 i SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate-Rev. O cate X Safety-Related Non-Safety Related Page 18 of Date client Commonwealth Edison Company Prepared by oate Zion Station, Units 1 and 2 Reviewed by Project Date Approved by Pro 3. no. 8986-10 Eauip. No. The standard deviation of The geometric mean passes the linearity test adequately. the geometric mean seems to fail the linearity test; however, the magnitude of the slope is so small that an assumption of linearity would cause little error in the pressure drop range being considered. Thus, linear interpolation for the geometric mean and the standard deviation of the geometric mean at the spray recirculation pressure drop is justified. The follow twenty-one pages contain the results and charts of the EXCEL analysis of the experimental drop size distributions and the evaluations of Equation 6 for each test pressure drop. The DIST-ZZ.XLS spreadsheets, where ZZ is the pressure drop, contain the following information (cells not described are not used).

1. Cells A5-A54 contain the upper boundary (microns) of the 50 drop size bins as given in Attachment 1.

Cell A2 contains the drop size bin kidth (microns) which is (A54-A5)/49 - (2000-57.1402)/49 - 39.6502. Cell A4 contains the lower boundary (microns) of the smallest size bin which is A5-A2 = 57.1402-39.6502 = 17.49. Cells B5-854

2. Cell B'4 contains zero, the beginning drop diameter (arbitrary).

contain the midpoint (microns) of the 50 drop size bins as calculated by averaging the lower and upper boundaries of the bins.

3. Cell C1 contains the geometric mean drop diameter for pressure drop ZZ from Cell C2 contains the standard deviation Table 3 evaluated using Equation 4b.

of the geometric mean drop diameter for pressure drop ZZ from Table 3 evaluated Cell C3 contains the value of N in Equation 6; for comparison using Equation 5b. Cell C4 contains purposes, all distribution are normalized to one drop (N = 1). zero, the distribution value at zero diameter. Cells C5-C54 contain the evaluation of Equation 6.

4. Cells D4-D54 contain the cumulative distribution as obtained from Cells C4-C54, Cell
5. Cell El contains the Experiment designation, "ZZ-1", as given in Table 2.

E3 contains the total number of drops for "ZZ-1"; this is the " Corrected Count" Cell E4 plus the " Invalid Counts - Size Over" for "ZZ-1" (see Attachment 1). contains zero, the number of counts for drop sizes below the lowest drop diameter bin (actual value was not available but was obviously very small so as to have little effect on the normalization). Cells E5-E54 contain the number of drops - Cell E55 contains the sum (counts) in each bin for "ZZ-1" (see Attachment 1). of Cells E5 through E54 which should equal the " Corrected Count" for "ZZ-1" (see ). ATD-0206.VP0

9" SARGENT & LUNDY m omtras Recirculation Spray Removal Rate Rev. O cate X Safety-Related Non-Safety Related Page 19 of citent Commonwealth Edison Company Prepared by Date Zion Station, Units 1 and 2 Reviewed by Date i Pro.)ect Date p Proj. No. 8986-10 Ecuto. No. Approved by

6. Cell F1 contains "ZZ-1N" which is the Experiment designation as given in Table 2 with an N appended to indicate normalization to one drop. Cells F5-F54 contain the number of drops for "ZZ-1" (Cells E5-E54) divided by the total number of drops (Cell E3) which is the "ZZ-1" experimental distribution normalized to one drop.
7. Columns G and H contain the same type of data as Columns E and F except they are References to for the Experiment designation, "ZZ-2", as given in Table 2.

References to Column F are changed to Column E are changed to Column G. Column H. "ZZ-1" and "ZZ-IN" are changed to "ZZ-2" and "ZZ-2N" respectively.

8. For Table 2 Experiment designation "30-3" only, Columns I and J contain the same type of data as Columns E and F except for that Experiment designation.

References to Column E are changed to Column 1. References to Column f are. changed to Column J. "ZZ-1" and "ZZ-IN" are changed to "30-3" and "30-3N" respectively. The DIST-ZZ.XLC charts for pressure drop ZZ show plots of the evaluation of Equation 6 (Item 3), the normalized "ZZ-1" experimental distribution -(Item 6), the and, for "30-3" only, the normalized "ZZ-2" experimental distribution (Item 7), normalized "30-3" experimental distribution as function of drop diameter bin midpoint (Item 2). The charts show that a log-normal distribution is adequate for describing the spray drop sizes and that the geometric mean drop size and standard deviation of the The charts also show geometric mean for each test pressure drop have been determined. This was that there is an anomaly in the distributions between 200 and 300 microns. determined to be due to spatter off of the equipment and was considerably reduced However, the selection of Equations 4b and before the final measurements were made. 5b for the determination of the geometric mean and standard deviation tended to reduce the reliance on small drop sizes. ATD-0206.VP0

DIST-25.XLS i lCate.No.ATD-0206l A l B l C l D l E l F' l G l H lRev.0 .l 1 " UPPER" l"MID" 789.3!" CUM" I"25-1" "25-1 N" "25-2" "25-2Na l Proj. Alo. 8786 10 l 2 39.6502' O 1.4491 01 0 0 0 0 lPage20 l 3 0 0 D 01 5767 0 5893 0 l l 4 17.49 01 0. O! 0 0 0 0 5 57.1402 37.3151 2.27E-15 2.27E-15j 3 0.00052 0 0 6 96.79041 76 9653 1.55E-09 1.55E-09 3 0.00052 1 0.00017 7 136.4406l 116.6155i 6.17E-07 6.18E-07 4 0.000694 0 0 8 176.0908i 156.2657 1.97E-05 2.03E-05 8 0.001387 1 0.00017 9 215.741l 195.9159 0.000187 0.000208 37 0.006416 12 0.002036 10 255.3912) 235.5661 0.000891 0.001098 70 0.012138 34 0.00577 11 295.0414 275.2163 0.00274 0.003839 102 0.017687 55 0.009333 12 334 6916 314.8665 0.006288 0.010126 84 0.014566 76 0.012897 13 374.3418 354.5167 0.01172 0.021846 85 0.014739 76 0.012897 r 14 413.992 394.1669 0.018753 0.040599 116 0.020114 100 0.016969 15 453.6422 433.8171 0.026735 0.067334 151 0.026183 142 0.024096 16 493.2924 473.4673 0.034858 0.102192 229 0.039709 205 0.034787 17 532.9426 513.1175 0.042358 0.144551 313 0.054274 261 0.04429 l 18 572.5928 552.7677 0.048649 0.193199 301 0.052194 330 0.055999 l 19 612.243 592.4179 0.053373 0.246573 297 0.0515 379 0.064314 20 651.89321 632.0681' O.056397 0.30297 312 0.054101 326 0.05532 21 691.54341 671.7183 0.057765 0.360735 284 0.041J246 320 0.054302 22 731.1936 711.3685 0.057647 0.418381 327 0.056702 342 0.058035 23 770.8438 751.0187 0.056283 0.474664 297 0.0515 296 0.050229 24 810.494 790.6689 0.053942 0.528607 274 0.047512 288 0.048872 25 850 1442 830.3191 0.05089 0.579497 250 0.04335 _262 D.04446 26 889.7944 869.9693 0.047367 0.626864 214 0.037108 237 0.040217 27 929.4446 909.6195 0.04358 0.670444 163 0.028264 195 0.03309 28 969.0948-949.2697 0.039698 0.710142 151 0.026183 196 0.03326 29 1008.745 988.9199 0.0358521 0.745994 169 0.029305 179, 0.030375 30 1048.395 1028.57 0.032138! 0.778132 169 0.029305 170 0.028848 31 1088.045 1068.22 0.028623 0.806755 144 0.02497 146 0.024775 I 32 1127.696 1107.871 0.025349 0.832104 138 0.023929 162 0.02749 33 1167.346 1147.521 0.022341 0.854444 129 0.022369 98 0.01663 34 1206.996 1187.171 0.019606 0.87405 111 0.019247 126 0.021381 35 1246.646 1226.821 0.017142 0.891192 106 0.01838 107 0.018157 36 1286.296 1266.471 0.01494 0.906133 102 0.017687 97 0.01646 37 1325.947 1306.122 0.012985 0.919118 63 0.010924 87 0.014763 38 1365.597 1345.772 0.011259 0.930377 70' O.012138 66 0.0112 1 39 1405.247 1385.422 0.009742 0.940119 63 0.010924 43 0.007297 40 1444.897 1425.072 0.008414 0.948533 40 0.006936 38 0.006448 41 1484.547 1464.722 0.007256 0.955788 36 0.006242 34 0.00577 42 1524.198 1504.373 0.006249 0.962038 41 0.007109 50 0.008485 43 1563.848 1544.023 0.005376 0.967414 45 0.007803 46 0.007806 44 1603.498 1583.673 0.004621 0.972035 43 0.007456 39 0.006618 45 1643.148 1623 323 0.003969 0.976004 31 0.005375 38 0.006448 46 1682.798 1662.973 0.003407 0 97941 25 0.004335 31 0.00526 47 1722.449 1702.624 0.002923 0.982333 22 0.003815 28 0.004751 48 1762.099 1742.274 0.002506 0 984839 19 0.003295 19 0.003224 49 1801.749 1781.924 0.002149 0 986988 25 0.004335 18 0.003054 50 1841.399 1821.574 0.001842 0.98883 10 0.001734 26 0.004412 51 1881.049 1861.224 0.001579 0.990402 15 0.002601 15 0.002545 52 1920.7 1900.875 0.001353 0.991762 12 0.002081 13 0.002206 53 1960.35 1940.525 0.00116 0.992922 9 0.001561 11 0.001867 54 2000 1980.175 0.000994 0.993917 6 0.00104 12 0.002036 55 i 57181 5833 l

G 1 l DIST-25 XLS l lCate.ho.ATD0206l l Rev 0 l l lProj.No. 8986-10 l l Page 21 l i I C A l B l 1 ' UPPER" FMID' 789.3 i 2 39 6502

D 1.449 3 0 10 1

4 17 49 40 0 =EXP(-((LN(BS/$C$1)/LN($C12))*2y2)/LN($C12)/2fNWBS*$ASTSC33 6 =A4+$A$2 j =(A5+ A4y2

  • EXP(-((LN(B6/$C$1)/LN($C$2))*2)/2)/LN($CS2)/2.50662&B6*$A$2*$C$3 6 =A5+$A$2 i=(A6+ AS)/2

= EXP(-((LN(B7/$C$1 FLN($C$2))*2)/2yLN($C$2)/2RM2A/B7* $A$2*$C$3 7 =A6+$A$2 =(A7+A6F2 = EXP(4(LN(B8/$C$1 FLN($CS2))*2)/2)/LN($CS2)25vo626/BB*$AST$C53 8 =A7+$A$2 =(A8+A7y2 =EXP(4(LN(B9/$C51)/LN($C$2))*2)/2VLN($CS2)/2.50662&S9*$A$T$C$3 9 =A8+$A$2 =(A9+A8y2 = EXP(-((LN( B 10/$C$1 FLN($C$2))*2)/2VLN($C$2y2.50662WB10*$A$7 $C$3 10 =A9+$A$2 =(A10+A9y2

  • EXP(-((LN(B11/$C$1)/LN($C$2))*2)/2)/LN($CS2y2.506628eB11*$A17$C$3 11 =A10+$A32

=(A11 +A10)/2 = EXP(-((LN(B 12/$C$1 FLN($C$2))*2y2)/LN($C$ly2.506628/B17 $AST $C33 12 =A11+$A$2 =(A12+A11y2 d XP(-((LN(B13/$C51)/LN($C$2))*2)/2)/LN($C$2)/2.50662WB13*$A$2 E 13 =A12+$A32 ={ A13+ A12,J2 s EXP(-((LN(B14/$C$1 FLN($CS2))*2)/2)/LN($C$2)/2.506628/B14*$A$2*$CS3 =(A14+A13: 14 =A13+$A32 15 =A14+$A$2 l=( A15+ A14)/2 _, 2 EXP(4(LN(B15/$C$1 )/LN($C12))*2)f2)/LN($C$2)/2.506628/B15*$A12*$C$3 =EXP(-((LN(B16/$C51)/LN($CS2))*2y2)/LN($C$2y2.506628/B16*$A$2*$C$3_ _ 16 =A15+$A$2 i=(A16+ A15)/2 17 =A16+$A32 t=(A17+A16y2 = EXP(-((LN(B 17/$C $ 1 )/LN($C$2))*2)f2)/LN($CS2y2.*MM&S17*1A$7 M it = EXP(-((LN(B 18/$C51 FLN($C$2))*2)f2)/LN($CS2)2506628/B18*$A$75C33 18 =A17+$A52 !=(A18+ A17y2 =EXP(-((LN(B19/$C$1)/LN($CS2))*2)/2)/LN($C$2)150662SS19*$A$73C53 19 =A18+$A52 i=(A19+ A18)/2 =EN (4(LN(B20/$C$1)/LN($C32))*2)f2)/LN($C$2y2.*M%S20*$A$2*SC$3 20 =A19+$A$2 t =(A20+A19y2 = EXP(-((LN(B21/$C$1 FLN($C$2))*2y2VLN($C$2y2fo6628/B21*$A52*$C33 =EXP(-((LN(B22/$C$1FLN($C$2))*2y2VLN($C$2y2.508628/B22*$A$2*$C33 _ 21 =A20+$A$2 =(A21+ A20)/2 22 =A21+$A$2 =(A22+A2112 =EXP(-((LN(B235C51 FLN($CS2))*2y2yLN($C$2y2.Suon26/B23*$A$2*$C$3 23 =A22+5A$2 =(A23+A22y2 24 =A23+$A$2 =(A24+A23y2 = EXP(-((L N ( B24/$C$1 )/LN($C$2))*2)/2yLN($CS2)/2.506628/B24-$A$2*$C $3 = EXP(-((LN(B254C$1 FLN($C$2))*2y2)/LN($C$2)/2.506628/B25*$A$2*$C$3 25 =A24+$A$2 =(A25+ A24)/2 . = EXP(-((LN(B26/$C$1 FLN($CS2))*2y2)/LN($C$2y2.*N >R/B26*$A$75C13 26 =A25+$A$2 =(A26+A25)/2 ! =EXP(-((LN(B27/$C$1 FLN($C32))*2)/2yLN($C$2)2"NOR/B27*$A12*$CS3 27 =A26+$A$2 i=(A27+A26y2 =EXP(-((LN(B2&5C$1)/LN($C$2))*2y2)/LN($C$2)/23MNWB28*$A37$C$3 2B =A27+$A$2 i=(A28+A27F2 =EXP(-((LN(B294C51)/LN($C32))*2)/2FLN($C$2y9 sumR/B29*$A32*$C33 29 =A28+$A$2 =(A29+A28)/2 =EXP(4(LN(B30/$C31)/LN($CS2))*2)f2)/LN($C$2)!2N#26/B30*$A$2*$C33 30 =A29+$A$2 =(A3O+A29y2 =EXP(-((LN(B31/$C51)/LN($C32))*2)f2VLN($CS2y2ReRIB31*$A32*$0$3 31 =A3O+$A$2 =(A31+ A30)/2 =EXP(-((LN(832/$C$1)/LN($CS2))*2{2)/LN($C32y2.5MMA/B373A$2*$C33 32 =A31+$A52 =(A32+A31)/2 =EXP(-((LN(833/$C$1)/LN($C$2))^2y2FLN($C$2y2.506628/B33*$A$2*$C$3 33 =A32+$A$2 =(A33+A32)/2 =EXP(4(LN(B344C51)/LN($C32))*2)/2VLN($C$2y2EM2A/B34*$A32*$C$3 34 =A33+ 5A52 =(A34+A33y2 =EXP(-((LN(B35/$C$1)/LN($C$2))*2)f2)/LN($C$2y2.506628/B35*$A32*$C33 35 = A34+ $A$2 =(A35+A34y2 =EXP(-((LN(B36/$C$1)/LN($C32))*2)f2)/LN($C32y2E=2A/B36*$A32*$C$3 36 =A35+$A$2 =(A36+A35)/2 =EXP(-((LN(B37/$C$1)/LN($C32))*2y2)/LN($CS2)f2EM2A/B37*$A32*$C$3 37 =A36+$A$2 =(A37+A36)/2 =EXP(-((LN(838/$C$1)/LN($CS2))^2)/2)/LN($CS2)/2fNWB38*$ASTSC33 38 = A37 + $A52 =(A38+A37)/2 =EXP(-((LN(839/$C51)/LN($C$2p*2m'LN/$C32y2 50662NB39*$A$2*SC$3 39 =A38+$A$2 =(A39+A38y2 = EXP(-((LN(B40/$C$1 FLN($CS2))*2y2)/LN($CS2)f2.506628/B40*$A$75C$3 40 =A39+$A$2 =(A40+A39y2 = EXP(-((LN(B41/$C$1 FLN($C$2))*2)/2yLN($CS2)f2.50662&B41 *$A$2*$C$3 41 =A40+5A52 (=(A41+A40y2 = EXP(-({LN(B42/$C$1 yLN($CS2))*2y2FLN($C$2)f2.506628/B42*$A$2* F 9 42 =A41 + $A$2 =(A42tA41y2

  • EXP(-((LN(B43/$C$1 FLN($C$2))*2y2VLN/*.CS2)/2.50o626/B43*$A324C33 43 =A42+$A$2

=(A43+A42y2 =EXP(-((LN(B444C$1)/LN($C$2))*2)/2)/LN($C$2)/2.50662WB44*$A$TSC3 44 =A43+$A$2 =(A44+A43y2 = EXP(-((LN(845/$C31 FLN($C$2))*2)f2FLN($CS2V23MMR/B45*$A52*$C3 45 =A44+$A$2 =(A45+A44)/2 =EXP(-((LN(846/$C$1)/LN($C32))*2y2)/LN($C$2)r2EM2A/B46*$A$7$C$3 46 =A45+$A$2 =(A46+A45y2 =EXP(-((LN(B47/$C$1 FLN($C$2))*2y2)/LN($C $2y2.5voo26/B47*$ASTSC$3 47 =A46+$A$2 =(A47+A46y2 = EXP(-((LN(848/$C31 )/LN($C$2))*2)/2yLN($CS2)/2.'mMRIB48*$A$2*$C53 48 =A47+$A$2 =(A48+ A47)/2 = EXP(-((LN(849/$C$ 1 )/LN($C32))*2)f2)/LN{$C$2y2.5MM&B49*$A32*$C53 49 =A48+1A$2 (=(A49+A48y2

  • EXP(-((LN(B50/$C$1 )/LN($C32))*2y2yLN($CS2)f2.50662&S50*$A32*$C$3 60 =A49+1A$2 i=(A50+A49y2

= EXP(-((LN(B51/$C$ 1 )/LN( $C$2))*2y2VLN($C$2y2.50662&S51 *$ASTSC53 61 =A50+5A$2 =(A51 +A50y2 =EXP(-((LN(BS2/$C51FLN($CS2))*2)/2FLN($C32y2fMWBS2*$A52 $C$3 62 =A51+$A32 =( A52+ A51)f2 = EXP(-((LN(B53/$C$1 )/LN($C$2))*2)/2)/LN(SC$2y2.5vo62&S53*SA$7$C33 63 =A52+$A$2 =(A53+A52y2 ! = EXP(-((LN(854/$C$ 1 )/LN($C$2))*2)/2)/LN($C$2)/2.50662WB54*$ 64 =A53+$A$2 i=( A54+ A53y2 65 I J

DIST-25.XLS l Calc.No.ATD-0206l lRev.0 l lProj.No. 8986-10 l lPage22 l l 1 D l E l F l G l H 1 " CUM" !"251" i"25-1 N" i"25-2" !"25-2N" 2 0 0 0 0 0 3 0 5767 0 5893 0 t 4 0 to 0 0 0 G54G$3 6 =D4+C5 13 =E5/$E$3 l0 = =G64G$3 6 =D5+C6 I3 = E6/$ES3 it 7 =D6+C7 id =E7/$ES3 10 =G7/5G$3 G8/5Gs3 8 =D7+C8 15 =E8/$E$3 1 = 9 =D6+C9 137 =E9/$E$3 12 =G94GS3 to =D9+C10 /0

  • E10/$ES3 34

=G10'$GS3 11 =D10+C11 102 =E11/$E13 55 =G11/$G$3 12 =D11+C12 l64 .=E12/$ES3 76 =G12/$G$3 13 =D12+C13 !85 l=E13/$ES3 76 =G13/$G$3 14 =D13+C14 !116 = E14/$ES3 100 =G14/$G$3 16 =D14+C15 {151 =E15/$ES3 1142 =G15/$G$3 l 16 =D15+C16 1229 I=E16/$ES3 I205 =G16/$G$3 17 =D16+C17 1313 l=E17/$ES3 261 =G17/$GS3 18 =D17+C18 1301 =E18/$ES3 330 =G18/$Gs3 6 19 =D18+C19 !297 =E1S'$ES3 379 =G19/$G$3 20 =D19+C20 1312 =E20/$ES3 326 =G20/$GS3 21 =D20+C21 284 =E21/$Es3 320 =G21/$GS3 l ~~ 22 =D21+C22 327 - =E22/$ES3 342 =G22/5G$3 - ' ~ - - ~ - 23 =D22+C23 297 =E234ES3 296 =G23/5GS3 24 =D23+C24 274 =E24t$ES3 288 =G24/$G$3 26 =D24+C25 250 =E25/$ES3 262 =G25/$G$3 26 =D25+C26 214 =E26/$ES3 237 =G2&'$GS3 27 =D26+C27 163 =E27/$ES3 195 =G27/$Gs3 2B =D27+C28 151 =E28/$ES3 196 =G2&'$GS3 29 =D2B+C29 169 =E29/$E53 179 =G29/$Gs3 30 =D29+C30 169

  • E304ES3 170

=G30/$G33 1 31 =D30+C31 14

  • E31/$E$3 146

=G31/$G$3 32 = D31 +C32 138

  • E32/$ES3 162

=G32/$G$3 33 =D32+C33 129 =E33/$ES3 98 =G334G$3 34 =D33+C34 111 =E344ES3 126 =G34/$G$3 38 =D34+C35 106 =E35/$E$3 107 =G354Gs3 36 =D35+C36 102 =E364Es3 97 =G36/$G$3 37 =D36+C37 63

  • E37/$ES3 87

=G37/$G33 J i 38 =D37+C38 70 =E38/$Es3 66 =G38/$G13 39 =D38+C39 63

  • E3%ES3 43

'-G39/$G$3 1 40 =D39+C40 40 =E40/$E$3 3B =G404G$3 41 =D40+C41 36 =E41!$ES3 34 =G41/$G33 1 42 =D41 +C42 41 =E42/$ES3 50 =G42/$GS3 43 =D42+C43 45 =E43/$Es3 46 =G43/$GS3 ) 44 =D43+C44 43 =E44/$E$3 39 =G44/$G$3 46 =D44+C45 31 =E45/$E53

38

=G454G53 46 =D45+C46 25 =E46/$E$3 31 =G46/$G$3 47 =D46+C47 22 =E47/$ES3 28 =G47/$G$3 48 =D47+C48 19 =E48/$ES3 19 =G4&4G$3 49 = D48+C49 25 =E49/$E$3 18 =G424G33 60 =D49+C50 10 =E50/$ES3 26 =G504G33 61 =D50+C51 15 =E51/$ES3 15 =G51/$GS3 62 =D51 +C52 12 =E52/$E$3 13 =G52/$G$3 53 =D52+C53 9 =E53/$E53 11 =G53/$G$3 64 =D53+C54 6 =E54/SE$3 12 =G544G13 66 = SUM (E5 E54) I i=SUMfG5 G54) l ' i l

N DIST-25.XLC Drop Bize Log-normal Distribution for 25 PSIG 0.07 't 0.06 a a+ 0 - o 2 i5 005 o C Log-normal o. 2 O O Experiment 25-1 O ^ O cr 5 04 Experiment 25-2 o . n p

E
.m j P

+* .oV

-,o

.!!! 0.03 O o a j g 3 ]

6

.t! l a r F @ 0.02 - E h: U f oe i= a a 0.01 !I

  • 9 99 3 6

l Q,o + +

  • r M

- ! 'E l' 4 """o ^ ,o i

D 0

200 400 800 800 1000 1200 1400. 1600 1800 2000_j E 1 Drop Diameter, Microns I: l

1i i
D:
i. -

~ z,.. . m.'. . ~... w'.-.. > ,m. ,_m,..,.,.,ws.,.m u m u., .,.,,,,e..._.%..e. z- ,,J~._

DisT-30.XLS 1 cate we. no-0206 I l Itev. 0 l l Pro].No.8986-10 l lPage24 l I I A l B l C l D l E l F l G l H l J 1 " UPPER" i"MID" 726l" CUM" "30-1" i"30-1N" i"30-2" "30-2N" f"30-3" "30-3 N" i 2 39.6502i O! 1.479 0 01 Oi 0 0 0 0 3 01 Oi 1 0 56771 0 58341 0 5633 0 4 17.49 t Oi 0 O! 0 0 0 0 0 0 5 57.1402! 37.31511 3.51E-131 3.51E-13! 2 0 000352 0 0 3 0.000533 6 96.7904 76 96531 3.8E-08 3 BE-086 9 0.001585 1 0.000171 3 0.000533 7 136.4406 116.6155 6.29E-06 6.33E-06 36 0.006341 9 0.001543 8 0.00142 8 176.0908 156.2657 0.000117 0.000123 69 0.012154 32 0.005485 32 0.005681 9 215.741) 195 9159 0.000762 0.000885 88 0.015501 90 0.015427 91 0.016155 0.002744 0.003629 86 0.015149 110 0.018855 121 0.021481 10 255.391:. 0.006808 0.010437 84 0.0147b7 94 0.016112 123 0.021836 11 295.041, 7 12 334 6916 3a4 8665l 0.013153 0.02359 118 0.020786 93 0 015941 116 0.020593 13 374.3418 354.51671 0.021307 0.044897 102 0.017967 108 0.018512 130 0.023078 14 413 992 394.1669; 0.03034 0.075238 136 0.023956 147 0.025197 144 0.025564 15 453.64221 433.81711 0.039207 0.114444 148i 0.02607 1721 0.029482 177 0.031422 16 493.2924j 473 4673' O.047014 0.161458 231j0.040691l 266!0.045595 257 0.045624 17 532.94261 513.1175 0.053163 0.2146211 310! 0.054606 273 0.046795 283 0.05024 18 572.59281 552.7677 0.057368 0.271989i 3051 0.053726 295 0.050566 323 0.057341 19 612.243 592.4179 0.059611 0.3316 318 0.056016 325 0.055708 320 0.056808 20 651.8932 632.0681 0.060061 0.391661 268 0.047208 330 0.056565 333 0.059116 21 691.5434 671.7183 0.058996 0 450657 294 0.051788 314 0.053822 298 0.052903 22 731.19361 711.3685 0.05674 0.507397 268 0.047208 297 0.050908 298 0.052903 23 770.8438 751.0187 0.053616 0.561013 242 0 042628 282 0.048337 290 0.051482 24 810.494 790.6689 0.049918 0.610931 225 0.039634 237 0.040624 271 0.048109 i 25 850.1442 830.3191 0.045896 0.656826l 243 0.042804 202 0.034625 214 0.03799 I 26 889.79441 869.9693 0.041751 0.698578 172 0.030298 203 0 034796 180 0.031955 27 929 44461 909.6195 0.037639 0.738216 148 0.02607 1911 0.032739 162 0.028759 28 969 0948i 949.2697 0.03367 0.769887 155 0.027303 1581 0.027083 144 0.025564 29 1008.745i 988 9199 0.029922 0.799809 137 0.024132 159 0.027254 134 0.023788 30 1048.395 1028.57 0.026441 0.82625 156 0.027479 149 0.02554 115 0.020415 31 1088 045 1068.22 0.023252 0849502 169 0.029769 163 0.02794 118 0.020948 32 1127.696 1107.871 0 020363 0.869865 110 0 019376 121 0.02074 104 0.018463 33 1167.346 1147.521 0 017769 0.887634 117 0.020609 120 0 020569 102 0.018108 34 1206.996 1187.171 0.015459 0.903094 97 0.017086 108 0.018512 77 0.013669 35 1246.646 1226.821 0 013415 0.916508 99 0.017439 91 0 015598 70 0.012427 36 1286 296 1266.471 0.011615 0 928123 88 0.015501 106 0 018169 47 0.008344 37 1325.947 1306.122 0.010038 0.938161 85 0.014973 83 0 014227 62 0.011007 38 1365.597 1345.772 0.008661 0.946823 66 0.011626 67 0.011484 52 0.009231 39 1405.247 1385.422 0.007464 0.954287 44 0.007751 54 0.009256 34 0.006036 40 1444.897 1425.072 0.006425 0 960712 48 0.008455 30 0.005142 40 0 007101 41 1484.547 1464.722 0 005526 0.966238 44 0.007751 29 0.004971 23 0.004083 42 1524.198 1504 373 0.00475 0.970988 38 0.006694 30 0.005142 22 0.003906 ) 43 1563.848 1544.023 0.00408 0 975068 40 0 007046 37 0.006342 34 0.006036 44 1603 4981 1583 673 0 003503 0.978571 33 0.005813 29 0 004971 16 0.00284 45 1643.1481 1623.323 0.003007 0.981578 28 0.004932 27 0.004628 21 0.003728 48 1682.7981 1662.973 0.002581 0.984159 27 0.004756 23i 0.003942 14 0.002485 47 1722.449! 1702.6241 0.002215 0.986375 15 0.002642 29i 0,004971 29 0.005148 48 1762.0991 1742.274 0 001901 0.988276 30 0.005284 21 0.0036 14 0.002485 49 1801.7491 1781.924 0.001632 0.989908 12 0.002114 24 0.004114 11 0.001953 50 1841.3991 1821 574i 0.0014011 0 991309' 11' O.001938 11 0 001885 15 0.002663 51 1881049l 1861.224 0 001203! 0 992512 14 0 002466 8 0.001371 12 0.00213 52 1920.7I 1900.875 0.0010331 0.993545 15 0 002642 101 0 001714 8 0.00142 53 1960.35l 1940.525 0.0008881 0 994433 5 0.000881 71 0.0012 8 0.00142 54 2000i 1980.175 0.000763I 0.9951961 121 0 002114 6f 0.001028 2 0.000355 I i 55971 5771i i 55051 i i 55

~. + I C 'OfST-30.XLS I l Calc.No.ATD0206l l lRev.0 l lProj.No. 8986-10 l { lPage25 l 1 l C l A l 8 l l 1

  • UPPER"

!*MID* 726 2 39 6W !O 1.479 iO 1 3 0 5 =A445A$2 =(A5+A4)f2 j = EXP(-((LN(B5/5 C $1 )/LN($C$2))^2)/2)/LN($C$2)/2.506628/B5*$A$2*5C$3 f 4 17.49 !O r0 6 6 =A5+$A52 =(A6+A5)f2 i=EXP(-((LN(B6/5C$1)/LN($C$2))^2)/2)/LN($C$2)/2.506628/B6*$AST5C$3 =EXP(4(LN(B75C$1)/LN($C$2))^2)f2)/LN($CS2)f2.506628/B7*$ASTSC53 j 7 =A6+5A$2 =(A7+A6)f2 =EXP(4(LN(B85C$1)/LN($C$2))a2)/2)/LN($C$2)/2.506628tB8*5AS2*$C$3 i 8 = A7+ $A52 =(A8+A7)f2 9 =A8+$A$2 =(A9+AB)f2 =EXP(4(LN(B9/5C51)/LN(SCS2))^2)/2)/LN(SCS2)/2.506628dB9*5A$2*$CS3 1 to =A9+$A52 =(A10+A9)f2 =EXP( ((LN(B10/5C$1)/LN($C$2))^2)/2)tLN($CS2)/2.506628tB10*$ASTSC53 l =EXP(4(LN(B11/5C$1)/LN($CS2))^2)t2)/LN(SCS2)/2.506628dB11*SASTSC33 j 11 =A10+5A52 - =(A11+A10)/2 =EXP(-((LN(B124C$1)/LN($CS2))^2)f2)/LN($C$2)/2.qnnrmB12 $ASTSC33 12 =A11+$A$2 =(A12+A11)/2 =EXP( ((LN(B13/5C$1)/LN(SC$2))^2)f2)/LN($C$2)/2.506628tB13*$A52*$CS3 13 =A12+$A32 !=(A13+A12)f2 = EXP(-((LN(B14/5C$1)/LN($CS2))^2)/2)/LN($CS2)/2.506628/B 14*SA$2*SCS (A14+A13)f2 14 =A13+$A$2 = =EXP(-((LN(B15/5C51)/LN($CS2))^2)f2)/LN($C$2)f2.506628/B15*SA52*$C53 15 =A14+$A$2 =(A15+A14)/2 =EXP(-((LN(B16t$C$1)/LN(5CS2))^2)f2)/LN($C$2)/2.506628tB16*$AS2*$C53 16 =A15+$A$2 =(A16+A15)/2 =EXP(-((LN(B175C$1)/LN(SCS2))a2)f2)/LN($C$2]/2.'mNB17 SA52*SC53 17 =A16+$A$2 =(A17+A16)f2 =EXP(-((LN(B185C$1)/LN($C32))^2)/2)/LN($CS2)t2.amrmB18*$ASTSC53 18 =A17+$A32 =(A18+A17)f2 =EXP(-((LN(B19/5C $ 1)/LN(5CS2))^2)f2)/LN(5C$2)/2.508628tB 19*SASTSC 19 =A18+ $A$2 =(A19+A18)f2 =EXP(-((LN(B20I5C$1)/LN($CS2))^2)l2)/LN($C$2)/2 'NmB20*SA52*$CS3 20 =A19+5A$2 =(A20+A19)/2 f =EXP(4(LN(B21/5C$1)/LN($CS2))*2)f2)/LN($CS2)f2.sinwmB21*SASTSC53 =EXP(-((LN(B22/5C$1)/LN($C$2))^2)l2)/LN($CS2)/2.508628tB22*$Al2*SC$l 21 =A20+$A$2 =(A21+A20)/2 22 =A21+$A$2 =(A22+A21)/2 =EXP(-((LN(B23/5C$1)/LN($C$2))^2)f2)/LN(SC$2)t2.508628dB23*SAS2*SC 23 =A22+$A52

  • (A23+A22}r2

= EXP(-((LN(B24/5C51)tLN($C$2))*2)f2)/LN(SC$2)t2.508628dB24*S 24 =A23+$A$2 =(A24+A23)f2 =EXP(-((LN(B25/$C51)/LN($CS2))*2)f2)/LN(SC$2)r2.508628tB25 SAS2*SC 25 =A24+$A$2 =(A25+A24)f2 =EXP(-((LN(B26/5C$1)tLN($CS2))^2p2)tLN(SC$2)f2.508628lB28*SAS2*5C53 [ 26 =A25+$A52 =(A26+A25)/2 =EXP(-((LN(B27/5C$1)ILN(SC32))^2)f2)/LN($C52)/2.508628lB27 SA$2 SC l 27 =A26+$A32 =(A27+A26)f2 =EXP(-((LN(B28/5C51)/LN($C$2))a2)/2)/LN($C$2)f2.50u528dB28*SA$2*S r 28 =A27+5A52 =(A28+A27)/2 =EXP(-((LN(B29/5C$1)/LN($CS2))a2)f2)/LN($CS2)f2.506G28tB29'SAS2* 29 =A28+5A$2 =(A29+A28)f2 =EXP(-((LN(B30/5C$1)/LN(5C$2))^2)/2)/LN(SC$2)/2.506628tB30*SAS2*S 30 =A29+$A$2 =(A3O+A29)f2 =EXP(-((LN(B31/5C$1)/LN(5C52))^2)f2)/LN($CS2)/2.506628tB31*SAS2*SC 31 =A10+ $A52 =(A31+ A30)f2 = EXP(-((LN(B32/5C$1)/LN(5C$2))^2)f2)tLN(SC$2)f2.sinnrmB32*SA32*S 32 =A31+$A52 =(A32+A31)/2 =EXP(-((LN(B33/5C$1)/LN(SCS2))^2)/2)/LN($CS2)f2.508S28tB33*SA52* 33 =A32+$A$2 =(A33+A32)/2 =EXP(-((LN(B344C$1)/LN(SC$2))^2)/2)/LN(5CS2)/2.508628dB34*SA32*S 3 34 =A33+$A52 =(A34+A33)/2 = EXP(-((LN(B35/5C$ 1)/LN($CS2))^2)f2)/LN(SC$2)f2 'mMB35*SA52*SC 35 =A34+$A32 =(A35+A34)T2 = EXP( ((LN(B36/$C$1)/LN($CS2))^2)f2)/LN(SC$2)/2.'WMWiAwM 36 =A35+$A52

  • (A36+A35)/2

=EXP(-((LN(B37/5C$1)/LN($CS2))^2)/2)/LN($C$2)/2.8m"WB37*SASTSCS 37 =A36+5A52 =(A37+A36]T2 =EXP(-((LN(B38/5C$1)/LN($C$2))^2)f2)/LN($CS2)/2.'NWB38*SAS2*SCS3 38 =A37+$A$2 =(A38+A37)/2 =EXP(-((LN(B39/5C$1)/LN($CS2))^2)f2)/LN(5C32)/2.508628/B39"$AS2*SC 39 =A38+ 5A$2 =(A39+A38)/2 =EXP(-((LN(B40/5C$1)/LN($C$2))^2)f2)/LN($C$2)/2.5narmB40*SASTSCS 40 =A39+$A$2 =(A40+A39)r2 = EXP(-((LN(B41/5C$ 1 )tLN($ C$2))a2)f2)/LN($CS2)/2.508628/B41 *SAS2 41 =A40+$A52 =(A41+A40)/2 =EXP(-((LN(B42/$C$1)/LN($C$2))*2)/2)/LN($C$2)f2.506628tB42*SAS 42 = A41+$A52 =(A42+A41)/2 =EXP(-((LN(843/5C$1)/LN($CS2))^2)/2)/LN($CS2)/2 sinnrmB43* sal 2*SC 43 =A42+$A$2 =(A43+A42)T2

  • EXP(-((LN(8444C$1)/LN(5CS2))^2)f2)/LN(SCS2)/2.508628tB44*SA$2*SC 44 =A43+$A$2

=(A44 +A43)/2 46 =A44+$A$2 =(A45+A4472 =EXP(-((LN(B45/5C51)/LN($C$2))^2)/2)/LN($CS2)/2.508628tB45*SAS2*S =EXP(4(LN(B46/5C$1)/LN($CS2))^2)f2)/LN(SCS2)f2.8m*mB46*SA12*SC 48 =A45+5A52 =(A46+A45)f2 =EXP(-((LN(B475C$1)/LN(5CS2))^2)f2)/LN($C$2)f2.508628tB47*SASTSC 47 =A46+$A52 =(A47+A46)f2 =EXP(-((LN(848/5C$1)/LN($C$2))^2)/2)/LN($C$2)f2.'innrMB48*SASTSC3 48 =A47+$A$2 =(A48+A47)f2 =EXP(-((LN(B49/SC$1)/LN($C32))^2)T2)/LN($C$2)D %--WSAS2*SCS3 49 =A48+$A52 =(A49+A48)/2 =EXP(-((LN(B50/5C$1)/LN($C$2))^2)t2)/LN($C52)f2.508628lB50*SA52*S 50 =A49+$A52 =(A50+A49)/2 =EXP(-((LN(BS1/$C$1)/LN($C$2))~2)f2VLN($C32)/2.5066287B51*SA32*S 51 =A50+$A$2 =(A51 +A50)f2 =EXP(4(LN(B52/5C51)/LN($C$2))*2)/2)/LN($CS2)f2.508628AB52*SASTS 52 =A51+$A$2 =(A52+A51)f2 =EXP(-((LN(B53/$C11)/LN($C$2))^2)/2)!LN($C$2)f2.506628tB53*$AST$C 53 =A52+$A$2 ,=(A53+ A52)f2 =EXP(-((LN(B545C11)/LN($CS2))*2)T2)/LN($C$2)/2.506628/B54*$A$2*$C 54 =A53+$A$2 j=(A54+A53)f2 i f 55 i i ) .--e

i DIST-30.XLS i l Calc.No. AID-0206l lRev.0 l lProj.No. 8986-10 l lPage26 l l l t D l E l F l G l H l l 1 CUM" "30-1" "301 N" "30-2" !"30 2N" {"30-3" 2 0 10

0 iO iO l0 3 0 tS677
D

'5834 l0 15633 4 0 iO l0 !O 10 0 5 =D4+C5

2
  1. =E55E53

!O I=G54G53 3 6 =D5+C6 9 i=E6/5E53 11 i=G64G53 3 7 =D6+C7 36 =E7/5E53 !9 i=G75G53 8 8 =D7+C8 69 =E85E53 (32 =G85G53 32 9 =D8+C9 88 =E9/5E53 '90 =G95G53 91 10 =D9+C10 !86 =E10/5E53 110 =G10/5G53 121 11 =D10+C11 !84 j=E11/5E53 94 =G115G53 123 12 =D11+C12 118 i=E12/5ES3 93 =G12/5G53 116 13 =D12+C13 102 l=E135E53 108 =G134G53 130 14 =D13+C14 136 =E145E53 147 =G14!$G53 144 15 =D14+C15 148 =E15/5E53 172 =G15/5G53 177 16 =D15+C16 231 i=E16/5E53 !266 i=G16/5G53 257 17 =D16+C17 !310 !=E17/5ES3 1273 i=G17/5G53 283 18 =D17+C18 1305 !=E18/5E53 1295 !=G18/5G53 323 19 =D1B+C19 318 i=E19/5E53 !325

=G19/5G53 320 20 =D19+C20 268 i=E20/5s53 i330

=G20/5G53 333 21 =D20+C21 294 !=E21/5ES3 1314 =G21/5G53 298 22 =D21+C22 268 =E225E53 297 =G22/5G53 298 23 =D22+C23 I242 =E235E53 282 =G23/5G53 290 24 =D23+C24 1225 =E24/5E53 237 =G245G53 271 25 =D24+C25 243

  • E25/5E53 202

=G255G53 214 26 =D25+C26 172 i=E26/SES3 203 =G26/5G53 180 27 =D26+C27 148 i =E275E53 191 =G275G53 162 28 =D27+C28 155 =E285E53 158 =G284G53 144 29 =D28+C29 137 =E29/5E53 159 =G294G53 134 30 =D29+C30 156 =E30/5E53 149 =G30/5G53 115 31 =D30+C31 169 =E31/5E53 163 =G31/5G53 118 32 =D31+C32 110 =E325E53 1 21 =G32/5G53 104 33 =D32+C33 117 =E33/$ES3 120 =G33/5G53 102 197 =E345E53 108 =G344G53 77 34 =D33+C34 35 =D34+C35 199 =E35/5E53 91 =G35/5G53 70 36 =D35+C36 188 =E36/5E53 106 =G36/5G53 47 37 =D36+C37 85 =E37/5E53 83 =G375G53 62 l 38 =D37+C38 66 =E385E53 67 =G38/5G53 52 39 =D38+C39 44 =E39/5E53 54 =G395G53 34 J 40 =D39+C40 48 t=E405E53 30 =G40/5G53 40 41 =D40+C41 44 !=E415E53 29 =G41/5G53 23 42 =D41+C42 38 !=E425E53 30 =G425G53 22 ] 43 =D42+C43 40 i=E43/5E53 37 =G43/5G53 34 44 =D43+C44 ~ 33 i=E44/5E53 29 =G44/5G53 16 45 =D44+C45 28 i=E45/5E53 27 =G45/5G53 21 46 =D45+C46 27 i=E46/5E53 i23 =G46/5G13 14 47 =D46+C47 11 5 i=E47/5E53 129 =G475G53 29 48 =D47+C48 130 =E48/5E53 21 =G48/5G53 14 i ~ 49 =D48+C49 {12

  • E495E53 24

=G495G53 11 50 =D49+C50 l11 =E50/5E53 11 =G50/5G53 15 51 =D50+C51 14 i=E51/5E53 8 =G51/5G53 12 52 =D51 +C52 15 i=ES2/5E53 10 =G525G53 8 $3 = D52+C53 5 i=ES3/5E53 7 =GS3/5G53 8 54 =D53+C54 12 i=E54/5E53 '6 =G54/5G53 2 =$UM(15154) 55 >= SUM (ES E54) i i= SUM (G5'G54)

t DIST-30XLS L l Calc.No.ATD-0206] l Rev. 0 l lProj.No. 8986 10 l lPage27 l 1 1 J 1 "30-3N" 2 0 3 0 4 0 5 =IS/5tS3 6 =l6/5153 7 =l74tS3 I 8 si8/5153 9 =195153 10 =110/5153 11 =111/5153 12 =112/5153 13 =113/5153 14 =1145153 15 =115/5153 16 =116/5153 17 =117/5153 18 =118/5153 19 =1195153 20 =120/5153 21 =1215153 22 =122/5tS3 23 st23/5153 24 st245153 25 =125/5153 26 =t26/5153 27 si274153 28 =128/5153 29 =1295153 30 =t305153 31 =131/5153 32 =t32/5153 33 =1335153 34 =1345153 35 =1355tS3 36 =136/5153 37 =l374!$3 38 =(38/5!53 39 =1395153 40 el405153 41 sl415tS3 42 =6425153 43 =l435t53 44 =1445tS3 45 =645/5ts3 46 =l46/5tS3 47 =6475153 48 =1485t53 49 =l49/5153 60 =l50/5153 51 =151/5153 52 stS2/5tS3 53 =t53/5153 54 =154/5t53 55

4 r DIST-30.XLC Drop Bize Log-normal Distribution for 30 PSIG 0.07 0.06 (6 a 9 e gO W 0* LO9-nonnal N 0.05 o -o O Experiment 30-1 o. o O o o o a f Experiment 30-2 c 0.04 o Experiment 30-3 . - n. o o w s R ? o. 5 o G .E 0.03 o + o g. 15 V O Oo

.?

<2 o o IU 1 o o n o a g 0m2 es. j-a No a. o %.og j{ z _ Ogg O jo W i O o j 0.01 oy ag M egoo. ! 5-o m%s e g,, o

w

-P Oo -- } = - - s o, 0.- 4 n 0 200. 400 600 -800 1000. 1200 1400 1600 1800 2000~j R !U Drop Diameter, Microns

3
*
W y..

DIST-35.XLS lCatc.No.ATD-0206l A l 8 l C l D l E l F l G l H l Rev. 0 l 1 " UPPER" "MID" 726 4" CUM" 35-1" "35-1N" "35-2" ~35-2N" lProj.No. 8986-10 l 2 39.6502 0 1.479 0 0 0 0 0 lPage29 l 3 0 0 1-0 5933 0 5960 0 l __l 4 17.49 0 0 0 0 0 0 0 5 57.1402, 37.3151 3.51E-13 3.51E-13 2 0.000337 1 0.000168 6 96.7904 76.9653 3.8E-08 3.8E-08 1 0.000169 3 0.000503 7 136.4406 116.6155 6.29E-06 6.33E-06 4 0.000674 2 0.000336 8 176.0908 156.2657 0.000117 0.000123 1 0.000169 1 0.000168 9 215.741 195.9159 0.000762 0.000885 3 0.000506 1 0.000168 10 255.3912 235.5661 0.002744 0.003L 22 0.003708 9 0.00151 11 295.04141 275.2163 0.006808 0.010437 52 0.008765 44 0.007383 12 334.6916l 314.8665 0.013153 0.02359 103 0.017361 69 0.011577 13 374.3418 354.5167 0 021307 0.044897 128 0.021574 104 0.01745 14 413 992 394.1669 0.03034 0.075238 133 0.022417 141 0.023658 15 453.6422 433.8171 0.039207 0.114444 181 0.030507 187 0.031376 16 493.2924 473.4673 0.047014 0.161458 243 0.040957 226 0.037919 17 532.94261 513.1175 0 053163 0.214621 339 0.057138 352 0.05906 18 572.5928 552.7677 0.057368 0.271989 358 0.06034 370 0.062081 19 612.243 592.4179 0.059611 0.3316 378 0.063711 429 0.07198 20 651.8932 632.0681 0.060061 0.391661 370 0.062363 370 0.062081 21 691.5434 671.7183 0.058996 0.450657 376 0.063374 374 0.062752 22 731.1936 711.3685 0.05674 0.507397 340 0.057307 363 0.060906 23 770.8438 751.0187 0.053616 0.561013 343 0.057812 < '289 0.04849 24 810.494 790.6689 0.049918 0.610931 296 0.04989 336 0.056376 25 850.1442 830.3191 0.045896 0.656826 282 0.047531 267 0.044799 26 889.7944 869.9693 0.041751 0.698578 205 0.034553 222 0.037248 27 929.4446 909.6195 0.037639 0.736216 188 0.031687 204 0.034228 28 969.0948 949.2697 0.03367 0.769887 184 0.031013 199 0.033389 29 1008.745 988.9199 0.029922 0.799809 193 0.03253 180 0.030201 30 1048.395 1028.57 0.026441 0.82625 162 0.027305 134 0.022483 31 1088.045 1068.22 0.023252 0.849502 155 0.026125 164 0.027517 32 1127.696 1107.871 0.020363 0.869865 123 0.020732 128 0.021477 33 1167.346 1147.521 0.017769 0.887634 94 0.015844 111 0.018624 34 1206.996 1187.171 0.015459 0.903094 88 0.014832 108 0.018121 35 1246.646 1226.821 0.013415 0 916508 94 0.015844 67 0.011242 36 1286.296 1266.471 0.011615 0.928123 60 0.010113 82 0.013758 37 1325.947 1306.122 0.010038 0.938161 51 0.008596 68 0.011409 38 1365.597 1345.772 0.008661 0.946823 52 0.008765 42 0.007047 39 1405.247 1385 422 0.007464 0.954287 21 0.00354 26 0.004362 40 1444.897 1425.072 0.006425 0.960712 27 0.004551 32 0.005369 41 1484.547 1464.722 0.005526 0.966238 28 0.004719 15 0.002517 42 1524.198 1504.373 0.00475 0.970988 25 0.004214 26 0.004362 43 1563.848 1544.023 0.00408 0.975068 37 0.006236 31 0.005201 44 1603.498 1583.673 0.003503 0.978571 19 0 003202 17 0.002852 45 1643.148 1623.323 0.003007 0.981578 15 0.002528 23 0.003859 46 1682.798 1662.973 0.002581 0984159 23 0.003877 18 0.00302 47 1722.449 1702.624 0.002215 0.986375 19 0.003202 13 0.002181 i 48 1762.099 1742.274 0.001901 0.988276 10 0 001685 14 0.002349 49 1801.749 1781.924 0.001632 0.989908: 18 0.003034 10 0.001678 50 1841.399 1821.574 0.001401 0991309 10 0.001685 10 0.001678 51 1881.049 1861.224 0.001203 0.992512 7 0.00118 10 0.001678 52 1920.7 1900.875 0.001033 0.993545 4 0 000674 4 0.000671 53 1960.35 1940.525 0.000B88 0.994433 4 0.000674 7 0.001174 54 2000 1980.175j 0.000763. 0.995196 5 0 000843; 2 0.000336 5876 i 5905 55 I

dis 7-35 XLS l Calc. No. AfD-0206 l lRev.0 l lProj.No. 8986-10 l lPage30 l l 1 C A l B } 1 "UPPER" i"MID* l726 2 39 6502 10 11.479 3 0 j0 j1 4 17.49 l0 10 = EX P(-((LN(B5/$C$1 FLN($C$2))a2)/2)/LN($C$2y2.506628/BS* $A$7$C$3 6 =A4+$A$2 != A5+ A4y2

EX P(4(LN(BS/$C$1 FLN($C32))a2y2)/LN($C$2)/2 Mc8/86* $A52*$C$3 A5+1A$2 j a( A6+ A5)/2 6

7 =A6+3A$2 l =( A7+ A6y2

  • EXP(4(LN(B7/$C$1 )/LN($C$2))*2)/2)/LN($C$2)/2.506628/B7*$A52*fC33

=EXP(-((LN(B&$C$1)/LN($CS2))a2)/2VLN($C$2)f2.50662&B8*$A$73C$3 8 =A7+$A12 i=( A8+ A7)/2 =EXP(-((LN(B9'$C51)/LN($CS2))a2)/2VLN($C$2)f2.506628/B9*$A$75C13 9 =A8+5A52 j=(A9+A8y2 l=EXP(-((LN(B105C$1)/LN($C32))*2)f2)/LN($C$2)G 'N8/010*$A32*$C$3 - 10 =A9+1A$2 !=(A10+A9y2 11 =A10+$A52 t =(A11 + A10y2 !=EXP(4(LN(B11/$C$1FLN($C$2))^2y2yLN($CS2y2RMWB11*$A$2*$C$3 12 =A11+$A$2 (=(A12+A11)/2 ! = EX P(-((LN(B 12/$C$1 FLN($C$2))*2)/2)/LN($C $2)/2.506628/B 12* $A$2* 13 =A12+$A$2 l=(A13+ A12y2 ! =EXP(-((LN(B13/$C$1 yLN($C$2))^2)/2)/LN($C$2)/2.506628/B13*$A52*$C53 14 =A13+$A$2 i=(A14+A13)/2 ! =EXP(-((LN(B14/$C51 yLN($C$2))a2)/2)/LN($C12)/2.506628/B14*$A52*$C$3 )=EXP(-((LN(B15/$C$1FLN($C$2))*2)/2yLN($C$2y2 'N8/B15*$A12*$C$3 16 =A14+$A$2 !=(A15+ A14)/2 ! = EX P (-(( LN(B16/$C$1 )/LN($C$2))*2)/2)/LN($C S2)/2?NB/B 16* $A$2* $ 16 =A15+5A52 l=(A16+ A15)/2 i=EXP(-((LN(B17/$C$1 yLN($C12))*2)/2)/LN($C$2}/2.506628/B17*$A52*$C$3 17 LA16+$A$2 i=(A17+ A16)/2 18 =A17+$A$2 !=(A18+A17F2 i=EXP(-((LN(B18/$C$1)/LN($C$2))*2)/2)/LN($C12)/2.506628/B18*$A$2*$C$3 = EXP(4(LN(B19/$C$1 yLNJ$C32))*2)/2)/LN($ C$2)/2.506628/B19*$A$2* $C$3 19 =A18+5A52 f =(A19+A18)G =EXP(-((sN(B20/$C51)/LN($C$2))*2)/2)/LN($C$2)/2.506628/B20*$A$2*$C33 20 =A19+$A12 =( A20+ A19y2 = EXP(4(LN(B21/$C$1 )/LN($C$2))*2)f2)/LN($C$2y2.5% WB21 *$A$2*$C$3 21 = A20+ $A52 =( A21 +A20y2 = EXP(-((LN(B22/$C$1 yLN($C$2))a2y?)'LN($CS2)f2 fM5VB22*$A12*$C$3 22 =A21+$A12 !=(A22+ A21)/2 23 =A22+$A$2 !=(A23+ A22)/2 = EXP(-((LN[B23/$C$1 FLN($C$2))*2)/2)/LN($C12)/2.506628/B23*$ASTS = EXP(-((LN(B24/$C$1 )/LN($C$2))*2)/2)/LN($CS2y2.506628/B24*$A$TSC13 _ _ 24 =A23+$A52 !=(A24+ A23V2 = EXP(-((LN(B25/$C$1 FLN($C$2))*2)/2)/LN($CS2)/2.50662&B25* $A$75C13 26 =A24+$A12 !=(A25+ A24)/2

  • EXP(-((LN(B26/$C$1 yl N($CS2))a2)/2)/LN($C$2)/2.506628/B26*$AST$C$3 26 =A25+$A$2 i=(A26+A25)/2

=EXP(-((LN(B27/$C$1)/LN($C$2))*2)f2VLN($CS2)/2MefvB27*$A52*$CS3 27 =A26+$A$2 i=(A27+A26)/2 28 =A27+$A32 l=(A28+A27y2 !=EXP(-((LN(B28/$C51yLN($C12))'2)/2)/LN($C$2)/2.50662&B_28 SA$2*$C$3 i=EXP(-((LN(B2WSC51)/LN($C$2))*2)/2)/LN($C$2y2EC/B29 $A$7sC33 29 =A28+$A32 . =(A29+ A28)f2 i=EXP(-((LN(B30/$C$1)/LN($C$2))*2)/2)/LN($C$2)/2NMWB30*$A$2*$C$3 __ 30 *A29+$A$2 =(A30+A293 ! = EXP(4(LN(B31/$C$1 FLN($C$2))*2)/2)/LN($C32)f2.50662&B31 *$A$71C 31 =A30+5A$2 =(A31 +A30)/2 32 *A31+$A$2 =(A32+ A31)/2 j=EXP(4(LN(B32/$C$1)/LN($CS2))*2)/2)/LN($C$2)f2?a06628/B32 $A$2*$C$3 i = EXP(4(LN(B33/$C$1 )/LN($CS2))*2)/2)/LN($C$2y2.50662&B33*$A$75C$3 33 =A32+$A32 =(A33+A32y2

  • EXP(4(LN(B34/$C$1)/LN($CS2))*2)/2)/LN($CS2)/2EM2MB34*$A$75C33 34 =A33+$A32
  • (A34+A33)/2

=EXP(4(LN(B35/$C$1)/LN($CS2))*2)/2)/LN($C$2)/2.506628/B35*$A$75C$3 35 =A34+$A32 =(A35+A34)/2 = EXP(4(LN(B3&$C$1)/LN($C32))*2)/2FLN($CS2)/2Me&B36*$A$2*$C$3 36 =A35+$A$2 =(A36+A35y2 = EXP(4(LN(B37/$C $1 FLN($C12))*2)/2)/LN($CS2)/2.5e8/B37* $A$2*$C$3 37 =A36+$A$2 !=(A37+A36y2 !=EXP(4(LN(83&$C$1)/LN($C32))*2)/2)/LN($CS2)/2.5N28/B38*$A32 $C$3 38 =A37+$A52 i=(A38+A37)/2 i = EXp(-((LN(B39/$C31 FLN($C$2))a2)/2)/LN($CS2y2?s06628rts.2r 5A52*SC53 39 =A38+$A$2 i=(A39+A38)/2 = EXP(4(LN(640/SC$1)/LN($C32))*2)?)/LN{$C*,2)G ?' W B40*$A$2*$C$3 40 =A39+1A$2 =(A40+A39y2 =EXP(-((LN(B41/$C$1)/L,N[$C12))*2)2)/LN($CS2y2?N8/B41*$A12*$C$3 41 =A40+1A$2 =(A41 +A40)/2 =EXP(-((LN(B42/$C$1)/LN($C$2))a2)/2)/LN($C$2)/25s06628/B47$A$2*$C$ 42 =A41 + 5A$2 =(A42+A41y2 = EXP(-((LN(B43/$C$1)/LN($C$2))*2)/2yLN($CS2)f2.5McSB43*$A$2*$C53 43 =A42+$A$2 =(A43+A42)/2 !=EXP(-((LN(B44/$C$1XLN($C$2))*2)/2)/LN($C$2)/2.50662&B44 $A575C3 44 =A43+$A$2 !=(A44+A43y2 i =EXP(-((LN(845/$C51 )/LN($C12))*2)/2)/LN($C32)f2.5Me&B45*$A$75C13 46 =A44+$A$2 l=(A45+A44)/2 l=EXP(-((LN(846/$C$1)/LN($C$2))*2)/2)/LN{$C32F2 SMNB46*$A$7&C$3 46 =A45+$A$2 !=(A46+ A45y2 l =EXP(-((L N(B47/$C$1)/LN($C$2))*2)f2)/LN($CS2)/2.506628/B47*1A57$C$ 47 =A464$A12 =(A47+A46y2 i = EXP (-((LN(B48'$C$1 FLN($C$2))*2)f2yLN($C$2)/2.50662&B48* $A$2*$C$3 48 =A47+$A32 =(A48+A47F2 l =EXP(-((LN(B49/$C$1 FLN($CS2))*2y2)/LN($CS2y2AM2NB49*$A$75C 53 49 =A48+$A$2 =(A49+ A48)/2 t =EXP(-((LN(850/$C31 FLN(SC12))*2)f2)/LN($C$2y2.506628/B50*$A$75CS3 __ 60 =A49+$A$2 =(A50+ A49)/2 t =EXP(-((LN(B51/$C$1 FLN($C$2))*2)/2)/LN($C$2)f2.5N?8/BS1 *$A$7W 61 =A50+1A52 =(A51 + A50V2 i=EXP(-((LN(B52/$C$1}/LN($CS2))*2f2yLN($C$2)/2?s06628/B52*$A12*$C$3 62 =A51+5A$2 =( A52+ A51)/2 i = EXP(-((LN(BST5C$ 1 FLN($C12))*2)f2VLN($C$2)/2?s00628/B53* S 63 =A52+$A$2 =(A53,A52y2 ! = EXP(-((LN(B54/$C 51 )/LN ($C$2))*2)!2)/LN ($C$2)/2.5MmB54*$A$2 64 =A53+1A$2 =(AS4+A53)/2 i 56

... ~. 'i i DIST-35.XLS l Calc. No. ATD-0206 l - l lRev.0 l [ [Proj.No. 8986-10 j. l lPage31 l 1 l' D l E l F l G l H 1 " CUM" ("35-1" j"35-1 N" 1"35-2" !"35-2N" i 2 0 10 10 0 0 3 0 iS933 to 5960 0 4 0 10 10 0 .0 5 =D4+C5 '2 !=E5/$E53 1 =G5/5G53 i 5 =D5+C6 1 i=E6'5ES3 !3 =G65G53 7 =D6+C7 4 =E7/5E53 !2 =G7/5G53 5 =D7+C8 1

  • E8/5ES3 1

=G8/5G53 9 =D8+C9 3 =E9/5E53 1 =G9/5G33 10 =D9+C10 22 =E10/5E$3 9 =G10/5G$3 11 =D10+C11 52 =E11/SES3 44 =G11/5G53 1 12 =D11+C12 103 =E12/5E53 69 =G12/5G53 13 =D12+C13 128 =E13/$E53 104 =G13/5G$3 14 =D13+C14 133

  • E14/5E53 141

=G14/5G53 16 =D14+C15 181 i=E15/$E53 187 =G15/5G53 1 18 =D15+C16 243 =E16/SE13 226 =G16/5GS3 17 =D16+C17 339 =E17/5E53 352 =G174G$3 18 =D17+C18 358 =E18/5E13 370 =G18/5GS3 19 =D18+C19 378 =E19/SES3 - 429 ' =G19/5G53 =G20SGS3 20 =D19+C2O 370 =E20/$E13 370 ~ 21 =D20+C21 376 =E21/$ES3 374 =G21/5G53 22 =D21+C22 - 340 =E22/$ES3 363 =G22/5G$3 23 =D22+C23 343 =E23/$E$3 289 =G235G53 24 =D23+C24 296 =E24/SE$3 336 =G24/5G53 25 =D24+C25 282 =E25/$ES3 267 =G25/5GS3 25 =D25+C26 205 =E26/SES3 222 =G28/5G$3 27 =D26+C27 188 =E27/SES3 204 =G27/5G83 j 28 =D27+C2B 184 =E28/5ES3 199 =G28/5G53 l 29 =D28+C29 193 =E29/5E53 180 =G29/5G53 30 =D29+C30-162 =E30/5ES3 134 =G30/5G53 31 =D30+C31 155

  • E31/5ES3 164

=G31/5G53 32 =D31+C32 123 =E32/$E$3 128 =G32/5G$3 33 =D32+C33 94 =E335E53 111 =G33/5GS3 f 34 =D33+C34 88 =E34/5E S3 108 =G3 E M i 36 =D34+C35 94

  • E35/5E$3 67

=G35MM 38 =D35+C36 60 =E36/5E53 82 =G38/5G$3 37 =D36+C37 51 =E37/5E$3 68 =G37/5G53 38 =D37+C38 52 =E38/SE53 42 =G38/5GS3 39 =D38+C39 21 = E39/5ES3 26 =G39/5G53 de =D39+C40 27 =E40/5E$3 32 =G404GS3 i 41 =D40+C41 28 =E41/SE$3 15 =G41/5GS3 42 =D41 +C42 25 =E42/$E53 26 =G42/5GS3 43 =D42+C43 37 =E435ES3 31 =G43/5G53 44 = D43+C44 19 =E44/$ES3 17 =G44/5GS3 45 =D44+C45 15 =E45/SES3 23 =G45/5GS3 l 48 =D45+C46 23 =E46/SE13 18 =G46/5G53 47 =D46+C47 19 =E47/$ES3 13 =G47/5G53 l i 48 =D47+C48 to =E48/SES3 14 =G48/5G$3 49 =D48+C49 18 =E49/5E13 to =G49/5G13 50 =D49+C50 10

  • E50/5ES3 10

=G50/5G53 [ 51 =D50+C51 7 =E51/$E53 to =G51/5GS3 l 62 =D51+C52 4 =E52/5ES3 4 =G52/5G53 83 =D52+C53 4 =E53/5ES3 7 =G53/5G53 54 =D53+C54 5 =E545ES3 2 =G54/5G13 i= SUM (G5:G54) 65 t= SUM (ES E54) I l i

']. ) Calc.No.AfD-0206 Rev.- 0 Proj. No. 8986-10 Page32l .I i ct m 3 I dj .i i -l 1 i g - ~ . - - e . c. a s e n n 9 c e C O b E E 4 + g c c s $& 6 1 1 8 c+ p. o e c. o o e n _o k i o .+ a 44 +6 i a +) o 1 .O g. -i e v o 5 .U .i a a E y so $4 i R.w e i e 5 o =e4 a v e ) O a ) >( 5' e ,A 'O n g 8 +0 I A9 h g.2 r c r O o e 4 a s D + en o + A a e a 1 t es u .,4a ec1 i +0 o. 8 N i V g ~ N. l o J. .,-~k i a 4 l-e ? o o o k k k 5 E o o o o o 6 6 6 sez!s dojo Jo uonnquas!O Per!IeuuoN 6 h

DIST-40.XLS l Calc.No.ATD-0206l l Rev. 0 l lProj.No. 8986-10 l l Page 33 l r i I A l B l C l D l E l F l G l H 1 " UPPER" "MID" 694.2[ CUM" "40-1" "40-1 N" "40-2" "40-2N" 2 39.6502 0 1.496! 0 0 0 0 0 i 3 0 0 1) 0 5606 0 5311 0 4 17.49 0 0 0 0 0 0 0 5 57.1402 37.3151 3.84E-12 3 84E-12 0 0 1 0.000188 8 96.7904 76.9653 1.71E-07 1.71E-07 0 0 5 0.000941 i 7 136 4400 116.6155 1.85E-05 1.87E-05 8 0.001427 3 0.000565 8 176.0908 156.2657 0.000265 0.000284 36 0.006422 21 0.003954 9 215.741 195.9159 0.001445 0.00173 70 0.012487 69 0.012992 10 255 3912 235.5661 0.004556 0.006286 102 0.018195 100 0.018829 11 295 0414 275.2163 0.010203 0.016489 144 0.025687 99 0.018641 12 334.6916 314.8665 0.01817 0.034659 130 0.023189 101 0.019017 13 374.3418 354.5167 0.027544 0.062203 141 0 025152 142 0.026737 14 413.992 394.1669 0.037123 0.099326 150 0.026757 133 0.025042 15 453 6422 433.8171 0.045808 0.145134 155 0.027649 168 0.031632 16 493.2924 473.4673 0.052818 0.197952 223 0.039779 203 0.038223 17 532.9426 513.1175 0.057754 0.255706 270 0.048163 239 0.045001 18 572.5928 552.7677 0.060543 0.316249 343 0.061184 281 0.052909 19 612.243 592.4179 0.061348 0.377597 297 0.052979 301 0.056675 20 651.8932 632.0681 0.06047 0.438067 314 0.056011 329 0.061947 ~ 2 21 691.5434 671.7183 0.058268 0.496335 359 0.064039 288 0.054227 22 731.1936 711.3685 0.055103 0.551439 278 0.04959 274 0.051591 23 770.8438 751.0187 0.051302 0.602741 263 0.046914 257 0.04839 24 810.494 790.6689 0.047143 0.649884 308 0.054941 241 0.045378 25 850.1442 830.3191 0.042847 0.692731 240 0.042811 214 0.040294 26 889.7944 869.9693 0.038582 0.731313 190 0.033892 188 0.035398 27 929.4446 909.6195 0.034471 0.765784 157 0.028006 153 0.028808 28 969.0948 949.2697 0.030593 0.796377 144 0.025687 139 0.026172 29 1008.745 988.9199 0.026998 0.823374 176 0.031395 147 0.027678 30 1048.395 1028.57 0.023711 0.847085 144 0.025687 152 0.02862 31 1088.045 1068.22 0.02074 0.867825 125 0.022298 125 0.023536 32 1127.696 1107.871 0.018078 0.885903 90 0.016054 125 0.023536 33 1187.340 1147.521 0.015712 0.901615 93 0.016589 93 0.017511 34 1206.996 1157.171 0.013622 0.915236 74 0.0132 87 0.016381 35 1246.646 1226.821 0.011785 0.927021 61 0.010S81 80 0.015063 36 1286.296 1266.471 0.010178 0.937199 61 0.010881 69 0.012992 37 1325.947 1306.122 0.008778 0 945977 50 0.008919 47 0.00885 38 1365.597 1345.772 0.007562 0.953539 53 0.009454 38 0.007155 39 1405.247 1385.422 0.006508 0.960047 43 0.00767 29 0.00546 40 1444.897 1425.072 0.005596 0.965643 31 0.00553 31 0.005837 41 1484.547 1464.722 0.00481 0.970453 33 0.005887 31 0.005837 42 1524.198 1504.373 0.004133 0974586 25 0.00446 22 0.004142 43 1563.848 1544.023 0.003549 0.978135 27 0.004816 19 0.003577 44 1603.498 1583.673 0.003048 0.981183 20 0.003568 22 0.004142 45 1643.148 1623.323 0.002617 0.983801 23 0.004103 21 0.003954 46 1682.798 1662.973 0.002248 0.986048 12 0.002141 19 0.003577 47; 1722.449 1702.624 0.00193 0.987979 11 0.001962 14 0.002636 48 1762.099 1742.274 0.001058 0.989637 14 0.002497 13 0.002448 49 1801.749 1781.924 0.001425 0.991062 6 0.00107 12 0.002259 50 1841.399 1821.574 0.001225 0.992287 5 0.000892 10 0.001883 51 1881.049 1861.224 0.001053 0.99334 6 0.00107 6 0.00113 52 1920.7 1900.875 0.000906 0.994246j 8 0.001427 10 0.001883 53 1960.35 1940.525 0.00078 0.995026i 7 0.001249 9 0.001695 54 2000 1980.175i 0.000671 0.995697I 7 0.001249 11 0 002071 55 i i 5527 5191 - I

Cale. No. ATD-0206 Ravision 0 REVIEW HETHGD SHEET Page 81, LAST of Rev. 0 Proj. No. 8986-10 checked below. This calculation har been reviewed by me according to the method (s)

1. Computer Aided Calculations Review to determine that the computer program (s) has been validated and oocumented, is suitable to the problem being analyzed, and that the calculation contains all necessary information for reconstru a.

later date. Review to determine that the input data as specific for program execution is consistent with the design input, correctly defines the problem for the computer algorithm and is sufficiently accurate to produce b X results within any runerical limitations of the program. Review to verify that the results obtained fran the program are correct and within stated asstaptions and l c limitations of the program and are consistent with the input. Review validation documentation for testporary changes to listed, or developmental, or migue single application programs, to assure that methods used adequately validate the program for the interded d application. l Review of code input only, since the conputer program has suf ficient history of use at Sargent & Lundy e similar calculations. f Review arithmetic necessary to prepare code input data. g Other:

2. Hand Prepared Calculations Detailed review of the original calculation.

a Review by an alternate, sirplified, or approximate method of calculation. b Review of a representative sanple of repetitive calculations. c Review of the calculation against a similar calculation previously performed. d 3. Revisions a Editorial changes only, Elimination of unapproved input data without altering calculation results, b c Other: a 4. Other / } )f / Date: 39 9L Reviewer:

m. /> /

e w '/

^ DIST-40.XLS l Calc.No.ATD-0206[ l Rev. 0 l lProj.No. 8986-10 l lPage34 l l 1 C A l B l l 1 "UPPdR" FMID" 6D4 2 i 2 39.6502 j0 1.496 3 0 0 1 !O 4 17.49 0 i = EXP(4(LN{B5'3C$1)/LN($C$2))*2)f2)/LN($C$2)/2.506628/BS*$A$T$C (A5+A4y2 6 =A4+$A$2 = = EXP(4(LN(B&$C$1 FLN($C$2))*2y2)/LN($C$2y2.50662WB6*$A$TSC$3 (A6+A5)/2 A5+$A$2 = EXP(4(LN(B74C$1 FLN($C32))a2y2)/LN($C$2y2.50662&B7*$A$7$C$3 = 6 = (A7+A6F2 A6+$A$2 =EXP{-{ LN(B8/$C$1)tN($C32))a2y2)/LN($C$2)/2.506628/B8*$ASTSC$3 = 7 = ( (A8+A7y2 A7+$A$2 =EXP(-((LN(B9/$C$1)/LN($C$2))a2y2yLN($C$2y2.506628/B9*$A$73C33 = 8 = (A9+A8F2 9 =A8+ $A$2 =EXP(-((LN(B10/$C$1FLN($C$2))*2y2VLN($CS2)/2.506628/B10*$A$2"$CS3 = (A10+A9)f2 10 =A9+$A$2 =EXP(-((LN(B114C$1)/LN($C$2))*2y2)!LN($C$2)/2.506628/B11*$A32*$C$3 = (A11+A10y2 11 =A10+$A$2 = EXP(4(LN(B12/$C$1 )/LN($CS2))*2/2)/LN($CS2)/2.506628/B175A$2*$C$3 = (A12+A11)/2 12 =A11+$A$2 = =EXP(-((LN(B13/$C$1)/LN($C32))^2)/2yLN($C$2)/2506628/B13*$A$2*$CS3 13 =A12+$A$2 =(A13+A12F2 =EXP( ((LN(B14/$C$1 yLN($C$2))^2V2)/LN($CS2)/2.506628/B14*$A$2* $C$3 14 =A13+$A$2 =(A14+A13y2 = EXP(4(LN(B15/$C$1 yLN($C32))*2y2yLN($C$2y2.506628/B15*$A52*$C$3_. 16 =A14+$A52 =(A15+ A14y2 EXP(-((LN(B16/$C$1)/LN($C$2))*2y2)/LN($C12)/2.50662&S16*$A$2*$C$3 is =A15+$A52 =(A16+A15y2 = EXP(f{LNIB17/$C$1)/LN($C$2))*2)f2)/LN($C$2y2.500628/B17*$A$7$C13 17 =A16+$A12 =(A17+ A16)/2 = =EXP(-((LN(B18/$C$1)/LN($C$2))a2)/2)/LN($C32)f2.506628/B16*SA$TSC$3 18 =A17+$A52 =(A1B+A17y2 = EXP(4(LN(B19/$C$1)/LN($C$2))*2k7)/LN($C$2y2.506628/B19*$A$7$C$3 19 =A18+1A$2 =(A19+A18)/2 =EXP(-((LN(B20/$C$1)/LN($C$2))a2V2)/LN($CS2y2.506628/B20*$A$2*$C$3 20 =A19+$A$2 =(A20+A19)f2 =EXP(-((LN(B21/$C$1)/LN($C$2))*2y2}/LN($C32y2.50662&S21*SA$T$C33 21 =A20+$A$2 =(A21 +A20y2

  • EXP(-((LN(B22/$C$1)/LN{$C$2))*2y2)/LN($CS2)f2.506628/B22*$A$7$C33 22 =A21+1A$2

=(A22+ A21y2 =EXP(-((LN(B23/$C31)/LN($C$2))^2y2)/LN($C32)f2.506628/B23*$A32*$C33 23 =A22+$A$2 =(A23+A22y2 = EXP(-((LN(B24'3C$ 1 FLN($C32))*2y2)/LN($C$2)f2.506628/B24*$A$2*W 24 =A23+$A52 =(A24+A23)/2 =EXP(4(LN(825/$C$1)/LN($C32))*2)f2)/LN($C32y2.506628/B25*$A$2*$C$3 l 26 =A24+$A$2 =(A25+A24y2 =EXP(4(LN(826/$C$1)/LN($C32))*2y2)/LN($CS2)f2.506628/B26*$A$75C33_ 26 =A25+$A$2 =(A26 A25)f2 = EXP(-((LN(B27/$C$1 FLN($C$2))*2)/2)/LN($CS2)/2.506628/B27*$A12*$ 27 =A26+$A$2 =(A27+A26)/2 =EXP(4(LN(B2&$C$1)/LN($C32))a2)/2)/LN($C$2y2.506628/B28*$A32*$C$3 2B =A27+$A12 =(A28+A27y2 =EXP(-((LN(B29/$C$1)/LN($C$2))*2)f2ptN($CS2y2.50662&S29*$A$7$C$3 29 =A28+ $A$2 =(A29+A28)/2 = EXP(-((LN( B30/$C 31 )/L N($C S2))*2y2yLN($CS2)/2.506628/B30*$A$2*$C$3 30 =A29+$A$2 =(A30+A29)/2

  • EXP(-((LN(831/$C$1)/LN($C32))*2y2FLN($C$2y2.506628/B31*$ASTSC$3 31

=A3O+$A12 =(A31+A30y2 =EXP(-((LN(B32/$C$1)/LN($C$2))*2)f2VLN($CS2)f2.506028/B375A$2"$C 32 =A31+ $A$2 =(A32+A31y2

  • EXP(-((LN(B33/$C$1)/LN($C$2))*2)/2)/LN($C$2)/2.506628/B33*$A32*$C 33 =A32+$A$2
  • (A33+A32)/2

= EXP(-((LN(B345C$1 FLN($C$2))*2y2)tN($C$2)/2.506628/B34*SA32*$C$3 34 =A33+$A$2 =(A34+A33y2 =EXP(-((LN(B35/$C$1)/LN($C$2))a2)/2)/LN($C$2)/2.506628/B35*$ASYSC 36 =A344$A$2 =(A35+A34y2

  • EXP(-((LN(B36/$C$1)/LN($CS2))*2)/2)/LN($C$2)/2SM_W udiA32*$C$3_

t 36 =A35+$A32 =(A36+A35)f2 =EXP(-((LN(B374C31)/LN($C32))*2)f2yLN($C$2)f2hMWu3PSA$2*$C$3__ 37 =A36+$A32 =(A3/+A36y2

  • EXP(-((LN(B38/$C41)/LN($CS2))^2y2)/LN($CS2y2.506628/B38*$A$2*SC$3 St =A37+$A$2

=(A38+A37y2 = EXP(-((LN(B39/$C31 )/LN($CS2))*2y2)/LN($C$2)/2.506628/B39*$A$7$C$3 39 =A38+$A32 s(A39+A38)/2 =EXP( ((LN(840/$C$1)/LN($C32))*2y2)/LN($C$2y2EMB40*$A$2*$C$3_. 40 =A39+$A52 ={A40+A39y2 = EXP(-((LN(B41/$C$ 1 FLN($CS2))*2y2VLN($CS2)f2.506628/B41*$ASTSC$3 41 =A40+$A32 =(A41+ A40)/2 = EXP(-((LN(842/$C$ 1 )/LN($C$2))*2y2)/LN($C$2y29 = WB42*$A$2*$C$3 42 =A41+$A$2 =(A42+ A41y2 =EXP(-((LN(B43/$C$1 FLN($C32))a2y2)/LN($C$2)/2.506e2&B43*$ASTSC83. 43 =A42+$A$2 =(A43+A42)/2 =EXP(-((LN(844%C$1 FLN($C32))*2V2)/LN($C$2)/2.5 mis /B44*$A$2*$C1 44 =A43+$A32 =(A44+A43y2 =EXP(4(LN(B45/$C51)/LN($C$2))*2/2yLN($C$2y2.5emwn/Bd5*$A$2*$C$3 46 =A44+$A52 =(A45+ A44)f2 =EXP(-((LN(846/$C$1)/LN($C$2))*2)f2)/LN($C$2y2.506628/B46*$A$2*$C33 46 =A45+ $A$2 =(A46+A45y2

  • EXP(-((LN(B47/$C$1)/LN($C32))*2)/2)/LN($CS2)/2.506628/B47*$A$2*$C 47 =A46+$A12

=(A47+A46)/2 =EXP(-((LN(B48/$C$1)/LN($C32))a2)/2yLN($CS2)f2.506628/B48*$A$TP 48 =A47+$A52 =(A48+A47)/2 =EXP(-((LN(849/$C$1)/LN($C$2))*2)/2yLN($C$2)/2.506628/B49*$A$2*$C53 49 =A4S+$A$2 =(A49+A48y2 = EXP(-((LN(B50/$C31 )/LN($C32))*2y2)/LN($CS2)/2S = WB50*$A$2*$C$3 60 =A49+3A$2 =(A50+A49y2 = EXP(-((LN(B51/$C$1 FLN($C$2))*2y2)/LN($CS2)/2.506628/B5t *$ASTSC$3 61 =A50+$A$2 =(A51+ A50)/2 = EXP(-((LN(B52/$C$1 )/LN($C32))*2y2)/LN($C$2)/2.506628/B52*$A$2*$C$3 62 = A51+$A$2 =(A52+ A51)/2 =EXP(-((LN(B53/$C$1)/LN($C$2))a2y2)/LN($C$2)/2.500c26/B53*$A32*$C53 63 =A52+$A$2 =(A53+A52y2 =EAP(4(LN(B54'$C51)/LN($CS2))*2)f2)/LN($C$2)/2EWB54*$ASTSC5 64 =A53+$A$2 =(AS4+A5392 66

DIST-40.XLS l Calc.No.ATD-0206l lRev.0 l lProj.No. 8986-10 l lPage35 l I I D l E { F { G j H 1 "CUM" i 40-1" l"40-1N" (~40-2" ~40-2N" 2 0 lo !O jo 0 3 0 15606 iO 15311 0 4 0 IO O iO O G%G53 = 5 =D4+C5 0 =ES/$ES3 1 G6/$G13 = 6 =D5+C6 0 =ES'$ES3 5 G7/$G$3 = 7 =D6+C7 l8

  • E7/$E$3 3

G%G53 = 3 =D7+C8 i36

  • E8/$ES3 21 G9/$G$3

= 9 =D8+C9 70 =E9/$E$3 69 G10/$GS3 = 10 =D9+C10 102

  • E1G4ES3 100 11 =010+C11 144

=E11/$ES3 99 =G11/$GS3 12 =D11+C12 130 =E12/$ES3 101 =G12/$G$3 13 =D12+C13 141 =E13/$E$3 142 =G13/$G$3 14 =013+C14 150 =E14/SE$3 133 =G14'$GS3 15 =D14+C15 155 =E15/$ES3 168 =G15f5G13 16 =D15+C16 223 =E16/5ES3 203 =G16'$G13 17 =D16+C17 270 =E17/$E53 239 =G17/$G13 it =D17+C18 1343 =E18/$E$3 281 =G18/$G53 19 =D18+C19 297 =E19/$E$3 301 =G1W$GS3 20 =D19+C20 314

  • E20/$ES3 329

=G20/$GS3 21 = D20+C21 359 =E21/$E$3 288 =G21/$GS3 22 *D21 +C22 278 =E22/$ES3 274 =G22/$GS3 23 =D22+C23 263 =E23/$E33 257 =G23/$G13 24 =D23+C24 308 =E24/$ES3 241 =G24'5G$3 25 =D24+C25 240 =E254E$3 214 =G25/$G$3 26 =D25+C26 190 =E26/$ES3 188 =G26/$G33 27 =D2G+C27 1 57

  • E27/$ES3 153

=G27/$G$3 28 =D27+C28 144 =E28/$E33 139 =G28/$GS3 29 =D28+C29 176 =E29/$ES3 147 =G29/$G$3 30 =D29+C30

144

=E30/$ES3 152 =G30/$GS3 31 =D30+C31 125 =E31/$E$3 125 =G31/$GS3 32 =D31 +C32 90 =E32/$ES3 125 =G32/$GS3 33 =D32+C33 93 =E33/$ES3 93 =G31'$G53 I 34 =D33+C34 74 =E34/$ES3 87 =G34/$GS3 35 =D34+C35 61 =E35/$ES3 80 =G35/$GS3 36 =D35+C36 61 =E364E$3 69 =G3%G53 37 =D36+C37 50 =E37/$ES3 47 =G37/$G$3 35 =D37+C38 53

  • E38/$ES3 38

=G38/$GS3 39 =D38+C39 43

  • E39/$ES3 29

=G39/$G$3 40 =D39+C40 31 =E4G4E33 31 =G40/$GS3 41 =D40+C41 33 =E41/$E$3 31 =G411$G$3 42 =D41+C42 25 =E42/$ES3 22 =G42/$GS3 43 =D42+C43 27

  • E43/$E$3 19

=G43/$M3 44 =D43+C44 20

  • E44'5E$3 22

=G44/$G$3 1 46 =D44+C45 23 =E45/$E$3 21 =G45/$G$3 46 =D45+C46 12 =E46/$ES3 19 =G46r$G$3 47 =D46+C47 11 =E47/$ES3 14 =G47/$G13 48 =D47+C48 14 =E48/$ES3 13 =G48/$G$3 49 =D48+C49 6 =E49/$E13 12 =G49/$GS3 60 =D49+C50 5 =E50/$E$3 to =G50/$G$3 61 =D50+C51 6

  • E51/$ES3 6

=G51/$G$3 52 =D51 +C52 8

  • ES2/$Es3 0

=G52/$GS3 53 =D52+C53 7

  • ES3/$ES3 9

=G 53/$GS3 64 =D53+C54 !7 =E54/$ES3 11 =G54'5G$3 55 l= SUM (E5 E54) = SUM (G5 G54) i f l

DIST40.XLC Drop Bise Log-normal Distribution for 40 PSIG 0.07 0 0.06 O C .c Log-normal e .tfso 0.05 u- + o o Experiment 40-1 a a i a s o Experiment 40-2 + o c 0.04 ,o n 5 a i'r .o c = 5 iP O\\ a* . : 5 3 0.03 - 0 o 3I o

?

] a

2 m

a 3

R 1

@ 0.02 j o* o o + .g z N ! 'o 6 j 0.01_-- u !? ..J+

=

N 7..p "I !? .O id ..: 5 0 200 400 600 800 .1000-1200 1400 1600 1800 2000 i* lE Drop Diameter, Microns I:

18

i DIST-45.XLS l Calc. No. AfD-0206 l lRev.0 l lProj.No. 8986-10 l { lPage37 l 1 I 1 A l B l C l D l E l F l G J H 1 " UPPER" "MID" 662.i " CUM" 45-1" F45-1N" "45-2" 45-2N",_ ~ 2 39 6502 0 1.513 0 0 0 0 0 3 0 0 1 0 6072 0 6025 0 4 17 49 0 0 0 0 0 0 0 5 57.1402 37.3151 3.38E-11 3.38E-11 3 0.000494 0 0 6 96.7904 76.9653 6.7E47 6.7E-07 3 0.000494 2 0.000332 7 136.4406 116.6155 4.93E 05 4.99E-05 4 0.000659 0 0 8 176.0908 1562657 0 rNA 0.000606 30 0.004941 34 0.005643 9 215.741 195.9159 0.002567 0.003172 102 0.016798 99 0.016432 to 255.3912 235.5661 0.007164 0.010336 151 0.024868 154 0.02556 11 295.0414 2752163 0.014604 0.02494 174 0.028656 157 0.026058 12 334.6916 314.8665 0 024134 0.049074 192 _0.031621 178 0.029544 13 374.3418 354.5167 0.034423 0.083497 207 0.034091 206 0.034191 14 413.992 394.1669 0 044111 0.127608 225 0 037055 243 0.040332 15 453.6422 433.8171 0.052169 0.179777 328 0.054018 322 0.053444 16 493 2924 473 4673 0 rum 0.2378 370 0.060935 390 0.06473 17 532.9426 513.1175 0.061513 0299312 411 0.067688 388 0.064398 18 572.5928 552.7677 0.062784 0.3ozuv7 439 0.0izew9 358 0.059419 19 612243 592 4179 0.06216 0 424257 343 0 056489 331 0.054938 20 651.8932 632.0681 0.060042 0.484299 325 0.053524 336 0.055768 21 691.5434 671.7183 0.056838 0.541137 291 0.047925 350 0.058091 22 731.1936 711 M 5 0.052918 0.594054 277 0.045619 262 0.043485 23 770.8438 751.0187 0.048594 0.642649 250 0.041173 254 0.042158 24 810.494 790.6689 0.044115 0.686764 219 0.036067 248 0.041162 25 850.1442 830.3191 0.039666 0.72643 197 0.032444 200 0.033195 26 889.7944 869.9693 0.035381 0.761811 175 0 028821 163 0.027054 27 929 4446 909 6195 0.031346 0.793157 118 0.019433 148 0.024564 28 969.0948 949 2697 0 027613 0.82077 113 0.01861 93 0.015436 29 1008.745 988.9199 0.024209 0.84496 105 0.017292 119 0.019751 30 1048 395 1028.57 0.02114 0.866119 95 0.015646 118 0 019585 31 1088.045 1068.22 0.018397 0.884516 96 0.01581 92 0.01527 32 1127.696 1107.871 0.015965 0 900481 83 0.013669 85 0.014108 33 1167.346 1147.521 0.013822 0.914303 68 0.011199 73 0.012116 34 120G.996 1187.171 0.011943 0.926246 69 0.011364 55 0.009129 35 1246.646 1226.821 0.010303 0.936549 34 0.005599 49 0.008133 36 1286296 1266.471 0.008877 0.945426 35 0.005761 34 0.005643 37 1325.947 1306.122 0.00764 0FM 34 0.005599 30 0.004979 38 1365.597 1345.772 0.00657 0.959636 38 0.006258' 35 OMA 39 1405247 1385 422 0.005647 0.965283 27 0.004447 24 OMW 40 1444.897 1425.072 0.004851 0.970134 22 0.003623 22 0.003651 41 1484.547 1464.722 0.004166 0.974301 16 0.002635 13 0.002158 42 1524.198 1504.373 0.003578 0.977878 19 0.003129 15 0 00249 43 1563 848 1544.023 0.003072 0.98095 18 0.002964 15 0.(X1249 44 1603.498 1583.673 OMW 0.983589 19 0.003129 13 0.002158 45 1643.148 1623.323 0.002266 0.985854 12 0.001976 17 0.002822 46 1682.798 1662.973 0.001946 0.987801 13 0.002141 18 0 002988 47 1722.449 1702.624 0.001673 0.989473 21 0 003458 15 0.00249 48 1762.099 1742274 0 001438 0.990911 14 0.002306 21 0 003485 49 1801.749 1781.924 0 001237 0.992148 10 0.001647 10 0(X)166 50 1841.399 1821.574 0.001064 0 393212 25 0 004117 15 0.00249 51 1081.049 1861.224 0.000916 0.994127 8 0.001318 14 0.002324 52 1920.7 1900.875 0.000789 0.994916 15 0.00247 to 0.00166 63 1960.35 1940.525 0.00068 0 995596 15 0.00247 7 0.001162 54 2000 1980.175 0 cmA6 0.995182 11 0.001812 16 0.002656 5869 5851 55

.~ ~ s DIST-45.XLS l Calc.No.ATD-0206l 3 lRev.0 l-lProj.No. 8986*10 l lPage38 l t I i C A l B l 1 ' UPPER" FMID' -662.7 2 39 6502 !O 1.513 3 0 10 1 j 4 17.49 0 0 =EXP(-((LN(BS/SCS1)/LN(SCS2))*2y2)/LN(SCS2)/2.508628/BS*SAS2*SCS3 j 6 =A4+$AS2 =(A5+A4y2 s =EXP(-((LN(B6/SCS1)/LN(SCS2))*2y2)/LN(SCS2y25MfNB6*SAS2*SCS3 A 6 =A5+SAS2 =(A6+AS)/2 =EXPH(LN(B7/SCS1 FLN($CS2))*2y2)/LN(SCS2)/2.4MemB7'SAS2*SCS3 7 =A6+$AS2 =(A7+A6)/2 8 =A7+$AS2 =(A8+A7)/2 =EXP(-((LN188/SCS1)/LN($CS2))*2)/2)/LN(SCS2)f2.508528/B8'SAS2*SCS =EXP(-((LN(B9/SCS1 FLN{$CS2))*2)/2yLN($CS2)/2.4MfMB9'SAS2*SCS3 8 =A8+$AS2 =(A9+A8F2 =EXP(-((LN(B10/SC$1)/LN($CS2))*2y2)/LN(SCS2)/2.4MrmB10*SA32*SCS3 10 =A9+$A32 =(A10+A9y2 = EXP(-((LN(B 11/SCS1 FLN(SCS2))*2)/2)/LN(SCS2)/2.508828tB11 *SA32*SCS 11 =A10+$A52 =(A11+A10)/2 12 =A11+$A32 =(A12+A11)/2 =EXP(((LN(B12/SC$1)/LN(SCS2))*2)/2)/LN(SCS2y2.508628/B12-SAS2*SC33 =EXP(-((LN(B13/SCS1)/LN(SCS2))*2)/2)/LN(SCS2)/2.508828/B13*SA32*SCS3 13 =A12+5AS2 =(A13+A12y2 =EXP(-((LN(B14/SCSt yLN($CS2))*2y2)/LN(SCS2)/2.500828/B14*SAS2*SCS3 14 =A13+ $A52 =(A14+A13)/2 =EXP(-((LN(B15/SCS1 FLN($CS2))^2)/2)/LN(SCS2)/2500828/B15*$A32*SCS3 16 =A14+$A32 =(A15+A14y2 =EXP(-((LN(B16/SCS1FLN(SCS2))*2)/2)/LN(SCS2)/2.500828/B18*SA52*SCSS 16 =A15+$A52 =(A16+A15y2 = EXP(4(LN(B 17/SCS 1 )/LN(SCS2))*2)/2)/LN(SCS2)/2.500828/B 17*SAS2*SC t 17 =A16+$AS2 =(A17+ A16)/2 =EXP(-((LN(818/SCS1FLN(MM))*2y2)/LN(SCS2)/2.508828tB18*SAS2*SCS3 is =A17+$AS2 =(A18+A17)/2 = EXP(-((LN(B19/SC81)/LN(SCS2))^2y2)/LN(E4h/1500828tB19'SA32*SCS3 19 =A18+$AS2 =(A19+ A18)/2 20 =A19+$AS2 =(A20+A19y2 =EXP(-((LN(B20/SCS1)/LN(SCS2))*2)f2yLN(SCS2)/2.508628/B20*SA52*SCS3 =EXP(-((LN(B21/SCS1 FLN(MSM)*2)/2yLN(SCS2y2.508628tB21 *SAS2*SCS3 21 =A20*SAS2 =(A21+A20)/2 =EXP(-((LN(B22/SC$1)/LN(SCS2))*2)f2yLN(K iW508828/B22*SA32*SCS3 22 =A21+$AS2 =(A22+A21)/2 =EXP(-((LN(B23tSCS1yLNW4h)^2y2)/LN(SCS2W2 508828tB23*SAS2*SCS3 23 =A22+$A52 =(A23+A22y2 = EXP(-((LN(B24/SCS1 yLN(SCS2))*2y2)/LN(M29W2.508528/B24*SAac9 24 =A23+$AS2 =(A24+A23y2 + = EXP(-((LN(B25/SCSI )/LN(SCS2))*2)f2)/LN(M"V20= --N*SAS2*SCS3 26 =A24+$A32 =(A25+A24)/2 =EXP(-((LN(B26/SCS1)/LN(MM))*2)/2)/LN(SCS2)fM=-neo iAS2*SCS3 I 26 =A25+$A52 =(A26+A25)/2 =EXP(-((LN(B27/SCS1FLN(M"))*2y2FLN(SCS2V2.500828/B27*SA52*SCS3_ _ 27 =A26+SAS2 =(A27+A26y2 =EXP(4(LN(B28/SCS1 yLN(SCS2))*2)/2yLN(SCS2)f2.500828/B28*SA32*SCSS 2a =A27+$AS2 =(A28+A27y2 =EXP(-((LN(B2WSCS1FLN(e"))*2y2)/LN(SCS2y2.4Mr>suB29'SAS2*SCS3 + 29 =A28+$A32 =(A29+A28)/2 = EXP(-((LN(830/SCS1 FLN(M M))*2)/2)fLN(M")f2.508828tB30*SAS2*SCS3 30 =A29+$AS2 =(A3O+A29)/2 = EXP(-((LN(B31/SC$1 FLN(SCS2))*2)/2)/LN(M$9)/1500828/831 *SAS2*SC 31 =A3O+ $A52 =(A31+A30y2 =EXP(-((LN(832/SC$1)/LN(SCS2))*2)f2)/LN(SCS2)f2.508828tB32*SAS2*SCS 32 =A31+SA52 =(A32+ A31y2 =EXP(-((LN(833fSCS1)/LN(SCS2))*2y2VLN(SCS2)f2.508B28tB33*SA32*SCSS s 33 =A32+$AS2 =(A33+A32)/2 = EXP(-((LN(B34/SCS1 )fLN(SCS2))*2)/2)/LN(MMW2.508528tB34*SA32*SCS 34 =A33+$A52 =(A34+A33)f2 =EXP(-{(LN(B35/SCS1FLN(5C,52))*2y2)/LN(SCS2)f2.508828tB35*SA32*SCS3 36 =A34+$AS2 =(A35+A34y2 i =EXP(-((LN(838/SC$1yLN(M$9))*2y2)/LN(SCS2)/2.4MrmB38*$A32*SCS3 38 =A35+ SAS2 =(A36+A35y2 =EXP(-((LN(837/SCSt yLN(M$9))*2y2)/LN(eVM/2.508528tB37*SA32*SCS3 37 =A36+$AS2 =(A37+A36)/2 =EXP(-((LN(838/SCS1 FLN(SCS2))*2)f2)/LN(SCS2)/2.508828/B38*SAS2*S 38 =A37+$AS2 =(A38+A37)/2 t = EXP(-((LN(B39/SCS1 FLN(SCS2))*2y2)/LN(SCS2y2.508528tB39"SA52*SCS3 3e =A38+$AS2 =(A39+A38F2 =EXP(-((LN(B40/SCS1 FLN(SCS2))^2)f2)/LN(SCS2)f2.508B28tB40*SA32* 40 =A39+$AS2 =(A40+A39y2

  • EXP(-((LN(B41/SCS1)/LN(SCS2))*2y2)/LN(SCS2)/2 8iMemB41*SA32*SCS3 41 =A40+$A52

=(A41+ A40y2 =EXP(-((LN(B42/SCS1 FLN(SCS2))*2y2)/LN(SCS2y2508828/B42*SA32*SCS3__ l 42 = A41+$A52 =(A42+A41)f2 43 =A42+SA32 =(A43+A42y2 =EXP(-((LN(B43/SCS1FLN(SCS2))*2)/2)/LN(SCS2)f2.4MfmB43*SAS2*SCS j =EXP(-((LN(844/SCS1FLN(SCS2))^2y2FLN(SCS2y2.508828/B44*SAS2*SCSS 44 =A43+$A52 =(A44+A43y2 = EXP(4(LN(B45/SC$1 yLN(SCS2))*2y2FLN(SCS2y2.508828tB46*SA32*SCS3 44 =A44+SAS2 =(A45+A44y2 i =EXP( ((LN(B46/SOSt yLN(SCS2))*2y2)/LN(sGs2y2.508828/548"SAS2*SCS3 44 =A45+SAS2 =(A46+A45y2 = EXP(-((LN(847/SC81 FLN(SCS2))*2)f2FLN(e")f2.50882BlB47*SAS2*SCS 47 =A46+$AS2 =(A47+A46)f2 = EXP(-((LN(848/SC81 )/LN(SCS2))*2)/2)/LN(M"W2.5088287848*SAS2*SC 48 =A47+$AS2 4(A48+A47)f2 =EXP(-((LN(440/SCS1FLN(E43)*2y2FLN(MMW2.50852 BIB 49*SA32*SCS3 as =A48+$AS2 =(A49+A48F2

  • EXP(-((LN(850/SCSI)/LN(MM))*2y2)/LN(maw 500828tB50*SA32*SCS3 j

60 =A4&+$AS2 =(A50+A49y2

  • EXP(-((LN(851/SCSI)/LN(SCS2))*2y2yLN(e$9W2.508828tB51*SA32*SCS3 61 =A50+$A52

=(A51+A50)/2 = EXP(-((LN(B52/SCSI )/LN(SCS2))*2)f2yLN($CS2y2.4M8mB52*SAS2*SCS3 62 =A51+$AS2 =(A52+A51)/2 = EXP(-((LN(BS3/SC$1 )/LN(SCS2))*2)f2)/LN(SCS2)f2.8iMfmBS3*S 63 =A52+$A52 =(A53+A52y2 = EXP(-((LN(B54/SCS1 FLN(SCS2))*2)/2)/LN(SCS2y2.508528/B54*SAS2*SCS3 64 =A53+SAS2 =( AS4+ A53)/2 66 f i t ~

DIST 45 XLS l Calc.No.AfD-0206l lRev.0 l lProj.No. 8986-10 l lPage39 l 1 i D l E l F l G l H 1 -CUM" F45-1" "451tr F45-2" "45-2W 2 0 'O O 10 0 I 3 0 6072 0 j6025 0 4 0 0 0 {0 0 GS/5G53 D4+C5

3

=E5/$ES3 0 = 6 = GMG$3 6 = D5+C6 3 =E6/$E$3 2 = G74G$3 7 =D6+C7 4 =E7/$ES3 0 = 8 =D7+C8 30

  • E8/$ES3 34

=G8/5G$3 GESG$3 9 =D8+C9 102 =E9/$ES3 99 = G10f5GS3 E101ES3 154 = = 10 =D9+C10 151 E11/$ES3 157 =G11/5G$3 11 =D10+C11 174 = E12/$ES3 178 =G12/$G$3 = 12 =D11+C12 192 E13/$ES3 206 =G13/$G$3 13 =D12+C13 207 = E14/$ES3 243 =G14/5GS3 14 =Dt3+C14 225 16 =D14+C15 328 =E15/$ES3 322 =G154G$3 16 =D15+C16 370 =E16/$E$3 390 =G164G$3 17 =D16+C17 411 =E17/$ES3 388 =G17/$G$3 18 =D17+C1B 439 =E18/$E$3 358 =G18/$GS3 it =D18+C19 343 =E19/$ES3 331 =G19/$G$3 i 20 =D19+C20 325

  • E20/3E$3 336

=G20/$G$3 21 *D20+C21 291 =E21/$ES3 350 =G21/SG$3 r 22 =D21+C22 277 =E22/$ES3 262 =G22/$GS3 23 =D22+C23 250 =E23/$ES3 254 =G23E43 24 =D23+C24 219 =E24/SE53 248 =G24/$GS3 26 =D24+C25 197 =E25/$ES3 200 =G25/$G$3 26 =O25+C26 175 =E2Sf5ES3 163 =G2&TG$3 27 =D26+C27 118 =E27/$ES3 148 =G27/$G$3 28 =D27+C28 113 =E28/$ES3 93 =G2&SG53 29 =D28+C29 105 =E294ES3 119 =G29/SP-$3 30 =D29+C30 95 =E301ES3 118 =G304G53 31 =D30+C31 96 =E31/$ES3 92 =G31/$G$3 32 =D31 *C32 83

  • E32/$E$3 85

=G32/5G53 33 =D32+C33 68 =E33'5ES3 73 =G33/5GS3 34 =D33+C34 69 =E341ES3 55 =G34 E43 36 =D34+C35 34 =E354ES3 49 =G35fSGS3 36 =D35+C36 35 =E36/$E$3 34 =G36tSG$3 37 =D36+C37 34 =E37/$E53 30 =G37/5G$3 38 =D37+C38 38 =E38/$ES3 35

  • G38/5G$3 39 =D38+C39 27

=E335E33 24 =G39/5G53 40 =D39+C40 22 =E40/$ES3 22 =G40/SGS3 41 =D40+C41 16 =E41/$ES3 13 =G41/SG53 42 =D41+C42 19

  • E42/$ES3 15

=G42/5G$3 43 =D42+C43 18 =E431ES3 15 =G43/$GS3 44 =D43+C44 19 =E44/$ES3 13 =G44/5G$3 46 =D44+C45 12 =E451E$3 17 =G45/5GS3 46 =D45+C46 13

  • E464ES3 18

=G46/5G$3 47 =D46+C47 21 =E47/$E53 15 =G47/$G$3 48 =D47+C48 14

  • E4&4ES3 21

=G48/SGS3 49 =D4B+C49 10 =E49/$ES3 10 =G4W5G$3 se =D4D+C50 25 =E50/$ES3 15 =G50/$G$3 81 =D50+C51 8 =E51/$E$3 14 =G51/$G53 l 62 =D51+CS2 15

  • ES2/$ES3 10

=G52/5G53 63 =D52+C53 15 =E53/$ES3 7 =G53/SG$3 64 =D53+C54 11 =E54/$E$3 16 =G544G53 = SUM /G5 G54) 65 = SUM /E5 E54)

,Ejo 5 3E. E I E __ p=. E. ta$8

l
.*

I!i .:ibi.i!{l.I 00 8q 02 0 9 A 00

8 1

8 1 2 5 5 9 4 4 t l t A0 t a m n 0 m e e m m n ir i 6 ro 1 r e e G g p p I o x x S L E E P 00 5 a 4 A 4 1 ro f g 0 n 0 o 2 s i 1 n t O or u c b i M i 9 r r 0 e \\, o 0 t t dL s 0 e + C m X. i 1 5 D o+ a i 4-l + u D T p S a a, o I m r D r b 0 D \\. 0 o c 8 n a g o a* L o e ,U 0 z N 06 i c* S o p o+ o + U r 0 D 0 ' c 4 g ' o* 8 00 2 0 8 7 6 5 4 3 2 1 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k5;c2o*ogo=j5 0' ]n55g i

' I ' ' SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate Rev. O Date X Saf et y-Related Non-$afety Related Page 41 of Date client Commonwealth Edison Company Prepared by Zion Station, Units I and 2 Revie ed by Date Project P ro j, No. 8986-10 Eculp. No. Approved by Date The maximum and minimum slopes for the linear dependence for both the geometric mean and the standard deviation of the geometric mean must be determined from combinations i of the surface means plus or minus their standard error and the volume means plus or minus their standard error at'the two extreme pressure drops using Equations 4b and Sb. From spreadsheet DROPS 4.XLS, at 25 psi: surface mean is 905.6 microns and the standard error is 20.4 microns volume mean is 970.0 microns and the standard error is 18.3 microns; at 45 psi: surface mean is 786.7 microns and the standard error is.20.4 microns volume mean is 857.3 microns and the standard error is 18.3 microns. Using this information, Table 4 is constructed showing the calculated maximum and minimum geometric means and standard deviations of the geometric means. Table 4 Maximum and Minimum Geometric Means and Standard Deviations Eqn. Sb, AP Surface Eqn. 4b, Standard Pressure or Volume Surface Volume Geometric Deviation

Drop, Mean
Mean, Mean,
Mean, of Geometric Item Psi Extreme Microns Microns Microns Hean 1

25 Maximum 926.0 988.3 812.9 1.435 2 25 Minimum 885.2 951.7 765.8 1.463 3 45 Maximum 807.1 875.6 685.8 1.497 4 45 Minimum 766.3 839.0 639.3 1.531 The minimum (more negative) slope, m, for the geometric mean is between the points-3 given as Items 4 and 1 in Table 4; thus, - (639.3 - 812.9) / (45 - 25) = -8.68 (microns / psi). m for the standard deviation, which is also the maximum 3 The cor, responding slope, m,3, slope for that quantity is m,, - (1.531 - 1.435) / (45 - 25) =.0048 (psi). ATD-0206 NPO

9" "^ SARGENT & LUNDY Rev. O cate ENGMERS Recirculation Spray Removal Rate X Sa f ety-Relat ed Non-Safety Related Page 42 of citent Commonwealth Edisen Company Prepared by cate Zion Station, Units 1 and 2 Reviewed by Date Project Proj. No. 8986-10 tauto. No. Approved by Date The maximum (less negative) slope, m f between the points given as Items 3 and 2 in Table 4; thu,s,or the geometric mean is 2 (685.8 - 765.8) / (45 - 25) - -4.00 (microns / psi). ma2 - for the standard deviation, which is also the minimun The corresponding slope, ma2, slope for that quantity is (1.497 - 1.463) / (45 - 25) .0017 (psi). m a2 Using the minimum slope, the linear dependence of the geometric mean, D,, on pressure drop, AP, can be written D - m,' he D* AP + b,,, When this equation is normalized to the accepted D, where b,f,282 micro,ns at 40 psi (Table 1), b,, can be found; thus, is t intercept. value o 282 - -8.68

  • 40. + b[.3;

~ ^ b, = 629.2 (microns Then,tfieequationforthegeometricmeanbecomes EQN. 8t D, - -8.68

  • AP + 629.2.

Using the maximum slope to determine the D, intercept, b,2, 1 282 -4.00

  • 40 + b,2; b 3 = 442.0 (micronsf.

Then,theequationforthegeometricmeanbecomes EQN. 8b D, - -4.00

  • AP + 442.0.

Using the maximum slope, the linear dependence of the standard deviation of the , on pressure drop, AP, can be written geometric mean, a/P + b - m#'the a inter, cept. When this equation is normalized to the accepted a a where b'f,2.018 (ex,p(.7021) where.7021 is given in Table 1) at 40 psi (Tabl is value o can be found; thus, 2.018 .0048

  • 40 + b,;

y 6 = 1.826. Then,t@eequationforthestandarddeviationofthegeometricmeanbecomes EQN. 9a a, .0048

  • AP + 1.826.

Using the minimum slope to determine the a, intercept, byg, 2.018 .0017

  • 40 + b,2; Then, tfe equ.950.ation for the standard deviation of the geometric mean becomes b

-1 EQN. 9b a, .0017

  • AP + 1.950.

ATD-0206.VP0

gan c lodne calc. No. N O206 a e SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate Rev. O Date X Safet y-Related Non-Sa'ety Related Page 43 or Date citent Commonwealth Edison Company Prepared by Zion Station. Units 1 and 2 Reviewed by Date Project Prof. No. 8986-10 Eaulp. No. Approved by Date The pressure drop for the spray recirculation mode can be found from Equation 7 using K - 126.9, Table 1; A=.005(ft}3 .0162 (f /lb), Table 1; y- ), Table 1; and Q - 2460. (gpm) / 171 (nozzles) - 14.39 (gpm/ nozzle), where 2460. (gpm) is the recirculation spray flow rate from Table 1, 171 (nozzles) are th number of nozzles from Table 1. Thus, AP - 126.9 * (14.39)g / [(1.8679E+9) *.0162 * (.005)2) and AP - 34.7 (psi). Using this pressure drop, Equations 8a, 9a, 8b, and 9b can be evaluated. Thus for Equations 8a and 9a, 0,- -8.68

  • 34.7 + 629.2 - 328.0 (microns),

a, .0048

  • 34.7 + 1.826 - 1.993.

For Equations 8b and 9b, D, - -4.00

  • 34.7 + 442.0 - 303.2 (microns, a, =.0017
  • 34.7 + 1.950 - 2.009.

Each set of geometric mean and standard deviation are used in a SPIRT (Reference 14) calculation to determine the smaller (more conservative) organic iodine spray removal rate. The input for these two SPIRT runs are described on the next pages. I ATD-D206.VPD

calet rr rganic lodine caic. no. ATD-0206 SARGEBGr & LUNDY ENGWEERS Recirculation Spray Removal Rate Rev. O cate X Safety-Related Non-Safety Related Page 44 of client Commonwealth Edison Company Prepared by Date Project Zion Station, Units 1 and 2 Reviewed by oate Proj. No. 8986-10 cnuto. no. Aeproved by oat. The SPIRT input instructions are found in Reference 14. The input listings for two consecutive cases are found in the microfiche in Attachment 2. The two cases are different only in the geometric mean and standard deviation of the geometric mean and in the case title. The input description is as follows. Line 1: (TITLE (I),I-1,20) CASE 1 RECIRCULATION SPRAY RATE =2460.0 GPM FOR ORGANIC IODIN Line 2: NGRP - 50 Ref. 8 1 Ref. 8 NTYPE NSTEPS = 147 Ref. 8 1 Ref.13 NREAC NDATA -0 Ref. 8 Line 3: CNTVOL - 2.715E+6 Table 1, Containment Free Volume (ft" FRCVS .85 Table 1, Fraction of Volume Sprayed FLOW - 2460.0 Table 1, Recirculation Spray Flow Rate (gpm) IMAX - 147.0 Table 1, Spray Drop Fall Height (ft) EFC - 1.0 Table 1, Collection Efficiency H - 10000.0 Table 1, Elemental Iodine Partition Coefficient (value does not affect organic iodine removal) Line 4: TNORM - 62.0 Table 1, Normal Temperature at Which Spray Water is stored (deg F) TEMPF - 263.0 Table 1, Max. Post-accident Temperature (deg F) DMEANG .0328 Geometric mean diameter (cm) from previous page of this calculation SIGMAG - 1.993 Standard deviation of the geometric mean diameter from Table 1, Methyl Iodide Hydrolysis rate (sec,1culation previous page of this ca ~) RK - 7.7E-8 HR = 5.0 Table 1, Methyl Iodide Partition Coefficient DMAX - 0.4 Table 1, Maximum Drop Size (cm) ATD-0206.WD

caic. No. ATD-0206 cates. r r Organic Iodine SARGENT & LUNDY Rev. O Date momstas Recirculation Spray Removal Rate X Safety-Related Non-Safety Related Page 45 of Date client Commonwealth Edison Company Prepared by Date Zion Station, Units 1 and 2 Reviewed by Project Date Proj. No. 8986-10 Equip. No. Approved by Line 5: Interior Surface Over Which Laminar Boundary Layer Flow 410000 AWALLR = 2.789E+4 Occurs. This equals the wetted surface area (Table 1) times the laminar flow fraction which is the height of wall that has laminar flow (10 ft, Table 1) divided by the total height sprayed (147 ft, Table 1). The value of this parameter does not affect the organic iodine spray removal rate. InteriorSurfaceOverWhichTurbulentBoundaryLayerF]ow AWALTR = 3.8211E+5 Occurs. This is the wetted surface area 410000 ft minus AWALLR. The value of this parameter does not affect the organic iodine spray removal rate. Table 1, Spray Water Wall Flow Fraction. WALLFR =.05 Table 1, Temperature Difference Across Wall / Gas Boundary WALLOT = 1.0 (deg F). The value of this parameter does not affect the organic iodine spray removal rate. Table 1, Containment Inside Diameter (ft). The value of this CNTDIA - 140.0 parameter does not affect the organic spray removal rate. z Containment Wall Surface Area (ft ) Impacted Upon by Spray. WALLSP = 6.465E+4 This is x * (containment diameter, CNTDIA) * (spray fall height, ZMAX). Lines 6 and 7 are omitted because NTYPE = 1. ) l Line 1: RECIRCULATION SPRAY RATE =2460.0 GPM FOR ORGAN (TITLE (I),1=1,20) CASE 2 Line 2: Same as CASE 1. Line 3: Same as CASE 1. Line 4: THORM = 62.0 Same as CASE 1. Same as CASE 1. TEMPF = 263.0 Geometric mean diameter (cm) from a previous page of this DMEANG =.03032 calculation. Standard deviation of the geometric mean diameter from a SIGMAG = 2.009 l previous page of this calculation. \\ i ATD-0206.VP0

'I*' ~ SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate Rev. O cate X Safety-Related Non-Safety Related Page 46 of Date Prepared by Commonwealth Edison Company client Date Zion Station, Units 1 and 2 Reviewed by Project Date Approved by Proj. No. 8986-10 toutp. No. RX - 7.7E-8 Same as CASE 1. HR - 5.0 Same as CASE 1. DMAX - 0.4 Same as CASE 1. Line 5: Same as CASE 1. Lines 6 and 7 are omitted because NTYPE - 1. The controlled file The SPIRT output is found in the microfiche in Attachment 2. information is found in Attachment 3. The SPIRT calculated values for the methyl iodide (organic iodine)' removal rate-is Two values found on the output line, " TOTAL SPRAY LAMDA WITH CHEM. REACTION (1/HR)". The smaller value under "LAMDA RIGID" are given "LAMDA MIXED" and "LAMDA RIGID". is selected because the smaller removal rate would lead to conservatively larger The removal rate for the first SPIRT case (CASE 1) is found on page thyroid doses. The removal rate for the second SPIRT case (CASE 2) is found on 29 of the output. page 58 of the output. The results are summarized in Table 5. Table 5 Organic lodine Recirculation Spray Removal Rates From SPIRT SPIRT Input SPIRT Output Geometric Standard Deviation Organic lodine SPIRT Mean Diameter, of Geometric Removal CASE Microns Mean Diameter Rate, Hr" 1 328.0 1.993 .03289 2 303.2 2.009 .03355 Since the smaller organic iodine recirculation spray removal rate was obtained from i SPIRT CASE 1 (Table 5), the CASE 1 removal rate is selected as the more conservative. Organic Iodine Recirculation Spray Removal Rate .03289 Hr".

Thus, ATD-0206.VP0

=

celes. ror 0 manic lodne caic. no. N O206 SARGENT & LUNDY ENGINEW Recirculation Spray Removal Rate nev. O Date X Safety-Related Non-Safety Related Page 47 of Date citent Commonwealth Edison Company Prepared by Zion Station, Units 1 and 2 Reviewed by Date Project Date Approved by Proj. ho. 8986-10 Eaulo. No.

6. RESULTS This calcqlation obtained an organic iodine recirculation spray removal rate of

.03289 hr". This result was b'ased on a SPIRT calculation using a geometric mean drop diameter of 328 microns and a standard deviation of the geometric mean drop diameter of 1.993 obtained by analysis of experimental data given in Reference 1. '4 b e. e.mmeo ATD-0206.WP0

C' I" ' ' " 98" ~ SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate new. O cote X Safety-Related Non-Safety Related Page 48 of Date tiient Commonwealth Edison Company Prepared by Date Zion Station, Units 1 and 2 Reviewed by Project Date Proj. No. 8986-10 Eauto. No. Approved by

7. REFERENCES
1. Robert E. Van Durme, Lechler, Inc., " Drop Size Report," Spraco # 1713 (Lechler
  1. 373.084.17.BN.00.0), Test Date: October 27, 1992, Transmittal Letter Dated November 13, 1992.
2. Commonwealth Edison Company, Zion' Station, Units 1 and 2, Updated FSAR, June 1992.
3. Bill Meyer, Lechler, Inc., Fax Correspondence with Barry Schwartz (S & L),

March 27, 1991, See Attachment 4.

4. M. O. Sanford, "SPRAC0 Model 1713A Nozzle Spray Drop-Size Distribution,"

Westinghouse,-WCAP-82S8, Rev. 1, May 1975.

5. S. Dhall and J. S. Reda, " Containment Spray Flow Evaluation Using the RHR Pump Sargent & Lundy KAD Calc. No. 91-0083, Rev. O, for Commonwealth Edison Company, June 24, 1991.
6. W. T. Perchiazzi, Commonwealth Edison Company, " Additional Support Information For Control Room Habitability Dose Calculation," Letter to G. P. Lahti, Sargent

& Lundy, Dated October 26, 1992, Chron # 193548, See Attachment 5.

7. A. K. Postma, R. R. Sherry, and P. S. Tam, " Technological Bases for Models of Spray Washout of Airborne Contaminants in Containment Vessels," NUREG/CR-0009, October 1978.
8. J. S. 8rtis, " Calculation of Post-LOCA Iodine Spray Removal Rate," Sargent &

Lundy, NSLD Calc. No. ZI-3-86, Rev. O, for Commonwealth Edison Company, January 8,.1987.

9. W. J. Johnson, " Calculation of Post-LOCA Iodine Spray Removal Rate," Sargent &

Lundy, NSLD Calc. No. 21-3-86, Rev.1, for Commonwealth Edison Company, March 23, 1987.

10. R. S. Hubner, " Control Room Infiltration Study," Sargent & Lundy, ATD Calc. No.

ZI-5-91, Rev. O, for Commonwealth Edison Company, April 23, 1991.

11. Zion Station, Technical Specifications.

03.1.138-4.0.

12. Microsoft EXCEL, Version 4.0, Sargent & Lundy Program No.

ATD-0206.WPO

cales. r r gan c ne cale. n. - 06 SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate nev. O cate X Safet y-Related Non-Safety Related Page 49 of l Date client Commonwealth Edison Company Prepared by Zion Station, Units 1 and 2 Reviewed by Date Project Date Proj. No. 8986-10 Eauto. No. Approved by

13. R. S. Hubner, "An Approximate Solution to the General Equation for the Coagulation of Heterogeneous Aerosols," Atomics Intemational, Al-AEC-MEMO-12880, September 26, 1969.
14. D. J. Pichurski, "SPIRT-PC, A Computer Program for Calculating Spray Iodine Removal Constants," User Manual, Sargent & Lundy Program No. 03.7.366--1.0, Rev. O, January 31, 1991.

f e - ATD-0206.VP0

i tt o oowe 9g% ore. - 9 s 951 Sp%iy~GT AbNe but F\\ owcate - 1L (o CePH 23:28:35 :s 26 SEP 1989 r--- DATA ACQU10ITION - 327.00-Arithmetic Mean (D10)= 831.9 uM Area Mean (D20)= 991.2 san Unlume Mean (D30)= 968.0 uM (D32)=- 1116.8 uM S att t e r Me an l = 7.52E-903 on2 h ~ l Probe Area 4.39E+000 /cc Humber Densitg = Unl. Flow Hate = 4. 22 E- 003 cc/s = 5. (*1 E-091 c o / s / con 2 Volume riux ll[, jI

y. Attempts 5000 IIHIUlun1.u.e a.co 11 57.1 704.8 13'12.4 2000.9 li 5932

= Diameter nM h Ua1idations = 5718 i Curr 4cted Count = i = 643.23 Sec 2497 f jRunTine 8 3.536 M/S U 1249 - CH1 Velocity Mean = RMs = 3.531 M/S T 0-219.3 329.9 O.O 109.7 Uelocatw 1 M/S NPDPANPDPDATANCE&SLN10-23-92NRUM26 - I

C:

= 23:28:35 =] 26 SEP 1989 -=== Accunulated x - Med ians Total Hue =he r = 57184,75E+992 ose /g' Total Length = 1.45E+992 cos^2 Total surf ace = T, / i 2.71E+999 oc T Total U o l uene = x .g H" 2. 81 5 - .q ; i., U" b r ' lI I b$>n. 5932 9.00-1352.4 2000.0 = 57.1 704.8 Attempts 5888 Diameter uM Validations = 5718 Ji }, g (p.- Corrected Count = g = 643.23 Sec 4.18 Run Tine l y l jf]sh*1 l i I I x 'r p

f >l j

(( l Humber Median = 749.e uM f .- k. f 2.e9 - Length Median = 9et. 1 um f} surface meaten = tess.e un j l l l i uM time Median 121g. j , q p . ] yo m gtgj i e = 691.5 57.1 704.0 1332.4 2090.0 10 x Point 1722.4 g,gg = 90 x Point Di asee t e r uM NPDPANPDPDATANCEaSLN10-23-92NRUN26 C: l l Calc. No. ATD-0206 l l l lRev.0 l l ATTACHMENT 1l lProj.No. 8966-10 l l -- l l Page 70 l I ^f r

P U t. Accu sred Da:s Di st ricut i en s Experiment -

E E. 5 L Test -

10-23-92 Run N arr.t. e r 26 23:23:05 20 SEP 1983 5932 lcate.No.Ato-0206l Attempted samples Valid 5ampies l l lRev.O l. 5000 Corrected Count l ATTACHMENT 1l lProj.No.8986-10 l~ 571s = 643.21 secends l_ -- l l Page f-l l-Run Time 1 1 Inv ali d Counts 4 Total 532 Overflow 0 Phose 2 satureted 0 k Under 37! N > Max 0 K Over 329 Vel Under 180 Size Over 43 0 Vel Over 4.39E+000 /cc 931.9 uM Number Den si t y Di ame t e r Date 7.52E-003 cm'2 Arithmetic Mean (D10) = 901.2 uM Probe Area 4.22E-003 cc/s (D20) = Area Mean 968.0 uM Volume Flow Rate 5.61E-001 cc/s/crr Volume Mean (D30) = = sauter Mean (D32).- 1116.0 uM Volume Flux heeter Distribution Bin Dimeter Cut hn Omter Cour.t Ba heeter Cut hn heeter Cut hn heeter Cut A A 5 0 57.14 3 10 153.64 151 3 85C.15 250 30 1246.65 106 10 1643.15 31 5 1 %.79 3 11 193.29 229 21 889.83 214 31 1206.33 102 il 1682.80 25 2 136.11 i 12 532.99 313 22 529.45 163 32 1325.95 63 42 1722.15 22 3 176.09 8 13 572.59 301 23 969.10 151 33 1365.60 70 43 1762.10 19 i 215.74 37 11 612.21 297 24 1009.75 169 31 14D5.25 63 ii 1801.75 25 5 255.39 70 15 651.90 312 25 1018.40 169 35 1994.90 10 - 45 1811.40 10 6 295.01 102 16 631.55 281 26 1088.05 lii 36 1484.55 36 - 16 1881.05 15 - ? I'd 69 Bi 17 731.20 327 27 1127.70 138 37 1524.2D 11 17 1920.70 12 8 374.34 B5 18 770.25 297 28 1157.35 129 33 1563.85 - 45 . 48 1 % 0.35 9 9 113.99 116 19 #10.5D 274 29 12117.00 111 39 1603.50 13 19 2000.00 6 3.531 M/S Channel 1 Velocit y Date RMS = 3.536 M/S Velocity Mean = Delocity Distribution Chmel 1 Ein Delocity Count tin Velocity Cut Ba Mocity Cut hn Uelocity Count hn Delocity Cut M M 0 0.00 2135 10 67.14 0 23 134.29 0 30 201.43 0 ~ 48 268.57 0 1 6.71 2197 11 73.86 0 21 141.00 0 31 208.19 9 il 275.29 0 2 13.43 68 12 80.57 0 22 117.71 0 32 211.96 0 12 282.00 0 3 20.11 D 13 E7.29 0 23 151.43 0 33 221.57 0 43 288.71 - 0 4 26.86 0 14 94.00 0 21 161.11 0 34 228.29 0 11 255.13 0 5 33.57 0 15 100.71 0 ?5 167.96 0 35 235.0D D 15 302.11 0 i 6 10.29 0 16 107.43 5 26 174.57 0 36 211.71 0 16 338.86 0 7 17.J D 17 114.14 0 27 181.29 0 37 218.13 0 47 315.57 0 2 8 53.71 3 19 120.h C 22 199 G0 0 38 255.14-0 18 322.29 0 - 9 60.43 0 19 127.!? 0 29 194.71 0 39 261.0L 0 il 329.C0 0

OLde SpmWy 5P Abe onm pgyxte-plowred e - Il.G> G;PM 23s42s42 -

24. CEP 1000 r

- DATA ACQUICITION - <Dio)= 854,e uM Ariehmet1o Mean i Area Mean (D20)= 918.7 uM 379.90-3 i Unlume Mean (D30): 983.4 uM ,J)al,0, Sauter Mean (D32): 1126.8 uM t-C 4 j W = 7.55E-903 cm2 o ' Y Probe Area 4.45E+000 /cc 1 Humber Density 4,64E?OH3 cc/s = Uni. Flow Hate : 6.14E-OW1 cc/s/cm2 T l = Uolume Flux h l liuttuunnW .d"i i I If 6071 744.8 1~152.4 2000.H = h Attempts 5000 57.1 Diameter uM Ualidations = 5833 Corrected Count i = 626.60 Sec """7 Run Tine i E 3.591 M/S 1290-CH1 Uelocity Mean = RMS = 3.499 M/S T I g _} 229.3 329.9 0.0 109.7 Uelocity 1 M/S NPDPANPDPDATANCEASLs10-23-92NRUN27 t - C: t - 23:42:42 = 26 SEP 1989 1

== Accunulated x - Medians -

6.49-Total Mumher 5833 4.90E+ 982 cm [,, p Total Length =

1. 54E+HGZ ose^2 Total Surface =

2.99E+090 cc f'y p Total Volume = x f M "n 3=2D G j V, I lii I f nb y p, j i. M rpnn y - 6071 135'2.4 2000,0 = S 7 '.1 704.0 Attempts 5906 Di ame t er un Validations = 5833 Corrected Count = 626.68 Sec ,r ,, [' Run Tine 4.18 g qu f f x U i Mumber Median = 765.6 uM rgI p l h y 2.., - Length Median = 996.3 uM J Surface Median = 1988.0 uM 1 ilt "n 3 ) l l lj U o l uvee Median = 1229.B uM I j l I I{Pld !,, L e l J

  1. f,l' i

i I .e 08 :, .l fu/. Point 69 .5 135'2.4 2000.0 90 % Point

1762.1 Y.1 704.8 Diameter uM NPDPANPDPDATANCEaSLN10-23-92NBUN27 f

- C: = i l Celt.No.ATD0206l l l l Rev. 0 l l ATTACHMENT 1l l Proj. No. 898610.l l l lPage $4 l l 1

eC ?; Accui r ed ~.> s t e D ,tr-but-:.r.: 5 1 E x p e r i men t - CEESL Teet -- 10-22-92 Run tJ un.b e r - 27 26 SEP 1909 20: 42: 42 6075 i cnic. no. m - m 6 l Attempted Samples = valid samples I I l'" 0 I 5000 535; I^ taa m i l iProj.No. 8986-10 l cerrected count 626.Eo seeondr l_ l l Page Q l sun Time I I Invalsd Counte Total 1071 0 Overflow 1 Phase Saturated O. K Under 5?O N > Mar 0 K Over 327 Vel Under 143 Size Over 60 Vel Over 0 4.45E+000 /cc 954.0 uM Number Density = Diameter Data 7.55E-003 cm'2 Arithmetic Me6n (DIO) = = 918.7 uM Probe Area 4.64E-003 cc/s (D20) = 983.4 uM Volume Fl ow Rete Area Meen 6.14E-001 cc/s/c. Volume Mean (D30) = = 1126.8 uM Volume Flus Sauter Mean (D32) = I hmeter Distribution Bin Laneter Count hn Dmeter bt ha Dmeter bt ha 0 m eter bt ha heeler Count W 5 A D 57.14 0 10 153.64 112 20 250.15 262 30 1246.65 107 40 1693.15 38 a 1 %.79 1 11 193.29 205 21 E89.C0 237 31 1286.30 97 il 1682.80 31 2 136.44 0 12 532.94 261 22 929.45 195 32 1325.95 87 42 1722.15 28 3 176.09 1 13 572.59 330 23 969.10 196 33 1365.60 66 43 1762.10 19 4 215.74 12 14 612.21 379 21 1002.75 179 34 1905.25 43 ii 1801.75 18 5 255.39 34 15 651.90 326 25 1048.40 17D 35 1994.90 38 45 1811.90 26 6 295.04 55 16 691.55 320 26 1088.05 146 36 1994.55 34 16 1881.05 15 7 334.69 76 17 731.20 342 27 1127.70 !62 37 1521.20 50 (? 1920.70 13 8 371.34 76 19 770.85 Z% 28 1167.35 93 38 1563.95 46 (E 1960.35 11 9 113.99 100 19 810.50 268 29 1207.00 126 39 1603.5D 39 19 2000.00 12 1 Channel 1 Vel oci t y Data RMS = 3.499 M/S 3.591 M/S Velocity Mean = Uelocity httribution Channel 1 Ein Delocity Count hn Delocity Count ha Uelecity bt hn (kiccity Count hn Veletty bt M C 0.00 2333 10 67.11 0 20 134.29 0 3D 231.43 0 40 268.57 0 1 6.71 2560 11 73.36 0 21 141.0D 0 31 208.11 0 il 275.29 0 2 13.13 57 12 80.57 S 22 147.7I O 32 214.36 0 42 212.00 0 3 20.11 0 13 67.29 0 23 154.43 0 33 221.57 0 13 282.71 0 1 26.86 0 14 91.00 0 24 161.li 0 34 228.29 D it 2?5.43 0 5 33.57 0 15 100.?! D 25 167.86 0 35 235.00 S 15 302.14 0 6 10.29 0 16 107.13 0 26 174.57 0 36 211.71 0 46 308.86 0 7 17.00 0 17 111.14 0 27 181.29 0 I? 242.43 0 17 315.57 0 5 53.71 0 19 CD 86 0 22 188 00 0 38 255.19 0 iS 322.29 0 9 60.43 0 19 127.!? D 29 194.71 0 37 261.95 0 19 329.00 0

a D Y &. h O T CdN Sprog a 54" Abcme. Bem (q %Q ((,, O W CotfC - 22 iG*7 GD S=n - 2l. DEP 1909 - DATA ACQUISITION i w=w 310.00 - - l Actthmettc Mean (DAD)= 803.5 uM h[ l Area Mean (D20): 802.2 uM untume Mean (D3H): 955.2 uM Sauter Mean (D32): 1119.9 uM f 'f C 7.17E-GW3 en2 Prohe Area = O ~ ,.I -l Vol. Flow Hate = 4.27E+HOO /cc N'imbe r Densatv : 4.20E-003 co/s = I il!! i "~ a. I (&IJsst 57'.1 704.0 1352.4 2pHH.0 li 6279 p.og '! Attenpts f 5000 Dia e ter uM ' Ua J idations = 5597 2s58 ] Corrected Count = 607.58 Sec Run Tine CHI Velocity Mean = 3.943 M/S 1329-- RMS : 3.673 M/S T 8 g_ 219.3 329.0 0.0 149.7 Uplocity 1 M/S NPDPANPDPDATANCESSLN10-23-92% RUM 24 -- - C: - 22 :57 :58 = - 26 SEP 1989 - Accumulated v. ,Nedfaus h. 7"""~, ___ Total Nunher = 5597 5.68-4, 49 E+ 982 cm Total Lencj t ja 1.36E+HU2 coe*2 r[, Qf / Total vo l tane f Total Sursace = 2.55E*099 co y.

  • 4. 8 4 -

,l . L: I i N Ifl b i DM%e i / f 6279 g,gg 1352.4 20eu.9 Attenpts = 57.1 704.a Sees Diameter uM Validations = 5597 Corrected Count = 4'4' y = 687.58 Sec Run Tine p r,{ f I /n x lh dl f 729.4 uM 2.23-4 h Hube r Median = f l f .h n, 9&$,9 uM l' l Length Median z F i "n eh - L:f It i lj + i Nphn' e d H.00-i = 691.5 135'.4 2000.9 le v. Point = 1722.4 2 90 X Point $7.1 7 04.8 - Diameter uM C'NPDPANPDPDATnNCEASLN18-23-92NRUM24 - t l Calc.No.ATD0206l l l j l Rev. 0 l l ATTACHMENT 1l lProj.No. 8966 10 l l ._ l lPage l L -- I

cDPA A c qui r ea Lati D :-ribut .or u N6mber - 24 Experiment - C Es s ;. Te st - 10-03-92 22:57:55 2G SEP 196.9 C7? Attempted Sampi42 5000 Valid lamples )cate.No.AfD-0206l. 5557 Corrected Count 607.5? 5

  • C O
  • d !'

l l lRev.0 .l Fw r. T i rr. 'a = l ATTACHMENT 1l lProj.No. 8986-10 l l. l l Page $"f l l 1 Invelid Counts Total 1273 2 Overflow 4 Phase Saturated 1 K Under 396 622 N > Max 0 K Over 80 Vel Under 172 Si z e Over Vel Over 0 4.27E+000 /cc G02.5 uM Number Denrity Diameter Deta ^ 7.17E-003 cm 2-l A r i t hme t i c Mean (DIO) = = 882.2 uM Probe Area 4.20E-003 cc/s (D20) = 955.2 uM Volume Fl ow Rate = Area Mean 5.06E-001 cc/s/cn V ol ume Mean (D30) = = 1119.9 uM Vclume Fl u x Sauter Mean (D32) = 01aneter hstribution Sin heeler Launt hn Laneter Count hn h eeter Coat ha Ctwier Count hn Dianeter Count 5 4 5 0 57.11 2 10 153.61 118 20 850.15 243 33 1296.65 99 10 1641.15 28 x m 1 96J9 9 !! 19329 23; 21 889.S0 172 31 1286.3D CS .il 1662.M 27 2 136.14 36 12 532.94 Ilt 22 929.45 148 32 1325.95 SS 12 1722.45 15 3 175.09 69 13 572.59 305 23 % 9.10 155 33 1365.60 $5 . 43 1762.10 3D i 215.71 88 li 612.24 Ils 24 1006.75 137 34 110!.25 it ii 1801.75 12 5 255.39 E6 15 651.90 262 25 1048.40 156 35 1944.90 13 45 1611.90 11 6 295.04 81 16 691.55 291 26 1068.05 169 36 1981.55 ii 16 1861.05 - li 7 334.59 116 17 731.20 269 27 1127.70 113 37 1521JD 38 17 1920.70 15 8 374.31 102 18 770.85 242 28 116?.35 117 38 1563.85 10 48 1960.35 5 9 413.99 136 19 810.50 225 29 12C7.00 97 39 1603.50 33 19 2000.00 f 2 i 3.673 M/S Channel 1 Velocity Data RMS = 3.949 M/S velocity Mean = Uelocity tistributton Channel I kn Delocity Coat ha Uelocity Count Ea Velocity Comt hn Uelocity Count hn Velocity Count M M M M 0 e.00 2nt to 67.11 0 3 139.29 0 30 3 1.13 e ia 268.57 e 1 6.71 2658 11 73.86 0 21 141.00 0 31 208.14 D il 275.29 6 2 13.43 136 12 80.57 0 22 li?J1 0 32 211.26 12 2E.00 0 3 20.14 2 13 87 29 0 23 154.93 0 33 221.57 0 43 268.71 0 i 26.86 0 11 94.80 0 24 161.11 0' 34 2.28.29 0 14 295.13 8 5' 33.57 0 '15 100.71 0 25 167.06 0 35 235.30 0 15 3 2.11 8 6 9029 0 16 IG7.43 a 26 !?1.57 0 36 241.71 0 46 ~ 306.86 0 7 17.03 0 17 111.14 0 27 181.29 D 37 248.43 0 47 315.57 D 8 53J1 0 !B 170.E6 0 28 185.00 C 38 255.11 0 48 322 29 'O 9 60.43 0 19 127.5? c 29 19,tl 0 3 20.!! 6 19 329.M 0 i t

M.fSO O?. - Ob - l @D h)O'Z,,2,4 e - Flou; <ut e - Q ~+ MN Sergncf 54" Abeh 26 GEP 1989 23:11:57 =a - DATA ACQUISITION - f 330.90 Artthmetic Mean (D10): 803.5 uM neem Mean (D29): 876.1 uM .h : Uolume Mean (D30): 944.9 uM 1"l' f Sauter Mean (D32)= 1999.3 uM t h 8.00E-DO3 cm2 Probe Area Humber Density = 4.41E+000 /cc 7 ~ I Uol. Flow Rate = 4.61E-093 cc/s o Uulume Flux = 5.76E-WO1 cc/s/cm2 T .e lg l a 111111111!rI -J o.90-135'2.4 2000.9 h 6056 = 57'.1 704.P h Attenpts = 5000 Diawter uM lVa1idations 5771 Corrected Count = 26es

552.83 See }

i Run Tine C 1340-CH1 Uelocity Mean = 3.960 M/S RMS = 3. 65'J M/S T 0-. 219.3 329.0 G.O 109.7 Uelocstv i F/S NPDPANPDPDATAsCESSLN10-23-92NRUN25 C: 26 SEP 1989 23:11:57 :- Accunulated v. - Medians 5.71 Total Number = 5771 h1 4.63E+092 cm p Total Length = 1.39E+992 cm^2 r l Total Surface = 1 Total Volume :

2. 54E*990 cc

/. i fh M {l 2.85 - j y F_I P "(, p [ l f7f h n j n [ hl inihmba,.___ 6056 0,. 99 - 1352.4 2000.0 = 57.1 704.8 Attempts 5080 Diameter uM Validations Corrected Count = 5771 /r Run Tine = 552.83 Sec d r .,r r n,- N U ) f{ ,I., Length Median s 865.5 uM e Y 2.32 - Number Median = 721.8 uH N 11 y. ! ll l } l l Surface Median : 1988.9 uM 1 ({ V o me Median =, 119 .8 uM f I Ij e sti 'i g gg _ i4 l d J et 691.5 57 1 704.8 1352.4 2000.9 19 x Point = 1722.4 ?O x Posnt Diameter uM NPDPANPDPDATANCESSLN10-23-92% RUM 25 -- C : lCate.No.ATD-0206l l l l l Rn. 0 l l ATTACHMENT 1l l Proj. No. 8965-10 l l l l Page & l 1 I

P2PA co ieto De a D i :.. : to u t i : r. s.

x pe r i men t -

CELSL Te st - 10-23-92 Eun Numoer - 25 22:11:57 26 SEP 1989 605.s l cane.No.Ato-0206l-Attempted Samples = 5000 l Valid Sampies l l lRev.0 = 577: 8986-10 l ) Corrected Count lArtAcHMENT1l l Proj. No. = 5 5 2. ? :, 5 e

c. n o 3 J

l rese 5'7 i Run Time i L l .L Invalid Countc Total 1056 O Overflow 0 Phase Saturated 0 K Under 333 N > Ma= 0 K Over 403 I Vel Under 174 Size Over 63 Vel Oser 0 4.41E+000 /cc 803.5 uM N umt> e r Density = Diameter Data 8.00E-003 cm 2 Arithmetic Mean (D10) = = B76.1 uM Prooe Area 944.9 uM Volume Flow Rate - 4.61E-003 cc/s (D20.) = Area Mean = 5.76E-001 c'c / s / en Volume Mean (D20) = 1099.3 uM Volume Flux Sauter Mean (D32) = u. Dimeter Distnktiori Bin Dimeter Count hn heeler Count ha Enneter Count Ln Cta eter Cost hn hatier Count 5 W 0 57.11 B 1D 453.61 172 20 850.15 202 ?D 1246.65 91 10 1613.15 27 A 1 96.79 1 11 193.29 266 21 889.80 203 31 1286 30 166 il 1682.80

  • 23 2 136.41 9

12 532.94 273 22 929.45 191 32 1325.95 83 42 1722.15 29 3 176.09 32 li 572.59 295 23 % 9.10 158 33 1355.60 67 43 1762.10 21 1 215.71 90 11 61224 325 21 1308.75 159 34 1105.25 54 ii 1801.75 21 i 5 255.39 110 15 651.90 330 25 1018.10 149 35 1441.90 30 15 1841.10 11 6 295.04 94 16 691.55 311 26 1088.05 163 36 1984.55 29 46 1881.05 8 7 331.69 93 17 73123 297 27 1127.70 121 37 1521. 3 3D 17 1920.70 10 i 8 371.31 108 18 770.85 282 28 1157.35 120 38 1563.25 37 48 1960.35 7 f 9 413.99 147 19 810.50 237 29 1207.00 108 39 1603.50 29 19 2000.00 6 \\ \\ RMS = 3.655 M/S-Channel 1 Velocity Data 3.960 M/S i Velocity Mean .j = kisuty hstriktion Dennel 1 Bin 6elouty Count Bin Uelectly Count Ein Geloaty Count hn hionty Count hn Celocity Count M M M M M 6 0.00 2186 10 67.11 0 23 13429 0 30 201.43 0 40 268.57 0 l 1 6.71 2680 11 73.86 0 21 111.00 0 31 208.11 0 il 275.29 0 -l 2 13.43 133 12 83.57 0 22.117.71 E 32 211.86 0 12 282.00 8 3 20.19 1 13 87.29 0 23 151.43 0 33 221.57 0 43 298.71 0 l i 26.86 0 li 91 40 0 21 161.14 0 31 22829 0 ii 295.13 0 5 33.57 0 15 100.71 0 25 167.86 0 35 235.00 0 15 302.14 0 6 1D.29 0 16 107.43 0 26 174.57 0 36 211.71 0 46 309.B6 0 7 0.00 0 17 114.11 0 27 18129 0 37 218.13 0 47 315.57 0 8 53.71 0 18 120.26 0 28 188JD 6 38 255.11 0 18 322.29 0 i 9 6D.43 0 19 127.57 0-29 194.71 0 39 261.66 0 49 329.M 0

DbMb" k I 'T 4 J l W w a 'y Pouatute-ph CJH Sprog* Sy" Abe_ Beam DATA ACQUIDITION 37 OED 1000 3820e3G g-333.00. l Artthmetic Mean (D10)= 763.7 uM J ,qc. J lh i Area Mean (D20)= 835.1 te M e l Uolume Mean (D30): 994.9 uM 6 g) i Sauter Meen (D32): 1962.3 uM l h ~ [ \\ Probe A re a = 6.70E-093 cm2 T 1 Uol. Flow Hate = 2.44E-003 cc/r Nu m l>e r Densit9 = 3.15E+000 /cc i . 'l Volume Flux = 3.64E-001 cc/s/cm2 !IIIIsagigag g, gg M l i 57.1 704.8 1352.4 2000.W ! 7407 Attefpts pl = Diameter uM Validations = 5000 dCorrectedCount 25e6 = 5508 i l I Run Tine = 076.97 See a g 1293-T CHI Ueloci19 Mean = 3.899 M/S RMS = 3.717 M/S 8 O, 139.7 219.3 329.0 O.0 Uelooit9 1 M/S l C:\\PDPANPDPDATANCE&SLN10-23-92%RUN33 Accumulated x - Medians 27 SEP 1989 3:20:30 =i ~ 6.94 ._h f" Toea1 Nunhe r = 5508 [9ll$)rl f ' Total Length = 4.29E+G82 on y. / N r i . Total Surface =

  • 2.13E+000 cc
1. 2 9E+ 092 c oe^2 Total Volume

= 3.02 - p I i [ T knan-n t'.m_ _ Er i g,gg ~ 704.8 1352.4 200'O.0 ~ 57.1 7407 Deameter

a. M Attempts

= Validations = 5000 3*'7 Corrected Count = 5508 y P I y g l"...A Run Tine = 876.97 Sec [ H v l} . il ![ j g 7 y 1.98 - f h d I l ll liI' l'f lr{p Mumber Median = 690.5 uM Length Median = 826.6 uM e til

g[

j .]' ! !N i. O se M i uM fb ". Point 37.1 704.8 1352.4 2000.O 65 9 90 v Potnt = 1722.4 Diapecter uM C:NPDPANPDPDATANCESSLN10-23-92NRUN33 l Cate. No. ATD-0206 l l l lRev.0 l l ATTACHMENT 1l lProj.No. 8986-10 l I I l Page Q l l l

F DF A A.: u i r r o. D e i c Di:tribut i;ni I E x pe r i me n t - ( E4 5L T+st 10-2;-h2 Rur. N ur9u e r - 33 1 20:30 27 SEP 1999 7407 l cate. wo. Aro.om l Attempted Samoles = 5000 I I ""* U I Val 1d Sampie = 550? j An A N NT 1 l [ noi. wo. am-10 l Corrected Count = l .l l Page 8 3 l-Run Time = 37I.57 second: 1 I I ri v a l i d C o u r. t : Total 2407 Overflow 296 Phase 3 Satureted 0 K Under 965 N > Max 0 K Over 939 125 Vel Under 175 Si:e Over Vel Over 0 3.15E+000 /cc Diameter Data 763.7 cM Number De n si t y = ^ 6.70E-003 cm 2 Arithmetic Mean (DIO) = = 835.1 uM Probe Area 2.44E-003 cc/s-Area Meen (D20) = 904.9 uM Volume Fi cw Rate = 3.64E-001 c c / s /cn, Volume Mean (D30) = = 1062.3 uM Volume Fl u > Sauter Mean (D30) = heeter hstributton 4 ,'i'e.aamj Bin hecter Count hn haneter Count hn heeter Cet ha Dieeter Count hn heeter Cet W A A 0 57.11 3 10 153.61 177 25 850.15 211 30 1246.65 70 10 1643.15 21 1 96.75 3 11 493.29 257 21 889.80 180 31 1285.33 17 il 1622.80 14 2 136.41 8 12 532.94 283 22 929.15 162 32 1325.95 62 42 1722.45 '29 3 176.09 32 13 572.59 323 23 % 9.10 199 33 1365.60 52 43 1762.10 14 i 215.71 91 li 612.21 320 24 1M8.75 134 34 1ES.25 31 41 1821.75 11 5 255.39 121 15 651.90 333 25 1018 C 115 35 1144.90 40 45 1841.40 15 6 295.01 123 16 691.55 MS 26 1088.05 IIS 36 1484.55 23 46 1881.05 12 7 331.59 116 !? 731.2D 298 27 1127.70 104 37 1524.20 22 47 1923.70 8 8 374.31 !!S 18 770.85 290 28 1167.35 132 38 1 % 3.85 34 48 1963.35 8 9 413.99 lit 19 810.50 271 29 1207.D0 77 39 1603.50 16 49 2300.00 5 Channel 1 Velocity Data 3.717 M/S RMS = 3.890 M/S Veloci ty Mean = Delocity Distribution Chmel 1 lin Utlanty Count ha Velocity Count 8;r. Gelecity Ist Ein Uelonty Count Bin Uelenty Count IVS r/5 M 0 0.00 2259 10 67.11 0 20 131.29 0 3D 201.43 0 40 268.57. 0 1 6.71 2586 11 73.B6 0 21 111.D0 0 31 209.14 0 il 275.29 0 2 13.43 159 12 80.57 0 22 117.71 0 32 214.86 0 12. 282.00 0 3 20.11 1 13 67.29 0 23 154.43 0 33 221.57 0 13 288.71 0 1 26.86 0 11 94.30 0 24 161.19 0 34 228.29 8 ii 295.43 0 5 33.57 0 15 1 00.71 0 25 167.56 0 35 235.00 0 45 332.11 0 6 40.29 0 ff 137.43 0 26 174.57 0 36 211.71 0 46 303.86 0 7 17.00 0 17 111.11 0 27 181.29 D 37 248.43 0 47 315.57 0 8 53.71 D 18 120.86 0 28 188.00 0 38 255.14 0 19 322.29 0 9 69.13 0 19 127.57 0 29 194.71 0 39 261.06 0. 19 329.00 0

k NM6 % cate DN GPM S p m g

  • S y " A b e. B e: e n

{@$Q{Q_ 0 OGIC4 27 CEP 1909 - DATA (4QUICITION 378.00 f Aritbmetic Mean (D19): 794.6 uM H 4 Un u e Me n Sauter Mean (D32): 1933.4 uM = 6.54E-093 cm2 h Probe Area cohs U Id109

  • O" "

loIl O = p l Uolume fluu = 9 50E-001 cc/s/cm2 o . -__t tildtailsten_.J 6193 g, gg. 1352.4 2000.H = .57.1 704.8 Attempts = 5800 Diameter uM Validations l Corrected Count = 5876 282'] i Run Tine = 378.11 Sec I 8 4.100 M/S g 1415-CH1 Uelocity Mean = EMS = 3.627 M/S T 0.0 109.7 219.3 329.0 0-Uelocity 1 M/S NPDPANPDPDATANCESSLN18-Z3-92NRUN28 C: 6:08:54 = 27 SEP 1989 Accunulated x - Median: 4,.66E+ 992 con 6.43 - o 1 ng ,= ~1.33E+992 ose*2 Total Surfaces = Total Uolume = 2 29E+999 oc y. ! h.p N q i !! 3.21 - .h [ t' 1 'I r a ,b e n! ,I' b.i b %n%n_ _ I 6193 135'2.4 2000.e g,gg Attempts $ 7 '.1 7e4.a.eter uM = 5000 Di a. Ualidations 5876 Corr ected Count== 370.11 Sec 4 59 Run Tine ' Q j' .x l. I f-b g y Mumber Median = 729.9 uM y 2.27 - p' f l{l j Length Median = B27.9 uM ff ". l} !! Il!! Ih l }l lll tah 1 [ e me !! *l !U _,M1 I!l p IN-/. Po i n t 65 57.1 704.8 1352.4 2220.9 = 1682.9 90 x Point Diameter uM C'NPDPANPDPDATANCEASLN10-Z3-92NRUN28 i ,..l l Calc.No.ATO0206l l l l Rw. 0 l l ATTACHMENT 1l lProj.No. 8986-10 l l. -l lPage40 ( l I

F: M Acqu es :sta D i s t r i t u t

.'n :

C f.f.1 -. Test - 10-23-92 Rur. Numter - 28 E >. p e r i me r. t - 0:00:54 i 27 SEP 1989 Attempted Samples l Calc.No.ATD-0206l 619' =' Valid l a rr,p l e s l l-leev.0 l 5000 = Corrected C c.u n t l ATTACHMENT 1llProj.No. 8986-10 l 5070 = 170.11 eeccnds 1 -1 Pese e l' Fsu n Time = l l l. Invalid Counts Total 1193 2 Overflow 0 Phase Saturated 0 K Under ~700 N > Max 0 K Over 351 Vel Under 01 Si:e Over 57 Vel Over 0 794.6 uM Number Density = 6.92E+000 /cc Diameter Data 6.54E-003'em^2 Arithmetic Mean (DIO) = = 850.3 uM Probe Area 6.21E-003 cc/s (D20) = Area Mean 907.4 uM Volume flow Rate = Vc,1ume Mean (D30) - 9.50E-001 oc / s / crr = Sauter Mean, (03 2]. =,1033.4 uM V0lume Flux r '~ ...w. ._ m 01aneter Distribution Bin haneter Cut L., haneter Cet ha haneter Count hn baneter Cut hn haneter Cat W A A D 57.14 2 10 453.61 161 22 850.15 282 3D 1246.65 94 10 1643.15 15 1 96J9 1 !! 193J9 213 21 889.83 205 31 1286.30 60 il 1682.60 23 I 2 136.94 1 il 532.94 339 22 929.45 188 32 1325.95 51 42 1722.45 19 3 176.09 1 13 572.59 353 23 9 6.10 181 33 1E5.60 52 il 1762.10 10 4 215.71 3 14 612.21 378 24 1008J5 193 31 1905 15 21 ii 1801.75 - 18 5 255.39 22 15 651.90 370 25 1918.40 162 35 14ii.90 27 15 1841.10 18 6 295.01 52 16 691.55 376 26 1038.05 155 36 1481.55 22 16 18t!.05 7 7 334.69 103 17 731.20 310 27 1127.70 123 37 1524.20 25 17 1923.70 i 8 371.34 126 19 773.85 313 28 1167.35 94 38 1563.25 37 18 1 % 0.35 i 9 413.99 1I3 19 B10.50 296 29 1207.00 88 39 1603.50 19 49 2000.00 '5 '5 i Channel i Vel oci t y Data RMS = 3.627 M/S 4.180 M/S Velocity Mean = Velocity hatribution Dennel 1 Ela Uelsetty Cut hn #elocity Cat ! n Velocity Cut ha Velocity Cut Ein Uelocity Count e m m. m e l 0 0.00 2029' 10 67.11 0 28 131.29 0 30 201.13 0 10 268.57 ~ 0 1 6J1 2829 11 73.96 0 21 141.00 0 31 208.14 0 il 275.29 8 2 13.43 142 12 83.57 0 22 147.71 0 32 214.86 D 12 282.00 0 3 20.14 0 13 8729 0 23 154.43 0 33 221.57 0 il 288J1 0 1 26.86 D li 91.00 0 24 161.11 0 31 228.29 9 ii 295.43 0 5 33.57 0 15 100.71 0 25 167.86 0 35 235.00 0 45 102.11 0 6 40.29 0 16 107.43 0 26 171.57 0 35 211J1 0 46 308.86 0 7 17.00 0 17 114.14 0 2? 18129 0 37 243.43 0 47 315.57 0 8 53.71 0 13 120.56 0 28 188.00 0 39 255.11 0 iB 322.29 0 9 60.43 0 19 177.5' 0 29 liiJ1 0 39 01.!6 0 41 321.00 0

~~ l T\\O 3 N.J V L. u t L. %wn:de. - GA G9H Qrag~~ 54" A%e Searn (ffM(Q - Se1GsG1 -m - 27 CCr 1000 DaTo oCQUIOff!ON 429.00 A ri t ime t i c Mean (D10)= 799.3 uM n ec a Mean (D29): 852.6 uM TI Uolume Mean ( D3 9) = 997.6 uM Sauter Mean (D32): 1928,3 uM h ~ ' h Probe Area = 7.13E-093 cm2 = 6. 2 7 E+ 999 /o c q Ntimber Density S.97E-093 cc/s N Vol. Fl o w Rate = U o l ame Flux e 8.J7E-901 oc/s/em2 T

  • b h t""" - * -

p' Attenpts = 6452 0.00-1332.4. 2400.9 57.1 704.8 5081 piam ter.iM Validations Corrected Count = 5905 307.06 Sec 2 * 'l lRunTine = 8 4.182 M/S 1388-CH1 Uelocity Mean = RMS = 3.695 M/S T H-219.3 329.0 0.0 2H9.7 Uetocity 1 M/S NPDPANP9PDATANCESSLN10-23-92NRUN29 - C: 8:18:51 = 27 SEP 1989 Accumulated /. - Med ians .~ f Total Numbe r = 5905 7.26 /," 4.71E+SG2 cm Total Length = 1.34E+992 cm^2 i Total Surface = y. ,/ Tota! Uolume = 2.31E+p99 cc ? N 3.63 - f h ~ 6452 0.09-- 704.6 1352.4 2000.0 = Attenpis 5001 57.1 psameter uM Validations = 5905 Corrected Count = 4.78 7 = 387.06 Sec / Hun TIME [fIf T y, n I i f i c'h' Humber Median = 721.9 uM 2.39 - f, - b Length Median = 927.1 uM ) l l Surf ace Median = 949,3 uM 1 i j r j l Medtan - 199 9 uM I ( l j )f,j i<.. i 'i -!!! z U o sae e M f ci 704.8 1352.4 2000.0 lb

y. Point

= 651.9 c. = 1643.1 g,gg 90 v. Point 57.1 Diameten uM NPDPANPDPDATANCEaSLN18-23-92NEUMZ9 - -- C : l Calc.No.ATD-0206l l l lRev.0 l l ATTACHMENT 1 llProj.No. 8986-10 l l l l Page ( 2, l l-I

rp:. A:qu red Data D; :t r i vt a. i E > pe ri ment - 2E&EL 7+rt - 10-22-92 Run Number - 29 0:10:51 27 SEP 1989 E452 Attempted sample: lcate.No.ATo-0206l 5001 Valid Samples 5905 l l.lRev.0 l Corrected Count R u r. Tirne = 22~.06 seconds l ATTACHMENT 1l lProj.No. 8986-10 ( l l lPage h3 l I I invalid Counts Total 1451 7 1 Fhase Saturated 0-K Under 919 Overflow 376 N > Max 0 K Over Vel Under 91 Sire Over 55 Vel Over 0 6.27E+000 /cc 799.3 uM Number Den si t y = Di ame t e r Data 7.13E-003 cm 2 Arithmetie Mean (D10) 952.6 uM Probe Area 5.97E-003 cc/s (D20) 907.6 uM Volume Flow Rate Area Mean 8.37E-001 cc/s/cr Volume Mean (D20) = = 1028.3 uM Volume Flux sauter Mean (D32) haneter Distribution hn haneter Cut ha haneter Count hn heeler Cut hn Gianeter Cut kn haneter Cat A 0 57.14 1 10 153.64 187 2D B53.15 267 30 1216.65 67 40 1643.15 23 A A 1 96.79 3 11 493.29 226 21 829.83 222 31 1286.30 82 (! 1682.80 18 l ? 1 5.14 2 12 532.94 352 22 929.15 2H 32 1325. % 68 42 1722.15 13 l 3 176.09 1 13 572.59 370 23 969.10 199 33 1365.60 12 il 1762.10 14 4 215.71 1 14 612.21 429 21 108.75 180 34 1905.25 26 ti 101.75 10 5 255.39 9 15 6 % 94 370 25 INB.10 134 35 14ti.90 32 45 1841.90 10 6 295.04 - 44 16 671. 5 371 25 1088.05 164 36 1491.55 15 46 1881.05 10 7 334.69 69 17 721.?1 E3 27 1127.70 126 37 1521.20 26 17 1920.70 9 9 371.34 101 18 TD.25 289 28 !!67.35 111 38 1563.85 31 48 1960.35 7 9 113.99 til 19 210.50 I36 ?? 1207.00 108 39 16113.50 17 49 2000.00 2 Channel 1 Velocity Data 3.695 M/S RMS 4.182 M/S Velocity Mean = Uelocity Otstribution Dannel I ho Uelocity Count ha Uelocity Count hn Velanty Count Bin Uelocity Cut ha Uelocity Count m m m e m 0 0.00 2056 10 67.11 0 20 131.29 0 30 201.13 0 10 268.57 8 1 6.71 2775 11 73.86 0 21 111.00 0 31 208.19 0 il 275.29 0 2 13.43 170 12 83,57 0 22 117.71 D 32 211.B6 0 42 282.00 0 3 20.11 0 13 E7.29 0 23 !!i.43 0 33 221.57 0 il 288.71 0 1 25.96 0 li 94.00 0 24 161,11 0 34 228.29 0 44 295.43 0 5 33.57 0 15 100.71 0 25 167 E6 0 35 235.00 0 45 302.11 '0 6 iD.29 0 16 107.83 0 26 174.57 0 36 241.7) 0 16 3 3.06 0 7 17.00 0 17 111.14 0 27 IC1.29 0 37 218.43 0

  • ?

315.57 0 8 53.71 0 18 1202 0 18 182.00 0 38 255.11 D % 322.29 0 9 60.13 0 19 R7.57 0 29 1H.71 0 39 hl.n G 0 329?" 0

44"' g , ( _( {' b b" l D I dY P {(owp f e-Mh GPt4 27 DI:p 1900 - i e 10 :22 ~ DATA ACQU1917 TON 359 00-. Ar.thmetic Mean (D19)= 763.3 uM Area Mean (D20)= S29.9 uM 1 Volume Mean (D3H): 894.4 uM e n Sauter Mean (D32):.1930.8 uM = 6.33E-903 cm2 e 5 ~ r Probe A re a = 4.06E*9W9 /co Humber Densitg Vol. Flow Rate = 3.57E-963 co/s '"~~ "*"" " "'"'~*** mdgifflhinu._-- J 1 7221 794.8 1352.4 2009.9 Attempts = 5000 57.1 Dia eter uM Validations = 5527 Corrected Count== 500.63 Sec

  1. 7'3 Eun Tine I

C0 4.473 M/S 0 1398-CH1 Velocity Mean = 3.855 M/S RMS = I 9-219.3 329.9 9.9 109.7 f' Uelocity 1 M/S NPDPANPDPDATANCEASLN10-23-92NRUN30 l - C: 1:28:16 = - 27 SEP 1989 Accumulated x - Medians - Total Museber = 5527 4.21E+982 coe 6.49- - I T o-t al Iength = 1.19E+est coo ^2 Total Surf ace = 2.97E+999 oo = 4 g [ Total Volume N [ " 3.25 - fihbm - _ . e. 99 - - hl i 7221 2990.9 Attempts 5888 = 1332.4 57.1 794.8 t c uM Validations 5527 = psa Corrected Count== 588.63 Sec 4*8' Run Time f 'p .f, l W J, {f u I P 694.6 uN Husehe r Median = y 2.28 - 7 Length Median = 826.6 uM Surface Median = 989.2 uM ((j j h,i i vo lusee Median = 1115.2 uM e ,.'b ! , l. i 0.9 = Span 651.9 = 1352.4 2999.9 19 x Point = 16s2.s 9.99 - - 794.9.eter uM 9e x Potat 57.1 Di as NPDPA\\PDPDATANCE&SLN1B-23-92NRUN30 - = C: l l Cate. No. ATD-9206 l l l l lRev.0 l lAT7ACHMENT1l jPro).No. 8986 10 l l l l Page h l

PDIA Acquired Data Di st ri bu t i on s 30 Run Number rE5?' Test - 10-23-92 Experiment 1:08:36 27 SEP 1989 7:21 Attempted S afnpl e s no-om l = 5000 l Valid Sampies = 5527 l l l .0 8986-10 l Corrected Count = Run Time = 580.63 seconds lATTA3 MENT 1l lProj.No. I 1 i Page @ l l_ l Invalid Counts Total 2221 2 69 Phase Saturated 0 K Under 1380 Overflow 0 K Over 549 N > Max Size Over 79 Vel Under 141 Vel Over 0 4.06E+000 /cc = Diameter Data 763.3 uM Number Oensity ^ 6.33E-003 cm 2 Arithmetic Mean (D10) = = 829.9 uM Probe Area 894.4 uM Volume Fl ow Ra t e - 3.57E-003 cc/s (D20) = = 5.64E-001 cc/s/cm 2 Area Mean V ol ume Mean (D30) = 1038.8 uM Volume Fl ux Sauter Mean (032) = Dimeter biribution Bin Dtweter Cet he hawier Cet Eic heeter Count ha heeler taunt Ein haneter Cat d d d 0 57.11 8 10 453.61 155 2D 850.15 2?D 3D 1246E 61 40 1643.15 23 a d 1 * $.79 0 11 193.2? 223 21 829.80 193 31 1286.3D 61 11 16C2R 12 2 136.ti i 12 532.91 90 22 929.45 157 E II25.95 50 42 1722. 5 11 3 1762 36 13 572.59 343 23 969.10 lii 33 1365R 53 13 1762JD li i 215.79 70 11 612.24 297 21 1038.75 175 31 1405.25 13 11 1901.75 6 5 255 39 182 15 651.90 314 25 1D98.4D lii 35 1999.90 31 45 1811.10 5 6 295E lit 16 691.55 359 26 1U835 125 36 1981.55 E G 1821E 7 3342 130 17 731.20 MH U 1127.7D 93 37 1529.2D 25 47 192DJ3 8 8 371.34 1 41 16 770E 263 28 1167.35 93 38 1563E N il 1960.35 7 3 413.99 ISD 19 810.50 3'J9 29 1237 3 79 33 1603.50 20 19 2000 5 7 i I Channel 1 Vel oci ty Data RMS = 3.855 M/S f; 4.473 M/S 9 Velocity Mean = 5elocity Distnbution Dennel 1 Bin Gelecify Cot En Delocity Cat hn Delocity Cet 6 klocity Cet fin Delecity tut M M M M M B

  1. 2 1937 15 67.19 0

20 I!i.29 0 30 201.93 0 10 268S 0 1 6.71 M95 11 735 0 21 111.00 0 31 2 3.14 0 il US.29 0 l 2 13.43 268 12 93.57 0 22 117.71 0 32 211 5 0 42 2t2A 0 3 22Ji 0 13 97.29 6 23 159.43 0 33 221 S 0 13 288.71 0 4 26% D li H5 0 21 161.14 0 34 228.29 D ii 295.13 0 5 n.57 a 15 In.71 o 25 167 m 0 35 n5.a n 15 n2.it n 6 10.29 D 16 157.13 0 26 171.57 0 36 241.71 D % 308.86 9 7 17.00 0 17 114.11 0 N 121.29 0 37 219.43 0 47 315.57 .0 5 53.7. D 18 120.56 0 28 192.C0 0 38 255.11 0 18 322.29 0 5 60.13 19 13 S S 29 1 9.71 0 3') 261E D 49 3292 0 = - - - - - - ~ - - - - - -

k tid IOC ZlC O[)fogtop5L4" Abme_ Benm b CQ ~ -Flohmbe N.(.c GPM 1 a a g e at, 07 QDD 1000 LaTo ACQ4J I 017 ION 329.00 Arithaetio Mean (D10): 780.9 uM A re a Mean (D20): 849.6 uM Uolume Mean (D39): 916.4 uM Sauter Mean (D32?: 1966.1 uM c 5.98E-GR3 cm2 6 ~ = Probe Area 3.81E+000 /cc Number Densitg = 3.4ME-GU3 cc/s N ( Uni. Flou Rate = i Volume flux = 5.79E-001 cc/s/cn2 7 'I U 1111ssaa. mao

9. 09 a -

1352.4 2004.0 i 7032 = 57'.1 704.8 l Attenpts 5001 [ Diameter uM Ualidations Corrected Count = 5191 2777 i = 614.46 Sec I ilun Tine l C i 4.557 M/S G 1307 - CH1 Uelocity Mean = 3.954 M/S HMS = T g_ 0,0 109.7 219.3 329.0 Uelocitw 1 M/S NPDPANPDPDATANCERSLN10-23-92NEUN30 I b C: f 27 SEP 1989 - - 1:21:36 = Accunulated v. - Medfans Total Number = $1914. 95E+ 992 on . pf r , f Total Length = 1.17E+992 cn^2 f / Total Surf ace = 2.89E+W90 cc l < s ' h ol Total volume = x M "fn u 3,3y I E 'p)Ifir o rrr I }ma,~,-~ _ Il 7832 57.1 704.8 1352.4 2000.0 g,,,_ = Attenpts 5901 Diameter un Ua1idations 5191 Corrected Count== 614.46 Sec 4.48 ~ nh[$'r [ Run TIME / v. TT,or jj i p 1 f 2'24-I Number Meeti an = 797,9 uM I i i ; I-ql N. f h. Length Median = 827.4 uM [ p' gj! b 1 .M 5 kIM lhih' lUb ! j,d $ $"((.".* N $*" l II4$"$ N f l55ggr i ! eti e I$') Point 65 37.1 704.8 1352.4 2000.O = 1722.4 90 X Point Diameter uM / NPDPANPDPDAT ANCESSLM 8-23-92\\RUN30 C: 1 l cate. no. ATD-0206 l l l lRev.0 l l ATTACHMENT 1llProj.no. 8986-10 l j_ 1 l Page Q l l l_ ~

T:PA Acw re: Dats Di s t ri t v-i on : Experiment. - CE&5L Test - 10-20-E2 En Number - 30 1:21:36 27 SEP 1989 7S32 Attempted 5 a rr o i t s 5001 Valid Samples 5191 lcale.No.470.C206l Corrected Count = 614.4i s e a o r. d : l l lRev.0 l Run Time l ATTACHMENT 1l lProj.No.89M.10 l l l l Page Q l I I Invalid Count: Total 2351 4 Overflew 07 Phase G K Unoer 1750 i N > Max 0 K Over 732 Saturated l Vel Under 87 Size Over 120 Vel Over 0 i 3.81E+000 /cc Diameter Data 780.9 uM Number Den si t y = ^2 Arithmetic Mean (D10) 5.88E-003 cm = 849.6 uM Probe Area 3.40E-003 cc/s (D20) = 916.4 uM Volume Flow Rate Area Mean = 5.79E-001 cc/s/cm Volume Mean (D50) = = 1066.1 uM Volume Flux Sauter Mean (D32) = i l Dianeter hstriktion hn haneter Count hn haneler Count hn han ter Count Bio haneter Count ha timeter Count 2 4 2 4 6 57.11 1 10 153.!! 168 2D 253.15 214 30 1246.65 80 10 1643.15 21 4 1 %.79 5 11 493.29 203 21 889.89 12B 31 12B6.30 69 il 1662.80 15 2 136.44 3 12 532.94 239 22 929.45 ' 153 32 1325.95 17 12 1722.15. 14 j -3 176.09 21 13 572.59 281 23 969.10 I?9 33 1365.60 38 43 1762.10 13 i 215Ji 69 li 612.21 301 29 1038.75 li? 34 1405.25 29 14 1801.75 12 5 255.29 12 15 651.90 329 25 1018.40 152 35 1111.90 45 1811.40 10 6 295.04 99 16 691.55 288 26 1088.25 125 36 liti.55 31 46 1881.D5 6 i 7 331.69 101 17 731.20 271 27 1127.7D 125 37 1524.20 22 47 1920,7D 10 B 374.34 142 18 77D.55 257 28 1167.35 93 38 1563.25 19 18 1950.35 9 9 413.99 113 19 E10.50 241 29 12D7.DD 87 39 16GI.50 22 19 2003.00 11 Channel 1 Vel oci t y Date 3,954 M/S RMS = 4.557 M/S Vel oci t y Mean = te1xity hstribution Etennti I B n Deloc2ty Count Bin Uelocity Count Bin Uelocity Count hn Delecity Count hn ilelocity Count i M M M M M C 0.00 1921 10 67.11 0 20 131.29 D 30 201.13 0 40 268.57 0 1 6.n 2773 - 11 73.16 0 21 111.00 0 31 208.11 6 il 275.29 0 2 13.13 301 12 88.57 0 22 147.71 D 32 211.B6 3 12 ~ 262.00 C 3 20.11 5 13 87.29 0 23 154.43 D 33 221.57 0 43 288.3 0 4 4 26.E6 1 14 94.00 0 21 !$1.14 0 31 228.29 8 41 295.43 D l 5 33.57 0 15 tea.n c 25 167.86 c 35 235.nD e 45 3c2.11 e 6 1D29 D 16 1C7.13 0 26 174.57 0 36 241.n D 46 338.86 3 7 47.00 0 !? 114.14 0 27 181.29 0 37 218.43 0 47 315.57 0 8 53.71 0 18 122.86 0 28 ISE.2 C 38 255.11 0 18 322.29 0 9 2.i? 0 19 127.57 0 29 194.71 0 39 261.86 0 49 329.03 D 4

O k khhO k "- smp4sy"Ahne. b . pawnue. - \\.6 7 (JM e DeGDe43 D7 QCD SQOQ i - DATA ACQU IC I T 2084 - 439.00 l Arithmetic Mean (D19)= 696.3 uM III j Area Mean (DZB)= 770.9 uM I Uolusee Mean (D30)= 849.4 uM f f f i Sauter Mean (D32): 1831.2 uM f h ~ .oh 'n t, 7.58E-093 cm2 Pro be Area = I Mumher Density = 4.93E+099 /cc N ,k l Uni. T!cw Hate : 4,00E-093 cc/s P j Uolume Flux = 5.20E-001 cc/s/cm2 T 1Ellae......s._a_...I _? 8039 g,gg 57.1 704.8 1352.4 2000.0 Attenets = Diameter uM Ualidations = 5000 Corrected Count. = 5869 2885 i = 470.26 Sec I Hun Tine I 8 1443-4.394 M/S CH1 Uelocity Mean = RMS = 3 791 M/S T f g_ 0.0 109.7 219.3 329.G Uelocitv 1 M/S NPDPANPDPDATANCEASLN10-23-92NRUN31 - C: 27 SEP 1989 - 2:32:43 = Accunulated x - Medians Total Nusehe r = 58694. 90E+ 982 ces k Total Length =

1. 89Ee982 'en^2 Toeal Surar ace =

1*88E4990 cc x i f Total Volume = J N h H I 3.74- -f g i Snmn, -.., u _ 8839 ,gg_ 1352.4 2000.9 = 57.1 704.8 Attempts 5808 Dianeter uM Ua l idations 5869 Corrected Count =

    • 34

= 478.26 Sec / Run Tine ffY,,s .f, v [ flf! f ?) { ..r r [ 'i Humber Median = 696.9 uM 'y 2.17 - I l j i Length Median = 771.8 uM i 4 f 1 -jl' f ll' "n [ Surface Median = 999.9 uM Uol usee Median = 1139.8 uM F (, ljJ i l l 5; I! i e = 1.1 Span G.00- - 704.8 1352.4 2000.0 10 x Point = 612.2 .A 9 0 */. Point = 1941.4 57.1 Diameter uN NPDPANPDPDATANCESSLN10-23-92NRUN31 C: l l Calc.No.ATD-0206l. j l I I av. o l l ATTACHMENT 1l lProj.ho. 8986-10 l i i i i eee. 6g l I I i

C F L A ', a v i r e s Cata D7 cicut-t r. :. ( E xpe r i men t - CE st ' Tert - 10 l-M Run Mumber - ?! 27 SEP 1939 2:?2:43 0039 Attempted S a rnp l e s = 5000 Valid Samples = 5869 l Calc.No.ATD-0206l Corrected Count 470.~5 sectnds l l laev.0 l Fun Time l ATTACHMENT 1l lProj.No. 8986*10 l l l l Page 6 3 l l l Invalid Count: Total 3039 Overflew 6 Phase 2 Saturated 0 K Under !670 Os0 N > Max 0 K Over 77 iire Over 200 Vel Under Vel Over 0 4.93E+000 /cc Diameter Data (96,3 uM Number Density = 7.58E-003 cm 2 Arithmetic Mean (D10) = = 7.' O. 9 uM Probe Area 4.00E-003 cc/s Area Mean (D20) = 84;.4 uM Volume Fl ow Rate = 5.28E-001 cc/s/ctnI V ol ume Meen (D30) = = 1071.. uM Volume Flux Sauter Mean (D02) = ~ Dinter 0:stribution ^ B$n Dianeter Count hn Diwter Cet Ein baneter Cmt Esa Dtmeter Inunt hn haneter Ceet d 4 d 0 57.14 3 10 153.61 328 20 ED.15 197 30 1246.65 39 10 1613.15 12 d 1 %.79 3 !! 193.29 37] 21 E!9.SD 175 31 12E.30 35 il 1662.20 13 2 135.41 1 12 532.91 ill 22 129.45 112 32 1325.95 31 12 1722.15 21 3 176.09 30 13 572.59 439 23 969.10 113 33 1365.60 38 43 1762.10 li i 215Ji 102 11 612.24 3?3 24 1908.75 105 34 1905.25 27 ii 1801.75 10 5 255.39 151 15 651.90 325 25 1048.4D 95 35 1944.93 22 15 1841.40 25 6 295.04 171 16 691.!5 291 26 1028.05 96 36 1494.55 16 16 1881.05 8 7 334.63 192 17 731.20 277 27 1127.70 63 37 1524.20 19 47 !!20.70 15 8 371.31 257 18 770.25 29 2B !!67.35 6B 3B 1563.25 il it 1%0.35 15 l 9 413.99 225 19 E10.50 21 9 29 1207.Df: 69 39 1603.50 19 19 2003.00 11 Channel 1 Velocity Data 3.701 M/S RMS = 4.394 M/S Velocity Mean = Delocity Distribution Dennel 1 Ein belocity Comt ha Urlanty Cut 6 n klocity Count hn Uelanty Count Bin Uc!cetty Count M M M M M 0 s.t0 1923 10 n.15 0 20 131.29 0 30 201.43 e to 268.57 a 1 6.72 28E5' 11 73.E D 21 141.00 0 31 208.11 8 il 275.29 0 2 13.43 191 12 H.57 0 22 147J2 0 32 214.B6 0 il 2B2.00 8 3 20.15 1 13 87.29 0 23 151.43 0 Il 221.57 0 43 288J1 0 J i 26.86 9 li 91.03 D 21 161.14 0 31 228.29 0 11 295.43 0 l 5 33.57 0 15 100.72 0 25 167.E6 0 35 235.0D 0 45 302.11 0 6 40.29 0 16 107.43 0 26 1?t.57 0 36 211J2 0 46 308.66 0 7 47.00 0 17 114.15 0 27 121.29 0 37 298.43 0 47 315.57 0 8 53.n c 10 120.e6 e 2r lu.00 a 3a 255.u 0 is m.29 e 9 E3.13 0 19 127.57 0 29 191J2 S 39 261.86 0 49 !?9.03 0

r PFFD RouJe ' 9fessum Ll6 951 Spec gof~ 54" A6e f6 cam Wwrde - \\% GPH .i 2:44s47 -i 2*7 CEP 1000 ' - DATA (*CQUICITION - 390.00- } Arithmetic Mean (Die): 698.9 uM I Area Mean (D20): 779.9 uM Y Uolume Mean (D39)= P46.5 uM II a (D32): 1829.6 uM Sauter Mean C hr 7.39E-033 on2. p O Probe Area 5.24E+G09 /cc [ H,e mbe r Densitv 4.19E-903 cc/s Uol. Flow Rate : 5.69E-991 co/s/es.2 l T va l u e., riuw a N Isu_eens.se a p 0.00_ I 1352.4 2090,0 8 7722 = 57.1 704.0 Attempts

--.5800 Diaeacter uM Validations 5851 Corrected Count

= 443.18 Sec Run fine 4.365 N/S I 1450-- CH1 Uelocity Mean = RMS 3.665 M/S g _ 't 0.9 199.7 219.3 329.0 Velocktv 1 M/S NPDPANPDPDATANCEASLN10-23-92ARtlN32 C: 27 SEP 1989 2:44:47 =] Accunulated x - Medians - J Total Hunher = 5851 rl l'7"~ ~

4. 98 E+ 9P': on Total Length =
1. #9 E+ s92 cm^2 To t a l '" Surf ace :

1.85E+#98 co y. lI Total volume : ' t l' M 3.33 - , ff )l',. h i { pr e '1 s IGnfl% ~.mn,,~- 7722 704.8 1352.4 2000.0 g,gg_ t AtteMP s 5000 57.1 a Diaseter uM UalIdations .= 5051 Corrected Count = ., -a 443.18 Sec 3.83 n Y Run Time ]UV,,/ [- T - P F' t l r u Q ) ? l Humber Median = 619.8 uM t i 1 ~92 i Length Median = 771,9 uM l i [ I l l Surface Median 999.8 uM 111 uM i e l j j Il f 'j "'#" ~; "'M"' Point 612.2 o.sa-1352.4 2000.0 10 x = 1991.7 57.1 704.s 90 x Posnt Diameter uM NPDPANPDPDA T ANCE&SLMS-23-92NRtlM32 C: l Calc.No.ATD-0206l l l l Rn. 0 l l ATTACHMENT 1l lProj.No. 9966-10 l 1 .I lP.e. 70 l l. .l

, ;.p,,. e -i Nt2 ~;t'icut';r;

. 74 E,per, ment - CELSL Test - I C 2 ' ;s i..moer - ::2

n 2'44
47 27 SEP 1989 7722 Attempted Samples

= 5000 Valid S a rr.p l e r = 5951 lcate.wo.ATp.0206l Corrected Count l l Rev. 0 l = 4 4 ?.1 C. e e c.:, n a 3 Run Time l = l ATTACHMENT 1l l Proj. No. 8986-10 l l _l lPage 7f l I I Invalid Count 5 Total 2722 2 Overflow 1 Fbase Saturated O r: Under IG53 N > M a <. 0 K Over SOS Vel Under 77 Si e Over 174 Vel Over 0 5.24E+000 /cc 69E.9 uM Number Density Diameter Data = ^2 7.38E-003 cm Arithmetic Mean (D10) = 770.9 uM F r o t, e Aree 4.19E-003 cc/s (D20) = 1 S'6.5 uM Volume Flow Rate = Area Meen 5.69E-001 cc/s/cm Volume Mean (D30) = = 1020.6 uM Volume F l u x. Sauter Mean (D02) = ~ ' 0tmeter'tstrthutzen '~' fin timeter Ccant ha Dimeter Count Gin heeter Count Ein 01 meter Count Ein he.eter Count 0 57.14 D 10 453.64 322 20 25D.15 200 30 12 %.65 49 10 1613.15 17 W s 1 %.79 2 11 193.29 390 21 E29.80 163 31 1225.30 31 il 1682.80 11 2 136.11 0 12 5!2.94 369 22 929.45 148 32 1i25.95 30 42 1722.45 15 3 176.09 39 13 572.59 35B 23 969.10 93 33 1365.60 35 43 17f.2.10 21 i 215.71 99 14 612.24 33! 21 1003.75 119 34 1905.25 21 it 1801.75 10 5 255.39 154 15 651.90 336 25 1048.10 118 35 1414.90 22 15 1811.40 15 6 295.01 157 16 691.55 35D 26 1082.05 92 36 1981.55 13 16 1821.05 11 7 331.69 178 17 731.20 252 ?? 1127.70 65 37 1524.20 15 47 1920,70 to B 371.34 2D6 18 770.25 254 28 1157.35 73 38 1563.85 15 48 1960.35 7 9 413.99 213 19 E10.50 2iB 29 12D7.DD 55 39 1603.50 13 49 2000.00 16 Channel 1 Velocity Data RMS = 3.665 M/S 4.365 M/S Veloci ty Mean = l, Uelocity Distribution Ctannel 1 l Bin Ue1xity Cut Ein veloc:ty fount An velocity Ccant Bin Veixity Count hn belocity Count 1 il/5 t!/S ft/S ty5 n/5 0 0.90 1927 10 67.15 0 20 134.23 0 30 201.13 0 40 268.57 a 1 6.72 2299~ 11 73.86 0 21 141.00 0 !! 202.11 0 il 275.29 0 i 2 13.43 173 12 80.57 0 22 117.72 0 32 214.06 0 12 2E2.D0 0 l 3 20.15 1 13 E7.29 0 23 151.13 0 33 221.57 0 il 28B.71 0 l i 26.26 0 li 94.00 0 21 161.11 0 34 228.29 0 ii 2 %.43 0 5 33.57 0 15 100.72 0 25 167.86 B 35 235.00 D 45 302.14 0 6 13.29 0 16 107.43 0 26 I?i.57 C 36 211.72 0 46 308.86 0 l 7 17.00 0 17 114.15 0 27 181.29 0 37 248,13 0 47 315.57 0 2 53.72 9 1B 120.86 0 Zi 188.00 0 32 255.11 S 18 322.29 0 ! 6941 0 19 127.57 0 29 191.72 0 39 261.86 0 'i 329.00 0

aies. r r an c lod ne calc. no. ATD-0206 SARGENT & LUNDY ENGINEERS Recirculation Spray Removal Rate Rev. O Date X Safety-Related Non-Safety Related Page 72 of client Commonwealth Edison Company Prepared by Date Project Zion Station, Units 1 and 2 Reviewed by Date Proj. No. 8986-10 Eaulp. No. Approved by Date Microfiche of SPIRT Input and OUTPUT i SR CALC # ATD-0206 R0 SYS CS ZION 1&2 8986-10 FILE 4.6 & 13.1 S&L 11/16/92 10:40:32 044703 PRJ-08986010 4 O SUT THIS END ) l l i 1 I f I I ATD-0206.WPD i

'I' "" C ' * ~ ~ SARGENT & LUNDY new. O cate ENGINEERS Recirculation Spray Removal Rate X Saf et y-Gelated Non-Safety Related Page 73 of Date Prepared by Commonwealth Edison Company client Date t Reviewed by Zion Station. Units 1 and 2 Project care Approved by Proj. No. 8986-10 couio. No. f ATTACHMENT 3 Controlled File Information SPIRT Version 1.0 Sargent & Lundy Program No. 03.7.366-1.0 User 044703 Monday, November 16, 1992 Time: 10:25:40 Controlled Files: Drive V: = SNLl\\SYS3: \\ Detailed list of controlled files omitted at user request. End of Controlled File Information scope E ) J 1 ATD-0206.WP0 l

-Q' ~AX CO N ES 3Oh J E \\lC E A Lechler inc,445 Kautz Rd, St. Charles, IL 60174 Phone 708-377-6611 Fax 708-377-6657 Send to Fax No(3/h 319^ 36% ~ ~- h0AU%'l-f bun 0?' EA/[O R (4Lrhs'?? Com any. Attention: 3 S~~W 5 T Date: From:b/lL A167 A Total Pagem Ti% foLL adw& P/964s of TH!S f'x '~ f/% /713 -f /7/34 /?kTS -f L?4'CPLM 5/ 26 OPTA fu oW/MAosch /S A/022Lf 5, M yGs CAv s&&, 77M i GSS&n'TlALW l{}&.yricAL. TFid P"/" l)/fsc&4c4 A&74)St Wrq/4 f713 LGe5 #1wfM7 MO To @^C/M U 5 sy&cift Ar7as--e TOLW4NdfS L<H/L4 / 3 p-/G 6/./Atu 64 8 /h Aw'l9 %7~W?d.O Tb TBS noucM Tl 9 3)MC(fl CAFIWB. l l-}0/ 4 THf S /}6L4 0 &Ma&&&,ws, Ub l Calc.No.ATD-0206l I i 1new.o g l ATTACHMENT 4llProj.No. 8986-10 l ,") l -l lPage 7p l 1 s j

z --+ -p ~"___ {. i l Calc No. ATD-0206 \\ ~ l }aev.0 l -l- ~ 8986-10 l } ATTACHMENT 4llProj.wo-i Page [h i i 8 2_

~~m -

}- -I I _I 7-m-'~ Mf ^ g, a tre

  • t 1_

r-- x. I m 1 ^ 7- .1x x p. _j r, r-F'1 y I_ ^ E n .~,. u q ..1 ,m {_ g s. mumu T t - ung -- ~ -= - - _ .g- _+- -mC m__ -~yu 3 ^^^:r--' ,,,^ W__h g z. -1 7_ 9I m 2' M 1 ~ e_ - 'p-. m 1 1 T w 2- ^^ - r ,,m m~T 4. =_ im --m a m "_[ .-~. _1 -- : _ w.~ := 'S-r' T- __ I 9 R m m.Aa g A A -r'yg a aua_ E B _x - ~ - M ^^ ..n ~ L -- _m G- _.E .-y ^ s, -' - - x M.- o h- 'N,.^f ~~ _..n .w. ^'N ~g = 2 M l i 4:: =- 1 3 m 2. g t r- .p 1~ ^e, 4- -4. m- .a--

=

x 2- _s '.x a_ Y w + . x LD}

1g../_ =...~.: '7 ~ +- ~ g -p4 a 44-~ F-.. j .. +.~ I n~$,1_ h-~~- l t 1 i-l .',. : %,Q

~~.n ~~.

I ^'~ ' ' ~j m .. _ _ ~ 24 l a a a== w 4.a 4 4e, g :- f: - :== --. \\ g ~~~; :gn_gg-l 1 ~ =' - ~ = ~ ~* f,. .b' f hh h'hh ~~ l + .p: l =_. .f

1..

a. .i+ 4 7_L.. _=. e_a.ss..mvs== ..4..__. _: _ 9. _ 6 M_.t.d._.{ NW: M.. _. ' *... _ _ _ 5%_, 1.

Z_.I.. =. ~_~~_.
:;-~_:m%.,.._.._.

po&7mm '. 4l.. %4., ., m :.... : u._ ; ~.. _.

  • ~
  • u y.w,,ww i* d T***,[""

(. l=.. ;.~ ' IC =ClC7 ~MCLT O

C**DN"**E'.=.h* ~ ~ ~m"vn,,,

-.. - ~ _. - %m .'.\\.. g-r ..a ymo._- ~ -~ .o; _pN sg .~h_ ....___-;= :- _ _s__E s_ --1

n n

. = = x."t=.,_ fAA%, _m-g. o.-. g~.y..g.g..M.gr s h. (- 1.-~ *WATM **:/F w 1 t_ - onn _ _. _ _....4_.. .s.,am i ,n ~~

7m* - -

4 --! 4.

7..

\\ I . -~~Z ':_ * $~g'*"~~fQ* g ' f' p'~t* QQ:y Q" .._y.... ~ g g g .' ^ ' " ~ ' . ~..-. - g ... : '.L Y.....L._~* %. :_' - n. ~ + - -n;r.._: ;.;. ;.;n.=_. 'R i .e + y. ... -.~ CC-ng.__i;C1 ~~ d........ w_ .j I'.' - ~ ~~ +-

c. m-

......_.._.-. J.... 2.= *:~ r'_ p ty :~ ~ ', ~~: =. "1.

m. _

' ^^ - g..... .. q

7. -- 4. _ 'rrp

--\\r t=%[_-- h ;- =~- = =. _.=. T ( -.Q , ( _^ .._..r.... C'Y -t-+. ;u,. n l Calc.No.ATD0206l _+ - _ _.. ~ _ a 4 ..b- %, g._... -:= l -- Q. ~.. l l l Rev. 0 .-*_.f -* * ;-" T ..:.J _.T.7L 4.._. .**s --- Q[. p*C, 8786-10 l ATTACHMENT 4l lProj.No.

  • =f.' _;..
    • %...g

.c In2 = ;* n' -- 'f.*~ "~ = L- --, - -.- -. gg. w3 - - b,-}h ll_. h* h ] lpage (( l + .}. nr ~~~r . z =,. -ri'_~ '. 'b '5 3 5 *[ \\*t. [C l L

.gKyA

=L,3 :Ay S. ~ n

=l=== =. :....=.

pm: w = - --w gr

l.

.. i = . =. ,_r -+ =# =vp -=t= m 4._.._. a =7 r1 -w. t 4 A'-

==j = =t= =. -, - m mw +.4 .. r*+m - = ~: = -=

===. q?:.&% . 31 n n = n -. I '*' If4 4j =2=+- ' 7 %8+'*M y m i

O"*1.32..

.p*-._~~.; O. ~ ;44.- ~ ^ ^^ h.' [ U_.';". _. T_.ei

'tA+;

7 4,, r, T1

    • ~ n m4=_ i

~;v.Rt g. .pq. .._.i ~~~~ * * '*~ "*.n.' u

  • 2._,3.[.l---.'~t***""

_n= %.4 y y; y C ~;C.~. 9

N '%

i f( h.- :: n~d., _*1 _,.v. .+~< *_ ~ g.+.-- ^~ Na i^! \\ i l~ ~ 1 1 ~* g

y iy y

._.. -.D ^ ti e '*~""'t*"* a_ iffMti ++ 1 :^\\t*&- ".- -_ __ j

    • ._ _ _'*^~...=

w w wtw

]C" = =k=- = m= u-:= -:-

-m a n yn h:=T=~=~. +, .w = ~, -- =:=._3;,, ; - u. ;; y,

m,

-e n..=._p== ~ lE D* i ~ W

i

o50 .._ ~. -. '=

  • ~'*M n3 m O'

++*= it ._.n ~'

  • ? ' ~ '. * * -

W ~C ~ u-S ~~ ..~- *{ **'.:_'D *

  • u*""

s v Z u 5 2.]g '*.:. z -_ ^ _ ^ E : ~:::=w. w m S. ,nz . Q} Mr,. M~ wm - ,-;PT*y**;.4 '. ;

  • 242 os8

+**f ff*'*"*t*-'2 8 .w_

p 1 T..M h m,
  • 1 **-*'" y

&W

  1. N

,7 +y '*'+@*+++ hN OE '3 7~py +-. .~

  • o t ^****

~~ y .a y x- .;4. p ^ ~. 1 =-.; O ". w--,, ~ ~ _ 1 c '!_*'_T_- _ _-_-_ ~n 11,. y"s, s _ '8 1 tm p*a ir w -.+. 46,.,..n..--~'~1 M _., ~ - s. .M._ ~ ~ - -++++- [TI w u. 44 J_ _.,e-m ? h44 &hj 4Qh-

1..

~ r _ _ m w T ~ ' ~' 4. - =^.:=_ G'J*.C O.4w C-4 _ SPVCO,INC.','*:'] ~~ ~C14. - ~ t ~* ~ '.i-~~~ b i ln NASHUA'.KH '.%c..., L- ~as v ?.=1 :...:. = 2+1 ~I'. ~~- ^ ~ '~ i: n

l., ~C ~J="

~. = u r-a. N' f n.++u++1 b 1

r====.p-

-+ ~ . = w

ni l

i e .a._ a r N N[ "h [ - w m

===- .a_ .. i!'L *.C UOl'.O 4 44~

== :=mz un e m . ::=rm b'.-3..T.' 4 t 4 i~~~ n.h L . i.1 :- s

  • 1-

~ d 6_ _ _a .--e -. '--I; 2$*+' 1 4,.- . w: =a==. % ~ T_ - -2= . r.n-- i,. n- *"'#


t---

d T% -r tf-+ rh _ a. -_f g g ~' N$?Mi -- d F2-m . ~. m. ~~"

;.+._..= t : _- ma Ji !

1 J;$1'

    • ,1_ -'. '~~f f ** ]. '-"- ~m a r

!".-j d 2.a

  • 4 r =t.

ZC ._c_ .a. N t

= * * * -t*~1C CL 27*-.- *;

+-. n ~* r D

  • ~.:

-h. h gr?Jr-++-

  • 2 1

~ _ I$ ..;i ,bIr

  • - L__.T_ _

~' ---- r t' - -

L ::

s -- i I. l - g mc:a w 17/3) .1 7=. ,[ .-.L I

I 1 1 l Test media Water lCate.No.AfD-0206l NO221e modelir13A l l l Rev. 0 l f l ATTACHMENT 4llProj.No. 8986-10.l '+ l_ J l Page 77 l J J 1 X / A . J P, = I Nonie senaf number - T 54 Nortle serialnumber T 53 Spray angle - 60* Spray angle - 60* J ne. t TESTING PERFORMED. EXCLUSIVELY FOR NUCLEARINDUSTRY \\ t l The following tests were run on the 1713A in SPRACO's laboratory with qualified Nuclear Engineers in attend-ance. From a quantity of 325 nozzles. 65 noz. zies were randomly selected for testing. The spray angte was measured by pho-I tographic record at the design pressure i FLOW RATE DATA SHEET of PSIG to determine agreement with the predicted angle of 62". (see figure 1 Nonie Mol1713A Test Media Water for typiCalspray angle Chart) j Nonle Serial #T 54 Water Ternperature 59'F Each nozzle was flow tested at a raags of inlet pressures from 10 to 50 PSIG to i S,,I'ss, unc #eT O, O' [k * [k* 'dfw" 'dR*. 'E$1 determine that the actual flow at 40 w u, cui um cui c=> PSIG was in accordance with the c cae iii sste 72 7 si 72 7.61 7 61 predicted Value of 15.2 GPM. (see figure I 99 10 60 10 71 2 for typicalflow rate) ~ [0 82 19 34 foi 20 f 29 3/4 123 13 42 121 13 20 1331 x 1a0 15 30 138 15 to 15.20 40 40 ,s. ,, 0s 1s. 17. 17. so mM e-I.2 lg 4 I )

j. i i !I MEDIUM ANGLE I Fttu aut le sAuhsis Pts issuutt in ci.o aegi. p* gging, gig,, CZnt as Poumas Pt21446AA4 siscs, pegggust! si 2' eistasse (assess 3 e0 al les 8l 15 a g A betec C 8 8 as} es. Is i

Hins 5 l 3 I te l 15 l 2B Is as rol so sa lo r it s s3' ar*

Fa* e 2W t% in 1g troe s 2 r l 3 3 l 40l 4*l 37 T su as tg nu g en e el ic e se j eslsls3lrs us i s.2 ses sa. r,. 14* i iros u l ss l arl 77l se is o icel in s ut i., se s.e* rr* ra' .4 2M 4 in tg E irin u .4 sto i w s.l.. rij e sl iio i3 iz al is s. ir s 2:4 u. sr* # v i t's tg am 3% g irir i .. i re e n l ii n un se r is il ie. ro, nr ni . :* w 67* s pg gg g gig g iesi3:sj:so 3o s

3. o.e*

re* rs' 2'm iM mr. sitt. i sc. ini i sc I e. ii 2 l u r is o 't lCate.No.AfD0206l 'ss we natus n. t ins i e o : io. u n i i. i l l l Rev. 0 l ins is 's iso j uo isojies. 33 2 24 e 27 4i si 7 32 ' g l ATTACHMENT 4l l Proj. No. $966-10 l orl iso iso l ar s se 2 re s 2:4! 3rs 42 0 l ino s 'a 1732 is or l tas se s l 24 3 2a r 22 : as sl 4i. 44 o l l lPage fg l ( g 442ls11 srJ tri f 20.3 24 s l 30 3 as s +0 c iras tu 9 l 90 43 3 44J s34 eo r er. sie ea r, rr* si' 64* 2A 3M E E E E ri o l 244 l 30 0 trae j 27.a l 33 4 tres i% 23 o 42.J ; se.s ss.o

  • H eaJ 74.2 v3e los 7s*

to' W 3A 3g E E i 6 J aim ris os.s los ini 7* rs* rs' 24 sg 3m g g g aJ l sso tr4s

s o no ss o a

2 h > i.s no.o sa.o 42.0 ev e is.o sr.o ers iis i3s 4* W W sa 4 3M FE 3% M iro tw no 43 o sa o 64 s pa s an.o ev.s ao) us tai in to 74' 74* 2A SN PE 2% M ini is ao no.u to noi no u. i,. = W W W u a 3M g. M i trsa a i n. So on.o i 72.o oes nos its ins ses les les nas W es* as* 2A 366 PE 3% M is sss na un los iso su ese its in nr-srs rs' rs' ra* u E 3x sg 3g is j 5 erss irst zw in uLa rs o ets its is la leo its ser ts: no re* eo* es* u g sg og sg g trw tw i% nm nas ior in iso see toe too 13e 78* W eo* U g 3g gg gg og su 42 4 soo no nas esa isa zoo an an ait uo rs' W so* o g 3g gg 3g .g N irei MEDIUM ANGLE F1sw RATE ist eauses eta asemert sesso e assie 'g matng a et P8osses Psa smeamt inca retssents as Y Dessasse gematem g alt m g .tss.,.s e. s. 4 iras 3 3% 44 sa si sa so es ils saa saa tso M* W W ins e% 4 4M q 15 iras 3 its a er rr u soo no nae oss 23e are W W as' sas 4% 4 486 m SE l tras 3 v so n its iso its ' trs les 271 233 ed* as' nas og a e a tg tra a am re u see in tao. see so 223 mao see as' ro* rs* ass og 4 dM e tE tree 3 2% u soi les use no are mis - see un sia es* Fa* rs' its 8% 4 4 g 3g I tria 4 25 u toi ses 28 no-its - nos ase un 4:3 W as* er* 22J 8'E s FM g gM j 8772 a 24 to air iss iso its aar aso ras ses sao W Ta* re* sa.s PE 8 FM st6 IM l 3r74 4 2% ass is4 ern zoo su ass sas aso ses ia* re* W 32 : 8% s FM g

g l

3r73 a 2'w try ist 374 sea ras 36a sta ses see eis re* se' s** 33J rm s FM g im 3777 a 2% ist tas see aos ses ter See 39, &se eat Ft* Sa* Ss* 32 2 PE 8 FM g DM l Fro a 3% su 30 aso ass zoo tsa sae eso ese saa se* s* sr* 332 pg g yg g gg j l NARROW ANGLE ns l8""E 4 8K g tm F l i russ 8 'd 88

  • a so u

sie ass its 22e 43* as* W ) l g ,7,, 3 i% a a n u too sie i44 ses tio are W as' de' sia ' e% 4 eg g n T s% a ao o nos sao nas in see 277 sas W as* W W eg 4 eM g g l D aruw 7g,, 3 25 re w tos : sao eso las so: 222 azo ans W 4s* as* 34 sg 4 m es m,, A j' si, u not us its no re mis nas us als ar* W as* ina og 4 seg e-m ~ I T

=

se ist its are eso. are ais saa un als ao* W as* au ~8% 8 SM E Its erriu r iss no its por aso ass ses 4eo W es* so* tse 8% 8 FM E em W _f" erna 7 ess tu are zoo zu ass sas am s4s W W W W ym a og g ,g d ,77,,, I E sar< is 14 see 22s aos 3:2 as ses eis W a s* 4t*

  • s.e 8%

5 FM 896

g773, l

' 033 ~7~ 2% .3r ' las iss aos sas est us an sso eat n* as' as' ssd 8% 8 FM SE 2M 44,

4:s ;

,W es s ex sig. sg errim 4aa

  • an szo Pe*

a s' ar* [3% is7 30: jaso j an. aw E ) .035

u. i.p..
esse ser se's, smrase sans

=. 1 I i October 26, 1992 i In Reply Refer to .j Chron # 193548 To: Gerald Lahti, Sargent & Lundy Engineers

Subject:

Additional Support Information For Control Room Habitability Dose Calculation During the preparation of the subject analysis, there are still some unresolved items which need to be addressed. The spray Droplet Height for the Containment Spray is given 1. in UFSAR Table 6B-1 of 147 Feet. The Filter Unit make up flow to be used is 160'O CFM. The 2. t original design flow is 2000 CFM, however due to system pressure losses, the system can not meet the. design flow rate of 2000 +/- 10% CFM. The system acceptance criteria l will be to ensure a flow greater than 1600 CFM but less than As the. filter unit maximum flow of 2200CFM(+10%). ~~ discussed, the -lower the number ~in-this case. will yield the ~ " ~ conservative dose assessment. The Auxiliary building filter unit efficiency is to be taken J This is acceptable since Technical Specification 3. as 90%. 3.17 requires the in place test to have a bypass of lessThis than.05% and a lab test of less than 5% Penetration. testing exceeds the requirements for 90% acceptance criteria specified in Reg Guide 1.52 and the testing requirements-t 83-13. The later of the specified in Generic Lettersources indicates that a 1% Bypass is accept Lab Test is acceptable for a 90% Efficiency to be used in-dose assessments. The percent Containment Spray Volume to be used is not 4. A Value of 85% may be used due to provided in the UFSAR. the fact that the analysis assumes that the containment' fan SRP 6.5.2 states that it is a valid coolers are running. assumption provided containment ventilation is operating and the system design provides for a sprayed area of In addition, the Byron and Braidwood approximately 90%. Therefore, the use of analysis uses a spayed volume of 92%. 85% would be considered acceptable. The above information is acceptable for use in the control room-habitability dose analysis. ) l Calc. No. ATD 0206 l

  • I I

l aw. o I l ATTACHMENT 5l lProj.No. 8986-10 l 1 1 IPage #[j l 1 1

,. ~. _. _,.. ' l l 1 If you have any questions,:co act Bill Perchiazzi at 708-515- ~ 7690. -Prepared Byi William T. Perchiazzf' 3 Mechanica1'and Structural- ~I Design Engineer

I 20/24/#2-Reviewed by:

L. J. Corts Mechanical and Structural' l Design ~: i gruts* /#8 7/9.:7 Approved by: e .i Paul R. Donavin Mechanical and Structural Design Supervisor .v. .

  • ib w,- s p.

3;7 s_ cc: B. Schwartz S&L i D. Flens S&L R. Hubner S&L NEDCC i P i

p i

.i x; . ~. - 4**' ehi l cale. no. ATD 0206 l ' l l. laev,o l lATTAcmeENT5l lProJ.'me. 8986 10 l -J l l-lPage 80 - l' l l '-l i i

l October 26, 1992 In Reply Refer to Chron # 193548 To: Gerald Lahti, Sargent & Lundy Engineers

Subject:

Additional Support Information For Control Room Habitability Dose Calculation there are still During the preparation of the subject analysis, some unresolved items which need to be addressed. The spray Droplet Height for the Containment Spray is given 1. in UFSAR Table 6B-1 of 147 Feet. The Filter Unit make up flow to be used is 160'O CFM. The 2. original design flow is 2000 CFM, however due to system pressure losses, the system can not meet the design flow rate of 2000 +/- 10% CFM. The system acceptance criteria will be to ensure a flow greater than 1600 CFM but less than the filter unit maximum flow of 2200CFM(+10%). As the"fower the number in this' case will yield the' discussed, ~ ~ conservative dose assessment. The Auxiliary building filter unit efficiency is to be taken 3. This is acceptable since Technical Specification as 90%. 3.17 requires the in place test to have a bypass of lessThis than.05% and a lab test of less than 5% Penetration. testing exceeds the requirements for 90% acceptance criteria specified in Reg Guide 1.52 and the testing requirements 83-13. The later of the specified in Generic Letter sources indicates that a 1% Bypass is acceptable and a 10% Lab Test is acceptable for a 90% Efficiency to be used in dose assessments. The percent Containment Spray Volume to be used is not 4. A Value of 85% may be used due to provided in the UFSAR. the fact that the analysis assumes that the containment fan SRP 6.5.2 states that it is a valid coolers are running. assumption provided containment ventilation is operating and the system design provides for a sprayed area of approximately 90%. In addition, the Byron and Braidwood Therefore, the use of analysis uses a spayed volume of 92%. 85% would be considered acceptable. The above information is acceptable for use in the control room habitability dose analysis. l Cate, no. ATD-0206 l ' l I I law o I l ATTACHMENT 5l lProj.No. 8986-10 l l l l P== 71 I I I

so If you.have any' questions, co act Bill Perchiazzi at 708-515-7690. -Prepared By: William T. Perchiazzf' Mechanical and-Structural Design' Engineer /o/24/f2 Reviewed.by:- L. J. Corts Mechanical-and Structural Design Approved by: drufsE /#/p7/f.:7-Paul R. Donavin Mechanical.and Structural Design Supervisor a ,.~2 _,,_ ;, R"} 'a ~ .~, cc: B. Schwartz S&L D. Flens S&L R. Hubner S&L NEDCC lcate.'me.AfD-0206l l l l a.v. o, l-lATTacmtui5l lProJ.me.spe6-to l l lPage 80- .l l l'

Calc. No. ATD-0206 Revision 0 REVIEW METHOD SHEET Page 81, LAST of Rev. O Proj. No. 8986-10 checked below. This calculation has been reviewed by me according to the method (s)

1. Computer Aided Calculat. ions Review to determine that the conputer program (s) has been validated and documented, is suitable to the problem being analyzed, and that the calculation contains all necessary information for reconstru a.

later date. Review to determine that the input data as specific for program execution is consistent with the design input, correctly defines the problem for the computer algorithm and is sufficiently accurate to produce b X results within any numerical limitations of the program, Review to verify that the results obtained f rom the program are correct and within stated assumption c limitations of the program and are consistent with the input. Review validation documentation for tenporary changes to listed, or developmental, or unique single application programs, to assure that methods used adequately validate the program for the intende d application. Review of code input only, since the conputer program has sufficient history of use at Sargent & Lu e similar calculations, Review arithmetic necessary to prepare code input data. f 9 Other: T ~~ ~ ,.. a.

2. Hand Prepared Calculations Detailed review of the original calculation.

a Review try an alternate, sinplified, or approximate method of calculation. b Review of a representative sanple of repetitive calculations. c Review of the calculation against a similar calculation previously performed. d 3. Revisions Editorial changes only, a Elimination of mapproved input data without altering calculation results. b c Other: 4. Other / )f f / Date: ( W /- 39 91 Reviewer: w '/ J

PROJECT N AME: D lO N UNIT No. t cid2.,_ PROJECT NO.: cie<o-a f FILE NO - 6.to lSARGENT siLUNDY CLIENT: C OM Mo o ta f r. I bCA b0 SYSTEM-C. 5 h CALC. NO.: [t%- 02 W DTVISION: b rp M NckuMG AN b C o a h ia m e k [ Q ft-b DESIGN COffrROL SUMM ARY TTTLE; DESIGN VERIFICATION PAGE A~ SAFETY RELATED] NON SAFETY RELATED h [ W O M 6 stJ b l- \\SSVC t f h ! Gkn P. L.y., /r.io. t a wm f I waCfkJL H e-h b a w e s Cl.. W%.s.T k.ac O besse od de 44 s s g W' ' Otsh C kcw k ed e o@ h [yyp [ g 5 5 f G e s E b 5 s <O c REVIEW METHOD STATUS l h S O E E# 9 E 5 N c p

  • 3 6

E w 5 h l h REVIEW METHOD STATUS i 8 6 E E 5 t = i N 6 w 22 F O 2 REVIEW METHOD STATUS l N I< This docunwns comams informm6ao wt6ch is conGdeu6al and prupnetary to Sargent & 1mady (SAL). k shall not be repnxiuced in whole or in part orj to any third pany wittaut the prior wrinen conscat of S&L. Copynght Sargent & Lundy 1992 all rights itserved. l s}}