ML20058P101

From kanterella
Jump to navigation Jump to search

Safety Related Containment Sprayed Volume Analysis
ML20058P101
Person / Time
Site: Zion  File:ZionSolutions icon.png
Issue date: 01/28/1993
From:
SARGENT & LUNDY, INC.
To:
Shared Package
ML20058P067 List:
References
ATD-0214, ATD-0214-R00, ATD-214, ATD-214-R, NUDOCS 9310220079
Download: ML20058P101 (44)


Text

{{#Wiki_filter:- 1 SAFETY RELATED CONTAINMENT SPRAYED VOLUME ANALYSIS Calculation No. ATD-0214, Revision 0 Commonwealth Edison Company Zion - Units 1&2 Project No. 9140-25 Division: ATD Project File Index: 6.10 System: CS - Date Prepared by R V / / f ~ b-b i b Date Prepared by o b~ 3 i Date Reviewed by W"' !~ Date Reviewed by Page 1 t f [ 9310220079 930901 PDR ADDCK 05000295 P PDR

F. ) Calculation No. ATD-0214 Project th). 9140-25 Revision 0-Page'2 4 l' i TABLE OF CONTENTS l i Design Control Summary Page. 1 Title Page. i 2 Table of Contents. i 3

1.0 Purpose and Scope

=! .4 2.0 Introduction. .L.- 5 3.0 Design Input l 6 4.0 Assumptions. 8 5.0 Approach.. 10 6.0 Calculations. 1 .17 7.0 Results. .18 8.0 References. i .22 Review Method Sheet. .23 9.0 Attachments. 1

Calculation No. ATD-0214 Project No. 9140-25 Page 3 Revision 0

1.0 Purpose and Scope

The purpose of this analysis is to determine the volume of'the containment which is sprayed by the Containment Spray System. The sprayed volume will then be calculated as a percentage of the free containment volume. 0 ,q*

i Project No. 9140-25 Calculation No. ATD-0214 Page 4 Revision 0 2.0 Introduction The containment spray system is divided into three independent References.79 100% capacity subsystems with no common headers. and 7j illustrate equipment redundancy _and flowpaths. Of.the three containment spray pumps, two are motor-driven and the third is diesel engine-driven. All three pumps take suction from the Refueling Water Storage Tank (RWST) and discharge into the spray Each rings located around the inside of the containment dome. pump supplies two rings having a total of either 171 or 172 spray nozzles. l When the RWST is emptied, the injection phase of operation has Should spray be required subsequent to the been completed. the recirculation phase of operation begins injection phase, are-whereby two of the three spray subsystems (Trains A and B) supplied with water from the containment sump using the Residual The RHR pumps deliver water to the' -Heat. Removal (RHR) pumps. discharge lines of the two motor-driven spray pumps. References i 7h, 7i, 7k and 71 illustrate the flowpath during the recirculation phase of operation. This analysis will determine the volume of the containment i { subjected to containment spray during either the injection phase or recirculation phase of operation. i l i f L ~-

Project No. 9140-25 Calculation No. ATD-0214 Page 5 Revision 0 3.0 Desian Input The containment spray piping inside the containment, 1. including ~ spray nozzle orientations, for Units 1&2 are shown in References 7m and 7n. The spray nozzles are Spraco Model 1713 with a design flow 2. of 15.2 gpm and a pressure drop at design flow of 40 psi per Reference 2. The spray coverage data for Spraco Model 1713A nozzles at 3. design flow, at the following spray directions: vertically down, down on 45*, horizontal, up on 15' and up on 30*, is provided in Reference 4 and is included in Attachment 9.2. The major dimensions for the containment structure for Units 4. 1&2 are from References.7e and 7m. The dimensions for the various *pr'ayed areas near elevation 5. 617'-0" and below are from Refetences 7a-7f and 9. 6 3 6. The free containment volume is 2.715 X 10 ft from Section 15.6.5.4.4.3 of Reference 3. This is the gross volume minus internal structures and equipment. (

i f Calculation No. ATD-0214 Project No. 9140-25 Revision 0 page 6 4.0 Assumptions SPRACO Model 1713 nozzles are essentially identical to i 1. SPRACO Model 1713A based on Reference 5. Reference 5 is included as Attachment 9.3. Since the CS system is divided into three independent 100% 2. capacity subsystems, a single active or passive failure in any of the three subsystems will not affect the operation of either of the other two subsystems per Reference 2. Therefore, during the injection phase of containment spray a minimum of two subsystems are in operation. During the recirculation phase of containment spray, two of 3. the three spray subsystems (Trains A and B) can be used for containment spray. -A single failure would affect only one subsystem per Reference 2. Therefore, Trains A and B are the most critical since either subsystem may be required to operate by itself during recirculation. It is assumed that each subsystem, aided by air movement 4. induced turbulence, is capable of 100% coverage of the sprayed volume of the containment above elevation 617'-0" except for a small region in the upper dome. The unsprayed portion in the upper dome is determined based on the piping-and nozzle configuration, and the nozzle coverage data. 5. In order to account for the volume of piping and smallwhich equipment on various floors below elevation 617'-0", are subject to spray, the calculated sprayed volumes are multiplied by a factor of 0.90. The free volume as a percentage of the total gross containment volume is calculated in Section 6.6. This percentage (91.3%) is used to justify this assumption. 6. The polar crane will not significantly affect the coverage capability of the containment spray system. This assumption is made based on a review of references 11a and lib. The physical volume of the polar crane, however, must be subtracted from the sprayed volume. 7. During the normal operation, an air space exists between the reactor pressure vessel and the reactor cavity (Fuel Pool). Since this gap exists, based on References 16 and 7e, the fuel pool can only be flooded with spray to elevation 591'- 0". Therefore, the spray volume of the fuel pool is based on floor elevation 591'-0".

i l j i l Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 7 The sprayed containment volume is the same for Units 1&2 8. based on a review of References 7 and 9. i t ? I e i i .w. m' i i t ? f 1 i I l t

Calculation No. ATD-0214 Project No. 9140-25 Page 8 Revision 0 5.0 Approach Spraved Volume Above El. 617'- 0" is The gross containment volume above elevation 617'-0" calculated based on reference 7m. A portion of the upper dome is subtracted since it is assumed unsprayed as stated in Assumption Additionally, the volume which is occupied by the four steam 4.generators above elevation 617'-0" is also subtracted since this volume is unsprayed. The volume of the pressurizer is similarly subtracted. Spraved Volume Below El. 617' - 0" The volume below the grated portion of elevation 617#-0" minus the volume of the reactor containment fan coolers (RCFCs) is added to the sprayed volume. The sprayed volume for the steam generator cavities is calculated based on the net open area at elevation 617'-0". The sprayed volume for the reactor coolant pump (RCP) cavities is determined by subtracting the volume of the RCPs from the gross RCP cavities. The sprayed volume of the pressurizer is determined using the net area at elevation'617'- 0". The sprayed volume of the hatchways is based on the open area at elevation 617'-0". The fuel pool sprayed volume is determined by adding the various fuel pool areas at elevation 617'-0". All of the sprayed volumes below elevation 617'-0" are reduced by a factor of 0.90 to account for additional equipment volumes per Assumption 5. The floor elevations for the various areas are found so that the height may be calculated for each area by subtracting from elevation 617'-0". AUTOCAD Many of the volumes are calculated with the assistance of the AUTOCAD computer program (S&L Program Number 03.1.025-1.2, Reference 10). Using AUTOCAD a scaled drawing of the containment is prepared. The drawing, Figure 1, shows the major sections of the containment which are subject to spray. AUTOCAD is then The volume is capable of calculating the area of these sections. determined by multiplying the height associated'with the section times its area. The heights, as well as Figure 1, are based on the dimensions from References 7 and 9. A verification of AUTOCAD's capability of calculating areas is included in Section 6.5. L

1 l ~ Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 9 j -I 5.0 Approach (Cont'd) Unner Dome The calculation to determine the volume of the upper dome assumed to be unsprayed is included in Attachment 9.1. Based on Assumption 3, Train A (ring headers at El. 772'-6" and 756'-0") and Train B (ring headers at El. 769'-0" and El. 745'-0") are evaluated to determine which train provides the largest unsprayed volume in the upper dome. The unsprayed volume for each train is based on the spray nozzle orientations as provided in References 7m and 7n and the corresponding coverage data as provided in Reference 4. Coverage data is not provided for nozzles spraying upward at 10* and.20*. For nozzles spraying upward at 10* and 20", the coverage is determined by interpolating between data for nozzles spraying horizontally and upward at 15*, and between nozzles spraying upward at 15* and upward at 30*, respectively. As stated ~ earlier;~some of the volume in the upper dome is. assumed to be unsprayed. However, each subsystem is assumed to be capable of 100% coverage of the remaining sprayed volume above 1 El. 617'-0" (Assumption 4). r Spraved Volume as a Percentaae of Free Volume Having determined the sprayed volume, by adding and subtracting the appropriate volumes, the sprayed volume is then calculated as a percentage of the free containment volume. k 1 t .[ i +

E Calculation No. ATD-0214 Project No. 9140-25 Page 10 Revision 0 6.0 Calculations 6.1 Gross Containment Volume above El. 617'-0" (V 1 Volume in dished end d a. Formulas are from Reference 13, Appendix D. Refer to Figure D-1 (Reference 13) for a graphic description of items (included in Attachment 9.4). The dimensions listed below are from Reference 7m. D = 140 ft. R = D/2 = 70 ft. r = 38.104 ft. L = 94.5 ft. (D - 2r)/2 = [140 - 2 (38.104))/2 =.31.896 ft. ~ ^ a =~ sin-1[ a / (L-r) ] = sin-1 [ 31. 89 6 / (94. 5 - 3 8.104 ) ] = 3 4. 4 3

  • a

= cos(a)r = cos(34.43*) x 38.104 ft. = 31.429 ft. b = L - cos(a)L = 94.5 ft. - cos(34.43') x 94.5 ft. = 16.557 ft. c = i sin (a)L = sin (34.43') x 94.5 ft. = 53.'430 ft.- e = $/2 = (90' - a)/2 = (90' - 34.43')/2 = 27.78* l c = 2 .333 bn(e2 + ea + a ) V = 3 (31.896)23 .333(31.429)n[(53.430)2 + (53.430 x 31.896) + = 3 183,355 ft = 2 nc (L - c/3) V = 2 n(16.557)2[94.5 - (16.557/3)] = 76,630 ft.3 = 3 2 2 [120r nsin($)cos($) + a@*n r ]/90 V = 3 [120(38.104)3nsin (27. 7 8 * ) cos (27. 7 8 * ) + 31.896 x = 27.78*v (38.104)2]/90 = 236,669 ft.3 2 3 183,355 ft.3 + 76,630 ft.3 + 236,669 ft +V3= V "VI+V2 d = 496,654 ft.3 l L

~ s Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 11 1 b. Volume in cylinder Above El. 617'-0" (V,1 i Diameter = 140 ft. The spring line is the point where the containment shape becomes a cylinder as shown on Reference 7m. Height = H = Spring Line - Floor Elevation = 729 ft. - 617 ft. = 112 ft. V =[n/4]D x H = [n/4] (140)2 x 112 = 1,724,106 ft.3 2 e c. Total Gross volume Above El. 617'-0" fv) V=V +Y = 496,654 ft.3 + 1,7 2 4,10 6 f t. 3 = 2,220,760 ft.3 d e ~ 6.2 Additional Spraved and Unspraved Volumes The following tables summarize the volumes.to be added, or subtracted, from the gross containment volume above elevation 617'-0".

h l Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 12 Elevation Area (1) below volume (2) Below Elevation Description (ft.2) 617'-0" (ft.3) 617'-0" (ft.) Below Grating 5856.9 590.0 158,136.30 sprayed Net Steam Gen. 118.38 568.0 5,800.62 Cavities (total) Volumes Fuel Pool Area 1 1225.17 591.0 31,854.42 Fuel Pool Area 2 332.64 591.0 8,648.64 Fuel Pool Area 3 116.92 591.0 3,039.92 i Net Pressurizer 99.14 568.0 4,857.86 Cavity RCP Cavities 649.89 568.0 31,844.61 (total) Hatchways 303.04 577.0 12,121.60 45,250.00 ~ Minus RCFC's (5) Equipment 5,695.70 volume RCP's (4) TOTAL 205,358.27 FACTOR 0.90 EFFECTIVE 184,822.44 VOLUME Net Area is gross area minus equipment area. Elevation Area (1) Above Volume (2) Above Elevation Description (ft.2) 617'-0" (f t.3) 617'-0" (ft.) Unsprayed Steam 660.52 652.0 23,118.20 Volumes Generators Subtracted 18,868.00 Polar Crane (4) Pressurizer 61.28 645.0 1,715.84 23,207.40 Upper Dome (3) TOTAL 66,909.44

I i Calculation No. ATD-0214 Project No. 9140-25 Page 13 Revision 0 Notes for Tables i Based on AUTOCAD, refer to Figure 1 (1) Volume is calculated by multiplying the area by the absolute (2) i value of the quantity (617' - elevation); The unsprayed volume of the upper done is calculated in (3) i.1; (4) See Attachment 9.5 (5) From Reference 17 6.3 Spraved Volume of Containment Sprayed Volume = 2,220,760 ft.3 + 184,822 ft.3 - 66,909 ft.3 = 2,338,673 ft.3 f 2 Spraved Volume of Containment as a Percentace of the Free ~ 6.4 Containment Volume 2,338,673 (100) = 86.13- % of Free Containment = 2,715,000 6.5 Sample AUTOCAD Area Calculations AUTOCAD is capable of determining the area for any given shape i that is drawn. A shape or outline, which can be represented by lines, is converted to a polyline (Reference 15) and by using the AREA command the area within the outline is calculated. Figure 2 shows a shape with a scaled area of 5 ft.2 The computer drawn shape and associated commands from the AUTOCAD screen are also shown in Figure 2. It can be seen that the AUTOCAD calculated area is in agreement with the scaled area of 5 ft.2 AUTOCAD is also capable of determining areas for circles and curved sections. Containment Free Volume as a Percentace of the Gross 6.6 Containment volume i a Gross Volume below El. 617'-0" a. Diameter = D = 140 ft. Base of containment is at elevation 568'-0" (Ref. 9m) Height = H = 617'-0" - 568'-0" = 49 ft. 3 V= [r/4]D xH= [n/4) (140)2 x 49 = 754,296 ft. 2

=. ~ - t i Calculation No. ATD-0214 Project No. 9140-25 Page 14 Revision O b. Total Gross Containment Volume 3 Gross volume above El. 617'-0" = 2,220,760 ft (from Section 6.1) 3 Gross volume below El. 617'-0" = 754,296 ft r l 3 The total gross containment volume = 2,975,056 ft. i Containment Free Volume as a Percentage of the Gross c. Containment Volume 6 3 The free containment volume is 2.715 x 10 ft 1 6 % = 2.715 x 106 (100) = 91.3% 2.975 x 10 i ? r i i I i e i t i 1 I e J ,.r y-

~ _ =_ . Pr oject No.. r9140-25' Lolcula t:on No: AT D-0214 F;gge ] tevision 0 PQ9e.15 t ~ . t. / ~ 1 I ~ f- / x-s 'x \\ x x e ,7 y s y g j,/ s x x N r - / a== ,x= i, s / \\ /. -s s s n H1\\ !hw= \\, N \\ 'p b p p \\ / / , s,. - \\ \\ i, l / s i I //', ' / ',\\ e ',',/ l l,'/ l,f , x,,_, x, ) g, \\, ll , \\,, ,, 'l /, / s/s/x N.s IA ^ ^ ^1 I' / / / / / // / /,/ ,nn ,/ / ,//, / // / / / k'l,/l,,!ll,!j I .i % / /// \\ \\ / l 8./ ', \\ \\ i \\ \\/ Y \\ /\\ \\ j f \\ j t ^ N '\\s \\w/ / / s 1 \\\\\\ / \\ \\ / N ,r x \\ x f s / K W / ~ W p N ) '%.1 u s "s Scole 'N 10' $0' ~ (~_ u-L e genC) Steam Generators T Groted Areas = ] Net Pressurizer Covity /' ] Fuel Pool Area 1 Pressurizer Fuel Pool Area 2 Areo 3 8 Hatchways Fuel Pool A RCP Covities il l Net Stean Generator Covities M ILL

1 Project No. 9140-25 q Calculation No. ATD-0214 Page 16 Revision 0 Figure 2 i -i r I, [ N l { _^ I / \\ V Command: pedit Select polyline: < Snap off> ~ Entity selected is not a polyline Do you want to turn it into one? <Y>Close/ Join / Width / Edit vertex / Fit cu j Select objects: 1 selected, 1 found.- Select objects: 1 selected, 1 found. i Select objects: 1 selected, I found. Select objects: 2 segments added to polyline Open/ Join / Width / Edit vertex / Fit curve / Spline curve /Decurve/ Undo / exit <X Command: area <First point >/ Entity / Add / Subtract; e Select circle or polyline: Area = 720.0000 square in. (5.000000 square ft.), Perimeter = 10'-7.2666"

i . ] i l Calculatien No. ATD-0214-Project No. 9140 ' Revision 0 Page 17 1 ~ 7.0 R e su lt_s_. i The sprayed volume as a percentage of the free containment volume is 86.13. i l i ' l I 4 b i l l I l I

l ~ -) Project No. 9140-25 Calculation No. ATD-0214 Page 18 ) Revision 0 t 8.0 References PWR and BWR Containment Spray System Design 1. ANSI /ANS-56.5, Criteria, 1987. i 2. Zion UFSAR, Section 6.5.2, Containment' Spray System, June 1992. 3. Zion UFSAR, Section 15.6.5.4.4, Containment Pressure Analysis, June 1992. i i SPRACO Coverage Data for Model 1713A Nozzle. (See

4..2) t Inc. dated FAX Correspondence from Bill Meyer of Lechler,

. March 27, 1991. _(See_ Attachment 9.3) l 5. Mechanical Department Drawing List for Zion - Units 1&2, i 6. dated September 25, 1992. i Sargent and.Lundy Mechanical Drawings for Zion Station 7. (Current Rev. per Ref. 6) a. M-3, General Arrangement Plan Main Floor El. 642'-0", Units 1&2, Rev. L b. M-4, General Arrangement Plan MEZZ. Floor El. 617'-0", Units 1&2, Rev. N M-5, General Arrangement Plan Ground Floor El. 592'-0", c. Units 1&2, Rev. S d. M-6, General Arrangement Plan Basement Floor El. 560'- 0", Units 1&2, Rev. J e. M-9, General Arrangement Sections AA & BB, Units 1&2, Rev. EGeneral Arrangement Sections E-E & F-F, Units 1&2, f. M-11, Rev. F Rev. l g. M-44, Diagram of Containment Spray System, Unit 1, JL h. M-62, Diagram of Residual Heat Removal System, Unit 1, Rev. AK ~ i. M-65, Diagram of Safety Injection System, Unit 1, Rev. AJ 4 i . ?

Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 19 j. M-514, Diagram of Containment Spray System, Unit 2, Rev. l' AF k. M-520, Diagram of Residual Heat Removal System, Unit 2, l Rev. AD 1. M-522, Diagram of Safety Injection System, Unit 2, Rev. AE m. M-279, Containment Spray Piping, Plan and Section, Units 1&2, Rev. H n. M-280, Containment Spray Piping, Misc., Details, Units 1&2, Rev. E 8. Structural Department Drawing List for Zion Units 1&2, dated September 25, 1992. l Sargent and Lundy Structural Drawings for Zion Station: i 9. (Current Rev. per Ref. 8) a. B-264, Reactor Building Framing Plan El. 568'-0", West Area, Unit 1, Rev.Z b. B-265, Reactor Building Framing Plan El. 568'-0", East Area, Unit 1, Rev. U c. B-266, Reactor Building Framing Plan El. 590'-0" & 591'- 0", West Area, Unit 1, Rev. DD l d. B-267, Reactor Building Framing Plan El. 590'-0" & 591'- t 6", East Area, Unit 1, Rev. SS e. B-268, Reactor Building Framing Plan El. 617'-0", West Area, Unit 1, Rev. DE t f. B-269, Reactor Building Framing Plan El. 617'-0", East Area, Unit 1, Rev. HH g. B-270, Reactor Building Framing Plan El. 568'-0", West Area, Unit 2, Rev. S h. B-271, Reactor Building Framing Plan El. 568'-0", East Area, Unit 2, Rev. M i. B-272, Reactor Building Framing Plan El. 590'-0" & 591'- 6", West Area, Unit 2, Rev. Z f j. B-273, Reactor Building Framing Plan El. 591'-6" & 590'- 0", East Area, Rev. KK k. B-274, Reactor Building Framing Plan El. 617'-0", West Area, Unit 2, Rev. CD 1. B-275, Reactor Building Framing Plan El. 617'-0", East Area, Unit 2, rev. MP m. B-276, Reactor Building Framing, Section A-A, Units 1&2, Rev. M n. B-277, Reactor Building Framing, Section B-B, Units 1&2, Rev. T o. B-278, Reactor Building Framing, Recirculation Sump Sections and Details, Units 1&2, Rev. H

s Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 20 l p. B-279, Reactor Building Framing, Cavity Sump Sections. and Details, Units 1&2, Rev. L q. B-280, Reactor Building Framlng Sections, Units 1&2, Rev. T r. B-426, Reactor Building Pool Liner Plans El. 617'-0" & 591'-1 ", Unit 1, Rev. W s. B-427, Reactor Building Pool Sections, Unit 1, Rev. N t. B-431, Reactor Building Pool Liner Plans El. 617'-0" & 591'-1 ", Unit 2, Rev. W u. B-432, Reactor Building Framing Sections, Units 1&2, j Rev. V v. B-433, Reactor Building Framing Sections, Units 1&2, Rev. H W. B-469, Reactor Building Plumbing Diagram El. 590' " & 617'-0", Unit 1, Rev. E x. B-673, Reactor Building Operating Floor Plan El. 617'- 0", Unit 1, Rev. M y. B-674, Reactor Building Operating Floor Plan El. 617'- 0", Unit 2, Rev. K z. B-776, Reactor Building Framing,_ Steam Generator. Support Plan El. 588'-13/32", Unit 1, Rev. B aa. B-777, Reactor Building Framing Steam Generator Support Plan El. 617'-0", Unit 1 Rev. E 10. AUTOCAD Computer Program, S&L Computer Program Number j 03.1.025-1.2. 11. Whiting Corporation Drawings (Current Rev. per Ref. 12) a. U-60290, Elevation of Four Motor Circular Gantry Bridge, Rev. 4 b. U-60291, End Views for Four Motor Circular Gantry Bridge, Rev. 4 12. Document Index System, Vendor Document Report dated September 25, 1992 13. Pressure Vessel Design Manual, by Dennis R. Moss, Gulf Publishing Co., Houston, c. 1987 (See Attachment 9.4) 14. CRC Standard Mathematical Tables, 18th Edition.

f i Calculation No. ATD-0214 Project No. 9140-251 i Page 21 Revision 0

l 15.

AUTOCAD, Release 12, Reference Manual, Publication ~ 100752-01, August 6, 1992. Zion Generating Station Maintenance Procedure, RC001-1, 16. " Reactor Vessel Closure Head Installations", Rev, 1, October 29, 1992. ~ Sargent & Lundy Calculation, RV-0DB28, " Volume Occupied by 17. i Ventilation in Containment Building," dated August.31,1970, transmitted by DIT No. ZI-HVAC-0057-00. l l u---:. f 1 l .) i I I

f Calc. No. A79 o2 W l Revision o REVIEW METHOD SHEET Page 2.: Proj. No. 91@ -z( This calculation has been reviewed by me according to the method (s) checked b 1. Computer Aided Calculations is a Revlem to Cetermine that the ComDuter p*Cgram(s) nas been Val tCatec anc Documentec, the Calculation Contains all necessary tne prDDiem Deing analyred, anc tnat Suttacle tC intCemat1Cn fO' reconstruct 1Dn at a later Cate. D Peviem to Cetermine tnat the inDut Cata 85 Spec 1f isc f or progreS emeCutton 18 Consist-inDut. Correctly Define $ ine prCDiem f or tne ComDute" algorithm limitations Of tne accurate to procuCe results wstnsn any numertCal ent with the OeSign V anc is su+ f iciently CVOp'ar. anc wStntn tne results ODisinec f rom the program are Correct witn tne input. to ve-1f y that the program ano are Consistent Revtem statec assum.Ctions ano i m tations of C l ( C Reviem va110ai10m Documentation for temporary Cnange5 to 115ted. Or Developmental, ce TC assure tnat fue t t,005 useD 30eGuately va1108te / um13ve Single SDCitCatic" p*Cg"am5. the p"Op's" for the SetenceC eDplicat.On. Revtem C CCDe inDut only. $1nce the Computee pecgram na$ Sufficient nistory Of use at Sa*pe** 6 Lunos in similar C81Culat'On5. e lmev,e. ar,1, met,C necesse 3 te e-epare Cooe snout Osta p eine : 4 2. Hand Prepared Design Calculations of tne e-spinal CalCJ1stions. ylDete,1ecrevie a 3pDPCytmate method of Calculat1Cn. 4 D Review Dy am alte*nate. $1mpftfled. D* a rep *e$entative $ ample of repetittve Calculations. C Geview C Calculat900 previously performec. d Review Of tne calculation against a Similar } t 3. Revisions a a EditC"131 Champet Cnlt. altering Calculateo results. cats witnout Elimination c' unapprovec input D C otner: 1 4. Other / - 2 6 <f 3 944. M"A m -12 cate-at<,eme-et -r:Ce :t.:t.. c:r49.es

- t r Revision O. Page 23/ Final Calculation No. ATD-0214 Project No. 9140 ! i e 9.0 Attachments 9.1 Unsprayed Upper Dome Volume i 9.2 SPRACO Coverage Data for Model.1713A Nozzle (Ref. 4) 9.3 FAX correspondence from Lechler (Ref. 5) Y 9.4 Pressure Vessel Design Manual, Appendix D (Ref. 13) 9.5 Additional Equipment Volumes .?. ~.

  • .T

~~ J l 1 + e h n....r -e..

E Calculation No. ATD-0214.1 Revision 0 Project No. 9140-25 r Page 1 i I f v f i t UNSPRAYED UPPER DOME VOLUME 4 ) l i l 1 I I . I J m-m-

i i ,.1 Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 2 1 Purocse To determine the part of the upper dome volume which is considered unsprayed by the containment spray system. l l Approach Per References 7m & 7n, the upper headers for Trains A, B and C are at elevation 772'-6", 769'-0" and 775'-O" respectively. The i upper headers of Trains A and C have nozzles spraying upward at The upper header of Train B has nozzles spraying upward at 10*. With this information and the coverage data provided in 20*. Reference 4, the distances at which the spray nozzles are l expected to reach can be determined. Since coverage data for nozzles spraying upward at 10* and 20' is not available, it is determined by interpolating between the spray directions provided. Having determined the minimum distances for which. spray is expected to reach, a vol'ume is calculated to represent the unsprayed volume. Equations for volumes are taken from CRC Standard Mathematical Tables, 18th Edition, Reference 14. The dimensions for the containment structure are from Reference 7m. 6 ) a i 4 i h

- - - _ _ _ _ _ - - -.1 Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 3 Assumptions Since it is assumed that 100% of the volume subjected to 1. spray is actually covered by spray due to the air movement in the containment, the volume calculated in this calculation is considered additional conservatism. j I The header which provides the greatest unsprayed volume is 2. either Header A (El. 772'-6") or Header B (El. 769'-O") based on the header locations and nozzle orientations. 3. The upper limit (vertically) of the spray coverage, in undisturbed air, for the more conservative header, is i further reduced by taking 50% of the vertical spray height. This assumption allows for a more representative volume l since the full spray height would not provide full coverage. 4. The horizontal spray coverage, in undisturbed air, is reduced by taking 75% of the horizontal spray distance for a more representative volume consistent with Assumption 3. 5. The height of the cylindrical volume, in the center of the containment, which is considered unsprayed, is the difference between the reduced elevation and the elevation of the lower header for the same train. 6. The volume of the cap is calculated based on the volume of a segment of a sphere. This method is acceptable since the volume is within the spherical section of the dome. 1 .1 Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 4 J l** $ 2= i i / g] L y.. g /\\ i l Train A Train B Soravina Unward at 10* Soravina Upward at 20* By interpolating the coverage data for' nozzles spraying upward ~at-- 15" and 30*, X &Y20 can be found: 20

18. 7 5 - 18. 5, X20 -18.5 f

15 - 30 20 - 30 6-7 Y20 - 7 2 0 - 3 0 ; y29 = 6. 3 3 f t. 15 - 30 Xo&Yo can Similarly for horizontal ,cs,ing and upward at 15*, 1 1 be found: X10 - 19 ,g,g g 18.75 - 19 15 - 0 10 - 0 6 - 3. 5, Y10 - 3. 5 15 - 0 10 - 0 Train B Nozzle Elevation = 769'-0" + 6 " (cos20*) = 769.5 ft. (Ref 7n) Train A Nozzle Elevation = 772'-6" + 6 " (cos10*) = 773.0 ft. t b

1 Calculation No. ATD-0214.1 Revision 0 Project No. 9140-25 Page 5 Calculation fCont'd) Upper limit of Train B in an undisturbed environmeni.: 769.5 ft. + 6.33 ft. = 775.83 ft. Upper limit of Train A in an undisturbed environment: 773.0 ft. + 5.17 ft. = 778.17 ft. Therefore, Train B would provide the greatest unsprayed volume. Calculated Unspraved Volume: 1 H.t6 2.8.26 ,L, cf. o ' u,,,. ; o.a.c o. n \\\\ h ' % 8' (#ff*' L 6 4 n' 4MNNNNN\\\\N

u. m.s d%:d.4 g

/,/ V \\ n...c c.ae teQ [j g,qq;',,'{gose,beder

90. r1 L: 27.G7 G

E. W g 3 d.m I / -1 90.17 O = cos 94.5 17.41* 0 = 94.5 sin 17.41' " 28.28 ft 6.33 Reduced Elevation: 769.5 ft + = 772. 67 f t. 2 Reduced Horizontal Spray Distance: (18.67 ft.).75 = 14.0 ft. Volume of Cap = d nh (3R-h) =d n(4.33)2(3 (94.5) - 4.33) = 5481.2 ft.3 2 3 3 Volume of Cylinder = vr L = n(14.28)2 (27.67) = 17,726.2 ft.3 2 Total Unsprayed Volume = 5481.2 + 17726.2 = 23207.4 ft.3

Rttachment 9.1 Calculation ATD-0214 Revision 0 Project No. 9140-25 Page 6/ Final Results The unsprayed volume in the upper dome of the containment, in r undisturbed air, is estimated to be 23,207.4 ft.3 References See Reference Section 8.0 of main calculation. p+vf-7 7 6 h

Calculation ATD-0214, Rev. O.2 Project No. 9140-25 Page 1 i i FIGAL CUV EHAGE CH ARTS j/ N. R 5422 ......n. 3 R 5605 e.6 t. 018 6 8 I 6 i_ \\ \\ / / e L (- g i I~ .t t f ~~ t j -_ a

  • c t

g c c ...a- -.L f q p f _ } 3.. p 6 i -i -m f 1 T 77 ..,a. c ,a -c "\\ / p 1 1 ,, t .. c I w....c Spraying downward on 15* angle at 40 psi Spraying vertically downward at 40 psi ,,3 a R5604 ,,,,,,,,,, N R 5424 ,is, ..,...... u x';37 s e j 1 i l e.o* ~~ l i t / -- As t /,_ e t_. .t. .t -...cp j, c ..c i i {= I J.. c ... c_ u,..- -. c_ = i i --..c j .e J w. . c u:.1:,2Y Spraying downward on 45' angle at 40 psi Spraying downward on 30 angle at 40 psi NOTE:The coverages at 100 feet elevation are theoretical. l

Project No. 'J140-ca t agc..2 Calculation ATD-0214. Rev. O

I R5571-

'"s ....m.% -R5572' e. 7- ';7 - O s 3_ _} / .e0[ Fr9e eU Zs t 7_ _ 7 r v' n t 9 I i OC C m L --,q.. 6. 'OO - 9 ~ - m g_ L_ i

  • +

F ' ~ ~~7 -n,, / l g-7 i h -4 \\ i 4.. \\ / I i .c 1 a.t e n2*.I Spraying downward on 75' angle at 40 psi L it';n 2* Spraying downward on 60' angle at 40 psi f I c- ... - ~ R5553 .- J t l r' RS603 .:n;7 4 e y '~ /~ s n= '. a 7 - i ic / ~- u, e r {- ; j I 6 -/ t

g/;"

4- --..n / __ L t c - / s ...- y j i i I .{. t_ , -e w 0c O ... ~ ~ I \\ - o. [ a. e-S.s ~ \\ h.- \\ \\ ~> s l / \\. l-. ,,r...- L m. ' V-a9 Spraying upward on 15' angle at 40 psi 3 _. m..... Spraying horizontally at 40 psi heoretical. NOTE:The coverages at 100 feet elevation are t I f e f .2 Project No. 9140-25 Page' 3/6vAa Calculation ATD-0214. Rev. 0 R5506 R5423 / 0 ' * x Og:'," E" j 1-4 -4 }- S& Ws p a L-4 CC - C geg' w m J 00* O =34 t e .r- _t a-*. I F 7 / \\ [ ... e _..e.__..A so t e.c j us....- t -. - ~ ~ ' ~ Spraying upward on 45' angle at 40 psi Spraying upward on 30' angle at 40 ps: \\ l'<p-,-c t

  • -r R5573

..c- >-r R5552 1 4 1 l ,/ / t.

-ur. u

[* NJ ., s .L. A.;...,.. i i g_ n. t _(

  1. q 4,,

i L. i ~8' .. W .e - t 0~=== .e I / m 3 _r -,.., 7 - ( .em r, / \\ / \\ y J p- +< / ,m.,,,. ....-.. c Spraying upward on 75' angle at 40 psi Spraying upward on 60' angle at 40 Dsi l AinTP The coveraoes at 100 f eet elevation are theoretica.

Calculation ATD-0214, Rev. O Attachrnent 9.3 Project No. 9140-25 Page 1 IAX COR lES 30\\ J E \\ CE g' Lechler inc,445 Kautz Rd, St.. Charles, IL 60174 Fax 708-377-6657 Phone 708-377-6.611 Send to Fax No(8/% J/8-380 ~ ~ E r* A S Y S C /-Itx % C 7 2CompanyNAAMW-+ lRA'07' Attention: 3 S~~W T .- Date: 8/ll /1&YGp Total Pages: From: Ti% fotLcewG p,9965 cf 7His FAxDyo r 4 /7'3 A 6 OP7ie fC"* 1/4 /7!3 4 194TS f DAOPLC-7 5/ 2 S n022465..As y'cu av ec46, T/+4 /4VMAssa / GSS&dTtALW 106VT7 CAL. THS /,in" l)tspssecs 6&74/ca rits ;t is t uMWi%G TO /~71 3 L D S.n w s 5 s,%ciff.477oss--e TOL4MadM LW/L4 / 3 fy& l6H7&A.44/f464A C i gw't.4%&TW?fD 7b TRS p,ucM T n P S/Y4lFI CATI 02. / /-/0/ot TN/ 5 N6W S r r ? 4 3

Res. v m. Calculation AT D-02 i 4 /._-.;.._.. l .. ~ .f I ._..i_..__..._;_

1...=.-'. = =.T; g =_

==...=. 11.. ) l ~, '3~ - - ~

n. ~

1..,,.....n., _: : =; ~_~I_ . ~ } ' " - T- ' - w .l.. C._.. i=J.:E j g .l l .l F:.9EssDag osok..E..E. '.-~ 4 l 3 .. c._ ..~. _,. j .~._. ,~u.== =3. =._ i w j -, ::V;$r. . - + - N.. i.,h... M. ;.; ;

q t
--7 +~f;~; ;_ _..~_ ;r=

J -[ r ,-,...e~. _g- . i. _#..-W.a..M.u 4 R - ~ -..M.-.-. NM..M_g .6 K - mot.T-- Out:CONQ:

g. sE.o.cy.samr_w===g;_=

j J _ _- - j c -- 7 m .bq 2._. ^ l

=

3 w -!.r: :i.W-A._T E..._R _-M,..E_ U.fCA;.3.- 2 .'m'.T*," 8 { "g.,' g **g g ig r-o I i.. fl.. _

n

'_b"1*"*T

:W p--

n %. k. _-g ggg=_ ....=._.rgw,.. ..ym ~~ '=- n:r_ a~+.. + +m j

p... p....

.~.. _ t.

I _. ~. _M.-}-. 2_. x t- :=;~~ - 22

w

...~... ......._t== ~~- m u,u__- r_. .a w. !l I 1 _n + 1

n..=.jn. 2:.=.. :.. =_. ]...._.n

-r w j n 'r i ~..

: 7... nn :

'= L ..r p

l..i.E.f.EdilE. i: ~

.E. 22FrE$_=- _.4._ p _Q w = = = - y.. - - --g-2a C -tn. rc J 2-r*; :nr~ r =t c = p _. V r;Jrig.- __2_ 1 ~~u . __'pg-{.{ a;.x ,.p+ygh_:g; m -- b.- Ei E..-r t= - ~21_..~ip_ ~.IEE 3 A; _.3 - - ~ ~ -- .Ern ~_=_ _;;;_ -: N=t en ~; (=R r ++- g= J:. - Tim * *, T_;.,aq g -r:1 = _=+:- N- .! =: 1 L T

nt =

%Q..g ._. i. f .. $- E. ]!.7i !:U. _"I_Q i u +, n n 3 w _n s 7 ~~._ , 2 .y.ge -, 3+-f -g% h; W +a h =r-t - r+ -- g:m 22_ . u.,.w,,

+

t

=;:;t= n .w;~ s..... %,,.,4.. tig C g. ,t.uws ~4 2, Mqw+w rry: ~=_., ___ g%; ~ _ nA mw. m %-.. ~...~ - - -...- _- u,% - 24.y-q=

y a.g.-

m p m .~._p___1. ;c=_u _ _ .a -. ,+ 1

  • T

= =..O.__r _. m

d -

q ;e+%gg _ gnn.

  • ::n~ +rt:=

r _!r -~w;;r:=+__** "++% %-W wn u =n4 __ '-n; ~- _ =: =n. '***r-

. *~
..* _f**C
.4v

==r~: =w.-,--- ww 3 K x, x ~ ^ + 3~ ~::w =4 ~.',' O Yh, %+ %

== .=u._=-- _ ~, ' * * - .= = p[ =. N r =-

+~

.,.*. - ~ ~ ' ~. - DLsk. my w wen v : Te = .,n... +... e._m_;.;rm~;,. .._m4g....g.mg m y.__f m

...Q= Z=_ _'

~ m _+ - n_ u.. u _' A. +.%, m .m -m_ r_- _=~,3p: :...y.._ g_ _. m m "_q.__n_. gzJ ~ ~_t _-.n:.=._#._A_ ; 3 % .g _. _... qw n., .. n_;n_ _;.; t =~ ~ -. '-m m 2 :- W'.%. %, -.m ~ e: & - ~2 4;' m +, Cit:-M <r. o.

:

= =~--t~r==ra4_s_

~

~ nd~C=d=m. m% =

~

-= m 7:=

+~+
%. -~,_

.1 m = o :

... s

~% m E T r ~ .L = 4 _- -._r ^ - in"E' 1% 2, m m f g., i n~+---- L, a3_E: s' s ~. ~- y qy, +~rc~*+ , _:n w-c.- - M N[ u._ _ m. _-. m- _e _ _ _ w o 5.," l ~ :.Izn w _m._ -~+.~ : -.. w% e ; __ --. m. p._ - - r. :=_4 a s ~.n m. -.. 1 -=u w -t - . m .,.,, -.o =- . - -: -= l rnii=:- o= +-- r~+ w

  1. g. @ a<le. h y

o. _L

- 7

. m ~ . y2 %'- mww a. ...s a . r a. = ( u ~ m_. pJ ,;.e -._.4_. _ uc"" o IE6ms 4_.. ,.=._n,. 7 ~ ~--~.e. .- Je y._ ~, _i. ..-m+.~w a~,. ~ Ls. ; . _. -.e_ UmE~ . ~ _ - I

- g 3
g3:p.t Ortw= _ =. _ _

r M*r%. ~~.m J2 - : =t =~. m N -tm __ PUCO, 'INC. _._1. n.r ;.. _ - + .. _ _. +. _ F ~*+ ~E~i~ ; -:j~.g. -r- =_ p = -t _E .ISNASHUA,.)G M..,14-' 'm p u- =. ~._.~ ~ /, t, ~3E '%- - 6' tr :i' I __J. -=.. _ __ _ _ _ _.._ =.4% =

ai i,

m qmg.;g4id4tu 2.1 _.- l i

In::=

i ..... L. _ _ _ L.__ m n -tnr.**i1EE. =n= y

t.
4-rr - :==:=

1:.o i. .,. _c =4 4 >,1.,C-_~[ b.% g-+!r~b,_=Er m -r

yy m,.-e wu

.c r-s==p ~,-_.p - ~. ~fNi;-.n,f _*"1*'*L.I_-"n, YW a ,- a z - a .q = 1.__L_ J_.__-9 M. ^

.+ ~.~._*

~- 3 M 4 %C :* $.. M c ._.r ~~~f-r '.' '+!.:: 7..

  • 1, ~

IL- '~If. '.d.._-f.r. -'. r_=_ 2~3..Y_ '. '.*.3 ~7 C 2 - ' ~ - 4._. ~*' m" $*___ 1 t... ....--.w. , ib w i- - N ". _I

=:=

,. l

.._T ..._m i f . :ru L _l l m my.iw jya. ~

- Calculation ATD-0214, Rev. O.3 Project No. 9140-25 Pa e 3 d I l i 1 l ] 1 n> "N i i i 4 \\t 4 d l ,,,'a " \\' r'. 4%, *Ya.: 6

  • ?.

}*,.' .-4. * *.fcy; l i i I l i g 8 pe ap

.l;
u
  • 4 e

.s W 4 l i I 1 I . =..... .... ~...

Calculation ATD-0214, Rev. O.3 Project No. 9140-25 Page 4 Test rnecia Water Noz21e-modet 1713A .\\ /, M ** s.c = Nozzle serial number - T-54 Nozzle serial number - T 53 Spray angle - 60* Spray angle - 60* Fig.1 TESTING PERFORMED EXCLUSIVELY FOR NUCLEAR INDUSTRY The following tests were run on the 1713A in SPRACO's laboratory with qualified Nuclear Engineers in afterxi-ance. From a quantity of 325 nozzles. 65 noz-zies were randomly selected for testing. The spray angte was measured by pho-tographic record at the design pressure FLOW RATE D ATA SHEET of PSIG to determine agreement with i the predicted angle of 62*. (see figure 1 Nozzle - Mdl1713A Test Media Water for typicalspray angle chart) Nozzle Serial KT-54 Water Temperature 59'F Each nozzle was flow tested at a range of inlet pressures from 10 to 50 PSIG to m ascr now' #r6w-now determine that the actual flow at 40 now antssuat patssvat u-ua oown oom now rest actuat ca in aCCordance With the

== com ium s=> c" PSIG WaS ran cao predicted value of 152 GPM. (see figure S5tB 72 7 61 12 7 61 7.61 to 553,4 toi to s2 er to so 10.7, 21or typicalflow rate) i h 2Syd 123 1342 121 13.20 13.31 140 15.30 138 15.10 15.20 / 43 40 156 17 06 156 17.06 17.06 30 50 -%. 2

4 Calculation ATD-0214, Rev. O.3 Project No Si40-a t y -.,,,,, m 3 s l MEDIUM ANGLE 1 aime,,, uni..e agie g-new aart in sauens era esism omnena er sistaue cmt 's poumu na sauaas insca patuvais .Z 2l*e Mme

i ri aa } ts i mi nI al a-to f n i iss
r is > a tai a naiso e

s e ac. 1 trod h 4 27 i sst eol 4el 5i e d l r oj so ea nor 12 ) s2' er* 14' e 2M 1A 14 14 e ol io 4 sof 42 sa s u* rs' 14' A su lE 14 IM E l j seIasis2leslrs ei. iros g t j ..I ssj.2l Fil se to o serj in s is, ie it s W rr* r e' 4 aM .E 14 IM m i s ! e4 77j esj see in is4!is it s 23 4 34. sr.. W u* y rg ng g gag g trio s iris i w j se I re esl us ss s se r es tl see nr 2s r nr W *** a* 2 rm nu m m u sne u no!** n tl *2 r 's o sr! it sl n s no ne no se ir vs* 1 vm 1% % M irir r ne ue : at s vra si' rs* 1 vs 1% sG t'%

~*

eo : son essises se s so e ste! us >>ojizo is e l ve s 2: 2 24 e n 4! si r ss. us no a* pc n' J sE IM sE a ern u r 42 0 siJ us av n* rs' IJ E IX 4 a ina sw n 4l 3r s ear lso-is s l 22 s se 2 ns raf aJ g 33 g 3 m trao is s ss sf 41: 44.o s4 as o e4* 72* ist l 43 seslsas 2s 7 s2.2 2 sr1 ses is 7s* sia et* u E IM E

3..

E irst 44al si) I ir r l ro.s . 24 s so n us ec o erse sw s no za a soo st o as s us saa so) c.s nsa esa rr* W se sa su m % ira t srss ss m usa 2re 12 s as s j nu ssa ene se s rL2 esa noe 7s* W W En ni ni, %_ m' s aso,no no aJ ' sso su on tra as son oss is' rs' rr na su sm m m s 2 m nJi si.o 64 o 90 no

  • e o iso p.o ers ies su 4:* av u*

as 4 ses em sig x sies no es o no as s 74 4 sa o eu iss sus as to iss n' 14 4 sN 0% 8% M I S f irst 3 1%. dse ss.o 43.s reA coJ ton lio 134 tal tre M W W se sJ M N M M trea I irss 3 lb zo.o eao 11A sea les its $3s les ist les 12s el* W s2 % M M x sru ss sm, ese ran us nos tse au Ise sn m ssi as n' rs' rs* 4J m sn m an 'm r ~ isp rw im no ram oss vi4 in sa ieo iss ser ni no is* es* es* ts sE

  1. 6 AN se6

'E em 734 ese tar iso iso ies ist see ass see ' ase is* eo* es* 4J sE se6 AM sN 'E N 9% 438 too i3e las lee 8&d 3co 22e 3ss 333 sao is* W W 4J g g g ,gg .ig - irn tral q ":% MEDIUM ANGli ~<* 4' d E be. a y sensame e,nes a pesass pts w tacs perssmus as f : a sI r a is 7ah ah a s a! ts ass. A e a e a f irig dust cess. sien tras s og 64 ss as se so es sie ts: las ns 1s* W # ss.e SE 4 4 4( g nM a-==e am n. itu a sw u a n a soo ne su su no are W as* ess 4% 4 4 46 IE i 1 tres a a eo es ess sie its ' trs tee 277 Sas de* u* W ' sit 5% 4 4 g g i Y re e4 ios eso iao. saa ser n sao see # re* rs' isa sg i ag eg g E sru a sg e4 set iss en eso are tis sea ue aos W rr is* eas og 4 eg eng g i gra s j stri a 3g u tel fis 434 tse its its au 348 dis W es* er* s12 9% s pg g m rm s pg gg m in2 4 ab ee air su eso ars ser aso ras ns 4eo # r** re .,_su IU4 4 3% ll3 Iss Is4 til M ise sts 228 ue ses 74* FB' 323 g s pg g g f sns a sw sxt ass nr4 su sts 311 see see oss rs* ee* st* su rm s en as m 8 { mar oss see aos us est un see sse esa is* si' as*_ J ym s FM 26 EM 7 su ses sse us see Sss ase no 600 8ss W 83* er* ssJ 0% 8 rn ng m snr 4 T X srre i -E-i m su eg a is a ss si ! u ao - e4 na in ess ' *so as as u aes SE4 sg u a 77 u too lie saa les tso F8 W W W M 8'E 4 4 g trams s e no es ses sao sss ers no 171 su W W M* u 0% 4 et et u T i g, a sm rs e4 see sso sao su 203 n2 sse see se*, as* sta 0% e 6 es E e. l l b T { 's4 soi sis are eso srs ' ris see sd8 dis sr* As* W ssJ 8% 4 SE el E ( 05. ,,y, d 2% S4 tel lls 3H IM UE 3's M M M M N O M E E T TC~ ~es ssi nu aso srs 2ar tso tu ns soo s** W 20' us sus s 9n m m gyrggg T E iss tu ir zoo su ass sss 4so s4s W 48* se* 314 pim 3 pg g pg j m T X ssr ess su nu ns ass szs sse see su n* ns* sss vs s en m en .038 ,7,,,, T T su sss ses see sss ser us no SJo ens W a s* as* Lu vm s 9% as, m ,g,,, 033 ,m,, ~ s[ io ser no 25$ soo as' '18 W ' ' *

  • Mk 8%

s 9% Sec. 8% \\ h19 y _.m,

M ?,; j' MYEls. Wy P.+1 r - g Calculation ATD-0214, Rev. O Attachment. 4 Project No. 9140-25 Page 1 222 Pressure Vessel Design Manuai Table C 2 are assumed a Ty pe 1 onh ' Whci< p.n oal., Joint Ethciencies l phy is show n it is assumed that all it qun. n,. X-Ray l partial radiography have been furt loi I.., Types of Joints Full Spot None shell is spot R.T. 2 Ihrl'a/ radiorrap/n: Apphes to vcwel wr tuh singie and graphed where the designer wishes n, appi 1 coubie bun 1o es 3 pnts cificiency of 1.0 per ASN1E Code, labl. t. Column 1, for only a specific part of a sow i singte buti 2 ( T I Pnt witn bacs 9 e ss - rays that fulfill this requirement snust he no. '"9 5"'P per ASN1E Code, Section UW-51. kept 1.o singie butt mum of five vears, and the locations of sp..i a pnt witnout backing ~ ~ s by the authorized inspector. Specifically for any part to meet the trynn n, Double full partial R.T., you must meet the followin.. fdlet lap ~ ~ .5s 4 pnt e (ASAIE Code, Sation Uls;11(.ijt Yulk % singie fun Cat A or D butt welds sYs faset lap ~ .s

  • (AS3fE Code. Sution Ult;11thbit M.r.

N "'in piugs junctions and at least 6 in. of any Can...i singte full butt welds attaching the part 6 i talet lap ~ ~ 'S e (ASAiE Code. Sation Uit;11(.5/a)) Allt w must be Type 1

3. Any Category.B or_C butt weld in a noui.

mtinicating chamber of a vessel or vrwel p.c Notes is to have a joim efficiency of 1.0 and rv"- 10 in. nominal pipe size or 1 % in. in uall '

l. In Table C-1 joint efficiencies and allowable stresses shall be fully radiographed. See ASNil ( "

for shells are for longitudmal seams only' All joints tions UW-11(a)(4) and UW-11(aW 3p hi APPENDIX D PROPERTIES OF HEADS e e x I T. . C.. K, \\_ s. _m-m d 4 Qf7gf jg xgh 3 c s psmnA o }v y' r ) f T1 J \\, [ [ (h b r - i i d T [ 3 I m 9 P r _1 \\ 4 mp b a_ g -./ r = n R ,V D ,r = x \\ \\ h o ss Figure D 1. Dimensions of heads-i

l Calculation ATD-0214, Rev. O A Project No. 9140-25 Page 2 /ArJAL i Appendixes 223 Volume Formulas i 2 V - (frustum) .333b r(e2 + ca + a ) i D - 2r a= 2 V - (spherical segment) - rc (L - c/3) i a 2 .n a ,,n (L - r, V - (solid of revolution) S a 3 b - cos a r 3 22 120r rsin c cos c + adr r c - L - cos a L 90 e - sin a L 0 0-- Total volume: V, + V + Vs 2 2 Table D-1 Partial Volumes Volume to H, Volume to H. Volume to h Type I i 4 r DH! , 23 r h2(1.50 - h) r D#H, 3, 4Hf Hemi 4 3D' 2 3D 6 4 H. r h'(1.5D - h) 2:1 S E. r D'H,,,g r DH[ 1-4 3D' 3D 12 3VH,3_H[ 3VH! H. 3Vh',,p 100%-6% F & D 2d 3d', 2d' 3d D' 3D D is m tt Table D-2 General Data C.G. - m Depth of Points on Heads Type Surface Area Volume Empty Full Head,d X= Ya Hems r D'/2 r D'112 .287SD .375D .5D s R8 - Ya s R8 - X' 2:1 S E. 1.084 D' D2/24 .1433D .1875D .25D .5 s D' - 16Y' .25 s D' - 4Xi 100 %-6 % F&D .9286 D' .0847D' .100D .162 D D s in ft

3. Conversion factors g3
  • Multiply ft x 7.48 to get gallons i
1. Developed leng'th of flat plate (diameter)
  • Multiply ft' x 62.39 to get Ib-water f

T

  • Multiply gallons x 8.33 to get Ib-water D.L. - 2 g i a

wr+2 rL + 2f

4. Depth of head i

) i

2. For 2:1 S.E. heads the crown and knuckle radius A"b-T may be approximated as follows:

B-R-r L .904 5 D d - L - VA> 'F r .1727 D i a

Calculation No. ATD-0214.5 Revision 0 Project No.~ 9140-25 Page 1 ADDITIONAL EQUIPMENT VOLUMES y a P s h L t t r

Calculation'No. ATD-0214'.5 Revision 0 Project No. 9140-25 Page 2 Purpose To determine a conservative estimate of the volumes of the polar crane and the reactor coolant pumps. Acoroach The polar crane and the reactor coolant pumps are additional pieces of equipment inside the sprayed volume.of the containment. The volume of these pieces of equipment are calculated on the following pages. These volumes are to.be subtracted from the sprayed containment volume since these equipment volumes are not part of the free sprayed volume. The dimensions for the polar crane are from References 11a and lib. The dimensions for the i reactor coolant pumps are from Reference 7e. k 9 h I f i t 3

Calculation No. ATD-0214 -.5 Project No. 9140-25 Revision 0 Page 3 l 4 1 Assumptions The volume of a reactor coolant pump can be calculated based 1. on the volume of a cylinder. The volume of the polar crane can be based on summing 2. rectangular volumes which conservatively represent the major structures of the polar crane. ~

s. ea+

n. I e a t 4 .5 Calculation No. ATD-0214 Project No. 9140-25 Revision 0 Page 4 Calculation Polar Crane Volume s t l l (24 5 5 1 1 1 ~ l 80 l. /. /. to t' s a Gb 7. 2 1 E SG' 2 + 1 3. t i t t-l l1 l 1 -y ynn y pg " 3* ' n 1 n r 1. Upper bridge members: quantity: 2 3 Volume = (10 ft) (124 ft) (5 ft) (2) = 12,400 ft 2. Legs: quantity 4 3 Volume = (7 ft) (56 ft) (3 ft) (4) = 4704 ft 3. Cross members: quantity 4 3 Volume = (7 ft) (3 ft) (21 ft) (4) = 1764 ft 3 12,400 ft3 + 4704 ft3+ 1764 ft Total Polar Crane Volume = 3 18,868 ft =

i.5' Calculation No. ATD-0214 Revision 0 Project No.'9140-25 Page 5 Reactor Coolant Pump Volume 7.0 ft Pump Diameter-(D) = Pump Height (H) = 605' - 568' = 37.0 ft V= 3D 3 2 4 i 3(7.0)2(37) = 4 3 1423.9 ft = 3 Volume of four pumps = 4(1423.9 ft ) 3 = 5695.7 ft g,._+, ,.,p,... e>%.,, a ? P l ' { i 2 a ~ 1 [ ( .5 Calculation No. ATD-0214 I Project No.- 9140-25 Revision 0 Page 6/ Final-Results The total volume occupied by the polar crane is estimated to be 3 18,868 ft* The total volume occupied b the four reactor coolant pumps is 3 estimated to be 5695.7 ft. References See Reference Section 8.0 of main calculation. h %w, ',' > *****b ~ "W, b 4 l l l 1 i}}