ML20003C430

From kanterella
Revision as of 16:26, 15 March 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
to Emergency Dose Calculational Manual.
ML20003C430
Person / Time
Site: Farley  Southern Nuclear icon.png
Issue date: 02/16/1981
From: Mccracken K
ALABAMA POWER CO.
To:
Shared Package
ML20003C429 List:
References
FRP--M-7, FRP-0-M-007, NUDOCS 8103050654
Download: ML20003C430 (71)


Text

- - - - - _ _

FNP-0-M-007 February 16, 1981 ,

y Revision 2 ALABAMA PCWER COMPANY JOSEPH M. FARLEY NUCLEAR PLANT FNP-0-M-007 S

A F r E ,

T l Y i EMERGENCY DOSE CALCULATIONAL MANUAL  !

(EDOM)  !

R E

L A

T E i D ,

Approved:

OJt U. M%hs Technical Superintendent Date Approved: 2 /t V /gi Date of Implementation: 4 /i / g i ,

List of Effective Page _

Page Rev. # ,,

$t2 3,6,7 l0 CAUT 0 00PY Inaintained I This 4-5 1 em' Do n IS not >

8-13 1 Safety Ref,ted Activity USS In s l 14-27 2

  • i 28,29,35 1 30-34 0 36-42 2 43-51 1 .

52-68 2 Disk CHP3 810303065'/,,

FNP-0-M-007 TABLE OF CONTENTS Section Page  ;

Table of Contents i l

Preface ii Section I. Automated Class A Dose 1 Calculational Method

.. x/Q Model 2 Plume Model 4 Dose Rate Model 8 i Performance 11  !

Limitations 12 Section II. Manual Emergency Dose 13  :

Calculational Method x/Q Model 14 ,

Plume Model 15 i

Dose Rate Model 16

{

Performance 18 Limitations 20 P

Section III. Bases 21 Figures 28 ,

Class B Dose Calculational Method (later) i i

i i Rev. 2 i

l

FNP-0-M-007 PREFACE  !

The automated Class A Dose Calculational Method (DCM) for emergency assessment and dose projection within the plume  ;

exposure emergency planning zone (EPZ) will use a segmented

  • plume model. This model will predict plume movement, size and shape by initiating every 15 minutes during effluent .

release the tracking of a plume segment released from the  !

plant vent stack or other release point as defined by the .

circumstance of the emergency. Each segment will be tracked t by moving its centroid along the mean wind velocity vector.

Every fifteen minutes the position of the centroid of each 1 segment, the time of flight, horizontal standard deviation t coefficient and vertical standard deviation coefficient will be updated. This will yield position and size of each element. Appropriate corrections for radioactive decay and .

deposition are applied to these concentrations to obtain accurate dose rates and dose rate predictions at these t points. Time of arrival predictions for selected points  :

within the EPZ will be calculated based on current '

meteorological conditions. The release rate, Ci/sec, will  !

be determined by installed plant monitors and confirmed by a grab sample. Concentration of selected points within the plume will be calculated by applying the appropriate x/Q j equation (considering stability classification, release '

elevaticn, building wake effects and real time wind speed) l to the release concentration.

l The Manual Dose Calculational Method for emergency assessment and dose projection within the plume exposure EPZ will use a continuous point source Gaussian diffusion model. Through  ;

use of specific assumptions, the model is simplified to  ;

allow purely manual projections and estimates to be made i within 15 minutes of the start of an accident and subsequent i updates every hour or following any significant change in .

release rate. This model will predict time averaged plume size, shape and location during effluent release. Time of  !

arrival predictions for selected points within the EPZ will  !

be calculated based on current meteorological conditions.

The release rate, Ci/sec, will be determined by installed plant monitors and confirmed by a grab sample. Concentration  !

of selected points within the plume will be calculated by applying the appropriate x/Q equation (considering stability classification, building wake effects and real time wind j speed) to the release concentration.

I i

ii Rev. 1

_ _ - . _ _ . -- -_. _ ~

FWP-0-M-007 SECTION I AUTOMATED CLASS A EMERGENCY DOSE CALCULATIONAL ML"IHOD The Automated Emergency Dose Calculational Method described in this section has been developed to meet the requirements of Appendix 2 of NUREG 0654 Rev.1 for

+

a Class A near real-time, site 4. specific atmospheric transport and diffusion model.

Rev. 1 1

FNP-0-M-007 x/Q Model i

X/Q (relative concentration) calculations will account for release elevation, building wake effects and existing meteorological conditions. Release locations are: Unit #1 and Unit #2 plant vent stacks, Unit #1 and Unit #2 turbine building vents during primary to secondary leakage, and Unit '

  1. 1 and Unit #2 steam generator safety and relief valve vents -

, during steam over pressure transients. A single virtual release point (see Figure 8) located on the centerline between Unit 1 and Unit 2 containments is assumed but the distances between the assumed release point and actual release points are not significant (<100m) and do not introduce significant errors at radial distances of interest.

Equations used to estimate X/Q are based on the general Gaussian plume diffusion equation:

X(x,y,z,H)= 0 eXP(-0.5(y/cy )2) (exp(-0.5((z-H)/c,)2) ,

7* + exp(-0.5((z+H)/cg )2)} (1) where, n = 3.14159 -

l

' 3 X(x,y,z,H) = plume' concentration (Ci/m )

x = downwind distance from the source (m) .

y = crosswind distance from the plume centerline (m)  ;

= vertical distance from the plume centerline (m)  :

H = plume centerline height (release height) (m)  ;

O = mean wind velocity (m/sec) a,a = plume dispersion coefficients (m) y Q = release rate (Ci/sec)  :

When H  !

2h timIs(effective the heightplume height,the of either seeUnit BASES)

  1. 1 or is greater Unit than
  1. 2 containment  !

building the release will be consic'ered to be an elevated '

release; the release height (H) will be considered'to be equal to H, and G will be obtained at the 46 meter height of the plant meteorological tower. Thus equation (1) will reduce to:

(x,y,z) , Q exp (-0.5 (y/oy )2) {exp(-0.5((z-H,)/a,)2) +

2n o y az U46 exp (-0.5((z+H,)/ag )2)} (2) l Rev. 1 l

l 2 i

I '

FNP-0-M-007  ;

where 046 is the 15 minute average windspeed at 46 meters f

above plant grade, in m/sec, at the time that the segment leaves the release point and o and o g are shown on Figures y f 1 and 2 (see discussion of o y and a z calculations under j PLUME MODEL). Figure 3 shows plume dispersion based on the

]

Gaussian diffusion model for elevated releases.'  !

I For ground level releases, H=z=o and the plume dispersion [

coefficients must be adjusted for building wake effects.  ;

Thus equation (1) is rewritten as: j X/Q = eXP g (3)21-010"IyzI where >

0 10 is the 15 minute average windspeed at 10 meters

! above plant grade, in m/sec, at the time the -

segment leaves the release point.

2 horizontal dispersion coefficient corrected for 7

building wake effect = (a 2 + A/2n)b '

Y I = vertical dispersion coefficient corrected for L building wake effect = (o g 2 + A/2n)b i

A is the smallest vertical-plane cross-sectional l j area of the containment building or turbine building, [

as in m .

appropriate according to the downwind sector, t j

1

! The Gaussian diffusion equation with building wake i i effects has been shown to be conservative (Meteorology j

and Atomic Energy 1968, pg. 112). The plume  !

i tracking methodology proposed, however, reduces f r.his conservatism since the a y and o g calculations f tak e into account meander caused by changes in 2 %

15 minute average wind directions. The results of f this equation are further reduced by radioactive l

decay and deposition corrections thus minimizir.g the magnitude of the conservatism. (see discussion of correction factors under DOSE FATE MODEL) j i Rev. 0 l 3

)

r

FNP-0-M-007 PLUME MODEL Plume path, dimensions and transit times will be calc'11ated i by tracking representative segment.c released from the source  ;

at the start of each 15 minute update interval. At tne  :

start of each interval a segment is formed at the assumed release point and at ground elevation or at the effective height (H,, see BASES) of the release point. At the end of each interval, existing segments are moved to revised locations defined by the following equations: -

x j,k * *j,k-1 + Yx,k AT (4)

Yj , k

  • Yj , k-1
  • Yy,k AT (5) ,

where i

x j,k = x coordinate of segment j at end of interval k x j ,k-1 = x coordinate of segment j at start of interval k V

x'k = prior to the end of interval kx component of 15 minute average wind vel AT = time duration of interval k = 15 minutes yj,k = y coordinate of segment j at end of interval k [

yj,k-1 = y coordinate of segment j at the start of interval k <

r V

I'k = prior to the end of interval ky component of 15 minute average wind ve The last measurable wind direction is used to estimate current wind direction and wind velocity is assumed to be 0.5 meters per second when indicated velocity is less than the minimum starting speed for the vane or anemometer (0.5 meters /sec).

Segments are tracked until they move outside the EPZ. Plume dimensions at the location of each segment are calculated based on the linear distance traveled by each segment, the atmospheric stability classification, and equations which reproduce the correlations shown in Figure 1 (a vs Distance Rev. 1 l

4

FNP-0-M-007 From Source) and Figure 2 (o g vs Distance From Source). The correlations used to calculate a y and o g will be in the form:

Log a = Cy+C2 L gx + C3 (L g x)

(6)l.

When using these correlations the " distance from source" value (x) used for segment j at the end of interval k is defined as:

d{,k=Df,k-1*I*IYx,kaT)2+(yy,k AT)2)h (7)l is the virtual distance from the source whereD{k-1 necessary to obtain the a existing at the start interval '

y k using the a curve for the stability class at the end y

of interval k, i.e. ,

Df,k-1= +C{Logcyj,k-1 * ( 09 "y j , k-1) I}

C{,C{andC{arepolynomialcoefficients reproducing the curves shown in Figure 1 in the form Log x = f(ay) and as d ,k =

D ,k-1

  • EIYx,k AT)2 + (Vy,k AT)2j\ (9) whereDf,k-1 is the virtual distance from the source necessary to obtain the a z existing at the start of interval k using the a curve for the stability class z

at the end of interval k, i.e.,

Z j,k-1 + C*

D Log a (10) k-1 = C* + C (Log az j,k-1)

Z C ,

C[andC*arepolynomialcoefficients reproducing the curves shown in Figure 2 in the form Log x = f(a )

z Rev. 1 5

FNP-0-M-007 Note that unless the stability class changes during interval k, .

D{,k-1=d{,k-1 and D ,k-1 = d ,k-1 .

If the stability class does not change following segment release, dY and d* are both equal to the distance traveled by the parcel. If the stability class does change during interval k, the segment is diffused from its size at the start of interval k using the new stability class without creating a discontinuity in the plume.

Transit times are calculated using plume path, dimensions ,

and average wind velocity. Time of plume arrival at selected points is predicted based on current plume path, dimensions  ;

and average wind velocity.

Real time plume tracking will be performed using time intervals of 15 minutes.

Predictions of future plume characteristics will be made using existing plume characteristics, existing meteorological conditions averaged over an interval >l5 minutes and appropriately >

selected time interval (s). ,

The plume centerline is defined by line segments connecting the centroid coordinates of each segment to the following i segment and, in the case of the last segment released, to the release point. The width of the plume at each segment will be defined as 4.280 (4.28I y for ground level releases)

(the width corresponding to 90% of a normal distribution).

The outer dimension of the 71ume will then be defined by tangential lines connecting the arc of each segment (defined by the segment centroid location and a radius of 2.14e Y

(2.14I 7 for ground' level' releases)) and the arc of the following segment. If the first segment released is inside the EPZ, the leading edge will be defined by the arc of the first segment. For a constant source term, the peak will be the centroid of the first segment. If the source term increases during the event, the peak is then redefined as the centroid of the Zirst segment released with the increased l

?

l Rev. 0 6

s

FNP-0-M-007 source term. Thus the peak is the first maximum of a series of discrete points. Receptor points are fixed radially at the site boundary and at 1, 2, 3, 5, 7 and 10 miles. They l i

are variable in azimuth, which is determined by current wind direction and current segment 1,'ations. For a current wind direction receptor points are (r, 0) where r is fixed as above and the e values indicate the azimuth at which each

'egment will cross the arc defined by r. Prespecified r codfirmatory points are included for use when the plume path is within 22

  • of the point (see Figure 4). Arrival time and dose rate are calculated for the centroid of each segment and the segment representing peak dose rate is indicated.

See Figure 5 for a graphical presentation of plune tracking and definition.

The following plume data will be output for real time plume tracking and future plume characteristic results:

1. Plume position
2. Plume dimensions
3. Location of peak relative concentration
4. Arrival time of plume
5. Arrival time of peak relative concentration
6. Magnitude of peak relative concentration I
7. The relative concentrations at each segment
8. The arrival times of each segment at the specified arcs.

The output fornat is shown in Figures 6 and 7. ',

I i

Rev. 0 ,

L 7

FNP-0-M-007 i DOSE RATE MODEL -

Once relative concentrations are calculated and the effluent concentration has been determined, via plant monitors or grab sample analysis, dose rates (predictive or assessive) ,

for each segment of the plume will be calculatec.

The gamma dose rate from a semi-infinite cloud is:

N YD = I M g (X/Qy ) QYi (11) where, . t yD = the gamma dose rate (mrad /hr)

N = number of isotcpec in release contributing to gamma dose rate  ;

i-M = y dose factor for the ith isotope t Il (mrad /hr)/(pCi/m a ) >

QY1. = the actual effluent release rate of rEdionuclide i in pCi/sec (x/Q ) = dispersion coefficient in sec/m3 a'1 similarly the organ dose rate is N

D =,I R7g (X/Q7 ) Q71 (12) 7 1:1 where I

D = the cumulative dose rate from gaseous effluents to organ I N = nurber of iscuopes in release contributing to th : organ dose rate R g = dose factor for i th isotope (x/Q7 ) = dispersion coefficient in sec/m3 th Q71 = release rate for i isotope in pci/sec Three correction factors are applied to equations (11) and (12); they are:

Rev. 1 8

FNP-0-M-007

1. Correction factor for radioactive decay (R) enroute:

fQxi\ = exp -

(Ag) T (13)

(9oi) R where:

O isotope Qai = release rate at release source for the i Qxi = effective release rate for 0 distance x from release source for the 1 isotope.

A f = decay constant for ith isotope in cloud T = Travel time of segment to point where X/Q is assessed (x)

This correction factor is applied to only those isotopes whose half-life is significantly short relative to the time that a segment would normally remain in the EPZ.

2. Correction factor for deposition (D) enroute:

[Qxih f2) h x exp -(H,2/20 2)

= exp _

dx (14) 9 aij D b Z where Qg g = release rate at release source for the i O isotope  !

Qxi = effective release rate for O cistance x from release source for the i isotope. ,

Vd = deposition velocity = 0.01 m/sec u= mean trind speed during plume travel to x, m/sec H,= release height, m c.,~ = vertical 'tandard deviation of material in the ,

plume, m x = linear distance traveled from release point, m l This correction factor is applied only for iodine isotopes since deposition for other isotopes is negligible.

Rev. 1 l

9

FNP-0-M-007

3. Correction factor for air:

p o

= ratio of denv.rcy of air at STP to density of air at the receptor location. This will be asstuned P

'o be 1 at all times.

Thus equation (11) for the gamma dose rate becomes Y

D= M.

Y1 (X/QY ) (QYi)

Xi 9xi (15-i=1 (Soi)D (9oi) R and similarly,the organ dose rate (equation (12)) becomes 7

D=I R d (X/Qt ) (Qd) xi i (16) ;

oi)D (9oi) R i

6 4

r i

e i

t i

I Rev. 1 10

t FNP-0-M-007 PERFORMANCE l

The Class A dose calculational method will have two functional  !

modes of operation. The first mode r.equires little operator 1 input. Data for this mode is taken from stored tables and current monitor inputs. Execution of the code will be l{:

initiated by the operator when a high level is exhibited by radiation monitors at the defined release points. Initial "

estimates and projections will be based on predefined correlations i between detector values and source concentration assuming a  ;

source isotopic composition corresponding to.1% fuel failure.

Using current 15 ainute average meteorological data, the plume arrival time at the site boundary and at 1, 2, 3,.5, 7 l.

and 10 mile radius is calculated. The (X/Q)'s are calculated *

. along the plume path at these points. The dose rates at the  !

, selected intervals are then calculated. l At the direction of the Emergency Director, samples will be '

taken initially and at any subsequent time when a change in source isotopic composition is suspected and the correlations used by the release point monitor (s) will be updated to i reflect the true source composition. t i

output will be hourly or upon demand and will include current plume location and-dimensions, current receptor dose rates, predicted arrival time of each segment at each are boundary i and predicted dose rates. The serment representing peak e dose rate is indicated. .

This same output for an operator entered wind direction can be obtained on demand.  !

Predictions of future plume shape and dimensions at a specified i future time using either current average wind direction or an operator entered wind direction may be obtained on demand.  :

i The second mode of operation allows manual data entry, Manual entry of data is required only in the event that i portions of the automatic data aquisition syste.m is inoperable. j All automatic projections are based on the assumption that  !

current meteorological conditions wi.1 continue. 7ais assumption should be valid for the projection time inec; vel l involved in Class A model requirements.

l Rev. 1 11 l

L

FNP-0-M-007 LIMITATIONS The Class A DCM is limited in the following manner:

1. The X/Q Predictions are based on theoretical calculations tempered with corrective factors which are in turn based on empirical data. The values obtained represent a time averaged X/Q. Values at a point within the plume boundary may be significantly higher or lower than the predicted value for short periods of time. ,
2. All meteorologic'al data is based on statistical averages rather than a continuous mean. Therefore all calculations based on meteorological data are subject to the statistical deviations of finite incremental time periods.
3. The plume path is updated with average data. Therefore ,

the actual path of the plume may be longer than is estimated. The magnitude of this error is minimized by using 15 minute averages. Meander caused by long term

  • wind variation is accounted for by the use of linear distance traveled rather than distance from the source.  ;

t r

6 i

L 4

?

i Gen. Rev. 1 l 12

FNP-0-M-007 i

l I

SECTION II MAEUAL EMERGENCY DOSE CALCULATIONAL METHOD ,

The Manual Emergencr Dose Calculational Method described in  ;

this section has been developed to meet the requirement of NUREG 0654 Rev. 1 iten II.I.6, ("Each licensee shall establish the methodology for determining the release rate / projected doses if the instrumentation used for assessment are off-scale or inoperable") as it applies to inoperable hardware ur.ed by the automated emergency DCM method. In accordance with the requirements of NUREG 0654, Rev. 1, Appendix 2, Annex 1, item (3)(ii), that portion of it dealing with the transport and diffusion of gaseous effluents has been developed to be consistent with the characteristics of the Class A Model described in Section I. This manual model will be used until the Class A model is implemented (no later t. ban 7/1/82) and in the event the class A model is inoperable subsequent  ;

to its implementation.

L I

Gen. Rev. 1 i 13 ,

FNP-P .-007 x/Q Model X/Q (relative concentration) calculations are based on the '

general Gaussian plume diffusion equation:

X(x,y,0,H) = Q exp (-0.5(y/oy)2 ) { exp (-0. 5 2no a U yg

((z-H)/o )2 ) + exp (-0.5((z+H)/a g 3

)2 )} (1) where the terms are defined on page 2.

For manual calculations, all relee.ses are assumed to be ground level releases. Tnis simplifies the equation for x/Q at the plume centerline to

_ exp -\ (y/Iy)2 Q U 81 yz I I )

10 where the terms are as defined on page 3. Since the ratio of X/Q at two fixed distances is independent of wind velocity (0 1g and n cancel out) use of this equation is simplified by providing plots of x/Q for a radial distance corresponding to the site boundary, plots of { {x/Q)x/(x/Q) site boundary}

versus downwind distance and plots of 1/(2I 2 ) versus y

downwind distance for each stability class (See Figures j.

15A-15G and 16A-G). To allow this, the following simplifying [

v assumptions are made:

1. All releases are assumed to originate at the ,

midpoint between the Unit 1 and Unit 2 centerlines.  :

This point is <100m from the farthest actual release point (the turbine building vent stacks) and $30m from the most probable release point  ;

(plant vent stacks) and therefore introduces '

minimal error at radial distances of interest (see  ;

Figure 8).

2. The area term used for calculating building wake effect is set equal to the height of the containment squared ((40m)2) regardless of wind direction.

This is a good approximation since the arrangement  :

of building results in a wake effect for the majority of wind directions and the difference ,

between actual area and assumed area will introduce .

negligible error at radial distances of interest.  !

i

3. The site boundary is assumed to be defined by an arc of radius equal to the minimum distance to the boundary.
4. I is limited to < 1000m to account for possible limited mixing heights.

Rev. 2  :

14

FNP-0-M-007 i PLUME MODEL Plume location is determined by use of an overlay oriented with the centerline in the average downwind direction. One overlay is provided for each stability class. Plume width ,

. lines corresponding to 10%, 1%, 0.1%, 0.01% end 0.001% of '

the centerline x/Q at the site boundary are provided so that plume dimensions may be defined based on dose rate at the -

site boundary. Examples are provided in Figures 9A through  ;

9G.

In the event that the stability class changes, the overl0V is changed to that corresponding to the new stability class.

Development and use of these overlays are based on the same simplifying assumptions as listed for the X/Q Model.

Plume arrival time is obtained by use of a plot of travel time versus wind speed for each radial distance of interest (site boundary anu each mile arc at which dose rate exceeds 1 mrem /hr up to the 10 mile arc). Plume position and arrival time calculations will be based on the time at which the i release started or the time at which the source term exhibited a major change. Plume travel is assumed to be in a single straight line defined by the assumed source location and the last 15 minute average wind direction.

l-F t

b i

Rev. 2 15

,v,

FNP-0-M-007 DOSE RATE MODEL Gamma dose raten a'd iodine dose rate at the site boundary are calculated by multiplying the estimated / projected x/Q value (sec/m3 ) times the effluent concentration (pCi/ml) times the effluent flow rate (cfm) times a dose conversion factor defined by

^

N YD = -

I MY1. g' 1.

(18)

(34.33)(60) i=1 where D = the gamma dose rate conversion. factor Y

M y dose factor for isotope i i=

Q'; = the relative abundance of isotope i Y^ N

  • / E yi bih 1=1 where o . = the curies of isotope i in P the effluent 1

= units conversion factor (* ~ *i" )

(34.33)(60) (fts - sec)

M and D= 1 I Rg Q'g (19)l 7

(34.33)(60) 1=1 where D= thyroid. dose rate conversion factor 7

Rg= thyroid dose factor for iodine isotope i based on infant breathing rate.

Qjg= the relative abundance of iodine isotcpe i N

= for use with gross effluent Q7f/I1=1QT i concentration for use with Iodine effluent ,

= Q 71/3 Qti 1=1 concentration where QIl. = the curies of iodine isotope i in the effluent Dose rates at other . i ons (x, y) can be calculated as:

  • '" ~ ~ '

ff )

Dose Rate = site boundary I',fq)x exp I -l 3 '(y)Y 2

(20)6 dose rate i ,1) site boundary '

x /, ,

)siteboundary}and(1M22p)x are obtained from where {(X/Q)x!(

Figures 16A-G.

Rev. 2 16

i FNP-0-M-007 To allow rapid initial dose assessment and prediction, the release is initially assumed ta ca.1sist of a fixed set of isotopes whose relative abundance is determined by the time since reactor shutdown (see BASES). The dese conversion factors for y dose and thyroid dose are provided graphically.

as a function of time since shutdown.

Figure 13 shows dose conversien factors for converting gross i!

effluent concentration of filtered and unfiltered effluent to iodine and y dose rates. Figure 14 shows dose conversion  ;

factors for converting effluent concentrations in terms of  ;

noble gas only or iodine only to y and iodine dose rates,  ;

respectively. .

Dose conversion factors are revised as necessary folicving sampling and analysis. 7 To allow timely manual dose rate projections, isotope decay and deposition during plume travel are neglected. This is done by setting their respective factors equal to one.

i I

~

?

i f

i i

Gen. Rev. 2 t

17

FNP-0-M-007 PERFORMANCE  :

At the onset of an emergency condition as indicated by high readings on effluent monitors if the Class A computer model is not operable the Manual DCM will be performed as follows:  ;

1. Atmospheric stability class is determined from the -

lapse rate (AT/az) shown by the plant meteorolocical instrumentation or, if that instrumentation is '

inoperable, by use of Turner's Algorithm (see t BASES), wind speed and % cloud cover and ceiling  !

height obtained from the Dothan Airport. Wind  !

direction and wind speed are read from plant instrumentation or, if plant instrumentation is '

inoperable, they are obtained from the Dothan Airport.

7

2. Release concentration (pCi/ml) is determined using installed instrumentation or, if such equipment is ,

offscale or inoperable, by use of. portable uanitors  !

as described in FNP-0-RCP-25. i P

3. Release flow rate (cfm) is determined based on the release source:

l

a. For stack release - 75,000 cfm per Aux Bldg exhaust fan plus (in the event of a fuel  !

handling accident if RE-025 trips) 4000 3 cia.

l

b. For steam jet air ejector / Turbine Building  ;

release - 1050 cfm. ,

c. For steam generator (S/G) atmospheric reliefs ,

and safeties - determined graphically based on S/G pressure.

4. X/Q (sec/m3 ) is obtained for the site boundary using a plot of X/Q versus wind speed for the ,

existing stability class. i S. Site boundary dose rate is estimated using the X/Q, release concentration, effluent flow rate and i

estimated dose factors (see DOSE MODEL).

6. If the site boundary dose rate is > 1 mrem /hr: >
a. The dose rate is multiplied by estimated l l repair time to predict estimated integrated  !

dose at the plume centerline for the site i c boundary.

b. The plume dimension overlay corresponding to the existing stability class is placed l

over the 10 mile EPZ map and the centerline l oriented in the downwind direction. The isodose lines on the overlay are used in L

Gen. Rev. 2 18

i FNP-0-M-007 conjunction with the dose rate and integrated  !'

dose calculated for the site boundary to evaluate predicted dose rates and integrated dose within the 10 mile EPZ.

c. Arrival times at the site boundary and at  !

mile arcs out to 10 mil.es or to a dose rate  ;

of 1 1 mrem /hr are predicted using a plot of Travel Time versus Wind Speed and time elapsed since the release began. i

7. Steps 1-6 cre repeated as necessary every hour, ,

following any significant change in release rate or if sample results indicate a significant change in dose factors, until the release is terminated. i If average direction changes, the overlay plume  !

boundary is marked to indicate exposed area and t the plume centerline is then reoriented to the new t downwind direction.  !

8. As a long term action field measurement results ,

are utilized t o verify prediction accuracy.

Equation 20 is used to calculate estimated dose  :

rates for the field measurement location. Plume centerline dose rates are calculated from field measurement results as:

(Dose Rate)*'Y  ;

(Dese Rate)* = exp _

1 3 (y )

2 l

l '

21" y )x _

where (Dose Rate)* =downwind centerlinedistance dose rate x at (Dose Rate)*'Y = dose pointrate at at measurement downwind distance x and off-centerline '

distance y 1/[2I 2]x = value taken from figures 16A through G for distance x  :

y= off-center distance, m i

1 i 1 i l Gen. Rev. 2

  • i i

19

FNP-0-M-007 LIMITATIONS The Manual Emergency DCM is limited in the following manner.

1. The X/Q predictions are based on theoretical calculations.

The values obtained represent the time averaged X/Q.

Values at a point within the plume boundary may be significantly higher or lower than the predicted value for short periods of time.

2. All meteorological data is based on statistical averages

. rather than a continuous mean. Therefore all calculations based on meteorological data are subject to the statistical deviations of finite incremental time periods.

3. The plume path is updated with average data. Therefore the actual path of the plume may be longer than is estimated. Such an occurrance may result in the predicted X/Q value and average dose rate being higher than the time average values observed in the plume.
4. All releases are assumed to be at ground elevation.

Plant Vent Stack releases during periods of very low wind velocity may actually be elevated or mixed-mode releases (See Figures 10A through 10G). Under these conditions the dose rates may be over predicted. This fact should be considered when reconmending protective actions and when evaluating field acnitoring data.

5. The predicted X/Q, dose rate and integrated dose values in the outer portions of the 10 mile EPZ will be high during stability classes A and B when actual effective mixing height is greater than ~1250 m.

i Gen. Rev. 2 l l

20  !

l

FNP-0-M-007 SECTION III LASES FOR CLASS A DCM AND MANUAL EMERGENCY DCM k

Gen. Rev. 2

FNP-0-M-007 BASES The equations in this document represenL meteorological conditions surrounding the Farley Plant sits which has no unusual geophysical constraints affecting the wind and weather.

There are no mountains, canyons, troughs or large bodies of ,

water withi:. the emergency planning zone (EPZ). The terrain

  • is smoothly varying, intermittently forrested and cleared for -

farming. Thus the meteorological parameters measured at the site meteorological tower are representative of EPZ parameters.

The following site specific factors have been determined.

1. The turbine building steam jet air ejcctor vents and the main steam relief valve vents are considered ground level release points at all times. The plant vent stacks may be either elevated or ground level.

For ground level releases equations (3) and (17) contain wake effects, considering the cross-sectional area A of surrounding structures.

Reference:

Stuart, G.E., et al., " Rancho Seco Building Wake Effects on Atmospheric Diffusion," NOAA Technical Memorandum L ERL ARL-69, Air Resources Laboratory, Idaho Falls, Idaho, November 1977, and Slade, D.H., "Meterology and Atomic Energy - 1968," p. 112.

2. Since the height of each plant vent stack is only slightly more than the surrounding buildings the release mode is always considered ground level in the Manual DCM Model and the automated Class A Model assumes elevated releases to occur only is more than 2 times the height of the when reactorH, building (40 meters). This occurs only -

during periods of low wind velocity (See Figures 10A through 10G).  ;

3. All plume diffusion equations for ground level releases use wind speed and direction data taken at 10 meters above terrain elevation. The 10 meter level is considered representative of the depth through which the plume is mixed with building wake effects. '
4. The stability class for the various calculations will be derived from AT/az in accordance with Table 1 of Reg. Guide 1.23 except for the case where plant meteorolegical data is not available in which case wind speed, wind direction, % cloud cover and ceiling height will ba obtained through the local weather service and the stability class l will be determined using the Turner Algorithm described below (

Reference:

Turner Bruce D., "A Gen. Rev. 2  :

22 ,

FNP-0-M-007 ',

Diffusion Model for Urban Areas," Journal of Applied Meteorology, Vol. 3, pg. 90 & 91, Feb.

1964). This is a compensatory action in accordance with NUREG 0654. Following installation of a backup metecrological tower, wind speed, wind ,

direction, o g and o, will be obtained from the  :

backup instrumentation. This manual will be  ;

revised to provide correlations between o g and ,

a,

,, and atmospheric stability class. i i

The Turner Algorithm for atmospheric stability ,

determines stability class (A thru G) using wind l speed and net radiation index based on % cloud [

cover, time of day, ceiling height and solar j altitude angle.  :

The net radiation index used with wind speed to  ;

obtain Turner's stability class is determined by  :

the following procedure:

A) If the total cloud cover is 10/10 and the ceiling height is less than 7,000 feet, use  :

net radiation index equal to 0 (whether day l or night). l t

B) For nighttime (night is defined as the period from one hour before sunset to one hour after  ;

sunrise):

(1) If total cloud cover is <4/10, use net radiation index equal to -2.  !

~

(2) If total cloud cover is >4/10, use net radiation index equal to -1.

C) For daytime:

(1) Determine the insolation class number (see next paragraph).

(2) If total cloud cover is <5  !

net radiation index in fig /10, ure 11usecorresponding the ,

to the insolation class number. ,

(3) If cloud cover is >5/10, modify the .

insolation class number by following  !

these six steps:

a.) If ceiling height is <7,000 ft., <

subtract 2.

b.) If ceiling height is >7,000 ft. but

<l6,000 ft., subtract 1.

Gen. Rev. 2 23

FNP-0-M-007 c.) If total cloud cover equals 10/10, '

subtract 1. (This will only apply to ceiling heights >7,000 ft. since  ;

cases with 10/10 coverage below '

7,000 ft. are considered in item 1 above).

i d.)

~

If insolation class number has not been modified by steps (1), (2), or  ;

(3) above, assume modified class number equal to insolation class number.

e.) If modified isolation class number i is less than 1, let it equal 1- ,

J f.) Use the net radiation index in Figure 11 corresponding to the -

modified class number. '

The solar altitude angle for FNP is estimated ,

using the equation l

T a = arcsin (sin 6 sin $ + cos H-12 nl (21)'

12 4 /

cos 6 cos o) where $ = station latitude (E 31.2*) .

H = hour of day (24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> clock) and  !

6 = arctan {-tan (23.5*) cos 2n(N+10 } (22) 365

  • i where N = number of days from the beginning of the year Insolation class number is then assigned as:

Solar Insolation Altitude Angle Insolation Class Number 60*< a Strong 4 35* <a < 60* Moderate 3  ;

15* <a 5 35* Slight 2 a < 15* Weak 1 For use with the Manual DCM, a plot has been i developed from equation (20): insolation class ,

number based on time of day and month of the year (Figure 12).

Gen. Rev. 2 j 24 i i

FNP-0-M-007

5. Dose conversion factors are obtained by assuming that the source is composed of the most significant isotope contributors tb.at can escape from failed fuel in the reactor core following normal power operation and then become airborne.* The initial concentration of each isotope in .z;entainment following a loss of coolant accident is calculated as: <

C = (NI)(EF)(FF) (23 )f V

where NI = core inventory .

EF = escape fraction FF = failed fuel fraction V = containment volume N

Relative concentrations (Cg A Cf) of de i=1 most significant dose contributors are calculated.

The relative concentrations of iodine isotopss are reduced by 95% in anticipation of ESF charce'll filter I removal prior to release and the .esulting new reladive concentrations calculated.

For FNP, the following relative concentrations are assumed for a LOCA immediately following normal operation.

Relative Concentrations Relative Concentrations Isotope Without Filtering with Filtering Kr-85 **1.19E-3 1.67E-3 Kr-85m 5.14E-2 7.22E-2 Kr-87 1.00E-1 1.40E-1 Kr-88 1.21E-1 1.70E-1 I-131 3.59E-2 2.53E-3 I-132 5.14E-2 3.61E-3 I-133 7.00E-2 4.91E-?

I-134 7.94E-2 5.57E .;

I-135 6.54E-2 4.59E-3 Xe-133 3.51E-1 4.93E-1 Xe-135 7.25E-2 1.02E-1

    • 1.19E-3 = 1.19x10~3 The relative concentrations are recalculated for various times following shutdown to account for half life differences. The resulting relative concentrations versus time are used to calculate Whole Body and Thyroid dose conversion factors as a function of time sd.nce shutdown.

Reference:

Radiation Analysis Design Manual, Westinghouse 312 Plant, Section 5.

Gen. Rev. 2 25

FNP-0-M-007 y will be derived from the equations producing

6. a the graphs in Fig. 1, Lateral diffusion, o vs.

y downwind distance from source for Pasquill's turbulence types.

Reference:

Slade, D.H.,

" Meteorology and Atmoic Energy - 1968," p. 102.

7. og will be derived from the equations producing the graphs in Figure 2, Vertical diffusion, og vs.

downwind distance from source for Pasquill's turbulence types.

Reference:

Slade, D.H.,

" Met:vrology and Atomic Energy - 1968," p. 103.

The effective plume height, H,, (used in the automated Class A model only) is defined as follows:

H e

=h y +h pr -h g - c where (24) h

' is the physical height of the release point (height of stack above the base) in meters, h pr is the height of the plume rise, based on Briggs Jet equation, in. meters, h is the maximum height of terrain (relative to 9 plant grade) between the release point and the receptor in meters, c is the correction for low relative exit velocity, from Regulatory Guide 1.111. If w is >1.5 0,,

o then c = o. Otherwise c is calculated as:

c = 3(1.5 - w oM ,)d where (25) d is the effective stack diameter = 1.8 meters, 0, is the average windspeed determined during the time period at at the 46 meter meteorology tower elevation in m/sec, w is th: vertical effluent velocity in m/sec.

o The Briggs Jet equation is defined as follows:

h pr = 1.44 d *o b

_ (26)[

N U Gen. Rev. 2 26

FNP-0-M-007 subject to the limits hpr i 3.0 [h d (27) e)

h < 1.5 F,\1/3 [3) 1/8 ( 28 ).

0

\ e} \l where:

d= effective plant stack diameter = 1._8 m x = linear distance traveled by segment centroid F= =yjf Po\{u: )2 fd3 (29)l t j f P

o_ = ratio of ambient air density to effluent p air density, 1 S= stability parameter (sec 2)

= 9.81m/sec2 [aT+9.8x10 ~3 O K/m (30)

T , a

)

T= ambient air temperature, OK AT = differential temperature between upper and lower elevations, OK a: = vertical displacement between upper and lower temperature sensors (m). This distance is normally 51m but will be 20.5 m during sensor calibration In the event that AT/a is not available from plant instrumentation it is approximated based on the stability class determined from alternate stability indicators.

9.81 m/sec2 = acceleration due to gravity near the surface of the earth.

9.8 x 10-3 oK/m = adiabatic lapse rate.

V, the deposition velocity used in equation (14) is set ehalto0.01.

Gen. Rev. 2 27

l l

.. . - FNP-0-M-007 l

l r '

( f ,'

\

  • l i

IC' ,  ;

//

gf f/ / ,

s .

  • _,/ / / '

l  ! I i i !!!!  ! I i i li:!!  ! ///. /1 I  ! iil!Nl  ! l ! !!!Ill //[' j/f1 -  ;

i l l'il '

t(' t f/,:~.

i i 3, i  !

! l l I'  !

to -

>- = / . , / /

,/ t e -- / / / / .c ,

/ /-/ / /' / '

Y l j sI // / ///

x l - ;, . / / / , ./ / / s . ..s

//>f !/if. / *'

.. (_ j l t  : i l  :: !i  !  :

h,h t '

l I ! I !'!!

t i .'

(([i((i[

l

! ! ' 'i i'l

'2 l

. lj' 1 .i. 1 'I

=

l ,.

. s s i;l i

I t i

,C

<I / , / / /

. / / / / / ,

N / / / / / /

a . - e e e - - .- exrnt9ct.y unsraatz .

E // / -'/ / '

1 .'

I / / / i/-/ / '

3 - me:csartty unst:sts

- sucarty unsraatz - I g

I /// /// '

i ' :- seurant t; I f;,,-  ; g s-.e-si veccaartty carty sTast staatz '

l z +// /;i!!!j j ll l , il

'o fl < / /

/i !I!!!! i I: l ,

N 6

/ /'

/ /

  • i / .

./

4:1C' ,

3 .

IC' 2 5 IC 2 5 10 2 3 'C*

OISTANCE .rWCM Scuncz tml Fig .1. , L.:eral dL% sten. sy, vs. :ownwtad :is:ance frec: source far .Msquill's I l

=r:tuacce tqvs.

l i 2 i

7 y(G) = 3 (r*y(F) 1 v .- 28 SEV.1

- - vo--y v- --y w..,--,-,,-w,. r --wi-'a--vw--

FNP-0-M-007  !

7 i

i

.A,

~

f" ,

\ a' {

5

?

l i

f

}

  • 3 3:1C

,l  ! I I llilli /l l I I/ f ill! i I I Il!!il  ;

. i I

i.-i i to 2 .

h ,

. - i r

/ / s

.. f,

./ e ,.....i/ . , , .

i i s e e /* i/i i,i,eif i

...it (

e e i e i:y l t

I i i i l 'A l / i I i IM! I I i J/fTil  !

-[2  ! l 1l .

! /i l l l l11 l 5

,ii/'j [l ff

/je h lp lli'-

m

$ ,s ';.

, i i ll!!

c.

' /

p

, / / / /

g /-f- p

/

/(,# f

~

$ *l i

/* / / *! .

if r i e a ie,lj k l '/ / [ l i t/ / l [ 'i I l i l i!!:l gl //[ !N[ k'I Il!IIIl l  !!!lll!l v i l' p -

l i i 5- 10'1 , ,, '; '

A - EXTRE.96Li UNSTa8bI

- e '

S - wCCERATILY UNSTASLI i I , ' ,

I t/ / / '. . . .

c - sucarty uNsraats .

0 - NEUTRAL, . . . . t f/ / i...

, g - gy ca ay $; 3t,g i i i .i:ii fl -

i i i i il  ! r - MCOERA7!LY 5?AaLI! l i !!itIl

[  ! lI!lllll l  ! l l llll.l l l l llll!l l l

t l'

l l

8

.j '

i '

to s  ! r l l ll IC 3 v

1 $ IC 3 2 3 10' 2 $ IC 3 l l OtS7aNCE FacM $CURCE tent .

l I-$. 2-= *ie!**.0:d 011 fusion. C , vs. dcwnwi.3d distanCS f OC1 30.trcS for piscu 11's l

f

c ee=== typ . -

r (G) z = - ,3- 3 7 (F) z s

i i

a .

l 29 3,ev , 1 l

i ,

i

FNP-0-M-007 i

Ps b

/ >

I /

. /

,/ ,

j

/

7

/

~V; o

Y

--. 1

u. . ,s;

.h l

( l .,3

.p 1

Fig'are 3 Cecrdinate system sacwing aussisn distributiens in the horizontal and vertical.

D ,

Rev. 0 30

,.;lfy.

a.-~; .

  • .';, ~i
r. ~~.

r

.Nx . ) %a; ,j;=- 5 ;mp,mm.. ~ ~

r.

~~_,.,

...L...,= . . . , . .. .. .. . . . .

~ . .

- .. ~ s- .

- u ,.,_ .rJ, . n.: -

.:.  : . . _ s.,.

.,o . .

- ze ?.

. w.n w,
1._7p.:

.. s, . , . -. . ... . . .._....

.-,m..w ,. .. ..

-r ~ ---a w --

.-., --- 9--. .

s,. -

....- . . .. ..., u. ..

.,c

.=.,, ..q t -

i

,t . v. .

. .s

.e

, .,r.,,;,: .;7

,. e/ - .,J. ..  :..

.ax.,.. +

- - t a
o. < - r,

_f . g n , . - . ...

,-l,. ..

.c.

- a -.  !.

..~ . . .i. 4- fc N.,.. p. ek. .. Nw ,. ,,

, ,y . ; . %. . '

_., A . . ;w.. f.N.,m. .

..,,.  :- x w - ,,

, . . i,

.. ' . . . i. ., - Np ,

ss ,. .i...

~..,v- / !

- - - ~A_.,..,.

m.a. r.--

.. -..;: . - .A. j '. . u.a ,

. .a. -- -

.,s . ,,6. ..=

.~..a...,.. ,g_-

N i e.TN

./ .

  • y._.y

~-

~. ;': 4.

,f .e.

~

y

.x .

. , ..:--s _

. ,=.a_

/ f.:. ; -nt -(. ,,. j Q.. :

n._  : ,.X=, r-_cr 'sr- ;. -m .A.

-;r

, wf.:

.: ;n
v. - :- ' er ,s g -

.'; ,' .r u --

. s.

l4. ,. V.3 Q . ? n= J- N e

-W -M- ~ 'I f:: . . ~ "gJ E. .* Y N'i L ,, d-I

. Mj h.! :"

._ . . _ , . . -9 F D. .- . 5_.4-[ W E N,Wi% L 1{ .O~!'! JV,%  !

?. ., . : $.  ;. M..t.,m. s. . , . ~ 3a j.L .- , '.r ,.~f _NY's

... - ~.

y. ~ %o_

N..r_.- ... .. .- .

W. 7 --{.

N../. .  ; o . v.:-(

-a-- :' q _.r -m p ~~' t ' L..y. . ,- Q.. :lp., a:.3 ' g ~j y,.

~ --

W c- .%

'9:~.6 --@%:- grS=.D p-MQ r


+

,- { W m

-- : -r <."g_=m;.;:W-;,.::~.s. .v .

_.m .-

5.

g. = 4. ~ >'g> .

A' I s f '

.'. . y.N

-:ij.

j

< y 'j'#- f :.v.w ..

t, ',

a = j [*p,

  • -", ' i,;g~ ~

. g; u

M 9' T!.iC'3, '.*_% 7 M.G. u 'sQ.:'a. .1,t.Q ^ * %,.-,.'j.M 3 . , _ , ' ' .J.-.:

m q.

3 .- . ~-:p.e3. . m..:, ,_..,. ,..,.r u_ __.:.. . v,

..- . mg ,,_. .

. -.;, t

. sg.sye. . .4

- .a . . .. . . .

. .=. ... .

~ . . . ,A

m.

. . s, ~.

s ,

s

~ , = .i 3.. . . ;3 e,. ..

..l3

==7 2 .'

--'Q- , v# : f 1.4.;C+,2 ,,- j 3:.'* 6.; =s. .--5 E 7 ,,,,, (i s '== 5 M

.;.a i,;l=,,., c 4

-- - ' .%1 -.{,2,---- 3 --?

m ' ' "

d.
  • 4 c- 5 ' 5 #~~ 7 - -8.l -l ! - S MO

(,

I.-

.. a:.d==..-".....e.a-_-

g *

..,- . - . + ,

%, Q. s . . .. ,,

y.y-s.. e .,.,....'%*

e -

s .r_...,e.. .,. my .C a.+... .. J-s. .4 .

.Jn , -

r. ,,
=
==:cr :3* *% . , -

.. . , e.  ::*  :

g,,,,,.s. %e ,

~

- nc *- rs \

i ..,,- [.

z

.. ,%,.).A,,q. s

-; _y, g

. 2

.' ', Q g;..8p -- - ". f ,..-1 3Y9}g,.

~

, . ., ~'..-

r. v.:.a. e--.:. a _'<. . . , s_ % _y='.-

'.-Q.

w ,;,'j ' w .f .. .~.~ l

..'.s:'.~.s.... a ... g _ )_

Qb. .-

, w_

. .- ;e 1

y. .=,.. .c . 3s._. ,,. . . -

. <- .. .- s.

e...

~L,. .~

s. ,, ,

t.:~.

-,.. e.-

w%, ,..

i.s 2,

j %u > .

( .1..i- . as v. ..__z

'T~.'W:;,. ! ".- ~ : :. 'es

'.: c.---v-hs,.j f.: =.i e' a..s. 7 4/=
. , , -A. . -  %-g.L~TM 4  ; , /

- o,; ~;:,,..

s , , ,,..: . ,s

.. .-e:. --\,... , ..

> . .- -1:a._

. .v m.s - c. - \- ...

w , y/ a p. / t. -.g b .,.

..y..

. . :~~

y

~~

Y N.I ::- . .:. ' ' -

,2 ,/ 'i

~~

-,.~.,.,.

2 i,n w ? --. . . -

--- . P-4 ---.*_.'.<'3.,..

"*c%.c=

\,

k;-

-- . %.,,..,v:.:.. . Q L. ;;.. .*. %

(k s *$4,Q;i'

  • c- 2 ,7;

. .3 .

' ", .s, . J, .l - -- .

  • .,-- ,j X - , :.f.=a--.: .: ...
  • ~:,j -g- . 3, c.: . r,

. . s.  ; ,,,.; y ,

,. , 1;'* - e .< %' .~:.v m m- ,. . s.%,.:.-- .... .. . . .;% -~~

f

.. ..s A e 1/ - Q c ~ ..,r. -.-.s .J

s. / . . . .@ .;,

4

.s e.i. .. .v + .,,. .r-- ., ,., .:;.. , , ,

ef;. .,:::.,,

,,1 e -' ' ~  ;

. Y.y  ;'s. .%.it:. ;'/ --

-. . .: ., s. . ~% :s, ~

^ ~ --

~ ;. ... .* T_N.:4; . .o. <

i -:;'.

..--'.: . '% ' f. . ' !.: T,* .!' , A. ... ,, . T ;-;o==' g%.,,.  ;-1

,..5W \ .: ,..

  1. .,v.~4,.c;:,,- -
7. - . ,,t,Sz. n; , -

e,. . ...

I

. . . . .; w. .- =

-% - l^ - i ;

.f w,. .

_ s "",Vi.Di, ='

i.' '/ - ::=':'- 4.:2 ( *4

.' T N..'. s,,, 5 P ".

i- - *

.k 6 '<-== j"" ;

I Q l -t, 1.' ;:;  ? J +.J~: %-si. =-<"'i d' \ '. ,We'

' ...% N- , . M .':,'-+-- ._\:,_, . ' - ; ;*-

.'.-:.i:v .' N,:. '  ?. . .

" y; - ';

M..' ~:- ;j 3 i .- *

.w'% -.}, , 'e 7;._

.C:- r.~:. . K p { _ g ,. L -~ _ q ,M;,e -

.s%._ .  :,-

$a ~.~ :.?e:* .:.,.Y.d., . , ' ~x .'i...aa*1-a sd'&, % ;. . .!- 10D. y"~~ A .:.; - =-. ssz h ~ ,&. ,, Q. N. ,s L . ,

. . . ~

, j. .. .~...

.,.r n .,ew '.

s.-6.,u:,us.

u. -

.. u. . ., . :. u.2u. . .ua

.uAs - - - -?. 3 . % '.,  ::

s. 3;. . .: .

u u . rn:, .. u. .u. -, u m. W. w -".,,g,, s. -

u.e ca.:a s

, .a .,

a anu.:= .a.ca. t a use uses :.a .asu.a .a **Td=**. ans liaao-

..u s

/"'. #,,g::,,,,.g': #~"*" _. L..g, '.

,, . s. c .

'e.a ,:::ase.a e. Lamasas :.a ~ * *

  • si e .

A \ *

. r

. a=d3*. .-~~f/~ ~ .. .. j-i4

. *g 's-i-: :.y A.,,,,.gAaiA . -"""*

  • saa

..e . . . . .-. ,,,.. -[r , ,',' / . */ e /,

i 11 - :.* 3. .

{

k.. %n,

,, t. f t

,,,.=

(MAFEfMf isQarfJCuGT..u  ?'.2*.M haAasA EALM j

- if .,4*  !. i / r"'Y 7" -

_a. _

C.. ..e,a.Ch..

. c a C.. .u.m.Iv nd. .a v.1G . 0 n.-.S .

fn t'"% t'~h l D D s ,

??* n **: .::11 :=. Toe n .... -

_wo e A =>

?.t.. 4. *.. ;1 1:. T c ...t:.

. %I-41 1:4 a:arseen:s .

G-13 2. : :: ::ac

/ '.*I. l I,nn a *: 73*.W. .,M gaca a Al.jj

61
n . :arsaa n: .; T-11 tu c acarsa: n:n a: OAl*: ,.

.- J- 2 tas .::::ses n::

. i! .  ;; *

~:: e.., rs ee r ::-i

.n4n.:. a. ..: f  ?.aac .a:arsacna .

. . a: .,. JJ

! IIL- *caa: A:::::  ;. Tr! .1, 14.: a ::a:

!-1 i

! a= 1:2:2a a: 4.J3 .J  :. . 3 7. a: L::a s4e n:a l-1 Cuar :au ac 4:.11 at alm '

i 1r441 haa .::arsecun *i

.  :-15 A.:uavs la.:

ac .s:.13 a

. .Q':a*2% _ . _ . . . - _ ---. _ --. --

. + . _ - . - - -

-~4 Q*r . -O--

1 .

FNP-0-M-007 Imuvat. avg. vh<. ry minumu ,

i V

.1. 3 m /see. ---* -

5 l

~.

i 2 2 m/3,c / N (7

,)

S 1 r

i L

i 3 4 n,/re N <?,, p,

~ ,..

S N <

.1 ,.. ,

P b

t 4 2.5 ml:e.r. ==-9 S' y.

l l

s s ,

s s -

t .  ;

5x -

/

  • T N acs }

L1G EN Q : ( j sgang,

, mri~o

- ca o,... a (e- )  % *-5 e o' t-p a ce... = aw. q, ,% m ,, N rwm umq FIGURE 5 MODELING OF REAL TIME PLUME GRCWTH

  • 32 Rev. 0

i f ( )

I) ATE XX/XX/XX 1.ast Awarage Wind 11&section (Jessees is,om N) XXX.E WinJ IJ4section uncJ for peujectiosa XXX.E LOCATION ,

StGilEN T 0 (Jegseca AltHIVAl. IlllE CkN1Ekl.lNE CRITICAL. ORGAN g Hittht N H(miles) t rees N) (Ecut:41 Time) INnSE NATE (mkom/ler) IMASE BATE (a.kem/l r) Q w

critical X X, .,_ f g ,,XX.XX p XXX.X XXXX ,, -c y X.XE1XX orgen X.XE!KX X.XE1XX f datia I k S Zeu t la t itse o f Jnidbe ed e elene ietc IeIatiWe luc tion ) XX [locattuu XXX.X lamt aspJete XXXX at lebt X.XE!XX et last X.XE1XX concentration X.NEAXX dt latt at Idtt # Mpdate Hpt$dt B at Iant

( up.le_,n cf XX u te XXX.X XXXX X.XE!XX X.XE1XX update .XE1XX n-

[saJius of astm XX projected 'XXX.X projected ~ XXXX psojected y X.XE1XX projected X.XE1XX p7 ejected I.XE1XX (not yet - a zeut ta artlwan Jose ante csitical relattwe /

XX Incation XX.X time at XXXX at time X.XE1XX organ Jose , X.XE1XX contentsation X.XE1XX (csomhed

,_ s . wl.csa art (k,0) of caussing rate at time at tima XX will L.e XXX.X XXXX X.XE1XX of crossing X.XE1XX of (somming {X.XE1XX crummed --

XX XX.XX XXX.X XXXX , X.XXt%X X.XE!XX X.XE1XX XX XXX.X XXXX X.XE1XX X.XE1XX X.XE1XX

%X XXX.X XXXX X.XE1XX X.XE1XX X.XE!XX XX XXX.E 1 (XX X.XE1XX X.XEAXX X.XE!XX XX XXX.X XXXX X.XE!XX X.XE1XX X.XE1XX (Etc. for eacia segn. cut l>eing traded inside llee El*Z) erl a

o e

W K

, s to o

<l O N

< liiGUNE 6 TAXUSAk Ottil'HT FOkt1AT O

i

. .w.--.-

1 1

0

, . - - - . , - , s e- - e- < , , . - - , , , - - , , - , .-. .-.,,n. s --o , , , , . . .

FNP-0-M-007 4

~

. . . , i s j '

i a t -

l l - 5  ; ' t  ! ' ,

I  !

I

! l  !  ! l  !

g

' ( g

[

8

% 3 f

,  ! -'I r

i. ,

.i ,

\. ' I I v . .  ;

t 3 .

. ,I '

s  !  !

-s t ,

1 10

r. -

s f

-C ,

s l . I

  • j i

, s, j L i .

T,i , ", -

l -

3 '

e

\

\ .

l ...

i  ! . t "  :-.

, \ . . ,

\ ;'. .!

.' 1 j  ! .

I\ gi  : .*

9
t. ,J, - 6 I I '

.'_7 e i 6, /. l- e 1 *'*

' .__;._, u.) :__ . ,  :

i gi  ;

n t l l 4

  • y

! l i i i

!W 5 i =

1

  • '  ! s.  ;

y I  ! .

~ s. : , =

e >

h j ls *j b

_ _' s .-..

1 a

\i

~

j N

..\

I  ;

I l  ! 1, 3

i -

C-  !

  • 3 1

' \l -

3 e

l  ! t i s ..

t l

4 i ..  ;  %  :.:

\-

e

...____.!_., .I

, t / . ___.

..__ . ..... _ _. 5 j '

h2% * ' ' 3

f.  ! .

t . , . . . . . -

, . i.  %

  • 1 0 0 3 i

, ' k '

4 .

" ""^

' 4

)

I I-j\

4 l  ! ;l . -

O '

, '.  ;  ;  ;\ . . ~J

' \. i.

^

\ -\ l {

g j.

. i. \ ..

v.'_ .

3 <

l

\  !, ,

j.

N ,k. . . .

t g

i I

4  !.

4 e i e i 8-

..r. i i '

y 1 g I

A h

g li

/

r ,

.['

k i

!..k e 6 -

l

lg i

, i i, ',, a .

! W j _ :N.i_. s I --

..t _ .6 j- . . .

g a-

=

I

  • I l .~ '

l l  !  ; l

' .b I

!i

  • N .i' ppQA ,

{s

, 'l' t i.[!

I W;

  • rNg. _ i a 9 N.

e .

a\ s i e

.  ! I i e  ! , 1 *. * '

.O '

t 1 g . s 4

4 --

i 4.. /: ' . .

%. h.,. : '  ;

,, =.  :

i e

/t  ! t i, e -

r.  !

I - I i

i i

l 1

/

/

a 1

1

[ l S.' s  %

\ . #[!

i i

\ a

& 1- 1 l

. A O, t i

N '% . ,.I 1.s j -

\1

. / i x .I m e.c q  % .

l \/  ?' '

, ,  ; 1  ;

i

- 1 , a -

N 5 .

l i

  • w i

%. . ./ l.hl /

l ,

.h 's '

!, . N.N

]

  • N., $ \ ;g\y ..e!
l. . 2 f.[ ~'

. _) '

' q '

N <I * ./ 3 I j] j  ; y' i

j 4  :

i ' 4. x %

  • _. N

!/ ..

i i

. .- .U.  :  !

I i . 4 t  % . ./ ,N A' r- x :1, r-1 i

! I - 1 .

g e J

1 i

i s.

p lir  % 'N1

- i ,

& ' % ~g gt .

~

1 D D 3 Jov r a _ dl.

a

2 Rev. O

FNP-0-M-007

/

. i , .

?

- / L,,: 2 ,,i,

,. \

,e : (.---..-

- _ t i, - =:

~

q s

3 y q: -- -

. . . .e, . . . ' - ,

. .:s. ~ . .

s

' [l.*:'1 Qj.

..,e* .!.,

i

\'\ i t

-  : o,: -.

.C_.

a-.  :.

i

-  : yx:,

.. 4 .

, e.. ?,  ; ,

y ...@. ., a t r  !  : 1 s-1 . . -.., , n.. ,s . .,y p:

? -

.. . m

! $1 M AIN STY 4M .P .'.'s/. + .'

, ,  ! yyL. R E tL IE F VA LVE S

?: <' ' e '@' 4 , %. --

i ._ /, , ._ ., , -

. :E.da-

/ ..c ' s . .. v r

, .P

_ .u. ,

..' ti il ., -. ..-

4. ..

4 S. :. *.N . .; <. .s . . . ',/*.,

.[;'I*9:

[m \

.me r . 4. $ 4...: .e_ .

TM 3 (NE M.; Cr-

.' r.

I

@Y 'T

' Q -

== -*

1 I l c

a VNi s NC, ,s,.  ; ; , ,

N5* )YOs $ .

-n l

-. = . . .- * --

.-*i -

x w, .

.n . \  ! i

. 99,3 g -- - - -: - m. x r- ,e?

k. m. . .. . e.,_. > g _>

T8Ve~4 J , . , . -

. CPVST , .,

f 6 } .3;.a

  • . & r.c s, ) '.:

1 f  ! .' % -

l Avxtf. A ,t.y -j \ ,1

..I

  • J ,. '. . .

,--r .

t UN IT'. .Na, ::: i .~,

i. , -

e.-- a

_.. .. _..,. . . _ . L .VRP _

~\

\c-

. A VilLl> KY. C !. D 4.

a u rr N o. 1 I $; $0. ~: .

$h w..

g e- .

a .xN. s. . ' ' 'g' ' ' .,

T9VST UNIT I

' ' 3 c ;..l .'_1, M. -

M 4. ;

i

- PVST Ci '

.x

~

... ... x 6

/ _ .

'T U R S t N E: 51.0 G. -C, . N 2 - ,-

VN Vi NC* ^l-

..D i.:.M

' .. ::M -

C.' .'AT unnr Na1 5 LDG. <

ds t  ; -)

'*0

..m,er.c.y: 1 r

. . -l 1. N /  ;:

e
:- I

~

  • ~ .__i
$k% , Y,.- G e,,,.+ !L, !. ,.

.  %.i -,

.W.%. c. .. .- .N. .r.

/ S \p ' 0, :G.

'< !c_J. r,.: c __H u '

/c D~.:9/ #

- s..,s.Q. . m' es,,,,

r-b 4 N p . , * . .;;. - f - '  %' ~.l

,4 x

- -~

,k'. M .s'.; . . . ; c.w L. dt s-3 .:'._..;  ;.4: s%E-

/ % .g g.- .

, ... f.

"I ! 'r . a.y vr i i i .

...-: .... 1,..

,:=. . -: ., :.. :.:- ~

i i .t a.

! )

.It i 4 --

.9-. .

i t- '

e .v.?

SERVfc2. 5104 *j (E g i l

.t

.s. .t t.i..

r, i .h.:-_. . . :r. .,.

i i . ; l, i i ,' i. i  ; ., ; ,

._ . .i c- '

l- c. . s _ , . --

i i  : -

1 s  ; , e; M '

v. i $$ ~. D'Ob r,c e C

i l

3 i!

4.j  !

i s I

+

'.** :;- 2. ~7.~E .'i . 5 E . S.

a i , 1 - A k.; ., l .

i s i - < j .i -

1 y .i hl. \ :,  %*

D"" ~T W@ @ y' . J s

V iRTUAL RELE ASE POINT (VR P)

rW~v me s ,aD . Rev. 1

FIG. 9A Relativo Do m Rato Plume Boundary FNP-0-M-007 For stability class A 6.. N

&SHEB1 tsesi

4. . tal

.. ggt 9 1 \

_ L1

)

)

5. - ,

n.12

, f _.I h I'1

..bi  !

-2. . #

Wi

-- s 31 at

-4. . 3.N1 51 ,

3851 '

-a.. ,

m Sti 911 1941.

36 Rev. 2

M G. 9B Rolative Deze Rato Pluma Boundary FNP-0-M 007 i

For stability class 8 t

8..

4-- EM at LM 3

LB1 2--

1 81

.m - - . . -

\

5

) ) \ \

o.02

..%s __f I h Lai

-2.. M LB1 R

i LE at

-4. .

E m i

-6..

m

/

./

Gli im 37 Rev. 2

t FIG. 9C R21ative Doe: Rato Pluno Boundary rar-o-a-co7  :

For stability class C  :

)

l

1. l

[

t

\

\

8.. *

\

\

4. .

~

&#81 M

2. . i y s. 81

.. tw s

\

\ L81 i

) I \  !

[

i r L a tt 20.015 l i

( l 18

! 1  :

..bt s.St

-2. . at g, ggt 5

&#81

-4. .

s 5L telt

-6..

si ,

1M1 38 gev. 2

FIG. 9D Relative 00:e Rato Pluma Boundary rue-o-M-oo7 For stability class D ,

l r

6..

l

4. .  ;

i A

2. . Anna a==

p gLast

, i l

  • i f f f L81 i

s n 3 L1 .

0.026 1

l 5 81

..% g

( I

\* t Sasi

2. . # LW st mL

-4. .

\

-6..

s Wi Wi -1 i

i 39 Rev. 2 l

nG. 9E Relative 00:0 Rate Plume Boundary rue-o-M-oo7 For etability class E '

i

\

e..

\

- t t

4. . ,

i t

2.. ,

k

.. tu ' s kN

&8 9 '

, I

- ' L31  ;

tt s 0.037 1

tai t

l

! \

l[&#h '

-2. . * ,

i as

-4. .

i St 91

-s..

M i

\

Wi  :

at i

imi 40 Rev. 2

FIG. 9F Relative Do o Rato Pluma Boundary Fur-o-a-oo7 For stability class F l

l s

1 6..

l 4..

2. .

31 1Ni

,h ==

IF

= m

' m

_ no.05 t

. .g j N%

%% ggt C[

-2.. agg 31

.. I

-4. .

i

-0.. $

M 9 11 l

M o i

h 41 Rev. 2  :

- ..- ._ .. _ _ - . . . . -.-.._..--I

FIG. 9G Relativo Dose Rato Pluma Boundary mP-0-M-00 7 J For stability class G 8..

I t

i

4. . (

1 P

2. .

a 3 -- -

i

.si))

C.tSths

-2. . M 1

M

-4. .

si 51 "O--

7Ni ,

Sti

)

Bli i

151 l

42 Rev. 2 l

FNP-0-M-007 Fig. 12A Equivalent R.1.a Height verou. Wind Speed For Clas. A [

168 t L

150 4 i

140 138 :

1

.'\' N i

$ 120 t  :

N, 12811i b <

EevatedRelece.

Is 90I1 GroundLevelRelece.  :

- 80 1 -

I70I '

j es::

1

~N ~

_ ax 5,7 .

"ii j 58 y 10mij

? 40 t- _ sin 1 mi ;

W 5 30 I 2a 'li - sin 5.7 i 10mi' 12 7 Wo = 8. 5 I

a. ,

1 2 '3 '4 Wind Speed (mph)

~

14aI \

1 138 . Nx '

]129I N

1

\ SevctedRelece.

8' sa 1 GroundLevelRelease d 88 t e r E

  • 70 1I -

_ max 1 mi i

d SB p -

_ sax 5,7 l 1 50 I 10** .

j q{ ~ min 1 mi j h30I

_ sin 5,7 2BI. 10mi t laI, We = 10 i

gi , , , ,

'3 '

'4 1 2 Tind 3 peed (mph) .

Gen. Rev. 1 43 i

FNP-0-M-007 Fig. 128 Equivalent R.1.a Height v.c.u. Wind Sp d Far Clo B ISB ..

150 ::

i 148 138 i : \'

- 1  !

  • 128 1 5

J 118 h \ BW Rel- l o 128 =_. .- - --- --

gaj GroundLevelReleces i

- wI ,

! 1 S 70 y

~i max 1mi

= 68 t'

_ ax 5,7 j 3f 10mi l j42I --

_ sin imi ;

w 5 20 I '

,S, 1 ._ min 5,7 Y 10mi 12 I We = 8. 5 ,

1 g, , , , , , , ,

.g . .

3 4

ISB Wind 3 peed (mph) 152 $

'N.

i 140 .N 120 .N 's\

, is

  • 129 I 'N 110 1 gg g,y_

o 108 Y _. .- N - - . . -

gg

  1. 1i

\s GroundlevelRelease 3

l 72 .' --- max 1mi

} 60 Z _ max 5,7 j Sa f 1**l g> 4g 7 _ zin imi ,

i W

h 30 I ~ sin 5,7 "

2B I 10mi i

10 1 Vo = 13 1

' 0t 1

4
3  :  : .  :,

l Wind Speed (mch) '

Gen. Rev. 1 44 i

FNP-0-M-007 Fig. 12C Equival.nt Relea Height ver u. Vind Sp d l For Clas. C 168 ..

150 ::

1 ~

148 A

.N 138

^ ~q '

'N

{122 iIII

-, ' Elevated Relecee

, las i x . ~ _ _ _ . __ =. ._

i 98I\ N GroundLevelRelease d as t 3 I o

  • 73 i 1 _ sax t mi i g SS 1 1 max 5 7 Y Ey 10mi 3 40 I _ sin 1 mi W

5 38 I

_ sin 5,7 29 ii 10mi 1BI, Wo = 8.5 or , , , , , .

'a ' '

'4 1 2 les Wind Speed (mpM 3

150 , ', .

140 I \

1 1

39 .\ N\ -

N l123 e N. ,

,100 t

\ t--- . ._3 ElevatedRelecee i se t \ .. .\, . .._ _._ _s'N GroundLevelRelease 5 gg

  • 73 -._ sax 1 mi :

. 1 ,N A Sa l N _ max 5,7 min imi; g 4g 4 -

3 1 3 EY ~ min 5,7 20 I 10mi j '

4 10 1, Vo = 19 ,

e r.1 . . . .,-

,3 4

Wind Speed (mpM l

j Gen. Rev. 1 t 45

FNP-0-M-007 Fig. 1 E Equivalent Relea Height va eu Vind Speed For Clas. D 15 "It 1

i 148 .),,

139 's i A ~

129 .. .\ '

-N 3 118 I r

' N.. Elewraf Relene oIM .';. g '-...-... . . .. ......... _ , . . . . . . . . . . - . . - - . --.. .-..~__

8 982. GroundlevelRelease

} 88 1 4 '

'x~'

N ~~ ~ % ~.,'~--.-.

4 73 4 ~' ~-- --

_ .- . .~ max imi ,

e# N- -~ max 5,7 a g 4, E 10mi i 1 48 :N-3 gg

.L

. sin imi i.u A 31 -

sin 5,7 ;

IB f Vo = 3.5 10mi 4

0;  ;  ;  ; _

p . - .p. . %. - . . _ g.. .._p .. _w . . . q 15 . Wind Soeed (mo, h) 158 - .

A 148A 1

\\ >

igg Y n .

j 129 ~ 'N ,

3 I

, iss >:

\\

.. . . ~ . . . 2. % . . . .. . . . . . . _ . . . . . . . .

Eleweal Release 3' 90 .g_

.m

N.N. ' - - . GemalLevelRelease l

- 88 78 --- ~ _ max 1mi

= 88 . . ~ sax 5,7 ,

gy 10mi !

g 4g p -~ _ _ _ . -

3

- -- - -. .. sin lui p 38.L --

1 I

2h g _ sin 5,7 ;

18 1 Yo = 19 1051 !

B 1

:  ;  ; I "3 * '"4 4
2~'Vind Speed (mph) t l

l Gen. Rev.1 l 46

i.Nd-0-N-004 d14 ;3 gr;anrev gget g.3# ra.m giuP %"P 3* 3I*** 3 ta -

tE:: .

Ire:: -

tESI t

tg t '

T _

IIg t t 3IWP N"

.e g4.. .. ..- . . . . . . . . . ...

4 sa! )""P l*I M" F .. t l 48:M "

g .:m _ . _ _ . _ ._._._.._._..___,m,

g. -

- se 3 ]

P

< t8I T0mT pm t

._ _ - .-- _ _,, _ . _ . _ . _ . . _ - . . . . _ . . _. . . - , ; u 7 m7 g .,, -- -

isg { 48 sr _ _ _ _

_ _ _ _ _ . _ - .,u gc T0mT j

l g ;_ - _ _ . -:

2_._ % .+

+_... p E _ p ...,.m...

g -..p t 1, -

7

, yup S " P )'oG '

i i ,

ts t T

tyg t l T ,

IE T 7  ;

{'

IE Tt I!B T

g .Tm. 3I*^54'P M" 4 SB $ 9"P 1"I W" '

F mT t i g g7

,. n ,y - ~

, _ , _ _._____ _ . ._ ... _ - . _ __ .... - ;e7

.c 7 -_

=- - se

[ 5J rB ,i T0mT a,

., t _ . - - - - -

g- a f u ImT g 7,

- ~~ - - -

m ,

' Et ----

  • t tU T A* = IB

. - - - - - -- ----- sr u g*t ,

IomT i g # - _ ;-. -; _  ; . . .p I +1 _ :  :

- +E.  : . ,. 4 , .- .~ .+

i i

,nup gaaep )sdG  !

oeu 3eA- I ]

/L t '

FNP-0-M-007 Fig. 10F Equival.nt R.1.a H.ight v.c v. Wind Sp d For Cia F 160 .. '

158 :: .

140 ::  :

130 "

- T  !

a

[ 128::

118 3

  • ElevatedReleo o 100f -

@ 90 GroundLevelRelease E 80 i i

70 .l. .

4 60 . ..- .ax 1 mi t

~

i Sai .ax 3,7 o 40 :: 10mi 3- 0 8.._ i w 7 min 1 mi 1 20 t  ;

lai wo = 8. 5 .in 5,7 10mi gi ' '

'2 '3 '4 168;.l Wind Speed (mph)  !

150 .. '

140 ::

138 ::

n s

[ 128 ::

3 118 !! ElevatedRelea

, 100  ;

_a 98 ::

CeaundlevelRelease i 80 .. r 3 .

g ,,3 1 .__ r i

e 60 .. _

.ax 1 mi ,

j 58 :: max 5,7 a 48 ;; 10mi  ;

3  : >

33 w

8 .

sin 1 mi 29 .

min 5,7 19 .. Wo = la 10,1 0-- .

1 2

'3 '4 Wind Speed (mph)  :

Gen. Rev. 1 48

. FNP-0-M-007 Fig.19G Equivalent Release Height vereue Wind Speed  ;

For Close G 12 . .

158 :: .

148::

n 13::

i 3

118:!!

is

ElevatedRelease b 98:: GroundlevelRelea E W::

3 .

3 78 .

3 m:E ,

, "'* 1 "i g 58 .".

y g ". .

.ax 5,7

> 10mi h m.

min i mi 12

T Vo = 8.5 min 5,7 3 T, , . , , , , , , , , ,

10mi 2

'S '

'4 IN;;1 Wind Speed (mph) 150 ..

148 ::

n 13:: I

[ 13::

3" 112 :": ElevatedRelease

, 15 8 m:: GroundLevelReleae.

E m::  ;

3 .

1 g 78 .. 1' 2 M..

max 1m1 58 "E .

. max 5,7 40

? -_ 10mi 5

w 35 sin imi a...:

19:: Wo = 10 "in 5,7

g. . 10mi

'4 1 '2 '3 Wind Speed (mph)

Gen. Rev. 1 49 _ . _ . _ . . _ . _ _ _ . _ _ _ _ _ _ _ , _ _ _ _ _

FNP-0-M-007 FIGURE 11-Turnar Stability Class as a Function of Net Radiation Index and Wind Speed Wind Speed Wind Speed NET RADIATION INDEX (mph) (knots) 4 3 2 1 0 -1 -2 i 0 -

1.6 0-1 A A B C D F G '

1,7 - 3.9 2-3 A B B C D F G 1

4.0 - 6.2 4-5 A B C D D E F 6.3 - 7.4 6 B B C D D E F f 7.5 - 8.5 7 3 B C D D D E  ;

i 8.6 - 10.8 8-9 B C C D D D E 10.9- 12.0 10-11 C C D D D D E  !

12.1- 13.1 12 C C D D D D D 13.2 12 C D D D D D D l

f

?

t i

e l

l Gen. Rev. 1 '

50

Figur. 12s In.olation Cla.. Number For Farley Nuol.or Plant 24:00.

23e 00-U.ing Turner.. Algorsthm 22:BD-21s00-20s00-l l 10s90.

18e 00-17 00-

{

16:00T 2 3 2 o

m ISs 00-C 14e 00-

^:. o 13e 00 -

3 L 3 H 12 00-E 11: 00-N n 10s00-09:00- # ^

00s20- 2 07: 90-4 06:00-05: 00- l  !

04:00- m

g a

l$ -

03:00-h g 02:00- g Y m o

<: 01: 08 -: -- +--: - -

w :  : :

- :  : : : .  : :-  : : ; ; o

, ~

1 a:n:. o : l: F.s.I:w:o:. r I ;w+er.--t-:I : woy:. t,I Jun. 1 ::::l:

Jul. Aug. l :S.p. :l : Dot. l: Nov. D.o. "

Month of Year

- - _ . , , -, . . - - , m.. . . . . _ . ., . , _ - _ - , , , . - _ _ . - , - - - - . _ * , - . _ . _ , . . . _ . . . . _

FNP-0-M-007 Fig 13A0083FactorsversusTime l GrossEffluentActivity l

,, ForFilteredIodines ,

b  ?

4 .

= t

= IEIES i

[h.' r '

FILTBED 5  ;

)

1. s =  ;

n ,

I

,I -.

4 =

g s i

  • E 3 =  ;

I b '

% 2 6

.s E

= -

.L= -.  !

s .

i b = N l  !

3 2 '

N  !

s = wN l o E s  !

8 = -s E s i 3 E N s  :

c81,e -

s_ x  !

_- x x ,

2 ' -

, NOBLEGASES  !

5 FILTEPS l 5  :

5

=.

- 1 a =

l 8 4 8 12 16 29 24 l

l Elapsed Time Since Shutdown (Hours) 52 Rev. 2 l t

l

FNP-0-M-007 Fig 138DoseFactorsversusTime GrossEffluentActivity

,, ForbnfiltereaIodines ,

2 10 DIES  !

E ' UNFILTEED !

V  ;

E  !

5 -  !

5  !

1. m . =3 i

.a I

a

"+- E ,

8  ;

- i

'd E  :

kl.a 5  :

- =

8  : ,'

E i  :

e i i

E I h I l

~

1.

=

5 -

i 3

3 5  !

5" 8

?

\

i

' , l 3 e i c3 E's_  :

E N  :

E N s '

I tre 5 __i s  !

t =

1 m j

- x e ,. NORE GES E UNFILTEED E l a 1 5

=

tre 8 4 8 12 16 3 21~

Elapsed Time Since Shutdown (Hours)  !

53 Rev. 2

FNP-0-M-007 Fig 14A De w Fcetcro vercua Timo Specific Effluent Activity zt -- i i ,

Noble Gc ..

a

- i i i 4 i

- i i I '

I i H & 1 t t t t i i

-N l I i I L l l e  ! ,

! I i !

10 E l\ I I I ! ! I $  ! ! ! ! ! I I I L Dib E.i I S. E l

\  !

i -

l

.l l l l[ .

i j

i l

0 01 . l 4 114 l l

.N . t "

0 C14 - , .

0 wi . A l l 3 l

1.L. Ei 3  : I '

ll0 -"; I \ '

'N\

s -il ' .

8 Elw 1 -82 I ' -

0 I IL.) -

N - - '

O El 3

~

' i i i . . ; , +

N ' ' i '

i * '

gig ,

i a eA ! i i i;6 gr g t - I  ! ! ! i 1 i i i i I 3 N '

t

,N E l.C -' I I i i .

i i I i l i i l i i iT 5 l l l i I I l l  ! l l ! l I i ! $ i !

E I  ! Il, I i I!i i i !!  ! .

E Es ,

ii i! ! i l

I l1 i

=

=

=

1.-98

'a 4 8 12 15 22 24 Elep..d Time Sine. Shutdown (Hour )

Fig 148 Ocse Fcctors versus T1.me  :

Specific Effluent Activity Icciines H I I I I 6

7 I

- 1 i l l J 4 i i

' .wl l

.  ! l t

di -

1 1 10 d i i

.I L 311 ' .' l I 0 01 . --.

- 1 4 114 --j I~ ICDI?ES g .5j'3 C

- <i  !

Lt. El

. s # '

I  ;

/

. .'.l ? 5 ,'

3 El- /

O I 10 d. / , l Q E13 ,

Qll

~

9

/ l l CE l l .

El C ] .

' I i f '

1

1. a2 i 0 4 8 12 16 20 24 Elepeed Tim. Sine. Shutdown (Hours) Rev. 2 R /.

FNP-0-M-007 Fig.15A stee soundary x/q vs wina speed

~

~ ~

~ FORSTABIOTYCLASSA L B r85 -

I l 1 '.

E l .

l l

=

I l

I a

s i '

Ei \ \

a a -

Lauras i\ l

-- x: i i ie , ,

N I I l l ' I I i I I

  • t A I . I i l i i i i i i r i H I } l\ I l 1 I ! l 1 l l I '

l l H I i N- i l

! l I

I I  !

E!! N  !

l

'1 , I ,

(X/0)SBE 5'!,

! i

<1% i l l-i! '<

sec/setercu'ed o 5l

= -

If i  !

l i

5f  ;

! f \I l l

5  :

j

'%' N L g r67 ' ' ' 3 I i

  • w

- i , , .> , , . , i i i~

" I $ !  ! 8 *l I f I i jl }

-  ! '+1 t 'l I l [ l

--i I  ! I I _ i  ! i f !

W  : l i i  !

i , i j i 1 5 ~

i l '

t !l l l ll l

= 'i i ' -

l- i j l i

_= ,

i r

E

!i l -

s

= ,  !

. i d I I I m l f l t e,. = i 1:

's c n WINDSPEEDINMILESPERHOUR 55 Rev. 2

4 FNP-0-M-007 Fig.158 ~ site Boundarv x/o vs wina syeed

~ ~

FOR STABIGTY CEASS B L 5 -54 - -, .. = -

-.i=

~ ee_

l i a

t ,

t i ! ,

E I i i I I '

Ii' m r . i

=. i ..

I. o i,I g  ; .-

= 1 j i

= ,

i Q

L g,.g - ,

i : I l l

=* A ' *  ! 1 I I + i 4 1

- 3\t I _f ' 8 I i i  ! t t

-* NJ t t t i i  !

d \ l I l I l l 3 4 i '

l E \ _

L ,

! l '

l j I l I I  !

5 1 iM I ll l !I i  !, f I I E

!l i  : *l

! ' ;;i  ; i

  • t . e i

E!:

~

l l

i i I 6

!!l_ '

f I i !l

%.i j l i I i i

- , , Il i i tas-U 34  !' .' l. l i ; ..

l.

,i. I

>_- 6 a ,

I a  ; i,.x. r a

""* t i *

  • L,4 8 i e 8 3

{ e 1

- ) i  !

  • i t

. . i i . t I t i .

7 t

-

  • I 3
  • t I l i i I i I  !  ! l l

' +

i i 5 ! l l I ! l l  ! I i l Li l l t i l I (X/0)SB55 IIi: ; i I i ! l;I i i l'

ese/=ter ahed E !l; l l 5i  ! l l  ! i l

5 I

1 i

I Lg,.g7 - .

.I . , l .

== . t 5 e e i t

. 6 i ,-, ,

i i .

0 f  ! s . f . i 5 s I I  ! 8 e

==  ? i 1 i i t i i i n !  ! i , i  ! I i

  • t . i h  ! I  !  ! ! I i '

l l 6 j { ) ) . [ j j E  ! I i ! I i i l i i i i ! i  ! I i i  ! i  ! !

5If l ' I l l l l  !! l! l  !!

e

= i i.

l*

t i 55 , I 2 l i

-l l

sum L Be-E I cm in esa tn ess tn

- - N N WINDSPEEDINWILESPERHOUR 56 Rev. 2

FNP-0-M-007 Fia.150 v

stee soundary x/q vs wina speea FORSTABILITYCLASSC LEER 84 "

^ ~ ~

.,,,, _- -1 E

~ ,

! __ f I l .

H t --

! t-i ) i * ;i .

E t\ t i  !  !  !  ! ! ! i I  :  :  : I iii Ee - g l\i I

! i

-+-=. !l

, -r j !il !

j i i -

i !I j l \,' .

I i

h f,,i I h

fij ,

ll i .

I!

= l- g 1 l l. l ,

I I a .

=l , i i i

=. I j ! )

, u i l l . i.ii.lr.

l <  !

Lam,c - i .

si . t .  ! i i ,  ; i  !  ! , t I:  :  !

a- x , , , , , 1 i i

'N  ! i i  ? -- - . . ,

,e __- , ,

- + r,i, . ~ .

,t , , , . . . .

i , ,  : r,x i i . i i  : , .,-  ; .ni,,

  • er A_- .g.

3i N* -

_- t , , i , i  :

r i , i i i  : i i  ; , .

E i !  ! l I l l 4 I i  !  !  : I i  !  ! ! l  ! 1 l

== . , i .

, , i . i-  ; . .' , i,

= : .  : i .

i i i i i ! ,

.  !. , i i i , i

=

a ;

i i

! i !

r i i i !

i i

, i I

!;,! _ , t .

! i 1 '

= .

6 i .

. i (  : ,

j "O j l a

  • 1

- a

. j e i e 8
  • I ' $

= 3 i, ; ; i, , i : -

l ;  ;  ! i,

. i  ; i  : .

i t i. l, .

,. t

. i. . .

. .i .

i

i. i Larm _

, , i I t 1  ; i  ! i  ! t i e  : i

. +.

f f '

. .n - ._ a '  ; i

, i  :

i i

j i i t

i ! }

. . s  ! > ,  ;

E  !

i i 1 8

! i  ! j i 1  ; !  ; -

1 i

= l i i i  ; !l; - t

!! j^ -

! . j i i j (X/0)ssE= .  !

i _!_

.  ! i i . i i , i . i ,

,5 ese/mtaroubed i

i ! . i

'. I  ! ! 1

, . i .:!.,

l !!  :

. I

__ < t .

,- j

=  ?

! t -

i:

'  !  : i.  : , ; i  ; i i

= .

? I l-t t l l . > 6 i -

i  !

C -  : o .

l-

!  ! ( I l I l 5

l I t Larg7 - > i 4 i  ; i  : , .

~

~~- ' '

. , -t-Mi *-

. -- r-

__ i . , , 3- , ,

- i '

'~'.  : l l j . . .  ; ,

Q__

I i

  • I i '

E * -

f I I l I i  ! I l } I I j  ! j i ' *

= 1 i .  ; , . 2 g

t t * - '

_='i*I m l

! '  !  ! ( l l

i

! I i .

I 5

= 1 f,

8

  • i i :

i l i i i, 6

i }

I i .

!- i i

t s

= i  ! i l '

e t 8 r . - -

. I i '

t

- ' i , .

i  ! ,

_. i

?

.,, l .

Laura 1  !

I. i. i.  !.

  • - N N

'#IND SPEED IN HILES PER HOUR Rev. 2 57

FNP-0-M-007 Fig.150 stee nounaary x/q vs wina speed FORSTABILITYCLASS0 L Be-E_

c -

~

e I d ,

t _

t E { '

} t i f i I I i L 5I i l l I l l I l l!  ! l

_g l - I ,

) . 1

' I E  ;-

-.I l

  • l

=

= ,

l ,- ,i, r .h , .

1 i li 6 i

i i , i

- t

. I I I

      • 8 t i  !

t ,

! I l

{ g 1 r r r t a q s 6

\ ~4,

_- e f a g { t , 6 i i . .  ! '

3 1

-

  • t\i i i i ' ' ' '

+ e 6 4 I t f i e i I ' S i '

-- 6 e

_\ } e i i e l 4 i .

I j 'l 6 f 4

  • i t NI i I ! t l [ l  ! -

l f I I~ f I  !

E i A

! ! l  ! i 5 I i  !

! i ( i i i i  ! ( ! !

=

i e i e i j

i j i t

  • e i '

_t i  ! l l

- l i t .l l

E

=

i !: I i-i i  !

t l

l l i I

l' l i  ?

I

'l

= *  : i* i  : 1 -

I i I

_..' wi J 1 t '  ! I

.L._ :

E i 3 I i i I i

  • l '
  • l l l l I i ,

=

= l :1 i  : . ,  :

,  ; i I  ; i  :

i

- i

l l e
, t i  : -

- l - 6  ! , t i (g - -

' .' ' t i t 6

,  ; [ l l  ! i l . i i  !

.x

. - - - - ' I 3' _ ,

t  ; i r  : r ,

i i , , .

-* t  ! t

  • i e i  ; i  ! , j . i t i i i  !

n N i i ! ~!~I- - ' h. s I '.

I l.

i I

I h i

)SB s

b

'  !~ ' I i . i'  !

!jil lij sec/ustar* cubed E i ' '

l i  ! l  !  !! !i!l '

I f E  ! t

{: j i i

i  ! i l

i i

=  : l ,

f I ,  ! I I . I '

r

=m -

i  :

. I 8 i .

t  ; i .

! I t

-i g l j j e l

' i L g ,.g , -

4 , t I . i ,

i t , l I i [

! ' 0 0 P h 6 e p

- t ,6 $

  • . i ' 6 I i e '

r 3

- ' , , __ . , t . .

. t - t - e , i i 9 3 i b e '

, I i _

$ I E I

  • r f I f f !  !

k . ,  !  !

I i l l I h t l l l 5!

i l l1 llIl l l l i  :

i Iiii!Ii l l -

N '

h [ f E= I f' i 3

} 6 t , ;i,,!  ! l i t i ,

5 l 1' '

i i  ! l ! l i

I i t

t i

- - N N

'#IND SPEED IN MILES PER HOUR 58 Rev. 2

FNP-0-M-007 Fig.15E stee sounaary x/q vs wina speed

~

FORSTABILITYCLASSE Lare - ...

, ,- r_. _

' I

_  ! ~

- I i_ _.(

, , , a l t ,  ! ' i i i t I . I

, ,i E ; l t i l l

. I  !

  • I e  ! !
  • I ' .

I.

5

- I.

i i- i i

, i l i l l l .

l  ! I .'

= >

t I . t,

= . ': i i

= t i t l

  • . . i i i , ,

Ei s I  : ' i l l l l  : i  ! i  !

=  !. i . i. i I. ,t  ! . ,  ;

. } i i1 L WrE - \i f ' I l I ' '

__ J ' -  ! '

- r

.v .

=r x , i 1 . 1

, _ _ ;. __ i r #

- . 6 i :

.x(N ,' i a j i

i i

. i i

1 t

i l

j t

i e t i

i t

E i i i \ij '

i  ; i i.

l 1  ! -

t

= ,

= ; i F-l !

, w, ' f- , .' . >

I < l I i 1 ,  ; t 4 i i  ;

e .

t g i

. r ;- ,

i .-t il ,

1 r -

, # 6

= l

i. !

- , . i  ! ,

, i
. i

~

i t

. i

  1. t i  : . -

j i , i .

= ; .!<! ,  !

3 l I., I L MrE -  ? ' ' i ' i8 !  ! ' -

' Ii '

i T. m ,'

1 l . i .

, i

- i  !, i i  ;

i  ; i , i  :

E '

I i ! . I i ii4 ~

t I i i i j i

X/Q E

. l i 'jt i i. l ' ,i

!, i ,' i

. i, t*l i

. , .i i B e i t i i -

i .

i ess/setercobed E ! !i !! !_ ! l ,

!  !;i  !  !!  !! ! I l I I

=

  • 8 i i j j

+ .

= i j i t ,

i '  !

=

i i

e .

e i .,

(M - -

l

. . i

, i

. t

. i . .

L,

- . 1 i , . . . ._ _, ,  ! , . ,

- I ,

. . e i , . . . . , , ,

-- , , t i . t a  :  ; i , i e .  ; - . t .

E  ! I i i ! l  !  ;

.' I

. I t i i i

__ '. lI . , .

= .

'_ I I '

$ 8 1  ! '

t I  !

l

  • l g n i . ,
  • t l 5 i i e 'i

_E E__

t

} .l

!l '

I i !

i. ; ; .

I i e,

i -

i i

t i .

i i

=

=

"j i '

ii i '

i i !

i i

I:  ! l

=  :

LMrf/ -t.  ;

= m = m = u,

- - ~ ~

VINDSPEEDINMILESPERHOUR 1 l

59 i Rev. 2 i 1

FNP-0-M-007 Fi 15F site soundary x/4 vs wind speed FDRSTABILITYCLASSF L5re _

3 {_J. __

._.___ __I __p{__..__ -- _. .__

i l ii ._ -

. t I i

"" n\

~iL1 w ! a_; i t i e

!- : L,i

!I ! i l\  ; I 'I i t i i :

i i i

. i i. : :_ , l i. i

= : ) l l ,>. ,

i, i i,

1.. 1._I. .

!.  : i i ,

.v.i.

- . . i ,

= .

l ,.

i.t ,. i i,

, , i i

, ;. . .I . t

=

m, ,

-+...

it i

i :i. i.i . .

= ; i

, i i i  :

3  ;

t

. i l . ,I

. . i 6

= i i. i, i ; .

i ii

>> 4 t  ;? I .

=  : , 1  ;  ! r , i -

, g

.: i

r. . . .

r-- , . .

=

i

i. i i ,! .! l! j i .i ! j'

. i , 4

- '  ! - 1 .

- i 1 4 l i N

i

.I . -

l i  : i

i

- . I g i ,. ,

.i L g,.g - i Ni;x  ! i !i i . , l l l!l r . .

- - ..iyw,,. 3 r- + . .  ; .

-- i i , ,

t .

. .i ,i.i+ ,,t

-- i  : , i i .- .- '

.  : , , ie  ! . ..

"t j i i ! i l .

1 i ,

l t I i ; i  ;

i I

=_ ,- -

, i l  ; l 4,

,  ;;-l

, 1. . .

! y

= *' e

! t .

l j  :

l

i ! _I j  ? t-

. .t (k  !'

~ .

= i I l i  ! .

! I  !

! ,  !' f i '

I B = .

i .

i , 4 i i  : , .

7 sec/seter ouned b

=  ! !l :[

  • i i l l

!3 l i,fI I t .

i !l f .ii  :  : .

l l l i'

=

7 t l t .

l 8

' l l  : i j -

i i. s i

~

g l 2 i

l, 4

g ,

l e , l

= I l l' : lj ii l l i  ; .

i i

- , l  : I - l ;'  ;  !

)

. t ' r ; ( I : ' l  ! i ll, l . .

l

. s i < i [ t I ; i t  :

i l  : ,

j 3 l

t g, .

, i i , .

6 . t , , .

==. * '

e j . . 4 6 $ . , I

' ~ ~~

- i *

. 6

t .

I i .

! i } p , j .

i [ l i ! lj i j i I ,

i  ! . I 1 6 i

  • i
f ' * '

i i  : l  ! I  ! i ) i ! I ! I }

' i

= i i l }- 6 8 i .

t I '

= i i i i t ! l { }

g

(-

f a

= } l 1  ! r

' i  : i ' f . I i i

! e t

= i

i  ! i i ! t ! I ! i  ! >

' 9

= >

. , i i

_C . . I h  ! I  ! 6 I I  !

= 1 i

= l' j : j l' [ i  ; f I i  ! (

. l

. i , (- 6 ,  ! ,  !  ;  !  ?

i ,

g

= i' i g .

i . j i -

,  ; I  : 6  ! ,

= ii 'i ' .

i .

l l  ;

i . I

- - t , ,

L ge-g - 1

! t e

I  : i y y u

- - N N WINDSPEEDINMILESPERHOUR 60 Rev. 2

FNP-0-M-007 Fig.15G stee soundary x/a vs wina speea FORSTABILITYCLASSG bM *

. . . . . . _ _ . . . . . _ . _ . , . . . . . . . . . . _ . . . _ -=

_. __ __ . __ ._ _. _ _ --_ ._. u_ . . .. E.__._.L . -

Q

.h_

t ( .4, , ,

7 m _ ..

.p f._g Il 9 ,

l : I i

! I 8  ;

t. .;- ,

w i

i l-.--

z, 7 i * ,

-

  • l

.. .. ; * ',.!  ; _ _ _] u I' ' s  ; , )  ;'t l .- tt . 1' . .A - -

=  :

, ,) , :  ; j l, i j s i. i

? .

== I' l  : I 4

l

- ,_ y i _e -. ,

..,_.._p

, 1

. ,.-.--,= . , t

_- , I , i . . , t

. i

.i -  !. r ! '

'

  • I -. t  : -

g--4.-.. q.-. ; _

i p--4 .=. g,---4.- .

---vy--*---.-.w===.#

= -  ; . . - i i i .

I - - i

= i . .i-_ '

; i l i, ' i

- r

- t ,

i. I i i I' i. ,e  : ,

. .i

-== 4 . .

t , .

s N . Ni

. -- r ,

i-F ,: r--- : 'l -t L

,. . r- t i

- , p i

.l

=

-= ,

3 i I : ,

,  : 6,

}

- I. r 2

, r .

i  ;

i i f

r i ,. .

! l l i I t i. : 1 '  : i I i i. '-

l i

, i,

- I . g ; ; i '

l . . , ,

L g ,.g e ,

i  ! I i

. r

, -. , , r . . , .

i_..

. , _ . _. . :. _ i. _ .

---_i . . _ .._. _  ; . .

-  ; i:-_

.i  ;

_. ,-- ,. i .

_ -a

== I

, .e

)

i m.e I

.,...e 41{

. 4

( \

e.e * '

j 8 * '

I l 6 f a l l

..-. --_4 .k . - f 6,

l $

. . , . . 2

+ .

"" I l

4 .

  • 8

, $ I

I j . . r J, l .

j

, , t (X/0)SB

-  ! f f

f - . .

f . .

I j

l-. -

=

, s , , .---- .

i I 3 .

i  : . I -

i

  • esc /setar* cucesl 5' l i  !

. I l l j

^

!l I * ,' i

= ;.

=~

.-.L u. '___.'

.g

!- i .

i I  !

a.- i.

e'

_i. J, )

I i. 4, (

i i

t -

  • g 1

== , I  ! . . t l g .

  • I a

== t g , e ,  ? . . .

4  : i g f

  • 8 r t  ;

+

[ &

[ ! t! . . !  ! f 6 .

4 f' I I  ;  ;  ; ' ' -

t .  !. I :

i l l. l  !  ! i 1

se 3 . i ,

.. .l.. ... L '

1. - ' '

. , .6

. a , t . . , i  ; ,- . i

==

p-

  • t...+ _
  • =_.4!

....; _ - __ 4. ,

' . . . t. t n i i j i

  • i e .

g

._f f . l  ! 8 j i .

g i f I j . ;. .. ......;..

t l 6 j i. . {

= .

s t . !. '. yt  ; .

- . l * ' (

  • i
  • 1 9 i , ,

t , .

.. . - ~ .1. .,..._..p..- .4. _Q.,

1 - i

.  : i, ,

i, l

=

-b a..

! +

e t

,w.'.

..r e

i = , s

, 6 i e I ,  ! 1 j f '

=  ! 3 l j  !' *

. (- . i e a j- -

t i } 8 i s p

=

i1 4, l ,

e.

L ,

I. t.

l .

__ s . 3 .. .~. r 7...; , ,-

-.+- -~.

- - t i i .

, I i 1 . t .

-- t -

g 1 i- t . .t

-  : .

  • t
  • I I
i 4 .

l 8 a e ,, i i '

i 9 8

  • t t - '

I i -

! l i t I '

== -

e  ; j ,

L 6

[

1

. l e i I '

l $ f i Lam,e -i, I. I. I i

O N E N @ @

~ ~ N N

'#IND SPEED IN MILES PER HOUR 61 Rev. 2

FNP-0-M-007 FIG. l6A (X/Q)x / (X/Q)SB versus DISTMCE FOR STABILITY CLASS A '

t. as. - ,

N

\

, x ~

% l s I N

N m

^ "

(X/Q)x  %

h -

i l

1.as. =

l e n , e e a X = DISTANCE DOWN WIND (MILES)  ;

Fig.1SA 1/(2(E y) 2) vs DISTMCE FOR STABILITY CLASS A

t. = -

I

\* s

\ 1

\ t l

_ \ l l

\ ,

t 2I- x 7

t. an. -

6 x ,  ; s' .  ; ,

t \ 8 9 6 i i t i N i t i i I \ l I i t I \ I l N

\ '

N l

N t.as.-er N G N 4 D m s X = DISTANCE DOWN WIND (MILES) 62 Rev. 2

FNP-0-M-007 FIG. 16B (X/Q)x / (X/Q)SB versus DIS M CE j FOR STABILITY CLASS S

s. -

\,

(

\

\

" \

(X/Q)x (X/Q)ss

2. = - ,

A

\

'% \

^A m

g ^%

1.1 - i e N v c m e X = DISTANCE COWN WIND CHILES)  ;

Fig.1SB 1/(2(Zy )2) vs Distance FOR STABILITY CLASS B ,

1. __ _ \

_ j'x 1

\ i ,

\

l -

\

2I 2 _ q Y ,, _ _ \ i

's I i

I

~

iN I  ;

N I wl l - w

1. ase-w 3 N 4 C D G

~

X = DISTANCE DOWN WIND (MILES)  !

63 Rev. 2

FNP-0-M-007 FIG. 16C (X/Q)x / (X/Q)SB versus DISTANCE

~

~ ~ ~ JOR STABILITY CLASS C s.es. - ,

\

L

\

e \__

\

(x/Q)x N <

(x/Q)SB ,

s.ss.-s* A

\ x N

N

'N N W .

N ,

t. _ -

m N v c Q m X = DISTANCE DOWN WIND (MILES)

Fig.16C 1/(2(Zy) ) vs Distance t.ooe os FOR STABILITY CLASS C

\,

1. - - \. '

~ ___

\

N

~

\ .-

1 -

N 2I',__

y \

'x:

i A l

N l N

t. w I S N v C 3 s X = DISTANCE DOWN WIND (MILES) 64 Rev. 2

FNP 0-M-007 FIG. 16D (X/Q)x / (X/9)SB versus DISME  :

~~~~~~FOR STABILITY C1. ASS D Lam. = ,

\

\

L g e \

=== \

(X/Q)x M

g

\

N N

x x

N

- A w ,

N

, 5 l 2, - -  ;

5 N v 0 3 5 X = DISTANCE COWN WIND (MILES) i Fig.1SD 1/(2(I y)2) vs Distance FOR STABILITY CLASS D 1 00e-04

\

g

\

3, - -

\N ,

=_=m hm x

\,

N 1 - '

N 2r 2

1. ___

_ N _

7 ~

1. ema S N 4 D D G

~

X = DISTANCE DOWN WIND (MILES) 65 Rev. 2

FNP-0-M-007 FIG. 16E (X/Q)x / (X/Q)SB versus DIS M CE

'FOR STABILITY CLASS E

2. - -

\

x  ;

\

= \

'\

(x/Q)x

= \ y i (X/Q)SB.

. i

s. A e 'w x

N ,

A

'N m E i g, - -

a N v c m m I X = DISTANCE DOWN WIND (MILES) ,

rig.1SE 1/(2/I y)2) vs Distance i FOR STABILITY CLASS E 1 0Oe-04 l

\

\ l x

\ '

5E59 ,

t. -_-

'x .

? x,%

w 3 1 -

2I*V N '

1. _

l

[ _ l l I:==iii I

1. ame-m 5 N T C W G X = DISTANCE DOWN WIND (MILES) 66 Rev. 2

~- ,ew w--

FNT-0-M-007 FIG. 16F (x/Q)x / (x/Q)SB versus DISTANCE

~

. FOR STABILITY CLASS F

\

L

\

i x ,

l e A i N ,

(x/Q) m (x/Q)' \

4

2. - -  %

_. ~

N w

l N I ' A. ,

I m

1.1 -

5 N v c m a X = DISTANCE COWN WIND < MILES) i, i

l-Fig.ISF 1/(2(I 7)2) 7s Distance i FOR' STABILITY CLASS F t.co e os __

\

1.ooe as

= \.

n

\  ; L

1. = - _

'N _

y ~

1 h 2 -

2 :7 <= -_ f l

1. w i X = DISTXNCE DOWN W ED (MILES) *
  • 67 Rev. 2 l

FNP-0-M-007 ,

l FIG. 16G (X/Q)x / (X/Q)SB versus DISTANCE

~~~^ ~~ FOR STABILITY CLASS G L

3.an. - s s

\

\

x M N  !

\ w t

[

(x/Q)x g '\

(x/Q)SB' 9 \ N l

s_- '

% i  !

i m l t.

5 N t c C 5 X = DISTANCE DOWN WIND (MILES) l F1g.1BG 1/(2(ZY)2) vs Distance i t.ooe 3:

FOR STABILITY CLASS G ,

.- r l

x l

\

t.ooe-s=

""" \ _

- N ,

x l ,

x .

N m w

=  %

n_- _

l

-: r -

r-j l t

1 2 Ey ' r. _ - l t

l i EEEE L. N e=97 5 N X = DISTXNCE DOWN W 60 (MILES)

  • 68 Rev. 2  !

l

.-_ -- . -.