ML072010437

From kanterella
Revision as of 10:32, 10 February 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
2007/07/12-New England Coalition, Inc.'S (NEC) Motion to File a Timely New or Amended Contention
ML072010437
Person / Time
Site: Vermont Yankee Entergy icon.png
Issue date: 07/12/2007
From: Tyler K
New England Coalition, Shems, Dunkiel, Kassel, & Saunders, PLLC
To:
Office of Nuclear Reactor Regulation
SECY RAS
References
06-849-03-LR, 50-271-LR, ASLBP 06-849-03-LR, RAS 13867
Download: ML072010437 (709)


Text

DOCKETED USNRC July 12, 2007 (4:50pm)UNITED STATES NUCLEAR REGULATORY COMMISSION OFFICE OF SECRETARY RULEMAKINGS AND ADJUDICATIONS STAFF In the Matter of ))ENTERGY NUCLEAR VERMONT YANKEE, LLC ) Docket No. 50-271-LR and ENTERGY NUCLEAR OPERATIONS, INC. ) ASLB No. 06-849-03-LR Vermont Yankee Nuclear Power Station )NEW ENGLAND COALITION.

INC.'S (NEC) MOTION TO FILE A TIMELY NEW OR AMENDED CONTENTION The New England" Coalition, Inc. (NEC) moves, pursuant to 10 C.F.R. §2.309(f)(2) and the Initial Scheduling Order ¶ 5, for leave to file a timely new or amended contention addressing Entergy Nuclear Vermont Yankee, LLC and Entergy Nuclear Operations, Inc.'s ("Entergy")

recent reanalysis of environmentally assisted metal fatigue. Entergy produced its reports of this reanalysis, attached hereto as Exhibits A-R to the Fourth Declaration of Dr. Joram Hopenfeld, to NEC on June 7 th and June 1 3 th 2007.'NEC's proposed new or amended contention satisfies requirements of 10 C.F.R. §2.309(f)(2).

Entergy's new analysis of environmentally assisted metal fatigue is materially different from the analysis of this phenomenon reported in Entergy's License Renewal Application.

Entergy employed different methods, and produced different results. See, Attachment A, Fourth Declaration of Dr. Joram Hopenfeld.

Information concerning Entergy's reanalysis was not available to NEC until Entergy produced its'During the June 12, 2007 prehearing scheduling conference in this matter, Entergy's counsel explained that these reports were preliminary at that time in that Entergy had not yet completed an internalreview process or officially adopted them. The Board nonetheless designated July 12, 2007 as the deadline for motions based on the reanalysis:

Entergy's motion to dismiss NEC's Contention 2 as moot, and NEC's motion for a new or amended contention."emp-oq, 1.~th th reports on June 7 and June 13t, 2007. NEC's filing is timely. The Initial Scheduling Order in this proceeding provides that a motion for a new or amended contention shall be deemed timely under 10 C.F.R. § 2.309(f)(2)(iii) if it is filed within thirty (30) days of the date when the new and material information on which it is based first becomes available.

During the June 12, 2007 prehearing conference in this'matter, however, the Board allowed NEC until July 12, 2007 to file a new or amended contention based on Entergy's environmentally assisted metal fatigue reanalysis'reports, Exhibits A-R.PROPOSED NEW OR AMENDED CONTENTION NEC incorporates by reference its now pending Contention 2 (metal fatigue) and its Reply to Entergy's Answer to Contention

2. In addition, NEC contends the following.

(1) Statement of Issue of Law or Fact to be Raised, and Brief Explanation of Basis. 10 C.F.R. §§ 2.309(f)(i), 2.309(f)(ii).

NEC's now pending Contention 2 (metal fatigue) is that data reported in Entergy's License Renewal Application Table 4.3-3 indicate that critical reactor components may fail due to environmentally assisted metal fatigue during the period of extended operation, and that Entergy has not proposed an adequate aging management plan addressing this issue as required pursuant to 10 C.F.R.§ 54.21. NEC understands that Entergy has now completed a reanalysis of the impact of environmentally assisted metal fatigue, the results of which purportedly indicate that the reactor components listed in License Renewal Application Table 4.3-3 are not in fact subject to fatigue failure. NEC further understands that the reports attached hereto as Exhibits A-R to the Fourth Declaration of Dr. Joram Hopenfeld describe the methods and results of this reanalysis (hereinafter termed the "CUFen Reanalysis").

2

,4 NEC now contends, as explained in detail in the attached Fourth Declaration of Dr. Joram Hopenfeld, that the analytical methods employed in Entergy's CUFen Reanalysis were flawed by numerous uncertainties, unjustified assumptions and insufficient conservatism, and produced unrealistically optimistic results. See, Attachment A, Fourth Declaration of Dr. Joram Hopenfeld.

Entergy has not, by this flawed reanalysis, demonstrated that the reactor components assessed will not fail due to metal fatigue during the period of extended operation.

Id. NEC's Contention 2 concern regarding Entergy's failure to propose an adequate aging management plan consistent with the intent of 10 C.F.R. § 54.21 remains current and valid.(2) Scope of the Proceeding and Materiality.

10 C.F.R. §§ 2.309(f)(iii), 2.309(f)(iv).

This contention addresses Entergy's plan, as stated in the License Renewal Application, to monitor and manage the effects of aging on reactor components that are subject to an aging management review, pursuant to 10 C.F.R. § 54.21(a), and an evaluation of time-limited aging analysis, pursuant to 10 C.F.R. § 54.21 (c). These are issues within the scope of this proceeding, and material to findings the NRC must make in this matter. See, 10 C.F.R. §54.4; Duke Energy Corp. (McGuire Nuclear Station, Units 1 and 2; Catawba Nuclear Station, Units 1, 2 and 3), 56 NRC 358, 3 63-64 (2002).(3) Expert or Factual Support. 10 C.F.R. § 2.309(f)(v).

This contention is supported by the attached Declaration of NEC's expert witness, Dr. Joram Hopenfeld.

(4) Genuine Dispute of Material Law or Fact. 10 C.F.R. § 2.309(f)(vi).

The attached Declaration of Dr. Joram Hopenfeld includes ample information to establish a genuine dispute with the Applicant concerning the validity of the CUFen Reanalysis.

NEC is required to make only "a-minimal showing that the material facts are in dispute, 3 thereby demonstrating that an inquiry in depth in appropriate." In Gulf State Utilities Co., 40 NRC 43, 51 (1994).NEC HAS CONSULTED OTHER PARTIES Pursuant to 10 C.F.R. §*2.323(b), NEC has consulted or attempted to consult with all parties to this proceeding concerning this motion. The State of Vermont does not object. The NRC Staff could not take a position before reviewing NEC's pleading.Entergy is opposed. The State of New Hampshire did not respond.CONCLUSION NEC respectfully requests that the Board grant NEC's Motion to File a Timely New-or Amended Contention, and admit NEC's new or amended contention for adjudication in this proceeding.

July 12, 2007 New England C6alition*by: _ _ _ _ _ _ _ _ _Ronald A. Shemo Karen Tyler SHEMS DUNKIEL KASSEL & SAUNDERS PLLC For the firm -Attorneys for NEC 4 UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION Before the Atomic Safety and Licensing Board In the Matter of ) 1 Entergy Nuclear Vermont Yankee, LLC ) Docket No. 50-271 -LR and Entergy Nuclear Operations, Inc. 1 ASLBP No. 06-849-03-LR 1 (Vermont Yankee Nuclear Power Station) 1 CERTIFICATE OF SERVICE I, Michelle Cronin, hereby certify that copies of the NEW ENGLAhTD COALITION, INC.'S MOTION TO FILE A TIMELY NEW OR AMENDED CONTENTION, in the above- captioned proceeding were served on the persons listed below, by U.S. Mail, first class, postage prepaid; by Fed Ex overnight to Judge Elleman; and, where indicated by an e-mail address below, by electronic mail, on the 12th day of July, 2007. Administrative Judge Alex S. Karlin, Esq., Chair Atomic Safety and Licensing Board Mail Stop T-3 F23 U.S. Nuclehr Regulatory Commission Washington, DC 20555-000 1 E-mail: ask2@,nrc.gov Administrative Judge Thomas S. Elleman Atomic Safety and Licensing Board Panel 5207 Creedmoor Road, #I01 Raleigh, NC 2761 2 E-mail: elleman@,eos.ncsu.edu Office of Commission Appellate Adjudication Mail Stop: 0-16C1 U.S. Nuclear Regulatory Commission Washington, DC 20555-000 1 E-mail: OCAArnail@,nrc.gov Administrative Judge Dr. Richard E. wardwell Atomic Safety and Licensing Board Panel Mail Stov T-3 F23 Office of the Secretary Attn: Rulemaking and Adjudications Staff Mail Stop: 0-16C1 U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail: hearingdocket@nrc.gov Sarah Hofmann, Esq. Director of Public Advocacy Department of Public Service 112 State Street, Drawer 20 Montpelier, VT 05620-260 1 E-mail: sarah.hofmann@state.vt.us Lloyd B. Subin, Esq. Mary C. Baty, Esq. Office of the General Counsel Mail Stop 0-1 5 D21 U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail: lbs3@mc.gov; mcb 1 @nrc.gov Dan MacArthur, Director Town of Marlboro - U.S. ~uElear Regulatory Commission Emergency Management Washington, DC 20555-000 1 P.O. Box 30 E-mail: rew@,nrc.gov Marlboro, VT 05344 E-mail: drnacarthur@,igc.org Marcia Carpentier, Esq. Atomic Safety and Licensing Board Panel Mail Stop T-3 F23 U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail mxc70,nrc.gov Anthony Z. Roisman, Esq.

National Legal Scholars Law Firm 84 East Thetford Road Lyme, NH 03768 E-mail: aroisman0,nationalle~alscholars.com David R. Lewis, Esq.

Matias F. Travieso-Diaz Pillsbury Winthrop Shaw Pittman LLP 2300 N Street NW Washington, DC 20037-1 128 E-mail: david.lewis@,~illsburvlaw.com matias.travieso-diaz@,pillsburylaw.com Peter C. L. Roth, Esq.

Office of the Attorney General 33 Capitol Street Concord, NH 03301 Peter.roth@,do-i .rih.gov Callie B. Newton, Chair Gail MacArthur Lucy Gratwick Marcia Hamilton Town of Marlboro Selectboard P.O. Box 5 18 Marlboro, VT 05344 E-mail: cbnewton0,sover.net; marcialvnn@,evl .net SHEMS DUNKIEL KASSEL & SAUNDERS, PLLC by: ~onhld A. Shems, Esq.

and Karen Tyler, Esq. 91 College Street Burlington, VT 05401 802 860 1003 802 860 1208 (fax) rshems~,sdkslaw.com ktyler@,sdkslaw.com for the firm Attorneys for New England Coalition, Inc.

ATTACHMENT A UNITED STATES NUCLEAR REGULATORY COMMISSION In the Matter of )ENTERGY NUCLEAR VERMONT YANKEE, LLC ) Docket No. 50-271-LR and ENTERGY NUCLEAR OPERATIONS, INC. ) ASLB No. 06-849-03-LR Vermont Yankee Nuclear Power Station )FOURTH DECLARATION OF DR. JORAM HOPENFELD 1. My name is Dr. Joram Hopenfeld.

The New England Coalition (NEC) has retained me as an expert witness in proceedings concerning the application of Entergy Nuclear Operations, Inc. (,Entergy")

to renew its operating license for the Vermont Yankee' Nuclear Power Station ("VYNPS")

for twenty years beyond the current expiration date of March 21, 2012.2. I am a mechanical engineer and hold a doctorate in engineering.

I have 45 years of professional experience in the fields of instrumentation, design, project management,.

and nuclear safety, including 18 years in the employ of the U.S. Nuclear Regulatory Commission.

My curriculum vitae was previously filed in this proceeding as an attachment to my declaration in support of NEC's Petition to Intervene.

REFERENCES

3. I have reviewed the VYNPS License Renewal Application, submitted to the.NRC in 2006. I have also reviewed the' following Structural Integrity Associates, Inc. (SIA)

Environmental Fatigue Analysis Reports, which I understand that Entergy produced to New England Coalition (NEC) on June 7, 2007: Document No. Document Name LR006468 .Transmittal of SI Calculation VY-16Q-.311; Feedwater Piping Fatigue Calculation LR006470 Feedwater Nozzle Green Functions LR006471 Fatigue Analysis of Feedwater Nozzle LR006474 Recirculation Class 1 Piping Fatigue and___EAF Analysis /LR006476 Recirculation Outlet Nozzle Finite Element Model LR006477 Environmental Fatigue Analysis of VYNPS LR006478 Fatigue Analysis of Recirculation Outlet Nozzle LR006480 Fatigue Analysis of Recirculation Outlet Nozzle LR006481 Fatigue Analysis.

of Recirculation Outlet Nozzle LR006482 Environmental Fatigue Analysis.

for the Vermont Yankee Reactor Pressure Vessel Recirculation Outlet Nozzle LR006484 Fatigue Analysis of Recirculation Outlet Nozzle LR006486 Recirculation Outlet Nozzle Green Function LR006488 Environmental Fatigue Analysis of VYNPS LR006489 Core Spray Nozzle Green Functions LR006490 Fatigue Analysis of Core Spray Nozzle LR006491 Environmental Fatigue Analysis for the Vermont Yankee Reactor Pressure Vessel Core Spray Nozzle Copies of these reports are attached hereto as Exhibits A-P.2

4. I have also reviewed redacted versions of the following two additional SIA Environmental Fatigue Analysis Reports, which I understand that Entergy produced to NEC on June 13, 2007: "Environmental Fatigue Analysis for the Vermont Yankee Reactor Pressure Vessel Feedwater Nozzles," and "Summary Report of Plant-Specific EnvironmentalFatigue Analyses for the Vermont Yankee Nuclear Power Station." Copies of these reports are attached hereto as Exhibits Q and R.5. I have also reviewed the following NUREG reports: NUREG/CR-6260, NUREG CR.-5999,.and NUREG/CR-5754.

Finally, I have also reviewed the following documents, hereinafter cited in this Declaration as References 1-8: 1. NUREG/CR-6909, "Effect of LWR coolant Environment on Fatigue Life of Reactor Materials" (Final Report), ANL -06/08 U.S. NRC, Wash., D.C. Feb. 2007.2. Y.Y. Chen et al., "Factors Affecting the Crack Growth Rates of Reactor Pressure Vessel Steels Under Simulated Boiling Water Reactor Conditions," Corrosion, Vol. 02, No 5,.2006.3. Makoto Higuchi, "Revised Proposal of Fatigue Life Correction Factor Fen for Carbon and Low Alloy Steels in LWR Water Environments," Transactions of the ASME, V. 1126 Nov. 2004.4. M. Itatani, "Fatigue Crack Growth Curves for Austenitic Stainless Steels in BWR Environments," Transaction of the ASME Vol. 1,23, May 2001.5. NUREG/CR-6583, "Effect of LWR Coolant Environment on Fatigue-Design Curves of Carbon and Low Alloy Steels," March 1998.6. NUREG/CR 5704, "Effect 6f LWR Coolant Environments on Fatigue Design Curves of Austenitic Stainless Steel," April 1999.7. NUREG/CR-6936, "Probability of Failure and Uncertainty Estimate for Passive Components

-A Literature Survey," May 2007.8., EPRI/BWRVIP Memo No. 2005-271, "Potential Error In Existing Fatigue Reactor Water Environmental Effects Analysis," July 20

05.3 INTRODUCTION

6. The VYNPS License Renewal Application Table 4.3-3 states .the results of an Entergy analysis of the impact of environmentally assisted metal fatigue on certain reactor components during the proposed period of extended operation.

This analysis indicates that the environmentally corrected Cumulative Usage*Factor (CUFen) of several critical reactor components will exceed unity. Cumulative Usage Factors (CUFs) that exceed unity signal potential fatigue damage. Entergy's License Renewal Application, section 4.3-7, proposes several possible approaches to this. problem, including "further.refinement of the fatigue analyses to lower the predicted CUFs to less than 1.0." 7. It is my understanding that Entergy has now performed this "further refinement of fatigue analyses," and that the Structural Integrity Associates, Inc. Environmental Fatigue Analysis reports, attached hereto as Exhibits A-R, describe and state the results of Entergy's reanalysis (hereinafter referred to as "Entergy's CUFen Reanalysis").

8. Entergy's CUFen Reanalysis indicates that CUFens for all components assessed are less than unity. These results are summarized in Table 3.-10 of the SIA report attached as Exhibit R to this Declaration.

However, based on my review of the SIA reports (Exhibits A-R) and recent publications on the effect of the environment on fatigue (References 1-4),, have concluded that Entergy's results are flawed.9. As detailed in paragraphs 12-26 of this Declaration, the analytical techniques employed in Entergy's CUFen Reanalysis were not rigorous and resulted inr unrealistically low CUFens. I have determined-that the CUFen Reanalysis is subject to numerous uncertainties that are neither quantified nor discussed.

To validate the 4 analytical techniques, Enteirgy should have performed careful error analyses to show the admissible range for each variable, but does not appear to have done so.10. The global lack of error analysis is especially troubling.

For example, the summary results stated in Exhibit R, Table 3-10 report a CUFen of 0.8323 for the RHR Class 1 piping. In the light of the fact that data scatter in fatigue studies often exceeds an order of magnitude, the value of 0.8323 without an error band has little significance and imparts little confidence that fatigue failure will not 6ccur.11. As detailed in paragraphs 27-30 of this Declaration, I have recalculated CUFens for the same components addressed by Entergy's CUFen Reanalysis, using more reasonable and appropriately conservative CUF and Fen values. My recalculations

"-indicate that CUFens for all components except the RHR return piping will exceed unity: CRITIQUE OF ENTERGY'S CUFen REANALYSIS (Exhibits A-R)12. Broadly speaking, the calculation of an environmentally corrected CUF, denoted as CUFen, proceeds in two steps: first one calculates the fatigue usage factor for the life of the plant (CUF), and then one calculates the corresponding environmental fatigue correction factor (Fen). Fen is defined as the ratio of the fatigue life in air at room.temperature to that in water at the service temperature.

CUFen is a product of the CUF and the Fen.13. I have determined that both the CUFs and the Fens used in Entergy's CUFen Reanalysis must be recalculated due to numerous uncertainties and unjustified assumptions.

5 Critique of Enterpy's Calculations of Fen 14. I have detected a number of errors in Entergy's calculation of Fen values.15. Entergy used outdated statistical Argonne National Laboratory (ANL) equations stated in NUREG/CR 6583 and NUREG/CR 5704; together with more recent EPRI recommended corrections (Reference 8), to calculate the Fen parameters.

These ANL equations were derived more than nine years ago. In February 2007, ANL published a new report, NUREG/CR-6909 (Reference 1); which includes revised statistical equations (.-for calculating Fens that are based on a much larger database, and also'more thoroughly discusses the limitations sf the statistical equations.

Additional data on the effect of the BWR environment on Fen were also recently published in the papers I have denoted References 2-4. /16. Entergy's calculation of Fen values appears to have neglected to include or'consider many factors, based on the data in my References 1-4, that may have a significant effect on Fen, including the following:

a. Flow velocity b. Surface finish c. Stress ratio d. Cyclic loading frequency e.
  • Size and geometry f. Excursions of normal water chemistry g. Data~scatter
17. Water oxygen content in a plant is measured periodically;.

Entergy does not appear to consider or estimate the error that may. arisebecause the actual oxygen concentration during the transient at the surface of the component is different from the oxygen that was measured at some previous time.6 Critiue of Entergy's Calculations of 60-Year CUFs 18. Entergy's CUFen Reanalysis includes the calculation of a "60-Year CUF," defined as "CUF results using updated ASME Code methodology and actual cycles accumulated to-date and projected to 60 years." Exhibit R, Table 3-10 ("Summary of Environmental Fatigue Calculations for VYNPS"). I have detected a number of uncertainties in Entergy's calculation of these 60-year CUFs. Entergy introduced many new assumptions in the revised analysis that, as discussed below, are not justified.

Even though some of the data used to calculate the stresses show anomalies, Entergy did not discuss them nor did they assign error bands on the calculated values.19. To obtain stress histories during plant transients, Entergy used the Green's Function Methodology to avoid the expense of finite.element computations for all the transients.

The basic heat conduction equation that describes the temperature, andy therefore the stress distribution for a given component is non-linear.

Green's Function is a simplification that is used to linearize non-linear equations.

Such simplifications can result in errors, depending on geometry and the sensitivity of the material properties (density, specific heat and conductivity) to the temperature.

Entergy did not specify any-error band on the stress results.20. Using two different Green functions, each with a different heat transfer coefficient, Entergy plotted the stress on several components as a function of time to illustrate the sensitivity of the results to heat transfer.

These plots appear to indicate that the thermal stress is not sensitive to the wall heat transfer during the first 100 seconds, yet it has a significant effect later on during the transient.

See e.g., Exhibit Q. Entergy does not discuss the reason for these results, and they may be a direct consequence of some 7 unspecified assumptions.

21. The calculation of the thermal stress distribution for a given component, using Green's function or a finite element method, depends on the geometry.

There is no indication in the SIA reports provided, Exhibits A-R, that Entergy used pipe wall dimensions from the latest in-service inspection measurements.

Carbon steel piping is especially susceptible to flow accelerated corrosion (corrosion rates as high as 120 mils per year have been detected in BWRs). Piping with difficult routing and geometry may have been installed differently than what was indicated on the original drawing. The SIA reports do not specifically state that this factor was considered.

22. The heat transfer coefficients Entergy employed in the transient analysis (see, e.g., Exhibit H, LR006480) are valid for. fully developed flow for straight pipes under steady-state conditions.

It is not clear why steady-state coefficients should be applicable to transient conditions, especially in transients involving mixing of hot-and cold fluids. In-geometries such as elbows and nozzles, higher local heat transfer coefficients than those for flow in straight pipes would be expected because of the presence-of secondary flows.23. Temperature and flow velocities during plant transients are calculated with a thermal hydraulic computer code. At the EPU proceedings, Entergy stated that it was using the ODYN code for this purpose. Since the ODYN code has not been benchmarked for the EPU flow rates at VYNPS, temperatures and flow velocities calculated using this model are subject to uncertainties.

To my knowledge, the NRC has.approved the ODYN code only for calculating maximum reactor dome pressure.Entergy's CUFen Reanalysis does not address how uncertainties in velocities and temperature could affect identification of the location of the maximum component stress 8 (

during the transients.

24. Based on the data in my Reference 8, I would expect the 60-year CUF to be about an order of magnitude higher than the 40-year CUF. In Entergy's CUFen Reanalysis, these values are either the same or close to the same. See, Exhibit R, Table 3-10.Other Errors in the calculation of CUFen 25. In addition to using equations that contain a large number of uncertainties, as discussed above, Entergy also did not properly apply the Fen as predicted by the equations of NUREG/CR-6583 and NUREG/CR-5704 where the Fen depends only on the strain rate, temperature, oxygen and sulfur contents.26. In calculating the CUFen it is necessary, as discussed in NUREG/CR-6909, to calculate the partial usage factor for each stress cycle and multiply it by the corresponding Fen. The CUFen is then obtained by summing the individual products for all stress cycles. Entergy's CUFen Reanalysis does not indicate that it followed this procedure.

Instead the Fen was apparently proportioned for two different water chemistries, HWC and NWC.9 RESULTS OF HOPENFELD CUFen REANALYSIS

27. The results of my reanalysis of CUFen are as stated in the following Table 1:-/TABLE 1- Recalculated Cumulative Usage Factors for Sample Locations at VYNPS!No. NUREG-6260 Sample Location (License Renewal Application, Table 4.3-3)S1i Vessel shell & bottom head 1 CUF (VYNPS License Renewal Application, Table 4.3-3)1 .0.400 Fen (Ref. 1)17 Recalculated CUFen 6.80 2 _Core spray safe end 3 Feed water nozzle 4 RHR return Piping 5 RR inlet nozzle-.1_ _ ._ _,_ _.0.182 12 2.18 0.750 17 12.715 0.032 12 0.38 0.610 17. 10.37 0.397 12 4.76.! I.6 IRR piping tee 7 RRoutlet nozzle 0.810___T_17.13.77 I 8 8 Core spray nozzle 0.625 7.rt9 Feed water piping 0.427 17 '7.28. The CUF parameters in Table 1 are the existing design basis CUFs for the VYNPS as reported by Entergy in the VYNPS License Renewal Application, Table 4.3-3. These numbers are larger by a factor of 2 -100 than the revised "60-Year CUFP values used in Entergy's Reanalysis, as reported in.Table 3-10 of the SIA report designated Exhibit R hereto. Due to the errors and uncertainties in the calculations of the 60-Year CUFs, discussed in paragraphs 18-23 of this Declaration, it is not reasonable or sufficiently conservative to replace the design basis CUFs with these revised values.29. The Fen values stated in Table 1 are the bounding values given in the NRC Bibliographic data sheet attached to NUREG/CR 6909. Those bounding values are: Fen 17 for carbon and low-alloy steels and Fen 12 for stainless steel. Because of the many uncertainties associated, with the statistical equations used to calculate the Fen 50 Z6 J.10 values used in Entergy's CUFen Reanalysis, detailed in paragraphs 14-17 of this Declaration, it is more reasonable to use these bounding Values. The Fen values in-Table 1 are based on the latest ANL data and ANL observations that: "Under certain environmental and loading conditions, fatigue lives in water relative to those in air can be a factor of approximately 12 times lower for austenitic stainless steels, approximately 3 times lower for Ni-Cr-Fe alloys and, approximately 17 times lower for carbon and low-alloy steels." See, NRC Bibliographic Data Sheet attached to NUREG/CR-6909.

3.0.. Even in the unlikely event that the 60-year CUFs used in Entergy's CUFen Reanalysis are proven to be valid, multiplications of the latter by the respective Fens values in Table 1 show that three components exceed unity. Thus when the "60-Year CUFs" of components No 2, and No. 3 and No 9 are multiplied by Fen 17, the resultant CUFens are 1.316, 1.953 and 4.3,70 respectively.

SUMMARY

31. In conclusion, Entergy's CUFen Reanalysis is flawed, and subject to numerous uncertainties and insufficient conservatism.
32. Since Entergy has not demonstrated that CUFens for the NUREG/CR-6260 selected sample components are less than one, Entergy is required by industry guidelines to calculate CUFen values at additional locations.

Accordingly, it is my opinion that: a. Entergy must calculate the CUFens of additional VY components in accordance with the guidelines of EPRI, "Material Reliability Program: Guidance for Addressing Fatigue Environmental Effects in a License Renewal Applications" MPR-47, Rev 1 Sept 2005, pg. 5-1.11

b. Entergy must. formulate an appropriate inspection program to manage fatigue at affected locations.
c. Before'Entergy is granted a license extension, the inspection program should be reviewed by at least two competent and qualified engineers for the purpose of ensuring that Vermont Yankee is not operated beyond 2012 in an unanalyzed condition and at increased risk of component failure. Reviewing engineers should be completely independent from those who are responsible for the operation of the VYNPS and other parties to this litigation.
d. The indicated inspection program must be of sufficient rigor and precision as to provide adequate assurance of public health and safety during the proposed period of extended operati6n.

12 I declare under penalty of perjury that the foregoing is true and correct.Executed this ay of July, 2007 at Rockville, Maryland.PhDZ7)

4) --, Exhibit A FileNo.: VY-16Q-311 Structural Integrity Associates, Inc.CALCULATION PACKAGE ProjectNo.:

VY-16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 CLIE.NT: PLANT: Entergy Nuclear Operations, Inc. , Vermont Yankee CALCULATION TITLE: Feedwater Class 1 Piping Fatigue Analysis..

Project Manager Preparer(s)

&Reviint PAgesd Revision Description Approval Checker(s), Revision Pages Signature

& Date Signatures

&Date A- 1-18, Initial Draft forReview Terry J. Keith R Evon Al -A38, Hernrmann In Computer Files Ryan V. Perry Contains Vendor Proprietary Information Page 1 of 1* F0306-01R0 NEG041401 V Structural Integrity Associates, Inc.Table of Contents..1.0 OBJECTIVE

...........................................

...............

... ....... .... 3 2 0 ETH O D OLo G Y..........

.... ...... .................

.............

......................

.3 3.0 ASSUMv1IIONS/DESIGN INPUT ...........

..... ..... ................. , ....... 12 4 .0 A N A L Y S IS .......................

........................................................................................................

14 5.0 RESULTS OF ANALYSIS ..........

.......................

........................

6.R EFER E N CE S .................................

.. ..........

.. ... ...............

...... .. .. ................

.17 APPENDIX A PIPESTRESS INPUT FILE ("W.PCI F." ..... .......1 List of Tables Table 1: Therm al Cycle Definitions for Feedwater Line......................................................................

5 Table 2: Material-Properties for Feedwater System Class 1 Piping [2 App. E, 5].............12 Table 3: Feedwaterf.HIPCI Piping Size Information

[2] ................

13 Table 4: Thermal Cycle Load Cases ..............................................

15 List of Figures Figure 1: Feedwaterfl-WCI Piping from Anchor HD-36 to RP,_V Nozzles N-4A and NA4B .........

11 FileNo.: VY-16Q-311 Revision:

A Page 2 of 2 Fo3o6-9IRO NEC041402 t Structural Integrity Associates, Inc.1.0 OBJECTIVE The purpose of this calculation is to p erform an ASME Section III, NB-3600 fatigue calculation (Including environmental fatigue) of the Vermont Yankee (\JY) Class I feedwaterpiping located inside the drywell (originally analyzed to B31.1 requirements).

This section of piping was originally identified in the Recommendation Report [6] for installing a fatigue monitoring system at VY.The fatigue calculation performed herein is not a certified ASME Code NB-3600 stress and fatigue analysis..

Rather, it is an evaluation for the purposes of establishing fatigue usage to accommodate fatigue monitoring of the subject B31.1 piping. Although the PIPESTRESS program implements all ASME Code NIB-3600 equations, only the fatigue usage results are utilized.

All stress limit checks, although calculated by the program, are ignored since satisfactorystress limit checks were performed as a part of the already existing governing B31.1 stress analyses for all piping systems.2.0 METHODOLOGY The Class 1 Loop A feedwaterpiping system line extending from anchorHD-36 to reactor pressure vessel (RPV)nozzles N-4A and N-4B was evaluated.

This includes aportion oftheHPCI line outto the first HPCI line support so that the appropriate stiffness affects of this line on the feedwater piping are included.

This evaluation is also considered valid for the. Loop B line extending from anchor HD-39 to RPV nozzles N-4C and N-4D for the following reasons: 1. The Class 1 sections of Loop A and Loop B are mirror images of each other. This evaluation includes piping beyond the Class 1 boundary check valve so that its influence on the Class 1 piping is taken into account. The final fatigue analysis will orly.consider points on the Class 1 portion of the piping,.2. A 14" HPCI line tees into Loop A and a 4" RCIC line tees into Loop B. The I{PCI line is more than three times the size of the RCIC line and will therefore have a greater influence on the feedwater piping. In addition, the HPCI system is a high-pressure system, whereas RCIC is low-pressure, so the transients associated with the HPCI system are more severe.3. The transients defined in this calculation are the bounding set for the two loops.The operating.

conditions for the Class 1 portion of the feedwater line were defined based on the original cyclic limits specified for the RPV, as well as the piping.thernal cycle definitions from past BWR-4 plant experience.

For VY, cyclic limits are referenced in the plant FSAR [8] and the plant Technical Specifications

[9], and are specified in detail inthe RPV Purchase Specification

[10] and other follow-on studies[ 11, 12]. Entergy has performed a significant amount of work to further a~ssess. plant transient events [ 11, 12], both in terms of establishing the bounding set of events for tracking purposes, and for establishing the bounding number of events to be used for cyclic limits. As a result of this additional work, the content of the FSAR with respect to transient event definitions has been removed, and reference is made to the governing underlying documents where that content is now maintained

[10, 12, 13].FileNo.: VY-16Q-311 Page3 of 3 Revision:

A F0306-OIRO NEC041403

-ý L 3 Structural Integrity Associates, Inc.I The resulting pip ing transient definitions are specified in T able 1. For each thermal cycle, the operating temperatures for Regions I through V define the conditions to be applied to the model.Region boundaries are defined at branches, transitions,`

or locations where temperature and flow conditions change. These boundary locations are also shown in Figure 1. A'listing of the PIPESTRESS input file FRE" is given in Appendix A and is also included in the project computer files.(f FileNo..:

VY-16Q-311 Revision:

A Page 4 of 4 F0306-OIRO NEC041404

'

JStructural Integrity Associates, Inc.Table 1: Thermal Cycle Defintions for Feedwiater Line.* T~he, Gi!! .od ~in s CZ Pmslum Cond Moim IT-.Trn slin. .cr1.otbn Ppoin Cper.Tomp.

-". T... .I-re t "f., na Pn -w wPta of.Cyle

  • gien k) j; ) ) (wec.) (7/h r) (7) ( 0 ,) I (.pm(X4) (stg) (Gsir) Cyl-e (1)-I r w-r -Twr .M- r1 I'rll" -uT-1 -fl-1. 100 70. 100 .100 t0 .-8 0 1 1500 00 .100 5b 100 70 100 .1600 t0 83 0 1 lJ0 0.0 1100 xI 100 70 100 1800 00 3 0 1 1i0.0 0D0 5 0 M T 100 70 l 00 190 O to 3 .0 1 l Joop " j 1100J twl) r+) IVI 100 70 100 1600 00 02 0 I 2000 00 iOO / 1A0 Iv% 100 70 i00 1800 t0 85 0 1 0 loo 00 1100 1,00 so- 100 1800 tO W 0 1 1000 0B 0 1100 1 100 70 100 100 aO 05 0 10 1 00A 0 0 lO1 0 Vk 100 7 100 1600 00 8 0 1 1300. 10.0 10 30 M. 100 100 100 0 0. 100 0 1 1300. 11000 50 91 100 100 100 0 0 100 0 1 1500 110 J 50 i 100 100 100 0 0r 100 0 1 1500 1100 50 00npx4zLt IVI 100 100 100 0 0 100 0 I1 2000 11000 so 120 iv .100 100 100 0 0 100 0 10 1000 11000 50 DA 100 100 100. 0 0 100 0 10 100n 0 10OB 50 lNb .100 100 160 0 0 ic 100 0 1 0 ) 11000 50 V 100 1 100 100 0 0 100 0 102 1000 11000 50 S 1DO0 100 130 10100 111 125- 0 1 100 A 0 1010 Eb .N 15 100 125 10104 J5. 113 0 1 lo0 jo3 1010 K 100 100 100 1010 00a 100 0 1 150 500 50 3 ,3 130 1ic 1SO 11lt4 -11 123 0 1 200I 300 1010 300 IV 130 100 150 19104 11u 1 112. 0 102 100j0 300 1010 PIA 250 100 250 11194 33.0 Iii 0 10 1000 500 1010 rib 449 100 449 111t -77.7 275 0 1n 1000 JOB 1010.. " V Sit 100 is9 in is 100 39 11 1000 500 -1010 I 100 150 100 0 12E P3 1 13770 10100 1010 IL 100'- 150 100 0 SEEP 12M 0 1 1500. 10100 1010" 100 125 100- 0 S11P 113 0 1 1500 I0100 1010 el um V 2r 100 100 100 0 SEEP 100 0 ) 1500 500 50 0 it ma 1 (-) r 100 150 100 0 SEEP -125 15 1 13770 10100 1010 010 IV 100 150 100 0 CISEP -125 13 1n Ia'si 10.10o 1010 PA 100 230 100 0 STEP 175 15 i0 tasi 10100 1010 Mb lee 149 100 .0 SIZE 275 13 10 6880 10100 1010* , _____ _ V 100 -549 100- 0 SEE 325 1 10 0885 10100 " 1010 I 200 100 Ito 0 SIEP 160 15 1 13770 1010 0 1010-21 i0 100 2M 0 STEP 160 0 1 1500 10100 1010 Ib 100 .100 e16 0 SEEP 140 0 1 130.0. 10100 1010 2ll 100 100 100 0 SIEP 100 0 1 1500 50J 50 J d bfl ksa, 't r 2(0 100 2tM 0 ST 160 15 1 13770 1010 1010 579 ta/elIV o l.220 100 M200 0 SEEP 16 15 10n 88. 10100 .1010 A 2 to 100 200 0 SIEP 160 1U 10 '88J 1010 A 1010 INA 2 t0 100 200 0. SEEP 160 13 1/i tsi 1010Me 1010 V 2t0 100 tO .0 SIEP 10 15 10n 188J 10100 -1010:I- 392 2t0 392 1800 2 If 321 100 1 1o80o 10100 1010 1k -392 2 00 392 1600 214 321 0 1 1500 10100 1010 M10. 24t '190 24Cl 1600 132 .213 0 1 1500 10109 1010 EuV dmkl& k 11 100 100 100 1600 0 .100 0.1 1500 I I J0 50 1 fo .l.iz3 M 392 2I0 392 1600 24 320 100 l1 960 10100 1010 579 IV 392 210 392 1000 O20 326 100 1i 0 03900 10100 1010 PA 392 2I0 3925 1800 204 320 100 10 05900 10100 1010 M'. 392 M20 392 1800 294 320 100 10n 45900 10100 1010 V .2 2300 I 392 1800 " 20 320 100 I0 40900 10100l. 1010 I 310 -392 310 900 -328 351 r ) 68830 10100 1010 I 11 310 392 310 900 -328 351 0 1 1500 10100 1010 Ml 205 240 203 9no -it4 220 0 1 150 10100j 1010 lhya&'tnte73Y.

11 100 100 1 100 900 0o 100 0 1 150 500 50 7 2 310 392 310 900 -328 351 7J 1 650 101WJA010 1010 10000-D/in(-) iv 310 392 .310 900 *-328 351 7J 1n 34023 10100 A 1010 PA 310 392 ' 310 900 -328 351 75 10 30423 10100 1010 1TA 310 " 392 310 900 -328 331 75 10 34423 1010A 1010 *V -310 392 310 900 -328 331 7J 10 3+423 10100 1010 1 392 310 392 900 328 351 75 1 0883 10100A 1010-ILL 392 310 392 900 328 331 0 1 1300 10100 1010 ib 240 205

  • 240 900 104 221 0 1 1500 10100 1010$ Ilbr ,Uati- M. a1 .100 100 100 S00 *0 3 100 0 1 1300 010 30 Dl 392 310 392 900 -328 331 75 1 08835D 10100 1010 10000 IV 392 310 392 9I- 328 351 7j In 34423 10100 1010 PA 392 310 392 .900 -In 351 7510n 31025 10100A 1010 W"11 392 310 392 900 328 -351 75 10 34423 10100A 1010 V .392 " 310 392 900 3 528 351 75 10 34423 10100 1010 I 20 392 260 160* -220 330 30 1 -490 10100 1010 1L 260 392 280 0 4224 330 "0 1 1500- 1010 1010 Dl 190 241 190 1800 -112 218 0 1 1500 -1010 1010 -IOFIWR.auliont0%

1 100 100 '100 1800 0 100 0 1 150J 5O0 50 9 -260 392 260 1600 -224 -33( 30 1- 4390A 10100 1010 2000 ,

  • IV -260 392 26) 1600 -224 330 -30 10 22950 10100 1010 A 280 392 280- 1600 -224 330 30 10 22950 .D10100 1010 1D 260 3M 280 1600 -224 330I 30 1 22 95 10100 1010 V 280 392 20 1600 -224 330 50 10 22930 10100- 1010 Fornotes, see last page of table.FileNo.: VY-16Q-311 Revision:

A Page 5 of 5 F0306-OIRO0 NEC041405 I Structural Integrity Associates, Inc.Table 1: Thermal Cycle Definitions for Feedwiater Line (continued)

A- oo l La a I Mn -Cre Su r*ucond Li4ss .Transiet Decriptimon pip". Opr.Tmp. T. T T1.0 Ree T-r- Pink 'rh0 l Of CIO______

LegionQ()

CI) 4cr. 0) (TOhr) (IF) S e) pm4 (pugr) Ossg) yi 1 I 392 280 392 1000 22n 33 30 1 4$900 1010B 0 1010 16 392 280 392 1800 22f 33( 0 1 130.0 1010 0 1010 III 2- 190i 211 1800 112 218 0 1 130.0 10100 .1010 5tt,&. .30% II 100 100 100 1800 0 100 0 1 13.0 300 30 10 -I 392 280 392 1800 221 330 .0 1 43.900 10100 1010 2000 IV 392 28D 392 1800 220 33C 30 12 229350 10100 1010 IV, 392 280 392 100 '22f 330 30 IA 2293J 10100 1010* n 392 280 392 1800 22$ 330 1 0 ,' 2290 1 1010 V 392 280 392 1800 22f 330' 30 1/ 22920 10100 1010 I 203 392 20 100 -234 329 .30 1 43900 10100 1010.r& 203 392 203 1800 -234 329 0 1 1300 1010 < 1010 I1- 1823 214 1820 1800 -127 214 0 1 1300 10100 .1010 L31 *UkF .biHt U 100 100 100 1800 0 100 -0 1 13J00 300 30 mn 202 .392 203 1800 -234 329 30 1 .4390 10100 1010 310 IV 203 392 203 1800 -214 329 .30 IA 229930 1010J 0 1010 IV. 20 392. 203 1800 -23 .329 30 IA 22 93 10100 1010 mV 203 392 203 1800 -230 329 3 .$0 22 .2920 1010A0 1010.V 20 392 20 180 -2i4. 329 30 IA 22930 10100 1010 Ir 90 203 90 300 -1730 ,0 1 1300 1010*0 1010 in 93 1623 93 30 -473 139 0 1 1300 10100 ,10i0 31b t 100 " 100 100 30 0 100 0 1 13o00 .00 .0 12 2t-m21anzab 90 203 90 300 -1730 in 12 1 13770 " 10100 1010 10 12 Im, 142 (-) 90 .20 90 .30. .-1730 in8 1. in 080 10100 1010 IV. 90 .203 90 .300 -1730 in7 .13 IA 0803 10100 1010 IVA 90 203 90 310 -1730 178 .13 In 0803 1010,0 1010 m .90 20. 90 3CO -173$0 1".8 13$ 188 E¢.I 101 1010 V 90 203 90 .300 -1730 17i 1.3 in 0 183 10100 1010'13 LF o ffmlvatzffngtso ZmUl IA23 (+)A 3r&m IV IV.Nb 203 100 203 203 203 202 90 93 100 90 90 90 90 203 100 203 20 203 203 ,u0 900 900 900 900 900 900 330 76O 700 700.700 171 139 100 178.178 178*0 0 0 131!13 13$131 11 1 I/2 in Ili 13709 1300 13770t 10803 0803 0803 001.50 1010.0 1010.0.10100 10100 101009 10100 1010 V 1010-1010 1010 30 1010 1010 1010 1010 1010O 10 1 392 203 392 1800 ..2N0 329 30 1 04909 10100 1010 16T 392 203 392 .1800 23f 329 0 1 1300 10100 1010 m DI 20 180J 2t+ 1800 127 214 0 1 1300 10100 1010 Lon qfrantzff o I0 .100 100 100 1800 0 100 0 1 1300 .300 ..30 4In 392 2031 392 1800 .2Of 329 30 1 0490 0 10109 1010 10 tulsa (O- IV 392 203 392 1800 2Of 329 30 IA 22930D 10100 1010 IVA 392 203 392 1800 23f 329 30 iA 22930 10100 1010 Vb 392 203 392 1800 23f 329 30 IA2 22930 10100 1010 V 392 203 392 180 2Jf 329. 0 I2 22950 1O10 1010 1 203 392 203 90 -3080 329 100 1 91800 1010.0 1010 IL 203 3 203 90 -3080 329 0 1 1300 10100 1010-m, 18023 240 1820 90 -2300 210 0 1 1300 10100 1010 13 s I.iautnal 11" 100 100, 100 90 -0 100 0 1 1300 300 A 30 In 213 392 213 90 -3080 329 100 1 91800 10100 1010. 70tnyras (') .IV 213 392 203 90 -3080 .329 100 1i2 43900 10100 1010 IV. 213 392 203 90 -3080 '329 100 In 43900 10100 1010 m 203 392 213 90 -3080 329 100 in o390s) 10100 1010 V 203 392 203 90 -3080 329 100 1n 43 900 1010.0 1010 I 392 20 392 180 2340 329 100 1 91s00 10100 1010 1& 392 203 392 180

  • 2340 329 0 1 1300 10109 1010 l 2W0 1803 2002
  • 180 1270 214 0 1 1300 10100 1010 10 L
  • t rm .,z a ; .1, 100 1100 00 180 0 100 0 1 1300 300 30"I 392 2'3$ 392 180 2340 )29. 100 11 918 .10100 1010 70 FW IV 392 20 3 392 180 2340 329 100 I1A 43900 10100 1010 IV% 392 203 392 180 2300 329 100 1A 43900. 10100 1010 IVO 392 203 392
  • 180 2300 329 100 in 43S900 10100 1010 V 392 2,3. 392 180. 2340 329 100 in 43 90 0 1010.0 1010 I 27r -r 27m .0 -70w 314 -n0 1 100f 1 r 1010 1k 273 392 273 00 -7020 334 0 1 13j00 10100 1010 m, 167.3 240 1867J 0 -3310 '217 0 1 1300 1010.0 1010 tC.A 2a. Iz=.-to U 100 100 100 0o 0 .100 0 1 130.0 300 A 30 17 Ouszmosasuk cdLJOds Im I 273 392 273 .00 -7020 330 110 1 100900 1010,0 1010 2C9 San 1 (') IV 273 3m2 273 00 -7020 334 110 iA 3009.0 10100 1010 IV. 273 392 2713 t0 -7020 330 110 A2 30490D 10100 1010 m 273 392 273 00 M7020 334 110 i2 30490D 10100 1010 V 273 3 273 0o -7020 330 110 12 i 0n9o 1010. 0 1010 A. J -lug- Z" n- lg u -r = -r T -nr r 29r10 16 100 273 "100 .900 -700 180 0 1 1300 10100 1010 IL 100 187J 100 900 -320 104 0 1 1300 1010.0 1010Ia. tit rbacdn n 100 100 100 900 0 100 0 1 110o0 300 $30 16 Oauemoss m In 100 273
  • 100 900 -700 18 3 1 272.4 1010`0 1010 209 Saw. t2) IV 100. 273 100 900 * -700 18 3 10 137.7 10100 1010 IV. 100 273 100 900 -700 180 3 10'2 137.7 1010 0. 1010.I'V. .100 233 100 Soo -700 186 3 IA 137.7 10100 1010 V 100 273 100 900 -700 1is 3 10 137.7 1010A0 1010 For hotes, see last page of table.FileNNo.:

VY-16Q-311 Revision:

A Page 6 of 6 F0306-OIRO NEC041406 4 tj Structural Integrity Associatesi Inc.Table 1: Thennal Cycle Definitions for Feedwater Line (cninued ,. "' Th -r 4 1 Con d ition s (21 9r AD 0 Cnd Io~n I e+Transieet

-DlOcriptitn P'in Opr.Tomp, T, fteTmica Pas PTin.l *0f CYCle NAeQ G) OF) (7) (see) (7 I0 C (p) (-A) Rain bprnX4) (0s0) 1 (I) Cycles(.)[ " 2( 23 13> 20 0 1 200,0 Late A. 1010 UL 213 203 2i' 0 9 IP 20.5 0 1 130 A 1010 a 1010 Eb 1823 1823 1823 0 MIR 183 0 1 130 A 1010 A 1010.1I 100 100 100 0 fIRP 100 0 1 130 A 0ja 34 19 not ftIII. m 23 230- 205 0 IR U 293 0 1 200* 1010A* 1010 300 IV 2'3 203 205 0 9 mP 293. 0 i2 100io 1010.A 1010 MI .309 23 309 0 SIR 287 0 1i2 100A 1010A 1010 ImA 390 203 39C 0 11Th 331 0 1iR 100*0 1010*A 1010 V H00 23 44+0 0 SIR 333 0 itR 200*A 10100 1010 m 203 2 3 2(. 0 0 203 0 1 130* 1010* 1010" 1823 1823 1602 0 0 103 0 1 130.0 1010* 1010 I1 100 100 100 0 0 100 4 1 130*0 Mi 30 20 Hot 2(+2 21r 2. 293 263 0 0, 213 0 1 200*A 1010*A 1010 300 IV 203 203 233 0 0 2U o 1i 100.0 1020*A 1010 iJV 331 309 33 C 3920 23 323 0 1It 100

  • 1010
  • 1010 mVb 478 39( 478 3924 73 , 437 0 it2 100* 10t0* 1010 V HS9 440 349 3924 100 093 0 1 i 100.0 1010* 1010 1 1. 30 2 6 .1.0 41t 0 100 208 0 1 20 P 1010 A0 1010 mt 130 29 .130 +140 100 208 0 1 130*A 1010*A 1010 n6 123 182 J 123 4140 -34. 134 0 1 130.0 1010
  • 1010 II 100 100 100 0 0 100 0 1 l30* J 30* 30 21 mt tnuly 1(-) 11* 130
  • 213 130 4140 100 208 0 1 200*.0 1010*A 1010 300 IV 130 261 130 4140 -100 208 0 112 100*A 10100 1010 Wa 230 330 230 4140 -73 293 0 1,2 100
  • 1010
  • 1010 m 449 478 449 4140 -23 f04 40 i 100* 1010A 1010 V 1 59 249 349 0 100 5+9 0 1/2 100* A 1010* 1010 *1 1.0 130 1.0 "r0 1 W 1 mt 130 130 130 0 0 130 0 1 130* 1010 170 1in 123 123 123 0 0 .123 0 1 130* 1010*A 170 II 100 100 100 0 0 100 0 1 130.0 30* 30 22 t104u 1(-) 1 10 130 130 .0 0 130 0 1 200*0 1010* .170 300 IV 130 130 150 0 0 130 0 in? 100* 1010*A 170>Mr 20 230 20 C 0204 -23 228 0 It? 100* 1010
  • 170 m N 319 449 319 '2C4 -73 3* 0 it? 100*A 1010*A 170". V 373 349 373 0204 -100 402 0 1i2 100* 1010*A 170 1 1.50 130 130 0 0 1.30 0 1 20 17.Ut 130 130 130 0 0 130 0 1 130* 170.0 00 mn 123. 123 123 0 0- 123 0 1 130*A 170.0 as S 100 100 .100 0 0 100 0 1 130 30*J 30 23 ]amion2(-)

'r 130 130 130 0 0 .130 0 1 200*A 170.0 88 300 IV 130 130. 130 0 0 130 0 1it 100.0 170.0 88 WA 193 20 C 193 C00 -00 201 0 It? 100

  • 170.0 88-I'J 20 319 263 t00 -204 302 0 1/2 100.0 110.0 88 V 330 373 330 0oo 0 333 0 it? 100*o 170.0 88 lb. 100 130 100 8280 -22 123 0 1 130*0 JO .* 30 in 100 123 " 100 0280 -11 .113 0 1 130* 00 *Bi I 100l 100 *100 8280 0 100 0 1 l0 0 0 30 " 30 24 t1&&vm(-)

3]I " 100 150 100 8280 -22 1213 0 1 200*B 88.0 30 300 IV 100 .130 100 8280 -22 123 0 t 100* Ic A 0 g .30 EVA 100 193 100 8280 -41 118 0 1i2 100 A Se0 30-% .100 285 100 6280 -80 193 0 in 100*0 808 30 V 100 330 100 8280 -100 213 0 It? 100.0 88* 0 m .392 392 392 12 0 392 0 1 130.0 1010. 1190 m 24( 24' 24+ 12 0 240 0 1 130.0 1010* 1190 1CLAIX Iaau qf~mayat TH 100 100 100 12 0 "100 0 1 130

  • 30* 30 23 392 392 392 12 0' 392 0 1 200
  • 1010* 1190 10 r.Pn 1 (4) V 392 392 392 12 0 392 0 o in 100* 1010*0 119 IVA .43 392 433 12 12900 410
  • 0 , 12 100*J 1010A, 1190 PA 322 392 322 12 39000 +37 0 1it 100.0 1010*A 1190 V
  • 303 ,392 30. 12 31900 479 0 I1, 100*A 1010*A 1190 o.1 30 .392 0 9 U.Ep 221 t.0 1 67 AT. 1131 Mr .0 392 30 0 $ UT 221 00 1 3472* 1190*A 1133 nb 50 240 .30 0 11 mh 1408 0 1 3)72*. 1190 .1133 SC LA f.II 30 100 -30 0 SIR 73 f 0 1 30* 1133 20u 1m 30 .392 30 0 SmI .221, 4t0 1 3 072
  • 11900 1133 .10 P- s2C-) IV *3 Q0 392 30 0 tIR' 221 4t0 it 1020* 1190* 1133 1% 0 .433, 30 S0 Sin 243 00 I tI 102 9 A 1190 A 133 PA. 30 322 30 0 12m 281 tO OIa 18310 1190.0 1133 V 3o 303 30 0 SIR 308 40 it2 18310* 1190.0 1133 1 r0 -r0 -i .1380 -21L
  • 100 0 1 in .B r1.U& .130 30 130 1380 201 100 0 1 130* 1133* 1133 1%, 123 30 123 1380 190 88 0 1 1300 .1133.A 1133"euC s Loa .ofIA6 t&ý H. 100 30 100 1380 130 73 0 1 130
  • 1113*A 30 27 m 130 30 130 1380 21 1o00 0 1 200
  • 113* A 1133 10 3 130 50 130 1380 2 01 100 0 it? 100
  • 1133
  • 1135 IV. 223 30 221 1380 431 137 0 It? 100
  • 1133 A 1133 A -318 30 308 1380 830 209 -0 1it 100*0 1133
  • 1133 V 440 3U 40 130U 1011 2+' 0 1in 10B.e B 13 A 1133 For notes; see last page of table.. I File No, VY-16Q-311 Revision:

A Page 7 of 7 F0306-OIRO NEC0414O7 A t Structural Integrity Associates, Inc.Tahlip1 ThpnrmalI P Tpfinitinnc'fnr WPaAstatarThmic(rnntihnioPA I _6_irmri UOIn4d.*n k-suore Loon Iumon ns TrOnsimt Dncrcction PO Opeor. Tr p. T... T,.... -T.r F T., FkE l Cydo Q)_ roCF) R (*?) m) 0.) (71hr) (P) W) FAth (aP X4) CyeknQ)I IYU 13U

  • i .) .-" /U U I zuu.U .U 513 ILL 150 130 130 0 STEP 130 0 1 130.0 1135.0 -113J IN 123 123 123 0 STfl 123 0 1 130.0 1133.0 1135 o8 " -100 100 100 0 STEP 100 0 1 130.0 30S0 30 4.m.o4 111 130 130 130 0 SIUP 130 0 1 200.0 1133.0 1133 10 IV 130 1 10 150 o fl io 12 100.0 1133.0 1133 r14 23f 223 23f n0 flP 239 0 in 100.0 1133.0 113 J M1
  • 401 308 401 c 0 ST 413 0 1/2 0 0.0 1133.0 113.30V .43 $40 303 0 flf 303 0 in ioo.o 13.0 1133 (1 0U 13 U O0) 30 In1 .03 11.IL 30 130 .0 0 STIP 100 30 1 Z7340 "U33.0 1133 IN 30 1i3 30 0 SIRP 88 30 1 2734.0 1133.0 1133 2 SLAM. loo ofFm~alval IT 30 100 i .o. 0 fIIR1 73 30 1 2734.0 302 1133 Pump 5(-) 3I 50 130 .50 0 StEP 100 30 1 273*`0 1133.0 1133 10 IV 30 130 30 0 STIEP 10o 30 1i 13772 1133.0 1135 DA 30 234 30 0 SIRP 1i2 3o in 1377A 1133.0 1133 ib 30. 401 30 0 SIEP 23( 30 1i 13772O 1133.0 1133.V 30 303 130 0 SITE 308 30 152 13772 1133.0 1133 1 130 SrO 30r 0 -Il 100 0 1 200.0 -r.r 1-0l0 1k 130 30 130 30S0 118 100 0 1 130.0 68.0 100 Di 123 30 123 3000 88 08 0 1 130.0 883.0 1010 CCH 100 30 100 3000 39 73 0 1 130.0 1135.0 30"30 i.L of" L-f ID 130 30 130 30(0 118 100 0 1 200.0 883.0 1000 10 PTupcO() IV 130 30 130 3100 118 100 o 1i ioo.O 683.0 10o0 DA& 223 30 223. 3000 204 137 0 1i2 100.0 .63.0 1000.1A 30 530 3(8 3000 37* 209 0. in 100.0 083.0 10i0* ' V 440 30 440 30C0 439 2. 3 0 o in 100.0 W.0 1000 " I1 130 130 150 0 TEP ISO 1 200.0 1000.0 1133 X& 130 130 130 0 SIRP 1" 0 1 130.0 1000.0 1133 3% 123 12 .13 i fo IS 125 0 .1 13io.o 1O0O.0 113J 31 1CL., Lof ofFman H1 100 100 100 0 ITR " 100 0 1 130.0 302 .150 31 Pi:up. 7(") rI 130 130 130 0 fmIR 130 0 1 200.0 1000.0 .1133 10.V 130 130 130 0 1.o0 0 in 100.0 1000.0 1133 PA 230 223 230 0 237 0 i2 100.0 10(0.0 1133 S049 308 449 0 SIRP 409 0 in 100.0 1000.0 1133 V 309 440 349 0 SIRP 493 0 in 100.0 1000.0 1133 1 30 130 50 0 SIRE 100 17 1 1350.0 1133.0 073 1A 30 1i0 30 0 SIRP 100 17 1 1500 .0 1133.0 In 50 i23. 30 0 fIRP 88 17 1 1300.0 1133.0 07 5]LM. Us o fFa.& u H S0 100 30 0 STfl 73 17 1 1310.9 3020 m3 1 Pmpo8(-) 8 11 0 130 50 0 STEP .100 17 1 130..0 5113.0 m70 IV S.0 130 *0 0 STEP 100 17 in 700.3 1133.0 73 30 230 50 0 STEf 1i0 17 In. 700.3 1133.0 0.116 50 449 30 .0 SiTE 230 17 In 7_0.3 133.0 m V 30 * "349 30 1 0 nf]Pl 300 17 1In 70.3 1133.0 0r7 I 1- 0 -0 130 r00 100 :0 1 200.0 673.0 97.ILL 130 30 130 300 1200 100 0 1 130.0 073.0 077 35 123 .30 .123 300 900 as 0 1 130.0 075.0 073.Lou of*aat H. 100 30 100 300 to0 73 0 1 130.0 673.0 30 33 DI 130 30 130 300 1200 100 0 1 200.0 073.0 0D 109(4") IV 130 30 130 300 1200 100 0 in 100.0 (73.0 07 m .88 10 188 300 1(3 119 0 in 100.0 '73.0 mb 213 50 203 300 2330 137 0 In 100.0 (73.0 07 V 300 30 300 300 3000 173 0. In 100.0 (73.0 7 1 1 0 3 0 1 3 o1 3 1 2 0 0 .0 2 + 0 .0 1 0 2 0 1k 130 130 130 8914 0 1 150.0 240.0 1010 11 123 123 123 89(4 0 123 0 1 '130.0. 240.0 1010 9C LATE. IHo ofpkwbl 11 100 100 100 004 0 100 0 1 130.0 30.0 30 3L fI 130 130 130 89(4 0 130 0 1 200.0 240.0 1010 10 P 10(4) IV 130 130 .130 8904 0 lo0 0 In 100.0 240.0 1010 DA 230 3M0 230 899+ 23 219 o0 In 100.0 240.0 1010 M b 419' 203 449 8904 73 330 0 in 100.0 240.0 1010 V 309 300 349 8094 100 42. 0 In 100.0 240.0 1010 I 2f ..V9 x 13 ' -jOxV 33+ II0 1 I vJuu, J.. u 5 1.. 273 392 273 t0 -7020 334 0 1 130.0 1010.0 w83 i'5 187.3 24 3 187.3 t0 -3i10 217 0 1 130.0 1010.0 =R 100 100 .100 t0 0, 100 0 1 130.0 .02 30 3 13LA,.K, ISLV. LA l mn .273 392 273 00 -7020 334 110 1 10098`0 10102 A w H IV 273 392 273 00 -7020 334 110 in 3049b 1010.0 '0,-m. 273 392 273 00 -7020 334 110 i2- 3049,2 1010.0 a8m m 273 392 27s t0 -7020 334 110 Io in 3049J 1010.0 083 V 273 392 273 00 -7020 33 110 In 3049A 1010.0 88 S 100
  • 273 100 900 -7.0 ao 3r 1 r r. "n. 0 -Iu 100 273 100 900" -00 1 0 1 130.0 M8.0 30 100 1 87.. 100 n0o -330 1+4 0 1 130.0 883.0 .30 c LVflLwo2 9 100
  • 100 ioo 900 0 100 0 1 130.0 30,0 50 3( m 100 273 100 900 -700 18 i 3 1 273.4 3.0 50 1 3(' IV 100 275 100 900 -700 10N 3 152 137.7 W.0 30 PA 100 273 100 .00 -700 188 3 1i2 137.7 683.0 30 DA 100 273 100 900 -700 IN 3 in 137.7 83.0 30 i loU 2i3 iUo Nov -SO 108I 3 In lsf.$ +.U if)1- --,. ... ..1 ----L. .-r.ornotes, see iasLpage of tale.FileNo. VY-16Q-311 Revision:

A Page 8 of 8 F0306-OiRO NEC041408 u Structural Integrity Associates, Inc.Table 1: Thermal Cycle Definitions for Feedwater Line (continue"JRr ftN p. Tiy T T" umJ ' ? rr 1ý .d____ ___ C1) CZ) (PK) (T7r) (7) 1W fr (r*W) W Ila 100 100 100 0 0 100 0 1 150D 5030 L563 IE 100 100 100 0 0 100 0 1 150.0 5030 1563 Rt" 1O0) 100 100 0 0 10 0 1 150D 500 15D 3 3"7 HAAA TeSL(+) M 100 100 100 0 0 100 0 1 200.0 50.O, 156 1 IV 1a0 100 100 0 0 100 0 n 1000 500 .1563 IVA 100 100 100 0 00 100 0 1/2 10 5030 1563 ro 100 100 100 0 0,0 DO 0 1/2 100 50.0 1563 V 10) 100 100 0 0 100 0 I/2 100.0 5030 1563 fl 1UU -inr J.U O U ef U O 2DUJ ..)4L 3U.1. 10) 100 DO0 0 " 0.* 10) 0 1 150.0 1.530 50*Ib 10) 100 100 0 0 1) 0 1 150,0 1553.0 50)O" 10) 100. 100 0 0 103 0 1 150L0 5030 50 33 T-dbtcTeit(-)

.100 100 100 0 0 MD 0 1 2300 15630 50 .1 IV 100 100 100 0 0 100 0 12 1000 15630 50 30 HlvaviTSL

10) 100 100 0 00 100 0 11 2. 00D. 1MI3 501*Iva. 100 100 10 0 o J l, oo o m/ .10o0D. L563O 50 Iro 100 100 100 .0 00D 100 0 1/2 100.0 1M530 50* " V 100 100 100 .0 0 100 0 In 1000 LM3.0 50 I- 5Wr MAr -WA --rj *u Ir -wrr. rrj Ur -.i 392 392 392 60 0 392 0 1 1500 1010.0 1375 M 246 246 246 d0 0 6 0 1. 1500 1010.0 '1375 SaUKT.G.'THlRam 1" 100 100 100. 60 0 100 0 1. 1500 500 50 30 Cflpr6Slmjdiflnt1wr m 392 392 302 60 0 392 110 1 1909.0 101o00 1375 213.Smsl(-) ..D 392 302 3,2 60 0 302 110 12 MD0 1010.0 1375* ..I~ 392 302 302 03 0 m, 1 ]/2n .5409.0 1010,0 3375 IW 392 392 392 60 0 392 110 1]2 50490 10100 1375 V 392 302 392 d0 0 3 I2 110 In %490 10100 1375 ik 392 392 392 900 30 92 0 1* 150 13750 940 11 246 246 26 900 0 246 0 1 1500 1375.0 940 SC MA. T.G.fi-, Re ap= 1 10) 100 DO0 900 0 I00 0 1 150 D0 50 0 s50 d 40 (kab'n MII 392 392 302 900 0 392 3 1 2754 1375.0 940 2 *Iatms2() lV 392 302 302 900 0 392 .3 In 1371 L375J0 940 AvA 392 302 392 900 0 302 3 12 1372 1375J0 940 NW 392 302 302 900 0 302. 3 12 1371 13750 " 940 V 392 392 302 900 0 302 3 in 1371 1375.0 940 I .5y0 VA -W YUU 0 M* 3 2734- W0D -00 SII 392 302 392 900 0 392 0 1 1500 9400 1010 1Ib 246 246 246 -900 0 26 0 1 150.0 9400 1010 S CQ T.G..Lfl Reke R 100 .100 100 900 0 00 *0 1. 1500 500 J 50 41 Oo'r'e-ps .ondA1Or DM 392 392 302 900 0 302 3 1 2754 940J0 1010 2W9 SnsO3(-) IV 392 392 302 900 0 392. 3 I 37.7 9400 1010 vIva 392 392 302 900 0 392 3 In 1371 940.0 1010 1Wdb 392 392 302 P0O 0 302 3 I2 .1371 9400 .1010 V 392 302 302 900 0 392 3 1/ '1371. 9400 1010 I LO -uu U3 W' OtW 1..rn. 0 1 uTl -r-'i 125 100 125 0 120 113 0 1 1500 1010.0 1010 1ib 112.5
  • 100 1123 0'. 750 105 0 1 1500 1010,0 1010 4 Ho t adI ldi 11 100 100 '100 60 0 0 0 0 1 1500 5030 50 42 -z 125 100 125 60 1500 113 0 1 2000 1010.0 1010 300 IV 125 100 125 03 1500 113 0 1/2 1000 1010.0 1010 Iva. 166 100 166 60 390 133 o In 100D 1010.0 1010 rub 249 100 249 o0 8940 175 0 ] 1000 1010J0 1010 V 290 100 =20 w0 11400 195 0 1/2 100.0 .10100 1010 1 1_3 U-)- 130 -lO 4r r -u Ir ,murO 1UluJr J -J 3h 150 125 150 210 429 13w 0 1 1500 10100 1010 fi 125 1123 125. 210 214 119 0 1 1500 10100 .1010.I " 100 100 100 210 0 100 0 1 150D 500 50 43 Dn 1503 125 .150 210 42). 13w 0 1 2000 1010.0 1010 300 IVlhg3(+)

IV 150 125 150 210 429 .138 0 ,1]2 1000 1010,0 1010.vI 250. 166 250 210 1440 2D8 0. In '1000 1010.0 1010 IM 449 249 449 210 3429 349 0 I/2 1000 10100. 1010 V 549 2LU 59- AU0 4441J 420 0 W2 JUUJJ MUIUJM 1010 Fornotes, see next page.FileNo.: VY-16Q-311 Revision:

A Page 9 of 9 FO306'01R0 NEC041409 1 Structural Integrity Associates, Inc.Notes: Table 1: Thermal Cycle Definitions for Feedirater Line (concluded)

1. From Reference

[13]..2. Normal operating conditions are 1,010 psig, 549*F (steam.dome), 392'F (feedwater), and 4590 gpm (feedwater nozzle) [14].3. See Figure 1.4. For the transients where flow is stopped, the natural ecnvection heat transfer coefficient wasused The same approximate value was used within each region These values, are: S 0 0 200 gpm for Regions I. and III.150 gpm for Regions II, Hla, and lib.100 gpm for Regions IV and V.File No.: .VY-16Q-311 Revision:

A Page 10 of 10 F0306-OIRO NEC041410 V Structural Integrity Associates, Inc.4120/2007 9:00:42 AM.4 (i LO 20 20 50 ~Q V"44 z xIllI (K View Ai,,oes: 135..-45.0)

I4H441r.'flI~4Q Figure 1: Feedwater/f-lCI Pip ing from Anchor IID-36 to RPV Nozzles N-4A and N-4B File No.: VY-16Q-311 Revision:

A Page 11 ot 11 F0306-O IRO NECO41411 t Structural Integrity Associates, Inc.3.0 ASSUMPTIONS/DE SIGN INPUT A piping model was created using PIPESTRESS

[1]. The calculation

[2] that had previously analyzed the subject Class I feedwater piping contains the ADLPIPE input file used to create the PIPESTRESS input file for this evaluation.

Valve dimensions and properties were also obtained from the ADLPIPE input file.The piping model is composed of one carbon steel grade (maximum carbon content of 0.30 %) [2].C Temperature dependent material properties were used with values obtained from Reference

[5]. Table 2.summarizes these values. The resulting PIPESTRESS model (including boundary conditions) is shown in Figure 1. The drawings for both feedwater loops [3, 4] and the HPCI line [7] were also consulted to aid in building the PIPESTRESS model.Assumptions:

1) The weight of insulation is included in the analysis and heat transfer effects of insulation were assumed.2) Node 545 is the end of the as-modeled HPCI piping system.The feedwater and HPCI line sizes are specified in the previous calculation

[2] and are shown. in Table 3. " Table 2: Material Properties for Feedwater System Class 1 Piping [2 App. E, 5]SA 106 B and SA-234 WPB (Carbon Silicon Steel, C-Si)Coefficient mean Design or Linear Coefficient of Yield Stress Young's Thermal Thermal Thermal Thermal Stress. Intensity Temperature Modulus Expansion Expansion(1' Conductivity)

D0iff usivity0' 3 y SS (OF) (x lO psi) (In/100 ft) (10` /inAn/°F) (btu/hr/ftPF)

(61/1r) (ksl) (ksi)-100 30.2 0OW 35.0 20.0 70 29.5 0 ..5.6 30.0 .0.582 35.0 20.0 100 29.3 0.21 " 29.9 0.567 35.0 20.0 150 29.6 0544 200 28.8 0.95 29.2 0.521 31.9 20.0 250 28.9 0.502 300 '28.3 1.77 28.4 0.481 31.0 20.0 350 28.0 0-464 -.400 27.7 2.67 27.6 0.447 30.0 20.0 450 27.1 0.430.500 27.3 3.64 26.6 0.414 28.3 18.9 550 " 26.1 0.398 600 =T.7- 4.63 25.7" -7.=8 25.9 17.3 Notes: 1. These properties are used for the transient analysis only, 2. Assumed equivalentto the value at70 0 F.FileNo.: VY-16Q-311 Revision:

A Page 12 of 12 F0306-0IRO NEC041412 tJ Structural Integrity Associates, Inc.r-Table 3: Feedwater/HPCI Piping Size Information

[2]16"FW 16" FW 1 Downstream Upstream FW 1PCI of V2-29A of V2-29A PipeSchedule 80 120 120 120 Fittings Schedule .120 -- 120 Piping O.D. (in.) 16.0 16.0 10.75 .14.0 Piping Nom 0.843 1.218 0.843 1.093 Wall (in.)Fitting Nom. 1.218 -- 0.843 Wall (in.)Pipeweight' 136.46 192'3 89.20 150.7 (lb/fr)Insulation Weight (lb/if) 14.64 8. 92 Note: 1. Weight of contents automatically added by the PIPPESTRESS Program.FileNo.: VY-16Q-311 Revision:

A Page 13 of .13 F0306-01RO NEC041413 tiV Structural Integrity Associates, Inc..4.0 ANALYSIS Through-wall thermal gradient terms were calculated by the PIPESTRESS program for all of the transients.

Table i defines each thermal cycle definition (i.e., transient load case) and the region of the modeled piping those conditions are applicable.

The forces and moments due to differential thermal expansion need to be included in the fatigue evaluation.

The differential thermal expansion cases as analyzed by the piping program, PIPESTRESS, correspond to the end temperature and pressure of the transient Table 4 lists the -thermal expansion cases.The-material properties were obtained from the AS-E Code Section ITT, 1989Edition, Appendix I, with 1989 Addenda [5]. E and' a are taken at 70 0 F, and k,'p, and cp are taken at the average temperature over the range of the individual transients.

The.internal heat transfer coefficient h for the transients with flow occurring in thepipe is calculated based on the following relation for forced convection

[18]: h.= 0.023 Re°Pr° kAD Where Re = Reynolds number Pr Prandtl number The heat transfer coefficients were calculated by PIPESTRESS using the above relation.

The flow rates described for each transient in Section 3 were used. For the transients where flow is stopped, the natural convection heattransfer coefficient w as used. The formula for his [18]: h = QS5 (Or Prfo 5 k/t Where Gr =-Orashof Number L =pipe diameter PIPESTRESS only has the forced convection heat transfer formula built in, so an equivalent flow rate was determined that would give the same heat transfer coefficientas the free convection coefficient.

As discussed in the next section, the PIPESTRESS input file "FWHPCI.FR.E will be run and analyzed to Section III, Subsection NB-3600 of ASiM 1989 Edition [5] in order to evaluate acceptable fatigue usage values for the Class 1 feedwater loop A system.A Listing of the PIPESTRESS input is included as Appendix A.FileNo.: VY-16Q-311 Page 14 of 14 Revision:

A F0306-OIRO NEC041414 V Structural Integrity Associates, Inc.Table 4: Thermal Cycle Load Cases Load lksbiats Rqka I Rqkmft IF. qia IM Eqia It RM. MI Rqia IV Reqicat Iva, Regi- r BqRn&& V Vest 1ofeR~f freemw Set xqrsst& T-M.fl) Teq.-('I)

Temp (1]) Toy C'I) Tsnp.(T Temp CI) TapC)Tay (7r) Tamp Cl) Teq.('F)l frd) Ifr~W I I -100 100 100 100 100 100 100 0100 10 103 3 1100 S 2, 24, 36, 38 100 100 00 1(0 100 .100 103 Too -100 100 xf 50 3 3.21.34.43 153 150 125 103 150 150 25) 449 549 549 50 1010 44 5 260 .260 180 100 260 260 260 260 260 549 5) 1010 5 6.8, 10,14.16 392 392. 246 100 392 392 392 392 392 549 50 1010 7 310 310 205 100 .310 310 310 310 310 549 7 9 208 280 190 100 280 280 203 280 280 549 50 1010 8 11.13,15 265 265 182.5 10) 265 265 265 265 265 549 50 1010 9 90 (0 95 10) 9 90 90 90 90 549 5) 1010 10 20 265 265 182.5 103 265 265 336 478 549 549 3 10 10 1T 22 153 150 125 10 150 150 205 319 375 375 170 12 23 15D 150 125 103 150 ..150 195 285 330 330 50 88*3 25 392 392 246 103 392 392 435 522 565 565 5) 1190 14 26.29 50, 50 50 50 50 .50 50 50 50 565 1135 1135 1r 27 153 150 125 100 150 150 223 368 440 565 3T 1135 616 28 15) 150 125 100 150 150 254 461 565 565 53 1135 17 30 155 150 125 103 150 150 223 368 440 555 5) 1060 18 31 1 I.- 125 100 150 .150 250 449 549 565 5) 1135 X. 32 0 50 -50 50 o .50 .50 5) 50 5(0 2rr 615 20 33 15) 150 125 103 0 150 188 263 300 502 675 21 35 275 275 107.5 100 275 275 215 275 275 549 5) 885.22 '37 .100 100 100 100 100 100 100 100 100 100 1563 39 392 392 246 10D 392 392 392 392 392 60D 13715 r 40 3r92 392 246 00 392 392 392 392 392 539 " 940 T25 41 392 392 246 100 392 392 392 392 392 549 5) 1010 26 17 275 275 187.5 10) 275 -275 215 275 275 539 53 1010 27 19 265 265 182.5 100 265 265 309 396 440 549 50 1010 2100 100 100 100 100 100 100 100 100 549 1010 1 0 2Y 100 O 100 I 1 0 lou -100, 10 0 100 10 1010.1 .2 125 125 1125 100 125 125 16 -249 290 1010-~~2 12 -166--- --File No.: VY-16Q-311 Revision:

A Page 15 of 15 F0306-OIRO-NEC041415 VStructural Integrity Associates, Inc.5.0- RESULTS OF ANALYSIS Since the piping at VY was designed in accordance with USAS B31.1 methodology, fatigue analysis does not exist for the piping. Therefore, fatigue calculations are being developed for selected locations in the Class 1 piping systems at VY. This will resxlt in detailed, Class 1 fatigue calculations for each selected location.

Piping models 'and transient definitions have been developed for the Class 1 portion of the feedw ater. system, as documented in the previous sections of this calculation.

The limiting total fatigue usage for the analyzed feedwater/BPCI piping system occurs at Node 175, the 16' to 10" reducer on the feedwater piping. The total usage at this location is U = 0.2571 (per the FIPESTRESS report which passes Class 1 fatigue evaluation.

The environmental fatigue multiplier to use from Reference

[15] is 1.74. The total usage including environmental effects is therefore 0.4474./_V, FileNo.: VY-16Q-311 Revision:

A Page 16 of 16 F0306-O1RO NEC041416 1

SStructural Integrity Associates, Inc.

6.0 REFERENCES

1. PIPESTRESS, Version 3.5.1+0.26, DST Computer Services S.A., QA-1670-301,.June, 2004.2. HPCI/FW Piping Stress Information.

ADLPIPE listing for FDW & HPCI piping from Calculation No. VYC-551, Rev. 2, AppendixA, SI File No. VY-05Q-229, 3. Vermont Yankee Nuclear Power Corp. Drawing No. VYI-FDW-Part 5, Rev. 1, "Piping Isometric Feedwater:

Drywell-Main Steam Tunnel (FDW) Part 5," SI File No. VY-05Q-221.

4. Yankee Atomic.Electric Company Drawing No. VYI-FDW-Part 5A, Rev. 1, "Piping Isometric Feedwater:

Main Steam Tunnel and Drywell FDW-Part 5A,". SI File No. VY-05Q-221.

5. ASME Boiler and Pressure Vessel Code,Section III, 1939 Edition with 1989 Addenda 6. Structural IntegrityAssociates Report No. SIR-01-130, Revision 0, "System Review and Recommendations for aTransient and Fatigue Monitoring System at the Vermont Yankee Nuclear Power Station," February 2002, SI File No. VY-05Q-401:
7. Vermont Yankee Nuclear Power Corp. Drawing No. VYI-HPCI-Part 5, Rev. 0, "Piping Isometric Drawing High Pressure Coolant Injection Main Steam Tunnel-Torus Area(HPCI)

Part 5," SI File No. VY-05Q-223.

8. Vermont Yankee Nuclear Power Station Final Safety Analysis Report, Section 4, Revision 16, "Reactor Coolant System," SI File No. VY-05Q-206.
9. Vermont Yankee Nuclear Power Station Technical Specifications, (SI File No. VY-l 6Q-205), including:.
a. Section 3.6, "Limiting Conditions for Operation," Amendment 229.b. Section 4.6, "Surveillance Requirements," Amendment 229.10. GE Specification:No..

21Ai 115, Revision 4, "Reactor Pressure Vessel Purchase:Specification," SI File No. VY-05 Q-2 10.11. Yankee Atomic Electric Company Calculation, No. VYC-378, Revision 0, "Vermont Yankee Reactor Cyclic Limits for Transient Events," 11/25/85, SI File No. VY-05Q-21 1.12. Yankee Atomic Electric Company Calculation No. VYC-378, Revision 1, "Vermont Yankee Reactor Cyclic* Limits for Transient Events," 04/06/88, SI File No. VY-05Q-21.1..

,13. Yankee Atomic Electric Company Calculation No. VYC-378. Revision 2, "Vermont Yankee Reactor Cpclic Limits for Transient Eaents," ?DA TE?. SI File No. VY-160-2##.

14. GE Certified Design Specification No. 26A6019, Revision 1, "REACTOR VESSEL -EXTENDED POWER UPRATE,/'

6/2/2003, SI File No. VY-05Q-2 36.15. Structural Integrity Associates Calculation No. VY-16Q-303, Revision A, "Environmental Fatigue Evaluation of Reactor Reciculation Inlet Nozzle and Vessel Shell/Bottom Head,".16. ASME Boiler and Pressure Vessel Code,Section XI, 1989 Edition.File No.: VY-16Q-311 Page 17 of 17 Revision:

A F0306-01RO NEC041417 V Structural Integrity Associates, Inc.17. Holman, J.P., Heat Transfer, Fifth Edition, McGraw--Hill, 1981.FileNo.: VY-16Q-311 Revision:

A Page 18 of 18 F0306-oIRO NECO41418 CStructural Integrity Associates, Inc.APPENDIX A PIPESTRESS INPUT FILE ("W.FIPCI.FRE")(Pages A -A38)FileNo.: VY-16Q-311 Revision:

A Page Al of A38 F0306-O1RO r I NEC041419 t Structural Integrity Associates, Inc.IDEN JB=2 .*Job number (I to 9999)CD=I *I=ASME Section Ill.VA-0 *0=Calculate GR=-Y *Direction of gravity IULT=I *Input. units OU=- *Output. units*CH=$ *Delimiter character AB=T .*FREE errors = abort PL= $Vermont Yankee$SEN- KRE$2=Verif y.0=SIU 0=SIU 1=USA 1=USA TITL BL=3 *Modeling option:* 3 =-uniform mass for static analysis* *lumped mass for dynamic analysis rotational inertia ignored GL=1 *Report forces/mome-nt O=Global 0U=I *Support summary O=No CV=10 *Code version -See Manual HS=1 *Highest 20 stress ratios for each case MD=1 *Hot modulus TI=$Vermont Yankee Feeddwater Piping$$SI Fatigue Analysis$FREQ RF=1 RP=8 FR=33 MP=20 MX=70 TP=!SEISMIC$

l=Local l=Yes 2=G et L THERMAL CYCLE LOAD CASES****LCAS LCAS LCAS LCAS L CAS LCAS LCAS LCAS LCAS LCAS LCAS LCAS.LCAS LCAS L CAS LCAS-LCAS LCAS ICAS L CAS LCAS LCAS LCAS LCAS LCAS LCAS.LCAS LCAS RF= 0 RF= 0 RF= 0 RF= 0 RF= 0 RF=0 RF= O RF= 0 RF= 0 RF= O RF= 0 RF= 0 RF=0 RF=0 RF= 0 RF= 0 RF= 0 RF= 0 RF=0 RF= 0 RF= 0 RF= 0 RF= 0 RF= 0 RF= 0 RF=0 RF= 0 RF= 0 RF= 0 CA= I CA 2 CA=3.CA 4 CA 5 CA= 6 CA 7 CA=8B CA 9 CA= 10 CA= 11 CA= 12 CA= 13 CA= 14 CA= 15 CA7 16 CA= 17 CA= 18 CA= 19.CA= 20 CA 21 CA= 2 2 CA 23 CAr 24 CA 25 CA= 26 CA 27.CA= 28 CA 29 CA 30 TY=0 TY- 0 TY 0 Tr=-0 TY= 0 TY=O TY O TY=0 TY=O TY=0 TY=O TY=O TYO TY0O TY=O TY=O TY-O TY=0 TY=0 TY=0 TY=o TY=O TY=O TY=0 TY=O TY=O TY-O TY=0 TY=O TY=O TY=O TI=$LC- 1$TI=$LC-2 $TI=$LC1-3$

TI=$LC-4$TI=$LC-5$TI=$LC-6$TI=$LC-7$TI=$LC-8$TI=$LC-9$TI=$LC-10

$TI=$LC-11$

TI=$LC-12

$TI=$LC-13

$TI=$LC-14$

TI=$LC-15$

TI=$LC-16$

TI=$LC-17$

TI=$LC-*18

$TI=$LC-19$

TI=$LC-20$

TI=$LC-21$

TI=$LC-22

$TI=$LC-23

$TI=$LC-24$

TI=$LC-25$

TI=$LC-26$

TI$=LC-27$, TIz$LC-28

$TI=$LC-29$

T1=$LC-30$, +TC_-1 t TC-2,24,.36,38

  • TC-3,21,34,43
  • TC-5*TC-6,8, 10,14, 16*TC -7*TC-9.S*TC-II, 13, 15*TC-12*TC-20*TC-22*TC -2 3""*TC-25.*TC-26, 29*TC-27*TC-28*TC-30 2*TC-3 1*TC -32*TC-33**TC-35*TC-37**TC.-3 9*TC-40*TC-41*TC-17*TC-19*TC l4*TC-18*TC-42 File'No..:

VY-16Q-311 Revision:

A.Page AZ of A38 F0306-0IRO NE0041420 t Structural Integrity Associa tes, Inc.LCAS RF=6 CA=31 TY=6 TI=$SA$,* C******************

IrJ* EIGHT CASES5 4 4*LCAS CA= 101 LCAS CA=7102 RF=1 TY=3 TI= $OPERATING WEtIGHT$RF=2 .TY=4 TI=$HYDROTEST WEIGHTS THERMAL. TRANSIENT CASES****TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS.TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS TCAS CA=201 CA 202 CA 203 CA=204 CA 205 CA 206 CA 2077 CA=-208 CA=209 CA 210 CA=211 CA=212 CA=213 CA= 214 CA= 215 CA=216 CA=217 CA=218 CA 219 CA=220 CA=221 CA= 222 CA 223 CA=224 CA 225 CA 226 CA=227 CA-228 CA 229 CA=230 CA23 1 CA23 2 CA=233.CA 234 CA 235 CA 23 6 CA 237 CA23 8 CA 239 CA=240 CA=241 CA=242 CA=243 RP= 1 RP= 1 RP= 1 RP= 1 RP= 1 RP= 1*RP=l1 RP= 1 RP= I RP= 1 RP= I.RP= 1 RP= I RP= 1 RP= 1 RP= I RP= 1 RP= 1 RP= I RP= 1 RP= 1 RP=1 RP= 1 RP= 1 RP=- 1 RP= I RP= 1 RP= 1 RP= 1 RP= I RP= 1 RP= 1 RP= 1 RP= 1 RP= 1 RP= I RP= 1 RP= 1 RP=RP= 1 RP= 1 RP= 1* TI=$Design Hydrotest

+4 ,TI=$Design Hydrotest

'$TI=$Startup

+4 TI=$TRoli

& Inc. PWR1 -4 TI=TRoll & Inc. PWR2 +$TI=$TRoll

& Inc. PWR3+$TI=$DlyReduction to 75% -$.TI=$DlyReduction to 75% +$TI=$WklyReduct to 50% -$TI=$WklyReduct to 50% +$TI=$LOFWH+TT 1 -$TI=$LOFWH+TT 2 -4 TI-$LOFWH+TT 3 +4 TI=$LOFWH+TT 4 +$TI=$LOFWH+PFDHTR Byp*TI=$LOFWH+PFWHTR Byp +4 TI= $SCRAM+TT+AlIOtrScm

-$TI=$SCRAM+TT+AllOtrScm

-$TI=$HotStandby 1 +$TI=$HotStandby 2 +4 TI=$HotStandby 3 -4 TI=$Shutdown 1 -$TI=$Shutdown 2 -$TI=$Shutdcwn 3 -$TI=$SCRAM+LOFWP1

+4 TI=$SCRAM+LOFWP2

-4 TI=$SCRAM+LOFWP3 t$TI=$SCRAM+LOFWP4

+4 TI=$SCRAM+LOFWP5 4 TI=$SCRAM+LOFWP6

+4 TI= $SCRAM+LOFIP7

+$TI=$SCRAM+LOFWP8

.-$TI=$SCRAM+LOFWP9

+$TI=$SCRAM+LOFrP 10+4 TI= $SCRAM+SRVBLDN1-$

TI=$SCRAM+SRVBLDN2-$

TI=$Hydro Test +$4 TI=$Hydro Test -4 TI=$SC-RAM+TG+OPresl

-$T1-$SCRAM+TG+OPres2

-$TI=.$SCRAM+TG+OPres3

-4$TI=OHotSbyFWcyc

+$TI=,$HotSby_FWacyc

+$*1 SEISMIC CASES***+FileNo.: VY-16Q-311 Revision:

A Page A3 of A38 F0306-01RO NEC041421 Structural Integrity Associates, Inc.RCAS CA=103 EB=V- TY=1 SU=-- LO=1 FX=1 FY=1 FZ=1 TI=$OBE INERTIA$**** LOAD COMBINATION CASES +CCAS RF=1 CA=104 ME=l FL=1 C.1=103 CY=r'0 TI=$OBE$CCAS RF=1 CA=401 SS=i ME="1 Eo=3 C1=102 C2=103 TI=$EQUATION 9 LEVEL B$CCAS RF=1 CA=402 sS=1 ME=3 F1=1 Cl=103 C2=6 C3=31..TI=$NORMAL+OBE$

CCAS RF=1 CA=403 SS=1 ME=3 Fi=-1 C1=103 C2=6 C3=31 TI=$NORMAL-OBE$.

  • ** LOAD SETS***-**RF'field is the highest temperature and pressure of the transient*PR and MO fields are the final temperature and pressure of the transient LSET RF=1. RP=1 CY=120 PR=1 MO=F.1 TR=+201 TI=$Design Hydrotest

+ LS-1$LSET RF=2" RP=1 CY=120 PR=2 MO=2 TR=-202 TI=$Design Hydrotest " LS-2$LSET RF=3 RP=1 CY=300 PR=3 M0-3 TR=+203 TI=*Startup

+ " LS-3S LSET RF=3 RP=1 CY=610 PR=28 MO=28 TR=-204 TI=$TRolI

& Inc. PWRI- LS-4$LSET RF=4 RP=1 CY=579 PR=4* *M6=4 TR=+205.TI=$TRoll

& Inc. PWR2 + LS-5$LSET RF=5 .RP=1 CY=579 PR=5 mo=5 TR=+206 TI=$TRoll

& Inc. PWR3 + LS-6$LSET RF=5. RP=I CY=10000 PR=6 MO=G TR=-207 TI=$DlyReduction to 75% -LS-7$LSE.T RF=5 RP=1 CY=10000 PR=5 MO=5 TR=+208 TI=$DlyReduction to 75% + LS-B$LSET.RF=5 RP=ICY=2000 PR=7 Mom7 TR=-209 TI=$tklyReduct to 50% -LS-9$LSET RF=5 RP=1 CY=2000 PR=ý5 MO=5 TR=+210 TI=$tklyReduct to 50% + LS-10$LSET RF=5 RP=I .CY=310 PR=8 MO=8 TR=-211 TI=$LOFWH+TT I -LS-11*LSET RF=8 RP=1 CY=10 PR=9 MO=9 TR=-212 TI=$LOFWH+TT 2 -LS-12$LSET RF=8 RP=1 CY=1O PR=8 MO=8 .TR-+213 TI=$LOFWH+TT 3 + LS-13$LSET RF=5 RP=1 CY=10 PR=5 MO=5 TR=+214 TI=$LOFWH+TT 4 + LS-14$LSET RF=5 RP=1 CY=70 PR=8 MN08 TR=-215 TI=$LOFtH+PFWHTR Byo -LS-15$LSET RF=5. RP=1 CY=70 PR=5 MO=5. TR=+216 TI=LOFWH+PFWHTR Byp + LS-16S " LSET RF=5 RP=1 CY=269 PR=26 M0=26 TR=-217 TI=$SCRAM+TT+AllOtrScm LS-17$LSET RF=26 RP=1 CY=269 PR=29 MO=29 TR=-218 TI=$SCRAM+TT+AflOtrScm.-

LS-18$LSET RF=27: R1=1 CY=300 PR=27 MO=27 TR=+219 TI=$HotStandby I + .LS-19$LSET RF--10 RP=1 CY=300 PR=10 M0710 TR=+220 TI=HotStandby 2 + .LS-205 LSET RF=i0 RP=I CY=3i00 PR=3 MO,=3 .TR-221 TI= $HotStandhy 3 -LS-21$LSET RF=3 RP=I CY=300 PR=11 MO=11 TR=-222 TI=$Shutdown 1 -LS-22$LSET RF=11 RP=1 CY=300 PR=12 MO=I2 TR=-223 TI=$Shutdown 2 -LS-23$LSET RF=12 RP=1 CY=300 PR=2 MO=2 TR=-224 TI=$Shutdown 3 -LS-245 LSET RF=13 RP=1 CY=i0 PR=13 MO=I3 TR=+225 TI=$SCRAM+LOFWPI

+ LS-25+LSET RF=13 RP=1 CY=10 PR=14 MO-14 TR=-226 TI=$SCRAM+LOFWP2-LS-26$LSET RF=15 RP=I CY=10 PR=I5 MO=I5 TR=+227"TI=$SCRAM+LOFWP3

+ LS'27$LSET RF=16 RP=1 CY=10 PR-16 MONc61TR=+228 TI=$SCPRAM+LOFWP4'+

LS-28$5 LSET RF=16 RP=1 CY=10 PR=14 McF14 TR=-229 T1=$SCRAM+LOFNP5

-LS-29$LSET RF=17 RP=1 CY=10 'PR=17 MO=17 TR=+230 TI=$SCRAM+LOFWP6

+ LS-30$LSET RF=18 RP=1 CY=10 PR=18 MO=18 TR=+231 TI=$SCRAM+LOFWP7

+. LS-315 LSET RF=18 RP=1 CY=10 PR=19 McP19 TR=-232 TI=$SCRAM+LOFJPB

-LS-32$LSET RF=20 RP=I CY=10 PR=20 M0=20 TR=+233 TI=-SCRAM+LOFNP9

+ TLS-33$LSET RF=3 RP=1 CY=10 PR=3 MC=3 TR=+234 TI=$.SCRAM+LOFWPIO+

LS-34$LSET RF=5 RP.=I CY=1 PR=21 MO=21 TR-235 TI=$SCRAM+SRVBLDN1-LS-35$ýLSET RF=21 RP=1 CY=1 .PR=2 NO=2 TR=-236 TI=$SCRAM+SRVBLDN2-LS-3.65*LSET RF=22 RP=1 CY=1 PR=22 MON22 TR=+237 TI=$Hydro Test +

  • LS-37$LSET RF=2. RP=I. CY=1 PR=2 MO=2 .TR=-238 TI=$Hydro Test -LS-38$LSET RF=23 RP=1 CY=269* PR=23 MO=23 TR=-239 TI=$SCRAM+TG+OPresl

-LS-39$LSET RF=24'RP=1 CY=269 PR=24 MOr=24 TR=-240 TI=$SCRAM+TG+OPres2

-LS-40$LSET RF=25 RP1= CY=269 PR=25 MO;=25 TR=-241 TI=$SCRAM+TG+OPres3

-LS-41$File No. : VY-16Q-311

  • .* .*,Page A4 of A38 Revision:

A F0306-0IRO NEC041422 I Structural Integrity Associates, Inc.LSET RF=30 RP=1 CY=300 LSET RE=3 RP=1 CY=300 PR=30 MoF30 TR=+242 TI=$HotSbyFwcyc

+pR=3 MO=3 TR=+243 TI=$HotSbyF~cyc

+LS-42$LS-43$LSET RF=6 CY=5 FL=1 PR=6 M0=402 TI=$NORMAL+OBE LSET RF=6 CY=5 FL=1 PR=6 m0=403 TI=$,NORMAL-OBE LS- 132 LS- 133$*FATG AT=305 AF=302*FATG AT=305 AF=310 RESPONSE SPECTRA***+

  • SSE response spectra conservatively used SPEC FS=OBE EV1 ME=3 FP=1 TI=$RESPONSE$

LV=1 DX=1 DY=1 DZ=1 DI=X 0.30/0.125 0.80/0.300 2.00/0.6..5.00/1.900 5.75/2.850 6.00/3.3, 14.00/1.325 19.00/1.600 21.00/1.0(DI=Y 50 75 30 0.30/0.075 1.25/0.250 4.40/0.500 4.80/0.600 12.00/1.450 16.00/1.900 36.00/0.325 36.10/0.325 DI=Z-0.30/0.150 1.00/0.350 5.75/2.950 6.00/3.450

  • 15.00/1.300 17.50/1.450 1.75/0.325 7.25/0.600 18 .00/1.700 36.20/0.325 2.00/0.625 6.25/3 -.800 20.00/0.875 3.00/0.725 8.25/3.375 22.00/0.800 2.40/0.450 7.50/0.700 20.00/0.750 36.30/0.325 4.00/1.000 8.75/3.800 30.00/0.650 3.50/1.000 9.00/3.000 30.00/0.700 2.75/0.475 8.50/0.700 25.00/0.450 36.40/0.325 4.50/1.400 10.00/2.625 36.00/0.650 4.40/1.200 10.00/2.400' 36.00/0.650 3.80/0.500 10.00/0.925 30.00/0.350 36.50/0.325 5.00/2.000 12.0/2.150 36.10/0.650 MATERIAL PROPERTIES
  • + SA-106 Grade B and SA-234 MATH CD=106 EX=0 TY!1 TA7100 MATD MATD MATD MATD MATD MATD MATD MATD TE=-100 TE=70 TE=100 TE=200 TE=300 TE=400 TE=500 TE=600 EH=30.2 EH=29.5 EH=29.3 EH=28.8 EH=28.3 EH527.7 EH=27.3 EH=26.7 SX=0 E rP-0 EXr0 .21 EX-0 .95 EX=I .77 EX=-2.67 EX-3 .64 Er=-4.63.MPB KL=1 *C-Si SM=u20 SY=35 SM=20 SY=35 SM=20.0 SY=35 SM=20.0 SY=31.9 SM=20.0 SY=31 S=20.0 SY=30 SMI18.9 SY=28.3 314=17.3 SY=25.9** Cross Sectional Properties

.*REGION I- LINE 16 INCH FDW-16 SCH. 120 Run from 5 to 10*Anchor" HD36 to HPCI brnch CROS CD=1 OD=16.0 WT=-1.218 MA=192.3 so=1* ST=1 IFNO KL=1*FEEDNATER Valves -V2-27A, V2-28A, V2-29A CROS CD=2 OD=24.0 WT=-2.436 MA=0.12 S5=1 ST1I IN=O KL=1*REGION III- LINE 16 INCH FDW-16 SCH. 80*Piping Downstream of Valve V2-29A TO F0 TEE CROS CD=3 OD=16.0 10T-0.843 MA=151.1 S-=1 ST=1 IN0 KL=i*REGION III- LINE 16 INCH FDW-16 SCH. 120*Fittings Downstream of Valve V2-29A TO FW TEE CROS CD=4 OD=16.0 WT=1.218 MA=204.28 FileNo.: VY-16Q-3.11 Revision:

A Page A5 of A38 F0306-OIRO NEC041423 t Structural Integrity Associates, Inc.SO=1 STS1 INO0 KL=1*REGION IV & V- LINES 10 INCH INCH FDN-21 AND 10 INCH FDW-19 SCH. 120*Piping Downstream of FT TEE TO NOZZLES CROS CD=5 OD=10.75 WTr0.843,MA=98.12 S0=1 ST=1 IN=O KL=1*REGION II- LINE 14 INCH HPCI-15A SCH. 120 FROM NODE 10 TO 547 CROS CD=6 OD=14.0 tT=1.093 MA=150.7 s0=1 ST=1 IN=-1 KL=1*REGION II- HPCI Valves CROS CD=7 OD=21.0 WT=2.186 MA=0.12 SO=1 ST=-1 IN-1 KL=1* STRUCTURE AND LOADS-------------------


DESN TE=400.0 PR=1900.0

  • FEEDWATER AND HPCI PIPING---------------------------

  • BEGIN REGION 1-----------

OPE R OPER OPE R OPER OPE R OPE R* OPER.OPER OPE R OPER OPE R OPER OPER OPE R OPE R OPER OPE R OPE R OPER OPE R OPER OPE R OPE R OPER OPER OPER OPE R OPER OPER OPE R TRAN TRAN TRAN TRAN TRAN CA= I CA7- 2 CA 3 CA= 4 CA= 5 CA= 6 CA 7 CA78 CA-9 CA= 10 CA= I I CA= 12 CA= 13 CA= 14 CAF 15 CA= 16 CA 17 CA 18 CA= 19 CA 20 CA=21 CA 22 CA= 23 CA 24'CA=25 CA 26 CA 27 CA 2 8 CA=29 CA 30 CA 201 CA-202 CA=203 CA= 204 CA=205 TE=100 TE=100 TE=150 TE=2 60 TE=392 TE=3 10 TE=280 TE=2 65 TE=90 TE=2 65 TE= 150 TE=150 TE=392 TE=5 0 TE=150 TE= 150 TE=150 TE=150 TE=50-TE=150 TE=2 75 TEB=100 TE-3 92 TE=3 92 TE=3 92 TE=2 75 TE=2 65 TE=100 TE=125 PR=1100.PR=50 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010.PR=1010 PR=1010 PR=1010.PR=170 PR=88 PR= 1190 PR=1135 PR=1135.PR=1135 PR=1060 PR=1135 PR=675 PR=675 PR=885 PR=1563 PR=1375 PR=9 40 PR=I010 PR=010 PR=1010 PR=1010 PR=1010 PR=1010 13=1 IS=1 IS= I FS= 1 F S=1 FS= 1 FS=I FS=1 IT=70 FT=100 TT=1800 FL=200 IP=15 FP=1115 TP=1800 IT=100 FT 100 TT=-0 FL=200 IP=1115 FP=65 TP=0 I7-100 FTI50 TT=16164 FL=200 iP=65 FP=1025 TP=16164 IT=150 FT=100 TT=0 FL=1377 IP=1025 FP=1025 TP=O IT=100 FT=E260 TT-O FL=1377 IP=1025 FP1-I025 TP=O FileNo.: VY-16Q-311 Revision:

A Page A6 of A38 F0306-OIRO NEC041424

/t3Structural Integrity Associates, Inc.TRAM TRAN TRAN TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAN TRAM PAIR PAIR PAIR PAIR PAIR PAIR PAI R.PAIR PAIR PAIR PAIR PAIR PAIR PAIR CA=206 CA=207 CA=-208 CA=209 CA= 2 10 CA=211 CA=212 CA2 13, CA=214 CA=215*CA= 216 CA 217 CA=218 CA=219 CA 220 CA=22 1 CA 222 CA= 223 CA 224 CA= 225 CA 22 6 CA 227 CA=228 CA=229 CA 230 CA-23 1 CA=232 CA=233 CA= 234 CA= 235 CA23 6'CA=237 CA=238 CA 239 CA=240 CA=241 CA=242 CA=2 4 3 CA=201 CA=202 0 CA=203 CA=20 4 CA=205 CA=206 C CA=207 C CA=208 (CA=209 (CA=2 10 (CA=211 (CA=212 (CA=213 C CA=214 C CA=215 C CA=216 C CA=217 C 15=1 15=1 15=1 15=1 15=1 FS=1 FS= 1 FS=1 FS= 1 F 5= r F5=1 FS=1 FS=1 F35=1 F 5=1 FS=1 FS=1 FS=1 IT-260 FT=-392 TT=-1800 FL=9180 IP=I025 .FP=1025 TP=1800 IT=-392 FTr-310 TT=-900 FL=6885 IP=1025 FP=1025 TP=900 IT2310 FT=-392 TT=-900 FL=6885 IP1=025 FP=1025 TP=900 ITr392 FT-280 TT=-1800 FL=4590 IP=1025 FP=1025 TP=1800 IT=.280*FT-392 TT=1800 FL=4590 IP=1025 FP=1025 TP=1800 IT-392 FT=-265 TT=-1800 FL=4590 IP=I025 FP=1025 TP=1800 IT2265 FT=-90 TT=360 FL=1377 IPr1025 FP=1025 TP=360 IT9O0 FT=265 TT=900 FL=1377 Ip=1025 FP=1025 TP=900 IT=265 FT=-392 TT=1800 FL=4590 IP=1025 FP=1025 TP=1800 IT=-392 FT-265 TT9-9O FL=9180 IP=-1025 FP=1025 TP=90 iT=265'FT=392 TT=180 FL=9180 IP=1025 FP=1025 TP=180 IT=392 FT=-275 TTo-60 FL=10098 IP=1025 FP=1025 TP=60.ITr275 FT1-I00 TT=-900 FL=275.4 -IP=t025 FP=1025 TP=900 1 IT=265 FT=265 TT=0 FL=200 -,IP=1025 FP=1025 TP=O IT=265 FT=265 TT=0 FL=200 IP=1025 FP=1025.TP=O IT=265 FT=150 TT-4140 FL=200 IP=1025 FP=1025 TP=4140'ITi-S0 FT1-50 TT=0 FL=2o00 iP=1025 FP=185 TP=0 ITrI5o FT=150 TT=-0 FL=200 IP=185 FP=103 TP=O IT1150 FT=100 TT=8280 FL=200 IP=103 FP=65 TP=8280 IT-392 FT=392 TT=-12 FL=200 IP=1025 FP=1205 TP=12 IT2=392 FT¶50 TT=0 FL=3672 IP=1205 FP=1150 TP=0 IT=50 FT=150 TT=1380 FL=200 'IPM- 150 FP=M150 TP=1380*IS=l FS=IS=1 FS=I3=1 IS= 1 15= 1 1S=1 13= 1 FS=1 FS= i F 5=1-FS= I FS= I FS= I FS=1*IS=I FS=1 IT=-150 FTo-150 TT=O FL=200 IP=il50 FPr-1150 TP=0 IS=1 IS=l IS=1 IS=1 13=1 IS=1 IS=1 IS= 1 1S=I IS= 1 IS= 1 is= 1 1=1 15=1 FS= 1 F32=1 F 5=1 FS= I FS=1 FS= I FS= 1 FS=1 FS= 1 FS= 1 FS= 1 FS= 1 F5= 1 F35=1 FS= 1 FS= i IT=-150 FT=-50 TT=0 FL=2754 ip=1150 FP=1150 TP=O IT=-50 FT=150 TT=3060.FL=200 IP=--900 FP=1075 TP=3060 ITi-S0 FT=150 TT=o FL=200 iP=1075 FP=11S0 TP=O IT=I50 FT=50 TT=0 FL=1560.6 P1=1150 FP=690 TP=O IT=50 FT=50 TT¶=300 FL=200 IP=690 FP=690 TP=300 IT2=150 FT- 150 IT2=392 FT2=275 IT=-275 FT=-100 IT-iD00 FT- 100 IT= 100 FT= 100 IT=--392 FTr392.IT=-392 FT=392 iT=392 F.T-392 IT=-100 FTr125 IT=-125 FT= 150 c0=30.0:0=29.9:0=29. 8:0=29.8'0=29.4:0=28.2:0-28.0 0=28.0:o=28. 1 C:=28. 1:0=28.2:0=29.4:0=29.4 0=28. 2:0=28.2:0=28.2:0=28. 1 DI=0.575 E=-T5.6 DI=0.567 EX=-5.6 DI=0.556 EX=-5.6 DI=0.556 EX=5.6 DI=0.530 EX=-5.6 DI=0.472 EX=-5.6 DI=0.464,EX=5.,6 DI=0.464 EX=5.6 DI=0.469 EX=5.6 DI=0.469 EX=5.6 D1=0.471 EX=-5.6 DI=0.531 EX=5.6 DI=0.531 Er=-5.6 DI=0..471 EX=5. 6 DI=0.471 EX=-5.6 DI=0.471 EX=5. 6 DI=0.469 EX=-5.6 TT=-8964 FL=200 IP=255 FP=M025 TP=8964 TT=GO FL=10098 IP=.1025 FP=900 TP=60 TT=900 FL=275.4 IP=900 FP=65 TP=900 TT=O FL=200 IP=65 FP=1578 TP=O TT=-.0 FL=200 IP=1578 FP=65 TP=0.TT-60 FL=10098 IP=1025 FP=1390 TP=60 TT2=900 FL=275.4 IP=1390 FP=955 TP=900 TT2=900 FL=275.4 IP=955 FP=1025 TP=-900 TTO-60 FL=200 IP=1025 FP=-1025,TP=60 TT-21O FL=200 IP=l1025FP=1025 TP=210" Tavg=85* Tavg=100* Tavg=125* Tavg=125" Tavg=180* Tavg=326* Tavg=351+ Tavg=351* Tavg=336* Tavg=336 Tavg=329* Tavg=178 , Tavg=178* Tavg=329.* Tavg=329* Tavg=329* Tavg=334 FileNo.; VY-16Q-311 Revision:

A Page A7 of A38 F0306-0IRO NEC041425 r Structural Integrity Associates, Inc.PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR CA= 218 CA=219 CA=220 CA=22 1 CA 222 CA=2 2 3 CA= 224 CA= 225 CA 22 6 CA 227 CA 228 CA 229.CA= 230 CA 231 CA=232 CA=233 CA= 2 3 4 CA7235 CA 236 CA=237 CA=23 8 CA= 23 9 CA=240 CA=241 CA=242 CA=243 CO0=29.3 CO=28. 8 Co=28.8 co-29. 2 CO=29. 6 Co=29. 6 CO=29. 8 C 0=29.8 CO=27.7 CO=29,. 1 CO=29. 9 CO=29. 6 Co=29. 9 Co=29.9 CO=29. 6 C0=29.9 C 0=29.9 Co=29. 6 CO=28. 1 Co=29. 3 CO=29. 9 Co0=29. 9 CO=27. 7 CO=27. 7 Co0=27.7 Co=29 .8 C0=29.7 DI=0 527 DI=0. 496 DI=0.496 DI=0. 518 DI=0. 544 DI=0. 544-DI=0. 556 DI=O. 450 DI=0. 513 DI0. 567 DI=0. 544 DI=0. 567'DI=0. 56.7 DI=0. 544 DI=0. 567 DI=0 567 DI=0. 544 DI=0. 469 DI=0. 527 DI=0.567 DI=0.56.7 DI=0. 450 DI=0.450 DI=0. 450 DI=0. 561 DI=0. 550 EX=5.- 6 EX=5. 6 EX=5. 6 EX=5. 6 EX-5. 6 EX=5. 6 EX=5. 6 EX=5. 6 EXr5. 6 Er=-5. 6 EX=5. 6 EXr5. 6 EX=5. 6 Ex=5. 6 EX=5. 6 EX5. 6 EX=5. 6 EX=5. 6 EX=5. 6 EX=5.' 6 EX-5. 6 EXr-5. 6 EX=-5. 6 EX=5. 6 EXr5. 6 Tavg=188 Tavg=265 Tavg=2 65 Tavg=2 08 Tavg=150 Tavg=150 Tavg=125 Tavg=392 Tavg=221 Tavg=100 Tavg=150 Tavg=100 Tavg100 Tavg=150 Tavg=100 Tavg=100 Tavg=150 Tavg=334 Tavg=l88.Tavg=100 Tavg=100 Tavg=392 Tavg=392 Tavg=3 92 Tavg=l13 Tavg=138*REGION I GEOMETRY* RUN 1 FROM ANCHOR MATL CD=106 CRos CD=1 HD36 TO HPCI brnCH- FDW-16 LINE A COOR JUNC PT=-5 AX-0 AYO AZ=0 *ANCHOR HD36 PT=5 TANG PT=-9 TANG PT= 10 DZ=-2.75 EW1I-DZ=-I- *[ELDING TEE PER ANSI B16.9----------------------------------------------------------

  • END REGION I---------------------------------------
  • BEGIN REGION 3--------OPER CA1I OPER. CA=2 OPER CA=3 OPER CA=4 OPER CA=5 OPER CA=6 OPER CA=7 OPER CAM8 OPER CA=9 OPER CAf10 OPER CA=1 ,OPER CAf12 OPER CA=13 OPER CA=14 OPER CA=15 TE=100 TE=100 TE=150 TE=2 60 TE=3 92 TE=3 10 TE=280 TE=2 65 TE=90 TE=2 65 TE=150 TE=150 TE=3 92 TE=50 TE=150 PR= 1100 PR=50.PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=170 PR=88 PR=1190 PR=is5 PR=1135 FileNo.: VY-16Q-311 Revision:

A Page A8 of A38 F0306-OiRO

'NEC041426

" Structural Integity Associates, Inc.OPERCA= 16 TE=150 PR=1135 OPER CA=I7 TE=1S0 PR=1060 OPER CA=18 TE=150 PR=1135 OPER CA=19 TE=50 PR=675 OPER CA=20 TE=IS0 PR=675 OPER CA=21 TE=275 PR=885 OPER CA#22 TE=100 PR=1563 OPER CA=23 TE=392 PR=1375 OPER CA=24 TE=392 PR=940 OPER CA:25 TE=392 PR=1010 OPER CA=26 TE=275 PR=1010 OPER CA=27 TE=265 PR=1010 OPER CA=30 TE=125 PR=1010 TRAN CA=201 IS=1 FS=I IT=70 FT=100 TT=1800 FL=200 IP=15 FP=1115 TP=1800 TRAM CA=202 IS=1 FS=1 IT=100 FT=-100 TT=-0 FL=200 IP=11T5 FP=65 TP=0 TRAN CA=203 IS-1 FS=1 iT=-100 FT-Oi50 TT=16164 FL=200 IP=65 FP=1025 TP=16164 TRAN CA7204 15=1 FS=1 IT=150 FT-IO00 T.T=O FL=1377 IP=1025 FP=-1025 TP=O TRAN CA=205 IS=1 FS=1 IT-100 FT=260 TTO PL=1377 IP=1025 FP=1025 TP=0 TRAM CA=206 13=1 FS=1 IT=260 FT=-392 TT=I800 FL=9180 IP=1025 FP=1025 TP=1800 TRAM CA207 15=1 P5=1 T-392 PT310 TT=900 FL=6885 IP=1025 F1025 TP=-900 TRAN CA=208 IS=1 FS=1 I-I-310 FT-392 TT=I900 FL=6885 IP=1025 FP=1025 TP=900 TRAN CA7209 15=1 P5=1 -IT=-392 FPT-280 T2S-1800 FL=4590 12=1025 FP=1025 .TP=800 TRAM CA=210 15=1 FS=1 IT=280 FT=392 TT=1800 FL=4590 IP=1025 FP=1025 TP=1800 TRAN CA=211 IS=1 FS=1 IT=-392 FT=265 TT=1800 FL=4590" IP=1025 FP=1025, TP=1800 TRAM CA=212 15=1 FS=1 IT=265 FT-90 TT=360 FL=1377 IP=1025 FP=1025 TP=360 TRAM CA=213 IS=1 FS=1 IT=90 FT=265 TT=900 FL=1377 IP=-1025 FP=1025 TP=900 TRAM CA=214 IS=1 FS=i ITr=265 FT-P392 TT¶1800 FL=4590 IP=1025 FP'1025 TP=1800 TRAM CA=215 IS=1 FS=1 IT=-392 FT=265 TT=-90 FL=9180 ip=-1025 FP=1025 TP=90.TRAM CA=216 IS=1 FS=1 IT=-265 FT=-392 TT=1B0 FL=9180 IP=1025 FP=1025 TP=180 TRAM CA=217 15=1 FS=1 IT=-392 FT=275 TT=-60 FL=10098 IP=1025 PP=1025 TP=60 TRAM CA=218 I1=1 FS=1 IT=275 FT=-100 TT=900 FL=275.4 IP=1025 2P=1025 TP=900 TRAM CA=219 *IS=1 FS=1IT=265 FT=265 TT=O FL=200 IP=1025 FP=1025,TP=O TRAM CA=220 *15=1 FS=1 IT--265 FT=265 TTO-0 FL=200 I=1025 FP=1025 TP=0 TRAM CA=221 15=1 FS=1 IT=265 FT=150 TT=4140 FL=200 IP=1025 FP=1025 TP=4140 TRAM CA=222 1.=1 FS=1 IT--150 FT--150 TTO-- FL=200 iP=1025 FP=185 Tp=0 TRAM CA=223 IS=1 FS=1 IT=150 FT1IS0 TT=-0 FL=200 IP=185 FP=103 TP=0 TRAM CA=224 IS=1 FS=1 IT-150 FT=-100 TT28280 FL=200 IP=103 FP=65 TP=8280 TRAM CA=225 IS=1 Fs=1 IT=392 FT=392 TT=-12 FL=200 IP=1025_FP=1205 TP=12 TRAM CA=226 IS=1 FS=1 IT=392 FT250 TT=0 FL=3672 IP=1205 FP=1150 TP=O TRAM CA=227 15=1 FS=1 IT-150 FT=150 TT=1380 FL=200 IP=1150 FP=1150 TP=1380 TRAM CA=228 *IS=l FS=1 IT=150 FT=150 TT=O FL=200 IP=1150 FP=1150 TP=0 TRAM CA=229 IS=1 FS=1 IT=150 FT=-50 TT=0 FL=2754 IP=liS0 FP=1150 TP=O TRAM CA=230 IS='1 FP=1 IT=-50 FT=150 TT=3060 FL=200 IP=-900 FP=1075 TP=3060 TRAM CA=231 IS= FS=1 IT=150 FT=I50 TT=0 FL=20O IP=1075 FP=1150 Tp=O TRAM CA=232 IS=1 FS=1 IT-150 FT=50 TT=0 FL=1560.6 IP=1150 FP=690 TP=0 TRAM CA-233 IS=1 FS=1 IT=50 FT=150 TT=300 FL=200 IP=690 FP=690 TP=300 TRAM CA=234 IS=1 FS=1I 1T-150 FT=-i50 TT=-8964 FL=200 IP=255 FP=10252TP=8964 TRAN.,CA=235 IS=1 FS=1 IT=392 FT=-275 TT=60 *FL=10098 IP=1025 FP=900 TP=60 TRAM CA=236 IS=1 FS=1 IT=-275 FT=100 TT-900 FL=275.4 IP=900 FP=65 TP=900 TRAM CA=237. IS=1 PFS=1 IT-100 FT00 TT=O FL=200 ip=65 FP=1578 TP=0 TRAM CA=238 IS=1 FS=1 iT1-00 FT1-I00 TTO-0 FL=200 IP=1578 FP=65 TP=0 TRAM CA=239 1S=1 FS=1 IT=--392 FT=-392 TT=60 FL=10098 ip=1025 FP=1.390 TP=--60 TRAM CA=240 IS=1 FS=1 IT-392 FT=392 TT-900 FL=275.4 IP=1390 FP=955 TP=900 TRAM CA=241 1S=1 FS=1 IT=392 FT=392 TT=900 FL=275.4 IP=955 FP=1025 TP=900 TRAM CA=242 IS=1 FS=1 IT--100 FT1--25 TT=-60 FL=200 IP=1025 FP=1025 TP=60 File No.: VY-16Q-3 11 .PageA9ofA38 Revision:

A F0306-0IRO NEC041427 Structural Integrity Associates, Inc.TRAN CA=243 I5=11 FS=1 IT=-125 FT1-I50 TT=-210 FL=200 IP=1025 FP=1025 TP=210 PAI F PAIF PAIF PAIF PAIF PAIF PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR CA=201 CO=30.0 CA=202 Co=29.9 CA=203 CO=29.8 CA=204 CO=29.8 CA=205 C0=29.4 CA=206 CY=28.2 CA=207 C0=28.0 CA=208 CO=28.0 CA=209 CO=28.1 CA=210 C0-28.1 CA=211 CO=28.2 CA=212 Cu=29.4 CA=213 CO=29.4.CA=214 CO=28.2 CA=215 Co028.2* CA=216 .C=28.2 CA=217 CO=28.1 CA=218 CO729.3 CA=219 co=28.8 CA=220 Co=28.8 CA=221 CO=29.2 CA=222 C0=29.6 CA=223 Co=29.6 CA=224 CO=29.8 CA=225 Co=27.7 CA=226 COr29.1 CA:227 Co=29.9 CA=228 CO=29.6 CA=229 CO=29. 9 CA=230 CO=29.9 CA=231 CO=29.6 CA=232 CO=29.9 CA=233 Co-=29.9 CA=234 CO=29.6 CA=235 Co028.1*CA=236 CO=29.3 CA=237 C0.29.9 CA=238, Co=29. 9 CA=239 CO=27.7.CA=240 Cc=27.7 DI=0.575 EX=5. 6 DI=0.567 EX=5.6 DI=0.556 EX=-5.6 DI=0.556 EX=-5.6 DI=0.530 EX=5.6 DI=0.472 EX=-5.6 DI=0.464 EX=-5.6 DI=0.464 EX=5.6 DI=0.469 EX=5.6 DI=0.469 Ex=5.6 DI=0.471 EXT-5.6 DI=0.531 EXr-5.. 6 DI=0.531 EX = 5. 6 DI=0.471 EX=5.6 DI=0.471 EX=5.6 DI=0.471 EX-5.6 DI=0.469 .EX5.6 DI=0.527 EX=-5.6 DI=0.496 EX=--5.6 DI=0.496 EX=-5.6 DI=0.518 EX=-5.6 DI=0.544 EX=5.6 DI=0.544 EXr5.6 DI=0.556 EX=5.6 Di=0.450 EX=5.6 DI=0.513 EX=5.6 DI=0.567 EX=5..6 DI=0.544 EX-5.6 DI=0.567 EX=5.6 DI=0.567 EX=-5. 6 DI=0.544 EXr5. 6 DI=0.567 EX=-5.6 DI=0.567 EX=5.6 DI=O.544 EX=5.6 DI=0.469 EX=5.6 DI=0.527 EX=5.6 DI=0.567 EX=5.6 DI=0.567 EX=5.6 DI=0.450 EX=5.6 DI=0.450 EX=5.6 DI=0.450 EXr-5.6 DI=0.561 EXr5.-6 DI=0.550 EX=5.6 Tavg=85 Tavg=100 Tavg=125 Tavg=l25 Tavg=180 Tavg=326 Tavg=351 Tavg=351 Tavg=336 Tavg=336.Tavg=329 Tavg=178 Tavg=178 Tavg=329 Tavg=329 Tavg=329 Tavg=334 Tavg=188 Tavg=265 Tavg=265 Tavg=208 Tavg= 150*Tavg=l50 Tavg=l25 Tavg=392 Tavg=221 Tavg=100 Tavg=150 Tavg= 100 Tavg= 100 Tavgr150 Tavg=100 Tavg=100 Tavg=150 Tavg=334.Tavg=188 Tavg=100 Tavg=100 Tavg=392 Tavg=392 Tavg=392 Tavg=l113 Tavg=138 CA= 241 CA=242 CA 243 C0=27. 7 cO29 .8 CO=29.7*REGION III GEOMETRY CROS CD=1*JUNC PT=10 TANG PT=11 DZ=-1 EW-1 TANG PT=15 DZ=-4.17 TANG Dz-=0.333 TA=I CRO5 CD=2 VALV PT=22 DZ=-1.333 PL=1 mA=2,7 *VALVE V2-M7A VALV PT2S25 DZ=-1.333 PL=2 EW=1 *TA1l CROS CD=1 FileNo.: VY-16Q-311 Revision:

A Page Al 0 of A38 F0306-0iRO0 NEC041428 K-t Structural Integrity Associates, Inc.TANG PT-30 LUMP PT=30* TANG PT=38 TANG PT-40 TANG PT=45 CROS CD=2 VALV PTM47 VALV PT=-50 CROS CD=1*TANG PT=-55 TANG PT=55*BRAD PT-65 DZ=-2.792 MA= 1.285 DZ=-4.6 Dz=-6.317*PZ=-O. 625 Ew=1 *TA=l DZ=-1.792 PL=1 MA=2.7 DZ=-1.792 PL=2 EW=1*VALVE ,V2-28A*TA=1 DZ=-2.791 EW=1 DZ=-.791 EW1 RA=2 SD=2 EW=1 Used this to determine midpoint viw .prd output BEiND PT=bU X1=U Y1=U ZI=-.B82 XZ=U Y2=.58b ZZ=-.586 BEND PT65. Xi=0 Y1=.586 Z1=-.586 X2=0 Y2=.828 Z2=0*TANG PT=67 TANG PT- 67 CROS CD=2 VALV PT- 70 VALV PT=75 CROS CD=3 TANG PT-78 TANG PTh80 TANG PT=-82 CROS CD=4 BRAD PT=85 CROS CD=3 TANG PT=90 TANG PTr-95 CROS CD=4 BRAD PT=-100 CROS CD=3 TANG PT--105 TANG PT=-110 CROS CD=4 TANG PT=ai15+DY=2.084 EN=1 DY= .084* TA= 1, DY=1.333 PL=1MA=3.25

  • VALVE V2-29A*DY-1.333 PL=2 "E-W .*TAf= " DY-1.25 DY-3.5 DY=-2.667 EW=.1 RA= 2 EW= 1 DX=2.875 DX-2.875 Ew=I RA= 2 EW= 1 DX=1.12 DZ=-1.12 DX=-3.477 DZ=-3.477 EW=1 DX=0.7071 DZ=-0.7071 EW=1*END REGION III-----------------------------------------------

  • BEGIN REGION 'IV*---....--

-OPE R OPE R OPER OPER, OPER OPER OPER OPER OPER.OPE R OPER OPER OPE R OPER OPE R CA= 1 CA= 2 CA 3 CA= 4 CA 5 CA= 6 CA 7.CA=8 CA=9.CA= 10 CAF 11 CA=12 CAF 13 CA= 14 CA= 15 TE=100 TE=I00 TE=150 TE=2 60 TE=392 TE=3 10 TE=280 TE=2 65 TE=90 TE=2 65 TE=150 TE=150 TE=3 92 TE=50 TE=150 PR=1100 PR=50 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=170 PR=88 PR=1190 PR= 1135 PR=1135 FileNo.: VY-16Q-311 Revision:

A Page Al 1 of A38 F0306-0IRO 4)NEC041429 CStructural Integrity Associates, Inc.OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPE R CA 16 CA 17 CA 18 CA= 19 CA=20 CA= 21 CA 2 2 CA 23 CA=24 CA=25 CA 26 CA=27 CA=30 TE=150 TE-150 TE=150 TE=50 TE=150 TE=275 TE=100 TE=392 TE=392 TE=392 TE=275 TE=2 65 TE=125 PR= 135 PR=1060 PR=1135 PR=675 PR=675 PR=885 PR=1563 PR=1375 PR=940 PR=1010 PR=1010 PR=1010 PR=1010 TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN CA= 2 01 CA=202 CA 203 CA- 20 4 CA=205* CA=20 6 CA=207 CA=208 CA7209 CA=210 CA=211 CA=212 CA=213 CA=214 CA= 215 CA=216 CA=217 CA=218 CA=219 CA=220 CA 22 1 CA= 222 CA=223 CA7224 CA 22 5 CA=22 6.CA 22 7 CA=228 CA 22 9 CA 23 0 CA=231 CA= 232 CA=233 CA 234 CA= 235 CA 23 6 CA 23 7 CA 238 CA=239 CA 240 CA=241 CA= 242 IS=l FS=l IS=l FS=l IS=1 FS=P I S=i F'S= I IS=l FS=.I IS=1 FS=-1 IS=l FS=1 IS=l FS=1 IS=I FS+/-I I s=1 F S= I IS=1 FS=1 IS=I* FS= 1 IS=1 FS=1 I S=lI FS=l IS=I FS=l IS=I FS=l IS=I FS=l*IS=l FS=I*IS=l FS=I IS=I- FS=l IS=1 FS=1 15=1 P5=1 IS=1 FS=P IS=1 FS=1 IS= 1 FS= 1 IS=I FS=.I IS=1 FS=1 IT=70 FT=100 TT=I800 FL=100 IP=15 FP=1115 TP=1800 IT 100 IT=100 IT-=150 IT= i00 IT-=260 IT=-392 IT- 310 IT=-392 IT-=280 IT=-392 IT=265 FT-=100 FT=- 150 FT=-100 FPT=260 FT=-392 FT=--310 FT-=392 F T=-20 FT=-392 FT=265 TT=-0 FL=100 IP=1115 FP=65 TP=0 TT=16164 FL=100 !P=65 FP=1025 TP=16164 TT=0 FL=688.5 IP=-1025 FP=1025 TP=0.TT=Q. FL=688.5 IP=1025 FP=1025 TP=0 TT=1800 FL=4590 .IP=1025 FP=1025 TP=1800 TT=900 FL=3442.5 1P=1025 FP=1025 TP=900 TT=900 FL=3442.5 IP=1025 FP=1025 TP=900 TT=-1800 FL=2295 IP=.025 FP=1025 TP=1800-TT=1800 FL=2295 IP=1025 FP=1025 TP=1800 TT=-1800 FL=2295 IP=1025 FP=1025 TP=1800 FT=-90 TT=360 FL=688.5 IP=1025 FP=1025 TP=360 IT=90 FT=265 TT=900 FL=688.5 IP=1025 FP=1025 TP=900 IT=265 FT=-392 TT=1800 FL=2295 IP=1025 FP=1025 TP=1800 IT=-392 FT=-265 TT=90 FL=4590 IP=1025 FP=1025 TP=90 IT=265 FT=-392 TT=180 FL=4590 IP=1025 FP=1025 TP=180, IT=-392 FT-275 TT=-60 FL=5049 IP=1025 FP=1025 TP=60 IT=-275 FT=100-TT=-900

  • FL=137'.7 IP=1025 FP=1025 TP=900 1 IT=265 FT=265 TTO-0 FL=100 iP=1025 FP=1025 TP=0 2IT=265 FT--265 TT=O FL=100 IP=1025 FP=1025 TP=0 IT=265 FT=-150 TT=4140FL=100 IP=1025 FP=1025 TP=-4140 IT=150 FT=-150 TT=-0 FL=100 IP=1025 FP-185 TP=0 IT=-150 FT=150 TT=0 P.FL100 IP=185 FP=103 TP=0 IT=150 FT=100 TT=8280 FL=100 IP=103 FP=65 TP=8280 IT=392 FT=392 TT=12 FL=00 IP=1025.FP=1205 TP=12 IT=-392 FT=-50 TT=0 FL=1836 IP=1205 FP=1150 TP=O IT-50 FT=150 TT=1380,FL=100 IP=1150 FP=1150 TP=1380*15= FS= IT=150 FT=150 TT=O FL=100 .IP=1150 FP=1150 TP=0 IS=l IS= 1 15=1 IS= 1 IS=l IS= 1 IS=I IS= i IS=I IS= 1 IS= i IS=1 IS=1 15= 1 FS= 1 FS= i FS=1 FS=l FS= 1 IT=150 FT=50 TT=0 FL=1377 IP=1150 FP=1150.TP=O IT=-50 FT=150 TT=3060 FL=100 IP=900"FP=1075 TP=3060 IT=-150 PFT=150 TTO-0 FL=100 IP=1075 FP=1150 TP=O IT=-150 FT=-50 TT=0 FL=780.3 IP=1150 FP=-690 TP=O IT=50 FT=150 TT=300 FL=100 IP=690 FP=690:TP=300 FS=P IT= 150 FS= IT=392 1S=l IT=-275 FS=1 IT1-i00 FS=I IT-- 10 0 ,FS=1- 1T=-392 FS=1 IT1=392 FS=1I 1T-392 FS=1. IT1-00 FT-=150 FT=-275 FT1 100 F=T- 100.FT=100 FT=-392 FT=-392 FTr=392 FT=-125 TT=8964 FL=100 IP=255 FP=1025 TP=8964 TT=-60 FL=5049 IP=1025 FP=900 TP=60 TT=900 FL=137.7 IP=900 FP=65 TP=900 TTO-0 FL=100 IP=65 FP=1578 TP=O TT=0 FL=100 IP=1578 FP=65 TP=O TT=-60 FL=5049 IP=1025 FP=1390 TP=60 TT=-900 FL=137.7 IP=1390 FP=955 TP=900 TT=900 FL=137.7 IP=955 FP=1025 TP=900 TT=-60 FL=100 IP=1025 Fp=-102-5 TP=60 FileNo.: VY-16Q-311 Revision:

A Page Al 2 of A38 F0306-OIRO NEC041430 3StrUctural Integrity Associates, Inc.TRAN CA=243 IS=1 FS=, IT=125 FT=150 TT=-210 FL=100 IP1-I025 FP=1025 TP=210 PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR<PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR*PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR CA= 201 CA 202 CA=203 CA=204 CA- 20 5 CA=20 6 CA=207 CA=2 08 CA=209 CA=210* CA=211.CA= 212 CA=213 CA=214 CA 215 CA2 16.CA=217 CA=218 CA=219 CA=2 2 0 CA=-221 CA= 2 2.2 CA 223.CA=2 22 4 CA= 22 5 CA=22 6 CA=227 CA= 228 CA=229 CA=230 CA- 2 3 1 CA= 232 CA 233 CA 234 CA=235 CA= 23 6 CA 237 CA= 238 CA 239 CA- 240.CA= 241 CA= 242 CA=243 C C0=30. 0 co=29.9 CO=29.8 Co=29.8 C0=29. 4 CQ=28.2, CO=28.0 CO=28.0 SCO=28 1 CO=28. 1 LC0=28.2 CO=29.4 CO=29.4 CO=28.;2 Co=28 .2 CO=28.2 CO=28. 1 C0=29. 3 CO=28 .8 CO=28.8 CO=29. 2 CO=29. 6 C0=29. 6 CO=29.8 C0=27.7 CO=29. 1 CO=29. 9 CO=29. 6 CO=29.9 CO=29. 9 CO=29. 6 CO=29.9 CO=29. 9 CO=29. 6 CO=28. i COP=29.3 CO=29. 9 C0=29.9 CO=27.7 CO27. 7.C 0=27. 7 CO==29. 8 CO=29. 7 DI=O. 57E DI=O. 567 DI=0. 556 D I=0. 556 DI=0.53 0 DI=0.472 DI=0. 464 DI=10. 464 DI=0. 469 DI=O. 469 DI=O. 471 DI=0.531 DI=0. 53 1 D 1=0. 47 1 DI=0.471 DI=0. 471 DI=0.469 D1=0. 527 DI=0.496 DI=0.496 DI=O. 518 DI=0.544 DI=0..544 DI=0.556 DI=0. 450 DI=0.513 DI=0.567 DI=0.544 DI=0.567 DI=0.567 DI=0. 544 DI=0.567 DI=0.567 DI=0. 544 DI=0.469 DI=0. 52-7 DI=0.567 DI=0. 567 DI=0. 450 DI=0)450 DI=0. 450 DI=0. 561 DI=0.550 5 EX=5. 6 EX=-5. 6 EX=-5. 6 EXr5. 6 EX=5. 6 EXr5. 6 EXr-5. 6 EX=-5. 6 EX=5. 6 EX=-5. 6 EX=-5. 6 EXr-5. 6 EX=5. 6 EX=5. 6.EX-5. 6 EX=5. 6 EX5. 6 EX=5. 6 EX=-5. 6 EX5. 6 EXr5. 6 EX=5. 6 EX=-5. 6 EX=-5. 6 EX=5. 6 EX=5. 6 E=- 5. 6 EX=-5. 6 E Xr-5. 6 EXr5. 6 EX=-5. 6 EX=-5. 6 G EX=5.6 EX=-5.6 EX=5. 6 EX=5. 6 EX=5. 6 EX=5. 6 EX=-5.6 EX=5.6 EX=5.6 EX=-5. 6 Tavg=B 5 Tavg=100 Tavg=125 Tavg=125 Tavg=180 Tavg=326 Tavg=351 Tavg=351 Tavg=336 Tavg=336 Tavg=329 Tavg=l178 Tavg=i78 Tavg=329.Tavg=329 Tavg'=329.

Tavg=334 Tavg=188 Tavg=265 Tavg=265 Tavg=208 Tavg=150 Tavg=150 Tavg=125 Tavg=392 Tavg=2 21 Tavg=100 Tavg=150 Tavg=100 Tavg=100 Tavg=150 Tavg=100 Tavg=100 Tavg=150 Tavg=334 Tavg=188B Tavg=100 Tavg=l00 Tavg=3 92 Tavg=392 Tavg=392 Tavg= f13 Tavg=138*REGION IV GEOMETRY*RUN FROM FM TEE TO CROS CD=4 TANG PT= 170 DX=0.7C ERED PT1-I75 DX=0.82 CROS CD=5"*RUN FROM FW TEE TO BEND PT= 190 X1=4.81 BEND PT=200 X1=0.444 STRU PT=201 DX=.198 DOWNSTREAM OF FW brnCH TEE/REDUCER

-10 INCH PIPING ELBOW BEFORE NOZZLE NBA, NODE 275 171 DZ=-0.7071 ElW-I:5 DZ=-0.825 AN-=30 ELBOW BEFORE NOZZLE.3 Y1=0 Zl=-4.813 9 Y1=0 Z1=-2.342 DZ=.9802 N4B, NODE.X2=1. 2 83 k2=-0.059 152 Y2=0 Y2=0 Z2=-6.685 z2=-2. 384 FileNo.: VY-16Q-3-11 Revision:

A .PageAl3 of A38 F0306-0IRO NEC041431 2 " t9 Structural Integrity Associates, Inc.STRU ANC H JUNC PT-202 DX=-.198 DZ=.9802 P.T=202 PT=-200 BEND, PT=-220 TANG PT=-225 TANG PT=-230 TANG PT=235 BRAD PT-240 TANG PTr-245 TANG PT=-250 TANG PT2255 BRAD PTr260 TANG PT=-265 TANG' PT--270 xl=-O 2 196 DX=-O.3 388 DX=-0.3 388 DX=-1 .002 RA=1. 25 DX=-2 .693 DX=-2 .693 DX=-2 .693 RA=i. 25 DY=3. 958 DY=3.959 Y1=0 Z1=-8.859 X2=-6.266 Dz=-0.3388 DZ=-0.3388 DZ=-1.002 Y2=0- Z2=-6.266 DY=3.196 DYr3. 196 DY=3. 196 DZ=2. 693 DZ=2.693 DZ=2.693-------------------------

----------------------------------
  • END REGION IV"BEGIN REGION IVa------------------------------------------------------------

OPER CA= 1 OPER *CA= 2 OPER CA=3 OPER CA=4 OPER CA=5 OPER CA= 6 OPER CA=7 OPER CA=8 OPER CA=9 OPER CAf10 OPER CA=11 OPER CA=12 OPER CA=13 OPER CA=14 OPER CA=15 OPER .CA= 16*OPER CA-17-OPER CA= 18 OPER CA=19 OPER CA=-20 OPER CA=21 OPER CA=22 OPER CA=23 OPER CA=24 OPER CA=25 OPER CA=26 OPER CA=27*OPER CA=30 TRAN CA=201-TRAN CA=202 TRAN CA:203 TRAN CA=204 TRAN, CA=205 TRAN CA=206 TRAN CA=207 TRAN CA=208 TE=100 TE=100 TE=250 TE=2 60 TE=392 TE=3 10 TE=280 TE=2 65 TE=90 TE=336 TE=206 TE=195 TE=435 TE=50 TE=223 TE=2 54 TE=223 TE=250 TE550 TE=188 TE=275 TE= 00 TE=392 TE=392 TE=392 TE=275 TE=309 TE=166 I15=1 I1 I 5= 1 F IS=1 F 15=1 F 15=1 F 15=1 F I5=1 F PR=1100 PR=50 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=I010 PR=1010 PR=1010 PR=170 PR=88 PR=1190 PR=1135 PR=1135 PR=1135 PR=1060 PR=I 135 PR=675.PR=675 PR=885 PR=1563 PR=1375 PR=940 PR=1010 PR=1010 PR=1010 PR=1010 r r 5S='S= 1.S=1 S= 1 S= 1 S=1 5=1 ITr-70 FT=00 TT=1800 FL=100 IP=15 FP=1115 TP=1800 IT= 100 IT=-i00 IT=250 IT=100 Ir 260 IT=392 IT=-310 FrT- 100 FT=-250.FTr-100 Fr 260 FT=-3g2 F T- 32 Fr -39 2 TT=0 FL=100 IP=1115 FP=65 TP=0 TT=16164 FL=100 IP=65 FP=1025 TP=16164 TTr-0 FL=688.5 IP-=1025 FP=1025 T20=0 TT=O FL=688.5 I.P=1025 FP=1025 Tp=0 TT=1800 FL=4590 IP=1025FP=1025 TP=1800 TT=900 FL=3442.5 IP=1025 FP=1025 TP=900 TT=-900 FL=3442.5 IP=1025 FP=1025 TP=900 FileNo..:

VY-16Q-311 Revision:

A Page A14 of A38 F0306-01RO NEC041432 3 Structural Integrity Associates, Inc.*TRAN CA=209 TRAN CA=210 TRAN CA=211 TRAN CA=212 TRAN CA=213 TRAN CA=214 TRAN CA=215 TRAN CA=216 TRAN CA=217 TRAN CA=218 TRAN CA=219 TRAN CA=220 TRAN CAM221 TRAN CA=222 TRAN CA=223 TRAN CA=224 TRAN CA=225 TRAN CA=226 TRAN CA=227.TRAN CA=228 TRAN CA=229 TRAN CA=230 THAN CA=231 TRAN CA=232 TRAN CA=233 TRAN CA=234 TRAN CA:235 TRAN CA=236 TRAN CA5237 TRAN CA=238 THAN CA=239 TRAN CA=240 TRAN CA=241 TRAN CA=242 TRAN CA=243.PAIR CA7=201 PAIR CA=202 PAIR CA= 203 PAIR CA=204 PAIR CA=205 PAIR CA=206 PAIR CA=207.PAIR CA=208 8 PAIR CA 2.0 9 PAIR CA02 i0 PAIR CA=211 PAIR CA=212 PAIR CA=213 PAIR CA=214 PAIR CA=215 PAIR CA=216 PAIR CA-7217 PAIR CA=218 I5=1 I 1=1 IS=1 is= 1 is= 1 IS=1 IS=1 1IS= i IS=1 is= I is= 1 is= I is= 1 15=1 is= 1 15=1 is= 1 IS= 1 is= 1 12*7 1 15=1 IS= 1 IS=1 IS=1 15=1 IS=1 IS=1 15=1 1S=1 I S=l*IS=1 15=1 15=1 IS=1 IS=1 I5=1i I 5. 1 FS=1 FS=1, FS= I FS= I FS= 1 FS= 1.FS=I FS= 1 FS= 1 FS= 1 FS= 1 FS=l1 PIS= 1 FS=1I FS= 1.FS= 1 FS= i FS= 1 FS= 1 F.S= i FS= 1 FS=1 FS= 1 FS=1 IT=392 FTr280*IT=280 FTP=392 IT=-392 FT=-265 IT=-265 FT=-90 9 IT=90 FT=265 TT=1800 .FL=2295 TT= 1600 FL=2295 TT- 1800 FL=2295 7T=360 FL=688.5 rT=900 FL=688..5 IP=1025 F P= 1025 IP=1025 FP=1025 IP=1025 FP=1025 iP=1025 FP=1025 IP=1025 FP=.025 TP= 18 00 TP= 1800 TP= 1800 TP=-3 60 Tp=_900 IT=265 IT=-392 IT1=265 IT1=275 rIT=265 IT1=309 It=33 6 IT-=250 IT=1206 IT=195 IT=-392 IT435 FT=-392 TT1=1800 FL=2295 IP=1025 FP=1025 TP=1800 FT=2-65 TT=90 FL=4590 IP=-1025 PP=1025 TP=90 FT=-392 TT=-180 FL=4590 IP=1025 FP=1025 TP1=180 FT--275 TT=60 FL=5049 IP-1025 FP=1025 TP=60 FT=100 TT=-900 FL=137.7 IP=1025 FP=1025 TP=900 PT=-309 TT1=-0 FL=100 iP=1025 FP=1025 TP2=0 FT1=336 TT=-3924 FL=100 IP=1025 FP=1025 TP=3924 FT-250 TT=14140 FL=100 IP=1025 F '1025 TP=4140 FT=-206 TT=-6264,FL=00 .IP=1025 FP=2185 TP=6264 FT=195,TT=600 FL=O00 IP=165 FP=103 TP=600 FTP=100 TT118280 FL=100 IP=103 FP=65 TP=8280 FT=4s35 TT1=12 FL=100 IP=1025 FP=1205 TP=12 FT=-50 TT=0,FL=1836.IP=1205 FP=1150 TP=0-IT=50 FT=223 TT=1380. FL=100IP=1150 FP=1150 TP=1380 IT=-223 FT=-254 TT1=0 FL=100 IP=1150 FP=1150 TP=0 IT-254 FTP150 TT=0 FL=1377 IP=1150 FP=1150 TP=O IT=-50 FT=223 TT=3060 FL=100 IP=900 FP=1075 TP=3060*IT=223 F,T=-250 TT-10 FL=100 IP=1075 FP=1150. TP=O, IT=250 FT=-50 TT=O FL=780.3 IP=1150 FP=690 TP=0 IT=-50 FT=188 TT=300 FL=100 IP=690 FP=690 TP=300.FS=.FS=PS5 FS=FS=FS=FS=.FS=F S FS=COC=30.0 CO=29. 9 C0=29.4 C0=29.4 CO;=29.4 CO=28. 2 coo28.o C.0=28. 0 CO=28. 1 C0F28. 1 c0=28. 2 C0=29. 4 CO=29. 4 C0=28 .2:0=28. 2 CO=28. 2 CO=28. 1 CO=29.3=1 IT-- 188=1 IT-392=1 IT=-275=I IT= 100=1 IT-= 100=1 IT=392=1 IT392=1 IT-392=1 IT- 100=I IT= 166 DI=0. 575 DI=0. 567 DI=0. 533 D I=0. 533.DI=0. 530 DI=0. 472 DI=0. 464 DI=O. 464 DI=0. 469 DI=0. 469 DI=0. 47 1 D i=0.531 DI=0. 53 1 DI=0. 471-DI=0. 471 DI=0. 471 DI0=. 469 DI=0. 527 DI=0. 48 6 DI=0. 473 D0I=0.484 FT¶=250 1T=-275 F T--. 1D0O FT=-100 FT1100 FT=-392 PFT=392 F T-- 39 2 PFT=166 FT-=250 EX=5. 6 EX=5. 6 EX=-5. 6 EXr5. 6 E.IX--5. 6 EX-5. 6 EX=-5. 6 EX=-5. 6 EX=-S. 6 EX=5. 6 EX=5. 6 EX=5. 6 E X--.5.6G E X=--5. 6 EX=-5. 6 ,EX=5. 6 EX=5. 6 EX=5. 6 EXr-5. 6 E X- 5. 6 EX=-5. 6 EX=-5. 6 TT=18964 FL=100 IP=255 FP=1025 TP=8964 TT=60 PL=5049 IP=1025 Fp=900 TP=60 TT=-900 FL=137.7 IP=900 FP=65 TP=900 TT1=0 FL=100 IP=65 FP=1578 Tp=0 TT=0 PL=100ýIP=1578 FP=65 TP=0 TT2=60 FL=5049 IP=-1025 FP=1390 TP=60 TT=-900 FL=137.7 IP=1390 FP=955..TP=900 TT11900 FP=137.7 IP=955 FP=1025 TP1=900 TT1=60 FL=100 IP=1025 FP=1025 TP=60 TT1210,FL=100 IP=1025 FP=1025 TP=210* Tavg=85*Tavg=100* Tavg=+/-75* Tavg=175 k Tavg=10* Tavg-;326* .Tavg=351" Tavg=351" Tavg=336" Tavg=336 1Tavg=329 Tavg= i 78+ Tavg=178.Tavg=329* Tavg=329* Tavg=329* Tavg=334" Tavg=188" Tavg=287" Tavg=323 1Tavg=293 PAIR PAIR PAIR CA=219 C0=28.5 CA=220 CO=28. 2 CA=221 CO=28.5 File No.: VY-16Q-3 11 Revision:

A Page Al5u of A38 F0306-O1RO NEC041433 3 Structural Integrity Associates, Inc.,*PAIR PAIR PAIR PAIR PAIR PAIR PAIR'PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR TANG CA=222 CA 223 CA 224 CA=225 CA22 6 CA=-227 CA 226 CA=229 CA 230 CA=231 CA=232 CA= 233 CA 234 CA= 235 CA=23 6 CA=237 CA=238 CA=239 CA=240 CA=241 CA=242 CA= 243 PT=-275 CO=29.0 DI=0.510 C0F29.2 DI=0.521 C0=29.6 DI=0.545 Co=27.5 DI=0.442 CO=28.9 DI=0.505 CO=29.7 DI=0.55f0 CO=29.0 DI=0.506 CcF29.6 DI=0.543 CO=29.7 DI=0.550 CO=29.0 DI=0.507 CO29.6 DI=0.544 CF=29..8 DI=0;558 C0=29.1 DI=0.514 CcF2B.1 DI=0.469 CO=29.3 DI=0.527 CO=29.9 DI=0.567 C0=29.9 DI=0.567 CO=27.7 DI=0.450 C0=27.7 DI0.450 CO=27.7 DI=0.450 C0=29.7 DI=0.552 CO=29.2 DI=0.518 DY=6.583 Et=O EX=-5. 6 EXr-5. 6 EX=-5. 6 EX=-5. 6 EX=-5. 6 E X-5. 6 EX=5. 6 EX=5. 6 EX5. 6 Ex=5. 6 EX=-5. 6 EX=-5. 6 EXr5. 6 EX=-5. 6 EX=5. 6 EX=5. 6 EXr5. 6 EX-5. 6 EX=5. 6 EX=5. 6 EXr- 5. 6 EXr5. 6 Tavg=228 Tavg=2 01 Tavg=148 Tavg=414 Tavg=243 Tavg=137 Tavg=239 Tavg=152 Tavg=137 Tavg=237 Tavg=150 Tavg=l19 Tavg=2 19 Tavg=334 Tavg=188 Tavgl=00 Tavg= 100 Tavg=392 Tavg=392 Tavg=392 Tavg=133 Tavg=208 (N-----------------------------------------------------------

  • END REGION IVa*BEGIN REGION IVb----------------------------------------------------------

OPER CA=1&PER CA=2 OPER CA=3 OPER CA=4 OPER CAS5 OPER CA= 6 OPER CA77 OPER CA=8 OPER CAg9 OPER CA=10 OPER CA= 11 OPER CA=12 OPER CA'Kt3 OPER CAe14 OPER CA=15 OPER CA716 OPER CAf17 OPER CA1IB OPER CA=19 OPER CA=20 OPER CA721* OPER CA=22.OPER CA=23 OPER CA=24 OPER CA=25 OPER CA=26 OPER CA=27 TE-110 PR= 100 T=100 PR=50 TE=449 PR=I010 TE=260 PR=I010 TE=392 PR=1010 TE=310 PR=010 TE=280 PR=1010" TE=265 PR=010 TE=90 PR=1010 TE=478 PR=1010 TE=319 PR=170 TE-285 PR-88-TE=522 PR=1190 TE=50* PR=I135 TE=368 PR=1135 TE=461 PR=1135 TE=368 PR=1060 TE=449 PR=1135 TE=50 PR=675 TE=2 63 PR=675 TE=275 PR=885 TE=100 PR=1563 TE=3 92 PR=1375 TE=392 PR=940 TE= 392 PR=1010 TE=275 PR=1010 TE=396 PR=I010 FileNo.: VY-16Q-311 Revision:

A Page Al 6 of A38 F0306-OIRO NEC041434 tV Structural Integrity Associates, Inc..OPER CA730 TE=249 PR=l0la TRA]TRA]TRAI.TRAI TRAI TRA]TRA!TRAI TRAI TRAf TRAD TRAD TRAD TRAE TRAI TRAE TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAN.TRAN TRAM TRAN TRAN TRAN TRA I TRAN TRAN TRAN TRAN TRAN TRAN T RA N-TRAN TRAN PAiR PAIR PAIR PAIR PAIR PAIR PAi R PAIR PAIR PAIR PAIR PAIR 9. CA=20 V CA#=20 2 V CA=203 4 CA=204 V CA=205 J CA=206 a CA=207 J CA=208 I CA=209 I CA=210 I CA=211 CA=212 CA=213 CA=214 r*CA=215 CA=216 CA=217 CA=218 CA=219 CA=220 CA=22 1* CA=222 SCA=223 CA 224 CA=225 CA=22 6 CA=227 CA= 228 CA 229 CA=230 CA= 23 1 CA-232 CA=233 CA=234 CA=235 CA=23 6 CA 237 CA=238 CA 239 CA 240 CA= 24 1 CA=242 CA=243 CA=201 CA=202 CA 203 CA=204 CA=205.CA=206 CA=207 CA= 208 CA= 209 CA 210 CA=21I*CA= 212 iIS=I FS=I 2IS=I FS=l 3 IS=1 FS=1 4 SIFS=I 5IS=I FS=l 6IS=l FS.--7IS=l FS=l SIS=I FS=-l Is=i FS=l IS=1 FS=1 SIS=l FS=I..IS=l FS=l SIS=I FS=llIS=l FS=l SIS=l FS=iIS=l FS=lFS=i IS=I FS=.l IS=l .FS=lI IIS=l FS=.l IS=l FS=1 I S=li .FS= 1 IS=l FS=Il IS1=1 FS=P IS=Il FS=l IS'=l FS=l I.S=l FS=l IS=l FS=l I S=1 FS=1 IS=I F S=l IS=1 FS=1 IS5= .FS=1 IS=1 FS=i IS=l FS=1 ,IB=l FS=l I S=Il FS=l I S= 1 F S= 1 IS=l FS=1 IS=1 FS=1 IS=1 FS=.IS=1 FS=1 12=70 FT=100 TT=1800 FL=Io0 IP=-15 FP=1115 TP=1800 IT1- 00 FPO10 IT= 100 FT=-44 IT=449 FTP=10 IT=-100 FT=26 IT=260 FT=39 IT2=392 FT=-31 IT=--310 FT=39 IT=-392 FT=-28 IT=280 FT=39 IT=392 FT=-26 IT=-265 F.T=90 IT=--90 FT=265 IT=265 FT=39 IT=-392 FT=-26 IT=-265 FT=-39: IT=392 FT=27.IT=275 PT= 10 IT=265 FT=-39'IT=396 FT-r47 IT=-478 FT=-44!IT=-449. FT=31l IT=-319 FT=28 IT-285 FT= 10(IT=-392 FT=52 IT=-522 FT=50 2 1 2 2 6 8 0 TT=0 FL=100 IP=1115 .FP=65 TP=O 9 TT=-16164 FL=100 IP=65 .FP=1025 TP=16164 0 TT=-0 FL=688.5 IP=-1025 FP=1025 TP=0 0 TT=-0 FL=688.5 IP=-1025 FP=1025 TP=0 2 TT=1800 FL=4590 IP=1025 FP=1025 TP=1800) T2T=-900 FL=3442.5 IP=1025 FP=1025 TP=900 TT--900. FL=3442.5 IP=1025.FP=1025 TP=900) TT=i800 PL=2295 IP=1025 FP=1025 TP=11800 TT=1800FL=2295 IP=1025 FP=1025 TP=1800 3 TT=1800 FL=2295 IP=1025 FP=1025 TP=1800 TT=360 FL=688,.5 IP=1025.FP=1025 TP=360 TT=900 PL=688.5 IP=1025 FP=1025.TP=900

  • TT=1800 PL=2295 IP=1025 P=.1025 TP=1800 TT=-90 FL=4590 IP=102.5 FP=1025 TP=90'TT=-180 FL=4590 IP=1025 FP=1025 TP=180 TT=-60 FL=5049 IP=1025 FP=1025 TP=60[TT-900PL=137.7 IP=1025 FP=1025 TP=900 TT=0 FL=100 -IP=1025 FP=1025 TP=O TTfl3924 PFL=100 IP=1025 FP=1025 TP=-3924 TT=-4140 FL=100 IP=1025.FP=1025 TP=4140 TT=-6264 FL=00 IP=1025.FP=185 TP=6264 TT=-600 FL=100 IP=-185 FP=-103 TP=600 I TT=8280 FL=100 IP=103 FP=65 TP=8280 TT=-12 FL=100 IP=1025 FP=1205 TP=12-TT=0 FL=1836 IP=1205.FP=1150 TP=0 IT=-50 FT=368 TT=1380 FL=100 IP=1150 FP=1150 TP=1380 IT=-368. FT=-461 TT=-0 FL=100 IP=.1150 FP=1150 TP=0 IT=-461 FT=-50 TT=0 FL=1377 IP=1150 FP=1150 TP=0 IT=50 FT=368 TT=3060 -FL=100 IP=-900 FP=-1075 TP=3060 IT=-368 FT=449 TT=0 FL=100 IP=1075 FP=1150 TP=0 IT=-449 FT=50 TT=0 FL=780.3 IP=1150 FP=690 TP=O-IT=-50 FT=263 TT=300 FL=100 IP=690 FP=690 TP=300 IT=-263 FT=-449 TT=8964 FL=100 IP=255 FP=1025 TP=8964 IT=-392 FT=275 TT=-60 FL=5049 1P=1025 FP=900 TP=60 IT=275 FT=--100 TT=--900 PL=137.7 IP=900 FP=65 TP=900 IT=100 FT=-100 TT=0 FL=IO0 IP=65 P2=1578 TP=O IT=-i00 FT=-I00 TT=0 FL=100 IP=1578 FP=65 TP=0 IT=392 FT=-392 TT=-60 FL=5049 IP=1025 FP=1390 TP=60 IT=392 FT=-392 TT=900 FL=137.7 1P=1390 FP=955 TP=-900 IT=-392 FT=-392 TT=900 PL=137.7 IP=955 FP=1025 TP2=900 IT-100 FT=-249 *TT=60 FL=100 IP=1025 FP=-1025 TP=60 IT=249 FT=449 TT=-210 FL=100 IP=-1025 FP=1025 TP=210 (cao=30.0 co:=29.9:0=28. 7 CO=28.7 CO=29. 4 CO=28. 2 0O=28 .0 CO=28.0:0=28. 1:0=28..l:0=28.2:0=29.4 DI=0. 575 DI=0.567 DI=0. 492 DI=0. 492 DI=0. 530 DI=0.472 DI=. 464 DI=0. 464 DI=0. 469 DI=0.469 DI=0. 471 DI=0.531 EX=-5.6 E x=5. 6 Er=-5. 6 EX=5. 6 EX=5. 6 EX=5. 6 E=-5. 6 EX=5. 6 Er=5.6 EX=5.6 52=5.6.* Tavg=85* Tavg=100" Tavg=275* Tavg=275* Tavg=180* Tavg=326* Tavg=351" Tavg=351* Tavg=336* Tavg=336* Tavg=329* Tavg=178 FileNo.: VY-16Q-311 Revision:

A Page A17 of A38 F0306-0IRO NEC041435 K Structural Integrity Associatesl Inc.j PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR" PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAI R PAIR PAIR PAIR PAIR CA= 213 CA-214 CA=215 CA= 216 CA 217* CA=218 CA=219 CA 220 SCA22 1 CA 222 CA=223 CA 224 CA 225 CA 22 6 CA=227 CA=228 CA 229 CA 230 CA=23 1 CA=232 CA=2 33 CA 234 CAZ 235 CA=23 6*CA7 237 CA= 238 CA= 239 CA=240 1CA7; 2 41.CA-242 CA=243 CO=29. 4 C0=28.2 CcO28 .2 CO=28.2 Co=28. 1 CO=29.3 CO=28 .2 c o:- 2 7 .2'CO=27.0 c o=2-7. 0 C0:C27.7 C0=28.4 CO=29. 3 CO=27.0 CO=28.5 C0=29. 1 C0=27. 5 CO-=28.8 CO=29.1 CO=27. 5 CO=28. 9.CO-29. 5 Co-28. 0 CO=28. I C0=28. 1 CO=29. 9 C07=29. 9 C 0=29.9 CO=27. 7 C0=27.7 CO=27. 7 CO=29.4 CO=28.0 DI=0.531 DI=O. 471 DI0. 471 DI=0. 471 DI=0.469 DI=0. 527 DI=0. 470 DI=0. 434 DI=O. 42 6 DI=0. 452 DI=0. 480 DI=O. 524 DI=0. 428 DI=0.487 DI=0. 518 DI=0. 442 DI=0. 49 DI=0.518 DI=0. 444 Di=0.502 DI=0. 541 DI=0. 462 DI=0.469 D1=0.527 DI=0.567 DI=0.567 DI=0.450 DI=O. 450 DI=0. 450 DI=0.533 EX-5. 6 EX=-5. 6 E W=--5'. 6 EX=5. 6 EX-5. 6 EX=-5. 6 EX=5. 6 EX=5. 6 EXr-5. 6 EX-5. 6 EX=5. 6 Exr--5. 6 EX=5. 6 EX=-5. 6 EXr--5. 6 ErX=-5. 6 EX=5. 6 EX=5. 6 EXr5. 6 EXr5. 6 EX=5. 6 E X=5. 6 EX=-5. 6 EX=-5. 6 EX=-5. 6 EX=5. 6 EX=-5. 6 EX=-5. 6 E X= 5.. 6 Ex=5. 6 Tavg=178 Tavg=32Y Tavg=329 Tavg=329 Tavg=334 Tavg=188 Tavg=331 Tavg=437 Tavg=464 Tavg=384 Tavg=302 Tavg=193 Tavg=457 Tavg=286 Tavg=209*Tavg=415 Tavg=256 Tavg=209 Tavg=409 Tavg=250 Tavg=157 Tavg=356 Tavg=334 Tavg=188 Tavg=100 Tavg=l00 Tavg=392 Tavg=392 Tavg=392 Tavg=175 DI0=.464, EX-5.6

  • Tavg=349 TANG PT-280 DY=6.583 EW=O----------------------------------------"END REGION IVb-------------------------

--- ----------

  • .BEGIN REGION V TO NOZZLE N4A, NODE 290-------------------------------------

OPE R OPER OPER OPER OPER OPER OPER OPE R OPER OPER OPER OPER OPER OPER OPER OPER OPER OPE R CA= 1 CA=2 CA 3 CA 4 CA= 5 CA=- 6 CA=7 CA=-8 CA 9 CAF 10 CA 11 CA= 12 CA 13 CA= 14 CA 15 CA= 16 CA= 17 CA= 18 TE=100 TE=100 TE=549 TE=2 60 TE=3 92 TE=3 10 TE=280 TE=2 65 TE=90 TE=549 ,TE=375 TE=330 TE=565 TE=50 TE=440 TE=565 TE=440 TE=549 PR=1100 PR=50 PR=1010 PR1=1010 PR=1010 PR=1010 PR=010 PR=1010 PR=1010 PR=1010 PR=170 PR=88 PR=1190 PR=1135 PR= 1135 PR1= 1135 PR=1060 PR=1135 FileNo.: .VY-16Q-311 Revision:

A Page Al 8 of A38 F0306-OIRO NEC041436 Structural Integrity Associates, Inc.OPER OPER OPER OPEF'OPER OPER OPE R OPER OPER OPER TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN-TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRANM TRAN TRAN TRAN TRAN'TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN THAN TRAN TRAN TRAN PAIR PAIR PAIR CA=1Y R CA=20 CA=21 CA=22, CA=23 CA=24 CA=25 I CA=26 I CA=27.CA=30 CA=201 CA=202 CA=203 CA=204 CA=205*CA=206*CA=207 CA 208 CA=209 CA=2 10 CA 211 CA=212 CA=213 CA=2.14 CA= 215 CA 216 CA=217 CA=218 CA=219 CA= 220 CA-221 CA=222 CA 223 CA=224 CA 22 5ýCA=22 6 CA= 2 27 CA 228 CA=229 CA 230 CA=23 1 CA 232 CA=2 3 3 CA=23 43 CA=-235 CA=23 6 CA 237 CA=238 CA= 239 CA=240 CA-241 CA 242 CA= 243 CA= 20 1 CA=202 CA=203 TE=50 TE=300 TE=275 TE=100 TE=392 TE=392 TE=392 TE=275 TE=440 TE=2 90 PR=675 PR=675 PR=885 PR=1563 PR=1375 PR=940 PR=1010 PR=1010 PR=1010 PR=1010 IS=1 1S=1 IS=1 15=1 IS=1 IS=1 I5=1 1S=1 IS=1 IS=1 I5=1 IS=1 IS=1 IS=1 IS=1 IS=1 IS= 1 IS= 1 13=1 IS=l.1S=1 IS= 1 IS=1 1S=1 IS=1 IS=1 IS=1 19=1'IS=1 IS=1 IS=1 IS=1 is= 1 1S=1i 1=I1=13=1l 15=I~15=1 FS=1 F35=1 Fs= 1 F 3=1 F 5=1 FS=1 F35=1 FS=1 FS= 1 FS=1 F3=1 FS=1 FS= 1 FS=1.FS= 1.F= 1 FS= 1 FS= I F S=1 F3=11 FS=1 FS= 1 FS=1 F35=1.FS=1 FS=1 FS= 1 FS=1 FS= 1 FS=1 FS= 1 FS= 1 FS- 1 FT5=1 F 3=1 FS 1 F =1 FS=1 FS=1 FS=1 F3= 1 F9 =1 FS= 1 FS= 1 FS= i FS= 1 IT=70 FT=100 TT=1800 FL=100 IP=-15 FP=1115 TP=1800 IT=-100..IT1-I00 IT=-549 11=100 1T=3 g2 IT=-310 IT=392 IT1=280 IT=392 ITr265 FT =100 FT =549 F T=100 FT-=260 F T=-392 FT =310 FT-=392 F T=280 FT=-392 FT=-265 TT=0 FL=100 IP=l115 FP=65 TP=0 TT=16164 FL=100 IP=.65 FP=1025 TP=16164 TTrO FL=688.5 IP=1025 FP=1025 TP=0 TT=0 FL=688.5 IP=1025 FP=1025 TP=0 TT=-1800 FL=4590 IP=1025 FP=1025 TP=1800 TT=900 FL=3442.5 IP=1025 FP=1025 TP=900 TT=-900 FL=3442.5 IP=1025 FP=1025 TP=900 TT=1800 FL=2295 IP=1025 FP=1025 TP=1800 TT=-1800 FL=2295 IP=1025 FP=1025 TP=1800 TT=-1800 FL=2295 IP=1025 FP=1025 TP=1800 FTP90 TT=360 FL=688.5 IP=1025 FP=1025 TP=360 IT--90FT=265 TT=900 FL=688.5 IP=1025 FP=1025 TP=-900'IT=265 FT=392 TT=1800 FL=2295 IP=1025 FP=1025 TP=18 I T=-392 FT=265 TT=-90 FL=4590 IP=1025 FP=1025 TP=90 IT=265 FTr392 TT1='180 FL=4590 IP=1025 FP=1025 TP=180 IT=392 FT=-275. TT=-60 FL=5049 IP=1025 FP=1025 TP=60 IT=275 FT=100 TT=-900 FL=137.7 IP=1025 FP=1025 TP=901 17=265 FT=--440 TT=0 FL=100 iP=1025 FP=1025 TP=O IT=-440 FT=-549 TT=3924 FL=100 IP=1025.FP=1025 TP=-392 IT=-549 FT=-549 TT=-0 FL=O00 IP=1025 FP=1025.TP=O IT=-549 FT=375 TT=6264 FL=100 IP=1025 FP=185 TP=6264 IT=-375 FT=-330 TT=-600 FL=100 IP=185 FP=103 TP=600 IT=-330 FT=-100 TT=-8280 FL=1OG IP=103. FP=65. TP=8280 IT=392 FT=565 TT=12 FL=O00 IP=1025 FP=1205 TP=12 I.T=565 FT=-50 TT=0 FL=1836 IP=1205.FP=1150 TP=0.IT=-50 FT=440 TT=1380 FL=100 IP=1150 FP=1150 TP=1380 IT=440 FT=-565 TT=-0 FL=100 IP=1150 FP=1150 TP=O IT=565 FT=50 TT=0 PL=1377 IP=1150 FP=1150 TP=0 IT=50 FT=440,TT=3060 FL=100 IP=900 FP=1075 TP=3060 IT=440 FT=549 TT=-0 FL=100 IP=1075 FP=1150 TP=0 IT=-549 FT=-50 TT=O FL=780.3 IP=1150 FP=690 TP=20 IT=-50 FT=300 TT=300 FL=100 IP=690 FP=690 TP=300 IT=300 FT=-549 TT=-8964 FL=i00 IP=255 FP=1025 TP=8964 IT=392 FT=-275 TT=-60 FL=5049 IP=1025 FP=900 TP=60 IT=-275 FT=I00 1TT900 FL=137.7 IP=900 FP=65 TP=900 IT=100 FT=100 TT=0 FL=100 IP=65 FP=1578 TP=O 1T=100 FT=1-00 TT=-0 FL=100 IP=1578 FP=65 TP=0 IT=392 FT=392 TT=-60 FL=5049 IP=1025 FP=1390 TP=60 IT=-392 FT=-392 TT=-900 FL=137.7 IP=1390 FP=955 TP=900 IT=-392 FT=-392 TT1=900 FL=137.7 IP=955 FP=1025 TP=900 IT=-100 FT=290 T1T=60 FL=100 IP=1025 FP=1025 TP=60 IT=290 FT=-549 TT=-210 FL=100.IP2-1025 FP=1025 TP=210 00 0 4 C0=30.0 DI=0.575 CO=.29.9 DI=0.567 CO=28.2 DI=0.473 EW=-5. 6 EX=5. 6 EX=-5. 6* Tavg=85 t Tavg=100* Tavg=325.FileNo.: VY-16Q-311 Revision:

A Page Al 9 of A38 F0306-OIRO NEC041437 JStructural Integrity Associates, Inc.PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR'PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR BRAD I TANG]NOZZ I AMVT (AMVT (AMVT <AMVT (AMVT C AMVT C AMVT C AMVT C AMVT C AMVT C AIMVT C AMVT C AMVT C CA=204 CA= 20 5 CA=206 ,CA=207 CA= 208 CA: 209 CA=210 CA= 211 CA=212 CA= 213 CA=214 CA=215 CA 216 CA= 217 CA=218 CA=219 CA 220 CA 22 1 CA=222 CA 223 CA= 224 CA=225 CA- 22 6 CA 227 CA 228 CA=229 CA=Z23 0 CA=231 CA2 232 CA-233 CA 234 CA=235 CA-2 36 CA 23 7 CA 238 CA= 239 CA= 240 CA=241 CA=242:A=7243?T=285?T- 290,?T 290 C0=28.2 CO=29.4 Co=28.2 C 0=28.0 I CO=28. 0 Co=28. 1 CCF28. 11 Co=28 .2 CO=29. 4 C0=29. 4 cc0=29.2 Co=28.2 COC28 .2 Co=28. 1 CO=29.3 Co0=28.0 C 0=26.7 CO=26. 1 CO=27.0 CO=28.0 C0=2 9. 1 CCF26. 8 CO=28.3 co=28.9 CCF26.16 C 0=28.3 C0=28.9 C0=26. 7 C0=28.4 CO=29. 4 CO=27.4 CO=28. 1 Co=29. 3 CcO=29. 9 CO=29. 9 CO=27 .7 CO=27.7 C 0=27.7 CO=29.2 C0=27.4 RA-1. 25 DI=0. 473 DI=0. 530 DI=0. 472 DI=0. 464.DI=0. 464 DI=0. 469 DI=O. 469 DI=0. 471 DI=&.531 DI=O. 53 1 D I=0.47 1 DI=0. 471 DI=0. 471 DI=0. 469 DI=0.52 7 DI=0. 463 D1=0. 416 DI=O. 398 DI=0.42 6 DI=0. 463 DI=0. 515 DI=0.42 1 Di=0. 478 DI=0. 504 DI=O. 413 DI=0. 478 DI=0. 504 D1=0. 416 DI=0. 48 1 DI=0. 533 DI=O. 43 9 DI=O. 469 D I=0.527 DI=0. 567 DI=0. 567 DI--0. 450 DI=0. 450 D l=O. 450 DI=0.523 DI=0. 440 ]EX=5.;6 *E r--5. 6 EX=-5.6 *EX=5. 6 *E xr-.6 *EX-5.6 *EX=5.6, EX=-5.6 *EX=5.6 *EX=5.6 *EX-5.6 *EX=5.6 *EX=-5.6 *EX=-5.6 *EX=5.6 *EX=-5. 6 EX=-5.6 *EX=-5.6 *Exr--5.6 6 E X--5. 6*EX-5.6 4 EB--5. 6 EX=-5.6 *EX=5.6*EX=5.6 *Ex=--5. 6 EX=5. 6 EX=5.6 *E r--5. 6*EXr-5.6 G EX=-5. 6 E X=-5.6 *EX=5. 6.EXr5. 6 EX=-5. 6.EX=5. 6 *EX=5. 6 EX=-5. 6 EX=5. 6 EX=5. 6 EX=5.6*Tavg=.3 25 Tavg=180 Tavg=326 Tavg 3S51 Tavg=351 Tavg=3 36 Tavg=336 Tavg=329 Tavg=178 Tavg= 178 Tavg=329 Tavg=329 Tavg=329 Tavg=334 Tavg=188 Tavg=353 Tavg=495 Tavg=549 Tavg=4 62 Tavg=353 Tavg=2 15 Tavg=479 Tavg=308.Tavg=245 Tavg=503 Tavg=3 08.Tavg=245 Tavg=495 Tavg=3 00 Tavg= 175 Tavg=425 Tavg=334 Tavg=188 Tavg=100 Tavg=100 Tavg=392 Tavgr3.92 Tavg=392 Tavg=195 Tavg=420 Z=-0.0283 Z=-0.0283 Z=-0.4514 Z=-0.4514 Z=-0.4514 Z=-0.4514 Z=-0.4514 Z=-0.4514 Z=-0 .4514 DZ=-0. 4514 DZ=-0. 28 74 DZ=-0. 2450 DZ=-0. 46 65 DX-4.007 'DZ=4.007' Ekr=1*NOZZLE N4A AF 1 A=2 A=3 A=4 A7-S A--5 A7-7 A78:A7-PT=-290 PT=290 pT=-290 PT=~290 PT=290 PT 290 PT=-290 PT- 290 PT=-290 DX=0. 0283 DX-0.0283 Dx=-0. 4514 DX0O. 4514 ,DX=-0.4514 DX- 0. 4514 DX=-0. 4514 DX=-0. 4514 DX=0. 4514 1 DX=0.4514 I DX=O.2874 I DX=0.2450 DX=0.4665 DY=-0. 1542 DY=0. 1542 DY=-2.46 18 DY=2. 4618 D=-2 .461i8 DY=-2.4618 DY=2..4618 DY-2. 4618 DY=2 .4618 DY=2 .4 618 DY= 1.5 675 DY= .33 62 DY=2 .5440 7A=10 PT=29C AA=11 PT=290 A=12' PT=290 A=13 PT=290 FileNo.: VY-16Q-311 Revision:

A Page A20 of A38 F0306-OIRO NEC041438 tIStructural Integrity Associates, Inc.ANVT CA714 ANYT CA715*ANVT CA=7-16 AMvVT CA-71 7 ADAVT CA71B ANVT'CA=-19 ANVT CA720 AMVT CA721 AIIVT CA:-2 2 ANVT CM723 ANVT CA724 ANVT CA-2 5 ANVT CA7=26 AMVT CA-27 ANVT CM-28B ANVT-CA729 ADAVT CA-31 PT=290 PT=290 PT=290 PT=290 PT=290 PT=290 PT=290 PT=2 90 PT=290 PT=290 PT=290 PT=290 PT=290 PT=290 PT=290 PT=2 90 PT=290 DX=0.4665 DX=0.4665 DX=0.4665 DX=0.4571 DX=0.46 65 DX=0.4071 DX=0. 4071 DX=0 .4514 DX=0.0283 DX=O.4995 DX=0.4420 DX=0. 4514 DX=0.4420 DX=0 .45 14 DX=O.4514 DX=0.4420 DX=-.09 DY=2 .5440 DY=2 .5440 DY=2 .5440 DY=2 .4926 DY=2 .5440 DY=2 .2202 DY=2 .2202 DY=2 .4618 DY=O.1542 DY=2 .7239 DY=2 .4104 DY=2 .4618 DY=2 .4104 DY=2 .4618 DY=2 .4 618 DY=2 .4104 DY=. 015 DZ=-0. 4665 DZ=-U. 4665 DZ=-0. 4665 DZ=-0. 4571 DZ=-0. 4665 DZ=-0. 4071 DZ=-0. 4071 DZ=-0.'-4514 DZ=-0. 0283 DZ=-0..4995 DZ=-0. 4420 DZ=-0. 4514 DZ=-0. 4420 DZ=-0. 4514 DZ=-0. 4514 DZ=-0. 4420 DZ=- .093-------------------------------------------------------

  • END REGION V-----------
  • BEGIN REGION I-V------------

OPE R OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPE R OPE R OPER OPER OPER OPE R OPER OPER OPER OPE R OPER OPER OPER TRAN TRAN-TRAN TRAM TRAN CA=I-CA 2 CA= 3 CA 4 CA=5 CA 6 CA 7 CA 8 CA 9 CA 10 CA 11 CA 12 CA= 13 CA 14 CA 15 CA 16 CA 17 CAF 18 CA 19 CA 20 CA 21 CA722 CA 23 CA 24 CA 2 5 CA= 26 CA 27 CA 30 CA 201 CA 202 CA=203 CA=204 CA7205 TE=100 TE=100 TE 150 TE=260 TE=392 TE=3 10 TE=280 TE=2 65 TE=90 TE=2 65 TE=150 TE=150 TE=392 TE=50 TE=150 TE=150 TE=150 TE=150 TE=50 TE=150 TE=2 75 TE=100 TE=392 TE=392 TE=392 TE=275 TE=2 65 TE 12.5 LIS=1 F 15=1 F I5=1 F IS=1 F IS=l F PR=I100 PR=50 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=O010 PR=1010 PR=170 PR=88 PR=1190 PR=1135 PR=1135 PR=1135.PR=1060 PR=1135 PR=675 PR=675 PR=885 PR=1563 PR=1375 PR=940 PR=1010 PR=1010 PR=1010 PR=I010 FT=100 TT=1800.FL=100 IP=-15 FP=1115 TP=1800 FT1--00 TT=--0 FL1=00 IP=1115 FP=65 TP=O FTis50 TT=16164 FL=100 IP=65 FP=1025 TP=16164 FFT1-00 TT=0 FL=688.5 IP=1025 FPý=1025 TP=O FT=260 TT=0 FL=688.5 IP=--1025 FP=1025 TP=O 5=1 5=1 51 5=1 ITO-70 IT= 100 IT=150 IT--i00 FileNo.: VY-16Q-311 Revision:

A Page A21 of A38 F0306-0IRO NEC041439 (I JStructural Integrity Associates, Inc."TRAN CA=206 IS=1 FS=1 ITr260 FT=-392 TT=1800 FL=4590 IP=1025 FP=1025 TP=1800 TRAN CA=207 IS=1 FS=1 IT=-392 FT7-310 TT2900 FL=3442.5 IP=1025 FP=1025 TP=900 TRAM CA=208 IS=1 FS=1 IT=-3.10 FT=-392 TT-900 FL=3442.5 IP=1025 FP=1025 TP=900 TRAN CA=209 I5=1 F3=1 IT=392 FT=280 TT=-1800 FL=2295 IP=1025 FP=1025 TP=1800 TRAN CA=210 151= FS=1 IT=-280 FT=392. TT=1800"FL=2295 IP=1025 FP=1025 TP=1800 TRAN CA7211 IS=1 F5=1 IT=392 FT=-265 TT=1800 FL=2295 IP=1025 FP=1025 TP=1800 TRAN CA=212 IS=1 Fs=i IT=265 FT=90 TT=360 FL=688.5 IP=1025 FP=1025 TP=360 TRAN CA=213 IS=1FS=1 IT=-90 FT=265 TT=900 FL=688.5 IP=1025rFP=1025 TP=900 TRAN CA=214 IS=1 FS=i IT=265 FT=392 TT=1800 FL=2295 IP=1025 FP=1025 TP=1800 TRAN.CA=215 IS=l FS=1 IT=-392 FT=-265 TT=-90 FL=4590 IP=-1025 FP=1025 TP=90 TRAN CA=216 IS=1 FS=1 IT=265 FT=392 TT=180 FL=4590 IP=1025 FP=1025 TP=190 TRAN CA=217 115= FS=1 IT=-392 FT=-275. TT=-60 FL=5049 IP=1025 FP=1025 TP=60 TRAMT CA=218 is=1 7s=1 IT=-275 F.T=-100 TT=-900 FL=137.7 iP=1025 FP=1025 TP=900 TRAN CA=219 *IS=1 FS=I IT=-265 FT=-265 TTO-0 FL=100 IP=1025 F-P=-1025 TP=0 TRAN CA=220 *Is=1 FS=1 IT=265 FT=265"TT=0 FL=00 IP=1025 FP=I025 TP=0 TRAN CA=221 I5=1 F3=1 IT=265 FT=-150 TT=-4140 FL=100 IP=1025 FP=1025 TP=-4140 TRAN CA=222 IS=1 "S=1 IT=150 F'T=150 TT=0 FL=100 IP=1025 FP=185. TP=0*TRAN. CA=223IS=1 F5=1 IT=-150 FT=-150 TT=0FL=100 IP=185 FP=103 TP=O TRAN CA=224 IS=1 F5=1 IT-=150 FT=100 TT=8280 FL=100 IP=103 FP=65 TP=8280 TRAN CA=225 I5=1 F5=1 17:392 FT=-392 TT=I2 FL=100 IP=1025 FP=-1205 TP=12 TRAN CA=226 IS=1 F5=1 IT=--392 FT=50 TT=0 FL=1836 iP=1205 FP=1150 TP=O TRAN CAS227 IS=l F5=1 T1-50 FT=150 TT=1380 FL=100 P1=1150 FP=1150 TP=1380 TRAN CA=228 *IS=1 FS=1 IT=150 FT=150' TT=O FL=I00 IP=1150 FP=1150 TP=0 TRAN CA=229 15=1 FS=1 IT=150 FT=50 TT=0 FL=1377 IP=1150 FP=1150 TP=O TRAN CA=230 I5=1 7FS=1 IT=-50 FT=150 TT=3060 FL=100 IP=900 FP=1075 TP=3060 TRAN cA=231 IS=1 FS=1 IT=1507FT=150 TT=-0 FL=100 iP=1075 FP=1150 TP=O TRAN CA232 IS=1 F=1 IT=-150 FT=50 TT=0 FL-780.3 IP=1150FP=690 TP=O TRAN CA=233 IS=1 F5=1, IT=50FT=150 TT=300 FL=100 IP=690 FP=690 TP=300 TRAN CA=234 IS=1 FS=1 IT=-150 FT1-I50 TT=-8964 FL=100 IP=255 FP=1025. TP=8964'TRAN CA=235 IS=1 FS=I IT=-392 FT-275 TT=-60 FL=5049 IP=-1025 FP=900TP=60 TRAN CA=236 IS=1 FS=1IT=-275.FT=-100 TT=-900.FL=137.7 IP=900.FP=65.TP=900 TRAN CA=237 I3=1 F3=1 IT=-100 FT=100 TT=0 FL=100 IP=65 7P=1578 TP=0 TRAN CA=238 15=1 FS=1 I100 FT=100.TT=0 FL=100 IP=1578 FP=65 TP=O ,TRAN CA=239 15=1 7FS= IT=-392 FT=-392 TT=-60 FL=5049 iP=10252FP=1390 TP=60 TRAN CA=240 IS=1. FS=1 IT=392 FT=392 TT=900 FL=137.7 IP=1390 FP=955 TP=900 TRAN CA=241 IS=1 F5=1 IT=-392 FT=-392 TT=-900 FL=137.7 IP=955 FP=1025 TP=900 TRAN CA=242 IS=1 7F=1 IT=100 FT=12'5 TT=60 FL=100 IP=1025 FP=1025 TP=60 TRAN CA=243 IS=1. FS=1 IT=125 FT=-150 TT=-210 FL=100 IP=1025 FP=1025 TP=210 PAIR CA=201 CO=30.0 DI=0.575 Er=5.6

  • Tavg=85 PAIR CA=202 Co=29.9 DI=0.567EX=-5.6
  • Tavg=100 PAIR CA=203 CO=2Y.8 DI=0.556 Er=5.6
  • Tavg=125 PAIR CA=204 CO29.8 DI=0.556EX=5.6
  • Tavg=125 PAIR CA=205 CO=29.4 DI=0.530 Ex=5.6
  • Tavg=l8O PAIR CA=206 CO=28.2 DI=0.472 EX=-5. 6
  • Tavg=326 PAIR CA=207 .CO=28.0'DI=0..464 EX=5.6 Tavg=351 PAIR. CA=208 C0=28.0.DI=0.464 EX=5. 6 Tavg=351 PAIR CA=209 CcF28.1 DI=0.469 EX=5.6
  • Tavg=336 PAIR CA=210 Co=28.1 DI=0.469Ex=-5.6
  • Tavg=336 PAIR CA=211 CO=2B.2 DI=0.471 EX=5. 6. Tavg=329 PAIR CA=212 Cc=,29.4 DI=0.531 EX=5.6 + Tavg=178 PAIR CA=213 CO=29.4 DI=0.531 EX=5.6
  • Tavg=178 PAIR CA7214 CO=28.2 DI=0.471 Er=5.6
  • Tavg=329 PAIR CA--215 Cc=28.2 DI=0.471 Er=5.6
  • Tavg=329 PAIR CA=216 co=28.2 DI=0.471 EX=5.6
  • Tavg=329 File No.: VY-16Q-311

,.Page A22 of A38 Revision:

A F0306-0IRO NE0041440 Structural Integrity Associates, Inc.PAIR CA=217 PAIR CA=218'PAIR CA=219 PAIR CA=220 PAIR CA=221 PAIR CA=222 PAIR CA=223 PAIR CAF224 PAIR CA=225 PAIR CA=226 PAIR CA=227 PAIR CA=22 8'PAIR CA=229 PAIR CA=230 PAIR CA=231.PAIR CA-232 PAIR CA=233 PAIR CA=234 PAIR CA=235 PAIR CA=236.PAIR CA=237 PAIR CA=238 PAIR CA=239 PAIR CA=240 PAIR CA=241 PAIR CA=242 PAIR CA=243 CO=28. 1 CO=29. 3 CO-28 .8 C0=28.8 CO=29. 2 CO=29 ..6 CO=29. 6 CO=29. 8 CO=27. 7 C0=29. 1 co=29. 9 CO=29. 6 C07F2 9. 9 C0=29. 9 CO=29. 6 CO:=29.9 CO=29. 9 CO=29. 6 CO=28. 1 C O= 29. 3 CO=29. 9 C0=29.9 C0=27. 7 C = 27.7 C 027.7 C0=29.8 C0=29.7 DI=0. 469 DI=0. 527 D' i=0. 49 6 DI=0. 496 DI=0. 518 DI=0. 544 DI=0. 544 DI=0:. 556 DI=0. 450 DI=0. 513 DI=0. 567 DI=0. 544 DI10. 567 D1=0. 567 DI=0. 544 DI=0. 567 DI=0. 567 DI=0. 544 DI=0. 469 DI=0. 527 DI=0. 567 DI=0. 567 DI=0. 450 DI=0. 450 D'I=0. 450 DI=0.561 DI=O. 550 EXr-5. 6 EX-5. 6 EX=-5. 6 EX-5. 6 EX=5. 6 EX=-5. 6 EX=5. 6 EX=5. 6 EX=-5. 6 EX=-5. 6 EX=5. 6 E Xr- 5. 6 EX5S. 6-Ex=5. 6 E X=5. 6 EX=5. 6 EX=-5. 6 EX--5. 6 EX=5. 6 EX=5. 6 Exr-5.. 6 EXr-5. 6 EX=-5. 6 EX=5. 6 EXr5. 6 E x-5. 6 EX=5. 6* Tavg=334* Tavg=l88* Tavg=265* Tavg=265* Tavg=208.* Tavg=150* Tavg= 150* Tavg=125* Tavg=392* Tavg=2 21* Tavg=100* Tavg=150* Tavg=100 Tavg=100*. Tavg=150+ Tavg=100* Tavg100* Tavg=f50* Tavg=334* Tavg=188* Tavg=l00* Tavg=100.Tavg=392*Tavg=392" Tavg=392" Tavg=1 13" Tavg=I38\*REGION IV GEOMETRY*RUN FROM FW TEE TO JUNC PT1-I15 CROS CD=5 DOWNSTREAM OF FW brnCH TEE/REDUCER ELBOW BEFORE NOZZLE N4A, NODE 155-10 INCH PIPING EW=-0 TA=0 BRAN TANG TANG TANG BRAD TANG TANG PT-- 12D0 PT5:12 5 PT-- 13 0 PT--135 PT -140 PT-- 14 2 PT-- 14 5 DX=-0.502 2 DX=-2 .594 DX=-2 .594 DX=-2 .594 RA=1. 25 El DY=4 DY=4 DY=O. 596 ,.Dr3..078 DY=3,.078 DY=3.078 4-=0 .DZ=-0.5022 TE=2 DZ= -2 ,594 DZ=-2 .594 DZ=-2 594 EW=0ýTANG PT-150 DY=2.53--------------


  • END REGION IV .-4---------------7---------------------------------

-*BEGIN REGION IV&-------------------------------------


OPER OPER OPER OPER OPER OPE R OPER OPER OPER OPE R OPER CA 1 CA 2 CA= 3 CA 4 CA 5 CA 6 CA 7 CA 8 CA 9 CAF 10 CA= 11 TE=100 TE=100 TE=2 50 TE=2 60 TE=3 92 TE=3 10 TE=2 80 TE=2 65 TE=90 TE=336 TE=206 PR=1100 PR=50 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=I0i0 PR=1010 PR=1010 PR=170 FileNo.: VY-16Q-311 Revision:

A Page A23 of A38 F0306-OIRO NEC041441 3 Structural Integrity Associates, Inc.OPE R OPER OPER OPER OPER OPER OPE R OPER OPE R OPER OPER OPER OPE R OPER OPE R OPER OPER CA 12 CA= 13 CA= 14 CA 15 CA= 16 CA= 17 CAF18 CA= 19 CA=20 CA- 21 CA 22 CA 2 3 CA 24 CA 25 CA= 2 6 CA=27 CA=30 TE=195 TE=435 TE=50 TE=223 TE=2 54 TE-223 TE=250 TE=50 TE=188 TE=2 75 TE=100 TE=392 TE=3 92 TE=392 TE=275 TE=3 09 TE= 166 PR=88 PR=1190 PR= 1135 PR= 1135 PR= 1135 PR=1060 PR=1135 PR=675 PR=675 PR=8 85 PR=1563 PR=1375 PR=940 PR=i010 PR=1010 PR= 1010 PR=1010 TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN ,.TRAN TRAN TRAN TRAN TRAN TRANýTHAN TRAN, TRAN TRAN TRAN TRAN TRAN TRAN TRAN CA=201 CA=202 CA=203*.CA=204 CA= 205 CA=206 CA= 207 CA=208 CA=209 CA=210 CA=211 CA=212 CA= 213 CA=214 CA=215 CA= 2 16 CA-7217 CA=218 CA=219 CA= 220 CA= 2"2 1 CA=222 CA 223 CA= 224 CA 22 5 CA 22 6 CA 227 CA 228 CA=229 CA=230 CA=23 1 CA= 232 CA 233 CA=234 CA= 235 CA=2 3 6 cAZ2 3 7 cA= 238 IS=i IS=1 15=1 IS=i IS=1 IS=1 IS=1 IS=1 IS=1 15=1 IS=1 IS=l'13=1 18=1 IS=1 IS=1 13=1 IS=1 I 5=1 15=1 18=1'IS= 1 IS= i 15=1 IS=I 15=1-IS=1 IS=1 IS=i 15=1 IS=1 IS=1 IS=i 15=1 I S= 1 15=1 15= 1 15= 1 F3 =1 Fs= 1 F 5=1 FS= I FS=1 FS= 1 FS=1 FS=1 F35=1 FS=1 FS= I FS=1 Fs= 1 F35=1 FS= I FS=1 FS=1 FS= I FS= I FS= i FS= I FS= 1 FS= 1 FS= 1 FS= 1 FS= i F 5. 1 FS= 1 F5=1 Fs= 1 Fs=ji F3=1 FS= 1 F5= 1 FS=1 FS= I F5=1 F5= 1 FS= 1 F5= 1" IT=70 FIT=100 TT=1800 FL=100 IP=-15 FP=1115 TP=1800 IT=-100 1T=100 TT2=0 FL=100 IP=1115 FP=65 TP=.O IT-100 FT-250 TT1=6164. FL=100 IP=65 FP=1025 TP=16164.IT=250 FT=-100 TT=0 FL=688.5 IPf-l025 FP=1025 T2=0 IT2=100 FT=260 TT=20 FL=688.5 IP-1025 FP=1025 TP=0 IT=-260 FT=392 TT=1800 FL=4590 IP=1025 FP=1025 TP=1800 IT=-392 FT=310 TT2=900 FL=3442.5 IP=102i5 FP=1025 TP=900 IT=310 FT-392 TT2900 FL=3442.5.,IP=1025 FP=1025-TP=900 IT=392 FT=280 TT=I800 FL=2295 IP=1025 FP=1025 TP=1800 IT=280 FTP=392 T2T=1800,FL=2295 IP=1025 FP=1025 TP=1800 IT=-392 FTr265 TT=1800FL=2295 IP=1025 FP=I025TP=1800 IT=265 IT=90 1 IT=-265 IT=392 iT-2265 IT2=392 IT-=275 IT-=265 IT=-309 IT2336 IT-=250 IT=-206 IT-- 19 5 IT=-392 IT--435 FT=-90. TT=360 FL=688.5 IP=1025 .FP=1025 TP=-360'T=265 TT=900 FL=688.5 IP=1025 FPF1025 TP2=900 FT=-392 FT-.265 FT=--392 FT='275 FT= 100 F T-.3 09 FT=-33 6 F T2=250 F T-206 FT=195 FT-- 100 FT2=435 TT=I800 FL=2295 IP=1025 FP=1025 TP.=1800 2TT190 FL=4590 IP=1025 FP=1025 TP=90 TT2180 FL=4590 IP=1025 FP=1025 TP=180 TT=60FL=5049 IP=-1025 FP=1025 TP=60 TT2=900 FL=137.7 IP=1025 FP=1025 TP=900 2TT1=0 FL=100 IP=1025 FP=1025 TP=O TT2-3924 FL=100 IP=1025 FP=1025 TP=-3924 TT=4140 FL=100 IP=1025 FP=1025 TP1=4140 TT-6264 FL=100 IP=1025 FP=I85 TP=6264.TT2=600 FL=100 .IP=185 FP=103 TP=600 TTh8280 FL=100 IP=103 -FP=65 TP=8280 TTh12 FL=100 IP=1025 FP=-1205 TP=12 FT=-50 TT=O FL=1836 IP=1205. FP=1150 TP=O IT=-50 FT=223 TT=I1380 FL=100 IP=-1150 FP=1150 TP=1380 IT2=223 FT--254 TT2=0 FL=100 IP=1150 FP=1150 Tp=0 IT2=254 FT2=50 TT=0 FL=1377 IP=1150 FP=1150 TP=0 IT2=50 FT=223- TT=3060 FL=I00 IP=900 FP=1075 TP=3060 IT=-223 IT--250 IT=-50 IT- 188 IT-- 3 92 IT=-275 IT2=i0C IT-- ion FT=250 2TT10 FL=100 IP=1075 FP=1150 TP=0 FT2=50 TT=0 FL=780.3 IP=1150 FP=-690 TP=O FT=188 TT=300 FL=100 IP=690 FP=690 TP=300 I FT 1=250 TT=28964 FL=100 IP=255 FP=1025 TP=8964 FT=-275 TTh60 FL=5049 IP=-1025 FP=900 TP=60 FT2S100 TT2=900 FL=137.7 .I=900 FP=65 TP=900 SFT2=100 TT=O.PFL=100 IP-65 FP=1578 TP=0] FTl00 TT1=0 FL=00 IP=1578 FP=65 TP=O FileNo.: VY-16Q-311 Revision:

A Page A24 of A38 F0306-01RO NEC041'442 V Structural Integrity Associates, Inc.TRAN CA=239 IS=1 FS=1 ITu392 FT=-392 TT=60 FL=5049 IP1--025 FP=1390 TP=60 TRAN CA=240 IS=1 FS=1 IT=-392 FT=392 TT=-900 FL=137.7 iP=1390 FP=955 TP=900 TRAN CA=241 IS=1 FS=1 IT=-392 FT=392 TT-900 FL=137.7 IP=955 FP=1025 TP=-900 TRAN CA=242 I5=1 FS=1 IT=-100 FT1-I66 TT2=60 FL=100 IP=1025 FP=1025 TP=60 TRAN CA=243 rS=1 FS=1 IT=-166 FTP250 TT=-210 IP=1025 FP=1025 TP=210 PAIR CA-201 Cc=30.0 DI=0.575 EX-5.,6

  • Tavg-85 PAIR CA=202 C0=29.9 DI=0.567 EX=5.6
  • Tavg=100 PAIR CA=203 CO=29.4 DI=0.533 EX=-5.6
  • Tavg=175 PAIR CA=204*COF29.4 DI=0.533 EX=5.6
  • Tavg=175 PAIR CA=1205 CO=29.4 DI=0.530 EX=5. 6
  • Tavg=180 PAIR CA7-206 CO=28.2 DI=0.472 EX=5.6
  • Tavg=326 PAIR CA=207 CO=28.0 DI=0.464 EX=5.6.* Tavg=351 PAIR CA=208 CO=28.0 DI=0.464 EX=-5.6
  • Tavg=351 PAIR CA=209 CO=28.i DI=0.469 EXr-5. 6.* Tavg=336 PAIR CA=210 Co026.1 DI=0.469 EX=5.6
  • Tavg=336 PAIR CA=211 CO28.2 DI=0.471 EXS5.6
  • Tavg=329 PAIR CA=212 C0=29.4 DI=0.531 EX=5.6
  • Tavg=178 PAIR CA=213 CO=29.4'DI=0.531 EX=5.6
  • Tavg-178 PAIR CA=214 C0=28.2 DI=0.471 EXr5.6
  • Tavg=329 ,PAIR CA=215 CO=28.2 DI=0.471' EX=5.6
  • Tavg=329 PAIR CA=216 C0=28.2 DI=0.471 EXr-5.6
  • Tavg=329*PAIR CA=217 C0=28.1 DI=0.469 EXr5.6
  • Tavg=334 PAIR CA=218 C0=29.3 DI=0.527 EX=-5.6
  • Tavgfl88 PAIR CA=219 C0-28.5 DI=0.486 EXr5.6
  • Tavg=287 PAIR CA=220 CO=28.2 DI=0.473 EX-5.6
  • Tavg=323 PAIR CA=221 CO=28.5 DI=0.484 EXr-5.6
  • Tavg=293 PAIR CA=222 CO=29.0 DI=0.510 EX=5.6
  • Tavg=228 -PAIR CA=223 CO=29.2 DI=0.521 EXr-5. 6* Tavg=201 PAIR CA7224 C0=29.6 DI=0.545 EX=5.6
  • Tavg=148 PAIR CA=225 CO=27.5 DI=0.442 EX=-5.6
  • Tavg=414 PAIR CA=226 C0=28.9 DI=0.505 EX=-5.6
  • Tavg=243.PAIR CA=227 CO=29.7 DI=0.550 EX-5.6 *.Tavg=137 PAIR CA=228 CO=29.0 DI=0.506 EX= -56
  • Tavg=239 PAIR CA=229 cO=29.6 DI=0.543 EX=5.6
  • Tavg=152 PAIR CA=230 CO=29.7 DI=0.550 EX=5.6
  • Tavg=137 PAIR CA7231 CO=29.:0 DI=0.507 EX5.6
  • Tavg=237 PAIR CA=232 CO=29.:6 DI=0.544 EX=-5.6
  • Tavg=150 PAIR CA=233 CO=29.8 -DI=0.558 EX=5.6
  • Tavg=119'PAIR CA=234 CO=29.1 DI=0.514 EX=5.6
  • Tavg=219 PAIR CA=235 Co=28.1 DI=0.469 EXr5.6
  • Tavg=334 PAIR CA=236 C0=29.3 DI=0.527 EXr5. 6.* Tavg=188 PAIR CA=237 CO=29.9 DI=0.567 EX-5.6 t Tavg100 PAIR CA=238 CO=29.9 DI=0.567 EX=-5.6.4 Thvg=100 PAIR CA=239 CO=27.7 D1=0.450 EX=5.6 4 Tavg=392 PAIR CA=240 C0F27..7 DI=0.450 EX=-5.6
  • Tavg=392 PAIR CA=2410CO=27.7 DI=0.450 EXr-5.6 t Tavg=392 PAIR CA=242 C0=29.7 DI=0.552 EX=-5.6
  • Tavg=133 PAIR CA=243 C0=29.2 DI=0.518 EXr5.6
  • Tavg=208 TANG PT=152 DY=6.53 EW10*END REGION IVa------------------------------

  • BEGIN REGION IVb--------------

4--------------------------------------------

File No.: VY-16Q-311 Page A25 ofA38 Revision:

A F0306-OIRO NEC041443 tJ Structural Integrity Associates, Inc.OPER CA71 OPER CA=2 OPER CA=3 OPER CA=4 OPER CA=5 OPER CA=6 OPER CA7" OPER CA=8 OPER CA=9 OPER CA=10 OPER CA=11 OPER CA=12.OPER CA=13 OPER CA=14 OPER CA=15 OPER CA=16 OPER CA=17 OPER CA=18 OPER CA=19 OPER CA=20 OPER CA-2 1.OPER CA=22 OPER CA=23 OPER CA=24 OPER CA=25 OPER CA=26 OPER CA=27 6;PER CA=30" TE=100 TE=100 TE=449 TE=2 60 TE=392 TE=3 10 TE=280 TE=2 65.TE=90 TE=478 TE=3 19 TE=285 TE=522 TE=50 TE=3 68 TE=4 61 TE=3 68 TE=449 TE=50 TE=2 63 TE=2 75 TE=100 TE=3 92 TE=3 92 TE=3 92 TE=2 75 TE=396 TE=2 49.PR=1100 PR=50 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=170 PR=88 PR= 1190 PR=1135 PR=1135 PR=1135 PR=iO6O PR=1135 PR=675 PR=675 PR=885 PR=1563 PR=1375, PR=940 PR=1010 PR=1010 PR=1010 PR=1010 TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN.TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN CA=201 IS=1 CA=202 15=1 CA=203 IS=1 CA=20 4 1=1 CA=205 15=1 CA=206 IS=1 CA=207 IS=l CA=208 15=1 CA=209 IS=l CA=210 IS=1k CA=211 IS=1 CA=212 IS=l CA=213 IS=l5 CA=214 IS=l CA=215 IS=l CA=216 iS=1 CA= 2 1,7 IS=1 CA=218 IS=l CA=219 IS=l CA=220 19=1 CA=221 15=1 CA=222 1s=1i CA=223 IS=1 CA=224 IS=1 CA=225 IS=l CA=226 IS=l CA=22 7 IS=l CA=228 ,15=1 FS=1 FS= 1 FS= 1*FS= 1 FS= 1 FS= 1 FS= 1 FS= 1 FS= I FS=I FS= 1-FS= 1 FS= i FS= 1 F 5=1I FS=1 FS=1 FS= 1 FS=l FS=1 F S=1 FS= 1 FS= 1 FS= 1 IT=-70 FT=00 TT=I800 FL,-100 IP=15 FP=1115 TP=1800, IT= 100 FT=-10 IT= i00 FT=-4q IT-449 FT=i1f IT= 100 FT-26'IT=-260 FT=39;IT=392 FT= 31 IT=-310 FT=-39: IT--392 FT-281 IT=280 FT=-39:.IT-392 FT226.IT=265 FT=-90 IT-g90 FT=265 IT=-265 FT=39: IT=-392 FT=-262 IT=265 FT=-39: IT-392 F T-277 2 IT=275 FT-i0(IT-265 FT=-39 IT-396 FT=-471 IT=478 FT--44 IT=-449 F T-3.1 IT=319 FT=-28 IT1285 FT=-10(IT-392 FT=152 IT= 522 FT=-50 2 2 2 2 2 6 2 2 I TT=O FL=100 IP=IIh5 FP=65 TPO.TT=-16164 FL=O00 IP=65 .FP-1025 TP=16164 I TTO FL=688.5 IP=1025 FP=1025 TP=0 3 TTO-0 FL=688.5 IP=1025 FP=1025 TP=0* TT=1800 FL=4590 IP=1025 FP=1025ýTP=1800 TT¶=900 FL=3442.5 IP=1025 FP=1025 TP-900* TT=900 FL=3442.5 IP=1025 FP=025 TP=900 TT=1800 FL=2295 IP=1025 FP=1025 TP=1800* TT=-f800 FL=2295 IP=1025 FP=1025 TP=1800 TT=-1800 FL=2295 IP=1025 FP=1025 TP=1800 TT=360 FL=688.5 IP=1025 FP=1025 TP=-360 TT=900 FL=688.5 IP=1025 FP=1025 TP=900* TT'1'900 FL-2295 IP=1025 FP=1025 TP=Io8.TT=-90 FL=4590 IP=-1025 FP=1025 TP=90 TT=180 FL=4590 IP=1025 FP=1025 TP=-'80 TT-60 FL=5049'IP=1025 FP=1025 TP=60 I TT=900 FL=137.7 IP=1025 FP=1025 TP=900 p TT=0 FL=00 IP=1025 FP=1025 TP=O TT=-3924 FL=100 IP=1025 FP=1025 TP=3924 TT=4140 FL=100 IP=1025 FP=1025 TP--4140 I TTh6264 FL=100 IP=025 FP=185 TP=6264 TT-600 FL=100 IP=-185 FPfIO3 TP=6OO I TT8280 FL=100 IP=103 FP=65 TP=8280 TT1-I2 FL=100 IP=1025 FP=1205 TP=12 TT=O FL=1836 IP=1205 FP=1150 TP=O IT=-50.FT=36

'TT=1380 FL=I00 IP=1150 .FP=1150 TP=1380 F.1S= IT=1368 FT=-461 TT=O FL=100 IP=1150 FP=1150 TP=O FileNo.: VY-16Q-311 Revision:

A Page A26 of A38 F0306-01RO NEC041444 IJStructural Integrity Associates, Inc.TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAI R PAIR PAIR PAIR PAIR PAIR'PAIR PAIR, PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR (PAIR (CA=229 CA 230 CA=23 1 CA=232 CA= 233 CA 234 CA 235 CA= 23 6 CA= 237 CA=238 CA=239 CA=240 CA 241 CA=242 CA= 243 CA= 201 CA 202 CA= 203 CA=204 CA=205 CA= 206 CA= 207 CA-208 CA= 209 CA=210 CA= 211 CA=212 CA=213 CA-214 CA2 15 CA= 216 CA=217 CA 218 CA 219 CA=220 CA=22 1 1 CA= 222 A= 22 3 ZA= 224<7A= 22 6<:A=227<7A=22 8 CA=22 9 CA=230 C:A=23 1 C:A=232:A=233 CA= 23 4 CA=235:A=23 6:A=237:A=238:A7-239 A= 240 A=7241 I 5= 1 IS=1 IS=1 IS=1 IS=1 Is= 1 IS=1 IS=1 15= 1 15= 1 I5=1 15= 1 F3=1 FS=1 FS=1 FS=1 FS=1 FS=1 FS=1 F 5=1 FS=1 FS=1 FS= 1 Fs=1 FS=1 FS=1 IT=461 FTO-50 TT=0 FL=1377 IP=II50 FP=1150 TP=O IT-50 FT=368 TT=3060 FL=100 IP=-900 FP7=075 TP=3060 IT=36O FT-449 TT=0 FL=100 IP=1075 FP=1150 TP=O IT=449 FTS50 TT=0 FL=780.3 IP=1150 FP=-690 TP=0 IT=50 FT=263 TT=300 FL=100 IP=690 FP=690 TP=300 IT-263 .FT-449 IT=392 FT='275 IT=275 FT=-100 IT= 100 FT=1- 00 IT= 100 FT=-100 IT=392 FT=392 IT=392 FT--392 IT=392 FPT=392 IT= 100 FT=-249 IT=249 FT=449 cO=30. 0 C 0=29.9 C0=28.7 Co0=28.7 Co=29. 4 C0=268.2 C0=28.0 C0o=28.0 Co0=28. 1 C0=28. 1 C = 28. 2 C O=29.4 ccy=29. 4 CO=28 .2 C0=28 .2 CO=28.2 co=28.1 C0=29 .3 CO=28.2 C0=27.2 Co=27, 0 C<0=27.7 C0=28.4 C0=29.3 c0=27.0 C0=28.5 Co=29. 1 C0=27 .5 C 0=28.8 C0=29. 1 C0=27.5 CO=28 9 c0=29. 5 0o=28.0 C0=28. 1 O=29. 3 co=29 ..9:o=29. 9 c&-=27.7:0=27. 7:0=27.7 D1=0. 575 DI=0. 567 DI=0. 492 D D=0. 492 D I=0. 53 0 DI=0. 472 DI=0. 464 DI=0. 464 DI=0. 469 DI=0. 469 D I=0. 47 1 DI=O. 53 1 DI=0. 53 1 DI=0. 471 D I=0. 47 1 DI=0. 471 DI=0. 46-9 DI=O. 527 DI=0. 470 DI=0.434 DI=0. 42 6 DI=0. 452 DI=0. 480 D I=O; 524 DI=0. 428 DI=0.48.7 DI=0. 518 0DI=O. 442 Di=0. 499 DI=0. 518 DI=0. 444 DI=0. 502 DI=0. 541 DI=0. 462 DI=0. 469 DI=0. 527 DI=0. 567 DI=0.567 DI=0. 450 DI=0. 450 D1=0. 450 EX=5. 6 EX=5. 6 EX=-5.6S EX=5. 6 Er=5. 6 Ex=5.6 EX=5. 6 EX-5=5. 6 55=5.6 Er=5. 6 EX=-5. 6 Er=5. 6 E r--5. 6 Ex=5. 6*55=5.6 E X=5. 6 EX=5. 6 Er=-5.6 E)=-5. 6 E. =K-5. 6 EX=5.6 E5=-5.6 E -=-5.6 Er=-5. 6 EX=5. 6 EX=5. 6 EX=-5.6 EX=-5. 6 EX=-5. 6 EX=5. 6.E)=5.6 E -=-5.6 Er=-5. 6 E X=,5. 6 55=5. 6 55=-5.6 55=-5.6 55=5. 6 5x=5. 6 55=5. 6 55X=5. 6 55=-5. 6 TT=-8964 FL=100 IP=255 FP=1025 TP=8964 TT=60 FL=5049 IP=1025 FP=900 TP=60 TT=900 FL=137.7 IP=900 FP=65 TP=900 TT=0 FL=100 IP=65 FP=1578 TP=0 TTO-0 FL=100 IP=1578 FP=65 TP=0 TT=60 FL=5049 IP=I025 FP=1390 TP.=60 TT=900 FL=137.7.IP=1390 FP=955 TP=900 TT=-900 FL=137.7 IP=955 FP=1025 TP=900 TT=60 FL=O00 iP=1025 FP=-1025 TP=60 TT=-210 FL=100 IP=1025 FP=1025 TP=210* Tavg=85* Tavg= 100* Tavg=275* Tavg=275" Tavg=180* Tavg=326* Tavg=351* Tavg=3 51* Tavg=336* Tavg=336 G* Tavg=329* Tavg=178.* Tavg=178* Tavg=329* Tavg=329* Tavg=329* Tavg=334* Tavg=188* Tavg=331" Tavg=437" Tavg=464* Tavg=384* Tavg=302* 'Tavg=193* Tavg=457* Tavg=286* Tavg=209* Tavg=415* Tavg=256 Tavg=209 Tavg=409* Tavg=250* Tavg=157* Tavg=356* Tavg=334 Tavg=188-Tavg=lO0* Tavg=100* Tavg=392 Tavg=392* Tavg=392 FileNO.: VY-16Q-311 Revision:

A Page A27 of A38 F0306-01RO NE0041445 J Structural Integrity Associates, Inc.PAIR CA=242 C0=29.4 DI=0.533 EX=5.6

  • Tavg=175 PAIR CA=243 CO=28.0 DI=0.464 EX=-5.6
  • Tavg=349 CROS CD=5 TANG PT1-!55'"DY=6.523 EW=0,-----------
  • END REGION IVb S-----------------------

"*BEGIN'REGION V GEOMETRY TO NOZZLE N4B, NODE 165-------------------------------------

OPER CA=1 OPER CA=2 OPER CA=3 OPER CA=4 OPER CA=5 OPER.CA= 6 OPER CA=7 OPER CA=8 OPER CA59 OPER CA1O0 OPER CA=11 OPER CAf12 OPER CA=13 OPER CA=14 OPER CA-15 OPER CA716 OPER CA=17 OPER CA=18 OPER CA=I9 OPER CA=20 OPER CA=21 OPER CA=22 OPER CA=23 OPER CA=24 OPER CA=25 OPER CA=26 OPER CA=27 OPER CA=30 TE=100 PR=1100 TE=100 PR=50 TE=549 PR=1010 TE=260 PR=010 TE=392 PR=I010 TE=310 PR=0101 TE=280 PR=1010 TE=265 PR=1010 TE=90 PR=1010 TE=549 PR=1010 TE=375 PR=170 STE=330 PR=88 TE=565 PR=1190 TE=50 PR=1135 TE=440 PR=1135 TE=565 PR=1135 TE=440 PR=1060 TE=549 PR=1135.TE=50 PR=675.TE=300 PR=675 TE=275' PR=885 TE=100 PR=1563 TE=392 PR=1375 TE=392 PR=940 TE=392 PR=1010 TE=275 PR=1010 TE=440 PR=1010 TE=290 PR=I010 TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN CA=201 CA=202 CA=203 CA= 204 CA=205 CA= 206 CA=207 CA= 208 CA=209 CA= 210 CA=2 11 CA= 212 CA=213 CA=214 CA= 215.CA=216 CA=217 IS=1 FS=1 IS=1 FS=1 I Sý-l FS=1 IS=1 FS=1 IS=1 FS=1 IS=1 FS=1 IS=1 FS=1 IS=l FS=1 IS=l FS=I 1S=1 FS=1 ISI FS=1 IS=1 FS=1"IS=1 FS=1 IS=1 FS=1 IS=1 FS=1 IS=I. FS=1 IS=I FS=1 IT-70 ITh 100 IT=100 IT=549 IT= 100 IT= 260 IT=392 IT=310 IT=-3 92.IT=280 1T=392 IT=-265 FT=100 TT=1800 FL=100 'IP=15 FP=1115 TP=1800 F T= 100 FT=-549 F T=100 FT=-260 FT=-392 F T=310 F T=392 F T=280 F T=392 F T=265 TT=0 FL=100 IP=1115 FP=65 TP=0 TT=-16164 FL1=00 IP=65 FP=1025 TP=16164 TT=-0 FL=688.5 IP=1025 FP=1025 TP=O TT=0 FL=688.5 IP=1025 FP=1025 TP=0 TT=-1800 FL=4590: IP=1025 FP=1025 TP=1800 TT=900 FL=3442.5 IP=1025 PP=1025 TP=900 TT=900 FL=3442.5 IP=1025 FP=1025 TP=900 TT=1800 FL=2295 IP=1025 FP=1025 TP=1800 TT=-1800 FL=2295 IP=1025 FP=1025 TP=1800 TT=-1800 FL=2295 iP=O025 FP=1025 TP=1800 FT=-90 TT=360 FL=688.5 IP=1025 FP=1025 TP=360 IT=-90 FT=265 TT=900. FL=688.5 IP=1025 FP=1025 TP=900 IT=-265 FT=392 TT=1800 FL=2295 IP=1025 FP=1025 TP=1800 IT=392 FT=265 TT=-90 FL=4590 IP=1025 FP=1025 TP=90 IT=265 FT=392 T2=180 FL=4590 IP=1025 FP=1025 TP=180 IT=-392 FT=275 TT=-60 FL=5049 IP=-1025 FP=1025 TP=60 File No.": .VY-16Q-311 Revision: -A Page A28 of A38 F0306-0IRO NEG041446 t Structural Integrity Associates, Inc.TRAI TRA TRA TEA!TEA!TRA TRA TRA!TREA TREA TRAN TRAN TRAN TREN TREN TRAN TRAN TREN TRAN TEA!TREN TREN TREN TRAN PAI R PAIR PAIR PAI R PAI R PAI R PAI R PAI R PAIR, PAI R PAI R PAIR PAI R PAI R PAI R PAI R PAIR PAI R PAIR PAI R PAI R PAI R PAI R PAI R PAI R PAI R PAI R PAIR PAIR N CA=218 IS=1 FS=l.IT=275 N "CA=219 IS=1 FS=1 IT2265 Z CA=220 IS=1 FS=1 IT-440 J CA=221 IS=1 FS=1 IT=-549 4 CA=222 IS=1 FS=1 IT-549 i CA=223 IS=1 Fs=1. IT=375 I.CA=224 IS=1 FS=1 IT330 CA=225. IS=1 FS=1 IT-392 I CA=226 IS=1 FS=f IT=-565 CA=227 IS=1 FS=1 IT=-50 I CA=228 1S=1 FS=1 IT=440 CA=229 IS=1 FS=1 IT=565 CA=230 IS=1 FS=1 IT=-50 F CA2.31 IS=1 FS=1 IT=-440 VCA=232 IS=1 FS=1 IT=549'CA=233 IS=1 FS=1 IT-50 F CA=234 IS=1 FS=1 IT=300 CA=235 IS=.1 FS=1 IT=-392 CA=236 IS=1 FS=1 IT=275 CA=237 15=1 FS=1 IT=100 CA=238- IS=1 FS=1 IT=100 CA=239 IS=1 FS=1 IT2=392 CA=240.IS=1 FS=1 IT=392 CA=241 IS=1 FS=1 IT=392 CA=242IS=1 FS=1 IT=-100 CA=243 IS=l FS=1 1T=290 CA=201 CO=30.0 DI=0.575 CA=202 Co=29.9 DI=0.567 CA=203 C0=28.2 DI=0.473 CA=204 CO=28.2 DI=0.473 CA=205 CO=29.4 DI=0.530 CA=206 C0=28.2 Di=0.472 CA=207 C0=28.0 DI=0.464 CA=208 C0=28.0 DI=0.464 CA=209 Co=.26.1 DI=0.469 CA=21b Co=28.1 DI=0.469 CA=211 CO=28.2 DI=0.471 CA=212,CO=29.4 DI=0.531 CA=213 C0=29.4 DI=0.531 CA=214 Cc-28.2 DI=0.471 CA=215 Cc=28.2 DI=0.471 CA=216 cc=28.2 DI=0.471 CA=217 CO=28.1 DI=0.469 CA=218 Co=29.3 D1=0.527 CA=219 CO=28.0 DI=0.463 CA=220.CO=26.7 DI=0.416 CA=221 CO=26.1 DI=0.3'90*CA=222 CO=27.0 DI=0.426 1 CA=223 Co=28.0 DI=0.'463 I CA=224 Co=29.1 DI=0.515 I CA=225 C0=26.8 DI=0.421 I CA=226 Co=28.3 DI=0.478 I CA=227 CO=28.9 DI=0.504 i CA=228 co=26.6 DI=0.413 i CA=229 CO=28.3 DI=0.478 E CA=230 Co=28.9 Di=0.504 i FPT=10 FT=-44 FT-54 FT=-54 F T=-37 FT=-330 F 27= 10 FT=-56 F T=-50 T=440 FT=E565 FT2=50 T-T440 0 TT=-900 FL=137.7 IP=1025 FP=1025 TP=900 0 TT2=0 FL=00 IP=1025 FP=1025 TP=0 9 TT-3924 FL=100 iP=1025 .FP=1025 TP=-3924 g TT2=0 FL=100 IP=1025 FP=1025 TP=0 5 TT=-6264 FL=100 IP=1025 FP=185 TP=6264 I TT=600 FL=100 IP=-185 FP1-I03 TP=600 07TT8280 FL=100 IP=103 FP=65 TP=8280 5 TT-712 FL=100 IP=1025 FP=1205 TP=M2 TT=0 FL=1836 IP=1205 FP=1150 TP=0 TT=1380 FL=100 IP=-1150 FP=1150 TP=1380 5TT=0 FL=100 IP=1150 FP=1150 TP=0 TT=0 FL=1377 IP=1150 FP=1150 TP=0 TT=3060 FL=100 IP=-900 FP=1075 TP=3060 FT=-549 TT2=0 FL=100 IP=1075 FP=1150 TP=0 FT=-50 TT=0 FL=780.3 IP=1150 FP=690 TP=0'T=300 TT=300 FL=100 IP=690 FP=690 TP=300 FTz1=549 F T- 275 FT-=100 FT=- 100 FT- 1-00 F T-- 3 92 FT=-392 FT=-392 FT=3290 FT=-549 EX=5. 6 EX=-5. 6 EX=-5. 6 EX=-5. 6 EX=5. 6 EX=-5. 6 E X=.--5. 6 EX=5. 6 EX5. 6 EX=-5. 6 EX=-5. 6 EX=-5. 6 EX=5. 6 Ex=-5. 6 EX=5. 6 EX-5. 6 Ex=-5. 6 Ex=5. 6 EX=5..6 EX=5. 6 3Xr-5. 6 r-=5. 6)X=-5. 6 EX=5. 6 rX-5. 6 rX=5. 6 rX=5. 6-x=-5. 6 rx=5. 6 x=5. 6 TT28964' FL=100 IP=255 FP=1025 TP=8964 TT22=60 FL =5049 IP=-1025 FP=900 TP=60 TT2=900 FL=137.7 iP=900 FP=65 TP=900 TTh0 FL=100 IP=65 FP=1578 TP=0 TT=0 FL=100 IP=1578 FP=65 TP=O TT=-60 FL=5049 IP=1025 FP=1390 TP--60FL=137.7 IP=1390 FP=955 TP=900 TT=-900 FL=137.7 IP=955 FP=1025 TP=-900 TT=-60 FL=100 IP=1025 FP=1025 TP=60*TT2=210 FL=100 IP=1025 FP=1025 TP=210 Tavg=85* Tavg=100* Tavg=325* Tavg=325* Tavg=18O" 2Tavg=326" Tavg=351" Tavg=351* Tavg=336-*.Tavg=336 t .Tavg=329" Tavg=178" Tavg=178 2Tavg=329 T Tavg=329" Tavg=329" Tavg=334" Tavg=188" Tavg=353" Tavg=49g5*. Tavg=549* Tavg=462" Tavg=353*. Tavg=2l5* Tavg=479* Tavg=308 2.Tavg=245

  • Tavg=503* Tavg=308* Tavg=245 File No.: VY-16Q-311 Revision:

A Page A29 of A38 F0306-OIRO NEC041447 t Structural Integrity Associates, Inc, PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAI R PAIR PAIR PAI R.PAIR PAIR BR AD TANG NOZZ.AMVT-AMVT AMVT AMVT AMVT AMVT ANVT AMVT AMVT CA=231 CA23 2 CA=233 CA= 234 CA 235 CA 23 6 CA 23 7 CA 238 CA-2 3 9 CA=240 CA= 241 CA=242 CA=243 PTa 160 PT=165 PT7=165 C0=26. 7 CO=F28.4 Co=29.4 CO=27. 4 co=28. 1 C0=29.3 COC=29,.9 Co=29. 9 CO=27.7 C0C=27.7 CCOF=27.7 CO=29.2 CO-27. 4 D0I=0. 416 DI=0. 48 1 D I=0.533 DI=0. 439 DI=0. 469 DI=0.527 DI=0. 567 DI=0.567 DI=O. 450 DI=0.450 DI=0.450 D =0. 523 DI=O.440 EX=5. 6 EX=-5. 6 Er=5. 6 E2=5. 6 EX=5. 6 EX=-5. 6 Er=5. 6 EX=-5. 6 Er=-5. 6 EX=5. 6 EX=-5. 6 EX=-5. 6 EX=-5. 6**4***+***4*4 Tavg=495 Tavg=300 Tavg=175 Tavg=425 Tavg=334 Tavg=188 Tavg=100 Tavg= 100 Tavg=392 Tavg=3 92 Tavg=392 Tavg= 195 Tavg=420 C-RA=1. 25 .EW=0 DX=-4.007 DZ=-4.007 E21=l*NOZZLE N4B CA 1 CA 2 CA 3 CA 4 CA=-5 CA= 6 CA 7 CA=-8 CA=-9 PT 165 PT=--65 PTm165 PT= 165 PT- 165 PT= 165 PT= 165 PT=- 165 DXO0. 0283 Dm=0. 0283 Dm0. 4514 DXm0. 4514 Dm=0. 4514 Dm=0. 4514 Dm-0. 4514 Dm=0. 4514 DXm0. 4514 DY=0. 1542 DZ=0.0283 DY=0. 1542 DZ=0.0283 D7=2.4618 DZ=0.4514 D7=2.4618.

DZ=O.4514 DY=-2.4618 DZ=0.4514 DY=2.4618 Dz=0.4514 DY=-2.4618 DZ=0.4514 DY=-2.4618 DZ=0.4514 DY=-2.4618 DZ=0;4514 AMVT AMVT AMVT AMVT AMVT AMVT AMVT AMVT AMVT AMVT AMVT AMVT A!VT AMVT AMVT AMVT AMVT AMVT AMVT AMVT CAO 10 CAF 11 CA= 12 CA= 13 CA7 14 CA= 15 CA= 16 CA 17 CA= 18 CA= 19 CA 20 CA 21 CA 22 CA 23 CA=24 CA= 25 CA2.6 CA 27 CA= 28 CA 29 CA 31 PT=165 PT=I 65 PT=165 PT= 165 PT= 165 PT=165 PT=165 PT=1 65 PT= 165 PT=165 PT=165 PT=165 PT= 165 PT=165 PT=165 PT=165 PT= 165 PT= 165 PT= 165 PT=165 PT= 165 DX=0.4514 DX=0.2874 DX=0.2450 DX=0.46 65 DX=0 .46.65 DX=O.46 65 DX=O.46 65 DX=0.4571 DX=O.46 65 DX=0.4071 DX=0 .4071 DX=0.4514.

DX=0.0283 DX=0.4995 DX=0.4420 DX=0.4514 DX=0.:4420 DX=O.4514 DX=0.4514 DX=0.4420 DX= .09 DY=2 .4618 DY=1.5675 DY=1 .3362 DY=2 .5440 DY=2 .5440 DY=2.5440 DY=2 .5440 DY=2 .492 6 DY=2 .5440 DY=2 .2202 DY=2 .2202 DY=2 .4618 DY=0.1542 DY=2 .7239 DY=2 .4 104 DY=2 .4618 DY=2 .4104 DY=2 .4618 DY=2.4618 DY=2 .4104 DY=. 015 DZ=0.. 4514 DZ=0.2874 DZ=0.2 450 DZ=O.4 665 DZ=O.4 665 DZ=0.4 665 DZ=0 .4665 DZ=O.4571 DZ=0.4 665 DZ=0.4071 DZ=0.4071 DZ=O .4514 DZ=0.0283 DZ=0.4995 DZ=0.4420 DZ=0.4514 DZ=0.4420 DZ=0.4514 DZ=0.4514 DZ=O.442 0 DZ=-.093+----------------------r-------------------------------------

  • END REGION V.----------------------------------------

-------- --- --- ---- -- -- -- ------*REGION II. GEOMETRY -HPCI Line brnch CROS CD=6 JUNC PT= 10-----------------


  • BEGIN.REGION IIa----------------------------------------

OPER CA71 *TE=100 PR=1100 .-FileNo.: VY-16Q-311 Revision:

A PageA-30 of A38 F0306-0IRO NEC041448 A *t Structural Integrity Associates, Inc.OPER OPER OPER OPER OPER OPER OPEROPE R OPER OPER OPER OPER-OPER OPER OPER OPER OPE R OPER OPER OPER OPER OPER OPER OPER OPER OPE R OPER OPER TRAN-TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM* TRAMI TRAM TRAM TRAN TRAM TRAM TRAM TRAN TRAM TRAM CA=2 TE=f00 CA-3 TE=I50 CAA4 TE=2160 CA= 5 TE=3 92 CA=.6 TE=3 10 CA7 TE=280 CA=8 TE=265 CA=9 TE=90 CA=10 TE=265 CA11f TE=150 CAf12 TE=150 CA= 13 TE=392-CA= 14 TE=50 CA-15 TE=150 CA=16 TE=150 CA=717 TE=150 CA=18 TE=150 CA719 TES=CA=20 TE=150 CA=21 TE=275 CA=22 TE= 100 CA=23 TE=392 CA=24 TE=392 CA=25 TE=392 CA=26 *TE=275 CA272 TE=2 65 CA=28 TE=IOO CA=29 TE=100 CA=30 TE=125 PR=50 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=170 PR=88 PR=1190 PR=1135 PR=1135 PR=1135 PR=1060 PR=1135 PR=675 PR=675 PR=885 PR=1563 PR=1375 PR=940 PR=1010 PR=1010 PR=1010 PR=1010 PR=1010 PR=50 CA 201 CA= 202 CA=203 CA=204 CA= 205 CA 206 CA=207 CA=208 CA=209 CA= 210 CA= 211 CA=212 CA 213 CA= 214 CA 215 CA=216 CA=217 CA 2 18 CA= 219 CA 22 0 CA=22 1 CA=22 2::A= 223 CA= 224 A= 22 5 ,A=22 6 IS=1 is= 1 15=1 IS=l I S= 1 13=1 IS=1 IS=~ 1 IS= i is= 1 IS= 1 IS= 1 15=1 IS= 1 15=1 15= 1 15= 1 15=I 15=1 FS= 1 FS= 1 FS= 1 FS= 1 FS= I FS= 1 F.S= i FS= I FS= 1 FS= 1 FS=1 FS= 1 FS= 1 FS= 1 FS=FS= l FS= 1 FS= i IT=-70 FT=100 TT=I800 FL=150 IP=15 FP=1115 TP=1800 IT= 100 FT1-O0 IT=100 FT=-15f IT;i 150 FT1-I0(IT=100 FT=260.IT=-260 FT-392 IT-392 FT=-310 IT-310 FT=-392 IT=392 FT=280 IT-280 FT=392 IT=-392 FT--265 IT-265 FT=90 IT-90 FT=265.IT=-265 FT=-392 IT-392 FT=265 IT=-265 FT=392 IT=392 FT=275 IT=275 FT= 100 TT=-0 FL=SO0.-IP=Ill5 FP=65 TP=O]TT=-16164 FL=I50 IP=65'FP=1025 TP=16164 STT=-0 FL=150 IP=1025 FP=1025 TP=O TT=O FL=150 IP=1025 FP=1025 TP=O.TT=1800 FL=150 IP=1025 FP=1025 TP=1800 STTO-90O FL=150 IP-1025 FP=1025. TP=900* TT=-900 FL=IS0 IP=1025 FP=1025.TP=900 3 TT1I800 FL=150 IP=1025 FP=1025 TP=1800* TTI1800 FL=150 IP=1025 FP=1025 TPfl800 TT=1800 FL=150 IP=1025. FP=1025 TP=1800 TT=360.FL=150 IP=1025 FPf1025 TP=360 TT=900 FL=150 IP=1025 FP=-1025 TP=900 TT=1800 FL=150 IP=1025 FP=1025 TP=1800 TT=90 FL=150 IP=1025 FP=1025 TP=90 T77e180 FL=150 IP=1025 FP=1025 TP=180 TT60 FL=1501IP=1025 FP=-1025 TP=60] TTI900 FL=150 IP=1025 FP=1025 TP=900*Is=l F5=1 1T=265 FT=265 TT=O FL=S50 IP=1025 FP=I025 TP=O*IS=i FS=1 IT=265 FT=265.TT=O FL=I50 IP=1025 FP=1025 TP=O IS=1 FS=1 IT=265 FT=-150 TT-4140 FL=I50 IP=1025 FP=I025 TP=4140 15=1 FS=1 IT=150 FT1IS0 TT=O FL=150iP=1025 FP=I85 TP=0 IS=i FS1I IT=150 FT-150 TT=0 FL=150 IP=185 FP= 103 TP=O Is=1 FS=1 ITF-150 FT=100 TT=8280 FL=150 IP=i03 FP=65 TP=8280*IS=1 FS=1 IT=392 FT=392 TT=12 FL=150 IP=1025 FP=1205 TP=12 IS=1FS=1 IT=392 FT50 TT=0 FL=3672 IP=1205 FP=1150 TP=O FileNo.-:

VY-16Q-311 Revision:

A Page A3 I of A38 F0306-OIRO NEC041449 t Structural Integrity Associates, Inc.TRAN CA=227 IS=l FS=P IT=-50 FT=150 TT=1380 FL=150 IP=1150 FP=1150 TP=1380.TRAN CA=228,*IS=1 FS=1 IT=-f50 FT=150 TT=0 FL=50 IP=1150 FP=-1150 TP=O TRAN CA=229 IS=1 2S=1 iT-150 FT50 TT=O FL=2754 IP=1150 FP=1150 TP=O TRAN CA=230 IS=1 FS=1 IT2=50 FT=150 TT=3060 FL=150 IP=900 FP=1075 TP=3060'TRAN CA=231 I5-1 FS=1 ITa150 FT=15O TT=0 FL=150 IP=1075 FP=1150 TP=O TRAN CA=232 I5=1 FS=1 IT=-150 FT=-50 TT=0 FL=1560.6 IP=-1150 FP=690 TP=0 TRAN CA=233 IS=1 FS=P IT=50 FT=150 TT=300 FL=150 IP=690 FP=690 TP=300 TRAN CA=234 IS=1 FS= IT-r150 FT2=150 TT2=8964 FL=150 IP=255 FP=1025 TP=8964 TRAN CA=235 IS=1 FS=j IT=-392 FT-275 TT=--60 FL=150 IP=1025 FP=900 TP=60 TRAN CA=236 IS=1 FS=P IT=-275 FT=100 TT2=900 FL=150 IP=-900 FP=-65 TP=900 TRAN CA=237 IS=1 FS=1 IT¶E100 FT=100 TT=0 FL=.150 iP=65 FP=1578 TP=O TRAN CA=238 IS=l FS=P IT=-100 FT=-100 TT=-0 FL=150 IP=1578 FP=65 TP=O TRAN CA=239 I5=1 FS= IT2=392 FT=392 TT=.60 FL=150 IP=1025 FP=1390 TP=60 TRAN CA=240 IS=l FS=1 iT=392 FT2=392 TT3=900 FL=150 IP=1390 FP=955 TP=900 TRAN CA=241 IS=1 FS=1 IT=392 FT=392 TT2=900,FL=150 IP=955 FP=1025 TP=900 TRAN CA=242 IS=1 Fs,=1 IT=-100 FT2=125 TT2=60 FL=150 IP=1025 FP=1025 TP=60 TRAN CA=243 IS=1 FS=1 IT=-125 FT2150 TTh210 FL=150 IP=1025 FP=1025 TP=210 PAIR CA=201 C0=30.0 DI=0..575 EX=5.6

  • Tavg=85 PAIR CA=202 CO-29.9 DI=0.567 EX=5.6
  • Tavg=100 PAIR CA=203 Co=29.8 DI=0.556 EX=5.6
  • Tavg=125 PAIR CA=204 CO=29.8 DI=0.556 EXr5. 6
  • Tavg=125 PAIR CA=205 CO=29.4 DI=0.530 EX-5.6
  • Tavg=180 PAIR CA=206 CO=2B.2 DI=0;472 EX=5.6
  • Tavg=326 PAIR CA=207 C0=28.0 DI=0.464 EX=-5.6
  • Tavg=351 PAIR CA=208 COc28.0 DI=0.464 EX=-5.6
  • Tavg=35l PAIR CA=209 CO=28.1 DI=0.469 EX=-5.. 6
  • Tavg=336 PAIR CA=210 CO=28.1 DI=0.469.

EX5.6

  • Tavg=336 PAIR CA=211 C0=28.2 DI=0.471 EX=5.6
  • Tavg=329 PAIR CA=212 C0=29.4 DI=0.531 EX=5.6
  • Tavg=178 PAIR CA=213 C0=29.4 DI=0.531 EXC-5.6
  • Tavgl178 PAIR CA=214 CO=28.2 DI=0.471 EX5. 6
  • Tavg=329 PAIR CA=215 Co=28.2 DI=0.471 EX=5.6
  • Tavg=329 PAIR CA=216 C0=28.2 DI=0.471 EX5. .6* Tavg=329 PAIR CA=217 Cc=28.1 DI=0.469 EX=5.6
  • Tavg=334 PAIR CA=219 CO=29.3, DI=0.527 EX=5.6
  • Tavg=18 PAIR CA=219 Co028.8 DI=0.496 EX=5.6
  • Tavg=265 PAIR CA=220 Co=28.8 DI=0.496 EX=5.6
  • Tavg=265 PAIR CA=221 CO029.2 D0=0.518.

EX=5.6.* Tavg=208 PAIR CA=222 C0=29. 6 DI=0.544 EX=5.6

  • TaVg=150 PAIR CA=223 CO=29.6 DI=0.544 EX=5.6
  • Tavg=150 PAIR CA=224 CO29. 8 DI=0.556 EXr-5.6
  • Tavg=125 PAIR CA=225 CO=27.7 DI=0.450 ErX5.6
  • Tavg=392 PAIR CA=226 CO=29 1 DI=0.513 EX=5.6
  • Tavg=221 PAIR CA=227' C02 9.9 DI=0.567 EX=5.6
  • Tavg=100 PAIR cA=228 co=29. 6 DI=0.544 EXr-5.6
  • Tavg=150 PAIR CA=229 COP2Y.9 DI=0.567 EX=5.6 Tavg=100.PAIR CA=230 C0=29.9 DI=0.567 EX=5.6
  • Tavg=100 PAIR CA=231 Co=29.6 DI=0.544 EX=5.6
  • Tavg=15l PAIR CA=232 C0C29.9 DI=0.567 EX=-5.6
  • Tavg=100 PAIR CA=233 CO=29.9 DI=0.567 EX=-5.6
  • Tavg=100 PAIR CA=234 CO=29.6 DI=0.544 EX=5.6 Tavg=150 PAIR CA=235 Co=28.1 DI=0.469 EX=-5.6
  • Tavg=334 PAIR CA=236 COc29.3 DI=0.527 ErX5.6 Tavg=188 PAIR CA=237 C0=29.9 DI=0.567 EX=-5.6
  • Tavg=.00 PAIR CA=238 C029.,9 DI=0.567 EX=5.6
  • Tavg=100 PAIR CA=239 CO=27.7 DI=0.450 EX=5.6 *.Tavg=392 File No.: VY-16Q-311 Page A32 of A38 Revision:

A F0306-OIRO NEG041450 I I S C Structural Integrity Associates, Inc.PAIR PAIR PAIR PAIR CA 240 CA=241 CA=242 CA=243 CO=27.7 DI=O.450 EX-5.6

  • Tavg=392 CO=27,.7 DI=0.450 EX=-5..6 Tavg=392 C0=29.8 DI=0.561 EX=5.6 4 Tavg=113 CO=29.7 DI=0.550 EX=5.6
  • Tavg=138 BRAN PT=301 DY=1 TE-1 EW11 TANG pT=302 DY=2. 333 TANG PT=305 DY-2 .-333 EWD=1 BRAD PT--310 PA=1. 75 EW1I TANG PT=315 DX=-2.333 EWI1 CROS CD=7 VALV PT=-317 DX=-1.167 PL=1 MA-s2.05---------------------------------------
  • BEGIN REGION I~b-----------------

7------------------

7---------------------

OPER CA=1 OPER CA=2 OPER CA=3 OPER CA=4 OPER CA=5 OPER CA= 6 OPER CA7 OPER CA=8 OPER CA=9 OPER CA=10 OPER CA=1i OPER CA=12 OPER CA=13 OPER CAM14 OPER CA=15 OPER CA=16 OPER CA= 17 OPER CAS18 OPER CA1Y9 OPER *CA-20 OPER CA=21 OPER CA=22 OPER CA=723 OPER CA=24 OPER CA=25 OPER CA=26 OPER CA=27 OPER CA=28 OPER CA=29 OPER CA=30 TE=100 TE=100 TE=125 TE=180 TE=246 TE=205 TE=190 TE=182.5 TE=95 TE=182.5 TE=125 TE=125 TE=246 TE=50 TE=125 TE=125 TE =125 TE=125 TE=50 TE=125 TE=187.5 TE=100 TE=246 TE=246 TE=246 TE=187..5 TE=182.5 TE= 100 TE=100 TE=112. 5 PR=1100 PR=50 PR-0 10 PR=1O10 PR=10 10 PR=1010 PR=10 10 PR= 1010 PR=1010 PR=1010 PR 170 PR=- 8 PR=1190 PR=1135 PR=1135 PR-1135 PR=l060 PR=1135 PR=675 PRF675 PR=885 PR=1563 PR13 75 PR=940 PR=O 10 PR=1010 PR=10 10 PR=1010 PR= 1010 PR50 t~TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN CA=201 IS=1 CA=202 IS=1 CA=203 IS=l CA=204 IS=l CA=205 IS=l CA=206 IS=l CA=207 151=CA=208 'IS=l CA=209 IS=1 CA= 210 IS=-1 FS= I F5= 1 FS=1 FS= I FS= I FS=1 FS=1 FS=1 IT=70 FT=100 TT=1800 FL=150 IP=15 FP=lll5 TP=1800 ITI100 IT1 100 IT=125 IT-- 100 IT 180 ITZ-246 IT=205 IT=246 IT=-Ig0 FT-- 100 FT=-725 F T- 180 F T--246 FTn-205 F T-24 6 FT= 190 FT=-24 6 TT-nO FL=150 ip=1115 FP=65 TP=0 TT=Il164 FL15O0 IP=65 FP=1025 TP=16164 TTnO FL=150 Ip=1025 FP=1025 TP=O TT2O FL=150 IP=1025 FP=I025 TP=O TT=1800 FL=150 IP=1025 FP=1025 TP=1800 TT=-900 FL=150 IP=1025 FP=1025 TP=900 TTO-900 FL=150 IP=1025 FP=4025 TP=900 TT=1800 FL=150 IP=1025 FP=1O25 TP=1800 TT=1800 FL=150 IP=1025 FP=1025 TP=1800 FileNo.: VY-16Q-311 Revision:

A Page A3.3 o1 A38.F0306-OIRO NEC041451

-' .V Struct~ural Integrity Associates, Inc.TRA)TRA]TRA]ýTRAI TRAI TRAI TRAI TRAI TRAI TRA!TRAI TRAI TRAI TRAI TRAT TRAD TRAB TRAI TRAE TRAE TRAN-TIRA TRAIN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN THAM TRAN PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR N CA=21:! CA=2 1;9 CA=2 1: V CA=21'V CA=2 1.!V CA=211 V CA-21I.9 CA=21E i CA=2 1AS 9 CA2-22(i CA=22 2" CA=222 I CA=223 I CA=22 4 1 CA=22!ICA=22 E[ CA=22,8 CA=228 CA=23 0 K CA=231 CA=232 CA-233 CA=234 CA=235 CA 236 CA 237 CA=238 CA=239 CA 240 CA7 241 CA=242 CA=243 CA= 201 CA=202 CA=203 CA 204 CA=205 CA 206 CA=207 CA#208 CA=209 CA=2 10 CA=211 CA=212 CA=213 CA--214 CA- 215 CA. 216 CA=2 i7*CA=218 CA= 219 CA=220 CA=2 21 CA= 222 is i1 IS=ll 13=1 15=1 IS= i IS= 1 IS= 1 FS=1 FS= 1 FS= 1 FS= 1 FS= 1 FS= 1 FS= 1 F 5=1*IS=1 FS=1* IS= FS=IT=246 FT-182.5 TT=1I800 FL=I50 IP=1025 FP=1025 TP=1800 IT=182.5 FT-95 TT=360 FL-150 IP=1025 FP=1025 TP=-360 IT=95 FT=182.5 TT=900 FL=150 IP=1025 FP=1025 TP=-900, IT=-182.5 FT=-246 TT=-1800 FL=150 IP=1025 FP=1025 TP=1800 IT=246 FT2182.5 TT-90 FL=150 IP=1025 FP=1025 TP=90 IT=182.5 FT-¶246 TTfl80 FL=150 IP=1025 FP=1025 TP=180 IT=246 FT=187.5 TT=60 FL=150 IP=1025 FP=1025 TP=60 IT=187.5 FT=100 yTT=-900 FL=150 IP=1025 FP=1025 TP=900 IT=182.5 FT=182.5 TT=-0 FL=150 IP=1025 FP=1025 TP=O i IT=182.5 FT=182.5 TT=O FL=15O IP=1025 FP=1025 TP=O IT=182.5 FT=125 TT=4140 FL=150 IP=1025 FP=1025 TP=414'0 IT=125 FT=125 TT=0 FL=150 IP=1025 FP=185 TP=0 IT=125 FT=-125 TT=0 FL=150 IP=185 FP=103 TP=O IT=125 FT=100 TTr8280 Ft=150 IP=103 FP=65 TP=8280 ITr246 FT=246 TT1-I2 FL=150 IP=1025 FP=1205 TP=12 IT=-246 FT=-50 TT=O FL=3672 IP=1205 FP=1150 TP=0 IT=50 FT=125 TT=1380 FL=150 IP=1150 FP=1150" TP=1380 I5= *1 15=1 is5.=1 15= 1 IS= I IS= 1 FS=1 FS=1 FS= 1 FS= 1 FS=1 FS= I FS= 1*IS=lFs=l IT=125 FT=125 TT=O FL=150 IP=1150 FP=-1150 TP=O IS=1 is= 1 IS=1 IS= 1 IS=1 IS=1 I S= 1 15=1 1s= 1 FS= 1 FS=I FS= i FS= 1 F S=1 FS= 1 FS=1 FS=1 FS=1 FS=1 F S=1 FS= 1 FS= i FS= 1 FS--i*CO=30.0 C0=29. 9 CO=29. 8 Co=29. 8 CO=29. 7 CO=29.1 CO =29.0 co=29.0 C0-29. 1 CO=29. 1 CO=29. 1 Co=29.7 C0=29.7 C0=29. 1 C0=29. 1 c0o=29.1 CO=29. 1 C0=29.6 Co-=29.3 C0=29.3 CO=29.6 COP=29.8*DI IDI DI DI DI DI DI DI DI DI DI DI DI DI DI DI DI DI: D I: DI D I DI=D I IT=125 FTh50 TT=O FL=2754 IP=1150 FP=1150 TP=O IT=-50 FT=125 TT=3060 FL=150 IP=900 FP=1075 TP=3060 IT=125 FT=125 TT=10 FL=150 IP=1075 FP=1150 TP=O IT=12-5 FT=50 TT=O FL=1560.6 IP=1.150 FP=690 TP=O IT=50 FT=125 TT=300 FL=150 [P=690 FP=690 TP=300 IT-125 FT=-125 TT=-8964 FL=150 IP=255 FP=1025 TP=8964 IT=246 FT=-187.5 TT=60 FL=150 IP=1025 FP=900 TP=60*IT=187.5 FT=100 TT=900 FL=150 IP=900 FP=65 TP=900 IT=100 FT=100 TT=0 FL=150 IP=65 FP=1578 TP=O IT-=100 FT=100 TT=0 FL=150 IP=1578 FP=65 TP=O IT=246 FT=246 TT=60 FL=150 IP=1025 Fp=-1390 TP=60 IT=-246 FT=-246 TT=900 FL=150 IP=-1390 FP=955 TP=900 IT=-246 FT=-246 TT=900 FL=150 IP=955 FP=1025 TP=900 IT=-100 FT=-112.5 TT=-60 FL=150 IP=1025 FP=1025,TP=-60 IT=112.5 FT=125 TT=210 FL=150 IP=1025 FP=1025 TP=210=0.575 EX=5.6

  • Tavg=85=0.567 EX=5.6
  • Tavg=100=0.561 Er=5.6
  • Tavg=113=0.561 EX=5.-6 *Tavg=113=0.549 EX=-5.6
  • Tavg=140=0.516 EX=5.6
  • Tavg=213=0.511 E-=-5.G
  • Tavg=226=0.511 *-Tavg=226

=0.514 EX=5.6

  • Tavg=218=0.514 EX=5.6
  • Tavg=218=0.516 Er=5.6
  • Tavg=214=0.549 EX=5.6
  • Tavg=139=0.549 EX=-5.6
  • Tavg=139=0.516 EX=5.6
  • Tavg=214=0.516.ET=-5.:6
  • Tavg=214=0.516 Er=5.6
  • Tavg=214=0.515 EX=5.6
  • Tavg=217=0.547 EX=-5.6
  • Tavg=144=0.529 EX=5.6
  • Tavg=183=0.529 E"=-5.6
  • Tavg=183=0.542 EX-=5. 6
  • Tavg=154=0.556 EX=5.6
  • Tavg=125=0.556 E5=5.6
  • Tavg=125 PAIR CA=223 CO=29.8 FileNo.: VY-16Q-311 Revision:

A Page A34 of A38 F0306-0IRO NEC041452

.. a, .I Structural Integrity Associates, Inc.PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR VALV CROS CA=224 CA=225 CA=22 6 CA=227 CA=228 CA=229 CA= 230 CA=23 1 CA=232 CA=233 CA= 234 CA= 235 CA=23 6 CA-237 CA=238 CA2 39 CA=240 CA 24 I CA=242 CA=243 PT320 CD= 6 C0=29.8 CO=28.9 Co=29. 6 CO=29.9 C 0=29.8 CO=29. 9 CO-=29.9 C O=29.8 CO=29.9 C (j=2 .9 Co=29.8 CO=29. 1 C0=29. 6 CO=29.9 CO=29. 9 CO-=28.9 CO=28.9 CO=28.9 CCO=29.9 CO=29. 8.DI=0.561 EBX5.6 *DI=0. 504 DI=. 545 DI=0. 573 DI=0. 556 DI=0.573 DI=0. 573 DI=0.556 DI=0.573 D I=0. 573 DI=0.556 DI0. 515 Di=0.547 DI=0.567, DI=0. 567 DI=0.504 DI=0. 504 DI=. 504 DI=0. 564 D.I=0.558 EX=-5. 6 EX-5. 6 EX=-5. 6 EX=-5. 6 iEX=-5. 6 EX=5. 6 EX=-5. 6 EX--5. 6 E X-5. 6 E EX=5. 6 EX=5. 6 E Xr5. 6 EX-5. 6 EX=5. 6 EX5. 6 Ex=5. 6 EX-5. 6 EX=5. 6 EX=5. 6 EWI Tavg=113 Tavg=246 Tavg=148 Tavg= 8 Tavg=125 Tavg= 8 Tavg=8 8 Tavg=125 Tavg=88 Tavg=8 8 Tavg=,125 Tavg=2 17 Tavg=144 Tavg=100 Tavg=100 Tavg=246 Tavg=246 Tavg=246 Tavg=106 Tavg=1 19 L DX=-1.167 PL=2 TANG PT-325* DX=-0.666 TANG PT=330 DX=-2.667 EL-=i BRAD PT=-335 RA=l.75 EW=I1 TABP DZ=-3 .5 BRAD PTi340 RA=i.75 EW.i1 TANG.PT2345 DX=3.333 EW=1 CRos CD=7 VALV PT=-346 DX=1.167 PL=1 MA=41.725----------------------------------------------------------

  • END REGION IIb'-----------------------------

*BEGIN REGION II------------------------


OPER OPER OPER OPER OPER OPER OPE R OPER OPER OPER OPER OPER OPER OPER OPER OPE R OPE R OPER OPER OPER OPER CA= 1 CA 2 CA= 3 CA 4 CA=-5 CA= 6 CA= 7 CA= 10 CA7 11 CA= 12 CA= 13 CA= 14 CA= 15 CA= 16 CA= 17 CA= 18 CA=- 19 CA2.0 CA= 21 TE=100 TE=100 TE=100 TE=100 TE=100 TE=100 TE=100 TE=100 TE=100 TE=100 TE=100 TE=100 TE=100 TE550 TE=100 TE= 100 TE=100 TE=100 TE=50 TE=100 TE=100 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR= 1135 PR=50 PR=50 PR=50 PR=50 PR=675 PR=50 PR=50 FileNo.: VY-16Q-311 Revision:

A Page A35 of A38 F0306-O1RO NEC041453

  • .1, Structural Integrity Associates, Inc.OPE R OPER OPER OPER OPER OPER OPER OPER OPE R CA 2 2 CA 23 CA- 24 CA 25 CA 26 CA 27;CA=28 CA 2g9 CA 30 TE=100 TE=100, TE=100 TE=100.TE=100 TE=100 TE=100 TE= 100 TE=100 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 PR=50 TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN'TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN.TRAM TRAN TRAN TRAN TRAN, TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAN TRAM TRAN TRAN PAI R PAIR CA=7201 CA=202 CA=203 CA 204 CA=205 CA-206.CA= 207 CA=208 CA=209 CA= 2 10 CA 2 11 CA=212 CA= 213 CA=214 CA 215 CA=216 CA 217 CA= 218.CA=219 CA 22 0 CA= 22 1 CA=222 CA=223 CA 224 CA= 2 2 5 CA.,22 6 CA 227.CA- 228 CA=22 9 CA 230 CAM231 CA- 2 3 2 CA23 3 CA723 4 CA= 235 CA723 6 CA=237 CA 238 CA=239 CA 240 CA-241 CA= 2.4 2 CA 243 CA= 201 CA= 202 I5=1 FS-=iIT=70 FT=100 TT=1800 FL=150 IP=15 FP=65.TP=1800
  • 15=1* 15=1* 18=1 15=1* I5~1* 15=1* 151+ 15=1* 15=1* 15=1* 15=1* 15=1'.15=1* i5 5 1** 15=1~ 15=1* 15=1* I5=.1* 15=1* 15=1* 15=1'15=1* 15=1* 15=1 F3=1 IT=100 FS=1 IT=100 FS=1 IT-l00 FS3= IT=100 FS=1 IT=100 FS=I IT=100 FS=1 IT=100 FS=I1 IT=100 F3=1 IT=100 FS=1 IT1-100 F3=1 IT=f00 FS=1 IT1-I00 F3=1 IT=f00 FS=1 IT-100 FS=1 I-T=-100 FS=1 IT=-100 F3=1 IT-100 FS=I IT=100 FS=1 IT=100 FS=1 ITf100 FS=1 IT=100 FS=1 IT=100 FS=1 IT-100 S=1 IT=100 FT= 100 FT= 100 FTOI0 FT=100 FT=100 FT=- 100 FT--100 FT-100 FT= 100 FT10ob FT=100 FT=100 FT=1 00 FT= 100 FT- 100.FT= 100 FT=-100 FT1--00, FT=100.FT=100 FT=100 FT=100 FT=I00 TT=O FLI5O0 IP=65* FP=65 TP=O TT=16164 FL=150 IP=65 FP=65 TP=16164'TT=O. FIL=150 IP=65 FP=65 TP=0 TT=0 FL=150 IP=65 FP=65 TP=O TT=1800 FL=9180 IP=65 FP=65 TP=1800 TT=900 FL=6885 IP=65 FP=65 TP=900 TT-79O0 FL=6885 IP=65 FP=65 TP=900 TT=1800 FL=4590 IP=65 FP=65 TP=1800.TT=1800 PL=4590 IP=652FP=65 TP=1800 TT1S1800 FL=4590 IP=65 FP=65 TP=1800 TT=360 FL=2295 IP-65 FP=65 TP=360 TT=900 FL=2295 IP=65 FP=65 TP=900 TT=1800 FL=4590 IP=65 FP=65 TP=1800 TT=90. FL=9180 IP=65 FP=65 TP=PO TT=-180 FL=9180 IP=65 FP=65 TP=180 TT=60 FL=10098 IP=65 FP=65.TP=60 TT=900 FL=275.4.

ip=65 FP=65 TP=900 TT=O FL=i50 IP=65 FP=65 TP=O TT=O FL=I50 IP=65 FP=65 TP=O TT=-0 FL=150 IP=65 FP=65 TP=O TT=O FL=150 IP=65.FP=65 TP=O TT=-0FL=150 IP=65 FP=65 TP=O TT=-8280 FL=150 IP=65 FP=65 TP=8280 TT=12' FL=150 IP=65 FP=65 TP=12 IS=1 F3=1 IT-I100 FT=-50 TT=O FL=3672 iP=65 FP=1150 TP=Q IS=1 F3=1 .ITr50 FT=100 TT=1380 FL=150 IP=1150 FP=65 TP=1380*IS=1 FS=1 IiT=Q0 FT=100 TT=0 FL=150 IP=65 FP=65 TP=O IS=1 FS=1 ITID00 FT=50 TT=0 Fl=2754 IP=65 FP=1150;TP=0 IS 1 FS=1 IT=-5O FT=100 TT=3060 FL=I50 IP=1150 FP=65 TP=3060*IS=1 F5=1 IT=100 FT=100 TT= PFL=150 IP=65 FP=65 TP=O is=i FS=1 ITi-1OO FTr50 TT=O FL=1560.6 IP=-,65'FP=690 TP=0 IS=1 FS=1 IT=-50 FT=00 TT=300 FL=150 IP=690 FP=65 TP=300*151= F3=1 IT=100 FT=100*15=1 F5=1 IT=100 FT=I100'*IS=i FS=1 IT=l00 FT=100*IS=l FS=1 IT=100 FT=100*IS=1 FS=1 IT=100 FT=100*15=1 FS=1 IT=100 FT=100'*IS=1FS=

ITl00 FT=-100*15=1 FS=1 IT--100-FT=O00

  • 151= F3=1 IT=100 FT=100*I=1i FS=1 IT=100 FT=100 CO=30.O DI=0.575 EX=-5.6 *CO=29.9 DI=O.567 EXS5.6 *TT=8964 FL=150 IP=65 FP=65 TP=8964 TT=60 FL=10098 IP=65 FP=65 TP=60 TT=-900 FL=275.41IP=65 FP=65 TP=900 TT=O FL=I50 IP=65 FP=65 TP=0 TT=O FL=IS0 IP=65 FP=65 TP=0 TT=60 FL=10098 IP=65 FP=65,TP=60 TT=-900 FL=275.4 IP=65 FP=65 TP=900 TT=900FL=275.4 IP=65 FP=65 TP=900 TT=-60 FLI50 IP-=65rFP=65 TP=60 TT=210 FL1=50 IP=65 FP=65 TP=210 Tavg=85 Tavg=l00 Tavg=100 PAIR CA=203,Co-29.9 DI=0.567 EX=-5. 6 *FileNo.: VY-16Q-311 Revision:

A Page A36 of A38 F0306-OIRO NE0041454 q VStructural Integrity Associates, Inc.* PAIR CA=204.PAIR CA=205 PAIR' CA=206 PAIR CA=207 PAIR CA=208 PAIR CA=209 PAIR CA=210 PAIR CA=211 PAIR CA#212 PAIR CA=213 PAIR CA=214 PAIR CA=215 PAIR CA=216 PAIR CA=217 PAIR CA=218 PAIR CA=219 PAIR CA=220 PAIR CA=22 1 PAIR CA=222 PAIR CA=223 PAIR CA=224 PAIR CA=225 PAIR CA=226 PAIR CA=227 PAIR CA228.PAIR CA=229 PAIR CA=230 PAIR CA=231 PAIR CA=232 PAIR CA=233 PAIR CA=234 PAIR CA=235 PAIR CA23.6 PAIR CA=237 PAIR CA=238 PAIR CA=239 PAIR CA=240 PAIR CA=241 ,PAIR CA=242*PAIR CA=243 VALV PT=350 CROS CD=6 TANG PT-355 TANG PT=360 BRAD PT=380 TANP BRAD PT=390 TANG PT=392 TANG PT=395 BRAD PT;400 TANG PT=405".BRAD PT=410 TANG PT=415 TANG PT=420 TANG. PTr425 BRAD PTI430 CO=29.9 DI=0.567 C0=29. 9 CO=29. 9 CO=29. 9"CO=29. 9 C0=2g. 9 CO=29.9 C-0=2 9. 9 C0=29.9 C0=29.9 C0=29.9 CO=.29. 9 CO=29.9 CO=29. 9 CO=29.9 CO=29. 9 CO=29.9 C0=29. 9 CO=29. 9 CO =29.9 COr=29.9 C =29.9.C0=30.0 CO-=30.0 C 0=29.9 C 0=30.0 CO=30. 0 CO=29. 9 C0=30.0 CO=30.0 C0=29.9 CO=29.9 CO=29. 9 CO:=29.9 C 0=29.9 Co0=29.9 co0=29,.9 C 0=29.9 CO=29.9 CO =29.9 DI=O. 567 DI=0.567 DI=0. 567 DI=0. 567 DI=0'567 DI=0. 567 DI=0. 567 DI=0. 567 DI=0.567 DI=0. 567 DI=0. 567 DI=0. 567 DI=0. 567 DI=0.567 DI=0. 56 DI=O. 567 DI=0. 567 DI=0.567 DI=0.567 DI=0.567 DI=0. 567 DI=O.590 DI=0. 580 DI=0. 567 DI=0. 580 DI=O. 50 DI=0.567 DI=0. 580 DI=0. 580 DI=0. 567 DI=0. 567 DI=0. 567 DI=0.561 DI=0.567 DI=0.567 DI=0.567 DI=0.567 Di=0.567 DI=0.567 EX=-5. 6 EX=-5. 6 EX=5. 6 EX=-5. 6 EX=-5. 6 EX=5. 6 EX=5. 6 EX=5. 6 E X-5. 6 B X=-5.6 EX=5. 6 EX=5. 6 EX-5. 6 EX-5. 6 EX=5. 6 E rX= 5. 6 EX=5. 6 EX=5. 6 EX=5. S EX=5. 6 EX=5. 6 BX'=5. 6 E X 5.6 EX=5. 6 Er-5. 6 EX=5. 6 EX=5. 6-EX=5. 6 EX=5. 6 EX=5. 6 EXr5. 6 EX-5. 6 EX=5. 6 EX=5.6 EX=5.6 EXr5.6 EXr5. 6 EX=5.6 EX=5.6 -E =- 5. 6 Tavg=100 Tavg= 100 Tavg= Il00 Tavg= 100 Tavg=100 Tavg=100 Tavg=100 Tavg= 100* Tavg100 Tavg=100 Tavg= 100.Tavg=100 Tavg=100 Tavg= 100* Tavg=100 Tavg=100 Tavg=100* Tavg=100 Tavg= 100100 Tavg= 100 Tavg= 100 Tavg=7 5 Tavg=75 Tavg=100 Tavg 75 Tavg=7 5 Tavg=f100.Tavg=75 Tavg=75 Tavg= 100 Tavg=f0f0 Tavg=1 00 Tavg= 100.Tavgfl00 Tavg =100 Tavg- 100 TavglIO0 TavgF=100 Tavg=100 DX=1. 167 PL=2 EW=1 DX=O. 167*PX=2.083, EW=*RA1.75 EW=1 DY=-2 .479 RA1.75 DX=2.585 DY-2.585 DX=2.585 PY-2.585 EW1I RA=1.75 EWI'DZ=-3.417 RA=1. 17 EW=1 DY=-3 DY=-5.25.DY=-2.417 RA=1.75 EW1 FileNo.; VY-16Q-311 Revision:

A Page A37 of A38 F0306-OIRO INEC041455 t, ¶:t fr Structural Integrity Associates, Inc.TANG TANG TANG TANG.BRAD TANG BRAD TANG TANG TANG BRAD TANG TANG BRAD TANG TANG TANG TANG BR AD TANG TANG STRU STRU ANC H PT=-435 PT=440 PT=-445 PT=-450 PT=-455 PT=460 PT=-465 PT=-470 PT=480 PT4865 PT::490 PTr-495 PT-- 500 PT=~505 PT'=510 PT=-515 PT- 520 PT=-525 PT=535 PTr=540 P7-54 5 PT-54 6 PT=-547 PT=547 DZ=Z.33 3 DZ=4. 757 DZ=4. 75 7.DZ=4. 757 RA= 1. 75 EW1 1 DX=-i.989 DZ=1.989 RA=1. 75 EW= 1 DY=-5.722 DY=-5.722 DY--5.722 RA=1. 17 EWrI DZ=1. 667 DZ=2.0833 RA=1.75 EW11 DX=3.682 DX=3.682 DX=3.682 DX=3.682 RA=1.75 DX=2,.556 DZ=-2.556 DX--2.555 DZ=-2.555 DX=-.7071 DZ=-.7071 DX=-.7071 DZ=-.7071-------------------------


-*END REGION II* ---------------------------------------

  • VALVE OPERATOR *CROS CD=7 JUNC PT=346 VALV. PT-348 DY=5.567 PL=3 MA=2.52* SUPPORTS AND ANCHORS *CSUP PTI-105 DY=-1 KP=5000 PI10 *FW-9 CSUP PT1-I90 DY=1 KP=1000 PI=0 *FW-6 CSUP PT=-220 DY=-1 KP=1000 PI=0 *FW-4 CSUP PT=-270 DY=1 KP=1000 PI=0. *FW-2 CSUP PT=145 DYfI KP=1000 PI=0 *FW-7 RSTN PT=230 DX--D0.6123 DY=-0.5 DZ=0.6123.

RSTN PT-80 DX1.w0 SP=370 "*FW-3 SP=200- *FDW-H1O RSTN RSTN RSTN RSTN RSTN ROTR RSTN RS.TN ROTR EgDP PT=201. DX=0.198 DZ=0.9802 PT=-546 DX=-0..7071 DZ=-0.7071 PT=z355 Dy=I .0 PT=415 DX=1.0 DZ=1.0 PT=-30 DX=1.0 DY=I1.0 PTS30 RZ=1 PT=-60 DX=1.0 DY= 1.0 PT=-5 DX1-I DY=1 DZ=1 PT=-5 RZ=1 SP=1000 *FDW-H23 L SP=1000 *BELLOWS*HPCI-H31 4 HPCI-H32*FDW-HD37*FDWHD37 SP=2'00 *FDW-H24 FLUED HEAD FLUED HEAD File No.: VY-16Q-311 Revision:

A Page A38 of A38 F0306-0IRO

>NEC041456 Exhibit B Structural Integrity Associates, Inc. File No.: VY-16Q-301 CALCULATION PACKAGE Project No.: VY-l6Q PROJECT NAME: Environmental Fatigue Analy.sis of VYNP .CONTRACT NO.: 10150394 CLIENT: PL ANT:..Entergy Venrtont Yankee. LLC Vermont Yankee Nuc'lear Power Station CALCULATION TITLE: Feedwater Nozzle Green Functions Document Affected Project Manager Preparer(s)

&Rio nt PAgestd Revision Description Approval -Checker(s)

RevisiSignatre

&Date Signatures

&Date A 1-26. Initial Draft for Review Terry J, Hermmanm Minghao Qin Appendix: A1-A2 John F. Staples _/Page 1 of 26 F0306-0IRD NEC041459 U Structural Integrity Associates, Inc.Table of Contents 1.0 OBJECTIVE

...................

................................................

4 2.0 FEEDWATER 1OZZLE MODEL ...........................................

4 3.0 APPLED LOADS ........ ........ ...........................

4 L O A I) ~~~~ ~~.........

.. ..... ....... .." ......................

.. ..............

............................

...... .....4.0 THEfRIAL AND PRESSURE LOAD RESULTS ......................

............

7

5.0 REFERENCES

..........................

5 .0 .E F E .E N C S .. .... .... ..........

... ... ...... ............

... .........

.... .....................

... 8 APPENDIX A FINITE ELEMENT ANALYSIS FILES ....................

..... ..........

List of Tables: Table 1: aterial Properties 300 ... ............

.......................

...................

... .. 91" Table 2: Nodal Force Calculation for End Cap Load [4] .............

I ......................

9 T able 3 : PresH re R esultsa......................................

T a s e .........................

...............

fi......or

............................

10 ,Table 4: teat Transfer Coefficients for Pegion 1 (40% Flow) ....... .........................

...........

............

...t0 .File No.: VY'-16Q-301 Revision:

A Page 2 of 26 F0306-O1RD NEC041460 Structural Integrity Associates, Inc.List of Figures Figure 1: ANSYS Finite Element Model ...............

.....................

.............

11 Figure 2: Feedwater Nozzle Internal Pressure Distribution

................................

12 Figure 3: Feedwater Nozzle Pre-ssure Cap Load ...... ...................................................

13 Figure 4: Feedw'ater Nozzle Vessel Boundary Conditions

..................

..........

14 Figure 5: Nozzle and Vessel.Wall Thermal and Heat Transfer Boundariesf[1]...................

15 Figure 6: Safe End Criticai Thermal Stress Locatioon..

............................

16 Figure 7: Safe EndLimiting Linearized Stress Paths .................................

....... ........ ..................

17 Figure 8: Blend Radius Limiting PressureStress Location.............

.................

18 Figure 9: Blend Radius Linearized:Stress Path.. ....".. ...........

..... 19 Figure .10: Safe End 100% Flow Total Stress Intensity.....

.........

.............................

... 20 Figure, 11: Blend Radius 1.00% Flow Total Stress Intensity

....... ........ ...... .......................

20 Figure 12: Safe End Total Stress History for 1.00% Flow ...........

...................

21 Figure 13: Safe End Membrane Plus Bending Stress History for 100% Flow ........ .....................

21 Figure 14: Safe End Total Stress History for 40% Flow .................

..................

Figure 15: Safe End Membrane Plus Bending Stress History for40% Flow.......................

Figure 16: Safe End Total trss History for 25% Flow ............

.............

.... ...23 Figure, 17: SafeEnd Membrane Plus Bending Stress History for 25% Flow ............................

23~Figure 18: Blend Radius Total Stress History for 100% Flow ............................

.............

24 Figure 19: Blend Radius Membrane Plus Bending-Stress History for 100% Flow.... .............

24 Figure120:

Blend Radius Total Stress History for 40% Flow .................

.............

25.Figure 21: Blend Radius Membrane Plus B ending Stress History for 40% Flow .......................

25 Figure 22: Blend Radius Total Stress History for 25% Flow ...... ......................

26 Figure 23: Blend Radius Membrane Plus Bending Stress History for 25% Flow.....................

26 File No.: VY'-16Q-301 Page 3 of 26 Revision:

A F0306-01RD NEC041461-structural Integrity Associates, Inc.1.0 OBJECTIVE The objective of this calculation is to compute the pressure stresses, thern'al stresses, and the Green's Functions for high. low, and no flow thermal loading of the Vermont Yankee Nuclear Power Station feedwater nozzle.2.0 FEEDWATER NOZZLE MODEL An anisymmetric finite element model of the feedwater nizzle was developed in R-eference

[1] using ANSY'S [2]. The geomnetry used in R.eference

[I] was utilized in this calculation.

The material properties are taken at an average temperature of 300'F. This average temperature is based on a thermal shock of 500SF to. 100'F whichlwill be applied to the FE model for Green's Function development.

Table 1 listed the material properties at 300 0 F. The meshed model is shown in Figure 3.0 'APPLIED LOADS Both pressure, and thermal loads will be applied to.the finite element model.3.1 PressureLoad A uniformi pressure of 1000 psi was applied along the inside surface of the feedwater nozzle and the vessel wall. A pressure load of 1000 psi was usedbecause itis easily scaledup or down-to accoufit for different pressures that occur during transients.

In addition, a cap load was applied to the piping at the end of the nozzle. The nodal forces shown in Table 1 [4] are defined by thfe following equation: MRo-.= -(IR) P 'OR 2-P-where: P = Pressure=

1.000 psi 1 = Inner Radius = 4.8345 in OR = Outer Radius = 5.42 in" i = Inside.Radius of element that node is attached to Po = Outside Radius of element that node is attached to Fioae =The average of the element forces on either side of the node.Note: The force on the innermost and outennost nodes is calculated'as one half of the force on the element that they are attached to.The calculated nodal forces were applied as positive values so they would exert tension. on the end of the model. The ANSYS input file FWPVY.TNP.

in the computer files, contains the feedwater File No.: VY-16Q-301

.,Page 4 of 26 Revision:

A F0306-O1RD NEC041462 1-Structutal Integrity Associates, Inc.nozzle geometry as well as the pressure loading. Figures 2. 3. and 4 show the internal pressure distribution, cap load. and symmetry condition-applied to the vessel end of the model, respectively.

3.2 Thermal

Load Thermal loads are applied to the feedwater nozzle model. The heat transfer coefficients after power uprate. were dete.nined from Reference

[ 1]. These. values were determined for various regions of-the finite element model and for 100% (4,590 GPM-. and 25% (1.148 GPM) [4].. Per Reference

[4], the annulusleakage flow rate is assumed to be 31 GPM for EPU conditions withI 100% flow rate.Based on this, the annulus leakage flow rate is assumed to be 8 GPM for EPU conditions with 25%flow rate. The temperatures used are based upon a thermal shock from 500 0 F to 1 0 0°F. An additional 40% flow rate (1836 GPM and 13 GPM) was added in this calculation.

3.2.1 Heat Tanswfer Coefficients Referring to Figure 5. heat transfer coefficients were. applied as following:

Region 1 The heat transfer coefficient.

h, for 100% flow is 3705 BTU/hr-ft 2-_F at 300 0 F. [1, Table 5]The heat transfer coefficient, h. for 40% flow is 1780 BTIJhr-ftJ-°F at 300 0 F. [Table 4]The heat transfer coefficient.

h. for 25% flow is 1222.2 BTUAir"ft 2-OF at 300T. [1, Table 4]Region 2 Per Reference

[1], the heat transfer coefficient for Region 2 (safe end-to-thermal sleeve contact region) should be lin early transitione d from the value of the he at -an sfer coefficient used in Region I to the valueusedin Region.3.Region 3.The heat tr'ansfer coefficieent, h, foi' 100% flow is 1489 BTU/hr-ft 2-°F at 300 0 F. [1. Table 9]-The heat transfer coefficient.

h. for 40% flow is 743 BTU/hr-ft-.F at 300'F. [1. Table 9]The heat tranisfer coefficient, h. for 25% flow is 504 BTUV&trf-

°oF at 300.E [1. Tablp. 9]Region 4 Per.,Reference

[1]. the he heat transfer coefficient for Region 4 (thermaf sleeve transition in diammeter) should be linearly traansitioned from th.e value of the heat transfer coefficient used in Region 3 to the value used in Region 5.FIle No.: VY-16Q-301 Page 5 of 26 Revision:

A /F0306-01Rf NEC041463 Structural

/ntegrity Associates, Inc.* Region 5 The heat transfer coefficient, h.for 100% flow is 177.4 BTU .r-ft 2-OF at 300 0 F. [1. Table 16]The heat transfer coefficient.

h. for 40% flow is 88.5 BTU/hr-fi9-°F at 300S. [1, Table 16]The heat transfer coefficient.

h'. for 25% flow is 60 BTU/hr-ft 2-TF at 300 0 F. [1. Table 16]Region 6 Per Reference

[1], the heat transfer coefficient for Region 6 (nozzle inner blend radius)should be line arly transitione d from the value of tie heat transfer coefficient used in Region 5 to, the value used ini Region 7.Region 7 Per Reference

[1], the heat transfer coefficient for Region'7 (reactor vessel inside wall) is a constant of 864 BTU/hr-ft 2-F. This value is consistent with the feedwater nozzle work performed in the past for VY and should be used for all reactor conditions.

Region 8 The heat transfer coefficient, h, is 0.2 BTUJAir-ft9-F

[1].3.2.2 Boundary Fluid Temperatures For die Green's Functions, a 500S -100 0 F thermal shock is run to determine the stress response to a one-degree change in temperature.

The Following temperatures are valid when.there is water flow. Values between defined points are linearlyinterpolated.

Forthe 100%. 40. and 25% flow cases, the thermal shock is nin as follows:..

Regi ons I to .5 T 500'F -100°F Region 6 Linearly transitioned from the value of the temperature used in Region 5 to the value usedin Region 7 Region 7 T =500°F Regi on 8 T = 120°F )File No.: VY-16Q-301 Page 6 of 26 Revision:

A F.0306-O1RO' NEC041464 Structural Integrity Associates, Inc.4.0 THERMAL AND PRESSURE LOAD RESULTS The three flow depen dent thernal load cases outlinedin Section 3.0 were run on the finite element model. Appendix A contains the thermal transient input files FWT_VY_100.NP,.

FWqT_VY_40.lNP, and FVJT_VY_25.INP for 100%, 40%. and 25% full flow rate. respectively.

The three flow dependent input files forthe stress runs are also included in Appendix A. The stress filenames are EWS_VY_100:INP.

FWS_VY_40.INP.

andFWS_VY,25.IP for 100%. 40%. and 25% full flow rate. respectively.

The critical safe end location was chosen as node 192. which has the highest stress intensity due'to Sthermal loading under high flow conditions.

As shown in Figures 6 and 7, Node 192 is located on the iniside diameter of the nozzle safe end of the model and the maximum stress occurs at 1.4 seconds..The critical blend radius location was chosen, based upon the highest pressure stress.Conservatively assuming the cladding has cracked, the critical location is selected as node 657 at bas e mreta of thlen ozzle. as shown mi Figures 8 and 9.The stress intensity for use in the Green's functions are calculated from the component stresses (X, Y, and Z)-and compared to.the stress intensity reported by ANSY3. As seen in Figure 10. the Z-X calculated total stress intensity best matches the ANSYS reported stress intensity for 100% flow at the safeend. Therefore, the Z-X stress will be used for the total amd membrane plus bending Green's functions for all flow rates for the safe end. As seen in Figure 11 the ZýX cMculated total stress intensity best matchesdthe ANSYS reported stress intensityfor

.100% flow a.t the blend radius in very beginning.

Therefore, the Z-X stress will be used for the total and membrane plus bending Green's functions for all flow rates for the blend radius.The stress time history for the critical paths was extracted during the stress run for 100% flow rate.This produced two files. HFSE.OUT and HFBLEND.OUT,.

which, contain the thermal stress history.The membrane:plus'bending stresses and total stresses for die Green's Functions were extracted from dihes e"files to produce the files I-FSE_Inside.R.ED-and I-FBLENDInside.RED, where SE and BLEND corresponded to the safe end and blend radius locations, respectively.

The stress time history for the critical paths was extracted duringthe stress run for 40% flow rate.This produced two files, MFSE.OUT and MFBLEN-D.OUT.

which contain the thermal stress history. The membrane plus bending stresses and total stresses for the Green's Functions were extracted from. these Files to produce the files M4FSEInside.RED and MFBLENDInside.RED.

where SB and BLEND corresponded to the safe end mad blend radi us locations.

respectively.

The stress time history for the. critica.l paths was extracted during th.e stress run for 25% flow rate.This produce d two file s, LFSE. OUT an d LFBLEND.OUT, which contain the th ermal stre ss hi story.The membrane plus bending stresses aid total stresses for the Green's Functions were extracted from these files to produce thI-files LFSE Inside.PRED and LFBLENDInside.RE.D, where -E and BLEND corresponded to the safe end and blend radius locations..

respectively.

File No.: VY-16Q-301 Page 7 of 26 Revision:.

A NF306-O01RD

NECO41465

.

Structural Integrity Associates, Inc.Asithe models were run with a 400 0 F step change in temperature.'and the Green's Functions are for a 1 0 F step change in temperature, all data values were divided by 400. The governing Green's Functi ons for the feedwater nozzle during 100% flow. 40% flow. a.nd 25% flow are shown in Figure s 12 to23. Thedata for the Green's Functionxs is included in the files HFBR._MN+B-Green.xls, HFBR._T-Gre'en.xis.

EFSE_M+B-Green.xls.

HFSET-Green.xIs.

MFBR M+B-Green.xls.

MFB R. T-Gre en.xl s. MFSE_ Ml+B-Green.xl s.MlýfFSE T-Green.xls.

LFBR PM+B -Green .xl s.LFBR T-Green.xls.LFSE.M+B-Green.xls.

and LFSE_T-Green.xls in the project Files. Where HF.NPf. and LB corresponded to 100% flow. 40% flow. and 25% flow rate. respectively>M+B and T corresponded tomembrane plus bending stress and total stress, respectively.

The pressure stress intensifies for the path were extracted during tile pressure run. The pressure stresses were extracted along the nodal path as shown in Figures 7.and 9. This produced two files.P;SB.OUT and PBLEND.OUT for the safe. e.nd and blend radius locatifons, respe cive.ly.For tile pressure loading specified (1000 psig), the total stress intensities at Node 192 and Node 657 were detenninedto be 8891 psi and 28300 psi, respectively.

The membrane plus bending stress intensities at Node 192 and Node 657 were deternined to be 8693.psi and 27490 psi, respectively.

Table 3 shQo*s the final pressure results.

5.0 REFERENCES

1. SI Calculation No. VY-10Q-301.

Revision 0. "Feedwater Nozzle Finite Element IModel and Heat Transfer Coefficients." 2. A.NSYS. Release 8.1 (w/Service Pack 1), ANOYS, Inc., June 2004.3. American Society of Mechanical Engineers.

Boiler and Preisure Vessel Code. Section IL Part D.1 §98 Edition. 2000 Addenda.4. Calculation No. VY-10Q-302.

Revisionk

0. "Loads and Transient Definiti ons." 5. .1". P. Holmnan. '-eatTransfer," 4th Edition. McGraw-Hill, 1976.6. 1. P. Holinan. "Heat Transfer," 5th Edition. 1981.FilebNo.:

VY-16Q-301 Page 8 of 26 Revision:

A F0306-O1RD NEC041466 Structural Integrity Associates, Inc.Tab le 1: Material Properties c 300F1'ate ial Coefficient of Dew it, .Conuctiv-ity, DifSivity, .pecific Heat, MMtedil Txh, las, Tienixal -p k d c.. ;Rato Ident. E x 1U0 Expairimo. (ibin) (BTUfIec-fiw,-F) (f'/lu') (arsmnud)(psi) M x 10" sunud) (see Note 5)SA533 Gnd.e B.A508 II 26.7 73 0.283 5.4A-2x0 0.401 0.119 0.3 (see Note 2)SIS Clad (se 9.8 0.283 2270' 0.16 0.3 (fee Note 3)(see Note 4) 28.1, 73 0.283 748x10' 0561 0.118 0.3 AlOGiateB)(see N to 4)B 1 283 723 0.283 1 .?.'-Sxl0 0561 0.i" 03 (seelNote_4)

  • ___________

____ ___________________

Notes 1. Materiel PFipeilies are evaluated at 300M from the 1998 ASME Code. 2000 Addenxda.

Sectioni IL Peat D, except for dnsity end Foim onb artic, wh ic h aai assumed typica 1,alues 2. Proeties of A50 Class II amuseed(3/4Ni-1/2Mo-l/3Cr-V):

3. Poperties ofl1Cr- SNi awtedtic staindess steel are used.4. Composition=

C-Si"5. Calculatedas

[4(pd)]*(36001144).

Table 2: Nodal Force Calculation for End Cap Load [4]Node Element Radius A Radius R.2-Ri 2 Felement Fnode Number. Number (in) (in) (in) (Ib) Nb).1 5.42 7678.0.1022 0:1171 1.25565 15356.1 S2 5.3029 15188.4 1021 0.1171 1.22823 15020.7 3 5.1858 14853.0 S 1020 _0'.1171 1.20080. 14685.3 4 5.0687 14517.6 1019 0.1171 1.17338 14349.9 5 4.9516 14182.2.1018 0.1171 1.14595 14014.5 6 4.8345 ' 7007.3 File No.: VY-16Q-301 Revision:.

A Page 9 of. 26 F0306-O1RO NEC041467 Structural integrity Associates, Inc.Table 3: Pressure Results Membrane Plus Total Stress Location Bending Stress Intensity (psi) Intensity (psi)Safe End. 8693 8891 Blend Radius 27490 28300 Table 4: Heat Transfer Coefficients for Regian. (40% Flma)Calculaffon offHeat Transfer Coeuffcien ts for*FeedmiterNozzleRowPath Pipe kvwtcblavtr.1- .tb lechr. 0105c it-0246 Mt Fb..t ofruled--FkeidW41ocltbV-R3u 135cc- 19360 Swm -

L m -. 0a"5 fl 02.6 T41g;" Th..:n.&T lobe 12% ofS U emFpraU. -9.40 1211 2+10 360

  • 4-i30 a rn.....at...

.. ,4.? ...-. 13-- 21, IM 26Sg?020? .f Misty I 3333 .1.0 c* wlu43a t Muld Tom perallrn.

I P] u1111 cQnwrilon r8 100 2 200 300 400 500S Go0 F A~ePlrpert; .ftbr [51 21.11 37.73 0 3.33 143.33 204.44 240.0 0 21554 1 VI k120" -...? 01C30I 01.678 0W6 0 11 050.0 0a.m I VWMnC.... ... m ...y..... ..... ..... ... ....... .. .. ... .... ., ,, .. .............p......... .p .. ...... :PýP ...... pu ..!.IM *.95 .35 6.178 s*22 .313 6522 #192 6322 Ujcrlc (Ldlc H ... IWO 01.9 110 . I.IE- 1.755'3 is-" F' 0 9,02 .60 G 8JO 8108.: 9JD 9910 .06 .82O 91J08 .,*it.*cmzlibl ws i- ..3Z.17 32.11 32.1? 32.I1 32.1? 32..I 32.1? IM?* I$81 3804 6336-046 3.01E-04 12335-O 1385E0 4 1314E-04 5289S lcift-S 495851'+I:

00,61,9 699501 4. 854.. " 2 .089-n+ 130-04-O 8-3]05 73105-05 5.78509 WmiII11s.r..........

6 0101".". .............

""...................

.. .. ......... i ' ..... ........ .........Culculatod Poramentr I fifnuls 78 100 o 200 300 400 Soo c0o "o Re Impwv s Mutter, Re ?11ip 631 49e109. 9.64S+5e0

.1.89835.

21q9IE-08 33725512,06

  • 52.95.08
  • 33325.08*Ors~on? Numbe r.r genLs( 1259550513 6jW.E-03 1.2721E5.10 6598195. ID IE 3 1e II .*91295 11 1.1372E- 12R 0,Pr S..3II& IEN8 3I n*2E9 2.*232E510 I J*35.120 ID I .0E8 11 .E'5SE- I I 1219E5 12 --fts idpte.S al ace ,s w o vecp mor r, srfr- Dqc ttlptq~ g 2 1 Fpk 0 5.03226i 6.119. 53113 10,s Il107 123 1,90~ST 1 1Z.263 10in3 ls m WM "c* 903.95 1.07 .4C 1.5 w24 .1,r .007 -1,930.51 1.97S.2 1,330.41 8kiuv-tiF 1.744603 2.0 E'-03 2.931E-03 3.4445-03 3.724E43 3.31? E-703 3.423503 elftsecln-r ftd#&afsce MEA-W? Ome cumvfler7Prtsfwy Cot;ower 0,.. 8re)iikI 232.3 3335? 0091 2953 SMoO 1.1151 1.19233 894e-0 40.9S 53.2i 105.G4 143. 1 V9. 1 1 35G.35 210.95 Ih-1'-F.

2.038E44 217050A 3.359E-04 3.10E0505 4,052E-044 ht.fecr.'-q

" File No.: VY-16Q-301 Revision:

A Page 10 of 26 F0306-O1RO NEC041468 Structural integrity Associates, Inc.ELEERTNT3 SEP 5 0OOZ 16:22:51 Feedwater NorzzekFTInit ,e Elemaent Model Figure 1: ANSYS Finite Element Model File No.: VY-16Q-301 Revision:

A Page 11 of 26 F0306-OIRD NEC041469 Structural integrity Associates, Inc.AN Fee, dwater Nozzle FiniJte 8I3len 2P 13m2002 i2t16:11-)*Figure 2: Feedwater Nuzzle Internal Pressure Distribution File No.: VY'-16Q-301 Revision:

A Page 12 of 26 F0306-O1RD NEC041470 Structural Integrity Associates, Inc.AN CGD 12 2002 ueat 12:1E:30 Nozzle Finite Element Model Figure 3: Feedwater Nozzle Pressure Cap Load File No.: VY-16Q-301 Revision:

A Page 13 of 26 F0306-O1RD NEC041471 Structural Integrity Associates, Inc.Figure 4: Feedwater Nozzle Vessel Boundary Conditions r File No.: *VY-16Q-301 Revision: .A Page 14 of 26 F0306-01RO NEC041472 Structural Integrity Associates, Inc.Recan 7, 1~egtcn S F.Regio OM ' Ragian- 4 Regqicw 6 Rg:ion S Notes: Point A: End of them al sleeve = Node 204: 0.25"from feedwater inlet side of thermal sleeve flat.Point B: Beginning of annulus = Node 252.Point C: Beginning of thermal sleeve transition

= appro)im ately 4.0" from Point A = Node 294&Point D: End of theri al sle eve transition

= a pproxim ately 9.5" from Point A = Node 387.Point E: End of inner blend radius (nozzle side) = Node 553.Point F: End of Inner blend radius (vessel wall side) = Node 779.Figure 5: Nozzle and Vessel WallThermal and HeatTransfer Boundaries

[1]File No.- VY-16Q-301 Revision:

A Page 15 of 26 F0306-O1RD NEC041473 Structural Integrity Associates, Inc.4.4 44SJtf'VR 200r;* .283Ci2 , 2125l Yee.diwat~:

~ r c7zi ir-1.1:eEjie:

4e.494i474.............................

..................................

d ..................

.............................

........................................................................................

.........................

Figure 6: Safe End Critical Thermal Stress Location File No.:. VY-16Q-301 Revision:

A Page 16 of 26 F0306-01RO NEC041474 Structural Integrity Associates, Inc..............................................

Mi' )Jf MARt 151 NU,7 Node 1V?Figure 7: Safe End Limiting Lineariz ed Stress Paths File No.: VY'-16Q-301 Revision:

A .Page 17 of 26 F0306-O1RD NEC041475 Structural Integrity Associates, Inc.LCC',AL SOLUr-OiN$MN -1540 S&,DA =3G451 APR 11 .2O07.IS:22:57 aa?~;{~4~tr

~1340 7809 1427$.4574 .11043 Feedwsa;te Nozzle Fijuite Element ?aodel 20747 3721 30451 FigureS.:

Blend Radius Limiting Pressure Stress Location File No.: VY-16Q-301.

PRevision:

A Page 18 of 26 F0306-01RD NEC041476 Structural Integrity Associates, Inc.Figure 9: Blend Radius Linearized Stress Path A File-No.:

VY'-16Q-301 PRevision:

A Page 19 of-26 F0306-01R0.

NEC041477 A Structural Integrity Associates, Inc.Total Stress Intensity 200 M 400 TFft 4Tc)Figure 10:: safe End 100%/ Flow Total Stress Intensity 5DO Total Stress Intensity=.G m Tine ec .Figure 11:. Blend Radius 100% Flow Total Stress Intensity File No.: VY-16Q-301 Revision:

A Page 20 of 26 F0306-01RO.

NEC041478"

$Strctiral Integrity Associates, Inc.Total Stress Intensity lo 2DD .3DD 400 Figure 12: Safe End Total Stress History for 100% Flow Total Stress Inte-mity 6WOO.......................................

................................

.....I-I-ii_ __ _ __ _ _ _ _ __ __ _ _1 DODD I'l.._Fu 0 Figure 13: Safe End Membrane Plus Bending Stress History for 100%/a Flow Page 21 of 26.File No.: VYA6Q-301 Revision:.

A Page 21 of 26.F0306-O1RD.NgG041479.

VStructural Integrity Associates, Inc.Toldl Stress Intensity:2DWD a 100 2DD 400 Th ec)Figure 14: ,Safe End Total Stress History for 40% Flaw Total Stress Intensity ,SDD 2Dtt3E 0 100 2DD WVD 400 ;DD Tine ,ec)Figure 15: Safe End Membrane Plus Bending Stress History for 40% Flow File No.: VY-16Q-301 Page 22 of 26 Revision:

A F0306-01 RD* NEC041480 Structural Integrity Associates, Inc.Total Stress Inteisity.

SDDw I-Gr-oxI 3DMD S2DMID I0 00 0 0 Z ) WO6 Ttne 4eo)Figure 16: Safe End.Total Stress History for 25% Flow Total Stress Intmesity Wato ... .... ..-.. .-... -..........................

.' .............

., ... -. -.-.- .-.-... .........-

...-.......-..-...

...-.. -..3DMOD 2DMXD ,.I000 _=m_____________

____________

I ____________

I _____________

_____________

-1000D 0 100 do Tine g t.)Figure 17: Safe End Membrane Plus Bending Stress History for 253/41/ Flaw File No.: VY'-16Q-301 Re'vision:

A Page 23 of 26 F0306-O1IRD NEC041481 Structural integrity Associates, Inc.Total Stress Intensity 25tDDD 20WDO 1 O 1000 'C MD:OD, 4000 The ktecD Figure 18: Blend Radius Total Stress History for 100% Flow".Total Stress Intserity 5O0 3DDOD 2DEDD I 15DDD I DODD 01000 2DD 4000 wOO The 4T e I Figure 19: Blend Radius Membrane Plus Bending-Stress History for 100% Flow.File No.: .VY- 1 6Q-301 Page 24 of 26 PRevision:

A FO306-O1RO INl j.L,,U4L4lW-Structural Integrity Associates, Inc.Total Stress Intensity 250D 2DEVD 1 OD 0.i0Dr mmW 3DDD 4000 Figure 20: Blend Radius Total Stress History for 40% Flow Total Stress C IOD mm m000 4000 W00 The re¢ -D Figure 21: Blend Radius Membrane Plus Bending Stress History for 40% Flow File No.: VY-16Q-301 PRevision:

A Page 25 of 26.F0306-O1RD NEC041483 Structural Integrity Associates, Inc.Total Stress Intensity 25WDD 2D~DD The ktdei Figure 22: Blend Radius Total Stress History for 25% Flow Total Stress Intensity 20t00 I 16EDO 10000u 51510 O10001 MW 4000 woo0 Thte lee Figure 23: Blend Radius Membrane Plus Bending Stress History for .25/o Flow File No.: VY-16Q-301 Revision:

A Page 26 of 26 F0306-O1RD NEC041484 Structural integrity Associates, 'Inc.APPENDIX A FINITE ELEIVIENT ANALYSIS FILES tI File No.: VY*-16Q-301 Revision:

A Page Al of A2 F0306-O1RD NEC041485 Structural Integrity Associates, Inc.FWP VY'llNP Input File for Pressure Load In Computer files FWT VY: 100.INTP Input File for 100% Flow Thermal Analysis In Computer files FWSVY 100.INP Input File.for 100% Flow Stress Analysis' In Computer files FWT VYT 40.INP Input File for 40% Flow Thennal Analysis In C6mputerfiles FWSVY_40.INP Input File for 40% Flow Stress Analysis In Computer files FWT VY'_25.INP Input File for 25% Flow Thermal Analysis LI Computer files FWSVY- 25.INP, Input File for 25% Flow Stress Analysis In Computer files PSE.OUT Stress Output at Safe End with Pressure Load In Computer files PBLEND.OUT Stress Output at Blend Ra.dius with Pressure Load In Computer files#FSE.OUT Stress Output at Safe End In Computer files#FBLEND.OUT Stress Output at Blend R .dius Ln Computer files#FSE IN"IDE.RED Stress Extracted at Safe End In Computerfiles

  1. FBLEND_1INSIDE.RED Stress Extracted at Blend Radius In Computer files#FSE T-Green.XLS Green Function with Total Stress at Safe End In Computer files#FSEM1+B-Green.XLS Green Function with Membrane plus Bending Stress In Computer files at Safe End -.#FBR T-Green.X-LS Green Function with Total Stress at Blend Radius In Computer files#FBR__M+B-Green.X)S Green Function with Membrane plus Bending Stress Ln Computer files.at Blend Radius\There#is .LM. L meaning I00%. 40%. and 25% flow rate. respectively.

File No.: VY-16Q-301 Revision:

A Page A2 of A2 F0306-01RD NEC041486.

  • ' Exib.itR C Structural Integrity Associates, Inc. Fil No.: VY-16Q-302 CALCULATION PACKAGE ProjectNo.:

VY-16Q PROJECT NAME: Environmental Fatigue.Analysis of VYNPS CONTRACT NO.: 10150394 CLIENT: PLANT:j Entergy Veront Yan~kee, LLC Vermont Yankee Nuclear Power Station CALCULATION TITLE: Fatigue Analysis ofFeedwater Nozzle Document 'Affected Project Manager Preparer(s):&

Revision Pages Revision Description Approval Checker(s)

Signature

& Date Signatures

& Date.A 1-33 Initial Draft forReview Terry .1 Herrmann Minghao Qin John F. Staples 7 Page 1 of 33 F0306-OIRO NEC041407 Table of Contents 1 .0 O B JE C T IV E ...........................................

.........................

.........

....... 4 : 2 .0 M E T H O D O L O G Y ..............................................................................................

... .. .. ...... ... 4 3.0 ANALYSIS ............

.........

..............................................

4 4.0 Fatigue Usage Results.....

................................................

8 5.0 Environmental Fatigue Analysis.......

...................

................

9 6 .0 .R eferen c es ............

................................................................

........................

....9 List of Tables Table 1: Blend Radius Transients

...........................................

10'Table 2: Safe End Transient

..........

............................................

... 10 Table 3: Maximum Piping Stress Intensity Calculations

.........1........

.............

Table 4, B lend R adius Stress Sum m ary .............. ,I ............

..........

..................................................

.12 Table 5: Safe End Stress'ummary

..........................................

14 Table 6: Fatigue Results forBlend Radius. (60 Years)....................

........17 Table 7: Fatigue Results for Safe End (60 Years)..............................................

19 t .File No.: VY-16Q-302 Revision:

A Page 2 of 33 F0306-01RO NEG041488 J List of Figures Figure 1 H ot Standby Loop [ ...... .........................................

8..........................................

23 Figure 2: External Forces and Moments on the Recirculation Outlet Nozzle .... ...........

24 Figure 3 Transient 1, Bolt-up .............

.. ..................................

24 Figure 4: Transient 2, Design HYD Test .............

..... .................

............................

25 F igure 5 T ransient 3, Startu p ........5 ............................................................................................

25 Figure 6: Transient 4, Turbine Roll Increased to Heated Power ...............................

.. .26 Figure 7 Transient 5, D aily Reduction 75% Pow er ............

6..............................................................

26 Figure 8: Transient 6, Weekly Redubtion 50'/o Power............

........ .............

27 Figure 9 Transient 9, Turbine Trip at 25% Power .....................

................................................

27 Figure 10: Transient 10, Feedwater Bypass ................

.......................

28 Figure 11: Transient 11, Loss ofFeedwater Pumps ................................

28 Figure 12: Transient 12, Turbine Generator Trip .................................

29 Figure 13: Transient 14, SRVBlowdown

..... ..........

.... .. ...........

....... 29 Figure 14: Transient 17; Improper Start .......................................

30 Figure 15: Transient 19, Reduction to 0% Power ....................

....................

... 30 Figure 16: Transient 20, Hot Standby (Heatup Portion) ..................

........ .................................

31 Figure 17 Transient 20A, Hot Standby (Feedwater Injection Portion) .... ...............

31 Figure 18: Transient 21-23, Shutdown .. ...............................................

32 Figure 19:. Transient 24, Hydrostatic Test ....... ...... ........................

.........

32 Figure 20: Transient 25, Unbolt ... .........................

................................

33 FileNo.: VY-16Q-302

'Revision:-

A Page 3 of 33 F0306-OIRO NEG041489 1.0 OB-JECTIVE The purpose of this calculation is to p erform a revised fatigue analysis for the feedwater nozzle. Two locations will be analyzed for fatigue acceptance:

the safe end (SA508 Class 1) and the blend radius (SA508 Class 2). Both locations are chosen based on the highest overall stress of the analysis performed in Reference

[ 1]. A revised fatigue usage will be determined for both locations, the nozzle forging and safe eid, respectively.

In the end, the environmental fatigue usage factors will be determined for the. limiting location-2.0 METHODOLOGY Three programs will be used to perform the fatigue analysis.

The first two calculate stresses in response to transients.

The transients analyzed are those described in the thermal cycle diagrams [2, 3] for the feedwater nozzle. These transients are shown in Figures 3 -20 The temperatures and pressures for these transients have been modified to account for power uprate [4]. The power uprate pressures and temperatures were used for this analysis.

The last program calculates fatigue based on the stress output. 'The three programs are STRESS.EXE, P-V.EXE, and FATIGUE.EXE.

All three programs are explained and verified for use on this project in Reference

[5].3.0 ANALYSIS The fatigue analysis involves the preparing of input files for, and running of three programs venified and described in Reference

[5]. The programs STRESS.EXE and P-V.EXE are nintogether through the use of a batch: file. The program FATIGUE.EXE is run after processing the output from PV.EXE.The steps associated with.this process are described in the following sub-sections.

3.1 Transient

Definitfons-(fr program STRESS.EXE)

The program STRESS. EXE requires the following three input files for analyzing an individual transient:

  • Green.dat.

There are 12 stress history functions obtained from Reference

[1]. They represent the membrane plus bending and total stress intensities at the blend radius and safe end locations.

Both of the blend radius and the safe end have two stress history functions for eachof the following flow conditions; 100%, 40%, and 25% flow.Green.cfg is configured as described in Referencef[5].

  • Transnt.inp.

These files are created to represait the transients shown on the thermal cycle diagrams and redefined by power uprate. Note that transients 12, 13, and 15 are nearly identical on the thermal cycle diagram [3] and the results from running transient 12 will be used for all three.transientS.

Transient 16, 17 and 18 will not be considered since there is no temperature change. Tables 1 and 2 show the thermal history used to represent each File No.: VY-16Q-302 Page 4 of 33 Revision:

A F0306-OIRO NECO41490 transient.

Based upon the thermal cycle diagram for the feedwaternozzle

[3], the transients are split into the following groups based upon flow rate: o Transients 1, 2, 3, 20, 2QA, 21-23, 24, and 25 are run at 25% flow.' Transient 20, Hot Standby, is split up into two parts. The first portion is "Heatup portionf that is defined from Reference

[3]. The second portion is"Feedwater Injection portion" that is defined from Reference

[8, sheet 29]. This transient is shown in Figure 1.o Transient 11 is run at40 0/o flow. Transient 11 starts off at and ends at 100/o flow.o Transients 5, 6,,9, 10, 11, 12, 14, 17, and 19 are run at 100% flow.o Transient 4 is run at 1 0/o flow only to obtain the last stress point. The remainder of the stress points for transient 4 is obtained from the 25% flow stress results. The results are pulled from the two flow case results based upon the flow rates defined in the thermal cycle diagram [3].o Transients,12, 13, 14 and 15 were run at 10 0'/o flow. Heat transfer coefficients were not re-calculated for the 1 minute intervals each of these transients is at 1 10/o flow.The effect of this small flow rate increase for such a relatively short duration should be minor.3.2 Peak and Valley Points of the Stress History (for program P-V.EXE)The program P-V. exe is then run to extract the peaks and valleys from the STRESS. OUT file produced by tle STRESS.EXE program. The only input required for this program is STRESS.OUT and it outputs all the peaks and valleys to P-V.OUT. Columns 2 through 5 of Tables 4 (for the blend radius) and 5 (forthe safe end) show the final peak and valley output after it hasbeen reduced to eliminate any unrealistic stress fluctuations.

The pressure for column six is then filled in using the thermal cycle diagrams.

Pressure and piping loads have to be added to the peak and valley points to calculate the final stress values used for fatigue analysis..,3.3 PressureLoad The pressure stress associated with a 1000 psi internal pressure was determined in Reference

[1].These values are as follows: Pressure stress for the safe end:* 8693 psi membrane plus bending stress intensity.

  • 8891 psi total linearized stress intensity.

Pressure stress for the blend radius:* 27490 psi membrane plus bending stress intensity.

  • 28300 psi total linearized stress intensity.

" These pressure stress values for each location were linearly scaled with pressure The actual pressure for column 6 of Tables 4 and 5 is obtained from Reference

[3]. The scaled pressure stress values are shown in columns 7 and 8 of Tables 4 and 5.The pressure stress is combined with the thermal and piping loads to calculate the final stress values used for fatigue analysis.

The piping load sign is set as the same as the thermal stress sign File NQo.: VY-16Q-302

-Page 5 of 33 Revision:

A F0306-f-IRO NEC041491

3.4 Attached

Piping Loads Additionally, the piping stress intensity (stress caused by the attached piping) was determined.

These piping forces and moments are determined as shown in Figure 2.The following formulas are used to defermine the maximum stress intensity in the nozzle at the two locations of interest.

From engineering statics, the piping loads atthie end of the model canbe translated to the first and second cut locations using the following equations: (M )= M.-F, I For Cut I: (-M; = , + F. 41 For Cut I.I:M L-The total bending moment and shear loads are obtained using the equations below:/(MD)? + (g)For Cut I: F,,= (F,)1 2 +/-(,)?For Cut II: FQ= ( P +(F (F,)2 2 The distributed loads for a thin-walled cylinder are obtained using the equations below: 2V? 2 RNJ N N = 2 ,Rr To determine the primary stresses, Pm, due to internal pressure and piping loads, the following equations are used.For Cut I, using thin-walled equations:

File No: VY-16Q-302 Page 6 of 33 Revision:

A F0306-OIRO NEC041492 Pa INNZ 2tN t N.Pa..01( = -q.lax2 (PT.) d~2 or 2 .M). .(PM)Because pressure was not considered in this analysis, the equations.

used for CutI are valid for Cut If.where: L, = The length fi-om the end of the nozzle where the piping loads are applied to the location of interest in the safe end.L2 = The length from the end of the nozzle where the piping loads are applied to the location of interest in the blend radius.My = The maximum bending moment in the xy plane.F = The maximum shear force in the xy plane.N = The normal force per inch of circumference applied to the end of the nozzle in the.z direction.

qN = The shear force per inch of circumference applied to the nozzle.RN The mid-wall nozzle radius.Per Reference

[6], the feedwater nozzle piping loads are as follows: F, =3,000 lbs Mk= 28,000 it-lb =336,000 in-lb Fy= 15,000 lbs 'My= 13,000 it-lb = 156,000 in-lb F= 3,200 lbs "M= 40,000 if-lb =480,000 in-lb The loads are applied at the connection of the pipingand safe end [7]. Therefore, the L 1 is equal to 12.0871 inches and the L 2 is equal to 27.572 inches. The calculations for the safe end andblend radius are shown in Table 3. The first cut location is the same as the Green's Function cross section per [1] at the safe end, and the second cut is from Node 645 (outside) to Node 501 (inside).

The maximum stress intensities due to piping loads are 5707.97 psi at the safe end and 265.47 psi at the blend radius, respectively.

These piping stress values are scaled assuming no.stress occurs at an ambient temperature of 70°F and the full values are reached at reactor design temperature, 575 0 F. The scaled piping stress values*File No.: VY-16Q-302 Page 7 of 33 Revision:.

A F0306-01Ra NEC041493

)are shown incolumns 9 and 10 of Tables 4 and 5. Columns 11 and 12 of tables 4 and 5 show the summation of all stresses for each thermal peak and valley stress point.3.5 Fatigue Analysis (for program FATIGUE.EXE)

The number of cycles projected-for the 60-year operating life is used for each transient

[9]: Column 13 in Tables 4 and 5 shows the number of cycles associated with each transient.

The numb er of cycles for 60 years was obtained from Reference 19].*The program FATIGUE.EXE performs the "ASME Code style" peak event pairing required to calculate a fatigue usage value. The input data for FATIGUE.CFG.

is as follows: Blend Radius Safe End Parameters m and n for 2.0 & 0.2 (low 3.0 & 0.2 (carbon steel)ComputingK}

alloy steel) [ 10] [10]Design Stress Intensity, 26700 psi [10] 17800 psi [10]V a lu e s , S ..,_ _ _ _ _ _ __18 0_p i_1 0 Elastic Modulus fom .x6 psi [ 10] 28.3xl 06 psi [10]Applicable Fatigue Curve Elastic Modulus Used in 6 6 Finite Element Model 26.7x10,psi ZO.xIC psi The Geometric Stress Concentration Factor Kt 1.0 1.34 [12, page 35 of S4]The results of the fatigue analyses are presented in Tables 6 and 7 for the blend radius and safe end for 60 years, respectiv ely.The results described are contained in EXCEL files BRreszttsxts and SZresultsxls, which are contained in the computer files.4.0 FATIGUE USAGE RESULTS Theblend radius~cumulative usage factor (CUF) from system cycling is 0.0127 for 60 years. The safe end CUFtis 0.1149 for 60 years: File No.: VY-16Q-302 Revision:

A Page 8 of 33 F0306-OIRO NECO41494

5.0 ENVIRONMENTAL

FATIGUE ANALYSIS Per Reference

[ 11], the dissolved Oxygen (DO) calculationshows the overall HWC availability is.47%. This means the time ratio under NWC (pre-HWC) is 53%.For the safe end location, the environmental fatigue factors for post-HWC and pre-HWC are all 1.74 from Table 3 of Reference

[11]. It results in an EAF adjusted CUF of 1.74 x 0.1149 = 0.1999 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0). The overall environmental multiplier is 1.74.For the blend radius location, the environmental fatigue factors for post-HWC and pre-HWC are 11.14 and 8.82 from Table 4 of Reference

[11]. This results in an EAF adjusted CUF of (11. 14 x 53% + 8.82x 47%) x 0.0127 = 0.1276 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0). The overall environmental multiplier is 10.0496.

6.0 REFERENCES

1. SI Calculatin No. VY-16Q-301, Revision A, "Feedwater Nozzle Green Functions." 2. Reactor Thermal Cycles, GE Drawing No. 729E762, SI File No. W-NYPA-78Q-205.
3. Nozzle Thermal Cycles (FEEDWATER), GE Drawing No. 135B9990, Sheet 4 of 5, Rev. 0, SI File No. W-NYPA-78Q-206.
4. GE Certified Design Specification
0. 26A6019, Revision 1, "Reactor'Vessel -Extended Power Uprate," SI File No. VY-05Q-236.-
5. Structural Integrity Associates Calculation (Generic)

No. SW-SPVF-01Q-301, Revision 0,"STRESS.EXE, P-V.EXE, and FATIGUE.EXE Software Verification." 6. GE Drawing No.919D294, Revision 11, Sht. No. 7, "Reactor Vessel," SI File No. W-VY-05Q-241 7. SI Calculation No. VY-1OQ-302, Revision .0, "Loads and Transient Definitions." 8. General Electric Stress Report No. DCZ2A5583, Revision 0, Section T, "Thermal Analysis FitzPatrick Feedwater Nozzle Modification," SI File No. NYPA-53Q-212.

9. Referencefor cycle counts'< < LATER> > Entergy Calcudation No.' VYC-378, Revision 2,"Vermont Yankee Reactor Cyclic Limits for Transient Events," 3/10/88, SI File No. VY--16Q-2xx.
10. American Society of Mechanical Engineers, Boiler and Pressure Vessel Code,Section II, Part D, 1998 Edition,-

2000 Addenda.11. SI Calculation No. VY-16Q-303, Revision A, "Environmental Fatigue Evaluation of Reactor Recirculatiori Inlet Nozzle and Vessel Shell Bottom Head." 12. Chicago Bridge & Iron Company Contractor 9-6201, Revision 2, "Section S4, Stress Analysis Feedwater Nozzle Vermont Yankee Reactor Vessel," SI File No. VY-05Q-238.

File No.: VY-16Q-302 Page 9 of 33 Revision:

A-F0306-O1RO NEC041495S Table 1: Blend Radius Transients-rnr--'rn~r-

~ ----I a -r -a ~ S ---'44 CM.s.I ~.> .~ ;-i-t, ,4 .. ..' .:.. .. ....----- 442 * ........._nai So5..... .... ..........

4-- ----- -------- ..... .m.. .. .... ..'-G ', .... ......-.. i-'",,-. .."""-........ L

....'WC -I SM '4 =M ~ '4 Cf4d-,a.1 [ M.a : ,~..........

.........

..Sam.. ...m.. ... ......SW .... ...... WE'u u0 : 42 1 m 5 .5,3..... .... .. ..'. ' .0 1%..... : --..* nu. ..... .a. .. .. ... .............

_ ....a.!. ..........

.............

..... ......... o.. ........-..

,. ........ ... "..............................6 P14 443 '443~I .. ..t~t?....-

..........

................-...P4S!5EA................

S'Sa-m Am SOa G5 4 .4 S'ma 5m mm '54..; ... ... _.... ..._........ ........ '; ,...... ..... t ...... ... , "."" ......... S " ..'.. '..... .........

.4 ..'.........

.." ........ .... 4.4. ..7------- 4 344'I' i : i nS a.~4~5' ----- .... ......-T -i i I ;-a iii .3"b 2"S a-o -0.0i o S 20150 SM. 5 .5 '...................

..' ...'- ' .................

' a m _" ..am.........

... .... .... .. .. .. .,....inevae

.am Sm '=3o ,, ,S'Sml .,s , ,m 'C' ,, ist -... "" '-'"53-' '""-"'""'m..

...'am 144 '4 7 Fo' -IN 41" a=5

  • o5a 4 l 4'51s Woo 244A mill amm Ma -l a a' .5...... ... ... .= ......... ... ,..a .. !!n R ....... ....... ....... .... ý!Km ... ... ... ..... [. ...... .. ..... .. .......... .t ., "9 "-a : .u~u .... ..........

... ... ... .........

..... -'" ...'" ...Ei -"f6 .......................

... ..:L .... ... ; ......""T " ; " " .. -"; .......................... ;. ........."T'" ...... -'.,......,,=

,. "" m '"M"'""'

a 'rnnro 'r,-""""""'ur

"' mm : ,o -z 'm 'u 5= 0a : o a ~ ~ .. ... m ~ ' ...5 Sl ........ ;....... ... ......I M i -: '-.....".."; " :"" " -..u .... ....... .. .. .. ..............

....... .... .........- " E" -"- ' " m" "'- -6.................

.......:: = l : : : -: .: .". .'... .-.:.°..!n -.! "- i : -.. ." a " "" '"-m a om '"-',a"-',ih -a..... '" -" *"- s-'0E,-..--= 42 5 --.=. ..... W7 ........ S'S 7ii 31.4 'SIG= 3..... .........mM mZlThe indicated timeorpressure was assumed .-.:; .... ................

.4 ' ..........

Table 2: Safe End Transient'a .rc------------0 rqetd. I S =o Se '440 -.0 HIU I2'S -'4 15" ,.NNt I : 44 3-44: 44:: '111 .544 .W4 a i rO 0................

i-4 1 ' I Pf ~ 7 ~.. ..... ....F ..........

7..................

... ...... ..... ......... .! a4 'PH -Ma -M'--. Llc'4 am aO t0.0......;.._ ....L ..... _:.. _.. ;r ...... .' t. _ m,~....,. .o ..... ........ .': ... .. ......, ...... .. .." ............

". ...-.4,.L M..........

.. ....... .5 ,, 2 .,, SI.D. 2 M 0 Ia a..'.4.. ' .....m.. ....... .............

'.... ....... ....'.. ........... .."

.... .... ...........

?!R ..... .... .. ......... .,, ....IouId .... "U0233cm 44 tsd.- ' 5-A 2'0 '0" ..':...... .... " -"'.It..............

..........

! " ..." " .,. ,.,to m ' tam "; a~a I* , .---....- -,---..,-..

.......................

....,.-,..........-,-.............................

.... ...... ....... ...... .....-......

.... .......-...

... 3.. =... .... ....................

.. -.V. ?.n .. .. ....n _ ..-_ ..m.. -M 5 _... .H A..... ..............

... ...... .......... .4 .. .. .-=.. ........4...1-....

..5.!V .. .... ... ... .... ....... B .R _ M. .... .........

I...a'i. Ibnv am Sc -i .a a'O o.hwna Iw olia " 2S 2* -... -.' .. .. -.-....... -...... ............

.. .... -. _.. !.. o. o ......... .. .. ... ..... ..... ... "... " .. I I .......-4..5"..I.-."..

.......S ....- ... .I ............

'.. .. .......'?FR L 'a._ ".7 ....... .5 -.4 .........

RA4 ...............

444%so '44 -. ....... 7-' 442 945 ~ i_ -- -* * .... .. .=W 0 So ota .544 -'~ 'a ....p~ll ........................

P., l...s ... MOa .....5 .. .. .3' ...eh ..... 9 .. 4.... 4 ..................

P4450 M. I4 ,b. 0.1 W24wn '54D 2W- I.4u So 4-0 2aa "4 "0 , G- i 1me r -o 0 W 3 SU4 jd .5 112 A: *C'M is., I 4- 5 'M ;a 44 a Ll- 21'253 "" 'mo 0 i;ii. ...... .... .......... ...........

.__________

--- ~ I.441324.to Zflqm 445 ........ ..........2.5 1ý qa '-45........ .... .4 .... -S am' ' *'S Note: 7 These tramsients are the same as in Table 2with the exception ofthe 500 secon state time increment that is used. The transients in Table 2 are plotted using a SOc second steady state increment The diference is due to the length ofthe Green's Function for.the saf end which is shorter compared to the blendRadius.

2. The indicated time or pressure was assumed.FileNo.: VY-16Q-302 Revision:

A Page 10 of 33 F0306- 0RO NEC041496 Table 3: Maximum Pipirig Stress Intensity Calculations Safe End External Piping Loads Blend Radius External Piping Loads Parameters Parameters F. 3.00 kips Fy= 15.00 kips Fz= 3.20 kips Mx= 336.00 in-kips MX= 156.00 in-kips Mz= -480.00 iri-kips OD= 11.86 in.ID= 10.409 in RN= 5.57 in L= .12:09 in tNh 0.72 in (x)2 = 154.69 .in-kips (Mj)2= 192.26 in-kips MXV=. 246.77 in-kips F___= 15.30- kips Nz= 2.63 kips/in iN= -1.59 kips/in Primary Membrane Stress Intensity PMz= 3.63 ksi= " -=220 ksi SIn,. = 5.71. ksi SI= .5707.97 psi F. = 3.00 kips Fy = 15.00 kips Fz= 3.20 kips M%= -336.00 in-kips M'= 156.00 in-kips Mz= 480.00 in-kips OD= 22.67 in 1D= 10.750 in RN= 8.35 in L= 27.57 in tN= -. 5.96 in (Mx)_ = -77.58 in-kips (My) = 238.72 in-kips M)W= 251.01_ in-kips Fxy= 15.30 kips Nz= 1,.21 kips/in qN- -0.51 kips/in Primary Membrane Stress Intensity PMz= 0.20 ksi T =. -0.09 ksi SI, = 0.27 ksi SlI'x = 265.47 psi.1 Note: The locations paths, respecti ely.for Cut I and Cut H1 were defined in Reference'[

1] for safe end and blend radius File No.: VY-16Q-302 Revision:

A Page. 11 of 33 F0306-01RO NEC04-1497 Q, Table 4: Blend Radius Stress Summary 1 2 -89 1 11 1.'Total IB Total MB Total Total Nu rrb+Total M+ Pressure Pressure Piping Piping Tot al W8 of Transient Time rress Sress Temperture Pressure 8ress Stress Stress Stress 9ress Stress Cydes Number a s al. F s J I S l -1211y [60 Years)100 31283 25538 70D0 0 0 0 0 31283 DO 25638.00 123 10 312832&98 70 DO 0 0 0 0 031283.0 25M38.00 123 2 01 312832893) 70 0_ 0 0 0 0 31283 D0 25838.00 120-2189.91 29078 23835 100 1100 31130 30239 15.770121 15.77042 60223.77 54090.77 ___120 6950 29102 23835 100 55. 141 13746 16.770V 15.77042 305M.77 25226.27 120 3 0 29103 2383 100 50 1415 13745 15.7702 15.77042 30533.77 25223.27 30 1689.61 -3592 -3108 549 1010 2983 277649 -251.801 -251.801 2473,02 243,6.10 30 21 10q .3527 -3108 5419 1010 20893 277049 -251.801 -25 1.801 2160420 24345. 10 .300 4 01 -322 -3178 549 10101 298 277649 -251.801 -251.801 248M20 24335.10 3" 0 197 252 21664 132.004 1.77049 32.5943 32.5943 6 1801.9 29767 179 278.187 10101 2983 277649 109.4U99 10943M 574W.44 45824.34 30 2050.2 1660 12531 329.693 1010 2853 277649 13606 13648 46279.46 41632.36 3)0 3891 7752 783 392 1010 2B83 277649 169.2592 169.2592 3051427 35797.17 30 24802 7705 6764 2 1010 2833 277649 169.2502 189.2502 3646727 3188.17 .30 5 0 7710 6761 .392 1010 29893 277649 169.2502 189.2502 364227 34165.17 10800 2218.7 13688 11950 310.875 1010 2853 277649 125.6233 12.5.233 42297B2 .39841.52 100)0 8890 7705 6766 392 1010 2983 277649 1692502 169.2502 3546727 34899.17 100l0 6 01 771 6761 392 1010 29583 277649 169.2592 109.2502 3646227 34195.17 200 290.01 15732 1390 291.089 1010 295B3 277649 110.0854 110.9554 4442597 41775.87 20-10420 7705 6764 '392 101 29893 277649 189.2502 189.2502 3648927 31898.17 2000 9 0 7710 61 392 1010 2893 277849 189.2502 .169.25M 384627 3185.17 10 2524.2 2929 22923 127.592 10101 2903 277649 30.275 30.275 6591227 50718.17 10 302 " 489810 104)00 7705 6Y764 392 1010 29893 Z77049 109.2502 189.2502 364527 31698.17 10 10 0 7710 67611 32 10101 2983 277649 189.2502 169.250 3645227 34W5.17 70 3549.97855

.8791! 392 10101 i2893 277649 189.2502 189.2502 3540827 34725.17 _ 0 7GO 7702 6789 392 1010 286B3 Z77049 189.202 189.292 3046427 34703.17 70 if .0 7710 6761 392 1 2 77649 169.292 1.2502 35 27 5.17_3.51 214 6282 696 11901 3377 32713.1 289.2119 289.2119 4015121 39255.31 10 194.7 31703 2073 85.67 811351 32120. 31201.16 8.130703 8.130703 83831B3 51892.28 10 1803.7 -4378 21151 865 1135 32120.6 31201.11 -260.2119 280.2119 274B2.29 52612.35 10 2189.31 .478 216 655 1135 32120.6 31201.15 -200.2119 280.2119 27812.29 31708.35 10 2362.5 31251 -1829 584.053 1135 32120.5 31201.15 250.203 -250.203 63831.70 29112.95 10_ _ 5407.31 110 2292 540.01 105 2955.5 200195 247.0752 247.0762 3471358 51311.03 10_ 55 564.9 -4341 6188 895 1085 30130.5 2027685 -289.2119 289.2119 2553829 35725.05 10 6729.31 -4938 -1834 965 1135 32120.5 31201.15 -289.2119

-269.2119 2892229 29106.94 10 8924.61 31211 -3107 584.048 919 207.7 2628321 289.1816 -289.1816 574788 21896.13 719.91 32102 18741 51.167 675 19102.5 18589.75 -9900144 -9.900144 5119450 37298.85 10 7627.51 10 21583 32.194 641 187912 1826326 122.0599 122.055 3301326 30938.42 10 17064.8 -3556 11857 541 10101 2983 277649 -251.801 251.801 2477520 39873.70 10 18212.5 -3832 1302 548.878 10101 2983 277649 -251.7389 251.7389 2479926 29398.64 10 162133 -3676 -3116 503.978 101 29583 Z77649 -22.1338 -229.1338 2779 24 .77 0 18410.6 27935 10581 100 1010 -29893 277649. 15.77042 1.77042 634.77 4781.67__ _ 28914.4 297 216731 24.048 1010 29893 277649 91.4938 91.4G300 57433.49 62529.39 10*C lullf 0 ¢-.l& 1 "1 f. "1 7.18941-r-7.1894 46264.19-4-3B33.0.9, L-0U 20262P 165FA 15B51' ýý7- '21803-1 28914.=8 IC 77610 7892 6761 101(101C_10-1c 113" 94(g4C 27764g 1 3051327--35062.17 189 .2502 32120.5 10 3 1201.151 1 161 34W8.17 34869517 -0 38131.42 s 33131.42 0 32770.87, 6 6118320!32805.87 60 34731.17 60 3l698.17 60 Z531u 132.U07 298502. 25840.61 32.595881 32.5958 2790.9 3921' 940 25892 1642.217691 7 392 1011 28583/ / L~0/0'1 101(1(277e4_0 wou 1 11 ub t5lbq 1UIL- ------, , 13 1 0 T710 6761 302 101C 277649 189.25921 169.2592 364M227 34695.17 1 1 10 392 1137 32120.5 1 31201.15 1 151 7 71U 1 321 1135 32120.S1 31201.15 1692591 39997713B131.421 16.52 99.7 38131.421 109.092 3q1271 32770.871 30 7710, 6761 9,q 25840.01 1200;21 28538 283101 132.007I 10101 298931 277649 I 790. 2 3921 *10101 28533 27749[USIU/.ou I!6410A 76911 6707 101C 2776401 '169.2592 169.2592 34317i 34731.17 1 346.9817 77051 676'4.392 lUlL 0 m 1OIC 277649 169.2092 !W.=m a File No. : VY-16Q-302 Revision:

A Page 12 of 33 F0306-OIRO NEC041498 Table 4: Blend Radius Stress Summary (Continue) 1 2 3 4 5 6 7 8 9 10 11 12 13 Total M+8 Total M+13 Total Total. Number Total M.B Pressure Pressure iping Piping Total K-B of Trans snt Ti me Stress Stress Temperature Pressure Stress Stress Stress Stress Stress Stress Cycles Nium ber F JsJ [ fl I (psiaI1fsi I jJL fl. J psill (60 yea 40 7710 6761 392 1010 28583 27784. 1692692 1692692 35432.2? 34395.17 1 69 2482 25678 100 60 1416 1374.6 15.7042 15.77042 298277 27068.27 1 150 7710 671 392 1010 28583 27764.9 1692692 1692692 3522? 34395.17 22 S 10 7710 6761 392 .1135 3212)b 312)1.15 1692692 1692692 39999.77 38131.42 22 15 7710 6781 392 1135 321205 31201.15 1692692 1692692 39999.77 38131.42 22 0 7710 6 71 392 940 2650 -2684D.6 1692692 1692692 34A81.27 32770.87 228 2030.2 2B638 25310 132.007 1010 28583 27764.9 32.59508 32.69698 57253.00 53107.5 228 2700.9 2B619 6796 302 1010 28583 27764.9 1692692 1692692 57371.27 34730.17 22 4.4 .7691 6797 392 1010 28583 27764.9 169292 1692692 30443.27 34731.17 22 9591 7706 6764 392 1010 28583 .27764.9 1692692 1692692 357.27 34598.17 22-17 0 7710 6761 392 1010 28583 27764.9 1692692 1692692 36542.27 34395.17 1 10 7710 6761 392 .1010 28583 27764.9 1692692 1692692 3543227 34385.17 1 S0 7710 671 392 1010 28583 27764.9 1692692 1692692 30432.27 34395.17 30 2)0 16906 14GO0 2135 1010 28583 27764.9 102.6077 1025077 454)1.61 42)57.41 300-15 *172 1382 235 1001 258 1774.5 15.6772 15.77 542 .62 472852.41 30 20 0 17 2382325 1000 169 5141 13745 15.77 15770 4 570. 41774.41 30 2270 2)103 230833 10 1010 28583i1 274.0 1.801251.7042477 24424.10 1 20A 0 -32 378o9110 2 2749 21811-5.01 28I2 24M335. 10 3 1 2)103 21233 219.007 10106 253 42764.787 15 47042 15. 7702 35 36687.2564

.2 258-11 649 " 01 28lo774lol181-2181 256+ 20352.10 33 5451 -33 350 00 2958 27I. 2181-211 2752 24363.10 0 2"1-23 -- 0 18 40 101 298 7641-6.01-5.012l92 24335.10 3 1273 2)103 238233 10 16 7413 14.56 15.77042 15.77042 735607 26213.2751 188 2)103 23833 100 69 1415 1374.6 15.77042 15.77042 30537. 28213.27 1 24 20 29103 23833 100 50 1415 1374. 15..77042 15.77042 3053377 2522327 1 60 90 3 100 *1563 4229d 68 6704 6702 7316 ..66815.64 1 120 213283 100 1563142294 O8 5704 5702 7318 86815.64 -180 213283 100 50 146 17. 6702I6702 3637 26223.27 1 20)213283 100 60 146 17. 57021.74 03.7 25223.27 1 26 0 29103 23833 100 0 0 0 15.77042 16.77042 2911877 23148.77 123 2205 313)8 25831 70 _0 0 0 0 0 3138§ 2 531 .10 0 0 0 0 0 3 2w631 1231 NOTES: Column 1: Transient numberidertification.

Column 2: Time during transient where a maxima or minima stress intensity occurs from P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V. OUT output file.C olumn 4: Maxima or minima membrane plus bending stre ss intensity from P-V. OU T output fil e.Column 5: Temperature per total stx, ss intensity.

Column6: Pressure per Table3 [I].Column 7- Total pressure stress intensity from the quantity (Column 6 x 28300)/1000:

C olumn 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 27490)/I 000.Column 9: Total extemal stress from calculation in Table 1, 89.03 psi*(Column 5-70 0 F)/(575TF

-706F).Column 10: Sameas Column 9, but for M+B stress.Column I : Sum of total stresses (Columns 3,7, and 9).Column 12: Sum of membrane plus bending. stresses (Columns 4, 8,and 10).Column 13: Number of cycles for the transient (60 years).File No.: VY-16Q-302 Revision:

A Page 13 of 33 F0306-OIRO NEC041499 Table5: SafeEnd Stress Summary t 2 3 4 6 6 7 8 9 10 ii U 13 Total tB Tate al wB 'Total Total Numbs-Tot~ al! WB Pressure Pressure Aipi ng Aiping Total w4-8 Of-t Ti me Stress Stress Temperature Pressure Stress Stress Stress Stress Stress Stress Cyles Nu rrber s A j F J[(i I (ps I ( I fpsi years i 0 / 70.0W 0 0 0 0 -42. -38.80 123.10 A2 -38 70.00 0 0 0 o o -'A.0 -3800 123 2 0 3 70 0 0 0 0 0 -42. 00 120 1228 -107 -8 73.431 0 0 0 -38.78031:-39.031

-145.78 --124.78 120 1210 2 100 010 0780.1 0652.3 -330.0875

-330876 94M01 0104.21 120-060 -4O -37 100. 6 444.6, 43456 -330.0876

-339.0876 667 686 1 30 100 W 6 444.66 4346 -330.0876

-33.0876 66.45 58.56 30 160.6 -105 -84 104317 60 444.66 4345 -337.882 -387.8322 -U.33 -37.23 320 1630'.3 8 643 1010 8771 87903 -5414.C97

-6414007 35M.81 3357.83 30-1M4 14 6m4 1010 8070.01 8779931-6414.807

-414087 36M.81 3361.83 3)0 4 .01 18 543 1010 8070.01 877093 -5414.097

-6414.07 3645.81 3347.83 3)0 a. 44344 38072 1W 1010 8070.01 8703 330.0876 330.8076 5333.00 48091.02 30.176.4 -417 -414 100 1010 8070.01 877023 -33.0876 -3390876 8223.82 8026.84 30 101 37 100 1010 8070.01 8703302876

-330.8076 88328 84M3.84 ..300 1___ 18346 -15750 -11005 260286 1010 8070.01 87702D3 -2150.787

-2160.787

-8=2.8B -4426.85 300 2052 M64 -111 3327357 1010' 8070.01 877023 -23)83 235 -23083.38 0.7 66665M.50 13)00 35002 -102 -1365 302 1010 8070.91 87702.3 -3530.630

-3530.639 52381.37 5M5.39 13)0_____ 3677 66 66 302 1010 807001 8770293 3630.630 3630.630 12664.45 12480442 .0300 4102 45 45 392 1010 8070.01 -8770233 3530.539 3630.630 12666.42 12M426.7 1300 a 0 a 42 392 1010 8070.01 8770293 3530.539 3530.530 12661.42 12422.42 33)0 704 18 214 309. 1010 8070.91 877923 35676.7 3567.48 12732.65 12600.67 10DO 27__ 3.78 18) 142 3574080 1010 8070.01 877023 3379.114 34372051 12607.12 1r23630.4

_1)000 18001 233 2¶91 231 1010 8079.011 8770293 2373.12. 2371Z3 10.612 11663.8 3 .1134.640O 189866 3 89 28)31 1010 8070.01 8770293 237612.7 273.12 11701.83 11246.64 13000 3600.1 918 10 237025 1010 8070.01 8770293 23732.8953 73.8903 11781.81 11582.83 100 V22712, 3582. 118 317B28 10`10 8070.91 8770293 -24612.877-2 126.877 6110271 11243.83 100O 383g WO 2952. 11 30293 1010 8070.91 877023 -293.230 5 -283523063 52.67 6100.30 13000 5807.3 1 392 1010 8070.01 8770293 -3630.3 -3530.630 52126774 12047.42 100 36778 44 45 392 1010 8079.01 877023 3530.539 3530.6301 120843.42 12424.472 103)0 901 Q_ Q2 4302 1010 8070.01 8779.23 3530.630 3530.630 12661.42 12422.42 100-12.7 I20 167 386.444 1010 8070.01 877023 35764044 3564044 12733.05 12430.07 100 3227.1 ISO 180 1 373260 1010 8070.01 8770293 3437.263 3436252 12614.63 12370.66 00 1800.1 265 212 .266 1010 8079.01 8Y77023 2372042 2373.012 .11483.52

.11106.54 100 1888.6 13 103 2660 1010 8979.91 8779.93 2373.612 237.0602 11443.E2 112048.5 10 MW 132 8 237221 10101 807.91 877023 1747.891 1707.801 1101.31 11242.33 10 23)20.0 113) 8 2180.8 1010' 8070.01 87702 11249.84 124.47 .14126352.35 10742.354 20 53473 114 866 312 1010 8070.01 8770293 3530.876 3530.8076 12877.A 00A76.81 6901) 44 45 31 2 11897.1 87D333.3 33.0 16A 254,7 2D 9 0 42 43 ~~~3392 00 97.1 07.333959 6959 161A 2241 1 120.7 20D 167 38446 119299 77.336.4135J44 1739 29.7 1 322.1 IGO 1551 37292 11 999 799 4.2 45B3 1646 27.5 I I 39 66 2225 00 87.1 87.320.922.09 14 .8 1160 0 2813 1 1 5 0 0 5 10 011.l1 U 9 .3 3 9 0 7 3 .87 I A .D 9 7 .2 1.0 28.2 124 "8 M+i.Iz~12q 1010 897l9.91l 877at 339.08I 339.097J~5/

@443.00 9243.02 10 2592.4 -2411 -Irnr 1010 807001 877023 330293 330.2)01 94720[ 9 1 1l11n mn 01 S7/7001'.aso lll-tl Q 11111 P'7.a mi 8103.82 10 1010 897991 8779 a3i 4B911111 -4891111 82,U 2998.3-21C 18788S 1010 8779931-1330.218

-1330218 10 342)414.3 420.1-24Q 266 1010 8070.01 1621 1621-961 -511 266 101018978.1

-2204.089 10 15 10 392 10 10 8079.001D3 6244.37-4-392 1010 8;78.011 8770293 3530.539 1 O S 1 0 0 1 IV 3 92 1 1 0 1 0 1 8 7 9.A to .A oI 32 1010 878.1 1 I 1 12470.47 12452.A71 lO 129U2.471

_70 10-_7 70 7 1~nI mi70 Cl 8779031 2413.014 2413014 13520.94 70 18I3 117 117 265 1010 807001 1071 -1405 -10[ 322B44 10101 807.01 21488 1 392 13l1 78.gl 2670j& 6 Mi--2230.0U6 70 7w193i 70 70 S 70 3530.Mg 1 3530.630 12754.45 12554.4Q 3530 6.630 12M.451 12ý48471 70 File No.: VY-16Q-302 Revision:

A Page 14 of 33 F0306-oIRO NEC041500 K Table 5: Safe End Stress Summary (continue) 1 2 3 4 5 6 7 8 9 10 11 12 13 T -MTV-- Total M r Tt1 mrer Total M+8 Press+re Pressu-re Piping Piping Tdta M+B cd Transiernt Time Stress Stress Temperature Pressure Stress Stress Stress Stress Stress Stress Cycles Number Js) pflj E, I'Pi F J'sis I *ji I psA I fpi I Jpjji (60 years ft 0 2 3 392 1010 897931 8779,93 3639.539 3639 MO 12621.4 12422.47 10_ 21 -20286 -= -- --= -T=4 .-n3 , =7=. --747- -- 10 3.6 -20286 -13829 665 1190 106802 10344.67 -6694.944

-6694344 -1630086 -9079.27 10 6

  • U .4 .'0 1 1, 16 1. -.0 5 3 0 7 7.1 3 9 5 6 .1 ,41* 1003. -533 -35, 281.41 1136 100912 866.656 -2391.03 -239183 716726 7121.52 '10 I 1U57. -1051111 -. 104, ---1 4 -1 1 1699.-171. 158 I11 10091291 986855: 5594.94, 5594944 1584323 15619.50 10 L&.T5.W4 4405356 15461.31 10-226.058, I-,t 140.34 220.058'226.0583 WPM-WET-.70220J86 810393-1109524 798 1.i U93.18e-i 7022.42-6710.8+9171.11:-5594344 10 5594.,j 16102D81 14052.0 1 0.0407.41 *4--34-108-1W4-TM-35616115-z 43 43 320 214 156 46-43 43-7-F 618--T5 43 472 2071 111(1 99225361-6694944 226.0683 429241 4072.44 5986.83 10 5867.771 226.058 6113.49-428.885-420.8651 360 0147-426 60-4266861 3599:14., .3.461 2630.09 2630)98 1 8612 83-6412-11 4675.3 0-u TMT-480 106-Mh-1M OAD-7-44T3639539-n,=85006.5 8084.8:-9484R.12462.47-MMn 11853 .9I 10621.2I-7676.5 8724..M 10788.5, 12465.47 1376411M-135VE 9285.02 12480.47 1246247 12462.47 l-T770g.-38.U 10 10 10 10---T 610 10 60 60 60 I 601_1 1 u 1010 1010 1010~798-=268.433 966586.1I 44456 434.661 13768B4 1240.74 1 339.08751 949 J541 939-100 434.661 339.0876 99084 080.74 Os 0}1010 3020.530 2303 1530l-4 .- -~ I -~ I.I10-qj Jul'1130 639639 3639 j539 JDJW.0,5wl JDJY.OjbPt:

30 3 3639.639 3639 539 13540 .39 2317008A 1368. 2Z8 258 8779.93 2129.842 11229.77 File No., VY-16Q-302 Revision:

A Page 15 of 33 F0306-OIRO NEC041501 Table 5: Safe End Stress Summary (continue) 1 2 3 4 5 6 7 8 9 10 11 12 13 Total M+8 TotaMl-B Total Total Numb Total P*8 Pressure Pressure Aping Ping Total M+B Of Transient Time Stress stress Tempera ure Presure tress Stress Sress stress Stress St ress Cycles Number JaU F si si Wpi!17 .0 42 43 392 101 8979.91 8779.93 3B39.539 3839.53M 12B1.4 12462.47 1 10 42 .3 392 1010 8.79.91 8779.93 3639.639 3839.639 12661.45 12462.47 1 1S9 0 42 43 392 10101 .979.91 8779.93 3839.5391 39.539 1261.451 12462.47 300 121 200 157 3B4436 ,, 1010 8979.91 8779.93 3564.0 354.044 1273395 12490.97 w 3 199 155 373.959 1010 8979.91 8779.93 3435.23 3435.623 1261453 123705 3W_180o 265 212 266 .1010 8979.91 8779.93 2204.69 224.0159 11438.98 1119800 3 188 100 10 266 10 8979.91 8779.93 2204.069 2204.069 11263.98 11084D00 30 230 114 115 26 1010 8979.91 8779.3 2204.69 2234.620 11207. 1100900 362 20 0 30 205 1010 8979.91 8779.93 -2204.69 -2284.059 6743.84 0545.82 300 601 -4785 -3441 392.16 1010 8979.91 8779.93 -3641.236

-3641.235 553. 1644.70 398 387 157 155 549 1010 8979.91 8779.93 5414.097 6414097 14661.01 14352.03 30 770 34 34 649 1010 8979.91 8779.93 5414.097 5414.097 14428.01 14228303 3 20A 0 18 6 .1010 8979.91 8779.93 -5414.547

-5414.097 3646.81 3347.83 W-4 4404 r07 100 1010 8979.91 8779.93 339.0876 3390876 63363W.0 40091.02 -(6-7776 -417 -414 100 .10 8 877993 .339.0876

-339D875 8223.62 8026.84 3 181 416 -411 100 101u 8979.91 877.3 -339. 330876 8225.82 8029.84 300 241 -7477 -5541 290.123 1010 8979.91 8779.93 -248.032 -2438.032

-985.12 750.90 30)1 1010 8970.91 8779.93 5414.097 6414.907 1454201 1434 : 3 961 5 545 u 899.91 5414.097 6 97 141.01 1426103 303.-ulL 21 0-19 cmd 897.9/1.87h9.93 0%1'4.I7M-2219.1.M I -IO il 2Bo 1.83 1 " 1431 4 -6545 646.217 988 8784.3081 8583.684 6264 29 -376 374985 50 444.651 4345-63L31 143 .367 3966282 6 55 444.65 434.65 I0 7 14 -32 326. 50 444.55 434.65.2 L8 8 5 2 -25 246058 50 444.5.5 434.65-12g7 .5'C -100 100 50 444.6 434.65-44 -10D 1001 60 444..6 434.661-53B2.641 14212.96 3922077 2561.02 301* 3387.55 30C-3286.88 ME Z2791.70 "30 38z262-2382.76 301-339D875 55.,u-4.44 301 61A45 -4.

  • 30C 24 0 I-.1 1--40-40-40-100 100 100 444.65 1663 13896.631 13557.16 M13 13890.031 13587.10 434.651-339.087E 65.45 317.62 517.55 65.45-4.44 1 3 1 4 8.0 7j 1 13146.07j

--1.339DO85 1800 444.6E 434.65-339.0976-339J0876-4.44 I1..... ... .-L L i -I ...._Rm Ran 0,10 -4.441 1 I I --l 4Jj-lJ --I& --.~a~n 26 U-40-10 100 0 251-701 =0 C C C 0r-r i.14-=3-123 123 120 ,1M U L.00-I--70 70 0 0 0-44.00-70.00 NOTES: Column 1: Tmnsientnumheridentilimtinn Column 2: Time during transient where a maxima or minima stress intensity.

o ccurs from P-V.OUT output.file.

Column 3: Maxima or minima total stress intensity from P-V. OUT output file.Column -4 Maxima or minima membrane plus bending stress intensity from P-V. OUT output file.Column 5: Temperatureper total stress intensity.

Column 6: Pressureper Table 3 [1].C olumn 7: Total pressure stress intensity from the quantity (Column 6 x 8891)/1000:

Column 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 8693)/I 000.Column 9: Total extemal stress from calculation in Table 1, 5707.97 psi*(Column 5-70°F)/(575F

-707)..Column 10: Same as Column 9, but for M+B stress.Column I 11 Sum of total stresses (C olumns 3, 7, and 9).Column 12: Sum ofmembrane plus bending stresses (Columns 4, 8, and 10).Column 13: Number of cycles forthe transient (60'years).

File No.: VY-16Q-302 Revision:

A Page 16 of 33 F0306-O.IRO NEC041502 Table 6: Fatigue Results for Blend Radius (60 Years)LOCATION LOCATION NO. 2 -- BLEND RADIUS FATIGUE CURVE =1 (I =. CARBON/LOW ALLOY, 2 = STAINLESS STEEL)m= 2.0 n= .2 Sm = 26700. psi Ecurve = 3.000E+07 psi Eanalysis 2.670E+07 psi.Kt =1.00 MAX MIN 73352. 24554.73352. 24554.63832. 24554.63632. 24554.60224. 24554.5.7479. 245.54.57459. 24554.57459. 24739.57433. 24739.57371. 24739.57371.. .24739.57371. 24773.57254. 24773.57254. _24773.57254. 24775.57254. 24780.57254. 24795.56912." (24795.568 62. 24795.56862. 24799.56862.' 24804.56770. 24804.56770. 2,4809.56535. 24809..55390. 24809.55273. 24809.51195. 24809.45800. 24809.45800. 24809.45505. 24809.45492. 24809.45492.

  • 24809.45420. 24809.45420. 25538..45420. 25863.45279. 25863.45279. 26922.45279. 27082.45279. 27482., 45279. 29119.452,79. 29893.45279. 30533.*45254. 30533.44426. 30533.44426. 30534.44426. 30534.RANGE 48.797.48797.'39277.* 39078.35670.32925.32905.32720.32694.32632.32632.32598.32480.32480.32478.32474.32458.32117.32066.32062.32057.31966.31961.31726.30581.130463.26385.20990.20990.20695.20682.20682.20610.19881.19556.19416.18357.18197.17797..16161.15387.14747.14721.138,93.13892.13892.MEM+BENI 42392.42392.27158.4689.29667.-2528.21400.21479.28184.10385.10385.10306.28683.28683.13234.28717.28744.26355.28098.23063,.28116.15622.15632.23327.8471.2 6848.12952.17439..17439.18243.18522.18522.18522.*7132.16505.14180.11425.8826.-12080.16684.13464..15306..18307.16550.16553.16553.Ke 1.000 1.000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1*.000*1.000 1.000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000 1.000 if. ooo 1.000 1.000 1.000 1.000 1.000 1.000 1.000 i. 000 1.000 1.000 1.000 1. boo 1.000*1.000 1.000 1.000 1.000 1. 000 1.000*1. 000 Salt Napplied 27414. 1.OOOE+00 27414. 1.000E+00 22066. 1.000E+01 21954. 1.000E+01 20039. 1.200E+02 18497. 1.000E+0i.18486. 1. 480E+02 18382. 1.520E+02 18368. 1.OOOE+01 18333. 1.OOOE+00 18333. 1.370E+02 18314. 9.100E+01 18247. 1.000E+00 18247. 2.080E+02 18246. 1.00OE+01 18244. 1.000E+01 18235. 0.000E+00 18043. 1.000E+01 18015. 2.900E+02 18013. 1.000E+01 18010. O.OOOE+00 17959. 3'.OOOE+02 17956. 0.OOOE+00 17823. 1.OOOE+01 17180. 6.OOOE+01 17114. 6.000E+01 14823. 1.00OE+01 11792. 1.'600E+02 11792. 1.400E+02 11627. 7.OOOE+01 11619. 9.OOOE+01 11619. 2.100E+02 11579. 9.000E+01 11169. 1.OOOE+01 10987. 2.OOOE+02 10908. 1.O00E+02 10313. 1.OOOE+01 10223. 1.000E+01 9998. 1.OOOE+01 9079. 1.230E+02 8644. 1.OOOE+00 8285. 4.600E+01 8270. 1.OOOE+01 7805. 6.400E+01 7805. 3.OOOE+02 7805. 1.OOOE+00 Nallowed 2. 917E+04 2. 917E+04 6. 141E+04 6. 299E+04 9. 904E+04 1. 325E+05 1. 328E+05 1. 355E+05 1. 359E+05 1. 368E+05 1. 368E+05 1. 374E+05 1. 392E+05 1. 392E+05 1. 392E+05 1. 393E+05 1.395E+05 1. 449E+05 1. 457E+05 1. 458E+05 1. 459E+05 1. 474E+05 1. 475E+05 1.515E+05 1.729E+05 1. 753E+05 3.2 62E+05 2. 012E+06:2.012E+06 2.297E+06 2. 311E+06 2. 311E+06 2. 388E+06 3. 345E+06 3. 903E+06 4. 175E+06 6. 197E+06 6.52 1E+06 7. 423E+06 1. 788E+07 3. 594E+07 5. 858E+07 5. 939E+07 9. 447E+07 9. 453E+07 9. 453E+07 U.0000.0000.0002.0002.0012.000 1.0011.0011.0001.0000.0010.0007.0000.0015.0001.0001.0000.0001..0020.0001'.0000.0020.0000.0001.0003.0003.0000.0001.0001.0000.0000.0001.0000.0000.0001.0000.0000.0000.0000.0000.0000.000.0.0000.0000.0000.0000 FileNo.a:

VY-16Q-302 Revision:.

A Page 17 of 33 F0306-OIRO NE0041503 44426.44426.44426.44426.44426.44426.44426.44426.44426.44426.44426.44426.44426.44426.44426.44426.42298.42298.42298.42298.42298.42298.40151.40000.40000.40000.40000.40000.40000.36514.3 6514.36514..36514.3 6514.36514.36513.3 6462.36462.36462.36462..36462.36462.3 64G62.36462.36462.3 6462.36462.36462.36462.30534.30534.30538.30603.31283.31283.31283.31286.31308.33913.34481.34481.34481.34714.36408.36443.36443.36443.36443.36454.36457.36457.36457." 36457.36457.36457.36457.36457.36457.36457.36457.36457.36457.36457.36457..36457.36458.36462.36462.36462.36462.36462.36462.36462.36462.36462.36462.36462.138,92.13892.13888.13823.13143.13143.13143.13140.13118.10513.9945-9945.9945.9712.8018.7983..5854..58 54.5854.5843.58 40.5840.3694.3543.3543.3543.3543.3543.3543.57.57.57.57.57.57.56.5.4.0.0.0.0.0.0.0.0.0.0.0.16553.16553.16563.16563.16138.16138.16138.16145.16145.1837.9005.9005.9005.-9535.7051.7045.5110.5110.5110.5138.5143.5142.4556.3432.3432.3432.3432.3432.3432.1098.1099.1099.1099.1099.1099.928.-3.-3.0.0.0.0..0.0.0.0.0.0.0.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.7805. 1.000E+00 7805. 1.O00E+00 7802. 3.000E+02.7766. 3.000E+02 7384. 1.230E+02 7.384. 1.230+E02 7384. 1.200E+02 7382. 1.230E+02 7370. 1.230E+02 5906. 1.000+E01 5587. 6.0OE+01 5587. 1.000E+00 5587. 2.280E+02 5456. 1.000E+01 4504. 7.000E+01 4485. 4.200E+01 3289. 1.800E+01 3289. 1.000E+00 3289. 2.280E+02 3283. 7.000E+01 3281. 3.000E+ 02 3281. 9. 383E+03 2075. 1.000E+01 1990. 6.000E+01 1990. 6.000E+01 1990. 1.000E+00 1990. 1.0001+00 1990. 2..280E+02 1990. 2.280E+02 32. 2.900E+01 32. 1.000E+01 32. 1.OOOn01 32. 6.O00E+01 32. 1.000E+00 32. 1.900E+02 31. 1.000E+01 3. 2.800E+01 2. 2.O000E+03

0. 7.972E+03 0. 2.000E+03 0. 1.000E+01 0. 7.000+E01 0. 1.000E+01.
0. 6.000E+01 0. 1.O00E+00 0. 1.00E000.0. 2.280E+02 0. 1.000E+00 0. 1.000E+00 9.453E+07

.0000 9.453E+07

.0ooo 9.475E+07

.0000.9.838E+07

.0.000 2.990E+08

.. .0000 2.990E+08

.0000 2.990E+O8

.0000 3'.006E+08

.0000 3.122E+08

.0000 1.000E+20

.0000 1.0001E20

.0000.1.000E+20

.0000 1.O00E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000+E20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20, .0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

'.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000H+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000t+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.0001+20

ý.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20 .oooo 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 TOTAL USAGE FACTOR =.0127 File No.: VY-16Q-302 Revision:

A Page 18 of 33 F0306-0IRO NEG041504 Table 7: Fatigue Results for Safe End (60 Years)LOCATION = LOCATION NO. 1 -- SAFE EN!FATIGUE CURVE = 1 (1 = CARBON/LOW ALLOY, 2 =*STAINLESS STEEL)i= 3.0 n= .2 N S '= 17800. psi Ecurve = 3.OOOE+07'psi Eanalysis

= 2.810E+07 psi Kt = 1.34 MAX 70223.70221.61941.533 63.53363.53363.533 63.53363.533 63.53363.533 63 .533 63.53363.53077.53077..15843.15162.15079.15079, 15079.15079, 14601, 14590.14551.14551.14551.14551.14542.14542.14451.14451.14451.14428.14428.14428.142 13.142 13.13773.13773.13773.13773 13773.13773.13773.13518.MIN-18217.-18217.-18217.-18217.-17604.-17604.-17604;.-15701.-15301.-11096.-1064.6.-10646.-8930.-8930.-985.-985.-985.-985.-98 5.-985.-379.-379.-379.-379."-146.-50.-48.-48.-44.,=444-42.-42..-42.-42.55.55.61.61.61.61.61.65.65.65.65.RANGE 88440.88438.80158.71580.70967.70967.70967.69064.68664.64459.64009.64009.62293.62007.54062.16828.16147.16064.16064.16064.154.58.14980.14969.14930.14697.14601.14599.14590.14586.14495.14493.14493.14470.14470.14373.14157.141-51.13711.13711.13711.13711.13707.13707.13707.13452.MEM+BEND 61480.61478..55607.50176.49576.49576.4957 G6 49561.49170.46802.46273.46273.44558.44023.38805.14869.14202.12932.12932.12932.14122.13960.13643.14791.14477.14422.14389.14379.14412.14321.14289.14289.14266.14266.14232.2665.2665.13554.13554.135.54.13554.13491..13491.1:3491.13090.Ke 1.303 1.303 1.083 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.1..000 1.000 1.000 1.000.1.000 1.000 1.000 1:000 1.000 1.000 1.000 1.000 1.000 1.000 Salt Napplied 76032. 1.000E+01 76026. 1.O00E+01 57252. 1.000E+01 47317. 3.OOOE+01 46880. 1.000E+01 46880. 1.000E+00 46880. 2.280E+02 45862. 1.0ooE+01 45577. 1.000E+01 42903. 1.000E+01 42567. 1.000E+00 42567. 9.OOOE+00 41339. 2.910E+02 41090. 9.OOOE+00 35902. 1..000E+00 11682. 1.OOOE+01 11197. 1.000E+01 10922. 6.000E+01 10922. 1.000E+00*10922. 2.180E+02 10814. 1.000E+01 10530. 7.O00E-+01 10467. 1. 000E+00 10654. 4.200E+01 10473. 1.200E+02 10412. 1.230E+02 10405. 1.500E+01 10398. 2.850E+02 10402. 1.500E+01 10337. 1.080E+02 10330. .1.230E+02 10330. 6.900E+01 10313. 5.400E+01 10313. 1.200E+02 10255. 1.260Et02 8041. 1.740E+02 8038. i.260E+02 9779. 6.000E+01 9779. 1.000E+00 9.779. 1.OOOE+00 9779. 1.120E+02 9766. 1.160E+02 9766. 4.00E+00 9766. 2.240E+02.

9557. 1.O00E+00 I Nallowed 1. 263E+03 1. 264E+03 2. 852E+03 5.2-17E+03 5.3 63E+03 5.3 63E+03 5.3 63E+03 5.724E+03 5. 83 OE+03 6.97 6E+03 7. 14 E+03 7. 14 IE+03 7. 789E+03 7. 93 OE+03 1. 2 13E+,04 2. 198E+06 3. 268E+06 4. 125E+06 4. 12 5E+O 6 4. 12 5E+06 4.52 6E+06 5. 489E+06 5. 68 6E+06 5.12 6E+06 5' 666E+06 5. 863E+06 5. 88 5E+06 5. 907E+06 5. 895E+06 6. 115E+06 6. 138E+06 6. 138E+06 6. 196E+06 6. 196E+06 6. 403E+06 7. 44 IE+07 7. 465E+07 8. 447E+06 8. 447E+06 8. 447E+06 8. 447E+06 8. 516E+06 8.5 6E+06 8. 516E+06 9. 660E+06 U.0079.0079.0035.0058.0019.0002.0425.0017.0017.0014.030.0013.0374.0011.0001.0000.0000.0000.0000.0001.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000 0.0000.0000.0000.File No.: VY-16Q-302 Revision:

A Page 19 of 33, F0306-O1RO NEC041505

-r 13518.12754.12739.12739.12739.12739.12739.12739.12739.12739.12739.12739.12739.12739.12739.12739.12739.12739.12734..12734.12734.12732.12732.12732.12732.12732.12732.12732.12732.12732.12732.12732.12732.12732.12732.12684.12684.12679.12679.12679.12679.12679.12678.12677.12665.12665.12664.12664.12664.12664.12664.12663.12663.12663.12662.12662.12662.12662.12662.6.5.65.65.65.65.324.554.950.991.1377..3002.3359.3536.3547.3547.3547.3551.3551..3551.3557.3557.3600.3921.3939.4292.4496.4658.5238.5239.5239.5239.-5244.5260.5261.5261.5943.5943.5943.5943.5943.5943.5943.5943.5943.6111.'6111.'6111.6111.6111.6111.6113.'6352 6352.6492.6534.6608.6744.13452.12689.'12673.12673.12673.12673.12415.12185.11789.11748.11362.9737.9380.9202.9192.9192.9192.9188.9183..9183.9177.9176.9133.8812.8793.8440.8237.8074.7494.7493.7493.7493.7488.7472..'7471.7423.6742.6737.6737.6737.6737.6737.6736..6735.6723.6555.6554.6554.6554.6554.6554.6553.6550.6311.6310..6170.6129.6055.'5919.13090.12496.12442.12505.12505.'12505.12896.10856.11561.11520.11255.14883.15292.9163.9153.-9153.9684.9149.9139.9139.9133.9231.8592.15976.15875.8516.-2873.7689.7503.7503.7503.7503.7499.7488.7584.7480.6799.6795.6794.6795.6795.6795.6793.6792.6780.6612.6611.6612.'6612.6612.6612.6611.6479.1078.1075.1218.6014.6004.5916.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I 000 1.000 1.000 1.000 1.000 1.000 1-.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1..000 1.000 1.000 1. 000 1.000*1.000.1. 000 1..-000.1.000 1. 000 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 9557. 1.OOOE+00 9041. 7.OOOE+O1 9023. 4.OOOE+00 9035. 1.OOOE+00 9035. I.OOOE+00 9035. 1.'OOE+00-8968. 1.230E+02 8475. 3.OOOE+02 8391. I.O00E+00 8362. 1.OOOE+00 8108. 1.OOOE+00 78.99. 3.OOOE+02 7782. 3.OOOE+02 6575. 1.OOOE+01 6568. 3.OOO+E02 6568. 3.OOOE+02 6664. 3.O00E+02 6565. 5.700E+01 6561. I.OOOE+01 6561. 2.330E+02 6556. 6.700E+01 6573. 2.330E+02 6435.' 1.OOOE+01.7603. 3.OOOE+02 7575. 3.OOOE+02 6051. 1.OOOE+01 3875. 1.OOOE+01 5706. 7.OOOE+01'5362. 3.OOOE+02 5362. 6.000E+01 5362. I.0OOOE+00 5362. 2.280E+02 5358. .O00BE+01 5348. 2.OOOE+03 5365. 6.468E+03 5320..3.532E+03 4833. 6.468E+03 4829. 3.000E+02 4829. 1.000E+01 4829. 6.000E+01 4829. 1.OOOE+00 4829. 2.280E+02 4828. 7.00OE+01 4828. 2.OOOE+03 4819.. 8.630E+02 4699. '9.137E+03 4698. 3.OOOE+02 4698. 1.O00E+01 4698. 6.OOOE+01 4698. I.OOOE+00 4698. 2.280E+02 4698. 2.640B+02 4672. 1.OOOE+01 3565. 1.726E+03 3564. 2.740E+02 3515. 2.OOOE+03 4363. 1.OOOE+01 4322. 3.OOOE+02 4233. 3.OOOE+02 9.66GOE+06O 1.88 6E+07 l. 93 5E+07 1. 904E+07 1. 904E+07 1. 904E+07 2. 107E+07 4. 792E+07 5. 287E+07 5. 438E÷E+07 6. 964E+07 8.587E+07 9. 670E+07 1. OOOE+20 1. OOOE+20 1. OO0E+20 1. O00E+20 I.OOOE+20 1. OOOE+20'1.OOOE+20 1.OOOE+20 1. 00OE+20 1.OOOE+20 1. 541E+08 1. 676E+08 1. OOOE+20 1. OOOE+20 1.O00OE+20

1. OOOE+20 1. OOOE+20.1. OOOE+20 1.O00E+20 1.OOOE+20 1. OOOE+20 1. OOOE+20 1.O00OE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1. 00 E+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOE+20 1. OOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1.AOOE+20 1 OOOE+20 1. OOOE+20 1. 000E+20 1. OOOE+20 1.000E+20 1.OOOE+20 1. 060EO+20 1. OOOE+20 1. OOOE+20 1.OOOE+20.0000.0000.0000.0000.0000.0000.0000..0000.0000.0000.0000.0000..0000.0000.0000.0000.0000.0000.0000.0000.0000.'0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 o0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000..0000.0o00.0000.0000.0000.0000.000 0.0000 File No: VY-16Q-302 Revision:

A Page 20of 33 F0306-OIRO NEC041506 12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662 12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662..12662.12662.12662.12662.12662.* 12662;..12662.12662 .12 662.12662.12662.12662.12662.* 126621.12661.12661.12661.12661..12661.12661.12661.12661.12661.12661.12661.12661.*12661.1 rl2 661.*12621.7125.7167.7440.8 164.8224.8224..8226.8250.8282.8529.8601.8613.8863.8911.9290.9383.9409.9443.9475.9485.948"5.9533.9533.9666.9912.9912.10069.10460.10928.10934.11191.11232.112-84.11284..11298.11301.11325.11325., 11325.11346.11439..11439.11447.11462.11462.11551.11551.1158 4.'11584.11584.11584.11584.11584.11584..11584.11584.11584.11584.11584.5538.5495.5223.4499.4439.4439.4437.4413.4381.4133.4062.4050.3800.3752.3373.3279.3253.3219.3187.3177.3177.3129.3129.2997.2750.2750.2593.2202.1734.1729.1471..1430.1378.1378.1364.1361.1337.1337.1337..1316.1223.1223.1216.1201.1200.1111.1111.1078.1078.1078.1078.1078.1078.1078.1078.1078.1078.1078.1038.5439.5340.5107.4480.4435.4435;4432.4298.4377.4124.4058.3961.3785.3737.3479.3276>3267.3218.3185.3176.3176.3128.3128.3075.2870.2870.2615.2486.1840.1673.1469.*1715.1377.1377.1362.1360.1290.1290.12,90.1315.1265.1265.1215.1200.12 01, 1233.1233.1117.1117.1117.1117.1117.1117.1117.1117.1117.1117.1117.1077.1.000 1.000 1.000 1.000 1.000 1.000 i..000 i..000 1.000 1.000 i. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1,.000 1.000 1..000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. ,000 1 000 1.000 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 3943. 1.000E+01 3903. 1.000E+01 3715. I.001E+01 3214. 1.000E-101 3174. 3.000E+02 3174. 3.000E+02 3173. 3.000E+02 3136. 1.000E+01 3133. I.*00E+01 2955. I.000E+01 2905. 3.000E+02 2881. 1.000E+OI 2715. 6.000E+01 2681. .6.000E+01 2432. 6.000E+01 2345. 1.000E+0I 2330. 1.200E+02 2303. I.001E+01 2279. 1.001E+01 2273. 1.000E+00 2273.. 2.280E+02 2238. 1.000E+00 2238. 2.280E+02 2158. 1.0OOE+00 1989. 1.000E+00 1989. 2.280E+02 1859. 1.000E+01 1627. 1.000E+01 1260; 6.000E+01 1226. 6.000E+JJ1 1052. 7.000+E01 1075. i.000E+01 986. .1. O00E+O1 986. 3.000E+02 976. 3.000+E02 974. 7.000E+01 948. I.000E+01 948. 1.000E+00 948. 2.280E+02 941. 1.001E+01.

883. 1.000E+01 883. 3.000E+02 870. 2.000E+03 859. 1.359E+03 858., 6.410E+02 817. 1.000E+00 817. 2.280E+02 778. 1.130E+03 778. 1.000E+01 778. 1.000E+01 778. 7.000E+01 778. 6.000E+01 778. 1.000E+00 778:. 1.000E+00 778. 2.280E+02 778. 1.000E+00 778. 1.000E+00 778. 3.000E+02 750. 1.000E+01 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1. 000E+20 1. 000E+20 1.000E+20 1.000E+20 1.000E+20 1. 000E+20 1. 00E+20 1.000E+20 1. 000E+20, 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20.1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000+E20 1.000E+20 1. 00E+20 1.000+E20 1. OOOE+20 1.000E+20 1.OOOE+20 1.000E+20 1.000E+20 1.000E+20 I. 000E+20 1.000E+20 1. O00E+20 1. O00E+20.1.O00E+20 1.001E+20' 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1. 000E+20 1.000E+20 1. 00E+20 1.000E+20 1.000E+20 1. 00E+20.0000.0000*j.0000.0000.0000.0000.0000.0000.0000..0000.0000.0000*.0000.0000.0000.0000.0000.0000.0000.0000.0000..0000.0000.0000.0000.0000.0000.0000.0000.0000* .0000.0000.0000.0000.0000.0000.0000.0000.0000.000.0.0000..000,0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000 0.0000.0000.0000.000 0 File No. VY-16Q-302 Revision:

A Page 21 of 33 F0306-0IRO NEC041507 12615.12615.12615.12597.12527.12527.12039.11914.11906.11584.11584.11762.11762.11762.11784.11784.11784.11784.1031.1031.853.836.765.743.255.130.122.1025.1025.810.799.822..800.271.7154.179.1.000-1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 736.736.602.591.558.542.185.42.97.1. OOOE+01 1. 680E+02 1. 320E+02 2. 000E+03 7.868 E+03 2. 132 E+03 6. OOOE+01 1. O00E+01 7. 798 E+03 1. OOOE+20 1.O00E+20 i 1.OO0E+20 1. OOOE+20 1. 000E+20 1. O00E+20 1. 000E+20 ,1.000E+20 I.'000E+20

.0000.0000.0000.0000.0000.0000.0000.0000.0000.1149 TOTAL USAGE, FACTOR =J.File No.: VY-16Q-302 Revision:

A Page 22 of 33 F0306-OIRO NEC041508 V* :,;~A~/'FC/

tCCr -CC'sr "r -,j AA- -~'~.Ao;., -eS-C-w ,//- -.:r ,, if-c .fl7IA.V ____ -I'---------------

A 7d jrr4 . -LJnz4~~4~~4.

Figurel: HotStandbyLoop

[8]CS Ut 25 File No.: VY-16Q-302 Revision:

A Page 2-3 o .7 F0306-OIRO NEC041509 Figure 2: ExternalForces and Moments on the Recirculation Outlet NozzleýTerp C)-PMS Prc050as 7D 60 SI G----------------------------

lress.exe program cabufle statystl i ales at be gi IligottMGMale Its. The IM e i gth it ri is toksle it c i a e rfeT bea yual*g*at r Tie chosei a tags olfloseoais Is aoslgaltbaaoe as ie, t is to Ut e rapeflre otkaage (I k lag Ut1 troatslat i I 2 3 4t 5 1 6 lime (iecondi)Figure3: Transient 1, Bolt-up 5 S 110 File No.': V.Y-16Q-302 Revision:

A Page 24 of 33 F0306-OIRO NEG041510 I-1emp Ci) --Peai QS (XI 120--12M-I'm1-1100-IDam--100-.60.40 20-I n'i r.x pvgen alato tal:l , wIztcas1aJfs=toiedrtmzat begbih lmgollislt.

I It'I 1~1'S -'S I I 1 I*-9513-900-850.-750-Too.150 100-500 320-450-350-300.250-200-100-D ft I I 1 r-s -0 10BM MOO-Time (mecordid) 4002 32DD.Figure 4:, Transient 2, Design HYD Test I-TernCi -Pmasu R£5 02 a&"lme (iecondi)Figure 5: Transient 3, Startup File No.:. VY-16Q-302 Revision:

A Page 25 of 33 F0306-O1RO NEC041511 I-Temp (F) --rnie4 GOB Rtun e proq Ern slal cot dW s at begh k kkg of tamskit. Tlt lmslemt beglis at 6497 aid skeps dci ItS90" I oie teooad. --10110-1040-920,-.U]-U40 F E a: 0 IOrr 21] 3rT dm1I0 5[13a :r1 -TM FT ms e codl)Figure&6 Transient 4, Turbine Roll I~ncreased to Heated Power ma.Im.--Tmp('FI ---Pamn, Qsg-K -amc'4 60134 B., E 2m]D 1Dn:-121D-1160-11211-11130-10411-910-92D 380-540-511r ,-:211-6m.-Tm]-640-601-SW0-401-4to.4m-320-2M8.240-2Mn-100-120-50 0 Iresmxe pgrasn alotbfk s ba:clat ualtes at Jheglialm9got'tazIleul.

Tie tine talgia liakmtletcaai tie ert 1ab a itake great! r lia I 9 i rlgofrt 1 s Tie tine k I le gliofl~(l Or IS *Ite. The cl one a tktg 1oft10 ecolds 1a;10 19 Mctaice asti a1c Ir kotmpe flee claige durhig Ktarn tie a U I .I .a 0a 1 1111 rm 0030 401orn 501 UM11 TWO i0lW"lim (i Figure 7: Transient S, Daily Reduction 75% Power File No.: VY-16Q-302 Revision:

A Page 26 of 33 F0306-OIRO NEC041512


T- e ---Ptu -C ---U ---030-f am0-dim .wa0-e_o20.210 1002-100)-1040-921-Um 9-u.x-3d-rln ,7213 6m 6-40 6DD-Sm-4DD-440-203-221-201-2M0-160-121-50-Mo e.e.a Wo nam IMO Mf0 2 nM 2al2 43X Q 4M] 45M 5 MM0 0M33 Trim, (mecondi)Figure 8: Transient 6, Weekly Reduction 50% Power-Temp -F -It Slef kb g 2m0 E ISO.-aIN a la] 211rn 3= 4101 51] 5m D 1'DD ?D OD 9 10c01 lime (i Figure 9: Transient.9, Turbine Trip at 25% Power File No.: VY-16Q-302 Revision:

A IPage 27 of 33 F0306-01R0 NEC041513 tSOO 4350.MO -E ISO.-1so--TMP(F -Pt a so gi().1 13M.91 40-960).920-UMa* .LR M-70 172a.6w.6 do-603 SW.52.0 451 451 403.360 21M 2511 240-203-1W0-120-ca.I 10BM 20101 Figure 10: M30 dam1 521 WE0 Time (ifcondm )Transient 10, Feedwater Bypass Ttmp(f) -resie4~W00.550 Sa0 6-.-130 2aa IS 100 0 0J a 0.6051 IrmDo Ism0 2300[3 25200 lime (lecondii Figure 11: Transient 11, Loss of Feedwater Pumps K File No.: VY-16Q-302 Revision:

A Page 28 of 33 F0306-OIRO NEC041514

-T*mp(CF)

--pressre Qsi-I DO U.Zo a.nL a 4--301 970 1970 2970 lime (1econdi)49'0 Figure 12: Transient 12, Turbine'Generator Trip"-Temp(f)

--

4,50-4004 100 ISO 1160-he pruash4 befleb fik P polhtalkdle mextflrsovm w aslrazitflt Ir Stap ". Tit p it 991 P actolIIb'tqj en lbi."\.IlI)-11DD1 6310.98-am 6M0-631-4m-4DD-360.3m-233-2M-1m-.1-60 Ci... -a UI a 11"m 2MMEo 11.. (.ecorldmj Figure 13: Transient 14, SRV Blowdown Th File No.: VY-16Q-302 Revision:

A Page 29 of 33 F0306-OIRO NEC041515

'

I-Tem P cf). --P k su a ptg ma0-460 S420 360 3411--1180-1140-1100-lam-9: ;-9a0-sin w-6W] Z.7801-140-7M].6W-621.5 1t I 1 2 3 4 t lrime (u econdtJ)6 5 9 10 Figure 14: Transient 17, Improper Start 450 400.250-310 8-.E I-TempCl)

--Pittem Os~--------------------------------


-- -- -----1040-IUM.90-921-a1-824-am-211-680-640-6013-62]52W1 2480 240]-1211-280-240 0 Sal 102 1511 MU [ 2511 J31] 35rM 4[Dl if) 0 30 a]m 6'M"Ime (uecondme)

Figure 15: Transient 19, Reduction to 0% Power File No.: VY-16Q-302 Revision*

A Page 30 of 33 F0306-OIRO NEG041516 I-Ten p (~F) -pfut 4J6sI e 1z.7m-Cal_an 61 58 a 1WCI ] 2 312 4M 1] 6M I] W SW HIMr-ime (Ieconal)Figure 16: Transient 20, Hot Standby (Heatup Portion)I-Ttmp (-)

I M -11Mn M 101 tO8 ItODI1 S8 let883M M~ .8Ml]]ED 1 WMD. -G1I D-/G 2-inm, [ueond.]Figure 17: Transient 20A, Hot Standby (Feedwater Injection Portion)FileNo.: VY-16Q-302 Revision:

A Page 31 of 33 j F0306-O1RO NEC041517 Gm-im-ý.C a-N N N N N GO 60a 5m-4m-30n-250-2M-IM-ID-50-D a 20M1 4C 6130 am I 1an0 1403 1 lam 2300 line (mecondi)Iff-.Figure 18: Transient21-23, Shutdown I-TeMp CF) --Presret 0M16-f///12]4*IMU-IOU* 1400.113011* 213 110-8.in 4-7/ ..M3 10-/703/ 600/M SI / im/ 300// 4WU-10 0 ,e a ICE 2W an 0 6m e S T aO O 9nSn line (ImecondaI) 1000 11m 1Il 1320 Figure 19: Transient 24, Hydrostatic Test File No.. VY-16Q-302 Revision:

A Page 32 of 33 F0306- 0IRO*NEC041518 I--MP CF -Preuar&3).-10--40D 120D[Ia 4 'U a 1lam 2DM 3 41D lime (mecondi)Figure 20: Transient25, Unbolt File No: VY-16Q-302 Revision:

A Page 33 of 33 F0306-OIRO NEC041519 Exhibit D Structural Integrity Associates, Inc.' File No.:. VY-16Q-307 CALCULATION PACKAGE Proj ect No.: VY- 16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.:.10150394 CLIE.NT: PLANT: Entergy Nuclear Operations, Inc. Vermont Yankee .CALCULATION TITLE: Recirculation Class i Piping Fatigue and EAF Analysis Document Affected Project Manager. Preparer(s)

&Revision Pages Revision Description Approval Checker(s)

Signature

& Date Signatures

&Date A. 1-6 Original Draft T. J. Herrmann R.V. pery Al -A6 BI-B39 Computer Files P. Hirschberg Page 1 of I F0306-O1RO NEC041521 Structural integrity Associates, Inc.Table of Contents 1.0 O B JE C T IV E ..................

3....................................

...... ...........

.. ...................

....... ............

3 2.0 TECH N ICA L A PPR OA CH ...............

...... ................

....................

...... .........................

.3 2 .1 B ack g roun d ...........

... .............................................

3 ......................................

...........

.... 3 2.2 D esign Transients and Fatigue Analysis ..........................................................................

3 3.0 DESIGNINPUTJ

.........

.................................

4 4.0 C A L C U L A T IO N S .................................................

.- .............................................

...........

14.5.0 RESULTS OF A NA LYSIS 14................

............

.... ... ......................

...........

14

6.0 CONCLUSION

S AND DISCUSSIONS

...................................................

15.7.0 R EFE R EN C E S ..... .. ...................................................

..."..............................

18 APPENDIX A PIPESTRESS INPUT FILES ............................

..........

19 APPENDIX B PWESTR.SSOTJTPUT.....................

............................

1 List of Tables Table 1: MaterialProperties

[1] [3] ............................

....................

6 Table 2: Recirculation and HER Piping Segment Numbers ......,..............................

7 TableS3: VY Thermal Transients

.........................

I .*"..9 Table 4: ASME Code Stress and Fatigue Results -Loop A RecirculationfR.HR Suction Tee

  • 16 Table 5: Detailed Fatigue Results -Loop A Recirculation/RHR Suction Tee .................

16 Table 6: ASME Code 'Stress and Fatigue Results -Residual Heat Removal Return Tee ..........

17 Table 7: Detailed Fatigue Results -Residual HeatRemoval ReturnTee......................

17 List of Figures Figure 1. R ecirculation and RF R PipingD iagram ...8.................................................

........ I ..................

8 File No.: VY-16Q-307, Page 2 of 2 Revision:

A F0306-C1RO NEC041522

$Structural Integrity Associates, 'Inc.1.0 OBJECTIVE In 2003, as a part ofFatiguePro Development, Structural Integrity (SI) initiated fatigue analysis for the Recirculation (RR) piping and attached Class I portions of the Residual Heat Removal (PHR)-supply and return piping [4]. That work did not include EPU or.chemistry effects. The intent of that evaluation was to develop a detailed, Class 1 fatigue calculation for the limiting location in the RR and RHR piping from which to perform fatigue monitoring.

Completion of that evaluation would also provide fatigue calculations frcm which to base the. environmental fatigue evaluations necessary for both the RR piping tee and the RHR return piping locations.

The intent of this calculation is to resurrect the previous FatiguePro evaluation for the RR piping, and complete the associated fatigue, evaluation as well as EAF evaluation for the Loop A RR piping tee/RHR Suction and the RHR return tee piping locations.

The fatigue calculation performed herein is not a certified ASME Code NB-3600 stress and fatigue analysis Rather, it is an evaluation for the purposes of establishing fatigue usage to accommodate..

fatigue monitoring of the subject B3 1.1 piping. Although the PIPESTRESS program implements all ASME Code NB-3600 equations, only the fatigue usage results are utilized.

All stress limit checks, although calculated by the program, are ignored since satisfactory stress limit checks were performed as a part of the already existing governing B3 1.1 stress analyses for all piping systems.2.0 TECHNICAL APPROACH 2.1 Background The previous SI calculation evaluated the Loop ARR and attached Class 1 RHR piping system. This model'will be resurrected and verified for completeness.

Since formal Design Specifications do not exist for the subject piping systems, SI developed transient definitions and expected number of cycles for the subject piping in the previous evaluation.

These definitions were based on SI's experience in piping analysis at other BWR plants, as well as review of VY-specific operating procedures, and are appropriate for BWR-4 plants and tailored specifically to VY. Those transient definitions will be re-visited and updated as necessary to reflect current plant operating conditions as shown in [ 11 ]. Using the PIPESTRESS computer code [3],.heat transfer analysis will beperformed for the transients defined to establish the necessary parameters for use in an NB-3600 fatigue evaluation.

This will result gn a detailed usage factor calculation for the two NUREG/CR-6260 locations from which to base the environmental fatigue evaluation.

2.2 Design

Transients and Fatigue Analysis'File No.: VY-16Q-307 Page3 of 3 Revision:

A F0306-01RO NEO041523 Structural Integrity Associates, Inc.The temperature time histories are obtained from the GE reactor thermal cycle diagrams [7] [8] [9], used in the analysis of a similarpower plant: These diagrams also provide the changes in flow rate and system pressures.

These temperatures and pressures will be updated to account for EPU [10].The computer program PIPESTRESS

[5] was used, which is a full function, verified piping analysis package. The ASME Code methodology for fatigue analysis of Class 1 piping systems requires determination of the through-wall thermal gradient terms AT 1 (linear gradient), AT 2 (nonlinear gradient), and T,-Tb (transition gradient) for each transient containing a non-trivial ramp rate.PIPESTRESS calculates these terms for each thermal transient Load sets. were then developed for the critical time points of the transients, that include loads due to pressure, thermal expansion, OBE seismic, and thernal gradient stresses.

PIPESTRESS was then-used to determine the range of primary plus secondary plus peak stresses for each load set pair, and calculate the cumulative fatigue usage f6r the design numbers of cycles.3.0 DESIGN INPUTS The piping analysis input information was based on references provided in the previous SI analysis[4]_ The ADLPIPE input file [6] was the source for the piping geometry, and pipe support locations and types. Additional piping support information was'6btained from [16]. The pipe size, schedule, insulation, and weight per foot, were obtained from [3] (page 10)_ The weight of the contents was automatically added by the PIPESTRESS program. The design temperature and piping material was obtained from reference

[3] (page 9). Table I summarizes the material properties used in this analysis.Individual seismic input floor response spectra were obtained from reference

[6]. Code case N-411 damping is utilized and directional loading is combined by SRSS [3] (page 20). The seismic inertia.loads include the effect of closely spaced modes [3] (page 20).Per Reference

[ 10] (Item 14, section 3.2. 1), the normalrecirculation flow per loop, post EPUj is 12.3Mlbmnr (at 5260F). Flow is converted to gpm as follows:=12300,000 447.45"bmJ' t 1 0 32,36gpm Where flow is stopped, a flow rate that gives an equivalent natural convection heat transfer coefficient is calculated.

The applicable transients to consider for the Recirculation and RHR systems are shown in the thermal cycle diagrams [7], [8], and [9]. The figures shown are applicable to this plant, but temperatures and cycle counts were updated for current EPU conditions.

[11]. Note that a transient forRHR initiation is not accounted for on these diagrams.

In order to account for this transient, RHR temperature data from RFO 25 [12] was used to conservatively determine an-appropriate temperature change while reference

[13] was used to determine flow rates and pressures.

For simplicity, the piping model was divided into separate sections so that the correcttransients could be applied to the correct sections.File No.: VY-16Q-307 Page4 of 4./ Revision:

A F0306-0 IRO NEC041524 Structural Integrity Associates, Inc.Table 2 describes each section and Figure 1 shows the piping model with node numbers. Table 3 contains a list of applicable transients. (Note that the transient RHR initiation contains a section 3B.This section accounts for the portion of the recirculation pump discharge piping that is affected by this transient.)

File No.: VY-16Q-307 Revision:

A Page 5 of 5 F0306-01RO NEC041525 Structural Integrity Associates, Inc.Table 1: Material Properties

[1] [3]AS?=- A-16 Grade B (C-Si)Coefficient of Linear Design Young's Thermal Thermal "Thermal S tress Yield Temperature Modulus Conductivity Diffusivity Expansion Intensity Strength ('F) (xl0' psi) (B tu/hr-ft-'F) (ft'/hr) (in/100 ft) (ksi) (ksi)10O0 29.3 29.9 0.567 0.21 .2.0 35.0 200 28.8 29.2 0.521 0.95 20.0 31.9 300 28.3 .28.4 0.481 1.77 20.0 31.0 400 27.7 27.6 0.447 2.67 20.0 30.0 500 27.3 26.6 0.414 3.64 18.9 28.3 600 26.7 25.6 0.385 4.63 17.3 25.9 ASME SA-376 TP 316 (l6Cr-12Ni-2Mo)

Coefficient of Linear Design Young's Thermal Thermal Thermal S Stress Y ield Temperature' Modulus Conductivity Diffusivity Expansion Intensity Strength ('F) (xlOD psi) (Btu/hr-fl-'F) (ft'/hr) (inlOU flt) (ksi) (]csi)100 28.1 79 0.136 0.31 20.0 30.0 200 27.6 8.4 0.141 1.37 20.0 25.8 300 27.0 9.0 0.145 .2.48 20.0 23.3 400 26.5 9.5 0.151 3.65 19.3 21.4 500, 25.8 10.0 0.156 4.86 18.0 19.9 U 25.3 1T3.5 0.162 611 1=7 ASME SA-403 WP 316 (16Cr-12Ni-2M o)Coefficient of Linear Design Young's Thermal Thermal *Thermal Stress Yield Te mperature Modulus Conductivity Diffusivity Expansion Intenisity Strength (F) " (xlO0 psi) (B tuihr-ft-'F) (ft't hr) (inILO ft) (ksi) (ksi)100 .28.1 79 0.136 0.31 20.0 30.0 200 27.6 8.4 0.141 1.37 20.0 25.8 300 27.0 9.0 0.145 2.48 20.0 23.3 400 26.5 9.5 0.151 3.65 18.9 21.4 500 25.8 10.0 0.156 4.86 17.5 19.9 600 25.3 10.5 0.162 6.11 165 188 ASME SA-182 F 316 (16Cr-l2Ni-2Mo)

C oefficient.of Linear Design Young's Thermal -Thermal Thermal Stress. Yield Temperature Modulus C ondu ctivity Diffusivity Expansion Intensity S trength ('F) (x lOd psi) (B tu/hr-fl!*F) (ft t/hr) (in/lO0 ft) (ksi) (ksi)100 28.1 7.9 0.136 0.31 20.0 30.0 200 27.6 8.4 0.141 1.37 20.0 25.8 300 27.0 .9.0 .0.145 2.48 20.0 23.3 0 26.5 9.5 0.151 3.65 19.3 21.4 500 25.8 10.0 0.156 486 18.0 19.9 D0 25.3 10.5 0.162 6.11 17.0 18.8 FileNo.: VY-16Q-307 Revision:

A Page 6 of 6 F0306-01RO NEC041526 Structural Integrity Associates, Inc.Table 2: Recirculation and RR Pip ingSegentNumbers Piping Node Points Region Start End Description 1 3 500 Outlet*2 500 50 Pump suction 3 150 210 Pump discharge 3B* 188 210 Down Stream of RH R Return 210 340 lunlet Header.210 320 lunlet Header 5A 340 365 Riser 5B 340 345 Riser 5C 210 334, Riser 5D 320 325 Riser 5E 320 315 Riser 6A 365 366 Inlet Nozzle 6B 345. 346 InletNozzle 6C 334 336 Inlet Nozzle 6D 325 326 Inlet Nozzle 6E 315 316 Inlet Nozzle.7A 500 550 RHR Supply, tee to valve 7B .550 565 RHR Supply valve to penetration 8 152 176 .4" Bypass 9A 600 660 RHR Return; valve to tee 9B 660 675 RHR Return; penetration to valve*Only applicable for RHR initiation File No.: VY-16Q-307 Revision:

A Page 7 of 7 F0306-OIRO NEC041527 Structural bIntegrity Associates, Inc.-S. ~'1.46-. I SttIIuI, $ /3.43 Figure 1. Recirculation and RHR PipingDiagram File No.: VY-16Q-307 Revision:

A Page 8 of 8 F0306-OIRO NEG041528 Structural

/ntegrity Associates, Inc.Table 3: VY Thermal Transients

____ hUl- Ccohins (7[$ M9 jII] lie- hcw Le" Desokfl Pft, Opw- T.. ~ Tow Tkbt e H1M [IVJ Jinal P&~i C Cue mn T-a (f) (7) (CIF)

  • 0"p) (rho 4j 406 CydSIll]1 100 70 100 1800 60 *222 0 L100 2 100 70 100 1800 60 252 0 L100 3 100 70 100 1800. 622 0 1,103 1004 170 100 1800 60 905 0 1I0 5 100 70 100 180I 60 452 0 1.1 1 6. 100 70 103 1800 60 42 0 1.10 120 PakTea) 7A 100 70' 100 1800 60 0 0 1,100* B 100 70 100 320) 60 0 0 120 8 100 70 100 1003 60 0 0 1803 9A 100 70 100 1800 60 0 0 1*10 9B 100 70 100 1i00 60 0 0 120 1 549 100 .549 16164 103 16158 50 1010 2 549 100 549 16164 100 16J58 O 1.010 3 549 100 549 16164 10) 16.350 53 135 4 549 100 549 16164 100 k463 SO 1,035 5 549 mo 549, 16164 103 3232 50 14035 2 ,6 549 100 .549 16164 103 3212 50 135 300 7A 549 100 549 16164 10) 3,232 50 LO)10 7B 150 100 150. .16164 0 0 SO 120 8 549 100 549 16164 103 16 -50 U36.9A 549 100 549, 16164 1(0 0 53 14)15'*92 1S0 00 150 16164 11 0 50 1035 1 542 59 542 0 £772 32316 1.010 10 2 542 509 542 0 S7E .32316 1010 1010 3 542- .549 542 0 -T7P 32.316 14035 1035 4 542 549 542 0 £7EP '12,26 1335 14035 Thbnei.ol 5 542 549 542 0 P a463 135 14)35 0+2"9 3 naets R.ed 6 542 549 542 0 S772 a463 14035 16 (S )lW r-I 7A 542 549 542 0 2772 3. 141 1u010 1D 150 150 153" 0 S7P 0 120 1 8 59 542 0 .T77 335 14)35 14)35 9A 542 549 542 0 S7EP 52) 14)35 1,)35 9B 150 150 153 0 £702 0 14)35. 135 1 526 542 525 0 ST77 32316 14)10 14)10 2 526 542 525 0 £772 32316 4010 14010 3 526 542 525 0 .772 32316 14)35 14)35 4 526 .2 525 0 £772 12,926 14)35 1.035 ,bk e RolI& 5 526 542 526 0 £772 6463 14)35 14035 4 m:a.IDs e 6 526 52 526 0 £ .463' 1035 1035 300+279?A 526 542 525 0 S772 358 14)10 1o010 7B 150 150 150 0 S772 0 120 120 8 542 526. 0 £772 335. 14)M 1,03 9A 526 542 526 0 S £E 511 14)35' 035 9B 150 .150 0 £772 0 135 135 1 542 526 542 90D 64 32,316 14)0 14)10 2 ' .542 526 542
  • 900 64 32.316 14)1 14)10 3 542 26 542 900 64 32316 I135 14)35 4 542 M6 542 90 64 12326 14)35 1035 IM af 5 542 526 542 900 64 a463 1435 1035 Feednter 5 -ee.w'e 6 542 26 542 90D '64. 6.463 14)35 1035 10x2 I + ?A 542 526 542 900 .6 .35S 1410 14)30 713 150 50 153 90D 0 0 120 120 8 542. 26 542 90D 64 335 14)35 1035 90 542 26 542 900 64 511 14)35 1035 9B 15 150 153 90D 0 0 14)35 14)35'File No.: VY-16Q-307 Revision:

A Page 9 of 9 F0306-O1R0

-NEC041529 Structural Integrity Associates, Inc.Table 3: VY Thermal Transients (continued)

___UlMlMCaffxispu[811H911U1 Frew=_ W.led Decnpbn Nfl Gmw 0& TTh IM Re In] *Ca NhISL T-u CT) C1) CF) (,s, Cft (m) ,tu) frt,) C4dJu Pl 1 526 542 526 360 160 32316 1.010 L010 2 526 542 526 360 10 32,316 1,01- 1.010 3 526 542 526 300 160 32.316 W35. 1035 4 M.6 542 526 36) 100 12,925 W35 L.035 Loa d 5 526 542 526 360 160 6,463 1W035 1.035 6 tedwi* 6 526 542 >526 360 160 6,463 1,035- 1.035 Ox 2'WU (.) ?A 526 542 .526. 300 160 358 Wi10 L010 ID .150 150 150 360 0 0 120 123 8 526 542 526 360 10 335 1.W35 1.035 9A 526 542 526 360 10 511 L135 1.035* 9B 150 15D 150 30 0 0 14035 01.35 1 516 526 516 0 STEP 32,316 IG10 1.010 2 516 525 516 0 STEP 32.316 WIG0 L010 3 .516 525 516 0 -STEP 32.315 1,035 1035 Low o 4 516 525 516 0 STEP 12,925 W,035 1.035 Feeddfte 5 516 5z5 516 0 STEP 6.463 1,W35 L.35 He.e .6 516 525 516 0 STEP 6.463 WJ35 L035 70 ia1 Fvj ?A 516 525 516. 0 STEP .351 1,010 1.010 7BcDpe( 13O M5 150 0 STEP 0 12) 120 8 516 525 516 0 STEP 335 1035 1.035 PA 516 525 516 0. STEP 52 1,035 1.035 9B o50 152 150 0 STEP 0 14)35 1.035 1 526 515 526 0 STEP 32,316 WIG 1.010 2 526 516 526 0 STEP 32316 1U10 OI.010 3 526 516 526 0 kSTEP 32.316 14035 1.035 Lo 4 526 51 526. 0 STEP 12.925 W35 1.0355 526 516 526 0 STEP 6.463 W35 1.035 8 ' -eltr.6 526 516 526 0 SEP. 6463 1,035 1.,035 70 I-Ie -B1s 7A 526 515 526 0 STEP 351 1010 1010 (+) ID7B ISO 15 150 0 STEP 0 120 120 0 526 516 526 0 STEP 335 W035 L035 9A 526 516 526 0 STEP 5D2 14035 1.035 9B 150 150 150 0 .STEP 0 1.035 1.035 1 300 525 300 22) 3698 32.316 1.190 1.190 2 300 525 300 220 3M8 32.316 1.190 L.190 3 300 525 300 220 3608 32.316 1,190 1.190 Los of 4 300 525 300 220. 308 12925 1.090 1.190 5eeata .300 525 300 220 308 6.463 1.10 (190 9 Amps (olafm 6 .300 525 300 220 308 6.463 L110 1.190. 10 Itd , , ?A 300 525 300 220 308 306 U .90 "190?B 150 15D. 150 0.01 0 0 120 123 8 300 525 300 220 398 335 1,190. 1.190 9A 300 525 300 220 3608 431 .1.00 1.190 9B- 150 15 .150 0J01 0 .0 L125 1.125 125 10 LoaCsf Fee&dter FuiiS (kolslun VURS Cbsi) Ilt SWUP, 2.3 4 S 6 7A PA 9B 500 500 520 500 500 520 500 150 200 520.150 303 3(00 300 30D 30D 300 300 150 3m0 30D 152 500 500'500 500 500'500 500 150 500 500 150 4W09 4500 4500 4520 4500 4520 4520 OJOl 45001 4520 4520 160 160 10 160 160 32316 32.316 32.316 12925 6.463.885 885 885 885 160 10o 0 160 160 0 6463 301 0 335 429 0 885 885 120 885 885 0.35 1135 L.135 L.135 1. 135 L.135 135 12)1.135 1.135 L.135 10o 2.File No.: VY-16Q-307 Revision:

A ,Page 10 oflO F0306-OIRO NEC041530 Structural Integrity Associates, Inc.Table 3: VY Thermal Transients (continued)

Mk-hefx rC-aUF&- 1"71 !P) g rl [_l _ ]-me No.Load Decaiftm, Pdm OpS'. TdT. Ls 7w" Dade nw VO[10] k l Of Cae Ral- Tu. (7) (1) ( (c.) (9" (4id dc 01oes 1I]1 300 500 300 420 1714 32316 1.135 675 2 308 500 300 420 1714 32316 1,135 675 3 30W 500 300 .420 1714 32,316 1.135 675 Lca of 4 3W0 500 300 420 1714 12=26 1,135 675 Feed-nfr 5 300 5)0 300 420 1714 6.463 1,135 615 Pino (15olaim .6 300. .0 300 420 1714 6.463 1.135 675 10 X 2 V~deb Clcse) ?A 300 5)0 300 420 1714 301 1.135 615 rd step73 .150 150 150 0.01 0 0 120 120 O 300 5)0 320 420 .1714 335 1.135. 675 9A 300 5)0 300 420 1714 429 1,135 615 9B 15) M 150 0.01 0 .0 1.135 675 1 549 300 549 906 100 32316 340 LO 10, 2 549 3D0 549 e964 100 32316 340 .10, 3 549 300 Y9 " 64 100 32316 340 13035 Lcu of 4 549 320 49 0064 100 .12,S26 340 1,035 Feedvar', 5 549 320 549 a6 m00 6.463 340 1,035 12 Pm (1o.1im 6 549 320 549 06 100 6.463 340 1035 .10 VANSe Cle) ?A 549 330 549 em64 0oo 320. 340 L310 Ihtte p 7B 15) 10 150 0064 100 * .0 120 120 0 549 300 549 006" 100 335 340 13,35 9A 549 320 549 06 100 443 340 13035 9B 150 150 150 0061 100 '0 340 1.035 1 549 M26 549 0 STIP 32316 1910 13010 2 549 526 549 0 ;.$tH' 32316 1010 13010 3 549 526 549 0 STE' 32316 19035 13035 4 549 M26 549 0 STEP 12926 1,035 13035 1 5 549 526 549 0 STEP 6.463 1.035 1.035 Rdzbo0V. 6 549 26 549 0 STEP 6.463 1,035 1,035 30D?A 549 126 549 0 STEP 36D 19100 1D 10 7B 150 150 150 0 STEP 0 120 120 8 549 M6 M9 0. STEP 335 19035 1035 9A 549 526 549 0 STEP 514. 1935 1.035 9B3 15) 150 150 0 STEP 0 1,035 13035 " 1 375 526 375 5436 100 16,158 19010 170 2 375 526 375 5435 100 16,158 1,010 170 3 375 526 375 5436.. 100 16.158 19035 205-4 375 M6 375 5436 100 6.463 1,035 205 5 375 526 375 5436 100 3.32 1,035 205 14 sigownI 6 371 52 375 5435 100 31232 1.035 2D5 300 7A 375 526 375 5435 100 3230 1,035 170 7B 150 150 150 0.01 .0 0 120 120 8 375 526 375 5436 100 .16 1,035 205* 9A 375 526 375 5435 100 458 1,035 205 9B 15) 150 150 0.01 0, 0 1935 205-15 Shtdwn2ý2 3 4 5 6 7A S7B3 8 9A 9B 33D 330 330 33D 330 332 330 150 33D 330 15)375 375 375 375 375 375 375 150 375 375 150 330 330'330 330'330 330 150 330 330 150 630 680 6300 600 600 630 600 600 630 6300 6300 270 270 270 27O 270 270 0 270 270'0 16.158 16,158 16,158 6,463 3J232 3.232-282 163 403 0 170 170 205 2035 205 170 120 205 205 205 90 90 115 115 115 115 90 120 115 115 115 30D File No. VY-16Q-307 Revision:

A Page 11 ofl11 F0306-O IRO NEC041531 Structural Integrity Associates, Inc.Table 3: VY Thermal Transients (continued)

Led, Bout" p*Cn Op&r Iw T ug tv Rate f-ulm i kit MAI of Cue Red- TeV Cl) (1) (I) #") VFTU) ftff **s) *ij Cyc6pilI 1 225 330 .225 379) 10) 16.158 SO 0 2 225 330 225 3M9 1W0 16.18 SO 0 3 225 330 225 3M9) 100 16.158 115 25 4" 225. 330 225 M3O8 100 6,463 115 25 5 225 330 225- 3M0 100 3,232 115 25 Id Snl. 3 6 .225 330 225 3790 100 3.232 115 25 300 7A 225 330 225 37,3 .10) 6,7w 90 0 7B 225 330 225 0 STEP 6.79) 100 100 8 225 330 225 3M. 10 168 115 25 9A 225 330 225 3790 100 6.700 115 25 9D 225 150 225 0 STEP 6.700 115 25 1 10 225 100 4500 10) 16.158 0 0 2 10) 225 100 45DD 100 16.158 0 0 3 10) 225 100 4500 10 16.158 25 25 4 100 225 I0) 410D 100 6.463 25 25 5 100. 225 I0O 4500 100 3.2 25 25 17 Sv u 4 6 100 225 100 4500 100 3.232 25 25 300 7A- 10N 225 100 4500 NO 6,70D 0 0 k7 1w 225 100 450 100 6.70) 0 0 8 1M 225 I0 410 100 168 25 25 9A IG0 225 10) 4500 100 6.70) 10 100 9 10 M225 I00 4500 1 6.70) 10) 100 1 100 100 10D 0 01 0 22 25 1.563 2 -0) 100 100 0 J1 0 2262 25 1.563 3 100 100 10) 0.01 0 2= 25 1.563 4 .-0 I0 100 10) 0D1 0 905 25 1.563 5 10 O 100 10) 0D1 .0 452 25 1,.563 18 6 10N 100 100 0O1 0 452 25 1.563 7A .IW 100 10) 0DI 0 158 25 1.563 7B 10) 100 10 .001 0 0. 0 450 8 100 100 100 001 0 23 25 1.563 9A 100 100 I0) 001 0 226 25 1563 9B 1M 100 100 001 0 0 25 1.563 1, 225 225 00l 0 22,958 9S 90 2 225 225 225 091 0 22,858 90 S0 3 225 225 225 001 0 22.853 115' 115225 70 225 63 93Do 2U58 4 225 70 225 60 .9300 9,143 115 115.19 R-Rktdad 5 70 225 6w 9300 4,572 115 115 30 (N) 6 225 70 225 60 9300 4,572 115 115 7A 225 70 225 6d 9300 670) 115 115 7B .225 70 225 60 9100 <.C70 115 115 8 225 225 225 001 0 237 .115 115 9A 225 225 225 001 .0 6.70) 115 115__ & 225 70 2253 63 900 6V7W0 115 115 20 2 3 3B 4 5 6 7A 7B 8 9A 9B 70 225 225 7M 70 79 70 79 225 225 225 225 225 225 225 225 225 150 225 225 225 225 225 70 70 70 70 70 70 225 225 225 UD1 001 00 63 6.0.31*001 001 31 U 0 0 93o0 93DO 9300 9300 9290 0 0 9290 16.158 16.15 11.747 9.143 4.572 4,572 6.70)6,700 16.158 6.70)6.0)90 115 115 115 115 90 100 115 115.100 115 115 "*11:5 90 100 115 115 100 90.115.300 File No. 'VY-16Q-3 07 Revision:

A Page 12 of I2.F0306-OIRO NEC041532 Structural Integrity Associates, Inc.Table 3: VY Thermal Transients (continued)

_____aind s I [PJP] ____11 No.Il. D ki.i- ur'g Ope. '4., T,.M "ox Io fow Age irid End it cue xeT.y(¶ r'13 * 'cOm, Crk, (a mjn *ft)t 1 130 526 *133 0 STEP 32,316 IJ010 11010 2 130 526 133 0 STEP 32Z316 1,010 1.010 3 130 526 130 0 STEP 32,316 '1.035 1.035 4 130 526 10 0 STEP 1ý2,9) 1JO35 14335 5: 130 526 130 0 STI 6,463 1J3B5. 14335 21 "et -6 130 526 130 0 STEP 6,463 14335 14335 7A 130 526 130 0 STEP 272 14010 1410 7B 1.5 1.50 1S 0 STEP 0 14010 1,010 a 130 526 130 0 STEP 335 14335 14335 9A 130 M6 130 0 STEP 380 .1435 14035 9B 150 150 .15 0 STEP 0 14335 14335.1 52Z 130 5X5 -0 , STEP 32.316 1,010 14310 2 525 130 526 0 STEP 32,316 14010 14010 3 525 130 526 0 -STEP 32316 1J135 14335 4 525 136 526 0 STEP 12,926 145 13035 kan= 5 5X BO0 526 0 SP 6,463 14335 14335 22 6 525 130 525 .0 STEP 6,463 1J35' 1.035?A 525. 130 52 0D STEP *' 272. 110 14310 71 150 150 13 0 STEP 0 100 100 a 525 130 52z 0 STP .335 1J35 1,035 9A .526 .130 526 0 STEP 38 11B53 14335 93 150 150 150 0 STEP 0 14335 1.035 1 375 526 375 600 906 32.316 14010 200 2 375 -526 375 600 9w6 32,316 1,010 200 3 375 526 375 600 906 32.316 I135 225 4 375, 26 375 603 906 12m95 .155 225 ra " 5 35 526 10 60 .906 6,463 14S 225 Safely EbldOM(1le 6, 375 526 375 900 96 6,346 1J335 225 2 Aip dM4 ?A 315 526 375 60 9506 320 1.410 200 7B 15B 150 15 OD1 0. 0 100 100 8 375 526. 375 dO 905 335 1435 225 9A 375 M6 375 600 906 43B 14J35 .225 9B 150 150 130 001, 0 0 100 100 1 10) 375 100 9900 100 32,316 200 0 2 100 375 100 9900 10) 3Z316 2W0 0 3 10) 375 100 9900 10) 32,316 225 25 4- 100 375 10) 99M0 100 12926 225 25 iSrgk ReMEd- 5 100 375 10) 9900 10) 6,463 225 25 x Safev. 6 100 375 10) 9900 10) 6,463 225 25 2 7A 100 375 100 9900. 100 234 200 -25 71) 1M 150 133 0O1 0 0 100 10 8 100 375 10) 9900 100 335 225 25 9A 100 375 1(0 99)0 100 334 2z

  • 25 9B 153 150 1303 001. 0 0 22 25 File No.: VY-16Q-307 Revision:

A.,,Page 13 of 13 F0306-0OIRO NEC041533 Structural Integrity Associates, Inc.4.0 CALCULATIONS Through-wallthermal gradient terms* were calculated by the PIPESTRESS program for all of the transients.

Thermal transient cases were modeled for each transient, as shown in Table. 3. Some of-the transient segments are identical, therefore some models were applied to more than one transient.

Listings of the PIPESTRESS inputs for each plant are included as Appendix A.The material properties were obtained from the ASME Code Section I1, 1989 Edition, Appendix I, with 1989 Addenda [1]. E and c are taken at 70 0 F, and k, p, and c. are taken at the average temperature over the range of the individual transients.

The internal heat transfer coefficient h for the transients with flow occurring in the pipe is calculated-based on the following relation for forced convection

[14]:-h=0.023 Re 0 8 ProAkID Where Re = Reynolds number Pr =Prandtl number The heat transfer coefficients were calculated by PIPESTRESS using the above relation The flow rates described for each transient in Section 3 were used. For the transients where flow is stopped, the natural convection heat transfer coefficient was used. The formula for h is [14]h = o55 (Or Prf 2-kS Where Gr = Grashof Numb e L=pipe diameter PIPESTRESS only has the forced convection heat transfer formula built in, so an equivalent flow rate was determined that would give the same heat transfer coefficient as the free convection coefficient

5.0 RESULTS

OF ANALYSIS.To perform the fatigue analysis, program PIPESTRESS

[3] was used. PIPESTRESS calculates the thermal expansion and seismic moments, the ASME Code Equation 10, 12, and 13 stresses, performs the thermal. stress ratchet check, and performs fatigue analysis per Equation 11 and 14. For each operating state of the recirculationfRHR piping, load sets are created. A load set includes the coincident pressure, thermal expansion moment, through-wall thermal gradient terms, number of cycles,, and tEmp erature at which the allow able Sm is taken. In general, the pressures and thermal expansion moments are taken at the end point of the transient, the thermal gradients taken at the point File No.:. VY-16Q-307 Page 14 of 14 Revision:

A F0306-0iRD-NEC041534 Structural integrity Associates, Inc.ofmaximum totalthermal gradient stress during the transient, and the.Sm allowable is initially conserv ativ ely taken at the highest temperature of the transient.

In calculating fatigue, the range of stress in going from one load set to another is determined.

Since the Code assumes that any transient could follow any other, all pairs of load sets are evaluated to determine the range of stresses for the Code stress equations.

The number of allowable cycles for each load set pair is determined.

The incremental fatigue usage is obtained by dividing the number of design cycles by the allowable cycles. The incremental fatigue usages for all load set pairs are then summed to obtain the total fatigue usage.

6.0 CONCLUSION

S AND DISCUSSIONS Tables 4 and 5 summarize the fatigue results for the Loop A recirculation RHR suction tee location.The cumulative fatigue usage, prior to considering environmental effects, is 0.0715. Taking into account environmental effects, the maximum possible'multiplier for stainless steel is 11.64 [15]. This results in a total fatigue usage of 0. 8323.For the RHR return tee, the fatigue results are summarized in Tables 5 and 6. The cumulative fatigue usage, prior to considering environmental effects, is 0.0475. Taking into account environmental effects, the maximum possible multiplier for stainless steel is 11.64 [15]. This results in a total fatigue usage of 0. 5529.Appendix B contains the fatigue usage summary forboth locations.

File No.: VY-16Q-307 Revision:

A Page 15of 15 F0306-OIRO NEC041535 Structural Integrity Associates, Inc.Table 4: ASME Code Stress and Fatigue Results -Loop A Recirculation/RfR Suction Tee Allowable Maximum Maximum Maximum Maximum Stress 3S, Equation 10 Equation 11 Equation 12 Equation 13 Fatigue psi Stress, psi Stress Stress Stress Usage 53,220 75,905 239,122 20,121 78,969 0.0715 Table 5: Detailed Fatigue Results -Loop A Recirculation/RHR Suction Tee Load Set Load Set No. Common Allowable Fatigue I J Cycles Cycles Usage.21 22 1 2498893 112 0.0089 23 26 2 104265 1565 0.0o13 25 26 48 94246 2228 0.0215 20 25 2 74153 5521 0.0004 18 19 1 67360 8135 0.0001 9 19 10 63893 10081 0.0010 10 20 20 57543 16775.- 0.0012 13 20 278 55507 19986 0.0139 4 19 289 52072 27605 0.0105.13 17 22 47351 44635 0.0005 4 17 278 45820 52938 0.0053 4 24 21 45137 57480 0.0000 4. 16 10 43045. 74558 0.0001-1 8 16 70 42530 79641 0.0009 7 16 ý70 42159 ý83557 -0.0008'3 16 150 42111 84800 0.0018 1 15 120- 40095 109906 0.0011 5 15 I 20 38208 142694 0.0001 12. 15 10 37956 147920 0.0001 2 15 150 37955 147923 0.0010 3 14 300 33361 316184 0.0009 2 11 20 26345 .12484,29 0.0000 Total Fatigue Usage 0.0715 f6 File No.: VY-.16Q-307 Revision:

A Page 16 of 16 NEG041536 Structural Integrity Associates, Inc.Table 6: ASIVIE Code Stress and Fatigue Results -Residual Heat Removal Return T ee Allowable Maximum Stress 3Sm, Equation 10 psi Stress, psi Maximum Equation 11 Stress Maximum Maximum Equation 12 Equation 13 Usage Stress Stress 1 53,220 73,876 238,875 16,619 45,362 0.0475 Table 7: Detailed Fatigue Results -Residual Heat Removal Return Tee Load:Set Load Set No.CommMo Allowable Fatigue I J Cycles sk, psi Cycles usage 21 22 1 273962 88 0.0144.9 19 10 71392 6434 0.0016 18 19 1 -65638 9030 0.0001 19 26 5 59985 13704 *0.0004.20 25 5 56762 17927 00003.13 :20 295 55511 19980 .0.148 10 19 20 53928 23126 0.0009 4 19 264 52687 26016 .0.0101 13. 17 5 43541 70016 0.0001 4 17 295 42122 83967 0.0035 4 24 2 41350 92929 0.0000.4 16 18 39684 116206 0.0002 8 16 70 '39351 121645 0.0006 7 16 70 38939 128779 0.0005 1 : 23 2 38872 129980 0.0000 6 16 20 38778 131693 0.0002 3 16 122 38652 134041 0.0009 1 15 118 .36804 174801 0.0007 5 15 20 35953, 198413 0.0001 2: 15 162. .35525 213538 00008 3 14 300. 30671 542245 0.0006 2 11 20 27530 1081519 0.0000 25 26 45 23758 1748744 0.0000 Total Fatigue Usage 0.0475-(File No.'. VY-16Q-307 Revision:

A Page 17 of 17 F0306-01RO NEC041537 Structural Jategfrity Associates, Inc.

7.0 REFERENCES

.4 1. ASMEBoiler and Pressure Vessel Code, Section 11, 1989 Edition with I989 Addenda.2. ASME Boiler and Pressure Vessel Code,Section XI, 1989 Edition.3. Vermont Yankee Calculation 23A5569, "Recirculation System Stress Analysis", Revision 0, SI File No. VY-05Q-227.

4.- SI Calculation, "Recirculation Class 1 Pip ing Fatigue Analysis", Revision B, SI File No. VY-05Q-307. .5. Program PIPESTRESS, Version 3.5.1+26, DST Computer Services, S.A., June 2004.6.. ADLPIPE Model Input Listing,-

Vermont Yankee Calculation VYC-2030, Rev. 0, "Temporary Shielding Recirculation

&RHR Piping Loop A," File c2030n2, SI File No. W-VY-05Q-227.

7. Reactor thermal diagram 8. Recirc outlet nozzle thermal diagram 9. Recirc inlet nozzle termal diagram 10. Entergy Nuclear Report VY-RPT-05-00022, "Task TO 100 Reactor Heat Balance EPU Task Report for ER-0401409",.Revision

.0, SI File No. VY-16Q-205.

11. Reference for cycle counts <<LATER>>

Entergy Calculation No. VYC-378, Revision 2,"Vermont Yankee Reactor Cyclic Limits for Transient Events," 3/10/88, SI File No. VY-16Q-2xx.12. Email from Stephen Jonasch (Entergy) to Terry Hernmann (ST),

Subject:

RE: RHR to RWR Tee Transients, Dated: 4/14/2007 12:04 PM,' with Attachment Bookl. xls, SI File No. VY-05Q-205.

13. Email from Stephen Jonasch (Entergy)to Terry Herrmann (SD,

Subject:

RE: RHR toRWR Tee Transients,.

Dated: 4/14/2007 11:19 AM, with attachment RHR SDC. pdf, SI File No. VY-05 Q-205.14. Holman, J.P., Heat Transfer, Fifth Edition, McGraw-Hill, 1981.15. Reference for EAF Multiplier.

16. VY Drawings, SI File No. VY-16Q-205:
a. 5920-6801, Sheet 1, Revision 1, b. 5920-6802, Sheet 1, Revision 2, Sheet2, Revision 2, Sheet 3, Revision 3, Sheet 4, Revision 2, Sheet 5, Revision 2, Sheet 6, Revision 2 c. 5920-6808 Sheet 1, Revision 0.File No.: VY-16Q-307 Page 18 of18 Revision:

A F0306-OIRO NEC041538 Structural Integrity Associates, Inc.APPENDIX A PIPESTRESS Input Files*1'Recirc 15.fre File No.: VY-16Q-307 Revision:

A PageAl9ofA19 F0306-0IRO NEC041539 Structural Integrity Associates, Inc.IDEN JB=3 tJob nutber (1 to 9999)CDlI *l=ASME Class 1 GR=-Y t Direction of gravity VA=O t O=Calculate 2=Verify IU=1 *Input units 1lUSA OU=1 .Output units 1=USK CH=$ ',Delimiter character AB=T *FREE errors = abort PL-$Vermont Yankee$S-EffRVP*TITL BL=3 tModeling option:* 3 = uniform mass for static analysis lumped mass for dynamic analysis a rotational inertia ignored GL=l tReport forces/moment O=Global l=Local 2=G et L.SU=1 *Support sunmary O=No 1=Yes CV=10 *Code version -See Manual HS=1 -Highest 20 stress ratios for each case-*= Hot modulus J6=I .*Fild generated by.program"*TI=$Vernont Yankee. Recirculation

$$Fatigue Analysis$FREQ.2F=1 RP=8 FR=36 EP=20 RC=0 HX=70 TI=4SEISMIC$

tf, THERMAL CYCLE LOAD CASES-Wa-, LCAS RF=0 CA=l TY=O TI=$LC-l$ -TC-1 LCAS RF=O CA=2 TY=O TI=$LC-2$

t TC-2.LCAS RF=O CA=3 TY=O TI=$LC-3$

  • TC-3 LCAS RF=O CA=4 TY=O TI=$LC-4$

t TC-4 LCAS RF=O CA=5 TY=O TI=$LC-5$

  • TC-5 LCAS RF=0 CA=6 TY=O TI=$LC-6$

t TC-6 LCAS RF=O CA=7 TY0 TI=$LC-7$

  • TC-7 LCAS RF=O CA=8 TY=0 TI=$LC-8$

t TC-86 LCAS RF=O CA=--9 TY0 TI=$LC-9$

t TC-9 LCAS RF=0 CA=lO TY=O TI=$LC-lO$

t TC-lO LCAS RF=O CA=1l TY=O TI=$LC-11I tTC-II LCAS RF=O CA=12 TY=O TI=$LC-12$

vTC-12 LCAS RF=O CA=13 TYO TI=$LC-13$

tTC-13 LCASRF=O CA=14 TY=O TI=$LC-14$

&TC-14 LCAS RF=O CA=15 TY=0 TI=$LC-15$

t TC-15 LCAS RF=0 CA=16 TY=0 TI=$LC-16$

  • TC-l6 LCAS RF=0 CA=17 TY=0 TI=$LC-17$
  • TC-17 LCAS RF=O CA=l6 TY=C TI=$LC-18$
  • TC-18 LCAS RF=O CA=19 TY=0 TI=4LC-194 1TC-19 LCAS RF=O CA=20 TY=O TI=$LC-20$
  • TC-20 LCAS RF=0 CA=21 TY=0 TI=$LC-21$

t TC-21 LCAS RF=O CA=22 TY=O TI=$LC-22$

  • TC-22 LCAS RF=O CA=23 TY=O TI=*LC-23$
  • TC-23 LCAS.RF=O CA=24 TY=-O.TI=$LC-244 t TC-24 It**t WEIGHT CASES"-"**LCAS CA=I01 RF=1 TY=3 TI=$OPERATING WEIGHT$LCAS CA=102 RF=2 TY=4" TI=$HYDROTEST WEIGHT$*\Ittt THERMAL TRANSIENT CASES****File No.: VY-16Q-307 Page A2-0 of A20 Revision:

A F0306-O1RO NEC041540 V Structra!

Integrity Associates, Inc.TCAS CA=201 TI=4Design Hydrotest TCAS CA=202 TI=$Startup WAS CA=203 TI=$TRoll

& Inc. PUR1 TCAS CA=204 TI=$TRoll

& Inc. PMP2 WAS CA=205 TI=$LOFVH+TT PURI TCAS CA=206 TI=$LOFUH+TT PUR2 WAS CA=207 TI=4LOFUH+PFUHTh Bypl WAS CA=208 TI=$LOFUH+PFTUHTR Byp2 WAS CA=209 TI=4LOFiP, ISO. C DN 1.TCAS CA=210 TI=$LOFUP, ISO Cl UP 1 WAS CA=211 TI=$LOFTJP, ISO Cl DN 2 WAS. CA=212 TI=$LOFUP, ISO Cl UP 2 TCAS CA=213 TI=$Reduction to 0% PUR TCAS CA=214 TI=MShutdownl TCAS CA=215 TI=$Shutdown2.

WAS CA=216 TI=$Shutdown3 WAS CA=2I7 TI=$Shutdown4 TCAS CA=2i8 TI=$Code Hydrotest WAS CA=219 TI=$RHR Initiation UP TCAS CAý-220 TI=$RHR Initiation DN WAS CA=221 TI=$Inadvert.

Inj. DOW TCAS CA=222 TI=iInadvert.

In3. UP WAS CA=223 TI=$Single Relief BD DN TCAS-CA=224 TI=$Single Relief BD UP it1t SEISlIC CASES'999 t, t It I S U t t At A ta tFtx RCAS CA=103 EV=i TY=1 5U=1 LO=1 FX=l 0$0 0$0 0 0$$0$$0$FY=1 FZ=l TI=$OEE INERTIAO AAAA LOAD COHBEIATICN CASES A CCAS RF=1 CA=104 ME=1 FL=1 CCAS RF=1 CA=401 SS=1 ME=1 EQ=3 CCAS RF=1 CA=402 SS=1 ME=3 F1=1 CCAS RF=1 CA=403 SS= I4E=3 FI=-I LOA itt A At itAtit At Vt AttA LOAD SETS3AA'A tWt t ttitt t AtAt A A.*CI=103 Ci=.101 C=1=03 C1=103 Cy=10 C2=103 ,C2 =1 C2 =1 TI=$OBE$TI=OEQUATICN 9 LEVEL B$TI=$NORMAL-IOBE$

TI=$NORHAL-OBE

$LSET LSET LSET LSET LSET LSET LSET LSET LSET LSET* LSET LSET LSET LSET LSET LSET LSET RF=1 RF=2 RF=2 RF=3 RF=3 RF=3 RF=4 RF=4 RF=4 RF=10 RF=10.RF=2 RF=2 RF=4 RF=14 RF=15 RF=19 FC=I RP=1 FC=I RP=1 FC=1 RP=1 FC=i RP=I1 FC=1 RP=1 FC=1 RP=1 FC=1 RP=1 FC=1 RP=1.FC=1 RP1I FC=1 RP=1 FC=1 RP=1 FC1 RP=1 FC1 RP=1 FC=I RP=I FC=1. RP=1 FC=1 RP=1 FC=1 RP=1 CY= 120 CY=300 CY=579 CY=579 CY=20 CY=20 CY=70 CY=70 CY= 10 CY=20 CY=20 Cy= 10 CY=300 CY=300 CY=300 CY=300 CY=300 PR=1 PR=2 PR=3 PR=4.PR=5 PR=6 PR=7 PR=8 PR=9 PR=1O PR=11 PR=12 PR=13 PR=14 PR=15 PR=16 PR=17 MO= 1 MO=2 HO=3 MN=4 M0=5 HO= 6 MO=7 M(=8 ..MO=9 KO= 10 PO= 12 1O= 13 NO= 14 No= 15 MO-=16 K0-= 17 TI=$Design Hydrotest LS-I$ *201 TI=$Startup LS-2$ *202 TR-203 TI=$Toll & Inc. PURI ' LS-3$TR-204 TI=$TRolI

& Inc. PUR2 LS-4$TR=205 TI=OLOFUH+Tr PURl LS-5$TR"-206 TI=*LOFWfH+rT PUP2 LS-65 TR=-207 TI=$LOFWH+PFUHTR Bypl LS-70 TR=208 TI=$LOFUH+PFWHTR Byp2 LS-B$.TR7-209 TI=$LOFUP, ISO Cl DN.1 LS-9$* TI=$LOFWP, ISO Cl UP 1 LS-10$TRP-211 TI=$LO6FbP, ISO Cl DN 2 LS-11$TI=$LOFWP, ISO C1 UP 2 L5-12$TR=213 TI=$Reduction to 0% PUR LS-13$TI=$Shutdoownl LS-145 TR=-21 5 TI=$Shutdown2 LS-15$* TI= Shutdown3 LS-16$5 TI=$Shutdown4 LS-17$File No.: VY-16Q-307 Revision:

A Page A21 of A21 F0306-OIRO NECO415.41 VStructural Integrity Associates, Inc.LSET RF-18 LSET RF=l9 LSET\RF=l9 LSET RF=4 LSET RF-4 LSET RF-22 LSET RF-23 FC=1 RP=1 FC=1 RP=1 FC=-1 RP=1 FC=1 RP=1 FC=1 RP=1 FC=I RP=1 FC=1 RP=I CY= 1 CY=300 CY=300 CY= 1 CY= I CY=2 CY=2 PR=18 PR=19 PR=2 0 PR=2 1 PR=22 PR=2 3 PR2 4 MO= 18 No= 19 M0=20 MO=21 MO;=22 MC=23 MO(=24 TR-218 TR-2 19 TR---22 0 TR=-221 TR=222 TR=-223 TI=$Code Hydrotest TI=$RHR Initiation UP TI=$RHR Initiation DN TI=$Inadvert.

Inj.. DOWN TI=$Inadvert.

Inj. UP TI=$Single Relief BD DN TI=$Single Relief BD UP LS-18$" LS-19$LS-20$*LS-2 1$LS-22$LS-23$LS-2 4$LSET RF-2 FC=1 CY=5 FL=1 PR=2 HO=402 TI=$NORMAL+OBE LS-25$LSET RF=2 FC=1 CY=5 FL=1 PR=2 HO1=403 TI=$NORHAL-OBE LS-26$FTtt AT FATG AT-500 AF=502.FATG AT=600 AF=602 t t'tt RESPONSE SPECTRA*+/-*

SPEC FS-OBE EV=1 ME=3 FP=O TI=$RESPCNSE$

LV1I DX=1 DY=1 DZ=1 D-I=X 0.30/0.100 0.40/0.100 0.90/0.20(3.30/0.700 4.40/0.750 4.41/0.90(8.70/1.600 12.00/0.650 17.00/0.40(-DI=Y 0.30/0.030 0.40/0.030 0.50/0.05(2.00/0.220 2.40/0.350 3.50/0.35(8.25/0.330

'8.75/0.250 17.50/0.25(DI=Z 0.30/0.100 0.40/0.100

.0.50/0.13(1.90/0.600 3.50/0.600 3.75/0.70(8.50/1.500 12.50/0.500 20.00/0.35(SMATERIAL PROPERTIES t 0 0 0 0 0 0 0 0 0 1. 25/0.400 4.75/1.100 20.00/0.350 0.60/0. 075 3.60/0.300 25.00/0.120 0.90/0.150 4.40/0.700 30.00/0. 350 2.25/0. 450+5.20/1.100 30.00/0.350 1.00/0.075 5.30/0.300 30.00/0.120 1.00/0.250 4.50/0.800 3 6.00/0.350 2.30/0. 700 5. 8O/ 1. 6Q0 36.00/0.350

1. 20/0.100 5.75/0.330 36.00/0. 120 1.60/0.250 6.2 5/1.500 ASTM A-106 MATH CDD106 NATD TE=70 kATD TE=100 NATD TE=200 NATD TE=300 NATD TE=400 NATD TE=500 NATD TE=600* ASNE SA-37e MATH CD=376.3 KATD TE=?O NATD TE=100" MATD TE=200 NATD TE=300 NATD TE=400 NATD TE=500 NATD TE=600 t ASKE SA-403 MATH CD=403.3 NATD TE=70 NATD TE=100 MATD TE=2 00 HATD.TE=300 KATD TE=400 Grade B, PIPE *EX=O TY=1 EH=29.5 EX=0.0 EH=29.3 EX=O. 21 EH=28.8 EX=O.95 EH=28.3 .EX=1.77 EH=27.7 EX=2.67 EH=27.3 EX=3.64 EH=26.7 EX=4.63 i Grade TP316, PIPE *16 EX=0 TY=4 EH=28.3 EX=0.0 EH=26.1 EX=O.31 EH=27.6 EX=1.37 EH=27.0 EX=2.48 EH=26.5 EX=3.65 EH=25.8 EX=4.86 EH=25.3 EX=6.11 Grade VP3 16, ELBOWS t 16 EXFO TY=4 EH=28.1" EX=O.0, EH=28.1 EX=0.31 EH=27.6 EX=1.37 EH=27.0 EX=2.48 EH=26.5 EX=3.65 VC-S i SM=20.0 SM=2 0.0 SM=20. 0 SM=2 0.0 SM=2 0.0 SM=18.9 S M=17.3 SY=35 SY=35 SY=31.9$Y=31 SY=30 SY=28.3 SY=25.9*j 6Cr- 12Ni-2Mo SM=20.0 SY=30.0 SM=20.0 SY=30.0 SM=20.0 SY=25.8 SM=20.0 SY=23.3 SM=19.3 SY=21.4 SM=18.0 SY=19.9 SM=17.0 SY=18.8 tj 6Cr- 12Ni-2Mo SM=20.0 SY=30.0 SM=20.0 SY=30.0 SM=20.0 SY=25.8 SM=20.0 SY=23.3 SM=18.9 SY=21.4 File No.: VY-16Q-307 Revision:

A Page.A22 of A22 F0306-DIRO NEC041542 Structural integrity Associates, Inc.HATD TE=S00 NATD TE=600 EH=25.8 EX=4.86 SY=17.5 SY=19.9 EH=25.3 EX=6.11 S=16.5 SY=18.8*I* Cross Sectional Properties CROS CROS CROS CROS CROS CROS CROS CROS CROS CROS CROS CD=1 CD=2 CD=3 CD'=4 CD-5 CD=71 CD=8 CD=11 CD=13 CD= 14 CD=15 OD=50.0 30=1 D0=37.85 SO=I1 0D=28.875 5O=1 OD= 28.638 30=1 OD=-28. 169 5O=1 OD=28. 166 so5=0D=42.507 30= .001 OD=6. 625 50=0.001.OD=28.339 SO=1 OD=28.339 50=1 OD=12 .748 CROS CD=16 O=14.17 SO=1 CROS CD=17 OD=15.5 30=1 CROS CD=180OD=21.88 CROS CD=19 OD=28.25 50=1 CROS CD=20 OD=21.878 CROS CD=25 OD=20 CROS CD=26 0D=20.SO=I CROS CD=27 OD=4.5 SO=I CROS CD=28 OD=4.5 30=1 CROS CD=29 OD=24 SO=I CROS CD=30 OD=24 CROS CD=40 OD=4.5 SO=0. 001 CROS CD=41. 0D=2.875 SO=0.001 CROS CD=42 01=28.33'9 sO=0.O01 WT=8.87, MA=3977.2 ST=1.0 UT=6.1 141=2 122.2 ST=1.0 rT=1.56 MA=484.9 ST=1.0"T=1.45 121=450.4 ST=1.0 WrT=1.244 MA=386. 1 ST=1.0 Thr=2. 125 MA1=0.001 ST=1.O KL=I* UT=2. 486 MA==0.001 ST= .001 IL=1 UT=0.432 MA==0.001 ST=0.001 KL=1 UT=1.339 M1=415.1 ST=1 WT=2.67 MA=0.001 ST=1.0 EL=1 ,UT=0.685 1M.=103.4* ST= 1.0 UT=1.395 MA=207.5 ST=1.0 UT -r2 MA--307.7 ST=1.0 UT=4.06 MA=803.2 ST=I.C UT=7.25 MA=16731.1 ST=1.0 UT=.1 043 MA=257.2 ST=1, o ,, T=. 1031 111=221.9 ST=1 WT=1.875 MA=0.001 ST=1 KL=1 UT=0.3385 MA=23*2 ST=1 KL=1 UT=0.67 M==0.001 ST=1 1L=1 WT=1.217 MA=3 16.5 ST= 1 UT=2.43 MA=0.001 ST=i , KL=1 UT=0.3385 MA2=0.001 ST=0.001 HL=1 T=T0.276 M11=0.001 ST=0.001 XL=1 UT=1.339 M1=O. 001 ST=0.001 KL=l*CALCi PER GE SPEC.*CALC. PER GE SPEC.*CALC. PER GE SPEC.-*VALVE I*PUNP*PUMP.RIGID STRUTS.*CALC. PER GE SPEC.*VALVE ACALC. PER GE SPEC.*CALC. PER GE. SPEC.t CALC. PER GE SPEC.*CALC. PER GE SPEC.*CALC. PER GE SPEC.*CALC. PER GE SPEC./*CALC. PER GE SPEC.7rVALVE NO.NO.NO.23A5569 23A5569 23A5569[3][3][3]NO. 23A5569 [3]NO.NO.NO.NO.NO.NO.NO.23A5569 23A5569 23A5569 23A5569 23A5569 23A5569 23A5569[3][3][3][3][3][3][3]*CALC. PER GE SPEC. NO. 23A5569 [3]*RECIRCULATION OUTLET NOZZLE.*CALC. PER GE SPEC. NO. 23A5569 [3]'CALC. PER GE SPEC. NO. 23A5569 [3]*4 inch bypass line*VALVE V2-54A*CALC. PER GE SPEC. NO. 23A5569 [3]*VALVE*4 inch bypass STRUTS*STRUT RDAi, RDA5, & VBAI'RIGID FROM RECIRC ELBOW TO RDA1 STRUT* STRUCTURE AND LOADS DESN TE=575.0 PR=1250.0

  • Reference 12 GE Design Requirenents Rpt VY-05Q-227 File-No.:

VY-16Q-307 Revision:

A Page A23 of A23 F0306-0IRO NEC041543 Structural Integrity Associates, Inc.tBEGIN REGION 1 TRANSIENT CARDS GEOMETRY FROM RHR SUPPLY TO TEE ThNCL FN=U: VY- 160% PSf iles\ UPDATED\TRANS\

REGi. INP RUN 1 FROM ANCHOR TO REACTOR VESSEL N3B-GROUP I FROM ANCHOR TO REACTOR VESSEL N3B -%NOTE flNOTE NODE 003 -RECIRC SUCTICN NOZZLE NIA (EL. 279'5 INCH)*NOTE NODE 003 IS AT THE SAFE END TO VESSEL NOZZLE CCUNECTICJN

%NOTE*NOTE SAFE END FROM NODES 003 TO 808 mOTE CCNNECTICN TO VESSEL. AT NODE 003*NOTE OD AND WALL THICKNESS FOR SAFE END TAKEN FROM GE CALC ,OTE WEIGHT FOR SAFE END BASED ON THICKNESS*NOTE NATL CD=376.316 CROS CD=1 COOR PT=3 AX=0 AY=0 AZ=O ANCH PT=3 AMVT CA=1 PTh-3 DX=0.0000 DY=0.0176 DZ=-0.0201 AMVT : CA=2 PTh3 DX=0.0000 DY=O.3141 DZ=-0.3602 AMVT' CA=3 PTh3 DX=0.0000 DY=0.3112 DZ=-0.3568 AJVT CA=4 PT=-3 DX=O.0000 DY=0.2995 DZ=-0.3434.

AMVT CA=5 PT73 DX=0. 000. DY=0.3112 DZ=-0.3568 AJVT CA=6 PT7-3 DX=0.0000 DY=O.2995 DZ=-0. 3434 ARVT CA=7 PT=-3 DX=0.0000 DY=O.2922 DZ=-0.3350 AJVT CA=8 PT73 DX=0.0000 DY=0.2995 DZ=-0.3434 ANVT CA=9 PT=-3 DX=0.0000 DY=O.1422 DZ=-0.1630 AHVT CA=10 PT7-3 DX=0.0000 DY=0.2807 DZ=-0.3218 ANVT CA=11 PT=-3 DX=O.0000 DY=0. 1422 DZ=-C. 1630 ASVT CA=12 PT7-3 DX=0.0000 DY=0.3141 DZ=-0.3602 AJIVT CA=13 PTh-3 DX=0.0000 DY=0.3141 DZ=-0.3602 ABVT CA=14 PT=3 DX=0.0000

'DY=0.1928 DZ=-0.2521 ASMVT CA=15 PTh3 DX=0.0000 DY=O. 1624 DZ=-0.1986 ANVT CA=16 PTh-3 DX=0.0000 DY=O.0946 DZ=-0.1084 A14VT CA=17 PT=3 DX=O.0000 DY=O.0176 "DZ=-0.0201"AMVT CA=B8*' PT=3 DXO0.0000 DY=0.0176 DZ=-0.0201 AMVT CA=19 PTh-3 DX=O.0000 DY=0.0946 DZ=-0.1084 AMVT CA=20 PTh-3 DX.O

  • 0000 DY=0.0946 DZ=-0.1084 AMVT CA=21 PT7-3 DX=0.0000 DYO0.0361 DZ=-0.0413 A.MVT CA=22 PT=3 DX=O.0000.

DY=0.2995 DZ=-0.3434 AMVT CA=23 PT-3 DX=0.0000 DY=O. 1928 DZ=-0.2521 AMVT CA=24 PT-N3 DX=O. 0000 DY=O.0176 DZ=-0.0201 TANG-PT=805 DZ=-1.017 EW=1 CROS CD=2 TANG PT=806 DZ=-0.823 EW=1'CROS CD=3 TANG PT=807 DZ=-0.58 EW=1 CROS CD=4 TANG PT=808 DZ--0.47 CROS CD=5 TANG PT=5 DZ=-5.59 EW=1*IATL CD=403.316 BRAD PT=7. RA=3.5 EW=1 HATL CD=376.316 TANG PT=9 DY=-6.69 Etf=l File No.: VY-16Q-307 Page A24 of A24 Revision:

A F0306-0IRO NEC041544 Structural

/ntegrity Associates, Inc.TANG PT=500 DY-2.31*END REGION 1 GEOMETRY FROM RHR SUPPLY TO TEE------- --------------- -- -*BEGIN REGION 2 TRANSIENT CARDS & GEOMETRY FROM RHR SUPPLY TEE TO PUMP*GROUP 2 RRi SUPPLY TEE TO PUMP 3I1CL FN=U: VY-16Q\ PSf iles\ UPDATED\TRANS\

REG2. IMP TANG PT=11 DY=-2.22 EW=1 CR0S CD=S TANG PT=12 DY=-1.78 TANG PT=20 DY-6.77 TANG PT=22 DY-3.25 TANG PT=25 DY=-15.49 EW=1 HATL CD=403.316 BRAD PT=26 RA=3.5 EW=1* ATL CD=376.316 TANG PT=27 DX-3.3 DZ=1.27 EW--1 CROS CD=7 VALV PT=30 DX=-2.28 DZ=0.89 HA=10.368 PL=1 JUNC PT=30 VALV PT=40 DX=-2.31 DZ=0.9 PL=-2 EW=1 JUNC PT=30 RIGD PT=35 DYr7 LUMP PT=35 MA= 1.132 JUNC *PT=40 CROS CD=5 TANG PT=42 DX=-. 18 DZ=0.46 TANG PT=43 DX=-0.55 DZ=C.21 TANG PT=44 DX-3.31 DZ=1.28 "E1=l MATL CD=403.316 BRAD PT=46 RA=2.33 EV=1 MATL CP=376.316 CROS CP=8 TANG PT=50 DY=4.33 EW=O LUMP PT=50 MA=28 wNOTE WEIGHT OF PUMP FLOODED 28K (EXCLUDING MOTOR)TANG PT=75 DY=0.5 TANG PT=83. DY=2.13 TANG PT=86 DY=3.38 LUMP PT=86 MA=ý32 *NOTE TOTAL WEIGHT OF PUMP MOTOR 32000 LBS TANG PT=90 DY=4.08 *TOP OF PUMP*NOTE SNUBBERS ON TOP OF PUMPS WERE DELETED DURING*NOTE THE RECIRC PIPE REPLACEMENT PROJECT*NOTE -RIGID LINKS FOR CONSTANT SUPPORTS AT PUMP FOLLOW*END REGION 2 GEOMETRY FROM RHR SUPPLY TEE TO PUMP----------------------------"BEGIN REGION 3 TRANSIENT CARDS & GEOMETRY FROM PUMP DISCHARGE TO HEADER tGROUP 3 FROM PUMP DISCHARGE TO HEADER*IfCL FN=U:T JVY-16Q0PSfiles\

UPDATED\TRANS\

REG3. IP JUNC PT=50 CROS CD=8 RIGD PT=54 DX=1.06 DZ=1.06.4 File No.: VY-16Q-307 Revision:

A Page A25 of A25 F 0306-D0 RO.NEC04 1545 Structural Integrity Associates, Inc.RIGD JUNC RIGD RIGD JUNC CROS RIGD RIGD PT=56 DX=1.06 DY=0.75 DZ=1.06 ANOTE CONSTANT SUPPORT PT=50 PT=66 DZ=-3.83 PT=69 DY=1 %NOTE CONSTANT SUPPORT PT=50.CD=8 PT=60 DX=-3.83 PT=63 DY=1 t CCNSTANT SUPPORT HAS J HA3 AT NODE 56 HA4 AT NODE 69 ATNODE 63* TtCODING FOR PUMP RIGID STRUTS~ CODED FROM PUMP CENTERLINE CROS CD=11 JUNC PT=66 RIGD PT=15 DY=0.7071 DZ=-0.7071 FOLLOW **JUNC PT=60 RIGD PT=16 DX=-0.7071 DY=0.7071 r *** END OF CODING FOR PUMP SUPPORTS *t tPTlPJ INLET CROS CD=8 JUNC PT=50 TANG PT=150 DX=-.17 BRAN PT=151 DZ=2.333 TE=1'NOTE PUMP DISCHARGE CONNECTICN TO PIPE AT NODE 151 CROS CD=13 TANG PT=152 DZ=1.25 TANG PT=155 DZ=l Euti CROS CD=14 VALV PT=160 PL=1 DX=O.0 DY=0.0 DZ=2.52 MH=6.8285 JUNC PT=160 RIGD PT=163 DX=O.O DY=7.12 DZ=tLO LUMP PT=163 HA=0.9715 JUNC PT=160 VALV PT=170 PL=2 DX=0.0 DY=0.0 DZ=6.18 EW=1 CROSCD=13 dIATL CD=403.316 BRAD .PT=175 RA=3.5 EU=1 MATL CD=376.316 TANG PT=176 DY=5.95 TANG PT=177 DY=4.42'NOTE '"'WEIGHT OF FLOW ELEMENT NOT INCLUDED*

'NOTE tTtREF. DWG. 5920-6800 FOR DIMENSICNSttt TANG PT=1B4 DY=4.42 TANG PT=186 DY=3.02 TANG PT=188 DY=1.51 TANG PT=i89 DY=0.74 TANG PT=190 DY=1.15 EW=1 TANG PT=600 DY=1.06***INPUT FILE TO INCLUDE EFFECTS OF RHR INITIATION INCL FN=U:\VY-16Q\PStiles\UPDATED\TRANS\REG3B.INP ON LINE NEAR RHR RETURN TO HEADER JUNC PT=600 TANG PT=195 DY=2.08 EW=1 TANG PT=210 DX=OIO DY=1.83 DZ=0.0 KL=1 tCENTER OF CROSS, RECIRC HEADER tMUST HAVE INDI CARD FOR EACH MENBER CaqNECTED TO CROSS CDJTER-------------

  • END REGION 3 GEOMETRY FROM PUMP DISCHARGE TO HEADER*File No.: VY-16Q-307 Revision:

A PageA26ofA26.

F0306-O1RO NEC041546 Structural Integrity Associates, Inc.t kBEGIN REGION 5 TRANSIENT CARDS & GEOMETRY RISER TO NOZZLE NODE 336 t---------------------

  • GROUP S RISER TO NOZZLE NODE 336 INCL FN=TU: VY- 16Q0 PSfiles% TJPDATED\TRANS\

REGS. N]P*NOTE CROSS AND REDUCER DIMENSICNS TAKEN FROM 5920-6632 SHT.3 CROS CD=13 IATL CD=376.316 TANG PT=215 DX=0.0 DY=2.59 DZ=0.0 EW=0 CRED PT=220 DY=1.29. AN=30 EIJ=1 tAL=$C(flC.

REDUCER$CROS CD=15 TANG PT=330 DY=4.58 TANG PT=335 DY=3.29 E7=1 MATL CD=403.316 BRAD PT=334 RA=1.5 EU=1*END REGION S GEOMETRY RISER TO NOZZLE NODE 336----------------------

--*BEGIN REGION 6 TRANSIENT CARDS & GEOMETRY TO NOZZLE NODE 336------------


.'GROUP 6 TO NOZZLE NODE 336FN=U: \VY- 16Q0 PSf iles\ UPDATED\TRANS\

PEG6.INP NATL CD=376.316 TANG PT=838 DX=3.875 CROS CD=16 TANG PT=837 DX--O.875 EU=1 CROS CD=17 TANG PT=836 DX=O.37 EW=1 CROS CD=1B TANG PT=835 DX=0.53 EW=1 CROS. CD=19 TANG PT=336 DX=O.704 ,EU=1 NOZZ PT=33 6 AAVT CA=1 PTh336 DX=-0.0201 DY=0.0246 DZ=O.0000 AMVT CA-2 PT=33 6 DX=-O.3602 DY=0.4398 DZ=0.O0000 AHVT CA=3 PTh--33 6 DX=-O.3568 DY=O.4316 DZ=O. 0000 AHVT CA=4 PT-1336 DX=-C.3434 DY=0.4152 DZ=0.0000 AMVT CA=5 PT-336 DX=-0.3568 DY=O.4050 DZ=C.0000 AMVT CA=6 PTh-33 6 DX=-0.3434 DY=0.2940 DZ=0.0000 AMVT CA=7 PT7-336 DX=-C.3350 DY=0.3229 DZ=O.0000 ANVT CA=8 PT7336 DX=-0.3434 DY=O.2700 DZ=C.0000 AIIVT CA=9 PTh33 6 DX-0.1630 DY=0.1991 DZ=0.0000 AHVT CA=10 PT7336 DX=-0.3218 DY=0.1626 DZ=0.0000 AMVT CA=f1 PTh336 DX=-0.1630 DY=0.0246 DZ=0.0000 AHVT CA=12 PTh-336 DX=-0.3602 DY=0.4398 DZ=0.0000 lIVT CA=13 PTh-33 6 DX=-0.3602 DY=0.4316 DZ=0.0000 AMVT CA=14 PTh-336 DX=-0.2193 DY=O.4152 DZ=O.0OO0 AMVT CA=1S PTh-33.6 DX=-0.1862 DY=O.4050 DZ=0.O0000 AMVT CA=16 PT=336 DX=-0.1084 DY--O.2940 DZ=O.0000 INVT CA=17 PTh-336 DX=-0.0201 DY=O.3229 DZ=0.C0000 AlVT CA=18 PTh336 DX=-C.0201 DY=O.2700 DZ=0.0000 AMVT CA=19 PT=-336 DX=-0.1084 DY=0.1991.

DZ=0.C0000 AHVT CA=20 PTh-33 6 DX=-0.0201 DY=O. 162 6 DZ=O.C0000 AlVT CA=21 PTh33 6 DX=-0.0413 DY=O.3229 DZ=0.0000 lMVT CA=22 *PT-336 DX=-0.3434 DY=0.2700 DZ=C.0000 AlIT CA=23 PT7336 DX=-0.2211 DY=0.1991 DZ=0.0000 File No. VY-16Q-307 Page A27 of A27 Revision:

A F0306-OIRO NEC041547 Structural Integrity Associates, Inc.AHVT CA=24 PT=336 DX=7 O.0201 DY=O.1626 DZ=O.OOO0!NJOTE SAFE END FROM NODES 838 TO 336 mNOTE CCfNNECTICN TO VESSEL AT NODE 336 tNOTE OD AND WALL THICKNESS FOR SAFE END TAKEN FROM GE CALC*NOTE WEIGHT BASED. CN THICKNESS----- --- -- -- -----*END REGION 6 GEOMETRY TO NOZZLE NODE 336----------------------------

_-.BEGIN REGION 4 TRANSIENT CARDS & GEOMETRY HEADER TO NOZZLE NODE 366---------



-*GROUP 4 HEADER TO NOZZLE NODE 366 INCL FN=U:\VY-16Q\PSfiles\IUPDATED\TRANS\

REG4. INP JUNC PT=210 CROS CD=2O BRAN PT=240 DX=0.1786 DY=O.0 DZ=1.7 TANG PT=250 DX=0.3 DZ=2.853 EW=O BRAD PT=255 ,RA=4.578 EW=O *NOTE BEND RADIUS IS 4.578 FEET TANG PT=340 DX=1.799 DZ=3.108*END REGION 4 GEOMETRY HEADER TO NOZZLE NODE 366 It------ ---------------------

  • BEGIN REGION 5 TRANSIENT CARDS & GEOMETRY RISER TO NOZZLE NODE 366--------------

  • GROUP 5 RISER TONOZZLENODE 366'INCL FN=U: \VY- 16Q% PSf iles% UPDATED\ TRANS\ REGS. fIP TANG PT=349 DX=O.71 DZ=1.23 EW=O CRED PT=347 DX--O.75 DZ=1.3 AN=30 CROS CD=15 TANG PT=343 DX=0.5525 DZ=0.957.

EW=1 BRAD PT=410 RAk=.5 EU1I TANG PT=360 DX=3.483 DZ=2.011 EV=il MATL CD=403.316 BRAD PT=361 RA=1.5 EL= 1 ZIATL CD=376.316 CROS CD=15 TANG PT=3 62 DY=3 .18 TANG PT=364 DY=8.56 EW=1I HkTL CD=403.316 BRAD PT=365 RA=1.5 E7=1---------------

--**END REGION 5 GEOMETRY RISER TO NOZZLE NODE 366---------t----------


'BEGIN REGION 6 .TRANSIENT CARDS & GEOMETRY TO NOZZLE NODE 366-7t----- ---------------------

tGROUP 6 TO NOZZLE NODE 366 INCL FN=U: \VY-16Q% PSfiles% UPDATED\TRANS\

REG6. INP MATL-CD=376.316 TANG PT=868 DX=1.6 DZ=-3.1 CROS CD=16 File No.: VY-16Q-307 Page A28 of A28 Revision:

A F0306-OIRO NEC041548 Structural Integrity Associates, Inc.TANG PT=867 DX=0.4375 DZ=-0.76 EW=1 CROS CD=17 TANG PT=866 DX=0.185 DZ=-0.32 EU=1 CROS CD=18 TANG PT=865 DX=0.265 DZ=-O.46 Et=1 CROS CD=19 TANG PT=366 DX=0.352 DZ=-0.61 EV=l NOZ Z AAVT AHVT AAVT AAVT AAVT AMVT AMVT AMVT AMVT AMVT AMVT AHVT AMVT AHVT AMVT AMVT AMVT AAVT AMVT ,A.MVT A'VT AMVT PT=3 66 CA=1 CA=2 CA=3 CA=4 CA=5 CA=6 CA=7 CA=8 CA=9 CA=1C CA=1 1 CA=12* CA=13 CA=14 CA=15 CA=16 1CA=17 CA=18 CA=19 CA=20 CA=2 1 CA=22 CA=23 CA=24 PT=366 PT=-366 PT=-366 PTh-366 PT=3 66 PT=-366 PTh-366 PT=-366 PT=366 PT=-366 PTh-366 PT=366 PT=-366 PT=366 PT7366 PT=366 PT=366 PT=366 PT=366 PT=-366 PT=3 66 PT=366 PT=366 PT-3 66 DX=-0.0101 DX=-O. 1800 DX=-O. 1783 DX=-0. 1716 DX=-0.1783 DX=-0. 1716 DX=-0.1674 DX=-0. 1716 DX=-0 .0815 DX=-0. 1609 DX=-0 .0815 DX=-0.1800 DX=-0.1800 DX=-0.1097 DX=-0.0931 DX=-.O.0542 DX=-0.0101 DX=-0.0 101 DX=-0.0542 DX=-0.0101 DX=-0.0207 DX=-0.1716 DX=-0.1105 DX=-0.0101

-DY=0. 0246 DY=0.4398 DY=0.4357 DY=0.4193 DY=O.4357 DY=O.4193 DY=0.4091 DY=0.4193 DY=O. 1991 DY=O .393 0 DY=O. 1991 DY=0.4398 DY=0.4398 DY=0.2 678 DY=0.2275 DY=O. 1324 DY=0 .0246 DY=0.024 6 DY=O. 1324 DY=0. 0246 DY=0.0505 DY=0.4193 DY=0.2700 DY=0.0246 DZ=0. 0174 DZ=0.3120 DZ=O. 3091 DZ=0. 2974 DZ=0. 3091 DZ-0-.2974 DZ=O. 2902 DZ=O. 2974 DZ=0. 1412 DZ=O. 2788 DZ=0. 1412 DZ= .3120 DZ=0.3120 DZ=0.* 1899 DZ=0. 1613*DZ=O. 0939 DZ=0. 0174 DZ=O. 0174 DZ=O. 0939 DZ=O. 0174 DZ=O. 0358 DZ=O. 2974 DZ=0. 1915 DZ=0. 0174*END REGION 6 GEOMETRY TO NOZZLE NODE 366"BEGIN REGION 4 TRANSIENT CARDS & GEOMETRY HEADER TO NOZZLES NODE 326 & 316-----------------------------

  • GROUP 4 HEADER TO NOZZLES NODE 326 & 316 INCL FN=U: VY-16Q0 PSfiles% UPDATED\ TRANS\ REG4. INP JUNC PT=210 CROS CD=20 BRAN PT=260 DX=0.1786,DY=0.0 DZ=-I:7 TE=2 TANG PT=270*DX=0.3 DZ=-2.853 EW=0 BRAD PT=275 RA=4.578 EW=0 TANG ,PT=320 DX=1.799 DZ=-3.108--------------------

-trEND REGION 4 GEOMETRY HEADER TO NOZZLES NODE 326 £316 tBEGIN REGION 5 TRANSIENT CARDS t GEOMETRY RISER TO*GROUP 5 RISER TO NOZZLE NODE 316 INCL FN=U: WVY- 16O6 PSf iles% UPDATED% TRANS\ REGS. INP TANG PT=319 DX=0.71 DZ=-1.23 EI=1 NOZZLE NODE 316 File No.: VY-16Q-307 Revision:

A Page A29 of A29 F0306-OIRO NEC041549 V Structural Integrity Associates, Inc.CRED PTF317 DX=0.75 DZ=-1.3 AN=30 CRO CDý15 TANG PT-313 DX=0.5525 DZ=-0.957 EUV=BRAD PT-400 RA=1.5 Et=1 TANG PT=310 DX=3.483" DZ=-2.011 EI==1 HATL CD-403.316 BRAD PT-311 RA=1.5 E=IJ=1 -KATL CD-376.316 CROS CD'15 TANG PT-312 D.Y=4.74 TANG PTs314 DY=6.99 E=I1 HATL CD-403. 316 BRAD PTý315 RA=1.5 EtJI.'END REGION 5 GEOMETRY RISER TO NOZZLE NODE 316*BEGIN REGION 6 TRANSIENT CARDS & GEOMETRY TO NOZZLE NODE 316--------------------


  • GROUP 6 TO NOZZLE NODE 316* INCL FN=-U: \VY- 160\ PSfiles\ UPDATED\TRANS\

REG6. INP EMATL CD-376.316 TANG PT-818 DX=1.84 DZ=3.19 -CROS CD-16 TANG-PT=817 DX=O.4375 DZ=0.76 E1=1 CROS TANG CR0s TANG CROS TANG NOZ Z AHVT AHVT AMVT ANVT AMVT ANVT AMVT AMVT AMVT AMVT AMVT AMVT AAVT AHVT AMVT AHVT ANVT AMVT AMVT AMVT AMVT AMVT AMVT AMVT CD=I17 PT=816 DX=O.185 DZ=0.32 EW1=CD=18 PT=815 DX=0.265 DZ=0.46 EIJ=1 CD=19 PT=316 DX=0.352 DZ=0.61 E7=1 PT=3 16 CA=1 CA=2 CA=3 CA=4 CA=5.CA=6'CA=7 CA=8 CA=9 CA=1O0 CA=11 CA=12 CA=13 CA=14 CA=f5 CA=16 CA=17* CA=18 CA=19 CA=20 CA=2 1 CA=22 CA=23 CA=24 PT='316 PT7316 PTh-316 PT=316 PT=316 PT-316 PT=3 1'6 PT-316 PTh316 P7=3 16 PT-316 PT-316 PT7316 PT7316 PT=3 16 PT=316 PT=316 PTh316 PTh3 16 PT7316 PT=-316 PTh316 PTh-316 DX=-0.0101 DX=-0. 1800 DX=-O.1783 DX=-O. 1716 DX=-O. 1783 DX=-O. 1716 DX=-O. 1674 DX=-O. 1716 DX=-0 .0815 DX=-O. 1609 DX=-0 .0815 DX=-O. 1800 DX=-. .1800 DX=-O. 1097 DX=-0.0931 DX=-0.0542 DX=-.0 101 DX=-0..0 101 DX=-0.0542 DX=-0.0101 DX=-0.0207 DX=-O.1716 DX=-O. 1105 DX=-0.0101 DY=0.0246 DY=0.4398 DY=0.4357 DY=0.4193 DY=0.A357 DY=0.4193.DY=0.4091 DY=0.4193 DY=0.1991 DY=0.3930 DY=O.1991 DY=0.4398 DY=0 .4398 DY=O. 2 678 DY=0.2 275 DY=0.1324 DY=0.0246 DY=0.0246 DY=O. 1324 DY=0.0246 DY=O. 0505 DY=O. 4 193 DY=0.2700 DY=0.024 6 DZ=-0.0174 DZ=-0.3120 DZ=-0.3091 DZ=-0.2974 DZ=-0.3091 DZ=-0.2974 DZ=-0.2902.DZ=-0.2974 DZ=-0. f412 DZ=-0.2788 DZ=-0.1412 DZ=-0.3120 DZ=-0.3120 DZ=-0. 1899 DZ=-0.1613 DZ=-0.0939 DZ=-0.0174 DZ=-0.0174 DZ=-0.0939 DZ=-0.0174 DZ=-0.0358 DZ=-0.2974 DZ=-0. 1915 DZ=-0 .0174*END REGION 6 GEONETRY TO NOZZLE NODE 316 FileNo. VY-16Q-307 Revision:

A Page A30 of A30 F0306-OIRO NEC041550 Structural Integrity Associates, Inc.tr*BEGIN REGION 5 TRANSIENT CARDS & GEOMETRY RISER TO NOZZLE NODE 346*GROUP 5 RISER TO NOZZLE NODE 346 INCL FN=U: \VY- 16Q PSf iles\ UPDATED\ TRANS\ REGS. INP JUNC PT=340 CROS CD=15 BRAN PT=342 DY=1.36 TE=2 TANG PT=344 DY=10.39 EU=O MATL CD=403.316 BRAD PT=345 RA=1.5 El9=I--------------------

  • END REGION 5 GEOMETRY RISER TO NOZZLE NODE 346*----------------------

--*BEGIN REGION 6 TRANSIENT CARDS & GEOMETRY TO NOZZLE NODE 346------ ----------------------

  • GROUP 6 TO NOZZLE NODE 346 INCL FN=U: \VY- 16Q PSf iles\ UPDATED\ TRANS\ REG6. INP HATL CD=376.316 TANG PT=848 DX=3.17 DZ=-1.83 CROS CD=16 TANG PT=847 DX=0.758 DZ=-0.4375 EV=I-CROS CD=17 TANG PT=846 DX=0.32 DZ=-O.185 Elfi=CROS CD=l8 TANG PT=845 DX--0.46 DZ=-O.265 El=I CROS CD=19 TANG PT=346 DX=E.61 DZ=-0.352 E=fI'NOZZ PT=346 AAVT CA=1 PTh-346 DX=-O.0174 DY=0.0246 DZ=0.001 AHVT CA=2 PTh-346 DX=-0.3120 DY=0.4398 DZ=0.O1800 AMVT CA=3 PT=-346 DX=-0.3091 DY=0.4357 DZ=0.1783 AMVT CA=4 PT=-346 DX=-0.2974 DY=0.4193 DZ=0.1716 AhVT CA=5 PT=-346 DX=-0.3091 DY=0.4357 DZ=0.1783 AMVT CA=6 PTh-346 DX=-0.2974 DY=0.4193 DZ=0.i1716.AAVT CA=7 PT7-346 DX=-0.2902 DY=D.4091 DZ=0.1674 AMVT CA=8 PTh-346 DX=-C.2974 DY=0.4193 DZ=0.1716 AMVT CA=9 PT7-346 DX=-O.1412 DY=0.1991 DZ=0.0815 AMVT CA=10 PT=346 DX=-0.2788 DY=0.3930 DZ=0.1609 AEVT. CA=11 PT=346 DX=-O.1412 DY=0.1991 DZ=O.0815 AMVT CA=12 PT=346 DX=-0.3120 DY=0.4398 DZ=0.1800 AMVT CA=13 PTh346 DX=-0.3120 DY=0.4396 DZ=0.1600 AMVT CA=14 PT=-346 DX=-0.1899 DY=0.2678 DZ=0.1097 AlVT CA=l5 PT=346 DX=-0.1613 DY=D.2275 DZ=0.0931*AKVT CA=16 PT=-346 DX=-0.0939*

DY=0.1324 DZ=0.0542 AMVT CA=17 PTh-346 DX=-O.0174 DY=O.0246 DZ=0.0101 AMVT CA=18 PT=-346 DX=-O.0174 DY=O.0246 DZ=0O.101 AlVT CA=19 PT7346 DX=-C.0939 DY=0.1324 DZ=0.0542 AMVT CA=20 PT`-346 DX=-0.0174 DY=0.0246 DZ=O.O1Ol AMVT CA=21 PT7346 DX=-0.0358 DY=O.0505.

DZ=0.0207 AMVT CA=22 PTh-346 DX=-0.2974, DY=0.4193 DZ=0.1716 AMVT CA=23 PTI-346 DX=-O.1915 DY=0.2700 DZ=0Oi 1105 ARVT CA=24 PT=346 DX=-O.C174 DY=0.0246 DZ=0.D101------------

File No.: VY-16Q-307

-PageA31 of A31 Revision:

A F0306-OIRO NEC041551 VStructural Integrity Associates, Inc.*END REGION 6 GEOMETRY TO NOZZLE NODE 346 t -*BEGIN REGION 5 TRANSIENT CARDS & GEOMETRY RISER TO NOZZLE NODE 326*GROUP 5 RISER TO NOZZLE NODE 326 INCL FN=U: \VY- 16Q% PSf iles% UPDATED\TRANS\

REGS. ]IP JUNC CROS BRAN TANG HATL BRAD PT=320 CD=15 PT=322 DY=1.42 TE=2 PT=324 DY=1O.33 EU1I CD=403. 316 PT=325 RA=1.5 E1=I*END REGION 5 GEOMETRY RISER TO NOZZLE. NODE 326*BEGIN REGION 6 TRANSIENT CARDS & GEOMETRY TO NOZZLE NODE 326*GROUP 6 TO NOZZLE NODE 32.6* CNCL FN=U: NVY- 16Qi PS+/-iles\ UPDATED\TRANS\

REG6. INP KATL TANG*CROS TANG CD=376.316 PT=828 DX=3.18 DZ=1.84 CD=16 PT=827 DX=0.758 DZ=0.4375 EW1-* CROS CD=17 TANG PT=826 DX=0.32 DZ=0.185 EW=1 CROS CD=18 TANG PT=825 DX=0.46 DZ=0..265 EW=1 CROS CD=19 TANG PT=326 DX=0.61 DZ=0.352 ED=l NOZZ PT=326 AHVT CA=1 -PT=326 DX=-0.0174 AMVT CA=2 PTh-326 DX=-O.3120 AAVT CA=3 PTh-326 DX- -0.3091 AIVT CA=4 PT=326 DX=-0.2974 AMVT CA=5 PT=326 DX=-0.3091 AMVT CA=6 PT=326 DX=-O.2974 AMVT CA=7 .PT=326 DX=-0.2902

AVT CA=8 PT=32 6 DX=-0.2974 AMVT CA=9 PT=326 DX=-0.1412 AMVT CA=10 PT=326 DX=-O.2768 AMIVT CA=l1 PT-326 DX=-0.1412 AHVT CA=12 PTh326 DX=-0.3120 AMVT CA=13 PT=-326 DX=-0.3120 AMVT CA=14 PT=326 DX=-0.1899 AMVT. CA=15 PT=326 DX=-0.'1613 AMVT CA=16 PT=326 DX=-0.0939 AMVT CA=17 PTh326 DX=-0.0174 AHVT CA=18 PT=326 DX=-0.0174 AMVT CA=19 PT=326 DX=-O.0939
  • AMVT CA=20 PTh326 DX--0.0174 AMVT CA=21 PT=326 DX=-0.0358

-..AfT. CA=22 PT=326 DX=-0.2974

  • AMVT CA=23 PT=326 DX=-0.1915 AMVT CA=24 PT=326 DX=-0.0174 DY=0.024 6 DY=O .4398 DY=0.4357 DY=O .4 193 DY=O, 4357 DY=0.4193 DY=0.4091 DY=0.4193 DY=0 .1991 DY=0.3930 DY=0.1991 DY=0.4398 DY=0.4398 DY=0 .2 678 DY=O.2275 DY=.,132 4.DY=O .0246 DY=D.02 46 DY=0.132 4 DY=O. 0246 DY=0 .0505 DY=0.4 193 DY=0.2700 DY=0.0246 DZ=-0.0101 DZ=-0. 1800 DZ=-0. 1783 DZ=-0. 1716 DZ=-0. 1783 DZ=-0.1716 DZ=-0.1674.

DZ=-0.1716 DZ=-0.0815 DZ-0.1609 DZ=-0,.0815 DZ=-0.1800 DZ=-0.1800 DZ=-0.1097 DZ=-0.093 1 DZ=-O.0542' DZ=-0.0101 DZ=-0.0101 DZ=-0.0542 DZ=-0.0101 DZ=-0.0207 DZ=-0.1716 DZ=-0.1105 DZ=-0.0101 File No.: VY-16Q-307 Revision:

A Page A3 2 of A32 F0306-OIRO NEC041552 Structural Integrity Associates, Inc."END REGION 6 GEOMETRY TO NOZZLE NODE 326*----------------------

  • BEGIN REGION 7A TRANSIENT CARDS & GEOMETRY TO PHR SUPPLY VALVE NODE 550------* ----------------------
  • GROUP 7 TO RHR SUPPLY VALVE NODE 550 INCL FN=U: \VY- 16Q\PSf iles\ UPDATED\TRANS\

REG7A. INP*MATL CD=376.316 JUNC PT=500 CROS CD=25 BRAN PT=502 DX=I. 67. EW=O TE=1 TANG PT=506 DX=2.53 ET=O MATL CD=403.316 BRAD PT=507 RA=1.67 EW=1 MATL CD=376.316 TANG PT=508 DZ=4.01 TANG PT=515 DZ=-4.53 EU=1 HATL CD=403.316 BRAD PT=520 RA=1.67 EW=1.MATL CD=376.316 CROS CD=26 VALV PT=525 DX=-3.34 PL=1 JUNC PT=525 VALV PT=530 DX=-1.99 PL=2 Eb=I JUNC PT=525 RIGD PT=526 DY=2.5 LUMP PT=526 MA=7.569 JUNC PT=530 (CROS CD=25 TANG PT=540 DX=-1.13 'EV=1 CROS CD=26'VALV PT=545 DX=-1.97 PL=1 JUNC PT=545*RIGD PT=547 DY=2.5 /LUMP PT-547 MA=7.355 JUNC PT=545 VALV PT=550 DX=-1.98 PL=2 EW=1*END REGION 7A GEOMETRY TO RHR SUPPLY VALVE NODE 550*----------------------

--*BEGIN REGION 7B TRANSIENT CARDS & GEOMETRY FROM RHR SUPPLY VALVE TO PENET. NODE 5652---------------------


*GROUP '17 FROM RHR SUPPLY VALVE 'TO PEWET. NODE 565]NCL FN=U:\VY-16Q\PSfiles\UPDATED\TRANS\REG7B.

INP CROS CD=25 KATL CD=106 TANG PT=555 DX-3.36 EW=1 BRAD PT=556 RA=1.67 EW=l TANG PT=560, DY=-10.17 ET5=1 BRAD PT=561 RA=1.67 EW=1 TANG PT=563 DZ=-6.92 TANG PT=565 DZ=-6.92*--------------

  • END REGION 7B.GEOMETRY FROM RHR SUPPLY VALVE TO PENET. NODE. 565 File No.: VY-16Q-307

--PageA33 of A33 Revision:

A F0306-O1RO NEC041553 Structural integrity Associates, Inc.* *BEGIN REGION 8 TRANSIENT CARDS & GEOMETRY FOR 4 INCH BYPASS*GROUP 8 4 INCH BYPASS-JNCL FN=U: 'VY-16Q0PS+/-iles\

UPDIATED\TRANS\

REG6. I]NP*NOTE CODING FOR 4 INCH BYPASS STARTS HERE JUNC PT=152 CROS CD=27 HATL CD=376.316 BRAN PT=700 DX-1.19 TE=4 TANG PT=702 DX=-0.61 TANG PT=703 DX=-l.43 EW=0 MATL CD=403.316 BRAD PT=704 RA=0.5 E7=0 MATL CD=376.316 TANG PT=705 DZ=5.08*NOTE-CCNSTANT SUPPORT HAll AT NODE 705 TANG PT=721 DZ=f.12 TANG PT=706 DZ=2.47 TANG PT=707 DZ=1.03 TANG PT=708 DZ=0.34 TANG PT=709 DZ=0.38 JUNC PT=707 BRAN PT=7lO DY=O.34 TE=l CROS CD=2B VALV PT=712 DY=C.71 MA=0.3669 PL=l tAL=$VALVE V2-54A$VALV PT=715 DZ=-3.5 NA=0.1831 PL=3 JUNC PT=712 VALV PT=714 DY=C.71 .mPL=2 CROS CD=27 TANG PT=723 DY=4.19 MATL dP=403.316, BRAD PT=716 RA=0.5 NATL CP=376.316.

TANG PT=718 DX=1.48-TANG PT=720 DX=0.56'BRAN PT=176 DX=l.19 TE=4 t*I*ICODING FOR STRUTS RDA5 AND VABI FOLLOW JUNC PT=170 CROS CD=40 *OD=4.5 inch RIGD PT=725 DP=O DX=-0.583 DY=1.84 *AL=$RDAS$

CROS CD=41 *OD=2.875 inch RIGD PT=715 DP=0 DX=-2.67 DY=-O.79 RIGD PT=721 DP=0 DY=-1.05 *AL=$VABI$

        • &*z******CODING.FOR RDAI STRUT FOLLOWS CROS CD=42 *OD=-28.339 inch JUNC PT=175 RIGD RT=173 DP=O DY=-3.5 DZ=0.34 CROS CD=41 tOD=2.875 inch RIGD PT=708 DPý=O DX=-3.2l *AL=$RDAl*
  • END REGION 8 GEOMETRY FOR 4 INCH BYPASS--*BEGIN REGION 9A TRANSIENT CARDS & GEOMETRY FOR RHR RETURN FROM TEE TO VALVE NODE 660---------

-- -------------------

FileNo. VY-16Q-307 Revision:

A Page A34 of A34 F0306-DIRO NEC041554 Structural Integrity Associates, Inc.1 GROUP 9.RHR RETURN FROM TEE TO VALVE NODE 660 INCL FN=U: %VY- 16MO PSf iles% UPDATED\TRANS\

REGgA. INP*NOTE CODING FOR RHR RETURN STARTS HERE CROS CD=29 JUNC PT=600.NATL CD=376.316 BRAN PT=602 DX=-3.8123 TE=1'MATL CD=403.316 BRAD PT=6.10 RA=2 E7=1 TANP DY=4 BRAD PT=612 RA=2 EW=1 MATL CD=376.316 TANG PT=614 DZ=-10.38 EUý=1 HATL CD=403.316

, BRAD PT=615 RA=1O EW=1 MATLCD=376.316 TANG PT=620 DXi'5.98 DZ=-3.45 EW=1*NOTE*NOTE VARIABLE SPRING H104 AT NODE 620*NOTE*NOTE VALVE ViG-81A DATA FROM 5920-4590 VEIGHT -6845.#*NOTE.WEIGHT APPLIED AT ESTIMATED CENTER OF GRAVITY (NODE 623)CROS CD=30 VALV PT=622 DX=1.98 DZ=-1.15 PL=1 t AL=$VALVE V1O-81A$'JUNC PT=622 VALV PT=624 DX=1.98 DZ=-1.15 PL=2 EU=1 JUNC PT=622 RIGD PT=623 DY=2.5 LUMP PT=623 MA=7.32 *VALVE ACTUATOR CROS CD=29 JUNC PT=624 TANG PT=625.DX=1.867 DZ-1.078 TANG PT=630 DX=2.598 DZ=-1.5 EW=1 HATL CD=403.316 BRAD PT=631 RA=3 ET=1 HATL CD=376.316 TANG PT=640 DZ=-4.54 E1=1 MATL CD=403.,316 BRAD PT=641 RA=2 E=If*MkTL CD=376.316

"'NOTE VALVE V10-46A DATA FROM 5920-4718 UEIGHT -5295.#CROS CD=30'VALV PT=655 DX=-3.79 PL=1 t AL=$VALVE V10-46A$LUMP PT=655.MA=5.77

  • NOTE*NOTE VARIABLE SPRING H105 AT NODE 655*NOTE-VALV PT=660 DX=-1.79 PL=2 EWf"=1 WEND REGION 9A GEOMETRY FOR RHR RETURN FROM TEE TO VALVE NODE 660*-- ---------------------------

WBEGIN REGION 9B TRANSIENT CARDS 6 GEOMETRY FOR RHR RETURN FROM VALVE NODE 660 TO PENET. NODE 675*GROUP 19 PHR RETURN FROM VALVE NODE 660 TO P.ENET. NODE 675 INCL FN=U:\VY-16Q0PSfiles\

UPDATED\TRANS\

REGgB. IN?File No.: VY-16Q-307 PageA35 of A35 Revision:

A F0306-O1RO NEC041555 Structural Integrity Associates, Inc.nIOTE SPEC CHANGE TO CARBON STEEL HATL CD=i06 CROS CD=29 TANG PT=661 DX-I TANG PT=663 DX=-3.31 EW=-I BRAD PT=665 RA=2 EU-.TANG PT=670 DY-i0.5 DZ=0.38 ENJ=i BRAD PT=671 RA-2 EU=i TANG PT=673 DZ-7.74 TANG PT=675 DZ-7.74*END REGION 9B GEOMETRY FOR RHR RETUIUJ FROM VALVE NODE 660 TO PENET. NODE 675***STRESS INDICES AT CROSS POINT*- ---- --IND I IND I IND I IND I AT=2 10 AT=2 10 AT=2 10 AT-2 10 AF=i95 B1=0.5 CI=1 AF=215 B1=0.5 Ci=1 AF=240:Bi=0.5 Ci=1 AF=260 B1=0.5 C1=1 K1=4 B2=2.256 C2=3.024 E2=1 KI=4'B2=2.256 C2=3.024 E2=1 K1=4 B2=1.805 C2=3.024 E2=I K1=4 B2=1.805 C2=3.024 E2=-C3=1 =3=1 CP=0.5 C3=1 K3=1 CP=0.5 C3=1 E3=- CP=0.5 C3=i X361 CP=0.5 SUPPORTS PSTN PSTN PSTN ROTR ROTR ROTR P3 TN PS771 PISTN ROTR ROTR IýOTR SNUB SNUB.SNUB SNTB PT=675 PT=675 PT=675 PT=675 PT=675 PT=675 PT=565 PT=5 65 PT=565 PT=565 PT=565 PT=565 PT=12 PT=12 PT=190 PT=1S0 DX=1 DY=-1 DZ=I RX- 1 RY 1 RZ= 1 DX=1 DY--1 DZ=1 RX- I RY 1 RZ=1 DZ=-1 DX= I DX-- 1 DZ=1.SP=16000 SP=1 6000 SP=23000 SP=300000'SP=300000 SP=340000 SP=16000 SP=16000 SP=23000 SP=300000 SP=300000 SP=3 40000 SP=1000 SP=1000 SP=1000 SP=1000"RHR SUPPLY PENET.t RlfR SUPPLY PENET.*RHR SUPPLY PENET.tR1R SUPPLY PENET.**RHR SUPPLY PENET.t RHR SUPPLY PENET.*RHR SUPPLY PENET.*RHR SUPPLY PENET.t RHR SUPPLY PENET.t RHR SUPPLY PENET.t RHR SUPPLY PENET."RHR SUPPLY PENET.*AL=$SSNUBBER SS-7A-1$*AL=$SNUBBER SS-7A-2$-AL=$SNUBBER SS-6-Ai$*AL=$SNUBBER SS-6-A2$VSUP CSUP CSUP CSUP CSUP CSUP CSUP CSUP VSU SUP VSUP V5UP VSUP VSUP PT=20 DY-i FO=24.8 SP=2.664*AL=$VARI.

SUPT. HA-1$PT=2 7 PT-42 PT=56 PT=69 PT=63 PT=160 PT 705 PT=1B4 PT=343 PT=3 13 PT=530 PT=620 PT=655 DY=I DY=-DY=I DY-I DY=I DY=-i DY=1 DY=1 DY-I DY=1 DY=i DY-I FO=8 .3 FO=8 .3 FO=18.05 FO=l8.0 FO=18.02 FO=I1.8 FO=0.960 KP=0. 01 KP-0. 01 KP-U. 01 KP=0. 01 KP=-. 01 KP=0.01 KP0. 01*AL= $CONST.*AL= $CONST.*AL= $CONST.*AL= $CONST.*AL= $CONST.t AL= $CONST.1tAL= $CONST.SUPT.SUPT.sUPT.SUPT.SUPT.SUPT.SUPT.H-B-Al$H-6-A2 $HA3 FOR PUMP$HA4q FOR PUMPS HA5 FOR PUMP$HA-9 & HA-10$HA-1l ON 4 INCH BYPASS$FO=36.0 SP=3.542 FO=7.1 SP=3.014 FO=7.1 SP=3.014 SP=9.420 FO=26.0 SP=7.084 FO-14.9 SP=4.710 FO=22.0 tAL=$VARI.

SUPT.*AL=$VARI.

SUPT.t AL=$VARI.

SUPT.* HA-2 $HAi3 $HA14 ,*AL=$HANGER HI09 RHR SUPPLY VALVE$*AL=$HANGER H104 RHR RETURN VALVE$*AL=$HANGER HiOS RHR RETURN-VALVE$

File No.: VY-16Q-307 Revision:

A Page A3 6 of A36 F0306-O1RO NEC041556 Structural Integrity Associates, Inc.RSTN PT=15 RSTN PT=16 ENDP DY=O.7071 DZ=-C.7071 SP=6000 DXP-0.7071 DY=O.7071 SP=6000*RECIRC PUMP ItRECIRC PUMP Regl.inp-*B I E---------------O--------------------------------


,7BEGIN REGION 1.TPANSIENT CARDS &.GEOMETRY FROM HER SUPPLY TO THEE* --------------------------------------------------

OPER CA=1 OPER CA=2 OPER CA=3 OPER CA=4 OPER CA=5 OPER CA=6 OPER CA=7 OPER CA=8 OPER CA=9 OPER CA=I0 OPER CA=11 OPER CA=12 OPER CA=13 OPER CA=14 OPER CA=15 OPER CA-IG OPER CA=17 OPER CA=18 OPER CA=19 OPER CA=20 OPER CA=21 OPER CA=22 OPER CA=23 OPER .CA=24 TE=100 TE=549 TE=542 TE=52 6 TE=542 TE=52 6 TE=516 TE=52 6 TE=300 TE=500 TE=300 TE=549 TE=54 9 TE=375.TE=330 TE=225 TE=100 TE=i00 TE=225 TE=225 TE=130 TE=52 6 TE=375 TE=100 PR1100 PR=i010 P R- 10 10 PR=1010 PR=010O PR=1010 PR=1010 PR=1010 PR=1190 PR= 1135 PR=675 PR= 1010 PR=1010 PR=170-.PR=90 P R70 PR=-0 PR=1563 PR=90 PR=90 PR=1010 P R= 1010 PR=200 P R0 K*TRAM CA=201*TRAM CA=202 TRAM CA=203.TRAM CA=204 TRAM CA=205 TRAM CA=206 TRAM CA=207 TRAM CA=208 TRAM CA=209*TRAM CA=210 TRAM CA=211*TRAM CA=212 TRAM CA=213*TRAM CA=214 TRAM CA=215*TRAM CA=216*TRAM CA=217 TRAM CA=218 TRAM CA=219 IS=1 FS51 IrT=70 FT=100 IS=1 FS=1 IT=100 FT=-549 TT=1800 FL=2262 IP=15 TT=116164 FL=16158 IP=65 is= 1 is= I.FS=I FS=1 FS= 1 FS=1 FS=1 FS=1 FS=1 IT=549 IT=542 IT=52 6 IT=542 IT=52 6 IT=51 6 IT=52 6 FT=542 FT=52 6 FT=542 FT=526 FT=516 FT=52 6 FT=300 Is=1 FS=1 IT=-300 FT=500 I=1 FS=t IT=500 FT=300 IS=1 FS=1 IT-300 FT-549 IS=1 FS=1 IT=526 FT=549 IS=1 FS=I IT-526 FT=-375 I1=1 FS=1 IT=375 FTJ330 IS=1 FS=1 IT=-330 FT=225 IS=1 FS=1IIT=225 FT1-I00 IS=1 FP=1 IT=100 FT=100 TT=O TT=O TT=900 TT=3 60 TT=O TT=O TT=2 20 TT=4500 TT=420 TT=-8964 TT=O TT¶I543 6 TT=600 TT=3780 TT2-450 6 TT=0 FL=32316 FL=3 2316 FL=32316 FL=32316 FL=32316 FL=32316 FL=32316 IP=1025 IP=1025 IP=1025 IP=1025 IP=1025 iP=1025 IP=1205 FP=1115 FP=I025 FP=1025, FP=1025 FP=1025 FP=1025 FP=1025 FP=1025 FP=1205 FP=1150 FP=690 FP=1025 FP=1025 TP=O TP= 0 TP= 0 TP=O TP=0 TP= 0 TP=0 TP=O TP= 0 TP,=0 TP=O TP= 0 TP=0.TP=0 TP=0 TP=O TP= 0 FL=32316 IP=900 FL=323 16 IP=1150 FL=16158 IP=355 FL=32316 IP=1025 FL=16158 IP=1025 FP=185 FL=16158 IP=185 FP=105 FL=16158 IP=105' FP=15 FL=16158 IP=15 FP=15 FL=2262 IP=40 FP=1578 File No.: VY-16Q-307 Revision:

A , Page A37 of A37 F0306-OIRO NEC041557 I Structural Integrity Associates, Inc.TRAM TRAN TRAN TRAM*TRAN CA= 220 CA=221 CA=222 CA=223 CA=224 I=1 FS=I IT=526 FT=130 IS=1 FS=1 IT=130 FT=526 I5=1 FS=1 IT=526 FT=375 IS=1 FS= I IT=-375 FT=I00 TT=O TT=0 TT=600 TT-9900 FL=32316 IP=1025 FL=32316 IP=1025 FL=32316 IP=1025 FL=32316 IP=215 FP=1025 FP- 1025 FP=2 15 FP= 15 TP=0 TP= 0 TP 0 TP=O*PAIR CA=201 CO=7.8 DI=0.135.

EXB8.42. *Tavg=85**PAIR CA=202 CO=9.1 DI=0.146 EX=-8.42 *Tavg=324.5*

PAIR CA=203 CO=10.4 DI=0.160 EX=8.42 *Tavg=545.5*

PAIR CA=204 COY9.9 DI=0.155 EX=8.42 4 Tavg=534*PAIR CA=205 Co=9.9 DI=0.155 EX=8.42 *Tavg=534*

PAIR CA=206 CO=9.9 " DI=0.155 EX=8.42 *TavgS534*

PAIR CA=207 CO=9.9 DI=0.155 EX=8.42 *TavgS521*

PAIR CA=208 CO=9.9 DI=0.155 EX=8.42 +Tavg=521l PAIR CA=209 CO=9.8 DI=0.154 EX=8.42 *Tavg=413*

  • PAIR CA=210 CO=9.5 DI=0.150 EX=-8.42 *Tavg=400*

PAIR 'CA=211.CO=9.5 DI=0.150.

EX=8.42 *Tavg=400*

  • PAIR CA=212 Cc=9.6 DI=0.152 EXO8.42. *Tavgr424.5*

PAIR CA=213 CO=1O.0 DI=0.156 .EX=8.42 *Tavg=537.5*

  • PAIR CA=214 CO=9.7 DI=0.153 EX=8.42 *Tavg=z450.5*

PAIR CA=215 CO=9.3 DI=0.148 EX=8.42 *Tavg=352.5*

  • PAIR CA=216 CO=8.9 DI=0.144 EX=8.42 *Tavg=277.5
  • PAIR CA=217 CO=8.2 DI=0.139 EXB8.42 *Tavg-162.5*

PAIR CA=218 CO=7.9 DI=0.136 EX=8.42 *Tavgc=100*

  • PAIR CA=219. Cc=9.2 DI=0.147 EXB8.42 *Tavg=328*PAIR PAIR PAIR PAIR*PAIR Rep-2.m CA=22 0 CA=221 CO09.2 CA=222 CO9..2 CA=223 CO=g.7 CA=224 CO=8.6 DI=0. 147 DI=-0. 147 DI=0. 153-DI=0 .142 EX=8.42 *Tavg=328*

EX=8.42 *Tavg=328*

EX=8.42 *Tavg=450.5*

EX=-8.42 *TavgT237.5*

4----------------------------------------

  • BEGIN REGION 2 TRANSIENT CARDS &-GEOMETRY FROM RHR SUPPLY TEE TO PUMP*------------------------------------

OPER OPER OP ER OPER OP ER OP ER OP ER OPER OPER OP ER OP ER OPER OP ER OP ER OPER OPER OPER OP ER CA= 1 CA=2 CA=3 CA=4 CA=5 CA= 6 CA=7 CA=8 CA=9 CA=10 CA= 11 CA= 12 CA=13 CA= 14 CA= 15 CA=16 CA=17 CA=18 TE=100 TE=549 TE=542 TE=52 6 TE=542 TE=52 6 TE=516 TE=52 6 TE=300 TE=500 TE=300 TE=549 TE=549 TE=375 TE=330.TE=225 TE=100 TE=100 PR=71100 PR= 1010 PR=1010 PR=1010 PR=1010 PR=1010 PR71010 PR=1010 PR= 1190 PR=1135 P R 675 P R 1010 PR=1010 P.R7170 P R=I0 PR=-90 PR=70 P R=0 PRF1563 FileNo. VY-16Q-307 Revision:

A Page A38 of A38 F0306-O1RO NEC041558 St Structural late grity Associates, Inc.K (OP ER OPER OP ER OPER OP ER OPER CA= 19 CA=2 0 CA=2 1 CA=22 CA=23 CA=2 4 TE=22 5 TE=22 5 TE=130 TE=52 6 TE=375 TE=100 PR=9U0 PR-790 PR=1010 P R- lain0 PR=200 P R0*TRAN CA=201*TRAN CA=202 TRAN CA=203 TRAN CA=204 TRAN CA=205 TRAN CA= 206 TRAN CA=207 TRAM CA=208 TRAN CA=.209.*TRAN CA=210CA=211*TRAN CA=212 TRAM CA=213'**TRAN CA=214 TRAM CA=- 215,*TRAN CA=216*TRAN :CA=217 TRAN. (CA=2 18 TRAN CA=219 TRAN ,CA=220 TRAN CA=221 TRAN CA=222 TRAN CA=223*TRAN CA=224 IS=l FS=1 IT=-70 FT-I00 IS=1 FS=1 ITI0'O0 FTr549 IS=I FS=5 I51 FS=I is=1I FS=1 IS=-I FS=l IS=I FS-1 IS=I FS=l IS=1 FS=1 IS=1 FS=I IT=549 IT=542 IT=52 6 IT=542 IT=52 6 IT=516 IT=52 6 FT=542 FT=52 6 FT=542 FT=52 6 FT=5 16 FT=52 6 FT=300 T T T T T1 T T1 T3 T TT=1800 FL=2262 IP=15 FP=1115 TT=16164 FL=16158 IP=65 .FP=I025 DT=0 FL=32316 IP=1025 FP=1025¶T=E FL=32316 IP=1025 FP=1025 T=900 FL=32316 iP=1025 FP=1025 T=360 FL=32316 IP=1025 FP=1025 T=0 FL=32316 IP=1025 FP=1025 T=0 FL=32316 IP=1025 FP=1025 T=220 FL=32316 IP=1205 FP=1205 TT-4500 FL=323.16 IP=900 FP=1150¶T=420 FL=32316 IP=1150 FP=690 TT-8964 FL=16158 7 IP=355 FP=1025 T=0 FL=32316 iP=1025 FP=1025 IT=300 FTO-500 15I FS= IT=500 FT=300 IS=1 FS=1 IT-300 FT=549 IS=1 FS=1 IT=526 FT=549 IS=l FS=1 IT=526 FT=375 15=1 FS=1 IT=375 FT=330 IS=l FS=1 IT-330 FT=-225 IS=. FS=1 IT=-225 FTL100 IS=I FS=1 IT=100 FT=100 IS=I FS=1 IT=526 FT=130 IS=I FS=1 IT=130 FT=526 IS=1 FS=1 IT=526 FT=375 IS=1 FS=1 IT=-375 FT=-100 TP=0 TP=O TP= 0 TP= 0 TP=0 TP=O TP= 0 TP=O.TP= 0 TP=O TP= 0 TP=O TPO o TP=O TP= 0 TP=0 TP=O TP= 0 TP=0 TP= 0 TP=0 TP=0 TT=543 6 TT= 600 TT=378 0 TT.-4500 TT=O TT=O TT=O TT= 600 TT-9g0 0 FL=16158 IP=1025 FP=I85 FL=16158 IP=185 FL=16158 IP=105 FL=16158 IP=15 FL=2262 IP=40 FL--32316 IP=1025 FL=32316 IP=1025 FLs32316 IP=1015 FL=32316 IP=215 FP=105 FP=15 F P= 15.FP=1578 FP=I025 FP=1025 FP=2 15 FP= 15*PAIR CA=201 CO=7.8*PAIR CA=202 CO=91 DI=0.135 EX=-8.42 *Tavg=85*DI=0.146 EX=8.42 *Tavg=324.5" PAIR PAIR PAIR PAIR PAIR PAIR PAIR*PAIR PA IR*PAIR PAIR*PAIR PAIR*PAIR*PAIR PA IR*PAIR*PAIR PAIR PAIR CA 203 CA=204 CA=205 CA= 206 CA=207 CA=208 CA- 209 C0=10. 4 cc~9 .9 CO=9.9 CO=9.9 co=9 .9 CO=9.8 CA=210 CO=9.5.CA=211 CO=9.5 CA=212 CO=9.6 CA-213 Cc=10.0 CA=214 co=9.7 CA=215 CO=9.3 CA=216 co=8.9.CA=217 CO=8.2 CA=218 CO=7.9 CA=219 co=9.2 CA=220 CA=221 CO=9.2 CA=222 CO=9.2 DI=0. 160 DI=0. 155 DI=0. 155 DI=0. 155 DI=. 155 DI=0. 155 DI=0. 154 DI=O. 150 DI=0. 150 DI=0. 152 DI=0. 156 DI=0. 153 DI=0. 148 DI=0 .144 DI=0.139.DI=0. 13i6 DI=0. 147 EX=8.42 *Tavg=545.5 t EX=8.42 *Tavg=534*

EX=8.42 *Tavg=534*

EX=8.42 *Tavg=534*

EX=8.42 *Tavg=521*

EX=8.42 *Tavgr.521*

EX=8.42 *Tavg=413" EX=8.42 *Tavg=400*

EX=8.42 *Tavg=400*

EX=-8.42 *Tavgr424.5*

EX=8.42 *Tavg=537.5*

EX=8.42 *Tavg=450.5*.EX=8.42 *Tavg=352

.5*EX=8 .42 *,Tavg=277.5 EX=-8.42 *Tavg=-162.5*

EX=8.42 *Tavg=I00*

EX=-8.42 *Tavg=328.

DIt0.147 EX=8.42 *Tavg=328" DI=0.147 EX=8.42 *Tavg=328*

File No.: V Y-16Q-307 Revision:

A Page A39 of A39 F0306-0IRO NEC041559 Structural Integrity Associates, Inc.PAIR CA=223 CO=9.7*PAIR CA=224 CO=8.6 DI0'. 153 EX=8.42 *Tavg=450.5*

DI=0.142 EX=8.42 *Tavg=237.5*



*BEGIN REGION 3 TRANSIENT CARDS & GEOMETRY FROM PUMP DISCHARGE TO HEADER---7----------------------

OP ER OPER OP ER OPER OPER OPER OPER OP ER OPER OP ER OPER OPER OP ER OP ER OPER OP ER OP ER OP ER OP ER OPER OPER OPER OP ER OP ER CA= I CA=2 CA=3 CA=4 CA=5 CA= 6 CA=7 CA=8 CA=9 CA=10 CA= 11 CA=12 CA= 13 CA=14 tA= 15 CA= 16 CA=17 CA= 18 CA=19 CA=2 0 CA=2 1 CA=22 CA=23 CA=2 4.TE=100 TE=549 TE=542 TE=52 6 TE=542 TE=52 6 TE=516 TE=52 6 TE=300 TE=500 TE=300 TE=549 TE=549 TE=375 TE=33 0*TE=22 5 TE=100 TE=10.0 TE=22 5 TE=70 TE=130 TE=52 6'TE=375 TE=100 P R= 1100 PR71035.PR=1035 PR=1035 PR=1035 PR=1035 PR=I.035 PRfI035 PR=1190 PR='1135 P R= 675 PR=1010 P R=1035 PR=205 PR= 115 PR=25 PR=2 5 P R= 1563 PR= 115 PR=115 P R= i035 PR-103 5 P R=225 PR=25 N\"+ TRAN*TRAN TRAM TRAM TRAN TRAN TRAN TRAN TRAN*TRAN TRAM* TRAN TRAM*TRAN TRAN*TRAN* TRAN TRAN TRAN TRAM CA=2 0 1 CA=202 CA=203 CA=204.CA=205 CA=206 CA207 2 CA=208 CA=209* CA=2 10 CA=211 CA=212 CA=213 CA=214 CA=215 CA=21 6 CA=217 CA 218 CA=219 CA 220 IS=1 FS=I IT=70 F.T=100 IS=1 FS=1I ir-100 FTr-549 TT=1800 FL=2262 IP=15 TT=16164 FL=16158 IP=65 IS= I IS= 1 IS= 1 IS= I IS= 1 IS= I IS=1 FS=I FS=1 FS=1 FS= I FS= 1 FS=1 IT=549 IT=542 iT=52 6 IT=542 IT=52 6 IT=516 IT=52 6 FT=542 FT=52 6 FT=542 FT=52 6 FT=516 FT=52 6 FT=300 IS=1 FS=1 IT=300"FT=-500 IS=1 FS=IIT=500 FT=300 IS=1 FS=1 IT=300 FT=549 IS=1 FS=1I T=526 ,FT=549 IS=1 FS=1 IT=526 FT1375 IS=1 FS=1 IT=375 FT=330 IS=1FS=1 IT=330. FT-225 IS=1 FS=1 I.T'225 FT=100 IS=1 FS= IT=1T00 FT=100 ,TT=0 TT=O TT=900 TT=3 60: TT=O TT=O TT=220 TT=-4500 TT=420 TT 8964 TT=O TT--54.3.6 TT=600 STT-'-378 0 TT- 450 0* TT=0 FL=32316 FL=32316 FL=32 316 FL=32 316 FL=32 316 FL=32 31.6 FL=32316 IP=1050 IP=1050 IP=1050 I1P1 050 IP= 1050 IP=1050 iP= 12 05 FP=1115 .TP=O FP=1050 TP=O FP=1050 TP=0 FP=1050 TP=E-FP=1050 TP=O FP=1050 TP=0 FP=1050 TP=O FP=1050 TP=0 FP=1205 TP-=0 FP=1150 TP=O FP=690 TP=O FP=1050 TP=O FP=1050 TP=O.FL=32316 IP=900 FL=32316 IP=i150 FL=16158 IP=355 FL=32316 IP=1050 FL=16158 IP=1050 FP=185 FL=16158 IP=220 FP=130 FL=16158 IP=130 FP=40 FL=16158 IP=40 FP=40 FL=2262 IP=40 .FP=1578 TP=O TP= 0 TP=O TP=0.TP0 File No. VY-16Q-307 Revision.

A Page A40 of A40 FO3OO-0IR0 NEC041560 Structural Integrity Associates, Inc.TRAN 0CA221 TRAM CA=222 TRAN CA=223*TRAN CA=224*: IS=-1 FS=l IT=526 FT=130 IS=1 FS=1 IT=130 FT=526 I15= FS=1 IT=526 FT=375 15=1 FS=1 IT=-375 FT=100 TT=O TT=0_TT=600 TT-9900 FL=32316 Ip=1050 FL=32316 IP=1050 FL=32316 IP=1050 FL=32316 IP=240 FP=I050 TP=O FP=050 TP-0 FP=240 TPO0 FP=40 TP=O*PAIR CA=201 CO=7.8 DI-=0.135 EX=8.42-Tavg=85 4*PAIR CA=202 CO=9.1 DI=0.146 EX=-8.42 *TaVg=324.5*

PAIR CA=203 CO=10.4 DI=0.160 EX=8.42 *Tavg=545.5*

PAIR CA=204 C00=9.9 1DI=0.155 EX=8.42 *Tavg=534*.

PAIR CA=205 CO=9.9 DI=0.155 EX=8.42 4*Tavg=534*

PAIR CA=206 CO=9.9 DI=0.155 EX=8.42 *Tavg=534*

PAIR CA=207 CO=9.9 DI=0.155 EX=8.42 *Tavg=521*

PAIR CA=208 C0=9.9 DI=0.155 EX=8.42 *Tavg=521*

PAIR CA=209 CO=9.8 .D=0.154 EX=8.42 *Tavg=413*

  • PAIR CA=210 CO=9.5 DI=0.150 EXr-8.42 '*Tavg=400*

PAIR CA=211 CO=9.5 D-IP0. 150 EX=8.42 *Tavg=400*

  • PAIR CA=212 CO=9.6 DI=0.152 EX=8.42 *Tavg=424.5*

PAIR CA=213 C0=10.0 DI=0.156 EX=8.42 *Tavg=537.5*

  • PAIR CA=214 CO=9.7 DI=0.153 EX=8.42 *Tavg=450.5*

PAIR CA=215-C==9.3 DI=0.148 EX=8.42 *Tavg=352.5*

  • PAIR CA=216 CO=8.9 DI=0.144 EX-8.42 *Tavg%277,5
  • PAIR CA-'217 CO=8.2 DI=0.139 EX=8.42 *Tavg=162.5*

PAIR CA=218 CO=7.9 DI=0.136 EX=8.42 *Tavg=100*

  • PAIR CA=219 C0=9.2 DI=0.147 EX=8.42 *Tavg=328*PAIR PAIR PAIR PAIR CA=220.CA=221 CO=9.2 cA=222 CO=9.2 CA=223 CO=9.7 DI=0. 147 DI=0. 147 DI=0. 153 EX=8.42 *Tavg32,8*

EX=8.42 *,Tavg=328*

EX=8.42 *Tavg=450.5*

EX=-8.42 *Tavg=237.5*

  • PAIR CA=224 C0=8.6' DI=0.142 ReI3B.inp--------I---------------------
  • BEGIN REGION 3B TRANSIENT CARDS & GEOMETRY AFFECTED--4*.BY RHR INITIATION TRAM CA=219 IS=1 FS=I IT=70 FT=225 TT=60 FL=22858 IP=130 FP=130 TRAM CA=220 IS=l FS=1 IT=225 FT=70 TT=60 FL=22858 IP=130 FP=130 PAIR CA=219 C0=8.3 PAIR .CA220 CO=7.9 4*DI=0.140 EX=8.42 *Tavg=147.5 DI=0.136 EX=8.42 *Tavg=147.5 Re4. inp,----------------------------
  • BEGIN REGION 4 TRANSIENT CARDS & GEOMETRY HEADER TO NOZZLE MODE 366*- ----------OPER OPER OPER OPER OPER OPER OP ER OPER CA= 1 CA=2 CA=3 CA=4 CA=5 CA= 6 CA=7 CA=8 TE=100 TE=549 TE=542 TE=52 6 TE=542 TE=52 6 TE=516 TE=52 6 PR=1100 PR7103 5 P R=1035 PR=1035 PR= 103 5 PR=103 5 PR=1035 PR=103 5 PR=-103 5 File No. VY-16Q-307 Revision:

A Page A41 of A41 F0306-01RRO NEC041561 Structural Integrity Associates, Inc.OPER OP ER OPER OP ER OP ER OPER OP ER OPER OPER OPER OP ER OPER OPER OPER OPER OP ER CA=9 CA= 10 CA= 11 CA=12 CA= 13 CA= 14 CA= 15 CA= 16 CA= 17 CA=18 CA= 19 CA=2 0 CA=2 1 CA=2 2 CA=23 CA=2 4 TE=300 TE=500 TE=300 TE=549 TE=549 TE=375 TE=330 TE=225 TE=100 TE=100 TE=225 TE=70 TE=130 TE=52 6 TE=375 TE=100 PR=1190 PR=1135 PR=675 P R=1010 PR=1035 PR=205 PR=115 PR=25 PR=25 P R= 1563 PR=115 PR= 115 PR=1035.PR=103 5 PR=225 PR=25*TRAN CA=201*TRAN CA=202 TRAN CA=203 TRAN CA=204 TRAN CA=205 TRAN CA= 206 TRAN CA=207 TRAM CA=208 TRAM CA7209*TRAN CA=210 TRAM CA 211*TRAN CA=212 TRAN CA=213*TRAN. CA=214 TRAN CA--215 TRAN CA=216*TRAN CA=217 TRAN CA= 218 TRAM CA=219 TRAN CA=220.TRAN "CA=221 TRAN CA=222 TRAN CA= 223*TRAN CA=224 IS=l FS=1 IT=-70 FT100 IS=l FS=1 IT=100 FT=549 i51 IS=- 1 I/FS= 1 FS=I FS=I FS=l FS=I FS=l IT=549 IT=54 2 IT=52 6 IT=542 1T=52 6 IT=516 IT=52 6 FT=542 FT=52 6 FT=542 FT=52 6 FT=516 FT=52 6 FT=300 IS=I FS=1 IT=-300 FT-500 I1= FS=I IT=500 FT=300 IS=l FS=1 IT=-300 FTT549 IS=1 FS=1 IT=526 FT=549 IS=l FS=1 IT=-526 FT=375 IS=1 FS=1 IT=375 FT=330 IS=1 FS=1 IT-330 FT=225 IS=1 FS=1 IT=225 FT=100 I151 FS=1 IT=100 FT=I100 IS=1 FS=1 .IT=70 FT=225 IS=1 FS=1 IT=225 FT=70 IS=-1 FS=1 IT=526 FT=130 IS=1 FS=1 IT=130 FT=526 IS=1 FS=1 IT=526 FT=375 IS=1 FS=I IT=375 FT¶=100 TT=1800 TT=-1616, TT=O TT=O TT=900 TT=3 60 TT=O TT=O TT=220 TT=4500 TT=420 T7=-8964.TT=O* TT=-5436 TT=600 TT-=3780 TT=4500 TT=O.TT=60 TT=60 TT=U TT=0 TT= 600 TT=-9900 FL=452 4 FL=3232 FL= 12 92 6 FL= 12 92 6 FL=12 92 6 FL=12 92 6 FL=12 92 6 FL= 12 92 6 FL= 12 926 FL=1292 6 FL=12 92 6 FL=6463 FL=12 92 6 FL=6463 FL=64 63 FL=6463 FL=6463 FL=905 FL=9143 FL=9143 FL=12 92 6 FL=12 92 6 FL=12 92 6 FL=1292 6 IP=15 IP=65 IP=1050 IP=1050 IP=1050 IP=1050 IP=1050 IP=1050 IP=1205 IP=900 IP=1150 IP=3 55 IP=1050 FP=1115 FP=1050 FP=1050 FP=1050 FP=1050 FP=1050 FP=1050 FP=1205 FP=115(FP=690 FP=050 FP=1050 TP=O TP=O TP=0 TP=O TP=O TP=0 TP=0 TP=O TP=0 TP=O TP=O TP=0, I. TP=0 TP=0 TP=0 TP= 0 TP= 0* Tp=0 ,TP=O TP=0 TP= 0 TP= 0 TP= 0 TP=0 Ip= 1050 FP=220*IP=220 SIP=130 IP=40 IP=15 iP=130 IP=130 IP=1050 IP=1050 IP=1050 ip=240 FP=140 FP=40 FP=40 FP=1578 FP=130 FP=130 FP=105.0 FP=1050 FP=240 FP= 40*PAIR CA=201 CO=7.8 DI=0.135 EX=8.42 *Tavg=85**PAIR CA=202 CO=9.1 DI=0.146 EX=8.42 *Tavg=324.5*

PAIR CA=203 CO10.4 DI=0.160 EX=8.42 *Tavg-545.5*

PAIR CA=204 CO=9.9 DI=0.155 EX=8.42 -Tavg=534*

PAIR CA=205 COS9.9 DI=0.155 EX=8.42 *Tavgr534*

PAIR CA=206 CO09.9 DI=0.155 EX=8.42 *Tavg=534*

PAIR CA=207 CO=9.9 DI=0.155 EX=8.42 *Tavg-521,*" PAIR CA=208 C0=9.9 DI10.155 EX=8.42 *Tavg=521*

PAIR CA=209 CO=9.8 DI=0.154 EX=8.42 *Tavg=413*

  • PAIR CA=210 CO=9.5 DI=0.150 EX=8.42 *Tavg=400*

PAIR CA=211 Co=9.5 DI=0.150 EX=8.42 *Tavg=400*

  • PAIR CA=212 COc9.6 DI=0.152 EXO8.42 *Tavg=424.5*

File No.: VY-16Q-307 Revision:

A Page A42 of A42 F0306-0iRO NEC041562 1 Structuralintegrity Associates, Inc.PA IR*PAIR PAIR*PAIR*PAIR PAIR PAIR PA IR PA IR PAIR PAIR CA=213 Co-10.0 CA=214 Co=9.7 CAF215 CO=9.3 CA=216 co=8.9 CA=217 co=8.2 CA=-218 CA=219 CAS 220 CA-221 CA 222 CA=223 CO=7 .9 Co=8 .1 CO=8 .1 CO=9.2 cO=9.2 CO=9.7 DI.0. 156 DI=O. 153 DI=0. 148 DI=0. 144 DI=0. 139 DI=0. 136 DI=O. 138 DP1=-0 .13 8 DI=0. 147 DI=0. 147 DI=O. 153* DI=0. 142 EX=8.42 *Tavg=537.5*

EX-8 .42 *Tavg=450.

5*EX=8.42 *Tavg=352

.5" EX=-8.42 *Tavg=277.5 EX=8.42 *Tavgr162.5*

'EX=8.42 4 Tavgc10*EX=8.42 *Tavg147.5 EX=8.42 *Tavg=147.5 EX=8.42 *Tavg=328*

EX=8.42 *Tavg=328*

EX=8.42 *Tavg=450,.5*

EX=-8.42 *Tavg=237.5*

  • PAIR CA=22 4 cO=8. 6 RegS. ip F-------------------------------
  • BEGIN REGION 5 TRANSIENT CARDS & GEOMETRY RISER TO

NOZZLE NODE 336 OPER.CA=1 OPER CA=2 OPER CA=3 OPER CA=4 OPER CA=5 OPER CA=6 OPER CA=7 OPER CA=8 OPER CA=9 OPER CA=10 OPER CA=11 OPER CA=12 OPER CA=13 OPER CA=14 OPER, CA=15 OPER CA=16 OPER CA=17 OPER CA=I8 OPER CA=19 OPER CA=20 OPER CA=21 OPER CA=22 OPER CA=23 OPER CA=24 TE=1O0 TE=549.TE=542 TE=52 6 TE=542 TE=52 6 TE=516 TE-52 6 TE=300 TE=500 TE=300 TE=549 TE=549 TE=375 TE=33 0*TE=225 TE=100 TE=100 TE=225 TE=70 TE= 13 0 TE=52 6G TE=375*TE= 100 PR=1100 PR103 5 PR=1035 PR=1035 PR71035 PR=1035 PR=1035 PR=I035 PR=1190 PR= 1135 PR=675 PR=1010 PR=1035 PR-205 PR=115.P R=2 5 PR=2 5 PR=1563 PR=115 PR=115 PR7-1035 PR=1035 PR=225 PR=25*TRAN* TRAN TRAN TRAN TRAN TRAN TRAMT TRAN TRAN*TRAN TaAN*TRAN CA=201 CA=202 CA 203 CA=204 CA=205 CA=206 CA=207 CA=208 CA=209 CA=210 CA- 211 CA=2 12 IS=1 FS=1 IT-70 FT=-O00 IS=1 FS=1 ITh100 FT=549 TT=-1800 FL=452 TT= 16164 FL=3232 IS= I IS= I IS= I*IS= 1 IS=IS=r IS=1 FS=1ýFS=l FS=1 FS=1.FS=1 FS= I FS=1 IT=549 IT=542 IT=52 6 IT=542'IT=52 6 IT=516 IT=52 6 FT=542 FT=52 6 FT=542 FT=52 6 FT=516 FT=52 6 FT=300 TT=O TT=O TT=900 TT=3 60 ,TT=O TT=0 TT=220 TT=-4500 TT=420 TT-8964 FL= 64 63 FL=64 63 FL=64 63 FL=64 63 FL= 64 63 FL 64 63 FL=64 63 FL=.6463 FL= 64 63 FL=3 23 2.IP=15 IP=65 IP=1050 I P=1050 IP=1050 i P= 10 50 IP= 1050 IP=1205 IP=900 iP=1150 IP=3 55 FP=1115 FP=1050 FP=1050 FP=1050 FP=1005 FP=1050 FP=1050 FP=1050 FP=1205 FP=1150 FP=690.FP=1050 TP=0 TP=0 TP= 0 TP= 0 TP=0 TP=o.0 TP= 0 TP= 0 TP=0 TP=0 TP= 0* TP=O IS=1* FS=1 IT=300 FT=500 15=1 FS=1 IT=500 FT=300 IS=1 FS=1 IT=-300 FT=-549 File No.: VY-16Q-307 Revision:

A Page A43 of A43 F0306-0IRO NEC041563 V Structural Integrity Associates, Inc.TRAN CA= 213*TRAN CA=214 TRAN CA=215*TRAN CA=216*TRAN CA=217 TRAN CA=218 TRAN CA= 2 19, TRAN CA=220 TRAN CA= 221 TRANI CA-222 TRAB CA=223*TRAN CA=224 I1=1 FS=1 IT=52.6 FT=549 IS=l FS=1 IT=526 FT=375 IS=1 FS=1 IT=375 FT=330 IS=1 FS=I IT=-330 FT¶-225 IS=1 FS=1 IT=-225 FT=-100 I=l FS=l IT=100 FT=100 IS=I FS=1 IT=70 FT=225 i=1 FS=1 IT=225 FT=70 IS=1 FS=1 IT=526 FT=130 I5=l FS=1 IT=130 FT=526 I5=1 FS=1 IT=526.FT=375 IS=l FS=1 IT=375 FT-lO00 TT=O TT=543 6 TT= 600 TT=-3780 TT=-4500 TT=O TT=60 TT=60 TT=0 TT=0 TT=600 TT--9900 FL=64 63 FL=3 232 FL=32 32 FL=3232 FL=3 232 FL=452 FL=4572 FL=4572 FL=64 63 FL= 64 63 FL=64 63 FL=6463 IP=1050 FP=1050 IP=1050 FP=220 IP=220 1P=130 IP=40 IP=15 IP=130 IP=130 IP=1050 IP=i050 IP=1050 IP=240 FP=140 FP=40 FP=40 FP=1578 FP=130 FP=130 FP=1050 FP=1050 FP=240 FP=40 TP=0 TP=O TP= 0 TP=O TP=O TP= 0 TP=O TP=O TP=O TP=O TPO0 TP=O*PAIR CA=201 .CO=7.O DI=0.135 EX=8.42 *Tavg=85**PAIR CA=202 CO=9.1 DI=0.146 EX=-8.42 *Tavg=324.5*

PAIR CA=203 CO=I0.4 DI=0.160 EX=8.42 *Tavg=545.5*

PAIR CA=204 CO=9.9 DI=0.155 EX=8.42 *Tavg=534*

PAIR CA=205CO=9.9 DI=0.155 EX=8.42 *Tavg=5,34*

PAIR CA=206 CO=9.9 DI=0.155 EX=8.42 ,Tavg=534*

PAIR CA=207. C*9.9 DI=10.155 EX=8.42 *Tavg=521*

PAIR CA=208 CO=9.9 DI=0.155 EX=8.42 *TavgS521*

  • PAIR CA=209 CO=9.8 DI=0.154 EX=8.42 *Tavg=413*

PAIR CA=210 Co=9.5 DI=0.150 EX=8.42 *Tavg=400*

PAIR CA=211 CO&9.5 DI=0.150 EX=8.42 *Tavg=400*

  • PAIR CA=212 COc9.6 DI=0.152 EX=-8.42 *Tavg=424.5*

PAIR CA=213. CO=10.0 DIP0.156 EX=8.42 *Tavg=537.5*

APAIR CA=214 CO=9.7 DI=0.153 EX=-8.42 *Tavg=450.5*

PAIR CA=215-CO-9.3 DI=0.148 EX=8.42 *Tavg=352.5*

  • PAIR CA=216 co=8.9 DI=0.144 EX=-8.42 *Tavg=277.5'
  • PAIR CA=217 CO=8.2 DI=0.139 EX=-8.42 *Tavg=162.5*" PAIR CA=218 Co=7.9 DI=0.136 EX=8.42 *Tavg--100*

PAIR CA=219 C078-.1 DI=0.138 EX=8.42 *Tavg=147.5 PAIR CA=220 CO=8..1 DI=0.138 EX=8.42 *Tavg147 5 PAIR CA=221 CF=9.2 D1=0.147 EX=8.42 *Tavgz32B*

PAIR CA7=222 CO=9.2 DI=0.147 EX=8.42 *Tavg=328*

PAIR CA=223 CO=9.7 DI=0.153 EX=8.42 *Tavg=450.5*

  • PAIR CA=224 CO=8.66 DI=0.142 EX=8.42 *Tavg=237.5*

Rep6.in1* ----------------- ----------------------*BE4IN.REGION 6 TRANSIENT CARDS & GEOMETRY TO NOZZLE NOPE 336---------------------------

OP ER OPER OP ER OP ER OPER OPER OP ER OP ER OPER OP ER OPER CA- 1 CA=2 CA=3 CA=4 CA=5'CA= 6 CA=7 CA=8 CA=9 CA=10 CA= 11 TE=100 TE=549 TE=542 TE=52 6 TE-542 TE=52 6 TE=516 TE=52 6 TE=300 TE=500 TE=300 PR=1 100 PR=1035 PR7=03 5 PR=I1035 P R=-13 5 PR=1035 P R- 103 5 PRf1O3 5 PR= 1035 P R= 1190*P R= 1135 P R= 675 FileNo. VY-16Q-307 Revision:

A.Page A44 of A44 F0306-0IRO NEC041564)

Structural Integrity Associates, Inc.OP ER OPER OP ER OPER OP ER OPER OPER.OPER OP ER OPER OP ER OPER OPER CA= 12 CA=13 CA=i4 CA=15 CA= 16 CA=17 CA= 18 CA=19 CA=2 0 CA=2 I CA=22 CA=23 CA=2 4 TE=549 TE=549 TE=375.TE=330 TE=225 TE=100 TE=100 TE=225 TE=70 TE=130 TE=52 6 TE=375 TE=100 PR=1010 PR=103 5 PR=205 PR= 115 PR=25 PR=25 PR=1563 PR= ii5 PR=115 PR=1035 PR= 1035 PR=225 PR=25 k* TRAN*TRAN TRAN'TRAN TRAN TRAN TRAN TRAN TRAR*TRAN TRAN*TRAN TRAN M TRAN TRAN* TRAN*TRAN TRAN TRAN* TRAN TRAN TRAN TRAN"*TRAN*PAIR*tPAIR PA IR PA IR PA IR PA IR PA IR PAIR PAIR*PAIR.PAIR*PAIR PAIR*PAIRýPA IR CA=201 CA=2 02 CA=203 CA=204 CA=205 CA=206*CA=207 CA=208 CA=209 CA=2 10 CA=211.CA=212 CA 213 CA=2 14 CA72 15 CA=21 6 CA=217 CA-- 218 CA=219 CA 220 CA=22 1 CA=222 CAF223 CA=22 4.IS=1 F3=1 IT=70 FTI-100 IS=1 FS=1 IT=100 FT=-549 TT=1800 FL=452 TT=16164 FL=3232, IS=-I 1S=1 is= I is= I is= 1 is= 1 FS=I FS=I'P3=1 FS=1 FS=1 FS=1 FS=I1 IT=549 IT=542 IT=52 6 IT=542 IT=52 6 IT=516 IT=52 6 FT=542 FT=52 6 FT=542 FT=52 6 FT=516 FT=52 6 FT=300 IS=1 FS=1 IrT-300 FT=500 IS=1 FS=1. IT=500 FT=300 IS=IFS=1 IT=300 FT=549 I5=I FS=1 IT=526 FT=549 I5=1 FS=1 IT=1526 FT=375 I=I FS=1 IT=3.75 FT=330 IS=1 FS=1 IT3/4-330 FT-225 IS=1 F3=1 IT=225 FTi`00 IS=I FS=1 IT=100 FT=100 15=1 FS=I IT=70 FT=225 IS=I FS=1 IT=225 FT=70 I5=1 FS=I IT=526 FT=130 15=1 FP=1 IT=130 FT=526 IS=-1 FS=I IT=526 FT=375 IS=1 FS=1 IT=-375PFT=-00 TT=O TT=O TT=900 TT=3 60 TT=O TT=O TT=220 TT=-4500 TT=420 TT=8964 TT=O TT= 543 6 TT=600 TT=378 0 TT=4500 TT=0 TT=60 TT=60 TT=O TT=O TT=600 TT=9900 FL= 64 63 FL=64 63 FL=64 63 FL=64 63 FL=64 63 FL=6463 FL=64 63 FL=6463 FL=6463 FP=3232 FL=64 63.FL=3232.FL=32 32 FL=3232 FL=3232 FL=452 FL=4572 FL=4572 FL=64 63 FL=64 63 FL=64 63'iP=15 FP=111 iP=65 FP=105 IP= 1050 FP=1050.IP=1050 FP=1050 IP=1050 FP=1050 5IP=1050 FP=1050 IP=I050 FP=1050 IP=1050 FP=1050.IP=1205 FP=1205 IP=900 FP=115*IP=1I50 FP=690 IP=3 55. FP=105 IP= 1050 FP=1050 IP=1050 FP=220 IP=220 FP=140 IP=130 FP=40 IP=40 -' FP=40 IP=15 FP=1578 IP=130 FP=130 IP=130 FP=130 IP=1050 FP=1050 IP=1050 FP=1050 IP=i050 FP=240 5 0 0 0 5 TP=0 TP=0 TP=0 TP= 0 TP=0 TP= 0 TP= 0 tTP=0 TP=0 TP=O*TP=0[3 TP=0 TP= 0 TP=0 Tp= 0 TP=0 TP=O TP=0 TP=0 TP=0 TP=O TP=0 TP= 0 Tip=0 FL=6463' IP=240 FP=40 CA=201 CO=7.8 CA=202 C0=9.1 CA=203 CO=10.4 CA=204 cO=9.9 CAF 205 C0=9.9 CA=206 CO=9.9 CA=207 co=9.9.CA=209 cO=9.9.CA=209 C0=9.8 CA=210 Cc=9.5 CA=211 CO=9.5 CA=212 co=9.6 CA=213 cofO0.0 CA=214 Co09.7 CA=215 CO=9.3 D .DI DI DI DI DI DI D DI D DI DI DI=0.135 EX=-8.42 *Tavg=85*DI=0.146 EXO-8.42 *Tavg=324.5*

[=0.160 EX=8.42 ,Tavg=545.5*

,=0.155 EX=8.42 *Tavg=534*

=0.155 EX=8.42 *Tavg=534*

=0.155 EX=8.42 *Tavg=534*

=0. 155 EX=8.42 *Tav4=521*

=0.155 EX=8.42 *Tavg=521*

=0.154 EX=8.42 *Tavg=413 I=0.150 "EXZ8.42 *Tavg=400*

=0.150 EX=8.42 *Tavg=400*

I=0.152 EX-8.42 *Tavg=r424..5*

=0.156- EX=8.42 *Tavg=537..5*

I=0.153 EX=8.42.*Tavg=450.5*

=0.148 EX=8.42 *Tavg=352.5.*

File No.: VY-16Q-307 Revision:

A Page A45 of A45 F0306-OIRO NEC041565

(<Structural Integrity Associates, Inc.*PAIR CA=216 CO8.9*PAIR CA=217*CO8.2 PA IR PA IR PA IR PAIR PA IR PA IR CA=218 CA=219g CA 220 CA=221 CA=222 CA=223 C0=7.9 CO=8 .1 CO=8 .1 CO=9.2 COc=9 .2 CO=9.7 DI=0. 144 DI=O. 139 DI=0. 136 DI=0. 138 DI=0. 138 DI=0. 147 Df10. 147 DI=0. 153 DI=0.142 EX'98.42 *Tavg=277.5 EX=8.42 *Tavg=162.5*

EX=8.42 *Tavg=100*

EX=8.42 *Tavgr147..5 EX=8.42 *Tavg=147.5 EX=8.42 *Tavg=328*

EX=8.42 *Tavg=328*

EX=8.42 *Tavg=450.5*

EX=-8.42 *Tavg=237.5*

  • PAIR CA=224 Co=8.6 ReG7A. iO S*BEGIN REGION 7A TRANSIENT CARDS & GEOMETRY TO RHR SUPPLY VALVE NODE 550----- -------- -- -- -- --- --OPER CA=OPER CA=2 OPER CA=3 OPER CA=4 OPER CA=5 OPER CA=6 OPER CA=7 OPER CA=8'OPER CA=9 OPER CA=10 OPER CA=11 OPER CA=12 OPER CA=13 OPER CA=14 OPER CA=15 OPER CA=16 OPER CA=f7 OPER CA=18 OPER CA=19 OPER CA=20 OPER CA=21 OPER'CA=22 OPER CA=23 OPER CA=24 TE=100 PR-1100 TE=549 PR=1010 TE=542 PR=1010 TE=52 6 PR=10101 TE=542 PR=I010 TE=526 PR=I010'TE=516 PR=1010 TE=526 PR=I010 TE=300 PR=1190 TE=500 PR=1135 TE=300 PR=675 TE=549 PR=1010 TE=549 PR=I010 TE=375- PR=170 TE=330 PR=90 TE=225 PRO0 TE=100 PR=0 TE=100 PR=1563 TE=225 PR=115 TE=70 PR=115 TE=130 TE=526 PR=i010 TE=375 PR7200 TE=00 PR=0*TRAN* TRAM TRAN TRAN TRAN TRAN TRAN TRAN TRAM*TRAN TRAM*TRAN TRAM.* TRAM CA=2 01 CA=202 CA 203 CA=204 CA=205 CA 206 CA=207 CAF 208 CA 209 CA=210" CA7211 CA=212 CA=213 CA=214 IS=1 FS=1 IT=170 FT=100 IS=1 FS=1 IT=-100 FT=-549 T T=1800 FL= IP=15 FP=1115 TP=0 TT=116164 FL= IP=65 " FP=1025 TP=o 1S1 15= 1 1S1 15=1 15=1 15=1 13=1 FS=1 FS=1 FS=I1 FS=1 FS=I FS= I FS=1 IT=549 IT=542 IT=52 6 IT=542 IT=52 6 IT=5 16 IT=52 6 FT=542 FT=52 6 FT=542 FT=52 6 FT=516 FT=52 6 FT=300 TT=O TT=O TT=900 TT=3 60 TT=O TT=O TT=220 TT=4500 TT=420 TT=-8964 TT=O TT=543 6 FL=3 64 FL=358 FL=358 PL=358 FL=351 FL=306 IP=-1025 IP= 1025 IP=-1025 IP=1025 IP= 1025 IP 1025 2P= 12 05 FP=1025 FP=1025 FP=1025 FP=1025 FP=1025 FP=I025 FP=1205 FP=1150 FP=690 FP=1025 FP=1025 TP=O.TP=O TP=0 TP=0 TP=O TP=0 TP=O TP=O TP=0 TP=0 TP=0 TP=0 IS=1 FS=1 IT=300 FT=-500 I=--I FS=1 IT--500 FT=300 IS=1 FS=1 IT=-300 FT=S549 I=1 FS=I IT=526PFT=549 IS=1 FS=. IT-1526 FT-375 I L=301 IP=900'YL=301 IP=1150 PL=3 10 IP=355 PL=360 IP=-1025 FL=320 IP=1025 FP=185 File, No.: VY-.16Q-307 Revision:

A Page A46 of A46 F0306-O1RO NEC041566 V Structural Integrity Associates, Inc.TRAN*TRAN* TRAN TRAN TRAN TRAN TRAN TRAN TRAN-*TRAN CA=215 CA=216 CA=2 17 CA=218 CA=219 CA=220 CA=22 1 CA=222 CA=223.CA=22 4 15=1 FS=1 IS=1 FS=1 IS=1 FS=1 15=I FS=1 15=1 FS=i IS=I FS=1 IS=1 FS=1 I5=I FS=1 IS=1 FS=1 IT=375 FT=330 TT=600 I=a330 FT=-225 TT= 6700 IT=225 FT=100 TT--6700 IT=100 FT=100 TT=O IT=70 FT-225 TT=S60 IT=225 FT=70 TT=60 IT=526 FT=13O TT=O 1T=130 FT=526 TT=0 IT=526 FT=375 TT=600 FL=282 IP=-185 FL=251 IP=105 FL=195 IP=15 FL=158 IP=15 FL=6700 IP=I30 FL=6700 IP=130 FL=272 IP= 1025.FL=272 IP- 1025 FL=320 IP= 1025 FL=234 IP=215 FP=I05 FP=15 FP=15 FP=1578 FP=130 FP=130 FP=1025 FP= 102 5 FP=215 FP=15 TP=O TP=O.TP=O TP=O TP=0 TP=O TP=O TP=O TP=O TP=O IS=1 FS=1 IT=375 FT=100 TT=9900*PAIR CA=201 CO=7.8*PAIR CA=202 CO=9.1 PAIR PAIR PAIR PAIR PAIR.PAIR PAIR*PAIR PAIR*PAIR PAIR* PAIR PAIR*PAIR*PAIR PAIR PA IR PAIR PAIR PAIR PAIR CA=203 C0=10.4 CA=204 CO=9.9 CA=205 CO=9.9 CA=206 C0=9.9 CA=207 CO=9.9 CA=208 CCO= 9.9 CA=209 CO=9.8 CA=210 Co=9.5 CA=211 CO=9.5 CA=212 CoF9. 6 CA=213 CO=10.0 CA=214 CO=9.7 CA=215 CO=9.3 CA=216 CO=8.9 CA=217. CO8.2 DI DI Dl DI D]DI Dl D D D DI D DI D D DI DI DI D I DI DI D DI=0.135 EX-8.42 *Tavg=85*DI=0. 146 EX=-8.42 *Tavg=324.5":=0.160 EX=8.42 4 Tavg=545.5*

=0. 155 EX=8.42 *Tavg=534*
=a.155 EX=8.42 *Tdvg=534*
=0.155 EX=8.42 *Tavg534*:=0.155 'EX=8.42 .*Tavg=521*
=0.155 EX=8.42 *Tavg=521*
  • =0.154 EX=8.42 *Tavgr4l13*

I=0.150 EXr-8.42 *.Tavg=r400 t:=o. 150 EX=8.42 *4 Tavg=400*'I=0.152 EX=8 .42 *Tavg=424.5*

=0.156 EX=8.42 *Tavg=537.5*

I=0.153 EX=-8.42 *Tavg=450.5*

=0. 148 EX=8.42 4 TavgS352.5*

'i=0.144 EX=8.42

  • Tavg=-277.5 I=0.139 EXr88.42 *Tavg= 162.5*=0.136 EX=8.42 *Tavg=100*

=0.138 9X=8.42 *Tavg=147.5

=0. 138 EX=8.42 4 Tavgl147.5

=0.147 EX=8.42 *Tavgr328*

=0.147 EX=8.42 *Tavg=328*

=0.153 EX=8.42 1.Tavg=450.5+'

I=0..142 EX=8.42 *Tavg=237.5*

CA=218 CA=219 CA=220 CA=221.CA=222 CA=223 Ccr7 .9 ccx=_8 .1 CO=8 .2 00=9 .2 CO=9 .2 CO=9.7*PAIR CA=224 COc8.6 Reg7B.anp--------------------------------

,+BEGIN REGION 7B TRANSIENT CARDS & GEOMETRY--------------FROM RHR SUPPLY VALVE TO PENET. NODE 565 OPER OPER OP ER OP ER 0PER OP ER OP ER OPER OP ER OPER OPER OP ER OP ER CA= 1 CA=2 CA=3 CA=4 CA=5 CA= 6 CA=7 CA=8 CA=10 CA= 11 CA= 12 CA=13 TE=I00 TE=150 TE=150'TE=150 TE=150 TE=150?TE=150 TE=150 TE=150 TE=150 TE=150 TE= 150 TE= 150 PR=120 PR=I20 PR=120 P R 120 P R 120 PR=120 PR=120 PR=120 PR=120 PR=120 PR=120 PR=120 PR= 120 File No.: VY-16Q-307 Revision:

A Page A47 of A47 F0306-0IRO NEC041567 V Structural Integrity Associates, Inc.OPER OPER OPER OP ER OP ER OPER OPER OP ER OP ER OPER OPER CA= 14 CA= 15 CA= 16 CA= 17 CA=18 CA= 19 CA=2 0 CA=2 I CA=22 CA=23 CA=2 4 TE=150 TE=150 TE=150 TE=100 TE=100 TE=225 TE=70 TE=150 TE=150 TE=150 TE=150 PR=120 P R= 120 PR=100 PR=O PR=450 PR=115 PR=115 PR= 100 PR=1035 PR=100 PR=100*TRAN CA=201- IS=1 FS=1 IT=-70 FT=100*TRAN CA=202 IS=1 FS=1 IT=I50 FT=I150 TRAN CA=203 TRAN CA7204 0 TRAN CA=205 TRAN CA=206 TRAN CA=207 TRAN CA=208 TRAN CA=209*TRAN CA=210 TRAN CA= 211*TRAN CA=212 TRAN CA=213*TRAN .CA=214 TRAN CA=215*TRAN CA=216*TRAN CA=217 IS=1. FS=1 IT=225 FT=-100 TRAN CA=218 I=1 FS=I'IT=100 FT=100 TRAN 'CA=219 IS=1 FS=1 IT=70 FT=225 TRAN CA=220 I5=1 F=1 IT=150 FT=70 TRANI CA7221 TRAN CA=222 TRAN CA=223*TRAN CA=224 TT=-1800 FL= IP=15 TT=16056 FL= IP=15 Fp=-1115 TP=O FP=1050 TP=0 TT 0 TT=0 TT=60 TT=3 1 PL=6700 IP=15 FL=6700 IP=40 FL=r6700 IP=130 FL= 6700W IP2130 FP=15 TP=0 FP=465 TP=0 FP=130 TP=O FP=130 TP=O*PAIR*PAIR*PAIR*PAIR*PAIR.*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR CA=201 CA=202 CA=203 CA=204 CA=205 CA=206 CA=2 07 CA=208 CA=20 9 CA=210 CA=2 11 CA=212 CA=213 CA=214 CA=2 15 CA=2 1 6 CA=217 CO=7.8 co=9. 1 Co=f10.4 CO=9.9 CO=9.9 Co=9.9 Cc=g. 9 C0=9. 9 Cc=9. 5 CO=9. 5 CO=9. 6 Co=10.0 co=9. 7 CO=9.3 CO=8. 9 CO=8 .2 DI=0. 135 DI=0. 146 DI=0. 160 DI=0. 155 DI=0. 155 DI=O. 155 DI=0 .155 DI=0.. 155 DI=0. 154 DI=0. 150 DI=0. 150 DI=0. 152 DI=0. 15.6 Di=0. 153 DI=0. 148 DI=0. 144 DI=0.139 EXr-8.42 *Tavg=85*EX=-8.42 *Tavg=3'24.5*'

EX=-8.42 *Tavg=545.5*

EX=8.42 *Tavg=534*

EX=8.42 *'Tavg= 534*EX=8 .42 *Tavg=r534*

EX=-8.42 *Tavg=521*

EX=8.42 *Tavg=521*

EX=8O.42 +Tavg= 413"* EX=8.42 *Tavg=400*

EX=8.42 *Tavg= 400*EX=8.42 Tavg=424.5*

EX=-8.42 *Tavg=537.5*

EX=-8.42 *Tavg=450.5*

EX=-8.42 *Tavg=352.5*

EX=-8 .42 *Tavgr277.5 EX=8 .42

  • Tavg= 162.5*File No.: VY-16Q-307 Revision:

A Page A48 of A48 F0306-0IRO NEG041560 Structural Integrity Associates, Inc.PAIR PAIR PAIR t PAIR PAIR*PAIR*PAIR CA=218 CO=7.9 CA=219 CO=8.2 CA=220 CO=8.0 CA=221 CO=9.2 CA=222 CO=9.2 CA=223 CO=9.7 CA=224 CO=8.6 DI=0. 136 DI=O. 139 DI=0. 137 DI=0. 147 DI=O. 147 DI=0.153 DI=0. 142 EX=8.42 *Tavgr100*

EX=8.42 *Tavgl162.5*

EX=8.42 *Tavgtll0*

EX--8.42 *Tavgr328*

EXr8.42 *Tavg=328*

EX 8.42 *Tavg=450.5*.EX-8.42 *Tavg=237.5*

Reg8.inp*BEGIN REGION 8-TRANSIENT CARDS & GEOMETRY*- ---------FOR 4 INCH BYPASS OPER CA=1 OPER CA=2 OPER CA=3 OPER CA=4 OPER CA=5 OPER CA=6 OPER CA=7 OPER CA=8 OPER CA=9 OPER CA=10 OPER CA=11 OPER CA=l2 OPER CA=13 OPER CA=14 OPER CA=15 OP ER 16 OPER CA=17 OPER CA=18 OPER CA=I9 OPER CA=20 OPER CA=221 OPER CA=22 OPER CA=23 OPER CA=24 TE=100 TE=549 TE=542-TE=52 6.TE=542 TE=52 6 TE=516 TE=52 6 TE=300 TE=500 TE=300 TE=549 TE=549 TE=375 TE=330 TE=225 TE=100 TE=00 TE=225 TE=70 TE= 13 0 TE=52 6 TE=375 TE= 100>PR=1100 PR7i035 PR-1035 PR=1035 PR1035 PR=1035 PR=1035 PR=1035 2R-1 13.5 P R= 1135 PR=675 PR=1010 PR=1035 PR=205 PR=115 PR=25 P R=2 5 PR=1563 PR=115 PR=115 PR=71035 PR=1035 PR=225 PR=25 t TRAN TRAN TRAM TRAM TRAM TRAM TRAM TRAM TRAM* TRAN TRAM-*TRAN-TRAM*TRAN TRAM* TRAN CA=2 01 CA=202 CA= 203 CA7=204 CA= 205 CA=206 CA=207 CA= 208 CA= 209 CA=210 CA=211 CA=212" CA=213 CA=214 CA=215 CA=216 IS=1 FS=1 IT=-70 FT=-I00 IS=1 FS=1 IT=100 FT=549 TT=11800 FL=2262 IP=15 TT16.164 FL=16158 IP65 FP=1115 TP=0 FP=1050 TP=O IS=1 FS=1 15=1 FS=1 IS=1 FS=1 IS=I FS=1 IS=1 FS=1 IT=549 IT=542 IT=52 6 IT=542 IT=52 6 IT=51 6 IT=52 6 FT=542 FT=52 6 FT=542 FT=52 6 FT=516 FT=52 6 FT=300 TT=0 TT=O TT=900.TT=3 60 TT=O TT=O TT=220 TT=S4500 TT=420 TT=-8964 TT=O TT=-543 6 TT=600 FL=335 FL=335 PL=335 PL=335 FL=335 FL=335 FL=335 IP=1 050 IP= 1050 IP= 1050 IP=1050 IP=1050 IP= 1050 IP= 12 05 FP=1050 FP=1050 FP=1050 FP=1050 FP=1050 FP=1050 FP=1205 FP=1150 FP=690 T2-0 TP=O TP=O TP=0l-Tp=0 TP=0 TP=0*TP=0 TP=0 IT=300 FT=5 00 FL=335 IP=900 FL=335 IP=1150 IS=-I FS=1 IT=500 FT=300 IS=1 FS=1 IT=300 FT=z549 IS=-1 FS=1 IT=526 FT=549 IS=1 FS=1 IT-1526 FT-375 IS-1 FS=1 IT=375 FT=330 FL=167.5 IP=355 FP21050 TP=0 FL=335 IP=-1050 FP=1050 TP=0 FL=167.5 IP=1050 FP=220 TP=0 FL=167.5 IP=220 FP=130 TP=0 FL=167.5 IP=130 FP=40 TP=0 IS=1 FS=1 IT-330 FT=225 TT=3780 File No.: VY-16Q-307 Revision:

A Page A49 of A49 F0306-01RO NEC041569 Structural Integrity Associates, Inc.*TRAN CA=217 IS=1 FS=1 IT=225 FT=-i00, TT=4500 FL=167.5 IP=40 TRAN TRAM TRAE TRAM TRAM TRAM* TRAM CA=218 CA=219 CA=220 CA=221 CA=222 CA=223 CA=22 4 I5=1 FS=1 IT=f00 FT=100 TT=O IS=1 FS=1 IT=526 FT=130 IS=I1FS=1 IT=130 FT=526 iS=1 FS=1. IT=526 FT=375 IS=1 FS=1 IT=375 FT=-100 TT0O TT=O TT=600 TT=-9900 FL=23.5 IP=40 FL=335 Ip=-1050 FL=335 IP= 1050 FL=335 IP--1050*FL=335 IP=240 FP=40 TP=O FP=1578 TP=0 FP=1050 FP 1050 FP=240 FP=40 TP=0 TP=O TP=O TP=O*PAIR CA=201 CO=7.8 DI=0.135 EX=8.42 *Tavg=85**PAIR CA=202 CO=9.1. DI=0.146 EX=-8.42 *Tavg=324.5" PAIR CA=203 co=10.4 DI=0.160 EX=8.42 *Tavg=545.5*

PAIR CA=204 CO=9.9 DI=0.155 EX=8.42 *Tavg=534*

PAIR CA=205 CO=9.9 DI=0.155 EX=8.42 *Tavg=534*

PAIR CA=206 CO=9.9 DI=0.155 EX=8.42 *Tavr=534*

PAIR CA=207 CO=9.9 DI=0.155 EX=8.42 *Tavg=521*.

PAIR CA=208 CO=9.9 DI=0.155 EX=8.42 *Tavg=521*

PAIR CA=209 CO=9.8 DI=0.154 EX=8.42 *Tavg=413*

  • PAIR CA=210 C0=9.5 DI=O.150 EX=8.42 *Tavg=400*

PAIR CA=211 CO=9.5 DI=0.150 EX=8.42 *Tavg=400*

  • PAIR' CA=212 C0=9.6 DI=0.152 EX-8.42 *Tavg=424.5*

PAIR CA=213 CO=10.0 DI=0.156 EX=8.42 *Tavg=537.5*

  • PAIR CA=214 CO=9.7 DI=0.153 EX=-8.42 *Tavgr450.5*

PAIR CA=215 C0=9.3 DI=0.148 EX=8.42 *Tavg=352.5*

  • PAIR CA=216 CO=8.9 DI=0.144 EX-8.42 *Tavg-277.5
  • PAIR CA=217 CO=8.2 DI=0.139 EX=8.42 *Tavg=162.5*

PAIR CA=218 CO7.9 DI=0.136 EX=8.42 4 Tavg=100**PAIR- CA=219 C0=9.2 DI=0.147 EX=-8.42 *Tavgz328*PAIR PAIR PAIR PAIR*PAIR CA=2 20 CA=221 CO=9.2 CA=222 CO=9.2 CA=223 CO=9.7* CA=224 CO=8. 6 DI=0. 147 DI=O. 147 DI=0. 153 DI=0 .142 EX=8.42 *Tavg=328*

EX=8.42 *Tavg=328*

EX=8.42 *Tavg=450.5*

EX=8.42 *Tavq=237.5*

Reg9A.inp*BEGIN REGION 9A .TRANSIENT CARDS & GEOMETRY 660 -* I ----------------------

FOR RHR RETURN FROM TEE TO VALVE NODE OPER OPER OPER OPER OPER OPER OPER ,OPER OPER OPER OPER (OPER OPER OPER CA= I CA=2 CA=3 CA=4 CA=5*CA= 6 CA=7 CA=8 CA=9 CA= 10 CA= 11 CA=12 CA= 13 CA= 14 TE=100 TE-549 TE=542 TE=52 6 TE=542 TE=52 6 TE=516 TE=52 6 TE=300 TE=500 TE=300 TE=549 TE=549 TE=375 PR= 100 PR=I1035 PR=1035 P R=I3 5 PR=103 5 PR=1035 PR=1035 PR=1035 PR=1 190 P R71135.PR= 675 PR=1010 PR=1035 PR=2 05/, FileNo.: VY-16Q-307 Revision:

A Page A5 0 of A50 F0306-01ROR NEC041570 Structural integrity Associates, Inc.OP ER OPER* OPER OPER OPER OP ER OPER OPER OPER OPER CA= 15 CA= 16 CA=. 7 CA=18 CA= 19.CA=20 CA=2 1 CA=22 CA=2 3 CA=24 TE=330 TE=225 TE=100 TE=100 TE=225 TE=70 TE=130 TE=52 6 TE=375 TE=100 PR=115 P R=25 PR=8 5 PR7=1563 PR- 115 PR: 115 P R--I03 5 PR=1035 P R7-1035 PR=225 PR=25*TRAN "CA=201*TRAM CA=202 TRAM CA=203 TRAM CA=204 TRAM CA=205 TRAM CA= 206 TRAM CA=207 TRAM CA=208 TRAM CA=209*TRAN CA=210 TRAM CA=211*TRAM CA=212.TRAM CA=213*TRAM CA=214 TRAM CA=215*TRAN CA=216*TRAM CA=217.TRAM CA-218 TRAM CAZ219 TRAM CA=220 TRAM CA=221 TRAM .CA7222 TRAM CA=223*TRAN CA='224 IS=1 FS=1 IT=-70 FT=100 IS=l FS=1 IT=100 FT=549 IS=I FS=1 13= I , FS= 1 ISIFS=I I=-FS=I IS=-I FS=I 15= 1 FS=1 IS=1 FS=1 I5=1 F5=1 IT=549 IT=542 IT=52 6 IT=542 IT=52 6 IT=516 IT=52 6 FT=542 FT=52 6 FT=542 FT=52 6 FT=516 FT=52 6 FT=300 IT=-300 FT=500 IS=I FS=1 IT=500 FT=300 IS=l FS=I IT=300'FT=-549 IS=1 FS=7 IT=526 FT=549 IS=1 FS=1 IT=-526 FT=-375 IS=I1FS=1 IT=375 FT=330 IS=I FS=1 IT=-330 FT-225 IS=1 FS=1 ITr225 FT-¶100 IS=I FS=1 IT=100 FT=100 IS=1 7FS= IT=526 FT=130 IS=1 FS=. IT=130 FT=526, IS=1 FS=1 IT=526 FT=375'..IS=1 FS=1 IT=t375 FT=-100 TT= 1800* TT¶16164 TT=O TT=O TT=900 TT=360 TT=O TT=O TT=220 TT=-4500 TT=420 TT=-8964 TT=O TT=-543 6 TT=600 TT-3780 TT=0 TT=0O TT=0 I TT=O TT=600 TT-9900 FL=520 FL=511 FL=511 FL=511 FL=502 FL=502 FL=437 Ip= 1050 i P=1050 ip= 1050 IP=- 10 50 ip= 1050 IP=- 10 50 IP= 12 05 FP=1050 FP=1050 FP=1050 FP=1050 FP=1050 FP=1050 FP=1205 FP= 1150 FP=690 FP= 1050 FP=1050 FL=429 IP=900 FL=429 IP= 1150 FL=443 ip=355 FL=514 ip1- 050 FL= IP=15 FL= IP=65 TP=O TP=O TP=O TP=O TP=O TP=O TP=O TP=O TP=0*TP=O TP=O TP=O TP=O TP=O 0 TP=O FP=1115 TP=0 FP=1050 TP=O FL=458 IP=1050 7P=220!L=403 IP=220 FP=130 FL=670 IP=130 FP=40 FL=6700 iP= 00 FP=I0(?L=226 IP=40 L=389 IP=-050 L=389 IP=-1050!L=458 IP= 1050 FL=334 IP=240 FP=1578 TP=O FP=1050 TP=O FP=1050 TP=O FP=240 TP=O FP=40 TP=O*PAIR CA=201 CO=7.8 DI=0.135*PAIR CA=202 CO=9.1 DI=0.146*PAIR PAIR PAIR PAIR PAIR PAIR PAIR 4 PAIR PAIR*PAIR PAIR*PAIR PAIR*PAIR*PAIR PAIR CA=203 CA=204'CA= 205 CA=206 CA=207 CA=208 CA 209 CO=10, 4 co=9 .9 co=§. 9 CO=9 .9 Co=9. 9 CO=9.9 CO=9.8 CA=210 Co&9.5 CA=211 CO=9.5 CA=212 co=9.6 CA-213 CO=10.0 CA=214 C0=9.7 CA=215 CO=9.3 CA=216 Co=8.9 CA=217 CO=8.2 CA=218 CO=7.9 DI=O. 160 DI=0. 155 DI=-0.1155 DI=0. 155 DI=0. 155 DI=0. 155 DI=0. 154 DI=0. 150 DI=0. 150 PD1=0. 152 DI=0. 156 DI=0. 153 DI=0.*148 DI=0. 144 DI=0.139 DI=O. 136 5 EX=8.42 *"Tavg=85*

6 EX=8.42 *Tavg=324.5*

EX=8.42 *Tavg=545.5*

  • EX=8.42 "Tavg=534*

EX=8.42 *Tavqg534*

EX=8.42 .*Tavg=534*

EX=8.42 *TavgS521*

EX=8. 42 "Tavg=521

" EX=8.42 "Tevg=-413 EXO8 .42 *Tavg=400*

EX=8.42 "Tavg=400*

EX=-8.42 *Tavg=424.5*

EX=8.42 *Tavgq537.5*

EX=-8.42 *Tavg=450.5*

EX=8.42 *Tavg=352.5*

EX=-8.42 *Tavga277.5 EX=8.42 *Tavg=162.5*

EX=8.42 t Tavg=100*File No.: VY-16Q-307 Revision:.

A Page A51 bfA51 F0306-OIRO NEC041571 Structural Integrity Associates, Inc.*PAIR*PAIR PAIR PAIR PAIR*PAIR CA=219 Co=9.2 DI=0.147 EX-8.42 *Tavg=328 CA=22 0 CA=221 CO=9.2 DI=0. 147 EX=8.42 *Tavg=328*

CA=222 CO=9.2 DI=0.147 EX=8.42 *Tavg=328*

CA=223 CO=9.7' DI=0.153 EX=8.42 *Tavg=450.5*

CA=224 CO=8.6 DI=0.142 .EX8.42 *Tavg237.5*

Rep9B.inp--------------------------------

  • BEGIN REGION 9B TRANSIENT CARDS & GEOMETRY, PENET. NODE 6.75*--------------------

FOR RHR RETURN FROM VALVE NODE 660 TO'OPER OPER OP ER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OPER OP ER OPER OPER OPER OPER OPER OPER OP ER OPER OPER CA= I CA=2 CA=3 CA=4 CA=5 CA= 6 CA=7 CA=8 CA=9 CA= 10 CA= 11 CA=12 CA= 13 CA=14 CA=15 CA= 16 CA=17 CA= 18 CA=19 CA=20 CA=2 1 CA=22 CA=23 CA=2 4 TE=100 TE=150 TE=150 TE=150 TE=150 TE=150 TE=150 TE=150 TE=150 TE=150 TE=150 TE=150 TE=150.TE=150 TE=150 TE=150 TE= 100 TE=100 TE=225 TE=70 TE=150 TE=150 TE=150 TE=150 PR= 100 PR=1035 PR=103 5 PR=1035 PR103 5 PR=103 5 PR=1035 PR=1035 PR=I 190 PR= 1135 PR= 675 PR=1010 PR-1035 PR=205 PR=115 PR=25 PR=85 PR= 1563 PR=115 PR=115 PR= 103 5 PR=I035 PR=225 PR725* TRAN*TRAM TRAM TRAM TRAM TRAM TRAM TRAM TRAM* TRAM TRAM t TRAM TRAM* TRAM TRAM* TRAM CA=201 IS=1 FS=1 IT-[70 FT-lI01 CA=202 IS=1 F1S= IT=-100 FT=-I51 CA= 203.CA=204 CA=205 CA=206 CA=7207 CA=208 CA= 209 CA=210 CA=211 IS=1 FS=1 IT-150 FT=150 CA=212 CA=213 CA=214 CA=215 IS=1 FS=1 IT-150 FT-150 CA=216 J TT-- 1800 FL= IP=I.'J TT--16164 FL= IP=65 TT=0 FL=429 IP=1150 TT=-0 FL=403 IP=220 5 FP=1115 TP=O FP=1050 TP=O FP=690 TP=O FP=130 TP=O File No. VY-16Q-307 Revision:

A Page A5 2 of A52 F0306-0IRO NEC041572 V Structural Integrity Associates, Inc.*TRAN TRAM TRAN TRAM TRAN TRAN TRAN TRAN*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR*PAIR CA=217. i5=1 Fs=1 IT¶225 FT1-I00 TT=-4500 FL=4100 I]CA=Z18 I=1 FS=1 IT=100 FT=100 TT=O FL=O.1 CA=219 IS=-I FS=1 IT=70 FT=225 TT=60 FL=6700 IP: CA7220 IS= FS=1 IT=225 FT=70 TT=31 FL=6700 IP=CA=221 CA=222 CA=223 IS=1 FS=1.IT=150 FT=150 TT=O FL=429 IP=1050 CA=224 IS=1 FS= IT--150 FT=I50 TT-EO FL=334 ip=240?=40 FP=40 10 EP=4G5=115 FP=115:115 FP=115 TP=O TP=0 TP=O TP=0 FP=240 TP=O FP=40 TP=O CA=201 CA=2 02 CA=2 03 CA=204 CA=205 CA=206 CA=2 07 CA2 08 CA=209 CA=210 CO=7. 8 Co=9.: CO-f0.4 co=10.9 ccor-Q. 9 co=9 :9 C0=9. 9 Co=9. 9 co0=9.9 cc=9.8 Co=9.5 DI=0. 135 1l. DI=0. 146 SDI=0. 160 I1=0. 155 DI=0.155 DI=0. 155 DI=O. 155 DI=0. 155 DI=0. 154-DI=0. 150 DI=O. 138 DI=0. 152 EP=8.42 *Tavg=85*SEX-8.42 *Tavg=324.5" EX=8.42 *Tavg=545.5*

EX=8.42 *t Tavgr534*EP=8.42

  • Tavg= 534*EX=8.42 *Tavg= 534*EX=8.42 *Tavgr521*

EX=-8.42 *Tavg=521*

EX=8.42

  • Tavg=413*EX=8.42 .*Tavg= 400*EX=8.42 *Tavgl150*

EX=-8.42 *Tavg-424.5*

EX=8.42 *Tavg=537.5*

EX=-8.42 *Tavg=450.5*

EX=8.42 *Tavg=150*

EX=-8.42 *Tavg=277.5 EX=8.42 *Tavg=162.5*

PAIR CA=211 CO=8.2 PAIR CA=212 CO=9i6*PAIR CA=213 CO=f10.0 DI=0.156*PAIR CA=214 CO=9.7 PAIR *CA215 Co=8.2*PAIR CA=216 co=8.9.*PAIR CA=217 CO=8.2 PAIR CA=218 CC=7.9 PAIR CAr219 cO=8.2 PAIR CA=220 co=8.2*PAIR CA=221 CO=9.2*PAIR CA=222 C0=9.2 PAIR CA=223 CO=8..2 PAIR CA;224 cO=8:.2 DI=O. 153 DI=0.'138 DI=0. 144 DI=0.139 DI=0. 136 DI=O. 139 DI=0. 139 DI=0 .147 DI=O. 147 DI=0. 138 DI=0. 138 EX=8.42 *Tavg=100*

EX=8.42 *Tavgs162.5*

EX=8.42 *Tavg=ls2.5*

EX--8.42 *Tavg=r328*

EX=8.42 4 Tavg=328*EX=8.42 *Tavg=150*

  • EX=8.42 *Tavg=l150*

File No.: VY-16Q-307 Revision:

A Page A513 of A53 F0306-0IRO NEC041573 Structural integrity Associates, Inc.APPENDIX B PIPESTRESS Output File No.: VY-16Q-307 Revision:

A Page B 1 of B39 F0306-OIRO

  • NEC041574 Structural Integrity Associates, Inc.D S T C 0 I P U T E R 3 E R U I C E 3 S. A. "-3 PAGE N0. 2486++ DST/PIPE3TRE3S

-4+ Vezront Yankee Version 3.5.1+026 PC-EXE Release: Jun 2004 CALCULATION NUMER 3 CODE SECTION III CLASS 1 ASME-L989 PEV A&8.9 RP Vermont Yankee Recirculation Fatigue Analysis 200V04/27 17:54i59 127941 TATIGUE ANALYSIS LEGEND Note Condition Remark a b d k i j L UF > i.o Eq 10 > 3.0 SHf Eq 12 > 3.0 Sf'Eq 13 > 2. 0 S ur > 0.4 Eq 10 > 2. 4 3H Eq 12 > 2.4 SK!Eq 12 > 2.4 SK UF > o.1 deltaTl range > allow rails Fails Tails Fails Tield in Service Inspection (131)Weld in 3ervice Inspection (13)Rupture Location Rup t=re Location-Rupture Location Fails F.le No.: VY-16Q-307 Revision, A Page B2 oftB39 F0306-O1RO-NE0041575 Structural integrity Associates, Inc.D) ST C 0 n P U T E R 5 E R V I C E S S. A.F- 3.1 PAGE NO. 2487++ DST/PIPEsTRP3s

++ Vezront Yankee -version PC-EXE Release: Jun 2004-. --. --. ....- -. .-. .-. .--. .-. .-. .I. .--. .-. .-. .--. .-. .-. .- -. .-. .-. .-. .- -. .-. .-. .- -. .-. .-. .- -.- -CALCULATION SUNDER 3 CODE SECTI0 III CLASS 1 ASHE-1989 REU h89 .IRUP Vermont Yankee Recizculafion Fatigue Analysis 2007/04/2'?

17:54:59 [2795]LO11. END MEL _ ...LD TAPER POINT JO IST NO.FATIGUE ANAL'YSIS SUNNR-Y-AXIZKUM STRESS INTENSITY (PSI) DELTA TI CUTWLATIVE EQ.10(3N)

EQ.IZ(SE)

EQ.I2 EQ.11:S3P)

RE SALT RANGE( F U3A r FACTOR WELD ING TEE MELD ING TEE 500 .75905.b 20121. 78969.e 23912Z. 2.483 600 7387T6.b 1619. 4352.i 238875. 2.294 249893.273962ý106.3k 0.0415 7 09. Ok 0. 0475 File No.: VY-16Q-307 Revision:

A Page B3 ot B39 F0306-1IRO NE0041576 Structural Integrity Associates, Inc.S3 T C 0 n P U T E R S E R V I C E S S.A.F-4 PAGE IT0. 2488"-7 -----.-.T/. ...---e n ---- ----n --...+ .."-EX R e.. 0++ DST/PlPE3TRE3S

++ Vem~ont Yankee Vezsion .5..1+026 P6-EXE Release; Jun 2004 I CALCULATION NUMBER 3 COME SECTION III CLASS 1 ASME-1989 R)EV A89 RIP Vermont Yankee Recizculation Fatigue Analysis sUfHARY oF LOAD SETS AT POINT 500 MELDING TEE 500 TO 502 200704/2?

17,54:39 [27961 DELTA Ti IN DEGEES F PPE33SE3 IN PSI STPES3ES IN PSI GLOAL MOHENTS IN FT-LB.LOAD SET NO.LOAD SET DESCRIPTION I Design 2 Startnp 3 TRoll z Inc. Pb3RI 4 TRoll C Inc. Pbfl2 S L0FIWN+TT PUJRI 6 LO0Mt-TT PZRZ 7 LO0tfPlPFIOETR BypI 8 Lo0Ff1-PFUrTR Dyp2 L.3-1 LS-2 1.3-3 LS-4 IS-S L3-6 L3-7 L.-8 DYNAN.CYCLES CYCLES 120-300 379 MOMENT MOM!ENT MOMENT x Y z PRESSURE 1100..1100.1100.1010.1010.10.0: 1010.1010.1010.1010.1010.1010.1010.1010.1010.1010.1010.1010.1010.1010.1010.1010.*1010.1010.1190.1190.S110.1133.1133.1133.EQ. 10 EQ. 11 EQ. 13 T1 0. 0. 0.TRANSIENT STRESSES DELTA-8325.5292.2024.-117567.104123.12343--11,5723.102486.13239."111544.12837.-115833.102859.12993.-116581.".104962.11719.-112 412.100381.11831.--117698.105201.11497.47744.7875.-114508.104504.10004." 3430.-17.-.3432.79070.-3903.-75167..77668.-3691.-73977.74769.-3349-71219.77273.-2913.-74358.72969.-15.-7Z953.71743.-1058.-70675.72612.* 684.-73296.36654.-1611.-35044.3231.-69934.9371.-7998.-1372.121687.-1256214.-124120.-S416.124866.-119303.-3361.130131.-124961.S-3170.127574'.-1223333.-4240.123782.-119216.-4556.128111.-124093.-4018.62380'.-37838.-4522.122407..119222.-3184.70 70 10 20 0.0.0.0.0.-318.-318.-293.-691.-691.-684.234.234.222.-474.-474.-471.-448.-448.-43+/-.444.444.428.-10359.-10359.-10353.0..0.0.0.0.0.0.0.-1993.-1993.-994.-4570.-4370.-2269.692.592.545.-1618.-1518._1211.-2856.-2835.-141Z.2837.2857.1424.-33062.-35062.-22942.0.0.0.0.0. 0.0 0.0.0- 0.0-139.-139.-148. -.-345.-345.-342. -14.5 117.117.Il1. 2.0-237.-237.-235. -4.9-224.-224.-215. -9.0 222.222.214. 9.0-3185.-3185.-3182. -107.3 0.0.-0. 0.0 9 LO3P, 130 Cl DN I LS-9 10 LOFtP, ISO Cl UP 1 L3-10 File No.: VY-16Q-307 Page B4 of B39 Revision:

A F03 06-0 IRO NEC041577 VStructural Integrily Associates,'/nc.

D 3 T C 0 K P U T E R 3 E R V I C E 3 5. A&PAGE NO. '2489++ DST/PIPESTRE3S

++ VermonLt Yankee Ve=sion 3.3.1+026 PC-EXE Release: Jun 2004 CALCULATION IV!hfER 3 CODE SECTION III CLA33 I A3SE-1989 REV A89 RVP Vexmont Yan.kee Recizculacion ratigue Analysis sUMmaY.or LOAD SETS AT POINT 500 WELDING TEE 300 TO 502 2007/04/27 17:54:59 12791]-DELTA TI IN DEGEES r PRESSMES IN PSI STRESSES IN P31 GLOBAL MOFMENTS IN rT-Lb LOAD SET-NO.DYNAN. -CYCLES CYCLES PRESSURE MOMENT MOMENT x Y LOAD SET DESCRIPTION 11 LOrWP, ISO Cl DN 2 LS-11 12 L0P'WP, 130 Cl VP 2 L5-12 13 Reduction to 0% PUR LS-13 14 LS-14 20 1i 15 Shut downt Slxutdo~,n2 r Is Code Kydroztest 19 RIM Initiation UP 20 RIM Initiation DN LS-15 LS-16 LS-18 LS-19 LS-20 10 300 300 300 300 200, I 200 300 6005.1010.1010.1010.1010.1010.1010.170.170.170.90.90.90.0.0.0.0.0.0.1563.1563.90.90.115.90.90.115..-62628 m*55173.5453.-476771.104129.13542.-1180135.104548.13467.-56805.54610.12193.-35478.42829.10959.-21736.22322.$414.3882.,-8719.4836.2128.-6434.4326.-41490.29481.12009.13072.-16572.3395.34001.790735.-3907.-73168.78949.-3664.-_7283.50828.-3231.-43476.43986.-6343.-37644.27778.-3238.-22520.9905.-8339.-1366..9293.-7Z42.-2051.20238.-1722.-28516.1245.-2518.1234.MOMENT z 66071.-63193.-28756.131690.-126217.-34'73.131871.-126472.80318.-73932.-6365.66799.-60517.-6282.29919.-24288.--331.3036.999.-4035.3908.-291.-3641.48727:-40734.77992.3381.3530.-8857.0.0.0.974.974..90.0.0.0.-1232.-1352.-1346.0.0.0.0.0.0.0.0.0.0.0.0.0.0.-7682. -20340.-7683. -20240.-7571. -13464.TRANSIENT STRESSES EQ. 10 EQ. 11 EQ. 13 TI 0.0.0.6572.* 5372.2299.0.0.-2415.-2708.-0.0.0.0.0-..0.0.*0.0.0.0.0.0.-25060.-3842.-2842.;-2825. -34.4 0.0.0. .0.0 487.487.483. 20.9 0.0.* -0.- 0.0-676.-676.-673. 8-.8 0.0.0. 0.0 0.0.0. 0.0 0.0.0. 0.0 0.0.0. 13. 0 0.0.-10. -102.1 DELTA K File No.: VY-16Q-307 Revision:

A Page B otf B39 F0306-01RO NEC041578 V Structural Integrity Associates, Inc.D 3 T C 0 II P U T E R 3 E R V1 C E S' S. A.F-4 PAGE NO. 2490 4+~~~ -S/ -IP -T- -S- --Ve-n -ake++ 3T/IPSTR3S++

ezmntYaneeVersion' 2.5.1+025 PC-DEE Release: Jun 2004------------------------------------------------------------------------------------------------------



-- ----CALCULATION NUMBR .2 CODE SECTION III CLASS I ASMW-1989 REV A89 RVP Vermont YanJcee Recirculation Tatigue Alysis 2007/04/27 17:54:59 [27982 DELTA TI IN DEGREES F PRESSURES IN PSI STRESSES IN PSI GLOBAL MOMENTS IN fl-LB 3S1MARY OF LOAD SETS AT POINT .500 =ELDING TEE 500 TO 50Z LOAD SET NO.LOAD SET DESCRIPTION 21 Inadvert.

In'j. D0SAT LS-21 zz Inadvert.

Int. UP LS-ZZ Z2 Single Relief BD DN L3-22 24 Single Relief SD UP L3-24 25 LS-25 25 NORpMAL-ODE LS3-25 DVTAM..CYCLES CYCLES PRESSURE 1. 1010.1010.1010.1 1010.1010.1010.2 200.200.200.2 0.0.0.5 10(1) 1010.1010.1010.5 10(1) i10o.1010.1010.M0OMENT MOMENT x Y-5922. 16289.* -944.* -7725.7866. -8554.-fl8981. 072802.105184.' 079.12797. -74281.-15510. 47582.6542. 089.10138. -48472.-6492. 100o98.199. -2284.6*593. -6714.-195715. 114754.189588. -79258..101296. -1i9916.8oos062 -177104. 79222.-27?ZZ. 119052.7 MOMENT 14834.-8653.-6180.128175.-125212.-2453.84930.-80302.-4427.10860 --6156.,-4694.142459.-124487.-6z514.-124718.118491.59409.TRANSIENT STRESSES DELTA EQ. 10 EQ. 11 EQ.- 13 TI.--32211.-33217.-22208-19603.19803..19797.-4010.-4010.-4002.0.0.*0.0.0.0.0.0.0.-107271.-107371.-52429.114146.114146.'55211.-1072z.-10722.-8477.0.0.0.0.0.0.0.0.0.-15508z-16608.-245.1* 9901.9901.9898. 361.0-2005.-2005.-2001. -28.7 0.0.-0. 0.0 0.0.0. 0.0 0.0.0. 0.0 101 DE IGN'-19450. -2864. -980.--885. 2583. -13841.20245. 181. 14821.188389. .109305. 124089..182295. 79240. 126489.IZ9262. 124484. 60782.104 DYNAMIC FLAG= I SI Cl , X1 .B2 Ct .K2 C3 X24 C2PRIn C4 D I AFTYE MATERIAL E RUN 0.500 i.500 4.000 2.446 2.218 1.000, 1.000 BRA 0.500 1.500 4.000 1.957 "3.218 1.000 1.000 1.000 0.300 1.200 0.?0831E+03 22.644 1.000 0.500 1.200 0.2917ZE+03 19.399 AU.STL.STEEL 0.2830E+08 AU.STL.STEEL 0.2830E+08 File No. VY-16Q-307 Revision:

A Page B6 of 339 F0306-OIRO NE0041579 Structural Integrity Associates, Inc, D 3 T C 0 H P U T E R ER V I C E 3 S. A.F- 4. 1: PAGE NO. 2491++ DST/PIPE3TRESS

++ Vermont Yaniee Version 3.5.i+026 PC-EXE Paleas.u.

J'.n 2004 CALCULATION S13?ER 3 CODE SECTION III CLA3S I ASE-1989 REV A89 RVP Vermont Yankee Recizculavion Fatigue Analysis FATIGUE ANALYSIS AT POINT 500, VELDINS TEE 300 TO 302 INDIVIDUAL STRESS RANGE CIIECK 2007/04/27 17:34:39 [2799]DELTA TI IN DEGrEES F 3TRE33E3 IN P31 ALLOTABLE FOR 3*39 DELTA T1 RANGE LOAD SET SN 3E DELTA T1 PAIR EQN.10 EQN.12 RANGE EON.13 Sp EON. 11 SALT IE EON. 14 21 22 21 21 17 2e0 22 2.1 14 1s 23 16.15 19 23 19 22 19 14 17 21 20 i 18 22 26 26 23 22 22 24 23 21 21 26 22 21 22 22 26 26 23 21.26.24 z21 22 22 70624.b 73897.b 7l887.b 70424 .b 56331.b 55409.b 54940 .b 57738.b 572536.b 56396.b 65683.b 3073s.g 34197.b 46642.g 47807.g 75905 .b i8972.b, 44411.g 54060.b 622333.b 41921.52150.g 51031.g 51396. g 4349 S.g 48364.g 17603.588.*17753.19375.19982.17984.10765.9780.7734.6911.12780.3827.9863.12380.0.12510.6842.$219.9998.1761.'662.2533.191,70.706.1k 361.Ok 343.1k"361.Ok-464. 1k 351.0k 216. 4k 343.1k 336.3k 28.7 351. CL 3 45. lik 3 69.81L 248.0 0.0 113.0* 389.7L 3S$. OL 343.1L 34S.IL 2 42.0.468.3L 251.01L 300372 239122.50793.i 158240.37500.e 146042.37300.e 144378.30601. 2Z02133.29073. 196523.30501. 200741.33912. 173161.34421. 1:14214.'33780. 177622.56653.e 113664.30601. 196356.37309. 179809.29749. 189921.29072. 189023.7M969.e 73903.35315.'e 123731.29210. 186733.33780. .175087.37192.e 111272.179061.3709. 177762.37309. 176644.33780. 17423.21690. 171702.22840. 170882.2.090 2.356 2.228 2.133 1.137 1.108 1.283 1.453 1.211 I.OII 1.835 1.000 1.001 1.000 1.000 1.40 9 1.000 1.033 1.022 1.000 1.000 1.000 1.000 1.000 249893.198175.162715.-134373.120761.Ii1793.111181.1110 81.109152.107588.104263.98268.934104.94961.94512.94246.94201.93367.9+/-148.69531.8832.862z11.83851.83441..ALL 010 CYCLES 112.208.-376.440.934.1233.1239.*1263.1339.1407.1363.2128.2166.2205.2228.2232.2308.2521.2702.2777.2840.3114.3163.3220.32220.52530.52530.32330.53220.53220.53220.30220.33220.32330.33220.33220.33220.33220.32530.32300.33220.33220.53220.33220.33220.53220.33220.33220.233.0 z21.0 251.0 231.0 325.2 323.2 287.0 zS$5.0 255.0 233.0 287 ..0-251.0 297.6 297.6 287.0 325.2 0.0 318.4 233.0 325.2 2831.?Z55$. 0 325.2 287.0 325.2 191.4 157.0 Notes bd,ek: Fails g: Weld 131 h, i: Rupture Location L: Intormabion FileNo.: VY-16Q-307 Revision:

,-A Page B7 of B39 I F0306-01RO NE0041580 Structural Inlegrity Associates, Inc.1S) T C 0 ? P V T E R 3 E R V I C E 3 S.A.F-4.1 PAGE I0; .2492 t+ DST/PIPESTPE3S

++ Yankee cejzion 3.5.1+026 PC-EXE Release: Jun 2004 CALCULATION NSUDER 3 CODE SECTION III CLA3SS ASME-1989 REV A89 RVP Uermnont Yankee Recizcnlation Fatigue Analysis EATIGUE ANALYSIS AT POINT 300, MIXDING TEE 500 TO 302 2007/04/27 17:54:59, [28001 INDIVIDUAL STRESS RANGE CHECK DELTA TI IN DEGPEES r-3TRE33ES IN P3I ALLOW ALLOWABLE FOR CYCLES 3*Sf DELTA T1 RANGE LOAD SET 53 SE DELTA Ti 3P PAIR EQ0.10 EQN.12 RANGE EQN.12 EQN.11 RE 11 14 13 20 18 I 18 is 10 13 17 9 8 9 18 24.2 2 9 2 6 4 22 26 25 23 21 21 22 25 19 21 21 25 19 21 21 20 26 26 ZI.21 21 21 21 21 42548.g 61433 .b 59036.b 33150.b 44222.g 47038.g 39314.414 S7.31787.SZOI0.g 51982.g 56074.b 31285.51079.g 42636.g 26478.53422.b 3827.8.b 31015.g S0970.g 50970.g 39674.50537.503Z2.g 49949.p 49894.g 9472.7977.13932.20121.1613.8132.16670.17792.19478.17418..7352.1$8112.10393.17365.17754.17753.17440.17304.16732.156677.415.4.0.0 0.0 103.1 345. 1.290 .71.251. OL 361.0L 110.0 345.IL 0.0 220.3 354.1L 237 .8L 103.1 0.0 107.3 247. IL 3245.1L 345 .IL 107.3 239. 0L 340 2!.336 .IL 22980.55157.e 58044. e 56315.e 29547.25845.22279.20643.58044. e 20378.38044. e 49123.i 20273.20156.20156.20136.20156.20155.20155.166716.104230.110494.127093.146331.."38200.138242.105800.134720.132322.13 173.5.127787.127547.125951.125385.105880.92142.125627.125125.125124.124996.124811.124675.124103.124048.1.000 1.565 1.412 1.57 1.000 1.000 1.000 1.000 1-.OO0 1.000 1.000 1.225 1.000 1.0000 1.000 1.000 1.184 1.365 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 SALT EQN. 14 83358.81556.78056.*74153.73275.69140.69121.6V900.57350.55256.65867.*5585 5.63893.63823.52481.63293.63246.62876.M 5214.52562.62562.52498.62406.62337.62051.52024.2523.3635.4523.5521.5792.7322.7330.7877.8135.8690.8904.8910.10081.1013S.10404.10555.10593.10900.10952.11168.11168.11224.11205.11365.11623.11548.52220.52530.52530.52530.53220.53220.S3220.52530.60000.53220.52530.25250.53220.*53220.53220.50000.52530.52530.52740.32520.52530.53220.32330.32740.52740.53220.259.4 0.0 0.0 218.4 1657.0 259.4 230.4 251.0 301.7 21S.3 251.0 0.0 261.6 255.0 191.4 301.7 0.0 187.5 Z32.2 251.0 251.0 261.6 231.0 Z52.2 252.2 255.0*1~Notes *b,,e,k: Fail-s g: 'Veld I31 hli: Rupture Location L: Informa ion File No. VY-I6Q-307 Revision:

A Page B8 of B39 F03 06-0 IRO NE0041581 Structural Integrity Associates, Inc.D 3 T C 0H P U T E R 3 E R V I C E 3 S. A.r-4. I PAGE N0. 2493-- -----/ .E.- -. -Ve-.. _. -Ve.io -P. E .E R .lease J-n++ DST/PIPESTRE33

++ -Ahziont; Vankee Vervion 3..5.1+0265 PC-EXE Release: JunL 2004 -CALCULATION ' 3 COND 3VCTION III CLASS I A3MS-1989 REV A89 RVP Vermont Yanrtee.Reeirculation Fatigne Analysis FATIGUE ANALYSI3 AT POINT 500, ELMDING TEE 500 TO 502 INDIVIDUAL STRESS RANGE CIECXK 2007/04/27.

17:54:59 (28011 DELTA TI IN DECGNES F STRES3ES IN PSI LOAD SET SN 3E DELTA TI PAIR QOI.10 EON.12 RANGE 11 20 10 9 19 24 4 9 9 7 3 6 15.12 2 13 8 1,5.16 9 10 26 26 22-24 25 25 22 20 16 22 22 26 22 23 20 21 22 22 22 22 22 185 20 15*19 58829.b 9593.52063.g ZO1Z1.23008.38303.480.61.g 125I0.54795.b 18112.21453t 340971.21206.20690.54159.b 19418.20635.39458.36784.36286.20391.20391.20371.20275.O280.35626.21888., 38757.29949.29145.$4.4 103.1 361.01L 101.3 113.0 2,?5.61 i0.0 401.1 370.01L 367. IL 0.0 365.9L 20.7 103.1 345.-L 361.01L 361.01L 340 .IL 359 .OL 352.OL 8.8 0.0 124.1 98.5-1I.0 SP EON.13 E0N.11 50423.i 88564.56516.e 123996.123719.123625.56516.e 122820.56044.e 106253.* £1958.5.£19532.119420.-117957.£16709.58 044.e 105518.£16122.£15613..£15026.£14734.* 14734.£14714.£14518.*112737.Iii521.111015.110274.SALT IE EONT. 14 ALL0W aLL0OtABE FOR CVCLES 3-3! DELTA TI RANGE 1.400 1.00 1.000 I'-.000 1.000 1.144 1:000 1.0 0oo 1.000 1.000 1.000 1.103 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000O 1.000 1.000 1.00.0 1.000 1.000 62009.61998.61860.61813.61410.50762.59843.59766.59710.58978.58354.58269.58051.57806.75743.57513.57367.57267.57357.57109.57212.56368.55760.55507.55343.55137.11561.11671.11799.11843.12072.13852.13930.14014.14880.15670.15783.16059.16406.15775.16817.17026.17026..17041.17110.17253.18545.19549.19986.20280.20575.52530.52530.53220.53220.52530.52530.52740.53220.53220i 53220.52530.52530.52740.53220.54000.53220.52530.s~sao.$2530.52740.53220.58425.59370.52530.53220.54000.255.5 318.4 215.3 223.5 316.4 0.0 252.2 261.6 234.0 255.0 251.0.0.0 252.2 167 .0 288. ?230.4 251.0 251.0 251.0 252.2 255.0 Zz3.4 240.9 318.4 223.5 288.7 Notes bd,Ick: Fails 0: Veld 131 h,i: Rupvure Location L: rInfommaion File No.: VY-16Q-307 Revision:

A Page B9 ofB39 F0306-0iR0 NEC041582 Structural Integrity Associates, Inc.D S T C 0M P TER S E R VICE 3. A.F-4.1 PAGE N0. 2494++ DST/PIPESTRESS

++ Vermont; Yxa,3e Version 3.5.1+026 PC-EXE Release: Jun 2004-. -. .-. .------. -- ------. .----.. .--...-_ .- -. .--------- -.. ...-. ....-. ...CALCULATION 3 CODE SECTION III CLASS I ASNE-1989 REV A89 RIVP Vetmont Yankee Recizculation Fatigue Analysis FATIGUE ANALYSIS AT P0I1T 500, WELDING TEE 500 TO 302 INDIVIDUAL STRESS RANGE CHECK 2007/04/27 17:54:59 128021 DELTA TI IN DEGPEES r PSI LOAD SET SN SE DELTA TI PAIR EQN. 10 EQN.12

  • RANGE 8 5 12 2: 17 14 14 7 17 14 2 5 3 1B i.I 20 20 20 20 24 20 20 14 20 20 18 18 23 19 19 19 19 19 19 19 19 25 19 ig 25 20 23853. 112.2 35791. 105.2 35745. 103.1 35374. 103.1 27735. 0.0 35750. 97.0 35770. 98.3 30230. 107-3 35415. 88.6 325118. 94.1 25785. 0.0 34940. 0.0 30614. 78.6.27808. 127.6 28170. 111;9 28141. 119.2 27518. 122.0 29147 92.1 28134- 113.0 28134. 113.0 28185. .111.0 51191.g 13932. 0.0 28250. 1.04.0 22893. 113.0*47682.g 9998. 8.8 19734: .103.1 5P EM 3EQN.13 2 1.4 108767.108034.107678.1075678.107358.107354.107229.105891.106555.106502.106419.105912.105746.104145.103655.103575.103250.102932.102893.102892.102709.50044.e 102649.102564.102237.57192.e 96519.96252.SALT;m, Eo. 14 1.000 1.000 1.000 I..000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 54384.54017.53039.S2829.53584.53582.M514.53445.53328.53301.53209.52956.52873.52072.51832.51788.51623.S146&.51445.51446.S1354.51282.51119.48209.48126.ALLOW CYCLES 221523.22935.23320.23321.23653.23557.23818.24201.24472.24535.24750.22534'25656.27505.28257.28381.28836.29290.293,0.29345.29612.29700.29823.30310.40235.41119.ALLOWAMLE FOR 3"5k DELTA TI RANGE 53220.52740.52530.52520.58425.52320.52?40.53220.S2740.53220.60000.33220.33220.52740.52740.52230.56220.52530.S2790.$2530.52220.60000.52530.60000.323.2 320.4 318.4 318.4 223.4 318.4 320.4 191.4 320.4 325.2 301.7 167.0 191.4.320.4 220.4 318.4 325.2 318.4 318.4 318.4 320.4 0.0 322.2 469.0 281.7 469-0 Notes b,de,k: Fails g: W 131 heiý Rupture Location L:

File No.: VY-16Q-307 Revision:

A Page B)10 or B39 Fa306-O1RO NED041583 VStructural lntegrity Associates, Inc.D S T C 0 i P U T E R 3 E R V I C E S 3. A.r-4.1 PAGE NO. 2495++ DST/PIPEZ3T3S

++ errnont Yankee Version 3.5.1+0Z6 PC-EKE Release: Jun 2004 CALCULATION N!iTER 3 COME SECTION III CLA33 1 AS1-1989 REV A89 RVP Vermont Yankee Recirculation ratig'ie Analys is FATIGUE ANALYSIS AT P01ST 500, 1MDING TEE 500 TO 502 INDIVIDUAL STRESS RANGE CHECK.2007/04/27 17:54:39 128061 DELTA TI IN DEGIPEES r STRESSES IN PSI LOAD SET 3N SE DELTA TI PAIR EQN.10 E20T. 12 RANGE 10, 13 23 10 13 4 8 11 4.10 7.3 6 0 1.5 7 3 i2 6 6 12 22 1.4 14 17 17 2I 24 24.17 17 18 24 16 17 17 17 24 16 17 24 24 1'7 24 24 24 24 19 25 27699. 0.0 37645. 20.9 46322.g 6971. 28.7 35312. 0.0 35279. 20.9 36503. 14.6 23782. 9.0 3U470. 54.4 34931. 14.6 32118. 0.0 25029. 9.0 36528. *6.1 36692. 4.9 3539. 9.0 22096. 20.9 35686. 2.0 34659. 9.0 25272. 6.1 355632. 0.0'26621. 0.0 35310. 4.9 35320. 2.0 25265. 35255. 0.0 20730. 167.5 43226.g 7977: 0.0 SP EON.13 EON.11 95526.94702.$6653.e 94303.94139.93335.'91640.90534.90370.90274.8994S.89895.89771.89294" 89263.89153.88602..88523.88405.88090.88089., 87912.87235.86723.86723.86201.55137.e 86123.SALT HE EON. 14 1.000 1.006 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000*1.000 1.000 1.000 1.000 1.000 1.000 1o000 1.000, 1.000 l1OOO 47752.47351.47151.47069.45558.45820.45327.45185.45137.44973.44948.44886.44547.44532.44577.4%301.44253.44202.44045.44045.43956.43518.43352.43101.42051.ALLOM CYCLES 42722.44535.45600.46003.48038.52938.56172.57147.37480.38642.58821.S9269.*A1025.61139.51555.65685.63985.54456.55743.57?41.6 56474.59345.71621.71623.74032.*74403.54000.52530.52530.54000.52530.S2740.53220.54000.32740.54000.53220.52530.52740..52520.52740.53220.:52530.52330.52530..5270O.52740.52520.52730.54000.32530.ALLOWA2LE FOR 2*3S DELTA TI RANGE 0.0 318.4 251.0 0.0 281.7 320 .4 325.2 174.7 282.3 0.0.32$;2 218.4 3z2 .4 287.0 292.2 287.0 281.7 0.0 0.0 Z83.3 283.3 0.0*0.0 498.7 0.0 Notes r,d,e~k: Tails g: tdeld 131 h,i: Ruptuze Location L: IInfoZmation File No.:. VY-16Q-307 Revision:

A Page B31 1ort B.Y9 FO306-OIRO NECO 1584 Structural Integrity Associates, Inc.D 3 T C 0 P U T E R 3 E R V I C E S S. A.F-4. I PAGE NO. 2496++ DST/PIPESTPE3S

++ Vezront Yankee Version 3.5.1+026 PC-EXE Release: Jun 2004--- ---.--. -" --'-- --1 ... -... .... "" -- "" --" -' --CALCULATION EHER 3 CODE SECTION III CLASS I ASKE-1989 REV A89 RUP vermont Yankee Recirculavion Tatigue Analysis FATIG4E ANALYSIS AT POIrT S00, DIELDING TEE 500 TO 502'2007/04/27 17:54:59 (28041 INDIVIDUAL STRE33 RANGE CKECK DELTA TI IN DEGREES r STRESSES IN PSI LOAD SET PAIR 4 16 a 1&7 16 5 16 10 15 5 15 I 23 12 15 2 -16.12 15 10 22.13 23 25 8 I1 S 15 18 25 1 17 IL 17 4 i1 12 I1 2 15'1 24 3 15 SN. SE DELTA TI EON". 10 EQN.12 RANGE 2075.31189.30452.Z1089.2129.31085.27987.24668.25792.25701.22975.4974.g 27101.27023.48168.9 20242.29068.19644.26662.14.6 9.0 9.0 6.1 4.9 0.8 2.0 68.7 0.0 0.0 29.7 8.8 28.7 49.6 0.0 107.3 10.8 0.0 0.0'54.4 S.7 8.8 8.8 0.0* 2.7 SR EQN.13 E0ir.11 86090.85060.84319.84223.83707.83320.8304S.82985.82543.* 82543.8ZS42.80190.80143.79330.19019.49133.i 78618.* 78451.76417.50283.1 16343.* 75285.75115.76045.* 5911.75911.75687.7ss99.SALT ME EON. 14 ALLOW CYCLES 3*SW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000"1.000 1.000 1.000 42045.42530.42159.42111.41852.41650o.41522.41272.412 7 1.41261.42O093.40072.39665.39309.39209.09225.38208.3$171.38142.38058.38023.37956.37955.37044.37799.14558.795M1.83557.84980.86950.e9197.90829.91185.93895.93897.940208.109905.110251.116517.119021.*13249.123767.142694.143447.,144032.1145782.145507.147920.147923.i10307.151264.52740.53220.'325320.'S2?3O.52 740.54000.52740.53220.52530.52530.52530.58425.53Z20.52530.59270.£2530.33220.52740.52530.60000.54000.52740.52530.S2530.58425.52530.ALL 0 oALE R DELTA T1 RANGE 293.8 S 297.5 297.5 292.2 293.8 249.0 293.8 330.4 0.0 0.0 281.7 386.8 21s.53 231.0 0.0 187.5 287.0 283.3 160.2 0.0 498.7 283.3 281.7 281.7 0.0 281.7 10395.19259.Not es b r~~c ails g: Veld 131 h,i: Rupwuze Location L: -Inforiaion File No.: VY-16Q-307.

Revision: ,A Page B12 of B39 F03 06-OIRO NEC041585 Structural Integrity Associates, Inc, D 3 T C 0 P U T Z R ER V I C E 3 S. A.F-4.1 PAGE NO. 2497-----...---- --------" --...--.. ."- ---.. ...-.....----" --- --------. .... ...-++ DSVT/PIPESTRESS

++ Vermont Yair~ee Vezsion 3.5.1+026 PC-EXE Release: Jun 2004~~------------------------------------------------------------------------------

-- ----------------

-- --- ------ --- --- -- -- ---CALCULATION MWThER 3 CODE SECTION III CLASS I REV A89 RUP Vermont Yankee Recirculatiori atigne Analysis FATIGUE ANALYSIS AT POIaT 300, UELDING TEE $00 TO K30S2 INDIVIDUAL STRESS RANGE CHECK 2007/04/21 17:54:59 128052 DELTATI IN DEGREES F STRE33ES IN PSI LOAD SET 3N SE DELTA TI PAIR EQN.10 EqN.12 RANGE 7.le 18 U 11 I 10 3 6 1o 4 13 9 9 4 8 7 3 1i 20 23 i5 24 26 25 14 23 23 23 14 23 23 26 23 23 14 11 16 18 14 14 14 14 26S40.28201.24865.23910.27688.45536.g 44217. -g 2,5962.24781.24738.24738..22261.24425.24307.55236 .b 23718.23678.23256.55256.b.20031.224717.25576.21917.22358.21624.22250.19 3.9'48.7 37.7 0.2 34.4'59. 0.0 S93. .54.4 0.0 30.7 28.7 0.0 22.6 23.8 460. 0.0 14. Z.19.ý7 20.9 44. 20.9 32..9 34.4 107. 3 14.6 9,0 9.0 6.1 SP EQN.13 EQN-I1-1476.75382.73258.74846.S ?4735.74710.50423:i 39242.73345.73223..72719.12718.12422.724906.72288.43013.i 61604.71699.71638.71631.41379. 60834.* 70962.10524.69273.68393.67568.66802.69722.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.172 1.000 1.000 1.000 1.173 1.000 1.000 1.000 1.000 1-000 1.000 3ALT EQN. 14 37728.37691.37629.37423.37368.37353.36971.35672.36359.36339.36216.36203.36144.35090.*33849.33829.33825.33481.34637.24296.33784.33414.I12601. 32740.133628. 34000.133006. 53220.19589. 33220.160973. 54000.16126S. 52530.170336. 32530.178215. 53Z20.179798. 32740.'186687. 32330.186692. 32330.190717. 33220.191103. 52530.192798. 32740.194354. 32330.Z01768. 52740.202483. S3220.20251.3..

5230.207481. 32330.213200. 52220.223695. .34000.250133. 332zo.266042. 52740.292266. 53220.313044. 33220.316184. S2330.283.3 498.7 253.0 287.0 442.8 160.2 0.0 232.2 251.0 231.0 0.0 zs1.0 252.2 0.0 232-.z23.0 251.0 247.1 19S.9 457.3 167.0 252.2 z55.0 255.0 25i.0 ALLOW ALLOWABLE FOR CYCLES 3*3W DELTA TI RANGE I~Notes bd,e,k: Fails:. DMeld 131 h,i: Rupture Location L: Information Fie No.: VY-16Q-3.07 Revision:

A Page 31 3 of 339 FO3O6-OIRO NECG041586 Structural lntegrity Associates, Inc.D 3 T C 0 K P U T E R S E R V I C E 3 3. A.r-4. +/-PAGE NO. 2498++ DST/PIPESTPMSS

++ Vermont Yankee Version 3.5.1+025 PC-EXE Release: Jun 2004 CALCULATIOC WN hER, a COM SECTION III CLA33 1 REV A89 RUP Vermont Yankee Recizcurltion Fatigue Analysi.FATIGmE ANALYSIS AT P01T S00, WELDING TEE 500 TO 502 INDIVIDUAL STRESS RANGE CHECK 2007/04/27 17:54:59 128061 DELTA TI IN.DEG,1MES F STRESS=S IN PSI LOAD SET SN SE PAIR EOt. 10 EQN.12 DI ELTA TI SP RANGE -- EON.13 EQN.11 SALT EI EO1. 14 ALLO ALLOCAM. FOR CYCLES3 2"3* DELTA TI RANGE S S.17 32 2: 9 33 4 8 3 Ii.S.19 4 10 14 14 14 14 13 I1 25 is 25 15 Z6 26 20 18 19 25 13 18 9 I1 11 222277.Z2294.22243.22242.24834.29665.53997 .b 54300.b 34272 .b 19083..54239 .b 54290.b 7698.)23943.54251.b 54251.b 24001.2879g.23976.28046.28657.23872.28709.23419.1021.703.314.590.,228.I: 0.1124.4.9 2.0 0.0 0.0 128.2 20.9 14.-9.0 6.1 45.6 4.9 2.0 216.2.14.6 I16.3.0.0 0.0 54.4 9.0 9.0 75.3 9.0 6.1 109.3 4.9 34.4 66217.55548.65040.6S039.64Z97.53430.41237. 37876.41114. 55713..41031. 55948.61545.41129. 55382.41009. 54747.60644.50375.50220.40892. 5q251.40892. 54251.6009S..41115. 55067.*5987.59300.552Z9.S5807.58193.58027.57729.1.000 1.000 1..000 1.000 1.000 1.000 1.093 1.112 1.111 1.000 1.108 1.112 1.000 1..000 1.000 1.109 1.109 1-ý 000 1.072 1.000 1.000 1.000*1.000 ,1.000 1.000 1.000 33109.32774.32320;'32520.32148.31719.15361.31542.31059.30773.30694.30431.30322.30188.30110.30088.30087.30047.30043.29652.29650.29314.29253..29097.29013.28855.35322*4.370034.370843.398412.433249.440889.493134.528805.539194.575553: 591615.611860.622985.627540.627643.633993.534582.693783.701592.765000.7772 14.809637.827472.860492.52740.52740.52530.52530.52:530.52:530.52520.525$30.525$30.54000.525$30.50000.52740.5322:0.52530.52530 54000.52530.55220.$2750.52220.52530.54000.252.2 252.2 0.0 0.0 187.5 160.2 248.3 Z51.0 247.1 442.8 248.3 248.2 553.4 162.3 191;4 0.0 0.0 219.8 251.0 167.0 255.5 167.0 160.2 188.7 152.3 338.1 Note, b,4,e,k: rail.: eld 131 h,i: Rupture Location L: Information File No.: VY-16Q-307 Revision:

A Page B14 of B39 FO3 06 -0 IRO NEC0 1587 vStructural Integrity Associates, Inc.D S T C 0 P U T E R S E R V I C E 3 S.A.r-4. 1 PAGE N0. 2499++ DST/PIPESTRmss

++ Vermont; Yankee Version 3.5.1+025 PC-EXE Release: Jun 2004 CALCULATION NU!ER 3 CODE SECTION III CLASS I REI A$9 RUP vemnont Yankee Recizculation Fatigue Analysis 2007/04/27' 17:54:S9 (28073 rATIGIE ANALYSIS AT POINT s0ob Vu.DING TEE 500 TO INDIVIDUAL sTRE33 RANGE 'CHECK soz DELTA TI IN DEGPEES F STRESSES IN PSI LOAD SET SN SE DELTA TI PAIR EON.10 EON.12 RANGE 3P SALT EON. 13 E ON. 11 RIE EQN. 14 9 2 3 4 6 L2 2 ii 4 7 19 8 1.IL 2 3 6 4 19 1-9 I0 1 1 12 9 9 18.18 14 9 9 23 11 11 121 11~11*11 22 9 10 18 23 26 25 23821.23821.23508.28705.23388.28651.286SI.18435.22800.22763.18418.2068.23007.22966.22651;22509.21946.21883.11389..20617.25483.19026.39481.39481.1017.3 107.3 101.1 2_0 102.4 0.0 0.0 534.4 92.7 98.3 25.7 63.4 56.4 54.4 54.4 48.3 49 +6 45.4 141.7 167.3 1017.3 0.0 74.4 0.0 0.0 57685.57685.57372.57232.56e26.56825-56822.56664.36627.55273.55206.53190.52690.52590.52376.52234.51671.5i608.49247.48873.48112.47289.45680.44066.44069.1.000 1.000 1.000 1.000 1. 00 1.000 1.000 1.000 1.000 1.0o0 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 28843.28842.208686.28668.Z8413.28413.28 411.28332.28314.26595.2634S.26234.26188.2611.7.25835.25804.24673.24438.24056.23644.22840.22033.22033.ALL0M CVCLES 865493.863334.902088.916602.970164.970210.9-76724.991393.996378.1067090.1072258.1210596.1248401.1248429.127z983.1284333.1310536.1335848.1545981.1393153.1679133.1988641.2314880.2314881.52530.52530.52530.52740.32330.52530.53220.S2740.33220.53220.53220.32740.52330..32330.52740.52740.33220.532ZO.33220.34000.53ZZO.32330.32530.ALLOMDhE FOR ,3*Sn DELTA TI RANGE 187.5 187.5 187.5 162.3 188.:7 160.2 160.2 398.1*1885.191.4 390.1 259.4 Z36.?255.5 255.5 236.7 256.7 Z59.4 S67.5 298.?193.9 174.7 567.5 0.0 0.0 Note. hd'e,k: Fail.g: teld 131 h'i: Ruptuze Location L : 'In or=nabion File No.: VY-16Q-307 Revision:

A Page B15 ofrB39 F0306-OIRO NEC041588 Structural Infegrily Associates, Inc.S 3 T C 0 H P U T E R S E R V I C E S S. A.F-4. I PAGE NO.. 2500++ DST/PIPESTRESS

++ Vesmont Yankee Vezsion 3.5.1+026 PC-EXE Release: Jun 2004 CALCCULATI0N.NIUMER 3 CODE SECTION III CLASS I ASME-1989 RlEV A89 RvP ve',ronot Yankee Recirculation Fatigue Analysis FATIGUE ANALYSIS AT PoINT 500, UELDING TEE 500 TO 5S02 INDIVIDUAL STRESS RANG CHECK-2009/04/27 17:54:59 (2808]DELTA TI IN DEMUMES F STRE33ES IN PSI LOAD SET PAIR 17 19 14 20 19 24 is 20 14 19 15 19.15 20 17 23 23 24 20 24 15 19 17 20 1 18 15 23 10 25 1 13 1 4 10 25 1 8 4 25 1 7*1 3*1 5.7 25 8 25 1 5 SN 8924.13830.7544-8199.5910.3445.11927.199 2.7.18551.4208.4210.3269.9183.14345.24711.20624.19281.22098.19731.22337.18992.19515.1964g.22447.22320.195659.SE DELTA TI EQN.12 RANGE 103.1 113.0 113.0 94.3 28.7 28.7 103.1-1.21.9 103.1 0.0*28.7 0.0 ko0.9 14.5, 20.9 9.0-14.9.0 6'.1 4.9 9.0.9.0 2.0 SP EON.13 EON.11 42558.42655.41289.39118.37871.37190.36908.35829.35453.35127.* 348Z6.34188.32772.31085.30808.27745.27596.* 25735.25215.25985.25877.25278.24855.24133.* 24902.3 ALT RE EQN. 14'1.000 1.000 1.000 1.000 1.000 1.000 1.000-1.00 0 1-.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.21334.213233..20545.19559.18935.18059.18454.18414.17726.17554.17413.17094.18386.1S624.15343.15404.10873..32848.1057.12108.12993.-12938.12689.J1242 7.12351..ALLOW CYCLE3 3079339.3080748.3011976.76885113.9491735.103g9762.10754054.19540418.25510406.33729397.72177469.>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>I00000000000.

>100000000000.

>100000000000.

ALLOWALE FOR 3*SK DELTA Ti RAIGE 50000.53220.58425.59310.53220.59370.58425.53220.53220.58425.5$425.50000.60000.53220.52530.52530.52740.52330.53220.52530.53220.32530.52740.52530.52530.52740.633 .4 567.5 604.7 619.3 567.5 619.3 604.7 557 .5 5357 604.7 604.7 653.4 383.6 544.5 0.0 323.6.325.7 247.1 330.4 248.3 330.4 325.7 231.0 251.0 325.7'I Notes .b,d,e,k: Fails 510-l 131 h,i: Rupture Location L: Inforzabion File No.:-. VY-16Q-307-Revision.

A.Page B16.ofB39 F03.06 -0 IRO NEC0 1589 V Structural Integrity Associates, Inc.1S 3 T C UT RER V I C E 3 3 A.r-4. 1 PAGE IO. +/-501_ --T -.- --- -----.-----Vermont ee .i... -----200+-:DST/PIPESTRX33

++ Vtzm.ont Yankee 'Versilon ,PC-EXE Release: Jun 2004 CALCULATION NUMBER 3 CODE SECTION III CLASS I ASE-1989 REV A89 RVP Vermont Yankee Recizculation ratigue Analysis FATIGUE ANALYSIS AT POIot 300, UELDING TEE 500 TO 502 INDIVIDUAL STRESS RANGE CHECK 2007/04/27 17:54:39 (2809]DELTA TI IN DEGREES F STRESSES IN PSI LOAD SET SN SE DELTA TI PAIR EQN.10 EQN.12 RANGE 1 5 14 3 14 12 14 1.5 10 14 14 4 15 14 8 1 3 S S 12 2 1ý2S 25 24 23 25 25 10 17 24 15 13 10 23 15 13 10 10 10 10 15 13 10 19511.19511.~22311.21507.130 14.8899.21111.21111.S12350.10983.8831.4551.373.5558.5199.3151., 3571.4138.3591.0.0-0.0 4.9 6.1 o0.0 2.0 0.0 19.9 0.0 0.0 0.0 8.8 8.8 0.0 20.9 14.5 28.1 8.8 9.0 9.0 6.1 4.9 8.8 29.9 2.0 S P EQN.13 EON.11 24197.24196.23435.23282.23043.22023.21651 21213.21111.21111.19398.18999.17632.11493.16528.13984.13896.13448.12202.12171.1I1937.11713.10889.10811.10579..10411.SALT ME EQN. 14 1.000 1.000 1.000 1.000 1.000 1.000'i.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.OO0 1.000 12098.12098.11727.11541..1011.10828.1o508..10555.10S$5.9599.9499.8816.8745.8264.6992.6948.6724.5101.5088.5969.38$8.5444.5439.3290.5209.ALLOT#CYCLES>1000,00000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000O.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>1ooooooooodo.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>10000000000.

>100000000000.

>1O00000000OO.

>1O0000000O00.

>100000000000.

>100000000000.

  • ALL roR 2-3S DELTA T1 LANGE$2530.32530.52530.33220.32330.53220.532Z0.32330."54000.38425.38425.52520.52740.33220.38425-52530.53220.32530.32740.33220.52530.52140..0.0 0.0 248.3 247,.1 0.0 248.3 0.0 535.0 0.0 0.0 0.0 504.1 567.7 0.0 21.1.4 212.6 509.0 578.8 248.3 21.5.3 215.3 2 11.4 212.5 535.7 251.0 212.5 Notes b,.d,e,k:

Fails'W' .eld,131 h4i: Ruptuze Location L: Intormion File No.: VY-16Q-307 Revision:

A Page B17 ofB39 F0306-O1RO NECO01590 Structural Integrity Associates, Inc.) 3 T C'0 f P U T E R 3 E R V. IC'E S S. A.r-4.1 PAGE NO. 2502-- -. -"-ST/PPESTS

--........

--- -Version -P Re.e.se Jun24-- .++ DST/PIPESTRESS

++ Vermont Yankee \Version 3.$.1-+026 PC-EXE Release: Jum 2004 CaCIM0on VMMER 3 .CODE 3ECTIONr III CLASS +/- ASE-I989 REV AS8 RVP Vermron Yankee Recirculation Fatigue Analysis, rATIGU- ANALYSIS AT P°0IS 500, rELDING, TEE 500 TO S02 INDIVIDUAL STRESS RANG CmwECK 2007/04/27 17:54:5g 12810]DELTA T1 IN DEGREES F STRESSES IN PSI LOAD SET SN SE DELTA TI PAIR EQN. 10 EQN.12 RANGE Q1 , 3ALT HE EMN.14.ALLES CVCLrS ALLoTiAfE TOR 3*Sn DELTA TI RANGE 10 2 3 4 5 8 12 4 2 2.15 3 4 4$16*15'7 2 3 8 2 12 10 13 13 8 13 13 13 13 8 12 4 17 8 6 7 24 12 7.7 12 a 3582.3583.1644.2138.1919.1670.1219.1018.1018.1636.1759.1712.1712.5555.1244.1398.1345.1026.1048-1591.4185.1572.1572.1148.-1148.-0.0 0.0 27.1 25.8 23.6 11.9 18.9 20.9 20.9 18.0 16.6 14.6 14.6 0.0 15.2 0.g 9.7 5.5 13.9 11.0 0.0 9.0 9.0 2.9 9.0 9.0 gg51.9951., 8918.8880.8211.7269.6817.6616.6616.6457.6096.5591..5591.5555ý5423.5277.5224.4905.4457.9185.2980.3980.3680.3561.3561.1.000 1.000 1.000 1.ooo 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1-.000 1.000 1.000 1.000 1.000 1.000-1.000 1.000 1.000 1.000 1.000 1.000 1.00o 4976.4976.4459.4440.4106.3634.3409.3308.3308.3229.3048.2796.2795.2777.2716.', 2639.2612.2452.230t.2228.2092.1990..1990.1840..1780.1780.>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000-

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100 000 0 00000.>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>.100000000000.

52530.52530.52530.52530.52740.52530.-'52530.52520.52530.53220.52740.52530.52530.59370.52530.52530.52740.52740.$2740..58425.S+/-530.52S30.52530.52530.52530.0.0 0.0 247.1 248.2 252.2 251.0 248.3 247.1 247.1 255.0 249.5 248:3 0.0 251.0 248.3 249.5 2S2.2-+/-52.2 252.2 r0.0 251.0 251.0 2S1.0 251.0 2S1.0 Notes b,4,e~c: rails 9: ETeld 131 bi: Rupture Location L.: Intformation File.No.:

VY-16Q-307 R'evision:

A Page B318 or B33$'F0306.- IRO NEC041591 Structural Integrity Associates, Inc.D S T C 0 K P U T E 3 E R V I C E 3 S. A.rr-. I PAGE No. 2502

++ Vermont 'Yankee Version 3.5.1+026 PC-EXE Release: Jun 2004-. ...............-. --. .- -. .- -. .- -...- -. .- -. .- -. .- -. .-- -.-. .- -. .- -. .- -. .-.-. .- -. .- -. .- -. --CALCULATION NUMBER 3 CODE SECTION III CLASS I ASMW-1989 REV A89 RVP Vermont Yankee Recirculation Tatirue Analysi.rATIGli AT POiNT $00, VELDING TEE 300-TO 302-INDIVIDUAL STRESS RANE CHECK 2001/04/fl 11:54:59 128111 DELTA T1 IN DEGrEES r STRESSE3 IN PSI LOAD SET 52 SE DELTA TI PAIR EQN.10 EQN.12 RANGE S 3-2 3 2 5.2 2 2 11 3 2 I 8 12 12 3 24 12$12 1102.948.659.1178.982.1165.633.1164.522.1289.46 a .462.1.4.1 1.0 8'.2 5.9 1.3 4.9 6.1 4.9 0.0 2.0 2.0 0.0 SP EON_13 EQON. 11-2484.3361.2.29.2503.2308.2208.2308.2308.1389.920.920.1.S ALT HE EON. 14 ALL0V ALLoX0AmmE roR CYCLES 3**3 DELTA T1 RANGE 1.000 1.000 1.000 1.000 1.000 1.000 1.000.. 000 1. 00o 1.000 1.000 1.000 1.000 1742.1880.1414.-1290.IZ51.1154.1154.1154.1154.594.450.450.0.>100000000000.

>1000000.00000.

>100000000000.

>100000000000.

>1O0000OO0000.

>100000000000.

>100000000000-

>100000000000.

>100000000000.

>100000000000:

>100000000000.

>100000000000.

>100000000000.

52140.32140.32530.S3740.S2Z30.S2530.3Z230.32520.352320.32-320.252.2 232 .2 248.2 249.S 248.2 248.3 241 .1 2417.1 0.0 248.3 248.2 0.0 Notes b,d,e,k: g: L: rail.Meld II Rupture Location Information FileNo.: VY-16Q-307"Revision:

A Page B19 oftB39 F0306-OIRO NECO01592 Structural Integrity Associates, Inc.D S T C 0 K P U T E R S.E R V I C E 5 S. A. F-4.2 PAGE I0. 2504++ DST/PiPESTRESs

++ Vernont ?arnee Ucrtion 3.5.1+026 PC-EXE Release: Jun 2004...------" I --. ."- ...-"< ...-, ' ------- --' --' --------"- -- ---..........------ --ChLCULAhTION WJ!Wfl 2 CODE SECTION 111. CLASS 1 AS!TE-i9891 REV AS9 IRU Vezmonv Yantee Recizculation Fatigue Analysis.FATIGIE ANALYSIS AT POIT 500, IMDIJG TEE 500 TO -$02.In DIVIDUAL STRESS RANGE CHECK 2007/04/27 17:54:S9 12812 1 DELTA Ti IN DEGREES F STRESSES IN PSI DDT. RANGE or EVEN T NO. 1 LOPD SET PAI I 3 21 22 23 26 25 25 20 .25-8 .19.9 19 10 20 13 20 4 19 13. 17, 4~ 17 4 24 4 16 8. 15 7 15 S ALT EON. 14 249892.104265.94245..,74152.6389M.V52543.32072.41351.45820.45127.42045.42530.42159.* NI I.0 0 50 2O9 1 0 10 0 Z0 0 200 579 290 22 0 290 12: 12 10 10 0 70 70 70 0CCU'RENCES


NJ I 0 5 3 48 48 0 2 0 0 300 299 299 289 298 278 278 0 289 0 300 278'0 2ý0 300 290 290 220 220 150 USED 1 2 489 2 1 10 20.228 289 22 2'10 70 SETS EL IN MATED VY£NAM.21,22+/-3 26'25 18 10 20 19 13 17 24 4 1-8 NO. CYCLES TO rAILURE 112.1565.2+/-28.3521.8135.10081.10775.19986.44635.52938.52480.24558.83557.USAGE TACT OR 0.0089 0.0012 0.0213 0.0004 0.0001 0.00 10 0.00.12 0.0139 0. 0105 0.0005 0.0053 0. 0000 0. 0001 0.0009 0.0008* File No.: VY-16Q-307 Revision:

A Page B20U ot r.B F0306-OIRO NEC041593 Structural Integrity Associates, Inc.) S T C 0 H1 PU T E R S3 E R V I C E 3 S.A.F-q4.2 PAGE NO. 2505+4 DST/PIPESTRE33

++ Vezmont Tankee Vezsion 3.5.1+025 PC-EXE Release: Jun 2004.....---. .., --.... -.....-_. -.......-. ....-. ., .--CALCULATION NUMBER 3 CODE SECTION III CLASS 1 ASE-198I9 REV A89 RVP Vermont Yankee Recizculation Fatigue Analysis FATiGUE AxwAL1sI AT P01ST 500, UELDING TEE 500 TO -50 INDIVIDUAL STRE3S RANGE CHECK 200"//.04/27 If : 54:59 [128121 DELTA TI "1N DECG1ES r STRESSES IN PSI LOAD SET 2 1 S 2 3 PAIR SALT J ZQN.14 is 42111.15 40095.i5 38208.13 37951.14 33351.11 28245.S 1251.-2 1134.-.--- OCCURENCE


.I NJ 579 10 429 0 120 300 0 180 20 180 0 10 10 I0 0 150 300 150 130 0 429 300 129 0 150 20.130 0 122 20 100 0 130 109 21 0 USED 150 120 20 I0 150 300 20 20 109 SETS EL IN INATED16 12 is 14 11 5 3.NO. CYCLES TO FA LmmE 84080.109905.142594.14-792.316184.1248429.>100000000000.

USAGE REMARKS FACTOR 0.0018 0.0011 -0.0001 0. 0001-0.0010 0. 0009 0.0000 0.o0000 0.0000 0.0"715, TOTAL"USAGE FACTOR =Notes a: Fails 2: Weld ISI j: Rupture Location FileNo.: VY-16Q-307 Revision A Page B21 of B39 F03 06-01RO NEC041594 structural Integrity Associates, Inc.D 3 T C 0 n P U T E 3 E R VIC S.A.F-4 PAGE NO. 2506++ DST/PIPESTRE3S

++ Vermont Yankee Vezsion 3.5.1+026 Release: Jun 2004................ .-. ...--. ....-. ---. ........ -. ...-I- -------------------CALCULATION-1WMBnR 3 CODE. SECTI0NT III CLASS .1 ASI-1989 REV A89 RVP Vermont Yancee Recirculavion Yatig'e Mralysis+/-00?/04/27

.1?:54:39 C28142 DELTA TI IN DEGREES r PRESSURES IN PSI STRESSES IN PSI GLOBAL !0FENTS IN fl-LB SUW(RmY OF LOAD SETS AT POINT 600 TEE .600 TO 602 LOAD SET NtO.LOAD SET DESCRIPTION

-1 Dee ign Nydrotest 2 Startup 3 TRoll £ Inc. PURl 4 TRoll a 'Inc. POWl 5 PURI 6 LOFWI+TT PT)R2 7 Bypi*8 MT- R Byp+/-LS-1 LS-2*LS 3 L8-4 LS -5 LS-7 LS-8 DYNAH.CYCLES CYCLES 120 300.579 579 20 20 70 70 10 wOMENTr wo0rN x PRE S SURE 1100.1100.1100.-1035.1035.1035.1035.1035.1035.1035.1025..1035.1035.1035S 1035.1035.1035.1035.1035.1035.1035.1035.1035.1190.1190.1190.I115.1135.1135.10031.8655.157358.-255228.98869.154580.-251950.97380.148929.,-243050.94121.154656.-253101.98465.1491803.-248245.99062.145570.-240998.-954Z8.149233.-249274.100041.73087.-123336.50249.140550.-238901.98351.-2271.4948..-2677.-33897.58846.-34948.-33053.870527.-04584.-31799.65220.-33421.-31530.66856.-35326.-24857.5 1659.-36802..25318..51299.-34981.-23483.60954.-37411.-15517.32972.-17454.-16757.$4781.-08025.-1241.296.945.-24699.8669.16030.-25032.9V74.9067.15054.-29574.14205.15469.-45+/-82.21078.14204.-07891.23780.14111.-49470.35437.14033.-11119.3928.7191.-52305.49795.12511.TRANS IENT STRESSES EQ. 10 EQ. 11 EQ. 13 TI.ELTA 0.0.0.0.0.024.-376.-351.-862.-827.-811.344.3 44.331.-642.-642.-618.-529.-529.7-513.525.525.509.-12459.-12459.-12454.0.0.0.0.0.0.0.0.0.2-013.-2013.-1077.-4614.-4614.-2464.877.8 877.776.-1934.-1924.-1523.-2883.-2883.-1541.2884.2884.1543.-39387.-39387.-27407.0.0.0.0.0.0. 0.0 0.0.0. 0.0-188.-188.-176. -6.2-413.-413.-405. -14ý-5 172.172.165. 2.3-321.-321.-309. -5.8-265.7260.r257. -9.0 262.262.z55. 9.0-5230.-5230.-6227. -118.05 0.0.0. 0.0 9 LOrF, ISO C1 DN 1- LS-9 10 LOFUP ISO Cl UP I LS-10 20 File No.: VY-16Q-307 Revision:

A Page B22 of 539 F03 06-0 IRO NE0041595 Structural Integrity Associates, Inc.DS3T COBKP U T ERl S E R V IcErs' s.A.r-4 PAGE NO. 2507++ DST/PIPESTRES3

++ Vezront; Yajee Version 2.5.1+026 PC-EXE Release: Jun 2004"~~ ~~~~~ ~~~~~~~~ -- ---- .........-. ....-." "- " ------.. .--" --.. .-...,- -CALCULATION NURhER 3' CODE SECTION III CLASS I ASE-1-989 REV A89 RUP Vezmont Yankee Recirculation ratigue AMalysis sunnaY or LOAD SETS AT POINT 60I 0 WELDING TEE 6oo To 8oz 2007/04V29 17:54:3g C2813)DELTA Ti IN DEGREEs F PRE$S1iE3 IN PSI 3TRESSES IN PSI GLOSAL (o0ENTf IN FT-Ia LOAD SET NO.CYCLES CYCLES PRES3URE WOWENT ROH0NT KOHENT x V Z TRANSI ENT STRE SSES DELTA LOAD SET DESCRIPTION EQ. 10 EQ. 11 EQ. 13 .T1 11 L0FWP, ISO Cl DN 2 LB-1I 12 LOFWP, I30 Cl UP 2 LSI12 13 Reduction to 0% PXP LS-13 14 Shutdounl 15 Shutdomn2 15 shutdoun3 L3-14 LS-15 20 10 300.300 300 300 300 I o00 300 573. 72531., -3595. -41173.673. -129040. 27440. 33212.573. 56409. -21763. 5953.1010. 157282. -33908. -24682.1010. -255066. 8a807. 865.7.1010. 98784. -34900. '16023.1035. 1573765 -33428. -25130.1033. -236579. 50603. 10159.1035.

  • 99204. -35177. 199I2.20-5. 95428. -Z8748. 11240.203. -152141. 45321. -21851.203. 35712. -17795. 10511.11S. 80573. -27720. 18478.Us. -127504. 41438. -27930.U15. 46931. -13738. 9152.25. 48083. -20094. Z0940.23. -77022. 27345. -26924.25. 28939. "7230. 3984.23. 9165. -19279. 50125.25. -3792.. 12804. -S2984.83. -3374. 5416. 2$80.1563. 9452. -15386. 41844.1368. -8189. I2281. -44433.1363. -1274. 4105. 2589.U11S.. 5219.9 -16208. 3234.U1S. -94552. -28016. -10599.US. 42413. -11809. 5345.us. 35878. -12396. -12383.13.. -27112. 6693. 10282.US. -9766. 5703. 2103.-9777.-917i.-9770.0.0.0.1167.1157.1138.0.0.0.-1822.-1822.-1797.0.0.0.0.0.0.0.O.0.0.0.0.0.0.-24311.-2 43U.-19775.0.0.0.£535.337.0.0.-.4193.-4192.-3612.0.0.0.0.0.0.0.0.0.0.33150.0.0.-31121..0.-4888.-4888.-4885. -52.4 0.* 0.0. 0.0* 583.SM8.583.579. 21.0 0.0.0. 0.0-111.* -911.-898. -10.z 0.0.0. 0.0 0.0.0. 0.0 0.-0.0. 0.0 0.0°.0. 0.0.0o -122.4 17 Shutdotwt4 18 Code fydZoteswt 19 MIR Initiation UP LS-17 LS-18 LS-19 20 RIM Initiation DN LS-20 File No.:"VY-16Q-307
  • Revision:

A Page 323 ot B39 F03 06-OIRO NEC041596 U .Structural Integrity Associates, Inc.n 5 T -, C l ?z -zI' I CE s a3.- A.r-4 PAGE I0. 2508-- -------.. .-' -.. .........-- ---" ... --" --. ----. ..-" -...."- -" " -----" -' '- .....-' -. ......- --++ DST/PIPESTPES.

++ Vermont Yankee .Vezsion 3.5.1+026 PC-EXE Release: Jun 2004.... .--.---- ---.--. -. -. -. --. .-.----------------------------


--. ,I- -- -------------

CALCULATION fMlBER 3 CODE SECTION III CLASS I ASHE-1989 REV A89 RVP Vermont Yankee Rectrculation Fatigue Analysis , -

SUMMARY

OF LOAD SETS AT POINT 600 VELDING TEE 600 TO 802 2007/04/27 17:54:59 .[28161 DELTA T1 IN DEGREES r PRESSURE3 IN PSI STRESSES IN PSI GLOBAL KOHENTS In fl-LB LOAD SET NO.LOAD SET- DESCRIPTION 21 Inadvertý Inj. DO0 LS-21 22 Inadvert.

Inj. UP L5-22 23 Single Relief SD DN LS-23 24 S3ingle Relief BD UP L23-4 25 NOPHAL+OBE LS-25 25 NTOPKAL-0BE LS-26 C'YCLES CYCLES PRES33SRE 1 1035.1035.1035.1 1035.1035.1035.2 225..22S.25.25.-1025.1035.5 10(1) 1035.1035.1035.ROMENT HtOREN MOMENT X '2 z TRANSIENT STRESSES , DELTA EQ. 10 EQ. 11 EQ. 13 T1 20590.-29711.9121.149Z29.-249208.100029.95793.-b510 42.552417.11935.-21073.9138.225232.-220402.77973.-205171.183032.-60563.-20629.19085.1542.-Z3774.51159.-37395.-16335.40054.-23719.-11189.11243.-54.-97064.582032.-100749..92522.-58435.95395.45191.-48937.3745.-49498.35449.14049.-25550.17451.9088.22977.-24930.-1952.-152857.183225.85485.1U0375.-182643.-82595.-35892;-35892.-35882.22932.22932.22920.-5501.-S501.-5500.0.0.0.0.0.0.0.0.0.-108351."108651.-57258.115171.115171.-13245.-13245.-11503.0.0.0.-0.S0.-0.0.0.0.-17945.-17946.-17941. -347.2 11466.11465.11460. 352.1-2751.-2751.-2750. -33 .2 0.0.0. 0.0 0.0.0. 0.0 0.0.0. 0.0 101 1iE I GIT 531. 10459. 729481.-9024. -12167. -6354.3694. 1697. 26034.215201. '94793. 16516.201718. 63284. 182939.69318. 98072. 84540.104 DYNAMIC TLAG= 1 B1 Cl K1 B2 Cz 12 C3 193 C3PRIB C4 Z RUN 0.500 I.500 4.000 2.333 2.127 1.000 .1.000 1.000 0.500 1.300 0.76663E+03 BRA 0.500 1.500 4.000 1.867 3.127 1.000 1.000 1.000 0.500 1.300 0.49614E+03 D INM/TT! RATERIAL E 21.164 AU.STL.STEEL 0.2830E+08 19.721 AI.STL.STEEL 0.2830E+08 File No.: VY-16Q-307 Revision:

A Page B24 of B39 F03 06-OIRO NEC041597 Structural Iltegrity Associates, Inc.) 3 T C 0 H P U T E R S E R V I C E S S. A.r-4.1 PAGE N0. 2509 Release: Jun Z004.+- DST/PIPESTRES3

++ Vermont Yankee -CALCULATION NIJBER 3 CODE SECTION III CLASS I ASME-199 REV A89 Vermont Yankee Recirculation Fatigue Analysis FATIGUS ANALYSIS AT P01oT 600, TELDING TEE 600 TO Uerzion.3.S.1+026 PC-EXE RUP 602 2007/04/27 17:54:39 (28171 INDIVIDUAL STRES3 RANGE CHECK DELTA T1 IN DEGREES r STRESSES IN PSI LOAD SET 3N 3E DELTA T1 PAIR EQN.10 EQN.12 RANGE 21 19 22 17 21 20 is 14 21 22 IS 16 21 20 is 22 39 17 21.14 9 U is is 9 U1 22 21 25 22 23 21 24 21 22 22 Z3 22 21 24 22 22 22 22 21 19 21 72$76-b 33641.b 50301.b 55383.b 58332.b 52165.g 56741.b 55902.b 60893.b, 53819.b.55301.]50632.g 59365.], 54810.b 48226.g 46925.g, 47622.g 35314.b 53334.b 42560.g 45995.g 45834.g 47526.g 45693.g 31315.S0440.g 13052.S146.1369.16619.9582.146 30.5243.7833-14618.148s3.11688.14678.4315.8979.3636'.10087.I190.1410.7434.81494.7411.16213.14Z0.8833.709.2k 475.8k 362 .1k 362.1k 314.0k 404.SL 337.0Ok 347.Zk 3417.2h 362.1k 3 47.2k 362. IL 347.2k 224.8 372 .21.393. i.233.3 3 47 .2k 3 47.2Zk 362.1IL 480.7L 42 4. SL 262.11.247.2L 247.2 .284.81.-SP, EM0713 EQN. 11, 32729. 238873.35867. 205360.38882. 152740.30813. 195918.34121. I19663.29387. 219336.33867. 173310.34438. 159183.43362.i 1233632.30813. 194134.3795. 176136.30818& -190987.45362.i 132124.EE.2.294 1.152 1.306 1.148 1.320 1.000 1.221 1.231 I.531 1.130 1.000 1.434 1.100 1.000 1.000 1.0o0 1.018 1.007 1.000..o000 1.000 1.000 1.000 1.000 1.000 SALT EQN. 14 273962.115251.12 000.112457.111993.109665.105763.104099.102291.100720.99358.95493.94713.94224.93378.92741.91833.88790.87713.87662.86271.04075.82454.71798.71392.70171.ALLO0 CYCLES 85U.1021.1122.1211.1228.1319.1491.1374.1670.-1760.1831.2121.*2187.2230.2307.2367.2456.2787.2918.2925.3106.3302.3681.6289.6434.6898.

roR 31*S1 DELTA TI RANGE 33220.$3220.$3220.53220.33220.33220.53220.33220.33220.53220.53220.53220.53220.33220.33220.33220.33220.33220.53220.33220.33220.33220.3320.270.0 340.2 2566.1 340.2 270.0 340.2 302.1 270.0 266.1 302.1 312..6 212.6 266.1 340.2 202.1"Z?O.O 340.2 340.2 302.1 270 .0 218.9 274.3 203.0 203.0 274.S 33867.30298.30391.29387: 37295.37295.27958.23473.23386.23164.29645.26978.1713179.185481.153671.174369.174189.I17324.172343.159730..154908.143595.142783.140242.boe ,a,e,k: Frailv I g: Weld 131 hLi: Rupture Location L: Info rmat i on File No.: VY-16Q-307 Revision:

A Page BZ5 oatB39 F0306-01RO NEC041598 Structural Integrity Associates, Inc.D 3 T C 0 K PU T E R3 S R V I C E S S. A.F-4. I PAGE NO. -2SiO--.-- ------------


------- -- ---- -------- ---- ---.. .....-- .. .. -... --.. .......-++ DST/PIPESTRESS

+4 Vermont Yankee Version 3.5.1+026 PC-EXE Release: Jun 2004-------- -------*.-.--.-----


-------------------------------------------------


CALCULATION IMnER 3 CODE SECTION III CLASS I ASEE-1989 REV A89 RV Vermont Yankee Recirculation Fatigue Analysis 2007/041/27 17:54:59' (2818]FATIGUE ANALYSIS AT POINT 600, UMLDING TEE 600 TO 502 INDIVIDUAL STRESS RANGE CHECK DELTA T1 IN DEGPESS F STRESSES IN PSI LOAD SET SN SE PAIR EQN.10 EQN.12 D ELTA' TI SP RANGE EQN.13 EQN.11 SALT HE EQN. 14 ALL0U ALLOWABLE FOR CYCLES 0*SM DELTA TI RANGE I 18 10 10 18 39.22 7 a 2 3 4 10 9 19 3 12.9 222 19 21 21 21 20 21 21 21 21 21 21*21 21 17 22 24 26 zz 22 22 z2 16 22 38529.29173.S1794.g 52495.g 31S0H.51471.g 26437.45405.g 5O956.g 50871.g S074S.g 5O570.g 500339.g 0S106-.g 49811.g 25-518.39563.2S560.37657.42010.g 445 0.24870.24900.23868.34678.24501.1470-5.15016.13054.7083.14667.14635.14852.14678.14446.14213.9991.062.11.128.6 36e.ZL 247.2L 36Z.IL 356.3)L 122.4 228 .56L 347.2L 349.6L 241.7?L 247.21.341.01.008.2L 002.6L 362 .IL 118.6 076.~71.118.6 128.5 371.IL 368.2L 062. 1L 367.6L 118.6 62.. IL* 10853.21847. 130022.22851. 120016.128745.21526. 126589.126s31.23724. 123575.21560. 124906.21436. 124163._21264. 123504., 21264. 123029.21264. 123098.21264. 122865.21254. 122570.122519.121968.121386.120072.42019. 129971.2119043.* 18745.218330.1.17399.117002.116740.1.000 1.000 1.000 1.000 1.000 1.000 1.000.O000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 lG00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1-000 66922.55538.55011.653008.64373.63295.50256.52788.52453.62082.51752.51665.61549.5143t.61285.60984.M0792.60036.59985.59522.59370.39165.58700.58541.38370.8047.9030.93087.9089.9768.10550.10577.10974.11254.11595.11899.11981.12092.12203.12047.12372.12646.12840.13054.12704.14231.14405.14553.15227.13428.15550.S3220.60000.52530.S3220.52530.53220.32500.$t220.52740.52740.52530.53220.53220.33220.32740.53220.32330.53220.52530.32530.52740.50220.525o0.M5.8 337.8 255.1 241.5 266.1 270.0 307.8 218.9 266.1 267.3 266.1 266.1 270.0 267 .3 241.5 289.1 267-3 Z21.0 320.4 2?0.0 265.1 266.1 267.3 261.5 256.1 Notes B,d,e,k: Fails g: teld IS1 h,i: Rupture Location L: Informaion FileNo.: VY-16Q-307 Revision:

A Page B26 of B39 F0306-O.RO NEC041599 Structural Integrity Associates, Inc.D 3 T C 0 H P U T E R S E R V I C E 3 S. A.r-4. 1 PAGE NO. 2511-.---+- -D" -... ---_-. ...... Version -.. .-.1.. P.- XE -R-l J.n 2004...++ D3T/PIPESTRESS

++ Vexmont Yx~kee Vezzion 3.5.1+.0226 PC-EXE Release: Jun 2:004 CALCULATION 51374EP 3 CODE SECTION Ii'I CLASS 1 "ASIE-1989 REV A89 RVP Vermont Yankee Recirculation Fatigue Analysis FATIGuE ANALYSIS AT PoINT 600, MELDING TEE 600 TO 602 2007/04/27 17:54:59 (2819]DELTA TI IN DER-PEES F, S STRESSES IN PSI INDIVIDUAL S TRESS RANG CHECK LOAD SET 3N 3E .DELTA TI PAIR EQN.10 EQN.12 RANGE 19 22 5 22 1 21 8 22 90 20 9 is0 20 20 25 49 25 13 20 10 20 9 15 18 23 8 20 4 19 5 20 2 20 9 14 3 20.7 19 4 2:0 7 .20 5 19L 24414.24182.39740.22948..35103.38593.28435-34679.30521.30480.31452.27414.25 135.29758.24626.29602.29429.zg545.29752.24406.2344.29449.2 9114.25162.24721.241. IL 359.7L 347.2 353.OL 3.8 122.4 122-4 128.6 143.4 122.4 108.4 23.2 128.5 131.4 143.2 124.7 122.4 118.5 115.2 116.8 137.6 10.2 107.8 113.4 134.1 124.,7?SR E ON. i2 EQN.11 116654.1164221.115594.£11540.131022.110174.109570.108873.107857.107049.105373.105065.104360.104158.104101.104041.103770.103669.103S55.103517.103415.103318.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 3ALT RME EQ 14 58327.56saio.5779.7.5'7594.57151.55762.55820.55511.55087.54785.54436.53928.53525.52587.52533.S2180.52079.-2051.52021.51885 51835.51777.51758.51707.51659.ALLOW C'YCLES 15705.15859.16429.16703..1734t.17927.18049.19448.19980.20.770.21354.22055.23126.24021.26016.26403.27319.27588.27654.27744.281-13.2852:.28412.28463.20604.28740.ALLOWABLE FOR 3*"W DELTA TI RANGE*52530.52740.53220.53220.53220.525$30.5Z530.S4000.53220.52220.54000.532:20.52740.5Z740.52530.532:20.$2530.52740.53220.58425.52740..53220.52740.25230.255.1 2567.3 355.8 270.0 289.1 333.4 303.4 333.4 333.4 314.9 251.0 203.0 314.9 340.2 335.5 335.5 333 .4 218.9 333.4 335.S 340.2 259.5 335.5 340.2 335.5 333.4 Notes bd,eek: Fails g:" Ueld 131 h,i: Rupruze Location L : Infozas ion File No. VY-16Q-307 Revision:

A.Page B37 ot 01Y F03 060 OIRO NEC041600 Structural Integrity Associates, Inc.D 3 T C P U T E R SE V I C E 3 .A.F-4.I PAGE NO. 512 Release: Jun 2004++ DST/PIPESTRE33

++ Vermont Yankee Version 3.5.1+026 PC-EXE CALCULATION DiUMER 3 CODE SECTION III CLASS I ASE-1989 REV A89 RVP Vermont Yankee Recirculation Fatigue knalysis 2007/04/2?

17:54:39 (2820]FATIGUE ANALYSIS AT POINT 600, VELDING TEE 600 TO 602 DELTA T1 IN DEGREES F 3TRE33ES IN PSI IND IVIDUAL STRESS RANG CIMECX................LOAD SET SN 3E DELTA TI PAIR EON.i0 EQN.12 RANGE 9 12 15 8 2 5-17/2.18 17 23 14'15 17 11 24 24 13 10 17 13 3B Z2 20 18 19 19 19 19 19 19 18 19 20 18 25 26 25 25 I$17 117 24 25 30309.+/-9021.28953.25215.+/- 5801.24595.24824.Z0495.+/-4187.+/-5195.+/-5016.50564.g ZZ42+/-.17813.30674.46339.g 43115.g 42723.g 336535 40551.39585.33518.24182.37584.31990.37445-85.4 122.4.0.0 119.5 101.6 128.6 125.2 ,128.6 128.6 0.0*0.0 5866. 33.2* 191.0 0.0 8444. 10.2 11403. 0.0 16263. 0.0 02.4 0.0 0.0.21.0 0.0 0.0 21.0 0.0 SP.EON. 13 EON.11 131551.131594.131555.101440.130550.99957.99434.98255.42024.i 96879.96773.95840..9542.42930.i 9z2z1.42448.i 91211.43448.i 90819.90456.88547.87581.87083.87040.85780.8555s.SALT.ME EQN. 14 ALLOW ALL OWA3LE FOR CYCLES 3*39 DELTA TI RANGE 1;000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000, 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1:000 1.000 51595.513681.51096.-5082S.50797.50777.50720.50275.49978.49717.49128.48440.43387.47920.47571.OZ+/-50.45505.45409.45 +/- +/-8.-44323.43541.43520.42890.42777.42771.28922.29536.30377.31204.31353.31534.32959..03971.34884.37052.39790.40010..42020.43142.50+/-35.54318.56850.53508.67435.70016.76048.17150.1 217.53220.52530.59370.53220.52530.52740.60000.52S30.58425.60000.15230.54000.60000.52220.5+/-530.52530.52530.54000.52530.52530.52530.54000.52530.52530.5250.218.9 341.7+/-77.0 240.2 22S5.S.501.8 341.7 2 .59 331.6 256.1 533.5 501.8 203.0 0.0.0.0 210.7 0.0 0.0 333.4 0.0 0.0+/-96.7 0.0 Notes bd,e,k: Fails g: Meld 131 h,i: Ruptuie Location L: Infozmati6n FileNo.: VY-16Q-307 Revision:

A Page .3Z8 ot B3S F03 06-0IR0 NEC041601 Structural Integrity Associates, Inc,.3 T. ' C P TK E P T E RR V I C S 3 .A.r-i4.1 PAGE NO. 2513++ DST/PIPESTRESS Vermont Varkee Version 3.5.1+o28 PC-EXE Release: Jun 2004....--. ..--- -.-..-.. .....-...-, ...._-_ -.-- --. ..-- -. .-- -. ...- -. ...-. ..-- ----------CALCULATION NUIER .3 CODE SECTION III CLASS 1 A3SI-1989 REV A69 RUP Vermont Yankee Recirculation Fatigue Analysis 2007/04/27 17:54:59 (2821]FATIGJE ANALYSI3 AT POINT 600, TELDING TEE 600 TO I2NDIVIDUAL STRESS RANGE CHECK 802 DELTA TI IN DEGNEES F STRE33ES IN PSI LOAD SET " SN SE DELTA T1 PAIR EON.10 EQN.12' RANGE 10 4.14 8"7 4 6 13 3 10 8.23.3 8.0 2 4 9 2: 12.8 1i.."1.0 24 17 26 17 17 24 17 16 17 25 16 24 23 17 24 24.24 17 24 16 z6 24 17*16 25 is 32281.32360.44624.g 33177.32349.30818.3309 '.28852.32438.35937.29258.31413.35511.30552..30909.32295.3102+/-.27488a 441714.9g 30780.31887 .28246.46529.g 27118.0.0 14.8 6856. 0.0 9.0 9.0 14.5 5.6 21.0 6.2 10.2 0.0 9.0 33.2 2.3 9.0 3.5..6.2 0-0ý14.6 8193. 118.6 0.0 0.0 9.0 7892. 62.4 10.2 58 E0N.13 E£N. 11 85139.84243.40591. 84149.83933.82199.82699.8248S.82217.82171.82139.82116.81868.81826.81222.81l12.80733.80642.80390.79830.79389.36106. 79022.78876.78792.78701..3019. 78207.78061.3ALT RE EQN. 14 ALLO I ALL0WAMLE FOR CYCLE3 3*5W DELTA TI RANGE.1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.-000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 42559.42122.42074.41816..41399.413S0.41242.41109.41086.41059.41058.40934.40913.40"511.40558., 40377, 40321.-40195.39825.39884.39511.39438.29999.39351.39103 .39031.79240.83967.84485.87383.92318.92929.94260.93954.98249.96437.96602.98218.986492.109254.103303.105814.106609.108426.113999.116206.118992.120196.120888.12156W.i258793.127147-.54000.52740.52530.$2220.53220.32940.52740.52330.52530.52330.54000.33220.32330.52740.53220O.: 52740.32530.52330.52330.525330.32530.52530.S4000.0.0 333. 5 0.0 340.2 3 40.2Z 298.3 335.3 307.2 296.9 0.0 302.1 266.1 335.3 302.1 298.3 296.9 0.0 Z98.3 308.9 214.9 0.0 0.0 312.6 2?0.3 275.2 Notes b,d,edt: rails g: .ield 131: Rupoue Location L Inf o znaoi on File No.: VY-16Q-307 Revision:

A Page BS9 at .539 F0306-O1RO NEC041602 Structural Integrity Associates, Inc.D 3 T C UTE R 3 E R V I C 3 S. A.r-4.1 PAGE N0. 2514-. -S -/PI- --T-..... --.. -.---e 0.5. 1+025 P-E-E- Release: -J 2004++ DST/PIPESTRESS

++ Vexinont Vancea Vezo~ion 3.5.1+026 PC-EXE Release: Jun 2004 CALCULATION fMER 0 CODE SECTION III CLASS I A3SS-1989 REV A89 RUP Vermont Yankcee Recirculation Fatigue Analysis 2007/04/27 17:54:59 (28221 TATIGmJ ANALYSI3 AT P0111 600, LULDING TEE 500 TO 602 nwrVnInUAL STRE33 RUfl CHECK DELTA, T1 IN DEGREES F 3TRE3SES IN PSI LOAD SET SN PAIR E1N.10.7 10.5 I2 10 3 U 11, 2 8 9 12 10.1 8 1 1 5 14 5.ii 15 15.20 15 16 24 20 23 16 17 16 20 11 15 24 15 20 15 17 is 13 210 18* 15 27428.Z60965.28204.28169.27371.30072.25410.253088.27708.20356.27405.25901.25225.22706.27027.28222.24000.24519.21004.20724.25191.23175.21820.Z4382.265300.25705.SE DETA TI EON.12 RANGE 9.0 31.2 00.2 5.6 0.0 54.2 00.2 2.3 62.4 0.0 19.2 60.0 56.2 0.0 62.4 10.2 42.3 0.0.0.0 12.5 4.5 0.0 05.5 118.6 52.4 SP 'EQN-13 EQON.11 77878.77747.77745.77S37.77304.77277.7 5874.755331.74472.74Z27.74156.73709.S 0607.721.93.71906.71357.7!44.71230.71220.71192.SALT.REc EON.- 14 1.000 1.000 1.000 1.000 1.000-1.000-1.000 1.000 1.000 1.000 1.000 1.000'1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 08909.38870.M8872.38778.08399.08159.37119 37079.05855.06804.36597.36097.0397.35953.35679.03572.05515.03510.35596.ALLOW CIYCLES 128779.129938.129980.101592.104041.1304294.103040.142204.143500.148317.151997.154080.15591-s.1567887.170670.170494.174801.180212.194140.198273.198410.20787t.208107.210201.2103098.210908.ALLOWABLE FOR 3*53 DELTA TI RANGE 53220.52530.530220.52740.32530.53220.32740.54000.32500.$3220.54000.S3220.54000.38425.S3220.39370.50000.52740.3Z740.52740.S4000.212.5 295.7 355.8 008.9 3007.2 0.0 255.1 241.3 008.9 523.5.0.0 002.1 533.5 220.0 0.0 470.8 410. 9 270.0 0.0 0.0 298.0 298.0 0.0 25.0 Z67.3 200.0 489 .2 Notes bd,e,2: Fails g: Veld 131 hl i: Ruptume Location L: Ingo o ion Fil No.' VY-16Q-307 Revision:

A Page B30 of B39 FOJ 06-0 IRO NECO01603 Structural Integrity Associates, Inc.D 3 T C 0 9 P U T E R S E R V I C E.3 S.A.F-4.1 PAGE NO. 2515--- D -T/P-PEST.ES

---. Ve -r-- -.... -V -rs- ----- -..5.1 +- P&EE -R ele a s J 0 0 4++ DST/PlPE3TR~E3S

++ -Vetmont, Yam',.te Vex sion 3.5.1+026 PC'-EXE Release: J un 2004 CALCUIATION NW.ER 3 CODE SECTION, III CLASS 1 ASME-1989 REV A89 RVP 2007/04/27 17:54:39 (28231 Vermont Yankeei-Recirculation Fatigue Analysis FATIGUE ANALYSIS AT POINT 600, WELDING TEE 600 TO 602 INDIVIDUAL STRE33 RANGE CHECK DELTA TI IN DEGREES F STRESSES IN P31 LOAD 3ET SN -SE DELTA TI PAIR EON. 10 EON. 12 RANGE 2 3 4 7 3 4 1 7 59 12 12 13 9 11 15.15 15 15 2v 23.23 23 24 23 20 15 23 25 14 14 14 25 13 I1 14 14 14 14 13 14 24869.Z4 42.24122.Z4505.24225.23954.2 3417.18508.2328.3327.24451.23818.33420.22411.Z1258.22504.23101.24308.22636.z0113.20231.Z1031.24559.20181.10.2 4.0 4.4 1.2 33.2 27.1 27.7 0.0 24.2 251.0 10.2-33.Z 118.6 0.0 zi.0 0.0 62.4 139.6 52.2 14.6 9.0'9.0 Z.6 03.4 5.2 SP EON.13 EON.11I 71031.70824.70724.10587.*70541.70279..70172.69733.69699.69644.59398.69432.58943.67728.56697.66232.53124.64779.64086.65838.63426.63039.52116.61847.51706.61342.SALT RE EON. 14 ALLOW CYCLESFOR 3*53 DELTA T1 RANGE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000, 1.000 1.000 1.000 1.000 1.000 1.000.1.000 1.000.1.000 1.000 1.000 33523.35362.33344.35270.35140.3S086.34855.34849.34822.34799.34726.34471.33854.33349.33126.32562.32389.3204.31919.31713.31519.31058.30924.30853..30671.213338. 32330 217844. 32330.219772. ,527.40.220491.223367.228602.230791.240023.240753.241945.242938'.246133.257724.287961.216915.330448.367839.380250.405663.416554.433810.450717.494217.5094-59.518407.542245.33220.52530.52530.32740.52740.58425.53220.60000.32330.32530.52530.53220.52530.$3220.52S30.52530.34000.32740.53220.33220.5$240.32530.52330.295.7 296.7 298.3 302.1 266.1 266.1 267.3 267.3 A 0.6 270.0 653.4 305.0 274.3 214.9 0.0 265.1 0.0 270.3 214.9 473.8 267.3 270.0 270.0 267.3 270.5 265.1 I Notes hde,k: Fails g: Weld.ISI hi: Rupture Location L: Inftoznabi6n File No.: VY-16Q-307 Revision:

A Page B31 of B39 F0306-O1RO NEC041604 Structural Integrity Associates, Inc.W D3 T C 0KP UT -R SERVICES , S.A.r-4. I PAGE IT0. 2516i f+ DST/PIPESTRE3S

++ VUermont Yankee Vercion 3.5.1+026 PC-EXE Releace: Jun 2004 I CALCULATION IMER 3 CODE SECTION III CLASS 1 A3HE--1989 REV A89 RUP iezmaont Yankee Recirculation Tnaigne alycie 2007/04/27 17:54:39 (28241]FATIGUIE ANALYSIS AT P011T 600, TELDING TEE 600 TO 502 INDIVIDUAL STRESS RANGE CHECK DELTA TI IN DEC1PEES F STRESSES IN PSI LOAD SET SN. SE DELTA TI PAIR EON.10. EQN.12 RANGE 3 I0.8 a is 32 9 I 3 4 12 19 11.8 6 7 4 18 11.2 4 7 14 11 9 23 14 12 11 9 14 22 14 11 9 9 18 11 26 23 11 11 11 11 20260.23949.22388.24364.20650.22425.23115.22940.22302.19622.1S131.23499.20423.23381.19083.22831.ZZ83O.22289.22205.2.3 62.4 127.7 0.0 0.0.118.6 62.4 120.9 0.0 161.8 62.4 71.3 118.6 113.1 112.4 109.6 104.0 21.0 64.7 0.0 62.4 29.2$6.2 55.9 47.0 SP EQN.12 EQNM1U 50417.50299.S9707.39595.58297.38716: 38143.37956.37887.57366.57462.57421.57215.37163.56645.35614.56144.53710.3$370.33061.S5045.54799.35308.54266.34058.S ALT RE EQNT. 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 20208.30199.30128.29834.29777.29499.29358.29071.28978.28944.28783.28721.28710.28608.28582.28323.28207.28072.27855.27783.27530.2735232.27400.27254.27133.27029.ALLOW CYCLES 608717.610114.521172.563945.679050.729402.735445.814986.823134.842737.87924L.891294.896273.,921045.927466.993787.998143.1014951, 1040958.1049$Z3.1086131.1082474.10984S4.1117704.1124002.1148210.ALLOWAILE rFA 32SH DELTA TI RANGE 32740.54000.32220.32520.32530.32530.54000.52740.52530.53220.53220.32220.32530.32740.32320.32?40.525320.32740.35230.52530.25320.52740.532740.53220.257.2 245.9 218.9 196.2 0.0 214.9 263.5 216.1 0.0 567.3 423.9 274.5 214'.9 216.1 214.9 218.9 216.1* 196.2 271.7*196.2 270.3'423.9 270.5 271.7 Z71.7*274-5b,d,e,k: Tail.: eld 151 h,i: Ruptuze Location L Informavntion

-~ rn-~r~File No. VY-16Q-307 Revision:

A Ptage 155 1 oflB5Y F0306-OIRO NEC041605 Structural:

Integrity Associa tes, Inc.)DB JT C IS Z 3 Mt I C 3 S.-A.r-4. I PAGE NO. 2517+4 DST/PIPESTRES3

++ Vermont Yankee Version 3.5.1+026 PC-EXE Release: Jun 2004 CALCULATION rsyMER 3 CODE SECTION III CLASS I A3SE-I989 REV A89 R1P Vermont Yankee Recuiculation Tatigue Analysis-FAT IGUE ANALYSIS+

AT POIiT 600, MIELDING TEE 600 TO 602 UnDWvID1JAL STRESS RANGE CHECK 2007/04/27 17:54:59 [28253 DELTA T1 IN DEGPEES r STRE33E3 IN PSI LOAD SET SN 3E DELTA T1 PAIR EQN.10 EQN. 12 RANGE 4 8 7 14 9-2 23 20 17 14 4 160 17 8 20 12 18 18 18 9 I1 18 18 10 18 18 26 23 19 20 26 26 24 18 19 z0 26 19 z0 26 24 22976.2268.25120.24214.20418.25049.24451.24698.21202.24594.24212.47516.g 15275.8089.9991.-38452.29014.6213.22910.4891.5289.27229.2298.5166.38096.4672.62.4 14.6 9.0 9.0 118.6 5.6 6.2 0.0 118.6 2.3 0.0 0. 0.0 89.2 128.6 122.4 21.0 0.0 126.6 0.0 128.6 122.4 14.6 128.6 122.4 9 9.0 122.4 SP EQN.12 EQN.11 52462.53298.52623.31811.51631.51484.51+/-21.51032.30849.50270.49455."51510.i 47516.47134.45525.45298.43923.43776.43649.43291.42 227.41696.41116.40724.40573.40436.40079.S ALT KE EQNý. 14 ALLO 11 ALLOABLE -rOR CYCLES 2*"S DELTA T1 RANGE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.090 1.000 1.000 1.000 1.000 1I000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 26722.26649.26311.23903.253816.25742.2S616.25516.234253*24728.22758.23567.22Z762.22699.2.1961.21888.21823.21646.21164.20848.20558.20267.20266.20228.20029.1190516.1202583.1318821.1222850.1246298.1268129.1285626.1401922.1433211.1534917.1748166.1793503.2021537.2058402.2347386.2281263.2636781.2802740.2244128.3276514;3112840.4162277.4270945.3225784.462464S.$2520.52740.52220.52220.33ZZO.32740.32320.32530.52220.32740.32520.32320.53220.60000.32220.32530.3+/-320.38425.34000.32220.59370.32320.39270.60000.32S30.38425.278.8 198.3 203.0 202.0 326.1 198.3 196.2 196.2 222.3 198.2 196.2.0.0 567.5 653.4 567.3 262.1 0.0 604.7 210.7$6?. $619.3 263.3.619.2 653.4 266.1 604.7 Notes b,d,e,k: rails g: Welfl 131 h,i: Rupture Location L:" Infornation File No.:. VY-16Q-307 Revision:

A Page B33 oa B39 F0306-O1RO NECO141606 Structural Integrity Associates, Inc.9 i D/? T CtR'P TMR 3 E R V I C E 3 S. A.F-4. I PAGE NO*. 2518++ DST/PIPESTRESS

++ Vermont Yankee Version 3.5.1+025 PC-EXE Release: Jun 2004 CALCULATION NUMtER 3 CODE SECTION III CLASS 1 REV A89 RUP Vermont Yankee Recirculation Fatigue Analysis FATIGUE ANALYSIS AT PoINT 600, IUELDING TEE 600 TO 602 2007/04/27 17:54:39 (28263 INI1VIDUAL STRESS RANmE CNCK DELTA TI IN DEGREES F STRESSES IN P31 LOAD SET SN PAIR EQN. 10 SE DELTA TI E ON. 12 RANGE SP EON.13 EQN.11 S ALT RE EQN. 14 ALLOW CYCLES.ALL3 OTATI., FOR 3"51! DELTA TI RANGE 7 13 315 6 3 32 13 3.2 1:3 1 12 1 15 1 31 15 13 14 10 1.26 19 26 20 26 26 23 24 18 22 26 rzS 13 23 4 8 25.7 17£5 3 5 37013.3932.38032.27284.37615.9111.37543.37228.19800.17919.10406.14884.24790.24790.15949.11152.15774.15121.15640-15459.12277.15872.16113.16140.14901.15909.9.0 138.8 3.6 6.2 0.0 112.2 2.3 0.0 03.2 33.2 0.0 20.2 0.0 0.0 21.0 23.0 14.6 21.0 9.0 0.0 6.2 5.6 0.0 0.0 2.3* 9557.09430.39324.39021.38410.38076.37228.37058i.33186.32454.32152.27885.27885.25314.24134.22636.21S76.21110.20918.20849.20604.20500.204ZS.19693.19367.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0O0 19820.19727.19662.19511.19403.19205.19008.18614.18534.17593.16227.16076.13942.12757.J2067.*11.328a.10788.10553.10459.10424.10302.10250.10210.9846.9784.3628666.3192972.3765612.0892142.3983639.5626960.4322190.S47?38735.

9814974.242174129.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>1O00000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

>100000000000.

52330.58425.52530.32330.32330.38425.32330.52530.522 0.53220.50000.33220.32330.32530.32330.S3220.52740.33220.32330.33220.33220.32330.-2740.52S30.32330.S2740.265.1 504.7 252.2 0.0 604.7 0.0 557.3 535.7 419.6 544.3 0.0 0.0 049.0 351.1 0 33-8 252.1 233.8* 0.0 2049..0 231.1 0.0 0.0 3!51. I Notes b,d,e,k: Fails g: Meld I31 h,i: Rupture Location L: IntomA, ion File No. VY-16Q-307 Revision:

A Page B34 of B39 F0306-OIRO NEC041607 9 C- Structural

'Integrity Associates, Inc.D 3 T C 0 K P U T E R 3 E R V I C E 3 S.A.F-4. 1 PAGE NO. 2519++ DST/PIPESTPESS 4+ Vermont Yamtkee Version 3.5.1+026 PC-EXE Release: Jun 2004-CALCULATION NU!ThER 3 CODE SECTION III CLASS I ASRE-1989 REV A$9 RVP Vexmont Yankcee Recirculatjion Fatigue Analysis FATIGUE ANALYSIS AT POIT 6500, WELDING TEE 600 TO 602 INDIVIDUAL STRESS RANGE CHECK 2007/04127 17:54:59 C28211 DELTA TI IN DEGCEES F STRESSES IN PSI LOAD SET PAIR 14 24 4 23 1 2 is 17 14 23 7 25, 3 25 a Z5 15 24 1 10 12 23 14 15 6 25 10 13 5 25 225 4 10 IS 16 4 13 14 15 7 10 3 10 7 13 10 12 8 10 6 13 SN EON. 10.10 931.15696.15754.11082.8490.14828.14995.14100.9795.14768.14950-14423.5165.14720.14549.4873.62S4.2 831.4841.3699.4355.2901.4470.3105.3055.SE DELTA T1 EQN.12 RANGE 0.0 14.5 O0;10.2 33.2 9.0 5.2 9.0 10.2 0.0 0.0 0.0 5.5 21.0 2.3 0.0 14.5 10.2 35.5 10.2 9.0 5.2 30.0 0.0 9.0 25.5 SSP EQN.13 EQN.11I 19502.19484.18649.19739.17186.17182.15632.16459.16433.16435.16141.16072.15715.15397.125$3.14549.13422.13011.12087.11498.10813.10755.10725.10423.10227.9827-SALT ME EON. 14 ALLOW FOR CYCLE3 3*SW DELTA T1 RANGE 1.000 1.000 1.000 1.000 i. OOO.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 9751. >100000000000.

9742. >100000000000.

9424. > o00000000000.

8859. >100000000000.

8593. >100000000000; 8591. >100000000000.

8315. >100000000000.

8230. >100000000000.

8226. >100000000000.

8217. >100000000000.

8070. >100000000000.

8036. >100000000000.

7858. >100000000000.

7599. >100000000000.

7627. >100000000000.

7Z74. >100000000000.

6711. >100000000000.

5506. >100000000000.

6044. >100000000000.

5749. >100000000000.

5407. >100000000000.

3378. >100000000000.

S532. >100000000000.

3211. >100000000000.

3114. >100000000000.

4914. >100000000000.

53220.52530.525300.58425..33220.32300.52500.52530.58425.54000.32530.53220.32530.52530.52530.32530.52740: 58425.32330.53220.53220.52530." 52530.53530.53220.52530.0.0 263.3 0.0 504.1 509.0 266.1 262.1 2 .6.1 597.7 o.'o 0.0 0.0 263.3 237.5 263.3 0.0 238.7$78.8 263.3 53S.7 241.5 Z37.5 266.1 0.0 241.5 260.3 Notes bd,el: Fails g: Vel a 131 h,i: Rupture Location L: Information File No.: VY-16Q-307 Revision:

A Page 335 of B39 F03 06-0 IR0 NEC01608 Structural Itegrity Associates, Inc, D S T C 0 n! P U T E R S E R V I C E 3 S. A.F-4. I PAGE N0. 2520++ DST/PIPESTRE33

++ Vernont .Vane Version 3.*S.i+026 PC-EXE Release: Jun 2004 CALCULATION WINDER 3 CODE SECTION III CLASS 1 ASE-1989 REV A89 RVJP Verrhmonm Yankee Recizculation Fatigne Analysis FATIGUE ANALYS13 AT P013T 600, UEUDING TEE 600 TO 602 INDIVIDUAL STRESS RANGE CBE.CK 2007/04/27 17:54:5g9 28281 DELTA TI IN DEGDEES r STRESSES IN PSI LOAD SET PAIR S3N SE DELTA T1 EQ0.10 EQN.12 RANGE 6 4 3 2 15 12 8 4 S 2 3 4 2 10 10 8 13 10 17 12 13 12 13 8 6 12 8 5 24 6 12 12 7 4 4 8 12 7 8 8 2389.4072.3158.1833.4073.5886.1674.2657.2022.1471.2045.*1269.2469.1907.3331.2334.2501.1704.1636.1376.1465.2373.1777.2101.1782.5.6 2.3 23w6 27.2 0.0 0.0 21-0 11.9 14.6 18.7 18.1 21.0 13.2.16.9 0.-a 9.0 9.0 9.0 3.6 14.6 8.4 14.6.5.6 11.4 9.0 6.7 OP E 01. a EQN. 11 9443.9367.9#304.8929.8744.8333.8126.7000.-6940.6759.6738.6466.6227.6188.6121.6051.5'702.3491.5423.3163.3117.4856.4664.4460.4141.SALT RE E201. 14 ALLOM ALLOWAILE FOR CYCLES 3*SN DELTA TI RANGE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 4722. >100000000000.

4683. >100000000000.

4652. >100000000000.

4470. >100000000000.

4418. >100000006000.

4372. >100000000000.

4167. >100000000000.

4063. >100000000000.

3500. >100000000000.

3470. >100000000000.

3379. >100000000000.

3269. >100000000000.

3233. >100000000000.

3114. >ooooooo0oooo.

3094. i.100000000000.

3061. >100000000000.

3025. >100000000000.

.2851. >100000000000.

2746. >100000000000.

2712. >100000000000.

2582. >1O000000o0o0o 2559. >100000000000.

2428. >100000000000.

2332. >10o000000000.

2230. >100000000000.

2071. >100000000000.

52740.52740.52740.52530.32530.59370.S2530.52530.52530.52530.53220.5253o.52530.32740.58425.52740.52530.52530.52740.52530.52530.52740.52530.52740.52530.52740.238.7 238.7 267.3 262.1 0.0 0.0 262.1, 266.1 263.3 263 .3 270.0 262.1 266.1 264.5 0.0 264.5 266.1 266.1 267.3 263.3 263.3 267.3 263.3 267.3 266.1 267 .3 Notes b,d,e,k: Fails g:. Veld, IS h,i: Ruptkre Location* L: Intormabio FileNo.: VY-16Q-307 Revision:

A Page B36 of B39 F03 06-01iRO NEC041609 Structural Infegrity Associates, /c.D 3 T C 0 K P U T£ R 3 E R V I C E 3 S. A- r-4..1 PAGE N70. 2521++ DST/PIPESTrE3S

+4 Vezmont Yankee Version 3.5.1+026 PC-EXE Release: Jun 2004...---_- ......-.- -. ...-- --. ...-- -. ...-- --.-- -------------. .-. -..................- -

1n.1fl, 3 COID SECTION III CLASS I ASHE-1989 REV A89 RAP UezVmont Yankee Recizculation ratvigue Analysis FATIGUE ANALYSiS AT PowlT 600, MELDI'G TEE 600 TO 602 INDIVIDUAL STRESS RANG CHECX 2007/04/Z7 17:54:$9 t28293-< DELTA TI IN DEGPEES F STRE33E3 IN PSI LOAD SET SN SE DELTA TI PAIR EON. 10 EQN.12 RANGE 2 3 S z 3 2 2 25 2 124 6 7 124 6'6 12 3 1168.1549.1025.1919.1248.3442.1929.1976.1051.1092.608.698.9.0 2.9 3.5 0.0 0.6 5.6 8.5 2.3 6.2 0.0 2.3 SP EQN.12 EON-II 4122.3903.3852.2805.* 3589.3442.3300.3268.3221.281S.2275.1599.1231.SALT RIE £01. 14 ALL0W ALL 0OWIAE FOR CVCLES 3'*3j DELTA T1 RANGE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.L.000 2061. >100000000000.

1951. >100000000000.

1926. >100000000000.

1902. >100000000000:

1795.'>100000000000.

1721. >100000000000.

1650. >100000000000.

1634. >100000000000.

1611. >100000000000.

1408. >100000000000.

130. >100000000000.

799. >100000000000.

615. >1000900000000.

52530.52530.5$2530.S2740.32140.58425.52530.52530.52530.52530..52530.-52530.266.1 Z66.1 Z62.1 264.5 267.3 0.0 263.3 Z63.3 263.3 263.3 262.1 0.0 263.3 Notas B,a,e,k: Tails-g: Meld 131 , i: Rupture Location L: Infozmm ion PS I 'Si. [552 File No.: VY-16Q-307 Revision:

A F03 06-0 1RO NEC04l1610 Structural Integrity Associates, Inc.D 3 T C 0 K PU T E R 3 E R V I C E 3 a. A. r-4.z2 PAGE N0. 2522--- --- ------------------------


--- -- ----------


------ -- -- -- ----++ DST/PIPESTRS33

++ Vezrmlont Yankee Vezrion 3.5.1+026 PC-EXE Release: Jun 2004 CALCULATION NMMTER 3 CODE SECTION III CLA33 I AM1-1989 REV A89 RVP 2007/04/2t 17:54:3g [28301 Vetmont Yankee Recitculation Tatigue Analysi,"ATIGUE ANALYSIS AT POEM 600, VEDLING TEE 600 TO 602 DELTA TI IN DEGrEs F INDIVJIDUAL STRESS RANGE CECK STPRESSES IN PSI LOAD SET PAM SALT ------ OCCUIRENCES


-NIE, SETS NO. CYCLES USAGE RPHARKS I J -EON.14 NI NJ USED ELIhINATED TO FAILUIE "ACTOR DYNAN;21 22 2'72962. 1 1 1 21,22 .88. 0.0114 0 .0 9 19 71692. 10 300 10 , 9 6434. 0.0016 0 290 S 19 5538. 1 290 1 18 9030. 0.0001 0 209 19 26 59985. 289. S 3 26 13704. 0.0004 284 0 45 20 25 56762. 000 5 $ 25 17927. 0.0000 295 .0 45'12 20 55511. 300 .295 29S 20 19980. 0.0148 S 0 10 19 53928. 20 284 20 10 23126. 0.0009.-0 264 4 19 $26'87. 579 264 264 19 26015. 0.0101 315 0 1 17 43341. 3 300 3 13 70016. 0.0001 0 29S 4 17 42122. 315 295 293 17 83967. _0.0033 20 0 4 24 41350. 20 2 Z 24 92929. 0.0000* -18 0 ...4 16 39684. 18 300 18 4 '115206. 0.0002 0 282 8 16 39351. 70 282 70 8 121543. 0.0006 0 212 7 15 38939. 70 .212 70 7 128779. 0.0005 0 142 1 23 38872. 10 0 2 2 23 129980. 0.0000 lie 0" FileNo.: VY-16Q-307 Page B38 of B39 Revision:

A F0306-11RO NEGO'41611 Structural lategrily Associates, Inc.D 3 T C 0 K P U T E R 3 E R V I C E 3 3. A.r-4.2 PAGE N0. ++ DST/PIPE3TRESS

++ Vermont Yankee Version 3.5.1+026 PC-EXE Release: Jun 2004 CALCULATION lIThMER 3 CODE SECTIION III CLAS3 1 ASNE-1989 IEV A89 RUP Vezmont Ysnitee Reeircxlation Tatigue Anaysis TATIG.UE ANALYSIS AT POINT 600, VELDING, TEE 600 TO 602 INDIVIDUAL STRE33 RANGE CWECK LOAD I 6 3 1 5 2 3 2 23 SET PAIR 16 15 15 14 11 26 12 3 S ALT EON. 14 38778.30652.36804.35953.35325.30671.27530.23738.1926.1138.IT" 20 0 579 457 118 0 20 0 300 138 457 157 138 118 43 0 157 147 118 OCCURnTCES


NJ 142 Izz 122 0 300 182 162 162 0 300 0 20 0 45 0 10 0 147 29 WIMER USED 20 122 118 20 162 300 20 45 I0-I1a SETS NO. CYCLES ELIIN MATED TO FAILURE 6 131693.1 174801.5 198413.15 210538.14 54224S.Ii 1081519.,26 25 1748766.12 >100000000000.

2 >100000000000.

USAGE FACTOR 0.0002 0.0009 0.0007 0.0001 0.0008 0.0006 0.0000 0.0000 0.0000 0.0000 2007/04/27

?17:4:59 C28311 DELTA TI IN DEGPEEs r STRESSES IN PSI DW,. RANCE OF EVENT NO. I 0.0475 TOTAL U3AGE FACTOR =Notes a: rails f: V~ela IS!j1: Rupvure Location File No.: VY-16Q-307 Revision:

A Page B339oa B39 F0306-01RO NEC041612 Exhibit E Structural Integrity Associates, Inc. File No.: VY-16Q-304 CALCULATION PACKAAGE Project No.: VY-1i6Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 CLIEINT: PLANTr: Entergy Vermont Yankee, LLC Vermont Yankee Nuclear Power Station CALCULATION TITLE: Recirculation Outlet Nozzle Finite Element Model Document Affected Project Manager Preparer(s)

&R so n PAges RevisionDescription Approval Checker(s):

Revision Pages_ _* Signature

& Date Sigaatures

&Date A 1-6, Initial Draft for Review T y J. Herrmann Minghao Qin Appendix:

Ter.. M A1-A20 J .Jennifer .Smith\Page 1 of 1 F0306-01RO.

' NEG041615

,Stmrctural Integrity Associates, Inc.Table of Contents 1'. 0 OBJECTIVE

..... ....... ...............................................

3 2.0 GEOMETRY / MATERIAL PROPERTIES

......................

..............................................

3 3.0 PR O G R A M IN PU T ................

.............................................

.3 4.0 R EFER E N CE S .... ....................................................................

.......................................

4 A P PE N D IX A R O N _V Y .I P .............

...................

............................................................................

1 List of Tables Table 1: Material Properties

@ 300F.. ....................................

....... 5 List of Figures.Figure 1: ANSYS Finite Element Model ...................

... ........................

6 File No. : VY-16Q-304 Revision:

A Page 2 of 2 F0306-OIRO NEC041616 Structural integrity Associates, Inc.1.0 OBJECTIVE The objective ofthis calculation isto create a finite element model of the Vermont Yankee Nuclear Power Station reoirculation outlet nozzle. This model will b6e used to develop a Green' s Function to be used in a subsequent fatigue analysis.2.0 GEOMETRY / MATERIAL PROPERTIES A 2-D axisymmetric finite element model (FEM) of the nozzle was developed with element type PLANE182.

The developed model includes the safe end, the nozzle forging, a portion of the vessel shell, and cladding:

The model used the vessel radius multiplied by a factor 2.0 due to the model being axisymmetric.

The 2-D axisyrnmetric FEM was constructed using the dimensions and information from References

[4 and 5] based on ANSYS [2] finite element software.

Figure 1 shows the resulting finite element model.-The materiafs of the various components of the model are listed below:* Safe End- SA182 F316 [4] (16Cr-12Ni-2Mo).

  • Piping -Assuming SAl 82 F316 (16Cr- I 2Ni-2Mo)* Nozzle Forging -SA508 Class 2 [5] (3/4Ni- 1/2Mo-1I3Cr-V)
  • Vessel 7 8A533 Grade B [6] (Mn- 1/2Mo-1.2Ni)
  • Cladding-SA240 Type 304 [1; Sheet 7] (18Cr-SNi)

Material properties for these materials are based up on the 1998 ASME Code,Section II, Part D, with 2000 Addenda [3] and are shown in Table 1. The properties are taken at an average temperature of 300 0 F. This average temperature is based on a thermal shock of SOOTF to 1 OOF which will be applied to the FEM model for Green's Function development

3.0 PROGRAM

INPUT The input file, RONVY.INP (included in Appendix A), creates the finite element model for the recirculation outlet nozzle.File No. VY-,16Q-304 Page.3 of 3 Revision:

A.F0306-O1RO NEC041617 C Structural Integrity Associates, Inc.

4.0 REFERENCES

1. GE. Stress Report No. 23A4316, Revision 0, "Reactor Vessel Recirculation Outlet Safe End,' SI File No. VY- 16Q-204.2. ANSYS, Release 8.1 (w/Service Pack 1), ANSYS, Inc., June 2004.3. American Society of Mechanical Engieers, Boiler and Pressure Vessel Code,Section II, Part 1998 Edition, 2000 Addenda.4. Hitachi, Ltd. Drawing No IOR290-127, Revision 0, "Recirc. Outlet Safe End;" SI File No. VY-16Q-204.5. Chicago Bridge & Iron Company, Contract No. 9-6201, Drawing No. 21, Revision 4,."36'x28" Nozzles Mk NlAIB," SI File No. VY-16QQ-204.

6 T elecopy from Rico Betti (Yankee Atomic) to Nat Cofie (SI), 08/17/90, SI File No. VY-05Q-216.File No.: VY-16Q-304 Revision:

A Page 4 of 4 F0306-OIRO NEC041618 Structural Integrity Associates, Inc.Table 1: Material Properties

@ 300'F Mtaterial n-1/2Mo- 3/4Ni-12Mo 1 16Cr-12Ni-r1/2Ni 1/3Cr-V 2MW Modulus of Elasticity, e-6 28.0 26.7 27.0 -27.0 psi __Coefficient of Thermal Expansion, e-6, inAn/PF Thermal Conductivity, Btu/hr-ft-OF 23.4 .23.4. 9.8 93 Thermal Diffusiviy, Wt'hr 0.401 0.401 0.160 0.150 Specific Heat, Btu/Ib-0 F 0.119 0.119 0.125 0.127 Density, lb/in 3 0.283 0.283 0.283 0.283 Poisson's Ratio 0.3 0.3 0.3 0.3 Notes: Material Properties are evaluated at 300°F from the 1998 ASME Code,Section II, Part D, with 2000 Addenda, except for density and Poisson's ratio, which are assumed typical values.File No.: VY-16Q-304 Revision:

A Page.5 of 5 F0306-OIRO NEG041619 U Structural Integrity Associates, Inc.Figure 1: ANSYS Finite ElementModel File No.: VY-16Q-304 Revision:

A Page 6 of 6 F0306-OIRO NEC041620 Structural Integrity Associates, Inc.APPENDIX.A RONVY.inp File No.: VY-16Q-304 Revision:

A Page Al .ofAl F0306-OIRO NEC041621 2*Structural integrity Astociates, Inc.finish Icl earstart/prep7/title, Redrc Outld Nozile Finite Element Model/com,PLANE182,2-D Solid et,,PLANE182,,,l

!Axisymmetric Icom, laterial Properties

@T=300F ICOM, Material #1 (Safe-End and Piping) SA-182 F316 (l6Cr-12Ni-2Mo) mp,ex,l ,27E+06 mpAlpx,l,9.8E-06 mpjlcx, 1,9.3/3600112 mp,c, 1,0.127 rnpnuxy, 1,0.3 mp,dens,1,0.283 ICOM, Material #2 (Nozzle Forging) SA-508 Class 2 (3/4Ni-1/2Mo 7 l/3Cr-V)mp,ex,2,26.7E+06 mpalpx,2,7.3E-06 mp,k=x,2,23.4/3600/12 mp,c,2,0.119 mp,nuxy,2,0.3 mp,dens,2,0.283

-/COM, Material #3 (Cladding)

SA-240 Type 304 (18Cr-8Ni) mp,ex,3,27E+06 mp~px,3,9.8E-06 mpkxx,3,9.813600/12 rnp,c,3,0.125 rp,nuxy,3,0.3 mp,dens,3,0.283

/COM, Material #4(Vessel)

SA-533, GR.B (Mo-l/2Mo-l/2Ni) mp,ex,4,28.0E+06 mpalpxj,7.7E-06 mp,c,4,0.119 rnp,nuxy,4,0.3 mp,dens,4,0.283.

  • AFUNDEG/lom, *** Geometric Parameters
        • setvira,4103+3/16)

.!Actual Vessel Inner Radius to* basemetal used for model*setvir,2.0*vira

!2.0 time of Vessel Inner Radius to base metal used fir model*settvw,5+5/8-Ml6

!Vessel Wall Thickness*setril,25.752

  • setrol,28.375/2
  • setJ l,15*seto2,28.375/2 FileNo.: VY-16Q-304 Page AZ of A2 Revision: -A F0306-O1RO NEG041622 Structural Integrity Associates, Inc.*setL2,4.25
  • setio3,28.875/2
  • setto4,48.75/2
  • setL3,1.5-
  • setL4,5.25
  • setJ,5,7+1/16
  • setA.6,12+13/16
  • setL7,9+7/8
  • setJ.,89+3/8.
  • setA9,3l+15/16
  • set.,1O,L9-12-13/16-tvw

'setra,7*setrb,l*setrc,5.

25*set,rd,2.5

  • settv,3/l 6*setdimA,vir-(tv*2.0)+Lg+1 l+Ll IVessel Centerline to End of Safe End used for model*setL2 I,*setL22,4.25
  • setri21(25+15116)/2

/com, Geometry local, 13,0,,dimA....

csys, 13/com, Begin at end of Safe-End -Carbon Section k, 1,i1, -I*(dirrA) k, 2, nl+tv, -l*(dimA)k, 3,rol, 1 *(dimA)k, 4,nil -l*(danoA-Li) k, 5,n ri+tv, -I*(dimA-L1) k, 6, rolI ,4*(dimA-Li) k, 7, ri1, -1 *(dimA-L -L2)k, 8, ril+tv, -*(dimA-LI-L2) k, 9, ro2, -1*(dimA-L1-L2) k, '1, ro3, -l*(dinA-L -L2-L3)'k, 11, ril +tv, -I *(dimA-L 1-L2-L3)k, 12, ro3, -1*(dimA-L1-L2-L3) k, 13, kil, -I*(dimA-LI-L2-L3-L4) k, 14, ril +iv, -I *(dimA -L I -L2-L3-L4) k, 15, ro3, -1I*(dimA-L1 -L2-L3-L4) k,-16, ril, -l*(dirnA-L I-L2-L3-L4-LS) k, 17, ril+iv, -l1*(dinmA -Ll1-L2-L3-L4-L5) k, 18, ro3, I*(dimA-LI-L2-L3-L4-L5) k,19, ro4, -1 *(dimA-L 1 -L2-L3-L4-LS-L7)I Temporary Point 1,19,18 1,18,15 lflllt,1,2,ra k,22, ro4+(LS+6)*tani 5), -1 *(dimA.-L 1 -L2-L3-L4-LS-L7-(LS'+6))

1,19,22 File No.: VY-16Q-304 Page A3 of A3 Revision:

A F0306-OIRO NE0041623 Structural late grity Associates, Inc..LFILLT,1,4yrb k, 25, ri I,-I (dimA-L I -L2-L3-L4-L6) k, 26, ril+tv, -1 4'(dimA-L I -L2-L37IA-L6) k, 27, ri 1+(L I1O+tw+tv+4)*tan(15), .-1*(virtv-4) k, 28, ril +tv+(L 10+tvw+tv+4)*tan(l 5), -1 *(jir-tv-4) k,29, k,30, k31, (vmr+tvw+tv)*sin(45), -1 *(Jir+ttvw+tv)*cos(45) 0,-1*(rir+tvw,-tv)

I TemporaryPoint 0, 0! TemporaryPoint larc,29,30, 3 1 ,vir+tvw+tv k,32, (vir+tv)*sin(45),-

1 *(Qir+tv)*

cos(45)k,33, 0,i-.*(vir+tv)

I Teniporary Point larc,32,33,31 ,vir+tv k,34, vir*sin(45), -l*vir*cos(45) k,35, .0,-1*vir !TemporaryPoint larc,34,35,31 ,vir TLSTR, LSTR, ,LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, LSTR, 4, 5, 6, 9'12, 5, 4, 7, 3, 11, 10,: 13, 14, 16, 17, 26, 25,.4, 1, 2, 3, 5, 7, 8, 12, 11, 13, 14, 5 6.9 12 15.8 7 10 11 14 13 16.17 25 26 28 27 1 2 3 6 2 8 9 11 10 14 15: FLST,2,2,4,ORDE,2..

FITEM,2,4 FITEM,2,6 LPTN,P51X File No.:. VY-16Q-304 Revision:

A Page A4 of A4 F0306-0IRO NE0041624 Structural Integrity Associates, Inc.FLST,2,2,4,ORDE,2 FITEM,2,8 FITEM,2,25 LPTN,P5 IX FLST,2,2,4,ORDE,2 FITEM,2,7 FITEM,2,24 LPTN,PSIXl FLST,2,6,4,ORDE,6 FITEM,2,6 FITEM,2,25 FITEM,2,37 FITEM,2,40 FITEM,2,42 FITEM,2,44 LDDELEP5 IX,, ,I 1*LFILLT,4,1 ,rd,, LFILLT,43,8,rd,,.

1*LFILLT,39,38,rc,, FLST,2,3,4,ORDE,3 FITEM,2,1 FITEM,2,3 FITEM,2,5 LCOMB,PS1X, ,0 LSTP, 16, 17 LSTR, 17, 21 LSTR, 25, 26 LSTR, 26, 24 LSTR, 22, 30 LSTR, 30, 35 LSTR, 27, 28 LSTR,'. 28, 33 LSTR, 29, 32 LSTR, 32, 34 k,39, 0, 4*(vir+tvwvtv)

ICreate Areas FLST,2,4,4 FITEM,2,27 FITEM,2,30 FITEM,2,26 FITEM,2,9-AL,PS1X FLST,2,4,4 FITEM,2,28 FITEM;2,29 File No.: VY-16Q-304 Page A5 of A5 Revision:

A F0306-0IRO NEG041625ý Structural integrity Associates, Inc.FITEM,2, 10 FITEM,2,30 ALP51X FLST,2,4,4 FITEM,2,11 FITEM,2,32 FITEM,2, O FITEM,2,14 AL,P51X FLST,2,4A4 FITEM,2,15 FITEM,2,14 FITEM,2,9 FITETM,2,31 ALP51X FLST,2,4A FITEM,2,32 FITEM,2,33 FITEM,2,12 FITEM,2,17 AL,P51X FLST,2,4,4 FITEM,2,16 FITEM,2,17 FITEM,2,31 FITEM,2,34 AL,P51X FLST,2,4,4 FITEM,2,36 FITEM,2,13 FITEM,2,33 FITEM,2, 8 ALP51X FLST,2,4,4 FITEM,2,19 FITEM,2,18 FITEM,2,35 FITEM,2,34 AL,P5IX FLST,2,4,4 FITEM,2,2 FITEM,2,5 FITEM,2,36 FITEM,2,21 AL,P51X FLST,2,4,4 FITEM,2,20 FITEM,2,21 FITEM,2,3 FITEM,2,35 ALPS1X FLST,2,4,4 FITEM,2,1 FITEM,2,37 FITEM,2,23 File No.: VY-16Q-304 Page A6 of A6 Revision:

A F0306-OIRO NEC041626 Structural integrity Associates, Inc.FITEM,2,5 AL,5 IX FLST,2,4,4 FITEM,2,22 FITEM,2,23 FITEM,2,25.FITEM,2,3 AL,P5IX FLST,2,4,4 FITEM,2,38 FITEM,2,42 FITEM,2,37 FITEM,2,8 AL,P5 IX FLST,2,4,4 FITEM,2,4 FITEM,2,8.

FITEM,2,25 FITEM,2,40 AL,PSIX *FLST,2,4,4 FITEM,2,24 FITEM,2,45 FITEM,2,7 FITEM,2,42 AL,P5IX FLST,2,4,4 FITEM,2,6 FITEM,2,7 FITEM,2,44 FITEM,2,40 AL,PSLX FLST,2,4,4 FITEM,2,41 FITEM,2,43' FITEM,2,47 FITEM,2,44 AL,PSiX FLST,2,4,4 FITEM,2,39 FITEM,2,46 FITEM,2,45 FITEM,2,43 AL,P5lX I define rmterials FLST,5,8,5,ORDE,2 FITEM,5,1 FITEM,5,-8 CM, Y,AREA ASEL,, , ,P51X CMY 1 ,AREA CMSEL,S,_Y CMEL,S,_Y I File No.: VY-16Q-304.

Page A7 of A7 Revision:

A F0306-DIRO NEC041627 Structural Integrity Associates, Inc.AATT, 1,, 1, 0, CMSELS__Y CMDELE_Y CMDELE,_YI 1*FLST,5,5,5,ORDE,5 FITEM,5,9 FITEM,5,11 FITEM,5,13 FITEM,5,15 FITEM,5,18 CM,YAREA ASEL .... P51X CM,_Y1,AREA CMSEL,S,_Y 1*CM EL,S,_Y I AATT,. 2,, 1, 0, .CMSELS_Y CMDELE_Y CMDELE,_Y1 1*FLST,5,5,5,ORDE,5 FITEM,5, 10 FITEM,5,12 FITEM,5,14 FITEM,5,16 FITEM,5,-17 CM,_Y,AREA ASEL,, ,,P51X CM;_Y I,AREA CMSEL,S,_Y 1*CMSEL,S,_Y AATT, 3,, 1, 0, CMSEL,S,_Y CMDELE,_Y CMDELEY1 1*Y/com, Map mesh areas FLST,5,10,4,ORDE,10 FITEM,5,5.

FITEM,5, 10 FITEM,5,28 FITEM,5;32.

FITEM,5,-33 FITEM,5,36 FITEM,5,-37 FITEM,5,42 FITEM,5,45 FITEM,5,-46 CM,_Y,LINE LSEL,,, ,P51X CMYi1,LNE File No.: VY-16Q-304 Page A8 of A8'Revision:

A.F0306-0OIRO NEC041628 (Structural Integrity Associates, Inc.CM _L,,_Y 1*LESIZE YI, ,,15 ..... I 1*FLST,5,10,4,ORDE,1.

FITEM,5,3 FITEM,5,9 FITEM,5,25 FITEM,5,27 FITEM,5,31 FITEM,5,34 FITEM,5,-35 FITEM,5,40 FITEM,5,44 FITEM,5,47 CM,_Y,LINE LSEL, ., ,P51X CM,_Y1,LINE CMSEL,_Y.1*LESIZE,_YI,, ,2 ..... I 1** FLST,5,3,4,ORDE,3 FITEM,5,39 FITEM,5,41 FITEM,5,43 CM,_YLINE LSEL .... P51X, CM,_Y ,LINE CMSEL,-_Y 1*.LESIZE,_Y,, ,80 ..... 1 FLST,5,3,4,ORDE,3 FITEM,5,6 FITEM,5,-7 FITEM,5,24 CM,_Y,LINE LSEL .... P51X CM, Y 1,LINE CMSEL,,_Y LESIZE,_VY

,20 ..... I FLST,5,3,4,ORDE,3.

  • FITEM,5,4 FITEM,5,8 FITEM,5,38 CM,_Y,LINE LSEL .... P51X CM,_Y I ,LINE CMSL,,_YV LESIZEV 40... "I 1*.File No.: VY-16Q-304 Page A9 of A9 Revision:

A F0306-O1RO NEG041629 Structural Integrity Associates, Inc.FLST,5,3,4,ORDE,3 FITEM,5.1 FITEM,5,22 FITEM,5,-23 CM.-YLINE LSEL, ., ,P51X CM,_ Y 1,LINE CMSEL,,_Y 1*LESIZE,Yl

,,30 ..... 1 1*FLST,5,6,4,ORDE,6 FITEM,5,2 FITEM,5,20 FITEM,5,-21 FITEM,5,26 FITEM,5,29 FITEM,5,-30 CM,_ Y,LINE LSEL ... P51X CM,_Y1 LINE CMSEL,,.Y 1*.LESIZE,Y1I,,,40,,,,-,,I 1*FLST,5,94,O, RDE,2 FITEM,5,11 FITEM,5,-19 CM,_Y,LINE LSEL .... P51X CM,_Y 1,LINE CMSEL,,_Y LE SIZE,_Y 1 ,20 ..... I r*!Meshing FLST,5,18,5,ORDE,2 FITEM,5,1 FITEM,5,-

18 CM,_Y,AREA ASEL, ,, .P51X CM,_Y1,AREA CHKMSH,'AREA' CMSEL,S,_Y 1*MSHKEY, 1 AMESHVY MSHKEY.O 1*CMDELE,Y CMDELE, Y1 CMDELE,_Y2 1*FileNo.: VY-16Q-304 PageAl 0 of A10 Revision:

A F0306-OIRO NEG041630 Structural Integrity Associates, Inc.!Modifythe safe end ID FLST,2,6,5,ORDE,2 FITEM,2, 1 FITEM,2,-6 ACLEARP51X FLST,2,6,5,ORDE,2 FITEM,2,1 FITEM,2,-6 ADELEP51X FLST,2,9,4,ORDE,7 FITEM,2,9 FITEM,2,14 FITEM,2,-

17 FITEM,2,26 FITEM,2,-27 FITEM,2,30 FITEM,2,-31 LDELEP5 IX...I FLST,2,3,4,ORDE,3 F ITEM,2, 10 FITEM,2,28 FITEM,2,32 LDELEP5 IX.,,.I FLST,3,2,3,ORDE,2 FITEM,3,3 FITEM,3,6 KGEN,2,PS1X,,,-ro2+fi21

.... 0 FLST,3,1,3,ORDE,I FITEM,3,2 KGEN,2,PS1X,,, ,L22,, ,0 FLST.3,3.3.ORDE.3 FITEM,3,1 FITETM,3,-2 FITEM,3,4 KGEN,2,P51X, ,tv .... 0 FLST,3,2,3,ORDE,2 FITEM,3,10, FITEM,3,-11.KGEN,2,P51X,,, ,-(L3-L2 1), 0 FLST,3,1 3,ORDE,I FITEM,3,23 KGEN,2,P51X,, ,5 .... 0 LSTR, 23, 40 FLST,2,2,4,ORDE,2 FITEM,2,9 FITEM,2,12 LPTNPSIX LDELE, 16..11 FLST,2,4,3 FITEM,2. 11 FITEM,2,23 FITEM,2,4 1 FITEM,2,12 AP51X File No.: VY-16Q-304 PageAl 1 of All Revision:

A F0306-0IRO NEC041631 Structural' Integrityv Associates, Inc.FLST,2,4,3 FITEM,2,23 FITEM,2,8 FITEM,2,9 FITEM,2,4 1 A,P5 IX FLST,2,4,3

  • FITEM,2,8 FITEF-M,2,7 FITEM,2,6 FITEM,2,9 A,P5 IX-FLST,2,4,3 FITE-M,2,7 FITEM.2,5 FITEM,2,3.

F ITEM,2,6 A.P5 lX FLST,2,4,3 FITEM,2, 10 FITEM,2,20 FITEM.2,23 FITEM,2,11 A,P51X FLST,2,4,3 FITEM,2,20 FITEM,2,4 FITEM,2,8 FITEM,2,23 A,P51X FLST,2,4,3 FITEM.2,4 FITEM,2,2 FITEM,2,7 FITEM,2,8*A,P51X FLST 2,4,3 FITEM,2,2 FITEM.,2.1 FITEM,2,-5 FITEM,2,7'~A,P51X FLST,5,8,5,ORDE,4 FITEM,5, 1 FITEM,5,-6 F ITEM,5, 19 FITEM,5,-20 CMY,AREA ASEL.... P51X CM._Y1,AREA CMSELSY CMLSY I CMSEL.SY File No. VY-16Q-3.04 Page Al2 of Al2.Revision:

A F0306-O IRO NEC041632 Structural lategrity Associates, Inc.CMDELE,_Y CMDELE_.Y1 1*FLST,5,4,4,ORDE,4 FITEM,5,15 FITEM,5,-16 FITEM,5,26 FITEM,5,28 CM,_Y,LINE LSEL .... P51X CM,YILINE

-CMSEL,,_Y 1*LESIME,_YI, ...15, ..... I FLST,5,4,4,ORDE,4 FITEM,5,31.

FITEM,5,48 FITEM,5,50 FITEM,5,52 CM,_Y,LINE LSEL .... P51X CM,_YI,LINE CMSEL,_Y 1*LESIZE,YL

.. 2,1,1 1*FLST,5,A,4,ORDE,6 FITEM,5,9 FITEM,5,-10 FITEM,5,12 FITEM,5,14 FITEM,5,30 FITEM,5,32 CM,_Y,LINE LSEL .... P51X CM,_YI,LINE (CMSEL,,_Y 1*LESIME,_Y

... ,6,,,..-,1 1*FLST,5,3,4,ORDE,3 FITEM,5,11 FITEM;5,17 FITEMvI,5,49 CM,Y,LINE LSEL.... ,P51X CM,_Y1,LINE CMSL,,_Y* LESIZ.E I, ,,,12 ..... I.FLST,5,3,4,ORDE,3 FITEM,5,27 FITEM,5,29 FileNo.; VY-16Q-304 PageAl 3 ofAl3 Revision:

A F0306-0 IRO NEC041633

.

Structural Integrity Associates, Inc.FITEM,5,51 CM,_Y,LINE LSEL,. ,,P51X CM,_Y1,LINE CMSEL,,_Y 1*LESIZE,_Yl

,,25 ,,, ,l 1*FLST,5,8,5,ORDE,4 FITEM,5,1' FITEM,5,-6 FITEM,5,19 FITEM,5,-20 CM,_YAREA ASEL, ,, ,P51X CM,_ 1,AREA CHKMSi,'AREA' CMSEL,S,_Y I*MSHKEY, 1 AMESH,_Y1 MSH-KEY,O 1 *CMDELE,_Y CMDELE,Y1 CMDELE,_Y2 1*FLST,2,2,5,ORDE,2 FITEM,2,17 FITEM,2,-18 ACLEAR.P51X csys,0 k, 51,62/2,0,0 k, 52,62/2,60,0.

LSTR, 51 , 52 FLST,2,2,5,ORDE,2 FITEM,2,17 FITEM,2,-18 ADELE,P51X 1plo FLST,2,4,4,ORDE,4 FITEM,2,39 FITEM,2,41 FITEM,2,43 FITEM,2,53 LPTN,P51X FLST,2,2,4,ORDE,2 FITEM,2,60 FITEM,2,-61 LDELE,P5 IX, ,.,1, FLST,2,4,4 FITEM,2,54 FITEM,2,62 File No.: VY-16Q-304 PageAl4 of A14 Revision:

A F0306-0IR0 NEC041634 Structural IntegrityAssociates, Inc.FITENI,2,55 FITEM,2,44 ALP5IX FLST,2,4,4 FITEM,2,55 FITEM,2,63 FITEM,2,58 FITEM,2,45 AL,P51X FLST,2,4,4 FITEM,2,63 FITEM,2,56.

FITEM,2;57 FITEM,2,46 ALP51X FLST,2,4,4 FITEM,2,47 FITEM,2,59 FITEM,2,57 FITEM,2,62 ALP51X CM,_Y,AREA ASEL.... 18 CM,_Y1,AREA CMSEL,S,_Y 1*CMSEL,S,_Y 1 AATT, 2,, 1, 0, CMSEL,S,_Y CMDELE_Y CMDELEY1 1*FLST,5,2,5,ORDE,2 F ITEM,5, 17 FITEM,5,22 CM,_Y,-AREA ASEL,,, ,P51X CM,_Yl,AREA CMSEL,S,_Y 1*CMSEL,SY I AATT, 3,, 1, 0, CMSEL,S,_CMDELE,_Y CMDELE,_Y I 1*CM,_Y,AREA ASEL.... 21 CM,_YI,AREA CMSEL,S,_Y 1*CMSELS,_Y I AATT, 4,, 1, 0, CMSELS,_Y File No. VY-16Q-304 PageAl5 of A15 Revision:

A F0306-OIRO NEC041635 Structural Integrity Associates, Inc.CMDELE,_Y CMDELEVY I*FLST,5,3,4,ORDE,3 FITEM,5,54 FITEM,5,-55 FITEM,5,58 CM,_Y,LINE LSEL .... PS1X CM,_YI ,LINE CMSEL,,-Y I*LESIZEV1,, , 18 ..... 1 I*FLST,5,3,4,ORDE,3 FITEM,5,56 FITEM,5,-57 FITEM,5,59 CM,_Y,LINE LSEL .... PS1X CM_Y I,LINE CMSEL,,_Y 1*LESIZE,_y,1, ,40 ..... I FLST,5,2,5,ORDE,2 FITEM,5, 17 FITEM,5, -18 CM,_Y,AREA ASEL,, , ,P51X CM,_YI,AREA CHKMSH,'AREA' CMSELS,_Y* i MSHKEY,I AMESH,_VYI MSHKEY,O I*CMDELEY CMDELE,_Yi CMDELE,_Y2 It FLST,5,2,5,ORDE,2 FITEM,5,21 FITEM,5,-22 CM,_Y,AREA ASEL,, ,P51X CM,_YIAREA CHKMSH,'AREA' CMSELS,_Y I*MSHKEY,I AMESH,_Yl MSHKEY,O I*FileNo.: VY-16Q-304 PageAl6 ofA16 Revision:

A r F0306-DIRO NEC041636

)Structural Integrity Associates, Inc.CMDELE,_Y CMDELE_Y 1 CMDELE,_Y2 1*!Simulating Butter FLST,2,2,5,ORDE,2 FITEM,2,9 FITEM,2,-10 ACLEARP51X FLST,2,2,5,ORDE,2 FITEM,2,9 FITEM,2,-10 ADELE,P51X KGEN,2,15

,11116,,,O KGEN,2,44,,,,-0.25,, ,0 KGEN,2,14

.... 11/16-1.375*tan(7.5), ,O0 KGEN,2,46,,,, -0.25,, ,0 FLST,2,3,4,ORDE,3 FITEM,2,2 FITEM,2,20 FITEM,2,-21 LDELEP51X LSTR, 21, 44 LSTR, 44,, 45 LSTR, 45, 15 LSTR, 17, 46.LSTR, 46, 47 LSTR, 47, 14 LSTR, 46, 44 LSTR, 45, 47 LSTR, 13, 16 FLST,3,2,3,ORDE,2 FITEM,3,46 FITEM,3,-47 KGEN,2,P51X, ,-0.25 .... 0 LSTR, 48, 46 LSTR, 49, 47 FLST,2;3,4,ORDE,3 FITEM,2,61 FITEM,2,64 FITEM,2,-65 LPTN,P51X FLST,2,2,4,ORDE,2 FITEM,2,70 FITEM,2,-71 LDELEP5 1X,, ,I'FLST,2,4,4.FITEM,2,67 FITEMVI,2,39 FITEM,2,68 FITEM,2,3 ALP51X File No.: VY-16Q-304 PageAl7 of A17 Revision:

A F0306-O1RO NEC041637 Structural Integrity Associates, Inc..FLST,2,4,4 FITEM,2,39 FITEM,2,5 FITEM,2,2 FITEM,2,53 ALP51X FLST,2,4,4 FITEM,2,20 FITEM,2,60 FITEM,2,53 FITEM,2,41 ALP51X FLST,2,4,4 2 FITEM,2,72 FITEM,2,68 FITEM,2,69 FITEM,2,41 ALP51X FLST,2,4,4 FITEM,2,21 FITEM,2,60 FITEM,2,36 FITEM,2,43 AL,P51X FLST,2,4,4 FITEM,2 66 FITEM,2,69 FITEM,2,35 FITEM,2,43 AL,P51X CM,_Y,AREA ASEL,, , 10 CM,_Y1,AREA CMSEL,S,_Y I*CMSEL,S,_Y I AATT, 2,, 1, 0, CMSEL,S,_Y CMDELE,_Y CMDELE;_Y1 1*FLST,5,3,5,ORDE,3 FITEM,5,9 FITEM,5,23 FITEM,5,-24 CM,_Y,AREA ASEL, .... P51X CMYl,AREA CMSEL,S,_Y

  • *CMSEL,S_,Y1 AATT, .3,, 1, 0, CMSELS_Y CMDELE,_Y FileNo.: VY-16Q-304 PageA18 ofA18 Revision, A F0306-01R0 NEC041638 Structural Inteifrity Associates, Inc.CMDELEY1I 1*FLST,5,2,5,ORDE,2 FITEM,5,25 FITEM,5,-26 CM,_YAREA ASEL,,, ,P51X CM,_Y1,AREA CMSEL,S_Y 1*

I AATT, 1,, 1, j0, CMSEL,S,_Y CMDELE,_Y CMDELE,_YI FLST,5,3,4,ORDE,3 FITEM,5,2 FITEM,5,39.FITEM,5,67 CM,_YLINE LSEL .... P51X CM,_Y1,LINE CMSEL,,_Y.*LESIZE,_YI

_ 10 ..... 1 FLST,5,6,4,ORDE,6 FITEM,5,20 FITEM,5,-21 FITEM,5,41 FITEM,5,43 FITEM,5,66 FITEM,5,72 CM,_Y,LINE LSEL .... P51X CM,_Y 1,LINE CMSEL,,_Y LESIZE,Y1, ,,2,,,., ,1 FLST,5,2,5,ORDE,2 FITEM,5,9 FITEM,5,-10 CM,_Y,AREA ASEL .... P5IX CM,_Y 1,AREA .CHKMSH,'AREA' CMSEL,S,_Y MSHKEY, 1 AMESH,_Y1 MSHKEY,0 CMDELE,_Y File No.: VY-16Q-304 Page Al.9 of A19 Revision:

A F0306-0IRO NECO41639 Structural Integrity Associates, Inc.CMDELE,_Y I.CMDELE,_Y2 1*FLST,5,4,5,ORDE,2 FITEM,5,23 FITEM,5,-26 CM,_Y,AREA ASEL, ,, P51X CM,_Y 1,AREA CHKMSH,'AREA' CMSEL,S,_V MSHKEY,1 AMESH,_Yi MSHKEY,O CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 nsve finish File No.: VY-16Q-304 Revision:

A Page A20 of A20 F0306-O IRO NEC041640 Exhibit F Structural Integrity Associates, Inc. File No.: VY-16Q-305 CALCULATION PACKAGE ProjectNo.:

VY-16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394.."PLAkNT:.Entergy Vermont Yankee, LLC Vermnont Yankee NuclIear Power Station CALCULATION TITLE:.Error! Unknown document property name.Document 'Affected Project Manager Preparer(s)

&Revision Pages Revision Description Approval Checker(s), Signature

& Date Signatures

& Date A 1729, Initial Draft for Review Terry J. Hen-mann Jennifer E. Smith Appendix: AI-A2 Minghao Qin Page 1 of Z9 F0306-O1RO NEC041641

/ Structural Integrity Associates, Inc.Table of Contents 1.0 O B JE C T IV E .............................................................................................................

......4 2.0 FEEDWATER NOZZLE MODEL ........................................

4 3.0 A PPLU ED L O A D S ... ...............................................

.................................

...... ..... m .........

4 4.0 THERMAL AND PRESSURE LOAD RESULTS .........................................

............................

7 5.0 R E FE R E N C E S 10................................................................................

.10 APPENDIX A FnIITTE ELEMENT ANALYSIS FIMES ...........

.....................................

I List of Tables Table 1: Material Properties

@ 300oF (1) ....................................................

11 T able 2: Pressure R esults ..........................................................................................................

11 Table 3.: 0% Flow Regions 1 and 3 Heat Transfer Coefficients...............

.........

.. 12 Table 4: 0% Flow Region 5 Heat Transfer Coefficient

................................

13 File No.: VY-16Q-305 Revision:

A Page 2 of 29 F0306-O1RO NEC041642 Structural Integrity Associates, Inc.List of Figures Figure 1: A N SY S Finite Elem ent M odel ..........................................................

1........................

14 Figure 2- Recirculation Outlet Nozzle Internal Pressure Distribution..........................................

15 Figure 3: Recirculation Outlet Nozzle Pressure Cap Load ................................

16 Figure 4: Recirculation Outlet Nozzle Vessel Boundary Conditions

.........................

17 Figure 5.: Nozzle and Vessel Wall Thermal and Heat Transfer Boundaries

...................................

18 Figure 6: Safe End Critical Therm al Stress Location ..................................

.......................................

19 Figure 7 Safe End Lim iting Linearized Stress Paths ..............

......................

...........................

20 Figure 8: Blend Radius Limiting Pressure Stress Location ..1............

....... 21 Figure 9. Blend Radius Linearized Stress Path .22 Figure 10: Safe End 100% Flow Total Stress Intensity

.............

.. ............................

........ 23 Figure 11: Blend Radius 100% Flow Total Stress Intensity

......................................

23 Figure 12: Safe End Total Stress History for 100% Flow .............................................................

24 Figure 13: Safe End Membrane Plus Bending Stress History for 100% Flow ..................................

24 Figure 14: Safe End Total Stress History for 5O0/o Flow .........2....5.......................................................

25'Figure 15: Safe End Membrane Plus Bending Stress History for 500/ Flow .....................................

25 Figure 16: Safe End Total Stress H istory for 0% Flow ........................................................

........ 26 Figure 17: Safe End Membrane Plus Bending Stress History for 0% Flow......................................

26 Figure 18: Blend Radius Total Stress History for 100% Flow ................

27..................................

Z7 Figure 19: Blend(Radius'Membrane Plus Bending Stress History for 100,/a Flow ............................

27 Figure 20: Blend Radius Total Stress History for 500a Flow .............................

28 Figure 21: Blend Radius Membrane Plus Bending Stress History-for 5O/a Flow ..............................

28 Figure 22: Blend Radius Total Stress History for 0% Flow ...........................................

...................

2 Figure 23: Blend Radius Membrane Plus Bending Stress History for 0% Flow ...........................

2 File No. VY-16Q-305 Page 3 of 29 Revision:

A F0306-0iRO NE0041643 Structural Integrity Associates, Inc.1.0 OBJECTIVE The objective of this calculation is to compute the pressure stresses, thermal stresses, and the Green's Functions forhigh, mid, and no flow thermal loading of the Vermont Yankee NuclearPower Station recirculation outlet nozzle.2.0 FEEDWATER NOZZLE MODEL An axisymnnetric finite element model of the recirculation outlet nozzle was developed in Reference[1] using ANSYS [2]. The geometry and model inReference

[ 1] is used in this calculation.

The material properties are taken atah average temperature of 300'F. This average terperature is based on a thermal shock of 5001F to 100"F which will be applied to the FE model for Green's Function development.

Table I listed the material properties at 300TF. The meshed model is shown in Figure-, 21.3.0 APPLIED LOADS Both pressure and thermal loads will be applied to the finite element model.3.1 Pressure Load A uniform pressure of 1000 psi was applied along the inside surface of the recirculation outlet nozzle and the vessel wall. A pressure load of 1000 psi was used because it is easily scaled up or down to-account for diffdrent pressures that occur during transients.

In addition, a cap load was applied to the piping at the end of the nozzle. This cap load was calculated as follows: F= P.where:.P Pressure=1,000psi

,= Inner Radius =12.96875 in R, = Outer Radius =14.18750 in F = Force per length on the end of the nozzle.Therefore, the cap load is 5081.7 psi. The calculated value was given a negative:

sign in order for it to exeit tension on the end of the model. The ANSYS input file VYRON_P.INP, in the computer files, applies the pressure loading to the geometry in file RON VY.INP. Figures 2, 3, and 4 show the internal pressure distribution, cap load, and Symmetry condition applied to the vessel end of the model, respectively.

File No.: VY-16Q-305 Page 4 of 29 Revision:

A F0306-O1RO NECOA 16441 Structural Integrity Associates, Inc.* 3.2 Thermal Load Thermal loads are applied to the recirculation outlet nozzle model. The heat transfer coefficients after power uprate were determined by scaling the values from Reference

[4]. These values were determined for various regions of the finite element model and for 100%/o (28,294 GPM, converted from 12.3 Mlbm/hr [7]), 50'/o (14,147 GPM), and 0% (0 GPM) flow rates. The temperatures used are based upon a thermal shock from 500 0 F to 100F. The calculated heat transfer coefficients for each region are shown below.3.2.1 Heat Transfer Coefficients The heat transfer coefficients for the 100_/oflow and 50% flow cases were calculated from Reference[4] as follows: Where: hDp= the heat transfer coefficient at a Diameter and flow rate h300 = the heat transfer coefficient from Reference

[4] at 300 0 F fDlf= the flow rate corresponding to hDf (fU'sec)Dyx= the diameter corresponding to hDf (in)The heat transfer coefficients for 0% flow were calculated in spreadsheet Ht coeffs, xls.fornatural convection and are shown in Tables 3 and 4.J As shown in Figure 5, the following heat transfer coefficients were applied:-Region 1 The heat transfer coefficient, h, for 1001/a flow is 4789 L .25 =.3577.8, BTU/hr-ft 2-OF at 300F. [4]where 17.364 ft/sec is converted from 28,294 (1PM and 25.8 in ID.The heat transfer coefficient, h, for 50% flow is 4789 , 2054.9 BTU/hr-fr 2-oF at 300F. [44]where 8.865 ft/sec is converted from 14,147 (1PM and 25.8 ID.The heat transfer coefficient, h, for 00/a flow is 112.34 BTU/hr-ef 2-F at 3007F. [Table 3, for natural cony ection]FileNo.a:

VY-16Q-305 Page 5 of 29 Revision: -A F0306-O1RO NEG041645 Structural Iategrity Associates, Inc.Region 2 The heat transfer coefficient for Region 2 should be linearly transitioned from the value of the heat transfer.coefficient used in Region 1,to the value used for Region 3.Region 3 (the pointbetween Region 2 and Region 4)The heat transfer coefficient, h, for 100%/, flow is 4789 (17.364e.

N .02 3361* " ' "

5 =.3 BTU/hr-ft-°F at 30PFY [4]where the flow rate is the same as that for Region 1, and the ID is 35.49 in.The heat transfer coefficient, h, for 50% flow is 4789 (8.682 .4 26 9.25 ) K35.49)BTU/hr--f°OF at 300 0 F. [4]= 1930.9 where the flow rate is the same as that for Region 1, and the ID is 35.49 in.The heat transfer coefficient, h, for 0% flow is 112.34 BTU/hr-t 2-°F at 300F.* using the same HTC as Region 1 [Table 3, fornatural convection]

Region4 -Per Reference

[1], the he heat transfer coefficient forRegion 4 Qhermal sleeve transition in diameter) should be linearly transitioned from the value of the heat transfer coefficient used in Region 3 to the value used in Region 5./, Region 5 The heat transfer coefficient, h, for 100I/o flow is 0. 5 x 3577.8= 1788.9 BTU/hr-ft 2 o-F at 300'F. [4]Theheat transfer coefficient, h, for 50% flow is 0.5 x 2054.9 = 1027.4 BTUi/hr-fi?-oF at 300 0 F. [4]The heat transfer.

coefficient; h, for ON flow is 101 BTU/hr-ft 2-°F at.30CPF.

[Table 4, for natural conv ection] by using 40 in. hydraulic diameter.[4].

File No.: VY-16Q-305 Revision:

A Page 6 of 29 F0306-OIRO.NEC041646 Structural Integrity Associates, -'Inc.Region 6 The heat transfer coefficient, h, is 0.4 BTU/hrt---

2-F [4].3.2.2 y Fluid Temperatures For the Green's Functions, a 500'F -1 00°F thermal shock is run to determine the stress response to a one-degree change in temperature.

The following temperatures are valid when there is water flow. Values between defined points are linearly interpolated.

For the 100%, 5C7/o, and Q°/o flowýcases, the thermal shock is run'as follows: Regions I to 5 T = 500'F -100 0 F Region 6 T = 1 20F 4.0 THERMAL AND PRESSURE LOAD RESULTS The three flow dependent thermal load cases outlined in Section 3.0 were run on the finite element model. Appendix A contains the thermal transient input files VY RON_T_100.INP, VY RON T 50.INP, and VYRONT_0.IrP for 100%, 50o, and 0% flow rates, respectively.

The threeflow dependent input files for the stress runs are also included in Appendix A. The stress filenames areVY RON S 100.1-NP, VY RON S 50.INP, and VY_,RON_S_0.INP for 100%, 50%, and 0/% flow rates, respectively.

The critical safe end location was chosen as node 6395, which has the highest stress intensity due to thermal loading under high flow conditions.

As shown in Figures 6 and 7, Node 6395 is located on the inside diameter of the nozzle safe end of the model and the maximum stress occurs at 5.1 seconds.The criticalblend radius location was chosen, based upon the highest pressure stress. Assumed the cladding has cracked, therefore, as shown in Figures 8 and 9, the critical location is selected as node 3829 at base metal of the nozzle.The stress intensity for use in the Green's functions are calculated from the component stresses (X, Y, and Z) and compared to the stress intensity reported by ANSYS. As seen in Figure 10, the Y-X calculated total stress intensity best matches the ANSYS reported stress intensity for 100,/o flow at the' safe end. Therefore,.the Y-X stress will be used for the total and membrane plus bending Green' s functions for all flow rates for the safe end. As seen in Figure 11, the Z-X calculated total stress intensity best matches the ANSYS reported stress intensity for 100% flow at the blend radius in very beginning.

Therefore, the Z-X stress will be used for the total and membrane plus bending Green' s functions for all flow rates for the blend radius.File No.: VY-16Q-305 Page 7 of 29 Revision:

A F0306-OIRO NEC041647 Structural Integrity Associates, Inc.The stress time history for the critical paths was extracted during the stress run for 100%flow rate.This produced two files, HIFSE.OUT and I-IFBR.OUT, which contain the thermal stresý history. The membrane plus bending stresses and total stresses for the Green's Functions were extracted from these files to produce the files HFSEInsideRED and =BR_InsideRED, where SE and BR corresponded to the safe end and blend radius locations, respectively.

The total stress intensity (SI)were extracted from these files to produce the files BFSE. CLD and HFBR.CLD where SE and BR'corresponded to the safe end and the blend radius, respectively.

The stress time history for the critical paths was extracted during the stress run for 50%/o flow rate.This produced two files, MFSE.OUT and MBR.OUT which contains the thermal stress history.The membrane plus bending stresses and total stresses for the Green's Functions were extracted from the file to produce the file MFSEInside.RED, where SE corresponds to the safe end location.The stress time history for the critical paths was Extracted during the stress run for 01/o flow rate.This produced two files, LFSEOUT and LFBR. OUt which contain the thermal stress history. The membrane plus bending stresses and total stresses for the Green's Functions were extracted from the file to produce the file LFSE.Inside.RED, where SE corresponds to the safe End location.The governing Green's Functions for the recirculation outlet nozzle during 100% flow, 50% flow, and 0% flow are shown in Figures 12 to 23. The data for the Green's Functions is included in the files IHFBRM+B-Green.xls, BFBR_T-Green.xls, MESSM+B-Green.xls, HFSET-GGreen.xls, M-ER M+B-Green.xls, MFBR T Green.xls, MFSEM+B-Green.xls, MFSET-Green xls, LFBR M+B-C-reen.xls, LFBRT-Green.xls, LFSEM+B-Greenxls, and LFSET-Green.xls in the.projectFiles.

Where BF, MF, andLF corresponded to 100% flow, 50/o flow, and 0% flow rate, respectively.

M+B and T corresponded to membrane plus bending stress and total stress, respectively.

The pressure stress intensities for the path were extracted during the pressure run. The pressure stresses were extracted along the nodal path as shown in Figures 7 and 9. This produced two files, PSE.OUT and PBR.OUT for the safe end and blend radius locations, respectively.

Forthe pressure loading specified (1000 psig), the total stress intensities at Node 6395 and Node 3829 were determined to be 11490 psi and 31300 psi, respectively.

The membrane plus bending stress intensities at Node 6395 and Node 3829 were determined to be 1350 psi and 33640 psi, respectively.

Table 3 shows the final pressure results.Results were also extracted from the vessel portion of the model to verify the accuracy of the results obtained from the ANSYS model. These results are contained in the file PVESS.OUT.

The radius of the finite element model (FEM) was multiplied by a factor of 2.0 [1] to account for the fact that the vessel pprtion of the 2D model is a sphere but the true geometry is a cylinder.

The equation for the membrane hoop stress for a sphere is o-= SL2xt rik ) and the equation for the 2 2xthickness membrane hoop stress in a cylinder is a ((press )(rThks) The memban hoop stress File No.l: VY-16Q-305 Page 8 of 29 Revision:

A F0306-)IRO NEC041648 V Structural Integrity Associates, Inc.from the ANSYS result is 19530. Based on the above equation for a cylinder, the vessel base metal radius of 105.925 inches, vessel base metal thickness of 5.474 inches, and applied pressure of 1000 psi, the calculated stress for the actual cylinderwould be 19351 psi. The results from ANSYS are very close to the calculated values. Therefore the ANSYS values do not need to be scaled to give reasonable values. The pressure output values from ANSYS are given in Table 2.FileNo.: VY-16Q-305 Revision:

A Page 9 of 29 F0306-OIRO NEC041649 Structural Integrity Associates, Inc.

5.0 REFERENCES

1. SI Calculation No. VY-16Q-304, Revision A, "Error! Unknown document property name.." 2. ANSYS, Release 8.1 (w/Service Pack 1), ANSYS, Inc., June 2004.3. American Society of Mechanical Engineers, Boiler and Pressure Vessel .Code,Section II, Part D, 1998 Edition, 2000 Addenda.4. Stress Report, "Section T9 Thermal Analysis Recirculation Outlet Nozzle Vermont Yankee Reactor Vessel," CB&I Contract 9-6201, SI File No. VY-16Q-204.
5. J. P. Holman, "Heat Transfer," 4th Edition, McGraw-Hill, 1976.6 J. P. Holman, "Heat Transfer," 5th Edition, 1981.7. Entergy NuclearNortheast Engineering Report; Report No. VY-RPT-05-00022, "Task T0100 Reactor Heat Balance EPU Task Report for ER-04-1409," SI File No. VY-16Q-205..File No.: VY-16Q-305 Revision:

A Page 10 of 29 F0306-01RO NEC041650 Structural Integrity Associates, Inc.Table 1: Material Properties@

30 0'F )Material Mn-1/2Mo-3/4Ni-112Mo-

  • 1Cr-1li 16Cr-12Ni-1/2Ni 1/3Br r-V 2Mo Modulus of Elasticity.

e-6 28.0 26.7 27.0 27.0 psi __Coefficient of Thermal Expansion, e-6. in/in/°F 7 .Thermal Conductivity., 23.4 23.4 9.8 9.3 Btu/hr-ft-OF Thermal Diffusivity, ft'/hr 0.401 0.401 0.160 0.150 Specific Heat. BtuAb-°F 0.119 0.119 0.125 0.127 Density, Ib/in* 0.283 0.28 0.283 0.283 Poisson's Ratio 0.3 0.3 0.3 .0.3 Notes: Material Properties are evaluated at 300°F from the 1998 ASME Code,Section II BPart D, with 2000 A ddenda, except for density and Poisson's ratio, which are assumed typical values Table2: PressureResults

-Membrane Plus Location Bending Stress Total Stress.Intensity (psi) Intensity (psi)Safe End 11350 -11490 Blend Radius 33640 31300.)File No.: VY-16Q-305 Revision:

A Page 11 of 29 F0306-0IRO NEC041651 Structural Integrity Associates, Inc.Table 3: 0% Flow Regions 1 and 3 Heat Transfer C aefficients Pipe Inside Diameter.

D = ii-I' I1 .'- inches 2.160 At S= 0.655 mr.Outer Pipe. hiside radius.r 4=12. hiches = 1.075 It 0.328 m hner Pipe Outside Diameter.

D. Wrj.' inches = 0.000 ft= 0.000 :V Inner Pipe. Outside radius, r.= 0 inches= 0.000 ft 0.000 m Charaacedstic Length. L D "2.150 ft 0.655 m 12Mb (Outside)

Ts.: -T., AT= 8.40 12.00 24.00 38.00 48.00 800J0 72.00 F 4.67 8.17 13.33 2000 286.7 3333 40.00 "C Val ue at FIuidTerperptureT[3]

Urnits Cnve-rsion 70 10 0 an 300 400 500 " -F WVter Property Factor [1] 21.11 37.78 S3.33 14805 204A4 260010 315 BS Ic k 1.7307 0.5997 05J300 0.8784 058036 0.6611 0 50048 05071 WAth-C (VhTra icfly 9-- 038 024 0.20 000 .80 0340 190 ftuAfr-t-'F 0, 4.1889 4.185 4.179 4229 4.313, 4522 4.982 6.322 kJlkg-°C Heat) -1 100 0.998 1.010 1.030 1080 1.190 1.610 Btuibm-IF p 8.18 997.1 904.7 9822.7 917.8 M60 704.9 89 9n (Density), 02.3 02A1 00.1 37.3 03.0 4.08 42.4 Ib-mt"...... :.... ...................

....... .............

,. .... ; ...............

...... .........

............

.........

  • ..;............................................

.......p 1.8 1.89E-04 3.24E-04 6015804 1.01E-03 1.40E03 1.908-03 .3.15E-03 mni.'.lC (Volumreric Rate of Expansion):

1.05-04 1.80204 3.70I-04 5.802-04.

7.E0E-04 1.101-03 1.751-03 tCn?'-F.." .........

..................

..... ... .. ........ I. ..... ...: ........ ....... ....o 0.3048 9508 0.808 9.050 0.808 58 *.08 998 ms (Oravbtaiional Conslant3 32.17 32.17 32.17 .32.17 ,32.117 32.17 32.17 ties* ..(G... .a: ..i..a?.al..

.. n.. .. .. .. ......... i... :...........

.........

.=..........

.. ..... .......!.... ...... ;.. ..... .... .........F............

...!.. :....I. .......[;......I .= 1.4881 9.96604 0.82 E-04 3.07E204 1.93E 1.38E-04 104E04 8.62E-05 I (Dyiamic \scosity) 86.89E-04 4.58E-04 2.06E-04 1.302-04 9.30E-05 7.002-05 5.792-05 lb m -s.. ..............
-..................

............

-..........

.. ."g ". ............ ' ..... ........ " " b ....... "90 E " ....f: ', ..... ...... '. .. .Pr i'= 46b6690 .20 05 04"5 1.7 (Prandt IWrnber)Cal cldted Prameter Formula 70 100 200 300 400 500 Boo ' F ReynoldW mter. Re 3473091 -001789 10891437 18464670 21616912 20132169 27337904 -Grashof Number. Or gnTL'I~ep)'

12807E+10 2.417E+11 1.2522-12 3877E+12 1.034E+13 2.10040E+13

-GrashofNumber.

Gr0 01 pT(rrr.)%tp)Y 3.05E+08 269.-00 302E+10 1571+11 4.97E+11 129E+22 2.702E+2 --Rayleigh Number, Ra G rPr 17043446531 5.7286E+10 4.616E+11 1.628E+12 3.778E+122 8.883E+12 2.31172E+13 Rayleigh Number, Ra Gr 4 Pr 2.13E+00 7.16E409 577E+10 I181E+21 4.72E+11 1.11E+1 2 2.892E+2 2 nsade Surface Forced Conw Heat TranaderCoeffidert:

0H., ,22 082Re 5"PelurkD 7.823.02 0932234 13,148.12

.15,406.24 16.705.40 17.126.16 16;7632 .1.377.74 1,84250 2.31556 2.713,07 2,942.05 3.016.1A 2.886.31 Btu/hr.tf.'F Mns.e Surfaoe Natural Conewfion Heat Trazter Coefficenf:.

Case: Bicklsed cylinder C i~~t~ n=- ..C(0rPrykA-181.85 2595M5 4 694 837J9 773.57 975.17 933.22 WAn-.C 3203 4.U5 82.00 112.4,' 13024 154.1 104.35 Biu/hr.-t.F File No.: VY-16Q-305 Revision:

A Page 12 of 29 F0306-O1R0 NEC041652 structural itegrity Associates, Inc.Table 4: 0% Flow Region 5 Heat Transfer Coefficient Heat Transfer Coefficients Reforencea' 1.J. P. Hofman, 'Heat Transfer,'

41h Edition, AtGrawfflif, 1976.2. J. P. Ho/man, "Heat Transfer," 55h Editon, 1981.3. N. P. Cheremisinoff, "Hear 7ransfer Pocklp' Handbook," Guff Pultishing Co., 1984.4ieqvi red Inputs ame Slmd cdl)Title=......r-Pipe Inside Diamweter D.=- .vfMQ inches= 3233 ft= 10D18' m Outer Pipe. Inside radius, ro 20 inches= 15B7 ft 0508 m Irene r Pipe 0ut ide Diarmeter, D= ir'7 inches= 0000O ft-= 0000O m'Inner Pipe. Outside radius. r 1 0 inches= 0.000 ft OD0O m Fluid Velocity.

V= 7.224 ft/sec MW pr Characteristic Leng1h. L= D = 3.333 ft= 1.016 m 12.3 tMllhr (Outs ide) Tjud- T,&,; AiT 8.40 4.M7 12.00 2400 38.M0 48.0 ) 000 72.00 -F 8.87 1333 20.0 26.67 3333 4D.00 V:-* -Value at Fluid T emperatu re, T 13] Units Conversion 70 100 200 300 4100 600 600. F WaterPropertt Factor [1] 21.11". 37.78 6 9333 148.69 204.44 260.00 -315.55 C k 17307 0.DM97 0.8300 0.6794 08838 08811 .60840 05071 W/r1m C (Thermal Cenductivity) 0.3485 0.3640 0.3M20 0.396) 03820 0.3480 02030 Btuwhr- t-IF 41869 4.185 4179 4.229 4313 .4522 4982 8.322 kJ&Qg-*C.......t..............e..

1.000 0.998 1.10 1.030 1.090 1.190 1.510 Btullb~mAF

.... .. .... ... .. .... .... ... ...: ...... .........q.... ... ...... ..... ...... ...

.. .o... ..... .... .... o......... ...... ....... ... .p 18.018 997.1 9947 982.7 9178 658.6 7849 879. k2/m" (De sity) e2.3 82.1 80.1 57.3 53Q '1.0 '2.4 Ibmn... ....................................................

........'".'". ....... .......................

............

18 1.992-04 324E-04 8.68r-04 11.01603 1.40E-03 1882.03.'

3.152E-03 me /M--(IVlelum e tric R ate of Ex pa nsion) 020 0-4372 020 820 .0-3 1 .75E.03 fi~f/t? IF 90.3048 9808O 9.806 9.808 9808 9.808 9.808 988-r6 (Gravitational C onstant) 32.17 32.17 32.17 32.17 32.17 32.17 32.17, ftrs2 IL 1.4881 9ý.9E-04 882E.04 3.07E-04 1.002.04 138E-04 10 4E-04 8822.05 kghw-s (DynamicVYiscosity)

&.69E-04 4j582-04 2.062-04 11306.04 930E-05 700E-05 5.782.05 Ibm/ft-s........

...... .... ........................

.: .

6 ...:. .... .... .............:. .Y ....... !...-....

...Pr 8980 4.510 1.910 1220 0.950 0.869 1070 (Prandil Numbe r)" Calculated Parameter Formula 70 100 200 3)0 40D 500 600 _____F _Reynold's Number. Re pVD4L. 2240831 3254854 7024977 10613232 13877783 1,855280, 17832948 Grqshof Number. Or gTpiLfTf 4 p) 99611808 4.732E-10 9.01E+11 4.6712+12 1.48E+13 3.85E+113 Gras:hofNumber.

Gr; QPAT(r 0-refjfl)p?

1.14E+40 5.912E409 1.13E+11 583E+11 185E+12 4.82E+12 101E+13 Ray4eigh Number. Ra GrPf 8.3515E+10 2.134E+11 1.72E+12 5.BP4E+l2 1.41E+13 3.31E+13 8.81503E+13 Rayleigh Number, Ra GraFr .7.94E+C0 2.872+10 2.152E+11 7.122+11 176E+12 41412+12 108E+13 hror [I].-MsideSurface Forced Convection Heat Transfer Coefficient?

HI-crr 0.023ReDPPr'kD 31,552.89 4.23584 5.971.33 6898.42 7,58690 '7.77799' W/mb I-C 1 025.71 741.95 1.001.03 1232.17 1.33W.16 .1.3W9.81 1.301.76 Ist/hr-f?.'r Nsde Surface Naural Convuction Hear 7ransoer Coefficbn1:

.Case: Enclosed cylindler C n=Hfrt C(GrPr)`tL 182.97 231.79 420.M0 571.0 680325 78430 83522 W/rM2 C.20.70 4)82 7407. I0.88 12209 138.13 14729 Btu/hr-ft-F File No:: VY-16Q-305 Revision:

A Page 13 of 29 F0306-01RO NEC041653 9.

V Structural integrity Associates, nh.eijOMBNT e Recicc Outlet Nozzle Finite Element Model APR 19 20D7 13: 03; li A \Figure 1: ANSYS Finite ElementModel File No.: VY-16Q-305 Revision:

A Page 14 of 29 F0306-OIRO NEC041654 V Strctural Integrity Associates, Inc.ElEMENTEAN.

A. rL: 2007 13:25:35 PRE 9- 5082-3733-305'41--237?1703-1027 R. -'. I I "9"91 324.252 1003 Racirc Outlet Nozzloe Eanite Eear.ent Model Figure 2: Recirculation Outlet Nozzle Internal Pressure Distribution File No. VY-16Q-305 Revision:

A Page 15 of 29 F0306-0IRO NEC041655 Structural Integrity Associates, Inc.EPMTh aNOW.AN AP. 159 2007 13:32.31 (.-ii.5082-3730-3054-2379 1703-1027-.3 51.L969 S24.252 2 1000 I liii, III 1111111.. .... ...I I ..-.-, 1_rýP.Bc- c Out-at Nlozzle Finite Elem~ent Model Figure 3: Recirculation Outlet Nozzle Pressure Cap Load File No.: VY-16Q-305 Revision:

A Page 16 of 29 F0306-0IRO NEC041656 Structural Integrity Associates, Inc.Figure 4: Recirculation Outlet Nozzle Vessel Boundary Conditions File No.: VY-16Q-305 Revision:

A Page 17 of 29 F0306-OIRO NEC041657 Structural Integrity Associates, Inc.APRAJ. 2 MA7 NUM Region 5 AN A.. 19 2007 1L3 3! -Region 6 Region 4'r Region 3 Region 2 I Region 1 X Rac-rc Out--at Nozzle. Tinito Eloin-ant mod.Q1 FigureR5:

Nozzle and Vessel Wall Thermal and Heat Transfer Boundaries File No.: VY-16Q-305 Revision:

A Page 18 of 29 F0306-OIRO NEC041658 V Structural Integrity Associates, Inc.-------- ----- ---------


-------- ---- ---------





---------


-------- ---- -------------

NODAL SOLI T ION AN APR 24 2007 09 0S :10 i" ST 2] Pý322I SINT (AVID)DXX =. 8108B2 smn *-1S9. 035 BlO '121100 27043 53916 80790 107663 13606 .40479 67353 94226 121100 Recirc Outlet Nozzle F-inite Element Model Figure 6: Safe End Critical Thennal Stress Location File No.: VY-.16Q-305 Revision:

A Page 19 of 29 F0306-OIRO NEC041659 Structural Integrity Associates, Inc.Figure 7: Safe End Limiting Linearized Stress Paths (.File No. VY-16Q-305 Revision*

A Page 20 of 29 F0306-OIRO NEC041660.

Structural Integrity Associates, Inc.4 UCE*A3 SCIUCIZN 11 114 KL I DMX-.Li3 SMN =11L36 SMX 209\.APP. 19 2007 13:51:01 1138.4591 8043 1146~ 95 149.28 18 0.0 21057 dI~- ~PRac-rc ut-'at1 Io'zzI Pinite Eleoment Model Figure 8: Blend Radius Limiting Pressure Stress Location File.No.:

VY-16Q-305 Revision:

A Page 21 of 29 F0306-OIRO NEC041661 Structural Integrity Associates, Inc.Figure 9: Blend Radius Linearized Stress Path File.No.:

VY-16Q-305 Revision:

A Page 22 of 29 F0306-OIRO NEC041662..1-ý Structural integrity Associates, Inc.Tot al St ress Intensity C ft.C lrne(seo]Figure 10: Safe End 109% Flow Total Stress Intensity Total Stress Intensity 1DUUD 1 IJL-doomo-WOOLD-File No.: VY-16Q-305 Revision:

A Figure 11: Blend Radius 100% FlowTotal Stress Intensity Page 23 of 29 F0306-O1RO

'NEC041663 Structural Integrity Associates, Inc.0.OD-6E00 tWDDD 200 too GOD 800 thIe Irec)Figure 12: Safe End Total Stress History for 100% Flow 1D0 a 1O0 20 300 400 50D 6W 700 WDO 9 1W DDO Tkh e 0 Figure 13: Safe End Membrane Plus Bending Stress History for 100% Flow File No.:,'VY-16Q

-3 05 Page 24 of 29 Revision:

A F0306-OIRO NEC041664 Structural Integrity Associates, Inc.1 Do0O 4000D Thre 4ed)Figure 14: Safe End Total Stress History for 50% Flow 2DMDD-20E0D 0 100 21D 3WD too 5D00 cO 701W 0DD 9DD I OWD Tihe fec)Figure 15: Safe End Membrane Plus Bending Stress History for 50% Flow File No.: VY-16Q-305 Page 25 of 29 Revision:

A F0306-OIRO NEC041665 structural Integrity Associates, Inc.-3WDO 2008D£I1.lmm 100 2 30D 40D SOD 00 700 D00 Th t kreq)Figure 16: Safe End Total Stress History for 0% Flow lDED./0 100 20 3N0 l400 50D 6m0 700 8DD 90D Iw00 T~ime Figure 17: Safe End Membrane Plas Bending Stress History for 0% Flow'.File No.: VY-16Q-305 Page 26 of29 Revision:

A F0306-OIRO NECO41666 Structural Integrity Associates, Inc.W0OOD .....-. .... ....... .... ..................

.............................

..........

..... .... .... ...... .... ...........

...... ..... ..... ..... .. ..... ... ....... :..........

... .... ....... ...........

..... ..WOOD --.-- -- -"40000 ______MDDD a 110 2D0 3DDD Cm SODD 600 O 70MC 8DDD TIne qedj Figure 18: Blend Radius Total Stress History for 100% Flaw 4C0DM ........ .... .............................................................

......................

..... .... ......43MD 0 lOGO 2D00 3DM 4-0CC 600 30D OWO 810DO Tm e O..c)Figure 19:. Blend Radius Membrane Plus Bending Stress History far 1.00% Flaw FileNo. VY-16Q-305 Page 27 of 29 Revisiof:

A F0306-O1RO NEC041667 Structural Integrity Associates, Inc.A 0 1000 200 3013D 4-000 man0. GDED 7000 Figure 20: Blend Radius Total Stress History for 50% Flow 8D00ý W u ........................

I .........

....... ........ ..... ..................

I .... ... .... ...........

.2ODD 10000D (NI 4 C I I I +I I IN a 4- 1' .1- 1 -I A-1O0D 4 1 + C I + +J______I__

__ ______I__

__Figure 21: 1000 200 3D0 40 -5091D 60 000 7?00

  • 0OD Tie e Ge)l Blend Radius Membrane Plus Bending Stress History for 50% Flow File No.: VY-16Q-305 Revision:

A Page 28 of 29 F0306-OIRO NEC041660 Structural Integrity Associates, Inc.=.35DMX 30000 2500D 2D DW tiDOWD I Domc 6DDD 04* (..........................

...... ..................

0 1000 200D 3DD00 WO 500D 6DDD 70010 TM e (reo)Figure 22: Blend Radius Total Stress History for 0% Flow: 2 LUM U ...............................

I ...... ..M~D,/-ýI.1 ___ ___ ___ I ___ ___ ___ I.0.MOD1 DV/I __ __ __ __ __ __ __I-lIIOD_0 IOD 200 MD0 400D ODDD 6ODD ?CM 00DD The 4eD Figure 23: Blend Radius Membrane Plus Bending Stress History for 0% Flow File No. : VY-16Q.305 Revision:

A File No.: VY-16Q-305 Revision:

A I Page 29 of 29 F0306-OIRO NEC04.1669 Structural Integrity Associates, Inc.APPENIDIX A FINITE ELEMENT ANALYSIS FILES r I File No.: VY-16Q-305 Revision:

A Page A1 of A2 F0306-01R0 NEC041670 Structural intoegrity Associates, Inc.RON VY.INP Input File for Pressure Load In Computer files VY RON T 100.IN- Input File for 100'/o Flow Thermal Analysis In Computer files VY .RON S 100.INP Input File for 100Y/o Flow Stress Analysis In Computer files VY RON T 50.INP Input File for 50% Flow Thermal Analysis In Computer files VY RON T 50.IThP Input File for 50% Flow Stress Analysis In Computer files VY RON 0.llNP Input File for 0/o Flow Thermal Analysis In Computer files VY. RON O.INP Input File for 0% Flow Stress Analysis In Computer.

files PVESS.OUT Stress Output across the shell with Pressure Load In Computer files PSE. OUT Stress Output at Safe End with Pressure Load In Computer files PBLEND. OUT Stress Output at Blend Radius with Pressure Load In Computer files#FSE. OUT Stress Output at Safe End In Computer files#FER. OUT Stress Output at Blend Radius In Computer files#FSE INSIDE: RED Stress Extracted at Safe End In Computer files#FBR INSIDE.RED Stress Extracted at B lend Radius In Computer files#FSE T-Green.XLS Green Function with Total Stress at Safe End In Computer files#FSEM+B-Green.XLS Green Function with Membrane plus Bending Stress. In Computer files at Safe End HFBRT-Green.XLS Green Function with.Total Stress at Blend Radius at In Computer files o100o% flow '.HFBR_M+B-Green.XLS Green Function with Membrane plus Bending Stress In Computer files at Blend Radius at 100% flow ..... * ..-Where # is H, M, L meaning 100°/4, 50°`, 3 and 0% flow rate, respectively.

FileNo.: VY-16Q-305 Revision:

A Page. AZ of AZ F0306-DlRO.

NEG041671 Exhibit G Structural Integrity Associates, Inc. File No.: VY-16Q-3o06T CALCULATION PACKAGE Project No.: VY-16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 CLIENT: PLANT: Entergy Vemnont Yankee, .LLC Vermont Yankee Nuclear Power Station CALCULATION TITLE: Fatigue Analysis ofRecirculation Outlet Nozzle Document Affected Project Manager Preparer(s)

&Revision Pages Revision Description Approval Checker(s) sSignature

& Date Signatures

& Date A 1-28, Draft for Review Tenry J. Herrmann J. E. Smith Appendix: A1-A2 -Minghao Qin* K Page 1 of 28 F0306-OIRO NEC041672 Structural Integrity Associates, Inc.Table of Contents 1.0 IN T R O D U C T IO N ................................

......................................................................................

4 Z.0 METHODOLOGY

........................................

4 3 .0 A N A L Y S IS .........................................................................................

..................................

4 4.0 CALCULATION OF THERMAL STRESSES FOR TRANSIENT 9 .......................................

8 5.0 FA TIG U E U SA G E RE SU LT S ...................................................................................................

I 6.0 ENVIRONMENTAL FATIGUE ANALYSIS ...................................

11 7 .0 R E F E R E N C E S ......................................................

11...................

................................

1 1 APPENDIX A FILES OF FINITE ELEMENT ANALYSIS ........................... "I List of Tables Table 1: M axim um Piping Stress Intensity Calculations

.....................

..............................................

13 Table 2:' Blend Radius Transients

................................................

14 T able 3: Safe E nd Transients....................................."......................................

..............

15 , Table 4: Blend Radius Stress Summary ...................

16 T able 5: SafeE nd Stress Su m m ary .......- ...... ......................

....................

......................

17 Table 6: Fatigue Results forB lend Radius (60 Years) .........................

...............

....................

18 Table 7:. -Fatigu esults for Safe End (60 Years) ......................................................

2.......................

20 File No.: VY-16Q-306 Revision:

A Page 2 of 28 F0306-01OR NEC041673 Structural Integrity Associates, Inc..List of Figures Figure 1: External Forces andtMoments on the Recirculation Outlet Nozzle .22 Figure 2: Nozzle and Vessel Wall Thermal and Heat Transfer Boundaries......................

23 Figure 3 Transient 1 -N orm al Startup at 100 0 F/hr ..........................................................................

24 Figure 4: Transient 2 -Turbine Roll and Increase to Rated Power ............

..........

24 Figure 5 Transient 3 -Loss of Feedwater Heaters and Turbine Trip 25% Power. .25 Figure 6: Transient 4 -Loss of Feedwater Pumps 25.........................

...........................................

25 Figure 7: Transient 5 -Turbine Generator Trip ............

26 Figure 8 Transient 6- Reactor Overpressure

........ ...............................................................

26 Figure 9: Transient 7 -SRV Blowdown ..............................

..... ..............

.................

27 Figure 0: Transient 8 -SCRAM Other ....................................................

27 Figure 11: Transient 9 -Imprwer Startup .....................

.........

....... 28 Figure 12: Transient 10 -Shutdow n .....................................................................

28 (File No.: VY-16Q-306 Revision:

A Page 3 of 28 F0306-01DR0 (NECO41674 Structural Integrity Associates, Inc.

1.0 INTRODUCTION

The purpose of this calculation is to perform a revised.fatigue analysis for the Entergy Vermont Yankee (1/4Y) reactor pressureyvessel (RPV) recirculation outlet nozzle. Two locations willbe analyzed for fatigue acceptance:

the safe end (SA1 82 F316) and the nozzle inner comer blend radius (SA508 Class 2). Both locations are chosen based on the highest overall stress of the analysis performed in Reference

[1]. Fatigue usage will be determined for each location, the nozzle forging and safe end, respectively.

An environmental fatigue usage factor will also be determined for each of these locations., 2.0. METHODOLOGY Three programs will be used to perform the fatigue analysis.

The first two calculate stresses in response to thermal transients.

The 12 transients to be analyzed are described in References

[2 through 4], for the recirculation outlet nozzle. Transients 1 to 10 are shown in Figures 3 -12. The last program calculates fatigue based on the transient stress output from the first two programs.

The three programs are STRESS.EXE, P-V.EXE, and FATIGLTE.EXE.

All three programs are explained and verified for generic-use in Reference

[5].J.3.0 ANALYSIS The fatigue analysis involves preparing the input files and running the three programs.

The programs STRESS.EXE and P-V.EXE are run together through the use of a batch file. The program FATIGUE.EXE is run after processing the output from P-V.EXE.The steps associated with this process are described in the following sub-sections.

3.1 Transient

Definitions (for program STRESS.EXE)

The program STRESS.EXE requires the following three input files for analyzing an individual transient:

GREEN.DAT.

There are 12 stress history functions (Green's Functions) obtained from Reference.[1] They represent the membrane plus bending and total stress intensities at the blend radius and safe end locations.

The blend radius and the safe end have three stress history functions for the 100% flow, 50%, and no-flow conditions.

  • GREEN. CFG is configured as described in Reference

[5].* Several TRANSNT.ITP files are created to simulate the transients shown on References

[3 and 4].Tables 2 and 3 show the thermal history used to simulate each transient for the blend radius and safe end locations, respectively.

The aforementioned transient information for each location is contained in EXCEL files BlendRadiusTransientsxls and Safe which are contained in the computer files. Transients are split into the following

&oups based upon flow rate: Transients 2, 3, 5, 6,.7,. and 8 are run at 100% flow Green's Function-,File No.: VY&16Q-306 Page 4 of 28 Revision:

A F0306-OIR0 NEC041675 Structural Integrity Associates, Inc.. .* Transients 1 and 10 are run at 50% flow Green' s Function* Transient 4 is run at no flow, 50% flow, and 100% flow Green's Functions, as shown in Tables 2 and 3.Transient 9 is simulated by ANSYS [11] model and the thermal results are taken from ANSYS directly.

See Section 4 for details.* Transients 11 and 12 have only small temperature change (7C0F to 100'T). Therefore, the thermal stresses for these two transient are ignored. Only the piping load and the pressure load are Considered in these two transients.

  • The loss of feedwaterheaters (Feedwater Heater Bypass) event has a negligible temperature change (526 OF to 523 OF) associated with it Therefore this transient is ignored..3.2 Peak and Valley Points of the Stress History (for program P-V.EXE)After STRESS.EXE runs are completed, the program P-V.EXE is run to ectract only the peaks and valleys from the STRESS.OUT stress history file produced by the STRESS.EXE program The only input required for this program is the stress history file (STRESS.OUT), and the program outputs all of the resulting peaks and valleys to output file.P-V.

OUT. The resulting peak and valley stress summaries for all transients are summarized in Tables 4 and 5 for both locations.

Columns2 through 5 of Tables 4 (for the blend radius) and 5 (for the safe end) show the final peak and valley output after it has been reduced to eliminate any unrealistic stress fluctvations.

These final peaks and valleys were selected from the total stress and membrane plus bending stress intensities that were calculated by STRESS. EXE and screened with P-V. EXE.3.3 Pressure Load The pressure stress associated with a 1,000 psi internal pressure was determined in Reference

[1].These values are as follows:.Pressure stress for the safe end:* l1350psi membrane plus bending'linearized stress intensity.

  • 11490 psi total stress intensity.

Pressure stress for the blend radius:* 33640 psi membrane plus bending linearized stress intensity.

  • 31300 psi total stress intensity.

The pressure stress intensity values for each transition were linearly scaled based on the pressure for each transition:

The actual pressure for column 6 of Tables 4 and 5 is obtained from Reference

[3].The scaled pressure stress values are shown in columns 7 and 8 of Tables4 and 5.The pressure stress is combined with the peak and valley points to calculate the final stress values used for fatigue analysis.File No. VY-16Q-306 Page 5 of 28 Revision:

A F0306-OIRO NEC041676 IU Structural'Integrity Associates, Inc.3.4 Attached Piping Loads Additionally, the piping stress intensity (stress caused by the attached piping) was determined.

These piping forces and moments are determined as shown in Figure 1.The following formulas are used to determine the maximum stress intensity in the nozzle at the two locations of interest.

From engineering staticsjthe piping loads atthe end of the modelcan be translated to the first and second cut locations using the following equations: (M., Y -6 For Cutl: (M A M FL For CutlII: The total bending moment and shear loads are obtained using the equations below: For CutI: FJ2= (F)7FL 2.For Cut II: The distributed loads for a thin-walled cylinder are obtained using the equations below: 1= My To deternine the primary stresses , PM, due toiternal pressure and piping loads, the following equations are used.For Cut I, usingiFhin-walled equations:

File No. : VY-16Q-306 Page 6 of 28 Revision:

A F0306-D1R0 NEC04 1677 Structural integrity Associates, Inc.2tN t N Pa.IN qN¢IN or (P ()(P)2 (_2 Because pressure was not considered in this analysis, the equations used for CutI are valid for Cut II.where: L, = The length from the end of the nozzle where the piping loads are-applied to the location of interest in the safe end.L = The length from the end of the nozzle where the piping loads are applied to the location of interest in the blend radius.My,= The maximum bending moment in the xy plane.Fy. = The maximum shear force in the xy p lane.Ný = The normal force per inch of circumference applied to the end of the nozzle in the z direction.

qH; The shdar force per inch of circumference applied to the nozzle.RN = The mid-wall nozzle radius.Per Reference

[7], the recirculation outlet nozzle piping loads are as follows: F. = 20,000 lbs MK= 2,004,000 in-lb Fy = 20,000 lbs My= 3,000,000 in-lb F= 30,000 lbs 14= 2,004,000 in-lb L 1 is equal to 4.25 inches and the L2 is equal to 4277 inches. The calculations for the safe end and blend radius are shown in Table 1. The first cut location is the same as the Green's Function cross, section per [1 ] at the safe end, and the second cut is from Node 3829 (inside) to Node 3809 (outside).

This gives the maximum ID and minimum OD for the cross section calculation.

The maximum stress intensities due to the piping loads Pre 5708.89 psi at the safe end and 280. 16 psi at the blend radius.File No.: VY-16Q-306 Page 7 of 28 Revision:

A F0306-O1RO ,NEC041670 Structural Integrity Associates, Inc.These piping stressvalues are scaled assuming no stress occurs at an amrbient temperature of 70 0 F, and the full-values-'are reached at reactor design temperature, 575 0 F [6]. The scaled piping stress values are shown in columns 9 and 10 of Tables4 and 5- Columns 11 and 12 ofTables4 and 5 show the summation of all stresses for each thermal peak and Valley stress point.3.5 Fatigue Analysis (for program FATIGUE .EXE)The number of cycles projected for the 60-year operating life is used for each transient[[2]ý Column 13. in Tables 4 and 5 shows the number of cycles .associated with each transient.

The number of cycles for 60 years was obtained from Reference

[2] unless otherwise noted.The program FATIGTUE.EXE performs the "ASME Code style" peak event pairing required to calculate a fatigue usage value. The input data for FATIGUE. CFG is as follows:*_

  • Blend Radius Safe End Parameters m andn for 2.0 & 0.2 (low 1.7 & 0.3 C omputing K, alloy steel) [9] (stainless steel) [9]Design Stress Intensity 26700psi [9] l7500psi [9]Values, S,,, Elastic Modulus from 30.Ox10 6 psi [9] 28.3xl0 6 psi [9].A pp licab le F atigu e C urve 3_.__ x 1_ psi_________

Elastic Modulus Used in 6 6 Finite Element Model 26.7xlO psi] 2. 2Okl10psi[1 The Geometric Stress * " Concentration Factor K, 1 I The results of the fatigue analyses are presented in Tables 6 and 7 for the blend radius and safe end for 60 years, respectiv ely.The fatigue run inputs described are contained in EXCEL files BRresultsxls and -which are contained in the computer files.4.0 CALCULATION OF, THERMAL STRESSES FOR TRANSIENT 9 Per Tables 2 and 3, the thermal shocks are from 526&F to 268 0 F and from 526TF to 130T at the blend radius and the safe end, respectively.

Therefore, the average temperatures for these two locations are about 400TF and 330TF. Since there are two different temperature shocks in the same model, the previous method (Green Functions) is hard to be'used for this particular transient In this section, ANIISYS [11] will simulate this transient and the thermal results will be applied in Tables 4 and 5.An additional case was also run to simulate the uphill (RPV) side-of the blend radius, where the thermal shocks are from 526tF to 130°F atthe safe end, and no temperature change atthe blend File No. VY-16Q-306 Revision:'

A Page 8 of 28 F0306-O1RO NECO4 1679 Structural integrity Associates, Inc.radius., The stresses produced by this case were found to be lower than the previous case. The 268 0 F.shock case was used for all the following analysis.4.1 Thenral Load Since the average temperatures are 400°F and 330'F, the material properties under 400CF are used.The flow rate at this transient is 3395.2 [41 GPM shown inTables 2 and 3.Heat transfer coefficients listed on Reference 6 of T9 are for pre power uprate. The heat transfer coefficients can b e scaled by power uprate flow rate and diameter to values corresponding to the flow and location conditions.

Refer-ing to Figure 2, heat transfer coefficients were'applied as'following:

Region I Per [7, Section T9], the heat-transfer coefficient at 500WF, h; for 3395.2 GPM (2. 084 f/s)flow is 672.8 BTU/hr4'--F.

Per [7, Section T9], the heat transfer coefficient at 1001F, h,.for 3395.2 GPM (2:084 fts)flow is 2250. j( 087 = 308.24 BTU/hr-fO2-°F.

S25 )N-The fluid temperature shock is: T =526°F -130°F 526OF Region 2 Per [7, Section T91, the heat transfer coefficient at 500'F, h, for 3395.2 GPM (2.084 if/s)flow is 49111- 2.84,t 0(26 ) 632.21 BTLUhr-.ft.

2 F Per [7, Section T9], the heat transfer coefficient at 300 0 F, h, for 3395.2 GPM (2.084 ft/s)flow is File No.: VY-16Q-306 Revision:

A Page 9 of 28 F0306-OIRO NEG041680 StrllcturalI integfrity Associates, Inc.(2.8.04( 26 0.8 = .616.57BTU/hr-f&-oF.

25 3.9 The fluid temperature shock is: T =526'F -526W Region 3 Per [7, Section T9], the heat transfer coefficient at 5000F, h, for 3395.2 GPM flow is 672.8(0.5)=

336.4 BTU/hr-e-OF.

Per.[7, Section T 9], the heat transfer coefficient at 3000F, h, for 3395.2 GPM flow is 336.4(1 9 = 328.04BTUtJhr-te-OF.

~4911)The fluid temperature shock is: Case 1: T =526OF -268°F -526T Case 2:T =526TF Region 3 Theheat-transfer coefficient, h, is 0.4 BTUfhr:t 2 e-F [7, section T9].The temperature'is:

T =120°F 4.2 ThermalResults The flow dependent thermal load case outlined in Section 4.1 Was run on the finite elementmodel.

Appendix A contains the thermal transient input file VY_RONTT9.INP for 3395.2 GPM flow rate. The flow dependent input files for the stress run is also included in Appendix A. The stress filename is VY RON S T9.l1P for 3395.2 GPM flow rate.The critical safe end and blend radius locations defined in Reference

[1] with node 6395 and 3829, respectively.

File No.: VY-16Q-306 Revision:

A Page 10 of'28 F0306-OIRO NEC041681 Structural Integrity Associates, Inc.The stress time history for the critical paths was extracted during the stress run This produced two files, T9SE.OUT and T9BR. OUT, which contain the thermal stress history. The membrane plus bending stresses and total stresses were extracted from these files to produce the files T9SE InsideRED and T9BRInside.RED, where SE and BR corresponded to the safe end and blend radius locations, respectiv ely.The data for the stress results is included in the files T9BR M+B.xls, T9BR T.xls, T9SEM+B.xls, and T9SE__T.xls in the project Files. Where SE and BR corresponded to the safe end and blend radius locations, respectively.

M+B and T corresponded to mernbrane plus bending stress and total stress, respectiv ely.5.0 FATIGUE USAGE RESULTS The blend radius cumulative usage factor (CUF) from system cycling is 0.0109 for 60 years. The safe end CUf is 0.00 14 for.60 years.6.0 ENVIRONMENTAL FATIGUE ANALYSIS Per Reference

[ 12], the dissolved oxygen (DO) calculation shows the overall hydrogen water chemistry (HWC) availability is 47%. This means the time ratio under normal water chemistry.(NWC, or pre-HWC) is 53%.For the safe end location, the environmental fatigue factors for post-HWC and pre-HWC are 15.35 and 8.36 from Table 5 ofReference

[12]. These result in an EAF adjusted CUF of (15.35 X 47% +8.36 x 53%) X 0.0014 = 0.0163. for 60 years, which is acceptable (i.e.,' less than the allowable value of 1.0). The overall environmental multiplier is 11:6453.For the blend radius location, the environmental fatigue factors for post-HWC and pre-1W*C are 2.45 and 12.43 from Table 6 of Reference

[12]. These result in an EAF adjusted CUF of (2.45 x 47% +12.43 x 53%) x 0. 0109 = 0.08436 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0). The overall environmental multiplier is7.739.

7.0 REFERENCES

1. Structural Integrity Associates Calculation No. VY-16Q-304,Revision A, "Recirculation Outlet Nozzle Green's Functions." 2. Reference for cycle counts < < LATER> > Entergy Calacdation No. VYC-378, Revision 2,"lVermont Yankee Reactor Cyclic Limits for Transient Events," 3/10/88, SI File No. VY-1]6Q-2xx.
3. GE Drawing No 729E7 62, Revision 1, "Reactor Thermal Cycles," Niagara Mohawk Power Corporation, SI-File No. NYPA-78Q-205.
4. GE Drawing No 135B9990,, "Nozzle Thermal Cycles (Recirculation Outlet) Reactor Vessel," 5. Structural Integrity Associates Calculation (Generic)

No. SW-SPVF-01Q-301, Revision 0," STRESS.EXE, P-V.EXE, and FATIGUE.EXE Software Verification." File No.:,VY-16Q-306 Page 11 of 28 Revision:

A F0306-01RO0" NE0041602 Structural Integrity Associates; Inc.6. Hitachi, Ltd. Drawing No IOR290-127, Revision 0, "Recirc. Outlet Safe End," SI File No. VY-16Q-204.7. GE. Stress Report No. 23A4316, Revision 0, "Reactor Vessel Recirculation Outlet Safe End," SI File No. VY-16Q-204.

8.- Chicago Bridge &Iron Company, Contract No. 9-6201, Drawing No. 21, Revision 4, "36"x28" Nozzles Mk N1A/B," SI File No. VY-I 6QQ-204.9. ASME Boiler and Pressure Vessel Code,Section II, Materials, Part D, Prop erties, 1998 Edition with 2000 Addenda.10. ANSYS, Release 8.1 (w/Service Pack 1), ANSYS,.Inc., June 2004.11. Structural Integrity Associates Calculation No.-VY-16Q-304, Revision A, "Recirculation Outlet Nozzle Finite Element Model." 12. Structural Integrity Associates Calculation No. VY-1 6Q-303, Revision A, "Environmental Fatigue Evaluation of Reactor Recirculation Inlet Nozzle and Vessel Shell/Bottom Head." (File No.: VY-16Q-306 Revision:

A Page 12 of 28 F0306-OIRO NEC041683 Structural Integrity Associates, Inc.Table 1: Maximum Piping Stress Intensity Calculations Blend Radius External Piping Loads Safe End External Piping Loads..ornatre Parameters Fý = 20.00 kips Fv= 20.00 kips Fz= 30.00 kips MX = 2004.00 in-kips vris= 3000.00 in-kips Mz 2004.00 in-kips OD= 55.88 in ID= 37.368 in RN= 23.31 in L= 42.77 in t' 9.25 in (M,)2= 1148.54 in-kips (M)A2 = 3855-46 in-kips MV = 4022.90 in-kips F *v= 28.28 kips Nz= 2.56 kips/in q-= -0.20 kips/in Primary lembrane Stress IntensIy PMz= 0.28 ksi__"_L__= -0.02 1 ksi SImax = 0.28 ksi Smax = 280116 [ psi Fx = 20.00 kips Fy= 20.00 -kips Fz= 30.00 kips MX= 2004.00 in-kips Mf=. 3000.00 in-kips Mz= 2004.00 in-kips OD= 28.38 in ID=,. 25.938 in R,= 13.58 in L= 4.25 in t = 1.22 in*( )2 1919.00 in-kips (4V)2 = 3085.00 in-kips MX= 3633.15 in-kips Fxy=_ 28.28 kips N z'-- 6.62 kipslin qN= -1.07 kips/in Primary em bra ne Stress Intensity PMz.= 5.43 ksi%_ = -0.88 ksi smlax= 5.71 , ksi 17 .. = 5708.89 psi.Note: The locations for CutI and CutIH were defined in Reference

[1]paths, respectiv ely.for safe end and blend radius FileNo.: VY-16Q-306 Revision:

A Page 13 of 28 F0306-01RO NEC041684 Structural Integrity'Associates, Inc.Table,2: Blend Radius Transients Thnilsnt Time. Tomup lmo Step Preoiuo Row Rat. Thnmlent Time Temp lime Step Preamure H ow, Rat Number 4LL JZL 4G .Jzil 10PM) litmter Jij Ji J 4~ j (3PM)1. Normal Sirtip W1l1 0 1Mo 0 14140. G. ReactrOwa-0 lpnaUnr 526 1010 23294

-16161 t 549 16161 1010 g5%y 2 526 2 1376 00n%), 300 Cyole 1 22164 649 WoE 1010 W 626 a0 940 2. Turbone I" iamo 0 549 lull 28294 182 526 lam 940 hcreaisto Rated Powor I 6 $42 1 1010 E%) P 2252 649 42a 1010 340 0,olem1 W1 642 W00 1010 2312 649 60 1010 602 26 1 10113 2313 542 1 1010.6502 826 W]m 1010 2913 642 60n 1010 3. Loa iof Heedwah r 0 626 1010 28294 2914 526 1 1010 wItrte 1Ko 542 ISn] 1010 Q m__%7" W914 526 60]0' 10111 Thrblan lrip 255% Power 2100 642 31 1010 7. SRV Bow down 0 526 1010 28294 10 C,ýCls a- 2460 626 360 1010 %4 ie I ma0 376 60D ITOD nn%)*31160 626 650 1010 1151s 73 10960 60 396[ 642 10o 1010 __ 11 TO WEm 60 42M0 642 330 1010 c. SCRAM Obler 0 526 1010 28294 600 626 1800 1010 225 "Co I 16 526 16s 940 01n%), 1260 5 26 WEn 1010 1316 526 15m 940 4. Lou 1.of Fe edwatr 0 W26 1010 0 2235: 549 10i1 RAmps 3 626 3 1190 40%)" V965 549 60 101in 10 )9cm1 13 826 10 1136 22% 542 1 1010 2U MO 220 1135 2356 542 k 60 " 1010 2213 5Mo 198 1135 235? 5x 1 1010 23393 " 3D0 1 g0 5357 526 WE1 1010 61T3 5E0 ,438[ 1135 D.. aproper Stsrtbp -0 )562 101 3346 1'193 M3O 420 6756 14141' 1 qCIe I 1 1 1010 (12%)'1493 3D 303 665 oP0Y 27 253- 26 1010 11093 400 360n 240 23 526 1 1010 16467 649 6364 1010 E0M25 626 6E 1n1 n 1651i 549 60 -1010 V1. gllJtdown 0 549 1010 14141 16518 542 1 1010 29749 300 Crclel 8264 375 6264 1710 g 1711 642 650 1010 0C13%7 6354 331 603 U5 1t119 626 1 1010 , 16224 TO 93W s6 23119 526 WE11 1010 22224 10 WE 60 a. ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 *LlFIUIýUU lipL.Lhýjm~mi.

/snloers r U 16 3]2250 2310 2311 2911*2912 8912 826 626 626 W26 649 .549 542 642 526 M2 10 5 ,420 1 600 I , rnm Inln.1135 1136 940 940 1010 1010 1010 1010 1010 101D 93294 0130%), flit 1To oes t"- l ug lIn s0 T%12. ljdroatlclou3; t -t- T1m -- 60 1951 17145 jl 1663 T%60 1 .Tke hbelatimperabit lacge g a 1 stooid Ite snp.2.The simmerolo(oltsgbitr52eaa p-3. 2,568 tF e beind Tie safl eid ndha datpempratmre lohTlmsk t9.File No.: VY-16Q-306 Revision:

A Page 14 of 28 F0306-OIRO NEC041685 Structural Integrity Associates, Inc.Table&3 Safe End Transients 1iln1191n1 Number Time l4mp ["lme Step Premurm 18ow Rate M LU Z~tiMtflu Tabl 3: afend Transent Number Time Temp inmoe stp Pre I 1nu em1 Us I MAI...... L (oGPM I d 1. WillI 9111114J v Ili Heastp at lO0'Fr SNO flem o MID a. 14.147 .G4.

V .U..16164 649 16164 1010 (S) I 0dl 4 l6:BL 5 71T0I iron1-" -t ...... .... ....2. T"ru'e Roll and 0 549 1010 2M294 Icreaw Ito tdPower 1 642 1 loll] MI2)'$00 2 r1cs 6011 642 am l1in 602 626 1 1010 1302 E6 ?7n I10 0 2;162 183"2 2252 2312 2313 2913 2914 3611, 65 526 649 549 642 542 526 2 20 mIM 42n 1010 131'6 940 940 lint 1010 10113 11110 1010 lonn 28294-1 (M%, I I I I 1 1 60 601?m 3. LoIs i f ad~wilor Heatran Thth-1e 111p 25% Flower 10 q*cle 1 u Iam 2100 M602 3902 4202 67 G2 542 642 6X2 626 642 642 ex6 M56 laD 300 San MID 7011 101D into Mloi 10111 loll]: lin'D F. IRV Bovwdoywn n 626 1010 28294 1140'-0i .01 27 35 601 110T OD%')'.11i680 0 1138 50!E,8D 70 ?m r M " I I. SCRAM 1Oier 223 0'.lei4-*~~~ 4. 1 ~ 4 4 LOW OT edlater Pum pi I1 0cile 1 U 3 13 233 2213 2390 6112'7192 11093 16517 1661 16459-17759 1T159 63 6X6.603 WO Zan an 40]649 649 542 642 625 3 10]tan 4229 24W 6324 402 736 1.6mD 1190 1132 1135 1135 676 676.240 10 M]1D MoID a 14141 2634 0 As 1816 205 2216 2296 2266 23S7 526526 549 549 642 542 626 523 16.IBM 422 60 60 10 1010 9410 940 1010 1010 loin loin 23294Y M" 52 .5 T m , a. Enproper Surmup 1 O'cl I 0 I.25 728 525 130D,'525 623 1 26.1 1010 1010 1010 1010 In01-n -, 10. 1uloovin 300 ;*Cll " a 6zt 1622t 16924 569 375" 330 10 10 6264 60U 9W0 TIE i010 170 8350 S1414T S. Turblne GeneraorlTrip 6G qcl is-U 10 15 30.2202 2310 2311 2911 2912 3512 626 S2W 549 649 542 512us 10 5 16 Iam 420 02 603 1 TDD 1110 1135:940 940 Ioin 1010 lola]1010 UMln loln loil IL. DMilgn Tent 1 120 I- 1 -7 I 1981 IID 12.

j -- a) 1 -02] 1981 I c 1 .%Y Not 1: I .Tie lbribittmpelaw e 0a1g197 a rimed a; I e0oidtlie stp.2.Tie lmlmberofoilesi Is Uwyual [2], 3. tI ie talk ead tmperatre IbrI1 9tsleat. Tie eadrdis: i adhmremtt1mpe nir Note : These transients are the same as in Table 2 with the exception of the 700 second steady state time increment that is used The transients In'Table 2 are plottadustnga 6000 second steady state increment.

The diffarence Is due to the length ofthe Green's "thctiOn for the sacf end which is shorter compared to the blend Radius.File No..: VY-16Q-306 Revision:

A Page 15 of 28 FO306-oIRO NEG041686 Structural Integrity Associates, Inc.Table 4: Blend Radius Stress Summiary 2 ' 1 4 1 5 1 ' t I t I , zI Tanie~nt Nwin be r"rime fiI Toll I M'S .Ste, I shte i Tomperatunr (Dill I (IB) I F Me ilure mIn ld I0U!II M*I: 10131 PRem0a1 IPeM.*ure I Aping s( , I I nSt l) 1 h ill (n)IIi f il I (nil lli Rping Sseu (nl)iOUl ToNiI I lOWl M÷ B Steme (nill NUIUDO of C"cle I f9A -1 an NOTES: Column 1: Transient numberidentification.

Column 2: Time during transient where a maxima or minima stress intensity occurs from P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V.OUT output file.Column 4: Maxima or minima membrane plus bending stress~intensity from P-V. OUT output file.Column5: Temperature per total stress intensity.

Column 6: Pressure per Table I of[l].Colun- 7: Total pressure stress intensity from the quantity (Column 6 x 313 00)/1000.Column 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 33640)/I000.

Column 9: Total external stress from calculation in Table 1, 280.16 psi*(Column 5-70F)/(575TF

-70'F).Column 0: Same as Column 9, but for M+B stress.Column 11: Sum of total stresses (Columns 3,7, and 9).Column 12: Sum of membraie plus bending stresses (Columns 4, 8, and 10).Column 13: Number of cycles for the transient (60 years)..File No.: VY-16Q-3.06 Revision:

A Page 16 of 28 F0306-01RO NECO41687 V Structural Integrity Associates, Inc.Table 5: SafeEnd Stress Summary/Tduil M.-8* Pressure Prescure PI ping Plping Totel M.8- of Trensidnt Time stress Stress Temperatlre Pressutre stress stress Stress Stress Stress stress C'yoi cc 16164 -4814 -4433 5450030 11310 11604.9 114635 65414.566 65414.966 137S.53 161553 8IOC Ih1 -A ¶5,f 2n~-10 1U -1:4. 11,6JR53.E 53 31 qu., A u b. -Jo Jb fl I- .- I I fZf bl;1a ITJR 5.81 zu~. bu, V* -~ -nl --A 21 1 -, -5.98 fl§Z 1§1 -I .37L 30 5Gn 1 C3. 11463 -5528-55.5 Z175.54 759 J 2 03 -3682 -3522 Z _ 526 ID_ bi 11604.5 114633 -5154.958

-51543958 2761594 272654 ___IC____ 2460:2 -15932 -22030 ____ 26 ___ 101 11604.9 11463.5 -5164562 -4164368 4617.54 4102.54 It_____ 6062 -3315 3241 _ _ 526 _ 10310 11603459 114633 -6154658 -5154358B 3134.54 306734 'I_ _2 5. - .-2n.ý 10ll T 242330I 15272 1'009 3;§2.3f74 11335 '130341.15 1282222 26236.926 26263726 .315416083 7.666.12 _ 10____ 24028601 13203 8266 3031.443 -85 '0168.65 10044.76 2616.4131 26164131 255280.5 20926.I5 -10 7153.10 15374 5801 300 676 7766.75 766126 2600.0552 2610.0822 2672524 0062.34 1-- U 7b~ -4az bj ---....1 7 1 17765500 3670 -36091 626 1010 1160459 114633 -5154.552 I-6154352 2779.94 __279554 ___10 10.00 -3422 -3622 626 1136 13041.16 12822226 -6164.952

-6154552 4152.15 420626 ea_ 6 Z___ 25010.1 6054 5337 549 1010 1160459 114633 -5414.966

-64143566 135.53 __71133 at 1, 3151 -.-..u 6 0.00 -3622 -3622 6 26 E02 1010 1160V49 11 46G3 -56164.9152

-65154562 2761.94 =6 2764 ___1 32.00 -3682 -3522 6240 5413 102100. 10665 -5154.552

-6164.9552 1957.64 15528 4 I__212220 25977 -3123 632p int2101 116014.5 114635 -6335.833 -S3352E33 3252017 300343S7 _tr ~ ~ I --7 -32 P_1____ 00 7773 6336 376 170 1553.3 19293 3447.543 34473B43 1317424 107134A4 14 1162011 464 19IBM __ 70 so6 674.6 6675 03 0 1028.60 76750 14 1. 0700 -3628 3522 ___ 526__ 10101 1160459 114633S -5154662 -6164362 2761!94 272E 63 SH ,2 236.1 TM -Ve -231T% 1163 2361650 1761 .2s ____ 66 1010 111604.91 1433 g6154.969

-61643628 115202.6 622034 _ 222 0 0 332 -3666 626.7 loai I 116049 114633 -1611.566

-5151366 2720392 27463 5 ___ 1 2037 -12272 5672 6124 1010 1 160459 -114635A -6069.0342

-9065 342 -65735.241

-312334___-nfl. -'. ----7455. -ni -IN Ibd A __5 b 16220.1 334 -35 70 50 5745 '567S 01 0 90250 S32.5 20 I1 F__z _ _J .?b -uDt _-b~b __g~if Ion 13 13 0 -339.1419

-339.1419

-339.14 IZ64 T21~~ ~ IO --, senti rrzr-nr n t l n-r u___ tn 5t.tfl1' ..1 er -ltAnflt mn 0339-2 419rr1n1.y913 i um n--B-I___L.uI .1 51.1 1 1ýI I-AWII LI _ _ _ift I ZtnN itn 2 NOTES: Column I: Transient number identification.

Column 2: Time duringtransient where amaxima or minima stress intensity occurs from.P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V.OUT output file.Column 4: Maxima or minima membrane plus bending stress intensity firm P-V. OUT output file.Column 5: Temperature.per total stress intensity.

Column6: Pressureper Table I of[1].Column7: Total pressure stress intensity firm the quantity(Column 6 x 114.90)11000.

Column 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 11350)/1000.

Column 9: Total external stress from calculation in Table 1, 5708.89 psi*(Column 5-70°F)/(575F

-707F).Column 10: Same as Column 9, but for M+B stress.Column 11: Sum of total stresses (Columns 3,7, and 9).Column 12: Sum of membraneplus bending stresses (Columns 4, 8,and 10).'Column 13: Number of cycles forthe transient (60 years).File No.: VY-16Q-306 Revision:

A Page 17 of 28 F0306-01R0 NEC041608 Structural integrity Associates, Inc.Table& 6: atigue Results for Blend Radius (60 Years)LOCATION =FATIGUE CURVE =LOCATION NO. 2 -- BLEND RPADIUS 1 (I = CARBON/LOW ALLOY, 2 STAINLESS STEEL)2.0 n .2 Sm 26700. psi Ecurve = 3.OOOE+07 psi Eanalysis

= 2.670E+07 psi Kt = 1.00 MAX 54236.53822.5 10 17.48905.4 46249.40607.39965.38737.38243.37757.37757.3 62 91.3 36291.36273.36273.35954.35954.35954.35954.35954.35837.35658.35658.35556.35556.34973.34973.34926.34843.34843.34843..34843.34834..34834.34831.34829., 34829.348.29.34829.34829.34825.34825.MIN-17.-17.-17.-17.-17.-17.-17.-17.-17.-17.476.476.1548.1548.1548.1548.1548.1548.1844.1926.1926.1926.11988.11988.12180.12180.20655.20655.20655.~25750.27368.28113.28113.28113.28113.28113.2921.6.31990.31990.31990.31:990.31990.RANGE 54252.53839.51034.48922.462 66.40623.39982.38754.38260.37774.37281.35815.34743.34725.34725.34405.34405.34405.34110.34028.33911.33732.23670.23568.23376.22793.14318.14271.14188.9093.7475.6730.6721.6721.6718.6716.5613.2839.2839.2839.2835.2835.MEM+BEND Ke Salt , Napplied Nallowed 38460.4.8047.44087.52579.48374.36626.39092.40300.37242.37735.37314.36492.35231.35143.35143.35054..35054.35054.34858.3 4917.34978.34661.26901.27109.28326.27831.16974.17051.16887.17221.5178.3789.3784.3784..378 2.3781..3878.1543.1543.1543.1541.1541.1.000 30479.1.000 30247.-1.000 28,671.1.000 27484.1.000 25992.1.000 22822.1.000 22462.1.000 21772.1.000 21494.1.000 21221.1.000 20945.1.000 20121.1.000 19518.1.000 19508.1.000 19508.1.000 19329.1.000 19329.1.000 19329.1.000 19163.1.000 19117.1.000 19051.1.000 18951.1.000 13298.1.000 13240.1.000 13133..1.000 12805.1 000 8044.1.000 8018.1.000 7971.1.000 5108.1.000 4199.1.000 3781.1.000 3776.1.000 3776.1.000 3774.1.000 3773., 1.000 3153.1A000 1595.1.000 1595.1.000 1595.1.000 1593.1-0O00 1593.*1. 000E+00 1. 000E+01 1. OOOE+01 1. 000E+00 1. OOOE+00 1. OOOE+01 1. OOOE+01 6.,000E+01

1. OOOE+01 7. 000E+00 2. 930E+02 7. 000E+00 3. OOOE+00 6. OOOE+01 1. OOOE+00 5. 600E+01 1. OOOE+00 1. 00E+00 1. 400E-+01 2. 280E+02 1. 000E+01 6. 200E+01 1.660E+02 1. 340E+02 1. 660E+02 1. 340E+02 1. 660E+02 1. OOOE+01 1.2'0E+02 1. 400E+01 1. OOOE+01 1. 520E+b02 6. OOOE+01 1. OOOE+00 1. O00E+01 7.700E+01 1. OOOE+01 6. 000E+01 1. OOOE+00 8. OOOE+01 1.O00bE+OI 6.000E+01 2. 107E+04 2. 157E+04 2. 542E+04 2. 894E+04 3..43 5E+04 5. 196E+04 5.-62 3E+04 6. 564E+04 6. 995E+04 7. 453E+04 7.954E+04 9. 705E+04 1. 092E+05 1. 094E+05 1. 094E+05 1. 131E+05 1. 131E+05 1. 13 1E+05 1. 167E+05 1. 177E+05.1. 191E+05 1. 214E+05 5. 728E+05 5. 955E+05 6.411E+05 8. 050E+05 7.42 1E+07.7. 618E+07 7..983E+07
1. OOOE+20 1. OOOE+20 1 OOOE+20 1. OOOE+20-4.OOOE+20
1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1.OOOE+20 1. OOOE+20 U.0000.0005.0004.0000.0000.0002.0009.0001.0001.0007.0001.0000 m.0005.0000.0005".0000.0000.0001.0019.0001.0005.0003.0002.0003.0002.0000.0000.0000.0000.0000".0000.0000..0000.0000.0000.0000.0000.000 0.0000/ .0000..0000 File No.: VY-16Q-306 Revision:

A.Page 18 of28 F0306-OIRO NEC041689 Structural Integrity Associates, Inc.34825.34825.34825.34825.34825.34825.34730.34720.34646.34646.34646.34646.34646.34646.34646.34646.34612.3199.0.31990.31990.32634.32634.32634.32634..32634.32634.3358.1.33709.34124.34211.34331.34413.34592.34592.2835.2835.2835.2191.2191.2191.2096.2086.2012.1065.937.522.435.315.232.54.20.1541.1541.1541.2355.2355.2355.2212.2193.2695.1120.1137.1067.775.3398.-569.-130.'-1490.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1593.1593.1593.1231.1231.1231.1177.1172.1130.598.526.293.244.177.131.30.11.1. OOOE+00 1. 400E+01 6.300E+01 6. OOOE+01 1. 000E+00 1. 040E+02 1.000E+00 1. 000E+00 1. 220E+02 1. 000E+01 1. OOOE+01 1. 000E+01 1. 000E+00 1.000EOtI 1. 200E+02 1. 700E+01 1.0OOOE+00

1. OOOE+20 1. OOOE+20 1.OOOE+20 1. 000E+20 1. OOOE+20 1.'000E+20 1.O00E+20, 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1.OOOE+20 1. OOOE+20 1. 000E+20 1.OOOE+20 1. OOOE+20.0.000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 TOTAL USAGE FACTOR =
  • 9.0109 File No.: VY-16Q-306 Revision:

A Page 19 of 28 F0306-OIRO NEC041690 Structural Integrity Associates, Inc.Table 7: Fatigue Results for Safe-End (60 Years)LOCATION = LOCATION NO. 2 -- BLEND RADIUS FATIGUE CURVE = 1 (1 = CARBON/LOW ALLOY, 2 ='STAINLESS STEEL)m = 2.0 n -.2 Sm = 26700. psi Ecurve = 3.000E+07 psi Eanalysis

= 2.670E+07 psi Kt = 1.00 MAX MIN RANGE MEM+BEND Ke Salt Napplied Nallowed 54236. -17.5382,2. -17.51017. -17.48905. -17.46249. -17.40607. -17.39965. -17.38737.7/ -17.38243. -17.37757. -17.37757. 476.36291. 476.36291. 1548.36273.. 1548.36273. .1548.35954. 1548.35954. 1548.35954. 1548.35954. 1844.35954. 1926.35837. 1926.35658. 1926.'35658. 11988.35556. 11988.35556. 12180.34973. 12180.34973. 20655.34926. 20655.34843. 20655.34843. 25750.34843. 27368-i 34843. 28113.34834. 28113.34834. 28113.'34831. 28113.34829. .28113.34829. 29216.34829. 31990.3,4829.t 31990.34829. 31990.34825. 31990.34825.- 31990.34825. 31990.54252.53839.51034.48922.46266.40623.39982.38754.38260.37774.37281.35815..34743.34725.34725.34405.34405.34405.34110.34028.33911.33732.23670.23568.23376.22793.14318..14271.14188.9093.7475.6730.672 1.672 1.6718.6716.5613.2839.2839.2839.2835.2835.2835.38460.48047.44087.52579.48374.36626.39092.40300.37242.37735.37314.36492.35231.35143.35143.35054.35054.35054.34858.34917.34978.34661.26901.27109.28326.27831.16974.17051.16887.1722 1.5178.3789.3784.3.784.3782.3781.3878.1543.1543.1543.1541.1541.1541.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000, 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1. 000 30479. 1.000E+00 30247. 1.O00E+01 28671. 1.000E+01 27484. 1.000E+00 25992. 1.000E+00 22822. 1.000E+01 22462. 1.000E+01 21772. 6.000E+01 21494. 1.000E+01 21221. 7.000E+00 20945. 2.930E+02 20121. 7.000E+00 19518. 3.000E+00 19508. 6.000E+01 19508. 1.000E+00 19329. 5.600E+01 19329. 1.OOOE+00 19329. 1.000E+00 19163. 1.400E+01 19117. 2.280E+02 19051. 1.O00E+01 18951. 6.200E+01 13298. 1.660E+02 13240. 1.340E+02 13133. 1.660E+02 12805. 1.340E+02 8044. 1.660E+02 8018. 1.000E+01 7971. 1.240E+02..5108. 1.400E+01 4199. 1.000E+01.3781. 1.520E+02 3776. .6.000E+01 3776. 1.000E+00 3774. 1.000E+01 3773. 7.700E+01 3153. 1.000E+01 1595. 6.0.00E+01

,1595. 1.000E+00 1595. 8.000E+01 1593. 1.000E+01 1593. 6.000E+01 1593. 1.000E+00 2.107E+04 2. 157E+04 2. 542 E+04 2.894E+04 3.435E+04 5. 196E+04 5.623E+04 6.564E+04 6.995E+04 7.453 E+04 7.954E+04 9.705E+04 1.092E+05 1.094E+05 1.094E+05 1. 131E+05 1.131E+05 1. 131E+05 1. 167E+05 1. 177E+0.5 1.191E+05 1.214E+05 5. 728E+05 5.955E+05 6.411E+05 8. 050E+05 7.421E+07 7. 618E+07 7.983E+07 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20.

1.000E+20 1.000E+20 1.000E+20 1.000E+20 U.0000.0005.0004.0000.0000.0002.0002.0009.0001.0001.0037.0001.0000.0005.0000"0005.0000.0000.0001.0019.0001.0005.0003.0002.0003.0002 boooo.0000.0000.0000..0000.0000.0000.0000.0000..0000.0000.0000.0000.0000-.0000.0000 ,.0000 File No.: VY-16Q-306 Revision:

A Page 20 of 28 F0306-OIRO NEC041691' V Structural integrity Associates, Inc.34825.34825.34825.34825.34825.34730.34720.34646.34646.34646.,34646.34646.34646.34646.34646.34612.31990.31990.32 634.32634.32 634.32 634.32634.32 634.33581.33709.34124.34211.34331 34413.34592.34592.2835.2835.2191.2191.2191.2096.2086.2012.1065.937.522.435.315.232.54.20.1541.1541.2355.2355.2355.2212.2 193..2695.1120.1137.1067.*775.'3398.-569.-130.-1490.1. 000 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1. 000 1..3000 1.000 1.000 1.000 1.000 1.000 1.000 1593 1593.1231.1231.1231 1177.1172 1130 598.526.293.244.177.131.30.11.1.400E+01 1.'000E+20 6.300E+01 1.000E+20 6.OOOE+01 1.000E+20 i.OOOE+00 1.000E+20 1.040E+02 1.OOOE+20 1.OOOE+00 1.OOOE+20 1.000E+00.

1.O00E+20 1.220E+02 1.OOOE+20 1.OOOE+O0 1.OOOE+20 1.000E+01 1.OOOE+20 1.O00E+01 1.OOOE+20 S. OOOE+00. 1.000E+20 1.000E+01 1.O00E+20 1.200Et02 1.OOOE+20 1.700E+01 1.000E+20 1.000E+00 i.OOOE+20 TOTAL USAGE FACTOR =.0000.0000.0000.0000.0000.0000.oooo.000 0.0000.0000..0000.0000 (.0G000.0000.,0000.0 109 j~~2 File No.: VY-16Q-306 Revision' A Page 21 of 28 F030O6-01RO0 NEC041692 Structural Integrity Associates, Inc.Figure 1: ExternalForces and Moments on the Recirculation Outlet Nozzle File No.: VY-16Q-306 Revision:.

A-Page 22 of 28 F0306-01RO0 NEC041693 Structural Integrity Associates, Inc..AMA?Reio&n 3 V.AN APP. 19V-2 007 13:3E:-1 Region 4 Regio=2 7t N 4/IILFrzzrrzzzz 4 Regioni x TrawitionRegions Reczrc Outlet fozzle 3inite Element Model Figure 2: Nozzle and Vessel Wall Thermal and Heat Transfer Boundaries File No.: VY-16Q-306 Revision:

A Page 23 of 28 F0306-0IRO NEC041694 U:Structura/

Integrity Associates, Inc.1- Tem p C' I) P lPe S 4re (ps Ma 10 3000 16013D 90013 12Unn 15rro Time (leconda)Figure 3: Transient 1 -Normal Startup at10OF/hr.

-Terrp (F) -- Pressure (pig)-----------------------------------------------

-- -----------

-- ----)6131 ISO!SO~so Do-72350 -630 520 625-4-2'-11 120 204 x0 10 10 0 50 I0 150 200 2M0 300 3W 400 450 Time Figure 4: Transient 2 -Turbine Roal and Increase to Rated Power ISM I File No.: VY.16Q-306 Revision:

A Page 24 of 28 F0306-O1RO NEC041695 StructuraI integrity Associates, In7.II l-T'mp("F)

--pretssure

=00 650 lnRl 104-- 1;04 0 0 a 13M 2.n-920-310-ma0-1'60-720-650-6tD-550-320-320-240-2]0-12a-2.40 Sl 2MW I1S D.0 2000 tODD 6000 Time (mecondla)

GOOD 131nn Figure 5: Transient 3-Loss of Feedwater Heaters and Turbine Trip 25% Power-----.Temp("F) --PrEssmre Pipn 600 12E,-12M0-1120 1040 400ý_- *960 300- t/ 600 E560 a a -% / -s5 2 0 Fg0 0 6W 613M 8310 131t 1231 140Wos 16000 18W0 lime (mecondm)Figure 6: Transient 4 -Loss of Feedwater Pumps File No.: VY-16Q-306 Revision:

A Page 25 of 28 F0306-OIRO NEC041696 V Structural Integrity Associates, Inc.,-Temp(') --FP u. Ie 595 121]iieo 1100 imm 6951 Sm -.1050 E 5. SW E 535.-5D-4600 SM. am I-1-In 521 151m1l$D:n 2lO3n 11lms(iscondt)

Figure 7: Transient 5 -Turbine Generator Trip-TtpDF -Rss a iD 100 1:3DD-.- -L --13-21111-Te-- ------P- --W E P r- -ma ID Tim* (Iecondi)Figure 8: Transient6 -Reactor Overpressure File No.: VY-16Q-306 Page 26 of 28 Revision:

A F0306-OIRO NEC041697 Structural Integrity Associates, Inc.600.400.* 400.300-E Zoo-Temp ($) -(sI)l t pa I I-1100-1000.-g00-800-700.-600-400.300 200*100 II I I u 0 2000 400 T"ime (seccdst)8000 10003 1201b Figure 9: Transient 7- SRV Blowdown I-Terrp (7) --P-e--r (psig)600-600 -400 300, I' 0 6 ----------I-1100* 1000*800*700:600 "*500 400 300 200 100 0 Time 4-Li.0 100 2000 3000 4000.5000 Time (seccnis)Figure 10: Transient 8 -SCRAM Other File No. VY-16Q-306 Revision:

AK, Page 27 of 28 F0306-OIRO NEC041698 Structural Integrity Associates, Inc, 6W SoW-TeMp(1M--P ressore u l 3W 2M IOU I=O-500-400-2M-1W I U a In 20 30 40 50 (M 70 80 90 100 fllm (,eco#ldi)

" Figure 11: Transient9

-Improper Startup-Ttmp (IF) --Prtssitt 4OS*6][6 000 6013 4,nn U-I-.a 2D

  • 4o00 60103 8300 loom 12Mo0 14000 160M"nine (aecondu)Figure 12: Transijnt 10- Shutdown Page 28 of 28 File No.: VY-16Q-306 Revision:

A F0306-OIRO NEC041699 Structural integrity Associates, Inc.APPEIDIX A FILES OF FINITE ELEMENT ANALYSIS File No.: VY-16Q-306 Revision:

A Page Al of A2 F0306-OIRO NEC041700 Structura

!integrity ASsociates, Inc.RON VY T T9.INP Input File for Transient 9 Thennal Analysis In Computer files RON VY S T9.NPP Input File for Transient 9 Stress Analysis In Computer files LFSE.OUT Stress Output at Safe End InComputer files LFBR.OUT Stress Output at Blend Radius In Computer files LFSE INSIDE.RED Stress Extracted at Safe End In Computer files LFBR INSIDERED Stress Extracted at Blend Radius In Computer files LFSE T.XLS Stress Results with Total Stress at Safe End In Computer files LFSE.M+B.XLS Stress Results with Membrane plus Bending Stress at In Computer files Safe End __ _LFBR T. XLS Stress Results with Total Stress at Blend Radius In Computer files LFBR M+B.XLS Stress Results with Membrane plus Bending Stress at In Computer files Blend Radius File No.: VY-16Q-306 Revision:

A Page A2 of A2 F0306-0IR0 NEC041701 r Exhibit H Structural Integrity Associates, Inc. FileNo.: VY-16Q-306 CALCULATION PACKAGE ProjectNo.:

VY-16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 CLIENT:. PLANT: Entergy Vermont Yankee, LLC Vermont Yankee Nuiclear P ower Station CALCULATION TITLE: Fatigue Analysis of Recirculation Outlet Nozzle .Document Affected Project Manager Preparer(s)

&Revision Pages Revision Description Approval' Checker(s)

_ _ _Signature

&Date Signatures

&Date A 1-29, Draft for Review Terry J. Henrmann J. E. Smith Appendix: Al-A2 Minghao Qin-i\Page 1 ofZ2 F0306-OIRO NEC041704

<5 Structural Integrity Associates, Inc.Table of Contents 1.0 IN T R O D U C T IO N ..................................

............................................................

4 2. 0 M E T H O D O L O G Y .......................................................................................................................

4 3 .0 A N A L Y S IS ......................................................................................................................................

4 4.0 CALCULATION OF THERMAL STRESSES FOR TRANSIENT 9 .........................................

8 5.0 FATIGUE U SA GE RESU LTS ..................................................................

.. ". 11 60 ENVIRONMENTAL FATIGUE ANALYSIS .............................................

1.... 1 7..0 REFERENCES...............

.............

". ".."... ............

..........

APPENDIX A FILES OF FINITE ELEMENT ANALYSIS.........................................................

I List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: M qximum Piping Stress Intensity Calculations

...................................................................

13 Blend Radius Transients

...........................................

14 S afe E n d T ran sients ..................................................

..... ..............................................

15 B lend R adius Stress Sum m ary ............................................

........................

..........

16 Safe End Stress Summary .........................

.............

.17 Fatigue Results for Blen'd Radius (60 Years).......................................

18 Fatigue Results for S afe End (60 Years) .........................................................................

20 Material Properties

@ 400TF.. ........................

22 K-File No.: VY-16Q-306 Revision:

A Page 2 of 29 F0306-OIRO NEC041705 Structural Integrity Associates, Inc.List of Figures Figure 1: Extemal Forces and Moments on the Recirculation Outlet Nozzle ...............................

23 Figure 2- Nozzle and Vessel Wall Thermal and Heat Transfer Boundaries

............................

..24 Figure 3 Transient I -Normal Startup at 100'Fhr .............

........................

25 Figure 4: Transient 2 -Turbine Roll and Increase to Rated Power ................................................

25 Figure 5 Transient 3 -Loss of Feedwater Heaters and Turbine Trip 25% Power .................

....... 26 Figure 6: Transient 4 -Loss of Feedwater Pumps ....................................

.. 26 Figure 7: Transient 5 -Turbine Generator Trip ...........................................................................

27 Figure 8: Transient 6- Reactor Ov erpressure

.................... " ... ........ ...........................

27 Figure 9. Transient 7 -SRV Blowdown ............................................

28 Figure 10: Transient 8 SCRAM O ther .............

.......... ..............................................

28 Fig& re 11: Transient 9 -Im proper Startup ...................................................................................

29 Figure 12: Transient 10 -Shutdow n 29...................................................

j. .................

29 File No.: VY-16Q-'306 Revision:

A I Page 3of29 F0306-OIRO NEC041706 Structural integrity Associates, Inc..

1.0 INTRODUCTION

The putpose of this calculation is top erform a revised fatigue analysis for the Entergy Vermont Yankee, (VY) reactor pressure vessel (RPV) recirculation outlet nozzle. Two locations will be analyzed for fatigue acceptance:

the safe end (SA1 82 F316) and the nozzle inner comer blend radius (SA508 Class.2).

Both locations are chosen based on the highest overall stress of the analysis performed in Reference

[1]. Fatigue usage will be determined for each location, the nozzle forging and safe end, respectively.

An environmental fatigue'usage factor will also be determined for each of these Lbcations.

2.0 METHODOLOGY

Three programs will be used to perform the fatigue analysis.

The first two calculate stresses in response to thermal transients.

The 12 transients to be analyzed are described in References

[2 through 4], for the recirculation outlet nozzle. Transients 1 to 10 are shown in Figures 3 -12. The: last prog-am calculates fatigue based on the transient stress output from the first two programs.

The three programs are STRESS. EXE, P-V.EXE, and FATIGUE.EXE.

All three programs are explained and verified for generic use in Reference

[5].3.a' ANALYSIS The fatigue analysis involves preparing the input files and running the three programs.

The programs STRESS.EXE and P-V.EXE are run together through the use of a batch. file. The program FATIGUE.EXE is run after processing the output from P-V.EXE.The steps associated with this process are described in the following sub-sections.

.3.1 Transient Definitions (for program STRESS.EXE)

The program STRESS.EXE requires the following three input files for analyzing an individual transient:

GREEN. DAT. There are 12 stress history functions (Green's Functions) obtained from Reference[1]. They represent the membrane plus bending and total stress intensities at the blend radius and safe end locations.

The blend radius and the safe end have three stress history functions for the 100% flow, 50%, and no-flow conditions.

  • GREEN. CFG is configured as described in Reference

[5].* Several TRANSNT.INP files are created to simulate the transients shown on References

[3 and 4]...Tables 2 and 3 show the thermal history used to simulate each transient for the blendradids and safe , end locations, respectiv ely. The aforementioned transient information for each location is contained in EXCEL files BlendRadiusTransientsxls and SafeEnd._Transients xs, which are contained in the computer files. Transients are split into the following groups based upon flow rate.* Transients 2, 3, 5, 6,7, and 8 are run at 100% flow Green's Function File No.: VY-,16Q.-306 Page 4 of 29 Revision:

A F0306-OIRO NECO41707 Structural Integrity.

Associates, Inc.* Transients 1 and 10 are iun at 50% flow Green's Function* Transient 4 is run at no flow, 50% flow, and 100%./ flow Green's Functions, as shown in Tables 2 and 3.* Transient 9 is simulated by ANSYS [11] model and the thermal results are taken from ANSYS directly.

See Section 4 for details.* Transients 11 and 12 have only small temperature change (7CFF to 100 0 F). Therefore, the thermal stresses for these two transient are ignored. Only thepiping load and the pressure load are considered in these two transients.

  • The loss of feedwaterheaters (Feedwater Heater Bypass) event has a negligible temperature change (526 'F to 516 0 F) associated with it Therefore this transient is ignored.3.2 Peak and Valley Points of the Stress History (for program P-V.EXE)After STRESS.EXE runs are completed, the program P-V.EXE is run to extract only the peaks and valleys from the STRESS.OUT stress history file producedby the STRESS.EXE program The only input required for this program is the stress history file (STRESS.OUT), and the program outputs all-of the resulting p eaks and valleys to output file P-V. OUT. The resulting peak and valley stress summaries for all transients are summarized in Tables 4 and 5 for both locations.

Columns 2 through 5 pfTables 4 (for the blend radius) and 5 (for the safe end) show the finalpeak and valley output after it has been reduced to eliminate any unrealistic stress fluctuations.

These final peaks and valleys were selected from the total stress and membrane plus bending stress intensities that were calculated by STRESS. EXE and screened with P-V.EXE.3.3 Pressure Load The pressure stress associated with a 1,000 psi internal pressure was determined in Reference

[1].Thesevalues.are as follows: Pressure stress for the safe end:.* 11350 psi membrane plus bending linearized stress intensity.

  • 11490 psi total stress intensity.

Pressure stress for the blend radius:* 33640 psi membrane plus bending linearized stress intensity.

  • . 31300 psi total stress intensity.

The pressure stress intensity valuesfor each transition were linearly scaled based on the pressure for each transition.

The actual pressure for column 6 of Tables 4 and 5 is obtained from Reference

[3]..The scaled pressure stress values are shown in columns 7 and 8 ofTab les 4 and 5.The pressure stress is combined with/thepeak and valleypoints to calculate the final stress values used for fatigue. analysis.File No.: VY-16Q-306 Page 5 of 29 Revision:

A F0306-OIRO NEC041708 Structural Integrity Associates, Inc.3.4 Attached Piping Loads Additionally, the piping stress intensity (stress caused by the attached piping) was determined.

These piping forces and moments are determined as shown in Figure 1.The following formulas are used to determine the maximum stress intensity in the nozzle at the two locations of interest.

From engineering statics, the piping loads atthe end of the model can be translated to the first and second cut locations using the following equations:

For CutI: (MY), =M, + fL, (M, )2 =M M- FY L2 For CutI: (MyA = +/- +F,L 2 The total bending moment and shear loads are obtained using the equations below: For CutI: For CutlI: = (MA) 2 22 f,= F(F)2 + (FY)12 The distributed loads for a thin-walled cylinder are obtained using the equations below: NN-R M]To determine the primary stresses, P 1 , due to internal pressure and piping loads, the following equations are used.For Cut I, using thin-walled equations:

File No.: VY-16Q-306 Page 6 of 29 Revision:

A F0306-OIRO NEC041709 Structural integrity Associates, Inc.2tN iN Pa.N TM= ----t N qN IMA = + (rm 2 or Sl(x 2 j(( ( )+ (r(M).M 2+Because pressure was not considered in this analysis, the equations used for CutI are valid for Cut II.where: L, = Thelength fromtheend ofthenozzlewherethepipingloads are appliedtothe location of interest in the safe end.-= The length from the end of the nozzle where the piping loads are applied to the location of interest in the blend radius.M,= The maximum bending moment in the xy plane, Fr, = The maximum shear force in the xy plane.N 2 = The normal force per inch of circumference app lied to the end of the nozzle in the z direction.

qN= The shear force per inch of circumference applied to the nozzle.RN = The mid-wall nozzle radius.Per Reference

[7], the recirculation outlet nozzle piping loads are as follows: F. = 20,000 lbs MI= 2,004,000 in-lb Fy = 20,000 lbs " MY= 3j000,000 in-lb F. = 30,000 lbs M= 2,004,000.

in-lb L 1 is equal to 4.25 inches and the L_2 is equal to 42.77 inches:. The calculations for the safe end and blend radius are shown inTable 1. The first cut location"is the same as the Green's Function cross section per [1 ] at the safe end, and the second cut is from Node 3829 (inside) toNode 3809 (outside).

This gives the maximum ID and minimum OD for the. cross section calculation.

The maximum stress intensities due to the piping loads are 5708. 89 psi at the safe end and 280.16 psi at the blend radius. /File No.: VY-16Q-306 .Page 7 of 29 Revision:

A F0306-OIRO NEC041710 Structural Integrity Associates, Inc.These piping stress values are scaled assuming no stress occurs-at an ambient temperature of 70'F, and the full values are reached at reactor design temperature, 575°F [6]. The scaled piping-stress values are shown in columns 9 and 10 of Tables 4 and 5. Columns 1 land 12 ofTables 4 and 5 show the summation of all stresses for each thermal peak and valley stress point.3.5 Fatigue Analysis (for program FATIGUE.EXE)

The number of cycles projected for the 60-year op erating life is used for each transient

[2].Column 13 in Tables 4 and 5 shows the number of cycles associated with each transient.

The number of cycles for 60 years was obtained from Reference

[2] unless otherwise noted.The program FATIGUO EEXE performs the "ASME Code style" peak event paining required to calculate a fatigue usage value. The input data for FATIGUE. CFG is as follows: Blend Radius Safe End Parameters m and n for 2.0 & 0.2 (low 1'.7 & 0.3 Computing K alloy steel) [9] (stainless steel) [9]Design Stress IntensiS 26700psi [9] ..17000 psi [9]Elastic Modulus from 30. Ox 10' psi 9] 28.3x 106 psi [9]Applicable Fatigue Curve Elastic Modulus Used 'in 6 Finite Element Model' 26.7x10 6 psi [1] .27.Ox1 psi W The Geometric Stress Concentration Factor Y 1.0 .1.57 [7]The results of the fatigue analyses are presented in Tables 6-and 7 for the blend radius and safe end for 60 years, respectively.

The fatigue run inputs described are contained in EXCEL files BRresuftsxls and SEresults.xls, which are contained in the computer files.4.0 CALCULATION OF THERMAL STRESSES FOR TRANSIENT 9 Per Tables 2 and 3, the thermal shocks are from 526aF to 268 0 F and from 526aF to 130 0 F at the blend radius and the safe end, respectively.

Therefore, the average temperatures for these two locations are abbut 400F and 330 0 F. Since there are two different temperature shocks in the same model, the previous method (Green Functions) is hard to be used for this particular transient In this section, ANSYS [11] will simulate this transient and the thermal results will be applied in Tables 4 and 5.An additional case was also run to simulate the uphill (RPV) side of the blend radius, where the thermal shocks are from 526F to 130°F at the safe end, and no temperature change at the blend File No.: VY-16Q-306 Revision:

A Page8 of 29 F0306-OIRO NECO41711 Structural Integrity Associates, Inc.radius. The stresses produced by this case were found to be lower than 'the previous case. The 268"F shock case was used for all the following analysis.4.1 Thermal Load Since the average temperatures in the blend radius and safe end respectively are 400-F and 330 0 F, the material properties for 400F. are used for the blend radius, cladding and vessel. Table 8Shows the material properties at400°F. The flow rate at this transient is 3395.2 [4] GPM shown in Tables 2 and 3.Heat transfer coefficients listed onReference 6 of T9 are for pre power uprate. The heat transfer coefficients can b e scaled by pow er uprate flow rate and diameter to values corresponding to the flow and location conditions.

Referring to Figure 2, heat transfer coefficienfts were applied as following:

Region I Per [7, Section T9], the heat transfer coefficient at 500F, h, for 3395.2 GPM (2.084 fl/s)flow is.iAO \0.8 4911- .=672.8 BTUihr-ft 2-°F.Per [7, Section T9], theheattransfer coefficient at I00CF, h, for 3395.2 (PM (2,084 ft/s)flow is 2250.(- = 308.24 BTU/hr-f 2-F.The fluid temperature shock is.T =526 0 F -130'F 526°F Region 2 Per [7, Section T9], the heat transfer coefficient at 500 0 F, h, for 3395.2 GPM (2.084 ft's)flow is 2.,4 ' 26 o. 0 4911- (2'0"4\ 0.8 ( 2 =632.21 BTUlhr-ft 2?-F.S25 3-) 7f Per [7, Section T9], the heat transfer coefficient at 300PF, h, for 3395.2 GPM (2.084 ftl/s)flow is File No.: VY-16Q-306 Page 9 of 29 Revision:

A F0306-O1RO NEC041712, Structural Integrity Associates, Inc.24084- 26 = 616.57 BTU/hr-ft T~.I. L2-5 35.49)r-.The fluid temperature shock is: T =526°F -268°F -526°F Region 3 Per [7, Section T9], the heat transfer, coefficient at 5001F, h, for 3395.2 GPM flow is 672.8(0.5)=

336.4 BTU/hr-fIOF Per [7, Section T9], the heat transfer coefficient at 300 0 F, h, for 3395.2 GPM flow is 336.4(48)

= 328.04BTU/hr-ft 2_OF.The fluid temperature shock is: Case 1- T =526CF -268°F -5269F Case 2: T =526'F Region 3 The heat transfer coefficient, h, is 0.4 BTU/hr-0f 2-F[7, Section T9]The temperature is: T -120 0 F 4.2 ThermalResults The flow dependent thermal load ýcase outlined in Section 4.1 was mn on the finite element model.Appendix A contains the thermal transient input fileVYRON-TT9.INP for 3395.2 GPM flow rate./The flow dependent input files for the stress run is also included in Appendix A. The stress filename isVY RON S T9.1q-P for 3395 2 GPM flow rate.The critical safe end and blend radius locations defined in Reference

[1] with node 63.95 and 3829, respectively.

File No.: VY-16Q-306 Revision:

A Page 10 of 29 F0306-OIRO NEC041713 Structural etari Associates, Inc.The stress time history for the critical paths was extracted during the stress run. This produced two files, T9SE. OUT and T9BR. OUT, which contain the thermal stress history. The membrane plus bending stresses and total stresses were extracted from these files to produce the files T9SEInside.RED and T9BR_Inside.RED, where SE and BR corresponded to the safe end and blend radius locations, respectively The data for the stress results is included in the files T9BR_M+B.xls, T9BR_T; xs, T9SEM+B.xls, and T9SE_T.xls in the project Files. Where SE and BR corresponded to the safe end and blend radius locations, respectively.

M+B and T corresponded to membrane plus bending stress and total stress, respectively.

5.0 FATIGUE

USAGE RESULTS The blend radius cumulative usage factor (CUF) from system cycling is 0.0109 for 60 years. The safe end CUF is 0.0015 for 60 years.6.0 EENVIRONMENTAL FATIGUE ANALYSIS Per Reference-t 12], the dissolved oxygen (DO) calculation shows the overall hydrogen water chemistry

([IWC) availability is 47%. This means the time ratio under normal water chemistry (NWC, or pre-HWC) is 53%.For the safe end location, the environmental fatigue factors for post-HWC and pre-HWC are 15.35 and 8.36 from Table 5 ofReference

[12]. These result in an EAF adjusted CUF of (15.35 x 47% +8.36 x 53%) x 0.0015 = 0.0175 for 60 years, which is acceptable (i. e., less than the allowable value of 1.0). The overall environmental multiplier is 11.6453.For the b lend radius location, the environmental fatigue factors for post-HWC and pre-HWC are 2.45 and 12.43 from Table 6 of Reference

[12]. Theseresult in anEAF adjusted CUF of (2.45 x 47% +12.43 x 53%) x 0. 0109= 0.08436 for 60 years, which is acceptable(i.e., less than the allowable value of 1:0). The overall environmental multiplier is.7.739.

7.0 REFERENCES

1. Structural Integrity Associates Calculation No. VY-16Q-304, Revision A, "Recirculation Outlet'Nozzle Green's Functions." 2. Reference for cycle counts <<LATER>>

Entergy Calculation No. VYC-378, Revision 2,"Vermont Yankee Reactor Cyclic Limits for Transient Events," 3/10/88, SI File No. VY-1 6Q-2xx.3. GE Drawing No 729E762, Revision 1, "Reactor Thermal Cycles," Niagara Mohawk Power Corporation, SI File No. NYPA-78Q-205.

4. GEDrawing No 135B9990, ,"Nozzle Thermal Cycles (Recirculation Outlet) Reactor Vessel," File No.: VY-16Q-306 Page 11 of 29 Revision:

A F0306-OIRO NEC041714 U-N Structural Integrity Associates, Inc...5. Structural Integrity Associates Calculation (Generic)

No. SW-SPVF-01Q-301, Revision 0,"STRESS.EXE, P-V.EXE, and FATIGUE.EXE Software Verification." 6. Hitachi, Ltd Drawing No IOR290-127, Revision 0, "Recirc. Outlet Safe End," SI File No. VY-16Q-204.7. GE. Stress Report No. 23A4316, Revision 0, ."Reactor Vessel Recirculation Outlet Safe End," SI File No. VY-16Q-204.

.Chicago Bridge &Iron Company, Contract No. 9-6201, Drawing No. 21, Revision 4, "36'x28" Nozzles'Mk N1AIB," SI File No. VY-1 6QQ-204.9. ASME Boiler and Pressure Vessel Code,Section II, Materials, Part D,-Properties, 1998 Edition with 2000 Addenda.10. ANSYS, Release 8.1 (w/Service Pack i) ANSYS, Inc., June 2004.11. Structural Integrity Associates Calculation No. VY-16Q-304, Revision A, "Recirculation Outlet Nozzle Finite Element Model." 12. Structural Integrity Associates Calculation No. VY-1 6Q'303, Revision A, "Environmental Fatigue Evaluation of Reactor Recirculation Inlet Nozzle and Vessel Shell/Bottom Head." 13. American Society of-Mechanical Engineers;-Boil-erandPressure Vessel-Code, S ectior-H, Part D;1998 Edition, 2000 Addenda.File No.: VY-16Q-306 Revision:

A Page 12 of 29 F0306-01RO NEC041715 Structural Integrity Associates, Inc.Table 1: Maximum Piping Stress Intensity Calculations Blend Radius External Piping Loads-Safe End External Piping Loads.Parameters Parameters F, 20.00 kips Fv= 20.00 kips -Fz= 30.00 kips Mx=' 2004.00 in-kips3000.00 in-kips Mz = 2004.00 in-kips OD= 55.88 in 1D= 37.368 in R-= 23.31 in 7 ---- U : 42.77" in.t_ = 9.25 in (M 1)2= 1148.54 in-kips (MN)2= 3855.46 in-kips MX= 4022.90 in-kips Fxv=" 28.28 kips N,= 2.56 kipsfAn q0= -0.20 kipslin Primairyq lembrane tress Intensity PMz= 0.28 ksi_ = 3-0.02 ksi Slma = 0.28 ksi S____ = 280.16 psi F, = 20.00 kips Fy = 20.00 kips__Fz= 30.00 kips MX= .2004.00 in-kips My= 3000.00 in-kips MItz= 2004.00 in-kips OD= 28.38 in ID=' -25.938 in Rw= 13.58 in L =_4.25 tN= 1.22 in1919.00 in-kips*(IV__= .3085.00 in-kips MXV= 3633.15 in-kips Fxv=_ 28.28 kips Nz= 6.62 kips/in qtl= -1.07 kips/in Primarry lembrane tress Intensity PlMz= 5.43 ksi___= 1-0.88 ksi Slmax= 5.71. ksi= .5708.89 psi'Note: The locations for CutI and CutII were defined in Reference

[1] for safe end and blend radius paths, respectively.

File No.: VY-16Q-306-Revision:

A Page 13 of 29 F0306-0IRO NEC041716 Structural Integrity Associates, Inc.Table 2: Blend Radius Transients Tlinnlent "Time Tim p 'time S t ep Pr imure How Rat Ttunsnfnt 1ime Tomp lime step Ro emure low Rate Num ber "IL. -=F -1=1IL IimPer Itm ber j 'Fl 4fl, J iInI (GPM)1. Normal Stritp wbiIi 0 1[20 0

  • 1447 D G. ReacrorOv 5"rpm mUmr 0 525 1010 28294 Hoalup at.IO0Filr 16161 549 16164 1010 ksoy 1 I's11 2 526 2 1375 o(m), 300 Q'Cclem 22164 549 Man3! 1010 -32 525 30 940 2. "lUrblne R I ared 0 549 -1010 28294 1832 526 1i30 940 ham"ame sto Rated Power 1 642 1 1010 M(3%)' 2X2 549 420 1010 300 C"Cle m 601 542 W] 10 io0 2312 549 60 10D10 eml U06 1 1010 2313 542 1 1in0 6612 626 CUM 1010 2913 542 6m 1010o 3. LommoTFfeedrabr 0 126 1D01 23294 2914 525 1 1010 Hea"trs Iho 542 1[][ 1010 0 ]. 8914 523 woo 1010"urblne Trip25% Povs, r 210111 542 30 1010 7. SRV Bowdown 0 525 1010 23294 10 C'cl m1 2460 26 M 1010 14 q CIO I 80 375 63! IT1 am!%)" 3[50 526 W0 loll 1-158s TO 10920 50 3960 642 so0 1010 .T 7502 10 83 50 s 4250 542 320 1'010 .SCRAM 7Oler 0 .525 1010 21294 6(50 626 18D! 1010 220 C I mIs 53 15s 940 0 an%), 12050 626 8DD 1010 1815 526 I3D 940 4. Lom i of Fe edrwar 0 526 1010 0 .2235 549. 421 1010 PompI 3 126 3 1190 41%)' 2215 549 60 1010 190 Ck 1 13 106 I 1 1135 2256 542 1 i1010 z 230 320 220 1135 2356 542 60 i. 10 223 2 1982 1135. \21 253 I 1010 233 730 130 886 "57 523 62D .1010 61T3 " 2 438[ .1135 s. iaproporStrtip 0 523 1010 3395?193 320 420 616 141447 1 qCIe1a 1 2531 1 1010 (12%)'1493 320 33! 1r5 PY 27 25'5 26 1010 11093 400 3r! 240 23 525 1. 1010 1646? 649 6364 1010 6028 6 ! 100 15033 Iot 1651?" 549 60 101 10. Slutdown 0 549 10i0 14141 12513 542 1 1010 29? 19 SO03C 375 5264 170 @'Y 17118 642 200 1010 OS. .330 600 83 1T119 W06 1 1010 16224 TO 93820 50 23119 126 823! 1010 22224 70 82Mn 50 sno0re rI a is 32 1530 2250 2310 2311 2911 2912 SQ12 526 W06 626 626 U06 549 549 542 542 6 26.,7K 10 5 420 60 I rnm 1135 1"135 940 I0ol 1010 1010 1010 1010 1010"" .Teit.15ts eelem-iJ u 1Im s0 1%12. I'droslle 1 it -60 19311 1 17C10 " 1660 T%______________

I____ _____ I______ 1 ____50 P. Alai A I Notes: 1.Tic hslailtmptrawbt oiaige bmssmedas 1 secooedfoe

lp.2. ,mm lmberotdol5s 3. 2WF S latbhmd madkstmpembire tbrktlmeslemt Tiesat emdals adfA~tmatmpemtsrlorTmuerhmt9.

6~File No.: VY-16Q-306 Revision:

A Page 14 of 29 F0306-OIRO NEC041717 Structural Integrity Associates, Inc.Table&3 Safe End Transients Tmnnilsnt enime Tp Itm .dM Stop Prummure Row Rate 'lnn lVnt -Tie Tmp i[nae Slp Preuni T o'n RaIW Nimbr L U L1 L= a Number U.=LI. J IZL ....L. L Mt I 22.P1 I. Wirtal Itarl4 Healip at 100'F4fir 300 qc lea a1 1[, -16164 6 649 16164 1010 16m* 649 Too moin 14147 n C. ReactorOwe aoilure ksm])' 10s"C14 2.rnrbi Rudlmnld 0 5,49 1110 28Z t eica.,to Fitmd Power 1 542 1 M1010 o0)'00 q' J lei I0 542. m 01a M*6S2 I62 1110.13112 D 101 ID 0 2 32 1B32 2252 2312 2313 2913 3614 525 65 525 53 549 549 642 525 53*2 30 60 60 1 7 an 1010 1:376 940 940 1010 10111 MID1 11310 1010.1010 329t4 I11%.2. LOll oTiedater.

Tur:ne -n1 "p 2i% Power I0 q-clee o0.2102 214 3060 4215 671 52 642 642 06 642 542 W25 iam 353 603 9QD I3]?am Till Inol M 1ID 1010 M1010 1010 1010 23M4 F 7. IRV Sowdowemn 0 63 1010 2329t l4C'dei 1 100 376 I I22 TOO I 11610 10, 1050 50 I' " *___ Ii1wiw[ 10 1nn 10 I a. Sco M oiler 2233 ,-cIoe AL Loll OT re'sovilar

  • lmpa SE 10 Ie U 3 13'2m3_2213 ..2393 6713 1193 11093 16461 16611 155 1rt 059 1776 5W 6X 3]]RIl am 3so 323.53 6413 649.542 542 53 SE 3 10 43M la]110 4,20 536 6354.10 1 Ton lu1u 1190 1135 1135 1135 W5 1135 675 240 1010" 1010 1010 1010 1010 1010 0 14141 2634 4l03%), U 161 M35 225S 2296 2356 2536 W5 525 549 649 542 542 526 16 1803 430 60 I 50 1~7I11 1n11 940 940 1010 1010 I10 1010 1010 1010 S I.3. Inproper Starkup 0 526 1010 335l" I 1010 a 02%7 27 130' 26 101031 25 525 I 11110 1T128 626 ln M110 to. itiumow*n-300 q4I$I 0 634 15224 14922 549 375.330 10 70 6264 603 Tell 170 10O 10 as.141,.-JI54 iU. i,lUIUIII9lU*IWlULU*

~iI~S. o. bi ie~eroa m I.10 15 30 1231 2202 2311 2311 2911 2912 3512 56 53 6X 6X 5U9 649 642 542 6X us 10 5.16 ism 423 C3 S1 -1 TDD 1010 1135 1135.9411 9411 MID Iola MI1D.1010 1010 min0 1010 2=4%120 CISil-1MU 50'98 12. toadMmtto~

4-4 103 -5 0 1951 1 C,;Cis 1=13 Note : Il.Tke IkSlaitle mperab .ialgl I wo emed as I seowedtlne tap.2.'Tie iqmberotOqcleo I Ol60years 2].3., I*F k tie al e ed ltmpeineu Itltiatis1eit.

Tie blelkad W'Itsx5 ad*reait lampe calmre foarTioestW.

Note: ThAese transients are the same as in Table 2 with the exception of the 700 second steady state time increment that, Is used. The transients in Table 2 are plotted using a 6000 second steady state increment The difference is due to the length ofthe Green's Pkincton for the saft end which is shorter compared to the blend Radius.File No.: VY-16Q-306 Revision:

A-Page 15 of 29 F0306-01R.0 NEC041718 structural Integrity Associates, Inc.Table 4: Blend Radius Stress Summary 2' 4 5

  • 5 10. i 11 12 13 TWrsni hnr N...h.r Time f.1 ftO mI I SneflIfnill I' I Pre e IIr.Temperulun Pre ilure IShimI p AnginA ('nmll Preimurn 1 Pong Piing Sneia 1 r1 ml
  • Mmli S hi m TIW)m I.Oi FA,,5 Shtrip ft. m 01'Ca .-nI NOTES:. Column 1: Transientnumberidentification.

Column 2: Time during transient where a nanxma or minima stress intensity occurs from P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V.OUT output file.Column 4: Maxima or minima membrane plus bending stress intensity from P-V. OUT output file.Column 5: Temperature per total stress intensity.

Column 6: Pressure per Table 1 of [).Column 7: Total pressure stress intensity from the quantity (Column 6 x 31300 )11000.Column 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 33640)11000.

Column 9: Total external stress from calculation in'Table 1, 280.16 psi*(Column 5-70°F)/(575F

-70°F).Column 10: Same as Column 9, but forM+B stress.Column .11: Sum of total stresses (Columns 3,7, and 9).Column 12: Sum of membrane plus bending stresses (Columns 4, 8, and 10).Column 13: Number of cycles for the transient (60 years).File No.: VY-16Q-306 Revision:

A Page 16 of 29'F0306-OIRO' NE0041719 structural Integrity Associates, Inc.TableR5 Safe End Stress Summnary 2 1 ; 1 4 1 5 1 G [ 7 1 3 1 5 1 10 1 F[ f I I I"lanilent M-lmhr Wfin TomperituJrn F WremuIre I U i sir... I aitr...'Pl ping Piping alin I (si I lOw[Tot!i Stem.(Pn 10131 g M.imer.M. B ?01 pf (sO 7.esari)I I Ur fP 1i1ur M111 fl)11 NOTES: Column 1: Transientnumberidentification.

Column 2: Time during transient where a maxima or minima stress intensity occurs from P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V. OUT output file.Column 4: Maxima or minima membrane plus bending stress intensity from P-V. OUT output file.Column 5: Temperature per total stress intensity.

Column 6: Pressureper Tablel offi].Column7: Total pressure stress intensity from the quantity(Column 6 x 11490)/1000.

Column 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 11350)/I 000.Column 9: Total external stress from calculation in Table 1, 5708.89 psi*(Column 5-70°F)/(575F

-70'7).Column 10: Same as Column 9, but forM+B stress.Column 1 I: Sum of total stresses (Columns 3,7, and 9).Column 12: Sum of membrane plus bending stresses (Columns 4, 8, and 10).Column 13: Number of cycles forthe transient (60 years)., File No.: VY-16Q-306 Revision:

A Page 17 of 29 F0306-01RO NEC041720 Structural Integrity Associates, Inc.Table&6 Fatigue Results for Blend Radius (60 Years)LOCATI(FATIGUE CUR'ON = LOCATION NO. 2 -- BLEND RADIUS E= (1 = CARBON/LOW'ALLOY, 2 = STAINLESS STEEL)m= 2.0 n= .2 Sm= 26700. psi re = 3.000E+07 psi ls = 2.670E+07 psi<t = 1.00 /Eanalys MAX.55601.53822.51017.48905.46249.40607.----39965.38737.38243.37757.37757.36291.36291.36273.36273.35954.35954.>35954.35954.35954.35837.35658.35658.35556.35556.34973.34973.34926.34843.34843.34843.,.34843.34834.34834.34831.34829.34829.34829.34829.34829..34825.34825.34825.MIN-17.-17.-17.-17.-17.-17..17 --17.-17..-17.476.476.1548.1548..1548.1548.1548.1548.1844.1926.1926.1926.11988.11988.12.180.12 1?0.20655.20655.20655.25750..27368.28113.28113.28113.28113.28 113.29216.31990.31990.31990.31990.31990.3i99g0.RANGE 55618.53839.51034.48922.46266.40623...3-9982.38754.382 60.37774.37281.35815.34743.34725.34725.34405.34405.-34405.34110.34028.33911.33732.23670.23568.23376.22793.143 18.14271.14188.9093.7475.6730.6721.6721.6718.6716.5613.2839.2839.283'9.2835.2835.2835.MEM+BEND Ke 37422. 1.000 48047. 1.000 44087. 1.000 52579. 1.000 48374. 1.000 36626. 1.000 390927 1.000.40300. 1.OO0 37242. 1.000 37735. 1.000 37314. 1.000 36492. 1.000 35231. 1.000.35143.. 1.000 35143. 1.000 35054. 1.000 35054. 1.000 35054. 1.000 34858. 1.000 34917. 1.000 34978. 1.000 34661. 1.000 26901. 1.000 27109. 1.000 28326. 1.000 27831. 1.000 16974. 1.000 17051. 1.000 16887. 1.000 17221. 1.000 5178. i1.000 3789., 1.000 3784. 1.000 3784. 1.000 3782. 1.000 3781. 1.000 3878. 1.000 1543. 1.000 1543. 1.000 1543. 1.000 1541. 1.000 1541. 1.000 1541. 1.000 Salt Napplied 31246. 1.000E+00 30247. 1.000E+01 28 671. i.000E+01 27484. 1.000E+00 25992. .1001E+0 22822. i.OOOE+01 22462. i. 000E+01 21772. 6.000E+01 21494.- 1, 000E+01 21221. 7.OOOE+00 20945. 2.930E+02 20121. 7.0OOE+U0 19518. 3.000E+00 1508. 6.O00E+01 19508. 1.000E+00 19329. 5.600E+01 19329. 1.OOOE+00 19329. 1.000E+00 19163. 1.400E+01 19117. 2.280E+02 19051. 1.O00E+01.18951. 6.200E+01 13298. .1.660E+02 13240. 1.340E+02 13133. 1.660E+02 12805. 1.340E+02 8044. 1.660E+02 8018. 1.O00E+01 7971. 1.240E+02 5108. 1.400E+01 4199. I.000E+01 3781. 1.520E+02 3776. 6.000E+01 3776. 1.000E+00 3774. 1.000E+01 3773. 7.700E+01 3153.. 1.000E+01 1595. 6.000E+01 1595. 1.000E+00.

1595. 8.000E+01 1593. i.O00E+01 1593. 6.000E+01 1593. 1.000E+O0 Nallowed 1..947E+04 2.157E+04 2. 542E+04 2.894E+04 3.435E+04 5.196E+04-5. 623E+04 6.564E+04 6.995E+04 7.453E1+04.

7.954E+04 9. 705E+04 1.092E+05 1. 094E+05 1.094E+05 1. .13 iE+05 1.131E+05 1.131E+05 1. 167E+05 1.177E+05 1.191E+05 1.214E+05 5. 72 8E+05 5.955E+05 6.411E+05 8.050E+05 7.421E+07 7.618E+07 7.983E+07 1. 000+/-E20 1.o00E+20 1.000E+20 1. 00 0E+20 1.000E+20 1.O00E+20-1.O00E+20 1.O00E+20 1.000t+20 1.000E+20 1.O00E+20 1.O00E+20 1.000E+20 1.000E+20 U.0001.0005.0004..0000,.0000.0002.0002.0009.000i1.oooi.000 1.0037.0001.0000.0005.0000.0005.0000.0000.0001.0019.0001.0005.0003.0002.0003.0002.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000(.0000.0000.0000.0000.0000.000 0.0000 File No.: VY-16Q-306 Revision:

A Page 18 of 29 F0306-OIRO NEC041721 Structural integrity Associates, Inc.34825.34825.34825.34825.34825.3,4646.34646.34646.34646.34646.34646.34646.34646.34646.34646.34646.31990..31990.32634.32634.32634.32634.33386.33581.33709.33822.33924.33924.34124.34331.34413.34592.2835;.2835.2191.2191.2191.2012.1260.1065.937.824.722.722.522.315.232.54.1541.-1541.2355.2355.2355.2695.1578.1120.1137.1455.1228.1310.1067.3398.-569.-130.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.1.000-1.000 1.000 1i000 1593.1593.1231.1231.1231.1130.708.598.526.463.406.406.293.177.131.30.1.400E+01 6.300E+01 6. 000E+01 1. 000E+00 1.040E+02 1. 240E+02 1. O00E+oe 1. 000E+01 I.000E+01 1. 000E+00 1.000E+00 1.000E+00 1. 000E+01 1. 000E+01 1.200E+02 1.200E+01 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1. 000E+20 1.000E+20.0000.0000..0000.0000.0000.9000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 TOTAL USAGE FACTOR = .0109 File No.: VY-16Q-306 Revision:

A.Page 19 of 29 F03060-OIRO I-NEC041722 Structural Integrity Associates, Inc.Table 7: Fatigue Results for Safe End (60 Years)LOCATION = LOCATION NO. 1 -- SAFE END FATIGUE CURVE = 2. (1 = CARBON/LOW ALLOY, 2 = STAINLESS STEEL)m= 1.7 n= .3 Sm 17000. psi Ecurve. 2.830E+07 psi Eanalysis

= 2.700E+07 psi Kt = 1.53 MAX 82580.31546.31546.31546.25988.--2.5730.18521.17960.17956.17956.17956.17948.17948.17948.17620.13174.12300.12300.6956.5393.* .5393.5393.4762.4605.4605.4605.4605.-4518.4198.4130.390.9.3486.3485.3485.3419.3419.3419.3292.3292.3292.3135.3135.3086.MIN RANGE MEM+BEND Ke Salt Napplied Nallowed U-7469.-7469.-5010.-2934.-2934.-2934.--2934.-2934.-2934.-2741.-1264.-1264.-339.-339.-339.-339.-339.-157.-157.-157.-133:.136.136.136.136.136.235.235.235.235.235.235.235.235.235.235.909.909.909.909.909.1029.1029.900.49.39015.36556.34480.28922.-28664.-.21455.20894.20890.20697.19220.192 12.18287.18287.17959..13513.12639..12456.5550.5526.5258.4626.4469.4469.4469.4370.4283.3963.3895.3674.3251.3250.3250.3184.3184.2511.2384.2384.2384.2226.2106.2058.66991. 2.045 33281. 1.000 28040. 1.000 28849. *1.000 24217. 1. 000-23354.--.-000-9572. 1.000-9201. 1.000 9197. 1.000 8846. 1.000 7194. 1.000 ,7189. 1.000 6240. 1.000 6240. [.000 17740. 1.000 11053. 1.000 12485.. 1.000 12341. 1.000.7125. 1.000-1219. 1.000-1293. 1.000-2126. 1.000 3924. 1.000-3153. 1.000 3153. 1.000 3153. '1.000 3636. 1.000 3880. 1.000 3977. 1.000 3783. 1.O000 3172. 1.000 3251. 1.000 3246. 1.000 3246. 1.000 3483. ,1.000 3483. 1.000 3179. 1.000 2472. 1.000 2472. 1.000 2472. 1.000 2535. 1.000 2310. 1.000 2219. 1.000 134573.29691.26947.26083.21884.-2-1-509.-

13903.13505.13502.13304.12071.12065.11317.11317.14339.10152.10092.9956.5706.2570.2537.2165.3514.3218.3218.3218.3300.3322.3181.3092.2806.2 607.2 605.2605.2636.2636.2199.1936.193 6.1936.1871.1746.1695.1.000E+00 9. 000E+00 1. 000E+00 0. OOOE+00 1 *000E+01--1-.000E+0 2. 280E+02 1.000E+01 4.200E+01 1. 400E+01 2. 440E+02 5.600E+01 4.000E+00 1. 000E+00 1. 000E+00 1. 400E+01 1.000E+02 2. OOOE+O1 1. O00E+00 2.790E+02 1.400E+01 7. 000E+00 1.000E+01 4.300E+01 1. O00E+00 2.280E+02 2. 600E+01 1.000E+01 6.000E+01.1.000E+01

1. OOOE+01 1.O00E+00 1. 000E+00 0.000E+00 1. 000E+00 1. OOOE+00 8.000E+00 6.000E+01 1.000E+00 2.280E+02 3.000E+00 7. oooE+00 7.000E+00 6.765E+02 6.857E+05 1. 160E+06 1.290E+06 2.383E+06-2-.-566E+06-9.7101E08 1.O000E+20 1.O00E+20 1.000E+20 1.000E+20 1.O00E+20 1.000E+20 1. 000E+20 4.798E+07 1. 000+E20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.O00E+20 1.O00E+20 1.O00E+20 1.O00E+20 1.000E+20 1.O00E+20 1.O00E+20 1.O00E+20 1.O00E+20 1.O00E+20 I. 000E+20 1.O00E+20.0015.0000.0000.0000.0000--.0000-.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000'.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000+.0000.0000.0000.0000.0000.0000..0000.0000 Page 20 of 29 File No.: VY-16Q-306 Revision:

A Page 20 of 29 F0306-0IRO NEC041723 Structural Integrity Associates, Inc.3086.2809.2783.2783.2783.2783.2783.2783.2780.2780.2780.2780.2780.2780.2763.2762.2762.2762.2762.2762.2762.2500.2496.2496.2487.2487.1376.1376.1376.1732.1793.1958.1958.1958.1958.2104.2352.2352...2352.2352.2352.2352.2352.2352.23 52.2441.2441, 2441.2441.2445.2445.2487.1710.1433.1407.1051.990.825.825.825.822.676.428..428.428.428.411.410.410.410.210.-321.321.59 55.51.42.0.13.61.1091.1187.860.208.811.811.811.808.576.416.416.416.416.403.403.403.403.403.443.443.181."177.181.175.O.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.-00-0 1. 000 1-000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 1274.1054.1067.790.576.658.658.658.655.514.340.340.340.340.327.327.327.327.--327.291.291L 81.78.77.71.0.2.2 10E+02 1. OOOE+01 6. 900E+01 1. OOOE+01 1.000 E+01 6. OOOE+01 1. OOOE+00 7. 800E+01 1. 510E+02 1.OOOE+01 1. 390E+02 1. OOOE+01 6. OOOE+01 1. 000E+00 1. OOOE+01 1. O00E+01 6. OOOE+01 1. OOOE+00 9. 000E+00 5. OOOE+00 2. 280E+02 1.OOOE+01 5.700E+01 2.43oE+02 5. 700E+01 3. 000E+00 1. O00E+20 1. OOOE+20 1.OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1.OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1.00OE+20 1. OOOE+20 1. OOOE+20 1.OOOE+20 1. OOOE+20 1. OOOE+20 1. 00E+20_1. OOOE+20 1. 00E+20 1. 000E+20 I* OOOE+20 1. 00OE+20 1. O00E+20 1.OOOE+20.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 X0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0015 1~TOTAL USAGE FACTOR =A File No.: VY-16Q-306 Revision:

A Page 21 of 29 F0306-OIRO NEC041724 Structural Integrity Associates, Inc.Table 8: Material Properties

@ 400°F Material hMn-1/2Mo-314N!-1-2Mo-Cr-SNi 16Cr-12N-___ 1/2Ni 1/3cr-V _2Wo *_Modulus of Elasticity, e-6 274 26.1. 26.5 26.5 psi Coefficient of Thermal. ". 7 Expansion, e-6, inAnr°F Thermal ConductiMty, 23.1 23.1 104 9.8.Btuthr-ft-0 F 23.1 2.3.1 10.4 9.8.Thermal Diffusivity, ft/hr 0.378 0.378 0.165 0.155 Specific Heat, Btu/lb-_F 0.125 0.125 0.129 0.129 Density, In/in. 0.283 0:283 0.283 0.283 Poisson's Ratio 0.3 0.3 0.3 0.3 Notes: Material Properties are evaluated at 400°F from the 1998 ASME Code,Section II, PartD, with2000'Addenda, except for density and Poisson's ratio, which are assumed typical values. The safe epd material properties were used for 300 0 F, the average temperature for the safe end for transient 9.C File No.: VY-16Q-306 Revision:

A Page 22. of 29 F0306-O1RO NEC041725 Structural Integrity Associates, Inc.r1,1 Figure 1: External Forces and Moments on the Recirculation Outlet Nozzle* (r .File No.: VY-1,6Q-306 Revision:

A Page 23 of 29 F0306-OIRO NEG041726 Structural Integrity Associates, Inc.-" Region3 #RIgi 2 /" T~ram ANI APP. 19 2007:I Region 4 I L~ZZIIEIIIIII 14 Regioni "'I'C ( ...Reci.rc Out~et Nozzle Finite Rlement Model Figure 2: Nozzle and Vessel Wall Thermal and HeatTransfer Boundaries File No.: VY-16Q-306 Revision:

A Page 24 of 29 ,F0306-01RO NEC041727 Structural Integrity Associates, Inc."" Temp (') -1 Pmesure (p4s Goa. .11nn a--95a a-o ,don -,, ..700"--ao 300 30090 * £0 20.im ll,, (Iooldo -.-in + too-Ten ) --35 555 1120a-1040 660 --120 1040 1- 00 5400 630 --32-240 , , 80 620 0 --0 0 60 100 150 200 .2W 3 360 4W 450 600 Time (seccond)Figure 4: Transient2

-Turbine Roll and Increase to Rated Power File No.: VY-16Q-306 Page 25 of 29 Revision:

A F0306OIRO NEC041728 Structural Integrity Associates, Inc.6111 6500 I-TeMp C-FY -Pregssmr 090 4W 350 E311 a.r 50 71D80.1040-1000-9O0-920-830-840-W2-60,-1203-eta-640]-6W =-480-320-230-240-200-160-120-80-40 2W1 ISO 103 so 13 2tD0 6001 WOO 10000 Time (iocondi]Figure 5: Transient 3 -Loss of Feedwater Heaters and Turbine Trip 25% Power I- Temp(')- -pressre px 600" 12M1_1240-12Wn Sao., -Ilam ""-- ,,,--locoH too- 4 --aom 3ar -96D 500 " 40 540E i-* 1 " .0D¢DDD 71WM IW ( DD* lm'e (mecondui)

Figure 6: Transient 4 -Loss of Feedwater Pumps FileNo.: VY-16Q-306.

Revision:

A Page 26 of 29 F0306-OIRO NEC041729 Structural Integrity Associates, Inc.-TeMp(7) --Ftas$efI

-sp-555 545 L540 E535 125 I --i-. I1 ,M-1150.10D0-95m-SUm.em* 8111-'SM.5w0.5tm-4M.3w ,2M 2M3 I6w 52D 01 0 100 1m0 1500 Time (i esofd i)22DD 2W0O Figure '7: Transient 5- Turbine Generator Trip-Temp pCO --Pmus i a' Wt D1 IDO al-E-.ImD-1400-1300*l100-Imll g a1l3*512-n L m m m m m m m m m m l m ~ a..313"03 SD SE em Sn 233 em Ia I I sm tam ,ISM lime (mIcondm)2,M 25M Figure 8: Transient 6 -Reactor Overpressure File No. VY-16Q-306 Revision:

A Page 27 of 29 F0306-OIRO NEC041730 Structural Integrity Associates, Inc.I-Temp (¶) --Pressure(pi 1100 400 3.I 200.100'0 4000 6000 8000 10000 Time (seca-ds)Figure 9: Transient 7 -SRV Blowdown-I-Terp (F) --Prere (pug)12000 E 200-700-600 0 1000 2000 30C0 4000 5000 rime (secc]ds)Figure 10: Transient 8 -SCRAM Other FileNo.: VY-16Q-306 Revision:

A Page 28 of 29 F0306-OIRO NEC041731 Structural Integrity Associates, Inc.I TeMp M) --FreSsi% OO 3m 20M IUD01 1100_900-am+-600 8600 700 3m0-201-011 G U *U a 1D .21 30 40 so-nmo (nocorln)Figure 11: Transient9-I-TempCF)- -Pies 60 ?a 80a 9s 1D mp rop er Startup Simt 4)SIM 600-11I00* 1000 P30 D t3.m IDD a 20D1 4000 60 001. 10001 1200 .14000 16.I0D lime (mecorME)Figure 12: Transient 10- Shutdown File No.: VY-16Q-306 Revision:

A Page 29 of. 29, F0306-OIRO NEC041732 V Structural integrity Associates, Inc.APPENDIX A YFES OF FINITE ELEMENT ANALYSIS File No.: VY-16Q-306 Revision:

A Page Al of A2 F0306-1IR0 NEC041733 Structural integrity Associates, Inc.RON VY T T9.lIP Input File for Transient 9 Thermal Analysis -In Computer files RON VY S T9.INP Input File for Transient 9 Stress Analysis In Computer files LFSE.OUT Stress Output at Safe End In Computer files LFBR.OUT Stress Output at Blend Radius In Computer files LFSE INSIDE.RED Stress Extracted at Safe End In Computer files LFBR INSIDE.RED Stress Extracted at Blend Radius In Computer files LFSE T.XLS Stress Results with Total Stress at Safe End In Computer files LFSE M+B.XLS Stress Results with Membrane plus Bending Stress at In Computer files Safe End LFBR T. XLS Stress Results with Total Stress at Blend Radius In Computer files LFBR-M+B.XLS Stress Results with Membrane plus Bending Stress at In Computer files S-_ _ .Blend Radius File No.: VY-16Q-306 Revision:

A Page A2 of A2 F0306-01RO NEC041734 Exhibit I V Structural Integrity Associates, Inc. File No.: VY-16Q-7306 CALCULATIONPACKAGE ProjectNo.:

VY-16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 PLANT: Entergy Vermont Yankee,'LLC Vermont Yankee Nuclear Power Station <CALCULATION TITLE: Fatigue Analysis of Recirculation Outlet Nozzle D Project Manager Preparer(s)

&ReviRev isPion D escription Approval Checker(s)

_evis__Pges__* "S Signature

& Date Signatures

& Date A- 1-29, Draft for Review Terry J. Herrmann J. E. Smith Appendix: Al-A2 Minghao Qin\/Page 1 of 28.F0306-0IRO NEC041735 structural Integrity Associates, Inc.Table of Contents

1.0 INTRODUCTION

................................................................

4 2.0 M ETH OD OLOGY .......................................................

4 3 .0 A N A L Y SIS ."... .. '."...-...........

..........

.... ...............................

.............

4 4.0 CALCULATION OF THERMAL STRESSES FOR TRANSIENT 9.........................................

8 5.0 FATIGUE USAGE RESULTS ......................................

.........................

11 6.0 ENVIRONMENTAL FATIGUE ANALYSIS.., ..............

................................. -m ... 11 7 .0 R E F E R E N C E S .............................................

..... .......................................................

1 1 APPENDIX A FILES OF FINITE ELEMENT ANALY SIS ...........................

1 List of Tables Table. 1: Table 2: Table 3:.Table 4: Table 5: Table 6: Table 7: Table 8: Maximum Piping Stress Intensity Calculations

.....................

......13 BlndRaiu Transients................................

............

14 B len d R adiu s T ran sients ........ :..........

............

i .........

... .............

i........

".........

..............

.. ..............

14 S afe E n d T ran sients ..........

................

...... ".........

..................................

15 Blend Radius Stress Summary .......................................

16 Safe End Stress Sum m ary ...........................

....................

.................

17 Fatigue R esults for B lend Radius (60 Y ears) .............................

1.....................

....................

18 Fatigue Results for Safe End (60 Years) ... ..........

.......................

..................

20 M aterial Properties , 400 'F ......................................

..........................

..............

22 File No.: VY-16Q-306 Revision:

A Page 2 of 29 F0306-OIRO NEC041736 V Structural Integrity Associates, Inc.List of Figures Figure 1.: External Forces and Moments.on the Recirculation Outlet Nozzle ..... ....................

.... 23 Figure 2: Nozzle and Vessel 'Wall Thermal and Heat Transfer Boundaries

........ ..........................

.24 Figure 3 Transient 1 -N orm al Startup at 100 0 F/hr. 2..5.......................................

7 ..............................

25 Figure 4: Transient 2 -Turbine Roll and Increase to Rated Power ...............................................

25 Figure 5 Transient 3 -Loss of Feedwater Heaters and Turbine Trip 25% Power ... .26 Figure 6 Transient 4 -Loss of Feedwater Pumps.. .............................

' .26 Figure 7 Transient 5 -Turbine Generator Trip ................

.. ................................

27-Figure 8.Transient 6-Reactor Overpressure, ..................................

.........

27 Figure 9 Transient 7 -SRV Blowdown .............

28 Figure'10:

Transient8 SCRAMOth.er

.......................................

28 Figure 11; Transient 9 -Im proper Startup ...............

29 ................................

..... : ...................

29 Figure 12: Transient 10 -Shutdown ..................

...... ...... .....................................

29 , File No.: VY-16Q-306 Revision:

A Page 3 of 29 F0306-OIRO NEC041737 Structural Integrity Associates, Inc.

1.0 INTRODUCTION

The purpose of this calculation is-to perform a revised fatigue analysis for the Entergy Vermont Yankee (VY) reactor pressure vessel (RPV) recirculation outlet nozzle. Two locations will be analyzed for fatigue acceptance:

the safe end (SAl 82 F316) and the nozzle inner comer blend radius (SA508 Class 2). Both locations are chosen based on the highest overall stress of the analysis performed in Reference

[I]. Fatigue usage will.be determined for each location, the nozzle forging and safe end, respectively.

An environmental fatigue usage factor will also be determined for each of these locations.

2.0 METHODOLOGY

Three programs will be used to perform the fatigue analysis.

The first two calculate stresses in response to thermal transients, The 12 transients to be analyzed are described in References

[2 through 4], for the recirculation outlet nozzle. Transients I tol 0 are shown in Figures 3- 12. The last program calculates fatigue based on the transient stress output from the first two programs.

The three programs are.STRESS.EXE, P-V.EXE, and FATIGUE.EXE.

All three programs are explained and verified for generic use in Reference

[5].3.0 ANALYSIS The fatigue analysis irivolves preparing the input files and running the three programs.

The programs STRESS.EXE and P-VEXE are run together through the use of a batch file. The program FATIGUE.EXE is run after processing the output from P-V.EXE: The steps associated with this process are described in the following sub -sections.

3.1 Transient

Definitions (for program STRESS.EXE)

The program STRESS.EXE requires the following three input files for analyzing an individual transient:

  • GREEN. DAT. There are 12 stress history functions (Green's Functions) obtained from Reference[1]. They represent the membrane plus bending and total stress intensities at the blend radius and safe end locations.

The blend radius and the safe'end have three stress history functions for the 100% flow, 50%, and no-flow conditions.

  • GREEN. CFG is configured as described in Reference

[5]* Several TRANSNT.]NP files are created to simulate the transients shown on References

[3 and 4].Tables 2 and 3 show the thermal history used to simulate each transient for the blend radius and safe end locations, r~spectively.

The aforementioned transient information for each location is contained in EXCEL files BlendRadiusTransientsxls and Safe EndTransients-xs, which are contained in the computer files. Transients are split into the following groups based upon flow rate:* Transients 2, 3, 5, 6,7, and 8 are run at 100% flow Green's Function File No.: VY-16Q-306 Page 4 of 29 Revision:

A F0306-01RO.NEC041738 Structural Integrity Associates, Inc.* Transients 1 and 10 are run at 50% flow Green's Function* Transient4 is run atno flow, 50% flow, and 100% flow Green's Functions, as shown in Tables 2 and 3.Transient 9 is simulated by ANSYS [11 ] model and the thermal results are taken from ANSYS directly.

See Section 4 for details.Transients 11 -and 12 have only small temperature change (7CCPF to 100"F). Therefore, the thermal stresses for these two transient are ignored. Only the piping load and the pressure load are considered in these two transients.

The loss of feedwater heaters (Feedw ater Heater Bypass) event has a negligible temperature change (526 OF to 516 OF) associated with it Therefore this transient is ignored.3.2 Peak and Valley Points of the Stress History (for program P-V.EXE)After STRESS.EXE runs are completed, the program P-V.EXE is run to extract only the peaks and valleys from the STRESS.OUT stress history file produced by the STRESS. EKE program The only input required for this program is the stress history file (STRESS.OUT), and the program outputs all of the resulting peaks and valleys to output file P-V. OUT. The resulting peak and valley stress summaries for all transients are summarized in Tables 4 and 5 for both locations.

Columns 2 through 5 of Tables 4 (for the blend radius) and 5 (for the safe end) show the final peak and valley output after it has been reduced to eliminate any unrealistic stress fluctuations.

These final peaks and valleys were selected from the total stress and membrane plus bending stress intensities that Were calculafed by STRESS. EXE and screened with P-V.EXE .3.3 Pressure Load The, pressure stress associated with a 1,000 psi internal pressure was determined in Reference

[I.These values are as follows: Pressure stress for the safe end:* .11350 psi membrane plus bending linearized stress intensity.

  • 11490 psi total stress intensity.

Pressure stress for the blend radius:* 33640 psi membrane plus bending linearized stress intensity.

  • 3l300 psi total stress intensity.

The pressure stress' intensity values for each transition were linearly scaled based on the pressure for each transition.

The actual pressure for column 6 of Tables 4 and-5 is obtained from Reference

[3].The scaled pressure 'stress values are shown in columns 7 and 8 of T ables 4 and 5.The pressure stress is combined with the peak and valley pointsto calculate the final stress values used for fatigue analysis.File No. :,VY-16Q-306 Page 5 of 29 Revision:

A F0306-oIRO NE0041739 Structural Integrity Associates; Inc.3.4 Attached Piping Loads Additionally, the piping stress intensity (stress caused by the attached piping),was determined.

These piping forces and moments are determined as shown in Figure 1.The following formulas are used to determine the maximum stress intensity in the nozzle at the two locations of interest.

From engineering statics, the piping loads atthe end of the model can be translated to the first and second cut locations using the following equations:

For CutlI: A (M,) =1M1 + ". '(M,)2 =M.- _F'vL2 For Cut II: (M.,)2= M,+ F, L 2-The total bending moment and shear loads are obtained using the equations below: For CutI: ,, -(F7)1 2 +(,)For Cutl: M =II:= ($) 2+(F)22 The distributed loads for a thin-walled cylinder are obtained using the equations below: 1F M .To determine the primary stresses, Pm, due to internal pressure and piping loads, the following equations are used.For Cut I, using thin-walled equations:

File No.:.VY-16Q-306 Page 6 of 29 Revision:

A F0306-01RO NEC041740 Structural Integrity Associates, Inc.P a ký " Hz 2tN t Nf PaN (PMP qN tN=la 2jQ .) (Pi) + (r.M)o-or SIMAX= 2 1 (Pu) <P- (2 +2 (r)Because pressure was not considered in this analysis, the equations usedfor CutI are valid for Cut HI.where: L, = The length from the end of the nozzle wherethe piping loads are applied to the location of interest in the safe end: L1 =The length from the end of the nozzle where the piping loads are applied to the location of interest in the blend radius.My = The maximum-bending moment in the xy plane.F., = The maximum shear force in the xy plane.Ný = The normal force per inch of circumference applied to the end of the nozzle in the z direction.

qw The shear force per inch of circumference applied to the nozzle.R = The mid-wall nozzle radius.Per Reference

[7], the recirculation outlet nozzle piping loads are as follows: F, = 20,000 lbs K= 2,004,000 in-lb Fy = 20;000 lbs My= 3,000,000 in-lb F7 = 30,000 lbs MvI= 2,004,000 in-lb Li is equal to 4.25 inches and the L2 is equal to 42.77 inches. The calculations for the safe end and blend radius are shown in Table 1., The first cut.location is the same as the Green's Function cross section per [1],at the safe end, and the second cutis from Node 3829 (inside) to Node 3809 (outside).

This gives the maximum ID and minimum OD for the cross section calculation.

The maximum stress intensities dueto the piping loads are 5708.89 psi at the safe end and 280.16 psi at the blend radius.File No.: VY-16Q-306 Page 7 of 29 Revision:

A-F030J6-OIRO NEG041741 Structural Integrity Associates, Inc.These piping stress values are scaled assuming no stress occurs at an ambient temperature of 70'F, and the full values are reached at reactor. design temperature; 575°F [6]. The scaled pip ing stress values are shown in columns 9 and 10 of Tables 4 and5. Columns 11 and 12 ofTables4 and 5 show the summation of all stresses for each thermal peak and valley stress point.3.5 Fatigue Analysis (for program FATIGUE.EXE)

The number of cycles projected for the 60-year operating life is used for each transient

[2]: Column 13 in Tables 4 and 5 shows the number of cycles associated with each transient.

The number of cycles for 60 years was obtained from Reference

[2] unless otherwise noted.The program FATIGUE.EXE performs the "ASME Code style" peak event pairing required to -calculate a fatigue usage value. The input data for FATIGUE. CFG is as follows: Blend Radius Safe End Parameters m and n for Z0 &0.2 (low. 1.7 &.0.3 Computing Ke alloy steel) [9] .(stainless steel)'[9]

Design Stress Intensity 26700 psi 9] 17000 psi [9]Values, Sp 9p Elastic Modulus from OX106 1 '6 Applicable Fatigue Curve 30 .. p Elastic Modulus Used in 26.7X10 6 psi [61] 27.OxlOpsi

[1]Finite Element-Model, The Geometric Stress , 1[F Concentration Factor Kt '1.0 1.57 [7]The results of the fatigue analyses are presented in Tables 6 and 7 for the blend radius and safe end for 60 years, respecdtiv ely.The fatigue run inputs described are contained in EXCEL files BRreszdtsxls and SEreszdts.ts, which are contained in the computer files.4.0 CALCULATION OF THERMAL STRESSES FOR TRANSIENT 9 Per Tables 2 and 3, the thermal shocks are from 526"F to 268°F and from 526'F to. 30F at the blend radius and the safe end, respectively..

Therefore, the average temperatures for these two locations are about 40CF and 330 0 F. Since there are two different temperature shocks in the same model,-the previous method (Green Functions) is hard to be used for this particular transient In this section, ANS YS [11] will simulate this transient and the thermal results willlbe app lied in Tables 4 and 5.An additional casewas also run to simulate the uphill (RPV) side of the blend radius, where the thenmal shocks are from 526CF to 130°F atthe safe end, and no temperature change at the blend File No.: VY-16Q-306 Revision:

A Page 8 of 29 F0306-O1R0 NEC041742

-N Structural Integrity Associates, Inc.radius. The stresses produced by this case were found to be lower thanthe previous case. The 268 0 F" shock case was used for all the following analysis.4.1 Thermal Load Since the average temperatures in the blend radius and safe end respectively are 400 0 F and 3300F, the material properties for 400tF are used for the blend radius, cladding and vessel. Table 8 Shows.the material properties at400°F. The flow rate at this transient is 3395.2 [4] GPM shown in Tables 2 and 3.Heat transfer coefficients listed on Reference 6 of T9 ate for pre power uprate. The heat transfer coefficients can be scaled by power uprate flow rate and diameter to values corresponding to the flow and location conditions.

Referring to Figure 2, heat transfer coefficients were applied as following:

Region I Per [7, Section T9], the heat transfer coefficient at S0OPF, h, for 3395.2 GPM (2084 [bs)flow. is 491 = 672.8 BTU/hr-ft 2-°F.Per [7, Section T9], the heat transfer coefficient at 100YF, h, for 3395.2 GPM (2 084 ftbs)flow is (9flQA\ OB 2250-2 = 308.24 BTU/hr-fP 2-T'.The fluid temperature shock is., T =526°F -.130°F -526 0 F Region 2 Per [7, Section T9], the heat transfer coefficient at 500 0 F,.h, for 3395.2 GPM (2.084 ft/s)flow is (Z..84) as 2 0.2 4911-2 = 632.21 BTU/hr-ft 2-oF..-25) "(35.49)Per [7, Section T9], the heat transfer coefficient at 300F, h, for 3395.2 (1PM (2.084 [fbs)flow is File No.x:VY-16Q-306 Page 9 of 29 Revision:

A F0306-O1RO NE0041743 Structural lntegrity Associates, Inc.4789. C 02.084 B( 26 25 T5.49)6.16.57 BTU/hr-1f&2-.F.

The fluid temperature shock is: T =526TP -268OF -526OF Region 3 Per [7, Section T9j, the heat transfer'coefficient at500°F, h, for 3395.2 GPM flow is 67Z8(0.5)=

336.4 2-F.Per [7, Section T9], the heat transfer coefficient at 300 0 F, h, for 3395.2 GPM flow is 336.4 328.04BTUjhr-t 2?oF.The fluid temperature shock is:.Case : T = 526CF- 268 0 F -526WF Case2: T-= 526F Region 3 The heat transfer coefficient, h, is 0.4 BTU/hr-ft 2-°F [7, Section T9].The temaperature is: T =120°F 4.2 Thermal Results The flow dependent thermal load case outlined in Section 4.1 was run on the finite elementmodel.

Appendix A contains the thermal transient input file VYRONTT9.INP for 3395.2 GPM flow rate. The flow dependent input files for the stress run is also included in Appendix A. The stress filename is VY RON S T9.IN'P for 3395.2. (PM flow rate.The critical safe end and blend radius locations defined in Reference

[1] with node 6395 and 3829, respectively.

File No.: VY-16Q-306 Revision:

A Page 10 of 29 F0306-01RO NEC041744 structural Integrity Associates, Inc.The stress time histoiy for the critical paths was extracted during the stress run. This produced two files, T9SE.OUT and T9BR. OUT, which contain the thermal stress history. The membrane plus bending stresses and total stresses were extracted from these. files to produce the files T9SE Inside.RED and T9BR._InsideRED, where SE and BR corresponded to the safe end and blend radius locations, respectively.

The data for the stress results is included in the files T9BR M+B.xls, T9BR_T.xls, T9SEM+B.xls, and T9SET.xls in the project Files. Where SE and BR corresponded to the safe end and blend radius locations, respectively.

M+B and T corresponded to membrane plus bending stress and total stress, respectiv ely.5.0 -FATIGUE USAGE RESULTS The blend radius cumulative usage factor (CUF) from system cycling is 0.0109 for,60 years. The safe end CUE is 0.0015 for 60 years.6.0 ENVIRONMENTAL FATIGUE ANALYSIS Per Reference

[12], the dissolved oxygen. (DO) calculation shows the overall hydrogen water chemistry (HWC) availability is 47%. This means the time ratio.under-normal water chemistry, (NWC, or pre-HWC) is 53%..For the safe end location, the environmental fatigue factors for post-HWC and pre-HWC are 15.35 and 8.36 from Table 5 of Reference

[12]. These result in an EAF adjusted CUE of (15.35 x 47% +8.36 x 53%) x 0.0015 = 0.0175 for 60 years, which is acceptable (I. e., less than the allowable value of 1.0). The overall environmental multiplier is. 11.6453.For the blend radius location, the environmental fatigue factors. for post-HWC and pre-I-IWC are 2.45 and 12.43 from Table 6 of Reference

[12]. These result inanEAF adjusted CUF of (2.45 x 47% +12.43 x-53%) x 0. 0109= 0.08436 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0). The overall environmental multiplier is 7.73 9.

7.0 REFERENCES

1. Structural Integrity Associates Calculation No. VY-16Q-304, Revision A, "Recirculation Outlet Nozzle Green's Functions" 2. Reference for cycle counts <<LATER>>

Entergy Calculation No. VYC-378, Revision 2,"Ve rnont YankeeReactor Cyclic Limits forTransient Events," 3/10/88, SI File No. VY-16Q-3. GE Drawing No 729E7 62, Revision 1, "Reactor Thermal Cycles," Niagara Mohawk Power Corporation, SI File No. NYPA-78Q-205.

4. GE Drawing No -135B9990, , "Nozzle Thermal Cycles (Recirculation Outlet) Reactor Vessel," File No.: VY-16Q-306 Page 11 of 29 Revision:

A F0306-O1RO NEC041745 Structural Integrity Associates, Inc.5. Structural Integrity Associates Calculation (Generic)

No. SW-SPVF-01Q-301, Revision 0,"STRESS.EXE, P-V.EXE, and FATIGUE.EXE Software VerifiCation." 6 Hitachi, Ltd. Drawing No IOR290-127, Revision 0, "Recirc. Outlet Safe End," SI File No. VY-16Q-204.7. GE. Stress Report No. 23A4316, Revision 0, "Reactor Vessel Recirculation Outlet Safe End," SI File No. VY- 16Q-204.8. Chicago Bridge & Iron Company, Contract No. 9-6201, Drawing No. 21, Revision 4, "36"x28" Nozzles Mk N1ALB," SI FileNo. VY-16QQ-204.

9. ASME Boiler and Pressure Vessel Code,Section II, Materials, Part D, Prop erties, 1998 Edition with 2000 Addenda.10. ANSYS, Release S.1 (w/Service Pack 1), ANSYS, Inc., June 2004.11. Structural Integrity Associates Calculation No. VY-16Q-304, Revision A, "Recirculation Outlet Nozzle Finite Element Model." 12. Structural Integrity Associates Calculation No. VY-1 6Q-303, Revision A, "Environmental Fatigue Evaluation of Reactor Recirculation Inlet Nozzle and Vessel Shell/Bottom Head." 13. American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Sectionll, Part D, 1998 Edition, 2000 Addenda.File No.: VY-16Q-306 Revision:

A Page 12 of 29 F0306-OIRO NEC041746 Structural integrity Associates, Inc.Table 1: Maximum Piping Stress Intensity Calculations Eilend Radius External Piping Loads Parameters F, = 20.00 kips Fy = 20.00 kips F,= 30.00 kips MX= 200400 in-kips My= 3000.00 in-kips 4z= 2004.00 in-kips OD= 55.88 in ID= 37.368 in 23.31 in L= 42.77 in 9.25 in (M 1)2= 1148.54 in-kips (Iv)2 = 3855.46 in-kips MXY = 4022.90 in-kips Fxy= 28.28 kips Nz= 2.56 kipsAn q.= -0.20 kipsinlembrane Stress Intensity_

PMz= 0.28 ksi_ [ -0.02 ksi Smax = 0.28 ksi SIax = 280.16 psi Sat7e End External Piping Loads Parameters Fx 20.00 kips Fy 20.00 kips Fz= 30.00 kips M,= 2004.00 in-kips NI= 3000.00 in-kips~z= 2004.00 in-kips OD= 28:38 in 1D= 25.938 in R, 13.58 in-4.25 in t,= 1.22 in (M)2= 1919.00 in-kips (N9 2= 3085.00 in-kips MXV= 3633.15 in-kips F_,= 28.28 .kips Nz= 6.62 kips/in q,= -1.07 kips/in--rima lembrans stress intensity P Jý= 5.43 ksi I T.= -0.88 ksi Sm=ax = 5.71 ksi l 16708.89 psi Note: The locations for CutI and paths, respectiv ely.Cut II were defined in Reference-[

1] for safe end and blend radius File No.: VY-6Q-306 Revision:

A Page 13.01 ZY F0306-0IRO NEC041747 Structural Integrity Associates, Inc.Table2: Blend Radius Transients Tr*nilent lime TOmp p m* Sfop' Pruue Flo Rsate Translent lim e Temp lime S t op iRumure RowRsIb Number 4.L f° 43 I lop 10PM- NHm ter ift+ .. L. (1]4112 1 fin2I PML.1. Normal Sartfip wlit 0 100 0 141Tr G. ReactorOwrprum inure 0 525 10I0 26294 HNefap a t l1O0Foir 15164 549 16164 1011 OY "1 yjclI1 2 526 2 1376 #ot%)" Soo Cqclm 22164 649 WOn 1010 32 526 Z0 940 2. Turbhns I I aian r 0 549 1010 28294 1332 526 180 940 hinmetO Rated F6wer I 642 1 1010 Q nn%). 2252 549 420 1010 3040c'1.m 601 642 Wo0 1010 2312 549 60 I011a am 626 1 1010 2313 542 I 1010 6612 626. WA). 1010 2913 642 6Mn 1010 1.LoimorFesdoatr 0 526 1010 23294 2914 526 1 1010 Iwotatrl 1010 542 18nn 1010 CnY GOV91 t14 526 Wr1n loin Turbin. Trip2 % Powser 21M0 642 0 1010 7. ISRV Bowdown 0 526 1010 26294 14 Cclem 2460 626 350 1010 14 WV I 1)0 315 601. I1'0 0n)1 3050 526 6100. .1010 1ism[ TO 10850 60 39M0 *642 S00 1010 17563 To WAn 60 m420 542 300 1010 B. SCRAM Oiler 0 525 1010 28294 5600 626 Ian 1010 223 C'"N 1 15 .526 16 940 13)'1210 626 W001 1010 1816 26 180) 940 4. Lo iofFeedwatr 0 626 1010 0 2235 649 43 2 1010 PUmpi 3 526 3 1190 (IM)' 2295 549 60 1010 10 lOCIe 13 626 10 113 .2295 542 I 1lai 233 .O 220 1135 2356 542 60 1010 2213 0on 19 1136 235? 26 1 1010 2W33 130 ISO 885 83? ..625 6WA 1010 65T3 5ED0 430 1135 a. n prop*erilrpl 0 523 1010 .3385 1193 210 420 615 14147 1 qciei 1 2581v 1 1010 (12')'1493 210 31] 65; WY 27 25B.. 26 1011 11093 on 30) 240 23 526 I 1a10 16461 649 6364 1010 EMS 526 WAD i010 16517 649 60 " a101 10. Slutdown 0 549 1010 141 P 18515 542 1 1010 2914 9 S0o C-Clea 6264 31t 5264 110 (POSY 1'118 642 600 1010 (li n%Y 6954 332 6son 8 11119 626 1 1010 16224 1i 9UEW 60 231.19 526 Wan 1010 22224 TO W1) 50 aI TurMe u*neraor Tinp go C,'ce I U 10 16 2o Is3 626 626 626 626 526 2250 2310, 2311 2911549 549 542 542 626 10 15 420 1 I 400 ilUI 1136 940 940 1010'1010 1010 1010 1010 1010 2 tSUj i. [1 1 lH o milic --I an1 1 121 el i t 11Im 12.

13 ut 1it 60 1981 1 -C ci 1663 T%I I j I50 U 103 60 1751 1.TiTe hiltittmperuzb baumedas I 2.TIe timbero1o~les 14.3. 2WF S le buid ladl IstzpemBtre tbrlitamsleut Tibeas ekadl adhlIfk tltmpestlmt1orTiaesus tg.FileNo.: VY-16Q-306 Revision:

A Page 14 of 29 F030-O IRO NEC041748 structural Integrity Associates, Inc.Table 3: Safe End Transients"rlnllent "ime 'mp "ime Stop Preouuro How Rib .lonlent 1m11 Tom p "me Stop FPromur. Flow Nhb.N * ' Numb*r 1.`i,1 4F 4f Lj 1. Nrmal ii twIrW111 1a]m a 14147 n -G ROBztorOwqure 0lr* i

  • 526 1010 23294 HeatiputlooFdr 16164 649 16164 Iola k ) lC'de 2 63 2 1276 [10[',*16 549 7in 1 32 525 30 940 F J n 11054 1010 2M24 1132 526 .IB 9W0 icarge to mIfbd Power 1 $42 1 In (003%)' 2252 549 420 lMID 00 601 $42 am loIn 2312 549 60 101Co 6W .12 1W10 i .2313 542 I 1010 1302 63 1n loin 2913 642 60m 1010 3. Lou, otffoedwztr a Us MIn 254 2914 526 I 1010 Ise b nl 150D 642 1la] 1010 O DD) 3514 525 7oo 1010o TLktlne .1Hip 25% Poweor 21M] 642 3D 1010 F. SWR Dowdown 0 626 1010 3229 1 10 qcle I 2462 526 350 loin 14mclu 600 375 6so ITO 10% IM 31MIND 63 lonl "161 01 1109 6]3916 642 1010 MID 122M i0 1 03 Wi 1262 642 3D 1010 8. ICRA M Oler 0 525 1010 32524 6060 126 ,1010 2 :2z s il i 52.6 16 94,0 6760 05 ?77 linD leis 525 1301 946 4. Lou iuoI"odtflter a 526 1010 a 235 649 423 1010 fzmpu 3 632 3 1190 t]n%) 2295 649 60 1010 10 qelol 13 63 10 1135 2296 542 I 1010 233 31G 22 1131 2356 562 60 1010o 22.13 n 1¶91] 1135 235 $26 1010 i 23953 3 1 80 W5 M31 523 Tim 101i 617i3 son 43M 1135 5. Inpropr slzrlup 0 63 lon 3395 1 TIM3 am 421 616 14141 iqClo 4 1 131' 1 1010 Q 2%y 1 7495 30 3W 66 (0%)' 2r 1301. 26 l100l lma 403] 3613 240 25 526 I 11i10 1646? 649 6314 1010 1 28 526 70] 1010 -16517 649 62 1010 I0. Ihiutioivn 0 549, 1010 14147 16M1 542 1 1010 2534t 300 6254 3W5 .624 ITO ý5o%7" 1?05) 642 601 1010 QI D%)' 606 330 6013 as lIT $39.0 1 loin 16224 10 5362 SO 11759 626 ?0 1010 I122t 1T0 70] SO56 i'] D1 12 0 ?E 0.E.ubisoQCIOIri u.10 Is 30 1831 22W1 2310 2311 2911 2912 312 us 56 630 649 649 542 542 626$63 10 16 62D 1'To 70nn 1135 113S 940 940 1010 1010 11110 1010 io11 203B Tout.120 D!-ClouI-~ 'IA 0 11130 IVgi I qs. I 1it ;a] --oID -- 10 98" j 10 j ,j , Not I: I.Tie liultutltelp-a ltthaite I ausmedlse1oudte slep.2.Tie lUt]yeam [2].3. 13"F tile fl eid l1mpeolre tbf.. teauleit.

Tie Maidr Iash k adriroatlempeagsti Abte .- se trhese ansients are the. same as in Table 2 with the exception c/fthe 700 second steady state time increment that is used The transients In Table 2 are plotted ustng a 6000 second steaa> state Increment.

TYhe difference Is due to the length ofthe Green's Thncton.for the safe end which is shorter compared to the blend Radius.File No.: VY-16Q-306 Revision:

A Page 15 of 29 F0306-OIRO NEC041749 N Structural Integrity Associates, Inc.Table 4: Blend Radius Stress Summalry r 4 r, a 1 I D 1 ..Number Time'll T o t1 l 111 4 P fhi1 (Dill Temp"ture I Pre tuI e*I* mI.a... I I .... I ..s,,i Zrv s, P.Dil P umure I Piiin Sterno atrium (nun null (nul1 piping S Re tri.11 iuml I fn .11 sihe[I c IiQ I ft,.11 (9n --lr~NOTES: Column 1 Transient numberidentification.

Column 2: Time duringtransient where a mamima or minima stress intensity occurs from P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V. OUT output file.Column 4: Maxima or rminima membrane plus bending stress intensity from P-V. OUT output file.Column 5: Temperature per total stress intensity.

Column 6: Pressure per Table I of[i].Colu=m 7: Total pressure stress intensity from the quantity (Column 6 x 31300)/1000.

Column 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 33640)/l 000.Column 9: Total external stress from calculation in Table 1, 280.16 psi*(Column 5-70*F)(575*F

-7007).Column 10: Same as Column 9, but forM+B stress.Column 11: Sum of total stresses (Columns 3,7, and 9).Column 12: Sum of membrane plus bending stresses (Columns 4, 8, and 10).Column 13: Number of cycles for the transient (60. years).File No-. VY-16Q-306 Revision:

A Page 16 of 29 F0306-0IRO NEC041750 V Structural integrity Associates, Inc.TableS5: Safe End Stress Summary 1, 1 2 1 3 1 4 1 5 1 C T -7 I 1 9_ 1 ..0 1 11 I i 12 ,l_Tfsnmisfit Nimber Ell TobI I I Stre i Ih~ull I l l ( il I(Dill TremperauJre Pro eur*F to 101.E0W .1 C .1UWI I PAt CI W , I Stin I 'stp", 1i'll' I l)l'l I (o il I l)intl nID l 1 sall I 01 tfhi I !.,*il t_NOTES: Column 1: Transientnumberidentification.

Column 2: Time during transient where a maxima or minima stress intensity occurs from P-V.OUT output file.Column 3: Maxima or mirnima total stress intensity from P-V.OUT output file.C olumn 4: Maxima or minima membrane plus bending stre ss intensity from P-V. OU T output file.Column 5: Temperature per total stress intensity.

Column 6: Pressure per Table I of l].Column 7: Total pressure stress intensity fiom the quantity(Column 6 x 11490)/l000.

Column 8:. Membrane plus bending pressure stress intensity from the quantity (Column 6 x 11350)/1000.

Column 9: Total external stress from calculation inTable 1, 5708.89 psi*(Column 5-70 0.F)/(575F

-70 0 F).Column 10: Same as Column 9, but'forM+B stress.Column 11 Sum of total stresses (Columns 3,7, and-9).Column 12: Sum of membrane plus bending stresses (Colunmi 4, 8, and 10).Column 13: Number of cycles forthe transient (60 years).File No.: VY-16Q-306 Revision:

A Page 17 of 29 F0306-01R0 NEC041751.

Structural Integrity Associates, Inc.Table 6: Fatigue Results for Blend Radius (60 Years)LOCATION = LOCATION NO., 2 -- BLEND RADIUS FATIGUE CURVE = 1 (I = CARBON/LOW ALLOY, 2 = STAINLESS STEEL)m 2.0 n= .2 Sm = 26700. psi Ecurve = 3.000E+07 psi Eanalysis

= 2. 670E+07 psi Kt = 1.00 MAX MIN RANGE MEM+BEND Ke Salt Napplied Nallowed U 55601.538.22.51017.48905.46249.40607.39965..38737.38243.37757..37757.36291.36291.36273.3 6273.35954.35954.35954.35954.35954.35837.35658.3.5658.35556.35556.34973, 34973.34926.348.43.34843..34843.34843.34834.34834.34831.34829.34829.34829.34829.34829.34825.34825.34825.-17..-17.-17.-17.-17.-17.-17.-17.S-17.-17.476.476.1548.1548..1548.1548 1548.11548.1844.192 6..192 6..1926.11988.11988.12180.12180.20655.20655.20655.25750.27368.28 113.28113.28 113..28113..28113.29216.31990.31990.31990.31990.31990.31990.55618.'53839.51034.48922,.46266..40623.39982.38754..382 60.37774.37281..35815.34743.34725.34725.34405.34405.34405.34110.i 34028.33911.33732.23670.23568.,.23376.22793.14318.14271.14188.9093.7475.6730.6721.6721.6718.6716..i 5613.2839.2839.2839.2835.2835.2835.37422.48047.44087.52579.48374.36626.39092..40300.37242..37735.37314.36492.35231.35143.35143.35054.35054.35054.34858.34917.34978.34661.26901.27109.28326.27831.16974.17051.16887.17221.5178.3789.3784.3784.3782.3781.3878.1543.1543..1543.1541.\1541.1541.1.000 1.000 1.000 1.000o 1. 000 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1'. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 i. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 31246.30247.28671.27484.25992.22822.22462.21772.21494.21221.20945.20121.19518.19508.19508.19329..19329.19329.19163.19117.19051..18951.13298.13240.13133.12805.8044.8018.7971.5108.4199.3781.3776.3776.3774.3773.3153.1595.1595.1595.1593.1593.1593.1. OOOE+00 1. OOOE+01 1. OOOE+01 1. O00E+00 1. OOOE+00 1. O00.E+01 1. OOOE+O1 6. OOOE+01 1.OOOE+01 7. OOOE+00 2 .930.E+02 7. OOOE+O0 3 O0bE+O0 6. OOOE+01 1. OOOE+00 5. 600E+01 1. O00E+00 1. OOOE+00 1. 400E+01 2. 280E+02-I. OOOE+01 6. 200E+01 1. 660E+02 1. 340E+02 1. 660E+02 1. 340E+02 1. 660E+02 1. 000E+01 1. 240E+02 1. 400E+01 1. OOOB+01 1. 520E+02 6. OOOE+01 1. OOOE+00 1. OOOE+01 7. 700E+l01 1. 000E+01 6. OOOE+01 1. OOOE+00 8. OOOE+01 1. OOOE+01 6. OOOE+01 1. 000E+00 1. 947E+04 2. 157E+04 2. 542E+04 2. 894E+04 3. 435E+04 5. 196E+04 5. 623E+04 6.564E+04 6.995E+04 7.453E+04 7. 954E+04 9.705E+04 1.092E+05 1.094E+05 1.094E+05 1.131E+05 1.131E+05 1.131E+05 i. 167E+05 1.177E+05 1.191E+05 I. 214E+05 5.728E+05 5.955E+05 6.4411E+05 8.050E+05 7. 421E+07 7. 618E+07 7. 983E+07 1.00OE+20 1. OOOE+20 1. OOOE+20 1 .O00E+20 1. 000E+20 1. OOOE+20 1. 000E+20.1. OOOE+20 1. OOOE+20 1.000E+20 4.000E+20 1.OOOE+20 1.OOOE+20 1.OOOE+20.0001.0005.0004.0000.0000.0002-.0002.0009.0001.0001.003 7.0001.0000.0005.o0oo..0005.0000.0000.0001.0019.0001.0005.0003.0002.0003.0002.0000.0000.0000.0000.0000.0000.0000.0000.0000.000.0.0000.0000.0000.0000.0000.0000.0000 File No.: VY-16Q-306 Revision:

A Page 18 of 29 F0306-0.IRO NEC041752 Structural Integrity Associates, Inc.34825.34825.34825.34825.34825.34646.34646.34646.34646.34646..34646.34646.34646.3.4646.34646.34646.31990.31990.-32634.32634.32634.32634.3338 6.'33581.33709.33822.33924.: 33924.34124.34331.34413.34592.2835.2835.2191.2191.2191,.2012.1260.1065.937.-824.722.722.522.315.232.54.1541.1541.2355.2355.2355.2695.1578.1120.1137.1455.1220.1310.1067.3398.-569.-130.1.000 1.000 1.000 1.000 1.000 1.000 1.'000 1.000 1.000 1.000 1.000 i. boo 1.000 1.000 1.000'1593.1593.1231.12.31.1231.1130.708.598.526.463.406.406.293.177.131.30.1. 400E+01 6. 300E+01 6. 000E+01 I. 000E+00 1. 040E+02 1.240E402 1. 000E+00 1. 000E+01 1. 000E+01 1. OOOE+00 1.1000E+00

1. OOOE+00 1.OOOE+01 1. OOOE+01 1. 200E+02 1.2o06i+oI
1. OOOE+20 1. OOOE+20 1.OOOE+20 1. OOOE+20 1. OOOE+20 1.000E+20 1. 000E+20 1. OOOE+20 1. OOOE+20 1. 000E+20 1.OOOE+20 1. 000E+20 1. OOOE+20 1. 000E+20 1.OOOE+20 1. 000E+20.0000.0000.0000.0ooo.0000.0000.0000.0000.0000.0000.0000.0000*.0000.0000.0000.0000 TOTAL USAGE FACTOR = .0109 2 (File No.: VY-16Q-306 Revision:

A Page 19 of 29.F0306-0IRO NEC041753 Structural Integrity Associates, Inc.Table 7: Fatigue Results for Safe End (60 Years)LOCATION = LOCATION NO. 1 SAFE END FATIGUE CURVE = 2 (1 = CARBON/LODJALLOY, 2 ='STAINLESS STEEL)m= 1.7.n= *.3 Sm= 17000. psi'Ecurve = ,2.830E+07 psi Eanalysis

= 2.700E+07 psi Kt = 1.53 MAX 82580.31546.31546.315.46.25988..25730.18521.17960.17956.17956.17956.17948.17948..17948.17620.13174.12300.12300.695.6.5393.5393.5393.4762, 4605.4605.4605.+4605.4518.4198.4130.3909.3486.3485..3485.3419.3419.3419.3292.3292.3292.3135.3135.3086.MIN-7469..-7469.-5010.-2934.-2934.-2934.-2934.-2934.--2934.-2741.-1264.-1264.-339.-339.-339.-339.-339..-157.-157.-157.-133.136.136.136.136.136.235.235.235.235.235.235.235.235.235.235.909.909.909.909.,.909.1029.1029.RANGE 90049.39015.36556.34480.28922.28664.21455.20894.20890.20697.19220..19212.18287.18287.17959.13513.12639.12456.7112.5550.5526.5258.4626.4469.4469.4469;4370.4283.3963.3895.3.674.3251.3250.3250.3184.3184..2511.2384.2384.2384.2226.2106.2058.MEM+BEND Ke 66991. 2.045 33281. 1.000 28040. 1.000 28849. 1.000 24217. 1.000 23354. 1.000 9572. 1.000 9201. 1.000 9197. 1.000 8846. 1.000 7194. 1.000 7189. 1.000 6240. 1.000 6240. 1.000 17740. 1.000 11053. 1g000 12485. 1.000 12341. 1.000.7125. 1. 000-1219. 1.000-1293. 1.000-2126 *1.000 3924. 1.000 3153. 1.000 3153. 1.000 3153. '1.000 3636. 1.000 3880. 1.000 3977. 1.000 3783. 1.000 3172. 11.000 3251. 1.000 3246. 1.000 3246. 1.000 3483. *1.000 3483. '1.000 3179. 1.000 2472.' 1.000 2472. 1.000 2472. 1.000 2535. 1.000 2310. 1.000 2219. 1.000 Salt Napplied 134573. 1.000E+00 29691. 9.O00E+00 26947. 1.OOOE+00 26083. O.OOOE+00 21884. 1.O00E+01 21509. 1.O00E+01 13903. 2.280E+02 13505. 1.000E+01 13502. 4.200E+01.13304. 1.400E+01 12071. 2.440E+02 12065. 5.600E+01 11317. 4.O00OE+0 11317. 1.OOOE+00 14339. 1.OOOE+00 10152. 1.400E+01 10092. 1.O00E+02 9956. 2.OOOE+01 5706. 1.OOOE+00 2570. 2.790E+02 2537. 1.400E+01 2165. 7.OOOE+00 3514. 1.OOOE+01 3218. 4.300E+01'3218'. 1.000E+00 3218. 2.280E+02 3300. 2.800E+01 3322. 1.OOOE+01 3181. 6.OOOE+01 3092. 1.O00E+01 2806. 1.OOOE+01 2607. 1.OOOE+00 2605. 1.O00E+00 2605. 0.OOOE+00 263 6. 1.000E+00 2636. 1.OOOE+00 2199. 8.OOOE+00 1936. 6.000E+01 1936. 1.000E+00 1936. 2.280E+02 1871.. 3.000E+00.

i746. 7.OOOE+00 1695. 7.OOOE+00 Nallowed 6. 765E+02 6.857E+05 1.160E+06 1.290E+06 2.383E+06 2.566E+06 9.710E+08 1.O00E+20 1.O00E+20 1.O00E+20 1.000E+20 1.OOOE+20 i.O00E+20 1.O00E+20 4.798E+07 1. OOOE+20 1.000E+20 1.OOOE+20 1.000E+20 1.O00E+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.000E+20 1. OOOE+20 1.000E+20 1. OOOE+20 1. OE+20 1. OOOE+20 1. O00E+20 1. 000E+20 1. 000E+20 1.OOOE+20 1.O00OE+20

1. 00E+20 1.O00E+20 i. OOOE+20 1.O00E+20 1.O00E+20 1.OOOE+20 U.0015.0000.0000.0000.0000.0000.0000.0000,.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.o0000 File No.: VY-16Q-306 Revision:

A Page 20 of 29 F030&JOIR0 NEC041754 Structural Integrity Associates, Inc.-- L II I h1.000...+..

3086.2809.2783.2783.2783.2783.2783.2783..2780.27801.2780.2780.2780.2780.2763.2762.2762.2762.2762.2762.2762.2500.2496.2496.2487.2487.1376.1376.1376;1732.1793.1958.1958.1958.1958.2104.2352..2352.2352..2352.2352.2352.2352: 2352.2352.2441.2441.2441.2441.2445.2445, 2487.1710.1433.1407.1051.990.825.825.825.822.676.428 .428.428.428.411.410.410.410.410.321.321.59.55.51.42.0.1361. 1.000 1091. 1.'000 1187. 1.000 860. 1.000 208. 1.000 811. 1.000 811. 1.000 811. 1.000 808. 1.000 576. 1.000 416. '1.000 416. 1.000 416. 1.000 416. 1.000 403. 1.000 403. 1.000 403. 1.000 403. 1.000 403. 1.000 443. 1.000 443. 1.000 181. 1.000 i77. 1.000 181. 1.000 175. 1.000 0o 1.000 1274.1054.1067.790.576.658.658.658.655.514.340.340.340.340.327.327.327.327.327.291.291.81.78.77.71.0.2.210 E+02 1.O000E+O0 6.900E+01 1.O000E+01 1.O000E+01 6.000E+01'1.0001E+00 7.800E+01 1. 510E+02 1.0001E+01 1.390E+02 1.0001E+01

6. OOOE+01 1.0001E+00 1.000E+01 1.0001E+01
6. OOOE+01 1.000 E+00 9. 000E+00 5.0001E+00 2.280E+02 1.0001E+01 5.700E+01 2.430E+02 5.700E+01 3.0001E+00 1.O000E+20 1.000E+20 1.0001E+20 1.O000E+20 i.000E+20 1.0001E+20 1.0001E+20 1.0001E+20 1.0001E+20 i.o000E+20 1.0001E+20 1.0001E+20 1.O000E+20 1.O000E+20 1.O000E+20 1.0001E+20 1..O00E+20, 1.0001E+20 1.0001E+20 1.0001E+20 1.0001E+20 1.0001E+20 I .000E+20'1.000E+20 1.0001E+20 1.0001E+20

.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.oooo.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000..0015 r TOTAL USAGE FACTOR =File No: VY-16Q-306 Revision:

A Page 21 of 29 F0306-0IRO NEC041755 Structural Integrity Associates, Inc.i/Table 8: Material Prop erties @ 400°F Material Mtni-1i2Mo-3/4Ni-It2Mo-I8Cr-Ni 16Cr-12N1-, I 1/erial M2Ni 1i Cr-V ________ 2Mo Modulus of Elasticity, e-6 27.4 26.1 26.5 26.5 psi Coefficient of Thermal Expansion, e-6,.inAn/°F Thermal Conductivity, 23.1 23.1 10.4 9.8 Btu/hr-ft-T

__23.! 23.1 10.4 9.Thermal Diffusivity, (ft/hr 0.378 0.378 0.165 0.155 Specific Heat, Btu/lb-°F 0.125 0.125 0.129, 0.129 Density, lb/In 3 0.283 0.283 0.283 0.283 Poisson's Ratio 0.3 0.3 0.3 0.3 Notes:; Material Properties are evaluated at 400&F from the 1998 ASME Code, Section H, Part D, with 2000 Addenda,-except for density and Poisson's ratio, which are assumed typical values. The safe end material properties were used for 300 0 F, the average temperature for the safe end for transient 9.1.File No.' VY-16Q-306 Revision:

A.Page 22 of 29 F0306-0IRO NEC041756 Structural integrity Associates, Inc.Figure 1: ExternalForces and Moments on the Recirculation OutletlNozzle FileNo.: VY-16Q-306 Revision:

A Page 23 of.29 F0306-OIRO NEC041757 U ,'Structural Integrity Associates, Inc.Figure 2: Nozzle and Vessel Wall Thermal and HeatTransfer Boundaries File No.: VY-16Q-306 Revision:

A Page 24 of 29 F0306-01oR.NEC041758 Structural integrity Associates, Inc.ý TeMp (-F) --Pressure (PSO E 20 113 0 545 I-0 635.630 625 a a -ID!: I I O 3joo won0 fin 1210110 1 SO"nTime (Ieconla*i3 Figure 3: Transient 1 -Normal Startup at 100"F/hr I- Terrp ('0 F) -Pressre g)loso lam 950 90a 55:0 i50 1500 650 600 660 ao 450 j.400 5Do 350 300 260 20o ISO 500 n-60 1120-1040-880-woO-720 5 40 .2.400 n'0 0.60 100 150 200 2M3 2(0 360 4C 450-"Time (seccncds)

Figure 4: Transient 2- Turbine Roll and Increase to Rated Pbwer File No.: VY-16Q-306 Revision:

A Page 25 of 29 FO306-D1RO' NE0041759 Structural Integrity Associates, Inc.1-mTemp rnF --prnetre Oslo 6nM swlJ~DO0 401 301 2M1 ISO.loSn-1040-10 C-920-920-840-MOD 160 720.so 640 A-10 560 e2o 440 40D-WO0-230-240-160-120-.1-i0 40 0 200D 4.000 Time (mecondl)3I1n 1Io=.9.Figure 5: Transient 3 -Loss of Feedwater Heaters and Turbine Trip 25% Power 600 1231-12MI.12D-1131 Sao 00 .--Ife]-1040 400 6400 0"- 160 U-. 1920 DO -50a 300 / .-6800 4 2 ~m7l2 0-g.E .\ / 600.560* -66D r 5130 1 1 }lime ('0440dmi)

Figure6: Transient 4-Loss of Feedwater Pumps File No.: VY-16Q-306 Revision:

A Page 26 of 29 F0306-OIRO NEG041760 Structural Integrity Associates, Inc.-TeMpC'F.J Pnq)010 E 535 0-1 53a a a 500 Ima 1$co1 20M 2=Tim* (iocondu)Figure 7: TransientS -Turbine Generator Trip-Ttmp p C-- -Prst, e ut EZ]D.-------E F-.-1330-t~aO ,I=D-1100.000.-7m-SE-110-3mI-2m-IW JAil- ID I sm mum ism aim 5 linm (imbondm)Figure 8: Transient 6 -Reactor Overpressure

ý f File No.: VY-16Q.-306 Revision:

A .Page 27 of 29 F0306-OiRO NEC041761 Structural Integrity Associates, Inc.-Temp (T) --Pressure -ig)si.600.600.2!E Ii I I I I I-0 200 4000 609c 8000 10000 12000 Tire (seccnis)Figure 9: Transient 7- SRV Blowdown I Terrp (7) --F-ress're (psig)--*600.400-300 E 200]b -r ----p-.100.1000-.00 1800.700 2000.400.300 1)4- 41)I 2000 3000 4300 5000 Time (seca-&h)Figure 10: Transient 8 -SCRAM Other File No.: VY-16Q-306 Revision:

A Page 28 of 29 F0306-OIRO NEC041762 Structural Integrity Associates, Inc.6nM I TeM p() -r-s1IP-0 401 31M.11M-SE-?01-601-4WG-201 S100 10 20 M 1 4 613 (D 7D S0"rim, (i{condJ)Figure 11: Transient9 -Improper Startup-TempC) --Press re lps 75 so IDn , (3010 1!m.1io 20M Am00 600D1 Sam 1000l 12110-Tim* (eCorsMI)Figure 12: Transient 10- Shutdown File No.: VY-16Q-306 Revision:

A Page 29 of 29.FD306-ODRO NEG041763 Structural Integrity Associates, Inc.APPENDIX A FILES OF FINITE ELEMENT ANALYSIS FileNo.: VY-16Q-306

'Revision:

A Page Al of A2 F0306-01R0 NEC041764 Structural Integrity Associates, Inc.RON VY T T9.1NP Input File for Transient 9Thermal Analysis In Computer files RON VY S T9.INP Input File for Transient 9 Stress Analysis In Computer files ILFSE.OOUT Stress Output at Safe End In Computer files LFBR.OUT Stress Output at Blend Radius In Computer files LFSE INSIDE.RED Stress Extracted at Safe End In Computer files LFBR INSIDERED Stress Extracted at Blend Radius In Computer files LFSE T.XLS Stress Results with Total Stress at Safe End. -In Computer files LFSEM+B.XLSS Stress Results with Membrane plus..Bending Stress at In Computer files Safe End LFBR T.XLS Stress Results with Total Stress at Blend Radius In Computer files-LFBR-M+B.XLS Stress Results with Membrane plus Bending Stress at In Computer files* ,__ _ Blend Radius __File.No.:

VY-16Q-306 Revision:

A Page A2 of A2 F0306-01RO NEC041765 Exhibit J Report No.: SIR-07-141 -NPS Revision No.: A Project No.: VY-16Q File No.: VY-16Q-402 May 2007 Environmental Fatigue Analysis for the Vermont Yankee Reactor Pressure Vessel Reactor Recirculation Outlet Nozzle Prepared for: Entergy Nuclear Vermont Yankee, LLC Contract Number: 10150394 Prepared by: Structural Integrity Associates; Inc.Centennial, CO Prepared by: Reviewed by: Date: Terry J. Herrmann, P.E.Date: ...G. L. Stevens, P.E.Approved by: Date: Terry J. Henrmann, P.E.Structural Integrity Associates, Inc.NEG041766 C REVISION CONTROL SHEET Document Number: SIR-07-141-1N'PS Title: Environmental Fatigue Analysis forthe Vermont Yankee Reactor Pressure Vessel Reactor Recirculation OutletNozzle Client: Entergy Nuclear Vermont Yankee, LIC SI Project Number: VY-160.Section Pages Revision Date x Comments 1.0 1-1 5 A.- 05110107 Initial (UNVERIFIED) draft for review.2.0 2-1-2-3 3.0 3-1 34 4.0 4-1-4-11 5.0 5- 2 6.0, 6-1*7.0 7-1 2 1 Structural integrity Associates, Inc.NEC041767 Table of C otents Section Page 1.0 IN TR O D U CT IO N ...... ......................

-.... ..........................

.......................................

1-1 1.1 G ree ' Function M ethodology

..... ...................

.... ...... ... .............

... ..........

2.2 0 FINITE ELEM ENT M ODEL ..........

.............

2...... *. .................

.. .. ........-...............

..2-1 3.0 L O A D D EFIN IT IO N S ...........................................................................................

3-1 3.1 T herm al L oading............................

.............

..... .. ......................

..........

3-1 3.1.1 Heat Transfer Coefficients and Boundary Fluid Temperatures;......................

3-2 3.1.2 Green's EkFnctions

.........

............

...............................

3-4 3.1:3 Therwal Transsents....................................................................................

....... 3-4 3.2 P ressure L oading....

...... : ..... ..... ...........

..........
. ....................

3-5 3.3 P iping L oading .............................................

.....................................

.........

.-3-6 4.0 STRESS AND FATIGUE ANALYSIS RESULTS ..... 4-............

'.4-1 5.0 ENVIRONMENTAL FATIGUE ANALYSIS ........ ...... ......... .... 5-1 6.0 C O N C L U SIO N S ...................

..................................................

6.:1.............................

6-1

7.0 REFERENCES

.......................................

.. ...........

7-1 SIR-07-141-NPS, Rev. A 1i, Strncturaf Integritk Associates, Inc.NEC041768 I'List of Tables Table C.'Table 2-1.Table 3-1: Table 3-2: Table 3-3: Table 3-4: Table 4-1: Table 4-2: Table 4-3: Table 4-4: Table 4-5: Material Properties

...............

.............

2-2 Safe End Transiens......

........ ............................

S afe E n d T ran sien ts ..... ....... I....... ........ I...................................................

.........

........ 3-7 Blend Radius Transients

........................... , ............

3-8 Stresses Due'to Piping Loads for Safe End Location.........................................

3-9 Stresses Due to Piping Loads for Blend Radius Location ......................................

3-10 Reactor Recirculation Outlet Nozzle Safe Ehd Stress Summary....., .........

4-3 Reactor Recirculation Outlet Nozzle Blend Radius Stress Summary .......................

4-5 Fatigue Parameters Used in the Recirculation Outlet Nozzle Fatigue Analysis ...... 4-7 Fatigue Results forReactor Recirculation Outlet Nozzle Safe End .........................

4-8 Fatigue Results for the Reactor Recirculation Outlet Nozzle.Blend Radius ...........

4-10-J STR-07-141-NPS, Rev. A iv Structural Integrity Associates, Inc.NEG041769 List of Figures Figure Page Figure 1-1. Typical Green's Functions for Thermal Transient Stress .............................

1-4 Figure 1-2. Typical Stress Response Using Green's Functions............

.........

1-5 Figure 2-1. VY Reactor Recirculation OutletNozzleFEM

.......................

2-3 Figure 3-1: Thermal Regions for Green's Functions

...................................

3-11 Figure 3-2: Thermal Regions for Transient 9 ...........................................

3-12 Figure 3-3: Safe End Critical Thermal Stress Location ..... ..........................

3-13 Figure 3-4: Blend Radius Critical Thermal Stress Location ......................

3-14 Figure 3-5: Safe End Total Stress Intensity Green's Function for 100'/o Flow .......................

3-15 Figure 3-6: Safe End Total Stress Intensity Green's Function for 50% Flow ...........

3-16 Figure 3-7: Safe EndTotal Stress Intensity Green's Function for 0%/a Flow ............................

3-17 Figure 3-8: Blend Radius Total Stress Intensity Green's Function for 1000/a Flow .................

3-18 Figure 3-9: Blend Radius Total Stress Intensity Green's Function for 5O'/o Flow ...............

3-19 Figure 3-10: Blend Radius Total Stress Intensity Green's Function for 0%/a Flow ........ 7 ...... 7...3-20 Figure 3-11 Transient 1: Normal Startup at 100'F/hr....

......................................

3-21 Figure 3-12: Transient 2: Turbine Roll and Increase to Rated Power .....................

... 3-22 Figure 3-13: Transient 3: Loss of Feedwater Heaters and Turbine Trip at 25% Power ...........

3-23 Figure 3-14: Transient 4: Loss of Feedcwater Purhps .........

..............

3-24 Figure 3-15: Transient 5: Turbine Generator Trip .............................

3-25 Figure 3-16: Transient 6& Reactor Overpressure............

.....................

3-26 Figure 3-17: Transient 7: SRV Blow Down.... .............................

3-27 Figure 3-18: Transient 8: Scram -O ther ..........................

.................................

3...................a.......

3-28 Figure 3 Transient 9: Improper Startup..................................

3-29 Figure 3-20: Transient 10: Shutdow n ............

3.......................................3..........

.......................

3-30 Figure 3-21: ReactorRecirculation Outlet Nozzle Internal Pressure Distribution

..........

331 Figure 3-22: Reactor Recirculation Outlet Nozzle Pressure Cap Load ....................................

3-32 Figure 3-23: Reactor Recirculation Outlet Nozzle Vessel Boundary Condition

......................

3-33 Figure 3-24: Pipe Reactions..............

.........

....................

......................

3-34 SIR-07-141-NPS, Rev. A v Stru turaltintegrity Associates, Inc.NEG041770

1.0 INTRODUCTION

In Table 4.3-3 of the Vermont Yankee License Renewal Application (LRA), the 60-year cumulative usage factor (CUF),value for the reactor pressure vessel (RPV) reactor recirculation outlet nozzle is reported as 0.810. Application of environmentally assisted fatigue (EAF) multipliers, as required for the license renewal period, resulted in an unacceptable EAF CUF value of 1.98. Therefore, further refined analysis is necessary to show acceptable EAF CUF results for this component.

This report documents a refined fatigue evaluation for the VY reactor recirculation outlet nozzle. The intent of this evaluation is to use refined transient definitions and the revised cyclic transient counts for 60 years for a computation of CUF, includingREAF effects, that is more refined than previously performed fatigue analyses.

The fatigue-limiting locations in the reactor recirculation outlet nozzle are included in the evaluation, to be consistent with NUREG/CR-6260

[1] needs for EAF evaluation for license renewal. The resulting fatigue results will be used as a replac-ement to the value previously reported in the VY LRA.The refined evaluation summarized in this report included development of a detailed fihite element model of the reactor recirculation outlet nozzle, including relev ant portions of the safe end, the nozzle forging, a portion of the vessel shell, and cladding as, shown in the applicable drawings [2, 3]. Thermal and pressure stress histories were developed for relevant transients affecting the reactor recirculation outletnozzle, including any effects of Extended Power Uprate (EPU), as specified by the VY RPV Design Specification

[4], the VY EPUT Design Specification[

5] and other boiling water reactor (BWR)operating experience.

The thermal and pressure stress histories were used to determine total stress intensities and primary plus secondary stress intensities for use in a subsequent fatigue evaluation.

Stress intensities were also included due to loads,from the attached piping for application in the stress/fatigue analysis based on the bounding reaction loads obtained from therelevant design document The revised fatigue calculation was performed using Section III methodology from the 1998 Edition, 2000 Addenda of the ASME Code [17], and was performed using actual cycles from pastplant operation projected out to 60 years of operation SIR-07-14 -I-NPS, Rev. A 1-1 Strucliura!

Integrity Associates, Inc.NEC041771

1.1 Green's

Function Methodology For the reactor recirculation outlet nozzle evaluated as a part of this work, stress intensity histories were computed by a time integration of the product of a pre-deterrnined Green's Function and the transient data. This Green's Function integration scheme is 'imilar in concept to the well-known Duhamel theory used in structural dynamics.

A detailed derivation of this approach and examples of its application to specific plant locations is contained in Reference

[6]. A general outline is provided in this section.A Green's Function is derived by using finite element methods to determine the transient s4ress response of the component to a step change in loading (usually a thermal shock). The critical location in the component is identified based on the maximum stress intensity, and the thermal stress intensity response over time is extracted for this location This response to the input thernmal step is the "Green's Function." Figure 1-1 shows a typical set of two Green's Functions, each for a different set of heat ,transfer coefficients

.(representing different flow rate conditions).

Tocompute the thermal stress response for an arbitrary transient, the loading parameter (usually local fluid temperature) is deconstructed into a series of step-loadings.

By using the Green's Function, the response to each step can be quickly determined.

By the principle of superposition, these can be added (algebraically) to determine the response to the original load history. The result is demonstrated in.Figure 1-2.. The input transient temperature history contains five step-changes of varying size, as shown in the upperplot in Figure 1-2. These five step changes produce the five successive stress responses in the Second plot shown in Figure 1-2. By adding all five response curves, the real-time s1ress response for the input thermal transient is computed.The Green' s Function methodology produces identical results compared.to running the input transient through the finite element model. The advantage of using Green's Functions is that many individual transients can be run with a significant reduction of effort compared to running all transients through the finite element model. The'trade-off in this process is that the Green's Functions are based on constant material properties and heat transfer coefficients, Therefore, these parameters are conservatively chosen to yield bounding results, i.e., the highest heat transfer coefficient for all transients is use~d. This ,SIR-07-14 -NPS, Rev. A 1-2 Structural integrity Associates, Inc.NEC041772 conservatism is more than offset by the benefit of analyzing every transient, which was done in the VY reactor recirculation outlet nozzle evaluation.

Once the stress history is obtained for all transients using the Green's'unction approach, the remainder of the fatigue analysis is carried out using traditional methodologies in accordance with ASME Code,Section III requirements.

I-SIR-07-141-NPS, Rev. -A 1-3 Structural Integrity Associates, Inc.NEC041773 250-A 2 0 0-E160 0 I I I 0 200 400 600 a00 li (so) -Note: A typical set of two Green's Functions is shown, each for a different set of heat trnsfer coefficients (representing different ftowrate conditions).

Figure 1-1. Typical Green's Functions for Thermal Transient Stress SIR-07-141-NPS, Rev. A 1-4 Siructural Integrity Associates, Inc.NEC041774 I*^t us 9 .20 4W 00 NO IN* 123 1400 IM =0 ROW Figure 1-2. Typical Stress Response Using Green's Functions SIR-07-141-1NPS, Rev. A 1-5 Structural Integrity Associates, Inc.NEC041775

2.0 FINITE

ELEMENT MODEL An ANSYS [7] finite element model (REM) of the VY reactor recirculation outlet nozzle configuration was dev eloped and used to perform the updated stress and fatigue analyses.

The details of the model development are documented in the Reference

[8] calculation_

The materials ofthe various components of the model are listed below:* Safe End- SA18Z F316 (16Cr-12Ni-2Mo)

  • Nozzle Forging- SA508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V)
  • Vessel -SA533 Grade B avMn-1/2Mo-12Ni)* *Cladding

-8A240 Type 304 (18Cr-SNi)

The radius of the RPV was increased bya factor of two to account for the factthat the vessel portion of the finite element model is a sphere and the actual geornetty.is a cylinder.Material properties were based upon the 1998 ASME Code,Section I, Part D, with 2000 Addenda [9], a and are shown in Table 2-1. The properties for the Green's Functions were evaluated at an average temperature of 300 0 F. This average temperature is based on a thermal shock of 5001F to 100 0 F which was applied to the FEM model for Green's Function development Due to its Unique characteristics, Transient 9 was run separately, and material properties were evaluated at the average temperature of the transient (400 0 F).The finite. element model is-shown in Figure 2-1.SIR-07-141 -NPS, Rev. A 2-1 Structural integrity Associates, inc.NEC041776 Table 2-1. Material Properties For the Green's Functions (evaluated at 3007): 'Mn-l12Mo-3/4Ni-1/2Mo-l6Cr-12Ni-

  • a1/2Ni 1f3Cr-V 2Mo Modulus of Elasticity, e+6 28.0 26.7 27.0 27.0 psi Coefficient of Thermal-Expansion, e-6, in/inPF -9.9 Thermal Conductivity, 23.4 ..23.4 9.8' 9.3 Btu/hr-ft-OF Thermal Diffusivity, ftL/hr 0.401 0.401 0.160 0.150 Specific Heat, Btu/lb-°F 0.119 0.,119 0.125. 0.127 Density, Ib/inV 0.283 0.283 0.283 0.283 Poisson's Ratlo 0.3 0.3 0.3 0.3 For Transient 9 (evaluated at 4001F): "" P roperty Mn-Il2Mo-3/4Ni-1/2Mo-1BCr4Ni l6Cr-12Ni--oe F1/2N I 1_/3C_-V lSr- _ 2Mo Modulus of Elasticity, e+6 27.4 26.1 26.5 26.5 psi _Coefficient of Thermal 8.0 7.7 "10.2 *10.2 Expansion, e-6, in/in/F 8.Thermal Conductivity, 23.1 23.1 10.4 9.8 Btu/hr-ft-°F Thermal Diffusivity, ftL/hr 0.378 0.378 0.165 0.155 Specific Heat, Btu/lb-°F 0.125 0.125 0.129 ' 0.129 Density, Ib/inV 0.283 *0.283 0.283 0.283 Poisson's Ratlo 0.3 0.3 0.3 Note: 1. Material propertiesare taken fromthe-1998 ASME Code, Section IIPartD, with2000 Addenda [9], except fbr densityandPoisson's ratio,which are assumed typical values. -SIR-07-141-NPS, Rev. A 2-2 IV Structural Integrifty Assockates, /h C.NEC041777 ELESMENTS MAT B~UM ELEMENTS MMT NUN..AN APR 3 20fl7 15;31.38...... ... ... ... ---- ---- ---------------

-........ ..... ... ..... ....... ... .... ----Recirc Outlet Nuzzle Finite Eleme~nt Madel Figure 2-1. VY Reactor Recirculation Outlet Nozzle FEM J A 2-3 Structural Integrity Associates, Inc.NEC0417.78 3.0 LOAD DEFINITIONS The pressure and thermal'stresses for the reactor recirculation outlet nozzle for the revised fatigue ev aluationwere developed using the axisymrnetric FEM model described in Section 2.0 of this report. The details of the Green's Function development and associated stress and fatigue evaluations are documented in the Reference

[10] and [11] calculations.

3.1 ThermalLoading

Thermal loads were applied to the recirculation outlet nozzle model to generate the Green's Functions.

As a first step in the Green's Function process, heat transfer coefficients were determined for various regions of the reactor recirculation outlet nozzle FEM for three different flow-cases:

(1) 100% reactor recirculation outlet nozzle flow, (2) 50% reactor recirculation outlet nozzle flow and (3) 0% reactor recirculation outletnozzle flow.The 100% flow case simulates the operational condition of the reactor recirculation .outlet nozzle (i. e., normal recirculation system flow). The heat transfer coefficients for the high flow case are for forced convection.

The applied boundary fluid temperature is changed to simulate a thermal shock from 500CF to 1 OCT1 to develop the stress response on the reactor recirculation outlet nozzle due to normal operating conditions.

The 50% flow case simulates a reduced flow condition of the reactor recirculation outlet nozzle (i. e.,ý during po*er ascension).

The heat transfer coefficients for the reduced flow case are also for forced convection.

The applied boundary fluid temperature is changed to simulate a thermal shock from 500F to 100 Tto develop the stress response on the reactor recirculation outlet nozzle under reduced flow conditions.

The 0% flow case simulates a stagnant condition of the reactor recirculation outlet nozzle when recirculation flow is stopped and the entire reactor recirculation outlet nozzle is at the same temperature as the RPV fluid. The heat transfer coefficients for the 0Yo flow case are for free SIR.-07-141-1PS, Rev. A 3-1 Structural Integrity Associates, Inc.NEC041779 convection (stagnant) conditions.

The applied boundary fluid temperature is changed to simulate a thermal shock from 500OF to 100F to develop the stress response on the reactor recirculation outlet nozzle in the stagnant condition.

The temperature on the exterior of the reactor, nozzle, safe end and p-ipe was assumed tobe 1 20 0 F (ambient).

Figure 3-1 shows the heat transfer coefficient regions assumed for the reactor recirculation outlet nozzle FEM. The applied heat transfer coefficients and the fluid.temperatures are summarized in the sections that follow.3.1.1 Heat Transfer Coeffheients and Boundary FlZu Temperatures Referring to Figure 3-1, heat transfer coefficients for the Green's Functions were applied as follows:.For Green's Functions:

Region 1 The heat transfer.

coefficient, h, for I OP/o flow is .3,577.8 BTU/hr-fi2-OF at 3000F.The heat transfer coefficient, h, for 50°/0 flow is 2,054.9 BTU/hr-ft 2-oF at 3 00°F.The heat transfer coefficient, h, for 0% flow is 112.34 BTU/hr-fe 2-°F at 3000F.Region 2 The heat transfer coefficient for Region 2 was linearly transitioned from the value of the heat transfer coefficient used in Region 1 to the value used in Regioni3.RTehin 3/f The heattransfer coefficient, h, for 100/ flow is 3,36. BTU/hr-ft 2-°F at 300TF.The heat transfer coefficient, h, for 50%W flow is 1,930.9 BTU/hr-ft 2-°F at 300°F.The heat transfer coefficient, h, for 0% *flow is 11.2.34.BTU/hr-te-°F at 3000F.Re-Rion 4 The heat transfer coefficient for Region 4 was linearly transitioned from the value of the heat transfer coefficient used in Region 3 to the value used in Region 5.Region 5 .SIR-07a141-NPS, Rev. A 3-2 Structural Integrity Associates, Inc.NEC041700 The heat transfer coefficient, h, for 100/o flow is 1,788.9 2-OF at 300°F.The heattransfer coefficient, h, for 50CFo flow, is 1,027.4 BTU/hr-ft 2-°F at 3000F.The heat transfer coefficient, h, for 0% flow is 101 BTU/hr-fl3OýF at 3000F.Region 6 The heat transfer coefficient, h, is 0.4 BTU/hr-fl?-F.

The temperature, T, is 1201F.For all three Green's functions, a 500°Fto 1001F thermal shock was evaluated in Regions 1 through 5 to determine the stress response.Referring to Figure 3-2, heat transfer coefficients for Transient 9 were applied as follows: For Transient 9: Region 1 The heat transfer coefficient, h, for 100 flow is 672 8BTUJhr-f1?-°F at SOOT.The heat transfer coefficient, h, for 100/6o flow is 308.2 BTU/hr?- OF at 100F.The fluid temperature shock is: T = 5260F -130F -5260F.Region 2 The heat transfer coefficient, h, for 1 OO'/o flow is 632.2 BTU/hr-f?-OF at:500S F.The heat transfer coefficient, h, for 1003,4 flow is 616.6 BTU/hr-ft-6F at 300T.The fluid temperature shock is: T = 526°F -268TF -526 0 F.Region 3 The heat transfer coefficient, h,for 100'/o flow is 336.4 at 5OOTF.The heat transfer coefficient, h, for I00"/o flow is 328. 0 BTU/hr-ft3-°F at 3 00F.The fluid temperature shock is: Case 1 T = 5261F -268WF -5261F Case 2: T = 5261F Region 4 The heat transfer coefficient, h, is 0.4 BTUL/hrft 2-OF.The temperature, T, is 1200F.SIR-07-141-NI::PS, Rev. A 3,3 Structural Integrity Associates, Inic.NEC041781 Transition Regions The heat transfer coefficient was linearly transitioned from the value of the heat transfer coefficient used in adjacent regions.3.1.2 Green's Functions The three flow-dependent thermal load cases outlined in the previous section were run on the reactor recirculation outlet nozzle FEM with the heat transfer coefficients and the fluid temperature conditions listed in Section 3.1.1. Two locations were selected for analysis (see Figures 3-3 and 3-4): 1.- The critical safe end location was chosen as the node with the highest stress intensity due to thermal loading under high flow conditions.

The highest stress intensity due to thermal loading occurred at Node 6395 (see Figure 3-3), on the inside diameter of the nozzle safe end. Therefore, thishode was selected for analysis.2. The critical blend radius location was chosen based upon the highest pressure stress intensity, neglecting the cladding.

The critical location is selected as Node 3829, as shown in Figure 3-4. ., Twelve stress intensity Green's Functions were developed (i.e., total stress intensity and membrane plus bending stress intensity for each location and each flow case). The total'stress intensity Green's Functions for.the safe end location at 100%, 50G/o and 0% flow are shown in Figures 3-5, 3-6 and 3-7, resp ectiv ely. The total stress intensity Green's Function forthe blend radius location at 1 00/o, 50% and ON/ flow are shown in Figures 3-8, 3-9 and 3-10, respectively.

3.1.3 Thkemal

Transients The transients analyzed for the reactor recirculation outlet nozzle were developed based on the definitions in the original RPV Design Specification

[4], as modified for EPU [5], as well as more recent definitions based on BWR operating experience.

For BWR operating experience, SIR-07 -141--N'S, Rev. A 3-4. Structural Intogrity Associates, Inc.NEC041782 the transients described.in the thermal cycle diagrams [12, 13] for the James A. FitzPatrick Nuclear Power Plant (JAFNPP), which is also a BWR-4 plant in the Entergy fleet like VY, were considered.

The temperatures and pressures associated with the JAFNPP transients were modified to reflect VY-specific pressures and temperatures considering EPU effects [5]. The final transients evaluated in the stress and fatigue analyses are shown in Figures 3-11 through 3-20.*The numb er of cycles proj ected for the, 60-year operating life was used for each transient

[14].Tables 3-1 and 3-2 summarize the thermal transients for the safe end and blend radius locations, respectively.

3.2 Pressure

Loading A uniform pressure of 1,000 psi was applied along the inside surface of the reactor recirculation outlet nozzle and the-RPV wall. A pressure load of,1,000 psi was used because it is easily scaled tip or down t6 account for different pressures that occur during transients.

In addition, a cap load was applied to the piping at the end of the FEM. This cap load was calculated as follows:.P~a P (R~2 R 2-R 2-~(Ro-_Ri where: PRp = end cap pressure load (psi)P = unitpressure load -1,000 psi Ri= Inner Radius =12.969 in R = Outer Radius =.14.188 in The calculated pressure cap load of 5,081.7 psi was applied as a negative value so that it would exert tension on the end of the model. The nodes on the end of the FEM were coupled in the axial direction to ensure mutual displacement of the end of the FEM due to the attached piping.SIR-07-14i-NPS, Rev. A 3-5 , Structural Integrity Associates, Inc.NEC041783

-I Figures 3-21, 3-22, and 3-23 show the internal pressure distribution, cap load, and symmetry condition applied to the RPV end of the model,, respectively.

The internal pressure load case for the blend radius resulted in a total stress intensity of 31,300 psi, and for the safe-end resulted in a total stress intensity of 11,490 psi. The membrane plus bending stress intensity at the blend radius is 33,640 psi and at the safe end is 11,350 psi, respectively.

3.3 Piping

Loading The piping stress intensities (stress caused by the attached pip ing) were determined for the two evaluated reactor recirculation outlet nozzle locations.

The design piping reactions that were used in the stress and fatigue evaluation are defined on the Reference

[15] drawing. These loads represent shear and moment loadings on the nozzle resulting from thermal expansion of the attached piping and seismic loads. The loads are as shown in Figure 3-24. The stresses resulting from these loads were calculated by hand using classical structural mechanics forrhulas; as documented in Reference[

11 ], and are shown in Tables 3-3 and 3-4 for the safe end and blend radius locations, respectively.

SIR-07-141-NPS, Rev. A 3:6 Structural Integrity Associates, Inc.NECO041784 Table 3-1: Safe End Transients Transient Time Temp* Time Step Pressure Row Rate Transiert Time Temp Time Step Pressure Row Rate N-imber F (Ell (Pi= (GPMI Nimber _ _ 14_ LOP M)1. Normal Startup with 6. Reactor Overpressure Heatup atr10Ot0F-" 16164 540 16164 1010 (60%J ICycle 2 526 2 1376 (100%)300 Cycles. 16864 540 700 1010 32 526 30 940 2. Turbine Roll and 0 640 1010 28294 1832 526- 1900 0 040 Increase to Rate d Power 1 642 1 1010 (100%). 2252 549. 420 1010 300 Cycles 601 642 600 ..1010 2312 540 60 1010 602 626 1 1010 2313 542 1 1010 1302 526 *700 1010 .2913 542 600 i010.3. Loss of Feedwater 0 626 1010 28294 2014 526 I .1010 Heaters 1800 642 1800 1010 (100%)' 3614 526 700 1010 Turbine Trip 25% Power 2100 542 300 1010 7. SRV Bowdown r 526 -0ID1 28294 10 Cyoles 2460 626 360 1010 14 Cycles 600 375 600 170 (100%)'3060 520 000 1010 .11580 70 .10980 50 3960 542 g00 1019 12280 70 700 60 4260 642 300 1010 8. SCRAM Other 0 526 1010 28294 6060 526 1800 1010 228 Cycles 15 526" 15 940 (100%)'6760 626 700 1010 1816 626 1800 940 4.Loss ot Feedwater 0 T26 1010 0. 2235 549 420 1010 Pumps 3 526 3 1190 (0%). 2295 549 60 .1010 10 Cycles 13 626 10 1135 2296 542 1 1010 233 300 220 1135 2358 542 60 1010 2213 .600 1980 1136 2357. 526' I 1010.2393 300 180 885 3057 526 700 1010, 6773 500 4380 1135 S. tm properStartup 0 52,6 .1010 3395 7193 300 420 676 14147 .1 Cycle 1 130it 1 1010 (1211 7403 300 300 675 (50%y 27 1301'0 26 1010 11003 400 3600 240 29 526. 1 1010 16457 640 5364 1010 .728 626. 700 1010 16517 540 60 1010 10. Shutdown 0 549 1010 14147 16458 642 1 .1010 28294 300 Cycles 6264 376 6264 170 (60%).17058 542 600 1010 (100%) 6864 330 c00 88 17059 526 -1 1010 16224 70 9360 60 17759 626 700 1010 16924 70 700 50 " rT hi r- nr Trn 0 6U 10110 2'010A -IQ .. l 1 60 Cycles W 107 15 30 1830 2250 2310 2311 2911 2912 3612 526 625 526 540 549 542 542-626 526.10I5.1800" 420 60*.1 6 00 I.700 1135 1135 940 040 1010 1010 1010 1010 1010 1010 (100%)'Te st 120 Cycles 1100 " Lii 60 12. Hydrostatic Test .. ' 1 --- j 30 1 I Cycle I16 Q%Wotes: 1. The instanttewrrerature change is assumed as 1 second rome step.2. The number of cycles is for 0 years V14].3. 130'¶ isthe safe endterrperatwre forthis transient.

The blend radius has a differentterrperature for Transient 9.SIR-07-141-NPS, Rev. A 3-7 Structural Integrity Associates, inc.NEC041785 Table3-2:

Blend Radius Transients

/, Trarkstiert lime Temnp lime Step Pressure Flow Rate Trarwiert lime Temp Time Step Pressure Row Rte Number s J! s fllfpl ) GPM1 Number *sl U L'. L I'00i ('GPM)I 1. ormal Startup'wfth 0 1-0 14147inn 6. Reactor OverpressLre

-0 51W1 28294 Heat&pat 1OO'FRr 16164 540. 16164 1010 -(60%X .C)les 2 526" 2. 1376 000%)300 Cycles 22164 549 6000 1010 32 526 30 940 2. Turtene Rdl rId *WT. .50 .T1f1F 2279 1832 626 1800 040 horeaseto Rated Po'ver 1 542 1 1010 (100%, 2252 540 420 1010*300 Cycles 001 542 600 1010 2312 54W 60 1010 602 620 1 1010 2313 .542 1 1010 6602 M26 .6000 1010 2913 542 600 1010 3. Lossd Feedwater, a .26 101

  • 282w1- 2914 626 I. 1010 Heaters 1800 542 1800 1010 (100%) 8914 526 0000 1010 TTurti reTrip 25% Power 2100 542 300 1010 7.SRV BoO 0 526 1010 282F.4 10 C~cles 2460 526 .360 1010 14 Cydees 000 375 660 170 000%)3060 626 600 1010 11580 70 1080 50 3960 542 g00 1010 __17580 70 6000 50.4260 542 300 A1010 8. SCRAM Other 0 626 1010 28294 6060 626 1800 1010 228 C~cles 16 626 15 040, 000%)12000 62 000 1010 1815 626 1800 940 4. Loss d Feedwater 0 626 1010m -2236 540 420 1010 Pumps 3 520 3 1190 (0%) '2295 540 60 1010 10 13 626 10 1135 2296 542 1 1010 233 300 220 1135 2356 542 60 1010 2213 400 1980 1136 2357 626 '1 10101 2393 300 180. 885 " 8357. 526 6000 1010 6773 500 4380 1135 3. Improper Startup 0 5r6 1010 3=r5 7193 300 420 .675 1 Cycles 1 2608- 1 1010 (121Y 7403 300 .300 675 27 208- 20 1010 10793 .430 33600 240 128 626 1010 12062 540 5369 1010 6028 526 6000 1010 12922 540 60 1010 10. SitidOWn -7 541 1010 14147 12923 542 1 1010 300 Ccles: 6264 375 6264 170 (50%Y 13523 542 600 1010 6864 330 600 88 13524 626 1 1010 16224 70 9360 60 19524 526 ..6000 1010 22224 70 6000 60 5ni iurwir Ue~alrT D11 2 1Eei "lot -- -Ii Ir --ri---r-60 Cycles 10 15 30 1830 2250 2310 2311 2911 2912 8912 626 528 626 626 528 640 540 542 542 626 626 10 5 15 1800 420 60 1 600*6000 1135 1135 040 940 1010 1010 1010 1010 1010 1010 (100D%) Test 120c.cles 60 7%12. H11rost=00 Test I cyydes 1100 7%* 60"ets: 1. The insmant temperature charge is assumed as 1 second time sep.2. The number of ccls is for 60 years [14].3. 268F is the blend radius temperature trthtrarsiert.

The sft end hasa different temperature trTransiet g.SIR-07-141:-NPS, Rev. A 3-8 Structural Integrity Associates, Inc.NEC041786 Table 3-3: Stresses Due to Piping Loads for Safe End Location Safe End External Piping Loads Parameters Fx= 20.00 kips Fy= ) 20.00 kips Fz_ _ 30.00 kips Mx= 2004.00 in-kips My= 3000.00 in-kips.Mz.= 2004.00 in-kips OD= 28.38 in ID= 25.938 in RN= 13.58 in L. 4.25 in tN 1.22 in (M.)2= 1919-00 in-kips (My)2= 3085.00 in-kips.M,=. 3633.15 , in-kips__F_ = 28.28 kips-NzF 6.62 kip sfi n qN.= -1.07 kips/in Primary Membrane Stress intensity PMz= 5.43 ksi C= -0.88 ksi Simax 5.71 ksi'= 5708.89 psi SIR-07-141-NPS, Rev. A 3-9 fzStructural Integrity Assoclates,'

Inc.NEC041787 Table 3-4: Stresses Due to Piping Loads for Blend Radius Location Blend Radius External Piping Loads Param eters Fx20.00 kips FY 20.00 kips Fz 30.00 kips Mx= .2004.00 in-kips MY= 3000.00 in-kips Mz= 2004.00 in-kips OD= 55.88 .in ID= 37.368 in RN- 23.31 in L = 42.77 in tN 9.25 in (Mx)2 = 1148.54 in-kips (My)2 = .3855.46 in-kips M_ _ 4022.90 in-kips Fxy 2828 kips Nz= 2.56 kips/in.qN'= * -0.20 kips/in Primary Membrane Stress Intensity PMz 0.28 J ksi_ T =_*_ * -0.02 ksi Slmax 0.28 k ksi Simax.= 280. 16 psi r SIR-07-141-NPS, Rev. A 3-10 Structural Integrity Associates, Inc.NEC041788 Figure 3-1: Thermal Regions for Green's Functions SIR-07-141--NPS, Rev. A'3-11 Structural lntegtiy Associates, Inc.NECO41789 AN AP 1. .APP. 19 2007~13:3E':1 MA7 Nb Region 3 SRegion/ R Regini*Transition Regions Rec-rc Outlet Finite Element Model Figure 3-2: Thermal Regions for Transient 9 SIR-07-141-NPS, Rev. A 3-12 S $trurlural Integrity Associates, Inc.NEC041790 1~~.Figure 3-3: Safe End Critical Thermal Stress Location SIR-07-141-NPS, Rev. A 3-13 structural Integrity Associates, Inc.NgG041791

)Figure 3-4: Blend Radius Critical Thermal Stress Location SIR-07-141-NPS, Rev. A 3-14 Structural lntegity Associates, Inc.NEC041792 a.140000 120000 100000 00000 600000 40000.20000 4 1 + 4 I.. ... .. ... ... ....... ... ... .. .. .. ... ... .. ... .... .. ....7 -. ........ ..... ... ... ... ... .... ... ... .... ..... ...... .. .0 200 400 Time (see)600 800 1000 Figure 3-5: Safe End Total Stress Intensity Green's Function for 100% Flow SIR-07-141-NPS, Rev. A 3-15 V Structural Integrity Associates, Inc.NEC041793 1m0000 a.5T (Time (seo)-1000 y Figure,3-6:

Safe End Total Stress Intensity Green's Function for 50% Flow SIR-07-141-NPS, Rev. A 3-16 Structural Integrity Associates, Inc.NEC041794 0.2 1000 Time'(sec)

Figure 3-7: Safe End Total Stress Intensity Green's Function for 0% Flaw SIR-07-141-NPS, Rev. A 3-17 Structural Integrity Associates, Inc.NEC041795 ii ak 20000 0 0 1000 Figure 3-8: Blend SIR-07-141-NPS, Rev. A 2000 ý300) 4000 5000 Time (seo)Radius Total Stress Intensity Green's F 00)0 700 WOO'unction for 100% Flaw S a , I Integrity Associates, Inc.3-18 NEC041796 2W0 S 1000 2000 3000 em 6000 a 0 "W000.Time (seq)Figure 3-9: Blend Radius Total Stress Intensity Green's Function for 50% Flow 8000 SIR-07-141-NPS,.Rev.

A 3-19 NEC041797 Structural Int0#grty Associates, Inc 0 lCflO 00 M 420ND 5001) " 000 7000 8tX0 Time (sec) .Figure 3-10: Blend Radius Total Stress Intensity Green's Functin for 0%, Flow)/ .SIR-07-141-NPS, Rev. A 3-20 V Structural Integrity Associates, inc.NEC041798 I -Te mp 'F) --Pr es ure (ps i I lid 301)E 0--a A 0 3=0 0000 9(0M 12000 15000O Ti me (swconds Figure 3-11: Transient 1: Normal Startup at lOT0F/hr I-SIR-07-141-NPS, Rev. A 3-21 NEC041799 Structural Integrity Associates, Inc.

I- Temp ("F) I -Pressure (psig)j.6555------------- ----------------550-,40 1-530-526-1122.r104)-880-892-720 a.-480 ~-40)-322-2423-180-80 0 so 100 153 200 250 Ti me(swoonls]

300 35 40 45 50 Figure 3-12: Transient2:

Turbine Roll and Increase to Rated Power SIR-07-141-NPS, Rev. A 3-22 6 Structural integrity Associates, Inc.NEC041800 I- Ternp (T) -. -Presswe (psig) I 600 500.450.-m 250.100 *1080-1040-1000-GOO-920-880-840-800-760-720-080.840 5400 440 (L 900 360-320-240-200-180-120-,0-40 60-]0.0.2000 4,60.00m" .8000 10000 Ti rre (secords]Figure3-13:

Transient3:

Loss of Feedwater Heaters and Turbine Trip at25% Power SIR-07-141-NPS, Rev. A 3-23 Structural Integrity Associates Inc.NEG041B01 I- TempQ(F) i"FPressure(psig)

I U 3 id E I-11 Ti we (secords)Figure 3-14: Transient4:

Loss of Feedwater Pumps SIR-07-141-NPS, Rev. A 3-24 Structural Integrity Associates, Inc.NEC041802 I-Temp (F) --Pressure(psig)

I-1200-11BO-1100-10.5 55m 45t I_ m m ~ m n m m CD ii a.2 a. 150 623-0 1000 , 15T 0 Tinme {secondsj 2033 Figure 3-15: Transient 5: Turbine Generator Trip)SIR-07-141-NPS, Rev. A 3-25 Structural Integrity Associates, Inc.NEC041803 I I-TempeF)

-.-PressureC(paig)I wo L -----U-.GE lii a.E 09 I-1500-1400 1300-120D.-11W0-1000-700-mo i-000- &L-500-4)0-300-3,0'100-3m0 0 692 1003 1600 Time (seoonds)3000 Figure 3-16: Transient 6: Reactor Overpressure

>1 SIR-07-141-NPS, Rev. A 3-26 Structural Integrity Associates, Inc.NEGO41804' 1-¶ Temp (f) --Pressure (ps I*11ic)-ow gw I 2Z001.2 A a, ii it 0.I I I ------0 2000 4XI0 em Ti me~ (secondsj 8=0 12zO Figure 3-17: Transient 7: SRV BlawDown SIR-07-141-NPS, Rev. A 3-27 Structural integrity Assoc/ates, Inc.NEC041805 J-Temp(f)

--Pressure(psigli

-1100-1000l5M -0.lii b=E 3:0--90(3-800-70D-7W0-800-501)-400)-300-200-100 a I al 2U0 0 0 10O0 2000 30M 4000 5000 Ti me (seobnds)Figure 3-18: Transient 8: Scram -Other SIR-07-141-NPS, Rev. A 3-28 SStructural Integrity Associates, inc.NEC041806 SI -Te mp(T) -.- Pressu re (psig) I 5J00 400 3D0 Ix 40-100--10W-700-6QJ0,-400-30W-2.0-100 U I IA ____________

-0 10 20 30 40 50 Ti ne (seoonds]70' 80 90 100 Figure 3-19: Transient 9: Improper Startup I SIR-07-141-NPS, Rev. A 3-29 V structural Integrity Associates, Inc.NEC041807 11

-Ternp (T) .Pressure (psig)j 600 600 400 300 200 100-]0 2000 4000 6800 8000 10000 120M0 14000 16000 Time (seconds)Figure 3-20: Transient 10: Shutdown SIR-07-141-1N'PS, Rev. A 3-30 Structural (nteagity Associates, Inc.NEC041808 Figure 3-21: Reactor Recirculation Outlet Nozzle Internal Pressure Distribution SIR-07-141-NPS, Rev. A 3-31 Structural Integrity Associates, Inc.NEC041809 ELEPIEfPS PpJf 0 NOW1" APP. 19 20o7 13:32:31 5082 S-4. 06-3730-3054-2379 1703-1027-24.2521--z -~3~L I --I ---I -~~VVI~i~~ ~ -! -i i ..,E ..! ] ýrTTrTTTrr T TrT lrT A 1000 Rec-rc Out-et Nozzle Finite Element Nodel:Figure 3-22: Reactor Recirculation Outlet Nozzle Pressure.Cap.Load

  • SIR-07-141-NPS, Rev. A 3-32 Structural Integrity Associates, Inc.NEC0418 10 Figure 3-23: Reactor Recirculation OutletNozzle Vessel Boundary Condition STR-07-141-NPS, Rev. A 3-33'4IStructural tegrity Associates, Inc.NECO41811

.',/ !.Figure 3-24: Pipe Reactions SIR-07-141-NPS, Rev. A 3134 Structural Integrity Associates, Inc.NEC041812

4.0 STRESS

AND FATIGUE ANALYSIS RESULTS Fatigue calculations for the VY reactor recirculation outletnozzlewereperformed in accordance with ASME Code,Section III, Subsection NB-3200 methodology,(1998 Edition, 2000 Addenda)[17]. Fatigue analysis was performed in the Reference

[.11] calculation for the two locations identified in Section 3.1.2 using the Green's Functions developed for these two locations and the 60-year projected cycle counts from Reference

[14].Three computer programs were used to facilitate the fatigue analysis process: STRESS.EXE, P-V.EXE, and FATIGUE.EXE.

The firstprogram, STRESS.EXE, calculates a stress history in response to a thermal transient using a Green's Function.

The second program, P-V.EXE, reduces the stress history to peaks and valleys. The third program, FATIGUE.EXE, calculates fatigue from the reduced peak and valley history using ASME Code,Section III methodology.

All three programs are explained in detail. ad were independently verified for use in the Reference

[16] calculation.

In order top erform the fatigue analysis, input files with the necessary data were prep ared and-the three analysis programs were run. The program STRESS.EXE required the following three input files: Green.dat:

This file contains the Green's Function.

As discussed above, the reactor recirculation outlet nozzle analyses utilize twelve Green's Functions:

a membrane p lus bending stress intensity Green' s Function and a total stress intensity Green's Function for both the safe end and blend radius locations for each of three flow conditions.

  • Green.cfg:

A configuration file containing parameters that describe the Green's Function.* Transnt.inp:

This file contains the input transient history definedin Tables 3-1 and 3-2.SIR-07-141-NlIPS, Rev. A 4-1 Structurae Integrity Associates, Inc.NEC041813 IK Tables 4-1 and 4-2 show the stresses for each location that were used in the fatigue analysis.Columns 2 through 5 of Table 4-1 (for the safe end) and Table 4-2 (for the blend radius) show the final peak and valley output after stress history reduction.

The pressure values for Columns 6 through 8 i each table were determined fi-om the transient pressures specified in Tables 3-1 and 3-2. The pressure stress intensities from Section 3. 2 were scaled appropriately for each transient case. The scaled piping tess values are shown in Columns 9-and 10 of Tables 4-1 and 4-2. The pip ing stress intensities from Section 3.3 were scaled based on the transient case RPV fluid temperature and assuming no stress occurs at an ambient temperature of 7 0 0F. Both ofthese stress intensities were then added to the thermal stress intensity peak and valley points to calculate the final stress values used'for the fatigue analysis.

In the case ofthe piping load stress intensities, the sign of the stress intensity was conservatively set to the same sign as the thermal stress intensity to ensure bounding fatigue usage results. Columns 11 and 12 of Tables 4-1 and 4-2 show the summation of all stresses for each thermal peak and valley stress point. The last column shows the number of cycles associated with each peak or valley based on the cycle counts shown in Tables 3-1 and 3-2.The program FAT.IGUE.EXE performs the ASME Code peak event-p airing required to calculate a fatigue usage value. The input data for the configuration input file for FATIGUE:EXE, which is named FATIGUE.CFG, is shown in Table 4-3.The results of the fatigue analysis are presented in Tables 4-4 and 4-5 for the safe'end and the blend radius for 60 years, respectively.

SIR-07-141-NPS, Rev. A. 4-2 Structural Integrity Associatesjno NEC041814 Table 4-1: Reactor Recirculation Outlet Nozzle Safe End Stress Summary 1 1 G I I I a 1 9 1 16 1 1 2 1 -1 Tinnilent r S from1.(Dill Time 1a6 16164 6 6131 2412 26052 675)2423M 2213. i0 2403.60 6773040 10457 .50 16523.5)17759113 b.M 2319.90 2110n.1 325)2322.31-151.70 122M isJLm M-B Sterna Temperature Preeiure Liii I F I 03al(0 TOtaI PrIm lure WIll PA. B3 Pro a i uro SIro ii m fPI1 TolnI R ping Ster. .(Dfl I M÷. B piping S tm.I ( ill Totli Totl Stfe ii (Diii MBI Stie IrI ibill1-40-1 101 1ml 113 101*101*101 10 11 33 11 67 24 10 1i 1151191 Rumver 307 300-0;300 fl0 300 300 300 300 10 10 10 Is 10 10 10 10 10 10 10 10 10 10 G0 10--10 10 10-----6154.5)1 4062A.14 463564-63EUI -45425 153?41!499.99: 301.,44 499.4m, 54: 6 41.S99 13041.151 12152.2-4593.7I -4369331.

1793.37 2694.47 20926.H5 371127r 211052.31-7722-97 3 400J67 2624.71-37991 -3503 11601191 1i 63W 3.Sul-6"35.881 25)0.1 1 54.0531 lIW1 '-119s4T861 65)064-Z1688 -4622 940i 105106i 1069g1i-154 g5-1 s154.9s8 1i 01j64 1M2n,41 1-45221-1114636I1-6154 9551 -6154.9651 276191 21754 14 43622-25":-337 a I 131 -963 52E (1.99G 623 525.515.4 625.1 549 19=994 715 9401 1 I0sDD 106699-6154.955

.616 4.95Z1 1950i,41 1992n4 10101 1115191 11,1.i1-551566.-.151.961 345522 7455.1 -11331 -152a-2762J1291-0212.291

-2933ý911-3.123 3001.a a 11001 126391 1124851-339.1t:191

-309.14191 12299.86 12 I For notes, see next page.SIR-07-141-NPS, Rev. A 4-3 6 Structural integrity Associates, Inc.C NEC041815

-I Table 4-1: Reactor Recirculation Outlet Nozzle Safe End Stress Sunmmary (concluded)

NOTES: Column 1: C olumn 2:/C olumn. 3: C olumn 4: C olun 5: C olumn 6."Column 7: C olunin 8: C olumn 9: C olumn 10: C olumn 11: Column 12: Column 13: Transient numb er identification.

Time duringtransient where mammum or minimum stress intensity occurs from P-V.OU T output file.Maximum or minimum total stress intensity from P-V.OUIT output file.Maximum or minimum membrane plus bending stress intensity from P-V.OU T output file.Temperature per total stress intensity.

Pressure per Table 3-1.Total pressure stress intensity from the quantity (Column 6 x 11490)/1000.

Membrane plus bending pressure stress intensity from the quantity (Column 6 x 11350)/1000' Total external stress, 5707.89 psi*(Column 5-70'F)/(549F

-70'F).Same as Column 9, but fbr M+B stress.Sun of total stresses (Columns 3,7, and 9), Sum o fmembrane plus bending stresses (Columns 4, 8, and 10).Number of cycles for the transient (60 years).SKR-07-141-1NPS, Rev. A 4-4 Structural integrity Associates, Inc.NEC041816 f Table 4-2: Reactor Recirculation Outlet Nozzle Blend Radius Stress Summary I I Z 1 3 1 4 1 .5 1 .6 1 7 1 8 1 9 1 10 1 i 12 13------Transiert Mirrber Time fsl Tdal Stress Wsill-3417 271 M+B Stress-1=4.31 94'187W 3974j, 4 Temperwuwe

-003 309.1934 Pressuxe fpsig) .D1U1--in-'Dr--Dr-7Mu* 3161 31MM-=1l--7M-n1=31D1 3161-M72 31TM 317M 31-M 31-1--SW61 33976 r=rM=r7.9=M376 3397v-NOT6 33MM6 33M7U':3-7=3097W Stress Stress fnsil fIsi I iPaai P i Pressu-e IPres~su-e 17WI. *106 542 626,01=S (pi I-=nf 7rdTSM-Mw-2=.13 Iffm Mr 300 M+i Piping Stress fosiI 1 Ctal Tdal Stress fnsil 34521.7'-rM-340? ..3775.M-am M3-r 300'U'M"M M+0 Stress Insi I Iof Cycles f6 vearsl 24&SUU-70: 24M2-70:-4=1 -282!6 29J 1864 526DI 3551 327.4 497D.5255[M 525.5---- W 113 10101 3161t 38181ý-rw-"Z771-33976-=I-=I-rrI 1375 01D,1 Iv1(430371 297w, 317r, 3161;252.975, 38243.43-9=273608.0 MM" 29216.15-PMl 34833.g 314M.M-'fl'77=34833.98 34824.98 20740.97 314E.7 33923.80 33385 JU'Ing 306.74 r180 3689620-'q"M r3302.4 7609M5 30910.49-470M1 30910.433-3737358 4835728 nUM 33773n5-7=n 346V37.1-M=-PMs 3680828-zvs-Z=r5=374=8 1"620M 10 10 10 1D 10 10 10-n5-n5 To-n5-0-a-0-0 10D-0 44071 257(3397641 252.97541 252.97541 290E-27m-Tim 1611 1520 205 1856 1010 101D 7M loll 7M l131 1D01 1010 3161:, 33976.41 252.97541 252.9756 316131 33976.4 611 2175 41M TM7 17D 31612 351513 r=-Mr 5:31-3443U 33976A 252.681, 252.69E 34840.10-a=n-15-1U 671831 182.0361 169.0388 300 9282 3-1'u 0l 62411 M3.2281 1 0 1001 11w 37W41--15.84315 For notes, see nect page.SIR-07-141-lNPS, Rev. A 4-5 Structural Integrity Associates, Inc.NEC041817 Table 4-2: Reactor Recirculation Outlet Nozzle Blend Radius Stress Summary (concluded)

NOTES: Column 1:.Column 2: Column 3: C olumn 4: C olumn 5: Columr 6-.Colunm 7:.C olumn 8: C olumn 9: C olumn 10: C olumn 11: C olumn 12:, Column 13: Transient numb er identification.

Time during transient where maximum or minimum stress intensity occurs from P-V. OUT.output file.Madimum or minimum total stress intensity from P-V.OU T output file.Maximum or mimmum membrane plus bending stress intensity from P-V.OU T output file.Temperatute per total stress intensity.

Pressure per Table 3-2.Total.pressure stress intensity from the quantity (Column 6 x 31300)/1000.

Membrane plus bending pressure-stress intensity from the quantity (Column 6 x 33640)11000.

Total external stress, 280.16psi*(Column 5-70oF)/(549pF-70°F).

Same as Column 9, but fbr M+B stress..I Sum of total stresses (Columns 3, 7,.and 9).Sum ofmernbraneplus bending stresses (Columns 4, 8, and 10).Number of cydles for the transient (6 0 years).7-SIR-07-141-NPS, Rev. A 4-6 Structural lntegdrty Associates, Ino.NEC041018 Table 4-3: Fatigue Parameters Used in the Recirculation Outlet Nuzzle Fatigue Analysis Parameter Blend Radius Safe End m and n for Computing, x, 2.0 & 0.2 (low alloy .1.7 & 0.3 (stainlkss steel) steel)Design Stress intensity, Sm 26,700 psi 17,000 psi Elastic Modulus.from "30.xl 66 psi 28.3xl 0 psi Applicable Fatigue Curve, Ec s3 , Elastic Modulus Used in Finite 26.7xl 0 6 psi 27.0x4 06 psi Element Model, E ,_ ___ _Geometric Stress Concentration 1 Factor, Kt I 1.0 .i._53. ...2 SIR-07-141-NPS, Rev. A 4-7 Structural Integrity Associates, Inc.NEC04.1 19 Table 4-4: Fatigue Results for Reactor Recirculation Outlet Nozzle Safe End LOCATION = LOCATION NO. 1 -- SAFE END FATIGUE CURVE = 2 (1 = CARBON/LOW ALLOY, 2 STAINLESS STEEL)m = 1.7 n= .3 Sm = 17000. psi.Ecurve = 2.830E+07 psi Eanalysis

= 2.700E+07 psi.Kt = 1.53 MAX 82580.31546.3 1546.31546.25988.25730.18521.17960.17956.17956.17956.17948.17948.17948.17620.13 174.1 12300.12300.6956.5393.5393.5393.4762'.4605.4605.4605.4605.4518.4198.4130.3909..3486.3485.3485.3419.3419.3419.3292.'MIN-7469.-7469.-5010.-2934.-2934.-2934.-2934.-2934.-2934.-2741.-1264.-1264.-339.-339.-339.-339.-339.-157.-157i-157.-133.136.136.136.136.136.235.235.235.235.235.235.235.235.235.235.909.O909.RANGE MEM+BEND Ke Salt Napplied Nallowed 90049.39015., 36556.34480.28922.28664.21455.20894.20890.-20697.19220.19212.18287.18287.17959.13513.12639.124'5 6.7112.5550.5526..5258.4626.4469..4469.4469.4370.4283.-3963.3895..3674.3251.3250.3250.3184.3184.2511.2384.66991.33281.28040.28849.24217.23354.9572.9201.9197.8846.7194.7189.62,40.6240.17740.11053.12485.12341.7125.-1219.-1293.-2126.3924.3153.3153.3153.3636.3880.3977.3783.3172.3251.3246.3246.3483.3483".3179.2472.2.045 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ,1.000 1.000 1.000 1.000 1.000 134573.29691.26947.26083.21884.21509.13903.13505.13502.13304.12071.12065.11317.11317.14339.10152.10092.9956.5706.2570.2537.2165.3514.3218.3218.3218.3300.3322.3181.3092.2806.2 607.2605.2605.2636.2636.2199.1936.1.O000E+00

9. OOOE+00 1000E+00 0. OOOE+00 1. OOOE+01 1.OOOE+01 2.280E+02 1. OOOE+01 4. 200E+01 1. 400E+01 2. 440E+02 5. 660E+01 6. 765E+02 6. 857E+05 1. 160E+06 1. 290E+06 2.383E+06 2. 566E+06 9. 710E+08 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 4.00OE+00 1.OOOE+20 1.000E+00 1.000E+20 1. OOOE+Q0 1. 400E+01 1. O00E+02 2. OOOE+01 1. OOOE+00 2. 790E+02 1. 400E+01 7. 000E+00 1. OOOE+01 4,.300E+01
1. OOOE+00 2.280E+02, 2. 800E+01 1.OOOE+01 6. 000E+01 1.000 E+01 1. OOOE+01 1. OOOE+00 1.000E+00 0.000E+00 1. OOOE+00 1. OOOE+00 8.OOOE+00 6..OOE+01 4. 798E+07 1..O00E+20
1. OOOE+20 1. O00E+20 1. OOOE+20 1. OOOE+20 1. OOOE+20.1'. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1..000E+20
1. 000E+20 1. O00E+20 1. 000E+20 1. OOOE+20 1. OOOE+20 1. 00OE+20 1. OOOE+20 1.OOOE+20 1. O00E+20 1. OOOE+20 U.0015.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 30000.0000.0000.0000.0000.0000.0000.0ooo.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000 0 SIR-07-141-NPS, Rev. A 4-8 Structural integrity Associates, Inc.NEC041820 Table 4-4: Fatigue Results for Reactor Recirculation Outlet Nozzle Safe End (concluded)

MAX MIN RANGE MEM+BEND Ke Salt Napplied Hallowed U 3292.32 92.3135.3135..3086..3086.2809.2783.2783.2783.2783.2783.2783.2780.2780.2780.2780.2780.2780.2763.2762.2762.2762.2762.2762.2762.2500.2496.2496.2487.2487.909.909.909.1029.1029.13 6.1376.1376.1732.179.3.1958.1958.1958.1958.2104.2352.2352.2352.2352.23.52.2352.2352.2352.2352.2441.2441.2441i 2441.2445.2445.2487.23"84.2384.2226.2106.2058.17 i0.1433.1407.1051.990.825.825.825.822.676.428.428.428.428.411.410.410.410.410.321..321.59.55.51.42.0.2472.2472.2535.2310.2219.1361.1091.1187.860.208.811.811.811.808.576.416.416.416.416.403.403.403.403.403.443.443.181.177.181.175.0.1.000 1.000 1.000 i. 000 1.000 1.000 1.000.1.000 1.000 1.000 I. 000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 i. 000 1.000 1.000 1.000 1.000 1. 000 1.000 1. 000 1.000 1. 000 1.000.1. 000 1936.1936.1871.1746.1695.1274.1054.1067.790.576.658.658.658.655.514.340!340.340.340.327.327.327.327.327.291.291.81.78.77.71.0.1. o00E+00 2.280E+02 3. o00E+00 7.000 E+00 7. OOOE+00 2.2 10E+02 1.O00E+01 6. 900E+01 1. O00E+01 1. OOOE+01 6. 000E+01 1. OO0E+O0 7. 800E+01 1. 510E+02 1. 000E+01 1.390E+02 1. OOOE+01 6.OOOE+01 1. OOOE+00 1.OOE+01 1. 'O00E+01 6. OOOE+01 1. OOOE+00 9. 000E+00 5. OOOE+00 2.280E+02 1. OOOE+01 5.700E+01 2. 430E+02 5.700E+01 3.000 E+00 1. OOOE+20 1. OOOE+20 1. 00OE+20 1.000E+20 1. 00OE+20 1. 000E+20'1. 000E+20 1. OOOE+20 1.000E+20 1; OOAE+20 1. 00OE+20 1.OOOE+20 OOOE+20 1. 000E+20 1. OOOE+20 1. OOOE+20 I.OOOE+20 1. OOOE+20 1. O00E+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1.O000E+20

1. OOOE+20 1. OOOE+20 1. OOOE+20 1. O00E+20.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.00 00.0000.0000.0000.0000.0000.0000.0015 (TOTAL USAGE FACTOR =SIR-07-141-NPS, Rev. A 4-9?Structural lntegdity Associates, Inc.NEC041821 Table 4-5: Fatigue Results for the Reactor Recirculation Outlet Nozzle Blend Radius LOCATION =FATIGUE CURVE =LOCATION NO. 2 -- BLEND RADIUS 1 (1 =CARBON/LOW ALLOY, 2 = STAINLESS STEEL)m=2.0 n .2 Sm = 26700. psi Ecurve = 3.000E+07 psi Eanalysis

= 2.670E+07 psi Kt = 1.00 MAX MIN RANGE MEM+BEND Ke S alt Napplied Na6lowed.

U 55601.53822.51017.48905.46249.40607.39965.38737.38243.37757 37757.36291.36Z91;.36273.36273.35954., 35954.35954.35954.35954.35837 35658.35658.35556.35556.34973.34973.34926.34843.34843.34843.34843.34834.34834.34831.34829.34829.34829.34829.34829.-17.-17.-17.-17.-17.-17.-17.-17.-17.-17.476.476.1548.1548.-1548.'1548.1548.1844.£92 6.1926.1926.11988.11988.12180.12180.20655.20655.20655.25750.27368.28113.28113.28113.28113.28113.29216.31990.31990.31990.55618.53839.51034.48922.46266.40623.39982.38754.382 60.3777?4.37281.35815.34743.34725.34725.34405.34405.3440.5.34110.34028.33911.33732 23670.23568.23376.22793.143 18.14271.14188.9093.7475.6730.6721.6721.6718.6716.5613.2839.2839.2839.37422.*48047.44087.5-2579.48374.36626.39092.40300.37242.37735.373 14.36492.35231.35143.-35143.35054.35054.35054.34858.34917.34978.34661.26901.27109.*28326.27831.16974.17051.16887.17221.5178.3789.'3784.3784.3782.3781.3878.1543.1543..1543.1X000*1.000 1.ooo 1.000 1.000.1.000 1.000 1.000 i1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1.000 1. 000 1.000 1_000 1.000 1..000 1.000 1.000 1.000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 31246.30247.28671'.27484.25992.22822.22462 .21772.21494.21221.20945.20121.19518.19508.19508.19329.19329.19329.19163.19117.19051.18951.13298.13240.13133.12805.8044.8018.7971.5108.4199.378 1..3776.3776.3774.3773.3153..1595.1595.1595.1. 000E+00 1. 000E+01 1. 000E+01 1. 000E+00 1. 00E +00 1.0002E+01

1. OOOE+01 6. 000E+01 1. O00E+01 7. 000E+00 2. 93 OE+02 7. 000E+00 3. 000E+00 6. 000E+01 1. 000E+00 5. 600E+01 1. 000E+00 1. 000E+00 1. 400E+01 2.280E+02 1. 0002,+01-6. 200E+01 1. 660E+02 1. 340E+02 1. 660E+02 1.340E+02 1. 660E+02 1. 000E+01 1*240E+02 1. 400E+01 1. 000E+01 1.52 OE+02 6. 0002÷+0 1. 000E+00 1. 000E+01 7.700E+01 1. 000E+01 6. O00E+01 1. 000E+00 8. 000E+01 1. 947E+04 2 .157E+04 2 .542E+04 2 .894E+04 3 .435E+04 5 .19 6E+04 5. 6239+04 6 .564E+04 6. 995E+04 7 .453E+04 7.954E+04.9.705E+04

'1 .09 2 E+05 1.094E+05 1 .094E+05 1.13 1E+05 1. 13 1E+05 1.13 6E+05 1. 167E+05 1. 177E+05 1. 19 1E +05 1.214E+05 5.728E+05 5.955E+05 6.411E+05 8 .050E+05 7.42 1E+07 7; 618E+07 7.983E+07 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.O00E+20' 1.000E+20 1.000E+20 1.000E+20 1.000E+20.0001.0005.0004.0000.0000.0002.0002.0009.0001:0001'0037 o0001.0000.0005.0000.0005*. 0000.0000*.000 1.0019.0001 0005.0003.0002.0003.0002.0000.0000.0000.'0000.0000.0000 0000.0000 S0000.0000.0000.0000.,0000.0000 SIR-07-141--NPS, Rev. A 4-10 Structural Integrity Associates, Inc.NE0041822 Table 4-5: Fatigue Results for Reactor Recirculation Outlet Nozzle Blend Radius (concluded)

MAX 34825.34825-34825.34825.34825.34825.34825.34825.34646.34646.34646.34646.34646..34646-.34646.34646.34646.34646.34646.MIN 3 1990.311990.31990.31990.31990.32634.32634.32634.32634.33386.33581.33709.33822.33924.33924.34124.34331.34413.34592.RANGE 2835.2835.2835.2835'.2835.2191.2191.2191.2012.1260.1065.937.824.722.722.522.3 15.232.54.MEM+BEND Ke Salt Napplied Nallowed U 1541.1541.1541.1541..1541.2355.2355.2355.2695.1578.1120.1137.1455.1228.1310.10 67.33.98.-569.-130.1.000 1.000 1.000 1i000 1.000 1.000 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1593.1593.1593.1593.1593.1231.1231.1231.1130.708.598.526.463.406.406.293.177.131.30.1. 00E+01'6. O00E+01 1. OOOE+00 1. 400E+01 6. 300E+01 6. 000E+01 1.000E+00 1. 040E+02 1. 240E+02 1.000E+00 1. 000E+01 1. 0005+01 1. OOOE+00 1. 00OE+00 1. 00OE+00 1. O00E+01 1. O00E+01 1. 200E+02 1. 200E+01 1.0oOE+20

.0000 1.000E+20

.0000 I.O000E+20 .o0oo 1.000E+20

.0000 1.O00E+20

'.0000 1.O00E+20

.0000 L. 000E+20 .0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.000E+20

.0000 1.OOOE+20

.0000 1.0005+20

.0000 1.000E+20

'.0000 1.000E+20

.0000 1.O00E+20

.0000 1,.O00E+20

...0000 TOTAL USAGE FACTOR =.0109.'SIR-07-141-NPS, Rev. A 4-11 Structural Integrity Associates, Inc.NE0041023

5.0 ENVIRONMENTAL

FATIGUE ANALYSIS Environmental fatigue multipliers were computed for both normal water chemistry (NWC) and, hydrogen water chemistry (HWC) conditions in Reference

[18] for various regions of the VY RPV and attached piping. Based on VY-specific dates for plant startup and HWC implementation, as well as past and future predicted HWC system availability, it was determined that overall HIWO availability is 47% over the sixty year operating period for VY. Therefore, for the purposes of the EAF assessment of the reactor recirculation outlet nozzle, it was assumed that HWC conditions exist for 47% of the time, and NWC conditions Exist for 53% of the time over the 60-year operating life of the plant RPV beltline region chemistry was assumed for both the reactor recirculation outlet nozzle safe end and b lend radius locations, since both locations experience reactor conditions at all times.For the safe end location, the env ironmental fatigue factors for NWC and HWC are 8.36 and 15.35, respectively, from Table 5,of Reference

[18] for the RPV beltline region. This results in an EAF adjusted CUF as follows:.60-YearCUF, U66 =0.0015 Overall EAF multiplier, Fe,,= (8.36 x 53% + 15.35 x 47%) = 11 65 60-YearEAF CUTF, Uer= 0.001 5x 11.65 = 0.0175 -The EAF CUF value of 0.0175 for 60 years forthe safe end is acceptable (i.e., Jess than the allowable value of 1.0).The fatigue calculation documented in Section 4.0 for the blend radius location was performed for the nozzle base material since cladding is structurally neglected in modern-day fatigue analyses, per ASME Code,Section III, NB-3122.3

[17]. This is also consistent with Sections 5.7.1 and 5.7.4 of NUREG/CPR-6260

[1]. Therefore, the cladding wasneglected and.EAF.assessment of the nozzle base material was performed for the blend radius location., -SIR-07-141-,PS, Re. A 5-1, Structural Integrity Associates, Inc.NEC041824 For the blend radius location, the environmental fatigue factors for NWC and HWC are 12.43 and 2.45, respectively, from Table 5 of Reference([18]

for the RPV beitline region. This results in aht EAF adjusted CuF as follows: 60-Year CUF, U = 0.Q0109 Overall EAF multiplier, Fe,, (12.43 x 53% + 2.45 x 47%) 7.74 60-Year EAFCUF, U0-0 ,,, 0 0,109 x 7.74 =0 08, The EAF CUF value of 0.0844 for 60 years for the blend radius is acceptable (i.e., less than the allowable value of 1.0).SIR-07-141-NPS, Rev. A 5-2.Structural Integrity Associates, Inc.NEC041825 4, (

6.0 CONCLUSION

S This report documents a refined fatigue evaluation for the VY reactor recirculation outlet nozzle.The intent of this evaluation is to use refined transient definitions and the revised cyclic transient counts for 60 years for a computation of CUF, including EAF effects, that is more refined than previously performed fatigue analyses.

The fatigue-limiting locations in the reactor recirculation outlet nozzle and safe end are included in the evaluation, to be consistent with NUREG/CR-6260

[1] needs for EAF evaluation for license renewal. The-final fatigue results are considered to be a replacementto the values prevjously reported in theVY LRA.The fatigue calculations for the VY reactor recirculation outlet nozzle were performed in accordance with ASME Code,Section III, Subsection NBi-3200 methodology (1998 Edition, 2000 Addenda) [17]. The stress evaluation is summarized in Section 3.0, and the fatigue analysis is summarized in Section 4.0. The results in Section 4.0 reveal that the CUTFforthe limiting safe end location is 0.0015, and the CUF for the limiting b lend radius location is 0. 0109.Both of these values represent 60 years of plant operation, including all relevantEPU effects.EAF calculations for the VY reactor recirculation outlet nozzle were also performed, as in Section 5.0. The results in Section 5. 0 reveal that the EAF CUF for the limiting safe end location is 0.0175, and the EAE CUF forthe limiting blend radius location is 0.0844: Both of these values represent 60 years of plant operation, including all relevantEPU effects.All fatigue allowables, both with and without EAF effects, are met, thus demonstrating acceptability for 60 years of operation.

SIR-07-141-NPS, Rev. A .6-1 Structural Integrity Associates, mn.NEC041826

-) j

7.0 REFERENCES

1. N{UREG/CR-6260 (INEL-95/0 045), "Application of NUREG/CR-5999 Interim Fatigue Curves to Selected Nuclear Power Plant Comp onrents," March 1995.2. Hitachi, Ltd. Drawing No IOR290-127, Revision 0, "Recirc. Outlet Safe Endý" SI File No. VY-1.6Q-204.
3. Chicago Bridge &Iron Company, ContractNo.

9-6201, Drawing No. 21,Revision 4,"36"x28" Nozzles Mk Ni A/B," SI File No. VY -1 6QQ-204.4. GE Design Specification No. 2 1A1 115, Revision 4, "V ernont Yankee Reactor Pressure Vessel," October 21, 1969, SI File No. VY-05Q-21Q0.

  • 5. GE Design Specification No. 26A6019, Revision 1, "Reactor Vessel- Extended Power Uprate," June 2, 2003, SI File No. VY-05Q-236.

6 Kuo, A. Y., Tang, S. S., and Riccardella, P. C, "An OnwLine Fatigue Monitoring System for Power Plants, Part I -Direct Calculation of Transient Peak Stress Through Transfer Matrices and Green's Functions," ASME.PVP Conference, Chicago, 1986.7. ANSYS, Release 8.1 (w/Service Pack 1), ANSYS, Inc., June 2004.8. Structural Integrity Associates Calculation No. V Y -1 6Q-304, Revision 0, "Recirculation Outlet Nozzle Finite Element.Model." 9. American Society of Mechanical.Engineers, Boiler and Pressure Vessel Code,Section II, Materials, Part D, "Prop erties (Customary)," 1998 Edition, 2000 Addenda.SIR-07-141-NPS, Rev. A 7- Structural fntsgrity Associates, Inc.NEC041O27 A.10. Structural.Integrity Associates Calculation No. VY-16Q-305, Revision.

0, "Recirculation Outlet Nozzle Green Function," 11. Structural Integrity Associates Calculation No. VY-16Q-306, Revision 0, "Fatigue Analysis~of Recirculation Outlet Nozzle." 12. Reactor Thermal Cycles, GE Drawing No. 729E762, SI File No. W-NYPA-78Q-205.

13. Nozzle Thermal Cycles (Recirculation Outlet), GE DrawingNo.

135B9990, Sheet 1, Rev. 1, SI File No. W-NYPA-78Q-206.

14. Referencefor cycle counts < < LATER> > Entergy Calculation No. VYC-378, Revision 2,"Vermont Yankee Reactor Cyclic Limn its for Trans iehit Events," 3/10/8 8, SI File No. VY-J6Q-2xz.15: GEDrawingNo.

919D294, Revision 11, SheetNo. 7, "Reactor Vessel," SI FileNo.0 VY-05Q-241.16. Structural Integrity Associates Calculation No. SW-SPVF-01 Q-301, Revision 0,* 'STRESS.EXE, P-V.EXE, and FATIGUEEXE Software Verification." 17. American Society of Mechanical Engineers Boiler & Pressure Vessel Code,Section III, Rules for Construction of Nuclear Facility Components 1998 Edition, 2000 Addenda.18. Structural Integrity Associates Calculation No. V Y-l 6Q-303, Revision 0,"Environmental Fatigue Ev aluation of Reactor Recirculation Inlet Nozzle and Vessel Shell/Bottom Head." SIR-07 -141 -NPS, Rev. A 7-2 Structural Integfty Associates, Inc.NEG041828 Exhibit K Structural Integrity Associates, Inc. File No.: VY-16Q-306 CALCULATION PACKAGE ProjectNo.:

VY-16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 CLIE.NT: PANTr: Entergy Vermont Yankee, LLC Vermont Yankee Nuclear Power Station.CALCULATION TITLE:.Fatigue Analysis of Recirculation Outlet Nozzle Affected Project Manager Preparer(s)

&Dcent Revision Description Approval Checker(s).

Revision Pages Signature

&Date Signatures

&Date A 1-29, Draft for Review Terry J. Herrmann J. E. Smith Appendix: AI-A2 Minghao Qin Page 1 of 28 , F0306-OIRO NEC041830-Structural Integrity Associates, Inc.Table of Contents 1,0 IINTRODUCTION..................................................4

2.0 METHODOLOGY

.. ....................

.................................

.................

4 3 .0 A N A L Y S IS .... ..........................

' .............................

..................

.................................................

4 4.0 CALCULATION OF THERMAL STRESSES FOR TRANSIENT 9.. ..8 5.0 FA TIG UE U SA GE RESU LTS ........ ..................................

................

.............................

1 6.0 ENVIRONMENTAL FATIGUE ANALYSIS............................... -I. .7.0 REFEREN CES ...............

..........

.... ........................

............

1..1.APPENDIX A FILES OF FINITE ELEMENT ANALYSIS...............................

1 List of Tables Table 1: Maximum Piping Stress Intensity Calculations

...... .......................

.... 13 Table 2: Blend Radius Transients.

....................................

.... 14 Table 3: Safe End Transients

..............................

..............

.............

.15 Table 4: Blend Radius Stress Summary .......................................

16 Table 5: Safe End Stress Summary ..... .........

...............

...... ....... 17 Table 6: Fatigue Results for Blend Radius (60 Years) .... ... .................

..........

18 Table 7: Fatigue R esults for Safe End (60 Years) ...................................................................

......... 20 Table 8: Material Properties

@ 400F ........................................

22 File No.: VY-16Q-306 Revision:

A Page 2 of 29 F0306-OIRO NEC041831 I Structural Integrity Associates, Inc.List of Figures N Figure 1 External Forces and Moments on the Recirculation Outlet Nozzle ..........................

..23 Figure 2 Nozzle and Vessel Wall Thermal and Heat Transfer Boundaries

.........

..................

24 Figure 3 Transient 1 -Normal Startup at 1 00 0 F/hr .......................................

..........

25 Figure 4: Transient 2 -Turbine Roll and. Increase to Rated Power .. ..... .......................

25 Figure 5 Transient 3 -Loss of Feedwater Heaters and Turbine Trip 25% Power ............

26 Figure 7: Transient 5.- Turbine Generator Trip .............

.......................

....... 27 Figure 8 Transient 6 -Reactor Overpressure

..........

.............

.............

27 Figure 9 Transient.7

-SRV Blowdown .......................................

28 Figure 10: Transient 8 -SCRAM Other .........................

..:...28 Figure 11: Transient 9 -Improper Startup ...........................

...........

29 Figure 12: Transient 10 -Shutdown .. ........ ...........................

......... .29 File No;: VY-16Q-306.

Revision:

A Page 3 of 29 F0306-OIRO NEC041832 Structural Integrity Associates, Inc. /

1.0 INTRODUCTION

The purpose of this calculation is to perform a revised fatigue analysis for the Entergy Vermont Yankee (VY) reactor pressure vessel (RPV) recirculation outletnozzle.

Two locations will be analyzed for fatigue acceptance:

the safe end (SAl 82 F316) and the nozzle inner-comer blend radius (SA508 Class 2). Both locations are chosen based on the highest overall stress of the analysis performed in Reference

[1]. Fatigue usage will be determined for each 1iccation, the nozzle forging and safe end, respectively.

An environmental fatigue usage factor will also be determined for each.of these locations.

2.0 METHODOLOGY

Three programs will be used to p erform the fatigue analysis.

The first. two calculate stresses in response to thermal transients.

The 12 transients to be analyzed are described in References

[2 through 4], for the recirculation outlet nozzle. Transients 1 to 10 are shown in Figures 3 -12. The last program calculates fatigue b as-ed on the transient stress output from the first two programs.

The three programs are STRESS.EXE, P-V.EXE, and FATIGUE.EXE.

All three programs are explained and verified for generic use in Reference

[5].3.0 ANALYSIS The fatigue analysis involves preparing the input files and running the three programs.

The programs STRESS.EXE and P-V.EXE are run together through the, use ofa batch. file. The program FATIGUE.EXE is run after processing the output from P-V.EXE.The steps associated with this process are described in the following sub-sections.

,3.1 Transient Definitions (for program STRESS.EXE)

The programr'STRESS.EXE requires the following three input files for analyzing an individual transient:

o GREEN. DAT. There are 12 stress history functions (Green's Functions) obtained from Reference[1]. They represent the membrane plus bending and total stress intensities at the blend radius and safe end locations.

The blend radius and the safe end have three stress history functions for the 100% flow, 50%, and no-flow conditions.

  • GREEN. CFG is configured as described in Reference

[5].* Several TRANSNT.INP files are.created to simulate the transients shown on References

[3 and 4]: Tables 2 and 3 show the thermal history used to simulate each transient for the blend radius and safe end locations, respectively.

The aforementioned transient information, for each location is contained in EXCEL files Blend RadiusTransientsxls and SafegEnd_Transientst xis, which are contained.

in the computer files. Transients are split intb the following groups based upon flow rate-.,* Ttansients 2,3, 5,.6, 7, and 8 arerun at 100% flow Green's Function File No.: VY-16Q-306 Page 4 of 29 Revision:

A F0306-O1RO NEC041833 Structural Integrity Associates, Inc.* Transients I and 10 are run at 50% flow Green's Function* Transient4 is run at no flow, 50% flow, and 100%/o flow Green's Functions, as shown in Tables 2 and 3.* Transient 9is simulated by ANSYS [11] model and thethermal results are taken from ANSYS directly.

See Section 4 for details.Transients 11 and 12 have only small temperature change (70CF to 10MYF). Therefore, the thermal stresses for these two transient are ignored. Only the piping load and the pressure load are considered in these two transients.

  • The loss of feedwaterheaters (Feedwater Heater Bypass) eventhas a negligible temperature change (526 TF to 516 OF) associated with it Therefore this transient is ignored.3.2 Peak and Valley Points of the Stress History (forpragramrP-V.EXE)

After STRESS.EXE runs are completed, the program P-V.EXE is run to extract only the peaks and valleys from the STRESS.OUT stress history file produced by the STRESS.EXE program The only input required for this program is the stress history file (STRESS.OTUT), and the program outputs all of the resulting peaks and valleys to.output file P-V. OUT. The resulting peak and valley stress summaries for all transients are summarized in Tables 4 and 5 for both locations.

Columns 2 through 5 of Tables 4 (for the blendrradius) and 5 (for the safe end) show the final peak and valley output after it has been reduced to eliminate any unrealistic stress fluctuations.

These final peaks and valleys were selected from the total stress and membrane plus bending stress intensities that were calculated by STRESS. EXE and screened with P-V.EXE.3.3 Pressure Load The pressure stress associated with a 1,000 psi internal pressure was determined in Reference

[1 ]These values are as follows: Pressure stress for the safe end:* 11350 psi membrane plus bending linearized stress intensity.

  • 11490 psi total stress intensity.

Pressure stress for the blend radius:* 33640 psimembrane plus bending linearized stress intensity.

  • 31300 psi total stress intensity..

The pressure stress initensity values for each transition were linearly scaled based on the pressure for each transition.

The actual pressure for column 6 of Tables 4 and 5 is obtained from Reference

[3].The scaled pressure stress values are shown in c'olumns 7 and 8 of Tables 4 and 5.The pressure stress is combined with the peak and valley points to calculate the final stress values used for fatigue analysis.FileNo.: VY16Q:-306 Page5 of 29 Revision:

A FO306-OIRO NEC041834 Structural Integrity Associates, Inc.3.4 Attached Piping Loads Additionally, the piping stress intensity (stress caused by the attached piping) was determined.

These piping forces and moments are determined as shown inFigure 1.The follow ing formulas are used to determine the maximum stress intensity in the nozzle at the two locations of interest.

From engineering statics, the piping loads at the end of the model can be translated to the first and second cut locations using the following equations:

ForCutI: (A (My) M F Lj (M, ,)2'= -Mx "F FL2 For CutlI: (M,)y =M-, + FL 2 The total bending moment and shear loads are obtained using the equations below: M X = (_M )12 For Cutl: F,,= (R 1 2+ (F,)1 2 For CutlI: M* = (MA)2 2 + QI§)2 2 F= 4(F)*2+ (F)ý2 The distributed loadcs for-a thin-walled cylinder are obtained using the equations below:*;~ 2-= I -F A4A= -i I To determine the primary stresses, Pm, due to internal pressure and piping loads, the following equations are.used.For Cut-I, using thin-walled equations:'

File No.: VY-16Q-306 Page 6. of 29 Revision:

A F0306-01RO NEG041835 Structural Integrity Associates, Inc.(p) =Pa. + lz 2tN ItN PaN IN qN tN= 2(( P,4)0 -( PM) 2 2j(1MPut)

+ (rid )ýZ2 or Because pressure was not considered in this analysis, the equations usedtfor CutI are valid for Cut'II.where: Li = Thelength fi-omtheend of the nozzle where the piping loads are appliedto-the location of interest in the safe end.L2 = The length from the ýend of the nozzle where the piping loads are applied to the-location of interest in the blend radius.My= The maximum bending moment in the xy plane.F = The maximum shear force in the xy plane.N. = The normalforce per inch of circumference applied to the end of the nozzle in the z direction.

qN = The shear force per inch of circumference appliedto the nozzle.RN = The mid-wall nozzle radius.Per Reference

[7], the recirculation outlet nozzle piping loads are as follows: F. = 20,000 lbs MA = 2,004,000 in-lb F 7 = 20,000 lbs My= 3,000,000 in-lb F7 = 30,000 lbs MN= 2,004,000 in-lb, L 1 is equal to 4.25 inches and the L2 is equal to 42.77 inches. The calculations for-the safe end and blend radius are shown in Table 1. The first cut location is the same as the Green's Function cross section per [1 ] at the safe end, and the second cut is from Node 3829 (inside) to Node 3809 (outside).

This gives the maximum ID and minimum OD for the cross section calculation.

The maximum stress intensities due tothe piping loads are 5708.89 psi at the safe end and 280.16 psi at the blend radius.File No. VY-16Q-306

'Page 7 of 29 Revision:

A F0306-OIRO NEG041036

-I V Structural Integrity Associates, Inc.These piping stress values are scaled assuming nozstress occurs at an ambient temperature of 701F, and the full values are reached at reactor design temperature, 575 0 F [6]. The scaled piping stress values are shown in columns 9 and 10 of Tables4 and 5. Columns 11 and 12 ofTables4 and 5 show the sumrnation of all stresses for each thermal peak and valley stress point.3.5 Fatigue Analysis (for program FATIGUE.EXE)

The number of cycles projected for the 60-year operating life is used for each transient

[2].Column 13 in. Tables 4 and 5 shows the number of cycles associated with each transient.

The numb er of cycles for 60 years was obtained from Reference

[2] unless otherwise noted.The program FATIGUE.EXE performs the "ASME Code style" peak event painng required to calculate a fatigue usage value., The input data for FATIGUE.CFG is as follows:-" _Blend Radius Safe End Parametersm aridn for 2.0 & 0.2 (low 1 7 & 0.3 Computing K, alloy steel) [9] (stainless steel) [9]Design Stress Intensity Z6700psi [9] l7000psi [9]Values, Sm ..__" Elastic Modulus from 30.C0106 psi [9] 28.3x10 6 psi [9]Applicable Fatigue Curve Elastic Modulus Used in 6 6 Finite Element Model _".x0pil2.1

_il The Geometric Stress Concentration Factor.Kc 1.0 " " 1.57 [7]The results ofthe fatigue analyses are presented in Tables 6 and 7 for the blend radius and safe end for 60 years, respectively.

The fatigue run inputs described are -contained

'in EXCEL files BRresultsxls and SEresuzts.xls, which are contained in the computerlfiles.

4.0 CALCULATION

OF THERMAL STRESSES FOR TRANSIENT 9 Per Tables 2 and 3, the thermal shocks are fmm 526F to 268 0 F and from 526°F to 130 0 F at the blend radius and the safe end, respectively.

Therefore, the average temperatures for these two locations are about 400F and 330'F. Since there are two different temperature shocks in the same model, the previous method (Green Functions) is hard to be used for this particular transient Inthis section, ANSYS [11] will simulate this transient and the thermal results will be, applied in Tables 4 and 5.An additional case was also run to simulate the uphill (RPV) side of the blend radius, where the thermal shocks are from 526OF to 130CF at the safe end, and no temperature change at the blend K File No.: VY-16Q-306 Revision:

A Page 8 of 29 F0306-OIRO NEC041837 Structural integrity Associates, Inc.radius. The stresses produced by this case were found to be lower than the previous case. The 2689F shock case was used for all the following analysis.4.1 Thermal Load Since the average temperatures in the blend radius and safe end respectively are 400OF and 3300F, the material properties for 400cF are used for the blend radius, cladding and Vessel. Table 8 Shows.the material properties at 400PF. Theiflow rate at this transient is.3395.2

[4] GPM shown in Tables 2 and 3.Heat transfer coefficients listed on Reference 6 ofT9 are for pre power uprate.. The.heat transfer coefficients can be scaled by power uprate flow rate and diameter to values corresponding to the flow and location conditions.

Referring to Figure 2, heat transfer coefficients were applied as following:

Region I Per [7, Section T9], the heat transfer coefficient at 500'F, h, for 3395.2 GPM (2. 084 ft/s)flow is 0.8 4 9.11-, =672.8 BTU/r-ft-F.

Per [7, Section T9], the heat transfer coefficient at 100F, h, for 3395.2 GPM (2. 084 ft/s)flow is 2250. 0 = 308.24 BTU/hr-a--F.

The fluid temperature shock is" T =526 0 F -130 0 F -526 0 F Region 2 Per [7, Section T9], the heat transfer coefficient at 50TF,.h, for 3395.2 GPM (2.084 ft/s)flow is 0.8 0.2 " 49112 J .2 .BTUfhr=ft 2-oF.*. 2. ,5.l4K9 Per [7, Section T9], the heat transfer coefficient at.30mF, h, for 3395.2 (PM (2.084 ft/s)flow is File No.: VY-16Q-306 Page 9 of 29 Revision:

A F0306-0oiRO NEC041838 Structural Integrity Associates, Inc.47 2.08084)b C 25 )(326 o0.2= 616.57 BTU/hr-f2-0F.

The fluid temperature shock is: T =526 0 F -268*F- 526*F Region 3 Per [7, Section T9], the heat transfer coefficient at 5000F, h, for 3395.2 GPM flow is 67z8(0.'5)=

336.4 BTUhr-ft-°oF.

Per [.7, Section T9], the heat transfer coefficient at 300 0 F, h, for 3395.2 GPM flow is 336.4 71=9 328.04BTUTJhr-ig-°F." .4911)The fluid temperature shock is: Case 1. T =5Z6F -268°F -526¶F Case 2: T=Z 526F Region 3 The heat transfer'coefficient, h,.is 0.4 BTU/hr-fL 2-OF [7, Section T9].The temperature is: T = 120°F 4.2 ThermalResults The flow dependent thermal load case outlined in Section 4.1 was run on the finite element model.Appendix A contains the thermal transient input file VYRONTT9.INP for 3395.23 GPM flow rate. The flow dependent input files for the stress run is also included in Appendix A. The stress filename is VY RON S T9.Iq-P for 3395.2 GPM flow rate.The critical safe end and blend radius locations defined in Reference

[1] with node 6395 and 3829, respectively.

File No.: VY-16Q-306 Revision:

A, Page 10 of 29 F0306-OIRO NEC041839

"

Structural Integrity Associates, Inc.The stress time history for the critical paths was extracted during the stress run. This produced two files, T9SE.OUT and T9BR. OUT, which contain the thermal stress history. The membrane plus bending stresses and total stresses were extracted from these files t6 produce the files T9SE InsideRED and T9BRInside.RED, where SE and BR corresponded to the safe end and blend radius locations, respectiv ely.The data for the stress results is included in the files T9BRM+B.xls, T9BR_T. xls, T9SE .M+B.xls, and T9SE T.xls in the project Files. Where SE and BR corresponded to the safe end and blend radius locations, respectively.

M+B and T corresponded to membrane plus bending stress and total stress, respectiv ely.5.0 FATIGUE USAGE RESULTS The blend radius cumulative usage factor (CU?) from system cycling is 0.0109 for 60 years. The safe end CUT is 0.0015 for 60 years.-6.0 ENVIRONAMNTAL FATIGUEANALYSIS Per Reference

[12], the dissolved oxygen (DO) calculation shows the overall hydrogen water chemistry (I-WC) availability is 47%. This means the time ratio under normal water chemistry (NWC, or pre-HWC) is 53%.For the safe end location, the env ironmental fatigue factors for post-HWC and pre-HWC are 15.35 and 8.36 fromTable 5 of Reference

[12]. These resultin an EAF adjusted CU? of (15.35 x 47% +..836 x 53%3o) x 0.0015 = Q0175 for 60 years, which is acceptable (i e., less than the allowable value of 1.0). The overall environmental multiplier is 11.6453.For the blend radius location, the environmental fatigue factors for post-HWC and pre-HWC are 2.45 and 12.43 from Table 6 of Reference

[12]. These result in an EAF adjusted CU? of (2.45 x 47% +12.43 x 53%)x 0. 0109= 0..08436 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0). The overall environmental multiplier is7 .739.

7.0 REFERENCES

1. Structural Integrity Associates Calculation No. VY-16Q-304, Revision A, "Recirculation Outlet Nozzle Green's Functions." 2. Reference for cycle counts <<LATER>>

Entergy Calculation No. VYC-378, Revision 2,"Vermont Yankee Reactor Cyclic Limits for Transient Events," 3/10/88, SI File No. VY -1 6Q-2xx.*3. GE Drawing No 729E762, Revision 1, "ReactorThermal Cycles," Niagara Mohawk Powet Corporation, SI File No. NYPA-78Q-205.

4. GE Draw'ing No 135B9990,, "Nozzle Thermal Cycles (Recirculation Outlet) Reactor Vessel," File No.: VY-1.6Q-306 Page 11.of 29 Revision:

A .F0306-OIRO NEC041840 Structural Integrity.

Associates, Inc.5. Structural Integrity Associates Calculation (Generic)

No. SW-SPVF-01Q-301, Revision 0,"STRESS.EXE, P-V.EXE, and FATIGUE.EXE Software Verification.".

6. Hitachi, Ltd. Drawing No IOR290-127, Revision 0, "Recirc. Outlet Safe End," SI File No. VY-16Q-204.7. GE Stress Report No. 23A4316, Revision 0, "Reactor Vessel Recirculation Outlet Safe End," SI File No. VY-16Q-204.
8. Chicago Bridge &Iron Company, Contract No. 9-6201, Drawing No. 21, Revision 4, "36"x28" Nozzles MvikN1A/B," SI File No. VY-16QQ-204.
9. ASME Boiler and Pressure Vessel Code,Section II, Materials, Part D, Properties, 1998 Edition with 2000 Addenda.10. ANSYS, Release 8.1 (w/Service Pack 1), ANSYS, Inc., June 2004.11. Structural Integrity Associates Calculation No. VY-16Q-304, Revision A, "Recirculation Outlet Nozzle Finite Element Model." 12. Structural Integrity Associates Calculation No. VY-1 6Q-303, Revision A, "Environmental Fatigue'Evaluation-of Reactor Recirculation Inlet Nozzle and Vessel Shell/Bottom Head." 13. American Society of Mechanical Engineers, Boiler'and Pressure Vessel Code,Section II, Part D, 1998 Edition, .2000 Addenda.File No.:. VY-16Q-306 Revision:

A Page 12 of 29 F0306-OIRO NEC041841 Structural Integrity Associates, Inc.Table 1:. Maximum Piping Stress Intensity Calculations Blend Radius External Piping Loads Parameters F, 20.00 kips FV 20.00 kips Fz = _ 30.00 kips.MK= 2004.00 in-kips rv= 3000.00 in-kips MN= 2004.00 in-kips OD= 55.88 in 1D= 37.368 in RN= 23.31 in .L= 42.77 in t' 9.25 in (Mj)2=. 1148.54 in-kips (M402y= 3855.46 in-kips M *, = 4022.90 in-kips F__V_= 28.28 kips Nz= 2.56 kipstin q-= -0.20 kips/in Primary lembrane t ress Intensity PMz= 0.28 ksi,= 1 -0.02, ksi SIlm = 0.28 ksi Smax 280.16 psi Safe End External Piping Loads Parameters F, 20.00 kips*y= .20.00 kips._ Z= .30.00 kips MX= 2004:00 in-kips MY= 30.00.00 in-kips IV_= 2004.00 in-kips OD= 28.38 in 1D= 25938 in Rm= 13.58 -in rL = 4.25 in tN= 1.22 in (M4)2= 1919,00 in-kips (K_)2 = 3085.00 in-kips M *= 3633.15 in-kips Fxv= 28.28 kips Nz= *6.62 kips/in Am= -1.07 kips/in Primar r I embrane "tress Intensit PMv J 5.43 ksi Sj-0.88 ksi Sma =--- 5.71 ksi S = 5708.89 psi Note: The locations for CuTI paths, respectiv ely.and CutII were defined in Reference

[1] for safe end and blend radius I File No.: VY-16Q-306 Revision:

A Page 13 of 29 F0306-O1RO NEC041842 Tab e 2:Blen Ms ranient VStructural into gulty Associates, Inc.Table 2: Blend Radius transients Trnmilont T1me Temp lime Stop P, o Ilure How Rib Tranilent nlme Temp lmelobp roi lure Riow Rat Number 4-J (" Jij "I (Cpm) Rim ber fil Z Fl l fps .JW 1 P PM1 1. Normal Strup rith 0 1011 0 1.1*1n. G. ReacborOverprel lure 0 526 *1010

  • 23294sat i00Air 1616t 549 16165 iD1i P% I"C. .1C',1lsu 2 516, 2 1375 ti6')305 22164 549 WEn 1111 -" 32 526 30 94D 2. TUr1(n$0 R3911 3 M 549 l10 2U294 1832 525 18nn 940 rlcreais to Rated Power 1 642 1 .1010 CWnY- 2=2' 649 421 1010 u1 542 GOD 1031 2312 549 60 loin em2 26 1 10101 2313 542 1 lin3 6ED2 $26 WE 1010 21D3 542 6E t010 3. Loeioffped'atr 0 $26 1010 21294 2914 525 1 1010 heaters 181 512 1BM 101i 0130V _ mU91 i 516 WEm 11310 Turbln4 Trip2 1% Power 2100 542 30 1010 ?. SRV 0 526 1-in 232941 10 Ccleu 246 26 60 1010i 14-Cc1e ED0 365 Boo 11'0 OD%)'31150 626 6ED 1010 1151 71) 10190 50 3 95 0 1 5 4 2 S oD 1 0 1 0 1 7 5 6 8 7 0] W E 5 0 ' H 4260 542 3o1 1a10 8. SCRAM Oiler 0 525 loin 21294 6050 626 18n 1010 223CD;C,'cl 15 526 16 940 E13%I)'12060 $26 WED1 1010 11 626 law 940 4. Loll 0 $26 1010 0 22,15 649 42 1010.3 106 3 1190 O3)' 2M35 549 60 1010 10 OCice 1 13 $26 lo 1135 2295 542 1 1010 21) 301 220 1135 2356 542 60 1010 2213 am ow 113. 2351 526 , 1010 2W93 3[] .180 886 51? 526 6WE 1010 6173 5010 138 1135 -a Inproperasartip 0 525 1010 W395 7193 310 420 676 14147 .1 qeO 1 1 2531w 1 1010 (12%)143 310 3Wa 6?6 PnY 27 253r 26 1010 11r93 40 36nn 240 28 526 1 1010 16467 649 6364 1010. ' 6028 616 WE .63 1010 16517 549 60 1010 W. 1Slutdon 0 549 101o 14141 18518 542 1 1010 2949 3So 9Cele1 6264 315 6264 17'0 (I)57 17118 642 E0 101 63 .6 4 33] 6m 88 11119 $26 -1010 11024 To 93W 50 23119 $ WE .1011 22224 1 0 WEI M 50 C 7btfr~l~n~nr~n I C'.1 1f~f '7O 4f....a- In l I.. ..... ...... .... U6 49 OC'Co I J, 10 Is IBM0 2250 23111 2311 2911 2912 8912 526$26.626 526 549 549.U42 642$26 626 IBM 16 18W 420 60 I aDm 1136"1135 940 940 1010 1010 1010 1010 1010.1010 Toit 120 c"'clIe 1lm so 1%12. t'dro1bt4 TOut IMZ -s 6 1981.1 1 I 166 T______________

______ 50 £___--. --A --. -Note: I.Tit is1aitltmporao e ¢laige 1; rstmedaslsocosd Te stp.2.Tie himbero1oslid KtrElauf A.3. 26VF I So beid Bntir l lbrmiltsisit Tle tai dham adhtei*ttmpt6mhtRorTmikThit9.

/File No.: VY-16Q-306 Revision:

A Page 14 of 29 F0306-OIRO NEC041043 V Structural integrity Associates, Inc.Table 3: Safe End Transients Tranilsnt limo Temp time step Pressure How Rat elnulent lime Temp ltime Stp Promm uro Flow eRo Number i= fl fPM) Number .IU .-L LU .UL 2 1PM J 1. Nirmal 0to.u110t a 1nn a 141475] Q. Rhbc1orr.j wolpr -ure 0 526 1010 1634 Henlupatl:Q'Fflr 16151 649 1616t MID ksm%)" lqCI*e 2 5X6 2 1766 (Io0aq 00 CciesI IM4 549 TOO 10i0 32 526 30 940 2. luiruns RllI cnd o 509 10i0 28294 1832 516 lull 940*roama-e to Wed Power 1 542 1 1010 (10 %) 2252 549 420 lull]200 1olom 601 542 60 1M10 2312 549 60 11210 602 Ws 1 1010 2313 S42 I 1010 1302 70]o int10 2913 542 6013 .1010 3. LoUI o" Roedwater 0 5 1010 23294 2914 526 1 1010 Hou bnr IBM. 542 .M13 1010 0 DDw)y 3614 526 10 1010 l Tubine IlIp 25% tov~r 210] 542 Zoo Mi0 F. St locowdow-n 0 516 1010 3294.10 qy-lol 2460 Ws 350 1010 14S dou 0] 375 600 ITO (100)121 56 GOO 1n10o 11580 70 109M 50 3958 "542 Son 1010. 122M 70 TO O 0 " 42W0 542 301 1010n t SaS eA Otior 0 516 1010 21294 WED1 33 1BM 1010 228 0,'41e Is 526 15 940 1013%)I 67'W 32 7OO 101D 1815 526 ismD 940 I 4. Losl ofuoledodo r 0 516 1010 03 .23 549 423. 1010 PumpI 3 6X 3 119] 4" " -229 549 60 -lo in 1 q-010e1 13 63 n10 1131 2296 542 1 1010 .2;)0 ;IM 22 1135 2356 .U52 60 1010ol 2213 6M 1810 1135 2316 526 I 1010.2393 3OU 100 W5 a S2516 71T l110 I 6713 sEn 4T3 1135 5. inproper sbrup 0 516 1010 3396 T110 3a3 4 676 14141 1,dse I I3a- I 1010 02%7 1 7493 anO 3an 675 (X%)' 27 .130' 26 1010 l110 40so 333 240 21 516 I 1010 16457 649 6354 1010 t728 526 701 1010 16517 549 1 loiw i0. ShIutlon 0 549 1010 1414?1641 542 1 1010 2M34 00 00'Cll.. 514 3?5 6264 1T0 457 I 1T08 542- GOO 1010D M%)' 694 330 G6D *n 1T09 516 1 1010 16224 10 91 60 I 17'59 33 701] 1010 16124 170 T10 50 S. Ceor rotor Trip.Q 40 qclolI a 10 15 30 13D 2260 2310 2311 2911 1612 1612 549 649 542 542 626 33 10 15 IOn T1 TDD Into 1135'1135 940 940 lino Into into 1010 1010 101D 233 4 o 10%)'IDlgn Cd!oItalI I Test 120 q, el aI-1 0 1100 so 1981 1 I 1]. It,'1droImtllcTeit

-- 10] -- 60 1981 i t2 H; I31TI IM iJ. " 5I.i 50SO Not a: 1.The I rsmod al stp. .2.Tie iqmber otyoles B IxGOyears pj. 4 3. 13'F ktbe sam aidtlmperflre tbrill:tmulektfloi blekdmlhds is adlromettempe seflroTrfauiemshi.

iote:. Yhese transients are the same as in Table 2 with the exception of the 700second steady state time increment that is used he transients in Table 2 are plotted using a 6000 second steady state increment., The diff9ence is due to the length ofthe Green ' Pbincton for the safa end which is shorter compared to the blend Radius.File No.: VY-16Q-306 Revision:

A Page 15 of 29 F0306-OIRO NEC041844 VStructural Integrity Associates, IncM Table 4: Blend Radius Stress Summary K r 2 1 4 1 5 1 6 1 1a 11 1r 1r Total 11-B Sh a.I It$ I fllli fI ilm TO"I M.U 10131 Premu Premiumn Piping (n.11 f-s 1 Sre (M (nui * (nfll (nlin pipng SllI (n.11 Total TOUI Stream (hdi TOt I Omitl Num Der 01 Crcb rnnlnent Number Time reb To m p rlun I Prm ImI ure F (n. nlI NOTES: Column 1: Transient numberidentification.

Column 2: Time during transient where a maxima or minima stress intensity o ccurs from P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V.OUT output file.Column4: Maxima or minima membrane plus bending stress intensity from P-V. OUT output file.Column 5: Temperatureper total stress intensity.

Column 6 Pressure per Table I of[1].Column 7: Total pressure stress intensity from the quantity (Column 6 x 313 00)/1000.Column 8: Membrane plus bending pressure stress intensity firm the quantity (Column 6 x 33640)/1000.

Column 9: Total external stress from calculation in Table 1, 280.16 psi*(Column 5-70 0 F)/(575F -70 0 F).Column 10: Same as Column 9, but for M+B stress..Column II Sum of total stresses (Columns 3, 7, and 9).-Column 12: Sum Of membrane plus bending stresses (Columns.4, 8, and 10).Column 13: Number of cydes for the transient (60 years).File No.: VY-16Q-306 Revision:

A Page 16 of 29 F0306-OIRO NEC041845 Structural Integrity Associates, Inc.Table 5: SafeEnd Stress Summary 2 - 1 4 1I-T1T-71 T1-I-71r914-w-r1r1 T -ir Ne mblr Time frl uiremm i...(Dill (DIII Tomporature I Pr lilm r, (0fo101*-,I.W I Mr.-O, I , Iare u I itre i I tI'DIt mull I oiili (Drill Pipin g Toti steoo i stream.(DII I I III shii fD.1II 0,-.c,.cIe I'GO "iea3rul.2 NOTES: Column 1 Transient number identification.

.-C olumn 2: Time during transient where a maxima or minima stress intensity occurs from P-V.OU T output file.Column 3: Maxima or minima total stress intensity from P-V.OUT output file.Column 4: Maxima or minima membrane plus bending stress intensity from P-V; OUT output file.Column 5: Temperature per total stress intensity.

Column 6: Pressure per Table I of [ l].Column 7: Total pressure stress intensity from the quantity (Column 6 x 114 90)/l1000.

C olumn 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 11350)/1000.

Column 9: Total external stress from calculation in Table 1, 5708.89 psi*(Column 5-70°F)/(575T

-70°F).Column 10: Same as Column 9, but for M+B stress.Column 11 Sumof total stresses (Columns 3,7, and 9), Column 12: .Sum of membrane plus bending stresses (Columns 4, 8, and 10).Column 13: Number of cycles for the transient (60 years).File No.: VY-,16Q-306 Revision:

A .Page 17 of 29 F0306-OIRO NEC041846

\Structural Integrity Associates, Inc.Table 6: Fatigue Results for Blend Radius (60 Years)LOCATION = LOCATION NO. 2 -- BLEND RADIUS FATIGUE CURVE = 1 (1 = CARBON/LOW ALLOY, 2 = STAINLESS STEEL)m= 2.0 n .2 Sm =.26700. psi Ecurve 3.OOOE+07 psi Eanalysis

= 2.670E+07 psi Kt-= 1.00 MAX 55601.53822.51017.48905.46249.;40607.39965.38737.38243.37757.37757.36291.*36291.36273.3 62 73.35954.35954.35954.35954.35954.35837.35658.35658.35556.35556.34973.34973.34926.34843.34843.34843.34843.34834.34834.34831..34829.34829.34829.34829.34829.34825.34825.34825.MIN-17.-17.-17.-17.-17.-17.-17.-17.-17.-17.476.476.1548.1548.1548.1548.1548.1548.1844.1926.192 6.1926.11988.11988.12180..12180.20655.ý20655.20655.25750.27368.28113.28113.28113.28113.28 113.29216.31990.31990;31990.31990.31990.31990.RANGE 55618.538.39.51034.48922.46266.40623.39982.38754.38260.37774..37281.35815.34743.34725.34725.34405.34405.34405.34110.34028.33911.33732.23670.23568;23376.22793.143 18.14271.14188..9093.:7475.6730.6721.6721.6718.6716.5613.2839.2839.2839.2835.2835..2835.MEN+BE ND 37422.48047.44087.52579.48374.3 662 6.ý39092.40300.37242.37735.37314.36492.,35231.35143.35143.35054.35054.35054.34858.34917.34978.34661.2'690 1.27109.28326.27831.16974.17051.16887.17221.5178., 3789.3784.3784.3782.3781.3878.1543.1543..1543.1541.154 1.154i.Ke 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. o0o 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 i.ood 1.000 1.000 1.000 1.000 1.000.1.000-1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 Salt. ,Napplied 31246. 1.OOOE+00 30247. 1.000E+01 28671. 1. OOOE+01 27484. 1.000E+00 25992. 1.OOOE+00 22822* 1.000E+01 22462. 1.0ooE+01 21772. 6.000E+01 21494. 1. O00E+01 21221. 7.000E+00 20945. 2.930E+02 20121. 7. 000E+00 19518. 3.O00E+00 19508. 6.OOOE+01 19508. 1.000E+00 19329. 5.600E+O1 19329. 1.000E+00 19329. 1.000E+00 19163. 1.400E+01 19117. 2.280E+02 19051. 1.OOOE+01 18951. 6.200E+01 13298. 1.660E+02 13240. 1.340E+02 13133. 1.660E+02 12805. 1.340E+02 8044. 1.660E+02 8018. 1.OOOE+01 7971. 1.240E+02 5108. 1'. 400E+01 4199. 1.O00E+O1 3781. 1.520E+02 3776. 6.OOOE+01 3776. 1.OOOE+00.3774. 1.OOOE+01 3773. 7. 700E+01 3,153. 1.000E+01 1595. 6.OOOE+01 1595. 1.OOOE+00 1,595. 8zOOOE+01 1593.* 1.000E+01 1593. 6.OOOE+01 1593. 1.OOOE+00.Nallowed 1.947E+04 2..157E+04

2. 542E+04 2. 894E+04 3. 435E+04 ,5. 196E+04 5. 623E+04 6. 564E+04 6. 995E+04 7. 453E+04 7. 954E+04 9. 705E+04 1. 092E+05 1. 094E+05 I.,094E+05
1. 131E+05 1. 13 1E+05 1. 13 1E+05 1.167E+05 1. 177E+05 1. 191E+05 1. 214E+05 5.72 8E+05 5. 955E+05 6.4 11E+05 8. 050E+05 7.42 1E+07 7. 618E+07 7. 983E+07 i. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 1. 00OE+20 i.OOOE+20 1. OOOE+20 1. OOOE+20 1. OOE+20 1. OOOE+20 1. OOOE+20 1. OOOE+20 U.0001.0005 0004.0000.0000.0002.0002.0009.0001.0001.0037.0001.0000.0005.0000.0005.0000.0000 oo001.0019.0001.0005.0003.0002.0003.0002.0000.0000.0000.0000.0000.0000...0000.oooo.00003.0000.0000.0000.0000.0000.0000.0000.0000 File No.: VY-16Q-306 Revision:

A Page 18 of 29 F0306-O1RO NECO041847 Structural Integrity Associates, Inc.34825.34825.34825.34825.34825.34646.34646.34646.34646.*34646.34646.*-34646.34646.34646..34646.34646.31990.31990.32634.32634.32634.32634.33386.33581.33709.33822.33924.33924.34124.34331.34413.34592.2835.2835.2191.2191.2191.2012.1260.1065.937..824.722.722.522..315.2 32.* 54.1541.1541.2355.2355.2355..2695.1578.1120.1137.1455.1228.1310.1067.3398.-569.-130.1. 000 1. 0o0 1.000 1.000 1.000 1.000 1.000 1; 000 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.000 1593.1593.1231.1231.1231.1130.708.598.526.463.406.406.293.177.131.30.1. 400E+01 6.300E+01 6. OOOE+01000 E+00 1. 040E+02 1. 240E+02 1. OOOE+00 1.OOOE+01 1.000E+01 1. O00E+00 1.000E+00 1.000E+00 1. 000E+01 1. OOOE+01 i. 200E+02 1.200E+01 1. 000E+20 1. 000E+20 1. UOOE+20 1.000E+20 1. OOOE+20 1. 000E+20 1. OOOE+20 1. OOOE+20 1. 000E+20 1. 000E+20 1. OOOE+20 1. OOOE+20 1. 000E+20 1. OOOE+20 1. OOOE+20 1.000E+20.0000.0000.0000.0000.0000.0000.0000.0000.0000.000 0.0000.0000-<..0000.oooo 0000.0109 TOTAL USAGE FACTOR =I'((-File No.: VY-16Q-306 Revision:

A Page 19 of 29 F0306-01RO NEC041848 Structural Integrity Associates, Inc.Table 7: Fatigue Results for Safe End (60 Years)LOCATION = LOCATION NO. 1 -- SAFE END FATIGUE CURVE = 2 (1 = CARBON/LOW ALLOY, 2 = STAINLESS STEEL)m= 1.7 n= .3 Sm = 17000. psi Ecurve = 2.830E+07 psi Eanalysis

= 2.700E+07 psi Kt = 1.53 MAX 82580.31546.31546.31546.25988.25730.18521.17960.1.7956..17956.17956.17948.17948.17948.17620.13174.12300.12300.6956.5393.5393.53 93.4762..4605.4605.4605.4605.4518.4198.4130.3909.3486.3485.3485.3419.3419.3419.3292.3292.3292.3135.3135.3086.MIN-7469.-7469.-5010.-2934.-2934.-2934.-2934.-2934.-2934.-2741.-1264.-1264.-339.-339.-339.-339.-339.-157.-157.-157.-13.3.13 6.136.136..13 6.136.235.235.235.235.235.235.235.235.235.235.909.909.909.909.909.1029.1029.RANGE 90049.39015.36556.34480.28922.28664.21455.20894.20890.20697.19220.192 12.18287.18287.17959.13513.12639..12456 7112.5550.5526.5258.4626.4469..4469.4469.4370.4283.3963.3895.3674.3251.3250.3250.3184.3184.2511.2384.2384.2384.2226.2106.2058.MEM+BEND Ke 66991. 2.045 33281. 1.000 28040. 1.000 28849. 1.000 24217. 1.000 23354. 1.000 9572. 1.000 9201. 1.000 9197. 1.000 8846. 1.000 7194. 1.000 7189. 1.000 6240. i.000 6240. 1.000 17740. 1.000 11053. 1.000 12485. 1.000 12341. 1.000 7125. 1.000-1219. 1.000-1293. 1.000-2126. 1.000 3924. 1.000 3153. 1.000 3153. 1.000 3153. 1.000 3636. 1.000 3880. 1.000 3977. 1.000 3783. 1.000 3172. 1.000 3251. 1.000 324.6. 1.000 3246. 1.000 3483. 1-;000 3483. 1.000 3179. 1.000 2472. 1.000 2472. 1.000 2472. 1.000 2535. 1.000 2310. 1.000 2219. 1.000 Salt Napplied 134573. 1.000E+00 29691.' 9.OOOE+00 26947. 1.000E+00 26083. 0.O00E+00 21884. 1.000E+01 21509. 1.OOOE+01 13903. 2.280E+02 13505. 1.OOOE+01 13502. 4.200E+01 13304. 1.400E+01 12071. 2.440E+02 12065. 5.600E+01 11317. 4.000E+00 11317. 1.OOOE+00 14339. 1.000E+00 10152. 1.400E+01 10092. 1.000E+02 9956. 2.OOOE+01 5706. 1.OOOE+00 2570. 2.790E+02"2537. 1.400E+01 2165. 7.OOOE+00 3514. 1.OOOE+01 3218. 4.300E+01 3218. 1.0OOE+00 3218. 2.280E+02 3300. 2.800E+01 3322. 1.OOOE+01 3181. 6.000E+01 3092. 1.000E+01 280.6. 1.000E+01 2607.; 1.OOOE+00 2605. 1.OOOE+00 2605. 0.OOOE+00 2636. 1.00OE+00 2636. 1.000E+00 2199. 8.000E+00 1936. 6.OOOE+01 1936. 1.O00E+00 1936. 2.280E+02 1871. 3.OOOE+00 1746. 7.OOOE+00 1695. 7.OOOE+00 Nallowed 6.765E+02 6.857E+05 1.160E+06 1.290E+06 2.383E+06 2.566E+06 9.7 1OE+08 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.000E+20 4. 798E+07 1.000E+20 1.000E+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.000E+20 1.000E+20 1.OOOE+20 1.000E+20 1.000E+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.00OE+20 1.OOOE+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.OOOE+20.

1. OOOE+20 1.O00E+20 1.000E+20 1.OOOE+20 1.000E+20 1.000E+20 1.000E+20 U.0015.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000 0-.0000..0000.0000.0000.0000.0000.0000..0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000 0 File No." VY-16Q-306 Revision:

A Page 20 of 29 F0306-0IRO NEC041849 nStructural Integrity Associates, Inc..0000 3086.2809.2783.2783.2783.2783.2783.2783.2780.2780.2780.2780.2780.2780.2763.2762,.2762.2762.2762.2762.2762.: 2500.2496.2496.2487.2487..1376.1376.1376.1732.1793.1958.1958.1958.1958.2104.2352.2352.2352.2352.2352.2352.2352.2352.2352.2441.2441.2441.2441.2445.2445.2487.171i0.1433.1407.1051.990.825.825.8:25.822.676'.428.428.428.428..411.410.410.410.410.321.321.59.55.51.42.0.1361.1091.1187l.860.208.811.811.811.808.576.416.416.416.416.403.403.403.403.403.443.443.181.177.181.175.0.1.000 1-.000 1. 000 1.000 1.000 1.000.1.000 1.000 1.000 i. 000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1274.1054.1067.790.576.658.658.658.655.514.340-z-340.340.340.327.327.327.327.327.291.291.81.78.77.71.0.2.2 10E+02 1. OOOE+01 6. 900E+01 1. O00E+01 1. 000E+01 6. 000E+01 1. 0000E+00 7. 800E+01 1. 510E+02 1. 000E+01 1. 390E5'02 1.000E+01 6. 000E+01 1.000E+00 1.000E+01 1.000E+01 6.000E+01 1. O00E+00 9.000E+00 5. 000E+00 2.280E+02 1.0005+01 5.700E+01 2. 430E+02 5. 700E+01 3. 000E+00 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1.000E+20 1. OOOE+20 1.000E+20 1.000E+20 1.000E+20 1.O00E+20 1. O00E+20 1. OOOE+20 1. f00E+20 1. 000E+20 1.O00E+20 1. OOOE+20 1.000E+20 1.000E+20 1.O00E+20 I.O00E+20 1.O00E+20 1.000E+20 1.O00E+20 1. O00E+20 0000.0000..0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000'.0000.0000.0000-,.0000.0000.0000.Q0000.0000.0000.0000.0000.0000.000 0.0015 TOTAL USAGE FACTOR =File No.: VY-16Q-306 Revision:

A Page 21 of 29 F0306-OIRO NEC041850 Structural Integrity Associates, Inc.Table 8: 'Material Properties

@ 400'F elln-1/2Mo-3/4Nl-1t2Mo-16Cr-12Ni-Material 1/2i 131-8lCr-SNi 2M-1/2Ni 1/3Cr-V 21ro, Modulus of Elasticity, e-6 27.4 26.1 26.5 26.5 psi Coefficient of Thermal 8.0 7.7 10.2 10.2 Expansion, e-6, inAnn/°F Thermal Conductivity, Btu'hr-ft-OF

..

  • _.23.1 23.1 ' 10.4 9.8 Thermal Diffusivity, ft/hr 0.378 0:378 0.165 0.155 S pecifi c H eat, Btu/lb-°F' 0.125 0.125 0.129 0.129 Density, lb/ins 0.283 0.283 0.283 0.283 Poisson's Ratio 0.3 0.3 0.3 0.3 Notes: Material Properties are evaluated at 400 0 F from the 1998ASME Code, Section UI, Part D, with 2000 Addenda, except for density and Poisson's ratio, which are assumed typical values. The safeend material properties were used for 300 0 F, the average temperature for the safe end for transient 9.FileNo.: VY-16Q-306 Revision:

A Page 22 of 29 F0306-0IRO NEC041B51 Structural Integrity Associates, Inc.Figure 1: ExternalForces and Moments on the Recirculation Outlet Nozzle C/File No.: VY-16Q-306 Revision:

A Page 23 of 29 F0306-DIRO NEC041852 StructuralIntegrity Associates, Inc.MAT 4 Regio3 AN APP. 19 2007 13:3E':-Region 4 Region2 t w~'s N,/* I Lrrrrrrr I 4 Rtgionl liii*

  • x Tram ition Region Rec-rc Outlet Nozzle Finite Eleraent Nodel Figure 2: Nozzle and Vessel Wall Thermal and Heat Transfer Boundaries FileNo.: VY-16Q-306.

Revision:

A Page 24 of 29 F03O6-O1RO NEG041853 Structural Integrity Associates, Inc.-ýTemp CO-) -Preauore (psfl E 555 546-50 g F-630 526.n 3=0 I31 90aD 120in 15mo0 Figure 3: Transient 1 -Normal Startup at 100¶F/hr F-7T-err (U) -Pressure Qsi~g_)j:01.5'.05'O[ID[150 20I 50-1-1-G-S-1 a 040 en IO:00 Do 20 40 S 100;68 80 00 20 40, 60 a B 5 4 4 3 2 a 0 K 0 60 100 150 200 2W0 30 360 40 450 Time (seocnds)Figure 4: Transient 2 -Turbine Roll and Increase to Rated Power 560 File No.. VY-,16Q-306 Revision:

A Page 25 of 29 F0o306-OIRO NEC041854 Structural Integrity Associates, Inc.60]I -Temp C"F , -prressre S, I----, i.5I]492 3m 2M-2M]IM SI.-1080-104.0-1000-950-920-wa-840-920-760-720-910-640-910-..UO-480-440-.400-32a-.20-240-920-160-82D-120-4Dn=m&a a 200n 480.6nnD0 Time (mecondu)EM 1rlnrr-Figure 5: Transient.3 -Loss of Feedwater Heaters and Turbine Trip 25% Power I- Temp(17) --Presslre 4X9 640 31313 u.00 ID-E , I,- .00 2D-200 U10-R inme (imcondi)Figure 6: Transient 4-Loss of Feedwater Pumps File No.: VY-16Q-306 Revision:

A Page 26 of 29 F0306-OIRO NEC041855 Structural Integrity Associates, Inc.I-Temp CF) --P~ew$Ite0,0a

-12Mfl I1160$51.64_6.5 L 64 a M--*a.a an-I an&San ID1 1500. 2101 2600 Tim * (iocondi)Figure 7:. Transient 5 Turbine Generator Trip Ttm pCF) PresatPs9 L-------------


31301* 1400.11300* 13603*I1000 100 42M Ion M3 0.S lam IsDm 210M 25DD r1me (,econd,)Figure 8: Transient 6 -Reactor Overpressure File No. VY-16Q-306 Revision:

A Page 27 of 29 F0306-OIRO NEC041B56 Structural Integrity Associates, Inc.J 600-600 -400-I_300 -E 200 1001 Temp (¶) --Pres9Ji~

l~si~l pa pa I I I I I p.I I --------------.1100 1000.000.000 700-600-600-400-300-200-100 cau3 i u 0 2000 4030 60c3 Ti me (seca-ns)8000 1000I 12000 Figure 9: Transient 7- SRV Blowdown I-Terrp(0 F) --P--sm(psig)

ý-- ý7-.1100-1000 9000-------------------------

F0 400-300.E 200 100.800 700-600-600-400-300-200-100 a 0~4., 0 1000 2000 T T ime (seccrds)3000 4300 5000 Figuire 10: Transient8-SCRAM Other File No..: VY-16Q-306 Revision A Page 28 of 29 F0306-OIRO NEC041857 Structural integrity Associates, Inc.603 50D I TeMPl) M -PFrez SIre O 1 23.-113M-Glm:1030-9m-3m-2Mr-203-10 20.1J a U 0.2*,'U 10 20 30 40 s0 60 70 M-nms ciecondi Figure 11: Transient9 -mproper Startup E-Temp CF) --Press 4reu PSkbJ 90 I0-1100 0.1 i a 20o3 4000 60m 500n 100M0 12nno Time (feconrld)

Figure 12: Transient 10 -Shutdown 14000 16003 File No.

  • VY-16Q-306 Revision:

A Page 29 of 29 F0306-OIRO NEC041858 Structural Integrity Associates, Inc.APPENDIX A FILES OF FIITIE ELEMENT ANALYSIS File No.: VY-16Q-306 Revision:

A Page Al of A2 F0306-OIRO NEC041859 Structural Integrity Associates,, Inc.-RON VY T T9.ll-P Input File for Transient 9 Thermal Analysis In Computer files RON VY S T9.INP Input File for Transient 9 Stress Analysis In-Computer files LFSE.OUT Stress Output at Safe End In Computer files LFBR.OUT.

Stress Output at Blend Radius In Computer files LFSE INSIDE.RED Stress Extracted at Safe End In Computer files LFBR INSIDE>RED Stress Extracted at B lend Radius In Computer files LFSE T.XLS Stress Results with Total Stress at Safe End In Computer files LFSE_M+B.XLS Stress Results with Membrane plus Bending Stress at In Computer files Safe End LFBR T.XLS Stress Results with Total Stress at Blend Radius In Computer files LFBR_M+B.XLS Stress Results with Membrane plus Bending Stress at In Computer files_ _ _Blend Radius I. -File No.: VY-16Q-306 Revision:

A Page AZ of AZ F0306-01RO NEC041060.

,:Exhibit L Struc .tural Integrity Associates, Inc. File No.: VY-16Q-305 CALCULATION PACKAGE Project No.: VY-16Q PROJECT NAME: Enviromenmtal Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 CLIEINT: PLAN-T: Enter.gy Vermont Yankee, LLC Vermont Yankee Nuclear Power Station CALCULATION TITLE: .Recirculation Outlet Nozzle Green Function Document Affected Project Manager. Preparer(s)

&Revision Pages Revision D escription Approval Checker(s)

Signature

& Date Signatures

&,Date A 1-29, Initial Draft for Review Terry J. Herrmann Jennifer-E.

Smith Appendix: Al-A2/ "Minghao Qin Page 1 of 29 F0306-01RO NEC041863 V $Structural Integrity Associates, Inc.Table of Contents 1.0 O B JE C T IV E .........................................................................................................................

4........

4 ,2.0. FEEDWATER NOZZLE MODEL ...........................................

4 3.0 APPLIED LOADS ..........................................

.........................

4 4.0 THERMAL AND PRESSURE LOAD RESULTS ................................

.............................

7 5.0 REFEREN CES ...............

.............................................................................

10 APPENDIX A FINITE ELEMENT ANALYSIS FILES .................................

1 List of Tables Table 1: Material Properties

@ 300TF () .............................................

........ 11 Table 2: Pressure Results .....................................................

11 Table 3: 0% Flow Regions 1 and 3 Heat Transfer Coefficients

.. ..........................

12 Table 4: 0% Flow Region 5 Heat Transfer Coefficient

................................

13 N FileNo. VY-16Q-305 Revision:

A Page Z~of 29 F0306-OIRO NEC041064 Structural Integrity Associates, Inc.List of Figures,.Figure 1 A N SY S Finite Elem ent M odel ................................................................................

(.. ....... (14 Figure 2: Recirculation Outlet Nozzle*Intemal Pressure Distribution

........ ..................

15 Figure 3. Recirculation Outlet Nozzle Pressure .Cap Load ............................................

.........

16 Figure 4: Recirculation Outlet Nozzle Vessel.Boundary Conditions..

........................

". .. 17 Figure 5: Nozzle and Vessel Wall Thermal and Heat Transfer Boundaries

.......................................-

18 Figure 6: Safe End Critical Therm al Stress Location ....................

.............

........................................

19 Figure 7 Safe End Lim iting Linearized Stress Paths ..........................

...............................

............

20 Figure 8 Blend Radius Lim iting Pressure Stress Location ..............................................

.............

21 Figure 9: Blend R adius Linearized Stress Path ..... .................

.........................................

...... 22 Figure 10: Safe End 100% Flow Total Stress Intensity

....................................................................

23 Figure 11: Blend Radius 100% Flow Total Stress Intensity..

........................

23 Figure 12: Safe End Total Stress History for 100% Flow........................

.......................

24 Figure 13: Safe End Membrane Plus Bending Stress History for 1 00,/c Flow........

........................

24 Figure 14: SafeEnd Total Stress History for 50%/o Flow .............................

25 Figure 15: Safe End Membrane Plus Bending Stress History-for 5 0% Flow ...........

I " 25 Figure 16: Safe End Total Stress History for 0% Flow ..............................

I ...... ..........

............

26 Figure 17: Safe End Membrane Plus Bending Stress History for 0% Flow ........................................

26 Figure 18: Blend Radius Total Stress History for 100% Flow ...............................................

........ 27 Figure 19: Blend Radius Membrane Plus Bending Stress History for I00% Flow ..............

-.. 27 Figure 20: Blend Radius Total Stress History for 501/c Flow ....................

..........................

.............

28 Figure 21 Blend Radius Membrane Plus Bending Stress History for 50./oFlow..............................

28 Figure 22' Blend Radius Total Stress History for0% Flow ....... ....................

2 Figure 23: Blend Radius Membrane Plus Bending Stress History for 0% Flow ..............

2 File No.: VY-16Q-305.

Page 3 of 29 Revision:

A F0306-OIRO NECO-41B36s Structural Integrity Associates, Inc.1.0 OBJECTIVE The objective of this calculation is to compute the pressure stresses, thermal stresses, and the Green's Functions forhigh,rmid, and no flow thermal loading of the Vermont Yankee NuclearPower Station recirculation outletnozzle.

2.0 FEEDWATER

NOZZLE MODEL An axisymmetric finite element model of the recirculation outlet nozzle was developed in Reference[1] using ANSYS [2]. The geometry and model in Reference

[1] is used in this calculation.

The material properties are taken at an average temperature of 300TF. This average temperature is based on a thermal shock of 5001F to 100'F which will be applied to the FE model for Green's Function development.

Table 1 listed the material properties at 300TF. The meshed model is shown in Figure 1.3.0 APPLIED LOADS Both pressure and thermal loads will be applied to the finite element model..3.1 PressureLoad A uniforrhi pressure of 1000 psi was applied along the inside surface of the recirculation outleL nozzle and the vessel wall. A pressure load of 1000 psi was used because it is easily scaled up or down to account for different pressures that occur during transients.

In addition, a cap load was applied to the piping at the end ofthenozzle.

This cap load was calculated as follows: F= P.where: P .= Pressure =1,000 psi R, = Inner Radius = 12.96875 in-R Outer Radius = 14.18750 in F = Force per length on the end of the nozzle.Therefore, the cap load is 5081.7 psi. The calculated value was given a negative sign in order for it to exert tension on the end of the model. The ANSYS input file VYRON_P.INP, in the coffiputer files, applies the pressure loading to the geometry in file RONVY.INP.

Figures 2, 3, and 4 show the intemal pressure distribution, cap load, and'symmetry condition applied to the vessel end of the model, respectively.

File No.: VY-16Q-305 Page 4 of 29 Revision:

A F0306-OIRO NEC041866 Structural Integrity Associates, Inc.3.2 Thermal Load Thermal loads are applied to the recirculation outlet nozzle model. The heat transfer coefficients after power uprate were determined by scaling the values from Reference

[4]. These values were determined for various regions of the finite element model and for 100O/, (28,294 GPM, converted from 12.3 Mlbm/hr [7]), 500% (14,147 GPM), and 0% (0 GPM) flow rates. The temperatures used are based upon a thermal shock from 500OF to 100lF. The calculated heat transfer coefficients for each region are shown below.3.2.1 Heat Transfer Coeffieients The heat transfer coefficients for the 100%/o flow and 50% flow cases were calculated from Reference[4] as follows:.=h L Ji26\ JL\ DI,)Where: hDrf= the heat transfer coefficient at a Diameter and flow rate h 3 0 0 =the heat transfer coefficient from Reference

[4] at 300 0 F fDm= the flow rate corresponding to hDn (ft/sec)Drn= the diameter corresponding to hDf (in)The heat transfer coefficients for 0°/c flow were calculated in spreadsheet Ht_coeffs.xls for natural convection and are shown in Tables 3 and 4.As shown in Figure 5, the following heat transfer coefficients were applied: Re-Rion I The.heat transfer coefficient, h, for 100'/o flow, is 4789 15364 = 3577.8 BT/hr-ft 2-°F at 300-F. [4]where 17.364 ft/sec is converted from 28,294 GPM and 25.8 in DID.The heat transfer coefficient, h, for 50% flow is 4789 = 2054.9 BTUTJhr-e-°F at.k25 300TF. [4]where 8.865 f/lsec is converted from 14,147 OPM and 25.8 in ID.The heat transfer coefficient, h, for 0/o. flow is 112.34 BTU/hr-ft 2-°F at 300TF. [Table 3, for natural conv ection]File No. VY-16Q-305 Page 5 of29 Revision:

A F0366-OIRO NEC041867 Structural integrity Associates, Inc.Region 2 The heat transfer coefficient for Region 2 should be linearly transitioned from the value of the heat transfer codfficient used in Region 1 to the value used for Region 3.Region 3 ,(the pointbetween Region 2 and Region 4)(17.364) 026 The heat transfer coefficient, h, for 100% flow is 4 7 8 9 1 I 1 =-3361 K 25 2 35.49)BTU/hr-ft-oF at 30C0F. [4]where the flow rate is the same as that for Region 1, and. the ID is 3.5.49 in., The heat transfer coefficient, h, for 50% flow is 4789 2,.6j (' ) = 1930.9 BTU/hr-&t--F at 3001F. [4]where the flow rate is the same as that for Region 1, and the ID is 35.49 in.The heat transfer coefficient, h, for'0% flow is 112.34 BTU/hr-ft 2-°F at 300°F. using the same HTC as Region 1 [Table 3, fornatural convection]

Region 4 Per Reference

[1], the he heat transfer coefficient for Region 4 (thermal sleeve transition in diameter) should be linearly transitioned from the value of the heat transfer coefficient used in Region 3 to the value used in Region 5.Region 5 The heat transfer coefficient, h, for 1001/o flow is b. 5 x 3577.8= 1788.9 BTU/hr-ft 2?-F at 300WF. [4]The heat transfer coefficient, h, for 50% flow is 0.5 x 2054.9 = 1027.4 BTU/hr-ftO-°F at 300°F [4]The heat transfer coefficient; h, for 0O/o flow is 10Q BTU/hr-ft 2?-F at 3009F. [Table 4, for natural convection]

by using 40*in. hydraulic diameter [4].'\File No.: VY-16Q-305 Revision:

A Page 6 of 29 F0306-0IRO NEC041868 Structural, ntegrity Associates, Inc.Region 6 The heat transfer coefficient, h, is 0.4 BTU/hr-ft 2-°F [4].3.2.2 Boundary Fluid Temperature Forthe Green' s Functions, a 500'F -1 00 0 F thermal shock is.rmn to determine the stress response to a one-degree change in temperature. -The following temperatures are valid when there is water flow. Values between defined points are linearly interpolated.

For the 100%, 5 0%, and 0C/o flow cases, the thermal shock is run as follows: Regions 1 to 5 T =500TF -1 00F Region 6 T = 120°F 4.0 THERMAL AND PRESSURE LOAD RESULTS The three flow dependent thermal load cases outlined in Section 3.0 were run on the finite element m6del. Appendix A contains the thermal transient input files VY._RON T 100.INP, VYRONT_50.INP, andVYRON T_0.11 for 100%, 50%, and 03/o flow. rates, respectively.

The three flow dependent input files for the stress runs are also included in Appendix A. Thestress.

filenames areVYRON_S_IOQ.INP, VY RONS_50.INP, andVY RONS_0.INP for 100%, 5 0 1/o, and/0% flow rates, respectively.-The critical safe end location was chosen as node 6395, which has the highest stress intensity due to thermal loading under high flow conditions.

As shown in Figures 6 and 7, Node 6395 is located on the inside diameter of the nozzle safe end of the model and the maximum stress occurs at 5.1 seconds.The critical blend radius location was chosen, based upon the highest pressure stress- Assumed the cladding has cracked, therefore, as shown in Figures 8 and 9, the critical location is selected as node 3829 at base metal of the nozzle.The stress intensity for use in the Green's functions are calculated from the component stresses (X, Y, and Z) and comparedto the stress intensity reported by ANSYS: As seen in Figure 10, the Y-X calculated total stress 'intensity best matches the ANSYS reported stress intensity for 100'/6 flow at the safe end. Therefore, the Y-X stress will be used for the total and membrane plus bending Green's functions for all flow rates for the safe end. As seen in Figure 11, the Z-X calculated total stress intensity best matches the ANSYS reported stress intensity for 100% flow at the blend radius in very, beginning.

Therefore, the Z-X stress will be used for the total and membrane plus bending Green's functions for all flow rates for the blend radius.File No. VY-16Q-305 Page 7 of 29 Revision:

A F0306-O1RO NEC041869 Structural Integrity Associates, Inc.The stress time history for the critical paths was extracted during the stress run for 100% flow rate.This produced two files, 1FSE.OTJT and HFBR.OUT, which contain the thermal stress history- The membrane plus bending stresses and total stresses for the Green'sFurictions were extracted from these files to produce the files t-FSEInsideRED and =ERRInside.RED, where SE and BR corresponded to the safe end and blend radius locations, respectively.

The total stress intensity (Si)were extracted from these files to produce the files HYSE. CLD and N-BR.CLD where SE and BR corresponded to the safe end and the blend radius, respectively.

The stress time history for the critical paths was extracted during the stress run for'50% flow rate.This produced two files, MFSE.OUT and MFBR.OUT which contains the thermal stress history.The membrane plus bending stresses and total stresses for the Green's Functions were extracted from the file to produce the file MFSEInside.RED, where SE corresponds to the safe end location The stress time history for the critical paths was extracted during the stress run for 0%/o flow rate.This produced two files, LFSE.OUT and LEBR. OUT which contain the thermal stress history. The membrane plus bending stresses and total stresses for the Green's Functions were extracted from the file to produce the file LFSEInsideRED, where SE corresponds to the safe end location.The stress time history for the recirculation outlet nozzle during 100% flow, 50,/o flow, and 0% flow are shown in Figures 12 to 23. The data for the Green'sFunctions is included in the files FBIRR_M+B-Green.xls, FIRBR_T-Green.xls, -IFSEM+B-Green.xls, FISET-Green.xls, MFER_M+B-Green.xls, MIFBR T. Green.xls,.

MFSE M+B-Green.xls, MFSET-Greenxls, LFBRM+B-Green.xls, LFBRT-Green.xls, LFSE_M+B-Greenxls, and LFSET-G-reen.xls in the project Files, Where BF, YIF, and LF corresponded to 100% flow, 501/6 flow, and 0% flow rate, respectively.

M+B and T corresponded to membrane plus bending stress and total stress, respectively.

The pressure stress intensities for the path were extracted during the pressure run. Thepressure stresses were extracted along the nodal path as shown in Figures 7 and 9. This. producedtwo files, PSE. OUT and PBR. OUT for the safe end and blend radius locations, respectively.

For the pressure loading specified (1000 psig), the total stress intensities at Node 6395 and Node 3829 were determined to be 11490 psi and 31300 psi, respectively.

The membrane plus bending stress intensities at Node 63,95 and Node 3829 were determined to be 11350 psi and 33640 psi, respectively.

Table 3 shows the final pressure results.Results were also extracted from the vessel portion of the model to verify the accuracy of the results obtained from the ANSYS model. Theseresults are contained in the file PVESS.OUT.

The radius of the finite element model (FEM) was -multiplied by a factor of 2.0 [ 1] to account for the fact that the vessel portion 'f the 2D model is a sphete but the true geometry is a cylinder.

The equationfor the membrane hoop stress for a sphere is a = and heteuatinsfoth

  • Cr (eressure~~~~X (rad.lds)

Tem brnhopses membrane hoop stress in: a cylinder is _ ((press ie s ) The membrane hoop stress File No.: VY-16Q-305 Page 8 of 29 Revision:

A'.F0306-01RO NEe041870 Structural Jagrity Associates, Inc.frnm the ANSYS result is 19530. Based on the above equation for a cylinder, the vessel base metal radius df 105.925 inches, vessel base metal thickness of 5.474 inches, and applied pressure of 1000 psi, the calculated stress for the actual cylinder would be 19351 psi. The results from ANSYS are very close tothe calculated values. Therefore the ANSYS values do not need to be scaled to give reasonable values. The pressure output values from ANSYS are given in Table.2../".,0 File No.: VY-16Q-305 Revision:

A Page 9 of 29 F0306-DIRO NEC041871 Structural Integrity Associates, Inc.

5.0 REFERENCES

1. SI Calculation No. VY-16Q-304, Revision A, "Error! Unknown document property name..".2. ANSYS, Release 8. 1 (wlService Pack 1), ANSYS, Inc., June 2004.3. American Society of Mechanical Engineers, Boiler and Pressure Vessel Code,Section II, Part D, 1998 Edition, 2000 Addenda.4- Stress Report, "Section T9 Thermal Analysis Recirculation Outlet Nozzle Vermont Yankee Reactor Vessel," CB&I Contract 9-6201, SI File No. VY-16Q-204.
5. J. P .Holman, IHeat Transfer," 4th Edition, McGraw-Hill, 1976.6. J. P. Holman, "Heat Transfer," .5th Edition, 1981.7. Entergy Nuclear Northeast Engineering Report, Report No. VY-RPT-05-00022, "Task T01i00 Reactor Heat Balance EPU Task Report for ER-04-1409," SI.File No. VY-16Q-205.

File No.: VY-16Q-305 Revision:

A Page 10 of 29ýFO306-01RO NEC041872 Structural Integrity Associates, Inc.Table 1: Material Properties

@ 300°F )Material IMt-l/2Mo-3/4Ni-li2Mo-1GCr-12Ni-Material 1/2Ni 1/3cr-v l8Cr-aNi 2Mo Modulus of Elasticity.

e-6 28.0 26.7 27.0 27.0 psi " 28.0 26.7 27.0 27.0 Coefficient of Thermal 73 95 9 Expansion:

e-6: in/in/°F Thermal Conductivity, 23.4 23.4 9(8 9.3 Btu/hr-ft-_F 23.4 23.4 9!8 9.3 Thermal Diffusivity,ft"/hr

.0.401 ..0.401 0.160 0.150 Specific HeatBtu/b-°F 0.119. 0.119 0.125 0.127 Density, lb/in 3 0.283 0.283 0.283 0.283 Poisson:s Ratio 0.3 0.3 0.3 0.3 Notes: Material Properties are evaluated at 300°F from the 1998 ASME Code,Section I, PartD, with 2000 Addenda, except for density and Poisson's ratio, which are assumed typical values Table 2: Pressure Results Membrane Plus Total Stress Location Bending Stress Intensity (psi)Intensity. (psi)Safe End 11350 11490 Blend Radius -33640: 31300 File No.: VY-16Q-305 Revision:

A Page 11 of 29 F0306-OIRO NEC041873 Structural integrity Associates, Inc.Table 3: 0%.FlowRegios 1 and3 Heat Transfer Coefficients Pipe Inside Diameter.

D = 3 W inches = 2.160 ft= 0.865 m Outer Pipe. Inside radius. r, =12-g inches = 1.075 t 0.3208 m Inner Pipe Outside Diameter, D= .."- inches = 0.000 0.000 M.Inner Pipe. Outsideradius, .r= 0 inche.s 0000 ft 0.000 m fulud Velocity.

V.= 17284 ftfsee R1'" 33 W .ýOqnpm= 123 Mibjhr Charaaedstc Length. L= D 2.150 ft= 0.655 m (0 utside) T$. T,=,_,*:.T=

8.40 12.00 24.00 360D0 48.00 6000-4.67 8.67 13.33 20B0 2867 3333 72.00 " F 40.00 *C Value at Fluid Temperatire, T [3] Units Cnversion 70 10 20 a32 400 500 *00 'F Vater Prcpetyr Fado [11 21.11 37.78 93-33 148B9 2)444 260DO 3156B6 *_k 1.7307 0.6997 06300 0.6704 06836 0.6611 0J6040, 05071 W/m-tC..... u 000........02.............

... 9. .9, -n 2. .. ..... .4. .012 BtuA.r- It.F 4.1869 4.185 4.179 4229 4.313 4522 4.982 6.322 kJk9- C (Spedfic Heat) .1 000 0.998 1.010 1.030 1080 1.190 1.10 OtuAbm-*F p 16.018 997.1 994.7 962.7 .17.8 858.6 784.0 87926M (Density) 023 02501 0. 3.0, 49D 42.4 Ib-met.... ........ ....o ...... ............................................:?. ....... ....? : ! .... ...p ~ .! ...... .. .... ...? ....... ........... : .....! m ' .S 1.8 1.89E04 3.24E104 6662.04 1.01603 1.40E-03 1.98E03 3.15E-03 rn'AyV'AC (V6lumetrie Expnson) 1.05604 1.802E04 3202.04 5.80604- 7.80E-04 1A0E-03 1.75603 itj:.-F.. .....................

I' ...... .............................

I' ........ ........ ....... ... .. .. ... .. .. ... .. ........ 11; ...... ...' ..........

" 0.3048 9s 9.886 ~ .06 028 .806 .8 , .8060 9.806 9.806 m/Is 4 (Gravitational Constant) 32.17 32.17 32.17 32.17 32.17 32.17 32.17 t/si...........

I....... ...................

....... I ....

""".........

...... ..... .....O~ O; ."" O g ; """ o 'i: ...8 d g s. ... .i : 1.4881. .9.96604 2E.04.072.04A

.096+ 4 1.302M484 I0E0..2." .. , (Dwamln 'scosit) 6.69E-04 4.58204 28O6 E-04 1.30E 9.30E-05 7.00E-06 5.792E05 Ibmit-s (Prandi Nwmber).CalcWlated Parameter Formula 70 100 200 .300 400 500 600 IF Reynold's Njmber. Re pVD/J 3473691 50i1789 10891437 164670 21616912 20132199 27337904 GrashofNumber.

Or oiiTL'mtpVQ 2441754517 12097E+10 2.417E+11 1.262E+12 3977+12ý 1.034E+13 2.10040E+13 Orashof Number, Or. opiT(r/r.)Asp)'

3.05E+08 1.59E-09 302E+10 157E011 4.97E+11 19E2+12 2.702E12 2 Rayleigh Number, Ra GrPr 17043446631 6.72662+10 4.616E+11

.1.628 +12 3.778E+12 8.883E+12 2.31172E+13 Rayleigh Number. Ra Gr 4 Pr 2.136+09 7.162009.

5.77E+10 191E+11 4.72E+11 1.11E+12 2.89E+12: ,saide Surface Foroed Cot, vecfn Heat Transfer Cot-=detnf.

oo.* 023RevekJ 7.823.02 02634 13.148.12.

15.406.24 16.705A0 17,126.15 18.7632 WMh-YC 1.377.74 1A4250 2315656 2.713J07 2.942.05 3.016.15 2.866.31-Btulhr.tf-.F Inde Surface Natural Con ieofion Heat Transfer Coeffet ef: Case: Enclosed cylinder C. I$t~~ n=C(OrPr)kk.

181.85 258.66 4894 63789 -773.57 875.17 033.22 W.*03293 4.00 82.00 .11234 130.24 104.1 3 104.30 tu/hr..'AF File No.: VY-16Q-305 Revision:

A Page 12 of 29 F0306-OIRO NEC041874 Structural Integrity Associates, Inc.-Table 4: 0%. Flow Region 5 Heat Transfer Coefficient Heat Transfer Coefficients Rerbrencesx 1.J.P. Nolman, 'Heal Traonsf r,' 4h Edition, AMGrawfiHw, 1976.2. J. P. Ho/man, "Heal Tranaf t r," Sh Edition, 1981.3. N. P. Cheremnsinoff, 'H681 Transfer Poclet Handbook,'

Gulf Publishing Co., 1984.09?pAred Inpaitsvoe S1ýadedi)Title , = Pi:. >:. £ ....... .........Pipe Inside Diameter, D .= ii .tes = 3333 ft= 1016 m-Outer Pipe. Inside radius, ro 20 inches = 1B67 ft 0508 m Inner Pipe Outide Diameter : = =, inches 0000:.ft inc aj000 mt Inner Pipe, Outside. radius. r 1 Fluid Velocity.

V = 7.224 C haracteristic Le glh. L = D = 3.333 0 inches= 0002 ft 00CO m ft/sec = I..A001 qpmr.c1.016 mn 12.3 tMishr (Outside)

TlUd- .= S4 12.00 24,0 3&00. 8.00 600D0 72.00 -F= 4.67 6.67 1323 20.00 26.87 3333' 43.00 1C Valueat Fluid Temperature, T 3] Units Conversion 70 100 200 330 400 500 600 "-F Water Property Factor [11 21.11 37.78 9333 148.89 204.44 260.00 315.5) _ C k .1.7307 0.B9? 0.6300 0.6794 0.838 0B611 0.6040 05071 WIn- *C (Thermal Cennductiity)

  • 0.3485 0.3640 0.3D20 0.306D 03820 0.3400 02030 Btufhr-t--F o 4.189 4.185 4179 4.229 4313 4522 4982 .6.322 C..........
..; ...... .. ... ..... .... .1.. ........ ..... 1
0.1.010......

1.030 ........ 10.80 ... ..... 1.1.90 15110 SU.d m-.n .¶P 16.018 997.1 994.7 982.7 917 858.8 784.9 679.2 .kom" (D e nsity) .162.3 62.1 60.1 -7.3 635 9.0 424 Ismt 1'8 .. .. 04' 312-04 6.66E- .0410203 1.40E-03 1 'E-03' 3.15-'03.

m A C" (Volumetric Rate *fExparsion) 1.06E-04 1BOE-04. 3.70E-0G4 5.60E-04 790E-04 1.10E-03T 1.75E-03 fift'-.F 9 0.3048 .9O06 9.80 6 9.806 9806 9.806 9 .806 9.86 miI (Gravitational C onstant) 32.17 32.17 32.17 32.17 32.17 32.17 32.17 ftrS 2 IL .114881 9'.9E-04 8822E-04 3.07E-04 1 .93E604 1382E-04 104E-04 8.625-05 kgkn-s (DynaikVkcesi 8.6E-04 458n-04 2082i-04 1.30E04 930E-05 700D-05 5.79505 Ibi*-s Pr 6980 4.510 1.910 1220 0.950 0.86D 1 D70 (Piandtl Number) ..* Calculated Parameter Formula 70 t 100 230 330 400 500 600 -F Reynold's Number, Re pVD$4 2240631 326854W4 7024D77 10613282 13877763 168552688 17832948 OrashofNumber, 0r gpATL 3 Kjtp g99811606 4.732E+10 9.01E+11 4.687E+12 1.48E+13 3.85E+13 8.05143E+13 Gras:hofNumber.Gr.

O glT(ro.r9 1.14E+C0 5.91E+09 1.13E+11 683E+11 185E+12 482E+12 101E+13 Rayleigh Numbei, Ra GrPr 6.3516E+10 2.134&1:11 1.72E+12 6.694E+12 1.41E+13 3.31E+13 8.61603E+13 Rayleigh Number, Ra GrcPr 70D42+09 2.87E+10 2.15E+11 7.12E+1,1 1.76e+12 414E+12 108E+13 From [I].Surface Fomced Convection Heat 7ransfer Coefickint, Homed 0.023Re Pr 'll) 31552.89 4.23564 5.971.33 6096.42 758690 7.77799 7391.69 wIm-C 625.71 741.95 1.061.03 1232.17 1.33W.16 1.31D81 1,301.7M Bts/hr--f-F rside Surface NXun-al Convoction Hear Transfir Coefficd'en Case: Enclosed cylindrer C= t: ~ =.H' C(GrPr)fl&L 162.97 231.79 420.60 571.W8 69325 78430 83832 WIns2 *C 28.70 4A22 7407 110.68 122J09 138.13 147q 29 Btulhr-f?-'F File No.: VY-16Q-305 Revision:

A Page. 13 of 29 F0306-0IRO NECO41875 Structural Integrity Associates, Inc.Figure 1: ANSYS Finite Element Model File No.: VY-16Q-305 Revision:

A Page 14 of 29)F0306-OIRO NEC041876 Structural Integrity Associates, Inc.E-rEIEMEY11 AN" I*k i? 2007 13: 25 35 PflE S- .kTPX .," 5082* -3733-3054-23*7, 17.03-1027-R.. 1 9 324.252 1003 Rac~rc Outlet Nozzle Finite R .ene-t Model Figure 2: Recirculation Outlet Nozzle Internal Pressure Distribution File No.:. VY-16Q-305 Revision:

A , Page 15 of 29 F0306-0IRO NEC041877 structural Integrity Associates, Inc.'ELEPIElrB em~l~ o mom~AN 1PP. 1.9 2007 13:32 :31 33f --3730-3054-2379 1"103-1027-24. 252 1000l III---.I.------ I * -~ 1 ¶-1-t-t-1 11 --~ .r£ ra- -r r a....~.I P.Bc-cc Out'-t No~zzlo'Fanite Elem~ent Model Figure 3: Recirculation Outlet Nozzle.Pressure Cap Load File No.: VY-16Q-305 Revision:

A Page 16 of 29* /FO306-OIRO NEC0413878 Structural integrity Associates, Inc.Figure 4: Recirculation Outlet Nozzle Vessel Boundary Conditions File No.: VY-16Q-305 Revision:

A Page 17 of 29 F0306-OIRO NEC041879 V Structural Integrity Associates, Inc..MAT U 'APPR 1-9 2007-MAT]' NM.U"M1.:

.-Region 5 Region 6.-Rft i

  • RRegion Reio to Region 3 Region 1 x Rc-c.rcoutlt )JO.Z1O* Unite E-lement Modici FigureS: Nozzle and Vessel Wall Thermal and Heat Transfer Boundaries File No.: VY-16Q-305 Revision:

A Page 18 of 29 F0306-OIRO

.NEC041880 V Structural Integrity Associates, Inc.--------- ----- -------- ---- -------- ------ ------- ------ ------- --------------



-------- ---- -------- ---- --NODAL SOLUTION 8'TEP-322 SINT. (AVG)Dmx =. 8108B2 SXN =169.035 SEX =121100 AN APR 24 2007.09.:0W.:!

A....a? -169 .025 27043 13606 Recirc Outlet Nozzle.Finite" 3916 4E0479 Element Model 90790 107662 67353 94226 121100 Figure 6: Safe End Critical Thermal Stress Location FileNo.: VY-16Q-305 Revision:

A Page 19 of 29 F0306-OIRO NEC041881 4rl Structural Integrity Associates, Inc.Figure 7: '.Safe End Limiting Linearized Stress Paths File No..: VY-16Q-305 Revision:

A {Page 20 of 29 F0306-OIRO NEC041882 Structural Integrity Associates, Inc.I Figure 8: Blend Radius Limiting Pressure Stress Location File No.: VY-16Q-305 Revision:

A Page 21 of 29 F0306-oiRO 1 NEG041883 Structural Integfrity Associates, Inc.I Figure 9: Blend Radius Linearized Stress Path File No.: VY-16Q-305 Revision:

A Page 22 of 29 F0o3o6-1o0' NEC04 1884 StructuralTintegrity Associates, Inc.Total Stress Intensityr

~2;LA lime(sec)Figre 10: Safe End 100% Flow Total Stress Intensity Total Stress Intensity Tine qei)Figure 11: Blend Radius 100%/0 Flow Total Stress Intensity File No.: VY-16Q-305 Revision:

A Page 23 of 29 F0306-OIRO NEC041885 Structural Integrity Associates, Inc.I DODD-6WDDD 2DD COD 6W 00 Tate ieo1 Figure 12: Safe End Total Stress History for. 100% Flow i 0 100 2M 0D0. 400 6m 6m 700 OD 9W IDDO Figure 13: Safe End Membrane Plus Bending Stress History for 100% Flow File No.: VY-16Q-305 Page 24 of 29 Revision:

A F0306-0IRO NEC041886 Structural integrity Associates, Inc.N a.a .10 20D 300. 400 500 600 700 80D 91301 Ta"T e 4eo Figure 14: Safe End Total Stress History for 500/o Flow 10CD 2DO~DD-2MDEO-6DDDD 0 100 200 3,m to S00 10 601 D 700 900 lam Tkne feQl Figure 15: Safe End Membrane Plus Bending Stress History for 50% Flow File No.: VY-16Q-305 Page 25 of 29 Revision:

A F0306-OIRO NEC041887 Structural Integrity Associates, Inc."OOD 2M0M 11311 100 20D 3. 40D 5D WO 700 8 FT STre ieo)Figure 16: Safe End Total Stress Histo ry for 0%/o Flow m 0 100 2M 3 co o 5DD 60 700 8D

  • 9DD 1000 Th e 4ec)Figure 17: Safe End Membrane Plus Bending Stress History for 0% Flow File No.: VY-16Q-305 Page 26 of 29 Revision:

A'.0306-1RO NEC041888 I Structural Integrity Associates, Inc.BDOD Tkne4 qeC)Figure 18: Blend Radius Total Stress History for 100% Flow 5EDD Th kCe)Figure 19: Blend Radius Membrane Plus Bending Stress History for 100% Flow FileNo. VY-16Q-305 Revision:

A Page 27 of 29 F0306-0 IRO NEC041889 Structural Integrity Associates, Inc.I000 210D 30M 4.000 ,.000 600D MmL .8D60 Thtal try F Figure 20: Blend Radius Total Stress Histoxy for 50% oFlow-10(00 _____-201MOD_____

_______ .----wool)_____

______.0 IOCD 2(0 WOO 4=( 6D0 WOD 7000 SOO0 Fg 2i M n Pe S H f" ' -Figure 21: Blend Radius Membrane Plus Bending Stress History for 50% Flow File No.: VY-16Q-305 Revision:

A Page 28 of 29 F0306-OIRO NEC041890 Structural Integrity Associates, Inc.35DD0 25D0D 2DDMD W 150D00 00o0BEOD 0 1000 2000 3DDD 4000 50D 6DDD M0OO*mTin* Q;ec)Figure 22: Blend Radius Total Stress History for 0% Flow 6~00 C IOD: 2MO MD0 ,oD 'SOD 6D0 .7IcD OD00/Tka e f ec5 -Figure 23: Blend Radius Membrane Plus Bending Stress History for 0% Flow File No.: VY-16Q-305 Page 29 of 29 Revision:.

A F0306-O1 RO ,NEC041891 Structural Integrity Associates, Inc.APPENDIX A FINITE ELEMENT ANALYSIS FILES p (File No.: VY-16Q-305

Revision:

A-Page A1 of A2 F0306-OIRO NEC041892 Structural integrity Associates, Inc.RON VY.INP Input File for PressureLoad In Computer files VY RON T 100.INP InputFile for 100% Flow Thermal Analysis In Computer files VY RON S 100;INP Input File for 100/o Flow Stress Analysis In Computer files VY RON T 50.INP Input File for 50% Flow Thermal Analysis In Computer files.VY RON T 50.INP Input File for 50% Flow StressAnalysis In Computer files VY RON O.INP Input File for 0(/o Flow Thermal Analysis In Computer files VY RON O.I0 P Input File for (0lo Flow Stress Analysis In Computer files PVESS.OUT Stress Output across the shell with Pressure Load In Computer files PSE. OUT Stress Output at Safe End with Pressure Load In Computer files PBLEND.OUT Stress Output at Blend Radius with Pressure Load In Computer files#FSE. OUT Stress Output at Safe End In Computer files#FBR. OUT Stress Output at Blend Radius In Computer files#FSE INSIDE. RED Stress Extracted at Safe End In Computer files#FBR INSIDE.RED Stress Extracted at Blend Radius In Computer files#FSE T-Green.XLS Green.Function with Total Stress at Safe End In Computer files#FSE_M+B-Green.XLS Green Function with Membrane plus Bending Stress In Computer files,_ at Safe End HFBRT-Green.XLS Green Function with Total Stress at Blend Radius at In Computer files 100% flow HFBRM+B-Green.XLS Green Function with Membrane plus Bending Stress In Computer files_at Blend Radius at 100% flow Where # is H, M L meaning 100%, 50K& and 0% flow rate, respectively.

File No.:. VY-16Q-305 Revision:

A Page A2 of A2 F0306-OIRO NEC041893 Exhibit M Stractural Integrity Associates, Inc. VY-16Q-308 CALCULATION PACKAGE Project No.: VY-16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 CLIENT: "PANT:Entergy Vermont Yankee, LLC * -Vermont Yankee Nuclear Power Station CALCULATION TITLE: Error! Unknown document property name.Document Affected Project Manager Preparer(s)

&ReviSion Pages Revision Description Approval Checker(s)*

' .. , Signature

& Date Signatures

&Date A 1-6, Initial Draft forReview Terry J.Herrmann Roland Horvath Appendix: A1-A17 John Staples Page 1 of 6 F0308-0 IRA NEC041896 Structural integrity Associates, Inc.Table of Contents 1.0 O B JE C T IV E ............................................................................

...............................................

3 2. 0 GEOMETRY MATERIAL PROPERTIES..."................................................

3 3.0 PR O GRA M IN PUT ..................

.... .. .......................

.......................

.... ................

31 4.0 R E F E R E N C E S -. .....................

..... ..................

..... ...........................

4 APPENDIX A VYCSN EOM IP............I.,............

....... .........

........7 .List of Tables Table 1: MaterialProperties

@ 300TF.. ....................

............

.. ............

5 List of Figures Figure 1: ANSYS Finite Element Model ...........................................

6 File No. VY-16Q-308 Revision:

A Page 2 of 6, F0308-01RA NEC041897 Structural Integrity Associates, Inc.1.0 OBJECTIVE The objective of this calculation is to create a finite element model of the Vermont Yankee Nuclear Power Station recirculation outlet nozzle. This model will be used to develop a Green's Function to be used in a subsequent fatigue analysis.2.0. GEOMETRY / MATERIAL PROPERTIES A 2-D axisymmetric finite element model (FEM) of the nozzle was deve lope dwith e I ement type PLANE82. The developed modelincludes the part of thepipe, thesafe end, the nozzle forging, a portion of the vessel shell, and the cladding.

The radius of the vessel in the finite element model was multiplied by a factor of 2 to account for the fact that the vessel portion of the 2D model'is a spher~e, but the true geometry is a cylinder.

The equation for the membrane hoop. stress for a sphere is (pressure) x (radius) and the equation for the membrane hoop stress in a cylinder 2,x thickness iso-= (pressure) x (radius)thickness The 2-D axisymmetric FEM was constructed using the dimensions and information from References

[1 -8] based on ANSYS [9] finite element software.

Figure 1 shows the resulting finite element model..The materials of the various components of the model are listed below* Safe End -SB 166 [1] (72Ni-l 5Cr-8Fe, N06600)* Piping- SA312 TP304 [1] (18Cr-8Ni)

  • Nozzle Forging -SA508 Class IH[ 1] (%ANi-l/2Mo-1/3 Cr-V)* Vessel -SA533 Grade B [7] (Mn-1/2Mo-1/2Ni)

-Cladding -SA240 TP 3 04 [7] (1 8Cr-SNi)Material properties for these materials are based upon the 1998 ASME Code, Section UI, Part D, with 2000 Addenda [8] and are'shown in Table 1. The properties are taken at an average temperature of 300°F. This average temperature is based on a thermal shock of 500'F to 1 00F which will be applied to the FEM model for Green's Function development f 3.0 PROGRAM INPUT The input file, VYCSNGEOM.inp (included in Appendix A), creates the finite element model for the core spray nozzle.File No.: VY-16Q-308 Page 3 of 6 Revision:

A F0308-O1RA' NE-c041898 Structural Integrity Associates, Inc.

4.0 REFERENCES

1. ENTERGY NUCLEAR Vermont Yankee, Drawing No. 5920-624, Revision 8, REACTOR 8IN.DIA NOZZLE M4K N5A & B, SI File No. VY-16Q-206
2. MERCURY COMPANY, Drawing Number No. WM-70430-100, 5920-6813, SH 1 of 2, Revision 0, CORE SPRAY NOZZLE WELD. OVERLAY PROFILE N5A & N5B, SI File No.VY-16Q-206 3.. VERMONT YANKEE NUCL. PWR CORP., Drawing No. 5920-898 Revision 1, THERMAL SLEEVE DETAILS NOZZLE N5A & B, SI File No. VY- 16Q-206 4. VERMONT YANKEE NUCL. PWR. CORP., Drawing No. 5920-655, SAFE END FORGING FOR NOZZLES N2AJB N5 A/B, SI File No. VY-16Q-206 S. VERMONT YANKEE NTJCL. PWR. CORP., Drawing No. 5920-69, Revision 1, SPECIAL FORGINGS FOR NOZZLES N5A AND N5B, SI File No. VY-16Q-206
6. MERCURY COMPANY, Drawing Number No.,PD-70430-200, 5920-6813, SH2 of 2 VYSC-1, Revision 0, CORE SPRAY NOZZLE WELD OVERLAY NSA AND NSB, SI File No. VY-l 6Q-206 7.CB&I Stress Report, S-7 for N5A & NSB, CB &1 9-6201-I S7, SI File No. V Y-1 6Q-206 8. American Society of Mechanical Engineers, Boiler and Pressure Vessel Code,Section II, Part D, 1.998 Edition, 2000 Addenda.9. ANSYS, Release 81AA (w/ServicePack-1), ANSYS, Inc., June 2004.File No. VY-16Q-308 Revision:

A Page 4 of 6 F0308-0iRA.

NEC041899 Structural Integrity Associates, Inc.Table 1: Material Properties

@ 30 0°F Modu.lwof of Tiernal Tum-,al Themal spei&Heat Pian'os maeral Pat a~ia Eagk* e6 E-6www Btuirw*frF ffuliwif BtuLSF pao Dew*, iVhn ID psi " e-6, Btw f'F[ [C [NUY] [DENS][EXl iwhreF fKxX][ALPXJ 72Ni-l5Cr-2 Safe End SB 166 8Fe 29.8 7.9 9.6 0.160 0.1157407 0.29 0.3 N06600 72Ni-15Cr-2 Weld INCON 8Fe ,.29.8 7.9 9.6 0.160 0.1157407 0.29 0.3 Overlay ýEL 82 N06600 _______________

SA508 I/A Ni-ll2Mo-Nozzle la508 I/M 26'7 7.3 23.4 0.401 0.1193277 0.3 0.283 ClassA I 1/3 Cr-V 3 vessel 5A533. Mn-1/2Mo-28.0 7.7 23.4 0.401 0.1193277

.0.3 0.283 Vessel Gra deDB 112NiM_________

4 3/16 Clad SA240 l8Cr-SNi 27.0 9.8 9.8 0.160 0.1252495 0.3 0.283 4Cocd TP304 8 0 X 100 SA 10.8 4 '- Conc. S32 18Cf-SNi 27.0 9.8 9.8 0.160 0.1252495 0.30.3 Reduction TP30 Notes: Material Properties are evaluated at 300OF from the 1998 ASME Code,Section II, PartD, with 2000 Addenda, except for density and Poisson's ratio, which are assumed typical values.File No. VY-16Q-308 Revision:

A Page 5 ot 6 F0308-01RA NEC041900 I SStructural Integrity Associates, Inc.Kvfl Hui APR 11 20:7 10CL2:16 x AN Api,. 11 Z027 ifl:1z:1i5 Corp., ,q)r -, ye ' ririi(. e ElHrII.'-" .Vcd)dc .1 Figure 1: ANSYS Finite ElementModel File No.: VY-16Q-308 Revision:

A Page 6 of 6.F0308-O1RA NEC041901 Structural integrity Associates, Inc.APPENDIX A VYCSNGEOM.INP File No.: VY-16Q-308 Revision:

A Page Al of A17=1-7 F0308-OIRA NEC041902 Structural Integrity Associates, Inc.Ifinish!fclear,start I/prep7 et, 1,PLANE182,,,1 Axisymmetric Icorn, *************************** , ./com, Material Properties

@T=300F/com, ************************

/COM, Material #1 (Nozzle: SA-508 Class II, 3/4Ni-lI2Mo-1/3Cr-V) mp,ex ,1,26.7E+06 mp,alpx,I,7.3E-06 mp,kxx ,1,23.4 /3600/12 mp,c J1,0.1193277 mp,nuxy,1

,0.3 mp, dens, 1,0.283/COM, Material #2 (Safe End: N06600, Inconel 82 Weld Overlay)mp,ex ,2,29.8E+06.-

mp, alpx,2,7.9E-06 mp,kxl ,2,9.6 /3600/12 mp, c ,2,0.1157407 mpnuxy,2,0.

29 mhp, dens,2,0.3 lOOM, Material #3 (Vessel:,,SA-533 Grade B, Mn-1/2Mo-1/2Ni) mp,ex ,3,28.OOE+06 mp,alpx,3,7.7E-06 mpklo ,3,23.4 /3600/12 mp,c ,3,0.1193277 mp,nuxy,3,0.3 mp,dens,3,0.283.COM, Material #4 (3/16 Clad: SA-240 TP304, 8-1Diam Cono Red. SA-312TP 304, Thermal Sleeve: SA-312 TP304)mp, ex ,4,27.OE+06-mp,alpx,4,9.8E-06 mplkxxo,4,9.8

/3600/12 mp,c ,4,0.1252495 mp,nuxy,4,0.

3 mp,dens,4,0.283

/com, **********************

  • /com, Geometric Parameters

/corn,*AFTJN, deg File No.: VY-16Q-308 Page A2 of A17 Revision:

A F0308-OIRA NEC041903 Structural Integrity Associates, Inc./ct-n, pipe parameters

  • set, pID, 9.834*set, pOD, 10.815*set, pL, 8.k, '1, pID/2, 0 k, 2, POD12, 0 k, 3, POD/2, pL k, 4, PID/2, pL 1)',2 S1, 2,3>1, 3, 4 1,4,1/com, *******************

/com, Safe End Parameters lcom, ******************

.*set, seBX, pL*set, selDOl, 9.834*set, seID02, 9*set, seID03, 9 + 3.1/32*set, se1D04, 11+ 3/4.*set, seOD01, 10.815*set, seOD02, 11 + 1/6*set, seOD03, 13 + 27/64.*set, seOD04, 10 + 1.1/16*set,.seL01, 3 + 1/32*set, seLO0, 7/8*set, seL03. .1+11/16*set, seLO4,* 13/32*set, seL05, 4*set, seLO6, 3+.12'*set, seLO7, 12+4+1/16*set, seL08, .seL07-(seL0l+seL02+seL03+seL04+seL05+seL06)

  • set,'seROi, 3*set, seRO2, 3/4*set, seR03, 1/4*set, seRO4, 1/8)k,I 5, seOD01/2, seBX+seLOl k, 6, seOD02/2, seBX+seLOl+seLO2 FileNo. VY-16Q-308 Revision:

A Page A3'of A17 F0308-aIRA NEG041904 Structural integrity Associates, Inc.k, 7, seOD02/2, seBX+seLO1+seLO2+seLO3+seLO4

+.496 k, 8, (seODOZ+seOD03)/4, seBX+seLO1+seLO2+seLO3+seLO4+seLO5/2 k, 9, seOD03/2, seBX+seLO 1+seLO2+seLO3+seLO4+seLO5 k, 10, seOD03f2, seBX+seLO1+seL02tseLO3+seLO4+seLO5+seLO6 k, 11, seID04/2, seBX+seLO1+seL02+seLO3+seLO4+seLO5+seLO6 k, 12, seID04/2, seBX+seLO1+seLO2+seLO3+seL04+seLO5 k, 13, seOD04/2, seBX+seLOl+seL02+seLO3+seLO4+seLO5 k, 14:, seOD04/2, seBX+seL07 k, 15, seID03/2, seBX+seL07 k, 16, seID02/2, seBX+seLO1+seLO2+seLO3+seL04+seLO5 k, 17, seIDO2/2, seBX+seLOl+seLO2+seLO3+seLO4.

k, 18, seID01/2, seBX+seLO1+seLOZ+seLO3 13,35 1,5,6 1,9,10 1,.10, 11 '1, 11,12 1, 12,13 1,13, 14 1 14,.15 1,15,16 1, 16, 17-1 17,18 S,18,"4 k, 19, seODO2.2+seRO1, seBX+seLO1+seLO2+seLO3+seLO4

+.496 k, 8, seOD02/2+seRO i, seBX+seL01+seLO2+seLO3+seLO4+seRO1

+496 lart, 7,8, 1.9, seR01 k, 20, seOD03/2-seR01, seBX+seLO1+seLO2+seLO3+seL04+seLO5 k, 21, seOD03/2-seRO1, seBX+seL001+seLO2+seL03+seLO4+seLO5-seR01 lare,*9, 21, 20, seRO1.L2ANG,1 9,18,0,0,,, ldele, 20, 21,.,1.ifillt, 5, 6, seRO2 ifillt, 6,7, seRO2 Ifillt, 10, 11, seR03 Ifillt, 11, 12, seR03 ifilit, 15, 16, seRO4 ifillt, 16; 17, seR04/corn, weld 1/8 gap*set, wgap, 1/8 File No." VY-16Q-308 Page A4 of A17 Revision:

A NEC041905 Structural integrity Associates, Inc.k, 40, seOD03/2, seBX+seLO1+seLO2+seLO3+seL04+se.L05+seLO6

+ wgap k, 41, seID04/2, seBX+seLO l+seL02+seLO3+seLO4+seLO5+seLO6

+ wgap 1,10,40 1, 40,41 1,41,11 loom, **********************

"/com, Nozzle*set, nID01, seOD01*set, nOD01, seOD03*set, nOD02, 24+1/4*set, nOD03, 2*12+7.25*set, nOD04, 2*12+7.25-1-1/8

  • set, nL01, 4+5116*set, nL02, 5+318*set, nL03, 5+1/8+5+5/8
  • Set, nWO1,1/16*set, wClad, 3116*set, wReactor, 5+5/8-wClad
  • set, nIb4,7/16*set,nR01, 1/4*set, nRO2, 3/16'**set, nR03, (8*12+7)*2
  • set, nR04, 2.5,*set, nR05, nRO4-w Clad*set, nR06, 3.5*set, nR07, 3 +7/8*set, nRO8, 0.5 K, 42, KX(11) + nW01, KY(11)K, 43, KX(41) + wClad,KY(41)+nLO4+nROl K, 44, KX(43) + nRO1, KY(43)K, 46, KX(44) + nRO1*sin(1 5), KY(44)-nROl
  • cos(15)K, 47, KX(46) + 10*nROi *4os(1 5), KY(46)+.10*nR01
  • sin(1 5)K, 48, KX(43), KY(43) + 24 K, 49, KX(41), KY(41) + 24 K, 50, KX(40), KY(40) + nLOl1 K, 51, KX(44) +(nR0 1+w Clad)*sin(15), KY(44)-(nR01+wClad)*cos(15)

K,52, KX(51) +. 10*nRO1*cos(15), KY(51)+10*nRO1*sin(15)

K, 53, KX(51) -10*nRO1*oos(15), KY(51)-10*nR01*sinQ(5)

K, 54, KX(42), KY(42)+wClad*2 larc, 43, 46, 44, nRROl File No. VY-16Q-308 Page AS of A17:Revision:

A F0308-01RA NEC04I906" Structural integrity Associates, Inc.L, 46, 47 L, 43, 48 L, 41t 49 L, 40, 50 L, 53, 52 L, 42, 54 LOVLAP, 35,36 LDELE, 39, 40,,0 LOVLAP,; 31,34,38 LDELE, 40,42,2,0 ifillt, 37, 35, nR02 K, 60, nOD02/2, KY(40) + nLO1+nL02 K, 61, nOD02/2, KY(40) + nLO1+nLO2+nL03 K, 62, 0, KY(40) + nL01+nLO2+nLO3+nRO3 K, 63, 0, KY(62) -nR03 K, 64, nR03, KY(62)K, 65, 0, KY(63)-w Clad K, 66, nR,03+wClad,.KY(62)

K, 67, 0, KY(65)-wReactor K, 68, nR03+wReactor, KY(62)LARC, 63, 64, 62, nR03.LARC, 65, 66, 62, nR03+wClad LARC, 67, 68, 62, nR03+wReactor L, 64,66 L, 66, 68 LOVLAP, 34, 33 LDELE, 46,47 LOVLAP, 32, 38 LDELE, 34 LDELE, 46 LFILLT,45,48,nRO4,, LFILLT,33,47,nRO5,, L, 50,-60 L, 60, 61 LOVLAP, 40,46 File No.: VY-16Q-308 Page A6 of A17 Revision:

A F0308-O IRA'NEC041907 Structural Integrity Associates, Inc.LDELE, 50, 51 LFILLT,49,52,nR06 LFTrLT,38,41,nRO7 LFILLT,49,38,nRO8

/com, Nozzle and.Vessel border K, 80, nOD03/2, KY(60)+2*nL03 K, 81, nOD03/2, KY(60)K, 82, nQD04/2, KY(60)+2*nL03 K, 83, nOD04/2, KY(60)L, 80,81 L, 82, 83 LPTN, 53,48 LPTN, 51, 52 LDELE, 56, 59,1,0 LSTR, 76, 75 LPTN, 51, 47 KL,,40,0.5,, KL,34,0.5,, KL,32,0.5,,, LSTR, 78, 79 LSTR, 79,84 K, 90, KX(73)+wReactor*2*cs,(1 60), KY(73)+wReactor*2*siMn(1 60)L, 73, 90 LPTN, 59, 33 LITN, 63, 45 LDELE, 65 K, 91, KX(71)+wReactor*2*cos(i 70), KY( 1)+wReactor*2*sin(170)

L, 71, 91 LPTN, 45, 60 LPTN, 33, 67 LDELE, 69 KCENTER,KP,69,78,70, 0 LSTR, 89, 58 LSTR, 89, 57 LPTN, 40, 33, 67 LDELE, 73, 74 L, 58, 56 L, 57, 55 File No.: VY-16Q-308 Page A7 of A17 Revision:

A F0308-01RA NEC041908 Structural Integrity Associates, Inc.Stm,/corn, Weld Overlay/Ceoa, ********m*************

  • set, w oA, 3.100*set, woB, 0.781*set, w oC, Z 500*set, woD, 3.734*set, waE, 3.480*set, woF, 6.310*set, woG, 8.313*set, woH, 0.535*set, w oR01, 7/16 K, 80, KX(40), KY(40)-wgap/2-woA K, 81, KX(80)+woH, KY(80)+woH.

K, 83, KX(40), KY(40)-wgap/2+woB/2+woC K, 82, KX(83)+woH, KY(83)-woH L, 80, 81 L, 81, 82 L, 82, 83 LIVN, 74,46 LDELE, 79 LFILLT,78,76,woROl, LSTR, 94, 96 learn, *************

/corn, Heat transfer coef. points*set, tsL01, 2.25*set, tsL02, 3.5 K, 100, KX(41), KY(1 1)+seL08+.tsLO1 K, 101, KX(41)+wClad, KY(1 1)+se.L08+tsL01 K, 102, KX(41), KY(11)+seLO_8+tsLO1+tsLO2.K, 103, KX(41)+wClad, KY(1 1)+seLO8+tsLOI+tsLO2 L, 100, 101 L, 102, 103-LDELE, 51 LDELE, 47.File No.:. VY-16Q-308

.Page A8 of Al17 Revision:

A F0308-01RA NEC041909 V Structural integrity Associates, Inc.K, 104, KX(1 03)+wReactor*cos(-20), KY(103)+wReactor*sin(-20).

K, 105, KX(I 0fl)wReactor*cos(-

10), KY(1 0 1)+wReactcr*sin(-

10)L, 103, 104 L, 101, 105 LFTN, 38,47 LPTN,.76,51 LDELE, 86 LDELE, 84 LDELE, 65 LDELE, 68 LDBLE, 63 LDELE, 45 LDELE, 66 LDELE, 60 LSTR, 43, 101 LSTR, 101, 103.LSTR, 103, 85 LSTR; 86, 102 LSTR, 102, 100 LSTR, 100, 41 LDIV,30,0.5, ,2,0 K, 106, KX(99)+wReactor*cos(200), KY(99)+wReactor*sin(200)

K, 107, KX(3 8)+wReactor*cos(1 60), KY (38)+wReactor*sin(1 60)L- 99, 106 L, 38,107 LPTN, 66, 84, LPTN, 88, 76 LDELE, 8.9,90 LSTR, 99, 38 LDELE, 28 LSTR, -26, 9 LSTR, 29, 16 LCOMB,1 1,23,0 LCOMB, 11,24,0 LDIV, 11, ,,3,0 K, 110, KX(22)+wReactor*cos(1 80), KY(22)+wReactor*sin(1

80) -L, 110, 22 LPTN, 15, 89 LDELE, 94 File No.: VY-16Q-308 Page'A9 of A17 Revision:

A F0308-01RA.

NEC041910 Structural Integrity Associates, Inc.LSTR, 28, 111 LSTR, 27, 22 LSTR, 17, 7 K, 112, KX(33)+wReactor, KY(33)L, 33, 112 LPTN, 7, 95 LDELE, 99 K, 114, KX(25)+wReactor*cos(1 80), KY (25)+wReactor*sin(1 80)L, 114,25 K, 115, KX(8)-wReactor*cos(1 80), KY(8)+ivReactor*sin(1 80)L, 115,8 LPTN, 95,17 LPTN, 7,101 LDELE, 102,103 foorn, .**************************-..

fcom, Creating Areas and Meshing ftatm, **************************..

allsel,all,all MSHKEY,1 ! MAPPED MESHING AL,1,2,3,4 MAT,4 I Pipe LESIZE,1 ,,,8 LESIZE,3,,,8 LESIZE,2,,,20 LESIZE,4,,,20.

AMESH, 1 MAT,2 -Safe End AL, 3, 5,100,99 LESIZE,3, , -8 LESIZE,100,,,8' LESIZE,5,.20 LESIZE,99,,, 20 AMES*H, 2 LCOMB, 20,6,0 LCOMB, 6,21,0-AL-100, 6, 17, 104 LESIZE, 100,,,8 LESIZE,17,,,8-.

'LESIZE,6,,, 10 LESIZE,104,,,10 AMESH, 3 File No.: VY-16Q-308 Page Al 0 of A17 Revision:

A F0308-O IRA NEC041911 Structural Integrity Associates, Inc.AL, 17, 97, 98, 95 LESIZE, 17,,, 8 LESIZE,98,,,8

-LESIZE,97,,, 10 LESIZE,95,, 10 AMESH; 4 'LDELE, 94 LSTR, 7, 30 ICOMB, 26,16,0 LCOMB, 16,25,0 AL, 98, 96,7,16 LESIZE,98,,,8 LESIZE,7,,,8 LESIZE,96,,,8 LESIZE, 16,,, 8 AMESH, 5 LCOMB, 18,22 AL, 7, 18, 92, 93 LESIZE,7 ,,,8 LESIZE,92,,, 8 LESIZE,18 , 10 LESIZE,93,,, 10 A1MESH, 6 AL, 92, 89, 23, 15 LESIZE,92,,, 8 LESIZE,23,,,8 LESIZE,89,,,8 LESIZE,15,,, 8 AMESH, 7 AL, 15, 24,88, 90 LESIZE,15,,, 8 LESIZE,24,,,8 LESIZE,88,,, 8 LESIZE,90,,, ... 8 AMESH, 8 AL, 89,19,28, 11 LESIZE,89,,, 8.LESIZE,1 9,,, 8.LESIZE,28,,, 8 File No.: VY-16Q-308 PageAl 1 of A17 Revision:

A F0308-01RA NEG041912 Structural integrity Associates, Inc.LESIZE,1 1,,,?AMESH, 9 AL, 88, 12 1,3, 14 LESIZE,88,,, 8',LESIZE,13,,,8 LESIZE,12,, ,28,5 .... 1 LESIZE,14,_.28,0.

2 .... 1 AMESI- 10.K, 118, KX(80)+wReactor*cos(180), KY(80)+wReactor*sin(1 80)L, 1i8,80-LPTN, 10,20,8 LDELE, 101 AL, 28, 21,94, 26 LESIZE,28,,,8 LESIZE,94,,, 8 LESIZE,21,, 6 LESIZE,26,,,6.

AMESH, 11, LDELE, 9 LSTR, 42, ,. 11 LSTR, 42, 10 LESIZE,8, , ,2,, ,,, 1 LESIZE,9,, 6,, .,,,l LESIZE,22,, ,20,0.2, ,,, I LESIZE,25,, ,20,0.2,, ,, 1 AL, 94, 22, 9, 8, 25 AMAP,12,11,10,80,21 LCOMB, 37,31 LCOMB, 27, 3 6 AL, 9, 27, 35, 31 LESIZE,3 5 ,,,6 LESIZE,27,,,4 LESIZE,31,,,4 AMESHL 13 MAT,4 I Clad LCOMB, 68, 39.File No.: VY-16Q-308 Page Al 2 of A17 Revision:

A F0308-O IRA NEC041913 Structural integrity Associates, Inc.LCOMB, 29,87 AL, 8, 31, 86, 29 LESIZE,8,,,2 LESIZE,86,,, 2 LESIZE,31,,,4 LESIZE,29,,,4 AMESH, 14 AL, 35,43, 39, 76 LESIZE,3 5,,, 6 JESIZE,39,,,6 LESIZE,43,,,4 LESIZE,76,,,4 AMESH, 15 AL, 86,76,66,91 LESIZE,86,,, 2 LESIZE,66,,, 2 LESIZE,76,,,4 LESIZE,91

,,,4 AMESI 16 MAT,1 I Nozzle LCOMB, 41,77, LCOMB, 41, 74, LCOMB, 41, 47, LDELE, 41 LDELE, 47 LESIZE,45,,, 19, p ,, 11 LESIZE,30,,,1, ,... 1 LESIZE, 0,,,20 LESIZE,85,,,6 AL, 39, 10, 85, 45, 30 AMAP,17,101,98,3 6,99 MATA4 1 Clad LESIZE, 79,,,2 LESIZE,84,,, 20 AL, 66,30,45,79, 84 AMAP,18,100,101,99,109 MAT,1 I Nozzle LCOMB, 38,81 LESIZE, 38,,,14, File.No.:

VY-16Q-308 PageAI3 of A17 Revision:

A F0308-OIRA NEC041914 7 Structrral Integrity Associates, Inc.LESIZE, 83,,,6 LESIZE, 51,,,14 AL, 85, 38, 83,1 5 AMESH, 19 MAT,4 I Clad LESIZE 80,,,2.LESIZE, 65,,,14 AL, 79, 51,80, 65-AMESH, 20 MAT,1 I Nozzle.LCOMB, 82, 50, LESIZE, 5 0,,,20 LESIZE, 62,,,6 LESIZE, 60,,,20 AL, 83,.50, 62, 60 AMES-, 21 MAT,4 I Clad LESIZE, 64,,,2 LESIZE, 63,,,20 AL, 80,60,64,63 AMESH, 22 MAT, 1 I Nozzle LCOMB, 49,71 LESIZE, 49,,, 20 LESIZE, 69,,,6 LESIZE, 61,,,20 AL, 62,49,69,61 AMESH, 23 MAT,4. I Clad LESIZE, 40,,,2 LESIZE, 5 9,,,20 AL, 64, 61, 40, 59 AMESH, 24, MAT,1 I Nozzle LESIZE, 75,,,6 LESIZE, 7.0,,,6 LESIZE, 34,,,6 AL, 69, 75, 70, 34 AMESH, 25 File No.: VY-16Q-308 PageAl4 ofA17 Revision:

A F0308-O IRA NEG041915 Structural Integrity Associates, Inc.MAT,4 ! Clad LESIZE, 33,,,2 LESIZE, 32M,6 AL, 40, 34, 33, 32 AMISH, 26 MAT,1 I Nozzle LCOMB, 53, 72 LESIZE, 53,,,8 LESIZE, 58,,,6 LESIZE, 5 2,,8 AL, 70,53,58,52 AMES H, 27 MAT,4 Clad LESIZE, 57,,,2 LESIZE, 54,,,8 AL, 33, 52, 57, 54 AMESH, 28 MAT,3 I Vessel LESIZE, 57,,,2 LESIZE, 54,,.8 LESIZE, 48,,100,0.2

.... l LESIZE, 55;,,100,0.2,,, ,1 LESIZE, 56,,,100,0.2,,, 1 AL, 48, 44, 56, 58 AlvESH, 29 MAT,4 I Clad LESIZE, 42,,,2 AL, 57, 56, 42, 55 AlMIESH, 30 MAT,1 Nozzle ACLEAR, 17 ADELE, 17 LOVLAP, 10, 46 NUJMMRG,KP, ,, ,LOW LCOMB,37,41

,0 AL, 20, 37, 85, 45, 30, 39 AMAP,17,101,98,36,99 File No.: VY-16Q-308 PageAl5 of A17 Revision:

A 2 1/2F0308-OIRA NEC041916 Structural Integrity Associates, Inc.MAT,2 !Safe End LCOMIB, 36, 78 LESIZE, 67,,,6 LESIZE, 36,,,6, 0.2;,,1 AL, 67, 73,36,20,43,27,22 AMAP;31,23,82,81,80

/COM, HTC point of Region 3 lOOM,**********************

ACLEAR, 4 ADELE, 4 LDELE, 95 LDELE, 97 K, 120, KX(Q 8), KY(18) -3/8 K, 121, KX(25), KY(120)L, 25, 121 L, 121, 113 L, 117, 120 L, 120, 33 L, 120, 121 MAT,2 I Safe End AL, 17, 10,,68, 46 LESIZE,1 0,,, 12 LESIZE,68,,, 8 LESIZE,46,,, 12 AMESH, 4 AL, 68,41, 98,47 LESIZE,41

,,,4 LESIZE,98,,, 8 LESIZE,47,,,4 AMESH, 32/C*OM***********************

lCOM, HTC point of Region 7 MAT,4 I Clad ACLEAR, 18 ADELE, 18 K, 122, KX(14)+wReactor, KY(14)L, 14,122 LSBL, 84, 71 File No.: VY-16Q-308 Page A16,ofA17 Revision:

A F0308-01RA NE0041917 Structural Integrity Associates, Inc.LESIZE, 72,,,10 LESIZE,74,,,10 AL, 66, 30,45,79,72,74 AMAP,18,100,101,99,109

/COM, HTC point of Region 3-IC*OM,****.************************~*********

MAT,2 ISafe End ACLEAR, 2 ADELE, 2 K, 123, KX(120), KY(120)-3 K, 124, KX(4), KY(4)+1+1/16 LDELE, 99 L, 4, 124 L, 124, 123 L, 123, 116 AL, 3, 5,100,78, 77, 71 AMAP,2,116,8,3,4.

IC OM ********************************.

/COM, Define DOF constraints on lines DLC2, * **,SYM DL,4, ,SYMM FLST,4,9,,1,ORDE,2 FlTEM,4, 1 F[TEM,4,-9 1CP;1,UY,P51X File No.: VY-16Q-308 Page A17, ofAl7 Revision:

A F0308-01RA NEe041918 Exhibit N A Structural Integrity Associates, Inc. File No.: VY-16Q-309 CALCULATION PACKAGE Project No.: VY-16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 CLIENT: PLANT: Entergy Veront Yankee, LLC Vermont Yankee Nuclear P ower Station.-

, CALCULATION TITLE: Core Spray Nozzle Green Functions Document Affected Project Manager Preparer(s)

&Revisimn Pagfe Revision Description Approval Checker(s)

__vsi__ Pages S ignature & Date Signatures

&Date A 1-24, Initial Draft forReview Terry J. Hen-mann Roland Horvath Appendix: Al.-Al John F. Staples Page 1 of 24 F03a09-01RO NEC041919 Structural Integrity Associates, Inc.Table of Contents.1.0 O B JE C T IV E ... ............................

........................................................................................

........ 4 ,2.0 MODEL DES CRIVTION .............................................

.............

4 3.0 A APPLIED LOAD S.... .................................................

7. .........................

7 4.0 PRESSURE LOAD ........................................

I.............7

5.0 THERMAL

LOAD ..................

........................................

..................

5.1 Boundary

Fluid T emp eratures ................................................................

i 5.2 H eat T ran sfer C oeff icients ................................

A......................................................................

11 6.0 THERMAL AND PRESSURE LOAD RESULTS ...................................

18

7.0 REFERENCES

.........................................

........ ....................

25 APPENDIX A FINITE ELEMENT ANALYSIS FILES .............................

..............

A N S Y S In p u t F iles ........ ... ......................................

............................

......................

........................

1\ (.List of Tables Table 1: MierialProperties

@ 300 0 F .. .......................................

5 Table 2: H eat Transfer Coefficients

...............

... ...................

.................................

13 Table 3: Heat Transfer Coefficients for Region 1 .................

...............

14 Table 4: First Partial Heat Transfer Coefficients for Region 3 ...........................

15 Table 5: Second Partial Heat Transfer Coefficients forRegion 3, .........................

16 Table 6: Resultant Heat Transfer Coefficients for the Regions...

...................

17 T able 7 : P ressure R esults (1,000 psi) ..............................................................

..................................

24 j I!_File No.: VY-16Q-309 Revision:

A Page 2 of 24 FO309-01RO NEC041920 Structural Integrity Associates, Inc.List of Figures* /Figure 1 "A N SY S Finite Elem ent M odel ............................

6..... .... ...........................................

6 Figure 2: Core Spray Nozzle Internal Pressure Distribution.........................................................

8 Figure 3 .Core Spray Nozzle Pressure Cap Load and Boundary Condition

..............

9 Figure 4: Core Spray Nozzle Vessel Wall Boundary Conditions..:

..................

............................

10.Figure 5 Nozzle and Vessel Wall-Thermal and Heat Transfer Boundaries

......................

12 Figure 6 Safe-End Limiting Location to Monitor, Node 3719 ............................................

18 Figure 7
Blend Radius Critical Pressure Stress Location, Node 2166. ..................

... 19 Figure 8: Blend Radius Total Stress History, 1 00'/o Flow ..........................

..... 22 Figure 9: Safe-End Total Stress History, 100% Flow .............

". -........

.... .. 22 Figure 10: Blend Radius Total Stress History, Y/o. Flow .............

.........................

................

23 Figure 11: Safe-End Total Stress History, 0% Flow ...................................

... ...... 23 File No. : VY-16Q-309 Revision:

A Page 3 of.24 F0309-01RO NEG041921 Structural Integrity Associates, Inc.1.0 OBJECTIVE The objective of this calculation is to develop Green's Functions appropriate for use in the fatigue analysis of the Core Spray Nozzle at Vermont Yankee (VY) Nuclear Power Plant. To accomplish this task, a temperature step change was applied to a detailed 2-D axisymmetric finite element model O(EM) of the core spray nozzle inclusive of the thermal sleeve [ 1] Bounding stress histories were extracted for two peak stress locations at the blend radius and in the safe end. These locations of maximum stresses will be referred to as "blend radius" and "safe end". These stress histories were used as an input to develop the Green's Functions foruse in the fatigue analysis.2.0 MODEL DESCRIPTION An axisymmetric finite element model of the core spray nozzle was developed in Reference

[1] using ANSYS [2]. The geometry.

used in Reference

[l]was utilized in this calculation.

The material properties are taken at an average temperature of 300 0 F. This average temperature-is based on a thermal shock'of 500OF to 1 0O°F which will be applied to the FE model for Green's Function development.

Table 1 lists the material properties at 300°F. The meshed model is shown in Figure 1.File No.-: VY-16Q-309 Revision:

A'Page 4 of 24 F0309-0.1RO NEC041922 CStructural Integrity Associates, Inc,.Table 1: Material Properties@

300OF Coeaien+/-r~dodulu of of Th-ermal f Eofrmal Tiirnie, Thernml Secific Heat Poison's Part MterialElsetk*, e*4 Exwmniom Coditiy Dif f DtutLPF DwW De tian ,Pei O-A BhUinw-i-BF PENS][EX] WnriPF IKXX] ., [c) IKUxY,[ALPX]Safe End SB 166, 72Ni-Weld INCONEL 15Cr-8Fe 29.8 7.9 9.6 0.160 0.1157 0.29 0.3 Weld ICONEL N06600 Overlay 82 N06600., ' ..3A4 Ni-Nozzle SA508.la11 /'2Mo-i/3 26.7 7.3 23.4 0.401 0.1193 0.3 .0.283 No~~le Class 11, r-Cr-V Mn-Vessel SA533 1/2Mo- 28.0 7.7 .23.4 0.401 0.1193 0.3 0.283 Grade B 1/2Ni SA240 3/16 Clad TP304*

  • TP 304 80x 100 SA 1 Co10. SA312 18Cr-SNi 27.0 9.8 9.8 0.160 0.1252 0.3 0.283 Conc. TP304 Reduction TP304 Themal SA312 Sleeve TP304 -_Notes: Material Properties are evaluated at 300OF from the 1998 ASME Code,Section II, Part D, with 2000 Addenda, except for density and Poisson's ratio,, which are assumed typical values.File No. VY-16Q-309 Revision:

A Page. t of 24"F0309-01RO NEC041923 Structural Integrity Associates, Inc.Core Spray Nozzle ?Mini.te Sienemnt Model Figure 1: ANSYS FiniteElementModel

/, File No.: VY-16Q-309 Revision:

A Page 6 of 24 F0309-O1RO NEC041924 Structural Integrity Associates, Inc.3.0 APPLIED LOADS Both pressure and thermal loads were applied to the finite element model.4.0 PRESSURE LOAD A uniform pressure of 1000 psi was applied along the inside surface of the core spray nozzle and the reactor vessel wall (Figure 2). A pressureload of 1000 psi was used because it is easily scaled up or down to account for different pressures that occur during transients.

In addition, a cap load was applied to the piping atthe end of the nozzle. This tap load was calculated as follows: PDD2 "2 where: P = Pressure=1,000psi Di = Inside Diameter=

9.834 in Do= Outside Diameter=10.815 in, Therefore, the cap load is 4,774 psi. 'The calculated value was given a negative sign in order for itto Exert tension on the end of the model. The nodes on the end of the safe-end are coupled in the axial direction (UY, Figure 4) to ensure mutual displacement of the end of the nozzle due to attached piping.The boundary conditions at the end of the modeled portion of the reactor pressure vessel wall constructed to be "symmetric" (Figure 3).The ANSYS input file VY 16QP.inp generates the core spray nozzle geometry from VYCSNGeom.inp

[1 ] and performs the internal pressure load case just described.

Figure 2 and Figure 3 show the internal pressure distribution and safe end cap load, respectively-I J File No.: VY-16Q-309 Revision.

A Page 7 of 24 I-F0309-01RO NEC041925"I Structural Integrity Associates, Inc.Figure 2: Core Spray Nozzle Internal Pressure Distribution File No.: VY-16Q-309 Revision:

A Page 8 of 24 F0309-OIRO NEG041926 Structural Integrity Associates, Inc.r Core Spra~y N~ozzle. F~inite Qlernent ModeJI-i ............

.. ..... .... --.- .. ... .... .... ... .... .... ....... ..... ...... .. ....... .Figure 3: Core Spray Nozzle Pressure Cap Load and Boundary Condition File No.: VY-16Q-309 Revision:

A Page 9 of 24 F0309-01RO NEC041927 Structural lntegrity Associates, Inc.Figure 4: Core Spray Nozzle Vessel Wall Boundary Conditions File No.: VY-16Q-309 Revision:.

A Page 10 of 24 F0309-OIRO NEC04.1928

~1 Structural Integrity Associates, Inc.5.0 THERMAL LOAD Thermal: loads are applied to the core spray nozzle model The heat transfer coefficients

(.HTC) were, determined using the methodology in the Excel spreadsheet "Heat Transfer Coefficients.xl', which is included in the project files. The HTCs were determined for various regions of the core spray FEM.(see Figure 5) for two different flow cases. The flow cases are for 100% (3200 gpm [6]) and 0% core spray flow through the nozzle.The 0% flow case simulates a stagnant condition of the core spray nozzle when not in operation (i.e, the entire core spray nozzle is at the same temperature as the reactor pressure vessel due to reflooding).

The HTCs for the no flow case are for free convection (stagnant) at the of the reactorpressure vessel 500 0 F. The applied boundary fluid temperature is changed to simulate a thermal shock from.500 0 F to 100OF to develop the stress response on the core spray nozzle inthe stagnant condition.

The 100%/o flow case simulates operational condition of the core spray nozzle (i.e., the entire core spray nozzle experiences 100OF water due to injection).

The HTCs for the high flow case are for forced and free convection depending on the region of the FEM. The applied boundary fluid temperature is changed to. simulate a thermal shock from 500OF to I00T to develop the stress response on the core spray nozzle due to injection.

5.1 Boundary

FluidTemperatures

.For the. Green's Functions, a 500 0 F -l00°F thermal shock was run to determine the stress response to a degree change in temperature.

The temperature on the exterior of the reactor, nozzle, safe end and the pipe is assumed to be 120 OF (ambient).

5.2 Heat Transfer Coefficients Figure 5 shows where the heat transfer coefficients were applied to the FEM for the 01/o (steady-state) and 1001/4/o core spray flow injection load case. For all the regions the applied heat transfer coefficients and the initial temperatures are summarized in Table 2. The heat transfer coefficient for outside the reactor vessel wall is from Reference

[7], and is based on testing and evaluation-by GE as a result of the feedwater nozzle cracking issue. The value is a constant of 0.2 BTU/hr-ft 2-°F (3.858x1 0-7 BTU/sec-in 2-°F). Table 3through Table 5 show, the part of the excel spreadsheet to calculate the HTR for regionr 1 and 3 respectively.

In regions 2, 4, 6, 8, and 10 the HTCs are interpolated because of the complexity of the material profile.File No.: VY-16Q-309 Page 11 of 24 Revision:

A F030-oiRO NEG041929 V Structural Integrity Associates, Inc.Region 10 Region 11) Region 9~1-~~Region 7 Region 6 7:./Ro SRegion 12 Region*1.'r Region I FigureS: Nozz le and Vessel Wall Thermal and Heat Transfer Boundaries File No.: VY-16Q-309 Revision:

A Page 12 of 24 Fo030-o0RO NEC041930 Structural Integrity Associates, Inc.Table 2: Heat Transfer Coefficients 0% Flow 100% Flow Regions Initial ITC initial HTC Temperature 0 F Btu/hrIttoF Temperature°F BItu/hr-ft-F R1 500 142.98 500 2692.98.......................

................

..............

.. ...... .............

.... ...............

.R3 .500 48.86 500 71.01... " ; : " " .. -: : ...; , .-, R5 500 61.28 500 100.65 R6B 500 97.30 500 97.30 R7A 500 47.35 500 67.87 R7B 500. 28.99 500' 35.57.R9 500 39.08 500 52.07 R11 500 500.00 500 500.00 R12 120 0.20 120 0:20 FileNo.: VY-16Q-309

  • Revision:

A Page 13 of 24 F0309-01R0 NEC041931 Structural Integrity Associates, Inc.-, J Table 3: Heat Transfer Coefficients for Region 1 pei Iaile Dbrmefr.D-NY.1',: ,oles -032) A l10% raWd VOW- ;2200 pin.- 0250 ON I 1 T- r543o FI Fit w Mir'.V- 1351? .lec- 3.2)09 gp1-Cl lacttI5;1 Le hg9.L -- 0DB520 It- 025 " m ST.,.-T ....~.AT-ao;Imedtrobe 6211 otl ltmptmftl

-I.40 12.0r 24.M0 -6.)6O 1 8 Ucam daaoý -is? 65? 13.33 2013M 26.6?vs.ue 3t nuic oemperature.

I p I DeSI'.-- 4.087 tin IY 1 2242344214 bI~is 33,33 72DD "f j ......I', III -~ -~ I';Abr Prop ort[11 21.11 37.1 D 3.33 141.8D 204.44 2C0.00 315.5c r IC (ne n aI Coldtolklt

..........

..... ... .................

C~peoW HO;)................... ..... ..... ....................

....- ........ ... ..p (oftk MeItb lRateof pa 6be)............... ...................

F....... .Fm.v o k7mmldt NuatE I 4.1WS9... ...... .................... ....................

1.D481 05991 053CC a.6?rbf ~ a 1 at -5040 0,501)1 0a4-6 OZA 0 2,'0 2D 0, .0.:3)

  • 0.349D , 02930D 4.136 4.119 4229 4522 4.912 63222 1Din 0998 D 110 D113 IBBD 1.190 , 1510.. ...... .. ........ ..........

......., .9..62.3 62.1 60.1 572 61.6 49.01 42.4..... ...........

............

R... ............

... ...........

...:.............

...:.. .........

....:. ..1.Mb-04 3.24iE-0 t 6.66E-04 1.01 E..3 1.*0 -.3 1I93-03 3.16203 1.05E-04 I.MOE-04 3.70E-04 5.6 E-04 10DE,.4 1.1OE-3 1.75E03 9SD15 93.89 9B06 S ' 9 ,06 9.901 95D0 32.1? 32.17 32.17 32.17, 32.17 32.17 33.17...' ... ." .... '..... .. ....... .......d........i.

B US s-IP F 2514/b-*a J3n g-'C m tm-'A 1";..... ..,°o9,,.,4

°Cs[a td Ftrum*1h, r I FO/1 Us: 70 100 200 300 400 500 co0 oFttlaber. Re .pWO/ j 102?E-4W 1501r 9g+ 3.23172 E406 4 6M3E32406 7.7540E-06 B.111840 -Owlof Niawr.Gr gtATL:$t'z)t 125224-8 1?3142458 133%32+10 6_361E+10 22i21E+11 6.726tE+11 1.1964E+12

-RaI Number. 9W Offir 9.43832E48 3.1712E409 2 5622E+0 8.608+10 2D920E+1 1 4.9102E+11 12802E-+12

-'iotdo Sur"ric# Focre Cqtv se rot Ho rlTtsa'rer Co Mfflsser 0., 0 P'lf

  • 7,165D? 9.25725 13.050.72 156291.12 1658154 169S12t 16,16.154 t IY-'" 1,347.5S 1,430.33 228. .2,D3O.25 2,332.80 2.5 45.01 0,I Ar-4-'F 2.G6 3E43 3.145.0" 4.424E.03 S.13S E-,-0 5.G6E2.24 5.77 54E-0 .5.482E-042 IBAec-t'r-7

,;mfle .cinse Nnir~l" CotyepgmflOrr He yff'pe' Cooff to'wsr:, C ast: Ebcbixedwoflmde r C- -Cflt'4ts!s*NlM

-HI,,- Cpl IF orJA 231.44 32.18 817.33 61134 9042 1.1 138 1.,18?77 WiR;-'C 49.76 57.37 ~~~~~105.29 142.531 122 1316 2.7 tSr-740.7G *52.5?. 4 2-3.022244 1.4.84 ........2.7.38 I244G 402.5? 244 A r..Y-'FE05 1.113 E-04 2.0 2 b E-04 21.58l E-04 $.1451!-4

-3".78 4E-0 4 4.03rS E-04 6B tl/¢¢h";-'F C'File No.: VY-16Q-309 Revision:

A Page 14 of 24 F0309-OiRO NEC041932 Structural Integrity Associates, Inc.Table 4: First Partial Heat Transfer Coefficients for Region 3 Ppele U D~mbm -xa. lo-e 02(0 iti.,. FlOw, % O1 t-'le d -'.*Fql W Iol,'. V -2D522 Mlesc -3,)0DD .gpm-Ciaraca rmtb Le lt ti. L -D- 0566 it- 02,3 M T,- T.-_ AT- ass-ITmed tobe 12% otfilkilmperatum

-.5.40* 12M0 3610 46D ew. Ta~~ c 457 6.67 13.I3 2010 2657 i0" ,MCS1W 3.200 jTt tis %. t" 4.087 ' m .fo 7200 "O wODO ýc w D70;30.33.Vailu at Flul Tom peralre. T 11 UnitU ,Conerilon 70 100 200 300 400 500 o$0 F*Abr Ropt, Mel2or11 ill 2 1 1.7? a 3.33 1471 1 204.44 20o.00 315.5c -091.91 Ou? 0 M53W 0 I5 IT O.WnCO 0.5)11 1730 US0t1 q iA9P.2......0246 .A? 0...640. 0I20 ..........

...... 0.4. 023 B A t-I-'?A.1869 4.186 4.119 4226 4313 Mfl2 4.932 6322 kJ g-'1C 1601l8H a *1J(IO 0966 10720 1t6 .O*1.190 1510 Btu/bm-'F f1DD 99?A.) 9942 9623 9213 B 8505 ?84-9 619.2 gt.. ......e .. ...............

................

.... ...... ...........

ý31 ........... ........ ..I ... ........ ?... ............. ............

.4.2..4 .. ........ .: .I,,1. 1.WE-04 3.2415-04 6.66E-04 1.01 E-03 1.40 E-03 I -QWE0 3.1E-03 m '!A'n.

-1.660(-O4 1.8K65-0 3.706-04 5 1306:-04 1.105=-03

  • -1.150,03 ...I .-F.303D48 93O3 93D 9366 9333 9336 9.986 93D6 mA;.. u .a! C ý 2. 3) .............

.................

1 ..2.21 321? .32.1 .1 1.¢1.4661 E-0.* 6.3 -04 336) KR'[-04I 1280 1,040 C-04I 85.250 kg/s-c..........:q.. am.. y. .o.........

.... .................

.... .... ...

...... .2.06 M:. ....... L.3,05 .4 ...... 93 ..E-.... ......

........ .29E.O.5eo.

... .... Pr 6.981 4,51 .110 122D 0950 ... 1270 --k1'ra ball Not I M be 0___________________________

calculatad Paramespr Formula 70 100 200 300 400 .500 co0 "'Rsyioult Nimber. me tv 12/000- __ 15 E+6,i 9 3 921040b 61I610-05

/,,465E406 9.504350+b 9992S.eW G ciom Io Numr, Gr OPATL-14)1 7.22?9E-0e 368566E48

7.1 54CE409

33.7 3015E+10 1.171E5+11 3.0610E+11 63954E+11

-R'l k NumbeL. MR 0P 13 SD451E-.0 1J9651 E.+0 136640+10 1.11833E+11 2.6294 0+1 I 6343E+11 --Ntmase Sufface FOtfed COts ac Put fern'r-f Co onmniic Hi../,.- 00123'Pr"'DD

'11,307.23 13,480.10 19.,3410 22,266.42 24.14553 24.70.78 23.62401 win-.c 1.011.3. 2.374.03 3.34G.17 1 3.52.1.42..

4252.3 4.315.41 4.142..0 339l rMi--F 3.341 E03 4.52804EO3 6.456543 7.5W4&03 1.203E043 3.4015-03 7.992 5-03 *tu/stohikF At;ide SEuf"ace N0 Ma ur9 Ctssv mo fleat H ra r Ttwm"ns Cooffel'w Mr Case: .l Sattd cylde r C -X'A-(C4f2P Op% 1 203R5 36B1 -6534 1.(337 27 1173M1 1.25 1.3 M tOI;-'C 42.54 G1.03 110.31 150.64 12.6S 2038.6' 220.31 8u1 A r4-T.214E-054 1.173 E-04 2.132E'04 2.106E"-04 3.624E-04 3.M?-044 4.2510E-4 4 BU/ec-tc'-*F.File No.: VY-16Q-309 Revision:

A Page 15 of 24 F0309-01RO NEC041933 Structural Integrity Associates, Inc.Table 5. Second Partial Heat Transfer Coefficients for Region 3 Pipe 1meter. o -ii : it" -" "" § .... " ..-0219 A Oaqt Pte, lacte rwksý K- 4,3126 Iichek- 0359 It 0.110 mlCi- .083 it-0291 m lkerPpe.OatUedhd, dE- 4917 licief- 0.410 it 0.125 "m FlIM w lc. V -175?2 Itcc- k-Ciaract "Mt Le igli. L 0119 1t- 0219 mAT -8.40 .1210 2400 D 600 48JD0 60D DD 72A F-4.7 657 1323 2)00 25,67 333 M401D t Vslue 3t flula Tempearlbre, Tp 1i Umlti Coenrilon ro 100 200 450 dU 1 30 "7 tAor por'e Pactrrt p 21.11 V?.73 83.33 1439. 204.44 "26.00 151.5c .C T176V U.M7? 0.60 U.t .X. M.311 u.io40 9.00.1 =-N... ........ .....................

... p ......... 0 4 .o....... ........ O ......... 0 3 ...r. P 99.........-...

.11111!-:77 4 .14a69 4.185 4.179 4229 42313 4M.2 4.92 6222 WJA g-C...t..l......

..... 05.. 1.010 10.3 * ...0.1.190 1510 Bt./.m-'F 16018 997.1. 994.7 962.7 917, 85 7849 679.2 kgir (111.01 623 621 601 572 -3.6 49.l 42.4 te S.1, 1.69.0,. 3.2415-01, 6.615-04 1.00243 1.40E-03 1..2-OS 3.15813 ' 'A1C ag )" 1.05E-04 1.WDE-04 3.70E-04 5.60E-04 I0D2E-O .. 1:10-03 1.7E-03 lt'-f953 9. *

  • 9506 9806 976 9.006 9mB"..i.l.i.alois

.32.1... 32.1? 321? ..... 2.1?21? ....1? .1? *. r2 FL 1.4381 .9.96E-04 6E84 .-04 1332E-04 I1288E04 1042-04 .852E05 kgb-s.6.48-04 4.581504 213804 1.M E-04 9202-52 70DOE-05 519E,06 hMAU... .. .. .. .v .K c..* ...... ..i ... ........ .. ...... ...,.". 9.. ..... ... .. .....@ ...... ..... ...! ....... ..... ....... .. .. ... ... ... .. ... ... ... .%. -.. .... ... .. .Pr 659,. 4510 150 12la) 022 D 90.09. 1,10. -.C3is UIbd Farameer Form Uls 70 100 200 .300 e500 Goo 00 Reytot0r Nimber. le pV04 1175205 1712484 3 84?7 46 5505 7 271911?6 864M93 & 924W884 -QGairI Numtpr,Or gpsTLf/d4p0' 47481959 10329"49195 468840546 1.M58E+11 3.5336E+11 8117 1SE+11 GrueIOtNimber.Or, gpsT(r,O-c(1dx)

-3.14E640t

-153E205 , -3.11E06 -1.51E407

-4.11IE+0

-1.35E+408

-2.7 8E0 -E ra(Kli Nimbe,.fla iprs 676T69768 21M477233 172*t984163 070154M,6.6 1.411392+11 IW312+1 1 7662 E+11 -I Raf_ Ni lmber, Ra GrPr -2.19E5-i -6 94E106 -1972407 E+07 -1.14E+08

-297 E-08 -5 Mt~u CmreecuonflHewrlTarrs Ccvrtwssrmn case: Eac ixed far C- 1 1S%9&"/ t --. .051g8 pct..- IM. 244M 40a 0 .51207 .3.651 643.35 66'99 . 3 1 02.1.99 4.1.4 10I.1 116.30I 11541B B3iAr.'-eT File No.: VY-16Q-309 Revision:

A Page 16 of 24 FO309-OIRO NEC041934 J}Structural Integrity Associates, Inc.Although the thermal sleeve was excluded from the analysis its effeethad to be included in the finite element model. For several thermal regions the resultant HTCs had to be calculated from the partial heat transfer coefficients (HTCj in Table 6) are generated by "Heat Transfer Coefficients.xls".

)HTC, , H TCI HTC i, ) HTCJf --,)Where: J HTCRes.HTQ Ti TCi= Resultant HTC= HTC of material= Thickness of iramaterial

= Ther al Conductivity of "i material Table 6: Resultant Heat Transfer Coefficients for the Regions..... ................................................

"..................

..............................

................................................

i 5 £ ; ...............

......................

-...........................

..........................................

" .......-100% Flow... .. ....................

..... -".....................

.......". ... ........ .;- .i '" -... .... .. ... ..... .. .."... ..................

C~ 4.c , : ... ... ...... ...: ... .............

..... :4T r Re*= KWtII Ceflducthxityp.II HYCUE HiTremkRut

-" A r-t-PF : H .C.4u Pt.vk .har Thtlan ["J.... 98 .......37212 j 0.0258 90.18 70.........

3......14...

1 .... .o.. .1 6727...............

r::: ...... ... ..... ...... ...

.. ...............

.....................

.....................-....

....... .; ......................

..' ....................

................

.............

.' .. ..".. ..~ i p ... ... ..... ...... ...... ...............

...... ... ....... ...........

... .............................

........ ................

...... .........

............

... .... ....................

= ..... ... .....i 3212 9.8 0;02& .79 00O30497057 i .:.. ..... ....) ...................... ............. ... .. ..- ... ......... ........ .... ............ ................." ... .. ..-- -- ------- -----.. ...- -.... .. .... .......................... .... ............. .... ........ ... ......3.02 0.0.../,................................

........ ............

............

..... ... ..* ------ %-,- ---- ---ý .... ......... ...... ..........

...........................

.......................

........ .... ..........

... ... _..........

....- .........

.... ..- ..............

.... ...........

.... ....... ... ..... ... ..... .... .... ...... , " ..... ........ .........

.. .'"-"' ...... ... ...... ... ... ...... .... .... ... ..........................

....'" "................

.... .... ... .i ... ..........

..-. .. ..............................

0% Flow......................

...."- ... ....................

... .... ...............

d : ..........

  • .........

.....*- -- -*- -- -........ ..... ........................

...... .............

..................

i .... ........ ............. "i.......i.......

..............

"....... .. ... ... ..... ..i : " ~.........................."."-.........

........ ...................

i ... -' .........

.........

.... ... ...... ..... .............

...* ]lags HTC I Thr.I Cnduci. .1tH MUM. r .HYCEK HTCrenfsii Co,.uc_...

.....,. ......_ ..........[!i .... ...... ...... ..................

.................

.... .........

i......` -4....... .... ..........

..... ....... .................

..... .........

...- -...................

i..........................

...." ".. ...... ... -... .......,.. .. ..........................

................................

. ...._.. ... .. .. ... .. ... .. ....... ... .. ... .... ... .. ..... .. ... .. ....:.. ... ..... .. ... .. .. ............

... ........, ... .. ... .. ... .... ....... ............. ....N o" o m.--' ..............................

I. -7 : ..... .... .... ... ......................-...................-........---............

.........

...............

  • .....................................
--.........

.. .-"- o -........-.". ...... o " ...... i .... ...... ... -.............

......i ..........

...... i. -..... ....... I.........

...........

.............

.........

...................

..................

.........

.. ...... ..... ......* o -.." ...... ....... ...............

..... ....... -- : ....... ... ,/.... ... 7 .....:.. ....:i ..........

...........

.. ..... .....--....-----..

... ..........

..1.. ....4 .... .. ..i : " *-.... ....... ..........

........ ...............

............

". .............................

i.........................

..........................................................................

............................

.... ..... .File No.: VY-16Q-309 Revision:

A Page 17 of 24 F0309-01RO NEC041935 J Structural integrity Associates, Inc., 6.0 THERMAL AI)D PRESSURE LOAD RESULTS The two flow dependent thermal load cases outlined in previous section were run on the core spray FEM.For ANSYS the thermal transient input files "VY,16Q_T

00. inp" "V Y_16QT0.inp" for 100% and /O flow, respectively.

The stress input filenames are "VYI 6QST 100.inp" and "VY_1 6QST.np", respectively.

The limiting safe end location was chosen based on the highest thermal stress intensity at 100%flow.Node 3719 on the inside surface of the core spray nozzle was selected for the safe-end analysis and shown in Figure 6.---- -- ---- _F--- ..........................

I"0DAr[...

OSOUTI ON suFB .-.1..7r rME-2.5 Sr£Tf" (AV¢G)flit-X =. i16942 S-MiN =9-i.95 Node 3719 -AN APR, 2171 20071 Node 3737 SEP=26 SUB =-T IE=2. S MtAX=.LSd S-4I =97.95;3 S.IX Node 3719-... .....*; .9. .,.. .. , tv-Z....... ...... ..... ... 4 AN AFPR 27 2007 N: 10309--Node 3737------- ---1f4 core S;rory Noqr Ic rid te ~e~n 'cce b.- .... ..,- .....114 97.150 16,5)7 .8 F17 2 353V1 fIS £7451----------

--- ---------------------------------------

--- --- -----------

ý Figure 6: Safe-End LimitingLocation to Monitor, Node 3719 File No.: VY-16Q-309 Revision:

A Page 18 of 24 F0309-0 IR0 NEC041936 Structural Integrity Associates, Inc.The limiting blend radius location was chosen based upon the highest pressure stress intensity.

Node-.21.66 on the inside surface of the blend radius was therefore selected for the nozzle forging analysis and shown in Figure 7. The highest thermal stress and pressure stress occur atvery close to the same location in the nozzle forging region. Therefore, this location is a reasonable choice forthe limiting location.NODAL SOLUTION SUB, ='1 SL! (Av(i;DMX =. 10001 SHN -".Node 2166 ., i ,-SW ....97.....X I.AN APP. 20 2007 1: :'19:40 NODAL SOLUION SUB ='1"T'I M -S=I S I NT ( AVC)D M X =.I C. O1 S[U.N -,9.. 9?'3 SF-t =35859 AN APR 20 200L7 14 :'19:40 Node2155 IA72 fl~S 2A942 ~g~g 2a1fl5 Core. S~rortx Nozzle Finite El1einenr M odl----------------------------------------


Figure 7: Blend Radius Critical Pressure Stress Location, Node 2166 FileNo. VY-16Q-309 Revision:

A Page 19 of 24 F0309-01RO NEC041937 Structural Integrity Associates, Inc.The stress intensity time history for the critical 'safe-end and blend radius paths were extracted using the ANSYS post-processing file "extractl00.inp" for 100% flow. This produced the two. files,"SE_F100.out" and "BRF100.out", which contain the thermal stress history. Thernembrane plus bending stresses and total stresses for the Green's Functions were extracted from these files to produce the four files "SE._F100.cln, BR_FIOO.cln" and "SE.F100 INSIDERED, BRF100D INSIDE.RED".

The stress intensity time history for the critical safe-end and blend radius paths were extracted using the ANSYS post-processing file "extractQ.

inp" for °o4 flow. This produced the two files,.",SEFO.

out" and"BR_FO.out, which contain the thermal stress history. The membrane plus bending stresses and total stresses for the Green's Functions were extracted from these files to produce the four files "SE_FO.cln, BR_FO.cln" and"SE FO INSIDE.RED, BR FO INSIDE.RED".

As the models were run with a 400'F step change in temperature, and the Green's Functions are for a I OF step change in temperattire, all data values were divided by 400. The governing Green's Functions for the core spray nozzle during 100°/o flow and 0%/o flow are shown in 1...........

............

._ .... j............

25w0D-A MM 111E)__I __!9 6tOD a 01 MWto 30DD TheD Thee ted) 6111 70(0 Boon Figure 8 through Figure 11. The data for the Green's Functions is included in the files: 0% FlowRate: SE FlowOT_-Greer~xls SE-FlowOM+B-Green.xls BLEND FlowO M+B Green.xls BLEND-FlowO-TGreen.xls 100 Flow Rate: SEFlow100 T Green.xls File No.: VY-16Q-309 Revision:

A Page 20 of 24 F0309-01RO NEC041938 qlStructural Integrity Associates, Inc.SE flow 100_M+BL'Creei.xls BLENT)_FlowiQOM+BG-reen xis BLENDFlowlOO_-TGreen.xls Q File No. VY-16Q-309 Revision:

A Page 21 of 24 F0309-OIRO NEC041939 Structural Integrity Associates, Inc.LDWOD......L................r..

...6=.a I COD 0 3WOD 4000 5DW 6OD 7010 FTl-e Stes Figure 8: Blend Radius Total Stress History, 100% Flaw (WOOD WImOD dj D IOCDD;0 MD 400 WO W)D T"inet ie Figure 9: Safe-End Total Stress History, 100% Flow I OD File No.: VY-16Q-309 Revision:

A Page 22 of 24 F0309-O0IRO NEC041940 Structural Integrity Associates, Inc.25M0-I 2ID0 20 1DD O-D 560D GOOD ?0D a R Toe Stre'Figure 10:. Blend Radius Total Stress History, 0% Flow... ... ..... .. ...........

.. .. ..... ..... ... ..........

.. .. ... ..........

... ....... ... ... .. ... .. ...O0;dm;w 20DDD 1WOO 5WO 0 a 2M 41 6D 80D Tta Stres H/ F Figurell1:

Safe End Total Stress.History, 0% Flow I OD File No.: VY-16Q-309 Revision:

A Page 23 of 24 F0309-01RO NEC041941 Structural Integrity Associates, Inc.The pressure stress intensities forthe safe-end and blend radius paths were extracted using the ANSYS post-processing file",extractP.inp".

This produced two files,. SEROUT for the safe-end and BRP.OUT for the blend radius.Results of the internal pressure load case for Node 21.66 (blend radius) is a total stress intensity of 35,860 psi and for Node 3719 (safe-end) a total stress intensity of 12,030psi.

The membrane plus bending stress intensity at Node 2166 and Node 3719 are 34970 psi and 12,020 psi, respectively:

Table 7 shows the final pressure results for the safe-end and blend radius.Table 7: Pressure Results (1,000 psi)Membrane plus Total Stress Location Bending Stress Intensity Intensity (p si)(psi)Safe End 12,020 12,030.Blend Radius 34,970 35,860 In addition, in the FEM model the radius of vessel is multiplied by a factor of 2 to account for the fact'that the vessel portion of the fin-ite element model is a sphere and the actual geometry is a cylinder.

The result of the hand calculation gives 19,425.28 psi, the membrane stress, in the vessel wall, provided by the FEM model is 19,030 psi. These two results nicely match verifying the FEM approximation.

FileNo. VY-16Q-309 Revision:

A Page 24 of 24 F0309-OIRO NEC041942 Structural integrity Associates, Inc.

7.0 REFERENCES

1- SI Calculation No. VY-16Q-309, Revision A, "Core spray nozzle Green Functions." 2 ANSYS, Release 8.lA1 (w/Service Pack 1), ANSYS, Inc., June 2004.3, Americans ociety of Mechanical Engineers, Boiler and Pressure Vessel Code, Section iI, Part D, 1998 Edition, 2000 Addenda., 4 J. P. Holman, "Heat Transfer," 4th Edition, McGraw-Hill, 1976.5 J. P. Holman, "Heat Transfer," 5th Edition, 1981.6 Nozzle Theimal Cycles (DRAIN-CORE SPRAY & HEAD SPRAY), GE Drawing No..135B9990, Sheet 5 of 5, Rew 0, SIFile No. W-NYPA-78Q-206.

.7 CB&I Siress Report, S-7 forN5A & N5B, CB&I 9-6201-I S7, SI File No. VY-16Q-206 File No..: VY-16Q-309 Page 25 of 24.Revision:

A F0309-01RO NEC041943

$Structural'ntegrity Associates, Inc.APPENDIX A FINITE ELEMENT ANALYSIS FILES ANSYS Input Files FineName Description vy csn geom.inp ANSYS input file includes the geometry and material properties HeatTransfer Coefficients.xls Excel file to calculate Heat Transfer coefficients VY_ 16Q P.inp ANSYS input file for the pressure stress analysis VY_ 16Q T10O.inp ANSYS input file for the thermal analysis, 1003/o flow rate VY_ 6Q TO.inp ANSYS input file for the thermal analysis, 0% flow rate VY 16QST100.

inp ANSYS input file for the thermal stress analysis, 100%/o flow rate VYl 6QST0.inp ANSYS input file for the thermal stress analysis, 0'/o flow rate extractl 00.inp ANSYS input file to extract the limiting paths, 100%,/ flow rate extractO.inp ANSYS input file to extract the limiting paths, 100l/6 flow rate extractP.inp ANSYS input file to extract the limiting paths extractVessel.inp ANSYS input file to extract the membrane stress in the vessel wall.k File No.: VY-16Q-309 Revision:

A Page Al of Al F0309-01RO NEC041944 Exhibit 0 Structural Integrity Associates, Inc. File No.: VY-16Q-310 CALCULATION PACKAGE ProjectNo.:

VY-16Q PROJECT NAME: Environmental Fatigue Analysis of VYNPS CONTRACT NO.: 10150394 CLIENT: PLANT:ýEntergy Nuclear, Vermont Yankee Vermont Yankee Nuclear Power Station CALCULATION TITLE: Fatigue Analysis of C.ore Spray Nozzle Document Affected Project Manager Preparer(s)

&Revision Pages Revision Description Approval Checker(s) 1-24 Signature

& Date Signatures

&Date A 1-24 Initial Draft forReview Teny J. Herrmann Roland Horvath/Minghao Qin Carl Limpus.Page 1 of 24 F0310-01RA NECO41945 Structural integrity Associates, Inc.Table of Contents 1.0 OBJECTIVE

.........

............

................................................

... ..... 4 2.0 M E T H O D O L O G Y ..........................................................................................................

....4 3 .0 A N A L Y SIS .. ...........................

.....................................................................

.................

....... 4... 4*3.1 Transient Definitions (for program STRESS.EXE)

...........

...........................................

5.3.2 Peak ndV alley Points of the Stress History (forprogram P-V. EXE) ........................

5 3.3 Pressure Load ............................

.. ..... : ........................

.6 3.4 A ttach ed P iping L oads ...6.............:....

... ............

...................................

..................

6 3.5 Fatigue Analysis (for program FATIGUE.EXE)

..........................

9 4 .0 F atigu e U sage R esults ...................................................

...........................

...........................

9 5.0 Environm ental Fatigue A nalysis ........................................................................................

10 6 .0 R e fere n c e s ...........

.. ..............

-. .....................................................................................

List of Tables T able 1: B lend R adiu s T ransients 3.....................................................................................

..... 13 ,T able 2: S afe E nd T ransients 1 2 3 .....................

...... .................

....................

........................

14 Table 3: Maximum Piping Stress Intensity Calculations forB lend Radius .........

........15 Table 4: Maximum Piping Stress Intensity Calculations for Safe End ..... " .....................

16 Table 5: Blend Radius Stress Summary.....

...........

............................

17 Table 6: Safe End Stress Sum m ary .......................................................

18............

.... .. 18 Table 7: Fatigue Results forBlend Radius (60 Years)......

.I... .........................

19 Table 8: Fatigue Results for Safe End (60 Years) ...........

..................

20 File No. VY-16Q-310 Revision:

A Page 2 of 24 F0310-01RA NEC041946 structural Integrity Associates, Inc.List of Figures Figure 1: Transient 03: StartUp..

..............................................

21 Figure 2: Transient 1 1: Loss ofFeedwater Pumps, Isolation Valves Close ........................................

21 Figure 3: Transient 14: SingleRelief of Safety Valve Blow Down .........................

22 Figure 4: Transient 21-23: Shot Down V essel Flooding ...................................................................

22 Figure 5: Transient 30: Emergency Shout Down 100'/o Flow (Safe End)...........

.......................

23 Figure 6: Transient 30: Emergency Shout Down 100% Flow (Blend Radius) ............................

23 Figure 7- External Forces and Moments on the Core Spray Nozzle ........ ...............................

24 r r FileNo.: VY-16Q-310 Revision.:

A Page 3 of 24 F0310-01RA NEC041947 Structural Integrity Associates, Inc.1.0 OBJECTIVE The purpose of this calculationis to perform a revised fatigue analysis for the core spray nozzle. Two locations will beanalyzed for fatigue acceptance:

the blend radius (SA508 Class Ii) and the safe end (SB 166 N06600). Both locations.are chosen basedon the highest overall stress of the analysis performed in Reference

[1]. A revised fatigue usage will be determined for both locations, the nozzle forging and safe end, respectively.

In the. end, the environmental fatigue usage factors will be determined for the limiting locations.

2.0 METHODOLOGY

Three programs will be used to perform the fatigue analysis.

The first two calculate stresses in /response to transients.

The transients analyzed are those described in the thermal cycle diagrams [3, 4] for the core spray nozzle. These transients are shown in Figure 1 thru Figure 6. The temperatures and pressures for these transients have been modified to account for power uprate [4]. Thepower uprate pressures and temperatures were used for this analysis.

The last program calculates fatigue based on the stress output.3.0 ANALYSIS The transients analyzed for the core spray nozzle were developed based on the definitions in the original RPV Design Specification

[15], as modified for EPU [4], as well as more recent definitions based .on BWR operating experience.

For BWR operating experience, the transients described in the thermal cycle diagrams [2, 3] for the James A. FitzPatrick Nuclear Power Plant (JAFNPP), which is.also a BWR-4 plant in the Entergy fleet like VY, were considered.

The temperatures and pressures associated with the JAFNPP transients were modified to reflect V:Y-specific pressures and temperatures considering EPU effects for 100/6 [4]. The final transients evaluated in the stress and fatigue analyses are shown in Figure 1 thru Figure 6.The fatigue analysis involves the preparing of input files for, and running.of three programs [5]. The programs STRESS.EXE and P-V.EXE are run together through the use of a batch file. The program FATIGUE.EXE is run after processing the output fromP_V.EXE.

The steps associated with this process are described in the following sub-sections.

FileNo.. VY-16Q-310 Page 4 of 24 Revision:

A F0310-OiRO NEC041940 Structural Integrity Associates, Inc.3.1 Transient Definitions (for program STRESS.EXE)

The program STRESS. EXE requires the following three input files for analyzing an individual transient:

Green.dat.

There are 8 Stress history functions obtained from References

[1]. They represent the membrane plus bending and total stress intensities at the blend radius and safe end locations.:

Both of the blend radius and the safe end have two stress history functions for flow condition of 0/o and 100%..* Green.cfg is configured as described in Reference

[5],* Transnt.inp.

These files are created to represent the selected transients obtained from the'thermal cycle diagrams and redefined by power uprate. The transients were modified from reference

[2, 3] and are reflected in Reference

[17] per Client approval [ 18]. Table.1 and Table 2 contain the loading defined for each transient Based upon the thermal cycle diagram for the RPV [2] and the core spray nozzle [3], the transients are split into the following groups based upon flow rate: o. Transients 02, 03, 11, 14, 21-23 and 24 are run at 0% flow Reference

[2, 17, 18].o Transient 30 runs at 100%P/ flow rate perReference

[3]. The transient of emergency shutdown is numbered as 30.The remaining transients are not included in this analysis as temperature changes from them are considered negligible to have impact on the results.3.2 Peak and Valley Points of the Stress History (for program P-V.EXE)The program P-V.Exe is then run to extract the peaks and valleys from the STRESS. OUT file produced by the STRESS.EXE program. The only input required for this program is STRESS.OUT and it outputs all the peaks andvalleys to P-V.OUT. Columns 2 through 5 of Table 5 (for the blend radius) and Table 6 (for the safe end) show the final peak and valley'output after ithas been reduced to eliminate any unrealistic stress fluctuations.

The pressure for column six is then filled in using the thermal cycle diagrams.

Pressure and piping loads have tobe added to the peak and valley points to.,calculate the final stress values used for fatigue analysis.File No. VY-16Q-3'10 Page 5 of 24 Revision:

A F0310-O1RO NEC041949 f

V Structural Integrity Associates, Inc.3.3 Pressure Load The pressure stress associated with a These values are as follows: 1000 psi internal pressure was determined in Reference

[ 1].Membrane plus Total Stress Bending Stress Location Intensi Intensity (psi)Safe End 12,020 .12,030Radius 34,970 35,860 These pressure stress values for each locationwere linearly scaled according to the pressure of the transient.

The actual pressure for column 6 of Table 5 and Table 6 is obtained from Reference

[17].The scaled pressure stress values are shown in columns 7 and 8 of Table 5 (for the blend radius) and Table 6 (for the safe end): The pressure stress is combined with the peak and valley points to calculate the final stress values used for fatigue analysis.3.4 Attached Piping Loads Additionally, the piping stress intensity (stress caused by the attached piping)was determined.

These piping forces and moments are determined as shown in Figure 7.*The following formulas are used to determine the maximum stress intensity in the nozzle at the twoý.locations of interest.

From engineering statics, the piping loads at the end of the model can be translated to the first cut (blend radius) and second cut (safe end) locations using the following

.equations:

For Cut I: (MY)= M +FL 1 ForCutli: (MH A=:M -F (MW) X =M+ FL 2*FileNo.:

VY-16Q-310 Revision:

A Page 6 of 24 F0310-oiRO NECO41950 Structural Integrity Associates, Inc.The total bending moment and shear loads are obtained using the equations below: For CutI: "~F= (Fý)1 2+/-+%1 2 2 2 Fv, =(FD)2 + (F,)%The distributed loads for a thin-walled cylinder are obtained using the equations below: AT i 1 1 +M 4 7 1..V. "3 +-Mz.To determine the primary stresses, PM, due to internal pressure and piping loads, the following equations'are used.For Cut I, using thin-ivalled equations:

= PaN Nz 2v t*N PaN.(&P), =--* ..~( P A A ) -IN SmMA or s1=2j((&)X (PM)A)2 + )2 File No.: VY-16Q-310 Page 7 of 24 Revision:

A F0310-OIRO NEC041951 Structu'aI Integrity Associates, Inc.Because pressure was not considered in this analysis, the equations used for Cut I are valid for Cut II Where: Li = The length from the end of the nozzle wherethepiping loads are applied to the location of interest in the blend radius.2= The length firom the end of the nozzle where the piping loads are applied to the location of interest in the safe end.-M. = The maximum bending moment in the xy plane.Fy, = The maximum shear force in the xy plane.Nv = The normal force per inch of circumference applied to the end of the nozzle in the z direction.

qN = The shear force per inch of circumference applied to the nozzle.RN = The mid-wall nozzle radius.Per Reference

[6], the core spray nozzle piping loads are as follows: F= 2,500 lbs Fy = 4,600 lbs F= 1,700 lbs M. = 22,000 My = 7,100 M7 = 8,800 ft-lb = 264,000 ft-lb = 85,200 ft-lb = 150600 in-lb in-lb in-lb The location of the nozzle piping loads are assumed tobe at the end of the coiihection of the safe end and the attached pipe. Therefore, the LI is equal to.30.817 inches and the L2 is equal to 0.303 inches. The calculations for the blend radius and safe end are shown in Table 3 and Table 4. The first cut location.

is the middle of Green' s Function cross section for the blend radius (Node 2181)per [1 ], and the second cut is from Node 3719 (inside) to Node 3737 (outside).

The maximum stress intensities due to piping loads are 322.52 psi atithe blend radius and 3875.98 psi at the safe end, respectively.

These piping. stress values are scaled assuming no stress occurs at an ambient temperature of 70TF. and the full values are reached at reactor design temperature, 575 0 F [ 11 ]. The scaled piping stress values are shown in columns9 and 10 of Table 5 and Table 6. Columns 11 and 12 of Table 5 and Table 6 show the summation of all stresses for each thermal peak and valley stress point.FileNo.: VY-16Q-310 Revision:

A Page 8 of 24 F0310-01Ro NECO41952 Structural Integfity Associates, MO.3.5 Fatigue Analysis (for program FATIGUE.EXE)

Thenhumber of cycles projected for the 60-year operating life is used for each transient as obtained from [8]. Column 13 in Table 5 andTable 6 shows the number of cycles associated with each transient.

The program FATIGUE.EXE performs the "ASME Code style". peak event pairing required to calculate a fatigue usage value. The input data for FATIGUE.CFG is as follows: Blend Radius Safe End (SA5 08 Class II) (N06600)Parameters m and nfor 2.0 & 0. 2 1.7 & 0. 3 [9], Computing KI (low alloy steel) [9] 1 Design Stress.Intensity 26,700 psi [9] 23,300 psi [9], Values, Sm Elastic Modulus from 6 Applicable Fatigue Curve ps Elastic Modulus Used in 626.7xl 06 psi 1 29.8X106 psi [1]Finite Element Model (300)F)The Geometric Stress S i. Note Concentration Factor Kt Note: Conservative bounding value per ASME iSection NB-3600 to cover a thread and weld regions.The results of the fatigue analyses are presented in Table'7 and Table 8 for the blend radius and safe end for 60 years, respectively, The results described are contained in EXCEL files BRresultslxls and SEresults.

xls, which are contained in the computer files.4.0 'FATIGUE USAGE RESULTS The blend radius cumulative usage factor (CUF) from system cycling isO 00042 for 60 years. The safe end CUF is 0.0172 for 60 years.File No.' VY-16Q-310 Revision:

A Page 9 of 24 F0310-01RO NEC041953 Structural Integrity Associates, Inc.5.0 ENVIRONMENTAL FATIGUE ANALYSIS Per Reference

[10], the dissolved Oxygen (DO) calculation shows the overall IHWC availability is 47%. It means the pre-HWC is 53%.The fatigue calculationwill be ie-performed for the nozzle base material since cladding is structurally.

neglected, in modemr-day fatigue analyses, perASMvfE Code,Section II, NB-3122.3

[12]. This is also* consistentwith Sections 5.7.1 and 5.7.4 ofNUREG/CR-6260

[13]. Therefore, the cladding will be" neglected and EAF assessment of the nozzle base.material is performed.

For the blend radius location, the environmental fatigue factors for post-HWC and pre-HWC are 11. 14 and 8.82 from Table 4 of Reference

[10]. It results in an EAF adjusted CUF of(1 1.14 x. 53% +8.82 x 47%) x 0.0042 = 0.0422 for 60 years, which is acceptable (i. e., less than the allowable value of 1.0). The overall environmental multiplier is 10.0496.For the safe end location, the environmental fatigue factors for post-HWC and pre-HWC are all 8.36.from Table 4 of Reference

[10]. It results in anEAF adjusted CUF of (8.36x 53% + 8.36 x47%) x 0.0172 = 0.1438 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0). The overall environmental multiplier is 8.36..File.No.

VY-16Q-310 Revision:

A Page 10 of 24 F0310-01RO NEC04 1954 Structural Integrity Associates, Inc.j'

6.0 REFERENCES

1 SI Calculation No. VY-16Q-309, Revision A, "Core spray nozzle Green Functions." 2 Reactor Thermal Cycles, GE Drawing No. 729E762, SI File No. W-NYPA-78Q-205.

.3 Nozzle Thenrial Cycles (DRAIN-CORE SPRAY & BEAD SPRAY), GE Drawing No.135B9990, Sheet 5 of 6, Rev. 0, SI File No. W-NYPA-78Q-206.

4 GE Certified Design Specification No. 26A6019, Revision 1, "Reactor Vessel -Extended Power Uprate," SI File NQ VY-OSQ-236.

S Structural Integrity Associates Calculation (Generic)

No. SW-SPVF-01Q-301, Revision 0, STRESS.EXE, P-V.EXE, and FATIGUE.EXE Software Verification".

6 GE Drawing No. 919D294, Revision 10, Sht. No. 7,"'Reactor Vessel," SI File No. VY-05Q-241.7 SI Calculation No. VY-10Q-302, Revision 0, "Loads and Transient Definitions." 8 Reference for cycle counts <<LATER>>

Entergy Calculation No., VYC-378, Revision 2,"Vermont Yankee Reactor Cyclic Limits for Transient Events," 3/10/88, SI File No. V Y-16Q-2xx.9 American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section 1I, Part D, 1998 Edition, 2000 Addenda.10 SI Calculation No. VY-16Q-303, RevisionA, "Environmental Fatigue Evaluation of Reactor Recirculation Inlet Nozzle and V essel Shell Bottom Head." 11 GE. Stress Report No. DC 23A43 I5, Revision 0, "Reactor Vessel -Recirculation Outlet Safe End," SI File No. VY-1 6Q-204.12 American Society of Mechanical Engineers Boiler & Pressure Vessel Code,Section III, Rules for Construction of Nuclear.Facility Components, 2001 Edition including the 2003 Addenda...13 NTJREG/CR-6260 qNEL-95/0045), "Application of NUREG/CR-5999 InterimFatigue Curves to Selected Nuclear Power Plant Components," March 1995.14 VY Drawing No. 5920-899, Revision 0, "Ring:Nut Plate Spring & Screws for Nozzle N5A& B", SI File No. VY- 16Q-206.15 GE Design Specification No. 21A 1115, Revision 4, "Vermont Yankee Reactor Pressure Vessel," October 21, 1969, SI FileNo. VY-05Q-210.

16 Joseph E. Shiglby and Charles R. Mischke,, Standard Handbook of Machine Design, McGraw-Hill Book Company, 1986.FileNo. VY-16Q'-310 Page 11 of 24 Revision:

A F0310-01RO NECo4A1955 Structural lategrity Associates, Inc.17 'Email from Terry errmann to Jim Fitzp atrick,

Subject:

RHR-Recirc Transient Definition, Dated: 04/18/2007, SIFile No. VY-16Q-102.

18 Email from Jim Fitzpatrick to Terry Herrmann,

Subject:

RE, VY Transient Thermal Cycle Questions, Dated: 04/18/2007, SI File No. VY-16Q-103.

I .2.I FileNo.: VY-16Q-310 Revision:

A Page 12 of 24 F0310-01R0 NEC041956 Structural Integrity Associates, Inc.Table 1: Blend Radius Transients I,2,3 Transiert Time Temrp Time Step Pressure Flow Rate NHurtier J+/- Jflj JA, jagL (GPM)2.DesignHYDTest

-- 100 -- 0'1100 120 Cycles 50.-3. Startup 0 100 0 0 300 Cycles 16164 549 16164 1010 (0%)'24164 549 1 8000 1010 11. Loss of Feedwate-0 526 1010 0 Pumps 3 526 3 1190 (0%)'!0ycles 13 526 10 1135, 233 300 220 1135 2213 500 1980 1135 2393 300 180 885 6893 500 4500 1135 7313 300 420 675 7613 300 300 675 11213 400 3600 240 16577 549 5364 1010 16637 549 60 1010 16638 542 1 1010 16698 542 60 1010 16699 526 .1 1010 24699 526 6000 1010 14. SRV Blowdown 0 526 1010 0 1 Cycles 600 375 600 400 (0%)'11580 70 10980 50 19580 533 8000 50 21-23. Shutdo, .0 549 1010 0.300 Cycles 6564 375 6564 50 (0%)'7164 330 600 50 16524 70 9360 50 24524 70 6000 50 24. Hydrostatic Test -- 100 -- 50 1563 I Cycles 50 30. E mergencyShut Down 0 549 1000 100 I Cycles 10 406 10 250 (100%)'11 70 1 "250 8011 70 8000 0 Note: 1. Instant temperature change is 1 sec.2.. This is due to the length ofthe Green's Function.

The transients are plotted using a 8000 second steady state increment.

3. The number of cycles fbr 60 years is from Reference

[8] §FileNo.: VY-16Q-310 Revision:

A Page 13. of 24 F0310-01RO NEC041957 Structural Integrity Associates, Inc.Table 2: Safe End Transients 1,2,3 Transienlt Time TMnp Time Step Pressure F low Rate Humber JrJ. ..SLL) MA .2. Design HYD Test -- 100 -- 0 120 Cycles 1100 50 3. Startup 0 100 0 0 300 Cycles 16164 549 16164 1010 (0%), 17164 549 1000 1010 11. Loss of Feedwater 0 526 1010 0 Pumps .3 526 3 , 1190 (0%)'u1 Cycles 13 526 10 1135 233 300 '220 1135 2213 500 1980 1135 2393 300 180 885 6893 500 4500 1135 7313 300 420 675 7613 300 300 675 11213 400 3600 240 16577 549 5364 1010 16637 549 60 11010 16638 542 1 1010 16698 542 60 1010 16699 526( 1 1010 17699. 526 1000 1010 14. SRV Blowdom 0 526 1010 0 1 Cycles 600 375 600 400 (0%)11580 70 10980 50 12580 533 1000 50 _ " 21-23. S hutdovm 0 549 1010 0 300 Cycles 6564. 375 6564 50 (0%)';7164 330 600 50 16524 70 9360 50 17524 70 1000 50 12. Hydrostatic Tes. -- 100 -- 50 I cycles 1563 50 30. EmrgencyShut Down 0 549 1000 100 I Cycles 10 406 10 250 (100%)'11 70 1 250.____________

1011 .70 10030 0 O.___I. Instant temperature change is I sec.2. The transients are plotted using a1000 second steady state increment.

The diffrence is due to the length of the Green's Function for the safe e.d.3. The number of.cycles for 60 years is fiorn Reference

[8].Note: FileNo.. VY-16Q-310 Revision:

A Page 14 of 24 F0310-01R0 NEC041958 Structural Integrity Associates,.

Inc.Table&: Maximum Pip ing Stress Intensity Calculations for Blend Radius Blend Radius External Piping Loads Parameters Fx= kips Fz ..7.... kips M x= .ii~i!l .ir,-....Az ..in-kips OD=.~ ~~ ......... 15...... 1...........

in -kip s OD= .1 in OD= i RN= 7.65 in L = in tN= 3.56 .in (Mx)2 .122.24 in-kips-(M,)2= 162.24 in-kips M__ = 203.14 In-kips FX= " 5.24 kips Nz= 1.14 kipsfin-0.07 kips/in Primary Membrane Stress Intensity PMz= 0.32 ksi E = -0.02 ksi Slmax = 0.32 kSi Slmax = 322.52 psi Note: The locations for Cut I and Cut II were defined in Reference

[1]paths, respectiv ely.for safe end and blend radius FileNo.: VY-16Q-310 Revision:

A Page 15 of 24 F0310-01iRO NEC041959 Structural Integrity Associates, Inc.Table 4: Maximum Piping Stress Intensity Calculations for Safe End Safe End External PiDina Loads Parameters" F. ki ps.F... ..~~~i;ii ki ps F z = .........l~i~i~ .. .~ ........= , ...if...... ..... K ips My=X iin-kips.M... .......B5 in-kips............

p5in-kips OD= !Th: : In ID= ' rn -RN= 4.91 In t= 0.99 In (M)2 = 262.60 in-kips (MA = 85.96 in-kips MxV= 276.31 in-kips* F*= 5.24 kips Nz= 3.70 kips/in qN= -0.36

  • ips/in Primary Membrane Stress Intensity PMz= 3.74 ksi"_ _ _= -0.36 ksi Sl_ _ = 3.80 ksi Sl.x = .3804.54 psi Note: The locations for Cut I and paths, respectively.

Cut II were defined in Reference

[1] for safe end and blend radius FileNo.: VY-16Q-310 Revision:

A Page 16 of 24 F0310-0IRO.

NEC041960 Structural Integrity Associates, Inc.Table 5: Blend Radius Stress Summary 1 2 3 4 5 6 7 8 9 10 11 12 13 Total M+8 Toatl M+B Total Tot a Number Total MW-B Pressure Pressure Aping Aping Total M+8 of Trar-ieit Time Stress Stress Temperature Pressure Stress .Stress Stress Stress tress Stress Cycles Nunmber s (psi) si F psig} (psi) pl (pi (ip) (psi [60 years)2 100 0 0 0 19 19 .19 -19 120 100 1100 38446 3B437 "19 19 3W46I 38486 120 100 53 1793 1749 19 19 1812 1768 120 3 0 23700 12600 100 0 0 0 0 19 9 .. 23719 12619 24164 2100 3180 549 1010 36219 356320 306 305 .3525 3B806 303 11 0 3209 3 626 1010 35219 35320 231 291 _3719 3;256 10 525 10458 537 330 1135 39691 18) 108 51325 45231 10 2222 488 18)66 400 1122 4)235 39236 2B 20 .45991 41168 10 280 11776 7 321 911 326:8 31858 100 10) 44505 39452 10 6003 6436 3621 496 1124 *4M307, 393)6 272 272 45013 4199 g 10 8012 12577 6791 390 627 22484 216 2D4 204 35285 20321 10 1664) 2772 4370 542 1010 35219 35320 301 301 :39292 392g1 10 16991 3389 4115 526 1010 36219 35320 291 291 39829 39726 10 D 24592 32D9 3644 626 1010 36219 35320 291 201 39710 93255 10 14 0 32091 1010 626 1010 36219 35320 231 291 23719 36621 1* 11625 24416 4)00 155 50 1793 1749 55 -25 2__64 2203 1 1958) 4396 3r2 633 50 1793 1749 296 295 6435 2436 1 21-23 0 2100 3160 549 1010 36219 35320 305 3M25 38525 38786 300_ 24524 25100 13200 70 50 1793 1749 0 0 .39 14949 330 24 -*-100 50 1793 1749 19 19 1812 1768 1 100 1t3 55049 64858 19 19 5608 654677 1 100 5D 1793 .1740 19 19 1812 1768 1 35 0 2040 2060 649 1000 350 34970 3Mi 30W 382W 38226 1 (3011 2700 70 01 0 0 0 0 25700 1400o 1 NOTES:Column 1: Transient number identification.

-Column 2: Time during transient where a maxima or minimn stress intensity occurs from P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V.OUT output file.Column 4 Maxima or minima membrane plus bending stress intensity firom PZV. OUT output file.Column 5: Temperature per total stress intensity.

Column 6: Pressure per Table 1.Column 7: Total pressure stress intensity from the quantity (Column 6 x 35,860)11000

[1].Column 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 34,970)/100 1].Column 9: Total external stress from calculation in Table 1,322.52 x(Column 5 -70 0 F)/(575F -70'F).Column 10: Sameas Column 9, but fbr M+B stress.Column 11: Sum oftotal stresses (Columns 3,7, and 9).Column 12: Sum. of membrane plus bending stresses (C olunms 4, 8, and 10).Column 13: Numb er of cycles fbr the transient (60 years).FileCNo. VY-16Q-310 Revision:

A Page 17 of 24 F0310-01R0 NEC041961 Structural integrity Associates, Inc.Table 6: Safe End Stress Summary 1 2 3 4 5 6 7 8 9 10 11 12 13 Total I-B Total M+ B Tot 21 Total Nu mber Total MwB Pressure Pressire Aping Rping Total M+B of Transient Time Stress Stress Temperatire Presaire.

Stress Stress Stress Stress Stress Stress Cydes ,Number "SJ (psiL I psil F 9 fpsial .Jpsil 4I' s i I *'j fPsil (psi I (psi- I 0 years)2 -100 0 0 .0 226 228 228 220 120 100 1100 13233 13222 228 226 13459 13448 120 1 100 50 C02 801 .228 226 828 827 120 3 0 "01 759 100. 1 0 0 0 2 82 887 985 300 17164 9210 10700 15,0 10101 12160 12140 3090 30)9 2'4gg 26440 300 it 0 8802 10236 52M 1010 12150 12140 3435 3435 24388 25812 10 164 11818 11598 _4)8 1135 13854 13643 2549 2540 .27848 27790 10 672 4X08 5791 344 1136 13054 13343 2007 2067 20529 21500 10 2374 11140 10841 351 012 10971 10962 2192 2102 24304 23086 10 2955 4722 5677 325 018 11019 110110 1921 1921 17802 18508 10 7054 0618 10162 441 050 11637 11527 2702 :2792 23047 211 81 10 7930 4491 5276 309 637 7853 7057 1700 1790 13953 14732 10 15700 0960 11116 526 1010 i2150 1214) 3435 3435 26546 '2852 10 1709g 8802 10230 528 1010 12150 12140 3435 3435 24M88 25812 10 14 0 8802 10236 52e 1010 12150 1214M 3435 3435 243B8 25812 1 11735 -1124 -438 142 50 002 601 -542 --542 -104 -370 1 125B0 52D5 7238 533 50 002 801 3488 34)8 9295 11327 1 21-23 0 0240 10700 540 1010 12150 1214) 3009 3090 2g400 28l49 300 17524 910 5 70 .50 0)2 601 0 0 eg)3 '0)8 300 24 .,. 100 60 602 601 228 226 828 827 1 100 1503 18803 18787 228 228 10020 19013 1 100 50 002 601 228 220 828 827 1 30 0 02B0 10800 540 1000 12030 12020 30)0 3009 24010 20420 1 13 8560) 410)4 182 250 3002 30030 0)0 00 80292 48383 1 1011 10T 70 0 o 0 0 0 0 10 1 NOTES: Column 1 Transient number identification.

C olumn 2: Time during transient where a maxima or minima tress intensity occurs from P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V.OUT output file.C olumn 4: Maxima or minima membrane plus bending stress intensity from P-V. OUT output file.Column 5: Temperature per total stress intensity.

Column 6: Pressureper Table 2.Column 7: Total pressure stress intensity from the quantity (Column 6 x 12,030)11000.

Column 8: Membrane plus b ending pressure stress intensity from the quantity (Column 6 x 12,020)/1 0o0.Column 9: Total external stress from calculation inTable 2, 3804.54 x (Column5-70°F)/(575F

-70°F).Column 10: Same as Column 9, but forMM+B stress.Column 11: Sum of total stresses (Columns 3,7, and 9).Column 12: Sum of membrane plus bending stresses (Columns 4, 8, and 10).C olumn 13: Number of cycles for the transient (60 years).FileNo.: VY-16Q-310 Revision:

A Page 18 of 24 F0310-01RO NEC041962 Structural Integrity Associates, Inc.Table 7: Fatigue Results for Blend Radius (60 Years)LOCATION = LOCATION NO- 2 --BSLEND RADIUS FATIGUE CUJRVE = 1 (I = CARBOW/LOW ALLOY, 2 = STAIULESS STEEL)z= 0 n= .2 Sm = 26700. p5i Ecx=ve = 3.0002+07 psi

= 2.602+0 psi Xl 1.00 MAX Hnr RANGE HEH+BEXD He Salt Napplied Nallowd 13 56068. 19. $6046. 54658. 1.000 21488. 1.000E+00 1.8962+04

-.0001 5132S. 19. 51306. 45212- 1.000 28823. 1.0002+01 2.5012+04

.0004 46013. 19. 45994. 43180. 1O000 25839. 1.000E+01 3.4962+04

.0003 45991. 19. 45972. 41149. 1O000 25827. 1.000+E01

.0003 44605. 19. 44585. 39443. 1.000 25048. 1.0002+01 3.848E+04

.0002 39899. 19. 39880. 3970. LG000 22404. 1.OOOE+01 5.'692÷+04

.0002" 39719. 19. 39700. 39236- 1.000 22303. 1.0002+01.5.0242+04

.0002 39719. (19. 39700. 39236. 1.000 Z2303. 1.000+E01 5.824E+04

.0002 297 1 .19 239700. 36602. 1.000 22303. 1.000E+00 5.824E+04

.0000 39465. 19. 39446. 38467. 1.000 22161. 4.8002+01 6.012E+04

.0008 39465. 1812. 3763., 36719. 1.000 21153. 7.200E+01 7.5722+04

.0010.39292. 1812. 37480. 38223. 1.000 21056. 1.000E+01 74G82E+94

.0001 38625. 1812. 38812. 37038. 1.000 20681. 3.800E+01 8.470E+04

.0004 38625. 1812. 35812. 37038; 1.000 20681. 1.000E+00 0.470E+04

.0000 38625. 1812. 36812. 37038. 1.000 20681. 1.000E+00 8.4702+04

.0000 38625. 6485. 22146. 36369. 1.000 18056. 1.000E+00 1.445E+05

.0000 3862S5. 23119. 14905. 26186. 1.000 8374. 2.5902+02 5.377E+07

.0000.38625. 23719. 14905. 26156. 1.000 0374. 4.1002+01 5.3772+07

..0000 28625. 25700. 12925. 23886. 1.000 7261. I.OOOE+00 4.3692E+08

.0000 38625. 26264. 12261. 36583. 1.000 6944. 1.0002+00 1.0002+20

.0000 38625. 26893. 11,32. 23831. 1.000 6591. 2.S7OE+02 1.O0OE+O0

.0000 38206. 26893. 11313. 23271. 1.000 6355. 1.000E+00 1.0002+20

.0000 35Z65. 26893. 8372. 13973. 1.000 4704-. 1.000E+01 1.0002+20

.0000 TOTAL USAGE rACTOR.= ..0042 FileNo.: VY-16Q-310 Revision:

A Page 19 of 24 F0310-0IRO NEC041963 Structural Integrity Associates, Inc.TableS: Fatigue Results for Safe End (60 Years)LOCATION = LOCATION NO. 2 -- SAMT END rATIGUE CRVE = 2 (U = CABO1VLO0J ALLOY", 2 = STAINLESS STEEL)-=13 n.= .:0 3m = 23300. psi= 2.830E+01 psi Eaalysis = 2.980E+07 psi= 4.00 Kim HIM" 89292. -1064.89292. .-12.27848. -12.27848. 226.25546. 226..24999. 226.24999- 693.24999. 693.24999. 828.24999. 828.24999 ..28.24999. 887.24919. 887.24388. *887.24M88. 887.24388. 887.24304. 887.22847. 887.20529. 887.19029. 887.17662. 887..12953. 887.13459. 887.9295. 687.RANGE HM+DEND Re K -Sal' Napplied Nalloved U 90356.89304;27860.27622.25320.24773.24306.24006.24171.24111.24.171.24132.24032.23501.23501.23501.23417.22960.196542.18142.16773.12066;12572.8408.48762. 1.000 48393. 1.000 27800. 1.000 27564. 1.000 26466. 1.000 26223. 1.000 25753. 1.000 25753. 1.000 25622. 1.000 25622. 1.000 25622. 1.000 25464. 1.000 25444. 1.000 2482q. 1.000 24827. 1.000 24827. 1.000 23011. 1.000 22496. 1.000 20515. 1.000 18020. 1.000 17523. 1.000 13747. 1.000 12463. 1.000 10342. 1.000 112065. 1.0O0E+00 1.215E+03

.0008 111340. O.OOE+00 1.2 53E+03 .0000 52820. 1.000E+00 2.566E+04

.0000 52281. 9.0002+00 2.679E+04

.0003 49723. 1.000E+01 3.486E+04

.0000 49117. 1.O0OE+02 3.709E+04

.0027 48226. 1.990E+02 4.069E+04

.0049 48226. 1.OIOE+024.069E+04

.0025 47976. 1.200E+02 4.177E+04

.0029 47976. I:002E+00 4.177E+04

.0000 47976. 1.O00E+00 4.177E+04

.0000 47722. ?.?OOE+01 4.2911+04

.0018 47655. 1.OOOE+O0 4.321E+04

.0000 46524. 1.OOOE+01 4.879E+04

.0002 46524. 1.00OE+01 4.879E+04

.0002 46524. 1.000E+00 4.879E+04

.0000 43897. I.O00E+01 6.696E+04

.0001 44272. 1.000E+01 6.212E+04

.0002 38550. I.OOOE+01 I.060E+05

.0001 34296. 1.O00E+00 2.661E+05

.0000 32927. 1.OOOE+01 3.431E+05

.0000 25787. 1.000E+01 1.329E+06

.0000 22723. 1.200E+02 1.757E+06 10001 18725. 1.O00E+00 4.640E+06

.0000 TOTAL U3AGE FACTOR = .0172 i File No.: VY-16Q-3.10 Revision:

A Page 20 of 24 F0310-01RO N NEC041964 Structural Integrity Associates, Inc.I-Temp CF) -P 4srei 600-1100-10511*1000* 1ODD.WD-9'00-750-600.500-450 43 2M time (iecond i)Figure 1: Transient 03: Start Up ,Tcmp Ct)- -Przsuie 4nkb duo aaa 20 a 0 1iW 2MoW 30M 40oD SWO 60W 1000 WO3O 13 900 IWOD 11000 IZIrn3IM 1403W t6;D0 160M 17DD3 TIMe (meaonddi)

Figure 2: Transient 11: Loss of Feedwater Pumps, Isolation Valves Close File No.: VY-16Q-310 Page 21 of 24 Revision:

A.F0310-01RO NEC041965 Structural Integrity Associates, Inc.Structura/

Integrity Associates, Inc.F--Temp (C)- -POSSEUI P V9 EID led./G e 21001 '- .-m 0 I moo 4000 (OOD"rime (iscondl )MU0D I=o3 120M0 Figure 3: Transient 14: Single Relief of Safety Valve Blow Down..-Temp(C?) -m -PrnSSIm P10 6nn-11MT 6013 401]0.lEf a I.-a;V IV 1\li 1nn1\i 0 10En 200D 30Mn 40mo 600 U 6000 TOD 0 90M1 Innnn 110m 12nno 13010 14000 1500 16101 17001 nimo (meconde]Figure4: Transient21-23:

Shot Down VesselFlooding File.No.:

VY-16Q-310 Revision:

A'I Page 22 of 24 F0310-01RO NEG0.41966 Structural Integrity Associates, Inc.I-Temp (T) --Prestare ipP 6n 400 300 E 200-100-d~au-300-laa 2131.rnme (conas)Figure 5: Transient 30: Emergency Shout Down 100% Flow (Safe End)--Temp ('f) -P lesgre P 9-110-IUE13 K 2M 1m.400-MO-200* 1011------. --a Ijam 2DM MOD sliM*fMM (i4COudi)601o Figure 6: Transient 30: Emergency Shout Down 100% Flow (Blend Radius)File.No.:

VY-16Q-310 Revision:.

A.Page 23 of 24 F0310-01RO NEC041967 Structural Integrity Associates, Inc.V V~~ -Y uP ,, " U ---jr.Z v Figure-7:

External Forces and Moments on the. Core Spray Nozzle FileNo.: VY-16Q-310" Revision:

A Page 24 of 24 F0310-01RO NEG041960 (I Exhibit P Report No.: SIR-07-138-NPS Revision No.: A ProjectNo.:

VY-16Q File No.: VY-16Q-403 May 2007\_Environmental Fatigue Analysis for the Vermont Yankee Reactor Pressure Vessel Core Spray Nozzle Prepared for: Entergy Nuclear Vermont Yankee, LLC (Contract No. 10150394)Prepared by: Stuctural Integrity Associates, Inc.Centennial, CO Prepared by: Reviewed by: Date: G. L. Stevens, P.E.Date:*T. J.I Hemnann, P.E.Approved by: T. J. Henrrann P.E.Date: C Structural Integrity Assocat1es, Inc.NEG041969 REVISION CONTROL SHEET Document Number. SIR-07-138-NPS Title: Environmental Fatihue Analysis for the Vermont Yankee Reactor Pressure Vessel Core Spray Nozzles Client: Entergy Nuclear Vermont Yankee, LLC SI Project Number: VY-1 60 Section Pages Rev ision Date ConmTments 1 0 1-1 5 A 05/15/07.

Initial (UNVERIFIED) draft for review.2.0 2-1 2-3 3.0 3-1 26 4.0 4-1 -447" 5.0 5-1 2 6.0 6-1 7.0 7-1 2 ." Structural Integrity Associates, Inc.NECO041970 Table of C ontents Section Pae

1.0 INTRODUCTION

.-" " l., IN R O U C T O N ...........................................................................................................

1-1 1.1 Green's Function Methodologyd

.......t.. .................................................

.................

1-2 2.0 FINITE ELEMENT MODEL .......... " .............................................

". ... 2-1 3.0 L O A D D E FIN IT IO N S ..........................

................

....... .............................................

3-1 3.1 *T herm al L oading ......................

.........................

...........................

.......................

3-1 3.1.1 Heat Transfer Coefftcients and Boundary Fluid Temperatures

............

3-2 3.1.2 Green's Functions

...................

...........................................................................

.3-2 3.1.3 Thermal Translents

............................

.....................................................

.3-3* 3 .2 P re ssure L o ad in g ....................................

......................................................................

3-3 3.3 Piping Loading ......................................

......................

3-4 4.0 STRESS AND FATIGUE ANALYSIS RESULTS ......................................................

%4-1 5.0 ENVIRONIAIENTAL FATIGUE ANALYSIS ......................

....... 5-1 6.0 C O N C L U SIO N S ......................................................

'.-...........................

.................

........ 6-1 7.0 R E FE R E N C E S ............................................................

..... .........................................

7-1 SIR-07-138-NPS, Rev. A iii Structural Integrity Associates, Inc.NEC041971 List of Tables Table Table 2-1.Table 3-1.Table 3-2: Table 3-3: Table 3-4: Table 3-5: Table 4-i: Table 4-2: Table 4-3: Table 4-4: Table 4-5: Material Properties

@ 300'F ....................

.............

...... 2-2 Summary of Heat Transfer Coefficients

.............................

3-5 Safe End Transients..,.

...........................

.........

........ 3-6 Blend Radius Transients

..........................................

3-7 Stresses Due to Piping Loads for Safe End Location ..... ..........

....... 3-8 Stresses Due to Piping Loads forBlend.Radius Location....

..........

..... 3-9 Core Spray Nozzle Safe End Stress Summary ..................

...... ......................

4-3 Core Spray Nozzle Blend Radius Stress Summary,...

...........

..........

4-4 Fatigue Parameters Used in the Core Spray Nozzle Fatigue Analysis.................

4-5 Fatigue Results for Core Spray Nozzle Safe End ........ ........ ..... 4-6 Fatigue Results for the Core Spray Nozzle Blend Radius ...................................

4-7 List of Figures'Figure Pag Figure 1-71 Typical Green's Functions for Thermal Transient Stress ......................................

1-4 Figure 1-2. Typical Stress Response Using Green's Functions

........ I........................................

1-5 Figure 2-1. V Y Core Spray N ozzle FEM ...................................................................................

2-3 Figure 3-1: Core Spray Nozzle Internal Pressure Distribution

...........................

3-10 Figure 3-2. Core Spray Nozzle Pressure Cap Load:. ........................................

....................

3-11 Figure 3-3: Core Spray Nozzle Vessel Boundary Condition

...........................

3-12 F igu re 3-4 : T herm al R egion s. ........................................

.........................................

...............

3-13 Figure 3-5: Safe End Critical Therm al Stress Location ............................................................

3-14 Figure 3-6: Blend Radius Critical Thermal Stress Location ................................................

3-15 Figure 3-7: Safe End.Green's Function for 100% Flow ..........

..............................

3-16 Figure 3-8: Safe End Green's Function for 0% Flow .........

..........

a ......................................

3-17 Figure 3-9: Blend Radius Green's Function for 100% Flow...............

....................

3-18 Figure 3-10: Blend Radius Green's Function for 0% Flow.......................

3-19 F igure 3-1 1: T ransient 03 : Startup ...................................................................................

..... 3-20 Figure 3-12: Transient 11: Loss of Feedwater Pumps, Isolation Valves Close .........................

3-21 Figure 3-13:, Transient 14: Single Relief of Safety.Valve Blow Down ....................

3-22 Figure 3-14: Transient 21-23: Shutdown Vessel Flooding.....................................................

3-23 Figure 3-15: Transient 30:Emergency Shutdown 100P/o Flow (Safe End) ..............................

3,-24 Figure 3-16: Transient 30: Emergency Shout Down 1.00% Flow (Blend Radius) ..................

3-25 F igure 3-17 : P ip e R eactions ....................................................................................................

3-26 SIR-07-138-NPS, Rev. A iv SStructural Integrity Associates, Inc.NEC041972 f

1.0 INTRODUCTION

In Table 4.3-3 of the Vermont Yankee License Renewal Application (LRA), the 60-year cumulative usage factor (CUT) values for the reactor pressure vessel (RPV) core spray nozzle are reported as 0.625 (nozzle) and 0.182 (safe end). The safe end value was reported as a generievalue, since no plant-specific value was determined.

Application of environmentally assisted fatigue (EAF) multipliers, as required for thelicense renewal period, resulted in unacceptable EAF CUF values of 1.53 and 2.79 for the nozzle and safe end, respectively.

Therefore, further refined analysis was necessitated to show acceptable EAF CUF results for this corponent This report documents arefined fatigue evaluation for the VY core spray nozzle. The intent of this evaluation is to use refined transient definitions and the revised cyclic transient counts for 60years for a computation of CUF, including EAF effects, that is more.refined than previously performed fatigue analyses.

The fatigue-limiting locations in the core spray nozzle and safe end are included in the ev aluationto be consistent with NUREG/CR-6260

[1 ] needs for EAF evaluation for license renewal.The EAF effects for the core spray piping, which is also a NUREC/CR-6260 location, are considered to be covered by the nozzle and safe end calculations because thenozzle region bounds the piping 1.The resulting fatigue results will be used as a replacement to the values previously reported in the VY.LRA.The refined evaluation summarized in this reported included development of a detailed finite element model of the core spray nozzle, including relevant portions of the safe end, thermal sleeve, the RPV wall, and the weld overlay repair documented in Reference

[2]. Thermal and pressure stress histories were developed for relevant transients affecting the core spray nozzle, including any'effects of Extended Power Uprate (EPU),.as specified by the VY RPV Design Specification

[3], the VY EPU Design Specification,[4]

and other boiling water reactor (BWR) operating experience.

The thermal and pressure stress histories were used to determine total stress and primary plus secondary stress for use in a subsequent fatigue evaluation.

Stresses were alsoincluded due to loads from the attached piping for application inlthe stress/fatigue analysis based on the bounding reaction loads obtained from the relevant I The nozzle stresses are more severe due to the noz7le discontinuity, and the nozzle thermnial transients are more severe due to interaction with the hot RPV.SIR 1 3 8-NPS, Rev. a 1-A Structural Integrity Associates, Inc..NEC041973

-I design documents.

The revised fatigue calculation was performed using Section III methodology from the 1998 Edition, 2000 Addenda of the ASME Code, and were performed using actual cycles from past plant operation projected out to 60 years of operation.

2 1.1 Green's Function Methodology Forthe core spray nozzle evaluated as a part of this work, stress histories were comput6d by a time integration of the product of a pre-determined Green's Function and the transient data. This Green's Function integration scheme is similar in concept to the well-known Duhamel theory used in structural dynamics.

A detailed derivation of this approach and examples of its application to specific plant locations is contained in Reference

[5]. A general outline is provided in this section.;A Green's Function is derived by using finite-element methods to determine the transient stress response of the component.to a step change in loading (usually a thermal shock). The critical location in the component is identified based on the maximum stress, and the thermal stress response over time is extracted for this location.

This response to the input thermal step is the ý'Green's Function." Figure 1-1 shows a typical set of two Green's Functions, each for a different set of heat transfer coefficients (representing different flow rate conditions).

To compute the thermal stress response for an arbitrary transient the loading parameter (usually local"'fluid temperature) is deconstructed into a series of step-loadings.

By using the Green's Function, the response to.each step can be quickly determined.

By the principle of superposition, these can be added (algebraically) to determine the response to the original load history., The result is demonstrated in Figure 1-2. The input transieit temperature history contains five step-changes of varying size, as shown in the upperplot in Figure 1-2. These five step changes produce the five successive stress responses in the second plot shown in Figure 1-2. By adding all five response curves, the real-time stress response for the input thermal transient is conputed.The Green's Function methodology produces identical results compared to running the inpdt transient through the finite elementimodel.

The advantage of using Green's Functions is that many individual SIR- 07-13 38-NPS, Rev.. A 1-2 Structural 1Integrity Associates, Inc.NEC041974 transients can be run with a significant reduction of effort compared to running all transients through the finite element model. The trade-off in this process is that the Green's Functions are based on constant material properties and heat transfer coeffici-ents.

Therefore, these parameters are conservatively chosen to yield bounding results, i.e., the highest heat transfer coefficient for all transients is used. This conservatism is more than offset by the benefit of analyzing every transient, which was done in the VY.core spray nozzle evaluation.

K Once the stress history is obtained for all transients using the Green's Function approach, the remainder of the fatigue analysis is carried out using traditional methodologies in accordance with ASME Code,Section III requirements.

SIR-07-138-N1'PS, Rev. A 1-3 Structural Integrity Associates, Inc.NEC041975

a. 350-1200 so 0 I 0 200 400 600 800 lime, (Sec)Note: A typical set of two Green's Functions is shown, each for a different set of heat transfer coefficients (representing different-flowrate conditions).

Figure 1-1. Typical Green's Functions for Thermal Transient Stress SIR-07-138-NPS, Rev. A 1-4 Structural Integrity Associates, Inc.NEC041976 350Ii.Vise I'pa so Shp~iSOShp-is -9 200-l~.fl I" 2- 40 60 84 M0 0120 0140, 0180UN'1,00 liftmu In.2 2 I F 9-w-v.4 5 0 1~~S ~0 5 6 S 264*6*06W iWUW 1400 15W ISfufS 7... ........ ....F 12. T Oypica NO Re00 spo 0 Usitn Iens ntio Figure 1-2. Typical Stress Response Using Green's Functions SIR-07-138-1PS,Rev.

A 1-5 Structural Integrity Associates, 17.NEG041977

2.0 FINITE

ELEMENT MODEL An ANSYS [6] finite element model (FEM) ofltheVY core spray nozzle and safe end was developed and used to perform the updated stress and fatigue analyses.

The details of the model development are documented in the Reference

[7] calculation.

The materials of the various components of the model are listed below:* Safe End -SB 166 (72Ni-15 Cr-SFe, N06600)* Piping-SA31ZTP304 (18Cr-SNi)

  • Nozzle Forging.-

SA5.08 Class II (3/44Ni-1/2Mo-1/3 Cr-V)* Vessel -sA533 Grade B (Mn-l/2Mo-1/2Ni)

The FEM model the radius of RPV was increased by a factor of two to account for the fact that the vessel portion of the finite element model is a sphere and the actual geometry is a cylinder.Material properties were based upon the 1998 ASME Code,Section II, Part D, with 2000 Addenda [8],.and are shown.in Table 2-1. The properties were evaluated at an average temperature of 3007. This average temperature is based on a thermal shock of 500 0 F to 100 0 F which was applied to the FEM-model for Green's Function dev elopment.The finite element model, which includes the weld overlay, is shown in Figure.2-1.

SIR-07-138-1,TPS, Rev. A 2-1 Structural Integrity Associates, Inc.NEC041978 Table 2-1. Material Properties

@300°F '1 Modului of cf Then1 T I Thermd Sped& Bet Poinn, ia n part Me-nal E ai&I, e+6 ExpmiOa Corvi ' *s, Dw~inpsi e-.4 BttiLJhrfV.F

[q~n Fq'Yj [DENS]IEXI ihlF [KXXJ.ALPX]Safe End SB 166 72Ni-Weld INCONEL 15Cr-8Fe 29.8 7.9 9.6 0.160 0.1157 0.29 0.3 Weld ICONEL N06600 Overlay 82 N06600 , -__%Ni-Nozzle SA50 1/2Mo-I/3 26.7 7.3 23.4 0.401 0.1193 0.3 0.283 Class II S Cr-V SA533 vIn-Vessel GradeB l/2Mo- 28.0 7.7 23.4 0.401 0.1193 0.3 0.283 1/2Ni .*3/16 Clad "A240 TP304 80X10 SA312, Conc.

  • 304 18Cr-8Ni 27.0 9.8 9.8 0.160 0.1252 0.3 0,283 Reduction Them'al SA312 Sleeve TP304 Note: 1. Material properties are evaluated at 3007 from the 1998 ASvIE Code, Secton II, Part D, with 2000 Addenda [8], exceptfor density and Poisson's ratio, which are assumed typical values.SIR-07-138-1-PS, Rev. A 2-2 6rStruc~tural inIeg.6ty Associates, Inc, NEG041979

)CSr0 73pray Nozzlo SIR-07-138-1NPS, Rev. A Figure 2-1. VY Core Spray-Nozzle FEM 2-3 Structural Integrity Associates, Inc.NEC041980 3.0 LOAD DEFINITIONS The pressure and thermal stressesfor the core spray nozzle for the revised fatigue evaluation were developed-using the axisymmetric FEMrmodel described in Section 2.0 of this report: The details of the Green's function development and associated stress evaluation "re documented in the Reference

[9] and [10] calculations.

3.1 ThermalLoading

Thermal loads were applied to the core spray nozzle model to generate the Green's Function.

As a first step in the Green's Function process, heat transfer coefficients were determined for various regions of the core spray FEM for two different flow cases: (1) 0% core spray flow, and (2) 100%o core spray flow through the nozzle.The 0% flow case simulates a stagnant condition of the core spray nozzle when not in operation and the entire core spray nozzle is at the same temperature as the RPV fluid. The heat transfer coefficients for the 0% flow case are for free convection (stagnant) at-the RPV temperature of 500 0 F. The applied boundary fluid temperature is changed to simulate a thermal shock from 500OF to 1001F to develop the stress response on the core spray nozzle in the stagnant condition.

The 100%.flow case simulates the operational condition of the core spray nozzle (i.e., the entire core spray nozzle experiences 100OF water due to, injection).

The heat transfer coefficients for the high flow case are for forced and free convection depending on the region of the FEM. The applied boundary fluid temperatute is changed to simulate a thermal shock from 500OF to 1 00 0 F to develop the stress response on the core spray nozzle due to injection.

The temperature on the exteriorof thereactor, nozzle, safe end and pipe was assumed tobe I20F (ambient).

Figure 3-4 shows the heat transfer coefficient regions assumed for the core spray nozzle FEM The applied heat transfer coefficients and the fluid temperatures are summarized in the sections that follow.SIR-07-I 38-NPS, Rev. A 3-1 structuraI integrity Assoiates, Inc.NEC041981 3.1.1 Heat Transfer Coefficients and Boundary Fhlid Temperatures Referring to Figure 3-4, heat transfer coefficients were applied as follows:* The heat transfer coefficient for the outside surfaces of the FEM (Region 12) was a constant value of 0.2 BTU/hr-ft?-F (3.858x 10-7 BTU/sec-in 2 -OF).* Table 3-1 shows the results of the heat transfer coefficient calculations for all of the thermal regions identified in Figure 3-4. The detailed heat transfer calculations for Regions 1, 3,5,7, 9, and i1 are contained in the Reference

[9] calculation.

  • In. Regions 2, 4, 6, 8, and 10, the heat transfeP Wefficients are interpolated.

For both Green's Functions, a 50CPF- 100F thermnal shock was run to determine the stress response.

For the 0C/o flow case, the entire inside surface of the FEM was shocked. For the 100°/o flow case, only the nozzle flow path was shocked..3.1.2 Green -s Functions The two flow-dependent thermal load cases outlined in previous section were mn on the core spray nozzle FEM with the.heat transfer coefficients and the fluid temperature conditions listed inTable 3-1. Two locations were selected for analysis (see Figures 3-5 and 3-6): 1. The critical safe end location was chosen as the node with the highest stress intensity due to thermal loading under nozzle flow conditions.

The highest stress intensity due to thermal loading occurred at Node 3719 (see Figure 3-5), on the inside diameter of the nozzle safe end. Therefore, this node was selected for analysis.2. The critical blend radius location was chosen based up on the highest pressure stress intensity.

Thecritical location was selected as Node 2166, as shown in Figure 3-6.Two stress intensity Green' s Functions were developed for each location and each flow case: (1).total stress intensity, and (2) membrane plus bending stress intensity.

The total stress intensity SIR-07-1 38-NPS, Rev. A .3-2. Structural Integrity Associates, Inc.NEC041982 Green's Functions for the safe end location are shown in Figures 3-7 and 3-8. The total stress intensity Green's Functions for the blend radius location are shown in Figures 3-9 and 3-10.3.1.3 Thennal Transients The transients analyzed for the core spray nozzle were developed based on the definitions in the original RPV Design Specification

[3], as modified for EPU [4], as well as more recent definitions based on BWR operating experience.

ForBWR operating experience, the transients.

described in the thermal cycle diagrams [11,. 12] fortheJames A. FitzPatrick Nuclear Power Plant (JAFNPP), which is also a BWR-4 plant in the Entergy fleet like VY, were considered.

The temperatures and pressures associated with the JAFNPP transients were modified to reflect VY-specific pressures and temperatures considering EPU effects [4]. The final transients evaluated in the stress and fatigue analyses are shown in Figures 3-11 through 3-16.'Thenumber of cycles projected for the 60-year operating life isused for each transient[13].

Tables 3-2 and3-3 sumrnmarize the thermal transients for the safe end and blend radius locations, respectively.

3.2 PressureLoading

A uniform pressure of 1,000 psi was applied along the inside surface of the core spray nozzle and the RPV wall. A pressure load'of 1,000 psi was used because it is easily scaled up or down to account for-different pressures that occur during transients.

In 'addition, a cap load of 4,774 psi was applied to the piping at the end of the nozzle. This cap load was calculated as follows: 2J-PDi 2 Pcap (Do2_D2 where: P, = end cap pressure load (psi)P = unitpressure load = 1,000 psi SIR-07-138-1IPS, Rev. A 3-3 Structural Integrity Associates, Inc.NEG041983 Di = inside diameter ofend of FEM =9.834" D = outside diaheter of end of FEM= 10. 815" The calculated pressure was applied as a negative value so that it would exerttension on the end of the model. The nodes on the end of the FEM were coupled in the axial direction to ensure mutual displacement of the end of the nozzle due to attached piping. Figures 3-1, 3-2, and 3-3 show the internal pressure distribution, cap load, and symmetry condition applied to the vessel end of the model, respectively.

The internal pressure load case for Node 2166 (blend radius) resulted in a total stress intensity of 35,860 psi, and for Node .3719 (safe-end) resulted in a total stress intensity of 12,030 psi. The membrane plus bending stress intensity at Node 2166 andNode 3719 are 34,970 psi and 12,020 psi, respectively.

3.3 Piping

Loading The piping stress intensities (stress caused by the attached pip ing) were determined forthe two evaluated core spray nozzle locations.

The design piping reactions that were used in the stress and fatigue evaluation are defined on the Reference

[14] drawing. These loads represent shear and moment loadings on the nozzle resulting from thermal expansion of the attached piping and seismic loads. The loads are applicable at the piping end of the safe end, as shown in Figure 3-17. The stresses resulting from these loads were calculated by hand using classical structural mechanics formulas, as documented in Reference

[10] and are shown in Tables 3-4 and 3-5 for the safe end and blend radius locations, respectively.

SIR-07-138-NP'S, Rev. A 3-4 Strcture!

Integrity Associates, Inc.NEC041904 3 Table 3-1. Summary of Heat Transfer Coefficients 0% Flow 100% Flow Regions Initial lRTC Initial mTC Temperature IF Btu'hr-fl?-O Temperature BtuOmrfFsF R1 500 142.98 500 2692.98...-K0.. -: , ; ' ;_ ..k;:':: ." di_-- _._-..'_._

_R3 500 48.86 500 71.01.-.- ...' " -- .". ......... .'..........

.... .".-. .-... .'...- .. .".. .........

.".. .." --.-. ........:."......

-..-.. .. .: M R5 500 61.28 500 100.65.. ..~L ..... ... ...........

.. .....R6B 500 97.30 500 97.30 R7A 500 47.35 500 67.87 R7B 500 28.99 500 35.57 R9 500 39.08 500 52.07 R11 500 500.00 500 .500.00 R12 120 0.20 120 0.20 SIR-07-138-NPS, Rev. A 3-5 Structural Integrity Associates, Inc.NEG041985 Table 3-ý2: Safe End Transients Transient Time Temp Time Step Pressure Flow Rate Number J J°F j ,.jgSgui L GPM)2. Design HYD Test -100 -- 0 120 Cycles 1100* _50 3. Startup 0 100 0 0 300 Cycles 16164 549 16164 1010 (0%Y 17164 549 1000 1010 11. Loss of Feedwater 0 526 1010 0 Pumps 3 526 3. 1190 (0%)'10 Cycles 13, 526 10, 1135 233 300 220 1135 2213 500 .1980 1135 2393 300 180 885 6893 500 4500 1135 7313 '300 420 675 7613 300 300 675.11213 400 3600 240 16577 549 5364 1010 16637 549 60 1010 16638 542 1 .1010 16698 542 60 1010 16699 526 1 1010 17699 526 1000 1010 14.6RVBlowdown 0 526 1010 0 1 Cycles'. 600 375 600 400 (0%).11580. 70 10980, 50-.12580 .533 1000 50 214-3. Shutdown 0 549 1010 0 300 Cycles 6564 375 6564 50 (0%).7164 330 -600 50/ 16524 70 9360 50 17524 70. 1000 50 " 12. Hydrostatic Test -100 -- 50 I cycles 1563.50 ._30. Emergency Shut Down 0 549 1000 .100 1 Cycles 10 406 10 250 (100%).11 70 1 250* 1011 .70 1000 0 " (SIR-07-138-NPS, Rev. A 3-6 Structural Integrity.Assooiates, Inc.NEC041986 Table 3-3: Blend Radius Transients Transient Time Temp Time.Step Pressure Flow Rate Number W. (OF) Jq Lesg' 10GPM)2. Design HYD Test -- 100 --- 0 1100 120 Cycles 50 3. Startup 0 100 0 0 300 Cycles. 16164 549 16164 1010 (0%)'24164 549 .8000 1010 11. Loss of Feedwater 0 526 1010 0 Pumps 3 526 3 1190 (0%)'10 Cycles 13 526 10 1135.233 300 220 1135 2213 500 1980 1135 2393 300 180 885 6893 500 4500 1135 7313 300 420 675 7613 300 300 675 1.1213 400 3600. 240 16577 549 -5364 1010 16637 549 60 1010 16638 542 1 1010 16698 542 60 1010 16699 526 1 1010 , 24699 526 8000 1010 14. SRV Blowdown 0 526 1010 0" 1 Cycles 600 375 600 400 (0%)'11580 70 10980 50*_ " 19580 533 8000 50 " 21-23. Shutdown 0 549 1010 0"300 Cycles 6564 375 6564 50 (0%)'7164 330 600 50 16524 70 9360 50 24524 70 8000 50 24. Hydrostatic Test -- 100 --- 50 1563 I Cycles .50 30. Emergency Shut Down 0 549 1000 100 I Cycles. 10 406 10 250 (100%)'.11 70 1 250 8011 70 8000 0 SIR-07-138-NPS, Rev. A 3-7 Structural Integrity Associates, Inc.NEC041987 Table 3-4: Stresses Due to Piping Loads for Safe End Location Safe End External Piping Loads Parameters F.......=2-ki ps F =..... kiPs .= ii 2Eii flf ! s OD= iiiiiiii~ii.

1Q.R2 in ID= R~~i~~iii ! in.*IRN =.4.91 In L = £~L~ 30iii!! In tN ="0.99 in= 262.60....

__M_ ___ =85.96.in is Me= *~~ 276.31 nkp F = ... 5.24..i.s Nz = ____ 3.70 kips/in 7 =0.36 kips/in Primaryf Membrane Stress Intensity-PMz = 3.74 ksi____ ___ -0.36 .Rsi SlX = 3.80 ..ksi SIn = ..3804.54 .pi...SIR-07-138-NPS, Rev. A 3-8 Structural Integrity Associates, Inc.NEC041988 Table 3-5: Stresses Due to Piping Loads for Blend Radius Location Blend Radius External Piping Loads Parameters F x = ..........

.. ........ k ip s'F = 460i~~~i i : I "ki ps Fz = ...... ..........! kips Fz I7L= kips 24=2 in-ki ps MD in-is I 1 =*7*.6 in "i D= 1 7122. in-kips O= 162.24 in-kips ID= .....* 203.14 in-kips N= 5.24 Rips N= 21.14' *nkips/in q_= -0.07 kiips/in Primary Membrane Stress Intensity PMz= 0.32 ksi{C -0.02 ksi Sl,,x= 0.32 ksi= 322.52 Psi SIR-07-I 38-NPS, Rev. A 3-9 Strctural Integrity Associates, Inc.NEC041989 Figure 3-1: Core Spray Nozzle Internal Pressure Distribution SIR-07-1 38-NPS, Rev. A 3-10 NEC041990 fii Structural (IBntgity ASSOOdates, MOT.

  • 4,41&1i V, 0~ V Coce SDcav Nozzle Finite Element Model Figure 3-2: Core Spray Nuzzle Pressure Cap Load SIR-07-138-NPS, Rev. A 3-11 Structural Integrity Associates, Inc.NECO41991 Figure 3-3: Core Spray Nozzle Vessel Boundary C ondition\N SIR-07-138-NPS, Rev. A 3-12 Structural Integrity Associates, Inc.NEG041992 Region 11 Region 10 Region 9'A.,.//'I Region 12 Region 6 6B.: Region 1 Figure 3-4: Thermal Regions SIR-07-138-NPS, Rev. A 3-13 I Structural integrity Associates, Inc.NEC041993

..............................

w.------------------

-- r --- ---------------------


--- i tK)T)A[, ON STET=26, SUPF. =1 TEIME=2..S OMrX -ifr1694a-SIltS =97.958 SNX -.-4 IAN APR 2? 24007 10 rLO:'9[CODA[, .S'EP=26 SUJB ='TINE:=2.S S .IWT (AVG)DMtA4. =81.694('5 SI-lrl =.51..958 SMX -.'574 Node 3719-Q4 M,.V4?..S ~. ...- ..-:K AN APR-23 2007 2G:10:09-Node 3737-j Node '3719 Node 3737 97. 95O M$9,7 C56.. 67'5 1 tCore Sp ry'y C'Sz). F i 1'i zj re AC .e;,:eent Nio.e3 1..pl.-I;*aw W .S$-Imflw'~-

gguui tse15 JS)7, W2 -13 k% , I-- -----------.Figure 3-5: Safe End Critical Thermal Stress Location SIR-07-1 38-1NPS, Rev. A 3-14 Structural lntogdty Associates, Inc.NEC041994 j.....911) 175 L -5'12 ?22C 2 it- 75 Core E'priav Nozzle Finite Eletrke,'it Modcel Figure 3-6: Blend Radius Critical Thermal Stress Location SIR-07-138-NPS, Rev. A 3-15 Structural Integrity Associates,, nc.NEG041995 700 -sz-sx 6m00.i400O 30000 20000O icrna iI I -I- 4 4- I\-Iý0 4 0 2MO ,no 600 800o 1000 Time (se q)Figure 3-7: Safe End Green's Function for 100% Flow SIR-07-138-NPS, Rev. A 3-16 Strurtural integrity Associlates, Inc.NEC041996.

lcý2100O 60D 0 1000 Time (pec)Figure 3-8: Safe End Green's Function for 0% Flow I .-1 SIR-07-138-NPS, Rev. A 3-17 Structural Intootity Associates, 6nc.NEC041997

)0 1000 200 Time (s e o)5000 -000 7000 Figure 3-9: Blend Radius Green's Function for 100% Flow SIR-07-138-NPS, Rev. A.3-18 V Strucitual Intogdrty Associates, Inc, NEC041998 V, IW 9!0 .1000 5=2 02001 7000 8000 Time (sea)Figure 3-10: Blend Radius Green's Function for 0% Flow SIR-07-138-NPS, Rev. A 3-19 CStructural1 lnalgilty AssOcJat&S, Inc, NEG041999 Ij-Te mp (*)- -Ptmssure (ps ig)BML n 400" 00 ki E w I-it 0 3000 Time (sonds]12000*1 mm Figure 3-11: Transient 03: Startup SIIR-07-I 38-NPS, Rev. A 3-20 Structural latogiity Associates, Inc.NEG042000 j-TempQf)

-Pressure(psig)

S_I--aC r,&Time Figure3-12:

Transient 11: Loss.of Feedwater Pomps, Isolation Valves Close (V SIR-07-138-NPS, Rev. A 3-21 Structural Integrity Associates, Inc.NEC042001 N;I- Te mp (*F) --Pr ess ure (ps ig) I aO 500.10 4.I-300-El a 4'&10)o -L.0 2000 40M 6=0 Ti me (seoonds)(10000 12000 Figure 3-13: Transient 14: SIR-07-1 38-NPS, Rev. A Single Relief of Safety Valve Blow Down 3-22 Structural Integrity Associates, Inc.NEC042002/

I Temp (TQ) --Pressure (psig) I 8O0 u_I-~~1-1100-.1000-coo-Poo.-700-O0-(00-400-300-230-100 is DI a.&100 0 1000 2000 30 4M000 000 60,00 70 .$010 $100 100D0 11000 12000 13000 14MK0 1000 16000 170)0 Ti me (seconds]Figure 3-14: Transient21-23:

Shutdown Vessel Flooding SIR-07 -1 38-NPS, R&v. A 3-23 I Structural Iateagrity Associates, Inc.NEG042003 I -Te mp(F) ---Pressure (psig) I Bam 532*)u_b lo 300 I--2M-102--1100-1000-GO0.800-700.600 "'-400.300.200*100------.- ---'- ----~. ---U- *U- -~ U-- -U,. --- U 0 IMOJ 200 300 4:K0 6M 2 Ti me Figure 3-15: Transient 30: Emergency Shutdown 100% Flow (SafeEnd)SIR-07-138-NPS, .Rev. A 3-24 Structural Integrity Associates, Inc.,NEC042004 7 I- Temp (f") --Pressure (psiq)I 5o-4300 CI 5 o-w 300.CJ-800-700.60 t*o 100 6 .-----.- ---S n~* --. a- -~ -*~-a.-a-* -I-u 0 3000 ,ow0 50OO Ti me (seconds)Figure 3-16: Transient30:

Emergency Shout Down 100% Flow (Blend Radius)SIR-07-138-NPS, Rev. A 3-25 StructurallIntogrity Associates, Inc.NE0042005 F', Figure 3-17: Pipe Reactions.SIR-07-I 38-NPS, Rev. A 3-26 Structural integrity Assoiates, Inc.NEG042006

4.0 STRESS

AND FATIGUE ANALYSIS RESULTS Fatigue- calculations for the VY core spray nozzle were performed in accordance witht ASME Code, Section I[I, Subsection 11-3200 methodology (1998 Edition, 2000 Addenda) [16].Fatigue analysis was performed in the Reference

[10] calculation for the two locations identified in Section 3.1.2 using the Green's Functions developed for these two locations and the 60-year projected cycle counts from Reference

[13].Three computerprograms were used to facilitate the fatigue analysis process: STRESSEXE, P-V.EXE, and FATIGUE.EXE.

The firstprogram, STRESS.EXE, calculates a stress history in response to a thermal transient using a Green's Function.

The second program, P-V.EXE, reduces the stress history to peaks and valleys. The third program, FATITGUE,EXE, calculates fatigue from the reduced peak and valley history using ASME Code,Section III methodology.

All three programs are explained in detail and were independently verified for use in the Reference

[ 15] calculation.

In order to perform the fatigue analysis, input files with the necessary data were prepared and the three analysis programs were run. The program STRESS.EXE required the following three input files:* Green.dat:

This file contains the Green's Function.

As discussed above, the core.spray nozzle analyses utilize four Green's Functions:

a membrane plus bending* stress intensity Green's Function and a total stress intensity Green's Function for both the safe end and blend radius locations.

  • Green.cfg:

A configuration file containing parameters that describe the Green's, Function.* Transnt.inp:

This file contains the input transient history defined in Tables 3-2 and 3-3.Tables 4-1 and 4-2 show the stresses for each location that were used in the. fatigue analysis., Columns 2 through 5 of Table 4-1 (for the safe end) and T able 4-2 (for the blend radius) show SIR-07-I38-NPS, Rev A 4.1 Structural Integrity Associates, Inc.NEG042007 I the final peak and valley outputafter'stress history reduction.

The pressure values for Column 6 in each table were determined from the transient pressures specified in Tables 3-2 and 3-3. The pressure stress intensities from Section 3 2 were scaled appropriately for each transient case.The scaled piping stress values are shown in columns 9 and 10 of Tables 4-1 and 4-2. The piping stress intensities from Section 3.3 were scaled based on the transient case RPV fluid temperature and assuminghýo stress occurs at an ambient temperature of 7 0 0F. Both of these stress intensities were then added to the thermal stress intensity peak and valley points to calculate the final stress values used for the fatigue analysis.

In the case ofthepiping load stress intensities, the sign of the stress intensity was conservatively set to the same sign as the thermal stress intensity to ensure bounding fatigue usage results. Columns 11 and 12 of Tables 4-1 and 4-2 show the summation of all stresses for each thermal peak and valley stress point. The last column shows the&number of cycles associated with each peak of valley based on the cycle counts shown in Tables 3-2 and 3-3. " The program FATIGUE.EXE performs the ASME Code peak event-pairing required to calculate a fatigue usage value. The input data for the configuration input file for FATIGUE.EXE, which./is named FATIGUE. CFO, is shown in Table 4-3.The results of the fatigue analysis are presented in Tables 4-4 and 4-5 forthe safe end and blend radius for 60 years, respectively.

SIR-07-138-NPS, Rev. A 4-2 Structural Integrity Associates, Inc.NEC042008 I Table 4-1: Core Spray Nozzle Safe End Stress Summary 1 2 3 4 6 7 8 9 10 11 12 13 Total M+B Total M+B Total Total Hunber Total M+B Pressure Pressure Piping Piping Total M+B cc Transient Time Stress Stress Terrperature Pressure Stress Stress Stress Stress Stress Stress Cycles Hurnter (psi) (psi) F (sloi J9i *fl) (psi) (pi )si) ) (60 years)2 100 0 , 0 0 226 226 226 226 120 100 1100 13233 13222 226 226 .13459 13448 120 100 50 602 6011 226 226 828 827 120 3 0 661 759 100 0 0 0 226 226 887 985 300 17164 9240 10700 549 1010 12150 12140 3609 3609 24999 26449 300 11 .0 8802 10236 526 1010 12150 12140 3435 3435 24388 25812 10 164 11645 11598 408 1135 13654 13643 2549 2549 27848 27790 10 672 4808 5791 344 1135 13654 13643 2067 2067 20529 21500 10 2374 11140 10841 361 -912 10971 10962 2192 2192 24304 23996 10 2955 47221. 5577 325 916 11019 11010 1921 1921 17662 18508 10 7054 9518 .10162 441 959 11537 11527 2792 2792 23847 24481' 10 7930 4491 5276 309 637 7663 7657 1799 1799 13953 14732 10 16709 9960 11116 526 1010 12150 12140 3435 3435 25546 26692 10-17699 8802 10236 526 1010 12150 12140 3435 3435 24388 25812 10 14 0 8802 10236 526 1010 12150 12140 3435 3435 24388 25812 1. 1 11735 -1124 438 142 50 _ 602 601 -542 -542 -1064 -379 1 12580 5205 7238 533 50 602 601 3488 3488 9295 11327 1 21-23 -0 9240 10700 549 1010 12150 12140 3609 3609 24999 26449 300 17524 .91 95 70 50 602 601 .0 0 693 .696 300 24 100 50 602 601 226 226 828 827 1'

  • 100 1563 18803 18787 226 226 19029 19013 1 100 50 602 601 226 226 828 827 1 30. 0 9280 10800 549 1000 12030 12020 3609 3609 24919 26429 1 13 85600 44694 162 250 3002 3000 690 690 89292 48383 1 1011 10 70 0 0 0 0 0 --12 -10 1 NOTES: Column I: Transi.ent nunmeridentification.

C olumn 2: Time during transient where a maximum or minimum stress intensity occurs froim P-V. OUT output file.C olumn 3: Maxima or minima total stress intensity from P-V. OUT output file.C olumn 4: Maxima or minima membrane plus bending stress intensity from P-V. OUT output file.C olumr 5: Temperature per total stress intensity.

Column 6:. Pressure per Table 3-4.C olumn 7: Total pressure stress intensity from the quantity (Column 6 x 8891)/1 000.Column 8: Membraneplus bendingpressure stress intensity from the quantity (Column 6 x 8693)/1fJ00.

Column 9: Total external stress from calculation in Table 1, 5707.97 psi*(Column 5-70°F.Y(549F

-70°F).Column 10: Same als Column 9,. but fbrM+B stress.Column 11: Sum of total stresses (Columns 3,7; and 9).Column 12: Sum ofmembraneplus bending stresses (Columns 4, 8,and 10).Column 13. Number of cydes forthe transient (60 years). .SIR-07-138-NPS, Rev. A 4-3 Structural integrity Associates, Inc.N NEG042009 Table 4-2: Core Spray Nozzle Blend Radius Stress Summary 1 2 3 4 6 6 7 8 9 10 11 12 .13 Toal M+B Total M+B .Total Total Hunter Total M+B Pressure Pressure Piping Piping Total M+B cf Transient Time Stress Stress Temperature Pressure Stress Stress Stress Stress Stress Stress Cycles Number t) fLt si) F (sil)S fji JWL d (ss) (osi) (60 years)NubrS s( L ý__._ 2 _ Xs 2 100 0 0 0 19 19 19 19 120 100 1100, 39446 38467 19 19 39465 38486 120 100 50; 1793 1749 19 19 1812 1768 120 3 0 23700 12600 100 0 .0 0 19 19 23719 12619 300 24164 210 31¶80 549 1010 36219 35320 306 306 38625 38806 300 11 0 3209 3644 526 1010 36219 35320 291 291 39719 39255 10 526 10458 5374 330 1135 4070.1 39691 166 166 51325 45231 10 2222 5488 1664 490 1122 40235 39236 268 268 .45991 41168 10 2860 11776 7444 321 91.1 32668 31858 160 160 44605 39462 10 6903 5435 3621 495 1124 40307 39306 272 272 .46013 43199 10 8012 12577 6791 390 627 22484 21926 204 .204 35265 28921 10 16640 2772 4370 542 1010 36219 35320 301 301 39292 39991 410 16991 3389 4115 526 1010 36219 35320 291 .291 39899 39726 10 24699 3209 3644 526 1010 36219 35320 291 291 39719 39255 10 14 0 3209 1010 526 1010 36219 35320 291 ,291 39719 36621 1 11626 24416 400 155 50 1793 1749 55 55 26264 2203 1 19580 4396 392 533 50 1793 1749 296 296 6485 .2436 1 21-23 0 2100 3160 549 1010 36219 35320 306 306 38625 38786 300.24524 25100 t1320 70 50 1793 1749 0 0 26893 14.949 300 24 100 50 1793 1749 19 19 1812 1768 1 100 1563 56049 54658 19 19 56068 54677 1 100 50 1793 1749 19 19 1812 1768 .1 30 0 20401 2950 549 1000 35860 34970 306 306 38206 38226 1 6011 257001 14900 70 0 0 0 0 0 25700 "14900 1 NOTES: Column !: Transientnumbreridentification:

Column 2:. Time during transient where a maximum or minimum stress intensity occurs from P-V. OUT output file.Column 3: Maxima or minima total stress intensity from P-V. OUT output file.Column 4: Maxima or minima membrane plus bending stress intensity from P-V. OUT output file.C olumn 5: Temp erature per total stress intensity.

Column 6: Pressure per Table 3-5.Column 7: Total pressure stress intensity from the quantity (Column 6 x 2830 0)/I 0000:.Column 8: Membrane plus b ending pressure stress intensity from the quantity(Column 6 x 27490yli000.

C olumn P: Total external stress from calculation in Table 1, 89.03 psi*(Column 5-70 0 Fy(549T -70F).Column 10: Same as Column 9, but fbr M+B stress.Column 11: Sum of total stresses (Columns 3,7, and 9)..Column 12: Sum ofmembraneplus bending stresses (Columns 4, 8,and 10).C.olumn 13 Number of cycles forthe transient (60 years).SIR-07-1387-PS, Rev. A Structural Intagrity Associates, Inc.NEC042010 Table 4-3: Fatigue Parameters Used in the Core Spray Nozzle Fatigue Analysis Value for Safe End Value for Blend Radius Parameter Location Location m (fbr computing

.1.7 2.0 n 0g.3 0.2* computing K,)Design Stress Intensity,Sm 23,300 psi 26,700 psi.Elastic Modulus from Applicable Fatigue:Curve, E, .28.3__ 06 psi_3_0.______ps Elastic Modulus Used in FEM 29.8xl 0& psi 26.7xl 06 psi Analysis, ___Geometric Stress Concentration 4.0(1) .1.0 Factor, Kt Note: 1. Conservative bounding value per ASlvfE Section NB-3600 to conservatively cover adjacent thread and weld regions.SIR-07-138-NPS, Rev. A 4-5 Structural Integrity Associates, Inc.NEC042011 Table 4-4: Fatigue Results for Core Spray Nozzle Safe End LOCATICMT

= LOCA FATIGUE CURVE = *2 (1 m= 1.7 n= .3 Sm= 2330 Ecurve = 2.83 Eanalysis

= 2.98 t= 4.00 TION NO. 2 -- SAFE END= CARBON/LOU ALLOY, 2= STAINLESS STEEL)0. psi OE+07 psi OE+07 psi MAX 89292.89292.27848.27848.25546.24999.24999.24999.24999.24999.24999.24999.24919.24388.24388.24388.24304.23847.20529.19029.17662.13953.13459.9295.K{IN-1064.-12.-12.226.226.226.693.*693.828.828.828.887.887.887.887.* 887.887.887.887.887.887.887.887.887.* RANGE 90356.89304.27860.'27622.25320.24773.24306.24306'.24171.24171.24171..24112.24032.23501.23501.23501.23417.22960.19642.18142.16775.13066.12572.8408.HEM+BEND Re 48762. 1.000 48393. 1.000 27800. 1.000 27564. 1.000 26466. 1.000 26223. 1.000 25753. 1.000 25753. 1.000*25622. 1.000 25622. 1.000 25622. 1.000 25464. 1.000 25444. 1.000-24827. 1.000 24827. 1.000 24827. 1.000 23011. 1.000 23496. 1.000 20515. 1.000 18028. 1.000 17523. 1.000 13747. 1.000 12463. 1.000 10342. 1.000 Salt 112365.111340.52830.52381.49723.49117.48226.48226.47976.47976.47976.47722.47655.46524.46524.46524.43897.44372.38550.34296.32927.25787.23723.18725.Napplied 1 .O00E+00 O.OOOE+00 1 .000E+00 9.OOOE+00 1.000E+401 1.010E+02 1.990E+02 1.010E+02 1.200E+02 1.000E+00 1.000E+00 7.700E+01 1.000E4-00 1.OOOE+01 1.000E+01 1.000E+00 1.000E+0f1 1.000E+01 1.000E+01 1.OOOE+00 1.000E+01 1.000E+01 1. 200E+02 1 .O00E+00 Nallowed 1.2 15E+03 1.253E+03 2.566E+04 2.679E+04.

3 .486E+04 3.709E+04 4 .069E+04 4.069E+04 4.177E+04 4.177E+04 4.177E+04 4.291E+04 4.321E+04 4.879E+04 4.879E+04 4.879E+04 6.696E+04 6.313E+04 1 .360E+05 2.661E+05 3.431E+05 1.339E+06 1.757E+06 4. 640E+06 U".0008.0000.0000.0003.0003.0027.0049.0025.0029.0000.0000.0018.000o.0002.0002.0000.0001.0002.0001.0000.0000.0000.0001.0000 TOTAL USAGE FACTOR.= .0172 SIR-07-138-NPS, Rev. A 4-6 V Structural Integrity Associates, Inc.NEC042012 Table 4-5: Fatigue Results for the Core Spray Nozzle Blend Radius LOCATIMf = LOCATION NO. 2 -- BLEND RADIUS FATIGUE CURVE = 1 (1 = CARBON/LOY ALLOY, 2 = STAINLESS STEEL)m 2.0 n= .2 Sm = 26700. psi Ecurve = 3.OOOE+07 psi Eanalysis

= 2.670E+07 psi Kt 1.00 MAX 56066.51325.46013 45991.44605.39899.39719.39719.39719.39465.39465.39292.38625.38625.38625.38625.38625.38625.38625.38625.38625.38206.35265.KIN 19.19.19..19.19.19.19.19.19.19.1612.1812.1812.1812.1812.6485.23719.23719.25700.2 6264.26893.26893.26893.RANGE MEH+BEEND 56049. 54658.51306. 45212.45994. 43180.45972. 41149.44585. 39443.39880. 39707.39700. 39236.39700. 39236.39700. 36602.39446. 38467.37653. 361719.37480. 38223.36812. 37038.36812. 37038.36812. 37038.32140, 36369.14905. 26186.14905. 26166.12925. 23886.12361. .36583.11732. 23837.11313. 23277.8372. 13973.Ke 1.000 1.000 1.000 1.000 1.000 1.000: 1.000 1.000 1.000 1.000 1.000.1.000 1.000 1.-000 1.000 1.000 1.000 1.000 1.000 i.000 1.000 1.000 1.000 Salt 31488.28823.25839.25827.25048.22404.22303.22303.22303.22161.21153.21056.20681..20681.20681.18056.8374.8374.7261.6944.6591.6356.4704.Napp I ie d 1.000E+00 1 .00OE+01 1 .OOOE+01 1.000E+01 1.OOOE+01 1.000E+01 1.OOOE+01 1.000E+00 4.800E+01 7.200E+01 I.OoOE+01 3.800E+01 1.000E+00 1.000E--00 1 .O00E+00 2.590E+-02 4.100E+0 1 1.000E+00 1.000OE00 2.570E+02 1.oooE+00 1 ;OOOE+O1 Nallowed 1.896E+04 2 .-501E+04 3 .498E+04 3.503E+04 3.848E+04 5.695E+04 5.824E+04 5.824E+04 5.824E+04 6.012E+04 7.572E+04 7.748E+04 8. 470E+04 8.470E+04 8.470E+04 1.445E+05;5.377E+07 5.377E+07 4.3 69E+08 1.000E+20 1.COOE+20 1.OOOE+20 1.000E+20 U.0001.0004.0003.0003.0003.0002.0002.0002.0000.0008.00 10.0001.0004.0000 0000.0000.QOOO.0000.0000.0000.0000.0000.0000.0042 TOTAL USAGE FACTOR =7y SIR-07-138-NPS, Rev. A 4-7 Structural Intogdity Assodates, Inc.NEG042013

5.0 ENVIRONMENTAL

FATIGUE ANALYSIS Environmental fatigue multipliers were computed for both normal water chemistry (NWC) and hydrogen water chemistry (HIWC) conditions in Reference f17] for various regions of the VY RPV and attached piping. Based'on VY-specific dates for plant startup and HWC implementation, as well as past and future predicted H-WC system availability, it was determined that overall HWC availability is 47% over the sixty year operating period for VY. Therefore, for the purposes of the EAY assessment of the core spray nozzle, it was assumed that HWC conditions exist for47% of the time, and NWC conditions exist for 5304 of the time over the 60-year operating life of the plant RPV upperregion chemistry was assumed for both the core spray nozzle safe end and b lend radius locations, since both lbcations experience reactor conditions for all times except during core spray injections (which are rare occurrences).

For the safe end location, the environmental fatigue factors for pre-HWC and post-HWC are both 8.36 from Table 4 of Reference

[17] for the RPV upper region. This results in an EAF adjusted CUT as follows: 60-Year CUF, U60 = 0. 0172 (from Table.4-4)

Overall EAF multiplier, F,, (8. 36 x 53% + 8. 36 x 47%) = 8.36*60-YearEAF CUFT U6oe-,= 0.0172 x 8.36 =0. 1438 The EAF CUF value of 0.1438 for 60 years for the safe end is acceptable (i.e., less than the allowable value of 1.0).The fatigue calculation documented in Section 4.0 for the blend radius location was performe.d for the nozzle base material since cladding is structurally neglected in modem-day fatigue analyses, per ASMIE Code,Section III, NB-3122:3

[16]. This is also consistent with Sections 5.7.1 and 5.7.4 of NUREG/CR-6260

[1]. Therefore, the cladding was neglected and EAF assessment of the nozzle base material was performed for the blend radius location.SIR-07-138-NPS, Rev. A 5-1 Structural Integrity Associates, Inc.NEC042014 For the blend radius location, the environmental fatigue factors for pre-IHWC and post-HWC are 11.14 and 8.82, respectively, from Table 4 of Reference

[17] forthe RPV upperregion.

This results in an EAF adjusted CUF as follows: 60-Year CUF, U 6 = 0. 0042 (from Table 4-5)Overall EAF multiplier, Fen =(11.14 x 53% + 8.8Zx 47%)= 10.05 60-YearEAF CUF, U6,-,,, 0.0042 x 10.05 = 0.0422 The EAF CUF value of 0. 0422for 60 years for the blend radius is acceptable (i.e., less than the allowable value of 1.0).SIR-07-138-lPS, Rev. A 5-2 IV Structural lntagdity Associates, Inc.NEG042015

6.0 CONCLUSION

S This report documents a refined fatigue evaluation for the VY core spray nozzle. The intent of this evaluation is to use refined transient definitions and the revised cyclic transient counts for 60 years for a computation of CUT, including EAF effects, that is more refined than previously performed fatigue analyses.

The fatigue-limiting locations in the core spray nozzle and safe end are included in the evaluation, to be consistent with N REGICR-6260

[ 1] needs for EAF evaluation for license renewal. The final fatigue results are considered to be a replacement to the values previously reported in the VY LRA.The fatigue calculations for the VY core spray nozzle were performnedin accordance with ASME Code,Section III, Subsection NB-3200 methodology (1 998 Edition, 2000 Addenda) [16]. The stress evaluation is summarized in Section 3.0, and the fatigue analysis is summarized in Section 4. 0. The results in Section 4.0 reveal that the CUF for the limiting safe end location is 0.0172, and the CUT for the limiting blend radius location is 0.0042. Both of these values represent 60 years of plant operation, including all relevant EPU effects.EAF calculations for the VY core spray nozzle were also performed, as summarized in Section 5.0. The results in Section 5.0 reveal that the EAF CUF for the limiting safe end location is 0. 1438, and the EAF CUF for the limiting blend radius location is 0. 0422. Both of these values represent 60 years of plant-op eration, including all relevant EPU effects.All fatigue allowables, both with and without EAF effects, are met, thus demonstrating acceptability for 60,years of operation.

SIR-07-138-NPS,-Rev, A 6-1 _ Structuralintogrity Associates, Inc.NEC042016

7.0 REFERENCES

1. NUREG/CR-6260 (INEL-95/0045), "Application of NUREG/CR-5999 Interim Fatigue Curves to Selected NuclearPower Plant Components," March 1995.2. Structural Integrity Associates Report No. SIR-86-037, Revision 0, "Evaluation of Modifications to Vermont Yankee Core Spray Nozzle and Safe End" January 1987, SI ProjectNo.

YAEC-08.3. GE Design Specification No. 21A1115, Revision 4, "Vermont Yankee Reactor Pressure Vessel," October 21, 1969, SI File No. VY-05Q-210.Q

4. GE Design Specification No. 26A6019, Revision 1, "Reactor Vessel -Extended Power Uprate," August 29, 2003, SI File No. VY-05Q-236.

-5. Kuo, A. Y., Tang, S. S., and Riccardella, P.. C., "An On-Lmie Fatigue Monitoring System for Power Plants, Part I -Direct C alculation of Transient Peak Stress Through Transfer Matrices and Green's Functions," ASME PVP Conference, Chicago, 1986.6. ANSYS, Release 8.1A1 (w/Service Pack 1), ANSYS, Inc., June 2004.7. Structural Integrity Associates Calculation No. VY-16Q-308, Revision 0, "Core Spray Nozzle Finite Element Model."-8. American Society of Mechanical Engineers, Boiler and Pressure Vessel Code,Section II, Materials Part D, "Properties (Customary)," 1998 Edition, 2000 Addenda.9. Structural Integrity Associates Calculation No. VY-16Q-309, Rev ision 0, Core Spray Nozzle Green Functions.".

SIR-07-138-NPS, Rev. A 7-1 Structural integrity Associates, Inc.NEC042017

1.0. Structural

Integrity Associates Calculation No.'VY-16Q-310, Revision 0, "Fatigue,*

Analysis of Core SprayNozzle." 11. Reactor Thermal Cycles, GE Drawing No. 729E762, SI File No..W-NYPA-78Q-205.

12. Nozzle Thermal Cycles (Drain, Core Spray & Head Spray), GE Drawing No. 135B9990, Sheet 5 of 5, Rev. 0, SI File No. W-NYPA-78Q-206.
13. Reference for cycle counts < < <<LTER> Entergy Calculation No. VYC-378, Revis ion 2,"Vermont Yankee Reactor Cyclic Limits for Trans tent Events," 3/10/88, Si File No. VY-JC6Q-2xr.14. GE Drawing No. 919D294, Revision 11, Sheet No. 7, "Reactor Vessel," SI File No. VY-05Q-241..15. Structural Integrity Associates Calculation No. SW-SPVF-01 Q-301, Revision 0,"STRESS.EXE, P-V.EXE, and FATIGUE.EXE Software Verification." 16. American Society Qf Mechanical Engineers Boiler & Pressure Vessel Code, Section IllI, Rules for Construction of Nuclear Facility Components, 1998 Edition, 2000 Addenda.17. Structural Integrity Associates Calculation No. VY-16Q-303, Revision 0,"Environmental Fatigue Evaluation of Reactor Recirculation Inlet Nozzle and Vessel ShellVBottom Head:"-J SIR-07-138-NPS, Rev. A.7-2 Structural Integrity Associates, Inc.NE0042018 Exhibit Q REDACTED COPY I ReportNo.:

SIR-07-130-NPS Revision No.: B Project No.: VY-16Q File No.: VY-16Q-401 June 2007 ,I Environmental Fatigue Analysis for the Vermont Yankee Reactor Pressure Vessel Feedwater Nozzles C.NOTE This document references vendor proprietary information.

Such information is identified with -2xP S1 Project File numbers in the list of references.

Any such references and the associated information in this document where those references are used are identilfed so that this information can be treated in accordance with applicable.vendor proprietary agreements.

Prepared for: Entergy Nuclear Vermont Yankee, LLC (Contract No. 10150394)Prepared by: Structural Integrity Associates, Inc.Centennial, CO Prepared by: Reviewed by: Approved by: Date: M. Qin J. F. Staples T. J. Herrmann, P.E.Date: Date: Structural Integrity Associates, Inc.

REVISION CONTROL SHEET Document Number: SIR-07-130-NPS Title: Environmental Fatigue Analysis for the Vermont Yankee Reactor Pressure Vessel Feedwater Nozzles Client: Entergy Nuclear Vermont Yankee, LLC SI Project Number: VY-160 Section Pages Revision Date Comments 1.0 1-1 5 B, 06/13/07 Revised tomore clearly identify what 2.0 2-1 4 information references proprietary.

3.0 3-1 22 sources (all pages).4.0 4-1 15 Corrected reference for NUREG/CR-.

5.0,- '.5-1 2 6260 on pages 5-1 and 6-1.6.0,' 6-1 Reference 13 noted as not used, since it 7.0. 7-1 3 was a duplicate of Reference 17.1.0 " -1.--5 A 04/27/07 Initial (UNVERIFIED) draft for review.2.0 2-1-2-4...

3.0 3-1-3-22 4.0 4-1-4-15.5.0 5-1 2 6.0 6-1 7.0 7-1 3~4.>Structural Integrity Associates, Inc.

Table of Contents Section Pag~e

1.0 INTRODUCTION

..............

.. I.............................1-1

1.1 Green's

Function M ethodology

.........

...................

..............................................

1-2.2.0 FINITE IELEMENT MODEL ...............................................

2-1 .1 3.0- LOAD DjEFINITIO6NS,..........................

................-

..:. ......... ..... ..... .... .. ..... ...-.1o Thermal Loading ....... ...........

...... ...... 3-1.3.1.1 Heat Transfer Coefficients and Boundary Fluid, Temberatures

..............

3-1 3.1.2 Green!'s tNS .......F.ncto a ' ................

.e......................

..... .. 3': 3.1.3 Therm al Transients......................................

...... .............................

........ 3-2 3.2 Pressure Loading and ...ndary.........

em... atu.e............................

3-..........3-3

3.3 Piping

Loading .....................................

...............

,.. 3-4 4.0 STRESS AND FATIGUE ANALYSIS RESULTS ...........................................

"............

5.0 ENVIRONMENTAL

FATIGUE ANALYSIS .. ..... ..............................

5-1

6.0 CONCLUSION

S..................................

...........

............

...............

.....................

6-1 7.0 REFEREN CES 7.*...,.:.....................

...................................

...........

4.. .........

..... 7-4 SIR-07-130-NPS, Rev. B.o..R7 N R1Structural Integro Associates, Inc.

List of Tables Table Page Table 2-1. Material Properties

@ 300F ............................

.............

..... 2-2 Table 3-1: Nodal Force Calculation for End Cap Load,.. ........................

3-5 Table 3-2: Piping Loads ...................................

......................................

... ..............

....... 3ý6 Table 3-3. Heat Transfer Coefficients for Region 1 (40% Flow) ... ....................................

3... 3-7 Table 3-4: Blend RadiustTransients

...... ...................

...........

3-8 Table 3-5: Safe End.Transient

....................

...... ..................

..............................
....... ...... ....... ........ 3-9, Tabe -5 SfeEn Transient................................

.......3-9o'Table 3-6: Maxinimumn Piping Stress Intensity Calculations..........

............

3-10 Table 4-1: Feedwater Nozzle Blend Radius Stress Summary ..............................

...............

4-3 Table 4-2: Feedwater Nozzle Safe End Stress Summary ........................

..... .4-5 Table 4-3: Fatigue Parameters Used in the Feedwater, Nozzle Fatigue Analysis ..............

.........

4-8, Table 4-4: Fatigue Results for Feedwater Nozzle Blend Radius ...............................

.....4-9 Table 4-5: Fatigue Results for the Feedwater Nozzle Safe End .....................................

...........

4-12.SIR-07-130-NPS, Rev. B" IV v R 1 N R BStructural Integrity Associates, Inc.

List of Figures Figure Paae Figure 1-1.Figure 1-2.Figure 2-1.Figure 2-2.Figure 3-1: Figure 3-2: Figure.3-3:

Figure 3-4: Figure 3-5: Figure 3-6: Figure 3-7: Figure 3-8: Figure 3-9: Figure 3-10: Figure 3-11: Figure 3-12: Figure 3-13: Figure 3-14: Figure 3-15: Figure 3-16: Figure 3-17: Figure 3-18: Typical Green's Functions for Thermal Transient Stress .........

........ 14 Typical Stress Response Using Green's Functions

......................

..... 1-5 VY Feedwater Nozzle FEM......

...... .........................

..... ..............

2-3 VY Feedwater Nozzle FEM -Safe End/Nozzle Region......

..............................

2-4 Feedwater N6zzle Internal Pressure Distribution........................................

311" Feedwater Nozle Pressure Cap Load ...........................

3-12 Feedwater Nozzle Vessel Boundary Con tion ...........................................

3-13 Thermal Regions.....................................31 Thermial Regions.,.

...... ...........

o..2.........

... ..:....,..................

.... ....:...2..........

3-14 Safe End Critical Thermal Stress Location and Linearized Stress Paths ...... 3-15 Brand Radius Critical Thermal Stress Location and Linearized Stress Paths ...... 3-16, Safe End Total Stress History for 100% Flow.......

.........

...... ... ...... 3-17 Safe End Membrane Plus Bending Stress History for 100% Flow... .........3..7.........,.

347 Safe End Total Stress History for 40% flow........

........ ............

,................

3-18 Safe End Membrane Plus Bending Stress History for 40% Flow..........

3-18 Safe End Total Stress History-for 25% Flow ..........

............

31.....................

o ... 349 Safe End Membrane Plus Bending Stress History for 25% Flow.......................

3-19, Blend Radius Total Stress History for 100% Flow ...... * .............................

..... 3-20 Blend Radius Membrane Plus Bending Stress History for 100% Flow .....I........

3-20 BlendRadius Total Stress History for 40% Flow ........................

.......................

3-21 Blend Radius Membrane Plus Bending Stress History for 40% Flow ...........

3-21 Blend Radius Total Stress History for 25% Flow ....................

3-22 Blend Radius Membrane Plus Bending Stress History for 25% Flow ....... ,3-22[PS, Rev. B v C Structural Integrity Associates, Inc.SIR-07-1 30-I'ý

'1*

1.0 INTRODUCTION

In Table 4.3-3 df the Vermont Yankee (VY) License Renewal Application (LRA), the 60-year cumulative usage factor (CUF) value for the reactor pressure vessel (RPV) feedwater nozzle (FW) is reported as 0.750. Application of an environmentally assisted fatigu6 (EAF) multiplier, as required for the license renewal period, resulted in an unacceptable EAF CUF value of 2'.86.Therefore, further refined analysis was necepsitated to show acceptable EAF CUF results for this Component.

-REDACTED The VY FW nozzles were re-evaluated in detail by SI in 2004 for EPU and 60 years of.operation.

However, that analysis used conservative transient definitions and cyclic projections for 60 years of operation that have since been updated as apart of LRA development.

This report documents a refined fatigue evaluation for the VY FW nozzle. The intent.of this evaluation is to use refined transient definitions and the revised cyclic transient counts for 60 years for a computation of CUF, including EAF effects, that is more refined than previously performed fatigue analyses.

The fatigue-limiting locations in the FW nozzle and safe end are included in the evaluation, to be consistent with NUREG/CR-6260

[25] needs for EAF evaluation for license renewal. The resulting fatigue results will be used as a replacement to the values previously reported in the VY LRA.-- N ,evB-I Structural Integrity Associates, Inc.SIR 130O-NPS, Rev. B-This'Page Contains Reference to Vendor Proprietary Information (such information is marked with a "bar" in the right-hand margin)

The refined evaluation summarized in this rejorted included development of a detailed finite element model of the FW nozzle, including relevant portions of the safe end, thermal sleeve, and'the RPV wall. '.Thermal and-pressure stress histories were developed for relevant transients affecting the FW. nozzle, including any effects of EPU, as specified bythe VY RPV Design Specification

[3], the VY EPU Design Specification

[17] and other boiling water reactor (BWR) .operating experienice.

The thermal and pressure stress histories were used to determine total stress and primai'y plus secondary stress for use in a subsequent fatigue evaluation.

Stresses were also included due to loads from the attached piping for application in the stress/fatigue analysis based on the bounding reaction loads obtaineA from the relevant design documents.

The revised fatigue calculation was performed using Section III 'methodology from the 1998 Edition, 2000 Addenda of the ASME Code, and was performed using actual cycles from past plant operation projected out to 60 years of operation.

1.1 Green's

Function Methodology For the FW nozzle evaluated as a part of this work, stress histories were computed by a time integration of the product. of a pre-detennined Green's Function and the transient data. This Green's Function integration scheme is'similar in concept to the well-known Duhamiel theory used in structural dynamics.

A detailed derivation of this approach and examples of its application to specific planit locations is contained in Reference

[4]. A general outline is provided in this section.A Green's Function is derived by using finite-element methods to determine the transient stress response of the component to a step change in loading (usually athermal shock). The critical location in the component is identified based on the maximum stress, and the thermal stress response over time is extracted for this location.

This response to the input thermal step is the"Green's Function." Figure 1-1 shows a typical set of two Green's Functions, each for a different set of heat transfer coefficients (representing different flow rate conditions).

To compute the thermal stress response for an arbitrary transient, the loading parameter (usually local fluid temperature) is deconstructed into a series of step-loadings.

By using the Green's SIR 130-NPS, Rev. B 1-2 Structural Integrity Associates, Inc.

Function, the response to, each step can be quickly determined.

By the principle of superposition,, these can be added (algebraically) to determine the response to the original load: history. The result is demoxistrated in Figure 1-2. The input transient temperatuIe history contains five step-changes of varying size, as shown in the upper plot in Figure 1-2. These five step changes lproduce the five sucessive stress responses in the second plot shown in Figure 1-2. By adding:all five response curves, the real-time stress T'esponse for the input thermal transient is computed.The Green's Function methodology produces identic4A results compared to running the input transient throigh the finite element model. The advantage of using Green's Functions is that many individual transients can be run witha significant reduction of effort compared to running all transients through the finite element model.. The trade-off in this process is that the Green's Functions are based on constant material properties.and heat transfer coefficients.

Therefore, these parameters are conservatively chosen to yield bounding results, i.e., the highest heat transfer coefficient for all transients is used. This conservatism is more than offset by the benefit of analyzing every transient, which was done in the JAFNPP evaluation.

a/Once the stress history is obtained for all transients using the Green's Function approach, the remainder of the fatigue analysis is carried out using traditional methodologies in accordance with ASME Code,Section III requirements.

1-3 Structural Integrity Associates, Inc..S IR-07-1'30-NPS, Rev. B J V'S.z Nat Atyicl etoftwoGrens untinsismhweac foadfeetstofha=ase)oficetrpeetn flM&O Note. A typical set oftwo Green's Functions isshown, each for adifferent setof heat transfer coefficents (representing different flowrate conditions).

Figure 1-1. Typical Green's Functions for Thermal Transient Stress SIR-07-13 8-1PS, Rev. A 1-4 C Structural Integrity Associates, Inc.NE0041976 Ira 300 h.~ 250 r I.200.50 -o.M I0Sk 5Q9*-25 Sly I* I[R I"-2i 4if6if bit 104 1200 140010law620m, 1'N 0 0-B, 200 400. 00 800 1000 1200 *1400 1605 M Ioe l'mb,, Figure 1-2. Typical Stress Response Using Green's Functions 1-5 qfwaRfrttral in Itegrity Associates, Inc.SIR-07-130-NPS, Rev. B

2.0 FINITE

ELEMENT MODEL A previously generated ANSYS [5] finite element model (FEM) of the VY feedwater nozzle and safe end was used to perform the updated stress and'fatigue analyses.

The details of the model development are documented in the, Reference

[6] calculation..

A few key points with respect to model development are as follows:.The model is identical to the geometry and mesh of the model previously developed for feedwater nozzle fracture mechanics work performed for VY.[7].* Theboundary condition corresponding to the location of the start of the thermal sleeve in the, FEM are consistent with Reference

[8].The materials of the various components of the model are listed below:-',' Reactor Pressure VesselT SA533 Grade B.* Reactor Pressure Vessel Cladding -Stainless Steel.* Nozzle Forging -ASTM A508 Class II* Safe End Forging -ASTM A508 Class I* Feedwater Piping -ASTM A106 Grade B The FEM model the radius of RPV was increased.

by a factor of two to account for the fact that the vessel portion of the finite element model is'a sphere and the actual geometry is a cylinder.Material properties were based upon the 1998 ASME Code,Section II, Part D, with 2000 Addenda [9], and are shown in Table 2-1. The properties were evaluated at an average temperature of 3007F. This average temperature is based on a thermal shock of 500*F to 1 00°F which was applied to the FEM model for Green's Function development.

The finite element model is shown in Figures 2-1 and 2-2.SIR-07-130-NPS, Rev. B 2-1 Structural Integrity Associates, I9c.

Table 2-1. Material Properties

@ 300OF (1)ntntneous Young's Coefficient of Density, Conductivity, Specific eat, Iaera .then al .Poisson's Modulus, hermal P k Diffusivity, d c. epMaterial Ident. E x10' Expansion, (lin') (BTU/asec-n- (f./ir (BTU/lb-m'F)

("Ident.(psi) a x 10' (assumed), --F (see Note 5) 1 -SA533 Grade B, SA533 Grade B" A508 Class II 26.7 7.3 0.283 5.42X0"4 0.401 0.119 0.3 A508 Class II (see Note 2) -" ...... .(see N ote 2)SS Clad, SSIClad SSe Coad27.0 9.8 0.283 2.27x10e 0.160 0.125 0.3 SSeClad*(see Note .. (see Note 3)A508 Class I .." .* '-. -5 " .A5O8Class I (seeNote4) 28.1 7.3 0.283 7.48x104 0.561 0.118 0.3 (see Note4)aA106 Grade B A106 Grade B 28.3 7.3 0.283 7.48x10 4 0.561 0.118 0.3 (see Note 4)(see Note 4) " " "_ -_-Notes. 1. Material PrIoperties ae evaluated at 300°F from the 1999 ASME Code, 2000 Addenda, Secion I, Padt D [22], ecept for density and Poisson's ratio, whch are assumed typical Values. .2. Properties of A508 Class f1 are used (314Ni-lI/2Mo-I/3Cr-V).

3. Properties of 1gCr -vNi austenitic stainless steel are used. .4. Composition

= C-Si.-5. Calculated as [kf(pd)]*(3600/144).

2-2 Sjr,.til8rI integrity Associates, Ino.SIR-074130-NPS, Rev. B Figure 2-1.. VYFeedwater Nozzle FEM ELEM4ENTSlSEP ,6 2002'16:23:5i'I.I Feedwater NozzleFlnTite Element Model i SIR-07-130-NPS, Rev. B 2-3 Structural Integrity Associates, Inc.

  • Figure 2-2. VY Feedwater Nozzle FEM -Safe End/Nozzle Region AN ELEMENTS Feedwater Nozzllp Finite Elemer.t Model SEP 6 2002 16:25:42 SIR-07-130-NPS, Rev. B 2-4 Structural Integrity Associates, Inc.

3.0 LOAD DEFINITIONS The pressure and thermal stresses for the feedwater nozzle for the revised fatigue evaluation were developed using the axisymnietric FEX4 model described in Section 2.0 of this r6port. Tle details of the Green's function development and associated stress evaluation are documented in..the Reference

[10] and [20] calculations.

,, 3.1 Thermal Loading Thermal loads are aplied to the feedwater nozzle model. The heattransfer coefficients after .power uprate were determined in Reference

[14]. These values were determined for various regions of the finite element model and for 100% (4,590 GPM), and 25% (1,148 GPM) [14]. Per Reference

[14], the annulus leakage flow rate is assumed to be 31 GPM for EPU conditions with 100% flow rate. Based on this, the annulus leakage flow rate is assumed to be 8GPM for EPU conditions with 25% flow rate. The temperatures used are based upon a thermal shock from.500OF to 100 0 F. An additional 40% flow rate (1836 GPM and 13 GPM) was added in this.calculation.

3.1.1 Heat Transfer Coefficients and Boundary Fluid Temperatures Referring to Figure 3-4, heat transfer coefficients were applied as follows: , The heat transfer coefficient for the outside surfaces of the FEM (Region 8) was a constant value of 0.2 BTU/hr-ft 2'-F (3.858xl 0 BTU/sec-in 2 k-F).* Table 3-1 shows a sampling of the heat transfer coefficient calculations for Region 1 for the 40% flow Case.For all Green's Functions, a 500 0 F -100°F thermal shock was run to determine the stress response.

" The applied heat transfer coefficients and the initial temperatures for all regions are contained in Reference

[14].SIR-07-130-NPS, Rev. B ,3-1 Structural Integrity.Associates, Inc.

3.1.2 Green's

Function's Three flow dependent thermal load cases were run on the FEM model with the heat transfer coefficients and the flUid temperature conditions listed above. Two locations

'were selected for.analysis (see Figures 3-5.and 3-6): .1. The critical safe end location was chlisen as thb node. with the highest stress intensity due to thernal loading under high flow conditions.

IThe highest stress intensity due to thermal loading occurred at Node 192 (see Figure 3-5), on the inside diameter of the nozzle safe end, and therefore, this node was selected for analysis.

Because the safe end stress response was affected by flow, three flow conditions were analyzed (100%, 40%0.and 25%).... The critical blend radius location was chosen, based upon the.highest pressure stress.Conservatively assuming the cladding has cracked, the critical location is selected as node 657 at base~riietal of the nozzle, as shown in Figure 3-6. Because -the blend radius stress response was affected by flow, three flow conditions were analyzed (100%, 40%and 25%).Two stress intensity Green's Functions were developed for each location and each flow case: (1)'total stress intensity, and (2) membrane plus bending stress intensity.

The Green's Functions for the safe end location are shown in Figures 3-7 and 3-12. The Green's Functions for the blend radius location, where the maximum stress was obtained for each of the flow conditions are shown in Figures 3-13 through 3-18..3.1.3 Thermal Transients

..The transients analyzed for the FW nozzle were developed based on the definitions in the-original RPV Design Specification

[3], as modified for EPU [17], as well as more recent definitions based on BWR operating experience.

For BWR operating experience, the transients described in the thermal cycle diagrams [15, 16] for the James A. FitzPatrick Nuclear Power SIR-07-130-NPS, Rev. B 3-2 Structural Integrity Associates, Inc.

plat (JAFNPP), which is also a BWR-4 plant in the Entergy fleet like VY, were considered.

S The temperatures and pressures associated with the JAFNPP transients were modified to reflect VY-specific pressures and temperatures considering EPU effects [17]. The final transients evaluated in the stress and fatigue analyses are shown in Figures 3-11 through 3-16.Th ume o yle orte60-y..a prt The number of cycles projected for the operating life is used for each transient

[19].. " Tables 3-4 and 3-5 summarize the thermal transients for the safe end and blend radius locations, respectively.

3.2 Pressure

Loading A uriform pressure of 1,000 psi was applied along the inside surface of the feedwater nozzle and the vessel wall. A pressure load of 1,000 psi was used because it is easily scaled up or down to account for different pressures that occur during transients.

In addition, a cap load was applied to the piping at the end of the nozzle. The nodal forces shown in Table 3-1 [10] are defined by thefoll6wing equation:...

'fJ) p. ;r. -R 2)... .2OR" 2 where: P = unit pressure load = 1,000 psi IR = inner pipe radius 4.8345 in OR = outer pipe radius 5.42 in Ri = inside radius of element that node is attached to., = outside radius of element that node is attached to Fode average of the element forces on either side of the node.Note:. The force on the innermost and outermost nodes is calculated as one half of the force on the element that they are attached to.SIR-07-130-NPS, Rev. B .3-3 Structural Integrity.Associates, Inc.C The calculated nodal forces were applied as positive values so they would exert tension on the end of the model. Figures 3-1. 3-2, and 3-3 show the internal pressure distribution, cap load, and symmetry con;dition applied: to the vessel end of the model, respectively.

3.3 Piping

Loading, The piping stress intensities (stress caused by the attaihed piping) were determined for the two evaluated FW nozzle locations.

The design piping retions that were used in the stress and'fatigue evaluation are defined on the Reference

[11] drawing, which are the same loads used in the in the 1971. stress report addendum [12]. These loads represent shear and moment loadings on the nozzle resulting from thermal expansion of the attached piping and seisink loads. The loads are applicable at the piping end of the safe. end, and are listed in Table 3-2. The directions and the equivalent:FEM model directions are also shown in Table 3-2. These loads were applied directly to the ANSYS model using non-symmetric loading elements.

The stresses resulting from these loads are shown.in Table 3-6.l SM-07-130-NPS, Rev. B 3-4 eStructural Integrity Associates, Inc.

Table 3-1: Nodal Force Calculation for End Cap Load Node Element Radius ',A Radius R 0 2-Ri' Fe Fg Number Number in (in) ) (Ib) (Ib)1 5.42 7678.0-1022 0.1171 1.25565 15356.1 ___2 5.3029 ..... ..... 151.88.4.1021 0.1171 1.22823 15020.7 3 5.1858. 14853.0 1020 0.1171 1.20080 14685.3 4 5.0687 .._ .14517.6-1019 0.1171 1.17338 14349.9 5 ' 4.9516 1_14182.2 1018 0.1171 1.14595 14014.'5 6 4.8345 _ 7007.3 ,st*II SIR-07-130-NPS, Rev. B 3-5 V Structural Integrity Associates, Inc.

Table 3-2: Piping Loads TABLE~t 3 -NOZZLE REACT1ON5 SE l.i LBS FT Lto5 -_____E'" F I REMARKS_______

RLX;RC 20W,00 20,O O i7,10' 2501-0, 47.j TOTAL THLIRP14L.W&AGJ1TAD Sel~pKRic1o.

o'JTL~r rr~OO0 000 12.000 JI2SJI03 83dI03 83XI03 E2CTEjidAL ME0AN1CAL LC*4D5WILY WNTis~5wM.

yist~c 2 20W C600 83-W a--10 &110 JT.TAL THE AML.WE)GfANV SCIS-PIC RrACTM5N.2600:T 00,0020 0 ~~26xA2 5 J4%' 3xia' cyrc~mpEc4AmiALcoL5Ly(WENT150&%)

5T.M: 72001 600MII8iif0'153XI085A 100 8~x!6 I FEE0 /5 W I__ ___1S10 5I0341 WxTEK ~ 1 111-I f --T-T coft. j2-560 L4600] 17 -I'J 71001 0 -1O 5pfuyA (AUL NWJ-ZE5)ALL VAWEIFSATO BE APPLIE.D AT.4rEK IAN PU.ESSU~fC

& TEtAPEFATLN.

i ZE. D1H2ECTION

'rzpGU 5 TO WPlODUCC ,r'-.& LAQCES'T MOME*WT5 .IIS H 1. 5TRZESSES.

1 I ..I I 2~ .~I I. 1 .I .I I i I , 7_.Y UP+ MY i i Notes:f 2., The Z-direction shown above is equivalent to the FEM Y-direction.

2.. The Y-direc1n shown above is equivalent to the FEM Z-direction.

11?_n-.1i in-MPS_ Rev. B3- : r-,hr Q.42~~Integrity Associates, Inc.

Table 3-3. Heat Transfer Coefficients for Region 1 (40% Flow)Calculation of Heat Transfer Coefficients for Feedwater Nozzle Flow Path-TO To..&. T a sunlved to be 12% of 8.n ef ,U. f~te.*Pim Ienside Diareetr.

D -idies

  • 08 It 1001..a fe le G 024 m QT= TF Fbw of crated =mtl = p -m mmle Fd Velocity.

V= U.822 Ssc : 1,83.0. tan m 0g7m 3742524 Mb.raudesliLe.-l%,L=D=

0.80L ft. 0-48. m pelneetu 8.40 12.00 24.00 36.00 48.00 60.00 72.00 -V 4.87 6. 1333 20+00 26J17 33.M3 40.00 '.C r.nbn 70 0; 20 0 400 C e ere~ n:~.raml,u.zl z=. i Gm11 600 "1" Fe too~m 2111 *.* -~* 1488 -.* 20 .60 k 1.7207 0.597 0.8300 0.6784 0.1683 0.8611. 0.8040 -0.5071 .Wlt-°C-_Conduso 0.14e6 0.8640 0.UM20 0.3960 03620 o.3400 0.2930 .tteir-E-VF

,4.1A69 -4.185 4.2 4.313 4.522 .4.802 .. 8.32 kvlwlC 1.00.....

0.918 1 1030 " 1.08D .1.190 1.510 95*wm-*F m1.018 997.1 994.7. -.7 9 17.8 858.8 784.* .6"12 e r .2.2 2 80.11. i7.3 53Z. 48.0 42.4 1.8 .1.89-04 3,24-04 0.0-04 1.01E-03 1.40E-03

  • 1.96E-03 &15E.03 , o s-*C Ramwuc eof I_____ DSE_.086-04 1.80604 .70E04 8.8oe-04 7.8O6-04 1.10E.03o 1.75E-00 .f-f'F 0.3048. 9.8o0 0808 9. o .808 -. 998w .. .99o80 9 : 3 2.17 32.17 .32.17 32.17. 32.17 3 .17- 32.17 NOft 1.4881 622E-04 3.07E,,04 1.93E.04.

1.3804 1.04E-04.

802E-o0 koM4.69E-04 4 45B.-N 2.oSe-,,4 I.ME-o4 9.30E-0 7.ooe.05 5.79E-0 ffft Pr e o .5111 1.o o+Mo o9. 1.0m--"lauwaed p arnete " Fo-rm ul 70 10a 200 0400 80 680 T* Reynokr Number,. Re pVI .0147. 8.786405 1.8858E.08

.2.8491 17295E06 4,52486.40 08 .-GraswiNumbe, C" g 9p5TL'I/(ip?

1.28526.08 8.e8O834#08 1.3221610 e.59186&10 2.093111 5.44296.11 1.13r26E12

-R020 NI1 Re Gd'r 8.97106-+0R 3.0142E-09 2.4207E+10

&.04206.10 1.9888E+11 4.6758E6.11 1.21886.12

-.,P"M 0 *.1 18.10 8,828.81 10107.10 106,90.57 11,280.53 10,71M39 Wva1s'.C.903895 1.077A8 1,519.U. 1,756.7 l.-M 1,3.3 .M7.12. -1,180.81 859ttLre.'

1.744E-03 2.07 .-03 2.31E.031 U4124-031 3.724 11763. : 6 , &-f.286-03 eoko'Flom Ha~t rIVanS&e Cyaffcbe Case: E ndowd *qfad C. n. ,.* ' .Hi c dhf " 232.43 330,.67v SWA.8 815.28 * .1,'16.4 1I1'm3 WMn.-C* .. 43 982 1.404.,: 1438 174.2 ..S.1234043 +0644 14T188 17 I .1 1 21Coo. 4. BAfteý.-T SIR-07-130-NPS, Rev. B 3-7 " Structural lntegrity Associates, Inc.

i1, Table 3-4: Blend Radius Transients 3 P 04 02 74 , ..I(100270O S48 210 ¶010 a2m 048 04m 1010 n&V M@W88tr 0 54 1010 ffqq ftl. Pm4o -) 1 10t 1 1010 3M Old, II 100 M0 M010 241 200 -9010 14" 54 O0 1010

  • o 548 .-040 200eyd, .4 3" -M204 so.4854 200 040 8 13144 Io1 to -20144 1004 0 SL .ft ý 104 60 *04 I C1 tm 100 a0 1=2404 100 WD .0.. log a Sstrulctural Integrfity, Associates, Inc.SIR-07-130-NPS, Rev. B 3-8 J I, Table 3-5: ..Safe End Tran'sient These transients are the same as in Table 3-4 with the exception of the 500 second-steady state time increment that is used. The transients in Table 3-5 areplotted using a 500 second steady state increment.

The.difference is due to the length ofthe Green's Function for the safe end which is shorter compared to the blend Radius.J'l Structural Integrity Associates, Inc.SIR-07-130-NPS, Rev. B 3-9 Table 3-6: Maximum Piping.Stress Intensity Calculations Safe End External Piping Loads Parameters Blend Radius External Pipinq Loads Fx -3.00 " kips F= '15.00 kips F = .3.20 kips*M = 3t6.00 in-kips M = 156.00 in-kips Mz= 480.00 in-kips OD= 11.86. in ID= 10.409 in RN 5.57 in L 12.09 in in tN = 0.72 in S2= 154.69 in-kips M 2 192.26 in-kips M = 246.77 in-kips Fy= 15.30 kips Nz= *. 2.63 kips/in-1.59 kips/in Primary Membrane Stress Intensity PM~z = ' 3.63 ksi¶ =- '2.20 ksi SI .5.71 ksi Parameters

_Fx = 3.00 kips Fv= -15.00 kips Fz = .3.20 kips Mý= 336.00 in-kips IM=' 156.00 in-kips SMz= 480.00 in-kips bD= 22.67 in, ID= 10.750 in RN= 8.35 -in L = 27T57 in tN 5.96. "in i(M)zz= -77.58 in-kips (M__2= 238.72 in-kips MX= 251.01 in-kips Fxv= 15.30 kips Nz 1.21 kips/in qN= -0.51 kipstin Primary Membrane Stress Intensity PMZ 0.20 ksi T -0.09 ksi S = 0.27 ksi Slx = 265.47 psi-.*.!Slmax [ 5707.97 psi I I Note: The ]ocations for Cut I and Cut II were defined in Reference

[6] for safe end and blend radius paths, respectively.

2 SIR-07-130-NPS, Rev. B 3-10 V Structural Integrity Associates, Inc.

Nozzle Finite Element Model Figure 3-1: Feedwater Nozzle Internal Pressure Distribution 3, Re I v. B Structural Infegrily.Associates, Inc.SIR-07-1 30-NP~

I'/ ,'ELEMENT2!S SEP 13 2002 12:17:30 jt'iT1 7-'Feedwater nozzle-tinite Element Modell'lFigure 3-2: Feedwater Nozzle Pressure Cap Load f SIR-07-130-NPS, Rev. B 3-12 RStructural Integrity Associates, Inc.

Rev. B 3-13 Structural Integrity Associates, Inc.SIR-07-130-NPS, A.Region 7 Region B 11 S I.F Region I Region 6 Region 5 A B D E Notes: Point A: End of thermal sleeve = Node 204 = 0.25V from feedwater Inlet side of thermal sleeve flat per Reference

[8].Point B: Beginning:of annulus = Node 252.Point C: Beginning of thermal sleeve transition

= approximately 4.0" from Point A per Reference

[8] -Node 294.Point D: End of thermal sleeve transition

= approximately 9.5" from Point A per Reference

[81 = Node 387.Point E: End of inner blend radius (nozzle side) = Node 553.Point F: End of Inner,blend radius'(vessel wall side) Node 779.Figure 3-4: Thermal Regions SIR-07-130-NPS, Rev. B 3-14 3evStructural Integrity Associates, Inc.

I ..1 ,sunf (AW)am-.69469.1 Ow -109.O3M ewC.6-4d54

ý*'9 V -z : 83m5t C.1M.MAR 22 2001 l-13:123 I f I* 94$' L... ..N.-I4Z4J~.21254 feedwatex Kc::1e riitCte Ilement. Model 49444 ... 63r44 2 yee~dwter loizlt Mirte Elem~ent model Figure 3-5: Safe End Critical Thermal Stress Location and Linearized Stress Paths SIR-07-130-NPS, Rev. B *3-15 Struclurail;ntegrity Associates, Inc.

  • 6 Amt 11 246.7 Is..22 :57, 207470S27216

'23962 .345 S.1240 7809sop 11042 1427 1-512 reed..ater Uo~zle Tinite Element )ýde m Figure 3-6: Brand Radius Critical Thermal Stress Location and Linearized Stress Paths SIR-07-130-NPS, Rev. B, 3-16 Structural integrify Associates, Inc.

ToIl Stress Intensity-.44* .44-.4.0'. l

  • 200 3 400 Tk"- (sec)Figure 3-7: Safe End Total Stress History for 100% Flow Total Stre"s Intensity 500 I 0 100 200 300 400 s Figure 3-8: Safe End Membrane Plus Bending Stress Hi.story for 100% Flow..SIR-07-130-NPS, Rev. B 3-17 Structural Integrity Associates, Inc.
  • tt I*.Total Stress Intensity I Figure 3-9: Safe End Total Stress History for 40% Flow Total Stress Inltnsity I 0100 200 .30 5W0 Time (lec)'Figure 3-10: Safe End Membrane Plus Bending Stress:History for 40% Flow SIR-07-130-NPS, Rev. B 3-18. Structural Integrity Associates, Inc.

Stress 300Do 1OODD'1000 0 100 200 300 400 "Op TOie Wm.)Figure 3-11: Safe End Total Stress History for 25% Flow Total Stress Intenshy 40000 30000 ° *10~-1000 0 .100 200 300 400 .500 Tne (see)*1~/.Figure 3-12: Safe End Membrane Plus Bending Stress History for 25%Flow-130-NPS, Rev. B 3-19 Structiural Integrity-Associates, Inc.SIR Total Stress Intensity I 30000 25000MO Isomo lsowo 200n0 I" ,.!4 4 4 4 1000 2000 3O00 4000 Tune Figure 3-13: Blend Radius Total Stress History for 100% Flow Total Stress Intensity 1500 0 1000 2 3000 4000 5000 TFgr (3e) B figure 3-14: Blend Radius Membrane Plus Bending Stress History for 100% Flow-SIR-07-130-NPS, Rev. B 3-20 SRStructural Integrity Associates, Inc.

.1I Total Stress Intensity 3000?I V I 20000"4.1*0 100 20DM 30M 40 Figure 3-15: Blend Radius Total Stress History for 40% Flow Total Stress Intensity 54 4 4-000 low M 30DO 400__W Time (sec)Figure 3-16: Blend Radius Membrane Plus Bending Stress History for 40% Flow Slk-07-130-NPS, Rev. B 3-21 10 Structural integrity Associates, Inc.

I,'I Total Stress Intensity I Figure 3417: Blend Radius Total Stress History for 25% Flow'Iotal Stress Intensity I 01000' 2m0 .WO 400 sm.0 Figure 3-18: Blend Radius Membrane Plus Bending Stress History for 25% Flow SIR-07-130-NPS, Rev. B 3-22 Structural Integrity Associates, Inc.

1 1 .4.0'" STRESS AND FATIGUE ANALYSIS RESULTS.Fatigue calculations for. the VYFW nozzle were performed in accordance with ASME Code,.Section III, Subsection NB-3200 methodology (1998 Edition, 2000 Addenda) [9]. , Fatigue analysis was perforrhed in the Reference

[20] calculation for the two locations identified in Section 3.1.2 using the'Green's Functions developed for these two locations and the 60-year projected cycle counts from Reference

[19].,,.Three computer programs were used to facilitate the fatigue analysis process: STRESS.EXE, P-V.EXE, and FATIGUE.EXE.

The first Program, STRESS.EXE, calculates a stress history in response to a thermal transient using a Green's Function.

The second pr'ogram, P-V.EXE, reduces the stress history to peaks and vaileys. The third program, FATIGUE.EXE, calculates fatigue from the reduced peak and valley history using ASME Code,Section III methodology.

All three programs are explained in detail and were independently verified for use in the Reference

[21] calculation.

In order to perform the fatigue analysis, input files with the necessary data were prepared and the three analysis programs were run. The program STRESS.EXE required the following three input files:* Green.dat:

This file contains the Green's Function.

As discussed above, the feedwater nozzle analysis utilizes four Green's Functions:

a membrane plus bending stress intensity Green's Function and a total'stress intensity.Green's

  • Function for both the safe end and blend radius locations.;
  • Green.cfg:

A configuration file containing parameters that'describe the Green's Function.* Transnt.inp:

This file contains the input transient history defined in Tables 3-4 and 3-5.Tables 4-1 and 4-2 show the stresses for each location that were used in the fatigue analysis.Columns 2 through 5 of Table 4-1 (for the safe end) and Table 4-2 (for the blend radius) show.the final peak and valley output after stress history reduction.

The pressure values for Column 6 SIR-07-130-NPS, Rev. B 4-1. Structural Integrity Associates, Inc.

1, in each table were determined firom the transient pressures specified in Tables 3-4 and 3-5. The pressure stress intensities from Section 3.2 were scaled appropriately for each transient case.The scaled pipfnig stress values are shown in Columns 9 and 10 of Tables 4-1 and'4-2. The piping stress intensities from Section 3.3 were -scaled based on the transient case RPV fluid temperature and.iassuming no stress occurs at an ambient temperature of 76'V. Both of these stress intensities were then added to the thermal stress intensity peak and valley points to calculate the final stress values used for the fatigue analysis.

In the case of the piping load stress-intensities, the sign of the stress intensity was conservhtively set to the same sign as the thermal sttess intensity to ensure bounding fatigue usage results. Columns .11 and 12 of Tables 4-1 and 4-2 show the summation of all stresses for each thermal peak and valley..stress point.. The last column shqws the number of cycles associated with each peak or valley based on the-cycle counts shown in Tables 3-4 and 3-5.The program FATIGUE.EXE performs the ASME Code peak event-pairing required to calculate a fatigue usage value. The input data for the configuration input file for FATIGUE.EXE, which is named FATIGTJE.CFG -is shown in Table 4-3.The results of the fatigu6 analysis are presented in Tables 4-4 and 4-5 for the safe end andblend radius for 60 years, respectively.

SIR-07-130-NPS, Rev. B3 4-2 Structural Integrity Associates, Inc.

Table 4-1: Feedwater Nozzle Blend Radius Stress Summary 3 V 6 Time" (3)TransIent Number 1 Total Stress 31283 31283 31273 2910 29103-3592-3527 828246~28767I Se Templ rsture 70.00 70 1001 100 549 549 549 2.004'l 9.187 Pressure Stress M..Pressure Stress Piping I Piping Stress Stress sn.n I s~n Total Total Stress fos,)Stress (pan------- --Pressure I I IDS[) (psi)0 0 I r 58iin -,of Cycles.(60 yearsO 3128a0 31283.0 I60223.7 30533.7 24739.2 24804.2 2489.2 2563.0(1374 1 C 1 C 1 C.1c Sto 10 10 10 27764 180t, 2050-3a 2218 jw.n 17 285 285i 22 64 277C 27764 7T/64,-251.81-251.80 165M 321 6-251.80-251.80[-77621 78631

  • 3921 F 77051.67641 3921 F-7710 67611 3921 1 35881 11950 310.8510-71051 67651 3921 77101 67611 3921'157321 139001 281.0591 77061 67641 3921__77101 67611 3%2 28299 229231 127.5921 775 M76 3921 1 0 6 761 39 168181 147101. 267.046 32.594 109.43C 1364E 169.26S 169.26G 169.269 56861.5 57459.4 452794 36457,2 36462.2 10 265 169.269 52461.4A 45824.30 40532.3(34698.1j 34696.1-1'U 'be -' --- --1o 1-0 10'10a-10:-101 2W 2776C 126-623 IAM-39841-671 10 285 285-285 285-28N 101 2851 101 1011 101 101 2851 27764.277764.27764.27764., 169.269 169.269 110.965 169,269 3-.27.10 169.269 169.269 110.965 189.269 169.269: 30.27 169.269, 169.26S 36457.2 3642.2 44425.9.3645.2 Zi462.2 45504.51 401512 34699.11 10 76 1__671 , 1-43-a, 4`61 7-18R-9M-6 564 51.1 302.1 548.-503.17064.1 18O2-12.1 21863..26914.1 1 3-53 2793 2875'776'r77U 771C 771C 1185 1 39 392 392 147 585M%58 F83-501 -671 i49 18 00 48 27 92 92 92 92 D2 37 12 12 12)2 12 12 17'2 2 21 101 119 113 113 113 113 106 3367 32120.321-20 M2-120.32120.29856.30139.32120: 39255.31 113 31201.151-260.21191-260.211!

911 67.1 12 6761 T701-678-1 10101 1010 101 10101 1010 T1135'1135 940 940~10101 18791.28M 26M8 2858!2858 2858 2M58 2858'3120..'32120.1 S2660, 2660, 26602-285&1 27764.91 117.1884 101 63831.631 51582.281 285E 28SE 25M.311 2L161-900.14 M55.7.51 -9. 1l, -9.956m, 18253.361 122-05991 122.0591 117.1884 169.26,12I 169.2692 169.26W2 169.2692 169.2692I 169w2692 169.2692 32.595M6 153269-2 39938.42-3963.0o 29398.64 1 24390.77 --j76681.67 52529.39 43533.09 35626.17 34898.17 3-4805.17 1 38131.42 1 38131.42 1 329770.87 1 51183.20 I* 32605.87-1 34731.171

-.38131.421 3913IA1.4 57478.881-511i-,T-W 21896.1M 37286.&s 25840.6 25840.6 27764.9 285831 27764.91 169.2692 169.269 169.2692 1M926U2 169.269V 169.269.36457.27 36462.27 13 2&5s 27764.s.~~11~4.~

.31~U1 .10 32120.IU 310.15 169.2ý691 169.2692 6792V, So=i Iii~ 77051 67641 39 For notes, see last page of table...SIR-07-1 30-NPS, Rev. B 4-3 Structural Integrity Associates, Inc.

I, -Table 4-1: Feedwater Nozzle Blend.Radius Stress Summary (continued) 1 2 3 4 1 5 .6 7 a 9 10 11 12 13---Total M+6 Total M+15 Total Total Number Total M+13 Pressure Pressure Piping Piping Tetal M* ofN Transient Time "t: s Stress Temperature Pressure Stress Stress Stre Stress Stress Sbr cycles N u m b e r ( ).Jp i F ( I .. u iU ( n o J gsi (D 8 60-14 7710 6761 392 1010 28583 27764.9 169-2692 169.2692 3646227 349517 ,-5 28 4628 25678 100 5o 1415 1374.5 15.77042 15.77042 29892.77 27068.27 1-6 7710 6761 392 1010 __285831 27764.9 169.26921 169.2692 36462.27.

34696.17 *228-0 T 771 6761, 392 113 32120.5 312011'5 169.2692 169 2692 38999977 38131.42 228-5 7710 6761 392 1135 32120.5 3120.15 169.2692 169.262 3999977 38131.42 228 " 392 940 7--26602 25840.6 1692692 169.2692 34461.27 32770.6? 228*T -3 731 132.007 1010 2030.2 .768 230 1207__11 28563 27764.9 32.59588 32.5'9508 675.0 53107.50 22 2790.9 2-8-619 ~6796 392 _ 1010 -28563 27764.9 169.2692 169.2692 67371.27 34730.17 228 I.4640.4 7691 6797 392 1010; 28663 27764.9 169.2692 169.2692 36443.27 34731.17 228 .5 7705 67641 3921 1010 28583 2 .9 1692692 1692692 36457.27 34696.17 228 , 7710 6761 392 1010 26583 27764.0 1692892 1692692 36462.27 34895.171 10 7710 6761 392 1010 28563 277649 1692692 1692692 3646227 34695.171 10 7710 6761 392 __1010 __26563 27764.9 169.2692 169.2692 38462.27 34695.171 300 28%o 160 49 265 3 1010 __26563 27764.9 102.507 1025077 45491561 42657.41 30 6800 16734, 14990 265 ___1010 __28563 27764.9 102.5077 '102.507?

45419,51 .42857.41 300 200. 17114 13907 265 1010 28583 27764.9 102.5077 1025077 459951 41774.4 300-329 -3777 -3089 549 1010. 28583 27764.9 -251.801, -251.801 24554.0 24424.10 s0 527o -3558 -3089 549 i__ 01 _ 2858 27764.9 -251.801 -251;801 24773.20 *.24424.10 300 20A. 0 -3522 -3178 549 1010 28583 27764.9 -251.801 451.801 24809.20 24335.10 .300 184 28109 12124 219.067 1010 28583 27764.9 78.36164 78.36164 56703 39967.26 30 52 268 16 549 2M1 0 52 248 -16 59 1010 28-583 27764.9 -251.801 -251.801 28320 2321 0 41 _-35M -3150 549 1010 28583 27764-9 -251.801 -261.801 2479520 24363.10 300 21-23 a4_ -3522 -3178. 49 1010 28563 27764.9 -251.801 -251.801 2460920 24335.10 300 1 29172 23823 4 -0 50 1415 1 .02 02 77 25213.27*20144 29107 2J38 100 60. 1415 1374.6 15.77042 15.77042 30 77 25213.27 300 24 0 -9103 238331 100 __ 60 __ 1415 1374.5 15.77042 15.77042.

30533.77 *25223.27 11 2910 23833 100 15631 44232.9 4296.87 15.77042 15.77042 173351.67 6815.64 1-1200 -29103 238331____

100 1563' 44232.9 42966.87 15.77042 15.77042 73351.67 66815.64 1 00 29103 .2333 100 s0 14 1374.5 15.77042 25223.27 1 2400 29103 23833 .100 so_ 5 _ 1415 1374.5 15.77042 15.77042 30533.77 2522.27 1 25 ___0 29103 23833 100 0 _ _ 0 0 15.77042 15.77042 29118.77 23848.77 123 2206 31308 25631 70 0 0 0 0 0 5631.00 123-608 31286 25631 7 000 03280 25631.001 123 NOTES: Column 1: Transient number identification.

Column 2: Time during transient where a maximum or minimum stress intensity occurs from P-V.OUT output file.Column 3: Maxima or minima total stress intensity from P-V.OUT output file.Column 4: Maxima or minima membrane plus bending stress intensity from P-V.OUT output file.Column 5: Temperature per total stress intensity.

Column 6: Pressure per Table 3-4.1 Column 7: Total pressure stress intensity from the quantity (Column 6 x 28300)/1000.

Column 8: Membrane plus bending pressure stress intensity from the quantity (Column 6 x 27490)/1000.

\Column 9: Total external stress from calculation' in Table 1, 89.03 psi*(Column 5-70°F)I(575*F

-70*F).Column 10: Same as Column 9, but for M+B stress.Column 11: Sum of total stresses (Columns 3, 7, and 9).Column 12: Sum of membrane plus bending stresses (Columns 4, 8, and 10).Column 13: Number of cycles for the transient (60 years).r SIR-07--130-NPS, Rev. B 4-4 Structural Inleogrty Associates, Inc.

Table 4-2: Feedwater Nozzle Safe End Stress Sumbmary' 8 j-~~rj 10 ~ .12 Total Nail Total M.D Total Total liwni_]Transient ITotal Time Stress ,-I 1-111 M4II Stre%3 1-ne Preassue Pressure Stress (DSD M+B Pressure Stress ID9il*Piping Stress ti3fll Piping Stress loan Total ITotal Stress (0l31 Total M+B Stress (as")of Cy0 160 w.amm10 0U Temperature 700 70.00 70 73.431'-or=0-42.1.1071 -8 3.-4--ql 4-4.--4 1804 Lz79 10961_ 1 -19L1-1021 -5 4~21 681 2-4.94.180 1887.IWO0.108 11 1 .3 11 10O 10 10 10*101 101 101 101 1010 1010 8779.44.55j 434 a 91 9 879.91 879 897991 879 8979.91 877 879.91 879 897991 8779 897.-5414.09-54 14.09-339.087-3.087-2150.78 M-203.38 3639.531.3561.AS-3359.11,.2712.,ýý2712V F712.90-2812.171-2983.2&1-363953 3639.53S 3639.531 3576.74 3437.20C 2373.612 73-73.81;2373.895 734-338M8 M-297.614-339.08751 4339M0.210712-3639.5 3M39.: 3039.5 9.11 3576.7 24712 7373.12 23732.11 23718 20.9M 444.434-339.08751-339.09 65.-65,~.48.3556.'355w.3548.1 53363.4 sm.8929.1-6607.11 5238.: 12(1450 12662.,*12732.: I 1257.1 1 176.4 5261U 12684C, 1-2-665.1 12661.A 12738.8*12597.1 1151332 6492.C 63521 8979.911 8779.1 68.14 58M.bera 123 120 120 120 300)300 300 300 300 300 300-I.8403.8, F 3351.831.-j 1 37.2, 1 IBM..25 10 113 11Z 114 21.84.26 e97t 8979*8979 8979 697 89 817 2202.'23314 29.91 9.91 9.91 9.91 D.91?.91 3.91 3.91 1.91 4.91.91'.91'.91.91.91.91.91.91L.91.91.91.91.91 91 91 12383.0'11761.A 11582M6 5853.71 12464.41, 12465.41 12500*6'1 12359.11 11345.5'11246.5'11261.6: 11243.6: 11386.w4 5100.31 12477.41, 12464.4!12462.41 12490M9 12370.3-: 111 196.7x 11084.01C 11Ti429.33 10746.3 9975Z0 9243.02-9276.2 8163.82 8779.1 87791 8779A 8779A 8779.6 6779.E 8779.A*8779.91 8779.9 87-79.9 8779.9 8779.9 8779.9 8779.9 8779.9 8779.9: '8779.9: 8779.9: 879.9 8779.9: 8779.9: 35U4.0441 1 1797.4011 1797.40 11914.3 11232.3 104600 9443.0 9475.2 8249.8[.4-12'12, ZI 1541-21C 1571-100.011-489.11111-4

.342(1 3494.1-12f iu 10, 19 0m 10 10 10 10 10M 10 10 10 162-9W 1621.2M 10101 f 3639.5391 12679.45A 12479.1 9104.8979.2204.0691 2204.0691 11190.98 10992.A 6979.8779.9: 2204.0691 2204.0691 11300.98D 11101.A T- G-~-.G 231U 591 59 2GTU 392 10101 For notes, see last page of table...Table 4-2: Feedwater Nozzle Safe End Stress Summary (continued)

SIR-07-130-NPS, Rev. B 4-5 Strctural Integrity Associates, Inc.

3 1 4 5 6 7. 8 9 10I 11 1 1211 13 TowI M 1"otsI 1146 Total I 4 MI Total TnwI e Total M Pre"mure Pressure pipnlng Piping Total "4e of TransienTni Sbress Stresm Temnperah tre"Presur Stress Stroms Stress Stress $985 Strssu yle Numbe as losI (st) I ( tppsig] (psi) (Ps!) I _ps0I (pi Mil- (60 vows-7--i 2.9 3.6 6.8 148.1 D03.'5 567.4 999.3 165.5 165.5 109.4 7148.-1-F-i 3 13M2 13829.1594-246-354 0454 158 0 17818-390-117 117-408-110e 1445 107-30 443 43 43 433 472 214 114 t115 155 655 61 48 43 43:43 94 20 72 66 14 15 55 16 13 3 3 3 4 5 5 392 655 501 50 V61.541 650 550 50 50 107.76 62.692010 8.878s 100 100 100 i40183ý,7.832 392 3112 392M 392 2275&.433 10 38 32 143 100.1832 392 392 392 275 L4313 100 100 392 392 392 276 100 392 392 392 182T 1010 1172 11 11 1135 1135 1135 1131 937 931 1118 1135 6 1010 1010 1010 M1613 1010 010 01001 1361 319 F02 1.29 US2 1.29 72-9 029 29 r25 152.13.91.91 91-917 12 1 11 112661., M. I----- -0331 11661 4877 For notes, see next page..-I SIR-07-130-NPS, Rev. B 4-6 Structural inteprily Associates, Inc.

Table 4-2: Feedwater Nozzle SafeEnd Stress Summary (concluded) 2, 3 4 1 5 8 9 10 11 122 13-- Total M+B Total MOB Total Total -Nlumber TOta ime8 Pressure Pressure Piping Piping Total MO of Transient r1me tesSrs Temperature Pressure *sures Sirenss Stres Stress Stress -Stres cycles Nube F .nsa -lost Jpsn ~ L iM J sfi (60 Years o __ 42 __431 -392 1010 8979.91 .8779.93 3639.539 3639.A" 12661.4 12462.47 1 10 42 *.431___ 392 -1010 8979.91 6 779.93 3639.839 3639.83 12661.45 12482.47 -019_ 42 _ 431___ 392 _ 1010 8979.91 -8779.93 3639.839 3639.M3 A12661 AS __12462.47

___300 1T' .21 0 1571 384.4361__

10101 6979.91 8779.93 35U4.044 3854.044 12733.95 __12490.97

.300-'2 199 A551 373.9591 10101 6979.91 8779.931 3435.623 3435.623._12614M8 12370.8 300 S 285 2121 2651 10101 '8979.91 8779.931 2204.06.9 2204.069 11438.98 .11196.00

_ 300 188 100 1 266 1 10101: 8979.91 *8779.931 2204.069 2204.069 11283,98 11084.00 _ 300-2j p 114 1151 26851 10101., 8979.91 877.931 2204.069 2204.069 11297.968_

11099.00; 300 20 0 301 2651 10101 6979.91 83179.931-220C.069

-2204.069 6743.84 .6545.86 300 60 -4785 -34941 392.151 10101 6979.91 -87.79.931-3641.235

-34 .23 85.68 1844.70__

300.367 157 1581 ____ 491- 10101 8979.91 87e 9.93.,414.097 65414.09 145681.01 14362.003

_ 3001 770 34 341 5491- 1010 -8979.91 -87.79.9 8 414.097 8414.097; 14428.01 14228.093

_ 3001.20A. 0 116 649 -10101 8979.91 8779.9 U514.097 -U414.097 35.46.81 __3341.83

_ 300 4 4~04"4 30972 100 -1010 8979.91 8779.93 339.0875 3-39.70687

-- ' .____3 300 1 4171 .44- 10 0 76 -4171 .411 1001 1010 8979.91 8779.93 -339.0875

.339.0875 8223.82 8026.84 __ 0 18 -1 5 4110 1010 8979.91 *8 9.93 739.0875 -339.0875 8225.82 8029.84 300 241 -74771 -8841 290.1231 101[0 819,79.91 8779.93 -2488.032

-2488.032

-9815.12 __750.90 _ 300 0 5 57 48 148 5491 1010 8979.91 8779.93 8414.097 5414.097 14542:0D1

.4342.03 _ 300 67 1 1 8 5S 7 87 6491 1010 897991 8779.93 5414.097 5414.097 14451.01 14251.03 _ 300 , 6717 21-23 0 19 -54 549 1010 :8979.91T

87.93-8414.097

-8414.097.

3546.61 .2816.6 M 300 i~a ___46 646 84.217 -96 784.306 38 .6 8382.641 -832.64 419 2661.02 300 , 143 6 -4 o 6264 29 -375 3j74.985 5__ 0 444.855 434.8 344722 -344722 3920.77 -337.55 -30 97- 14 -36 366.802 __ 01 -44.8- 3.6 3354.728 -3354.728 393920 -3286.868

_ 300-007 14 -3261 326.6 5 01 444.55 43.6 2900.328 -2900.328 3368.8 -2791.790

_ 300 S 2 -285 2408 -6 4.6-446 2532.809 -2532.609 3002.06 -2352.76 .300 15.297 .-50 -1001 100 -501- 444.551- 434.65 -339.0875

-339.0875 56.48 -4.4 -300 164 1001 1001 501 444.65 434.65 -339.087 -339.0875 61.46 -4.44 ___300 24 o 1001 100 50 444.651 434.65 -33.0875 3439.0875 65.48 -4.44 1__-40 -1001 100 1863 13896.631 13587.16 -33.0875 -339.0875 13517.85 13146.07 _ 11 12oo 1100 1663 13896.63 13687.16 -339.0875 439.0875 13517.85 13148.07 _ _ 1 18Mo 1001 100 ___56 444.r56 434.9 .339.08 439.5875 63.448 -4. __240 1001 100 ý___ 4-44.55 ý434.55 -.33-9.08r M49_.0875 565A6 4.4'25 0 __ -00 110_ _ 0 0 M9.08754-39.0875

-379.09 .4390 123 7 25 ".'5 128 0 U3 I 129 9 9648___0 0 -0298.71351-298.71361 323 11 -395.14 123 S 50 123 1214 -7 0 --123-51 .01 7U 00o2-1 ,701 .71.1 0 0 1 0 6M 7.0 13 i l ,, NOTES: Column 1: Transient number identification.

Column 2: Time during transient where a m'axima or minima stress intensity occurs from P-V.OUT output file. , Column 3: Maxima or minima total stress intensity from P-V.OUT output file.Column 4: Maxima or minima membrane plus bending stress intensity from P-V.OUT output file.Column 5: Temperature per total'stress intensity.

Column 6: pressure per Table 3-5.Column 7: Total pressure stress intensity from the quantity (Column 6 x 8891)/1000.

Column'8:

Membrane plus bending pressure stress intensity from the quantity (Column 6 x 8693)/1000.

Column 9: Total external stress from calculation in Table 1, 5707.97 psi*(Column 5-70°F)/(575*F

-70*F)., Column 10: Same as Column 9, but for M+B stress.Column 11: Sum of total stresses (Columns 3, 7, and 9).Column 12: Sum of membrane plus bending stresses (Columns 4, 8, and 10).Column 13: Number of cycles for the transient (60 years).SIR-07-130-NPS, Rev. B 4-7 Structural nlnegrity.Associates, Inc.

Table 4-3: Fatigue Parameters Used in the Feedwater Nozzle Fatigue Analysis Value for Safe End Value for Blend Radius Parameter Location Location'(f6rconwuting ) 3.0 , 2.0 n n ',: 0.2 "*0.2'(for computingJQ 0.2 .2.Design Stress-IntensitY, Si 17,800 psi 26,700 psi Elastic Modulus from Applicable.

30.0x6psi 30.0x10 6 psi06 Fatigue Curve, " ____"_,__Elastic Modulus Used in FEM 28.1xi0 6 psi 26.7xi0 6 psi Analysis, E____. _-Geometric Stress Concentration'.Factor,K 1.0, 1.0 SIR-07-130-NPS, Rev. B 4-8 RStructural Integrity Associates, Inc.

I,..Table 4-4: Fatigue Results for Feedwater Nozzle Blend Radius LOCATION = LOCATION NO. 2 --.BLEND RADIUS FATIGUE CURVE = 1 (1 = CARBON/LOW ALLOY, 2 = STAINLESS STEEL)m -2.0 n =, .2 Sm = 26700. psi Ecurve = 3.000E+07 psi Eanalysis

=2.670E+07 psi Kt =1..00 MAX 173352.73352.63832.63632.60224.5.7479.57459.57459.574331 57371.57371.57371.57254.57254.57254.57254.57254.56912.56862.56862.56862.56770.56770.56535.55390.55273.51195.45800.45800.45505.45492.45492.45420.45420.*45420.45279.45279.45279.45279.45279..45279.MIN. RANGE 24554., 48797, 24554. 48797.24554. 39277.24554. 39078.24554. 35670.24554. 32925.245*54. 32905.24739. 32720.24739. 32694.24739'.. 32632.24739. 32632.24773. 32598.247.73...,.

3.2480.24773.".2480.

24775. 32478..24780.: 32474.24795. %:32458.24795. 32117.24795. -k2066.24799. 32062.24g04. *32057.: 24804.. 31966.24.809." 31961.24809.. 31726.24809. 30581.24809. .-30463.24809. -26385.24809. 20990..24809. 20990.24809.. .20695.24809. 20682.24809. 20682.24809. 20610.25538. 19881.25863. 19556.25863. 19416.26922. 18357.27082. 18197.27482. 17797.29119. 16161.29893. -15387.MEM+BEND 42392.423.92.27158.-4689..29667.-2528.21400.21479.28184.10385.10385.10306.28683.28683.13234.28717.28744.26355.2.8098.:23063.28116......15622.15632.23327.8471.26848.12952...17439.'17439.18243.18522.18522.18522.7132..16505.]14180.1 11425. 1 8826. 1-12080. 1 16684. 1 13464. 1 Ke 1.000 1.000 1.000 i.000 1.000 1.000 1.000.1.000 1.000 1.000 1.000 1.000 1.000 1.000.1.0006 1 .000 1.000 1.000 1.000 1.000 1.000 1.A000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 L.000[.000 L.000 1.000 1.0001.000 1.000.000*.000*.000 L.000.I.Sa.1t 174 14..27414.22066.21954.20039.18497.18486.18382.18368.18333.18333.18314.10247.18247.18246.18244.18235.18043.18015.18013.18010.17959.17956.17823.17180.17114.14823.11792.11792.1.1627.11619.11619..11579.11169.10987.10908.10313.10223..9998.1 9079.8644.Napplied 1.000E+00 1.000E+00 1.000E+01 1. 200E+02 1. OOOE+01 1I 480E+02 1.520E+02 1.000E+01 1.000E+00 1. 370E+02 9,100E+01 1.000E+00 2.080E+02 1.000E+01 1.000E+01 0.O0OE+00 1+. OOOE+01 2.900E+02 1.000E+01 O.O00E+O0 3.000E+02 0.OOOE+00 1.OOOE+01 6. 000E+01 6.OOOE+01 1.OOOE+01.

1.600E+02 1.4 OOE+02 7.OOOE+01 9.00OE+01 2.100E+02 9. OOOE+01.1 OOOE+01 2.OOOE+02 1. OOOE+02 1.OOOE+01 1.000E+01 1.OOOE+01 1. 230E+02 1.O000E+00 Nallowed U 21.917E+04

.0000'2.917E+04

.0000 6.141E+04

..0002 6.299E+04

.0002 9.904E+04

.0012-.1.325.E+05

.0001 1.328E+05

.011i.1.355E+05

.0011 1.359E+05

.0001 i.368E+05.

.0000 1.368E+05

.0010 1,374E+05

.0007 1.392E+05

..0000 1.392E+05

.0015 1.392E+05

.0001 1.393E+05

.0001 1.395E+05

.0000 1.449E+05

.0001 1.457E+05

.0020 1.45.8E+05

.0001 1.459E+05

.0000 1.474E+05

.0020 1.475E+05

.0000 1.515E+05

.0001.1.729E+05 1.0003 1.753E+05

.0003 3.262E+05

.0000 2.012E+06

.0001 2.012E+06

.0001 2.297E+06

.0000 2.311E+06

.0000 2 311E+06 .0001 2.388E+06.

.0000 3.345E+06

.0000 3.903E+06

.0001 4.175E+06

.0000 6.197E+06

.0000 6.521E+06

.0000 7.423E+06

.0000 1.788E+07

.0000 3.594E+07

.0000 SIR-07-130,NPS, Rev. B 4-9 SIR-7-10-NP, Rv. B4-9Structural Integrity Associates, Inc.

4.5279.45254.44426.44426.44426.44426.44426.44426.44426.44426.44426.44426.144426.44426.44426.44426.44426.44426.44426.,4 ;426.'44426.-42298.42298.42298.42298,.42298.42298..40151.40000.40000.40000.40000.40000.40000.* 36514.36514.36514.36514.36514.* 36514.36513.36462.36462.36462.36462.36462.3.6462.36462.364.62.36462.36462.36462.36462.36462.30533.30533.30533.30534.30534.30534.30534..30538.30603.31283.31283.31283.31286.31308.33913.34481.34481.34481.347.14.36408.36443.36443.36443.36443.36454.36457.36457.36457.36457.36457.36457.36457.36457.36457.36457.36457-.-36457 .\36457.36457.36457.36457.36457.3.6458.36462.36462.36462.36462.36462.36462.36462.36462.36462.36462.36462.14747.14721.13893.13892.13892.13892.13892.13888.13823.13143.13143.13143.13140.13118.10513.9945.9945.9945..9712.8018.7983-5854.5854.5854..5843.5840.5840.3694.3543.3543.3543.3543.3543.3543.57.57.57.57.57.57.56.5.4.0.0.0.0.*0.0..0.0.*0.0.0.15306."1.000 18307.-1.000 16550. 1.000 16553. 1.000 16553:1,.000 16553.'1.000 16553. 1.000 16563. 1.000 16563. 1.000.16138., 1.000 i6138 -.'*1.*000 16145. 11.000 16145. 1.000 1837. 1.000 9005.1.000 9005.' 1.000 9005. 1.000-9535. 1.000 7051. 1.000 7045. 1.000 5110. 1.000.5110. 1.000 5138. 1.000 5143. 1.000 5142. 1.000.4556. 1.000 3432. 14000 3432. 1.0.00 3432. 1.000 3432. 1.000 3432. 1.000 3432. 1.000, 1098. 1.000 1099. 1.000 1099. 1.000 1099. 1.000 1099. 1.000 1099. 1.000 928. 1.000-3. 1.000-3. 1.000 0. 1.000 0. 1.000 0. 1.000 0. 1.000 0. 1.000 0. 1.000 0. 1.000 0. 1.000 0. 1.000 0. 1.000 0. .1.000 8285.8270.7805.7805.7805.7805.7805.7802.7766.7384.7384.7384.7382.7370..5906.5587.5587.5587.5456.4504.4485.3289.3289.3289.3283.3281.3281.2075.1990.1990.1990.1990.1990.3990.32.32.32.32.32.32.31..3.2.0.0.0.0.0.0.0.0.'0.0.4.600E+01 1.OOOE+01 6.400E+01 3. OOOE+02 1.000 E+0,0*1.000E+00 3.. OOOE+02 3.OOOE+02 1.230E+02 1.230E+02 1.200E+02 1.230E+02 1.230E+02 1.OOOE+01 6.OOOE+01 1. OOOE+00 2.28OE+,2 1. 000.E+01 7.OOOE+Q1 4 .200E+01 1 .800E+01 1. OOOE+00 2.280E+02 7.OOOE+01 3.OOOE+02 9.38.3E+03

1. OOOE+01 6. OOOE+0i 6. 00.OE+01 1. OOOE+00 1. OOOE+00 2.280E+02 2.280E+02.2.900E+01 1.000E+01 1.OOOE+01 6.OOOE+01 1.006E+00 1.900E+02 1.000E+01 2.*800E+01 2.OOOE+03 7.972E+03 2.OOOE+03 1.OOOE+01 7 .OOOE+01 1.OOOE+01 6.6000E+O1 1.OOOE+00 1.OOOE+00 2.2.80E+02 1.OOOE+00 5.858E+07 5.939E+07 9.447E+-07 9.453E+07 9.453E+07, 9.453E+07' 9.453E+07 9.475E+07 9.838E+07 2.990E+08 2..990E+08 2.990E+08 3.006E+08 3.122E+08 1.OOOE+20 1. OOOE+20 1.OOOE+20 1. 00.OE+20 1.OOOE+20 1.OOOE+20 1. OOOE+20 1. OOOE+20 1. 00E+20 1.000E+20 1..000E+20 1.OOOE+20 1. OOOE+20 1.OOOE+20.1.000E+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.000E+20 1.; OOE+20 1.000E+20 1.OOOE+20 1. OOOE+20 1.OOOE+20" 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.OOOE+20 1.00'OE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20, 1.OOOE+20.0000.0000.0000.0000.0000.0000*'.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000..0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.:0000.0000.0000.0000.0000.oo0o.0000.0000.0000.0000.0000..0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000'.0000 I-'4$'4$1.OOOE+00.1.OOOE+20 SIR-07-130-NPS, Rev. B 4--10 S 7 N R4Structural Integrity Associates, Inc.

I ...I TOTAL USAGE FACTOR =.0127-9 ," q i, q*e .4* I SIR-07-30-NPS;Rev.

B, 41 4-11 Structural Integrity Associates, Inc.I Table 4-5: Fatigue Results-for the Feedwater Nozzle, Safe End LOCATION = LOCATION NO. 1 -- SAFE END FATIGUE CURVE 1 (1 = CARBON/LOW ALLOY, 2 STAINLESS STEEL)dn= 3.0 n= .2.Sm = 17800. psi Ecurve = 3.OOOE+07 psi Eanalysis

=2.810E+07 psi 1.34--~44 MAX 70223.70221.61941.53363.53363.53363.53363.53363.53363.53363.53363.53363.53363.53077.53077.15843.15162.15079.15079.15079...15079.14601.14590.14551.14551.14551.1455.1.14542.14542..14451.14451.14451.14428.14428.14428.14213.14213.13773.13773.13773.1.3773.13773.MIN RANGE-18217. 884401.,-18217. 88438.-18217. 80158.-18217. 71580.-17604. 70967.-17604. 70967.-17604. 70967.-1.5701. 69064.-15301. 68664.:-11096. 64459.-10646.. 64009.-10646. 64009.-8930. 62293.-8930. 62007.-985. ..54 062.-985. 16828.-985. 16147.-985.. 16064.-985. '16064.-985. -16064.-379.'15458.

--379. 14980.-37.9.. 14969.,-379. .14930.-146. 14697.-50. 14601.* -48. 14599.-48. -14590.-44. 14586.,--44. 14495..-42. 14493.-42. 14493.-42. 14470..-42. 14470..55. 14373..55. 14.157.61. 14151.61. 13711.61. 13711.61. 13711.61. 13711..65. 13707.MEM+BERDi Ke.61480. 1.303 61478. 1.303 515607.; 1.083 50176. 1.000 49576. 1.000 49576. 1.000 49576. 1.000 49561. 1.000 49170.I1.000 46802.,1.000 462.73. 1.000 46273. 1.000 44558. 1.000 44023. 1.000 38805. bI.000 14869. 1.000.14202. 1.000 12932. 1.000 12932. 1.000.12932. 1.000 14122. 1.000"13960.-1.000 13643.1.000 14791. 1.000 14477..1.000 14422. 1.000 14389. 1.000 14379.. 1.000 14412. 1.000 14321. 1.000 14289. 1.000 14289. 1.000 14266. 1.000 14266. 1.000 14232. 1.000 2665. 1.000 2665. 1.000 13554. 1.000 13554. 1.000 13554. 1.000 13554. 1.000 13491. 1.000 Salt Nappliedý6 32'1.:OOOE+01 76026.. 1.000E+01 57252. 1.000E+01 47317.. 3.000E+01 46880. i.000E+.1 46880. 1.000E+00.46880. 2.280E+02 45862. 1.000E+01 45577. 1.000E+01 42903. 1.000E+01 42567. 1.OOOE+00 42567. 9.OOOE+00 41339. 2.910E+02 41090. 9.OOOE+00 35902. 1.OOOE+00 11682. 1.OOOE+01:

11197. 1.O00E+01 10922. 6.OOOE+01 10922. 1.OOOE+00 10922. 2.180E+02 10814. 1.OOOE+01 10530. 7.OOOE+01 10467. 1.000E+00 10654. :4.200E+01 10473. 1.200E+02 10412. 1.230E+02 10405. 1.500E+01 10398. 2.850E+02 10402. 1.500E+01 10337. 1.080E+02 10330. 1.230E+02 10330,. 6.900E+01 10313. 5.400E+01.

10313. 1.200E+02 10255. .1.260E+02

.8041. 1.740E+02 8038. 1.260E+02 9779. 6..OOOE+01 9779. 1.000E+00 9779. I..O00E+00 9779. 1.120E+02 9766. 1.160E+02 Nallowed U 1.263E+03

.0079 1.264E+03

.0079 2.852E+03

.0035 5.217E+03

.0058 5.363E+03

.0019 5.363E+03

.0002 5'.363E+03

.0425 5.724E+03

-.0017 5.830E+03

.0017 6.976E+03

.0014 7.141E+03

.0001 7.141E+03

.0013 7.789E+03

.0374.7.930E+03

.0011'1.213E+04

-.0001 2.198E+06.

.0000 3.268E+06

.0000 4.125E+06

.0000 4.125E+06

.0000 4.125E+06

..0001 4.526E+06

.0000 5.489E+06

.0000 5.686E+06

.0000 5.126E+06

.0000 5.666E+06

.0000 5.863E+06

.0000 5.885E+06

.0000 5.907E+06

.0000 5.895E+06

.0000 6.115E+06

.0000 6.138E+06

.0000 6.138E+06

.0000 6,196E+06

.0000 6.196E+06

.0000 6.403E+06

.0000 7.441E+07

.0000 7.465E+07

.0000 8.447E+06

..0000 8.447E+06

.0000 8.447E+06

.0000 8.447E+06

-.0000 8.516E+06

.0000 SIR-07-130-NPS, Re'ý. B 4-12 RStructural IntegrIty Associates, Inc, 13773.13773.13518.13518.12754.12739.12739.12739.12739.12739.12739.12739.12739.*12739.12739.*12739.12739.12739.12739.12739.12739.12734.12734.12734..12732.12732.12732.12732.12732.12732.12732.12732.12732.12732..12732.12732.'12732.12732.12684.12684.12679.12679.12679.12679.12679.12678.12677.12665.12665.12664.'12664.12664.-12664.12664.12663.65 65 65, 65, 65, 65.6 65.65.65.324.554.950..991.1377.3002.3359.3536.3547.3547.3547.3551.3551.3551.3557.3557.3600..3921.3939..4292.4496.4658.5238, 5239.5239;1 5239.5244., 5260.5261.5261.5943.5943.5943.5943.5943.5943.5943.5943.5943..6111.6111.6111.6111.6111.6111.6111.13707..13707.* 13452.13452..12689.12673.12673..12673.12673.12415..1.2185.11789..11748.11362.9737..9380.9202.9192.9192.9192.9188..9183.9183.9177.9176.9133.8812..8*793.8440.8237.8074.7494.2.7493.7493.'-7493.'7488.7472.7471.7423.6742.6737.6737.6737.6737.6737.6736.6735.6723.6555.: 6554.6554.6554.6554.6554.6553..13491."I.,000 13491. 1.000 13090. 1.000 13090. 1.000 12496. 1.000 1244'2.,1.000

.12505. 1.000 12505. 1.000 12505. 1.000 12896. 1.000 10856.,1.000 11561.., 1.000 11520., 1.000 11255. 1.0001 14883. 1.0.00 15292. 1.000'9163. 1.000 9153. 1.000 9153. 1.000 9684. 1.000 9149. 1.000.9139. 1.000 9139., 1.000 9133. 1.000 9231. 1.000 8592. 1.000 15976. 1.000 15875. 1.000 8516. 1.000-2873. 1.000 7689. 1.000 7503. 1.000 750.3. 1-.000 7503. 1.000 7503.1.000 7499. 1.000 7488. 1.000 7584. 1.000 7480. 1.000 6799. 1.000 6795. 1.000 6794. 1.00.0 6795. 1.000 6795. 1.000*6795. 1..000 6793. 1.000 6792. 1.000.6780. 1.000 6612. 1.000 6611. 1.000 6612.. 1.000 6612. 1.000 6,612. 1.000 6612. 1.000 6611. 1.000 9766 9766 9557 9557 9041 9023 9035 9035.9035.8968.8475.8391.18362..8108.'7899.*.7782.6575.6568.6568.6.664 6565.6561.6561.6556.6573.6435.7603 7575.6051.3875..5706.5362.5362.5362 5362.5358.5348.5365.5320.4833.4829.4829.4829.4829.4829, 4828..4828.4819.4699.4698.4698.4698.4698.4698.4698.4.OOOE+00 2.240E+02 1.OO0E+00 1.000E+00 7.000E+01 4.OOOE+00 1.000E+00 1.000E+00* 1.000E+00 1.230E+02 3OOE+02 S1.OOOE+00 1.OOOE+00 1.OO0E+00'3. OOOE+02 3.OOOE+02 1.OOOE+01 3.000E+02 3.OOOE+02 5.700E+*1 1.OOOE+01 2.330E+02 6.70OE+01 2.330E+02 1.OOOE+01 3.OOOE+02 3.OOOE+02.

1.OOOE+01 1.OOOE+01 7.O0OE+01 3.OOOE+02 6.OOOE+01 1.000E+00 2.280E+02 1.00 OE+01 2.600E+03 6.4 68E+03 3.532E+03 6.468E+03 3.OOOE+02 1.OOOE+01 6.OOOE+01 1.OOOE+00 2.280E+02 7.OOOE+01 2.OOOE+03 8.630E+02 9 .137E+03.3.OOOE+02 1.OOOE+01 6.OOOE+01 1.000E+00 2.280E+02 2.640E+02 8.516E+06.8.516E+06 9.660E+06 9.660E+06 1.886E+07 1. 935E+0.7 1.904E+07ý. 904E+07 1.904E+07 2.107E+07 4.,792E+07 5.287E+07 5.438E+07 6.964E-+7 8.'587E+07 9.670E+07 1.060E+20 1.OOOE+20.!

1..OOOE+20

1. 009E+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20-i.000OE+20 1.54 1E+08 1. 676E+08 1. OOOE+20 1. OOOE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1,000E+20 l.OOOE+20 1.OOOE+20 1.000E+20 1.OOOE+20 1. OOOE+20 1.OOOE+20 1.OOOE+20 1. 000E+20 1.OOOE+20 I.OOOE+20 1.000E+20 1.OOOE+20 1.00OE+20 1.OOOE+20 1. OOOE+20 1.OOOE+20 1.OOOE+20 1. OOOE+20 1.000E+20 1.OOOE+20 1.OOOE+20.0000.0000..0000.00.00*.0000.0000..0000.0000 A.0000.0000.00,00.0000.0000.0000.0000:.0000'.0000.0000.-0000..0000.,0000.0060.0000.0000..0000.0000*.0000-.0000.0000.o.0000.0000.OQOO.0000.0000..0000.0000.0000.0000.0000.oooo.0000.'0000.0000.0000.0000.0000.0000.,0000.0000.0000.0000.0000.0000.SIR-07-130-NPS, Rev..B.4-13 SRvStructural integrity Associates, Inc I.12663.12663.12662.12662.-,2662.12662.-12662.12662.12662.12662.12662.12662.12662.12662.*12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662 *12662.12662.12662.12.662.12662..12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.12662.'12662.12662.* 12662.12662.12662.12662.12661.12661.12661.12661.6113 6352 6352 6492 6534 6608 6744 7125 716V 7440 8164 8224.8224.,8226.8250.8282.8529.8601.8613.8863.8911.9290.9383.94.09..9443.9475.9485.9485.9533.9533.9666.9912.9912.-10069.10460.10928.10934.-11191.11232.11284.11284..11298.11301.11325.11325.11325.11346.11439.11439.11447.11462.11462.11551.11551.11584.6550.6311.6310.6170.6129.6055.5919.5538.5495..5223.4499.* 4439.* 4439.4437.4413.4381.4133.4062.4050.3800.3752.3373.3279.3253.3219.3187.3177., 3177.3129.3129.2997."2750.,.2750.2593.2202.1734.1729.1471.1430.1378.1378.1364.1361.1337..1337.1337.1316.1223.1223.1216.1201.1200.1111.1111.1078.6479. :1.000 1078. "1.000 1075. 1.000 1218. 1.000 6014. 1.000:6004. 1.000.59.16.. 1.000 5439. 1.000:5340. 1.000 5107. 4.000 4480. :1.000.4435. A1.000 4435. '1.000 4432. 1.000 4298.. 1.000 4377..:1.000 4124. 1.000 4058. 1.000 3961. 1.000 3785. 1,000 3737. 1.000 3479. .i.000 3276. 1.000 3267. 1.000 3218. 1.000 3185. 1,000 3176. 1.000 3176.. 1.000 3128. 1.000 3128. 1.000 3075. 1.000 2870. 1. 000 2870. 1.000 2615..1.000, 2486. .1.000 1840. 1.000 1673. 1.000 1469. 1.000 1715. 1.000 1377. 1.000 1377. 1.000 1362. 1.000 1360. 1.000 1290. 1.000 1290. 1.000 1290. 1.000 1315. 1.000.1265. 1.000 1265. 1.000 1215. 1.000 1200. 1.000 1201. 1.000 1233. 1.000'1233. 1.000 1117. 1.000 4672 3565 3564.351.5 4363: 4322.4233.3943'3903.3715.3214.3174.3174.'3I7ý.:3136.3133.2955.2905.2881.2715.2681.2432.2345..2330.2303.2279.2273.2273.2238.2238.2158.1989.1989.1859.1627.1260.1226.1052.1075.986.986.976.974.948.948.948.941.883.883.870.859.858..817.817.778.1.OOOE+01 1.OOOE+20.1.726E+03 1.OOOE+20 2.740E+021,.OOOE+20 2.OOOE+03 1.OOOE+01 3.*OOOE+02 3.OOOE+02 1.0OOE+01 1.000E+01 1.OOOE+01.1.OOOE+01 3.OOOE+02.3.OOOE+02
  • 3.0OOOE+02 1.OOOE+01 1.OOQE+01 1.OOOE+01 3.OOOE+02 1. OOOE+01 6.. OOOE+01 6.OOOE+01 6.OOOE+01 1.000E+01 1.1200E+02 1.000.E+01 1.OOOE+01 I.OOOE+00 2.280E+02 1.OOOE+00 2.280E+02 1.OOOE+00 1.OOOE+00 2.280E+02 1.OOOE+01 1.000E+01 6.OOOE+01 6.OOOE+01 7.000E+01 1.OOOE+01 1.OOOE+01 3.OOOE+02 3.OOOE+02 7..OOOE+01

'1.000E+01

1. OOOE+00 2.280E+02'1.OOOE+01 1.OOOE+01 13. OOOE+02 2.OOOE+03 1. 359E+03 6.-410E+02
1. 000E+00 2.280E+02 1.130E+03 1.OOOE+20 1.000E+20 1.OOOE+20 1.OOOE+20 1..OOOE+20 1.OOOE+20 1.00OE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1.OOOE+20 1 .OOOE+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.00OE+20 1.OOOE+20 1.006E+20 1.OOOE+20 1.OOOE+20 1.600E+20 1.OOOE+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.OOOE+20-1.000E+20.

1.OOOE-i20 1.000E+20.

1.000E+20 i.OOOE+20 1.OOOE+20 1. OOOE+20, 1.000E+20 1.000E+20 1.OOOE+20 1.000E+20 1.000E+206 1.006E+20 1*OOOE+20 1.OOOE+20 1.OOOE+20 1.000E+20 1.OOOE+20 1.0OOE+20 1.OOOE+20 1.000E+20 I.OOOE+20 1.000E+20.0000...0000.0000.0000.0000'-.00,00 0.000.0000..60000.0000.0000,..0000.0000.0000.0000:..0000.0000.0000.0000.000oo.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 , 0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.'0000.0000.0000.0000 ,0000.ooo0.0000.0000.0000.0000.0000* .44'I,,,.SIR.07_I30.NPS, Rev. IB 4-144 V Structural integrity Associates, Inc.

12661.12661..12661., 12661..12661.12661..12661.12661.12661.12661.12621.12615.12615.12615..12597.12527.12527.12039.11914.11906...i1584.--11584.,11584.;.i1584.11584.11584.1 1584.11584.11584.11584.11584..,, 11584.1-*11584.11762.11762.11-762..11784.11784.'11784.11784.1078.1078.1078..10.78*...1078.1078.1078.1078.1078.i1078.1%038.1031.1031.853.836..7,65'.743.255.130.122.1117.1117.1117.1117.'1117.1117.1117.1117.1117.1117.1077.1025.1025.810.799.822.800..271.-154.179.1.000 1.000 1;.000 i.ooo 1 .000 1.000.1 .000 1.00o 1..000 1.000 1.000 1.000 1.000 1.O0001 1.000o 1.000.1.000 1. 000 14100 1.000 778.778.778.778.778.778.778.778.778.778..750.736.736.60?.'591.558.542.185.42.S97.1.000E+01 1.000E+20 1..000E+011.O00E+20 7.000E01".1.O00E+20 6.00OE+01 1.000E+20 1.OOOE+00 1.00 OE+20 1.OOOE+00 1.OOOE+20 2.280E+02 1.000E+20.

1.000E+00 1.000E+20 1.OOOE+00 1.OOOE+20 3.OOOE+02 1.O00E+20 1.000E+01 1.000E+20 1.OOOE+01 1.000E+20 1.680E+02 1.OOOE+20 1.320E+02 1.OOOE+20.2.000E+03 1.00OE+20 7.860E+03 1.OOOE+20 2.132E+03 1.000E+20 6.OOOE+01 1.O00E+20 1.000E+01 1.OOOE+20 7..798E+03 1.000E+20.0000.0000.0000.0000.0000.0000.0000,.0000'.0000.0000.0000.0000..0000.0000.0000.0000.0000.0000.0000.0000'= 1==F==14..1149 I.TOTAL USAGE FACTOR SIR-07-130-NPS, Rev. B 4-15 RStrct.ural Integrity Associates, 1h

5.0 ENVIRONMENTAL

FATIGUE-ANALYSIS Environmental fatigue multipliers were computed for both normal water chemistry (NWC) and hydrogen water chemnistry (HWC) conditions in Reference

[24] for various regions of the VY." RPV and attached piping. Based on VY-specific dates for plant startup and HWC implementation, as well as past and future predicted HWC system availability, it was determined that overall HWC, availability is 47% over the sixty year operating period for VY. Therefore, for the purposes of the EAF assessment of tho FWW nozzle, it was. assumed that HWC conditions ex~ist for 47% of the time, and NWC conditions exist for 53% of the time over the 60-year operating life of the plant. RPV upper region chemistry was assumed for the FW nozzle blend radius location, since this location experiences reactor conditions for all times. FW line chemistry was assumed for the FW nozzle safe end location, since this location experiences feedwater conditions for all times.For the safe end location, the environmental fatigue factors for pre-HWC and post-HWC are both 1.74 rom Table 3 of Reference

[24] for the RPV FW line. This results in an EAF adjusted CUF as follows: 60-Year CUF, U 6 o 0.1149 (from Table 4-4)Overall EAF multiplier, Fe, =.1.74 60-Year EAF CUF,Uo.,v=

0.1149 x 1.74 =0.1999 The EAF CUF value of 0.1999 for 60 years for the safe end is acceptable (i.e., less than the allowable value of 1.0).The fatigue calculation documented in Section 4.0 for the blend radius location was performed for the nozzle base material since cladding is structurally neglected in modem-day fatigue analyses, per ASME Code,Section III, NB-3122.3

[9]. This is also consistent with Sections 5.7.1 and 5.7.4 of NUREG/CR-6260

[25]. Therefore, the cladding was neglected and EAF assessment of the nozzle base material was peformied for the blend-radius location.SIR-07-130-NPS, Rev. B 5-1 Strctural Integrity Associates, 1t For the blend radius location, the environmental fatigue factors for pre4HWC and post-HWC are 11.14 and 8.82, respectively, from Table 4 of Reference

[24] for the RPV upper region. This results in an EAF adjusted CUF as follows: 60-Year CUF, U6o= 0.0127 (from Table 4-5)-Overall EAF multiplier, Fe = (11.14 x 53% + 8.82 x 47%) 10.05 60-Year0EAF CUF, U6D.cnv0.0127 1i0.05O.l1276 The,.EAF CUF value of 0.0432 for 60 years for the blend radius is aeceptable (i.e., less than the allowable value of 1.0).SIR-07-13,0-NPS, Rev. B 5-2 10 strutue ral Injagrity.Associales,-

Inc

6.0 CONCLUSION

S This report documents a refined fatigue evaluation for the VY FW nozzle. The intent of this evaluation is to use refined transient.

definitions and the revised cyclic transient counts for'60 years for a computation of CUF, including EAF effects, that is morerefined than previously performed fatigue analyses.

The fatigue-limiting locations in the FW nozzle and safe end are.included in the evaluation,,to be Consistent with NUREG/CR-6260

[25] needs for EAF-evaluation for license renewal. The final fatigue results are considered to be a replacement to the values previously reported in the VY LRA.*1The fatigue calculations for the VY FW nozzle were performed in accordance with ASME Code, Secticn Im, Subsection NB-3200 methodology (1998 Edition, 2000 Addenda) [9]. The stress evaluation is sunmnarized in Section 3.0, and the fatigue analysis is summarized in Section 4.0.The results in Section 4.0 reveal that the CUF for the limiting safe end location is 0.1149, and the CUt for the limiting blend radius location:is 0.0127. Both of these values represent 60 years of plant operation, including.all relevant EPU effects.EAF calculations for the VY F'W nozzle were also performed, as summarized in Section 5.0.The results in Section 5.0 reveal that the EAF CUF for the limiting safe end location is 0.1999, and the EAF CUF'for the- limiting blend radius location is 0.1276. Both of these values represent 60 years of plant operation, including all relevant EPU effects.All fatigue allowables, both with and without EAF effects, are met, thus demonstrating acceptability for 60 years of operation.

SIR07-130-NPS, Rev. B 6-1 Structural Inlegrity Associates, Inc.

7.0 REFERENCES

1. REDACTED 2. CB&I RPV Stress Report, Sections T4 and $41 "Feedwater Nozzle, Vermont Yankee Reactor Vessel, CB&I Contract 9-6201," SI File No. VY-05Q-238.

.3. GE Design Specification No. 21A1115, Revision 4, "Vermont Yankee Reactor Pressure Vessel," October 21, 1969, SI File No. VY-05Q-210.

4. Ku0, A. Y.. Tang, S. S., and Riccardella, P. C., "An On-Line.Fatigue Monitoring System for Power Plants, Part I -Direct Calculation of Transient Peak Stress Through Transfer Matrices and. G..'s Functions," ASME PVP Conference, Chicago, 1986.5. ANSYS, Relase 8.1 (w/Service Pack 1), ANSYS, Inc., June 2004.6. Structural Integrity Associates Calculation No. VY-1 OQ-301, Revision 0, "Feedwater Nozzle Finite Element Model and Heat Transfer Coefficients." 7. Stctural Integrity Associates Calculation No. YAEC-1 3Q-303, Revision 0, "Thermal Transient Analysis." 8. VW Drawing No. 5920-9057, Sheet 1, Revision 1, S1 File No. VY-05Q-215.
9. American Society of Mechanical Engineers Boiler & Pressure Vessel Code,Section III, Rules for Construction of Nuclear Facility Components, 1998 Edition, 2000 Addenda.SIR-07-130-NPS, Rev. B 7-1 Structural Integrity Associates, Inc..
10. Structural Integrity Associates Calculation No. VY-16Q-301, Revision A, "Feedwater Nozzle Green's Function." 11. GE Drawing No. 91 9D294, Revision 11, Sheet No. 7, "Reactor Vessel," SI File No. VY-05Q-241.12., CB&I Addenda to RPV Stress Report "Certification of Addenda to the Stress Report for Vermont Yankee Reactor Vessel," July 9, 1971, SI File No. VY-05Q-238.
13. Not Used.14. Structural Integrity Associate's Calculation No. VY-IOQ-302, Revision 0, "Loads and* Transient Definitions." 15. Reactor Thermal Cycles, GE Drawing No. 729E762, SI File No. W-NYPA-78Q-205.
16. Nozzle Thermal Cycles (Feedwater), GE Drawing No. 135B9990, Sheet 4 of 5, Rev. 0, SIFile No. W-NYPA-78Q-206.
17. GE Certified Design Specification No. 26A601,9, Revision 1, "Reactor Vessel- Extended Power Uprate," SI File No. VY-05Q-236.
18. General Electric Stress Report No. DC22A5583, Revision 0, Section T, "Thermal Analysis FitzPatrick Feedwater Nozzle Modification," SI File No. NYPA-53Q-212.
19. Reference/or cycle counts <<<LA TER>> Entergy Calculation No. VYC-3 78, Revision 2,,"Vermont Yankee Reactor Cyclic Limits/for Transient Events," 3/10/88, SI File No. VY-16Q-2xx.SIR-07-130-NPS, Rev. B .7-2 Structural Integrity Associates,Inc.

T, 20. Structural Integrity Associates Calculation No. VY-1 6Q-302, Revision A, "Fatigue Analysis of Feedwater Nozzle." 21. Structural Integrity Associates Calculation No. SW-SPVF-O1Q-301, Revision.0, 1"STRESS.ErF P-V.EXE, and FATIGUE.EXE Software Verificatio.".

' ' 44" 22. American Society 6f Mechanical Engineers, Boiler and Pressure Vessel Code,Section II, Part D, 1998 Edition, 2000 Addenda.23. Chicago Bridge & Iron Company Contractor 9-6201, Revision 2, "Section.S4, Stress Analysis Feedwater Nozzle Vermont Yankee Reactor Vessel," SI File No. VY-05Q-238..

24. Structural integrity Associates Calculation No. VY-16Q-303, Revision A,"Enviromnenntal Fatigue Evaluation of Reactor Recirculation.Inlet Nozzle and Vessel Shell Bottom Head." 25. NUREG/CR-6260 (INEL-95!0045), "Application of NUREG/CR-5999 Interim Fatigue Curves to Select.d Nuclear Power Plant Components," March 1995.SJR-07-130-NPS., Rev. B 71-3 Structuiral Integrity AsSoCiates, Inc Exhibit R REDACTED COPY Report No.: SIR-07-132-NPS Revision No.: B Project No.: VY-16Q File No.: VY- 16Q-404 June 2007..161*Summary.Reoort of Plant-Specific Environmental Fatigue Analyses for the Vermont Yankee Nuclear PowerStation C NOTE This document references vendor proprietary information.

Such informadon is6identified with -2xxP SI Project File numbers in the list of references.

Any such references and the associated information in this document where those references are used are identifled so that this information can be treated in accordance with applicable vendor proprietary agreements.

  • . Preparedfor:.

Entergy Nuclear Vermont Yankee. LLC (Contract Order No., 10150394)Prepared by: Structural Integrity Associates, Inc.* .Centennial, CO.r Prepared by: Reviewed by: Approved by: Terry J. Herrmann, P.E.Gary L. Stevens, P.E.Terry J. Herrmann, P.E.Date:____

_Date: Date:

REVISION CONTROL SHEET Document Number: SIR-07-132-NPS Title:. Summar Report of Plant-Specific Environmental Fatigue Analyses for the Vei-mont Yankee Nuclear Power Station Client: Enter7y Nuclear Vermont Yankee, LLC ,/SI Project Number.. VY-l6.Section Pages Revision Date Comments, 3.0 3-2 :B 6/13/07 Revised to more clearly identify what*5.0 5-2 information references proprietary sources.1.0 1-1 A 5/11/07 Initial (UNVERIFIED) draft for review.2.0 2-1-2-2 3.0 3-1 17 4.0 4-1 5.0 5-1-5-2.q, Table of Contents Section

1.0 INTRODUCTION

.

Page.,. .... .. .. .. .. .. .. .... .. .. ...*.. ............

  • ...........
.... ... .. .. I-1

2.0 BACKGROUND

.

1) 1................

.........................................

.......... .e .... .................

.........

... ...-m 1 3.0 ENVIRONMENTAL FATIGUE CALCULATIONS

.......................

.......3.1 Reactor Vessel'.Shell and Lower Head ......................................

..........

3-3.2 Reactor Vessel Feedwater Nozzle .........................................................................

3-4 3.3 Reactor Recirculation Piping (Including the Reactor Inlet and Outlet Nozzles).

3-4 3.3.1 Reactor Recirculation Piping ..............................

................

,............................

3-4 3.3.2 Reactor Recirculation Inlet Nozzle ..........

t .....-....................................................

3-5 3.3.3 Reactor Recirculation Outlet Nozzle ............

... o ..............................

...3-6 3.4 Core Spray Line Reactor Vessel Nozzle and Associated Class 1 Piping.................

3-6 3.5 RHR Return Line Class I Piping .................................

3-7 3.6 Feedwater Line Classi1 Piping ....................... , ..........................................................

3-7 3.7 Summary of Results 3.............

..........

I ..* 3-7 4.0

SUMMARY

AND CONCLUSIONS......................

........ .... ...........

4-1 e, .C .... -. ... ..............

'. ....... ............

..... ...... ............................

...... .............

...........................

.. ..........

-I SIR-07-132, Rev. B.°..III Structural Integrity Associates, Inc.

LIST OF TABLES Table Title Pa e Table 3-1. Environmental Fatigue Evaluation for the Reactor Vessel Shell ...............................

3-8 Table 3-2. Environmental Fatigue Evaluation for the Reactor Vessel Shell at Shroud Stipport 3-9 Table 3-3. Environmental Fatigue Evaluation for the Reactor Vessel Feedwater Nozzle ..... ..3-10 Safe End ........................................................

3-10 Table 3-4. Environmental Fatigue Evaluation for the Rechrculation/RHR Piping Suction Tee3-11 Table 3-5. Environmental Fatigue Evaluation for the Reactor Recirculation Inlet.................

3-12 Nozzle Forging ....... ....... * ........................................

...........

.... 3-12 Table 3-6. Environmental Fatigue Evaluation for Reactor Recirculation Inlet Nozzle.........3-13 Safe End .............................................................

I .................................................................

3-13 Tabl6 3-7. Environmental Fatigue Evaluation for Recirculation Outlet Nozzle Forging .........

3-14 Table 3-8. Environmental Fatigue Evaluation for Core Spray Reactor Vessel ......................

3-15 N ozzle Forging .........................

............................................................

..........

...................

3-15 Table 3-9. Environmental Fatigue Evaluation for the Feedwater Line Class 1 Piping ............

3-16 Table 3-10. Summary of Environmental Fatigue Calculations for VYNPS .,.. ....... 3-17.d..ii l~9'SIR-07132, Rev. B iv Strutural Integrily Associates, Jha

1.0 INTRODUCTION

This report-proyides the results of plant-specific environmental fatigue calculations for the Vermont Yankee Nuclear Power Station (VYNPS). These calculations are performed to satisfy Nuclear Regulatory Commission (NRC) requirements for Entergy Nuclear Vermont Yankee's (ENVY's) License Renewal Application for VYNPS, submitted to the NRC in 2006.Generic Safety Issue (GSI). 166 [1), later renumbered as GSI-190 [2], was identified by the NRC staff because of concerns about the effects of reactor water.environments on fatigue life during the period of extended operation

[3]. GSI-190 was closed in December 1999, based on a memorandum from NRC-RES to NRC-NRR [4]. Timing of issue closure required the first two license renewal applicants

-Baltimore Gas & Electric Company for the Calvert Cliffs Nuclear Power Plant and Duke Energy for the Oconee Nuclear Station -to address GSI-i90 in their_applications prior to issue closure. Each of the applicants.

developed responses to the NRC staff without the benefit of information from GSI-190 closure. Subsequent license renewal applicants have had the benefit of this information that could be used to guide the resolution of the fatigue design basis and time limnited aging analyses (TLAA) issues.This report addresses VYNPS reactor water environmental effects on the fatigue life of selected fatigue-sensitive reactor coolant system (RCS) components, in accordance with the resolution of GSI-190, as required by Chapter X, "Time Limited Aging Analyses Evaluation of Aging Management Programs Under 1OCFR54.21(c)(1)(iii),Section X.M1 "Metal Fatigue' of Reactor'Coolant Pressure Boundary", of the Generiý Aging Lessons Learned (GALL). Report [5].Consistent with the requirements of the GAVL report, the method chosen for this environmentally-assisted fatigue (EAF) evaluation is based on evaluation of the'locations identified in NUREG/CR-6260

[6] and the NRC-accepted EAF relationships generated from laboratory data, as documented in-References

[7] and [8].SIR-07-32, Rev. B;IR07-32,Rev B 1 'Structural.

integrity Associates,.

Ina.

2.0 ' BACKGROUND As a part of the NRC's Fatigue Action Plan [3], incorporation of environmental fatigue effects Originally involved a reduced set of fatigue design curves, such as those proposedbyArgonne National Laboratory (ANL) in NUREG/CR-5999

[9]. As a part of the effort to close GSI-166 (later GSI-190) for operating nuclear power plants during the current 40-year licensing term, Idaho National Engineering Laboratory fatigue-sensitive component locations at plants designed by all four U. S.:nuclear steam supply system (NSSS) vendors. The ANL fatigue curves were used by INEL to recalculate the cumulative usage factors (CUFs) for fatigue-sensitive component locations in early and late vintage Combustion Engineering (CE)pressurized.water reactors (PWRs), early and late vintage Westinghouse PWRs, early and late vintage General Electric (GE) boiling water reactors (BWRs), and Babcock & Wilcox Company (B&W) PWRs. The results of the INEL calculations were published in NUREG/CR-6260

[6].The iNEL calculations took advantage of conservatisms present in governing ASME Code fatigue calculations, including the numbers of actual plant transients relative to the numbers of design-basis transients, but-did not recalculate stress ranges based on actual plant transient profiles.

The BWR calculations, especially the early-vintage GE BWR calculations, are directly relevant to VYNPS.The fatigue-sensitive component locations chosen for the older-vintage GE BWR plant were: (,)the reactor vessel shell and lower head, (2) the reactor vessel feedwater nozzle, (3) the reactor recirculation piping (including the reactor inlet and outlet nozzles), (4) the core spray line reactor vessel nozzle and associated Class I piping, (5) the residual heat removal (RHR) return line Class 1 piping, and (6) the feedwater line Class I pip.mg. For the recirculation, RHR, and feedwater piping locations, INEL performed representative design-basis fatigue calculations because no CUF calculations had originally been performed since the piping systems for the selected BWR plant were initially designed and analyzed in accordance with the criteria of USAS B31.1-1967

[10].SIR-07-132.

Rev. B 2-1 ... ...... 7 ..... 7-Structural Integrity Associates, Inc.

The six RCS component locations describedc above are evaluated for EAF effects for VYNPS in.this report.The calculations reported in'NUREG/CR-6260 were based on the interim reduced fatigue design curves given in NIJREG/CR-5999

[9]. Such an approach penalizes the component location fatigue analysis unnecessarily, because research has shown that a combinationof environmental conditions is required before reactor water environmental effects become pronounced.

The strain rate must be sufficiently low and the strain range must be sufficiently high to cause continuing rupture of the passivation layer that protects the exposed surface area. Temperature, dissolved oxygen content, metal sulftur content, and water flow rate are additional variables to be considered.

In order to take. these parameters into consideration, EPRI and GE jointly developed a method, called the F, approach [11], which permits reactor water environmental effects to be.applied selectively, as justified by parameter combinations.

In 1999, the NRC staff raised a number of issues relative to the use of the EPRI/GE methodology in various industry applications.

Those issues, coupled with more recent laboratory fatigue data in simulated LWR reactor water environments generated by ANL for carbon and low-alloy steels and stainless steels, -resulted in a revised F. methodology, as published in NUREG/CR-6583

[7]for carbon and low alloy steels, and NUREG/CR-5704

[8] for stainless steels. The methodology documented in these reports was used to evaluate environmental effects -for VYNPS components, asdescribed in Section 3.0. of this report..SIR-07-132, Rev. B 2-2 Structural Integrity Associates, Inc.

3.0 ENVIRONMENTAL

FATIGUE CALCULATIONS Section 2.0 identifies the locations evaluated in NUREG/CR-6260 for the older vintage GE.plant, which corresponds to VYNPS. NUREG/CR-6260 provided an assessment of these six selected component locations with respect to environmental fatigue using the-older reduced environmental fatigue curves. Potential reactor water environmental effects are evaluated using the updated F,, methodology on a plant-specific basis in this subsection, in order to address the associated effects on fatigue as required by the GALDI Report [5].For each of the components identified in Section 2.0, environmental fatigue calculations were performed.

The details of these calculations are documented in the Reference

[12, 17, 18, 21, 22 and 24] calculations.

The calculations were carried out using the appropriate methodology contained in NUREG/CR-6583 for carbon/low alloy steel material, and in NUREG/CR-5704 for stainless steel material.

This methodology is as follows: For Carbon Steel [7]: F. = exp (0.585.- 0.00124T'

-0.101 S* T* 0*6*)= exp (0.554 -0.101 S* T* 0* )For LowAlloy Steel [7J:' F. = exp (0.929 -0.00124T'

-0.101 S* T* O**)= exp (0.898 -6.101 S* T* 0* *)Note that the above expressions have been corrected as summarized in Reference

[23].where: F. -fatigue life correction factor T9' 25C (NUREG/CR-6583, Section 6, F,, relative to air)= S for 0 < sulfur content, S < 0.015 wt. %= 00.15 for S > 0:015 wt. %T* = 0for T 150 0 C-(T -150) for 150I!9<T 350 0 C T fluid service temnperature (QC)0* 0 for dissolved oxygen, DO <0.05 parts per million (ppm)= ln(DO/0,04) for 0.05 ppm < DO s 0.5 ppmi SIR-07-132, Rev. B 3-1 j Structural Integrity Associates, Inc.

.J ln(12.5) for DO >ý 0.5 ppm 0 for strain rate, > 1%/sec= ln(t) for 0.001:5: < 1%/sec= In(0.001) for t < 0.001%/dsec-For Types 304 and 316 Stainless Steel [8]: F.,=exp (0.935 -T* ;

  • O*)where: F. = fatigue life correction factor T fluid service temperature ( C)/ 0 = 0forT<200 0 C I for T. 5200 0 C* 0 for strain rate, t > 0.4%/sec= ln(i /0.4) for 0.0004: : < 0.4%/sec= ln(0.0004/0.4) for <*0.0004%/sec 0* = 0.260 for dissolved oxygen, DO <'0.05 parts per million (ppm)= 0.172 for DO 0.05 ppm Bounding values are determined or, where necessary, computed for each load pair in a detailed fatigue calculation.

The environmental fatigue is then determined as Ue,, = (U) (F.), where U is the original fatigue usage, and Ue,, is the EAF usage factor. <2 REDACTED For VYNPS, actual DO levels vary from 40 ppb to 97 ppb for HWC conditions

[12]. REDACTED Since implementation of HWC in 2003, VYNPS's availability has exceeded 98.5% and the objective for future HWC system availability is aminimum of 99% [12]. With these considerations, the overall availability for HWC since implementation at VYNPS until the end of the 60-year operating period was estimated at 98.5%.SIR-07-132, Rev. B 3-2 Structural Integrity Associates, Inc.This Page .Contains Reference to Vendor Proprietary Information (such information is marked with a "bar" in the right-hand margin)

The numberof cycles for forty years was adjusted based on the number of cycles actually experienced by the plant, projected out to 60 years of operation

[14]. In addition, VYNPS has implemented extended power uprate (EPU). These effects have been incorporated into the evaluations documented in this report. With the use of this information, the CUF values documented in this report are applicable for 60 years of operation.

The environmental fatigue calculations are shown in Tables 3-1 through 3-9. Component-

'specific details are provided in the subsections that follow.3.1 Reactor Vessel Shell and Lower Head The environmental fatigue calculations for the reactor vessel shell and lower head location are shown in Table 3-1. The limiting CUF value reported in the VY LRA foi the.RPV shell/bottom head location corresponds to a point located on the outside surface of the RPV bottom head at the junction with the support skirt. Therefore, this location is not exposed to the reactor coolant, and EAF effects do not apply. Based on-this, evaluation of the limiting location along the inside surface of the RPV-bottom head was performed.

The calculations shown in Table 3-1 are for the RPV lower head at.the area with the highest alternating stress, which represents the limiting RPV bottom head location.

Reference

[15] is the governing stress report for this low alloy steel location.

The design fatigue calculation for the limiting RPV lower head location is reproduced in Table 3-1. The effects of EPU as well as conservative cycle counts for 60 years of plant operation are incorporated in this table., The final results in Table 3-1 show an EAF adjusted CUF of 0.0502 for 60 years,' which is acceptable (i.e.,.less than the allowable value of 1.0).The calculations shown in Table 3-2 are for the RPV shell at the RPV shell junction to the shroud support plate, which represents the limiting RPV shell location exposed to the reactor coolant. Reference

[16] is the governing stress report for this low alloy steel location.

The SIR-07-132, Rev. B " 3-Structural Integrity Associates, Inc.

design fatigue calculation for the limiting RPV shell location is reproduced in Table 3-2, which considers the effects of EPU and conservative cycle counts were used for 60 years of plant operation.

Thi final results in Table 3-2 show an EAF adjusted CUF of 0.7364 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0)..3.2 Reactor Vessel Feedwater Nozzle The environmental fatigue calculations for the reactoli vessel feedwater nozzle location are shown in Table 3-3. The calculations shown in Table 5-3 are for the safe end, which represents the limiting feedwater nozzle location.

Reference

[17] ontains the governing fatigue calculation for this location.

Feedwater line chemistry was assumed for the feedwater nozzle safe end location, since this location experiences feedwater conditions for all times.The governing fatigue calculation for the limiting feedwater nozzle location includes the effects of EPU and cycle counts for 60 years of operation obtained from Reference

[14]. The final results.in Table 3-3 show an EAF adjusted CUF of 0' 1999 for 60 years, which is acceptable (i.e., less. than the allowable value of 1.0).3.3 Reactor Recirculhtion Piping (Including the Reactor Inlet and Outlet Nozzles)Three locations were identified for the reactor recirculation piping in NUREG/CR-6260:

the reactor vessel nozzle (includes both the inlet and outlet nozzles), and the recirculation piping.The evaluations for each of these components are described in the following subsections.

3.3.1 Reactor

Recirculation Piping Two locations were identified for the reactor recirculation/RHR piping in NUREG/CR-6260 (both stainless steel): the RHR return tee connection to the recirculation piping, and a tapered transition on the RHR line just upstream of the RHR return tee. Reference

[18] contains the governing fatigue calculations for these locations, which show the limiting location in the SIR-07-132, Rev. B 3.4 Structural Integrity Associates, Inl.(

stainless steel portion of the piping to be the RHR suction tee to recirculation piping. Therefore, this location represents the bounding location for all of the NUREG/CR-6260 piping locations.

The governing fatigue calculation for the limiting recirculation/RHR piping location is reproduced in Table 3-4,. which includes the effects of EPU and cycle counts'for 60 years of " ";plant, operation from Reference

[14]. The cumulative fatigue usage, prior to considering environmental effects, is 0'.0715. Factoring in the environmental multiplier from Table 3-4, the EAF adjusted CUF is 0.8323 for 60 years, which is adceptable (i.e., less than the allowable value of 1.0). r 3.3.2 Reactor Recirculation Inlet Nozzle References

[15, 19 and 20] are the applicable stress reports for this location.

An evaluation was..performed for both the inletnozzle forging and the safe end.The environmental fatigue calculations for the recirculation inlet nozzle forging location are shown in Table 3-5. The governing fatigue calculation for the recirculation inlet nozzle location is reproduced in Table'35, which includes the effects of EPU and cycle counts for 60 years of plant operation'from Reference

[14]. The final results inTable 3-5 show an EAF adjusted CUF of 0.5034 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0).The environmental fatigue calculations for the recirculation inlet nozzle safe end location are shown in Table 3-6.. The governing fatiguecalculation for the recirculation inlet nozzle location is reproduced in Table 3-6, which includes the effects of EPU and cycle counts for 60 years of plant operation from Reference

[14]. The final results in Table 3-6 sho*. an EAF adjusted CUF of 0.0200 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0), SIR-07-132, Rev. B S-5rs V ..vtua inert .. .tesb

3.3.3 Reactor

]Recirculation Outlet Nozzle The recirculation outlet nozzle was evaluated for environmental fatigue effects. Reference

[24]is the latest fatigue calculation for this locatfon.

An evaluation was performed for both the outlet nozzle safe end (SA 182 F316) and the nozzle inner comer blend radius (SA508 Class 2). The results for the limiting nozzle forging location are reported here.The environmental fatigue calculations for the limiting recirculation outlet nozzle forging location are shown in Table 3-7, which includes the effects of EPU and cycle counts- for 60 years of plan't operation from Reference

[14]. The final results in Table 3-7 show an EAF adjusted CUF of 0.1572 for 60 years, which is acceptable (i.e., less than the allovable value of 1.0).3.4 Core Spray Line Reactor Vessel Nozzle and Associated Class 1 Piping Two locations were evaluated in NUREG/CR-6260:

the reactor vessel nozzle and the reactor Vessel nozzle safe end. The piping is considered to be bounded by the nozzle. For VYNPS, the core spray nozzle safe end-is Alloy 600 (SB 1,66) and the nozzle is low alloy'steel (SA-508 Class II). Reference

[21] is the applicable fatigue calculation for these locations, which shows the: limiting location to be the blend radius. Therefore, this location was evaluated as a bounding location for both of the NUREG/CR-6260 piping locations.

The design fatigue calculation for the'limiting location at the core spray nozzle blend radius is'reproduced in Table 3-8, which includes the effects of EPU and cycle counts for 60 years of plant operation from Reference

[14]. The cumulative fatigue usage, prior to considering environmental effects, is 0.0106. Factoring in the environmental multiplier from Table 3-8, the EAF adjusted CUF is 0.1065 for 60 years, which is acceptable (i.e., less.than the allowable value of 1.0).SIR-07-132, Rev. B 3-6 Slructural integrity Associates, Ind.

3.5 RHR Return Line Class 1 Piping The environmental fatigue calculations for the RHR return line Class I piping are covered by the calculations in Subsection 3.3.1 above.3.6 Feedwater Line Class I Piping The environmental fatigue calculations for the limiting feedwater Class 1 piping locations are shown in Table 3-9. The calculations shown in Table.3-9 are for the limiting feedwater Class I piping location.

Per Reference.

[22], the' limiting total fatigue usage for the analyzed feedwater/high pressure coolant injection

(-PCl) piping system occurs-at the 16" to 10" reducer on the feedwater piping. The limiting fatigue usage value -for the feedwater ChIss 1 piping location is 0.257 1, which includes the effects of EPU and cycle counts for 60 years of plant operation from Reference

[14]. The final results in Table 3-9 show the EAF adjusted CUF of 0.4474 for 60 years, which'is acceptable (i.e., less than the allowable value of 1.0).3.7 Summary of Results The.results of the calculations contained in Tables 3-1 through 3-9 are summarized in Table.3-10.It is noteworthy that the CUF results presented in this section include maximum environmental effects in that environmental effects were iiniformly applied without consideration of threshold criteria that might indicate an absence of environmental conditions.

Therefore, the.environmental adjustments to the CUF results are considered to be conservative.

SIR-07-12, Rev. B 3ia SIR=0A32,Rev.B 3-' trutural Integrity Associates, Ina.J Table 3-1. Environmental Fatigue Evaluation for the Reactor Vessel Shell Compqgient RPV She WBottom Head NUREG/CR-6260 CUF: 0.032. (fo rmAnwoy)

Reference:

NUREGICRý6260, p. 5-102 Stress Report CUF: 0.0035 (frPoft 14. wee be" Material:

Low Alloy Steel (Meatede = A-533 or. per TWeO 4.2-2 of Me VY LRA)Desion Basis CUF CnlCulation for 40 ears: Emg.-WE.yft 1.000 Power Uprate 1.0067 1K= 1.000 m 2.0 n= 0.21 Sm 26,700.E not specfedh n RPV Stress Report -assne a 1.0.(549 -100) / (546 -10o) per 4.4. ljb of 26AW10. Rev. I stress wonrnfratton racier N8-3228.5 ofASME Code, Secion III N1B-8.5 O ASME Code. Section U/i pst (ASME Code, Secton It. Pert 0)II7B*0weit@1 K. Ne S Note 2) (see Awe3) n (seeNote 4) N (we Note s) U 1.00 22,413 200 56,840 0.0035 Total, U40 = 0.0035 Notes:" 1. PL 4P 4* le oQItslned 10r Poi& 14 Arom p. A52 of VYC-3T8 Rev. 0.2. K, computed in eccoidance with N8-3228.5 ofASME Code, Seocti IlI a 3v -0.5

  • K. EIE Power Uprte * (PL 'PSe Q).A4 n for 40 yeam Is e nwmnerofHeatup-Coodown cycds perp. 86'of VYC -3T. Rev, o.5. N obtaihed ftom Rgwe 5-.1 d Appendix I of ASME Code, Section W.6. n 1o,60 yeams is fhe pnJected nwnberofHeetupC-ooldwn cb Revised CUF Calculation for 60 Years: PpL+Pa+Q(eNot.
1) K (seeNote 2) .t(3meNote3) nf(eeNote6)

N(- Note 4) U 44.526_ 1.00 22,413 300 56,840 0.0053 Total,. Use 0.0053 Environmental CUF Calculation for 60 Years: Maximum F.nm Multiplier for HWC Conditions

5.39 Maximum Fi,ý Multipler for NWC Conditions

13.17 1U. 1o x FraW x 0.53

  • Ur0 x F.-uwc x 0.4 7 U 0.0502 Overall Multiplier

= U.1_44/Ul

= .9.51"S SIR-97-132, Rev. B 3-8. Structural Integrity Associates, Int Table 3-2. Environmental Fatigue Evaluation for the Reactor Vessel Shell at Shroud Support.Component RPV Shell at Shroud Support NUREG/CR-6260 CUF: 0.032

Reference:

NUREG/CR-6260.

p. 5-102..Stress Report CUF: 0.0549 (for pow 9. we attk Material:

Low Alloy Steel (MVaM -A-33 Or. 8pPer T&W 4. .ofthm VY LR.J Design Basis CUF Calculation for 40 vears: Hydrotest v4 =Hydrotest e, =Stress Concentration Factor, KI =Hydrotest K#a 4 Improper Startup Ce 4 Improper Startup oaF Improper Startup Skin Stress Improper Startup KYa + Skin Stress =Warmup 0, Warmup o', WaMup Ký,=Power Uprate =In=26,240-1,250 2.40 62976 28,oWo-1,025 156,099 223,443-5,707-102-13,696 1.0417 1.0067 2.0* 0.2 26.700 psi (p. S3-9?oRPVSs Rop"t psi Ip.6;3-97orwy'szr Rep"r PSI (P. 33-7 df'VS99oa RePIN psi (pSS-M ORPVSbussRurrw psi (P. S3411 V99'Ysrraa PAPOr psi (P. SJ-BI oi99mwitaw RPOP" psi (P. S-ft OdReV Sfus ROPad)psi (p. S3-9fta MRPVSftw Roporq PSI (P. S33-Baa V0~fta Rqrep" 300;2&8.parS3-DWdfRPStuRaReotW~dASUE Ooda Mwue wW (549- 19)1046 -100 w4.4.1.hof 26A6019.Ruv.

ND-322OIASME Code, Seca N t48-3220.5 tASAIE Co*e Seed"r W psi (AMW Cod* SDct it P. Ref n (amem* 4) N limtejots U 5332 0.0151 322 8.095 .0.0398 Total, U. 0.0549*'4.8.=Pt+Pe4.0 (a". MNa 1) Events K. (-e- )e S, (360 Ne 3 34,690 Improper Startup-Warmup 10-0 124,825.13 095 Hydro(est

-Warmup 1.00 40,804 Z. K. OaWotdhin acozsdane WMh NS-322415 O(ASAC OaD*. SOeO Ill.-a. S,. -O.5K. PeepikfXq-qa. -PXu 4 -u,)e, I 4. n tar40ywolo Uteoauteoftydses sobd..pep.

S34deand 3-9rOf theVS&O Report: Isotlwmwla

?Ot'wrd 1.000ps1-120 £C5he (ta.. sf barcdSt" evwntj TOTL0 327 qcyd IV NobtuWmdhm Rgm lu I-. *dAppend I *ASMiE Cads Secder, Ht n. for Wyemri th M prclowbd nw'erdorafyck w howa: kww-A- I -WaffnsOoodom 300 cych P/*nrg*-OeRows

-I*TOTAL .699. eCsio Revised CAF CacuatO U o 0YaS: Pt+Pe+Q (we A.k 1) .K. a~L- 2 S. 'sw aePft 0 Wl~ea o) N fseea&We ) U 34.690 improper Startup -Warmup 1.00 124.825 1 332 O. 0030 3305Hydroleat

-Warmup 1.00 40.80 602 8.095 0.0744 Total. UOw 0.0774 Eniomental CU ýTCULajainfr 0Ya.Maximum Fmwc~r Multilpflerforl-IWC Condltlors'=

5.39-Maximum Fa.w, Multiplier for NWC Con~ditions8

'113.17 U_40Ugx F-4 nw x 0.53 + Uspx F-m x 0.7 -0.738P4 Overll Multiplier a U~4A = 9.51 SIR-07-132, Rev. B 3-9 Structural Integrity Associates, Ina Table 3-3. Environmental Fatigue Evaluati8h for the Reactor Vessel Feedwater Nozzle Safe End cef F_ = exp(o-M. -Q1O.101810V)

Ass'w S' -0.015 (maxkanim)

Aswsme c-. -1n(0.001)--6." (minimwm)FD" a BWR with HWC eW.ironment (post4-WC IOplementation):

For a BWR with NWC enviroment (pm4lWC implementalon):

o40 ppb -0.040 ppm 4 0.OO ppm so"0 O 40 ppb 0.040 pprn %0 MO ppm so " 0 Thus Tw c- -C) TQF, F.. T(IC) T(F) I .,i 0 321.74 , 0 32 1,74 50 122 1.74 I so 122 1.74.1oo 212 .1.74 100 212 1.74 ISO 302, 1.74 IS 1O 302 1.74" 200 352 1.74 200 392 1.74.250 482 1.74 250. 482 1.74. " M 550 1.74 288 550 1.4* " Thmu, a*Tsrl .1.74 r"(T.l.0}ew'lOq Thus, maximr Fn -1.74 Overall" 60-Year-No. Component.

Marial 6 Environmental Environmental Multiplier CUF (1,2)* ' Feedwater Nozzle Safe End Carbon Steel 0.1149 1.74 0.1999 Notes: 1. An Fn. multiplier was used for each respective component with the following conditions:

4 47% HWVCconditions and 53% NWC conditions

2. Results using updated ASME Code fatigue calculations and actual cycles accumulated to-date and projected to 60 years..44*11 14*SIR-07-132, Rev. B 3-10 Structural Integrity Associates, fn.

Table 3-4. Environmental Fatigue Evaluation for the Recirculation/RHR Piping Suction Tee Sra/n/ss SteP. .F. = exp(O.935

-'TcO))For a BWR wth HWC envirnmeITmi (podt-HWC implementato):

For a BWR with NWC emkaisent C nttlW ieme n): DO -48 ppb,- 0.046 ppm -c 0.O50 PPm. o " 0.260. DO =123*b0.123PMO>0.05ppa soO"O.t72 consermtvey user T 1 for T > 20rC. Consemlity use r" -I for T > 20C Thus: Thus: 'Ofbr .41/sec

  • soF.. 2-55 " F, 2-55 e= k. ir0.4) for o.0004 --- < OAWc so F. manges forn -2.55 .so F_ ranges *M 2.55 to 15.35 to 8.36 S= i(0.00D4t0A) for < 0.O0o0 4%c , soF.= 15.35 SOF.= 8.36 Thus. maAnurn F. -15.35 Thus. nuunmo F_ = .8.36 M 60-Year " Overall 60-Year No. Component Mtrial Envirorental Environme l I I .I Multiplier " CUF (1.2)Recirculation

/RHR Suction Tee -Stainless Steel 0.0715 11.64 0.8323 Notes: 1. An F.,; multiplier was used for each respective component wth th following conditions:

+ 47% HWC conditions and53% NWC conditions.

2. Results using updated ASME Code fatigue calculations and actual cy4des accumulated to-date-and projected to 60 years.SIR-07-132, Rev. B 3-11 StructuralnteorityAssociates Inh.

Table 3-5.Environmental Fatigue Evaluatilii for the Reactor Recirculation Inlet Nozzle Forging Component Redrculation Inlet Nozzle Fofging NUREGICR-6260 CUF: 0.310 t, rar,, cnco Referene:

NUREGICR-6260, p. 5-105 Sbress Report CUF: 0.0433 ( edbaf &r P t iser .bhw...Material:

Low Alloy Steel (Utmm, = Ca ap ,p./ .3&w4 or cawN 3.6ss Rod sedr n MS pesion Basis CUF Calculation for -4A rs EbJE-V =Power Uprate =Mn.1.1278."1.0067 1.66b 2.d 0.3" ..26,700-30.01 26.6 (serp. A-36-240O(&N Stress RePel Section SO BndASME Cods teNA CMw)=59lf/(4-'100) p 4.4. 1.* f2S4619. Rev. 1 sums5 conouiatia fbctv fp A270of VM37B. Rev. (0 Oyae-25 cfASME Code SecWo III ta-aszaj ut ASAE Code. Sectat, fit psi (ASME Cods. Sectin HI. Part )FP+P 8 0Q (see Note I) Skin Stress (se Mote 2) K I(see Nabs V I 43,410 ' 15145 1.00 S., a sePt4)' nl(5ýe SP N (- Motee) l 49,224 200 4,614 0.0433 Total. Us= 0.0433 g ]NIees: I.' PtPtehQisobdtBftrPol 2fmmp.A270o VYC.378. Rev.O.2. sh Sress ls obtet dlbrPo12 hwp.A27O VYrt,3TA.

Rev. O.S u<. ,C* fl J, accovda t, 14-.3 ASMECo* m.4. S, =.0.5 *K. *P- E~o. o w * (P#P *sQ K, tSkImStress].

5. n fer40 yv"WS "e wte- d t eAtV-C* cyte. r e'p. 8281fVYC.37TB Rev. 0.a. N obtained ftm Fig" ".. I dAwerW I of ASWE CODe, Ml.7. n obrBO~O Jis5tIMP*U.Sd

'U dofflftU-C~toof, C)'de Revised CUF Ca-culation for 60 Years: Fp+P.+Q (seeb 1) Skin StreSS (se Nob

  • K. (.ee NoW 3) $a (Name 4) n (-seoe 5) N (s*ee 1Nt7) .. U 43,110 15,145 1.00 49.224 300 4,614 0.0650 I Total, U, a 0.0650 .Envirornmental CUF Calculation for 60 Years: Maximum Frowc Multiplier (or HWC Condlons = 2.45 Maximum F_,.,ec Multiplier for NWC Conditions

= .12.43 U. UX x 0.53 + UXF F.,m cX 0.47 0.5034 Overall Multiplier

= U..,4AUs = 7.74..v" SIR-07-132, Rev. B 3-12 Structural Integrity Associates, Ina Table 3-6.. Environmental Fatigue Evaluation for Reactor Rpcirculation Inlet'Nozzle-Safe End Component, Redrculation Inlet Nozzle Safe End.NUREGCR-6260 CUF: 0.310 or referesy

Reference:

NUREGICR-6260, p. 5-105 Stress Report CUF: .0.0017 d -e.Material:

Stainless Steel 316L.perpq.

$oa23A42t,2

.0)lesion Basis*CUF Calculation for 40 years:,J. 1.1098 Power Uprate= , 1.0067* (6=. ,: 1.280 M=. 1.7 n=i t 0.3 S,,= 16,600 P+O+F (see Note 2) K, (see Note 3) S. (see Note 4)36,972 1.00 .26,437-2&.3 /26 (par p. 454 of VYC-378, Ray. 0 ard ASidE Code I'atlgue owfe)-(54 -100) 1(546 .1&J) per4.4.1.9 of 26A619. RMv I A*Oss ooeceedroin teste Ox 827 of VYC-378, Rev. 0)N"-22" cdASME code. Soatn NIf A6,122" O4'ASAE Cods Sacali ffI PSI (ASUE Coft Sea*- it Paarb n f(see Nowe5) N (sveNote 6)Z 2076 1.234,316 001 FI PUia83(N- I -tiu= 0.0017 ,I Notes. 1. P, *P"Q0i obtaned for Sface I oveerby) fmp. A259 ofVY.37r .Rev. I.2. P4O+FLoredforPoWl6-immp.

A259 (B8ORE weoeefy)of WC-37A Rev. 0.3 .K, tOed n eccordence wih NB.322&6 of A SME Code., Section $1l.4. $ a.a*, S E.,_

"(P+" CP I.5. ntorAVye4YIss t Wtnumber olcycle. atollosperp.

k6 of VYC378; Rav. 0: Dwyin IydroestI 130 l~~o eadDokno COMOOSHtO

'Sffphdo = 290 'SRV Bb=*W, -n 8 Lsof F-edwatePurrnps 30 10 oevents x3 Supow mcycles per event SCRAM -270 Namuor 4L ,eqjW*= 11 10 oycdes olr UipW ssrc,. plus I Level C ejnA event Namrel M72 Sin dcel ofebove even.t Zerolod s m -stleopp dvsm + sRv stowdown S Scr.a LorP Totawnnerofcykes=

2076 6 NobInedfamm Figar -9.2 o(Appendif lASME Code. Setlon Ill.7. a for 60 yeas ls t pojected nutmber of cycles as foWown: Delg ydatesI 120 StarkpShutdown 300"RVSA,*w = .SW Obdo I1 m,, Loss of FeedrafteParris

.90 f0everftsxju$e/dew cycles pe evnt*

  • Namur= " '71 -S.amcflaofeboevemrs Zeola -Oetpkfm+SVBwon+Srm+LOI'P Revised CUF Calculation for 60 Years: " Ppt+Pe+Q.(see/ore)

P+QF "(see e2). 3) S,,(saeNote4) nf(aemNote6)

N("a eeNfot7) U_47,183 36,972 1.00 26,437 2,122 1,234,316 0.0017_I Total, U9 0.0017 .Environmental CUF Camilation for 60 Years:.Maximum Fw .,c Multiplier for HWC Conditions

= 15.35 Maximum FU.w#. Multiplier for NWC Conditions

= 8.36 U_ U'": Use X 0.53 + U. x F,,c x 0.47= -0.0200 Overall Multiplier 11.64 II SIR-07-i32, Rev. B 3-13 Siniclural Integrity Associates, Inc.

Table 3-7. Environmental Fatigue Evaluation for Recirculation Outlet Nozzle Forging L o " F., -exp(O.898

-0.10r1o0 )"ne S' -0.015 (naxhmEu"n)

Asume C. -bi(O.001)

--6.008 (mki*nm)For a BWR with HWC n -.wni r (post4lWC Implementzian):

DO 46 ppb -0.046 pprn DO 0.050 ppm, so O= O 0 Thus: T (-C) TrF). F_0 F32 2-45 60 122 2.45 100 212 2.45 ISO 302 245 200 392 2-45 269.45 517.01 2.45 288' 550 2.45 For a BWR with NWC environmet (pq*e4IWC npleomentatdo):.-D o; 123 ppb 0.123 ppm, go 01 O O.12310.04)l 1.123 T (C) T (T) F.0 32 .2.45 so 122 2.45 100 212 2.45 150 302 2,45 S 260 39 4A2-29.45 517.01 10.00* 288 50 12.43 Thuo.maxknunF,=

2.45 rt,-(r.'so)go.1go~cl Thu&.ma.mun=F=.

1243 Componen " I 60-Year Overall 60-Year No. Component Material CUF Environmental Environmental.

SeMultiplier CUF (1,21 1 Redrcula~tion Outlet Nozzle Blend Radius Low:A:lloy S~teel 0.0109 .7.74 0.0844 Notes: 1' An Fw.mrnutiplier was used for each respective component.with thefollowing conditions:

+ 47% HWC conditions and 53% NWC conditions

2. Results using tpdated ASME Code fatigue calculations and actual cycles accumulated to-date and projected to 60 years.SIR-07-132, Rev. B 3-14 Structural Integrity Associates, Inc.

Table 3-8. Environmental Fatigue Evaluation for Core Spray Reactor Vessel Nozizle Forging LarAftLJtee:

F. s exp(O.898-

.101S.TO')

Assmie S- = 0.015 (maxpuim)Assumem--c- -O.001) -6.,908 (m-inomum)

For BWR with HWC efnvlronmMent (post4fWC Implementation):

For a BWR with NWC emvIdronmtnt (pre-1WC impemeantation):

DO =' 9T ppb -0.097 ppm, so 0& Wi(0.9710.04)

-0.886 " 00 114 ppb 0.1 14 ppm, so 0 =I(O.1 141.04) = 1.047 13 Thus: T(C) T TF) F. T('C) T( F) F.0 32. 2.43 0 32 2-45 50 122 2.45 50 122 2.45 100 212 2.45 100 212 2.45 ISO 302 2.45 150 302 2.45 200 392 3.90 200 .3 4.25 280 482 86.20 .73 288 550 8.82 288 550 11.14 TNMs. madum F..-= .82 (T-15)o- .Thus, ma*Mum., F,--" 11.14 oCr 6-Year Overall 60-Year No. Component.

Material Environmental Environmental

., UF Multtpller' CUF (1.2)Core Spray Nozzle Blend Radius Low Alloy Steel 0.0106 10.05 0.1065 Notes: 1. An F.n multiplier was used for each. respective component with the following conditions:+

+ 47% HWC conditions and 53% NWC condlltons.

2. Results using updated ASME Code fatigue calculations and actual cycles accumulated to-date and projected to 60 years.SIR-07-132, Rev. B 3-15 Strutural Interidy Associatesl Table 3-9. Environmental Fatigue EV1uation for the Feedwater Line Class 1 .Piping PFOO, = exp(0.S54

-0.101S*T'0)

Assume S = 0.015 (maxusum)Asumem c In(O.O01)

-.908 (minium)" .For a SWR with HWC ewironment (post4WC Impeumlentatl)f.:

For a SWR withNWC envlromemt (p'.HWC lMlplemefnlon):

DO, 40 ppb= 0.040 PPm < 0.050 PPm sO" 0 -0O =40 ppb 0.040 ppi < 0.050 lppm so " = 0 Thus: In-s T (*O) T (*F) F- T (CC) T (-F) 0 32 174 0 32 .1.74 50 .122 1.74 o. 0 -122 1.74 100 212 1.74 , 100 212 1.74 150 302 1.74 .150 302 1.74 20D392 .74 200 392 1.74.250 Q2 1.74 250 482 1.74 288 550 1.74 288 550 1.74 ThuS. mexkmu F= 1.74 'r.-i s0shT.1ws0Q TPm, usa.ULm n F. = 1.74.- r E -Overall. .60-Year No. Component Material 60-Year Environmental Environmental

..-Multiplier " CUF (1.2)" Feedwater 10 x 16" Reducer Carbon Steel 0.2571 1.74 0.4474 Notes: 1. An Fenmultiplier was used for each respective component with the following conditions:

+ 47% HWC conditions and 53% NWC condifi6ns ) , 2. Results using updated ASME Code fatigue calculations and actual cycles accumulated to-date and projected to 60 years..4%i 3-16 SIR-07-132, Rev. B-V.Structural Integrity Associates, Inc.

Table 3-10. Summary of Envirdimental Fatigue Calculations for VYNPS Overall 60-Year No. Component Material mYW Design .Uear Environmental Environmental CUF Multiplier CUFM 1 RPV ShellBottoni Head ~Low Alloy Steel 0.0035 0.0053 9.51 0.0502 2 RPV Shell at Shroud Support Low Alloy Steel 0.0549 0.0774 9.51 0.7364.3 Feedwater Nozzle Safe End Carbon Steel J4 0.1149 1.74 0.1999 4 RecirculationtRHR Class I Piping (Suction Tee) Stainless Steel (4) 0.0715 11.64 0.8323 5 Recirculation Inlet Nozzle Forging Low Alloy Steel 0.0433 0.0650 7.74 0.5034 6 Recirculation InletNozzle Safe End Stainless Steel 0.0017 0.0017 11.64 0.0200 7 Recirculation Outlet Nozzle Forging stainless Steel (4) 0.0109 7.74 0.0844 8 Core Spray Nozzle Forging ow Alloy Steel (4) 0.0106 10.05 0.1065 9 Feedwater Class 1 Piping Carbon Steel (4) 0.2571 1.74 0.4474 Notes: 1. Updated 40-year CUF calculation based on recent ASMECode methodology and design basis cycles.2. CUF results using updated ASME Code methodology and actual cycle accumulated to-date and projected 1o 60 years.3. An F.. multiplier was used for each respective component with the folowing conditions:

+ 47% HWC conditions and 53% NWC conditions

4. 40 year values wwee not calculated for these locations-'44 SIR-07-132, Rev. B 3-17 Structural Integrity Associates, Inc.

4.0

SUMMARY

AND CONCLUSIONS The results of Tables 3-1 through 3-9, as summarized in Table 3-10, demonstrate that the fatigue usage factor, including environmental effects, remains within the allowable value of 1.0 for 60 years of operation for the following component locations:

V Reactor vessel shell, bottom head and shroud support V Reactor vessel feedwater nozzle ,K. Reactor recirculation piping (including the rea&tor inlet and outlet nozzles)/ Core spray line reactor vessel nozzle and associated Class 1 piping" Feedwater line Class 1. piping Therefore, the environmental fatigue assessment results for all of the NUREG/CR-6260 locations associated with the older vintage BWR plant are acceptable for 60 years of operation for VYNPS..SIR-07-132, Rev. B 4-1 Structural Integrity Associates, Ina

5.0 REFERENCES

1. U. S.-Nuclear Regulatory Commission, Generic Safety Issue 166, "Adequacy of Fatigue Life of Metal Components." 2. U. S. Nuclear Regulatory Commission, Generic Safety Issue 190, "Fatigue Evaluation of Metal Componrents for 60-Year Plant Life.".3. SECY-95-2 4 5, "Completion of the Fatigue Action Plan," James M. Taylor, Executive Director for Operations, U. S. Nuclear Regulato-y Commission, Washington, DC, September 25, 1995.4. Memorandumi, Ashok C.*Thadani, Director, Office of Nuclear Regulatory Research, to William D. Travers, Executive Director for Operations, Closeout of Generic Safety Issue 190, "Fatigue Evaluation of Metal Components for 60 Year Plant Life," U. S. Nuclear Regulatory Commission, Washington, DC, December 26,, 1999, 5.' NUREG-18 0 0 , Revision 1, "Generic Aging Lessons Learned (GALL) Report," U.S.Nuclear Regulatory Commission, September 2005.,6.. NUREG/CR-6 2 6 0 (INEL-95/0045), "Application of NUREG/CR-5999 Interim Fatigue Curves to Selected Nuclear Power Plant Components," March 1995.F.7. NUREG/CR-6583 (ANL-97/18), "Effects of LWR Coolant Environments on Fatigue Design Curves of Carbon and Low-Alloy Steels," March 1998.8;- NUREG/CR-5704 (ANL-98/3 1), "Effects of LWR Coolant Environments on Fatigue Design Curves of A~ustenitic Stainless Steels," April 1999.9. NUREG/CR-5 9 99 (ANL-93/3), "Interim Fatigue Design Curves for Carbon, Low-Alloy, and Austenitic Stainless Steels in LWR Environments," April 1993.10. USAS B3 1.1 -1967, USA Standard Code for Pressure Piping, "Power Piping," American Society of Mechanical Engineers, Ne'ý York.11. EPRI Report No. TR-105759, "An Environmental Factor Approadh to Account for Reactor Water Effects in Light Water Reactor Pressure Vessel and Piping Fatigue Evaluations,'".

December 1995.12. Structural Integrity Associates Calculation No; VY-16Q-303, Revision 0, "Environmental Fatigue Evaluation of Reactor Recirculation Inlet Nozzle and Vessel Shell/Bottom Head." SIR-07-132.

Rev. B " 5-1 ., , .,, ........ f , -1 ,,ý Offuutumf

13. REDACTED 14.. Reference for cycle counts <<LATER>>

Entergy Calculation No. VYC-3 78, Revision 2,"Vermont Yankee Reactor Cyclic Limits for Transient Events, "3/10/88, SI File No. VY-16Q-2 xx.15. Yankee Atonic Electric Company Calculation No. VYC-378, Revision 0, "Vermont Yankee Reactor Cyclic Limits for Transient Events," 10/16/85, SI File No. VY-05Q-211.16. Chicago Bridge & Iron RPV Stress Report, Section S3, Revision 4, "Stress Analysis, Shroud Support, Vermont Yankee Reactor Vessel, CB&I Contract.

9-6201j" 2-3-70, SI File No. VY-16Q-203.

17. Structural'Integrity Associates Calculation No. VY- 1 6Q-3 02, Revision 0, "Fatigue Analysis of Feedwater Nozzle.".18. Structural Integrity Associates Calculation No. VY- I 6Q-3 07, Revision 0, "Recirculation Class I-Piping Fatigue and EAF Analysis." 19. CB&I RPV Stress Report, Section S8, Revision 4, "Stress Analysis, Recirculation Inlet Nozzle, Verriont Yankee Reactor Vessel, CB&I Contract 9-6201," 2-3-70, SI File No.VY-16Q-203.
20. GE Nuclear Energy Certified Stress Report No. 23A4292, Revision 0, i"Reactor Vessel.-Recirculation Inlet Safe End Nozzle," January 21, 1985, SI File No. VY-16Q-203.
21. Structural Integrity Associates Calculation No. VY-16Q-310, Revision 0,"Fatigue Analysis of Core Spray Nozzle." 22. Structural Integrity Associates Calculation No. VY- 16Q-3 11, Revision 0, "Feedwater Class 1 Piping Fatigue Analysis.".23. EPRJIBwRVIP Memo. No. 2005-271, "Potential Error in Existing Fatigue Reactor Water Environmental Effects Analyses," July 1, 2005 24. Structural Integrity Associates Calculation No. VY-16Q-306, Revision 0, "Fatigue" Analysis of Recirculation Outlet Nozzle." SlR-07I32, Rev. 1 5-2 .Structural Integrity Associates, Inc.This Page Contains Reference to Vendor Proprietary Information (such information is marked with a "bar" in the right-hand margin)