ML17276A470: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:EVALUPT1OH OF QUALITY CLASS NILE'Y BACKF1LL VWP-2 HAHFOROt AASH1HSTOH GA F1LF 81-605~D~CX 8'<>~~o42 osooo PDR TABLE OF CONTENTS 1.0 SCOPE 1.1 Introduction 1.2 Objective 2.0  
{{#Wiki_filter:CLASS OF QUALITY EVALUPT1OH      BACKF1LL NILE'Y VWP-2 AASH1HSTOH HAHFOROt   81-605 GA F1LF 8'<>~~o42
              ~D~CX  osooo PDR
 
TABLE OF CONTENTS 1.0 SCOPE 1.1   Introduction 1.2   Objective 2.0  


==SUMMARY==
==SUMMARY==
3.0 METHODS OF TESTING 3.1 Indirect Methods 3.l.1 Drilling and testing 3.1.2 Standard Penetration Tests 3.1.3 Pressuremeter Tests 3.1.4 Down-Hole Nuclear Density Tests 3.2 Direct Methods 3.2.1 General 3.2.2 Washington Densometer 3.2.3 Sand Cone 4.0 FIELD TEST RESULTS 4.1 Subsurface Conditions 4.2 Standard Penetration Tests 4.3 Pressuremeter Tests 4'Down-Hole Nuclear Density Tests 4.5 Direct Method tests 5.0 LABORATORY TESTS 5.1 Grain Size Analysis 5.2 Natural Moisture Content Determinations 5.3 Triaxial Compression Tests 5.4 Maximum and Minimum Density Determinations 6.0 FACTORS EFFECTING TEST RESULTS 6.1 Gravel Size Material 6.1.1 Effects on Standard Penetration Tests 6.1.2 Effects on Pressuremeter Tests and Down-Hole Nuclear Test Results 6.1.3 Effects on Direct Tests 6.2 Percent Passing No.200 Sieve 7.0 CORRELATION OF TEST RESULTS 7.1 General 7.2 Indirect Methods Correlated to Relative Density 7.2.1 Standard Penetration Tests 7.2.2 Pressuremeter Tests 7.2.3 Down-Hole Nuclear Density Tests 7.3 Indirect Methods Correlated to Engineering Properties 7.3.1 Standard Penetration Tests 7.3.2 Pressuremeter 7.3.3 Down-Hole Nuclear 8.0 TEST RESULTS AS RELATED TO DESIGN FUNCTION 8.1 Liquefaction 8.2 General 8.3 Static Conditions 8.4 Dynamic Conditions 9.0 RECOMMENDATIONS 10.0 ACKNONLEDGEMENTS


==11.0 REFERENCES==
3.0 METHODS OF TESTING 3.1  Indirect  Methods
: 3. l. 1 Drilling and testing 3.1.2  Standard Penetration Tests 3.1.3  Pressuremeter Tests 3.1.4  Down-Hole Nuclear Density Tests 3.2  Direct Methods 3.2.1  General 3.2.2 Washington Densometer 3.2.3 Sand Cone 4.0 FIELD TEST RESULTS 4.1  Subsurface Conditions 4.2  Standard Penetration Tests 4.3  Pressuremeter Tests 4'    Down-Hole Nuclear Density Tests 4.5  Direct  Method  tests 5.0 LABORATORY TESTS 5.1  Grain Size Analysis 5.2  Natural Moisture Content Determinations 5.3  Triaxial Compression Tests 5.4  Maximum and Minimum Density Determinations 6.0 FACTORS EFFECTING TEST RESULTS 6.1  Gravel Size Material 6.1.1 Effects on Standard Penetration Tests 6.1.2 Effects on Pressuremeter Tests and Down-Hole Nuclear Test Results
: 6. 1.3  Effects on Direct Tests 6.2  Percent Passing No. 200 Sieve
 
7.0    CORRELATION OF TEST RESULTS 7.1  General 7.2  Indirect Methods Correlated to Relative Density 7.2.1  Standard Penetration Tests 7.2.2  Pressuremeter Tests 7.2.3  Down-Hole Nuclear Density Tests 7.3  Indirect Methods Correlated to Engineering Properties 7.3.1 Standard Penetration Tests 7.3.2 Pressuremeter 7.3.3 Down-Hole Nuclear 8.0    TEST RESULTS AS RELATED TO DESIGN FUNCTION 8.1  Liquefaction 8.2  General 8.3  Static Conditions 8.4  Dynamic Conditions 9.0    RECOMMENDATIONS 10.0    ACKNONLEDGEMENTS
 
==11.0   REFERENCES==
 
TABLES
: 1. Boring Tabulation
: 2. Laboratory Testing Predidted Dynamic Settlements F I GURES
: l. Boring Location Plan
: 2. Photo's
: 3. P.lots of Lab Data Correlation plots 5;  Soil Profiles
: 6. Cross-Sections thru    Utilities
: 7. Settlement Plots
 
- ~
APPENDICIES I. Procedure  for Soil Backf i I I Testing Program II. Boring Logs III. Pressuremeter Plots IV. Down-Hole Nuclear Density Results V. Laboratory Tests Vl. Direct Test Results
 
                                                                                            /4Q lee eel aweer BURNS AND ROE          P) i.O  SCOPE 1.1    Introduction The  Quality Class    I  fill at  the  WNP-2    site that    was placed    prior to May 1976 was    installed in accordance with        FSAR  requirements to approxi-mately elevation 438 (see appendix of            FSAR  for report    by Shannon    and Wilson accepting    all  fill placed    prior to    May  1976). Subsequent    to  May 1976, excavations      were made in    this  fill for placement        of the remote air in'take piping, the remote      air intake structure,        and  the standby service water pipeline with parallel duct banks,            (see Figures    1  and 6  for  utility locations). It was  found  that the backfill      used  in these excavations did not conform to Quality Class          I specification requirements for grada-tion  and compaction.      These nonconforming items resulted              in the writing of 50.55(e) Condition 146.          It is significant to note that          none of the fili in question      is beneath Category      I  buildings; five years of settlement monitoring of Category      I  buildings  has shown    without exception that structural settlements are very small            and  well within the range previously predicted from elastic analysis:
i.2  ~Ob'ective In order  to resolve this nonconforming condition discussed in 1.1, a  testing program    was undertaken    to determine the pertinent engineering properties of the insitu backf i I I. This          was accompl ished by      relating indirect testing    method    results (Standard Penetration Tests,            downhole pressuremeter    testing  and downhole    nuclear density testing) to those engineering properties of the backfill which were used in design.                      After


TABLES 1.2.F I GURES l.2.3.5;6.7.Boring Tabulation Laboratory Testing Predidted Dynamic Settlements Boring Location Plan Photo's P.lots of Lab Data Correlation plots Soil Profiles Cross-Sections thru Utilities Settlement Plots
l4 LW NCIC$ %
-~
                                                                        %UPO
APPENDICIES I.Procedure for Soil Backf i I I Testing Program II.Boring Logs III.Pressuremeter Plots IV.Down-Hole Nuclear Density Results V.Laboratory Tests Vl.Direct Test Results
                                                                        %IF/
/4Q lee eel aweer BURNS AND ROE P)i.O SCOPE 1.1 Introduction The Quality Class I fill at the WNP-2 site that was placed prior to May 1976 was installed in accordance with FSAR requirements to approxi-mately elevation 438 (see appendix of FSAR for report by Shannon and Wilson accepting all fill placed prior to May 1976).Subsequent to May 1976, excavations were made in this fill for placement of the remote air in'take piping, the remote air intake structure, and the standby service water pipeline with parallel duct banks, (see Figures 1 and 6 for utility locations).
BURNS AND ROE       P) these properties were determined they were used to predict the long-term performance of the backfill for both static and dynamic conditions.
It was found that the backfill used in these excavations did not conform to Quality Class I specification requirements for grada-tion and compaction.
 
These nonconforming items resulted in the writing of 50.55(e)Condition 146.It is significant to note that none of the fili in question is beneath Category I buildings; five years of settlement monitoring of Category I buildings has shown without exception that structural settlements are very small and well within the range previously predicted from elastic analysis: i.2~Ob'ective In order to resolve this nonconforming condition discussed in 1.1, a testing program was undertaken to determine the pertinent engineering properties of the insitu backf i I I.This was accompl ished by relating indirect testing method results (Standard Penetration Tests, downhole pressuremeter testing and downhole nuclear density testing)to those engineering properties of the backfill which were used in design.After l4 LW NCIC$%%UPO%IF/BURNS AND ROE P)these properties were determined they were used to predict the long-term performance of the backfill for both static and dynamic conditions.  
                                                                                    /ALW NCICIO OtSCIJ RIP/
/A LW NCICIO OtSCIJ RIP/BURNS AND ROE P)2.0  
BURNS AND ROE         P) 2.0  


==SUMMARY==
==SUMMARY==
I In order to assess the effects of the nonconforming backfill (subject of 50.55(e)Condition 146)a comprehensive testing and evaluation program was Initiated.
The testing program consisted of measuring various pro-perties of the backfill using primarily the Standard Penetration Test, the downhole nuclear density test, and the downhole pressuremeter test.The results of this program indicate a good correlation between the various test methods.Furthermore, the correlations between test methods and engineering properties developed during this study agree well with similar correlations previously reported by others.Relative densities measured in ihe field near the safety related utilities were found to be lower than those required in the Specification.
Nevertheless, both dynamic and static settlement analysis performed to determine The effects of these lower relative density values on safety related utilities have shown thai over-stress of these utilities will not occur.
BURNS AND ROE/4 1%NWDll a+ac%SF/3.0 METHODS OF TESTING 3.1 Indirect 3.1.1 Drillin and Testin General The test program utilized the standard penetration tests (SPT), downhole pressuremeter tests (PMT), and downhole nuclear density tests (DNDT)in selected areas beside the standby service water pipeline and the remote air intake structures and piping.The borings extended to whichever of the following depths was greater: (1)a minimum of three feet below the Category I utility, or (2)the bottom of trenches where backfill was placed for circulating water and storm sewer Class II systems that cross under the area of investigation, or (3)until two consecutive SPT values were each equal to or greater than 15.Initially, at each boring location an SPT sample was taken beginning from the surface and extending to a depth of 18 inches.The split-barrel sampler was then removed to obtain the sample and the sampler was relowered to the bottom of that hole.A second SPT sample was taken to create a hole extending to a total depth of three feet.Subsequently, an aluminum casing (2" O.D.and 1.9" I.D.)was inserted in the open hole created during the SPT sampling in preparation for the downhole nuclear density testing.The nuclear probe was then lowered down the casing in order to determine the wet density of the soil.
/jIL'I IIPDII IIDPN%%11 BURNS AND ROE P)&#x17d;After the nuclear density testing of the upper level soils was completed, the aluminum casing was removed, the hole was augered to the I'epth of three feet (to the bottom of the zone previously tested), and two consecutive SPT samples were taken below the augers, (creating'a hole with a bottom depth of six feet beneath the surface).As before, the aluminum casing was placed in the open hole created beneath the augers so that the nuclear density testing could again be performed.
This procedure of conti'nuous SPT sampling and nuclear density testing was followed throughout the borings.At selected intervals within each borehole, the aluminum casing was removed after the density testing was completed, and BX-Size Steel casing (2-7/8" O.D., 2-3/8" I.D.)was driven to the bottom of ihe hole and then removed.The BX casing was used to enlarge the hole three feet beneath the augers to allow insertion of the pressuremeter probe and subsequent pressuremeter testing.The following paragraphs discuss the indirect testing methods in more detail.3.1.2 Standard Penetration Tests Standard Penetration Tests were performed using an 18 inch split-barrel sampler in accordance with ASTM D 1586.All borings were advanced by means of a Mobile B-61 drill rig equipped with hollow stem augers.Photograph 2.1 shows the drill rig during the performance of the Standard Penetration Test.Representative portions of each split-
/AIL%acacaa reacts WVF/BURNS AND ROE P)1 barrel sample were preserved'in a glass sample jar clearly labeled with I the project title, date, number of boring, sample number, depth between which sample was taken, soil classification (ASTM D 2487)and SPT values.The samples are stored at the WP-2 site and are available for examina-tion.All field testing was monitored by a Geotechnical Engineer, who maintained detailed boring logs, which are contained in Appendix II.3.1.3 Pressuremeter Test A Menard pressuremeter was'used to measure the insitu defor-mation modulus of the soil.Generally, a downhole probe which consisted of inner and outer expanding tubes was lowered to the desired depth;a coaxial cable connected the probe to the volume measuring panel board (see Photograph 2.3).Nitrogen gas was forced under pressure in the outer part of the coaxial cable while water under the same pressure was (forced down the inner part of the coaxial cable.The water under pressure caused the probe to enlarge and deform the borehole wal I, and the amount of volume change was measured on the panel board.A separate nitrogen system kept the water system from expanding beyond the test limits so that a controlled interval 210 mm long could be tested.Photograph 2.4 shows a pressuremeter test being performed.
The pressuremeter used in the testing was manufactured by Menard, Inc., and procedures generally followed were those described by Louis Menard in the equipment operation manual.Testing was performed in 210 mm segments at locations shown on the Profiles, Figure 5.
NDCSO eeaae BURNS AND ROE CD 3.1.4 Down-..Hole Nuclear Densit Tests The wet density of the relatively undisturbed soil in the borehole was determined using the DNDT;the nuclear gauge was calibrated Q~for use in thin-walled aluminum casing.The nuclear gauge and probe used in the density testing is a Campbell Pacific Nuclear Model 501 calibrated and operated as described in the CPN Operator's Manual dated 1980.Generally, wet and dry densities were determined at three foot intervals.
The density determined at each three foot interval is that which is contained in the volume of influence of a sphere having a diameter of 10 inches.Figures 2.5 and 2.6 show a DNDT being performed.
In order to convert the wet density determined by nuclear methods to dry density, the moisture contents of SPT samples were deter-mined in accordance with ASTM D 2216.Further,, at selected locations, test pits were excavated adjacent to the boring locations and the insitu densities at the bottom of these test pits were determined using a Washington Densometer and/or the sand cone.The corresponding relative densities are included in Figure 4.4 and, the insitu densities are included in Appendix IV.These values of'inplace density were compared with the densities determined by nuclear methods at adjacent depths.as shown in Figure 4.1.In addition, DNDT results were ccmpared to other test results (see Section 7.0).3.2 Direct Methods 3.2.1 General In conjunction with the indirect test methods the direct methods discussed below were used to determine insitu densities.
/JOIE OCIRS IICIPN'L%1/BURNS AND ROE 2)3.2.2 Washin ton Densometer The insitu density was determined
'in accordance with ASTM D 2167, Standard Test Method for Density of Soil in Place by the Rubber-Balloon Method.Density test results obtained using the Washington Denscmeter are included in Appendix Vl.3.2.3 Sand Cone In conjunction with the Washington Densometer, the insiiu density was also determined at selected locations in accordance with ASTM D 1556, Density of Soil in Place by Sand-Cone Method.Results of these tests are included in Appendix VI.
/JILL VI P/BURNS AND ROE 4.0 F I ELD TEST RESULTS 4.1 Subsurface Conditions Subsurface conditions at the, WNP-2 site generally consist of a layer of dense, pre-1976 sand fill overlying the very dense Ringold Formation.
As mentioned, the soils that are the subject of this study are the backfill for trenches excavated into ihe pre-1976 fill.At the locations drilled, the deepest extent of the backfill was found to be elevation 413 feet (MSL).Both the post-1976 backfill and the pre-1976 fili consist of sand containing varying percentages of silt and gravel;This sand is known to be glacial outwash in origin and was found to range in description (Unified Soil Classification System, USCS)from a poorly graded clean sand (SP)to a well graded silty, gravelly sand (SW-SM).The majority of the backfill encountered by this testing program was found to be poorly graded (SP), and was found to contain from four to ten percent fines (i.e.material passing a f200 sieve)and from 10$to 20$gravel.The density of,the sand backfill under investigation was found to be erratic and varied from loose to very dense.However, most of the backfill ranged from medium dense to dense, and moisture contents ranged from 3$to 10$.The soils that are the subject of this study are N well above the present and expected future groundwater table at Elevation 405;therefore, groundwater will have no.effects on the engineering pro-perties of the backf i I I.
,.x BURNS AND ROE j'4'DDll ILDDd Wll YP The photograph included as Figure 2.2 shows typical backfi I I soil in the sides of an excavation.
4.2 Standard Penetration Tests The results of the Standard Penetration Tests are reported in the form of an N value (i.e.ihe number of blows required to drive the sampler the final 12 inches);the N values measured during the con-tinuous SPT are.shown on the Profiles (Figure 5).Further, the soli'ecovered from the split-barrel samplers during the SPT was classified in the field by a Geotechnical Engineer and these descriptions are contained in boring logs included in Appendix II, which is included in Volume 2 of this report.The N values for the sand backfi i I are erratic and range from extremes of 5 to 100 blows per foot, which indicates that the relative compactness of the sand backfill varies from very loose to very dense.However, most of the N values are in the range of 20 to 40 blows per foot indicating that the relative compactness ranges from medium dense to dense for most of the soil.At borings where loose fill was en-countered, additional borings were drilled on approximately 20 foot centers on either side of the initial boring until the extent of the loose zone had been defined in both horizontal and vertical extent.It was found that, at those locations examined, the loose sand fill ls contained in discrete and discontinuous zones which are surrounded by denser fill.The predicted effects of these loose zones of fill on the respective utilities are described in detail in Section 8.
BURNS AND ROE/AD, RCSDR%tl CIN 4.5 Pressuremeter Tests Graphs of pressure versus volume change were developed during the pressuremeter testing and these graphs are included in Appendix III.The deformation modulus, which is proportional to the modulus of elasticity (Young's modulus), was caluclated from the pressure-volume change data for each pressuremeter test.The calculations for the deformation moduli are included on the pressuremeter plots;these values are'ummarized on the Prof iles included as Figure 5.The deformation modulus measured for the WNP-2 backfill ranged from extremes of 8 Kg/cm to approximately 800 Kg/cm;however, most values 2 2.were in the range'of 150 Kg/cm to 250 Kg/cm.Specif ical ly, in the area 2 2 of influence, the deformation modulus values were above 50 Kg/cm, and 2 conservatively this value was used to calculate the static settlements of the various utilities as discussed in Section 8.Further, the data from the pressuremeter tests were used to evaluate the at-rest pressure coefficient (K)of the soil.0 4.4 Down-Hole Nuclear Densit Tests Appendix IV contains a summary of the wet (moist)densities determined in the boreholes using nuclear density methods;the corresponding dry densities are also included in Appendix IV.Dry densities were calcu-lated after determining moisture contents in the laboratory according to ASTM D 2216.The relative densities of The soil at these specific locations are summarized on the profiles included in Figure 5.These relative densities were determined by comparing down-hole nuclear density 04CSS OCOCfN%II'/BURNS AND ROE PD test results to maximum densities determined in the laboratory, and by using the correlations shown in Figure 4.2.The dry densities of the soils at the site ranged from approximately 98 pcf to 138 pcf.These dry densities correspond to relative densities from approximately 30$to 100$.4.5.Direct Method Tests I.*'Near surface (0-10 feet)density test results obtained by using the Washington Densometer and sand cone are included in Appendix VI.Generally, these dry densities ranged from 100 pcf to 135 pcf;these values correspond to relative densities of 30$to 1004.
/AIL%uacao OC7PO BURNS AND ROE 5.0 LABORATORY TESTS'5.1 Grain Size Anal sis In order to classify the soi I according to the Unified Soi I Classi-ficationn System (USCS)the particle size distribution of representative soil samples were determined in accordance with ASTM D 422.Table 2 contains a summary of the USCS classification and Appendix V contains the grain size distribution curves.5.2.Natural Moisture Content Determinations In order to convert wet densities into dry densities the natural moisture content of the SPT samples were determined according to ASTM D 2216.Table 2 contains a summary of the moisture contents for the site.As stated, the moisture contents of the backfill ranged from 3$to 10$, and accordingly these low values of moisture content have no significant effect on the engineering pro'perties of the backfill.5.3 Triaxial Com ression'.Tests The shear strength and modulus of elasticity of selected soil samples were determined by unconsolidated undrained triaxial compression tests (similar to ASTM D 2850).The modulus of elasticity and angle of internal friction, determined from these triaxial compression stress-strain curves, are shown in Appendix V and are further summarized In Table 2.
/BIER~ICSCI%messier%%I/BURNS AND ROE P)The modul i of elasticity determined in the laboratory ranged from 150 Kg/cm to 250 Kg/cm.'The angles of internal friction were 31 and 2 2-0 34 for soils remolded to 25$and 40$relative density respectively.
These values were used to verify the correlations of field'est results to engineering properties as described in Section 7.0.5.4 Maximum and Minimum Densit Determinations In order to calculate relative density, in the test sections, the maximum and minimum densities were determined in accordance with ASTM D 2049.The maximum density varies from 111 pcf to 135 pcf, and the minimum I density ranged from 87 pcf to 105 pcf;a summary of The maximum and minimum density results are.included in Table 2.
/VIEW NDDO O&C7%%%rl BURNS AND ROE P)6.0 FACTORS AFFECTING TEST RESULTS'.1 Gravel Size Material 6.1.1 Effects on Standard Penetration Tests The coarse gravel and cobble size particles contained in the subject backfill locally affected the results of the Standard Penetration Test.However, because these coarser particles were found to be isolated throughout the backfill, the majority of the SPT results were not affected.For those SPT results which were judged to be affected by coarse gravel particles, appropriate notes were made on the field boring logs and those values were subsequently not included in the development of correlations or in the evaluation of ihe backfill.The following list contains the general criteria which were used to define SPT's which were judged to yield erroneously high N values: (1)Greater than 10$coarse gravel size material was found in the split-barrel sampler, (2)A loss of split-spoon sample occurred, indicating that a coarse particle may have been lodged in the end of ihe sampler, (5)Angular gravel fragments were'found in the split-spoon, indicating to the geotechnical engineer that a particle had been broken during driving, and/or-(4)Comparison of SPT values with other borehole test methods, indicating that SPT values were unusually high due to the presence of gravel.


PCS la%~lOOO BURNS AND ROE g)6.1.2 Effect on Pressuremeter Test and Downhole Nuclear Test.Results Coarse gravel size material was judged not to have a signifi-Pt cant effect on evaluation of pressuremter testing'data or on the downhole nuclear density testing data.This results because the length of the area of influence along the borehole wall for both of these devices was approximately 10 inches (measured vertically);, Therefore, In the vast P majority of cases, the effect of the gravel particles was smal I relative to the larger size of the area being tested.In addition, these methods tend to"average" The soil properties in the area being tested, thus permitting the PMT and DNDT to approach a truer value of the insitu properties than the SPT value which only measures the resistance in the area of the spoon tip.6.1.5 Effects on Com arison of Indi rect Tests to Direct Tests In areas where gravelly soils are present, it is believed that the PMT and DNDT measure soil properties at least as accurately as those obtained from insitu tests such as the sand cone or the Washington densometer.
I In order to assess the effects of the nonconforming backfill (subject of 50.55(e) Condition 146)     a comprehensive    testing  and evaluation program was Initiated. The  testing   program consisted of measuring various pro-perties of the backfill using primarily the Standard Penetration Test, the downhole nuclear density test,        and the downhole pressuremeter      test.
This results because metho'ds measure average properties within ihe influence zone of the probe without removal and disturbance of The soil in ihe area being tested.I&6.2 Percent Passin No.200 Sieve Occasionally, localized zones of appreciable fines (material with greater than 104 passing the No.200 sieve)were encountered in the 0
The results of this program indicate      a good  correlation   between the various  test methods. Furthermore, the correlations between       test methods and engineering properties developed during this study agree well with similar correlations previously reported         by others.
BURNS AND ROE NCI CIO~le Ctlt%IF/borings.However, th'e percentage of material passing the U.S.No.200 sieve was not a factor in evaluating the test results.
Relative densities measured in ihe field near the safety related utilities  were found   to  be lower than those    required in the Specification.
lA 1%uaarL aaae%I Pr BURNS AND ROE P)7.0 CORRELATIONS OF TEST RESULTS 7.I General In order to develop a correlation between the various indirect methods and relative density, three test fills were constructed using soils typical of those used for trench backfill.One fill was con-structed by placing the soil in a loose condition, one by placing and compacting the soil to a dense condition, and one by placing and com-pacting the soil to a very dense condition.
Nevertheless,   both dynamic and     static settlement analysis performed to determine The effects of these lower relative density values on safety related utilities have shown thai over-stress of these utilities will not occur.
As these test fills were being constructed, numerous Washington Densometer and/or sand-'one inplace" density tests were performed concurrent with the fill placement.
After the test fills were completed, borings were drilled and SPT, PMT, and DNDT tests were performed.
Further, after the drilling was com-pleted, test pits were machine excavated into the test fills so that insitu densities and subsequent relative densities could again be deter-('ined using Washington Densometer and/or sand-cone devices.After preliminary test method correlations were developed from the test fill data, several borings were drilled outside the Class I utility areas in Class II piping backfill to furnish additional data for correla'-tions.This testing consisted of continuous SPT, DNDT, and PMT.In addition, during the drilling and the testing of the Class I utility backfill, additional results of SPT, PMT, and DNDT were compiled and compared against each other to further enhance these correlations.
Moreover, at selected locations, additional test excavations were made BURNS AND ROE/ILL ODDS'ORCIN to again allow correlations between relative density determined by both indirect and direct test methods.7.2 Indirect Methods Correlated to Relative Densi 7.2.1 Standard Penetration Tests A correlation between Standard Penetration Test N values (corrected for overburden pressure as described in reference 13)and relative density.was developed based on the data obtained during this study..The results of this correlation are presented in Figure.4.4, k where a wel I defined, correlation between the N values and relative density is shown (using both the Washington densometer and the DNDT to measure densities).
The results of many studies have been published which corre-late Standard Penetration Test results with relative density.Scme of the most widely accepted of these are the studies by Gibbs and Holtz (1960), Peck and Bazaraa (1969), and Marcuson and Bieganousky (1977)which are referenced in Section I1.0.The data developed at the WNP-2 site closely approximate the correlations reported by Peck and Bazaraa and primarily for that reason, their work was selected for comparison with this study.7.2.2 Pressuremeter Tests As shown on Figure 4.6 a correlation was developed between the deformation modulus and relative density of the soil at the WNP-2 site.However, because this correlation was not as well defined as those shown.-
/&#xc3;LW seas 0CI OO%%K/BURNS AND ROE IC In Figure 4.4 and Figure 4.7, we elected noi to use this correlation in the analysis.7.2.3 Down-hole Nuclear Densit Tests The relative density of the backfill was determined using the downhole nuclear density device and at selected locations, test pits were excavated adjacent to the boring locations and the insitu wet and dry densities at.the bottom of these pits were determined using a Washington Densometer and/or a sand cone.These values of in-place density and calculated relative density were used to compare with the densities determined by nuclear methods at adjacent depths as shown in Figure 4.I, and as can be seen a good correlation was developed.
7.3 Correlations to En ineerin Pro erties 7.3.1 Standard Penetration Tests I In addition to developing correlations to relative density, ihe field testing program was developed such that correlations could be developed between N, relative density, and actual engineering properties reported in the literature.
For example, Schmertmann (1970)published a correlation between N and Young's modulus.Figure 4.7 shows Schmert-mann's correlation between N and Young's modulus as compared to the N and deformation modulus correlation developed at the WNP-2 site.Further, Peck (1974)developed a correlation between N (corrected for overburden pressure)and the angle of internal friction for cohesionless II44CSO IID Cllt%%K/BURNS AND ROE PD soils.This correlation is shown on Figure 4.5 which also shows the relative density and N correlation developed during this study.In order to substantiate this correlation, the-.angle of internal friction was calculated from data obtained in the triaxial testing of WNP-2 soils remolded to boih 25$and 40$relative density.Results of the trlaxial tests are plotted on Figure 4.5 and in both cases, the actual angles of internal friction were slightly higher than predicted in the corrhlation.
Thus, based on these two cases, there is a def Inite correlation between N values, relative density and ihe angle of internal friction for the WNP-2 soils.7.3.2 Pressuremeter The pressuremeter was used to determine the deformation modulus at different locations within the backfill., The deformation modulus was used in conJu'nction with the SPT N values in developing correlations with Young's modulus,.and as described in the previous section, this was compared with Schmertmann's correlation between N and Young's modulus (Figure 4.7).Further, Martin (1977)used the pressuremeter in predict-ing settlements of structures founded on silty sand and sandy silt in residual soils.Martin reported in his studies thai the deformation modulus obtained from the pressuremeter was equal to Young's modulus based on comparisons of predicted and actual settlements.
The Schmertmann correlation and the results reported by Martin both substantiate the'f correlation shown on Figure 4.7 between N and the deformation modulus.Finally, the data developed during this study and the data reported by BURNS AND ROE ALW ODD%%RCIN%%I/others indicate that the deformation modulus is equal to Young's modulus'or the WNP-2 soils.7.3.3 Down-hole Nuclear Densit The nuclear density gauge was used to determine insitu densities from which relative densities could be calculated.
The relative densities determined in this manner were used in conjunction with the SPT N values in developing correlations with the angle of internal friction as described in Section 7,.3.1.
0
/JjLW DDCSO oescra BURNS AND ROE cD-8.0.ITEST RESULTS AS RELATED TO DESIGN FUNCTION It has been found that liquefaction is not possible in the soil placed after May 1976, because the present and future position of the water table is well below all of the backfill.The highest predicted elevation of the water table is elevation 405 and since the lowest extent of, the backfill in question is elevation 413, liquefaction cannot occur in ihe dry to moist soil conditions.(Note: elevation 405 has been predicted conservatively as the maximum future elevation of the water table at the WNP-2 site if the Ben Franklin Dam is constructed).
8.2 General Determination of the adequacy of insitu conditions relative to the design function of the standby service water pipeline, and the remote air intake structure and piping has been accomplished by considering stress conditions that may result from potential static and dynamic settlement in the lowest relative density zones found.Zones of low relative density were found in the following areas: (1)at line WOA 51A of the remote air intake pipi ng, low relative densities ranged from 45K to'0$in Boring CT-43;(2)at I ine WOA 51B of the remote air intake piping, low relative densities ranged from 30$to 40$in Borings CT-3 and CT-40.Boring CT-40, however, reflects the condition of the.backfii.l around the manhole; BURNS AND ROE NDD1 ODON%%1/(5)at the standby service water pipeline, the lowest relative density was 45$in Boring CT-11.None of these low relative density zones were found to be continuous from one boring to'another.
Moreover, observation of excavations made in these safety related areas indicate that the loose zones are limited from 5 to 10 feet in extent.However, for design purposes a horizontal extent of 20 feet was conservatively selected for the length of any loose zones (refer to Section 4.2).This distance is consistent with the requirement in the testing procedure to add an additional boring offset 20 feet from any boring where a loose zone (N value less than 15)was found.8.3 Static.Conditions For the static case, settlements were determined using elastic-f half-space theory employing Young's modulus determined from actual field measurements, made during the backfill testing program (after Schmertmann, 1970).Figures 7.1 and 7.2 show the settlement plots resulting from thi s ana I ys i s.Conservative I y, these p lots were deve loped us ing the lowest deformation modulus found at each utility;the respective values used are shown on Figures 7.1 and 7.2.It has been conservatively estimated that the net contact pressure under the foundation of the remote air intake lines, the remote air intake structures, and the standby service water pipeline is less than 0.2 KSF.For this value (0.2 KSF)of net stress, total settlements of less than 0.I inches are estimated.
For purposes of calculating piping stresses this total static settlement was conservatively selected to I
BURNS AND ROE/4 jx ODDS ODDN C)O CD reprBsBnt ihe differential settlement that may occur ai the center of/any 20:foot.section of safety related piping.Using this value of settlement, it has been determined that negligible stress increase in the piping will occur;it is therefore concluded that for the static case, soil conditions near the safety related piping will have no detrimental effect on the integrity of these systems.8.4 D namic Conditions For the dynamic case (SSE conditions), two determinations were made: first, the potential for less dense backfill near the pipe to cause an overstress in those safety related systems;and second, the adequacy of the safety related piping to accommodate seismic settlements in less dense backfill.For the first condition, the effect of less dense backfill adjacent to buried piping has been found to not affect the seismic wave passage (particle velocity)for the total plant.On The contrary, less stringent compaction will result in the potential for slippage (between the pipe and the backfill)which is beneficial as sBBn from the equation by Newmark in the FSAR reference 3.7-12.For the second condition, seismic settlements of the fill were com-puted using the cyclic shear strain method.This is generally similar to the cyclic strain approach to liquefaction of saturated sand proposed by Dobry, et al (see Reference No.2).
BURNS AND ROE 14LL ODDS ODDO%%I/Util izing this method.in representative zones of lowest relative I density, and using the corresponding lowest values of K , calculations were performed to determine"best estimate" settlement for the remote It't,1 air intake piping I ine WOA 51A, and WOA 51B, of 1.1 inches and 1.5 inches, respectively.
Similarly, for the standby service water pipeline Dr.Dobry has calculated settlements of OL3 inches (see Table 3).I For purposes of calculating piping stress, these total seismic settlements were increased to three inches and were conservatively assumed to represent the differential settlements that may occur at the contour of any 20 feet section of safety related piping.Imposing these conditions on all buried safety related utilities has shown that pipe stresses are well within the allowable IImii.It is therefore concluded, that insitu soil conditions near the piping have no detrimental effect 4 during SSE conditions.
BURNS AND ROF J'AIL%OD CI%OOOlt%%F/


==9.0CONCLUSION==
                                                                                        /4 1%
S AND RECOMMENOATIONS In the previous discussion, it has been shown that stress con-ditions resulting from potential static and dynamic settlements in loose soil zones will have no detrimental effects on buried safety related piping.Based on ihe conclusions made during the backfill testing program ii is our recommendation to accept the backfill placed after May 1976 around these safety related utilities.
NWDll a+ac
BURNS AND ROE jill oaall aaao%1IPI 10.0 ACKNOWLEDGEMENTS 10.1'Field and laboratory testing performed by or under direction of Geologic Associates, Inc.10.2 Correlations of data and static settlement analysis by Geologic Associates, lnc.10.5 Dynamic settlement analysis was performed by R.Dobry.10.4 Determinations of seismic and settlement general stress effects on piping by Burns 8 Roe, inc.10.5 Conclusions and recommendations by Burns 8 Roe, Inc..10.6 Preparation of text jointly by Geologic Associates, Inc., and Burns 8, Roe, Inc.
                                                                                        %SF/
'II.O REFERENCES
BURNS AND ROE 3.0   METHODS OF TESTING 3.1   Indirect 3.1.1   Drillin    and Testin      General The  test  program  utilized the standard penetration tests (SPT), downhole pressuremeter        tests  (PMT), and downhole nuclear density tests  (DNDT) in selected areas beside the standby service water pipeline and  the remote    air intake structures      and   piping.
/ILL N4Clll mesa'%F8'URNS AND ROE 1.2.3.AmericanrSoclety for Testing and Materials (1980), Philadelphia, PA.Dobry, R., D.H.Powell, F.Y.Yokel, and R.S.Ladd (1980),"Liquefaction Potential of Saturated Sand-The Stiffness Method," Proc.Seventh World Conference on Earthquake Engineering, Istanbul, Turkey, September, Vol.3, pp.25-32.Dobry R., Stokoe K.H., Ladd R.S.and Youd T.L.(1981)"Liquefaction Susceptibility From S-Wave Velocity," ASCE Conference St.Louis, Missouri, October.=4.g.Fardis M.and'Veneziano D.(1981),"Estimation of SPT-N Relative Density," Journal of the Geotechnical Engineering Division, ASCE, Vol.107, No.GTIO, October."I Gibbs, H.J., and Holtz, W.G., (1957)"Research on Determining the Density of Sands by Spoon Penetration Testing," Proceedings of the Fourth Internationa I Conference on Soi I Mechanics and Foundation Engineering, London, England, Vol.I, pp 35-39.6.Lacroix, Y., and H.M.Horn, (1973),"Direct Determination and Indirect Evaluation of Relative Density and Its use on Earthwork Construction Projects," ASTM STP 523, pp 251-280.7.Lee, K.L.and A.Alvaisa (1974),"earthquake Induced Settlements in Saturated Sands," Journal of Geotechnical Engineering Division, ASCE, Vol.100, GT4, Apri I, pp 387-406.8.Lee, K.L., and Singh, A., (1971)"Relative Density and Relative Compaction,".Journal of the Soi I Mechani cs and Foundations Division, ASCE, Vol 97, No SM7, July, pp 1049-1052.9.Marcuson W.and Bieganousky W., (1977),"SPT and Relative Density in Coarse Sands," Journal of the Geotechnical Engineering Division, ASCE, Vol.103, No.GTII, November.10.Martin, R.E., (1977)"Estimating Foundation Settlements in Residual Soils,"Journal of the Geotechnical Engineering Division, Vol.103, GT3, March, pp.197-212.Oweis, I.(1979),"Equivalent Linear Model for Predicting Settlements of Sand Bases,"'Journal of the Geoiechnical Engineering Division, ASCE, Vol.105, No.G3 12, December.12.Peck, R.B.and Bazaraa, A.R., (1969)discussion of"Settle-ment of Spread Footings on Sand," by D.D'Appolonia, E.O'Appolonia, and R.Brissetie, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.95, No.SM3, Proc.Paper 6525, May, pp 905-909.
The borings extended      to whichever of the following        depths was greater:
0 13.14.JALAP aCSmO OttttO%%11 BURNS AND ROE~&#x17d;Peck, R.B., Hanson, W.E., and Thornburn, T.H., (l974)Foundation Engineering, 2nd ed., John Wiley and Sons, Inc., New York, NY.'o~-,',-Pyke, R., H.B.Seed, and C.K.Chan (l975),"Settlement of Sands Under Multidirectional Shaking," Journal of the Geotechnical Engineering Division, ASCE, Vol.IOI, GT4, April, pp 379-398.15., 16.Schmertmann, J.H.(I970),"Static Cone to Compute Static Settlement Over Sand," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol 96, No.SM3, Proc.Paper 7924, May, pp IOII-I043.
( 1) a  minimum  of three feet below the Category          I utility, or (2) the bottom of trenches where          backfill  was placed for circulating water      and storm sewer Class        II systems that cross under the area of investigation, or (3) until two consecutive        SPT  values were each equal to or greater than      15.
J'I Schultze E"..and Melzer K."(!965)"The Determination of the Density and The Modulus'of Compressibility of Non-cohesive Soi ls by Soundings," Proceedings of the Sixth International Conference on Soil Mechanics and Foundation.
Initially, at    each boring    location    an SPT sample was taken beginning from the surface and extending            to  a  depth of 18 inches.     The split-barrel    sampler was then removed to obtain the sample and the sampler was relowered      to the bottom of that hole.           A second SPT sample was  taken  to create    a hole extending to      a  total  depth of three feet.
Engineering, Vol.I, Montreal, l965, pp 354-358.1,7.Se I i g.E., and Ladd R., (I 972)"Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soi ls," Symposium at Seventy-fifth Annual Meet i ng f or ASTM, Los Ange I es, Ca I i f orn i a, J une.~1*41 1
Subsequently,   an aluminum    casing (2" O.D. and 1.9" I. D.)         was  inserted in the open hole created during the         SPT  sampling in preparation        for the downhole nuclear density      testing. The nuclear probe was then lowered down  the casing in order to determine the wet density of the soil.


~~I I I~I I I'I~~~'-~i I~I~I~~~~~~~~~~I~~e I I~~I i I~I~I I)I~~~~~~~~)I I~~e II~~~'I~~I 4 0~~)~)~~~~
                                                                                            /jIL'I IIPDII IIDPN
                                                                                            %%11 BURNS AND ROE          P)
                                                                                                '
After the nuclear density testing of the upper level soils was completed, the aluminum casing was removed, the hole was augered to the I
of three feet (to the bottom of the zone previously tested), and
                          'epth two consecutive SPT samples were taken below the augers,                  (creating  'a hole with  a bottom depth of          six feet  beneath the surface).      As  before, the aluminum casing    was placed          in the open hole created beneath the augers so  that the nuclear density testing could again                be performed.
This procedure of conti'nuous            SPT  sampling and nuclear density testing was  followed throughout the borings.
At selected          intervals within    each borehole, the aluminum casing was removed    after the density testing            was  completed, and BX-Size Steel casing (2-7/8" O.D., 2-3/8" I.D.) was driven                  to the  bottom of ihe hole and then removed.              The BX casing was used    to enlarge the hole three feet beneath the augers to allow insertion of the pressuremeter probe and subsequent    pressuremeter          testing.
The  following paragraphs discuss the indirect testing                  methods in more  detail.
3.1.2    Standard Penetration Tests Standard Penetration Tests were performed using an                  18  inch split-barrel sampler in            accordance with    ASTM D  1586. All borings    were advanced  by means  of  a        Mobile B-61    drill rig equipped with hollow stem augers. Photograph 2.        1  shows  the  drill rig during the performance of the Standard Penetration Test.                Representative  portions of  each  split-


~I I~I~I I~~I~'I'~I~~I~~~I I I~~~I-I~~I I~~I I~I I'I~I 0~~~I I~'I~I'I I I I~I~I I~~-I~I~~~~e~o.I II~~I.-I I~~~
                                                                                          /AIL%
~~~I I I S S I~I~~I~J~~~~0 I~~~~I'I I I~I-s~~I-s s I I~~I~~I i I~I~~I s I~~~~I~I I~I~~~~~~~I~~~~~~~I~~
acacaa reacts WVF/
~I~I~I I~s.I-s I~~I~~~~~~~~~~~I~~I I~~~~~~l I I~
BURNS AND ROE            P) 1 barrel sample were preserved 'in        a  glass sample    jar clearly    labeled withI the project    title,  date, number of boring, sample number, depth between which sample was taken,      soil classification        (ASTM D 2487)  and SPT values.
The samples    are stored at the WP-2        site  and are  available for examina-tion. All field testing      was  monitored by        a Geotechnical  Engineer, who maintained detailed boring logs, which are contained in Appendix                  II.
3.1.3    Pressuremeter    Test A Menard  pressuremeter      was 'used  to  measure the  insitu defor-mation modulus of the      soil. Generally,        a  downhole probe which consisted of inner  and  outer expanding tubes        was  lowered  to the desired depth;      a coaxial cable connected the probe to the volume measuring panel board (see Photograph    2.3). Nitrogen gas      was  forced under pressure      in the outer part of the coaxial cable while water under the              same  pressure was
(
forced down the inner part of the coaxial cable.              The water under pressure caused  the probe to enlarge and deform the borehole wal I, and the amount of  volume change was measured      on  the panel board.      A separate  nitrogen system kept the water system from expanding beyond the                test limits  so that  a controlled interval    210  mm    long could be tested.      Photograph 2.4 shows a  pressuremeter    test being performed.
The pressuremeter    used    in the testing was manufactured by Menard,  Inc.,  and procedures    generally followed were those described by Louis Menard in the equipment operation manual.              Testing  was performed in 210  mm  segments  at locations    shown on    the Profiles, Figure 5.


~~~~~~~~~~<~~$~I'I~i~I~~~~I~s~I-t~I l.s~I I I'~~0~~l~~~~l 0~~~J~
NDCSO eeaae BURNS AND ROE          CD 3.1.4    Down-..Hole  Nuclear Densit    Tests The wet  density of the relatively undisturbed soil in the borehole was determined using the        DNDT;    the nuclear gauge Q
was  calibrated
                                                        ~
for  use in  thin-walled aluminum casing.          The    nuclear gauge  and probe used  in the density testing is      a Campbell    Pacific Nuclear      Model 501 calibrated  and operated    as described    in the    CPN  Operator's Manual dated 1980. Generally, wet and dry densities were determined at three foot intervals. The  density determined at each three foot interval is that which is contained    in the volume of influence of          a  sphere having  a diameter of    10  inches. Figures 2.5 and 2.6          show a DNDT being    performed.
In order  to convert the wet density determined            by nuclear methods  to dry density, the moisture contents of            SPT  samples were    deter-mined in accordance    with  ASTM D  2216. Further,, at selected        locations, test pits  were excavated    adjacent to the boring locations          and  the insitu densities at the bottom of these test pits were                determined using    a Washington Densometer and/or the sand cone.                The corresponding    relative densities are included in Figure 4.4        and,  the insitu densities are included in Appendix IV. These values of 'inplace density were compared with the densities determined      by nuclear methods at adjacent depths.          as shown in Figure 4.1. In  addition,    DNDT results  were ccmpared      to other test results (see Section 7.0).
3.2  Direct Methods 3.2.1    General In conjunction    with the indirect test methods the direct methods discussed    below were used    to determine insitu densities.


~~I~~s s~I s~~~s 0 0~s I'~'I~I~~I s I'y'~I~'I>I~'I ss I I I I'II~I~s$y~~s 4 I i f s$a~a s I>I'~'~~'~~
                                                                                /JOIE OCIRS IICIPN
                                                                                'L%1/
BURNS AND ROE        2) 3.2.2    Washin ton Densometer The  insitu density  was determined  'in accordance  with ASTM D 2167, Standard Test Method    for Density of Soil in  Place by the Rubber-Balloon Method. Density test results obtained using the    Washington Denscmeter are included in Appendix      Vl.
3.2.3    Sand Cone In conjunction  with the Washington Densometer, the insiiu density  was  also determined at selected    locations in accordance with ASTM D  1556, Density  of Soil in Place  by Sand-Cone Method. Results of these tests are included in Appendix VI.


TABLE 2  
                                                                                            /JILL VIP/
BURNS AND ROE 4.0  F I ELD TEST RESULTS 4.1    Subsurface Conditions Subsurface conditions at the,          WNP-2  site generally consist of      a layer of dense, pre-1976 sand            fill overlying    the very dense Ringold Formation.      As  mentioned, the      soils that are the subject of this study are the    backfill for trenches        excavated  into ihe pre-1976      fill. At the locations  drilled, the      deepest extent of the      backfill    was found  to  be elevation    413  feet  (MSL).      Both the post-1976    backfill    and  the pre-1976 fili consist    of  sand    containing varying percentages        of  silt and  gravel; This sand is    known    to  be  glacial outwash in origin      and was found  to range in description (Unified Soil            Classification    System, USCS) from      a poorly graded clean sand (SP) to            a  well graded  silty, gravelly    sand (SW-SM). The  majority of the backfill encountered            by  this testing    program was found    to  be  poorly graded (SP), and        was found  to contain from four to ten percent fines (i.e. material passing              a  f200 sieve) and from      10$
to  20$  gravel. The  density of,the sand backfill under investigation              was found  to  be  erratic    and    varied from loose to very dense. However, most of the backfill ranged from            medium dense  to dense,    and  moisture contents ranged from 3$      to  10$ . The  soils that are the subject of this study are N
well above the present and expected future groundwater table at Elevation 405;  therefore, groundwater will          have  no.effects  on  the engineering pro-perties of the backf i I I.
 
,
  .x
 
j'4 'DDll ILDDd WllYP BURNS AND ROE The photograph      included as Figure 2.2 shows typical backfi        I I              soil in the sides of an excavation.
4.2    Standard Penetration Tests The  results of the Standard Penetration Tests are reported in the form of an    N  value  (i.e. ihe    number  of blows required to drive the sampler the    final  12  inches); the  N  values measured during the con-tinuous  SPT  are .shown on the Profiles (Figure 5).          Further, the split-barrel                                      classified soli'ecovered from the                    samplers during the      SPT was in the  field    by a Geotechnical    Engineer and these descriptions are contained in boring logs included in Appendix              II, which is included in Volume 2  of this report.
The  N  values    for the  sand  backfi  i I are  erratic  and range from extremes  of  5  to  100 blows  per foot, which indicates      that the relative compactness    of the  sand  backfill varies    from very loose    to very    dense.
However, most      of the  N  values are in the range of 20      to  40 blows                per foot indicating that the relative compactness              ranges  from medium dense to  dense  for    most of the    soil. At borings where loose      fill was    en-countered,    additional borings were drilled          on approximately 20 foot centers on either side of the          initial    boring until the extent of the loose zone had been defined in both horizontal and              vertical extent.                    It was found    that, at those locations        examined, the loose sand      fill ls contained in discrete and discontinuous zones which are surrounded by denser  fill. The  predicted effects of these loose zones of          fill on                the respective    utilities    are described    in detail in Section 8.
 
                                                                                          /AD, RCSDR
                                                                                        %tl CIN BURNS AND ROE 4.5  Pressuremeter    Tests Graphs  of pressure versus volume        change were developed  during the pressuremeter    testing  and  these graphs are included in Appendix      III. The deformation modulus, which is proportional to the modulus of            elasticity (Young's modulus), was caluclated from the pressure-volume          change data for each pressuremeter    test. The  calculations for the deformation moduli are included on the pressuremeter          plots; these values are on the Prof iles included      as  Figure 5.                    'ummarized The deformation modulus measured          for the  WNP-2 backfill  ranged from 2
extremes  of  8 Kg/cm    to approximately      800 Kg/cm2.; however, most values 2              2 were in  the range'of    150 Kg/cm    to  250 Kg/cm . Specif ical ly, in the area 2
of influence, the deformation modulus values were            above 50 Kg/cm, and conservatively this value      was used    to calculate the static settlements of the various    utilities  as discussed    in Section 8. Further, the data from the pressuremeter      tests    were used  to evaluate the at-rest pressure coefficient    (K0 ) of the  soil.
4.4  Down-Hole Nuclear Densit        Tests Appendix IV contains      a summary    of the wet (moist) densities determined in the boreholes using nuclear density methods; the corresponding dry densities are also included in Appendix IV. Dry densities were calcu-lated  after determining moisture contents          in the laboratory according to ASTM D  2216. The  relative densities of      The soil at these specific locations are summarized      on  the profiles included in Figure 5.      These relative densities    were determined by comparing down-hole nuclear density
 
04CSS OCOCfN
                                                                              %II'/
BURNS AND ROE        PD test results to    maximum  densities determined in the laboratory,  and by using the correlations shown in Figure 4.2.
The dry  densities of the soils at the site ranged from approximately 98  pcf to  138  pcf. These dry densities correspond to relative densities from approximately 30$    to  100$ .
4.5. Direct  Method Tests I.*'
Near surface (0-10  feet) density test results obtained by  using the Washington Densometer and sand cone are included in Appendix VI.      Generally, these dry densities ranged from 100 pcf to 135 pcf; these values correspond to relative densities of      30$ to  1004.
 
                                                                                        /AIL%
uacao OC7PO BURNS AND ROE 5.0  LABORATORY TESTS
                      '
5.1    Grain Size Anal sis In order to classify the soi ficationn                                    I  according to the Unified Soi    I Classi-System (USCS)    the particle size distribution of representative soil  samples were determined          in accordance with      ASTM D 422. Table  2 contains    a summary    of the  USCS    classification    and Appendix  V contains the grain size distribution curves.
5.2  . Natural Moisture Content Determinations In  order to convert wet densities into dry densities the natural moisture content of the        SPT  samples were determined according        to  ASTM D 2216. Table  2 contains    a summary      of the moisture contents for the site.
As  stated, the moisture contents of the backfill ranged from              3$ to 10$ , and  accordingly these low values of moisture content have no significant effect      on  the engineering pro'perties of the        backfill.
5.3    Triaxial  Com  ression    '.Tests The shear    strength    and modulus      of elasticity of selected soil samples were determined by unconsolidated              undrained  triaxial compression tests (similar to ASTM D 2850). The modulus of elasticity and angle of internal friction, determined from these triaxial compression stress-strain curves, are      shown  in Appendix      V and are  further summarized  In Table 2.
 
                                                                                    /BIER
                                                                                  ~ ICSCI%
I/
messier
                                                                                    %%
BURNS AND ROE          P)
The modul i  of elasticity determined in the laboratory ranged from 2-                                                0 150 Kg/cm 2
to 250 Kg/cm . 'The angles    of internal friction were    31  and 34  for soils  remolded  to  25$ and 40$  relative density respectively.
These values were used    to verify the correlations of      field'est  results to engineering properties      as described  in Section 7.0.
5.4    Maximum and Minimum  Densit    Determinations In  order to calculate relative density, in the test sections, the maximum and minimum    densities were determined in accordance with      ASTM D 2049. The maximum    density varies from    111  pcf to 135  pcf, and the minimum I
density ranged from    87  pcf to 105  pcf;  a summary  of  The maximum and minimum  density results are .included in Table 2.
 
                                                                                      /VIEW NDDO rl O&C7%
                                                                                      %%
BURNS AND ROE        P) 6.0  FACTORS AFFECTING TEST RESULTS
                                            '.1 Gravel Size Material 6.1.1    Effects  on Standard      Penetration Tests The coarse gravel and cobble          size particles contained in the subject backfill locally affected the results of the Standard Penetration Test. However, because    these coarser particles were found to be isolated throughout the    backfill, the majority of the          SPT results were not affected.
For those SPT    results which    were judged      to  be  affected by coarse gravel particles, appropriate notes        were made on the      field boring  logs and those values were subsequently        not included in the development of correlations or in the evaluation of ihe backfill.
The  following    list  contains the general      criteria  which were used  to define  SPT's which were judged        to yield erroneously high    N values:
(1)  Greater than    10$  coarse gravel size material was found in the    split-barrel sampler, (2)  A  loss of split-spoon sample occurred,          indicating that  a coarse    particle    may have been    lodged in the end of ihe sampler, (5)  Angular gravel fragments were 'found in the split-spoon, indicating to the geotechnical engineer that          a  particle had been broken      during driving, and/or
          -
(4)  Comparison    of  SPT  values with other borehole      test methods,    indicating that      SPT  values were unusually high due  to the  presence  of gravel.
 
PCS la%
                                                                                              ~ lOOO BURNS AND ROE            g) 6.1.2    Effect  on  Pressuremeter      Test and Downhole Nuclear Test .Results Coarse gravel size material was judged not              to  have a    signifi-Pt cant effect on evaluation of pressuremter testing 'data or on the downhole nuclear density testing data.          This results because the length of the area of influence along the borehole wall            for both of these      devices was approximately    10  inches (measured    vertically);,
P Therefore, In the vast majority of cases, the effect of the gravel particles                  was smal  I  relative to the larger size of the area being tested.              In  addition, these      methods tend  to "average"    The  soil properties in the area being tested, thus permitting the    PMT  and DNDT  to  approach    a  truer value of the insitu properties than the      SPT  value which only measures the resistance              in the area of the spoon      tip.
: 6. 1.5  Effects  on Com  arison of Indi rect Tests to Direct Tests In areas where    gravelly soils are present,            it  is believed that the  PMT  and DNDT measure    soil properties at least        as  accurately as those obtained from insitu tests such as the sand cone or the Washington densometer. This results because        metho'ds measure      average properties within ihe influence      zone  of the probe without removal          and  disturbance of  The soil in ihe area being tested.                                                &
I 6.2  Percent Passin      No. 200 Sieve Occasionally, localized zones of appreciable fines (material with greater than    104  passing the No. 200 sieve) were encountered                in the
 
0 NCI CIO
                                                                        ~ le Ctlt
                                                                        %IF/
BURNS AND ROE borings. However, th'e percentage of material passing the U.S. No. 200 sieve was not a factor in evaluating the test results.
 
lA1%
uaarL aaae
                                                                                            %I Pr BURNS AND ROE            P) 7.0  CORRELATIONS OF TEST RESULTS
: 7. I  General In  order to develop    a  correlation  between the various          indirect methods and    relative density, three test      fills were        constructed using soils typical of those      used  for trench backfill.          One  fill was  con-structed    by  placing the soil in    a  loose condition, one by placing and compacting the    soil to  a dense  condition,    and one by        placing  and com-pacting the soil to      a  very dense condition.      As      these  test  fills were being constructed,      numerous Washington Densometer            and/or sand-'one inplace" density tests were performed concurrent with the                  fill placement.
After the test    fills were    completed, borings were          drilled  and SPT, PMT, and DNDT    tests  were performed. Further, after the          drilling was    com-pleted, test pits were machine excavated into the test                  fills so    that insitu densities      and subsequent    relative densities could again            be  deter-using Washington Densometer and/or sand-cone devices.
('ined After preliminary test      method  correlations were developed from the test  fill data,    several borings were    drilled outside the          Class  I  utility areas  in Class II piping backfill to furnish additional data for correla'-
tions. This testing consisted of continuous        SPT, DNDT, and PMT.            In addition, during the drilling        and  the testing of the Class            I utility backfill, additional results of        SPT, PMT, and DNDT were compiled and compared    against each other to further enhance these correlations.
Moreover, at selected      locations, additional test excavations were                made
 
                                                                                        /ILL ODDS
                                                                                      'ORCIN BURNS AND ROE to again allow correlations      between    relative density determined      by both indirect  and  direct test  methods.
7.2    Indirect  Methods Correlated      to Relative  Densi
: 7. 2. 1  Standard Penetration Tests A  correlation  between Standard Penetration Test        N  values (corrected for overburden pressure as described in reference              13) and relative density. was developed    based on  the data obtained during this study.. The  results of this correlation are presented in Figure .4.4, k
where a wel  I  defined, correlation between the        N  values and relative density is    shown  (using both the Washington densometer and the          DNDT  to measure  densities).
The  results of  many  studies have been published which corre-late Standard Penetration Test results with relative density.                Scme of the most widely accepted of these are the studies by Gibbs and Holtz (1960), Peck and Bazaraa (1969), and Marcuson and Bieganousky (1977) which are referenced      in Section I1.0.      The data developed    at the  WNP-2 site closely approximate the correlations reported by Peck              and Bazaraa and primarily for that reason, their work was selected for              comparison with this study.
7.2.2    Pressuremeter    Tests As shown on    Figure 4.6    a  correlation  was developed  between the deformation modulus and relative density of the soil at the              WNP-2  site.
However, because    this correlation      was not as well defined as those shown
                                        .- 
                                                                                          /&#xc3;LW seas 0CI OO
                                                                                          %% K/
BURNS AND ROE            IC In Figure 4.4 and Figure      4.7,  we  elected noi to use this correlation in the analysis.
7.2.3    Down-hole Nuclear Densit          Tests The  relative density of the backfill            was  determined using the downhole nuclear    density device      and  at selected locations, test pits were excavated    adjacent to the boring locations and the insitu wet and dry densities at. the bottom of these        pits  were determined      using  a Washington Densometer and/or      a  sand cone.      These values    of in-place density and calculated relative density were used to compare with the densities determined by nuclear methods at adjacent depths                as shown in Figure 4. I, and as can be seen a good        correlation      was developed.
7.3  Correlations to      En ineerin    Pro    erties 7.3. 1  Standard Penetration Tests            I In addition    to developing correlations to relative density, ihe field testing program was developed such that correlations could                    be developed between N,      relative density,      and  actual engineering properties reported in the    literature. For example, Schmertmann          (1970) published a correlation  between    N and Young's modulus.          Figure 4.7 shows Schmert-mann's  correlation    between  N and Young's modulus as compared            to the  N and  deformation modulus correlation developed at the              WNP-2  site.
Further, Peck (1974) developed          a  correlation    between  N  (corrected for overburden pressure)      and  the angle of internal        friction for    cohesionless
 
II44CSO IIDCllt
                                                                                          %%K/
BURNS AND ROE          PD soils. This correlation is    shown on    Figure 4.5 which also shows the relative density    and N  correlation developed during this study.              In order to substantiate      this correlation,      the-.angle of internal      friction was  calculated from data obtained in the triaxial testing of                WNP-2  soils remolded  to boih  25$ and 40$    relative density.        Results of the  trlaxial tests are plotted    on  Figure 4.5  and  in both cases,      the actual angles of internal friction were slightly higher than predicted in the corrhlation.
Thus, based on these two cases,        there is    a  def Inite correlation between N values, relative density and ihe angle of internal                friction for  the WNP-2  soils.
7.3.2    Pressuremeter The pressuremeter    was used    to determine the deformation        modulus at different locations within the backfill.,              The deformation modulus was used  in conJu'nction with the    SPT N  values in developing correlations with Young's modulus,. and as  described    in the previous section,      this  was compared  with Schmertmann's correlation between            N  and Young's modulus (Figure 4.7).      Further, Martin (1977)      used    the pressuremeter    in predict-ing settlements    of structures founded      on  silty    sand and sandy  silt  in residual soils.      Martin reported in his studies thai the deformation modulus obtained from the pressuremeter          was equal      to Young's  modulus based on comparisons      of predicted    and  actual settlements.        The Schmertmann correlation    and  the results reported      by  Martin both substantiate the
                                                      'f correlation    shown on  Figure 4.7 between      N  and  the deformation modulus.
Finally, the data developed during this study              and  the data reported    by
 
ALW ODD%
                                                                            %RCIN
                                                                            %%  I/
BURNS AND ROE others indicate that the deformation modulus is equal to Young's modulus
                                                                                'or the WNP-2 soils.
7.3.3  Down-hole Nuclear Densit The nuclear  density gauge  was used  to determine insitu densities from which  relative densities could  be  calculated. The relative densities determined  in this  manner were used  in conjunction with the  SPT N values in developing correlations with the angle of internal      friction as described in Section 7,.3.1.
 
0
                                                                                        /JjLW DDCSO oescra BURNS AND ROE        cD
-
8.0.ITEST    RESULTS AS RELATED TO DESIGN FUNCTION It has    been found    that liquefaction is not possible in the soil placed    after    May 1976,  because  the present and future position of the water table is well below          all of the backfill. The highest predicted elevation of the water table is elevation          405 and  since the lowest extent of, the backfill in question is elevation 413, liquefaction cannot occur in ihe dry to moist soil conditions.            (Note: elevation 405 has been predicted conservatively as the          maximum  future elevation of the water table at the      WNP-2  site  if the Ben  Franklin  Dam is constructed).
8.2    General Determination of the adequacy of insitu conditions relative to the design function of the standby service water pipeline, and the remote air intake structure        and  piping has been accomplished by considering stress conditions that        may  result from potential static    and dynamic settlement in the lowest relative density zones found.
Zones  of    low  relative density  were found in the    following areas:
( 1) at line    WOA  51A  of the remote air intake pipi ng,    low relative densities ranged from      45K to'0$    in Boring CT-43; (2) at    I ine  WOA 51B  of the remote air intake piping,    low relative densities ranged from      30$ to  40$ in Borings CT-3 and CT-40.
Boring CT-40, however, reflects the condition of the.backfii.l around the manhole;
 
NDD1 ODON
                                                                                          %% 1/
BURNS AND ROE (5) at the standby service water pipeline, the lowest relative density    was 45$  in Boring CT-11.
None  of these      low  relative density    zones were found  to  be continuous from one boring to'another.            Moreover, observation of excavations made in these safety related areas            indicate that the loose zones are limited from  5  to  10    feet in extent.        However,  for  design purposes  a  horizontal extent of 20 feet        was  conservatively selected for the length of          any loose zones      (refer to Section 4.2). This distance is consistent with the requirement in the testing procedure to                add an additional boring offset    20  feet from      any boring where a loose zone (N value less than 15) was  found.
8.3    Static. Conditions For the      static  case, settlements    were determined using    elastic-f half-space theory employing Young's modulus determined from actual field measurements,        made  during the backfill testing program        (after  Schmertmann, 1970). Figures 7.1 and 7.2        show  the settlement plots resulting from thi s  ana I ys i s. Conservative I y, these    p lots were deve loped  us ing  the lowest deformation modulus found at each              utility; the  respective values used are shown on Figures 7.1 and            7.2.
It has    been  conservatively estimated that the net contact pressure under the foundation of the remote            air intake lines, the      remote  air intake structures,        and  the standby service water pipeline is less than 0.2  KSF. For    this value (0.2    KSF)  of net stress, total settlements of less than 0. I  inches are estimated.      For purposes of calculating piping stresses    this total static settlement          was  conservatively selected to
 
I
                                                                                  /4 jx ODDS ODDN BURNS AND ROE        C) O CD reprBsBnt ihe    differential settlement that    may occur ai the center of
                      /
any  20:foot. section of safety related piping.
Using  this value of settlement, it has been determined that negligible stress increase in the piping will occur; it is therefore concluded that for the static case, soil conditions near the safety related piping will have no  detrimental effect on the integrity of these systems.
8.4  D  namic Conditions For the dynamic case (SSE conditions), two determinations were made:  first,  the potential for less dense backfill near the pipe to cause an overstress    in those safety related systems;    and second,  the adequacy  of the safety related piping to    accommodate  seismic settlements in less dense  backfill.
For the  first condition,  the effect of less dense backfill adjacent to buried piping    has been found to not affect the seismic    wave passage (particle velocity) for the total plant.      On The contrary, less stringent compaction    will result in the potential for slippage (between the pipe and  the backfill) which is beneficial as sBBn from the equation by Newmark  in the  FSAR reference 3.7-12.
For the second condition, seismic settlements        of the  fill were  com-puted using the    cyclic shear strain  method. This is generally similar to the cyclic strain    approach to liquefaction of saturated      sand proposed by Dobry,  et al  (see Reference No. 2 ).
 
14LL ODDS ODDO
                                                                                        %%I/
BURNS AND ROE Util izing this      method .in representative    zones  of lowest relative I
density,    and using    the corresponding      lowest values of    K ,  calculations were performed      to determine "best estimate" settlement for the          remote
                                        't,1 It air intake piping      I  ine WOA 51A, and    WOA  51B,  of  1.1 inches and 1.5 inches, respectively.        Similarly, for the standby service water pipeline Dr. Dobry has calculated settlements          of  OL3  inches (see Table 3).
I For purposes of calculating piping stress,            these  total seismic settlements were increased to three inches            and were  conservatively assumed  to represent the differential settlements that            may  occur at the contour of any 20 feet section of safety related piping.                Imposing these conditions on all buried safety related            utilities has shown that pipe stresses  are well within the allowable          IImii. It is therefore concluded, that insitu soil conditions near the piping            have no detrimental    effect 4
during  SSE  conditions.
 
J'AIL%
OD CI%
OOOlt
                                                                              %%F/
BURNS AND ROF
 
==9.0  CONCLUSION==
S AND RECOMMENOATIONS In the previous discussion,    it has been shown  that stress con-ditions resulting from potential static    and dynamic  settlements  in loose soil  zones will have no  detrimental effects  on buried safety related piping.
Based on ihe conclusions  made  during the backfill testing program ii is  our recommendation to accept the backfill placed after      May 1976 around these safety related    utilities.
 
jill oaall aaao
                                                                                      %1IPI BURNS AND ROE 10.0  ACKNOWLEDGEMENTS 10.1 'Field  and  laboratory testing performed        by  or under direction of Geologic Associates,          Inc.
10.2  Correlations of data        and  static settlement analysis      by Geologic Associates,        lnc.
10.5  Dynamic  settlement analysis        was performed by R. Dobry.
10.4  Determinations of seismic and settlement general stress effects  on    piping  by Burns  8  Roe,  inc.
10.5  Conclusions and recommendations          by Burns  8  Roe,  Inc.
    . 10.6  Preparation of text      jointly by    Geologic Associates,      Inc.,
and Burns    8,  Roe,  Inc.
 
                                                                            /ILL N4Clll mesa'%F8'URNS AND ROE
'II.O  REFERENCES
: 1. AmericanrSoclety for Testing and Materials (1980),
Philadelphia,    PA.
: 2. Dobry, R., D. H. Powell, F. Y. Yokel, and R. S. Ladd (1980),
            "Liquefaction Potential of Saturated Sand - The Stiffness Method," Proc. Seventh World Conference on Earthquake Engineering, Istanbul, Turkey, September, Vol. 3, pp.25-32.
: 3. Dobry R., Stokoe K. H., Ladd R. S. and Youd T. L.
(1981) "Liquefaction Susceptibility From S-Wave Velocity,"
ASCE Conference St. Louis, Missouri, October.
      =4. Fardis M. and'Veneziano D. (1981), "Estimation of SPT-N Relative Density," Journal of the Geotechnical Engineering Division,  ASCE,  Vol. 107, No. GTIO, October.
                                              "I
: g. Gibbs, H. J., and Holtz, W. G., (1957) "Research on Determining the Density of Sands by Spoon Penetration Testing," Proceedings of the Fourth Internationa I Conference on Soi I Mechanics and Foundation Engineering, London, England, Vol. I, pp 35-39.
: 6. Lacroix, Y.,  and H. M. Horn, (1973), "Direct Determination and  Indirect Evaluation of Relative Density and Its use on Earthwork Construction Projects," ASTM STP 523, pp 251-280.
: 7. Lee, K. L. and A. Alvaisa (1974), "earthquake Induced Settlements in Saturated Sands," Journal of Geotechnical Engineering Division, ASCE, Vol. 100, GT4, Apri I, pp 387-406.
: 8. Lee, K. L., and Singh, A., (1971) "Relative Density and Relative Compaction,".Journal of the Soi I Mechani cs and Foundations Division, ASCE, Vol 97, No SM7, July, pp 1049-1052.
: 9. Marcuson  W. and Bieganousky W., (1977), "SPT and Relative Density in Coarse Sands," Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GTII, November.
: 10. Martin,  R. E., (1977) "Estimating Foundation Settlements in Residual Soils," Journal of the Geotechnical Engineering Division, Vol. 103, GT3, March, pp. 197-212.
Oweis, I. (1979), "Equivalent Linear Model for Predicting Settlements of Sand Bases," 'Journal of the Geoiechnical Engineering Division, ASCE, Vol. 105, No. G3 12, December.
: 12. Peck, R. B. and Bazaraa, A. R., (1969) discussion of "Settle-ment of Spread Footings on Sand," by D. D'Appolonia, E. O'Appolonia, and R. Brissetie, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 95, No. SM3, Proc. Paper 6525, May, pp 905-909.
 
0 JALAP aCSmO OttttO
                                                                                    %%11 BURNS AND ROE            ~'
: 13. Peck, R. B., Hanson, W. E., and Thornburn, T. H., (l974)
Foundation Engineering, 2nd ed., John Wiley and Sons, Inc.,
New    York,  NY. 'o~-,',-
: 14. Pyke, R., H. B. Seed, and C. K. Chan (l975), "Settlement of Sands Under Multidirectional Shaking," Journal of the Geotechnical Engineering Division, ASCE, Vol. IOI, GT4, April, pp 379-398.
: 15. Schmertmann,    J. H. (I970), "Static Cone to Compute Static Settlement Over Sand," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol 96, No. SM3, Proc. Paper 7924, May, pp IOII-I043.
J                    'I
,
: 16. Schultze E"..and Melzer K."(!965) "The Determination of the Density and The Modulus'of Compressibility of Non-cohesive Soi ls by Soundings," Proceedings of the Sixth International Conference on Soil Mechanics and Foundation. Engineering, Vol.      I, Montreal, l965,    pp 354-358.
1,7. Se I i g .E., and Ladd R., ( I 972) "Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soi ls," Symposium at Seventy-fifth Annual Meet i ng for ASTM, Los Ange I es, Ca I i forn i a, J une.
  ~  1
* 41 1
 
I
      ~  ~
          ~
I I
I I      I      'I                                              ~
                                                                                            '-
                                                                              ~    ~
                  ~        I  ~
I
~  i  I      ~ ~    ~      ~
                                                          ~    ~
                                          ~ ~
                      ~ ~        I ~ ~
e          I I
                                    ~
                                      ~
I i        I
                                                ~ I ~        I    I      )    I ~
                          ~
                    ~                                        ~    ~ ~
                                                                            ~      ~
                    )I            I
                                              ~  ~
e    II                                            ~    ~  ~
                    '                                      ~    ~  I      4 I
0
                                  ~ ~                        ~    ~ ~
                                              )  ~  ) ~
 
      ~  I  I        ~
                                                                                        ~ I I        ~  I            I    ~
                                            ~
I ~
                                                                'I '                        ~ ~
I  ~  ~      I
                  ~
                  ~      ~
I I
                                ~
I-I  ~        ~ I I  ~
                                                            ~ I I  ~  I I    '
I  ~  I 0
                                                  ~  ~
                                                  ~  I I ~
                                    'I ~
I I I    '                                  I                            ~ ~
                                                                                        - I I            ~ I  ~  I  I
                                    ~ I                                          e ~ o
                                                                                        . I
                                                                    ~ ~  ~  ~
I . - I II    ~  ~
I  ~
                                                                                    ~ ~
 
  ~ ~
        ~ I  I 0
I                    I          I
                                                                                        ~      I S  S              ~      ~    ~
I ~
J ~
                                                                              ~    ~              ~    ~
                        ~ ~
I    '        II    I  ~
I-s
                                                                  ~  ~
I-s s I I
                              ~ ~
                                                                          ~    I    i  I          ~    I I~
                    ~ ~
                                                                          ~    ~    ~  I            ~    I I s I~
I~I                                          ~    ~                    ~    ~
                                                                    ~  ~ ~
I    ~ ~
                ~    ~                                                ~
                                                                          ~
                ~ I                                                  ~
                                                                          ~
 
                      ~
I ~
I  ~
I I    ~
: s. I-s          I ~
                                    ~ I
    ~ ~
                                        ~
                                          ~
              ~
          ~
    ~ ~
  ~    ~
                            ~ I
                            ~  ~            I I  ~  ~ ~
~  ~        l
          ~
I      I ~
 
~ ~
        ~  ~  ~      ~                                                    ~  I
            ~  ~        ~    ~ < ~
                                          ~
                                            $
                                              ~
I '    I ~ i    ~ ~
      ~  ~      I ~
s ~
I-t          ~    I I I l.s      ~
I'                        ~ ~
0
                                                                      ~ ~        l    ~ ~
                                                ~ ~                          l    0 ~
                    ~  ~
J ~
 
                                      ~ ~        I
                                            ~  ~
s  s  ~
I  s    ~      ~ ~
s                              0 0
  ~    s      I '            ~          '
I ~
I                      ~    ~
I    s      I '
y '        ~  I~ '                      I    >I
~  '                      I  ss  I I  I      I '                          II    ~ I
    ~  s                      ~  ~                  s
                $            y 4
I    i f s $    a    ~ a s      I > I        '    ~
                      ' ~
        ~  ' ~ ~
 
TABLE 2


==SUMMARY==
==SUMMARY==
OF LABORATORY TEST RESULTS Relative Density Standards Modified Proctor TRIAXIAL SHEAR TEST OTHER TESTS Project Pro ect No Date o 0 xz 0 0 o o o O E C X Q K E D E C K E+p o III XO c ct L 8 ZOO I E+~-lA+~c5.O OZ z 0 C lJ O ill~a.~lh zan D vl D~4~O~z mzo gg Q Ill~z z ac z 0 U~Vl Z a 0 VV O)c: D Ul (V 0>E>--cI I Cl CD ID 0 hC~~Soil Description TS 3.0-4.0 126.8 99.7 130.7 5.8 SM-See Lo s-TS 6 4.0 SP-SM TS 5 TS 4 TS B~5.0 B 6.0 B 7.0 SP-SM SP-SM SP TS..2-B 8.0 SM D-DIRECT SHEAR TEST T-TRIAXIAL TEST'T-SHELBY TUBE SAMPLE, SS-SPLI'T SPOON SAMPLE, B-BAG SAMPLE"TEST RESULTS REPORTED ON OTHER SHEETS>C-CONSOLIDATION S-SIEVE OR GRAIN SIZE ANALYSIS U-UNCONFINED COMPRESSION TEST GEOLOGIC ASSOCIATES, INC.
OF LABORATORY TEST RESULTS Relative                                             TRIAXIAL      OTHER Project Density           Modified                           SHEAR         TESTS     Pro ect No TEST Standards              Proctor                                                    Date z
TABLE 3 ESTIMATED SEISMIC SETTLEMENTS OF UALITY CLASS I UTILITIES Seismic Settlement, S M=6-1/2 Area Boring Zf (x)Z (x)Estimated Range.Best Estimate Best Estimate Air Intake-Line WQA 51A I Air Intake Line WQA 51B CT-43 CT-40 CT-3 6'6'2 I 30'5'8II 2ll 1 II 31I 0-0.5" 1.1" 1 5 0 1.4" 8ll 0-0.5" Standby Service Water Pipeline CT-11 8'2'1 II Q BII 0 3I I 0.4"'(x)Z=Depth of faci I ity f Z=Maximum depth of boring M=Richter Magnitude A REMOTE AIR INTAKE STRUCTURE CT-4 GT-55 BURNS AND ROE 4DDO ODD4 AIR INTAKE CT"5 LINE V(OA 5IA CT-45 CT-H TURBINE GENERATOR BLDG.CT-56~CT" 27 CT-8 CT-6 RADW.CONT.BLDG.REACT.BLDG.c CT-28~SEE DETAIL I 4 AIR INTAKE LINE 51 B~CT" 9 CT-4l GT-52~WOA 51 B GT-31 CT-39 CT-46 CT-5 STANDBY SERVICE WATER TRENCH GT-48 II~CT-Sl I~8T-50 IL CT-47 CT 49<<DETAIL I B CT-II FACT-4 INTAKE STRUCTURE GT-25<<I I GT-l2 CT-R I<<CT-Sr<<~'T-26<<CT-54 SPRAY POND IA CT" l6<<COOLING TOWERS GT-2><<SP.RAY POND IB CT-IB CT-I'T-2 2B CT-24 GT-I5 GT-22 CT'42'CT 7<<>CT45 CT-29'<<REMOTE AIR 2A G-~GTH9<<GT-2I<<~GT-Is IA<<CT-20~CT" l4 2C IC GRAPHIC SCALE 0 IO0 200 500 4 I=200 FIGURE I BORING LOCATION PLAN 0-BURNS AND ROE/4 KL OCSCIO ORCIO Elle/PHOTOGRAPH 2.1 (at left).Drilling crew performing Standard Penetration Test using Mobile 8-61 drill rig.XA k I I'I 5S rI-Q, I t~(2 Vli'A~U p'gIQV 4 I PHOTOGRAPH 2.2 (at right).Typical sand fill at sides of trench.  
E       E     E I        0 C
O) c:
D Ul (V 0                D          + E+                 lJ  ~ 4 ~        z    0  > E 0          C        E      p   o III lA O~z          0    >-       cI                  Soil Description X        C      XO
                                                                            ~
c +c5. ~
O ill mzo gg        ~U I
Cl  CD Q              ct L 8            ~ a. ~ lh Q Ill ~       Z Vl    0 o o ZOO OZO            zan                                  ~
a         hC o 0                                     o                                                  z z ac            ID xz                                      O     K        K                          D vl D                   0VV              ~
TS                     3.0-4.0               126.8     99.7 130.7         5.8     SM                                           See   Lo s-TS       6             4.0                                                       SP-SM TS       5     B ~
5.0                                                       SP-SM TS        4    B       6.0                                                       SP-SM TS              B       7.0                                                           SP TS     ..2-   B       8.0                                                           SM
'T-SHELBY TUBE SAMPLE, SS-SPLI'T SPOON SAMPLE, B-BAG SAMPLE "TEST RESULTS REPORTED ON OTHER SHEETS>
C-CONSOLIDATION S-SIEVE OR GRAIN SIZE ANALYSIS                   D-DIRECT SHEAR TEST U-UNCONFINED COMPRESSION TEST                   T-TRIAXIALTEST GEOLOGIC ASSOCIATES, INC.
 
TABLE 3 ESTIMATED SEISMIC SETTLEMENTS OF UALITY CLASS   I UTILITIES Seismic Settlement, S M = 6-1/2
                                                                                  .
Estimated        Best            Best Area              Boring    Zf (x)     Z   (x)             Range         Estimate       Estimate Air Intake                         6' Line WQA   51A         CT-43                      I               8II 2ll          1.1"            1. 4" Line I
Air Intake WQA   51B CT-40 CT-3 6'2       30'5' 1
II 31I 0-0.5" 1
0 5               8ll 0-0.5" Standby Service Water Pipeline         CT-11       8'2'                         1 II Q BII       0 3I I         0.4"
'(x)     Z   = Depth of faci ity I
f Z   = Maximum depth of boring M   = Richter Magnitude
 
4DDO ODD4 BURNS AND ROE A          REMOTE AIR INTAKE STRUCTURE CT-4     GT-55 CT-45                                   CT-56
                                                                ~ CT" 27 CT-H                          CT-8 AIR INTAKE          CT "5 LINE                            TURBINE V(OA 5IA                      GENERATOR BLDG.
4        AIR INTAKE REACT.                       LINE 51 B RADW.        BLDG.
CONT.                        ~ CT" 9 BLDG.                              CT-4l CT-6 c
CT-28   ~         SEE DETAIL       I GT -52 ~                       CT'42 'CT 7 GT-31                               CT-39 WOA  51 B CT45        CT-46           STANDBY GT-48 CT-29'<<
                                                    <<>
CT-5            SERVICE WATER REMOTE AIR                          B             TRENCH II                        INTAKE                  CT-II   FACT-4
        ~ ~ CT-Sl                STRUCTURE I
8T-50 IL CT-47                                    <<CT-54                    I I        <<~'T-26 GT-l2 CT-R GT-25<<
CT 49<<DETAIL    I                                                  I <<CT-Sr SPRAY CT" l6<<                               POND COOLING TOWERS                                                                     IA GT-2><<                                           SP.RAY CT-IB         POND CT-I'T-2 2B                                                             IB CT-24 GT-I5 GT-22 GTH9<<                                             ~ CT" l4 GT-2I 2A                                              <<
G - ~       ~ GT-Is         IA
                                        <<CT-20 GRAPHIC SCALE 2C                       IC 0     IO0     200     500       4 I = 200 FIGURE     I       BORING LOCATION PLAN
 
0-
                                                                              /4 KL OCSCIO ORCIO Elle/
BURNS AND ROE PHOTOGRAPH 2.1 (at left).
Drilling crew performing Standard Penetration Test using Mobile 8-61 drill rig.
I I' k
XA                                                I 5S       rI- Q,             I t
                                                  ~(2 Vli 'A~
U           p       'gIQV   4 I
PHOTOGRAPH   2.2 (at right). Typical sand   fill at sides of trench.
 
IJI &W OC1D&
                                                    @aalu
                                                    %%  V/
BURNS AND ROE cD PHOTOGRAPH  2.3 (at  right).
Pressuremeter testing equipment.
Expanding probe (on right) and volume measuring panel (on left) connected with coaxial cable.    %a
                                                  \ ~
S PHOTOGRAPH  2.4 (below).
Pressuremeter test being performed.
 
                                                          //J LW acomia QDE7JJ
                                                          %% JJ'/
BURNS AND ROE    ZI PHOTOGRAPH  2.5 (at left).
Downhole nuclear density test probe being lowered down aluminum  casing.
ggp      1 PHOTOGRAPH  2.6 (above right).
Downhole nuclear density test being performed.
 
I I
I I
t N
 
2      '3          4        5      6        7        8      9    10 Normal Stress (KSF)
MOHR DIAGRAMS          4 f  8 0
0
> 4 Q
Cl 4              6                8      9      10    11 JI5  IS    (og)7 STRESS    STRAIN CURVES TRIAXIAL SHEAR TEST solL DEscRIPTIGN    See    I o s                            CLIENT PROJECT COHESION (<<)      350 PSF                                    PROJECT NO.,
ANGLE OF INTERNAL FRICTION  (1r')
31                    8ORING NO.:
CT-15 UNIT WEIGHT, PCF  110 4                                      SAMPLE  Nos    BA WATER CONTENT,%                                              ELEV. OR DEPTH SPECIFIC GRAVITY November 16, 1981 VOID RATIO Figure 3.1 Plots of LeboretprY Dete                  GEOLOGIC ASSOCIATES, INC.
 
I I
 
Vl
          -8 Vl a6 C
I 0
lh 4 6      8      10      12      14        16    18 Normal Stress (KSF)
IVIOHR DIAGRAMS            (I)
          "8 V)
L 0
          >~
6 CL 3        4 Axial Strain (%)
STRESS  STRAIN CURVES TRIAXIAL SHEAR TEST SOIL DESCRIPTION See    lo  s                        CLIENT PROJECT WNP-2 coHFsIQN ( )      300 PSF                                PROJECT NO.:        5 0                                CT-17 ANGLE OF INTERNAL FRICTION (t')      39                    8ORING  NO.
UNIT WEIGHT, PCF                                          SAMPLE NO.:
BAG WATER CONTENT, %        1 3 3
                                            ~
ELEV. OR DEPTH SPECIFIC GRAVITY                                          DATE November 16, 1981 VOID RATIO Figure 3.2                                          GEOLOGIC ASSOCIATES, INC.
Plots of Laboratory Data
 
OOQS II OCJCJN XII BURNS AND ROE ~'
LEGEND 0 FIELD CHECK DATA (WNP-2)
FACTORY CALIBRATIONCURVE 0
l55 I50 l25 h.
O Q.                            FACTORY CALIBRATION 0  120                            CURVE I-CO II5 I-Ul II 0 IO5
      $ 0 COUNT RATIO FIGURE 4.l.. FIELD VERIFICATION OF FACTORY CALIBRATION CURVE FOR DOWNHOLE NUCLEAR DENSITY GAUGE
 
i II l
t I
 
                                                                        /BIER OPC1%
oaop LWP/
BURNS AND ROE cD LEGEND WNP-2 TEST SECTION(AVERAGE 10 DETERMINATIONS)
Qe  WNP-2 80RINGS CORRELATION BY LEE 8 SINGH(l97I) 100
            'Vo COMP-. = 80+Q2  DR (LEE 8 SINGH~ 197I)
Ld 0,  60 cL'l 0
40 20 80                    90                    IOO COMPACTION > 7o FIGURE 42.RELATIONSHIP BETWEEN RELATIVE DENSITY AND PERCENT COMPACTION
 
                                                                          /VIEW NODS
                                                                          %LCO&N
                                                                          %%1/
BURNS AND ROE cD LEGEND 0 WNP 2 TEST SECTION DATA POINT(WASHINGTON DENSOM~TER DENSITY)
WNP-2 TEST EXCAVATIONDATA POINT (WASHINGTON DENSOMETER)
BEST FIT CORRELATION I-Cg00 O
U CO O
~~a z
t5 hl 0
I  60 O
hl 0
0 0 oC3                                  ~
                                      ~ ~
g 40 po 0
20 pe 0    20        40        60          80 'l00.        120 1A RELATIVE DENSITY~    7o FIGURE 4.5.RELATIONSHIP BETWEEN RELATIVE DENSITY 8 CORRECTED "N" (FOR DENSITIES DETERMINED WITH WASHINGTON DENSOMETER)
 
PAIL%
IICICIS oaas
                                                                            %%II BURNS AND ROE LEGEND WNP" 2 BORING (NUCLEAR GAUGE)
WNP-2 TEST SECTION(WASHINGTON DENSOMETER)
BEST FIT CORRELATION (WNP" 2)
CORRELATION BY BAZARAA(l969)(AT I KSF OVERBURDEN PRESSURE)
I-  IOO O
O                                                                      Qo b.
CO 0
80 m
A 60 I-                                            )  ~
lal 0
K                                            S' K                                                    ~~
    ~o                                            ~
0 20 0
Qo    p.
0 0
0      20        QO        60        80      100    I20 RELATIVE DENSITY > 7o FIGURE 4.4.RELATIONSHIP 8ETWEEN RELATIVE 8 CORRECTED "N" (FOR DENSITIES DETERMINED    'ENSITY WITH WASHINGTON DENSOMETER 8 DNDT)
 
A T
h' P
k
 
RBBBRN 02222N BURNS AND ROE LEGEND WNP-2 FIELD CORRELATION BETWEEN  N R DR(BEE FIGURE AA)
(ee    WNP 2  LABORATORY DETERMINATION OF 6 8 DR NOTE: N VS 6 CORRELATION BY PECK ET AL (l974)
I- IOO O
O 4.
CD                                                                            0 lQ eo CO
                                                                                .O 2
I-2' 60                                                                  45  La.
I-LU                                                                      4l Ul CL 59 40 4-C7 55  ul 20                                                                  35 5I 29 80          IOO      I20 RELATIVE DENSITY >        7o FIGURE  45.CORRELATION        BETWEEN N, RELATIVE DENSITY, AND S.
 
I 4
t
 
                                                                    >>CIA>>
                                                                    >>OCt>>
                                                                    %>>>>/
BURNS AND ROE ~'
LEGEND 0>>  WNP- 2 BORING (NUCLEAR GAUGE DENSITY)
Q  WNP-2 TEST SECTION (WASHINGTON DENSOMETER DENSITY) 0>>  LABORATORY DETERMINATION OF YOUNG S MODULUS OJ E
500 OC Vl 400 O
0 O                      0 I-  300 K
O                                  ~ ~
U 4l                        8 O  200 0
6'00 0    8 0>>
0 25        50          75        IOO      125 Rf LATIVE DENSITY>      7o FIGURE 46.RELATIVE DENSITY DERIVED FROM PMT DATA
 
P RENOTK AIR INTAKE STRVCTVRK CT32                                                                                                                                            EXIS'I, GROVND likE C74 440 4                                          CT5                                          440.'5                                                                                                                                                                                                440.4 QQQ            I                                            459,7                                    II    I 440.3                                                                        440.4 14      I 440 20    2                                      II      I                                                                                                                                                                                                        Io      I 12    2                                                                                                                                                                                              5!
4    3 4
20 l6 2
SAND          5    5                                                                                          150 I  ST                      SAND 17
                                                                                                                                                                                                                                                                                                          )              250 80 I I 95 50                              10    4                                                                                                                                                                      '211                  2l      4 14    5                                      15      4    I  I                                                                                                                    52    4                                                                                      TO I
Sr      5                          e      5 22      5                                                                                                                            19    5 KN      6 30    4    tg                                                                        N      e                                                                                260 80 I I                          e 43LS 4'50        NO REF!                                  looe    r                                                                                                                            100    7  Iq    Sr                RENOTE AIR INTAKE UNKSIA                      4314 r                  430 73 33 KNS    8 SAND 28    4                                                                                                      12      8 I
l50 48                                                                                                      9 Noe    9                                                                                                                            14 I
425                                                    NO+            NO I                                                                                                                    15    10 II 425 15 NOS    u                                                                                                                                    N 12    It                                                                                                      20      12 KXI    12 14      15 I
420                                                    NOS    15                                                                                                                            12 28                                                                                                            26      14    I 52I 150 420 N04 210  ef                                                                                            21      0 51    15 4161 4172                                                                                                                              NORE                                                                                                              4124 4I5                                                          lNRKF
                                                                                                                                                                                                                                                                                                    "!I NOREF.              4I5 0+00                                            0+50                                                                                            I+50                                                        2+00                                  2+50 PROFILE A.A      =
AIR INTAKE UNE 5IA
                                                                                                                                    .
NOTE VERTICAL EXAGGERATION~2X NOTE~ ALL HOLES DRY VPON COMPLKTION
                                                                                                                                                  !
4 CT 41                                EXISIGROVNDUNK CT9 4428                                                                                                  CT47 441.7                                                                                                      4425    K                                                                                                                                                    CT 3 OR'0,                              44 I.S 91    I                                                          27                                                                                      4408                            441.2                          44IO 440                  16 2
I 7  2 24    I                25    I                        I              34                              58 12        I                              440 21                                                            50                                          48    2.,      I!!                                                  17 9    5    95    50 SAND 14  5    I                                          44 41    2                  44  2 370  53            2    220 50    49    2                        100  2                        29 150    65 lo  4 I    I                              42 54 I    40    5      I I,    NO      5 I        22    5 370 58 I I            '28        5      I    I ee 42  5                                              21    5                                                                                                80  4                43                            4                        41
                                                                                                                                                                                                                                                                                            '7        4                                435 2S    5              tl                            5                                                                                                    ~<7        5 62  6                                                                                                                                                    19 531  60 T !
57                            . e!        163 IS    6                        6                                                                                                      15        e    57 175 I
49                                      44    7              '7 16 7
49 560 95 52    6          46 5        7 I    51 430                                                                                          REIKITE AIR INTAKKLINKSIB 390 440          NO            I                                        71    7                                                                  430 98    8                                                      456 100 4501 16    8    98            75  8        I                8                                              97    8    Q    NO            50      8 750 NO                                      N      J                                                                                          25  9                      4269                                                  429 2                      68      9 100    9        I    I                                                                                                                              40                                                                                        NOREf, 90                                                      4276                                                                      5                  I    SI  10 NO REF, RENOTK AIR DITAKE STRVCTVRK 425                  78  II NO REF 2$  II  190  67                                                                                            77      II 425 10  12                              I  I.                                                                                                        500 100 I
48    I                                                                                                                                                    18  12 87      It 40    I                                                                                                                                                    2S  15 420                        14 320 82 I    I                                                                                                            20    14 It                                                                                                            54      15 420 10  5                                                                                                                                47      14 47  15                                                                                                                                                    26  15 60 4182                                                                                                                                                  27  IS 8    17 25                                                                                                                  4ITO 4I 5                                                                                                                                                                                  17 N
170  55                                                                                                No REF                              415 13  IS Zl Ol 0                                                                                                                                                        411.7 NOR EF I
3+00        I 0+50                                              I+00                                          I+50                                                                                              2+50 WASHINGTON PUBUC POWER SUPPLY SYSTEM PROFILE B B                                                                                                                                                            WNP-2 AIR INTAKE LINE        5IB, NO'TES' SEK SHEE T 52 FOR LEGEND NOTE: VERTICAL EXAGGERATION 2X                                                                                                                                        PROFILES 2.SEE APPENDIX II FOR GOR1N 0 lOGS 3 SEE FIRSEI FOR PROFILE IDCATNNS                                                                                                                                                                                                                                              RICHLAND,WASHNGTON SCALE:        AS SHOWN BURNS 5 ROE, INC.
ORADELL, N.J.
GEOLOGIC ASSOCIATES, IN              .,
IRANKIWTENN              KlNGSIORT. TENN    KNOXnlIE,TENN PROL  61-605          DATE  11/6/6.1    - flGURE 5.1.
 
0 i
              '4 II r' 'it
 
L O
YARD                                                                                                                                                                                                                                                                                                                                                                  O                                    GG GG COO RO,                                                                                                                                                                                                                                                                                                                                                                ~o z      CT.4R                                CT '7                              CT.Ra                          CT. 4                                                                                      CT 44                                                                                                                                                                                2 440.3                                                                44a4                          NOTEIHOLE CT 44 IS                                                                                                                                                                                                                              7 440.0                                                                    440.3                                                                              OFFSET'OR 440. I E                                                                  CT-37 440                                                                                                                                                          CLARITY CT                                                                                                            43ELB CT IR 439.'R                                          CT -38    440 40      I                              a                                78      I                                  370 11 30                                                                                                                                                                                4383 245 75                                                                                                  1 437k I    'R        1                                                      39    2                        BI    2                                                                                    62                                                                            7    I                                      45 150 62                                                                                                    15                                                                                                                                I IO  40                                                                                  I 69    3                              14    3      1    T            44    3                        90    5                                                                13) 67              75                                                                          18    2              1                        BT 435                    530 IRO
                                                                                        '35    4 15                          2                                                          SAND                                                                                      590 IOO                  227                    435 70    4                            3R 5                            60    5 454 IOO        3'5    5 Sa                                                                          26    3 4                                        41
                                                                                                                                                                                                                                                                                                                                                                      '1                    1        I    3
              .64                                  61 354 76                                                                          48                                                                                                      4D
                                                ='63                                                                                                                      .52                                N=                                                                                              270 85                      7                                                      19 40      6      SII                          6                                                            38    6                                                                            -.- 'G43                                                                                            1 T        N 15    5 430      66      7 1                46      7                                451.3 NO REF, 33 5R SOO    100          T4 100 1                                                          28    6                                        69      6 I
150 e      430 76    8                                                                  1      1                                                                                      41                                            69      7 54                                  49                                                                              370                                                                            IIO                                                                                                                                                                            8    7 655 SS                                                                                                      99                              85                                                                                                                                                                    BI      8 82    9        3                                                                                        50    9                                                                                    IOI                                          STANOSYSERVICE WATER PIPE,      71  8 5R                                                                                                                      41            8                                                                                                                                                                                                        4    8 ISO                                                          IO                                                                                                                                                                53    9                                        3R    9 425      37    10                          64      I            97 61                                                                                        60                                                                                                                                                                                4265      425 42505 NO REF.                        52      II 1
1                                            86    II els 150                              23            9 68                                                                          65    I 520 NO 1
Rl IOS 1  I 55 IB          I                                                                                                                                                        IS SANO                      62                                                                                        135    12                                                                    60    ll                                                I
                                                                                                                              'I 61                                                                                                                      15            I 25    I                                                                                    29                                                                          BT                                              60    I ICO 91 Se 420                                                                                                                36 500 1
19          I      120 33            IOO                                                                420                                        99              1  K                                          420 63                                                                                                                      16                                                      1                                                                                                                4$ .7 58    15                                                                                    II  15                                                                                                                        NO REF+
75      I 4129                                        27            14 416.8 24 IOOP            15 4I5                                              NO REF, 4I5.4                              IHLI 4I5 NO REF                                NO REF 410                                                                                                                                                                                                                                                                                                                                                                                                      4lO 0+ 00                                                              I+00                                          2+00                                                                    3+00                                                      '+00                                                      54  00                                                      6POO                    6+35 NEKDGGL PROFllE              C C                                                                                                                      0            0          70 NOTE. ALLHOLES DRY UPON CONIPLETNN ANDBY SERVICE WATER PJPE NOT: VERTICAL EXAGGERATION
* 4X LEGEND CT 28                                                                                                                          CT-50                                  CT    51 44L4                                                                                                                                                                                                                                                                        OEFORllATNN NOaALI CT  30                                  CT-3                                                  44L2                                  44L5                                                              HOLE NVNSER          CT&I            RELATIVE DENSITY 440                                                        77      I                              4396                                  431LB                                          14      I                                8    I                            440                            SVRFACE    ELEVATNN'ILS Ia                                17                                    61      I                                            (4                                      17 100  30                                              DRIVE SANPLE NO.I    II    I 32      3                                                              69      2                                              7          'SS  55                    IT    5        1  1                                            WITH SLOW COVNTGD 32  100            37      2                                                                                                                                                                                              fOR I 0 FT. SICRENENT CT-R5 4344                                      48      I      1  1 35      5                              63      3                                            15    4      1                          8    4 435 IAS PER ASTN aSSSI 42      5                                                            TOO+
                                                                                                                                              '                                                                                          31    5                                                                                                        INTERPOLATED 20                                                                                28                                                                                                                                                                                                                                          1  1 305 9S                        FO ON      6                                                              83.      5                                            2      6                              22 51    2                                                                          IS 1
67      7 55      6                            IOOG      6                                              9      T                              40    7    225 70 430        45 58      8                              450.3                          TOO+,                                                    2                                      Ee    8 1  1 430 72                                                                                    NO REF.                        100 G 67      9                                                                                                                    61      9                                3R    9 56      5                                                                                                              IOOP 59      IO    251  100                                                                                                        lI4                                        15 ee      e                                                            1                                                100+
48 75      II 100+
6      V                                4    N
                                                                                                                                                                                                                                                            !5                  425                                                          IO  15      NKASVRED 58                                                                                                                                          257 Sl 8      12          1                      5  I 49                                                    4255                                                            100+
NO REF.                                                                                                                    4 66            547 100                                                                                                100+              SIS 120 1
420        eR                                                                                                                      100+
420                              '38    14    23                        420 100 +                                                        NOR EF;                                  419.5                                                            ELEVATIOIIBOTTON      42QS 419.5                                                                                                                                                                                                                                                                                        OF HOLE 100+                                                                                                NO RE NO REFVSAL OF        NO REF, 417.3  .                                                                                                                                                      AVGERS OR SAllPLR NO REF.                                                                                                                                                        TVSE 415                                                                                                                                                                                                                                                                    4I5 4IO                                                                                                                                                                                                                                                                    4IO L'OGS OF HOLES            0      S OW            IN P OF      ES (HOLES DRILLED ADJACENT TO PIPELINE NOTES".                                                                                  TRENCH SHOWN IN PROFILE C.C)
LSEE APPENDIX 3 FORLOGS OFSORINGS                                                          NO HORIZONTAL SCALE 2 SEK flGVRE I FOR PROFILE LOCATIONS WASHINGTON PUBLIC POWER SUPPLY SYSTEM WNP-2 PROFILES RICHLAND.WASIBNGTON AS SHOWN BURNS Ik ROE, INC.
0RADELL ~ N.J.
GEOLOGIC ASSOCIATES, INC.
FRANKVILTENN.      KINOSIORT. 71NN.      KNOKYklf.TENN.
PROA  61 605      DATE 1  1/6/81          flGURE 5.2.
 
I br
                                                                              '
I        r
                  '
~t ~
Ib  I",      ~  b    ~
I l I ~
fi
                          ~  )
I I
a I
I                              b I
                ..a C
I                                  )                                    g I                                                                                ~
I
          )                      lf          ~                I I          I I
                                            @i
                                                                      "~ e
                                                                                  '"b E  I J  i          I          E I  b I                                                    $
                                                                  .
I E        E
                                                                                              )
:- -~  E
                                      , I I
P
 
h PALS ocscao acacia
                                                                        %OP/
BURNS AND ROE 200 LESEND Oi DATA POINT (WNP-2)
BEST FIT CORRELATION (WNP" 2)
IOO
                        ~LA I~QQA~QIQ.>J9 70
  ~  50 tL  40 O.
CO 30 O                                                              0 20 R                                                    0 8
IO 7  IO      20    30      50  70 ~  IOO E (DEFORMATION MODULUS)) </~pP 4
FIGURE 4.7.CORRELATION BETWEEN DEFORMATION MODULUS FROM PMT AND SPT F
g I
 
I~@"
E
                                                            -'
p',r ~ ~
              'r'i  I i'li
                                  ,gP      'M    ~
            )i~z'I i'~:ri "I
          ~ AI r 1
I
                                                /
'QQ4        IguI'Qi                      J
                                            ''
I~
g% ~ 'I 'I
                      ~
                        ~ p I
 
                                                                            /ALL NCIDI1 OWClN
                                                                            %W/
BURNS AND ROE        cD REMOTE AIR            REMOTE AIR INTAKE I INE WOA INTAKE                                g 1~
STRUCTURE
                        'TURBINE GENERATOR BUILDING RAD. REACT.
WASTE    BLDG.
CONT.
BLDG.
STANDBY                          REMOTE AIR INTAKE LINE 5I B SERVICE WATER~+
PIPE TRENCH                      REMOTE AIR INTAKE STRUCTURE 2
SPRAY POND COOLING IA TOWERS                                SPRAY POND IB GRAPHIC, SCALE 0    I00'DQ      300'    400' N
                                                          '
200 FIGURE 6.1    LOCATION 'LAN
 
        ~ ~  ~ ~  ~
                  ~ <g'rir J%%  y r
  ~ C h ~
I
 
                                                        /ILL ODCIO ODCIN BURNS AND ROE 440'YPICAL POST- l976 FILL BORINGS 450'LASS II              WOA DUCT BANK(TYP.) 5I A 420'ECTION                I
 
440'YPICAL POST- l976 FILL                            BORINGS
~am
-420'TANDBY SERVICE WATER PIPES GLASS j.
DUGT BANK              ~    PRE-1976 FlLL
                  . SECTION 2
                      'I FIGURE 6.2    TYPICAL SECTIONS
 
I  ~
IP        ~
1 h
P 4    4  ~
1 Ii
((
C
                                                              ~  ~
g    gr l
41 I                                                              ~ I 1 1                      .I
                                                                        'J  . 4                  ~      4    1 W      %5 ~
PE      p 4
( 'I 7
                                      '
(
I
                '1                                            ~.  ~
                        '
Ji  ~
  ~
                                              *~
* I t
                                        ~ ~
M    1 4  ~        4
    ~ g          4j              ~
PQ i( 'i q> ~1t~
I I
1 I
rl
                                                                                          }I I
                                                                                          ~
W  I g ~ ..
                                            ~
I~
I
                                                                                                                      ,  t,r
                                                                                                            ~ 1 ~ I I                      ~  Pg  ~
C  '~'1,1      II                      p
 
                                                      /Aha DCIWtl QDM
                                                      '%f/
BURNS AND ROE TYPICAL BORING l976 FILL 440'OST 450'RE-                      r    WOA 518
                                        ~        l976 420'LASS                Z  STORM SEWER SECTION 5 TYP ICAL BORINGS l976 FILL 440'OST 4~0'    PRE-420'OA  l976 F)LL 5I 8 410'ANHOLE'5 CLASS 3I STORM SEWER SECTION  4                              '
NOT TO SCALE FIGURE 6.5 TYPICAL SECTIONS
 
                                                              **
h ~
                      )      ~    ~
m      v I
                                                'I
      ~ ~    hh I lhh h                                              V IH    ~ .I
                                          ,I I                ~  ~
                        \V hj                                                                                                        V~ V Ch            I  l ~ V
                                                                    ~ I"    I Ih, Ehh I
V I
                                                                                                ~
g I
                                    ~
l h 'I 5
I ee    V      A Vth I'        VV'                  V  'V                    'V ~        I ~ h I      H              h tf    ('
~H                          <<lI                                                                        ~                              ~. 4 h                                                                                                ~                    ~ h Ik                        ~      jh Chh fl  h T ~
g ~ l  JHV v4 p4 P
I    H'hhh        *
        ~ ~  II  'l A'h
                                                                              +1g    g rg  I','
                                                                              ~ r ~    IV      1      . ~    44'    I                ~ I
 
P
                                              \
                                                                    /ah%
ICICLE V%l Pf CD CD BURNS AND ROE  CD TYPICAL BORING              -
                                              '-'"-'976          FILL
  +4.0' 450'LASS I        STANDBY/
SERVICE WATER PIPES                                  PRE-AND DUCT BANKS                                      l976 420'                                                        FILL SECTION
                                      'BO (I)-    I POST  I976 .                  YPICAL BOR INGS FILL
~ 440' 450 CLASS  I SERVICE WATER STANDBY DUCT BANKS  PIPES'20iAND
                                    ~        CLASS    Z
                                                              ~PRE-l976
                                                              'lLL PIPES SECTION 6 NOT TO SCALE FIGURE 6.4 TYPICAL SECTIONS
 
I1 I'l I~
                                                            ~
                                                              ~            ~) -. i".
                                                                                  <  ~ I
                      'l
":"3H.K:.'-''                                                            rI 4
                                                \
r I
I')
I't
                                                                        '
F' 4
l ~
AV  ~                                  <<,j, tl
    ~ TW%
1
                                                                                                                    \4
                                                                                                                  ~r r                      j
            ~                                                                    I f                                l It l
r                              \~
                                  'I l'.
lk          wl
                              '
                                ~  t
                                                                                              'I "l
I I
f;,~
                                                                                      ~    *        ~  j
                                        'I rIl )g
                  ,'.S ..a  i ~ lJ ("l r
C I mi      ~  ~
 
                                                            /Able ODOO Ouau WllPP CLASS
                  'SERVICE I STANDBY WATER .PIPES BURNS AND ROE E
                ''
AND DUCT BANKS                TYPlCAL BORlNGS POST -l976 FlLL 440'20'
                      .
CLASS CIRC.
WATER
                        .PIPES II
                                  ~ ~      ~  I  j  l PRE- I976 FILL SECTlON 7 NOT TO SCALE h
FIGURE 6.5 TYPICAL SECTIONS
 
p I
r i
Ivr ev vv $ vG 5 4f v, 'l    g, t
t
    ~ r                                                              4                  V $
t                        V                          'I    ~
e$
V'      I 1'
l
      \
fiI V
1 1
r r
l l
r V
I rr" IV' V
                                    'C a<<t I          '\    Jl
                                                                  'I ~  1 I~                    ,  w LMV
 
                                                                    /8 ILW OQOll OOCIQ
                                                                    %OP'/
BURNS AND ROE
                'I NOTE:
            ,YOUN84 MODULUS VALUES USED IN SETTLEMENT CALCULATIONS ARE:
K<60 ~km (REMOTE AIR INTAKE PIPE)
E ~ l5&~2(STANDBYSERVICE WATER PIPE)
REMOTE-AIR INTAKK Pl PK I-0.5 STANDBY SKRVIC WATER PIPE 0
0 LOAD q KSF    .
FIGURE 7. I    ESTIMATED STATIC SETTLEMENT-LOAD CURVES FOR RESPECTIVE STRUCTURES,~.",>
k
 
      ~ %%%I ~ ~
  'l
~t r  ~  si s ~
~  t 4  ~
I ~
1 ~
'C
                  '


IJI&W OC1D&@aalu%%V/BURNS AND ROE cD PHOTOGRAPH 2.3 (at right).Pressuremeter testing equipment.
~ C     ~ I       ~ ~
Expanding probe (on right)and volume measuring panel (on left)connected with coaxial cable.%a\~-S PHOTOGRAPH 2.4 (below).Pressuremeter test being performed.
    ~ ~
//J LW acomia QDE7JJ%%JJ'/BURNS AND ROE ZI PHOTOGRAPH 2.5 (at left).Downhole nuclear density test probe being lowered down aluminum casing.ggp 1 PHOTOGRAPH 2.6 (above right).Downhole nuclear density test being performed.
            ~ ~ ~
I I I I t N 2'3 4 5 6 7 8 9 10 Normal Stress (KSF)MOHR DIAGRAMS-4 f 8 0 0>4 Q Cl 4 JI5 IS 6 (og)7 8 9 STRESS-STRAIN CURVES TRIAXIAL SHEAR TEST 10 11 solL DEscRIPTIGN See I o s CLIENT PROJECT PROJECT NO., COHESION (<<)350 PSF 8ORING NO.: SAMPLE Nos 31 ANGLE OF INTERNAL FRICTION (1r')UNIT WEIGHT, PCF 110 4 WATER CONTENT,%CT-15 BA ELEV.OR DEPTH November 16, 1981 SPECIFIC GRAVITY VOID RATIO Figure 3.1 Plots of LeboretprY Dete GEOLOGIC ASSOCIATES, INC.
0~0
I I Vl-8 Vl a6 C 0 I lh 4 6 8 10 12 14 16 18 Normal Stress (KSF)IVIOHR DIAGRAMS-(I)"8 V)L 0>~6 CL 3 4 Axial Strain (%)SOIL DESCRIPTION coHFsIQN ()300 PSF ANGLE OF INTERNAL FRICTION (t')UNIT WEIGHT, PCF WATER CONTENT,%1 3~3 ELEV.OR DEPTH November 16, 1981 DATE SPECIFIC GRAVITY VOID RATIO STRESS-STRAIN CURVES TRIAXIAL SHEAR TEST See lo s CLIENT PROJECT WNP-2 PROJECT NO.: 5 0 39 8ORING NO.CT-17 SAMPLE NO.: BAG Figure 3.2 Plots of Laboratory Data GEOLOGIC ASSOCIATES, INC.
OOQS OCJCJN XII II BURNS AND ROE~&#x17d;LEGEND 0 FIELD CHECK DATA (WNP-2)FACTORY CALIBRATION CURVE 0 l55 I50 l25 h.O Q.0 120 I-CO II5 I-Ul FACTORY CALIBRAT CURVE ION I I 0 IO5$0 COUNT RATIO FIGURE 4.l..-FIELD VERIFICATION OF FACTORY CALIBRATION CURVE FOR DOWNHOLE NUCLEAR DENSITY GAUGE i II l t I
/BIER OPC1%oaop LW P/BURNS AND ROE cD LEGEND WNP-2 TEST SECTION(AVERAGE 10 DETERMINATIONS)
Qe WNP-2 80RINGS CORRELATION BY LEE 8 SINGH(l97I) 100'Vo COMP-.=80+Q2 DR (LEE 8 SINGH~197I)0, 60 Ld cL'l 40 0 20 80 90 IOO COMPACTION
>7o FIGURE 42.-RELATIONSHIP BETWEEN RELATIVE DENSITY AND PERCENT COMPACTION
/VIEW NODS%LCO&N%%1/BURNS AND ROE cD LEGEND 0 WNP 2 TEST SECTION DATA POINT(WASHINGTON DENSOM~TER DENSITY)WNP-2 TEST EXCAVATION DATA POINT (WASHINGTON DENSOMETER)
BEST FIT CORRELATION Cg00 I-O U CO O~~az t5 hl I 60 O hl 0 o C3 40 0~g~~0 0 po 20 pe 0 0 20 40 60 80'l00.120 1A RELATIVE DENSITY~7o FIGURE 4.5.-RELATIONSHIP BETWEEN RELATIVE DENSITY 8 CORRECTED"N" (FOR DENSITIES DETERMINED WITH WASHINGTON DENSOMETER)


BURNS AND ROE PAIL%IICICIS oaas%%II LEGEND WNP" 2 BORING (NUCLEAR GAUGE)WNP-2 TEST SECTION(WASHINGTON DENSOMETER)
              'I 0
BEST FIT CORRELATION (WNP" 2)CORRELATION BY BAZARAA (l969)(AT I KSF OVERBURDEN PRESSURE)I-IOO O O b.CO 80 m A 60 I-lal K K~o 0)~0 S'~~~0 Qo 20 Qo p.0 0 0 20 0 QO 60 80 100 I20 RELATIVE DENSITY>7o FIGURE 4.4.-RELATIONSHIP 8ETWEEN RELATIVE'ENSITY 8 CORRECTED"N" (FOR DENSITIES DETERMINED WITH WASHINGTON DENSOMETER 8 DNDT)
                <r i1 K N
A T h'P k BURNS AND ROE RBBBRN 02222N LEGEND WNP-2 FIELD CORRELATION BETWEEN N R DR(BEE FIGURE AA)(ee WNP 2 LABORATORY DETERMINATION OF 6 8 DR NOTE: N VS 6 CORRELATION BY PECK ET AL (l974)I-IOO O O 4.CD eo CO 2 2'60 I-LU CL 40 20 0 lQ.O I-45 La.4l Ul 59 4-C7 55 ul 35 5I 29 80 IOO I20 RELATIVE DENSITY>7o FIGURE 45.-CORRELATION BETWEEN N, RELATIVE DENSITY, AND S.
I, I
I 4 t
~ ~}}
>>CIA>>>>OCt>>%>>>>/BURNS AND ROE~&#x17d;LEGEND 0>>WNP-2 BORING (NUCLEAR GAUGE DENSITY)Q WNP-2 TEST SECTION (WASHINGTON DENSOMETER DENSITY)0>>LABORATORY DETERMINATION OF YOUNG S MODULUS OJ 500 E OC Vl 400 O O I-300 K O U 4l O 200 0 0 0 8~~6'00 0 8 0 0>>25 50 75 IOO 125 Rf LATIVE DENSITY>7o FIGURE 46.-RELATIVE DENSITY DERIVED FROM PMT DATA P
QQQ 4'50 425 420 4I5 CT32 440 4 I 20 2 4 3 4 14 5 43LS NO REF!CT5 459,7 II I 20 2 l6 15 4 22 5 KN 6 looe r KNS 8 Noe 9 NO+NOS u KXI 12 NOS 15 N04 4172 lNRKF 95 I 50 I NO I SAND 440.'5 II I 12 2 5 5 10 4 30 4 tg SAND EXIS'I, GROVND likE 440.3 52 4 19 5 N e 100 7 28 4 14 15 10 N 12 It 12 I 28 51 15 4161 NORE 150 ST I Iq Sr l50 48 I 210 ef SAND RENOTE AIR INTAKE UNKSIA RENOTK AIR INTAKE STRVCTVRK 440.4 Io I 17'211 TO I Sr 5 260 80 I I 4314 C74 440.4 14 I)5!2l 4 e 5 e r 12 8 9 250 80 I I 73 33 I 15 I I 20 12 14 15 26 14 21 0 150 52 I I 4124 NOREF."!I 440 430 425 420 4I5 0+00 0+50 I+50 2+00 2+50 PROFILE=A.A AIR INTAKE UNE 5IA-.NOTE VERTICAL EXAGGERATION
~2X NOTE~ALL HOLES DRY VPON COMPLKTION
!4 440 430 425 420 4I 5 Ol 0 CT9 441.7 16 I 21 2 9 5 lo 4 42 5 62 6 98 8 100 9 90 78 II 48 I 40 I 14 47 15 4182 95 50 I I 750 NO I I 320 82 I I SAND CT 41 4428 91 I 7 2 14 5 42 21 5 N 4276 NO REF 50 I 175 I 456 J 49 100 EXISIGROVND UNK REIKITE AIR INTAKKLINKSIB 4425 K 27 48 2., 44 ee 2S 5 44 7 390 4501 OR'0, I!!24 I 41 2 5 10 12 20 14 10 5 8 17 411.7 NOR EF tl IS 6'7 16 8 98 54 I 40 I CT47 44 I.S 25 I 44 2 40 5 80 4 19 5 16 6 7 75 8 25 9 SI 10 2$I I 18 12 2S 15 It 26 15 27 IS 25 17 N 13 IS Zl I 370 53 I I, 17 I 2 NO 5 220 50 I 440 I 190 67 I I.49 NO 560 95 I 8 4269 NO REF, 170 55 43 531 60 4408 34 49 2 22 5 4 T!57 441.2 58 100 2 370 58 I I 41.e!52 6 163 46 Q NO 71 7 97 8 429 2 NOREf, RENOTK AIR DITAKE STRVCTVRK CT 3 44IO 12 I 29'28 5'7 4~<7 5 15 e 5 7 50 8 68 9 77 I I 87 It 54 15 47 14 60 4ITO No REF 150 65 I I 57 51 I 500 100 I 3+00 I 440 435 430 425 420 415 0+50 I+00 I+50 2+50 NO'TES'SEK SHEE T 52 FOR LEGEND 2.SEE APPENDIX II FOR GOR1N 0 lOGS 3 SEE FIRSEI FOR PROFILE IDCATNNS PROFILE B B AIR INTAKE LINE 5IB, NOTE: VERTICAL EXAGGERATION 2X WASHINGTON PUBUC POWER SUPPLY SYSTEM WNP-2 PROFILES RICHLAND,WASHNGTON SCALE: AS SHOWN BURNS 5 ROE, INC.ORADELL, N.J.GEOLOGIC ASSOCIATES, IN., IRANKIWTENN KlNGSIORT.
TENN KNOXnlIE, TENN PROL 61-605 DATE 11/6/6.1-flGURE 5.1.
0'4 i II'it r' L YARD COO RO, z CT'7 440.3 CT.4R 440.0 440 a 40 I I'R 69 3 70 4.64 40 6 66 7 245 75 1 530 IRO 62 T 150 1 14 3 435 3R 61 5='63 6 46 7 SII 1 430 54 82 9 37 10 42505 NO REF.49 5R 64 I 52 I I 655 SS 3 ISO 1 425 97 1 61 Se 63 75 I 420 416.8 NO REF, 4I5 410 I+00 0+00 CT 28 44L4 440 77 I Ia 32 3 32 1 100 1 CT-R5 4344 48 I 42 5 FO ON 6 67 7 58 8 20 51 2 45 305 9S 1 430 72 56 5 67 9 59 IO 251 75 I I 58 4255 NO REF.100 1 ee e 48 49 66 547 100 1 420 eR 419.5 415 4IO NOTES".LSEE APPENDIX 3 FORLOGS OFSORINGS 2 SEK flGVRE I FOR PROFILE LOCATIONS CT.Ra 440.3 CT.4 44a4 CT 44 440.NOTEIHOLE CT 44 IS OFFSET'OR CLARITY CT 11 437k I E 78 I 39 2 44 3'35 4 30 62 75 Sa 370 1 BI 2 90 5 15 15 67 2 13)454 IOO 3'5 5 38 6 33 76 8 60 5 451.3 NO REF, 76 N=-.-'G43 T4 354.52 5R 100 1 SOO 1 100 1 IIO IOI 60 68 135 370 99 85 50 9 61 IO 86 I I 62 25 I 36'I 58 15 4129 41 8 23 9 150 els IB I SANO 12 15 I 19 I 29 33 II 24 120 500 1 IOO 1 16 15 27 14 IOOP 15 4I5.4 IHL NO I REF NO REF 3+00 2+00 PROFllE C C ANDBY SERVICE WATER PJPE NOT: VERTICAL EXAGGERATION
*4X CT-50 44L2 CT 51 44L5 CT 30 CT-3 431LB 4396 8 I 17 IT 5 8 4 31 5 14 I (4 7 15 4 61 I 69 2 63 3 17 37 2 35 5 28 IS 55 6 450.3 NO REF.'SS 55 1 TOO+'83.5 IOOG 6 TOO+, 100 G 22 40 7 Ee 8 3R 9 15 4 N 5 I 2 6 9 T 2 61 9 lI 4 IOOP 100+100+100+6 V 257 Sl 1 8 12 4 100+100+100+100+SIS 120'38 14 419.5 NO RE 420 NOR EF;417.3.NO REF.L'OGS OF HOLES 0 S OW IN P OF ES (HOLES DRILLED ADJACENT TO PIPELINE TRENCH SHOWN IN PROFILE C.C)NO HORIZONTAL SCALE 100 1 225 1 23 30 1 70 1!5 O GG 2 7 CT-38 4383 O GG~o CT IR CT-37 43ELB 440 439.'R 7 I 45 I 435 I 3 I IO 40 1 BT 18 2 26 3 48 4 SAND 227 1 590 IOO'1 41 19 4D 15 5 e 430 8 7 85 T 270 1 7 N 150 I 69 6 28 6 4171 8 53 9 65 I 69 7 BI 8 3R 9 Rl IS I STANOSYSERVICE WATER PIPE, 4 8 4265 425 IOS 55 1 I 520 NO 1 60 ll BT 420 60 I ICO 91 1 K 420 99 4$.7 NO REF+4I5 4lO'+00 6+35 6POO 54 00 NEKDGGL 0 0 70 NOTE.ALL HOLES DRY UPON CONIPLETNN LEGEND OEFORllATNN NOaALI HOLE NVNSER CT&I RELATIVE DENSITY SVRFACE ELEVATNN'ILS 440 DRIVE SANPLE NO.I I I I WITH SLOW COVNTGD fOR I 0 FT.SICRENENT IAS PER ASTN aSSSI 435 INTERPOLATED 1 1 430 425 IO 15 NKASVRED 420 ELEVATIOII BOTTON 42QS OF HOLE NO REFVSAL OF NO REF, AVGERS OR SAllPLR TVSE 4I5 4IO WASHINGTON PUBLIC POWER SUPPLY SYSTEM WNP-2 PROFILES RICHLAND.WASIBNGTON AS SHOWN BURNS Ik ROE, INC.0RADELL~N.J.GEOLOGIC ASSOCIATES, INC.FRANKVIL TENN.KINOSIORT.
71NN.KNOKYklf.TENN.PROA 61 605 DATE 1 1/6/81 flGURE 5.2.
I'I br r'~t~I~fi Ib I",~b~I l~)I I)I a I..a C I I I lf I@i~I , I I b I)E I J i I E I"~$.E:-~-E I I e'"b I E I~g b)P h BURNS AND ROE PALS ocscao acacia%OP/200 IOO LESEND Oi DATA POINT (WNP-2)BEST FIT CORRELATION (WNP" 2)~LA I~QQA~QIQ.>J9 70~50 tL 40 CO 30 O 20 R 0 8 0 O.IO 7 IO 20 30 50 70~IOO E (DEFORMATION MODULUS))</~pP 4 FIGURE 4.7.-CORRELATION BETWEEN DEFORMATION MODULUS FROM PMT AND SPT F g I I~@" E'r'i I i'li~~-'p',r ,gP'M~)i~z'I i'~:ri"I~AI r 1 I/'QQ4 IguI'Qi J''g%~'I'I~~p I~I
/ALL NCIDI1 OWClN%W/BURNS AND ROE cD REMOTE AIR INTAKE STRUCTURE REMOTE AIR INTAKE I INE WOA g 1~'TURBINE GENERATOR BUILDING RAD.WASTE CONT.BLDG.REACT.BLDG.STANDBY SERVICE WATER~+PIPE TRENCH REMOTE AIR INTAKE LINE 5I B REMOTE AIR INTAKE STRUCTURE 2 COOLING TOWERS SPRAY POND IB SPRAY POND IA FIGURE 6.1 LOCATION'LAN GRAPHIC, SCALE 0 I00'DQ 300'N'200 400'
~~~~~~<g'rir J%%y r~C I h~
BURNS AND ROE/ILL ODCIO ODCIN POST-l976 FILL 440'YPICAL BORINGS 450'LASS II WOA DUCT BANK(TYP.)
5I A 420'ECTION I POST-l976 FILL-440'YPICAL BORINGS~am-420'TANDBY SERVICE WATER PIPES GLASS j.DUGT BANK~PRE-1976 FlLL.SECTION 2'I FIGURE 6.2 TYPICAL SECTIONS I~IP~1 h P 4 4~1 Ii C l I~~((g gr 41~I 1 1'J.4.I~4 1 W%5~PE p 4 ('I 7'(I'1 Ji~'~*~*I t~~M 4~1 4~g 4j~'i PQ i(q>~1t~I 1~.~I I rl}~I I W I~g~..I~I , t,r I~Pg~~1~I C'~'1,1 II p 440'OST l976 FILL BURNS AND ROE TYPICAL BORING/Aha DCIWtl QDM'%f/450'RE-~l976 r WOA 518 420'LASS Z STORM SEWER SECTION 5 440'OST l976 FILL TYP ICAL BORINGS 4~0'PRE-l976 F)LL 420'OA 5I 8 410'ANHOLE'5 SECTION 4 FIGURE 6.5 TYPICAL SECTIONS CLASS 3I STORM SEWER NOT TO SCALE'
**h~)~~m v I'I~~hh I h ,I lh h V IH~.I I~~Ch\V hj I l~V V~V I~I" I Ih, I Ehh V g~I~l h'I 5 I ee V A Vth I'VV'V'V I H h'V~I~h~H k h I tf ('<<lI~jh v4 fl h T~~~~h Chh g~l JHV~.4 p4 P H'hhh*I~~II'l A'h+1g g~r~IV rg I','1.~44'I~I
+4.0'P\BURNS AND ROE TYPICAL BORING-'-'"-'976
/ah%ICICLE V%l Pf CD CD CD FILL 450'LASS I STANDBY/SERVICE WATER PIPES AND DUCT BANKS 420'SECTION'BO (I)-I PRE-l976 FILL POST I976.FILL~440'YPICAL BOR INGS 450 CLASS I STANDBY SERVICE WATER PIPES'20iAND DUCT BANKS~SECTION 6 CLASS Z PIPES~PRE-l976'lLL FIGURE 6.4 TYPICAL SECTIONS NOT TO SCALE I'l I~~~I1~)-.<i".~I":"3H.K:.'-''
'l rI 4\r I I't AV~tl~TW%l~<<,j, F'4'r\4~r I')1 j f~l It I l r\~'I l'.lk'~t wl'I I I ,'.S..a i~l J ("l'I rIl)g"l f;,~~*~j r mi~~C I  
/Able ODOO Ouau WllPP BURNS AND ROE CLASS I STANDBY'SERVICE WATER.PIPES''AND DUCT BANKS E TYPlCAL BORlNGS POST-l976 FlLL 440'20'NOT TO SCALE h FIGURE 6.5 TYPICAL SECTIONS CLASS II~~I j l CIRC.~PRE-I976 FILL.WATER.PIPES SECTlON 7 p I r i Ivr ev vv$vG 5 4f v,'l g, t t~r V t 4~e$'I V$V'\V I 1'fiI l 1 1 r r l l V r I rr" IV'V'C a<<t I Jl'\'I~1 I~, w LMV BURNS AND ROE/8 ILW OQOll OOCIQ%OP'/'I NOTE: ,YOUN84 MODULUS VALUES USED IN SETTLEMENT CALCULATIONS ARE: K<60~km (REMOTE AIR INTAKE PIPE)E~l5&~2(STANDBY SERVICE WATER PIPE)I-0.5 AIR PK REMOTE-INTAKK Pl STANDBY SKRVIC WATER PIPE 0 0 LOAD q KSF.FIGURE 7.I ESTIMATED STATIC SETTLEMENT-LOAD CURVES FOR RESPECTIVE STRUCTURES,~.",>
k
~%%%I~~'l r~si~t s~~t 4~I~1~'C'
~C~I~~~~~~~0~0
'I 0<r i1 K N I, I~~}}

Revision as of 16:29, 29 October 2019

Soil Backfill Testing Program, Vol 1,Text,Tables & Figures & Vol 2,Apps
ML17276A470
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 11/30/1981
From:
BURNS & ROE CO., ERC/EDGE (FORMERLY GEOLOGIC ASSOCIATES, INC.)
To:
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
Shared Package
ML17276A465 List:
References
NUDOCS 8112210421
Download: ML17276A470 (95)


Text

CLASS OF QUALITY EVALUPT1OH BACKF1LL NILE'Y VWP-2 AASH1HSTOH HAHFOROt 81-605 GA F1LF 8'<>~~o42

~D~CX osooo PDR

TABLE OF CONTENTS 1.0 SCOPE 1.1 Introduction 1.2 Objective 2.0

SUMMARY

3.0 METHODS OF TESTING 3.1 Indirect Methods

3. l. 1 Drilling and testing 3.1.2 Standard Penetration Tests 3.1.3 Pressuremeter Tests 3.1.4 Down-Hole Nuclear Density Tests 3.2 Direct Methods 3.2.1 General 3.2.2 Washington Densometer 3.2.3 Sand Cone 4.0 FIELD TEST RESULTS 4.1 Subsurface Conditions 4.2 Standard Penetration Tests 4.3 Pressuremeter Tests 4' Down-Hole Nuclear Density Tests 4.5 Direct Method tests 5.0 LABORATORY TESTS 5.1 Grain Size Analysis 5.2 Natural Moisture Content Determinations 5.3 Triaxial Compression Tests 5.4 Maximum and Minimum Density Determinations 6.0 FACTORS EFFECTING TEST RESULTS 6.1 Gravel Size Material 6.1.1 Effects on Standard Penetration Tests 6.1.2 Effects on Pressuremeter Tests and Down-Hole Nuclear Test Results
6. 1.3 Effects on Direct Tests 6.2 Percent Passing No. 200 Sieve

7.0 CORRELATION OF TEST RESULTS 7.1 General 7.2 Indirect Methods Correlated to Relative Density 7.2.1 Standard Penetration Tests 7.2.2 Pressuremeter Tests 7.2.3 Down-Hole Nuclear Density Tests 7.3 Indirect Methods Correlated to Engineering Properties 7.3.1 Standard Penetration Tests 7.3.2 Pressuremeter 7.3.3 Down-Hole Nuclear 8.0 TEST RESULTS AS RELATED TO DESIGN FUNCTION 8.1 Liquefaction 8.2 General 8.3 Static Conditions 8.4 Dynamic Conditions 9.0 RECOMMENDATIONS 10.0 ACKNONLEDGEMENTS

11.0 REFERENCES

TABLES

1. Boring Tabulation
2. Laboratory Testing Predidted Dynamic Settlements F I GURES
l. Boring Location Plan
2. Photo's
3. P.lots of Lab Data Correlation plots 5; Soil Profiles
6. Cross-Sections thru Utilities
7. Settlement Plots

- ~

APPENDICIES I. Procedure for Soil Backf i I I Testing Program II. Boring Logs III. Pressuremeter Plots IV. Down-Hole Nuclear Density Results V. Laboratory Tests Vl. Direct Test Results

/4Q lee eel aweer BURNS AND ROE P) i.O SCOPE 1.1 Introduction The Quality Class I fill at the WNP-2 site that was placed prior to May 1976 was installed in accordance with FSAR requirements to approxi-mately elevation 438 (see appendix of FSAR for report by Shannon and Wilson accepting all fill placed prior to May 1976). Subsequent to May 1976, excavations were made in this fill for placement of the remote air in'take piping, the remote air intake structure, and the standby service water pipeline with parallel duct banks, (see Figures 1 and 6 for utility locations). It was found that the backfill used in these excavations did not conform to Quality Class I specification requirements for grada-tion and compaction. These nonconforming items resulted in the writing of 50.55(e) Condition 146. It is significant to note that none of the fili in question is beneath Category I buildings; five years of settlement monitoring of Category I buildings has shown without exception that structural settlements are very small and well within the range previously predicted from elastic analysis:

i.2 ~Ob'ective In order to resolve this nonconforming condition discussed in 1.1, a testing program was undertaken to determine the pertinent engineering properties of the insitu backf i I I. This was accompl ished by relating indirect testing method results (Standard Penetration Tests, downhole pressuremeter testing and downhole nuclear density testing) to those engineering properties of the backfill which were used in design. After

l4 LW NCIC$ %

%UPO

%IF/

BURNS AND ROE P) these properties were determined they were used to predict the long-term performance of the backfill for both static and dynamic conditions.

/ALW NCICIO OtSCIJ RIP/

BURNS AND ROE P) 2.0

SUMMARY

I In order to assess the effects of the nonconforming backfill (subject of 50.55(e) Condition 146) a comprehensive testing and evaluation program was Initiated. The testing program consisted of measuring various pro-perties of the backfill using primarily the Standard Penetration Test, the downhole nuclear density test, and the downhole pressuremeter test.

The results of this program indicate a good correlation between the various test methods. Furthermore, the correlations between test methods and engineering properties developed during this study agree well with similar correlations previously reported by others.

Relative densities measured in ihe field near the safety related utilities were found to be lower than those required in the Specification.

Nevertheless, both dynamic and static settlement analysis performed to determine The effects of these lower relative density values on safety related utilities have shown thai over-stress of these utilities will not occur.

/4 1%

NWDll a+ac

%SF/

BURNS AND ROE 3.0 METHODS OF TESTING 3.1 Indirect 3.1.1 Drillin and Testin General The test program utilized the standard penetration tests (SPT), downhole pressuremeter tests (PMT), and downhole nuclear density tests (DNDT) in selected areas beside the standby service water pipeline and the remote air intake structures and piping.

The borings extended to whichever of the following depths was greater:

( 1) a minimum of three feet below the Category I utility, or (2) the bottom of trenches where backfill was placed for circulating water and storm sewer Class II systems that cross under the area of investigation, or (3) until two consecutive SPT values were each equal to or greater than 15.

Initially, at each boring location an SPT sample was taken beginning from the surface and extending to a depth of 18 inches. The split-barrel sampler was then removed to obtain the sample and the sampler was relowered to the bottom of that hole. A second SPT sample was taken to create a hole extending to a total depth of three feet.

Subsequently, an aluminum casing (2" O.D. and 1.9" I. D.) was inserted in the open hole created during the SPT sampling in preparation for the downhole nuclear density testing. The nuclear probe was then lowered down the casing in order to determine the wet density of the soil.

/jIL'I IIPDII IIDPN

%%11 BURNS AND ROE P)

'

After the nuclear density testing of the upper level soils was completed, the aluminum casing was removed, the hole was augered to the I

of three feet (to the bottom of the zone previously tested), and

'epth two consecutive SPT samples were taken below the augers, (creating 'a hole with a bottom depth of six feet beneath the surface). As before, the aluminum casing was placed in the open hole created beneath the augers so that the nuclear density testing could again be performed.

This procedure of conti'nuous SPT sampling and nuclear density testing was followed throughout the borings.

At selected intervals within each borehole, the aluminum casing was removed after the density testing was completed, and BX-Size Steel casing (2-7/8" O.D., 2-3/8" I.D.) was driven to the bottom of ihe hole and then removed. The BX casing was used to enlarge the hole three feet beneath the augers to allow insertion of the pressuremeter probe and subsequent pressuremeter testing.

The following paragraphs discuss the indirect testing methods in more detail.

3.1.2 Standard Penetration Tests Standard Penetration Tests were performed using an 18 inch split-barrel sampler in accordance with ASTM D 1586. All borings were advanced by means of a Mobile B-61 drill rig equipped with hollow stem augers. Photograph 2. 1 shows the drill rig during the performance of the Standard Penetration Test. Representative portions of each split-

/AIL%

acacaa reacts WVF/

BURNS AND ROE P) 1 barrel sample were preserved 'in a glass sample jar clearly labeled withI the project title, date, number of boring, sample number, depth between which sample was taken, soil classification (ASTM D 2487) and SPT values.

The samples are stored at the WP-2 site and are available for examina-tion. All field testing was monitored by a Geotechnical Engineer, who maintained detailed boring logs, which are contained in Appendix II.

3.1.3 Pressuremeter Test A Menard pressuremeter was 'used to measure the insitu defor-mation modulus of the soil. Generally, a downhole probe which consisted of inner and outer expanding tubes was lowered to the desired depth; a coaxial cable connected the probe to the volume measuring panel board (see Photograph 2.3). Nitrogen gas was forced under pressure in the outer part of the coaxial cable while water under the same pressure was

(

forced down the inner part of the coaxial cable. The water under pressure caused the probe to enlarge and deform the borehole wal I, and the amount of volume change was measured on the panel board. A separate nitrogen system kept the water system from expanding beyond the test limits so that a controlled interval 210 mm long could be tested. Photograph 2.4 shows a pressuremeter test being performed.

The pressuremeter used in the testing was manufactured by Menard, Inc., and procedures generally followed were those described by Louis Menard in the equipment operation manual. Testing was performed in 210 mm segments at locations shown on the Profiles, Figure 5.

NDCSO eeaae BURNS AND ROE CD 3.1.4 Down-..Hole Nuclear Densit Tests The wet density of the relatively undisturbed soil in the borehole was determined using the DNDT; the nuclear gauge Q

was calibrated

~

for use in thin-walled aluminum casing. The nuclear gauge and probe used in the density testing is a Campbell Pacific Nuclear Model 501 calibrated and operated as described in the CPN Operator's Manual dated 1980. Generally, wet and dry densities were determined at three foot intervals. The density determined at each three foot interval is that which is contained in the volume of influence of a sphere having a diameter of 10 inches. Figures 2.5 and 2.6 show a DNDT being performed.

In order to convert the wet density determined by nuclear methods to dry density, the moisture contents of SPT samples were deter-mined in accordance with ASTM D 2216. Further,, at selected locations, test pits were excavated adjacent to the boring locations and the insitu densities at the bottom of these test pits were determined using a Washington Densometer and/or the sand cone. The corresponding relative densities are included in Figure 4.4 and, the insitu densities are included in Appendix IV. These values of 'inplace density were compared with the densities determined by nuclear methods at adjacent depths. as shown in Figure 4.1. In addition, DNDT results were ccmpared to other test results (see Section 7.0).

3.2 Direct Methods 3.2.1 General In conjunction with the indirect test methods the direct methods discussed below were used to determine insitu densities.

/JOIE OCIRS IICIPN

'L%1/

BURNS AND ROE 2) 3.2.2 Washin ton Densometer The insitu density was determined 'in accordance with ASTM D 2167, Standard Test Method for Density of Soil in Place by the Rubber-Balloon Method. Density test results obtained using the Washington Denscmeter are included in Appendix Vl.

3.2.3 Sand Cone In conjunction with the Washington Densometer, the insiiu density was also determined at selected locations in accordance with ASTM D 1556, Density of Soil in Place by Sand-Cone Method. Results of these tests are included in Appendix VI.

/JILL VIP/

BURNS AND ROE 4.0 F I ELD TEST RESULTS 4.1 Subsurface Conditions Subsurface conditions at the, WNP-2 site generally consist of a layer of dense, pre-1976 sand fill overlying the very dense Ringold Formation. As mentioned, the soils that are the subject of this study are the backfill for trenches excavated into ihe pre-1976 fill. At the locations drilled, the deepest extent of the backfill was found to be elevation 413 feet (MSL). Both the post-1976 backfill and the pre-1976 fili consist of sand containing varying percentages of silt and gravel; This sand is known to be glacial outwash in origin and was found to range in description (Unified Soil Classification System, USCS) from a poorly graded clean sand (SP) to a well graded silty, gravelly sand (SW-SM). The majority of the backfill encountered by this testing program was found to be poorly graded (SP), and was found to contain from four to ten percent fines (i.e. material passing a f200 sieve) and from 10$

to 20$ gravel. The density of,the sand backfill under investigation was found to be erratic and varied from loose to very dense. However, most of the backfill ranged from medium dense to dense, and moisture contents ranged from 3$ to 10$ . The soils that are the subject of this study are N

well above the present and expected future groundwater table at Elevation 405; therefore, groundwater will have no.effects on the engineering pro-perties of the backf i I I.

,

.x

j'4 'DDll ILDDd WllYP BURNS AND ROE The photograph included as Figure 2.2 shows typical backfi I I soil in the sides of an excavation.

4.2 Standard Penetration Tests The results of the Standard Penetration Tests are reported in the form of an N value (i.e. ihe number of blows required to drive the sampler the final 12 inches); the N values measured during the con-tinuous SPT are .shown on the Profiles (Figure 5). Further, the split-barrel classified soli'ecovered from the samplers during the SPT was in the field by a Geotechnical Engineer and these descriptions are contained in boring logs included in Appendix II, which is included in Volume 2 of this report.

The N values for the sand backfi i I are erratic and range from extremes of 5 to 100 blows per foot, which indicates that the relative compactness of the sand backfill varies from very loose to very dense.

However, most of the N values are in the range of 20 to 40 blows per foot indicating that the relative compactness ranges from medium dense to dense for most of the soil. At borings where loose fill was en-countered, additional borings were drilled on approximately 20 foot centers on either side of the initial boring until the extent of the loose zone had been defined in both horizontal and vertical extent. It was found that, at those locations examined, the loose sand fill ls contained in discrete and discontinuous zones which are surrounded by denser fill. The predicted effects of these loose zones of fill on the respective utilities are described in detail in Section 8.

/AD, RCSDR

%tl CIN BURNS AND ROE 4.5 Pressuremeter Tests Graphs of pressure versus volume change were developed during the pressuremeter testing and these graphs are included in Appendix III. The deformation modulus, which is proportional to the modulus of elasticity (Young's modulus), was caluclated from the pressure-volume change data for each pressuremeter test. The calculations for the deformation moduli are included on the pressuremeter plots; these values are on the Prof iles included as Figure 5. 'ummarized The deformation modulus measured for the WNP-2 backfill ranged from 2

extremes of 8 Kg/cm to approximately 800 Kg/cm2.; however, most values 2 2 were in the range'of 150 Kg/cm to 250 Kg/cm . Specif ical ly, in the area 2

of influence, the deformation modulus values were above 50 Kg/cm, and conservatively this value was used to calculate the static settlements of the various utilities as discussed in Section 8. Further, the data from the pressuremeter tests were used to evaluate the at-rest pressure coefficient (K0 ) of the soil.

4.4 Down-Hole Nuclear Densit Tests Appendix IV contains a summary of the wet (moist) densities determined in the boreholes using nuclear density methods; the corresponding dry densities are also included in Appendix IV. Dry densities were calcu-lated after determining moisture contents in the laboratory according to ASTM D 2216. The relative densities of The soil at these specific locations are summarized on the profiles included in Figure 5. These relative densities were determined by comparing down-hole nuclear density

04CSS OCOCfN

%II'/

BURNS AND ROE PD test results to maximum densities determined in the laboratory, and by using the correlations shown in Figure 4.2.

The dry densities of the soils at the site ranged from approximately 98 pcf to 138 pcf. These dry densities correspond to relative densities from approximately 30$ to 100$ .

4.5. Direct Method Tests I.*'

Near surface (0-10 feet) density test results obtained by using the Washington Densometer and sand cone are included in Appendix VI. Generally, these dry densities ranged from 100 pcf to 135 pcf; these values correspond to relative densities of 30$ to 1004.

/AIL%

uacao OC7PO BURNS AND ROE 5.0 LABORATORY TESTS

'

5.1 Grain Size Anal sis In order to classify the soi ficationn I according to the Unified Soi I Classi-System (USCS) the particle size distribution of representative soil samples were determined in accordance with ASTM D 422. Table 2 contains a summary of the USCS classification and Appendix V contains the grain size distribution curves.

5.2 . Natural Moisture Content Determinations In order to convert wet densities into dry densities the natural moisture content of the SPT samples were determined according to ASTM D 2216. Table 2 contains a summary of the moisture contents for the site.

As stated, the moisture contents of the backfill ranged from 3$ to 10$ , and accordingly these low values of moisture content have no significant effect on the engineering pro'perties of the backfill.

5.3 Triaxial Com ression '.Tests The shear strength and modulus of elasticity of selected soil samples were determined by unconsolidated undrained triaxial compression tests (similar to ASTM D 2850). The modulus of elasticity and angle of internal friction, determined from these triaxial compression stress-strain curves, are shown in Appendix V and are further summarized In Table 2.

/BIER

~ ICSCI%

I/

messier

%%

BURNS AND ROE P)

The modul i of elasticity determined in the laboratory ranged from 2- 0 150 Kg/cm 2

to 250 Kg/cm . 'The angles of internal friction were 31 and 34 for soils remolded to 25$ and 40$ relative density respectively.

These values were used to verify the correlations of field'est results to engineering properties as described in Section 7.0.

5.4 Maximum and Minimum Densit Determinations In order to calculate relative density, in the test sections, the maximum and minimum densities were determined in accordance with ASTM D 2049. The maximum density varies from 111 pcf to 135 pcf, and the minimum I

density ranged from 87 pcf to 105 pcf; a summary of The maximum and minimum density results are .included in Table 2.

/VIEW NDDO rl O&C7%

%%

BURNS AND ROE P) 6.0 FACTORS AFFECTING TEST RESULTS

'.1 Gravel Size Material 6.1.1 Effects on Standard Penetration Tests The coarse gravel and cobble size particles contained in the subject backfill locally affected the results of the Standard Penetration Test. However, because these coarser particles were found to be isolated throughout the backfill, the majority of the SPT results were not affected.

For those SPT results which were judged to be affected by coarse gravel particles, appropriate notes were made on the field boring logs and those values were subsequently not included in the development of correlations or in the evaluation of ihe backfill.

The following list contains the general criteria which were used to define SPT's which were judged to yield erroneously high N values:

(1) Greater than 10$ coarse gravel size material was found in the split-barrel sampler, (2) A loss of split-spoon sample occurred, indicating that a coarse particle may have been lodged in the end of ihe sampler, (5) Angular gravel fragments were 'found in the split-spoon, indicating to the geotechnical engineer that a particle had been broken during driving, and/or

-

(4) Comparison of SPT values with other borehole test methods, indicating that SPT values were unusually high due to the presence of gravel.

PCS la%

~ lOOO BURNS AND ROE g) 6.1.2 Effect on Pressuremeter Test and Downhole Nuclear Test .Results Coarse gravel size material was judged not to have a signifi-Pt cant effect on evaluation of pressuremter testing 'data or on the downhole nuclear density testing data. This results because the length of the area of influence along the borehole wall for both of these devices was approximately 10 inches (measured vertically);,

P Therefore, In the vast majority of cases, the effect of the gravel particles was smal I relative to the larger size of the area being tested. In addition, these methods tend to "average" The soil properties in the area being tested, thus permitting the PMT and DNDT to approach a truer value of the insitu properties than the SPT value which only measures the resistance in the area of the spoon tip.

6. 1.5 Effects on Com arison of Indi rect Tests to Direct Tests In areas where gravelly soils are present, it is believed that the PMT and DNDT measure soil properties at least as accurately as those obtained from insitu tests such as the sand cone or the Washington densometer. This results because metho'ds measure average properties within ihe influence zone of the probe without removal and disturbance of The soil in ihe area being tested. &

I 6.2 Percent Passin No. 200 Sieve Occasionally, localized zones of appreciable fines (material with greater than 104 passing the No. 200 sieve) were encountered in the

0 NCI CIO

~ le Ctlt

%IF/

BURNS AND ROE borings. However, th'e percentage of material passing the U.S. No. 200 sieve was not a factor in evaluating the test results.

lA1%

uaarL aaae

%I Pr BURNS AND ROE P) 7.0 CORRELATIONS OF TEST RESULTS

7. I General In order to develop a correlation between the various indirect methods and relative density, three test fills were constructed using soils typical of those used for trench backfill. One fill was con-structed by placing the soil in a loose condition, one by placing and compacting the soil to a dense condition, and one by placing and com-pacting the soil to a very dense condition. As these test fills were being constructed, numerous Washington Densometer and/or sand-'one inplace" density tests were performed concurrent with the fill placement.

After the test fills were completed, borings were drilled and SPT, PMT, and DNDT tests were performed. Further, after the drilling was com-pleted, test pits were machine excavated into the test fills so that insitu densities and subsequent relative densities could again be deter-using Washington Densometer and/or sand-cone devices.

('ined After preliminary test method correlations were developed from the test fill data, several borings were drilled outside the Class I utility areas in Class II piping backfill to furnish additional data for correla'-

tions. This testing consisted of continuous SPT, DNDT, and PMT. In addition, during the drilling and the testing of the Class I utility backfill, additional results of SPT, PMT, and DNDT were compiled and compared against each other to further enhance these correlations.

Moreover, at selected locations, additional test excavations were made

/ILL ODDS

'ORCIN BURNS AND ROE to again allow correlations between relative density determined by both indirect and direct test methods.

7.2 Indirect Methods Correlated to Relative Densi

7. 2. 1 Standard Penetration Tests A correlation between Standard Penetration Test N values (corrected for overburden pressure as described in reference 13) and relative density. was developed based on the data obtained during this study.. The results of this correlation are presented in Figure .4.4, k

where a wel I defined, correlation between the N values and relative density is shown (using both the Washington densometer and the DNDT to measure densities).

The results of many studies have been published which corre-late Standard Penetration Test results with relative density. Scme of the most widely accepted of these are the studies by Gibbs and Holtz (1960), Peck and Bazaraa (1969), and Marcuson and Bieganousky (1977) which are referenced in Section I1.0. The data developed at the WNP-2 site closely approximate the correlations reported by Peck and Bazaraa and primarily for that reason, their work was selected for comparison with this study.

7.2.2 Pressuremeter Tests As shown on Figure 4.6 a correlation was developed between the deformation modulus and relative density of the soil at the WNP-2 site.

However, because this correlation was not as well defined as those shown

.-

/ÃLW seas 0CI OO

%% K/

BURNS AND ROE IC In Figure 4.4 and Figure 4.7, we elected noi to use this correlation in the analysis.

7.2.3 Down-hole Nuclear Densit Tests The relative density of the backfill was determined using the downhole nuclear density device and at selected locations, test pits were excavated adjacent to the boring locations and the insitu wet and dry densities at. the bottom of these pits were determined using a Washington Densometer and/or a sand cone. These values of in-place density and calculated relative density were used to compare with the densities determined by nuclear methods at adjacent depths as shown in Figure 4. I, and as can be seen a good correlation was developed.

7.3 Correlations to En ineerin Pro erties 7.3. 1 Standard Penetration Tests I In addition to developing correlations to relative density, ihe field testing program was developed such that correlations could be developed between N, relative density, and actual engineering properties reported in the literature. For example, Schmertmann (1970) published a correlation between N and Young's modulus. Figure 4.7 shows Schmert-mann's correlation between N and Young's modulus as compared to the N and deformation modulus correlation developed at the WNP-2 site.

Further, Peck (1974) developed a correlation between N (corrected for overburden pressure) and the angle of internal friction for cohesionless

II44CSO IIDCllt

%%K/

BURNS AND ROE PD soils. This correlation is shown on Figure 4.5 which also shows the relative density and N correlation developed during this study. In order to substantiate this correlation, the-.angle of internal friction was calculated from data obtained in the triaxial testing of WNP-2 soils remolded to boih 25$ and 40$ relative density. Results of the trlaxial tests are plotted on Figure 4.5 and in both cases, the actual angles of internal friction were slightly higher than predicted in the corrhlation.

Thus, based on these two cases, there is a def Inite correlation between N values, relative density and ihe angle of internal friction for the WNP-2 soils.

7.3.2 Pressuremeter The pressuremeter was used to determine the deformation modulus at different locations within the backfill., The deformation modulus was used in conJu'nction with the SPT N values in developing correlations with Young's modulus,. and as described in the previous section, this was compared with Schmertmann's correlation between N and Young's modulus (Figure 4.7). Further, Martin (1977) used the pressuremeter in predict-ing settlements of structures founded on silty sand and sandy silt in residual soils. Martin reported in his studies thai the deformation modulus obtained from the pressuremeter was equal to Young's modulus based on comparisons of predicted and actual settlements. The Schmertmann correlation and the results reported by Martin both substantiate the

'f correlation shown on Figure 4.7 between N and the deformation modulus.

Finally, the data developed during this study and the data reported by

ALW ODD%

%RCIN

%% I/

BURNS AND ROE others indicate that the deformation modulus is equal to Young's modulus

'or the WNP-2 soils.

7.3.3 Down-hole Nuclear Densit The nuclear density gauge was used to determine insitu densities from which relative densities could be calculated. The relative densities determined in this manner were used in conjunction with the SPT N values in developing correlations with the angle of internal friction as described in Section 7,.3.1.

0

/JjLW DDCSO oescra BURNS AND ROE cD

-

8.0.ITEST RESULTS AS RELATED TO DESIGN FUNCTION It has been found that liquefaction is not possible in the soil placed after May 1976, because the present and future position of the water table is well below all of the backfill. The highest predicted elevation of the water table is elevation 405 and since the lowest extent of, the backfill in question is elevation 413, liquefaction cannot occur in ihe dry to moist soil conditions. (Note: elevation 405 has been predicted conservatively as the maximum future elevation of the water table at the WNP-2 site if the Ben Franklin Dam is constructed).

8.2 General Determination of the adequacy of insitu conditions relative to the design function of the standby service water pipeline, and the remote air intake structure and piping has been accomplished by considering stress conditions that may result from potential static and dynamic settlement in the lowest relative density zones found.

Zones of low relative density were found in the following areas:

( 1) at line WOA 51A of the remote air intake pipi ng, low relative densities ranged from 45K to'0$ in Boring CT-43; (2) at I ine WOA 51B of the remote air intake piping, low relative densities ranged from 30$ to 40$ in Borings CT-3 and CT-40.

Boring CT-40, however, reflects the condition of the.backfii.l around the manhole;

NDD1 ODON

%% 1/

BURNS AND ROE (5) at the standby service water pipeline, the lowest relative density was 45$ in Boring CT-11.

None of these low relative density zones were found to be continuous from one boring to'another. Moreover, observation of excavations made in these safety related areas indicate that the loose zones are limited from 5 to 10 feet in extent. However, for design purposes a horizontal extent of 20 feet was conservatively selected for the length of any loose zones (refer to Section 4.2). This distance is consistent with the requirement in the testing procedure to add an additional boring offset 20 feet from any boring where a loose zone (N value less than 15) was found.

8.3 Static. Conditions For the static case, settlements were determined using elastic-f half-space theory employing Young's modulus determined from actual field measurements, made during the backfill testing program (after Schmertmann, 1970). Figures 7.1 and 7.2 show the settlement plots resulting from thi s ana I ys i s. Conservative I y, these p lots were deve loped us ing the lowest deformation modulus found at each utility; the respective values used are shown on Figures 7.1 and 7.2.

It has been conservatively estimated that the net contact pressure under the foundation of the remote air intake lines, the remote air intake structures, and the standby service water pipeline is less than 0.2 KSF. For this value (0.2 KSF) of net stress, total settlements of less than 0. I inches are estimated. For purposes of calculating piping stresses this total static settlement was conservatively selected to

I

/4 jx ODDS ODDN BURNS AND ROE C) O CD reprBsBnt ihe differential settlement that may occur ai the center of

/

any 20:foot. section of safety related piping.

Using this value of settlement, it has been determined that negligible stress increase in the piping will occur; it is therefore concluded that for the static case, soil conditions near the safety related piping will have no detrimental effect on the integrity of these systems.

8.4 D namic Conditions For the dynamic case (SSE conditions), two determinations were made: first, the potential for less dense backfill near the pipe to cause an overstress in those safety related systems; and second, the adequacy of the safety related piping to accommodate seismic settlements in less dense backfill.

For the first condition, the effect of less dense backfill adjacent to buried piping has been found to not affect the seismic wave passage (particle velocity) for the total plant. On The contrary, less stringent compaction will result in the potential for slippage (between the pipe and the backfill) which is beneficial as sBBn from the equation by Newmark in the FSAR reference 3.7-12.

For the second condition, seismic settlements of the fill were com-puted using the cyclic shear strain method. This is generally similar to the cyclic strain approach to liquefaction of saturated sand proposed by Dobry, et al (see Reference No. 2 ).

14LL ODDS ODDO

%%I/

BURNS AND ROE Util izing this method .in representative zones of lowest relative I

density, and using the corresponding lowest values of K , calculations were performed to determine "best estimate" settlement for the remote

't,1 It air intake piping I ine WOA 51A, and WOA 51B, of 1.1 inches and 1.5 inches, respectively. Similarly, for the standby service water pipeline Dr. Dobry has calculated settlements of OL3 inches (see Table 3).

I For purposes of calculating piping stress, these total seismic settlements were increased to three inches and were conservatively assumed to represent the differential settlements that may occur at the contour of any 20 feet section of safety related piping. Imposing these conditions on all buried safety related utilities has shown that pipe stresses are well within the allowable IImii. It is therefore concluded, that insitu soil conditions near the piping have no detrimental effect 4

during SSE conditions.

J'AIL%

OD CI%

OOOlt

%%F/

BURNS AND ROF

9.0 CONCLUSION

S AND RECOMMENOATIONS In the previous discussion, it has been shown that stress con-ditions resulting from potential static and dynamic settlements in loose soil zones will have no detrimental effects on buried safety related piping.

Based on ihe conclusions made during the backfill testing program ii is our recommendation to accept the backfill placed after May 1976 around these safety related utilities.

jill oaall aaao

%1IPI BURNS AND ROE 10.0 ACKNOWLEDGEMENTS 10.1 'Field and laboratory testing performed by or under direction of Geologic Associates, Inc.

10.2 Correlations of data and static settlement analysis by Geologic Associates, lnc.

10.5 Dynamic settlement analysis was performed by R. Dobry.

10.4 Determinations of seismic and settlement general stress effects on piping by Burns 8 Roe, inc.

10.5 Conclusions and recommendations by Burns 8 Roe, Inc.

. 10.6 Preparation of text jointly by Geologic Associates, Inc.,

and Burns 8, Roe, Inc.

/ILL N4Clll mesa'%F8'URNS AND ROE

'II.O REFERENCES

1. AmericanrSoclety for Testing and Materials (1980),

Philadelphia, PA.

2. Dobry, R., D. H. Powell, F. Y. Yokel, and R. S. Ladd (1980),

"Liquefaction Potential of Saturated Sand - The Stiffness Method," Proc. Seventh World Conference on Earthquake Engineering, Istanbul, Turkey, September, Vol. 3, pp.25-32.

3. Dobry R., Stokoe K. H., Ladd R. S. and Youd T. L.

(1981) "Liquefaction Susceptibility From S-Wave Velocity,"

ASCE Conference St. Louis, Missouri, October.

=4. Fardis M. and'Veneziano D. (1981), "Estimation of SPT-N Relative Density," Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GTIO, October.

"I

g. Gibbs, H. J., and Holtz, W. G., (1957) "Research on Determining the Density of Sands by Spoon Penetration Testing," Proceedings of the Fourth Internationa I Conference on Soi I Mechanics and Foundation Engineering, London, England, Vol. I, pp 35-39.
6. Lacroix, Y., and H. M. Horn, (1973), "Direct Determination and Indirect Evaluation of Relative Density and Its use on Earthwork Construction Projects," ASTM STP 523, pp 251-280.
7. Lee, K. L. and A. Alvaisa (1974), "earthquake Induced Settlements in Saturated Sands," Journal of Geotechnical Engineering Division, ASCE, Vol. 100, GT4, Apri I, pp 387-406.
8. Lee, K. L., and Singh, A., (1971) "Relative Density and Relative Compaction,".Journal of the Soi I Mechani cs and Foundations Division, ASCE, Vol 97, No SM7, July, pp 1049-1052.
9. Marcuson W. and Bieganousky W., (1977), "SPT and Relative Density in Coarse Sands," Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GTII, November.
10. Martin, R. E., (1977) "Estimating Foundation Settlements in Residual Soils," Journal of the Geotechnical Engineering Division, Vol. 103, GT3, March, pp. 197-212.

Oweis, I. (1979), "Equivalent Linear Model for Predicting Settlements of Sand Bases," 'Journal of the Geoiechnical Engineering Division, ASCE, Vol. 105, No. G3 12, December.

12. Peck, R. B. and Bazaraa, A. R., (1969) discussion of "Settle-ment of Spread Footings on Sand," by D. D'Appolonia, E. O'Appolonia, and R. Brissetie, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 95, No. SM3, Proc. Paper 6525, May, pp 905-909.

0 JALAP aCSmO OttttO

%%11 BURNS AND ROE ~'

13. Peck, R. B., Hanson, W. E., and Thornburn, T. H., (l974)

Foundation Engineering, 2nd ed., John Wiley and Sons, Inc.,

New York, NY. 'o~-,',-

14. Pyke, R., H. B. Seed, and C. K. Chan (l975), "Settlement of Sands Under Multidirectional Shaking," Journal of the Geotechnical Engineering Division, ASCE, Vol. IOI, GT4, April, pp 379-398.
15. Schmertmann, J. H. (I970), "Static Cone to Compute Static Settlement Over Sand," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol 96, No. SM3, Proc. Paper 7924, May, pp IOII-I043.

J 'I

,

16. Schultze E"..and Melzer K."(!965) "The Determination of the Density and The Modulus'of Compressibility of Non-cohesive Soi ls by Soundings," Proceedings of the Sixth International Conference on Soil Mechanics and Foundation. Engineering, Vol. I, Montreal, l965, pp 354-358.

1,7. Se I i g .E., and Ladd R., ( I 972) "Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soi ls," Symposium at Seventy-fifth Annual Meet i ng for ASTM, Los Ange I es, Ca I i forn i a, J une.

~ 1

  • 41 1

I

~ ~

~

I I

I I I 'I ~

'-

~ ~

~ I ~

I

~ i I ~ ~ ~ ~

~ ~

~ ~

~ ~ I ~ ~

e I I

~

~

I i I

~ I ~ I I ) I ~

~

~ ~ ~ ~

~ ~

)I I

~ ~

e II ~ ~ ~

' ~ ~ I 4 I

0

~ ~ ~ ~ ~

) ~ ) ~

~ I I ~

~ I I ~ I I ~

~

I ~

'I ' ~ ~

I ~ ~ I

~

~ ~

I I

~

I-I ~ ~ I I ~

~ I I ~ I I '

I ~ I 0

~ ~

~ I I ~

'I ~

I I I ' I ~ ~

- I I ~ I ~ I I

~ I e ~ o

. I

~ ~ ~ ~

I . - I II ~ ~

I ~

~ ~

~ ~

~ I I 0

I I I

~ I S S ~ ~ ~

I ~

J ~

~ ~ ~ ~

~ ~

I ' II I ~

I-s

~ ~

I-s s I I

~ ~

~ I i I ~ I I~

~ ~

~ ~ ~ I ~ I I s I~

I~I ~ ~ ~ ~

~ ~ ~

I ~ ~

~ ~ ~

~

~ I ~

~

~

I ~

I ~

I I ~

s. I-s I ~

~ I

~ ~

~

~

~

~

~ ~

~ ~

~ I

~ ~ I I ~ ~ ~

~ ~ l

~

I I ~

~ ~

~ ~ ~ ~ ~ I

~ ~ ~ ~ < ~

~

$

~

I ' I ~ i ~ ~

~ ~ I ~

s ~

I-t ~ I I I l.s ~

I' ~ ~

0

~ ~ l ~ ~

~ ~ l 0 ~

~ ~

J ~

~ ~ I

~ ~

s s ~

I s ~ ~ ~

s 0 0

~ s I ' ~ '

I ~

I ~ ~

I s I '

y ' ~ I~ ' I >I

~ ' I ss I I I I ' II ~ I

~ s ~ ~ s

$ y 4

I i f s $ a ~ a s I > I ' ~

' ~

~ ' ~ ~

TABLE 2

SUMMARY

OF LABORATORY TEST RESULTS Relative TRIAXIAL OTHER Project Density Modified SHEAR TESTS Pro ect No TEST Standards Proctor Date z

E E E I 0 C

O) c:

D Ul (V 0 D + E+ lJ ~ 4 ~ z 0 > E 0 C E p o III lA O~z 0 >- cI Soil Description X C XO

~

c +c5. ~

O ill mzo gg ~U I

Cl CD Q ct L 8 ~ a. ~ lh Q Ill ~ Z Vl 0 o o ZOO OZO zan ~

a hC o 0 o z z ac ID xz O K K D vl D 0VV ~

TS 3.0-4.0 126.8 99.7 130.7 5.8 SM See Lo s-TS 6 4.0 SP-SM TS 5 B ~

5.0 SP-SM TS 4 B 6.0 SP-SM TS B 7.0 SP TS ..2- B 8.0 SM

'T-SHELBY TUBE SAMPLE, SS-SPLI'T SPOON SAMPLE, B-BAG SAMPLE "TEST RESULTS REPORTED ON OTHER SHEETS>

C-CONSOLIDATION S-SIEVE OR GRAIN SIZE ANALYSIS D-DIRECT SHEAR TEST U-UNCONFINED COMPRESSION TEST T-TRIAXIALTEST GEOLOGIC ASSOCIATES, INC.

TABLE 3 ESTIMATED SEISMIC SETTLEMENTS OF UALITY CLASS I UTILITIES Seismic Settlement, S M = 6-1/2

.

Estimated Best Best Area Boring Zf (x) Z (x) Range Estimate Estimate Air Intake 6' Line WQA 51A CT-43 I 8II 2ll 1.1" 1. 4" Line I

Air Intake WQA 51B CT-40 CT-3 6'2 30'5' 1

II 31I 0-0.5" 1

0 5 8ll 0-0.5" Standby Service Water Pipeline CT-11 8'2' 1 II Q BII 0 3I I 0.4"

'(x) Z = Depth of faci ity I

f Z = Maximum depth of boring M = Richter Magnitude

4DDO ODD4 BURNS AND ROE A REMOTE AIR INTAKE STRUCTURE CT-4 GT-55 CT-45 CT-56

~ CT" 27 CT-H CT-8 AIR INTAKE CT "5 LINE TURBINE V(OA 5IA GENERATOR BLDG.

4 AIR INTAKE REACT. LINE 51 B RADW. BLDG.

CONT. ~ CT" 9 BLDG. CT-4l CT-6 c

CT-28 ~ SEE DETAIL I GT -52 ~ CT'42 'CT 7 GT-31 CT-39 WOA 51 B CT45 CT-46 STANDBY GT-48 CT-29'<<

<<>

CT-5 SERVICE WATER REMOTE AIR B TRENCH II INTAKE CT-II FACT-4

~ ~ CT-Sl STRUCTURE I

8T-50 IL CT-47 <<CT-54 I I <<~'T-26 GT-l2 CT-R GT-25<<

CT 49<<DETAIL I I <<CT-Sr SPRAY CT" l6<< POND COOLING TOWERS IA GT-2><< SP.RAY CT-IB POND CT-I'T-2 2B IB CT-24 GT-I5 GT-22 GTH9<< ~ CT" l4 GT-2I 2A <<

G - ~ ~ GT-Is IA

<<CT-20 GRAPHIC SCALE 2C IC 0 IO0 200 500 4 I = 200 FIGURE I BORING LOCATION PLAN

0-

/4 KL OCSCIO ORCIO Elle/

BURNS AND ROE PHOTOGRAPH 2.1 (at left).

Drilling crew performing Standard Penetration Test using Mobile 8-61 drill rig.

I I' k

XA I 5S rI- Q, I t

~(2 Vli 'A~

U p 'gIQV 4 I

PHOTOGRAPH 2.2 (at right). Typical sand fill at sides of trench.

IJI &W OC1D&

@aalu

%% V/

BURNS AND ROE cD PHOTOGRAPH 2.3 (at right).

Pressuremeter testing equipment.

Expanding probe (on right) and volume measuring panel (on left) connected with coaxial cable. %a

\ ~

S PHOTOGRAPH 2.4 (below).

Pressuremeter test being performed.

//J LW acomia QDE7JJ

%% JJ'/

BURNS AND ROE ZI PHOTOGRAPH 2.5 (at left).

Downhole nuclear density test probe being lowered down aluminum casing.

ggp 1 PHOTOGRAPH 2.6 (above right).

Downhole nuclear density test being performed.

I I

I I

t N

2 '3 4 5 6 7 8 9 10 Normal Stress (KSF)

MOHR DIAGRAMS 4 f 8 0

0

> 4 Q

Cl 4 6 8 9 10 11 JI5 IS (og)7 STRESS STRAIN CURVES TRIAXIAL SHEAR TEST solL DEscRIPTIGN See I o s CLIENT PROJECT COHESION (<<) 350 PSF PROJECT NO.,

ANGLE OF INTERNAL FRICTION (1r')

31 8ORING NO.:

CT-15 UNIT WEIGHT, PCF 110 4 SAMPLE Nos BA WATER CONTENT,% ELEV. OR DEPTH SPECIFIC GRAVITY November 16, 1981 VOID RATIO Figure 3.1 Plots of LeboretprY Dete GEOLOGIC ASSOCIATES, INC.

I I

Vl

-8 Vl a6 C

I 0

lh 4 6 8 10 12 14 16 18 Normal Stress (KSF)

IVIOHR DIAGRAMS (I)

"8 V)

L 0

>~

6 CL 3 4 Axial Strain (%)

STRESS STRAIN CURVES TRIAXIAL SHEAR TEST SOIL DESCRIPTION See lo s CLIENT PROJECT WNP-2 coHFsIQN ( ) 300 PSF PROJECT NO.: 5 0 CT-17 ANGLE OF INTERNAL FRICTION (t') 39 8ORING NO.

UNIT WEIGHT, PCF SAMPLE NO.:

BAG WATER CONTENT, % 1 3 3

~

ELEV. OR DEPTH SPECIFIC GRAVITY DATE November 16, 1981 VOID RATIO Figure 3.2 GEOLOGIC ASSOCIATES, INC.

Plots of Laboratory Data

OOQS II OCJCJN XII BURNS AND ROE ~'

LEGEND 0 FIELD CHECK DATA (WNP-2)

FACTORY CALIBRATIONCURVE 0

l55 I50 l25 h.

O Q. FACTORY CALIBRATION 0 120 CURVE I-CO II5 I-Ul II 0 IO5

$ 0 COUNT RATIO FIGURE 4.l.. FIELD VERIFICATION OF FACTORY CALIBRATION CURVE FOR DOWNHOLE NUCLEAR DENSITY GAUGE

i II l

t I

/BIER OPC1%

oaop LWP/

BURNS AND ROE cD LEGEND WNP-2 TEST SECTION(AVERAGE 10 DETERMINATIONS)

Qe WNP-2 80RINGS CORRELATION BY LEE 8 SINGH(l97I) 100

'Vo COMP-. = 80+Q2 DR (LEE 8 SINGH~ 197I)

Ld 0, 60 cL'l 0

40 20 80 90 IOO COMPACTION > 7o FIGURE 42.RELATIONSHIP BETWEEN RELATIVE DENSITY AND PERCENT COMPACTION

/VIEW NODS

%LCO&N

%%1/

BURNS AND ROE cD LEGEND 0 WNP 2 TEST SECTION DATA POINT(WASHINGTON DENSOM~TER DENSITY)

WNP-2 TEST EXCAVATIONDATA POINT (WASHINGTON DENSOMETER)

BEST FIT CORRELATION I-Cg00 O

U CO O

~~a z

t5 hl 0

I 60 O

hl 0

0 0 oC3 ~

~ ~

g 40 po 0

20 pe 0 20 40 60 80 'l00. 120 1A RELATIVE DENSITY~ 7o FIGURE 4.5.RELATIONSHIP BETWEEN RELATIVE DENSITY 8 CORRECTED "N" (FOR DENSITIES DETERMINED WITH WASHINGTON DENSOMETER)

PAIL%

IICICIS oaas

%%II BURNS AND ROE LEGEND WNP" 2 BORING (NUCLEAR GAUGE)

WNP-2 TEST SECTION(WASHINGTON DENSOMETER)

BEST FIT CORRELATION (WNP" 2)

CORRELATION BY BAZARAA(l969)(AT I KSF OVERBURDEN PRESSURE)

I- IOO O

O Qo b.

CO 0

80 m

A 60 I- ) ~

lal 0

K S' K ~~

~o ~

0 20 0

Qo p.

0 0

0 20 QO 60 80 100 I20 RELATIVE DENSITY > 7o FIGURE 4.4.RELATIONSHIP 8ETWEEN RELATIVE 8 CORRECTED "N" (FOR DENSITIES DETERMINED 'ENSITY WITH WASHINGTON DENSOMETER 8 DNDT)

A T

h' P

k

RBBBRN 02222N BURNS AND ROE LEGEND WNP-2 FIELD CORRELATION BETWEEN N R DR(BEE FIGURE AA)

(ee WNP 2 LABORATORY DETERMINATION OF 6 8 DR NOTE: N VS 6 CORRELATION BY PECK ET AL (l974)

I- IOO O

O 4.

CD 0 lQ eo CO

.O 2

I-2' 60 45 La.

I-LU 4l Ul CL 59 40 4-C7 55 ul 20 35 5I 29 80 IOO I20 RELATIVE DENSITY > 7o FIGURE 45.CORRELATION BETWEEN N, RELATIVE DENSITY, AND S.

I 4

t

>>CIA>>

>>OCt>>

%>>>>/

BURNS AND ROE ~'

LEGEND 0>> WNP- 2 BORING (NUCLEAR GAUGE DENSITY)

Q WNP-2 TEST SECTION (WASHINGTON DENSOMETER DENSITY) 0>> LABORATORY DETERMINATION OF YOUNG S MODULUS OJ E

500 OC Vl 400 O

0 O 0 I- 300 K

O ~ ~

U 4l 8 O 200 0

6'00 0 8 0>>

0 25 50 75 IOO 125 Rf LATIVE DENSITY> 7o FIGURE 46.RELATIVE DENSITY DERIVED FROM PMT DATA

P RENOTK AIR INTAKE STRVCTVRK CT32 EXIS'I, GROVND likE C74 440 4 CT5 440.'5 440.4 QQQ I 459,7 II I 440.3 440.4 14 I 440 20 2 II I Io I 12 2 5!

4 3 4

20 l6 2

SAND 5 5 150 I ST SAND 17

) 250 80 I I 95 50 10 4 '211 2l 4 14 5 15 4 I I 52 4 TO I

Sr 5 e 5 22 5 19 5 KN 6 30 4 tg N e 260 80 I I e 43LS 4'50 NO REF! looe r 100 7 Iq Sr RENOTE AIR INTAKE UNKSIA 4314 r 430 73 33 KNS 8 SAND 28 4 12 8 I

l50 48 9 Noe 9 14 I

425 NO+ NO I 15 10 II 425 15 NOS u N 12 It 20 12 KXI 12 14 15 I

420 NOS 15 12 28 26 14 I 52I 150 420 N04 210 ef 21 0 51 15 4161 4172 NORE 4124 4I5 lNRKF

"!I NOREF. 4I5 0+00 0+50 I+50 2+00 2+50 PROFILE A.A =

AIR INTAKE UNE 5IA

.

NOTE VERTICAL EXAGGERATION~2X NOTE~ ALL HOLES DRY VPON COMPLKTION

!

4 CT 41 EXISIGROVNDUNK CT9 4428 CT47 441.7 4425 K CT 3 OR'0, 44 I.S 91 I 27 4408 441.2 44IO 440 16 2

I 7 2 24 I 25 I I 34 58 12 I 440 21 50 48 2., I!! 17 9 5 95 50 SAND 14 5 I 44 41 2 44 2 370 53 2 220 50 49 2 100 2 29 150 65 lo 4 I I 42 54 I 40 5 I I, NO 5 I 22 5 370 58 I I '28 5 I I ee 42 5 21 5 80 4 43 4 41

'7 4 435 2S 5 tl 5 ~<7 5 62 6 19 531 60 T !

57 . e! 163 IS 6 6 15 e 57 175 I

49 44 7 '7 16 7

49 560 95 52 6 46 5 7 I 51 430 REIKITE AIR INTAKKLINKSIB 390 440 NO I 71 7 430 98 8 456 100 4501 16 8 98 75 8 I 8 97 8 Q NO 50 8 750 NO N J 25 9 4269 429 2 68 9 100 9 I I 40 NOREf, 90 4276 5 I SI 10 NO REF, RENOTK AIR DITAKE STRVCTVRK 425 78 II NO REF 2$ II 190 67 77 II 425 10 12 I I. 500 100 I

48 I 18 12 87 It 40 I 2S 15 420 14 320 82 I I 20 14 It 54 15 420 10 5 47 14 47 15 26 15 60 4182 27 IS 8 17 25 4ITO 4I 5 17 N

170 55 No REF 415 13 IS Zl Ol 0 411.7 NOR EF I

3+00 I 0+50 I+00 I+50 2+50 WASHINGTON PUBUC POWER SUPPLY SYSTEM PROFILE B B WNP-2 AIR INTAKE LINE 5IB, NO'TES' SEK SHEE T 52 FOR LEGEND NOTE: VERTICAL EXAGGERATION 2X PROFILES 2.SEE APPENDIX II FOR GOR1N 0 lOGS 3 SEE FIRSEI FOR PROFILE IDCATNNS RICHLAND,WASHNGTON SCALE: AS SHOWN BURNS 5 ROE, INC.

ORADELL, N.J.

GEOLOGIC ASSOCIATES, IN .,

IRANKIWTENN KlNGSIORT. TENN KNOXnlIE,TENN PROL 61-605 DATE 11/6/6.1 - flGURE 5.1.

0 i

'4 II r' 'it

L O

YARD O GG GG COO RO, ~o z CT.4R CT '7 CT.Ra CT. 4 CT 44 2 440.3 44a4 NOTEIHOLE CT 44 IS 7 440.0 440.3 OFFSET'OR 440. I E CT-37 440 CLARITY CT 43ELB CT IR 439.'R CT -38 440 40 I a 78 I 370 11 30 4383 245 75 1 437k I 'R 1 39 2 BI 2 62 7 I 45 150 62 15 I IO 40 I 69 3 14 3 1 T 44 3 90 5 13) 67 75 18 2 1 BT 435 530 IRO

'35 4 15 2 SAND 590 IOO 227 435 70 4 3R 5 60 5 454 IOO 3'5 5 Sa 26 3 4 41

'1 1 I 3

.64 61 354 76 48 4D

='63 .52 N= 270 85 7 19 40 6 SII 6 38 6 -.- 'G43 1 T N 15 5 430 66 7 1 46 7 451.3 NO REF, 33 5R SOO 100 T4 100 1 28 6 69 6 I

150 e 430 76 8 1 1 41 69 7 54 49 370 IIO 8 7 655 SS 99 85 BI 8 82 9 3 50 9 IOI STANOSYSERVICE WATER PIPE, 71 8 5R 41 8 4 8 ISO IO 53 9 3R 9 425 37 10 64 I 97 61 60 4265 425 42505 NO REF. 52 II 1

1 86 II els 150 23 9 68 65 I 520 NO 1

Rl IOS 1 I 55 IB I IS SANO 62 135 12 60 ll I

'I 61 15 I 25 I 29 BT 60 I ICO 91 Se 420 36 500 1

19 I 120 33 IOO 420 99 1 K 420 63 16 1 4$ .7 58 15 II 15 NO REF+

75 I 4129 27 14 416.8 24 IOOP 15 4I5 NO REF, 4I5.4 IHLI 4I5 NO REF NO REF 410 4lO 0+ 00 I+00 2+00 3+00 '+00 54 00 6POO 6+35 NEKDGGL PROFllE C C 0 0 70 NOTE. ALLHOLES DRY UPON CONIPLETNN ANDBY SERVICE WATER PJPE NOT: VERTICAL EXAGGERATION

  • 4X LEGEND CT 28 CT-50 CT 51 44L4 OEFORllATNN NOaALI CT 30 CT-3 44L2 44L5 HOLE NVNSER CT&I RELATIVE DENSITY 440 77 I 4396 431LB 14 I 8 I 440 SVRFACE ELEVATNN'ILS Ia 17 61 I (4 17 100 30 DRIVE SANPLE NO.I II I 32 3 69 2 7 'SS 55 IT 5 1 1 WITH SLOW COVNTGD 32 100 37 2 fOR I 0 FT. SICRENENT CT-R5 4344 48 I 1 1 35 5 63 3 15 4 1 8 4 435 IAS PER ASTN aSSSI 42 5 TOO+

' 31 5 INTERPOLATED 20 28 1 1 305 9S FO ON 6 83. 5 2 6 22 51 2 IS 1

67 7 55 6 IOOG 6 9 T 40 7 225 70 430 45 58 8 450.3 TOO+, 2 Ee 8 1 1 430 72 NO REF. 100 G 67 9 61 9 3R 9 56 5 IOOP 59 IO 251 100 lI4 15 ee e 1 100+

48 75 II 100+

6 V 4 N

!5 425 IO 15 NKASVRED 58 257 Sl 8 12 1 5 I 49 4255 100+

NO REF. 4 66 547 100 100+ SIS 120 1

420 eR 100+

420 '38 14 23 420 100 + NOR EF; 419.5 ELEVATIOIIBOTTON 42QS 419.5 OF HOLE 100+ NO RE NO REFVSAL OF NO REF, 417.3 . AVGERS OR SAllPLR NO REF. TVSE 415 4I5 4IO 4IO L'OGS OF HOLES 0 S OW IN P OF ES (HOLES DRILLED ADJACENT TO PIPELINE NOTES". TRENCH SHOWN IN PROFILE C.C)

LSEE APPENDIX 3 FORLOGS OFSORINGS NO HORIZONTAL SCALE 2 SEK flGVRE I FOR PROFILE LOCATIONS WASHINGTON PUBLIC POWER SUPPLY SYSTEM WNP-2 PROFILES RICHLAND.WASIBNGTON AS SHOWN BURNS Ik ROE, INC.

0RADELL ~ N.J.

GEOLOGIC ASSOCIATES, INC.

FRANKVILTENN. KINOSIORT. 71NN. KNOKYklf.TENN.

PROA 61 605 DATE 1 1/6/81 flGURE 5.2.

I br

'

I r

'

~t ~

Ib I", ~ b ~

I l I ~

fi

~ )

I I

a I

I b I

..a C

I ) g I ~

I

) lf ~ I I I I

@i

"~ e

'"b E I J i I E I b I $

.

I E E

)

- -~ E

, I I

P

h PALS ocscao acacia

%OP/

BURNS AND ROE 200 LESEND Oi DATA POINT (WNP-2)

BEST FIT CORRELATION (WNP" 2)

IOO

~LA I~QQA~QIQ.>J9 70

~ 50 tL 40 O.

CO 30 O 0 20 R 0 8

IO 7 IO 20 30 50 70 ~ IOO E (DEFORMATION MODULUS)) </~pP 4

FIGURE 4.7.CORRELATION BETWEEN DEFORMATION MODULUS FROM PMT AND SPT F

g I

I~@"

E

-'

p',r ~ ~

'r'i I i'li

,gP 'M ~

)i~z'I i'~:ri "I

~ AI r 1

I

/

'QQ4 IguI'Qi J

I~

g% ~ 'I 'I

~

~ p I

/ALL NCIDI1 OWClN

%W/

BURNS AND ROE cD REMOTE AIR REMOTE AIR INTAKE I INE WOA INTAKE g 1~

STRUCTURE

'TURBINE GENERATOR BUILDING RAD. REACT.

WASTE BLDG.

CONT.

BLDG.

STANDBY REMOTE AIR INTAKE LINE 5I B SERVICE WATER~+

PIPE TRENCH REMOTE AIR INTAKE STRUCTURE 2

SPRAY POND COOLING IA TOWERS SPRAY POND IB GRAPHIC, SCALE 0 I00'DQ 300' 400' N

'

200 FIGURE 6.1 LOCATION 'LAN

~ ~ ~ ~ ~

~ <g'rir J%% y r

~ C h ~

I

/ILL ODCIO ODCIN BURNS AND ROE 440'YPICAL POST- l976 FILL BORINGS 450'LASS II WOA DUCT BANK(TYP.) 5I A 420'ECTION I

440'YPICAL POST- l976 FILL BORINGS

~am

-420'TANDBY SERVICE WATER PIPES GLASS j.

DUGT BANK ~ PRE-1976 FlLL

. SECTION 2

'I FIGURE 6.2 TYPICAL SECTIONS

I ~

IP ~

1 h

P 4 4 ~

1 Ii

((

C

~ ~

g gr l

41 I ~ I 1 1 .I

'J . 4 ~ 4 1 W %5 ~

PE p 4

( 'I 7

'

(

I

'1 ~. ~

'

Ji ~

~

  • ~
  • I t

~ ~

M 1 4 ~ 4

~ g 4j ~

PQ i( 'i q> ~1t~

I I

1 I

rl

}I I

~

W I g ~ ..

~

I~

I

, t,r

~ 1 ~ I I ~ Pg ~

C '~'1,1 II p

/Aha DCIWtl QDM

'%f/

BURNS AND ROE TYPICAL BORING l976 FILL 440'OST 450'RE- r WOA 518

~ l976 420'LASS Z STORM SEWER SECTION 5 TYP ICAL BORINGS l976 FILL 440'OST 4~0' PRE-420'OA l976 F)LL 5I 8 410'ANHOLE'5 CLASS 3I STORM SEWER SECTION 4 '

NOT TO SCALE FIGURE 6.5 TYPICAL SECTIONS

h ~

) ~ ~

m v I

'I

~ ~ hh I lhh h V IH ~ .I

,I I ~ ~

\V hj V~ V Ch I l ~ V

~ I" I Ih, Ehh I

V I

~

g I

~

l h 'I 5

I ee V A Vth I' VV' V 'V 'V ~ I ~ h I H h tf ('

~H <<lI ~ ~. 4 h ~ ~ h Ik ~ jh Chh fl h T ~

g ~ l JHV v4 p4 P

I H'hhh *

~ ~ II 'l A'h

+1g g rg I','

~ r ~ IV 1 . ~ 44' I ~ I

P

\

/ah%

ICICLE V%l Pf CD CD BURNS AND ROE CD TYPICAL BORING -

'-'"-'976 FILL

+4.0' 450'LASS I STANDBY/

SERVICE WATER PIPES PRE-AND DUCT BANKS l976 420' FILL SECTION

'BO (I)- I POST I976 . YPICAL BOR INGS FILL

~ 440' 450 CLASS I SERVICE WATER STANDBY DUCT BANKS PIPES'20iAND

~ CLASS Z

~PRE-l976

'lLL PIPES SECTION 6 NOT TO SCALE FIGURE 6.4 TYPICAL SECTIONS

I1 I'l I~

~

~ ~) -. i".

< ~ I

'l

":"3H.K:.'- rI 4

\

r I

I')

I't

'

F' 4

l ~

AV ~ <<,j, tl

~ TW%

1

\4

~r r j

~ I f l It l

r \~

'I l'.

lk wl

'

~ t

'I "l

I I

f;,~

~ * ~ j

'I rIl )g

,'.S ..a i ~ lJ ("l r

C I mi ~ ~

/Able ODOO Ouau WllPP CLASS

'SERVICE I STANDBY WATER .PIPES BURNS AND ROE E

AND DUCT BANKS TYPlCAL BORlNGS POST -l976 FlLL 440'20'

.

CLASS CIRC.

WATER

.PIPES II

~ ~ ~ I j l PRE- I976 FILL SECTlON 7 NOT TO SCALE h

FIGURE 6.5 TYPICAL SECTIONS

p I

r i

Ivr ev vv $ vG 5 4f v, 'l g, t

t

~ r 4 V $

t V 'I ~

e$

V' I 1'

l

\

fiI V

1 1

r r

l l

r V

I rr" IV' V

'C a<<t I '\ Jl

'I ~ 1 I~ , w LMV

/8 ILW OQOll OOCIQ

%OP'/

BURNS AND ROE

'I NOTE:

,YOUN84 MODULUS VALUES USED IN SETTLEMENT CALCULATIONS ARE:

K<60 ~km (REMOTE AIR INTAKE PIPE)

E ~ l5&~2(STANDBYSERVICE WATER PIPE)

REMOTE-AIR INTAKK Pl PK I-0.5 STANDBY SKRVIC WATER PIPE 0

0 LOAD q KSF .

FIGURE 7. I ESTIMATED STATIC SETTLEMENT-LOAD CURVES FOR RESPECTIVE STRUCTURES,~.",>

k

~ %%%I ~ ~

'l

~t r ~ si s ~

~ t 4 ~

I ~

1 ~

'C

'

~ C ~ I ~ ~

~ ~

~ ~ ~

0~0

'I 0

<r i1 K N

I, I

~ ~