ML12124A226: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 14: Line 14:
| page count = 17
| page count = 17
}}
}}
=Text=
{{#Wiki_filter:Indiana Michigan Power One Cook Place Bridgman, MI 49106 A unit of American Electric Power IndianaMichiganPower.com April 17, 2012 AEP-NRC-2012-28 10 CFR 50.4 Docket No.: 50-315 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Donald C. Cook Nuclear Plant Unit 1 CORE OPERATING LIMITS REPORT Indiana Michigan Power Company, the licensee for Donald C. Cook Nuclear Plant Unit 1, is submitting a revision to the Core Operating Limits Report (COLR) for Unit 1 Cycle 24 in accordance with Technical Specification 5.6.5. Revision 1 of the Unit 1 Cycle 24 COLR is provided as an enclosure to this letter.This revision to the COLR updated the Nuclear Enthalpy Rise Hot Channel Factor full power limit in Section 2.3.3(a) from 1.49 to 1.485. This revised limit is incorporated into the COLR for Cycle 24 to support its use in required Power Distribution Technical.
Specification surveillances.
There are no new or revised commitments in this letter. Should you have any questions, please contact Mr. Michael K. Scarpello, Regulatory Affairs Manager, at (269) 466-2649.Sincerely, Joel P. Gebbie Site Vice President DMB/jmr
==Enclosure:==
Donald C. Cook Nuclear Plant Unit 1 Cycle 24 Core Operating Limits Report, Revision 1 c: J. T. King, MPSC S. M. Krawec, AEP Ft. Wayne, w/o enclosures MDEQ -WHMD/RPS NRC Resident Inspector C. D. Pederson, NRC Region III P. S. Tam, NRC Washington, DC ENCLOSURE TO AEP-NRC-2012-28 Donald C. Cook Nuclear Plant Unit 1 Cycle 24 Core Operating Limits Report Revision 1 D. C. COOK UNIT I CYCLE 24 Revision I D. C. COOK UNIT 1 CYCLE 24 Revision 1 Donald C. Cook Nuclear Plant*UnitI Cycle 24 Core Operating Limits Report Revision, 1 Page 1 of 15 D. C. COOK UNIT I CYCLE 24 Revision 1 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Donald C. Cook Nuclear Plant Unit 1 Cycle 24 design has been prepared in accordance with the requirements of Technical Specification 5.6.5.The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC in:.a. WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Methodology, July 1985 b. WCAP-8385, Power Distribution Control and Load Following Procedures Topical Report, September 1974 c. WCAP-l0216-P-A, Rev. IA, Relaxation of Constant Axial Offset Control!FQ Surveillance Technical Specification,,February 1994 d. -Plant-specific adaptation of WCAP-16009-P-A, Revision 1, Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM), as approved by NRC Safety Evaluation dated October 17, 2008.e. WCAP-12610-P-A, VANTAGE+ Fuel Assembly Reference Core Report, April 1995 f. WCAP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986 g. WCAP-13749-P-A, Safety Evaluation Supporting the Conditional Exemption of the Most: Negative EOL Moderator Temperature Coefficient Measurement, March 1997 The Technical Specifications affected by this report are listed below: 2.1.1 Reactor Core Safety Limits 3.1.1 SHUTDOWN MARGIN (SDM)3.1.3 Moderator Temperature Coefficient (MTC)3.1.5 Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN&)3.2.3 AXIAL FLUX DIFFERENCE (AFD)3.3.1 Reactor Trip System (RTS) Instrumentation 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits 3.9.1 Boron Concentration Page 2 of 15 D. C. COOK UNIT I CYCLE 24 Revision I 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.
These limits have been developed .using the NRC-approved methodologies specified in Technical Specifications 5.6.5.2.1 SAFETY LIMITS 2.1.1 Reactor Core Safety Limits (Specification 2.1.1)In Modes 1 and. 2, the combination of thermal power; pressurizer pressure, and the highest loop average temperature (Tavg) shall not exceed the limits, as shown in Figure 6 for 4 loop operation.
2.2- REACTIVITY CONTROL 2.2.1 SHUTDOWN MARGIN (SDM) (Specification 3.1.1)--Shutdown marginshall be greater than or equal to 1.3%:Ak/k for Ta g> 200OF Shutdown margin shall be greater than or equal to 1.0% Ak/k for Tavg  200°F 2.2.2 Moderator Temperature Coefficient (MTC) (Specification 3.1.3)a. The Moderator Temperature Coefficient (MTC) limits are: The BOL/ARO-MTC shall be less positive or equal to the value given in Figure 1.The EOL/ARO/RTP-MTC shall be less negative or equal to -4.54E-4 Ak/k/0 F.This limit is based on a T,,g program with HFP vessel Tavg of 554.0 to 558.0 'F.Where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for Rated.Thermal Power HFP stands for Hot Full Thermal Power Page 3 of 15 D. C. COOK UNIT I CYCLE 24 Revision 1 b. The MTC Surveillance limit is: The 300 ppm/ARO/`RTP-MTC should be less negative or equal to-3.84E-4 Ak/k/°F at a HFP vessel Tavg of 554.0 to 558.0 'F.c. The Revised Predicted near-EOL 300 ppm MTC shall be calculated using Figure 7.and the following algorithm:
Revised Predicted MTC Predicted MTC + AFD Correction
+ Predicted Correction*
* Predicted Correction is -0.30E-4 Ak/k/0 F.If the Revised Predicted MTC is less negative than the SR 3.1.3.2 limit (COLR 2.2.2.b) and all of the benchmark data contained in the surveillance procedure are met, then a MTC measurement in accordance with SR 3.1.3.2 is not required.d. The MTC Surveillance limit is: The 60 ppm/ARO/RTP-MTC should be less negative or equal to -4.41E-4 Ak/k/OF at a HFP vessel Tavg of 554.0 to 558.0 'F 2.2.3 Shutdown Bank Insertion Limits (Specification 3.1.5)The shutdown rods shall be withdrawn to at least 228 steps.2.2.4 Control Bank Insertion Limits' (Specifications 3.1.6)a. The control rod banks shall be limited in physical insertion as shown in Figure 2.b. Successive Control Banks shall overlap by 100 steps. The sequence for Control Bank withdrawal shall be Control Bank A, Control Bank B, Control Bank C and Control Bank D.2.3 POWER DISTRIBUTION LIMITS 2.3.1 AXIAL FLUX DIFFERENCE (AFD) (Specification 3.2.3)a. The Allowable Operation Limits are provided in Figure 3.b. The AFD target, band is +/-5% for a cycle average accumulated burnup0.0 MWD/MTU.Page 4 of 15 D. C. COOK UNIT I CYCLE 24 Revision I D. C. COOK UNIT 1 CYCLE 24 Revision 1 2.3.2 Heat Flux Hot Channel Factor (FQ(Z)) (Specification 3.2.1)CFQ.Ffc (Z) <CF Q K(Z)'P(Z) 2* CF 0 *K(Z)SCF, F (Z) < --- *K(Z)F w(Z)<5 2 CFQ
* K(Z)* for P>0.5 for P 0.5 for P > 0.5 for P< 0.5 THERMAL POWER hr: RATED THERMAL POWER a. *CFQ =2.15 b. K(Z) is provided in Figure 4.c. I Oc(Z) is the measured hot channel factor including a 3% manufacturing tolerance uncertainty and a 5% measurement uncertainty.
: d. W(Z) is provided inTable 1 for +/-5% AFD target band.Qe. F(Z) Fq Z) x W(Z) x F.The W(z) Values are generated assuming that they will be used for a full power surveillance.
When a part power surveillance is performed, the W(z) values should be multiplied by the factor lI/P, when P is > 0.5. When Pis< 0.5, the W(z) values should be multiplied by the factor 11(0.5), or.2.0. This is consistent with the adjustment in the FQ(z) limit at part power conditions.
: f. For Cycle 24, F1 = 1.02 for all bumups associated with-Note 2a of SR 3.2.1.2.When no penalty is required, Fp = 1.00.2.3.3 Nuclear Enthalpy Rise Hot Channel Factor (FNA) (Specification 3.2.2)FNAH l CFAH * (1 + PFAH *(I-P))THERMAL POWER Where: P RATED THERMAL POWER Page 5 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision 1 a. CFAH 1.485 b. PFA= 0.3 2.4 INSTRUMENTATION 2.4.1 Reactor Trip System (RTS) Instrumentation (Specification 3.3.1)The Overtemperature AT and Overpower AT setpoints are as shown in Figure 5.2.5 REACTOR COOLANT SYSTEM 2.5.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits (Specification 3.4.1)a. Pressurizer Pressure shall be > 2018 psig&#xf7;b. Reactor Coolant System TAVG shall be.< 580.5 0 F +c. Reactor Coolant System Total Flow Rate shall be > 362,900 gpm 2.6 REFUELING OPERATIONS 2.6.1 Boron Concentration (Specification 3.9.1)The boron concentration of all filled portions of the Reactor' Coolant System, the t+refueling canal and the refueling cavity shall be greater than, or equal to 2400 ppm+ These are Safety Analysis values. With readability allowance, the corresponding values are 578.2'F for Tavg, and 2050 psig for Pressurizer Pressure..
++ This concentration bounds the condition of Kff_ 0.95 which includes a 1% Ak/k conservative allowance for uncertainties.
The boron concentration of 2400 ppm includes a 50 ppm conservative allowance for uncertainties.
Page 6 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision I FIGURE 1 MODERATOR TEMPERATURE COEFFICIENT (MTC) LIMITS*1.0 0.5 LL I.(1)0 H-"T, 0.0-0.5 UNACCEPTABLE OPERATION ACCEPTABLE OPERATION-0 10 20 30 40 50 60 70 80 90 100-1.0 Percent Rated Thermal Power Page.'7 of 15 A C. COOK UNIT 1 CYCLE 24 Revision I RNFIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER.250 225 200 0-0 0 0o 0&#xfd;175.150 125 100 75 50 25 0 POWER (% of Rated Thermal Power)Page 8 of 15 A C. COOK UNIT I CYCLE 24 Revision 1 FIGURE 3 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (RTP)100 x N aLLI U -.0 0 l--E E 0 90 80 70 60 50 40 30 20 10 0 FLUX DIFFERENCE (DELTA-I)Page 9 of 15 A C. COOK UNIT I CYCLE 24 Revision I FIGURE 4 K(Z) -NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.2 1.0 (D w N 0 z 0.8 0.6 0.4 (0.0,1.0)
(6.0-,1.0)
(12.0 ., 0.925).0.2 0 0 2 4 6 8 10 12 CORE HEIGHT (FT)Page 10 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision I FIGURE 5 (Page 1 of 2)Reactor Trip System Instrumentation Trip Setpoints Overtemperature AT Trip Setpoint I 1+ Ts Overtemperature AT < AT. [K 1 -K(2 (T-T') + K3 (P-P') -f, (AM1 Where: AT = Measured RCS AT, OF AT = Indicated AT at RATED THERMAL POWER, OF T Average temperature, OF T = Nominal Tavg at RATED THERMAL POWER ( 574.0 OF)P Pressurizer pressure, psig.P' = Nominal RCS operating pressure (2085 psig)1 -= ..The function generated by the lead-lag controller for Tavg dynamic l+r2s compensation.
13, x2 Time constants utilized in the lead-lag controller for Tavg S1r> 22 secs. Tr 2 < 4 secs.S = Laplace transform operator, sec-1 K, <- '.35*K2 > 0.0230/&deg;F K(3 _ 0.00110/psi f, (AI) -0.33 {3 7% + (qt -qb)} when qt -qb: <-37% RTP 0% of RTP when -37% RTP < qt- qb 3% RTP+2.34 {(qt -qb) -3%} ,*when qt- qb > 36 RTP where qt and qb are percent RATED THERMAL POWER in the upper and lower' halves of the core respectively, and qt + qb is total THERMAL POWER in percent RATED THERMAL POWER.* This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.Page 11 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision 1 FIGURE 5 (Page 2 of 2)Overpower AT Trip Setpoint Overpower AT <AT. [K 4 -K5 _ rJ T -K 6 (T -T") -f 2 (AI~l Where: AT = Measured RCS AT, OF ATo = Indicated AT at RATED THERMAL POWER, OF T Average temperature, OF T" = Nominal TaVg at RATED THERMAL POWER ( 562.1 OF)K4 < 1.172*K > 0.0177/&deg;F for increasing average temperature
; Ks5 0 for decreasing average temperature K 6.0.0015/&deg;F for T greater than T.".; K 6 =0 for T less than or equal to T''., r-3 S The function generated by the rate lag controller for Tavg dynamic 1 + r 3 S compensation I3 = Time constant utilized in the rate lag controller for Tavg "r3> 10 secs.S Laplace transform operator, sec1 f 2 (AI) = 0.0* This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.Page 12 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision I D. C. COOK UNIT 1 CYCLE 24 Revision 1*FIGURE 6 Reactor Core Safety Limits 660 650 640 630 620 610 U)f 600 590 580 570 0 0.2 0.4 0.6 0.8 1 Power (fraction of rated thermal power)DESCRIPTION OF SAFETY LIMITS 1.2 PRESSURE (PSIA)1840 2000 2100 2250 2400 UNIT I Power (frac)0.02 0.02 0.02.0.02 0.02 Tavg 620.86 632.79 639.85 649.96 659.52 Power (frac)1.136.1.094 1.068 1.031 0.996.Tavg ('F)586.17 600.31 608.72 620.83 632.42 Power (frac)1.2 1.2 1.2 1.2 1.2 Tavg (6'F)577.94 586.52 591.77 599.40 606.63 Reactor Core Safety Limits Page 13 of 15 D. C. COOK UNIT I CYCLE 24 Revision 1 D. C. COOK UNIT 1 CYCLE 24 Revision 1 FIGURE 7 Unit 1 Cycle 24 Predicted HFP ARO 300 PPM MTC Versus Burnup-2.06E-04-2. 08E-04 C IOE-04 ,-212E-O4 420 1E-04, Gycl :Burnup (MWD/MTU)Burnup (MWD/MTU)
MTC (pcm./F) MTC (Ak/k/F)14000 -20:660 -2.0660E-04 15000 -20.985 -2.0985E-04 16000 -21.289,&#xfd;
-2.1289E-04 17000 -21.587 -2."1587E-04 18000 -21.887 -2.1887E-04 Page 14 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision 1 TABLE 1 DONALD C. COOK UNIT 1 CYCLE 24 W(Z) FUNCTION N6de Height Bumup (MW TITU)Point' (tI) :150 1000 2000 3000 4000 5000 6000 7000, 8000 100 " 10000 12000 .14000' 16000 180000 18980 1 00. 1.oo0000 1.0000 1o0 1.000 1-0000 1.0000 10000 100OD tm0o0 -1.00oo. 1.ooo0 1.moo. 1.00oo oooo 1.0o0o0 1.0o00 2 020 1o0oo0 1.0000 1000 10000 0oo 10000 1.0000 1 1.0600 1.0000 1 0000 1000 0 10000 1.0000 10000 I1oo10 1.0000 3. 0.40 1.0000 1.0000 1. 00. 000 1.0000 1 .0000 1:0000 1_ 0 000 1 0000 1.0 1..010000 1.0000 1.0000 1.1GOO 1.0000 ID.00 1.0000 1. 000'4 o:0.0 1.0000 .00. 1,00o. 1.0000 10000o 000 10000 1.o0000 1GOOD 0 1:o000 .1.0000 .1.0oooo 1.0000 .1.oo0o 1.0000 U1.000 5 0.00 1.0000 1.0000 .1.0000 1.0000 1-000o Iz 0 10 0 0 1.0000 1 000 1.0000- 1.0000 1.0000 1.0000: 1.0000 1.0000 I'.0000. 1.0000 E; 1.00' 1.0000 1.0000 1.0000 0 1.0000 1_0000 .10000 1.0000 1.90000 1:0000 1:0000 1.0000' 1.0000OD 1.0000 1.0000 ..0000 S .1.20 109804 1.0960 1.0196 1.0971. 10988 1:1010 61.10 1.1064 1.1093. 1. 1122 1.1175, 1,1225 1.1280 1.1333 1.1359'a 1.40' 10086 t.0973: 1.005 1.096 1.0976 1.0992 1.1013 1.1037 1.106to,4 IO.91 1. 1.1108 .11167. 1.1214 1:1264 1.1314 1.1338 9 1.60. 1,0975 11.0968 1..70 10079 1.0994 "11114 1.1036: 1.1060 1.1095 1.1110 1.1155 1.1198 1.1243 1.1208 1.1310 10 1.80 1:0983 1.0974, 10969 9 1&#xfd;0980 109094 1.1011 1.1032 1.1053 .1.1076 1.10W7 1.1137. 1:.1176 A-11216 1.1255 1.1275'11. 2.00 1.0979 1.0072 1.0968 1.0970 1.0978 1.0990 1.1006 1.1023 1.1042:. 1.1062 1.1000 1.1115 1.1148 1.1182 1.1216 1.1233 12
* 2.20 1.0972 1 0967. 1.0964 1.0957 1,0974 1.0984 1.0997 1.1012 1.1028 1.1004 1.1060 1:1088' 1.1115 I1143 1.1171 1.1184 13' 2.40 1.0963 1.0960 10009. 1.0961 1:0967 1.0970 1.0986' 1.0998 .1.010 1.1023 1.1035 1.1057 1:1078 1.10900* 1.1120 1.1130 14 2.60 1,0952 1.0950 1.0951 :1.0953. 10958 1.0964. 1.0972 1.0980 1.0989 1.0998 1.1000 1.1022 1.1036 1.1050 1.1064 1.1071 15 2.80 1.0938 1.0939 1.0940 .1.0943 1.0946 1:0950' 1.0954 1.0959 1.0964 1.0969 1.0974 1.0982 1.0989 1.0996- 1.1004 1.100 -16 3.00 1.0922 1.0925 .1.0928 1.0930 1-0932 10934 1.0935 1.0936 1.0938 1.0939 1.0939 .1.0941 1.0941 1_0942. 1.0942 1.0943 17 3.20 1.0906 1.0009: 1.0912, 1.0914 1&#xfd;0915: 10914 1,0913 1.0911 1.0909 1.0907' 1.08004 1.0899 1.0893 .1.0887 1.0881 1.0878 18 3.40: 1.0894 1.0897 1.0899 1 .0099 1009 1.0895 1.0881 1.0806 15081 1.0876&#xfd; 1.0871 10862 1i0855 1.0847 1.0040 1:0836 19 .3600 '1.0892 1.0097" 1.0900 10000 1.0894 1-0087 1-0878 1.089 1.0861 1.0853 1.0048 t10840 1.0052 10083 '10869 1.0072 20 310 1000 .0895- 1t09 100898 1.0802, 10083 1.0873 10802 10852 1.0845 1:0841 1.0847 10067. 1-0896 1.0916 1.0925 21 4.00 1.0084 1.0891 1.0895 1.0894 1.088 1.0879 1.0868 1.0858 10048 1:0842 1.0841 100.6.0 100889 1.0936, 1.0969 1.0904 22 4.20 1.0879 1.0085 1.0890 1.0889 1.083 1.0675 1 0005 1.0856" 1.0849 1:0845 10.847 1.0870 10914: 10972 1.1016 1.1037 23- -4.40 1.0971 .10878 1.0003 1.0803 1008780 1 1.0802 1.0054 1.0849 10047 1.0852 1,0882 1.0936 11006 1,1060 1.1006 24 4;60 1.0861 1008%, 1.0874 '10075 1.0073 1.0669 1.0865: 1-0801 1.0859. 10062 1.0870 1.0906 1064 11037 11095 :1.1123 25 4.80 1080 108508 100862 1.0865 1.0060. 110006 1.0866 1.0867 t.0871 1.0878 1.0890 10931 1.0990 I1064 11125 1.1153 26" 5.00 1.0838 1.0042 1.0847 1-0652 1.0855 1.0859 100864 1.0070 1.08079 1.0891 1.0006 1-0952 11013 1.1007 1.1148: 1.1178 27 5.20 1.0823 1-0828.. 1.0831. 1.0836 1-0843: 1.0851 1.0860 1.0871: 1:0885 1.0001 1.0920 110969 1.1031 1 1.1103 28 5.40 1.0808 1&#xfd;0810 1.0813 1.0020 1.0829 1.0840 1.0854 1.0870 '1.0087' 10007 10030 1.0962 .1043 1.1"1.13 1.1176- 1.1206 29 -5.60 1i0792 1.0791 1.0793 1.9800 1.0811 1.0826 1.0843 1.0053 1.0806 1.010: 1.0935 1"09900 1-1050 1.t117 1 11'78 1.1208 30 5.80 1.0773 1.0770 1.0772 1.0780 1.0793 ' 1.0811 1.0832 1.0855 10081 1 0908 1&#xfd;09&sect;35 100991 1.1050 1.1113 1.1173 1.1202 31 6.00 1.0752 1.0748. 1075 1.0759 1.0774 1.0794 1&#xfd;0817. 1.0844 10072 1t001 1:0930 1.0985 1.1042 1.1102 1.1159 1-1187 32 6.20 1.0730 1.0724 1.0724 10732. 1.0749 1.077t 1.0797 1.0826 1.0857 1,0888 1.0919 1.0975 1.1028 1.1082 1.1136: 1.1153 33 6040 1.0709 1.0699 1.0695 1.0702 1.0718 1.0741 1.0770 1.0802 t.0836 1.0869 1.0901 1-0957 1.1006 1.1054 1.1104 1_1129 34 6.680 10601 1.0676 1.0668 1.0672 10687 1.0711 1.0741 1.0774 1-0609 1:0844 1,0877 1:0031' 1.0975 1.1019 1.1066 1.1089 35 6.800 1.0669 1,0554 1.0645 1.0649 1.0664, 1.0687 1.0715 1.0747 1.0781 1.0814 1.0844 1.0093 1.0930 1.0965 1.1005 1.1024 36 7.60. 1.0649 1.0637 1.0631 1.0635 19640 1.068 1.0692 1.0720 1.0750 1.0760 1A0807 1.0855 1.0097 1.0939' 1.0982 1.1004 37 7.20 1,0630 1.0820 1i06646 1.0621 1.0634 1.0553 1.0678 1.0705 1-0734 1.0763 1.0792 1.0044 1.0893 1.0943 1.0904: 1.1018 38 7.40 1.0604 1.0599 1.050 1A0610 1.0030 1.0057 1.0689 1.0723 10758 1.0792 1.0824 1.0873 1.0912 1.0945 1.09851 1.1005 396 7.60 1.0632 105265 1 .0626 1.0637 1.0850 1.0006 1.0719 1.0753 1.0789 10822 1.0851 1.0094: 1.921 1.0940 .1.0969 1.0983 40 7.80 1.0683 1.0679 1.0679 1.0690 1-0708 10732- 1.0760 1.0790 1 0820 10847 1.087.1 1.0904 1.0921 10930 10948 1.0957 41 8.00 1,0732 1 0729 1,0731 1.0740 1.0756 1.0777 1.0800 1.0824 1.0848 1&#xfd;0870 1.0808 1&#xfd;0909 10915 1.0912 1.0910 1.0923 42 8.20 1J0:779 1-0778 U10781 1.0709 1.0802 1.0919 1:0837 1.0855 1.0873 1.0000 1.0900 1.0900 1.0904 1.0889 1.0884 1.0882 43 8.,40 1.0824 1,0825 1.0829 1.0836 1.0846 1.0857 1.0870 1.082 10893 1&#xfd;0902 1.0907 1000905 1.0990 1.0866 -1.0851 1.0844 44 8.60 1:0867 1.0870 1,0874 1.0880 100885 1.0891 1.0897 10,002 1.0906 1'.0909 1000 1,0002. 1.088 1.0864 1.0848 1.0840 45 8.80 1:0907 1.0912 1 0917 1.0920 1.0921 1.0921 1.0919 I. 017 10915 1U0912 1.0909 190580 1.09901 10896 1 08921 1.0890 468 900: 1.0944 1.0952 1.0957 10057 1.0053' 1.0945 1,0936 1.0926 1.0917 1.0909 1.0905. 1-0900 1.0024: 1.0947 10962 1.0969 47 9.20 1.0978 1.0987 1"0994 1.0992 1.0983 10970 1.0954 1,0938 1,0923 1.0911 1.0905 1'0915 1.0947 1.0993 1 1024 '.1038 48 8.40 1.1000 1A1010 1 1026 1:1025 1A1017 11O04 1U0908 1.0972 1.0957 1:095 100840 1-0952 1.0986 1.103 1:1070 1.1086 49 9.60 1.1030 11048 1.1058 1.1050 1.1053 .1041 1i127 1,1012 1.0998 1t0988 1.0983 1.0995 1:1029 1-1076 1.11009 11:125 50 9.80 11061' 111075 1:1087 1.1090 1005 11076 11063 1104 11037 1:1027 1.1023 11035 1.1067 1.1113. 1144.1 1.1159 51 10.00 1.1067 11103 1.1116 1.1121 11117 1110G 1.1007 1.1084 1,1073 1.1064 1.1060 1.1072 1:1103 1.1147 1:1178 1.192 52 10.20 1.1105 '1.1122 1.1137 11143 1.1142 '1:1135 1_1126 1:1114 1.1104 111006' 111093 1.1104 11133 1:1173 1.1202&#xfd; 1.1215 53 10.40 1.1110 1 .1138. 1.1155 .1.1163 1.1163' 1,1159 1A1151 1.1141 1.1132 1.1125;' 1A121 1,1133 111106 1.110884 1-1211 .1.1222 54 10.60 '11212 1.1231 1.1247 1:1250 1.1243 1:1228 1.1209 1.1188 '1.1168 1.11521 .1.1144 11156 _11104 1.1250 1.128 1.1305 55 10.80 1 1189 11208 1.1224 1.1229 1.1227: .11218 1.120D6 .11192 .'1l1786 1 111601 1.1162 1.1170 1,1199 11233 1.12058 1.1270 56 11.00 '1i0000 1&#xfd;0000 1.0000. 1.0000 1.0000: 1.0000 1.0000t. 1.0m001 1.6600 1.0000 1.0000 1.900 i 1 000 1.0000 1.0000 1.0000 57 11.20 10000 10000 1.0000 10000 11.0000' 1.0000 .1.0900 1.0000 1.00 1,0000 1:0000 10000 10000 10000 10000 1.0000 58' 11.40 1-0000 10000 1.000 1.000 1.0000 10000 -10000 1.0000 '10000 110000 1.0000 10000 10000 10000 10o0o 1.0o0o 59 11.60 1.0000 1.0000 1.000. 00 10000 1-0000 10000 10 .0000 1 1.000 1.0000 1.00000 1000 1000 1.0000 1.0000 1.000 60 11.80 1G0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 1.0000 1.00 10000.- 10000 1.0000 1,0000 1.0000 61&#xfd; 12.09 10000 10000 1.00 0000 1,0000 10000 10 0000' 1.000 1.0000 1000 .0000 1_0000 10000 Top aixd bottom 10% 0f17ole excluded.Page 15 of 15}}

Revision as of 03:06, 2 August 2018

Donald C. Cook, Unit 1, Submittal of Core Operating Limits Report, Revision 1, Cycle 24
ML12124A226
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 04/17/2012
From: Gebbie J P
Indiana Michigan Power Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
AEP-NRC-2012-28
Download: ML12124A226 (17)


Text

Indiana Michigan Power One Cook Place Bridgman, MI 49106 A unit of American Electric Power IndianaMichiganPower.com April 17, 2012 AEP-NRC-2012-28 10 CFR 50.4 Docket No.: 50-315 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Donald C. Cook Nuclear Plant Unit 1 CORE OPERATING LIMITS REPORT Indiana Michigan Power Company, the licensee for Donald C. Cook Nuclear Plant Unit 1, is submitting a revision to the Core Operating Limits Report (COLR) for Unit 1 Cycle 24 in accordance with Technical Specification 5.6.5. Revision 1 of the Unit 1 Cycle 24 COLR is provided as an enclosure to this letter.This revision to the COLR updated the Nuclear Enthalpy Rise Hot Channel Factor full power limit in Section 2.3.3(a) from 1.49 to 1.485. This revised limit is incorporated into the COLR for Cycle 24 to support its use in required Power Distribution Technical.

Specification surveillances.

There are no new or revised commitments in this letter. Should you have any questions, please contact Mr. Michael K. Scarpello, Regulatory Affairs Manager, at (269) 466-2649.Sincerely, Joel P. Gebbie Site Vice President DMB/jmr

Enclosure:

Donald C. Cook Nuclear Plant Unit 1 Cycle 24 Core Operating Limits Report, Revision 1 c: J. T. King, MPSC S. M. Krawec, AEP Ft. Wayne, w/o enclosures MDEQ -WHMD/RPS NRC Resident Inspector C. D. Pederson, NRC Region III P. S. Tam, NRC Washington, DC ENCLOSURE TO AEP-NRC-2012-28 Donald C. Cook Nuclear Plant Unit 1 Cycle 24 Core Operating Limits Report Revision 1 D. C. COOK UNIT I CYCLE 24 Revision I D. C. COOK UNIT 1 CYCLE 24 Revision 1 Donald C. Cook Nuclear Plant*UnitI Cycle 24 Core Operating Limits Report Revision, 1 Page 1 of 15 D. C. COOK UNIT I CYCLE 24 Revision 1 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Donald C. Cook Nuclear Plant Unit 1 Cycle 24 design has been prepared in accordance with the requirements of Technical Specification 5.6.5.The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC in:.a. WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Methodology, July 1985 b. WCAP-8385, Power Distribution Control and Load Following Procedures Topical Report, September 1974 c. WCAP-l0216-P-A, Rev. IA, Relaxation of Constant Axial Offset Control!FQ Surveillance Technical Specification,,February 1994 d. -Plant-specific adaptation of WCAP-16009-P-A, Revision 1, Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM), as approved by NRC Safety Evaluation dated October 17, 2008.e. WCAP-12610-P-A, VANTAGE+ Fuel Assembly Reference Core Report, April 1995 f. WCAP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986 g. WCAP-13749-P-A, Safety Evaluation Supporting the Conditional Exemption of the Most: Negative EOL Moderator Temperature Coefficient Measurement, March 1997 The Technical Specifications affected by this report are listed below: 2.1.1 Reactor Core Safety Limits 3.1.1 SHUTDOWN MARGIN (SDM)3.1.3 Moderator Temperature Coefficient (MTC)3.1.5 Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN&)3.2.3 AXIAL FLUX DIFFERENCE (AFD)3.3.1 Reactor Trip System (RTS) Instrumentation 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits 3.9.1 Boron Concentration Page 2 of 15 D. C. COOK UNIT I CYCLE 24 Revision I 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.

These limits have been developed .using the NRC-approved methodologies specified in Technical Specifications 5.6.5.2.1 SAFETY LIMITS 2.1.1 Reactor Core Safety Limits (Specification 2.1.1)In Modes 1 and. 2, the combination of thermal power; pressurizer pressure, and the highest loop average temperature (Tavg) shall not exceed the limits, as shown in Figure 6 for 4 loop operation.

2.2- REACTIVITY CONTROL 2.2.1 SHUTDOWN MARGIN (SDM) (Specification 3.1.1)--Shutdown marginshall be greater than or equal to 1.3%:Ak/k for Ta g> 200OF Shutdown margin shall be greater than or equal to 1.0% Ak/k for Tavg 200°F 2.2.2 Moderator Temperature Coefficient (MTC) (Specification 3.1.3)a. The Moderator Temperature Coefficient (MTC) limits are: The BOL/ARO-MTC shall be less positive or equal to the value given in Figure 1.The EOL/ARO/RTP-MTC shall be less negative or equal to -4.54E-4 Ak/k/0 F.This limit is based on a T,,g program with HFP vessel Tavg of 554.0 to 558.0 'F.Where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for Rated.Thermal Power HFP stands for Hot Full Thermal Power Page 3 of 15 D. C. COOK UNIT I CYCLE 24 Revision 1 b. The MTC Surveillance limit is: The 300 ppm/ARO/`RTP-MTC should be less negative or equal to-3.84E-4 Ak/k/°F at a HFP vessel Tavg of 554.0 to 558.0 'F.c. The Revised Predicted near-EOL 300 ppm MTC shall be calculated using Figure 7.and the following algorithm:

Revised Predicted MTC Predicted MTC + AFD Correction

+ Predicted Correction*

  • Predicted Correction is -0.30E-4 Ak/k/0 F.If the Revised Predicted MTC is less negative than the SR 3.1.3.2 limit (COLR 2.2.2.b) and all of the benchmark data contained in the surveillance procedure are met, then a MTC measurement in accordance with SR 3.1.3.2 is not required.d. The MTC Surveillance limit is: The 60 ppm/ARO/RTP-MTC should be less negative or equal to -4.41E-4 Ak/k/OF at a HFP vessel Tavg of 554.0 to 558.0 'F 2.2.3 Shutdown Bank Insertion Limits (Specification 3.1.5)The shutdown rods shall be withdrawn to at least 228 steps.2.2.4 Control Bank Insertion Limits' (Specifications 3.1.6)a. The control rod banks shall be limited in physical insertion as shown in Figure 2.b. Successive Control Banks shall overlap by 100 steps. The sequence for Control Bank withdrawal shall be Control Bank A, Control Bank B, Control Bank C and Control Bank D.2.3 POWER DISTRIBUTION LIMITS 2.3.1 AXIAL FLUX DIFFERENCE (AFD) (Specification 3.2.3)a. The Allowable Operation Limits are provided in Figure 3.b. The AFD target, band is +/-5% for a cycle average accumulated burnup0.0 MWD/MTU.Page 4 of 15 D. C. COOK UNIT I CYCLE 24 Revision I D. C. COOK UNIT 1 CYCLE 24 Revision 1 2.3.2 Heat Flux Hot Channel Factor (FQ(Z)) (Specification 3.2.1)CFQ.Ffc (Z) <CF Q K(Z)'P(Z) 2* CF 0 *K(Z)SCF, F (Z) < --- *K(Z)F w(Z)<5 2 CFQ
  • K(Z)* for P>0.5 for P 0.5 for P > 0.5 for P< 0.5 THERMAL POWER hr: RATED THERMAL POWER a. *CFQ =2.15 b. K(Z) is provided in Figure 4.c. I Oc(Z) is the measured hot channel factor including a 3% manufacturing tolerance uncertainty and a 5% measurement uncertainty.
d. W(Z) is provided inTable 1 for +/-5% AFD target band.Qe. F(Z) Fq Z) x W(Z) x F.The W(z) Values are generated assuming that they will be used for a full power surveillance.

When a part power surveillance is performed, the W(z) values should be multiplied by the factor lI/P, when P is > 0.5. When Pis< 0.5, the W(z) values should be multiplied by the factor 11(0.5), or.2.0. This is consistent with the adjustment in the FQ(z) limit at part power conditions.

f. For Cycle 24, F1 = 1.02 for all bumups associated with-Note 2a of SR 3.2.1.2.When no penalty is required, Fp = 1.00.2.3.3 Nuclear Enthalpy Rise Hot Channel Factor (FNA) (Specification 3.2.2)FNAH l CFAH * (1 + PFAH *(I-P))THERMAL POWER Where: P RATED THERMAL POWER Page 5 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision 1 a. CFAH 1.485 b. PFA= 0.3 2.4 INSTRUMENTATION 2.4.1 Reactor Trip System (RTS) Instrumentation (Specification 3.3.1)The Overtemperature AT and Overpower AT setpoints are as shown in Figure 5.2.5 REACTOR COOLANT SYSTEM 2.5.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits (Specification 3.4.1)a. Pressurizer Pressure shall be > 2018 psig÷b. Reactor Coolant System TAVG shall be.< 580.5 0 F +c. Reactor Coolant System Total Flow Rate shall be > 362,900 gpm 2.6 REFUELING OPERATIONS 2.6.1 Boron Concentration (Specification 3.9.1)The boron concentration of all filled portions of the Reactor' Coolant System, the t+refueling canal and the refueling cavity shall be greater than, or equal to 2400 ppm+ These are Safety Analysis values. With readability allowance, the corresponding values are 578.2'F for Tavg, and 2050 psig for Pressurizer Pressure..

++ This concentration bounds the condition of Kff_ 0.95 which includes a 1% Ak/k conservative allowance for uncertainties.

The boron concentration of 2400 ppm includes a 50 ppm conservative allowance for uncertainties.

Page 6 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision I FIGURE 1 MODERATOR TEMPERATURE COEFFICIENT (MTC) LIMITS*1.0 0.5 LL I.(1)0 H-"T, 0.0-0.5 UNACCEPTABLE OPERATION ACCEPTABLE OPERATION-0 10 20 30 40 50 60 70 80 90 100-1.0 Percent Rated Thermal Power Page.'7 of 15 A C. COOK UNIT 1 CYCLE 24 Revision I RNFIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER.250 225 200 0-0 0 0o 0ý175.150 125 100 75 50 25 0 POWER (% of Rated Thermal Power)Page 8 of 15 A C. COOK UNIT I CYCLE 24 Revision 1 FIGURE 3 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (RTP)100 x N aLLI U -.0 0 l--E E 0 90 80 70 60 50 40 30 20 10 0 FLUX DIFFERENCE (DELTA-I)Page 9 of 15 A C. COOK UNIT I CYCLE 24 Revision I FIGURE 4 K(Z) -NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.2 1.0 (D w N 0 z 0.8 0.6 0.4 (0.0,1.0)

(6.0-,1.0)

(12.0 ., 0.925).0.2 0 0 2 4 6 8 10 12 CORE HEIGHT (FT)Page 10 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision I FIGURE 5 (Page 1 of 2)Reactor Trip System Instrumentation Trip Setpoints Overtemperature AT Trip Setpoint I 1+ Ts Overtemperature AT < AT. [K 1 -K(2 (T-T') + K3 (P-P') -f, (AM1 Where: AT = Measured RCS AT, OF AT = Indicated AT at RATED THERMAL POWER, OF T Average temperature, OF T = Nominal Tavg at RATED THERMAL POWER ( 574.0 OF)P Pressurizer pressure, psig.P' = Nominal RCS operating pressure (2085 psig)1 -= ..The function generated by the lead-lag controller for Tavg dynamic l+r2s compensation.

13, x2 Time constants utilized in the lead-lag controller for Tavg S1r> 22 secs. Tr 2 < 4 secs.S = Laplace transform operator, sec-1 K, <- '.35*K2 > 0.0230/°F K(3 _ 0.00110/psi f, (AI) -0.33 {3 7% + (qt -qb)} when qt -qb: <-37% RTP 0% of RTP when -37% RTP < qt- qb 3% RTP+2.34 {(qt -qb) -3%} ,*when qt- qb > 36 RTP where qt and qb are percent RATED THERMAL POWER in the upper and lower' halves of the core respectively, and qt + qb is total THERMAL POWER in percent RATED THERMAL POWER.* This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.Page 11 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision 1 FIGURE 5 (Page 2 of 2)Overpower AT Trip Setpoint Overpower AT <AT. [K 4 -K5 _ rJ T -K 6 (T -T") -f 2 (AI~l Where: AT = Measured RCS AT, OF ATo = Indicated AT at RATED THERMAL POWER, OF T Average temperature, OF T" = Nominal TaVg at RATED THERMAL POWER ( 562.1 OF)K4 < 1.172*K > 0.0177/°F for increasing average temperature

Ks5 0 for decreasing average temperature K 6.0.0015/°F for T greater than T.".; K 6 =0 for T less than or equal to T., r-3 S The function generated by the rate lag controller for Tavg dynamic 1 + r 3 S compensation I3 = Time constant utilized in the rate lag controller for Tavg "r3> 10 secs.S Laplace transform operator, sec1 f 2 (AI) = 0.0* This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.Page 12 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision I D. C. COOK UNIT 1 CYCLE 24 Revision 1*FIGURE 6 Reactor Core Safety Limits 660 650 640 630 620 610 U)f 600 590 580 570 0 0.2 0.4 0.6 0.8 1 Power (fraction of rated thermal power)DESCRIPTION OF SAFETY LIMITS 1.2 PRESSURE (PSIA)1840 2000 2100 2250 2400 UNIT I Power (frac)0.02 0.02 0.02.0.02 0.02 Tavg 620.86 632.79 639.85 649.96 659.52 Power (frac)1.136.1.094 1.068 1.031 0.996.Tavg ('F)586.17 600.31 608.72 620.83 632.42 Power (frac)1.2 1.2 1.2 1.2 1.2 Tavg (6'F)577.94 586.52 591.77 599.40 606.63 Reactor Core Safety Limits Page 13 of 15 D. C. COOK UNIT I CYCLE 24 Revision 1 D. C. COOK UNIT 1 CYCLE 24 Revision 1 FIGURE 7 Unit 1 Cycle 24 Predicted HFP ARO 300 PPM MTC Versus Burnup-2.06E-04-2. 08E-04 C IOE-04 ,-212E-O4 420 1E-04, Gycl :Burnup (MWD/MTU)Burnup (MWD/MTU)

MTC (pcm./F) MTC (Ak/k/F)14000 -20:660 -2.0660E-04 15000 -20.985 -2.0985E-04 16000 -21.289,ý

-2.1289E-04 17000 -21.587 -2."1587E-04 18000 -21.887 -2.1887E-04 Page 14 of 15 D. C. COOK UNIT 1 CYCLE 24 Revision 1 TABLE 1 DONALD C. COOK UNIT 1 CYCLE 24 W(Z) FUNCTION N6de Height Bumup (MW TITU)Point' (tI) :150 1000 2000 3000 4000 5000 6000 7000, 8000 100 " 10000 12000 .14000' 16000 180000 18980 1 00. 1.oo0000 1.0000 1o0 1.000 1-0000 1.0000 10000 100OD tm0o0 -1.00oo. 1.ooo0 1.moo. 1.00oo oooo 1.0o0o0 1.0o00 2 020 1o0oo0 1.0000 1000 10000 0oo 10000 1.0000 1 1.0600 1.0000 1 0000 1000 0 10000 1.0000 10000 I1oo10 1.0000 3. 0.40 1.0000 1.0000 1. 00. 000 1.0000 1 .0000 1:0000 1_ 0 000 1 0000 1.0 1..010000 1.0000 1.0000 1.1GOO 1.0000 ID.00 1.0000 1. 000'4 o:0.0 1.0000 .00. 1,00o. 1.0000 10000o 000 10000 1.o0000 1GOOD 0 1:o000 .1.0000 .1.0oooo 1.0000 .1.oo0o 1.0000 U1.000 5 0.00 1.0000 1.0000 .1.0000 1.0000 1-000o Iz 0 10 0 0 1.0000 1 000 1.0000- 1.0000 1.0000 1.0000: 1.0000 1.0000 I'.0000. 1.0000 E; 1.00' 1.0000 1.0000 1.0000 0 1.0000 1_0000 .10000 1.0000 1.90000 1:0000 1:0000 1.0000' 1.0000OD 1.0000 1.0000 ..0000 S .1.20 109804 1.0960 1.0196 1.0971. 10988 1:1010 61.10 1.1064 1.1093. 1. 1122 1.1175, 1,1225 1.1280 1.1333 1.1359'a 1.40' 10086 t.0973: 1.005 1.096 1.0976 1.0992 1.1013 1.1037 1.106to,4 IO.91 1. 1.1108 .11167. 1.1214 1:1264 1.1314 1.1338 9 1.60. 1,0975 11.0968 1..70 10079 1.0994 "11114 1.1036: 1.1060 1.1095 1.1110 1.1155 1.1198 1.1243 1.1208 1.1310 10 1.80 1:0983 1.0974, 10969 9 1ý0980 109094 1.1011 1.1032 1.1053 .1.1076 1.10W7 1.1137. 1:.1176 A-11216 1.1255 1.1275'11. 2.00 1.0979 1.0072 1.0968 1.0970 1.0978 1.0990 1.1006 1.1023 1.1042:. 1.1062 1.1000 1.1115 1.1148 1.1182 1.1216 1.1233 12

  • 2.20 1.0972 1 0967. 1.0964 1.0957 1,0974 1.0984 1.0997 1.1012 1.1028 1.1004 1.1060 1:1088' 1.1115 I1143 1.1171 1.1184 13' 2.40 1.0963 1.0960 10009. 1.0961 1:0967 1.0970 1.0986' 1.0998 .1.010 1.1023 1.1035 1.1057 1:1078 1.10900* 1.1120 1.1130 14 2.60 1,0952 1.0950 1.0951 :1.0953. 10958 1.0964. 1.0972 1.0980 1.0989 1.0998 1.1000 1.1022 1.1036 1.1050 1.1064 1.1071 15 2.80 1.0938 1.0939 1.0940 .1.0943 1.0946 1:0950' 1.0954 1.0959 1.0964 1.0969 1.0974 1.0982 1.0989 1.0996- 1.1004 1.100 -16 3.00 1.0922 1.0925 .1.0928 1.0930 1-0932 10934 1.0935 1.0936 1.0938 1.0939 1.0939 .1.0941 1.0941 1_0942. 1.0942 1.0943 17 3.20 1.0906 1.0009: 1.0912, 1.0914 1ý0915: 10914 1,0913 1.0911 1.0909 1.0907' 1.08004 1.0899 1.0893 .1.0887 1.0881 1.0878 18 3.40: 1.0894 1.0897 1.0899 1 .0099 1009 1.0895 1.0881 1.0806 15081 1.0876ý 1.0871 10862 1i0855 1.0847 1.0040 1:0836 19 .3600 '1.0892 1.0097" 1.0900 10000 1.0894 1-0087 1-0878 1.089 1.0861 1.0853 1.0048 t10840 1.0052 10083 '10869 1.0072 20 310 1000 .0895- 1t09 100898 1.0802, 10083 1.0873 10802 10852 1.0845 1:0841 1.0847 10067. 1-0896 1.0916 1.0925 21 4.00 1.0084 1.0891 1.0895 1.0894 1.088 1.0879 1.0868 1.0858 10048 1:0842 1.0841 100.6.0 100889 1.0936, 1.0969 1.0904 22 4.20 1.0879 1.0085 1.0890 1.0889 1.083 1.0675 1 0005 1.0856" 1.0849 1:0845 10.847 1.0870 10914: 10972 1.1016 1.1037 23- -4.40 1.0971 .10878 1.0003 1.0803 1008780 1 1.0802 1.0054 1.0849 10047 1.0852 1,0882 1.0936 11006 1,1060 1.1006 24 4;60 1.0861 1008%, 1.0874 '10075 1.0073 1.0669 1.0865: 1-0801 1.0859. 10062 1.0870 1.0906 1064 11037 11095 :1.1123 25 4.80 1080 108508 100862 1.0865 1.0060. 110006 1.0866 1.0867 t.0871 1.0878 1.0890 10931 1.0990 I1064 11125 1.1153 26" 5.00 1.0838 1.0042 1.0847 1-0652 1.0855 1.0859 100864 1.0070 1.08079 1.0891 1.0006 1-0952 11013 1.1007 1.1148: 1.1178 27 5.20 1.0823 1-0828.. 1.0831. 1.0836 1-0843: 1.0851 1.0860 1.0871: 1:0885 1.0001 1.0920 110969 1.1031 1 1.1103 28 5.40 1.0808 1ý0810 1.0813 1.0020 1.0829 1.0840 1.0854 1.0870 '1.0087' 10007 10030 1.0962 .1043 1.1"1.13 1.1176- 1.1206 29 -5.60 1i0792 1.0791 1.0793 1.9800 1.0811 1.0826 1.0843 1.0053 1.0806 1.010: 1.0935 1"09900 1-1050 1.t117 1 11'78 1.1208 30 5.80 1.0773 1.0770 1.0772 1.0780 1.0793 ' 1.0811 1.0832 1.0855 10081 1 0908 1ý09§35 100991 1.1050 1.1113 1.1173 1.1202 31 6.00 1.0752 1.0748. 1075 1.0759 1.0774 1.0794 1ý0817. 1.0844 10072 1t001 1:0930 1.0985 1.1042 1.1102 1.1159 1-1187 32 6.20 1.0730 1.0724 1.0724 10732. 1.0749 1.077t 1.0797 1.0826 1.0857 1,0888 1.0919 1.0975 1.1028 1.1082 1.1136: 1.1153 33 6040 1.0709 1.0699 1.0695 1.0702 1.0718 1.0741 1.0770 1.0802 t.0836 1.0869 1.0901 1-0957 1.1006 1.1054 1.1104 1_1129 34 6.680 10601 1.0676 1.0668 1.0672 10687 1.0711 1.0741 1.0774 1-0609 1:0844 1,0877 1:0031' 1.0975 1.1019 1.1066 1.1089 35 6.800 1.0669 1,0554 1.0645 1.0649 1.0664, 1.0687 1.0715 1.0747 1.0781 1.0814 1.0844 1.0093 1.0930 1.0965 1.1005 1.1024 36 7.60. 1.0649 1.0637 1.0631 1.0635 19640 1.068 1.0692 1.0720 1.0750 1.0760 1A0807 1.0855 1.0097 1.0939' 1.0982 1.1004 37 7.20 1,0630 1.0820 1i06646 1.0621 1.0634 1.0553 1.0678 1.0705 1-0734 1.0763 1.0792 1.0044 1.0893 1.0943 1.0904: 1.1018 38 7.40 1.0604 1.0599 1.050 1A0610 1.0030 1.0057 1.0689 1.0723 10758 1.0792 1.0824 1.0873 1.0912 1.0945 1.09851 1.1005 396 7.60 1.0632 105265 1 .0626 1.0637 1.0850 1.0006 1.0719 1.0753 1.0789 10822 1.0851 1.0094: 1.921 1.0940 .1.0969 1.0983 40 7.80 1.0683 1.0679 1.0679 1.0690 1-0708 10732- 1.0760 1.0790 1 0820 10847 1.087.1 1.0904 1.0921 10930 10948 1.0957 41 8.00 1,0732 1 0729 1,0731 1.0740 1.0756 1.0777 1.0800 1.0824 1.0848 1ý0870 1.0808 1ý0909 10915 1.0912 1.0910 1.0923 42 8.20 1J0:779 1-0778 U10781 1.0709 1.0802 1.0919 1:0837 1.0855 1.0873 1.0000 1.0900 1.0900 1.0904 1.0889 1.0884 1.0882 43 8.,40 1.0824 1,0825 1.0829 1.0836 1.0846 1.0857 1.0870 1.082 10893 1ý0902 1.0907 1000905 1.0990 1.0866 -1.0851 1.0844 44 8.60 1:0867 1.0870 1,0874 1.0880 100885 1.0891 1.0897 10,002 1.0906 1'.0909 1000 1,0002. 1.088 1.0864 1.0848 1.0840 45 8.80 1:0907 1.0912 1 0917 1.0920 1.0921 1.0921 1.0919 I. 017 10915 1U0912 1.0909 190580 1.09901 10896 1 08921 1.0890 468 900: 1.0944 1.0952 1.0957 10057 1.0053' 1.0945 1,0936 1.0926 1.0917 1.0909 1.0905. 1-0900 1.0024: 1.0947 10962 1.0969 47 9.20 1.0978 1.0987 1"0994 1.0992 1.0983 10970 1.0954 1,0938 1,0923 1.0911 1.0905 1'0915 1.0947 1.0993 1 1024 '.1038 48 8.40 1.1000 1A1010 1 1026 1:1025 1A1017 11O04 1U0908 1.0972 1.0957 1:095 100840 1-0952 1.0986 1.103 1:1070 1.1086 49 9.60 1.1030 11048 1.1058 1.1050 1.1053 .1041 1i127 1,1012 1.0998 1t0988 1.0983 1.0995 1:1029 1-1076 1.11009 11:125 50 9.80 11061' 111075 1:1087 1.1090 1005 11076 11063 1104 11037 1:1027 1.1023 11035 1.1067 1.1113. 1144.1 1.1159 51 10.00 1.1067 11103 1.1116 1.1121 11117 1110G 1.1007 1.1084 1,1073 1.1064 1.1060 1.1072 1:1103 1.1147 1:1178 1.192 52 10.20 1.1105 '1.1122 1.1137 11143 1.1142 '1:1135 1_1126 1:1114 1.1104 111006' 111093 1.1104 11133 1:1173 1.1202ý 1.1215 53 10.40 1.1110 1 .1138. 1.1155 .1.1163 1.1163' 1,1159 1A1151 1.1141 1.1132 1.1125;' 1A121 1,1133 111106 1.110884 1-1211 .1.1222 54 10.60 '11212 1.1231 1.1247 1:1250 1.1243 1:1228 1.1209 1.1188 '1.1168 1.11521 .1.1144 11156 _11104 1.1250 1.128 1.1305 55 10.80 1 1189 11208 1.1224 1.1229 1.1227: .11218 1.120D6 .11192 .'1l1786 1 111601 1.1162 1.1170 1,1199 11233 1.12058 1.1270 56 11.00 '1i0000 1ý0000 1.0000. 1.0000 1.0000: 1.0000 1.0000t. 1.0m001 1.6600 1.0000 1.0000 1.900 i 1 000 1.0000 1.0000 1.0000 57 11.20 10000 10000 1.0000 10000 11.0000' 1.0000 .1.0900 1.0000 1.00 1,0000 1:0000 10000 10000 10000 10000 1.0000 58' 11.40 1-0000 10000 1.000 1.000 1.0000 10000 -10000 1.0000 '10000 110000 1.0000 10000 10000 10000 10o0o 1.0o0o 59 11.60 1.0000 1.0000 1.000. 00 10000 1-0000 10000 10 .0000 1 1.000 1.0000 1.00000 1000 1000 1.0000 1.0000 1.000 60 11.80 1G0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 1.0000 1.00 10000.- 10000 1.0000 1,0000 1.0000 61ý 12.09 10000 10000 1.00 0000 1,0000 10000 10 0000' 1.000 1.0000 1000 .0000 1_0000 10000 Top aixd bottom 10% 0f17ole excluded.Page 15 of 15