AEP-NRC-2022-30, Core Operating Limits Report
ML22279A930 | |
Person / Time | |
---|---|
Site: | Cook |
Issue date: | 10/06/2022 |
From: | Scarpello M American Electric Power, Indiana Michigan Power Co |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
AEP-NRC-2022-30 | |
Download: ML22279A930 (21) | |
Text
s INDIANA Indiana Michigan Power MICHIGAN Cook Nuclear Plant POWER One Cook Place Bridgman. Ml 49106 A unit of American Electric Power lndianaMichiganPower.com
October 6, 2022 AEP-NRC-2022-30 10 CFR 50.4
Docket No.: 50-315
U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001
Donald C. Cook Nuclear Plant Unit 1 CORE OPERATING LIMITS REPORT
Indiana Michigan Power Company, the licensee for Donald C. Cook Nuclear Plant Unit 1, is submitting the Core Operating Limits Report (COLR) for Unit 1 Cycle 31 in accordance with Technical Specification 5.6.5. Revision O of the Unit 1 Cycle 31 COLR is provided as an enclosure to this letter.
There are no new or revised commitments in this letter. Should you have any questions, please contact me at (269) 466-2649.
~~
Michael K. Scarpello Regulatory Affairs Director
JMT/mph
Enclosure:
Donald C. Cook Nuclear Plant Unit 1 Cycle 31 Core Operating Limits Report, Revision 0
c: R. J. Ancona - MPSC EGLE - RMD/RPS J. B. Giessner-NRC Region Ill NRC Resident Inspector R. M. Sistevaris - AEP Ft. Wayne, w/o enclosures Matt Menze-AEP Ft. Wayne, w/o enclosures S. P. Wall - NRC Washington, DC A. J. Williamson - AEP Ft. Wayne, w/o enclosures ENCLOSURE TO AEP-NRC-2022-30
Donald C. Cook Nuclear Plant Unit 1 Cycle 31
Core Operating Limits Report Revision 0 D. C. COOK UNIT 1 CYCLE 31 Revision 0
Donald C. Cook Nuclear Plant Unit 1 Cycle 31 Core Operating Limits Report Revision 0
Page 1 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
l.O CORE OPERATING LIMITS REPORT
This Core Operating Limits Report (COLR) for Donald C. Cook Nuclear Plant Unit 1 Cycle 31 design has been prepared in accordance with the requirements of Technical Specification 5.6.5.
The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC in:
- a. WC AP -9272-P-A, Westinghouse Reload Safety Evaluation Methodology, July 1985
- b. WCAP-8385, Power Distribution Control and Load Following Procedures - Topical Report, September 1974
- c. WCAP-10216-P-A, Rev. l A, Relaxation of Constant Axial Offset Control /Fo Surveillance Technical Specification, February 1994 d. Plant-specific adaptation ofWCAP-16009-P-A, Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM), as approved by NRC Safety Evaluation dated October 17, 2008
- e. WCAP-12610-P-A, VANT AGE+ Fuel Assembly Reference Core Report, April 1995
- f. WCAP-8745-P-A, Design Bases for the Thermal Overpower /J. T and Thermal Overtemperature !J. T Trip Functions, September 1986
g. WCAP-13749-P-A, Safety Evaluation Supporting the Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement, March 1997
- h. WCAP-12610-P-A & CENPD-404-P -A, Addendum I-A, Optimized ZIRLO',
July 2006.
The Technical Specifications affected by this report are listed below:
2. 1. 1 Reactor Core Safety Limits 3. 1. l SHUTDOWN MARGIN (SOM) 3.1.3 Moderator Temperature Coefficient (MTC) 3.1.5 Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (Fo(Z))
3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNMJ) 3.2.3 AXIAL FLUX DIFFERENCE (AFD) 3.3. 1 Reactor Trip System (RTS) Instrumentation 3.4. 1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits 3.9.1 Boron Concentration
Page 2 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
2.0 OPERA TING LIMITS
The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specifications 5.6.5.
2.1 SAFETY LIMITS
2.1. l Reactor Core Safety Limits (Specification 2.1. l)
In Modes l and 2, the combination of thermal power, pressurizer pressure, and the highest loop average temperature (T a,*g) shall not exceed the limits as shown in Figure 6 for 4 loop operation.
2.2 REACTIVITY CONTROL
2.2.l SHUTDOWN MARGIN (SDM) (Specification 3.1.1)
Shutdown margin shall be greater than or equal to 1.3% L\\k/k for Tavg > 200°F Shutdown margin shall be greater than or equal to 1.0% L\\k/k for T.,*g ::;; 200 °F
2.2.2 Moderator Temperature Coefficient (MTC) (Specification 3.1.3)
- a. The Moderator Temperature Coefficient (MTC) limits are:
The BOL/ARO-MTC shall be less positive or equal to the value given in Figure 1.
The EO L/ARO /RTP-MTC shall be less negative or equal to -4.54E-4 Ak/k/°F.
This limit is based on a Tng program with HFP vessel Tavg of 569.0 to 573.0 °F.
Where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life R TP stands for Rated Thermal Power HFP stands for Hot Full Thermal Power
Page 3 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
- b. The MTC Surveillance limit is:
The 300 ppm/ARO/RTP-MTC should be less negative or equal to
- 3.84E-4 Ak/k/°F at a HFP vessel Ta, *g of 569.0 to 573.0 °F.
- c. The Revised Predicted near-EOL 300 ppm MTC shall be calculated using Figure 7 and the following algorithm:
Revised Predicted MTC = Predicted MTC + AFD Correction + Predicted Correction*
- Predicted Correction is -0.30E-4 Ak/k/°F.
If the Revised Predicted MTC is less negative than the SR 3.1.3.2 limit (COLR 2.2.2.b) and all of the benchmark data contained in the surveillance procedure are met, then a MTC measurement in accordance with SR 3.1.3.2 is not required.
- d. The MTC Surveillance limit is:
The 60 ppm/ARO/RTP-MTC should be less negative or equal to
-4.41 E-4 Ak/k/°F at a HFP vessel Tavg of 569.0 to 573.0 °F
2.2.3 Shutdown Bank Insertion Limits (Specification 3.1.5)
The shutdown rods shall be withdrawn to at least 228 steps.
2.2.4 Control Bank Insertion Limits (Specifications 3.1.6)
- a. The control rod banks shall be limited in physical insertion as shown in Figure 2.
- b. Successive Control Banks shall overlap by l 00 steps. The sequence for Control Bank withdrawal shall be Control Bank A, Control Bank B, Control Bank C and Control Bank D.
2.3 POWER DISTRIBUTION LIMITS
2.3. l AXIAL FLUX DIFFERENCE (AFD) (Specification 3.2.3)
- a. The Allowable Operation Limits are provided in Figure 3.
- b. The AFD target band 1s +/- 5% for a cycle average accumulated bumup
~ 0.0 MWD /MTU.
Page 4 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
2.3.2 Heat Flux Hot Channel Factor (Fo(Z)) (Specification 3.2.l)
FJ (Z) ~ ___.2._
- K(Z) CF
- p for P > 0.5
for P ~0.5
f'ct (Z) ~ ___.2._
- K(Z) CF
- p for P >0.5
for P ~ 0.5
Where: THERMAL POWER p = RATED THERMAL POWER
a.
- b. K(Z) is provided in Figure 4.
- c. FQc(Z) is the measured hot channel factor including a 3% manufacturing tolerance uncertainty and a 5% measurement uncertainty.
- d. W(Z) is provided in Table l for +/- 5% AFD target band.
- e. FQw (Z) = FQc (Z) x W(Z) x Fp
The W(z) values are generated assuming that they will be used for a full power surveillance. When a part power surveillance is performed, the W(z) values should be multiplied by the factor l/P, when P is > 0.5. When P is ::; 0.5, the W(z) values should be multiplied by the factor l/(0.5), or 2.0. This is consistent with the adjustment in the Fo(z) limit at part power conditions.
- f. For Cycle 31, FP = 1.02 for all bumups associated with Note 2a of SR 3.2.1.2, except as shown in the table below. When no penalty is required, FP = 1.00.
Page 5 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
Cycle Penalty Factor Burnup FQ(Z)
(MWD/MTU) 2169 l.020 2352 l.022 2536 l.028 2719 l.032 2903 l.035 3086 l.035 3270 l.033 3453 l.030 3637 l.027 3820 l.022 4004 l.020
The bumup range only covers where FP exceeds 1.02. Linear interpolation is adequate for intermediate cycle bumups.
2.3.3 Nuclear Enthalpy Rise Hot Channel Factor (F NMI) (Specification 3.2.2)
Where: p = RA TED THERMAL POWER THERMAL POWER
- a. CF Ml = 1.53
- b. PFMJ = 0.3
- c. FNMJ is the measured Enthalpy Rise Hot Channel Factor including a 4 % measurement uncertainty.
2.4 INSTRUMENTATION
2.4. l Reactor Trip System (RTS) Instrumentation (Specification 3.3. l)
The Overtemperature AT and Overpower AT setpoints are as shown in Figure 5.
Page 6 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
2.5. l RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits (Specification 3.4.1)
- a. Pressurizer Pressure shall be ~ 2168 psig
- b. Reactor Coolant System TAva shall be:,; 580.5°F +
- c. Reactor Coolant System Total Flow Rate shall be ~ 362,900 gpm
2.6 REFUELING OPERATIONS
2.6. l Boron Concentration (Specification 3.9. l)
The boron concentration of all filled portions of the Reactor Coolant System, the refueling canal and the refueling cavity shall be greater than or equal to 2400 ppm ++ _
+ These are Safety Analysis values. With readability allowance, the corresponding values are 578.2 °F for T a, *g, and 2200 psig for Pressurizer Pressure.
..... This concentration bounds the condition of Kerr:::: 0.95 which includes a 1 % dk/k conservative allowance for uncertainties. The boron concentration of 2400 ppm includes a 50 ppm conservative allowance for uncertainties.
Page 7 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
FIGURE 1
MODERATOR TEMPERATURE COEFFICIENT (MTC) LIMITS
1.0
I UNACCEPTABLE OPERATION I
0.5
u..
-0 I'\\ ~
~ ~ "-
~ I ca
~ 0.0 Q)
"C I ACCEPTABLE OPERATION I 0
T"'"
X
-(.)
I- -0.5 2
-1.0 0 10 20 30 40 50 60 70 80 90 100
Percent Rated Thermal Power
Page 8 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
FIGURE 2
ROD BANK INSERTION LIMITS VERSUS THERMAL POWER
250----i----,-----:----=----------------=----
225 l---+--l----l---~v-----:JC.~ 6~;c;;;;~;;;;c;~~;:===1 I (52.9%, 228) 100 Step Overlap I
1 1 200 ------ I I / BANK C -~- ---------------~
// 1(100%,,
I 175 ____ /_v ______________ / __...., __ _
~ 150----------------,------------~
i / /v
~ 125 ~ (0%, 128) :1-+--+----+- ---t----+/--#--+----+---+----11 i=
- a. ~ I BANK D i/
- a. 1001-----+--+----+---+---n,,__/--+---+-----t---+-----1 0
0::: v-C)
Cl 0
0::: 75 --------------------------~
//
50 -------'""'"+------------------~
/v 25 1-----+-+--+----+--+- --1----+----+---+-----t---l
/v
0 / I (0%, o) I 0 10 20 30 40 50 60 70 80 90 100
POWER (% of Rated Thermal Power)
Page 9 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
FIGURE 3
AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (RTP)
100 I (-11,90) I I (+11,90) I fci\\ 90 0 UNACCEPTABLE \\ 'UNACCEPTABLE
"""' OPERATION OPERATION I
~
>< 80 -
N N..... I \\
~ - 70
>< 3:LC' ACCEPTABLE LL 60 I \\ OPERATION 0
a:: 50 I \\
0.,
- J..
- a. (-31,50) I I (+31,50) t-I
~ 40 E
- I E 30 C
- !i: 20
.... 0
~
0 10
O -50 -40 -30 -20 -10 0 10 20 30 40 50
FLUX DIFFERENCE (DEL TA-I)
Page 10 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
FIGURE 4
K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT
1.2
I I I
(0.0, 1.0) I (12.0, 1.0) 1.0 I
0.8 - - - -- -
C) z S2
<( I w I a..
@ 0.6 - - -- --- --- --* - --* -
N
- J
<(
~
0:::
0 I 2 0.4. r t----- I ---- - i - I
I I I
I
0.2 ----, - ----
I 0.0 I
0 2 4 6 8 10 12 CORE HEIGHT (Fl)
Page 11 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
FIGURE 5 (Page 1 of2)
Reactor Trip System Instrumentation Trip Setpoints Overtemperature AT Trip Setpoint
Overtemperature AT s; AT 0 (K 1 - K 2 [ 1 + r,s] (T-T') + Kl (P-P')- f, (AI)]
I+ r:s
Where: AT = Measured RCS AT, °F AT 0 Indicated AT at RA TED THERMAL POWER, °F
T Average temperature, °F T' = Nominal Tavg at RATED THERMAL POWER ( :s; 575.4 °F) p = Pressurizer pressure, psig P' Nominal RCS operating pressure (2235 psig)
1 +r,s The function generated by the lead-lag controller for Ta,*g dynamic I +r 2s compensation
'tt, 't2 Time constants utilized in the lead-lag controller for Tavg
't 1~ 22 secs. 't 2 !:: 4 secs.
s Laplace transform operator, sec*'
K, < l.35
- K2 ~ 0.0230/°F Kl ~ 0.00110 /psi f, (Al) = -0.33 {37% + (q, - qb)} when q, - qb !::-37% RTP 0%ofRTP when -37% RTP < q, - qb !:: 3% RTP
+ 2.34 {(q, - qb) - 3%} when q, - qb > 3% RTP where q, and qb are percent RA TED THERMAL POWER in the upper and lower halves of the core respectively, and q, + qb is total THERMAL POWER in percent RA TED THERMAL POWER.
- This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.
Page 12 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
FIGURE 5 (Page 2 of2)
Overpower AT Trip Setpoint
Overpower ATS ATo (Ki - Ks [ riS ] 1 + riS T - ~ (T-T") - f2 (Al)I
Where: AT = Measured RCS AT, °F ATo Indicated i\\T at RA TED THERMAL POWER, 0 f T = Average temperature, 0 f T" = Nominal Tavg at RA TED THERMAL POWER ( ~ 575.4 °f)
Ki ~ 1.172
- Ks > 0.0 l 77 /0 f for increasing average temperature ; Ks = 0 for decreasing
average temperature
> 0.00 l 5/0 f for T greater than T" ; ~ = 0 for T less than or equal to T"
riS The function generated by the rate lag controller for Tavg dynamic 1 + i.S compensation
Time constant utilized in the rate lag controller for Ta, *g t 3:::: 10 secs.
s Laplace transform operator, sec*'
0.0
- This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.
Page 13 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
FIGURE 6 Reactor Core Safety Limits
670
660............ UNA( CEPTA 3LE
,___ 1 OP RATIUN 650 ---- I ---.!...
- ---.......... 2400 psla -
~ -- r--........ 1
_640.......... 2260p11..- *- ~ ---
~........... 0,___ --- r--........
-630 - ---- ------..
OJ)......___ ~*la-.. ~r----1 -----............ '
~..... -----,~... --- i--....
~ 620 2000 p11.---, --;-...._ ---........
~ --~ -- ' -......___ ~ -----_,
~ ---.... "- '-
VJ 610 1840psl --..........i_........... ~ - '
u r----...- ' ---r---.... ~
~ 600 -.............
ACCEPiTABLE -- -- ----- ----... ~
590 OPERATION +
580
570 0 0.2 0.4 0.6 0.8 1 1.2 Power (Fraction of rated thermal power)
DESCRIPTION OF SAFETY LIMITS
Pressure Power Tavg Power Tavg Power Tavg Power Tavg U!filfil (frac) (OF) <frac) en <frac) (OF) <frac) (OF) 1840 0.0 621.48 0.02 620.86 1.136 586.17 1.2 577.94 2000 0.0 633.39 0.02 632.79 1.094 600.31 1.2 586.52 2100 0.0 640.44 0.02 639.85 1.068 608.72 1.2 591.77 2250 0.0 650.54 0.02 649.96 1.031 620.83 1.2 599.4 2400 0.0 660.08 0.02 659.52 0.996 632.42 1.2 606.63
UNIT 1 Reactor Core Safety Limits
Page 14 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
FIGURE 7 Unit 1 Cycle 31 Predicted HFP ARO 300 PPM MTC Versus Burnup
-2.34E-04
-2.36E-04 \\ \\
-2.38E-04 \\
U::-
0 \\ \\
- i!
- i! s -2.40E-04
-C G> \\ \\.
- u IE G> -2.42E-04 0 0 G> \\ \\.
- I -2.44E-04
-ra G> '\\
C.
E G> -2.46E-04 \\.
t-..
0
-ra "C G> " \\
0 -2.48E-04
- E
-2.S0E-04 ' \\
-2.52E-04 '
14,000 15,000 16,000 17,000 18,000 Cycle Burnup (MWD/MTU)
Bu r nup (MWD/MTU ) MTC ( pcm /°F) MTC (Ak/k/°F) 14,000 -23.520 -2.3520E-04 15,000 -23.930 -2.3930E-04 16,000 -24.334 -2.4334E-04 17,000 -24.679 -2.4679E-04 18,000 -25.078 -2.5078E-04
Page 15 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
TABLE 1 DONALD C. COOK UNIT 1 CYCLE 31 W(Z) FUNCTION
Node Height Burnup (MWD/MTU)
- (ft) 150 1000 2000 4000 6000 8000 0.0 l.0000 l.0000 l.0000 l.0000 l.0000 l.0000 2 0.2 1.0000 l.0000 l.0000 l.0000 1.0000 l.0000 3 0.4 l.0000 l.0000 l.0000 l.0000 l.0000 l.0000 4 0.6 1.0000 l.0000 l.0000 l.0000 1.0000 l.0000 5 0.8 1.0000 l.0000 l.0000 l.0000 l.0000 l.0000 6 l.O l.0000 l.0000 l.0000 l.0000 l.0000 l.0000 7 l.2 1.1100 1.1103 1.1106 1.1105 l.1097 1.1091 8 1.4 1.1091 1.1088 1.1085 1.1080 l.1077 1.1080 9 l.6 l.1079 1.1070 1.1063 1.1055 I.I 056 l.1067 IO l.8 l.1063 l.1050 I. I 038 l.1028 l.1034 l. l 052 11 2.0 l.1044 I.I 027 I.IOI I l.0999 l.1009 1.1033 12 2.2 1.1022 1.1004 l.0987 l.0974 l.0986 1.1013 13 2.4 l.0997 1.0983 l.0970 l.0961 l.0973 l.0996 14 2.6 l.0969 l.0962 l.0955 l.0952 1.0962 l.0979 15 2.8 l.0940 l.0939 l.0939 l.0942 l.0949 l.0958 16 3.0 l.0906 l.0913 l.0919 l.0928 l.0933 l.0934 17 3.2 l.0874 l.0887 1.0899 l.0913 l.0915 l.0909 18 3.4 l.0852 l.0869 1.0885 l.0902 1.0899 1.0887 19 3.6 l.0842 1.0862 l.0880 l.0897 1.0889 l.0870 20 3.8 l.0847 l.0863 l.0878 l.0889 1.0877 l.0855 21 4.0 1.0857 l.0867 l.0876 1.0879 l.0866 l.0847 22 4.2 l.0864 l.0868 1.0871 l.0869 l.0857 1.0842 23 4.4 1.0870 l.0868 l.0865 l.0858 l.0848 l.0839 24 4.6 l.0874 l.0866 l.0857 l.0845 1.0837 l.0835 25 4.8 1.0876 l.0862 l.0848 l.0830 l.0824 l.0828 26 5.0 l.0876 l.0856 l.0837 l.0814 l.081 l 1.0820 27 5.2 l.0874 1.0849 l.0825 l.0797 l.0795 l.0810 28 5.4 l.0868 l.0838 l.0809 l.0777 1.0776 l.0796 29 5.6 1.0860 l.0826 l.0794 1.0758 l.0758 l.0781 30 5.8 l.0848 l.0812 1.0777 l.0738 l.0738 l.0764
Top and bottom 10% or core excluded.
Page 16 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
TABLE 1 (continued)
DONALD C. COOK UNIT 1 CYCLE 31 W(Z) FUNCTION
Node Height Burnup (MWD/MTU)
- (ft) 150 1000 2000 4000 6000 8000 31 6.0 1.0832 1.0794 l.0756 l.0715 l.0715 l.0742 32 6.2 l.0813 1.0772 1.0733 1.0689 1.0690 1.0720 33 6.4 1.0789 l.0746 1.0705 l.0662 1.0668 1.0705 34 6.6 l.0759 l.0716 l.0675 1.0636 1.0652 1.0701 35 6.8 1.0734 1.0692 1.0652 l.0619 l.0641 l.0695 36 7.0 1.0726 1.0683 1.0643 1.0610 1.0636 1.0695 37 7.2 1.0731 1.0683 1.0638 1.0603 1.0636 1.0705 38 7.4 1.0764 1.0703 l.0646 1.0599 1.0635 1.0714 39 7.6 1.0794 1.0734 1.0679 1.0633 1.0668 1.0744 40 7.8 1.0817 1.0768 1.0723 1.0687 1.0719 1.0786 41 8.0 1.0842 1.0802 1.0765 1.0737 1.0767 1.0825 42 8.2 1.0870 1.0837 1.0807 1.0785 l.0811 1.0860 43 8.4 1.0896 1.0870 l.0847 1.0831 1.0852 1.0891 44 8.6 l.0918 1.0900 1.0884 1.0874 1.0890 l.0919 45 8.8 l.0937 l.0927 l.0918 l.0914 1.0925 1.0944 46 9.0 1.0952 1.0950 l.0949 1.0951 1.0958 l.0966 47 9.2 1.0963 1.0970 1.0977 1.0985 1.0987 1.0983 48 9.4 1.0969 1.0985 I.I 001 1.1015 l.1010 1.0995 49 9.6 1.0978 1.1001 1.1024 l.1043 I.I 031 1.1005 50 9.8 1.0983 l.1015 l.1045 1.1069 l.1050 l.1013 51 10.0 1.0986 1.1027 l.1066 l. l 095 l.1067 1.1015 52 10.2 1.0982 1.1032 l.1079 l.1114 l.1079 l.1016 53 10.4 1.0986 l.1035 l.1082 l. 1121 l.1093 l.1037 54 10.6 1.1044 1.1104 l.1161 1.1207 l.1172 1.1102 55 10.8 l.1019 1.1082 I.I 142 1.1191 1.1153 1.1080 56 11.0 l.0000 1.0000 1.0000 1.0000 l.0000 1.0000 57 11.2 l.0000 1.0000 l.0000 1.0000 l.0000 l.0000 58 11.4 l.0000 l.0000 l.0000 l.0000 l.0000 1.0000 59 l l.6 l.0000 1.0000 l.0000 1.0000 l.0000 l.0000 60 11.8 l.0000 1.0000 1.0000 l.0000 1.0000 1.0000 61 12.0 1.0000 1.0000 1.0000 l.0000 1.0000 l.0000
Top and bottom 10% of core excluded.
Page 17 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
TABLE 1 (continued)
DONALD C. COOK UNIT 1 CYCLE 31 W(Z) FUNCTION
Node Height
- (ft) 10000 12000 14000 16000 18000 20043 I 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2 0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 3 0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 4 0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 5 0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 6 1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 7 1.2 1.1098 1.1129 1.1179 1.1246 1.1320 1.1376 8 1.4 1.1095 1.1127 1.1174 1.1235 1.1300 1.1353 9 1.6 1.1089 1.1121 1.1165 1.1218 1.1275 1.1323 10 1.8 1.1078 1.1111 1.1149 1.1194 1.1244 1.1286 11 2.0 1.1063 1.1095 1.1128 1.1165 1.1205 1.1241 12 2.2 1.1045 1.1074 1.1101 1.1130 I.I 161 I.I 191 13 2.4 1.1023 1.1046 1.1067 1.1089 1.1112 1.1135 14 2.6 1.0997 1.1013 1.1028 1.1042 1.1058 1.1073 15 2.8 1.0968 1.0976 1.0984 1.0992 1.0999 1.1007 16 3.0 1.0935 1.0935 1.0936 1.0936 1.0935 1.0935 17 3.2 1.0901 1.0894 1.0888 1.0881 1.0874 1.0867 18 3.4 1.0872 1.0861 1.0854 1.0847 1.0839 1.0831 19 3.6 1.0852 1.0843 1.0843 1.0848 1.0852 1.0852 20 3.8 1.0837 1.0832 1.0839 1.0854 1.0869 1.0878 21 4.0 1.0832 1.0832 1.0844 1.0864 1.0886 1.0900 22 4.2 1.0834 1.0838 1.0852 1.0876 1.0901 1.0919 23 4.4 1.0837 1.0845 1.0862 1.0886 1.0914 1.0933 24 4.6 1.0839 1.0851 1.0870 1.0895 1.0924 1.0945 25 4.8 1.0839 1.0854 1.0874 1.0900 1.0929 1.0952 26 5.0 1.0837 1.0856 1.0879 1.0906 1.0937 1.0963 27 5.2 1.0833 1.0858 1.0887 1.0920 1.0958 1.0990 28 5.4 1.0826 1.0860 1.0898 1.0942 1.0991 1.1034 29 5.6 1.0816 1.0857 1.0903 1.0957 1.1018 1.1069 30 5.8 1.0804 1.0850 1.0903 1.0966 1.1036 1.1095
Top and bottom 10% of core excluded.
Page 18 of 19 D. C. COOK UNIT 1 CYCLE 31 Revision 0
TABLE 1 (continued)
DONALD C. COOK UNIT 1 CYCLE 31 W(Z) FUNCTION
Node Height
- (ft) 10000 12000 14000 16000 18000 20043 31 6.0 1.0786 l.0837 l.0897 l.0969 l.1048 I.I 115 32 6.2 1.0767 l.0823 l.0888 l.0965 l.1051 l.1124 33 6.4 l.0759 l.0818 1.0884 l.0961 l.1046 l.1119 34 6.6 l.0762 l.0824 l.0886 l.0955 l.103 l l.1100 35 6.8 l.0760 l.082 l l.0878 1.0939 l.1005 l.1068 36 7.0 l.0762 l.0820 l.0871 1.0923 l.0979 l.1034 37 7.2 1.0779 1.0838 1.0884 l.0926 l.0972 l.1022 38 7.4 l.0799 l.0862 l.0909 l.0949 l.0994 l.1044 39 7.6 l.0826 l.0887 l.0930 l.0968 l.1009 l.1056 40 7.8 1.0857 l.0910 l.0948 l.0980 l.1016 l.1056 41 8.0 l.0886 l.093 l l.0963 l.0989 l.1018 l.1051 42 8.2 l.091 l l.0948 l.0973 l.0993 l.1014 l.1040 43 8.4 1.0932 l.0960 l.0978 l.0991 l.1005 l.1024 44 8.6 l.0948 l.0967 l.0978 l.0984 l.0991 l.1002 45 8.8 1.0962 l.0972 l.0975 l.0975 l.0975 l.0979 46 9.0 l.0972 l.0972 l.0968 l.0960 l.0952 l.0946 47 9.2 l.0977 l.0969 l.0958 l.0946 l.093 l l.0920 48 9.4 1.0979 1.0969 l.0965 l.0962 l.0959 l.0953 49 9.6 l.0981 l.0972 l.0975 l.0987 l.0999 l.1003 50 9.8 1.098 l l.0972 1.0984 l.1009 I.I 036 l.1050 51 10.0 1.0972 l.0964 l.0985 l.1025 l.1069 l.1093 52 10.2 l.0964 l.0956 l.0985 l.1039 l.1097 l.1131 53 10.4 l.0992 l.0986 l.1015 l.1065 I.I 119 l.l 151 54 10.6 l.1041 l.1024 l.1043 l.1087 I.I 132 l.l l 56 55 10.8 l.1018 l.1004 I.I 033 l.1088 l.l 147 l.l l 80 56 l l.0 l.0000 1.0000 l.0000 l.0000 l.0000 l.0000 57 l l.2 l.0000 l.0000 l.0000 l.0000 l.0000 l.0000 58 l l.4 I.0000 l.0000 l.0000 l.0000 l.0000 l.0000 59 11.6 l.0000 l.0000 1.0000 l.0000 l.0000 l.0000 60 l l.8 l.0000 l.0000 l.0000 l.0000 l.0000 l.0000 61 12.0 l.0000 l.0000 l.0000 l.0000 l.0000 l.0000
Top and bottom 10% of core excluded.
Page 19 of 19