ML15049A488: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:!""#$%&'()*"+),"-(&.$&&()*
{{#Wiki_filter:Question for Discussion:
/"0"1$%&'()*"23&",3(&%4"56"7)$'82%&'"9%&%3,.8":*&'('$'%";729:<",%=3,4(*="+(5%,">3&&"$*('&?"28(.8"2%,%"@35%@%4"3&"A)$*4&
A question was raised by Southwest Research Institute (SwRI) regarding fiber mass units, which were
">3&&";@5><?"3'"'8%"7BC">%%'(*=")+"DEFDGF!H I"B8%"'35@%"(*"1$%&'()*";9)J%,-"'35@%<".('%4"2%@4"@).3'()*&".3A35@%")+"(*',)4$.(*=">),%"+(*%"+(5%,">3&&"')"'8%".)*'3(*>%*'"A))@"'83*"23&"'%&'%4"4$,(*="3"K$@6"EDDL"7BC"+@$>%"'%&'I
labeled as pounds mass (lbm), at the STP meeting of 02/04/15. The table in question (RoverD table)
""7BCM&"$*4%,&'3*4(*="(&"'83'"729:"&'3'%4"'8%6")5'3(*%4
cited weld locations capable of introducing more fine fiber mass to the containment pool than was
"&(>(@3,"*$>%,(."J3@$%&"5$'")*@6"28%*"$*('&")+"N(@)=,3>&"3,%"3AA@(%4I "O)*+(,>3'),6"O)>A3,(&)*/
tested during a July 2008 STP flume test.
":'"(&"*)'".@%3,"283'"&'%A&"729:"+)@@)2%4"')"=%*%,3'%"),"%P',3.'".)>A3,3'(J%"(*+),>3'()*"+,)>"O070"Q,3*4%"J!IRI "B8%"*$>%,(.",%&$@'&"7BC"A,%&%*'%4
STP's understanding is that SwRI stated they obtained similar numeric values but only when units of
",%1$(,%"*)*S&'3*43,4")$'A$'">%'8)4&"'83'">$&'"5%")5'3(*%4"+,)>"'8%"J%*4),";0@()*<I"0@&)?"(*4%A%*4%*'"J%,(+(.3'()*")+",%&$@'&")5'3(*%4"&8)$@4"5%"4)*%"')"%*&$,%".),,%.'"J3@$%&"3,%"5%(*=")5'3(*%4I":*"'8%"+)@@)2(*=?"A,).%&&"&'%A&"3*4"J%,(+(.3'()*"3,%"&$>>3,(T%4I
kilograms are applied.
""UP'%*&(J%"#0".)>A3,(&)*
Confirmatory Comparison:
&" 83J%"5%%*"A%,+),>%4"5%'2%%*">3*$3@@6"4(,%.'%4"O0-".3@.$@3'()*&")+"')'3@"4%5,(&"J)@$>%"3*4"3$')>3'%4"O070"Q,3*4%".3@.$@3'()*&")+"')'3@"4%5,(&"J)@$>%
It is not clear what steps SwRI followed to generate or extract comparative information from CASA
"2('8(*"3"VW:
Grande v1.6. The numeric results STP presented require non-standard output methods that must be
I" 0".)>A3,(&)*")+"3"&A8%,(.3@"-UQX"VW:"3'"2%@4"A)(*'"YZ!S 9O S!GDE S[77 S97Q S!-S W[S7U\"@).3'%4")*"'8%"]))A"-"O,)&&)J%,"]%=";Z!S(*I<"&8)2&"=))4"3=,%%>%*'"5%'2%%*">3*$3@" O0-"%P',3.'()*"3*4"'8%"3$')>3'%4"O070".3@.$@3'()*
obtained from the vendor (Alion). Also, independent verification of results obtained should be done to
";B35@%"!"5%@)2<I"^$,'8%,"A3,'('()*(*=")+"')'3@"+(5%,"(*')"&(T%"+,3.'()*&"56"+,3.'()*3@".)>A)&('()*"&8)2&"(4%*'(.3@"3=,%%>%*'"5%'2%%*">3*$3@"3*4"3$')>3'%4"%J3@$3'()*"28%*"&'3,'(*="2('8"'8%"&3>%"')'3@"J)@$>%I
ensure correct values are being obtained. In the following, process steps and verification are
"!B35@%"!/"_)@$>%',(."(*&$@3'()*"4%5,(&"1$3*'('(%&"+,)>"]X]WO0"3'"2%@4"Z!
summarized.
S 9O S!GDE S[77 S97Q S!-S W[S 7U"Insulation Type ZOI Size CAD Debris Volume (ft
Extensive QA comparisons have been performed between manually directed CAD calculations of total
: 3) CASA Debris Volume (ft
debris volume and automated CASA Grande calculations of total debris volume within a ZOI. A
: 3) Microtherm 1 28.6D 0.013 1.7 Nukon 7.0D 317.2 326.3 11.9D 553.6 578.4 17.0D 810.2 829.7 Thermal Wrap 7.0D 295.0 283.4 11.9D 623.3 606.6 17.0D 1,134.8 1,138.7 !`)&'">(.,)'8%,>"%P(&'&"2('8(*"A(A%"A%*%',3'()*&")+"'8%"&%.)*43,6"&8
comparison of a spherical DEGB ZOI at weld point 31-RC-1402-NSS-RSG-1D-ON-SE located on the Loop
(%@4"23@@"'83'"3,%"4(++(.$@'"')"(&)@3'%">3*$3@@6I
D Crossover Leg (31-in.) shows good agreement between manual CAD extraction and the automated
""9%.)>>%*4%4"C,).%4$,%/
CASA calculation (Table 1 below). Further partitioning of total fiber into size fractions by fractional
"B8%">3&&")+"+(*%"+(5%,"(*',)4$.%4"')"'8%".)*'3(*>%*'"A))@"+,)>"%3.8"5,%3N"&.%*3,()"(&"*)'"3"&'3*43,4")$'A$'")+"O070"Q,3*4%"J!IR?"28(.8"23&"A,)J(4%4"+),",%J(%2"')"729:
composition shows identical agreement between manual and automated evaluation when starting with
I""0@()*",%.)>>
the same total volume.
%*4&"'83'"3"N*)2@%4=%35@%"$&%,"+)@@)2"'8%"&'%A&"5%@)2"')"%P',3.'"+(*%S+(5%,"1$3*'('6"+,)>"O070"(*"$*('&")+"A)$*4&">3&&I"a(=8@(=8'%4"@(*%&"&8)2"&$==%&'%4".)4%"')"(>A@%>%*'"'8%"(*&',$.'()*&
/"
Table 1: Volumetric insulation debris quantities from LBLOCA at weld 31-RC-1402-NSS-RSG-1D-ON-SE
E""!I WA%*"O070DEI>"3*4"*3J(=3'%"')"](*%"ZDDb
Insulation Type                     ZOI Size                 CAD Debris Volume (ft3)                         CASA Debris Volume (ft3)
"" EI 044"3"&'3'%>%*'"+),"&'),(*="'8%"+)@@)2(*="'8,%%"J3,(35@%&"(*"3"*%2"J3,(35@%/" LDFGSize?" MicroTh?"3*4" LatentFiberSmp
Microtherm1                      28.6D                             0.013                                                         1.7 7.0D                             317.2                                                         326.3 Nukon                          11.9D                             553.6                                                         578.4 17.0D                             810.2                                                         829.7 7.0D                             295.0                                                         283.4 Thermal Wrap                          11.9D                             623.3                                                         606.6 17.0D                             1,134.8                                                   1,138.7 1
""" 3I LDFGsize/"[5,N"P"Z
Most microtherm exists within pipe penetrations of the secondary shield wall that are difficult to
"" (I O)@$>*"!"c"]-^Q"^(*%&"Q%*%,3'%4" d"`$&'"5%"O)*J%,'%4"')"@5>"$&(*="4%*&('6";EIG"@5>F+'Z<" ((I O)@$>*"E"c"]-^Q"7>3@@"Q%*%,3'%4" d"`$&'"5%"O)*J%,'%4"')"@5>"$&(*="4%*&('6";EIG"@5>F+'Z<" (((I O)@$>*"Z"c"]-^Q"]3,=%"Q%*%,3'%4" d"`$&'"5%"O)*J%,'%4"')"@5>"$&(*="4%*&('6";EIG"@5>F+'Z<"" 5I MicroTh/"[5,N"P"!
isolate manually.
" (I O)@$>*"!"c"`(.,)'8%,>"Q%*%,3'%4" d"`$&'"5%"`$@'(A@(%4"56"+(5%,".)*&'('$%*'"+,3.'()*";DIDZ<" ((I O)@$>*"!"c"`(.,)'8%,>"Q%*%,3'%4" d"`$&'"5%"O)*J%,'%4"')"@5>"$&(*="4%*&('6";!H"@5>F+'Z<"".I LatentFiberSmp
/"[5,N"P"!" (I O)@$>*"!"c"]3'%*'"^(5%,"Q%*%,3'%4" d"`$&'"5%"O)*J%,'%4"')"@5>"$&(*="4%*&('6";EIG"@5>F+'Z<"" RoverDGen = [LDFGSize
Recommended Procedure:
The mass of fine fiber introduced to the containment pool from each break scenario is not a standard output of
CASA Grande v1.6, which was provided for review to SwRI. Alion recommends that a knowledgeable user
follow the steps below to extract fine-fiber quantity from CASA in units of pounds mass. Highlighted
lines show suggested code to implement the instructions:
1
: 1. Open CASA02.m and navigate to Line 3007
           
: 2. Add a statement for storing the following three variables in a new variable: LDFGSize, MicroTh, and
LatentFiberSmp
           
           
: a. LDFGsize: Nbrk x 3              
: i. Column 1 = LDFG Fines Generated - Must be Converted to lbm using density (2.4
lbm/ft3)
ii. Column 2 = LDFG Small Generated - Must be Converted to lbm using density (2.4
lbm/ft3)
iii. Column 3 = LDFG Large Generated - Must be Converted to lbm using density (2.4
lbm/ft3)
                                     
: b. MicroTh: Nbrk x 1
: i. Column 1 = Microtherm Generated - Must be Multiplied by fiber constituent fraction
(0.03)
ii. Column 1 = Microtherm Generated - Must be Converted to lbm using density (15
lbm/ft3)
                                     
: c. LatentFiberSmp: Nbrk x 1
: i. Column 1 = Latent Fiber Generated - Must be Converted to lbm using density (2.4
lbm/ft3)
                           
RoverDGen = [LDFGSize
* 2.4, Microth
* 2.4, Microth
* 0.03
* 0.03
* 15, LatentFiberSmp
* 15, LatentFiberSmp
* 2.4];
* 2.4];
" ZI e&%"'8%"+)@@)2(*="U1$3'()*"')"O)>A$'%"'8%"`3&&")+"9)J%,-"-%5,(&"B,3*&A),'%4/
           
""B)'3@"^(5%,"^(*%&"B,3*&A),'%4"c"";DID!L"f"DIgRb<"h"]-^Q"^(*%&"Q%*%,3'%4"f"""i]-^Q"^(*%&j
: 3. Use the following Equation to Compute the Mass of RoverD Debris Transported:
";DID!L<""h"]-^Q"7>3@@&"Q%*%,3'%4"f
           
"""iU,)4%4"7>3@@"^(*%&j
Total Fiber Fines Transported =   (0.018 + 0.967)
";DID!D<""h"]-^Q"]3,=%&"Q%*%,3'%4f
* LDFG Fines Generated +         [LDFG Fines]
"""iU,)4%4"]3,=%"^(*%&j
(0.018)
";DID!L"f"DIgRb<"h"`(.,)B8%,>"^(5%,"Q%*%,3'%4"f "i`(.,)B8%,>"^(*%&j
* LDFG Smalls Generated +                 [Eroded Small Fines]
";DIDRD"f"DILgD<"h"]3'%*'"^(5%,"Q%*%,3'%4
(0.010)
""i]3'%*'"^(5%,"^(*%&j
* LDFG Larges Generated+                     [Eroded Large Fines]
"" Fracts = [0.985, 0.018, 0.010, 0.985, 0.950];
(0.018 + 0.967)
* MicroTherm Fiber Generated +         [MicroTherm Fines]
(0.060 + 0.890)
* Latent Fiber Generated               [Latent Fiber Fines]
Fracts = [0.985, 0.018, 0.010, 0.985, 0.950];
Fracts = repmat(Fracts, Nbrk, 1);
Fracts = repmat(Fracts, Nbrk, 1);
RoverDTrans = RoverDGen.*Fracts; GI UP',3.'"4%&(,%4"5,%3N&"56">3'.8(*="2%@4"3'',(5$'%&
RoverDTrans = RoverDGen.*Fracts;
"""}}
: 4. Extract desired breaks by matching weld attributes
2}}

Revision as of 15:26, 31 October 2019

Slides for February 25, 2015 Public Meeting
ML15049A488
Person / Time
Site: South Texas  STP Nuclear Operating Company icon.png
Issue date: 02/18/2015
From: Lisa Regner
Plant Licensing Branch IV
To: Koehl D
South Texas
Regner L
References
Download: ML15049A488 (2)


Text

Question for Discussion:

A question was raised by Southwest Research Institute (SwRI) regarding fiber mass units, which were

labeled as pounds mass (lbm), at the STP meeting of 02/04/15. The table in question (RoverD table)

cited weld locations capable of introducing more fine fiber mass to the containment pool than was

tested during a July 2008 STP flume test.

STP's understanding is that SwRI stated they obtained similar numeric values but only when units of

kilograms are applied.

Confirmatory Comparison:

It is not clear what steps SwRI followed to generate or extract comparative information from CASA

Grande v1.6. The numeric results STP presented require non-standard output methods that must be

obtained from the vendor (Alion). Also, independent verification of results obtained should be done to

ensure correct values are being obtained. In the following, process steps and verification are

summarized.

Extensive QA comparisons have been performed between manually directed CAD calculations of total

debris volume and automated CASA Grande calculations of total debris volume within a ZOI. A

comparison of a spherical DEGB ZOI at weld point 31-RC-1402-NSS-RSG-1D-ON-SE located on the Loop

D Crossover Leg (31-in.) shows good agreement between manual CAD extraction and the automated

CASA calculation (Table 1 below). Further partitioning of total fiber into size fractions by fractional

composition shows identical agreement between manual and automated evaluation when starting with

the same total volume.


Table 1: Volumetric insulation debris quantities from LBLOCA at weld 31-RC-1402-NSS-RSG-1D-ON-SE

Insulation Type ZOI Size CAD Debris Volume (ft3) CASA Debris Volume (ft3)

Microtherm1 28.6D 0.013 1.7 7.0D 317.2 326.3 Nukon 11.9D 553.6 578.4 17.0D 810.2 829.7 7.0D 295.0 283.4 Thermal Wrap 11.9D 623.3 606.6 17.0D 1,134.8 1,138.7 1

Most microtherm exists within pipe penetrations of the secondary shield wall that are difficult to

isolate manually.


Recommended Procedure:

The mass of fine fiber introduced to the containment pool from each break scenario is not a standard output of

CASA Grande v1.6, which was provided for review to SwRI. Alion recommends that a knowledgeable user

follow the steps below to extract fine-fiber quantity from CASA in units of pounds mass. Highlighted

lines show suggested code to implement the instructions:

1


1. Open CASA02.m and navigate to Line 3007


2. Add a statement for storing the following three variables in a new variable: LDFGSize, MicroTh, and

LatentFiberSmp



a. LDFGsize: Nbrk x 3
i. Column 1 = LDFG Fines Generated - Must be Converted to lbm using density (2.4

lbm/ft3)

ii. Column 2 = LDFG Small Generated - Must be Converted to lbm using density (2.4

lbm/ft3)

iii. Column 3 = LDFG Large Generated - Must be Converted to lbm using density (2.4

lbm/ft3)


b. MicroTh: Nbrk x 1
i. Column 1 = Microtherm Generated - Must be Multiplied by fiber constituent fraction

(0.03)

ii. Column 1 = Microtherm Generated - Must be Converted to lbm using density (15

lbm/ft3)


c. LatentFiberSmp: Nbrk x 1
i. Column 1 = Latent Fiber Generated - Must be Converted to lbm using density (2.4

lbm/ft3)


RoverDGen = [LDFGSize

  • 2.4, Microth
  • 0.03
  • 15, LatentFiberSmp
  • 2.4];


3. Use the following Equation to Compute the Mass of RoverD Debris Transported:


Total Fiber Fines Transported = (0.018 + 0.967)

  • LDFG Fines Generated + [LDFG Fines]

(0.018)

  • LDFG Smalls Generated + [Eroded Small Fines]

(0.010)

  • LDFG Larges Generated+ [Eroded Large Fines]

(0.018 + 0.967)

  • MicroTherm Fiber Generated + [MicroTherm Fines]

(0.060 + 0.890)

  • Latent Fiber Generated [Latent Fiber Fines]


Fracts = [0.985, 0.018, 0.010, 0.985, 0.950];

Fracts = repmat(Fracts, Nbrk, 1);

RoverDTrans = RoverDGen.*Fracts;

4. Extract desired breaks by matching weld attributes



2