ML063330044: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML063330044
| number = ML063330044
| issue date = 12/14/2006
| issue date = 12/14/2006
| title = Duane Arnold, License Amendment 263 Regarding Inoperability of Snubbers
| title = License Amendment 263 Regarding Inoperability of Snubbers
| author name = Ennis R B
| author name = Ennis R
| author affiliation = NRC/NRR/ADRO/DORL/LPLIII-1
| author affiliation = NRC/NRR/ADRO/DORL/LPLIII-1
| addressee name = VanMiddlesworth G D
| addressee name = Vanmiddlesworth G
| addressee affiliation = FPL Energy Duane Arnold, LLC
| addressee affiliation = FPL Energy Duane Arnold, LLC
| docket = 05000331
| docket = 05000331
Line 18: Line 18:


=Text=
=Text=
{{#Wiki_filter:December 14, 2006Mr. Gary Van MiddlesworthVice President Duane Arnold Energy Center 3277 DAEC Road Palo, Iowa 52324-9785
{{#Wiki_filter:December 14, 2006 Mr. Gary Van Middlesworth Vice President Duane Arnold Energy Center 3277 DAEC Road Palo, Iowa 52324-9785


==SUBJECT:==
==SUBJECT:==
DUANE ARNOLD ENERGY CENTER - ISSUANCE OF AMENDMENT RE: INOPERABILITY OF SNUBBERS (TAC NO. MD1393)
DUANE ARNOLD ENERGY CENTER - ISSUANCE OF AMENDMENT RE: INOPERABILITY OF SNUBBERS (TAC NO. MD1393)


==Dear Mr. Van Middlesworth:==
==Dear Mr. Van Middlesworth:==


The U.S. Nuclear Regulatory Commission (NRC or the Commission) has issued the enclosedAmendment No. 263 to Facility Operating License No. DPR-49 for the Duane Arnold Energy Center. The amendment consists of changes to the Technical Specifications (TSs) inresponse to your application dated April 28, 2006.The amendment modifies the TS requirements for inoperable snubbers by adding LimitingCondition for Operation 3.0.8. This change is based on the NRC-approved Technical Specification Task Force (TSTF) standard TS change TSTF-372, Revision 4. A notice of availability for this TS improvement using the consolidated line item improvement process was published in the Federal Register on May 4, 2005 (70 FR 23252).A copy of the Safety Evaluation is also enclosed. A Notice of Issuance will be included in theCommission's next biweekly Federal Register notice.Sincerely,/RA/Richard B. Ennis, Senior Project ManagerPlant Licensing Branch III-1 Division of Licensing Project Management Office of Nuclear Reactor RegulationDocket No. 50-331
The U.S. Nuclear Regulatory Commission (NRC or the Commission) has issued the enclosed Amendment No. 263 to Facility Operating License No. DPR-49 for the Duane Arnold Energy Center. The amendment consists of changes to the Technical Specifications (TSs) in response to your application dated April 28, 2006.
The amendment modifies the TS requirements for inoperable snubbers by adding Limiting Condition for Operation 3.0.8. This change is based on the NRC-approved Technical Specification Task Force (TSTF) standard TS change TSTF-372, Revision 4. A notice of availability for this TS improvement using the consolidated line item improvement process was published in the Federal Register on May 4, 2005 (70 FR 23252).
A copy of the Safety Evaluation is also enclosed. A Notice of Issuance will be included in the Commission's next biweekly Federal Register notice.
Sincerely,
                                              /RA/
Richard B. Ennis, Senior Project Manager Plant Licensing Branch III-1 Division of Licensing Project Management Office of Nuclear Reactor Regulation Docket No. 50-331


==Enclosures:==
==Enclosures:==
: 1. Amendment No. 263 to License No. DPR-49  
: 1. Amendment No. 263 to License No. DPR-49
: 2. Safety Evaluationcc w/encls: See next page
: 2. Safety Evaluation cc w/encls: See next page


ML063330044Package: ML063330036TS: ML063530703 OFFICELPL3-1/PMLPL3-1/LAITSB/BC*OGCLPL3-1/BCNAMEREnnisTHarrisTKobetzLRaghavanDATE12/5/0612/5/065/18/0612/12/0612/14/06 Duane Arnold Energy Center cc:Mr. J. A. Stall Senior Vice President, Nuclear and Chief Nuclear Officer Florida Power & Light Company P. O. Box 14000 Juno Beach, FL 33408-0420 Mr. M. S. RossManaging Attorney Florida Power & Light Company P. O. Box 14000 Juno Beach, FL 33408-0420Mr. R. E. HelfrichSenior Attorney Florida Power & Light Company P. O. Box 14000 Juno Beach, FL 33408-0420Mr. W. E. WebsterVice President, Nuclear Operations Florida Power & Light Company P. O. Box 14000 Juno Beach, FL 33408-0420John BjorsethSite Director Duane Arnold Energy Center 3277 DAEC Road Palo, IA 52324Steven R. CatronManager, Regulatory Affairs Duane Arnold Energy Center 3277 DAEC Road Palo, IA 52324U. S. Nuclear Regulatory CommissionResident Inspector's Office Rural Route #1 Palo, IA 52324Regional Administrator, Region IIIU.S. Nuclear Regulatory Commission Suite 210 2443 Warrenville Road Lisle, IL 60532-4351Mr. M. WarnerVice President, Nuclear Operations Support Florida Power & Light Company P. O. Box 14000 Juno Beach, FL  33408-0420Mr. D. A. CurtlandPlant Manager Duane Arnold Energy Center 3277 DAEC Rd.
ML063330044              Package: ML063330036          TS: ML063530703 OFFICE LPL3-1/PM              LPL3-1/LA        ITSB/BC*         OGC            LPL3-1/BC NAME          REnnis          THarris          TKobetz                        LRaghavan DATE          12/5/06        12/5/06          5/18/06          12/12/06      12/14/06 Duane Arnold Energy Center cc:
Palo, IA  52324-9785Mr. R. S. KundalkarVice President, Nuclear Engineering Florida Power & Light Company P. O. Box 14000 Juno Beach, FL  33408-0420Daniel K. McGheeIowa Department of Public Health Bureau of Radiological Health 321 East 12th Street Lucas State Office Building, 5th Floor Des Moines, IA  50319-0075Chairman, Linn CountyBoard of Supervisors 930 1st Street SW Cedar Rapids, IA  52404October 12, 2006 FPL ENERGY DUANE ARNOLD, LLCDOCKET NO. 50-331DUANE ARNOLD ENERGY CENTERAMENDMENT TO FACILITY OPERATING LICENSE                                                        Amendment No. 263                                                          License No. DPR-491. The U.S. Nuclear Regulatory Commission (the Commission) has found that:A.The application for amendment by FPL Energy Duane Arnold, LLC datedApril 28, 2006, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;B.The facility will operate in conformity with the application, the provisions of theAct, and the rules and regulations of the Commission;C.There is reasonable assurance (i) that the activities authorized by thisamendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;D.The issuance of this amendment will not be inimical to the common defense andsecurity or to the health and safety of the public; andE.The issuance of this amendment is in accordance with 10 CFR Part 51 of theCommission's regulations and all applicable requirements have been satisfied.2.Accordingly, the license is amended by changes to the Technical Specifications asindicated in the attachment to this license amendment and paragraph 2.C.(2) of Facility Operating License No. DPR-49 is hereby amended to read as follows:
Mr. J. A. Stall                         Mr. M. Warner Senior Vice President, Nuclear and Chief Vice President, Nuclear Operations Nuclear Officer                         Support Florida Power & Light Company            Florida Power & Light Company P. O. Box 14000                          P. O. Box 14000 Juno Beach, FL 33408-0420                Juno Beach, FL 33408-0420 Mr. M. S. Ross                          Mr. D. A. Curtland Managing Attorney                       Plant Manager Florida Power & Light Company           Duane Arnold Energy Center P. O. Box 14000                         3277 DAEC Rd.
      (2)Technical Specifications      The Technical Specifications contained in Appendix A, as revised through            Amendment No. 263, are hereby incorporated in the license. FPL Energy Duane Arnold, LLC  shall operate the facility in accordance with the Technical Specifications.3.This license amendment is effective as of its date of issuance and shall be implementedwithin 180 days of the date of issuance.FOR THE NUCLEAR REGULATORY COMMISSION/RA/L. Raghavan, ChiefPlant Licensing Branch III-1 Division of Operating Reactor Licensing Office of Nuclear Reactor RegulationDate of Issuance:  December 14, 2006 ATTACHMENT TO LICENSE AMENDMENT NO. 263FACILITY OPERATING LICENSE NO. DPR-49DOCKET NO. 50-331Replace the following page of the Facility Operating License No. DPR-49 with the attachedrevised page. The revised page is identified by amendment number and contain marginal  lines indicating the areas of change.REMOVEINSERTPage 3Page 3Replace the following pages of the Appendix A, Technical Specifications with the attachedrevised pages. The revised pages are identified by amendment number and contain marginal lines indicating the areas of change.REMOVEINSERT3.0-13.0-13.0-33.0-3 SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATIONRELATED TO AMENDMENT NO. 263 TO FACILITY OPERATING LICENSE NO. DPR-49FPL ENERGY DUANE ARNOLD, LLCDUANE ARNOLD ENERGY CENTERDOCKET NO. 50-33
Juno Beach, FL 33408-0420                Palo, IA 52324-9785 Mr. R. E. Helfrich                      Mr. R. S. Kundalkar Senior Attorney                         Vice President, Nuclear Engineering Florida Power & Light Company            Florida Power & Light Company P. O. Box 14000                         P. O. Box 14000 Juno Beach, FL 33408-0420                Juno Beach, FL 33408-0420 Mr. W. E. Webster                        Daniel K. McGhee Vice President, Nuclear Operations       Iowa Department of Public Health Florida Power & Light Company           Bureau of Radiological Health P. O. Box 14000                         321 East 12th Street Juno Beach, FL 33408-0420                Lucas State Office Building, 5th Floor Des Moines, IA 50319-0075 John Bjorseth Site Director                           Chairman, Linn County Duane Arnold Energy Center               Board of Supervisors 3277 DAEC Road                           930 1st Street SW Palo, IA 52324                          Cedar Rapids, IA 52404 Steven R. Catron Manager, Regulatory Affairs Duane Arnold Energy Center 3277 DAEC Road Palo, IA 52324 U. S. Nuclear Regulatory Commission Resident Inspectors Office Rural Route #1 Palo, IA 52324 Regional Administrator, Region III U.S. Nuclear Regulatory Commission Suite 210 2443 Warrenville Road Lisle, IL 60532-4351                                          October 12, 2006


==11.0INTRODUCTION==
FPL ENERGY DUANE ARNOLD, LLC DOCKET NO. 50-331 DUANE ARNOLD ENERGY CENTER AMENDMENT TO FACILITY OPERATING LICENSE Amendment No. 263 License No. DPR-49
By application dated April 28, 2006 (Agencywide Documents Access and Management SystemAccession No. ML061320019), FPL Energy Duane Arnold, LLC (the licensee) requested changes to the Technical Specifications (TSs) for the Duane Arnold Energy Center (DAEC)
: 1. The U.S. Nuclear Regulatory Commission (the Commission) has found that:
(Facility Operating License No. DPR-49). The proposed change would add Limiting Condition for Operation (LCO) 3.0.8 to addressconditions where one or more snubbers are unable to perform their associated support function. The change is based on Technical Specification Task Force (TSTF) change traveler TSTF-372, Revision 4, which has been approved generically for the Standard Technical Specifications (STS; NUREGs-1430 - 1434) by the Nuclear Regulatory Commission (NRC or the Commission). A notice announcing the availability of this proposed TS change using the consolidated line item improvement process (CLIIP) was published in the Federal Register onMay 4, 2005 (70 FR 23252). A description of TSTF-372 and its associated TS change now follows.On April 23, 2004, the Nuclear Energy Institute Risk Informed Technical Specifications TaskForce submitted a proposed change, TSTF-372, Revision 4, to the STS on behalf of the industry (TSTF-372, Revisions 1 through 3 were prior draft iterations). TSTF-372, Revision 4, is a proposal to add an LCO allowing a delay time for entering a supported system TS, when the inoperability is due solely to an inoperable snubber, if risk is assessed and managed. The postulated seismic event requiring snubbers is a low-probability occurrence, and the overall TS system safety function would still be available for the vast majority of anticipated challenges.This proposal is one of the industry's initiatives being developed under the risk-informed TSsprogram. These initiatives are intended to maintain or improve safety through the incorporation of risk assessment and management techniques in the TSs, while reducing unnecessary burden and making TS requirements consistent with the Commission's other risk-informed regulatory requirements, in particular the Maintenance Rule. The proposed change adds LCO 3.0.8 to the TSs. LCO 3.0.8 allows licensees to delaydeclaring an LCO not met for equipment that is supported by snubbers unable to perform their associated support functions when the risk associated with the delay is assessed and managed. This new LCO 3.0.8 states:When one or more required snubbers are unable to perform their associated supportfunction(s), any affected supported LCO(s) are not required to be declared not met solely for this reason if risk is assessed and managed, and:a.the snubbers not able to perform their associated support function(s) areassociated with only one train or subsystem of a multiple train or subsystem supported system or are associated with a single train or subsystem supported system and are able to perform their associated support function within 72 hours; or b.the snubbers not able to perform their associated support function(s) areassociated with more than one train or subsystem of a multiple train or subsystem supported system and are able to perform their associated support function within 12 hours.At the end of the specified period the required snubbers must be able to perform theirassociated support function(s), or the affected supported system LCO(s) shall be declared not met.
A.     The application for amendment by FPL Energy Duane Arnold, LLC dated April 28, 2006, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I; B.     The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission; C.     There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations; D.     The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and E.     The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
: 2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment and paragraph 2.C.(2) of Facility Operating License No. DPR-49 is hereby amended to read as follows:


==2.0 REGULATORY EVALUATION==
(2)     Technical Specifications The Technical Specifications contained in Appendix A, as revised through Amendment No. 263, are hereby incorporated in the license. FPL Energy Duane Arnold, LLC shall operate the facility in accordance with the Technical Specifications.
In Section 50.36 of Title 10 of the Code of Federal Regulations (10 CFR), the Commissionestablished its regulatory requirements related to the content of the TSs. Pursuant to 10 CFR 50.36, TSs are required to include items in the following five specific categories related to station operation:  (1) safety limits, limiting safety system settings, and limiting control settings; (2) LCOs; (3) surveillance requirements (SRs); (4) design features; and (5) administrative controls. The rule does not specify the particular requirements to be included in a plant's TSs. As stated in 10 CFR 50.36(c)(2)(i), the "Limiting conditions for operation are the lowest functional capability or performance levels of equipment required for safe operation of the facility. When a limiting condition for operation of a nuclear reactor is not met, the licensee shall shut down the reactor or follow any remedial action permitted by the technical specifications ..."  TS Secti on 3.0, on "LCO and SR Applicability," provides details or groundrules for complying with the LCOs. Snubbers are chosen in lieu of rigid supports in areas where restricting thermal growth duringnormal operation would induce excessive stresses in the piping nozzles or other equipment.Although they are classified as component standard supports, they are not designed to provide any transmission of force during normal plant operations. However, in the presence of dynamic transient loadings, which are induced by seismic events as well as by plant accidents and transients, a snubber functions as a rigid support. The location and size of the snubbers are determined by stress analyses based on different combinations of load conditions, dependingon the design classification of the particular piping. Prior to the conversion to the improved STS, TS requirements applied directly to snubbers. These requirements included:
: 3. This license amendment is effective as of its date of issuance and shall be implemented within 180 days of the date of issuance.
!A requirement that snubbers be functional and in service when the supported equipmentis required to be operable,!A requirement that snubber removal for testing be done only during plant shutdown,!A requirement that snubber removal for testing be done on a one-at-a-time basis whensupported equipment is required to be operable during shutdown, !A requirement to repair or replace within 72 hours any snubbers, found to be inoperableduring operation in Modes 1 through 4, to avoid declaring any supported equipment inoperable,!A requirement that each snubber be demonstrated operable by periodic visualinspections, and
FOR THE NUCLEAR REGULATORY COMMISSION
!A requirement to perform functional tests on a representative sample of at least10 percent of plant snubbers, at least once every 18 months during shutdown.In the late 1980s, a joint initiative of the NRC and industry was undertaken to improve the STS. This effort identified the snubbers as candidates for relocation to a licensee-controlled document, based on the fact that the TS requirements for snubbers did not meet any of the four criteria in 10 CFR 50.36(c)(2)(ii) for inclusion in the improved STS. The NRC approved the relocation without placing any restriction on the use of the relocated requirements. However, this relocation resulted in different interpretations between the NRC and the industry regarding its implementation. The NRC has stated that since snubbers are supporting safety equipment that is in the TS, thedefinition of OPERABILITY must be used to immediately evaluate equipment supported by a removed snubber and, if found inoperable, the appropriate TS required actions must be entered. This interpretation has, in practice, eliminated the 72-hour delay to enter the actions for the supported equipment that existed prior to the conversion to the improved STS (the only exception is if the supported system has been analyzed and determined to be OPERABLE without the snubber). The industry has argued that since the NRC approved the relocation without placing any restriction on the use of the relocated requirements, the licensee-controlled document requirements for snubbers should be invoked before the supported system's TS requirements become applicable. The industry's interpretation would, in effect, restore the 72-hour delay to enter the actions for the supported equipment that existed prior to the conversion to the improved STS. The industry's proposal would allow a time delay for all conditions, including snubber removal for testing at power. The option to relocate the snubbers to a licensee-controlled document, as part of theconversion to improved STS, has resulted in non-uniform and inconsistent treatment of snubbers. On the one hand, plants that have relocated snubbers from their TS are allowed to change the TS requirements for snubbers under the auspices of 10 CFR 50.59, but they are not allowed a 72-hour delay before they enter the actions for the supported equipment. On the other hand, plants that have not converted to improved STS have retained the 72-hour delay if  snubbers are found to be inoperable, but they are not allowed to use 10 CFR 50.59 to changeTS requirements for snubbers. It should also be noted that a few plants that converted to the improved STS chose not to relocate the snubbers to a licensee-controlled document and, thus, retained the 72-hour delay. In addition, it is important to note that, unlike plants that have not relocated, plants that have relocated can perform functional tests on the snubbers at power (as long as they enter the actions for the supported equipment) and at the same time can reduce the testing frequency (as compared to plants that have not relocated) if it is justified by 10 CFR 50.59 assessments. Some potential undesirable consequences of this inconsistent treatment of snubbers are:
                                    /RA/
!Performance of testing during crowded time period windows when the supported systemis inoperable with the potential to reduce the snubber testing to a minimum since the snubber requirements that have been relocated from TSs are controlled by the licensee,!Performance of testing during crowded windows when the supported system isinoperable with the potential to increase the unavailability of safety systems, and
L. Raghavan, Chief Plant Licensing Branch III-1 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation Date of Issuance: December 14, 2006
!Performance of testing and maintenance on snubbers affecting multiple trains of thesame supported system during the 7 hours allotted before entering MODE 3 under LCO 3.0.3.To remove the inconsistency in the treatment of snubbers among plants, the TSTF proposed arisk-informed TS change that introduces a delay time before entering the actions for the supported equipment, when one or more snubbers are found inoperable or removed for testing, if risk is assessed and managed. Such a delay time will provide needed flexibility in the performance of maintenance and testing during power operation and at the same time will enhance overall plant safety by:
!Avoiding unnecessary unscheduled plant shutdowns and, thus, minimizing planttransition and realignment risks,!Avoiding reduced snubber testing and, thus, increasing the availability of snubbers to perform their supporting function,!Performing most of the required testing and maintenance during the delay time whenthe supported system is available to mitigate most challenges and, thus, avoiding increases in safety system unavailability, and
!Providing explicit risk-informed guidance in areas in which that guidance currently doesnot exist, such as the treatment of snubbers impacting more than one redundant train of a supported system. 1The following technical evaluation is presented in terms of the boundingassessment of this change for all commercial nuclear power plants, including DAEC, performed as part of the approval of TSTF-372, Revision 4, and publication of the CLIIP notices.


==3.0TECHNICAL EVALUATION==
ATTACHMENT TO LICENSE AMENDMENT NO. 263 FACILITY OPERATING LICENSE NO. DPR-49 DOCKET NO. 50-331 Replace the following page of the Facility Operating License No. DPR-49 with the attached revised page. The revised page is identified by amendment number and contain marginal lines indicating the areas of change.
REMOVE                            INSERT Page 3                            Page 3 Replace the following pages of the Appendix A, Technical Specifications with the attached revised pages. The revised pages are identified by amendment number and contain marginal lines indicating the areas of change.
REMOVE                            INSERT 3.0-1                              3.0-1 3.0-3                              3.0-3


1The industry submitted TSTF-372, Revision 4, "Addition of LCO 3.0.8, Inoperability ofSnubbers," in support of the proposed TS change. This submittal (Reference 1) documents a risk-informed analysis of the proposed TS change. Probabilistic risk assessment (PRA) results and insights are used, in combination with deterministic and defense-in-depth arguments, to identify and justify delay times for entering the actions for the supported equipment associated with inoperable snubbers at nuclear power plants. This is in accordance with guidance provided in Regulatory Guides (RGs) 1.174 and 1.177 (References 2 and 3, respectively).The risk impact associated with the proposed delay times for entering the TS actions for thesupported equipment can be assessed using the same approach as for allowed completion time (CT) extensions. Therefore, the risk assessment was performed following the three-tiered approach recommended in RG 1.177 for evaluating proposed extensions in currently allowed CTs:!The first tier involves the assessment of the change in plant risk due to the proposed TSchange. Such risk change is expressed (1) by the change in the average yearly coredamage frequency (CDF) and the average yearly large early release frequency (LERF) and (2) by the incremental conditional core damage probability (ICCDP) andthe incremental conditional large early release probability (ICLERP). The assessedCDF and LERF values are compared to acceptance guidelines, consistent with theCommission's Safety Goal Policy Statement as documented in RG 1.174, so that theplant's average baseline risk is maintained within a minimal range. The assessed ICCDP and ICLERP values are compared to acceptance guidelines provided in RG 1.177, which aim at ensuring that the plant risk does not increase unacceptably during the period the equipment is taken out of service.
SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION RELATED TO AMENDMENT NO. 263 TO FACILITY OPERATING LICENSE NO. DPR-49 FPL ENERGY DUANE ARNOLD, LLC DUANE ARNOLD ENERGY CENTER DOCKET NO. 50-331
!The second tier involves the identification of potentially high-risk configurations thatcould exist if equipment in addition to that associated with the change were to be taken out of service simultaneously, or other risk-significant operational factors such as concurrent equipment testing were also involved. The objective is to ensure that appropriate restrictions are in place to avoid any potential high-risk configurations.
!The third tier involves the establishment of an overall configuration risk managementprogram (CRMP) to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are identified. The objective of the CRMP is to manage configuration-specific risk by appropriate scheduling of plant activities and/or appropriate compensatory measures.A simplified bounding risk assessment was performed to justify the proposed addition ofLCO 3.0.8 to the TS. This approach was necessitated by (1) the general nature of the proposed TS changes (i.e., they apply to all plants and are associated with an undetermined  number of snubbers that are not able to perform their function), (2) the lack of detailedengineering analyses that establish the relationship between earthquake level and supported system pipe failure probability when one or more snubbers are inoperable, and (3) the lack of seismic risk assessment models for most plants. The simplified risk assessment is based on the following major assumptions, which the NRC staff finds acceptable, as discussed below:
!The accident sequences contributing to the risk increase associated with the proposedTS changes are assumed to be initiated by a seismically-induced loss-of-offsite power (LOOP) event with concurrent loss of all safety system trains supported by the out-of-service snubbers. In the case of snubbers associated with more than one train (or subsystem) of the same system, it is assumed that all affected trains (or subsystems) of the supported system are failed. This assumption was introduced to allow the performance of a simple bounding risk assessment approach with application to all plants. This approach was selected due to the lack of detailed plant-specific seismic risk assessments for most plants and the lack of fragility data for piping when one or more supporting snubbers are inoperable.
!The LOOP event is assumed to occur due to the seismically-induced failure of theceramic insulators used in the power distribution systems. These ceramic insulators have a high confidence (95 percent) of low probability (5 percent) of failure (HCLPF) of about 0.1g, expressed in terms of peak ground acceleration. Thus, a magnitude 0.1g earthquake is conservatively assumed to have 5 percent probability of causing a LOOP initiating event. The fact that no LOOP events caused by higher magnitude earthquakes were considered is justified because (1) the frequency of earthquakes decreases with increasing magnitude and (2) historical data (References 4 and 5) indicate that the mean seismic capacity of ceramic insulators (used in seismic PRAs), in terms of peak ground acceleration, is about 0.3g, which is significantly higher than the 0.1g HCLPF value. Therefore, the simplified analysis, even though it does not consider LOOP events caused by earthquakes of a magnitude higher than 0.1g, bounds a detailed analysis that would use mean seismic failure probabilities (fragilities) for the


ceramic insulators.
==1.0      INTRODUCTION==
!Analytical and experimental results obtained in the mid-1980s as part of the industry's"Snubber Reduction Program" (References 4 and 6) indicated that piping systems have large margins against seismic stress. The assumption that a magnitude 0.1g earthquake would cause the failure of all safety system trains supported by the out-of-service snubbers is very conservative, because safety piping systems could withstand much higher seismic stresses even when one or more supporting snubbers are out of service. The actual piping failure probability is a function of the stress allowable and the number of snubbers removed for maintenance or testing. Since the licensee controlled testing is done on only a small (about 10 percent) representative sample of the total snubber population, typically only a few snubbers supporting a given safety system are out for testing at a time. Furthermore, since the testing of snubbers is a planned activity, licensees have flexibility in selecting a sample set of snubbers for testing from a much larger population by conducting configuration-specific engineering and/or risk assessments. Such a selection of snubbers for testing provides confidence that the supported systems would perform their functions in the presence of a design-basis earthquake and other dynamic loads and, in any case, the risk impact of the activity will remain within the limits of acceptability defined in risk-informed RGs 1.174 and 1.177.   !The analysis assumes that one train (or subsystem) of all safety systems is unavailableduring snubber testing or maintenance (an entire system is assumed unavailable if a removed snubber is associated with both trains of a two-train system). This is a very conservative assumption for the case of corrective maintenance, since it is unlikely that a visual inspection will reveal that one or more snubbers across all supported systems are inoperable. This assumption is also conservative for the case of the licensee-controlled testing of snubbers, since such testing is performed only on a small representative sample.
 
!In general, no credit is taken for recovery actions and alternative means of performing afunction, such as the function performed by a system assumed failed (e.g., when LCO 3.0.8b applies). However, most plants have reliable alternative means of performing certain critical functions. For example, feed and bleed (F&B) can be used to remove heat in most pressurized-water reactors (PWRs) when auxiliary feedwater (AFW), the most important system in mitigating LOOP accidents, is unavailable.
By application dated April 28, 2006 (Agencywide Documents Access and Management System Accession No. ML061320019), FPL Energy Duane Arnold, LLC (the licensee) requested changes to the Technical Specifications (TSs) for the Duane Arnold Energy Center (DAEC)
Similarly, if high-pressure makeup (e.g., reactor core isolation cooling) and heat removal capability (e.g., suppression pool cooling) are unavailable in boiling-water reactors (BWRs), reactor depressurization in conjunction with low-pressure makeup (e.g., low-pressure coolant injection) and heat removal capability (e.g., shutdown cooling) can be used to cool the core. A 10 percent failure probability for recovery actions to provide core cooling using alternative means is assumed for Diablo Canyon, the only West Coast PWR plant with F&B capability, when a snubber impacting more than one train of the AFW system (i.e., when LCO 3.0.8b is applicable) is out of service. This failure probability value is significantly higher than the value of 2.2E-2 used in Diablo Canyon's PRA. Furthermore, Diablo Canyon has analyzed the impact of a single limiting snubber failure, and concluded that no single snubber failure would impact two trains of the AFW. No credit for recovery actions to provide core cooling using alternative means is necessary for West Coast PWR plants with no F&B capability, because it has been determined that there is no single snubber whose non-functionality would disable two trains of an AFW in a seismic event of magnitude up to the plant's safe shutdown earthquake (SSE). It should be noted that a similar credit could have been applied to most Central and Eastern U.S. plants, but this was not necessary to demonstrate the low-risk impact of the proposed TS change due to the lower earthquake frequencies at Central and Eastern U.S. plants as compared to West Coast plants.
(Facility Operating License No. DPR-49).
!The earthquake frequency at the 0.1g level was assumed to be 1E-3/year for Centraland Eastern U.S. plants and 1E-1/year for West Coast plants. Each of these two values envelop the range of earthquake frequency values at the 0.1g level, for Eastern U.S.
The proposed change would add Limiting Condition for Operation (LCO) 3.0.8 to address conditions where one or more snubbers are unable to perform their associated support function. The change is based on Technical Specification Task Force (TSTF) change traveler TSTF-372, Revision 4, which has been approved generically for the Standard Technical Specifications (STS; NUREGs-1430 - 1434) by the Nuclear Regulatory Commission (NRC or the Commission). A notice announcing the availability of this proposed TS change using the consolidated line item improvement process (CLIIP) was published in the Federal Register on May 4, 2005 (70 FR 23252). A description of TSTF-372 and its associated TS change now follows.
On April 23, 2004, the Nuclear Energy Institute Risk Informed Technical Specifications Task Force submitted a proposed change, TSTF-372, Revision 4, to the STS on behalf of the industry (TSTF-372, Revisions 1 through 3 were prior draft iterations). TSTF-372, Revision 4, is a proposal to add an LCO allowing a delay time for entering a supported system TS, when the inoperability is due solely to an inoperable snubber, if risk is assessed and managed. The postulated seismic event requiring snubbers is a low-probability occurrence, and the overall TS system safety function would still be available for the vast majority of anticipated challenges.
This proposal is one of the industrys initiatives being developed under the risk-informed TSs program. These initiatives are intended to maintain or improve safety through the incorporation of risk assessment and management techniques in the TSs, while reducing unnecessary burden and making TS requirements consistent with the Commissions other risk-informed regulatory requirements, in particular the Maintenance Rule.
 
The proposed change adds LCO 3.0.8 to the TSs. LCO 3.0.8 allows licensees to delay declaring an LCO not met for equipment that is supported by snubbers unable to perform their associated support functions when the risk associated with the delay is assessed and managed. This new LCO 3.0.8 states:
When one or more required snubbers are unable to perform their associated support function(s), any affected supported LCO(s) are not required to be declared not met solely for this reason if risk is assessed and managed, and:
: a.      the snubbers not able to perform their associated support function(s) are associated with only one train or subsystem of a multiple train or subsystem supported system or are associated with a single train or subsystem supported system and are able to perform their associated support function within 72 hours; or
: b.      the snubbers not able to perform their associated support function(s) are associated with more than one train or subsystem of a multiple train or subsystem supported system and are able to perform their associated support function within 12 hours.
At the end of the specified period the required snubbers must be able to perform their associated support function(s), or the affected supported system LCO(s) shall be declared not met.
 
==2.0      REGULATORY EVALUATION==
 
In Section 50.36 of Title 10 of the Code of Federal Regulations (10 CFR), the Commission established its regulatory requirements related to the content of the TSs. Pursuant to 10 CFR 50.36, TSs are required to include items in the following five specific categories related to station operation: (1) safety limits, limiting safety system settings, and limiting control settings; (2) LCOs; (3) surveillance requirements (SRs); (4) design features; and (5) administrative controls. The rule does not specify the particular requirements to be included in a plants TSs. As stated in 10 CFR 50.36(c)(2)(i), the Limiting conditions for operation are the lowest functional capability or performance levels of equipment required for safe operation of the facility. When a limiting condition for operation of a nuclear reactor is not met, the licensee shall shut down the reactor or follow any remedial action permitted by the technical specifications ... TS Section 3.0, on LCO and SR Applicability, provides details or ground rules for complying with the LCOs.
Snubbers are chosen in lieu of rigid supports in areas where restricting thermal growth during normal operation would induce excessive stresses in the piping nozzles or other equipment.
Although they are classified as component standard supports, they are not designed to provide any transmission of force during normal plant operations. However, in the presence of dynamic transient loadings, which are induced by seismic events as well as by plant accidents and transients, a snubber functions as a rigid support. The location and size of the snubbers are determined by stress analyses based on different combinations of load conditions, depending on the design classification of the particular piping.
 
Prior to the conversion to the improved STS, TS requirements applied directly to snubbers.
These requirements included:
!        A requirement that snubbers be functional and in service when the supported equipment is required to be operable,
!        A requirement that snubber removal for testing be done only during plant shutdown,
!        A requirement that snubber removal for testing be done on a one-at-a-time basis when supported equipment is required to be operable during shutdown,
!        A requirement to repair or replace within 72 hours any snubbers, found to be inoperable during operation in Modes 1 through 4, to avoid declaring any supported equipment inoperable,
!        A requirement that each snubber be demonstrated operable by periodic visual inspections, and
!        A requirement to perform functional tests on a representative sample of at least 10 percent of plant snubbers, at least once every 18 months during shutdown.
In the late 1980s, a joint initiative of the NRC and industry was undertaken to improve the STS.
This effort identified the snubbers as candidates for relocation to a licensee-controlled document, based on the fact that the TS requirements for snubbers did not meet any of the four criteria in 10 CFR 50.36(c)(2)(ii) for inclusion in the improved STS. The NRC approved the relocation without placing any restriction on the use of the relocated requirements. However, this relocation resulted in different interpretations between the NRC and the industry regarding its implementation.
The NRC has stated that since snubbers are supporting safety equipment that is in the TS, the definition of OPERABILITY must be used to immediately evaluate equipment supported by a removed snubber and, if found inoperable, the appropriate TS required actions must be entered. This interpretation has, in practice, eliminated the 72-hour delay to enter the actions for the supported equipment that existed prior to the conversion to the improved STS (the only exception is if the supported system has been analyzed and determined to be OPERABLE without the snubber). The industry has argued that since the NRC approved the relocation without placing any restriction on the use of the relocated requirements, the licensee-controlled document requirements for snubbers should be invoked before the supported systems TS requirements become applicable. The industrys interpretation would, in effect, restore the 72-hour delay to enter the actions for the supported equipment that existed prior to the conversion to the improved STS. The industrys proposal would allow a time delay for all conditions, including snubber removal for testing at power.
The option to relocate the snubbers to a licensee-controlled document, as part of the conversion to improved STS, has resulted in non-uniform and inconsistent treatment of snubbers. On the one hand, plants that have relocated snubbers from their TS are allowed to change the TS requirements for snubbers under the auspices of 10 CFR 50.59, but they are not allowed a 72-hour delay before they enter the actions for the supported equipment. On the other hand, plants that have not converted to improved STS have retained the 72-hour delay if
 
snubbers are found to be inoperable, but they are not allowed to use 10 CFR 50.59 to change TS requirements for snubbers. It should also be noted that a few plants that converted to the improved STS chose not to relocate the snubbers to a licensee-controlled document and, thus, retained the 72-hour delay. In addition, it is important to note that, unlike plants that have not relocated, plants that have relocated can perform functional tests on the snubbers at power (as long as they enter the actions for the supported equipment) and at the same time can reduce the testing frequency (as compared to plants that have not relocated) if it is justified by 10 CFR 50.59 assessments. Some potential undesirable consequences of this inconsistent treatment of snubbers are:
!        Performance of testing during crowded time period windows when the supported system is inoperable with the potential to reduce the snubber testing to a minimum since the snubber requirements that have been relocated from TSs are controlled by the licensee,
!        Performance of testing during crowded windows when the supported system is inoperable with the potential to increase the unavailability of safety systems, and
!        Performance of testing and maintenance on snubbers affecting multiple trains of the same supported system during the 7 hours allotted before entering MODE 3 under LCO 3.0.3.
To remove the inconsistency in the treatment of snubbers among plants, the TSTF proposed a risk-informed TS change that introduces a delay time before entering the actions for the supported equipment, when one or more snubbers are found inoperable or removed for testing, if risk is assessed and managed. Such a delay time will provide needed flexibility in the performance of maintenance and testing during power operation and at the same time will enhance overall plant safety by:
!        Avoiding unnecessary unscheduled plant shutdowns and, thus, minimizing plant transition and realignment risks,
!        Avoiding reduced snubber testing and, thus, increasing the availability of snubbers to perform their supporting function,
!        Performing most of the required testing and maintenance during the delay time when the supported system is available to mitigate most challenges and, thus, avoiding increases in safety system unavailability, and
!        Providing explicit risk-informed guidance in areas in which that guidance currently does not exist, such as the treatment of snubbers impacting more than one redundant train of a supported system.
 
==3.0      TECHNICAL EVALUATION==
1 The industry submitted TSTF-372, Revision 4, Addition of LCO 3.0.8, Inoperability of Snubbers, in support of the proposed TS change. This submittal (Reference 1) documents a risk-informed analysis of the proposed TS change. Probabilistic risk assessment (PRA) results and insights are used, in combination with deterministic and defense-in-depth arguments, to identify and justify delay times for entering the actions for the supported equipment associated with inoperable snubbers at nuclear power plants. This is in accordance with guidance provided in Regulatory Guides (RGs) 1.174 and 1.177 (References 2 and 3, respectively).
The risk impact associated with the proposed delay times for entering the TS actions for the supported equipment can be assessed using the same approach as for allowed completion time (CT) extensions. Therefore, the risk assessment was performed following the three-tiered approach recommended in RG 1.177 for evaluating proposed extensions in currently allowed CTs:
!        The first tier involves the assessment of the change in plant risk due to the proposed TS change. Such risk change is expressed (1) by the change in the average yearly core damage frequency (CDF) and the average yearly large early release frequency (LERF) and (2) by the incremental conditional core damage probability (ICCDP) and the incremental conditional large early release probability (ICLERP). The assessed CDF and LERF values are compared to acceptance guidelines, consistent with the Commissions Safety Goal Policy Statement as documented in RG 1.174, so that the plants average baseline risk is maintained within a minimal range. The assessed ICCDP and ICLERP values are compared to acceptance guidelines provided in RG 1.177, which aim at ensuring that the plant risk does not increase unacceptably during the period the equipment is taken out of service.
!        The second tier involves the identification of potentially high-risk configurations that could exist if equipment in addition to that associated with the change were to be taken out of service simultaneously, or other risk-significant operational factors such as concurrent equipment testing were also involved. The objective is to ensure that appropriate restrictions are in place to avoid any potential high-risk configurations.
!        The third tier involves the establishment of an overall configuration risk management program (CRMP) to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are identified. The objective of the CRMP is to manage configuration-specific risk by appropriate scheduling of plant activities and/or appropriate compensatory measures.
A simplified bounding risk assessment was performed to justify the proposed addition of LCO 3.0.8 to the TS. This approach was necessitated by (1) the general nature of the proposed TS changes (i.e., they apply to all plants and are associated with an undetermined 1
The following technical evaluation is presented in terms of the bounding assessment of this change for all commercial nuclear power plants, including DAEC, performed as part of the approval of TSTF-372, Revision 4, and publication of the CLIIP notices.
 
number of snubbers that are not able to perform their function), (2) the lack of detailed engineering analyses that establish the relationship between earthquake level and supported system pipe failure probability when one or more snubbers are inoperable, and (3) the lack of seismic risk assessment models for most plants. The simplified risk assessment is based on the following major assumptions, which the NRC staff finds acceptable, as discussed below:
!        The accident sequences contributing to the risk increase associated with the proposed TS changes are assumed to be initiated by a seismically-induced loss-of-offsite power (LOOP) event with concurrent loss of all safety system trains supported by the out-of-service snubbers. In the case of snubbers associated with more than one train (or subsystem) of the same system, it is assumed that all affected trains (or subsystems) of the supported system are failed. This assumption was introduced to allow the performance of a simple bounding risk assessment approach with application to all plants. This approach was selected due to the lack of detailed plant-specific seismic risk assessments for most plants and the lack of fragility data for piping when one or more supporting snubbers are inoperable.
!        The LOOP event is assumed to occur due to the seismically-induced failure of the ceramic insulators used in the power distribution systems. These ceramic insulators have a high confidence (95 percent) of low probability (5 percent) of failure (HCLPF) of about 0.1g, expressed in terms of peak ground acceleration. Thus, a magnitude 0.1g earthquake is conservatively assumed to have 5 percent probability of causing a LOOP initiating event. The fact that no LOOP events caused by higher magnitude earthquakes were considered is justified because (1) the frequency of earthquakes decreases with increasing magnitude and (2) historical data (References 4 and 5) indicate that the mean seismic capacity of ceramic insulators (used in seismic PRAs), in terms of peak ground acceleration, is about 0.3g, which is significantly higher than the 0.1g HCLPF value. Therefore, the simplified analysis, even though it does not consider LOOP events caused by earthquakes of a magnitude higher than 0.1g, bounds a detailed analysis that would use mean seismic failure probabilities (fragilities) for the ceramic insulators.
!        Analytical and experimental results obtained in the mid-1980s as part of the industrys Snubber Reduction Program (References 4 and 6) indicated that piping systems have large margins against seismic stress. The assumption that a magnitude 0.1g earthquake would cause the failure of all safety system trains supported by the out-of-service snubbers is very conservative, because safety piping systems could withstand much higher seismic stresses even when one or more supporting snubbers are out of service. The actual piping failure probability is a function of the stress allowable and the number of snubbers removed for maintenance or testing. Since the licensee controlled testing is done on only a small (about 10 percent) representative sample of the total snubber population, typically only a few snubbers supporting a given safety system are out for testing at a time. Furthermore, since the testing of snubbers is a planned activity, licensees have flexibility in selecting a sample set of snubbers for testing from a much larger population by conducting configuration-specific engineering and/or risk assessments. Such a selection of snubbers for testing provides confidence that the supported systems would perform their functions in the presence of a design-basis earthquake and other dynamic loads and, in any case, the risk impact of the activity will remain within the limits of acceptability defined in risk-informed RGs 1.174 and 1.177.
 
                                            ! The analysis assumes that one train (or subsystem) of all safety systems is unavailable during snubber testing or maintenance (an entire system is assumed unavailable if a removed snubber is associated with both trains of a two-train system). This is a very conservative assumption for the case of corrective maintenance, since it is unlikely that a visual inspection will reveal that one or more snubbers across all supported systems are inoperable. This assumption is also conservative for the case of the licensee-controlled testing of snubbers, since such testing is performed only on a small representative sample.
! In general, no credit is taken for recovery actions and alternative means of performing a function, such as the function performed by a system assumed failed (e.g., when LCO 3.0.8b applies). However, most plants have reliable alternative means of performing certain critical functions. For example, feed and bleed (F&B) can be used to remove heat in most pressurized-water reactors (PWRs) when auxiliary feedwater (AFW), the most important system in mitigating LOOP accidents, is unavailable.
Similarly, if high-pressure makeup (e.g., reactor core isolation cooling) and heat removal capability (e.g., suppression pool cooling) are unavailable in boiling-water reactors (BWRs), reactor depressurization in conjunction with low-pressure makeup (e.g., low-pressure coolant injection) and heat removal capability (e.g., shutdown cooling) can be used to cool the core. A 10 percent failure probability for recovery actions to provide core cooling using alternative means is assumed for Diablo Canyon, the only West Coast PWR plant with F&B capability, when a snubber impacting more than one train of the AFW system (i.e., when LCO 3.0.8b is applicable) is out of service. This failure probability value is significantly higher than the value of 2.2E-2 used in Diablo Canyons PRA. Furthermore, Diablo Canyon has analyzed the impact of a single limiting snubber failure, and concluded that no single snubber failure would impact two trains of the AFW. No credit for recovery actions to provide core cooling using alternative means is necessary for West Coast PWR plants with no F&B capability, because it has been determined that there is no single snubber whose non-functionality would disable two trains of an AFW in a seismic event of magnitude up to the plants safe shutdown earthquake (SSE). It should be noted that a similar credit could have been applied to most Central and Eastern U.S. plants, but this was not necessary to demonstrate the low-risk impact of the proposed TS change due to the lower earthquake frequencies at Central and Eastern U.S. plants as compared to West Coast plants.
! The earthquake frequency at the 0.1g level was assumed to be 1E-3/year for Central and Eastern U.S. plants and 1E-1/year for West Coast plants. Each of these two values envelop the range of earthquake frequency values at the 0.1g level, for Eastern U.S.
and West Coast sites, respectively (References 5 and 7).
and West Coast sites, respectively (References 5 and 7).
!The risk impact associated with non-LOOP accident sequences (e.g., seismicallyinitiated loss-of-coolant accident (LOCA) or anticipated transient without scram sequences) was not assessed. However, this risk impact is small compared to the risk impact associated with the LOOP accident sequences modeled in the simplified bounding risk assessment. Non-LOOP accident sequences, due to the ruggedness of nuclear power plant designs, require seismically-induced failures that occur at earthquake levels above 0.3g. Thus, the frequency of earthquakes initiating non-LOOP accident sequences is much smaller than the frequency of seismically-initiated LOOP events. Furthermore, because of the conservative assumption made for LOOPsequences that a 0.1g level earthquake would fail all piping associated with inoperable snubbers, non-LOOP sequences would not include any more failures associated with inoperable snubbers than would LOOP sequences. Therefore, the risk impact of inoperable snubbers associated with non-LOOP accident sequences is small compared to the risk impact associated with the LOOP accident sequences modeled in the simplified bounding risk assessment.
! The risk impact associated with non-LOOP accident sequences (e.g., seismically initiated loss-of-coolant accident (LOCA) or anticipated transient without scram sequences) was not assessed. However, this risk impact is small compared to the risk impact associated with the LOOP accident sequences modeled in the simplified bounding risk assessment. Non-LOOP accident sequences, due to the ruggedness of nuclear power plant designs, require seismically-induced failures that occur at earthquake levels above 0.3g. Thus, the frequency of earthquakes initiating non-LOOP accident sequences is much smaller than the frequency of seismically-initiated LOOP
!The risk impact of dynamic loadings other than seismic loads is not assessed. Theseshock-type loads include thrust loads, blowdown loads, waterhammer loads, steamhammer loads, LOCA loads, and pipe rupture loads. However, there are some important distinctions between non-seismic (shock-type) loads and seismic loads which indicate that, in general, the risk impact of the out-of-service snubbers is smaller for non-seismic loads than for seismic loads. First, while a seismic load affects the entire plant, the impact of a non-seismic load is localized to a certain system or area of the plant. Second, although non-seismic shock loads may be higher in total force and the impact could be as much or more than seismic loads, generally they are of much shorter duration than seismic loads. Third, the impact of non-seismic loads is more plant specific, and, thus, is harder to analyze generically than is the impact of seismic loads. For these reasons, licensees will be required to confirm, every time LCO 3.0.8a is used, that at least one train of each system that is supported by the inoperable snubber(s) would remain capable of performing the system's required safety or support functions for postulated design loads other than seismic loads.3.1Risk Assessment Results and Insights The results and insights from the implementation of the three-tiered approach of RG 1.177 tosupport the proposed addition of LCO 3.0.8 to the TS are summarized and evaluated in the following Sections 3.1.1 to 3.1.3.3.1.1Risk ImpactThe bounding risk assessment approach, discussed in Section 3.0, was implementedgenerically for all U.S. operating nuclear power plants. Risk assessments were performed for two categories of plants, Central and East Coast plants and West Coast plants, based on historical seismic hazard curves (earthquake frequencies and associated magnitudes). The first category, Central and East Coast plants, includes the vast majority of the U.S. nuclear power plant population (Reference 7). For each category of plants, two risk assessments were performed:
 
!The first risk assessment applies to cases where all inoperable snubbers are associatedwith only one train (or subsystem) of the impacted safety systems. It was conservatively assumed that a single train (or subsystem) of each safety system is unavailable. It was also assumed that the probability of non-mitigation using the unaffected redundant trains (or subsystems) is 2 percent. This is a conservative value, given that for core damage to occur under those conditions, two or more failures are required.
events. Furthermore, because of the conservative assumption made for LOOP sequences that a 0.1g level earthquake would fail all piping associated with inoperable snubbers, non-LOOP sequences would not include any more failures associated with inoperable snubbers than would LOOP sequences. Therefore, the risk impact of inoperable snubbers associated with non-LOOP accident sequences is small compared to the risk impact associated with the LOOP accident sequences modeled in the simplified bounding risk assessment.
!The second risk assessment applies to the case where one or more of the inoperablesnubbers are associated with multiple trains (or subsystems) of the same safety systems. It was assumed in this bounding analysis, except for West Coast PWR plants,that all safety systems are unavailable to mitigate the accident. Credit for using F&B to provide core cooling is taken for plants having F&B capability (e.g., Diablo Canyon) when a snubber impacting more than one train of the AFW system is inoperable. Credit for one AFW train to provide core cooling is taken for West Coast PWR plants with no F&B capability (e.g., San Onofre), because it has been determined that there is no single snubber whose non-functionality would disable two trains of the AFW in a seismic event of a magnitude up to the plant's SSE.The results of the performed risk assessments, in terms of core damage and large earlyrelease risk impacts, are summarized in Table 1. The first row lists the conditional riskincrease, in terms of CDF (core damage frequency), R CDF, caused by the out-of-service snubbers (as assumed in the bounding analysis). The second and third rows list the ICCDP (incremental conditional core damage probability) and the ICLERP (incremental conditional large early release probability) values, respectively. For the case where all inoperable snubbers are associated with only one train (or subsystem) of the supported safety systems, the ICCDPwas obtained by multiplying the corresponding R CDF value by the time fraction of the proposed72-hour delay to enter the actions for the supported equipment. For the case where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of thesame safety system, the ICCDP was obtained by multiplying the corresponding R CDF value bythe time fraction of the proposed 12-hour delay to enter the actions for the supported equipment. The ICLERP values were obtained by multiplying the corresponding ICCDP values by 0.1 (i.e., by assuming that the ICLERP value is an order of magnitude less than the ICCDP).
!       The risk impact of dynamic loadings other than seismic loads is not assessed. These shock-type loads include thrust loads, blowdown loads, waterhammer loads, steamhammer loads, LOCA loads, and pipe rupture loads. However, there are some important distinctions between non-seismic (shock-type) loads and seismic loads which indicate that, in general, the risk impact of the out-of-service snubbers is smaller for non-seismic loads than for seismic loads. First, while a seismic load affects the entire plant, the impact of a non-seismic load is localized to a certain system or area of the plant. Second, although non-seismic shock loads may be higher in total force and the impact could be as much or more than seismic loads, generally they are of much shorter duration than seismic loads. Third, the impact of non-seismic loads is more plant specific, and, thus, is harder to analyze generically than is the impact of seismic loads.
This assumption is conservative, because containment bypass scenarios, such as steam generator tube rupture accidents and interfacing system LOCAs, would not be uniquely affectedby the out-of-service snubbers. Finally, the fourth and fifth rows list the assessed CDF andLERF values, respectively. These values were obtained by dividing the corresponding ICCDPand ICLERP values by 1.5 (i.e., by assuming that the snubbers are tested every 18 months, as was the case before the snubbers were relocated to a licensee-controlled document). This assumption is reasonable because (1) it is not expected that licensees would test the snubbers more often than what used to be required by the TS, and (2) testing of snubbers is associated with higher risk impact than is the average corrective maintenance of snubbers found inoperable by visual inspection (testing is expected to involve significantly more snubbers out ofservice than corrective maintenance). The assessed CDF and LERF values are comparedto acceptance guidelines, consistent with the Commission's Safety Goal Policy Statement asdocumented in RG 1.174, so that the plant's average baseline risk is maintained within a minimal range. This comparison indicates that the addition of LCO 3.0.8 to the existing TS would have an insignificant risk impact. Table 1Bounding Risk Assessment Results for Snubbers Impacting a Single Trainand Multiple Trains of a Supported SystemCentral and East Coast PlantsWest Coast Plants Single Train Multiple Train Single Train Multiple Train R CDF/yr1E-65E-61E-45E-4 ICCDP8E-97E-98E-77E-7 ICLERP 8E-107E-108E-87E-8 CDF/yr 5E-95E-95E-75E-7LERF/yr 5E-105E-105E-85E-8The assessed CDF and LERF values meet the acceptance criteria of 1E-6/year and1E-7/year, respectively, based on guidance provided in RG 1.174. This conclusion is truewithout taking any credit for the removal of potential undesirable consequences associated with the current inconsistent treatment of snubbers (e.g., reduced snubber testing frequency, increased safety system unavailability, and treatment of snubbers impacting multiple trains) discussed in Section 1 above, and given the bounding nature of the risk assessment.The assessed ICCDP and ICLERP values are compared to acceptance guidelines provided inRG 1.177, which aim at ensuring that the plant risk does not increase unacceptably during the period the equipment is taken out of service. This comparison indicates that the addition of LCO 3.0.8 to the existing TS meets the RG 1.177 numerical guidelines of 5E-7 for ICCDP and 5E-8 for ICLERP. The small deviations shown for West Coast plants are acceptable because of the bounding nature of the risk assessments, as discussed in Section 2.The risk assessment results of Table 1 are also compared to guidance provided in the revisedSection 11 of NUMARC 93-01, Revision 2 (Reference 8), endorsed by RG 1.182 (Reference 9),
For these reasons, licensees will be required to confirm, every time LCO 3.0.8a is used, that at least one train of each system that is supported by the inoperable snubber(s) would remain capable of performing the system's required safety or support functions for postulated design loads other than seismic loads.
3.1      Risk Assessment Results and Insights The results and insights from the implementation of the three-tiered approach of RG 1.177 to support the proposed addition of LCO 3.0.8 to the TS are summarized and evaluated in the following Sections 3.1.1 to 3.1.3.
3.1.1    Risk Impact The bounding risk assessment approach, discussed in Section 3.0, was implemented generically for all U.S. operating nuclear power plants. Risk assessments were performed for two categories of plants, Central and East Coast plants and West Coast plants, based on historical seismic hazard curves (earthquake frequencies and associated magnitudes). The first category, Central and East Coast plants, includes the vast majority of the U.S. nuclear power plant population (Reference 7). For each category of plants, two risk assessments were performed:
!       The first risk assessment applies to cases where all inoperable snubbers are associated with only one train (or subsystem) of the impacted safety systems. It was conservatively assumed that a single train (or subsystem) of each safety system is unavailable. It was also assumed that the probability of non-mitigation using the unaffected redundant trains (or subsystems) is 2 percent. This is a conservative value, given that for core damage to occur under those conditions, two or more failures are required.
!       The second risk assessment applies to the case where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of the same safety
 
systems. It was assumed in this bounding analysis, except for West Coast PWR plants, that all safety systems are unavailable to mitigate the accident. Credit for using F&B to provide core cooling is taken for plants having F&B capability (e.g., Diablo Canyon) when a snubber impacting more than one train of the AFW system is inoperable. Credit for one AFW train to provide core cooling is taken for West Coast PWR plants with no F&B capability (e.g., San Onofre), because it has been determined that there is no single snubber whose non-functionality would disable two trains of the AFW in a seismic event of a magnitude up to the plants SSE.
The results of the performed risk assessments, in terms of core damage and large early release risk impacts, are summarized in Table 1. The first row lists the conditional risk increase, in terms of CDF (core damage frequency), RCDF, caused by the out-of-service snubbers (as assumed in the bounding analysis). The second and third rows list the ICCDP (incremental conditional core damage probability) and the ICLERP (incremental conditional large early release probability) values, respectively. For the case where all inoperable snubbers are associated with only one train (or subsystem) of the supported safety systems, the ICCDP was obtained by multiplying the corresponding RCDF value by the time fraction of the proposed 72-hour delay to enter the actions for the supported equipment. For the case where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of the same safety system, the ICCDP was obtained by multiplying the corresponding RCDF value by the time fraction of the proposed 12-hour delay to enter the actions for the supported equipment. The ICLERP values were obtained by multiplying the corresponding ICCDP values by 0.1 (i.e., by assuming that the ICLERP value is an order of magnitude less than the ICCDP).
This assumption is conservative, because containment bypass scenarios, such as steam generator tube rupture accidents and interfacing system LOCAs, would not be uniquely affected by the out-of-service snubbers. Finally, the fourth and fifth rows list the assessed CDF and LERF values, respectively. These values were obtained by dividing the corresponding ICCDP and ICLERP values by 1.5 (i.e., by assuming that the snubbers are tested every 18 months, as was the case before the snubbers were relocated to a licensee-controlled document). This assumption is reasonable because (1) it is not expected that licensees would test the snubbers more often than what used to be required by the TS, and (2) testing of snubbers is associated with higher risk impact than is the average corrective maintenance of snubbers found inoperable by visual inspection (testing is expected to involve significantly more snubbers out of service than corrective maintenance). The assessed CDF and LERF values are compared to acceptance guidelines, consistent with the Commissions Safety Goal Policy Statement as documented in RG 1.174, so that the plants average baseline risk is maintained within a minimal range. This comparison indicates that the addition of LCO 3.0.8 to the existing TS would have an insignificant risk impact.
 
Table 1        Bounding Risk Assessment Results for Snubbers Impacting a Single Train and Multiple Trains of a Supported System Central and East Coast Plants                  West Coast Plants Single Train       Multiple Train         Single Train       Multiple Train RCDF/yr            1E-6                  5E-6                  1E-4              5E-4 ICCDP              8E-9                  7E-9                  8E-7              7E-7 ICLERP               8E-10                7E-10                  8E-8              7E-8 CDF/yr               5E-9                  5E-9                  5E-7              5E-7 LERF/yr               5E-10                5E-10                  5E-8              5E-8 The assessed CDF and LERF values meet the acceptance criteria of 1E-6/year and 1E-7/year, respectively, based on guidance provided in RG 1.174. This conclusion is true without taking any credit for the removal of potential undesirable consequences associated with the current inconsistent treatment of snubbers (e.g., reduced snubber testing frequency, increased safety system unavailability, and treatment of snubbers impacting multiple trains) discussed in Section 1 above, and given the bounding nature of the risk assessment.
The assessed ICCDP and ICLERP values are compared to acceptance guidelines provided in RG 1.177, which aim at ensuring that the plant risk does not increase unacceptably during the period the equipment is taken out of service. This comparison indicates that the addition of LCO 3.0.8 to the existing TS meets the RG 1.177 numerical guidelines of 5E-7 for ICCDP and 5E-8 for ICLERP. The small deviations shown for West Coast plants are acceptable because of the bounding nature of the risk assessments, as discussed in Section 2.
The risk assessment results of Table 1 are also compared to guidance provided in the revised Section 11 of NUMARC 93-01, Revision 2 (Reference 8), endorsed by RG 1.182 (Reference 9),
for implementing the requirements of paragraph (a)(4) of the Maintenance Rule, 10 CFR 50.65.
for implementing the requirements of paragraph (a)(4) of the Maintenance Rule, 10 CFR 50.65.
Such guidance is summarized in Table 2. Guidance regarding the acceptability of conditionalrisk increase in terms of CDF (i.e., R CDF) for a planned configuration is provided. Thisguidance states that a specific configuration that is associated with a CDF higher than1E-3/year should not be entered voluntarily. Since the assessed conditional risk increase,R CDF, is significantly less than 1E-3/year, plant configurations including out-of-service snubbersand other equipment may be entered voluntarily if supported by the results of the riskassessment required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TS. Table 2Guidance for Implementing 10 CFR 50.65(a)(4)R CDFGuidanceGreater than 1E-3/yearConfiguration should not normally be enteredvoluntarily.ICCDPGuidance ICLERPGreater than 1E-5Configuration should not normally be   entered voluntarilyGreater than 1E-61E-6 to 1E-5Assess non-quantifiable factors; Establish risk management actions1E-7 to 1E-6Less than 1E-6Normal work controlsLess than1E-7Guidance regarding the acceptability of ICCDP and ICLERP values for a specific plannedconfiguration and the establishment of risk management actions is also provided in NUMARC 93-01. This guidance, as shown in Table 2, states that a specific-plant configurationthat is associated with ICCDP and ICLERP values below 1E-6 and 1E-7, respectively, is considered to require "normal work controls.Table 1 shows that for the majority of plants (i.e.,
Such guidance is summarized in Table 2. Guidance regarding the acceptability of conditional risk increase in terms of CDF (i.e., RCDF) for a planned configuration is provided. This guidance states that a specific configuration that is associated with a CDF higher than 1E-3/year should not be entered voluntarily. Since the assessed conditional risk increase, RCDF, is significantly less than 1E-3/year, plant configurations including out-of-service snubbers and other equipment may be entered voluntarily if supported by the results of the risk assessment required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TS.
for all plants in the Central and East Coast category) the conservatively assessed ICCDP and ICLERP values are over an order of magnitude less than what is recommended as the threshold for the "normal work controls" region. For West Coast plants, the conservatively assessed ICCDP and ICLERP values are still within the "normal work controls" region. Thus, the risk contribution from out-of-service snubbers is within the normal range of maintenance activities carried out at a plant. Therefore, plant configurations involving out-of-service snubbers and other equipment may be entered voluntarily if supported by the results of the risk assessment required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TSs. However, this simplified bounding analysis indicates that, for West Coast plants, the provisions of LCO 3.0.8must be used cautiously and in conjunction with appropriate management actions, especially when equipment other than snubbers is also inoperable, based on the results of configuration-specific risk assessments required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TSs.The NRC staff finds that the risk assessment results support the proposed addition ofLCO 3.0.8 to the TSs. The risk increases associated with this TS change will be insignificant (based on guidance provided in RGs 1.174 and 1.177) and within the range of risks associated with normal maintenance activities. In addition, LCO 3.0.8 will remove potential undesirable consequences stemming from the current inconsistent treatment of snubbers in the TSs, such as reduced frequency of snubber testing, increased safety system unavailability, and the treatment of snubbers impacting multiple trains. 3.1.2Identification of High-Risk ConfigurationsThe second tier of the three-tiered approach recommended in RG 1.177 involves theidentification of potentially high-risk configurations that could exist if equipment, in addition to that associated with the TS change, were to be taken out of service simultaneously. Insights from the risk assessments, in conjunction with important assumptions made in the analysis and defense-in-depth considerations, were used to identify such configurations. To avoid these potentially high-risk configurations, specific restrictions to the implementation of the proposed TS changes were identified.For cases where all inoperable snubbers are associated with only one train (or subsystem) ofthe impacted systems (i.e., when LCO 3.0.8a applies), it was assumed in the analysis that there will be unaffected redundant trains (or subsystems) available to mitigate the seismically-initiated LOOP accident sequences. This assumption implies that there will be at least one success path available when LCO 3.0.8a applies. Therefore, potentially high-risk configurations can be avoided by ensuring that such a success path exists when LCO 3.0.8a applies. Based on a review of the accident sequences that contribute to the risk increase associated with LCO 3.0.8a, as modeled by the simplified bounding analysis (i.e., accident sequences initiated by a seismically-induced LOOP event with concurrent loss of all safety system trains supported by the out-of-service snubbers), the following restrictions were identified to prevent potentially high-risk configurations:
 
!For PWR plants, at least one AFW train (including a minimum set of supportingequipment required for its successful operation) not associated with the inoperable snubber(s), must be available when LCO 3.0.8a is used.
Table 2          Guidance for Implementing 10 CFR 50.65(a)(4)
!For BWR plants, one of the following two means of heat removal must be availablewhen LCO 3.0.8a is used:
RCDF                                              Guidance Greater than 1E-3/year                            Configuration should not normally be entered voluntarily.
SAt least one high-pressure makeup path (e.g., using high-pressure coolantinjection or reactor core isolation cooling or equivalent) and heat removal capability (e.g., suppression pool cooling), including a minimum set of supporting equipment required for success, not associated with the inoperable snubber(s),
ICCDP                                          Guidance                            ICLERP Greater than 1E-5              Configuration should not normally be         Greater than 1E-6 entered voluntarily Assess non-quantifiable factors; 1E-6 to 1E-5                  Establish risk management actions                1E-7 to 1E-6 Less than 1E-6                Normal work controls                            Less than1E-7 Guidance regarding the acceptability of ICCDP and ICLERP values for a specific planned configuration and the establishment of risk management actions is also provided in NUMARC 93-01. This guidance, as shown in Table 2, states that a specific-plant configuration that is associated with ICCDP and ICLERP values below 1E-6 and 1E-7, respectively, is considered to require normal work controls. Table 1 shows that for the majority of plants (i.e.,
or SAt least one low-pressure makeup path (e.g., low-pressure coolant injection orcore spray) and heat removal capability (e.g., suppression pool cooling or shutdown cooling), including a minimum set of supporting equipment required for success, not associated with the inoperable snubber(s).For cases where one or more of the inoperable snubbers are associated with multiple trains (orsubsystems) of the same safety system (i.e., when LCO 3.0.8b applies), it was assumed in the bounding analysis (except for West Coast plants) that all safety systems are unavailable to mitigate the accident. Credit for using F&B to provide core cooling is taken for plants having F&B capability (e.g., Diablo Canyon) when a snubber impacting more than one train of the AFW system is inoperable. Credit for one AFW train to provide core cooling is taken for West Coast PWR plants with no F&B capability (e.g., San Onofre) because it has been determined that there is no single snubber whose non-functionality would disable more than one train of the AFW in a seismic event of magnitude up to the plant's SSE. Based on a review of the accident sequences that contribute to the risk increase associated with LCO 3.0.8b (as modeled by thesimplified bounding analysis) and on defense-in-depth considerations, the following restrictions were identified to prevent potentially high-risk configurations:
for all plants in the Central and East Coast category) the conservatively assessed ICCDP and ICLERP values are over an order of magnitude less than what is recommended as the threshold for the normal work controls region. For West Coast plants, the conservatively assessed ICCDP and ICLERP values are still within the normal work controls region. Thus, the risk contribution from out-of-service snubbers is within the normal range of maintenance activities carried out at a plant. Therefore, plant configurations involving out-of-service snubbers and other equipment may be entered voluntarily if supported by the results of the risk assessment required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TSs. However, this simplified bounding analysis indicates that, for West Coast plants, the provisions of LCO 3.0.8 must be used cautiously and in conjunction with appropriate management actions, especially when equipment other than snubbers is also inoperable, based on the results of configuration-specific risk assessments required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TSs.
!LCO 3.0.8b cannot be used at West Coast PWR plants with no F&B capability when asnubber whose non-functionality would disable more than one train of AFW in a seismic event of magnitude up to the plant's SSE is inoperable (it should be noted, however, that based on information provided by the industry, there is no plant that falls in this category),!When LCO 3.0.8b is used at PWR plants, at least one AFW train (including a minimumset of supporting equipment required for its successful operation) not associated with the inoperable snubber(s), or some alternative means of core cooling (e.g., F&B, firewater system or "aggressive secondary cooldown" using the steam generators) must be available, and  
The NRC staff finds that the risk assessment results support the proposed addition of LCO 3.0.8 to the TSs. The risk increases associated with this TS change will be insignificant (based on guidance provided in RGs 1.174 and 1.177) and within the range of risks associated with normal maintenance activities. In addition, LCO 3.0.8 will remove potential undesirable consequences stemming from the current inconsistent treatment of snubbers in the TSs, such as reduced frequency of snubber testing, increased safety system unavailability, and the treatment of snubbers impacting multiple trains.
!When LCO 3.0.8b is used at BWR plants, it must be verified that at least one successpath exists, using equipment not associated with the inoperable snubber(s), to provide makeup and core cooling needed to mitigate LOOP accident sequences.3.1.3Configuration Risk ManagementThe third tier of the three-tiered approach recommended in RG 1.177 involves theestablishment of an overall CRMP to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are identified. The objective of the CRMP is to manage configuration-specific risk by appropriate scheduling of plant activities and/or appropriate compensatory measures. This objective is met by licensee programs to comply with the requirements of paragraph (a)(4) of the Maintenance Rule (10 CFR 50.65) to assess and manage risk resulting from maintenance activities, and by the TS requiring risk assessments and management using (a)(4) processes if no maintenance is in progress. These programs can support licensee decision-making regarding the appropriate actions to manage risk whenever a risk-informed TS is entered. Because the 10 CFR 50.65(a)(4) guidance, the revised (May 2000) Section 11 of NUMARC 93-01, does not currently address seismic risk, licensees adopting this change must ensure that the proposed LCO 3.0.8 is considered with respect to other plant maintenance activities and integrated into the existing 10 CFR 50.65(a)(4) process, whether the process is invoked by a TS or by (a)(4) itself.3.2Summary and Conclusions The option to relocate the snubbers to a licensee controlled document, as part of theconversion to Improved STS, has resulted in non-uniform and inconsistent treatment of snubbers. Some potential undesirable consequences of this inconsistent treatment of snubbersare:!Performance of testing during crowded windows when the supported system isinoperable, with the potential to reduce the snubber testing to a minimum since the relocated snubber requirements are controlled by the licensee, !Performance of testing during crowded windows when the supported system isinoperable, with the potential to increase the unavailability of safety systems, or
 
!Performance of testing and maintenance on snubbers affecting multiple trains of thesame supported system during the 7 hours allotted before entering MODE 3 under LCO 3.0.3.To remove the inconsistency among plants in the treatment of snubbers, licensees areproposing a risk-informed TS change that introduces a delay time before entering the actions for the supported equipment when one or more snubbers are found inoperable or removed for testing. Such a delay time will provide needed flexibility in the performance of maintenance and testing during power operation and, at the same time, will enhance overall plant safety by (1) avoiding unnecessary unscheduled plant shutdowns, thus, minimizing plant transition and realignment risks; (2) avoiding reduced snubber testing, thus, increasing the availability of snubbers to perform their supporting function; (3) performing most of the required testing and maintenance during the delay time when the supported system is available to mitigate most challenges, thus avoiding increases in safety system unavailability; and (4) providing explicit risk-informed guidance in areas in which that guidance currently does not exist, such as the treatment of snubbers impacting more than one redundant train of a supported system.The risk impact of the proposed TS changes was assessed following the three-tiered approachrecommended in RG 1.177. A simplified bounding risk assessment was performed to justify the proposed TS changes. This bounding assessment assumes that the risk increase associated with the proposed addition of LCO 3.0.8 to the TS is associated with accident sequences initiated by a seismically-induced LOOP event with concurrent loss of all safety system trains supported by the out-of-service snubbers. In the case of snubbers associated with more than one train, it is assumed that all affected trains of the supported system are failed. This assumption was introduced to allow the performance of a simple bounding risk assessment approach with application to all plants and was selected due to the lack of detailed plant-specific seismic risk assessments for most plants and the lack of fragility data for piping when one or more supporting snubbers are inoperable. The impact from the addition of the proposed LCO 3.0.8 to the TS on defense-in-depth was also evaluated in conjunction with the risk
3.1.2    Identification of High-Risk Configurations The second tier of the three-tiered approach recommended in RG 1.177 involves the identification of potentially high-risk configurations that could exist if equipment, in addition to that associated with the TS change, were to be taken out of service simultaneously. Insights from the risk assessments, in conjunction with important assumptions made in the analysis and defense-in-depth considerations, were used to identify such configurations. To avoid these potentially high-risk configurations, specific restrictions to the implementation of the proposed TS changes were identified.
For cases where all inoperable snubbers are associated with only one train (or subsystem) of the impacted systems (i.e., when LCO 3.0.8a applies), it was assumed in the analysis that there will be unaffected redundant trains (or subsystems) available to mitigate the seismically-initiated LOOP accident sequences. This assumption implies that there will be at least one success path available when LCO 3.0.8a applies. Therefore, potentially high-risk configurations can be avoided by ensuring that such a success path exists when LCO 3.0.8a applies. Based on a review of the accident sequences that contribute to the risk increase associated with LCO 3.0.8a, as modeled by the simplified bounding analysis (i.e., accident sequences initiated by a seismically-induced LOOP event with concurrent loss of all safety system trains supported by the out-of-service snubbers), the following restrictions were identified to prevent potentially high-risk configurations:
!       For PWR plants, at least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable snubber(s), must be available when LCO 3.0.8a is used.
!       For BWR plants, one of the following two means of heat removal must be available when LCO 3.0.8a is used:
S        At least one high-pressure makeup path (e.g., using high-pressure coolant injection or reactor core isolation cooling or equivalent) and heat removal capability (e.g., suppression pool cooling), including a minimum set of supporting equipment required for success, not associated with the inoperable snubber(s),
or S        At least one low-pressure makeup path (e.g., low-pressure coolant injection or core spray) and heat removal capability (e.g., suppression pool cooling or shutdown cooling), including a minimum set of supporting equipment required for success, not associated with the inoperable snubber(s).
For cases where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of the same safety system (i.e., when LCO 3.0.8b applies), it was assumed in the bounding analysis (except for West Coast plants) that all safety systems are unavailable to mitigate the accident. Credit for using F&B to provide core cooling is taken for plants having F&B capability (e.g., Diablo Canyon) when a snubber impacting more than one train of the AFW system is inoperable. Credit for one AFW train to provide core cooling is taken for West Coast PWR plants with no F&B capability (e.g., San Onofre) because it has been determined that there is no single snubber whose non-functionality would disable more than one train of the AFW in a seismic event of magnitude up to the plants SSE. Based on a review of the accident
 
sequences that contribute to the risk increase associated with LCO 3.0.8b (as modeled by the simplified bounding analysis) and on defense-in-depth considerations, the following restrictions were identified to prevent potentially high-risk configurations:
!       LCO 3.0.8b cannot be used at West Coast PWR plants with no F&B capability when a snubber whose non-functionality would disable more than one train of AFW in a seismic event of magnitude up to the plants SSE is inoperable (it should be noted, however, that based on information provided by the industry, there is no plant that falls in this category),
!       When LCO 3.0.8b is used at PWR plants, at least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable snubber(s), or some alternative means of core cooling (e.g., F&B, firewater system or aggressive secondary cooldown using the steam generators) must be available, and
!       When LCO 3.0.8b is used at BWR plants, it must be verified that at least one success path exists, using equipment not associated with the inoperable snubber(s), to provide makeup and core cooling needed to mitigate LOOP accident sequences.
3.1.3  Configuration Risk Management The third tier of the three-tiered approach recommended in RG 1.177 involves the establishment of an overall CRMP to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are identified. The objective of the CRMP is to manage configuration-specific risk by appropriate scheduling of plant activities and/or appropriate compensatory measures. This objective is met by licensee programs to comply with the requirements of paragraph (a)(4) of the Maintenance Rule (10 CFR 50.65) to assess and manage risk resulting from maintenance activities, and by the TS requiring risk assessments and management using (a)(4) processes if no maintenance is in progress. These programs can support licensee decision-making regarding the appropriate actions to manage risk whenever a risk-informed TS is entered. Because the 10 CFR 50.65(a)(4) guidance, the revised (May 2000) Section 11 of NUMARC 93-01, does not currently address seismic risk, licensees adopting this change must ensure that the proposed LCO 3.0.8 is considered with respect to other plant maintenance activities and integrated into the existing 10 CFR 50.65(a)(4) process, whether the process is invoked by a TS or by (a)(4) itself.
3.2    Summary and Conclusions The option to relocate the snubbers to a licensee controlled document, as part of the conversion to Improved STS, has resulted in non-uniform and inconsistent treatment of snubbers. Some potential undesirable consequences of this inconsistent treatment of snubbers are:
!       Performance of testing during crowded windows when the supported system is inoperable, with the potential to reduce the snubber testing to a minimum since the relocated snubber requirements are controlled by the licensee,
 
                                                  !       Performance of testing during crowded windows when the supported system is inoperable, with the potential to increase the unavailability of safety systems, or
!       Performance of testing and maintenance on snubbers affecting multiple trains of the same supported system during the 7 hours allotted before entering MODE 3 under LCO 3.0.3.
To remove the inconsistency among plants in the treatment of snubbers, licensees are proposing a risk-informed TS change that introduces a delay time before entering the actions for the supported equipment when one or more snubbers are found inoperable or removed for testing. Such a delay time will provide needed flexibility in the performance of maintenance and testing during power operation and, at the same time, will enhance overall plant safety by (1) avoiding unnecessary unscheduled plant shutdowns, thus, minimizing plant transition and realignment risks; (2) avoiding reduced snubber testing, thus, increasing the availability of snubbers to perform their supporting function; (3) performing most of the required testing and maintenance during the delay time when the supported system is available to mitigate most challenges, thus avoiding increases in safety system unavailability; and (4) providing explicit risk-informed guidance in areas in which that guidance currently does not exist, such as the treatment of snubbers impacting more than one redundant train of a supported system.
The risk impact of the proposed TS changes was assessed following the three-tiered approach recommended in RG 1.177. A simplified bounding risk assessment was performed to justify the proposed TS changes. This bounding assessment assumes that the risk increase associated with the proposed addition of LCO 3.0.8 to the TS is associated with accident sequences initiated by a seismically-induced LOOP event with concurrent loss of all safety system trains supported by the out-of-service snubbers. In the case of snubbers associated with more than one train, it is assumed that all affected trains of the supported system are failed. This assumption was introduced to allow the performance of a simple bounding risk assessment approach with application to all plants and was selected due to the lack of detailed plant-specific seismic risk assessments for most plants and the lack of fragility data for piping when one or more supporting snubbers are inoperable. The impact from the addition of the proposed LCO 3.0.8 to the TS on defense-in-depth was also evaluated in conjunction with the risk assessment results.
Based on this integrated evaluation, the NRC staff concludes that the proposed addition of LCO 3.0.8 to the TS would lead to insignificant risk increases, if any. Indeed, this conclusion is true without taking any credit for the removal of potential undesirable consequences associated with the current inconsistent treatment of snubbers, such as the effects of avoiding a potential reduction in the snubber testing frequency and increased safety system unavailability.
Consistent with the staffs approval and inherent in the implementation of TSTF-372, licensees interested in implementing LCO 3.0.8 must, as applicable, operate in accordance with the following stipulations:
: 1.      Appropriate plant procedures and administrative controls will be used to implement the following Tier 2 Restrictions.
(a)      At least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable snubber(s) must be available when LCO 3.0.8a is used at PWR plants.
 
(b)    At least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable snubber(s), or some alternative means of core cooling (e.g., F&B, fire water system or aggressive secondary cooldown using the steam generators), must be available when LCO 3.0.8b is used at PWR plants.
(c)    LCO 3.0.8b cannot be used by West Coast PWR plants with no F&B capability when a snubber, whose non-functionality would disable more than one train of AFW in a seismic event of magnitude up to the plants SSE, is inoperable.
(d)    BWR plants must verify, every time the provisions of LCO 3.0.8 are used, that at least one success path, involving equipment not associated with the inoperable snubber(s), exists to provide makeup and core cooling needed to mitigate LOOP accident sequences.
(e)    Every time the provisions of LCO 3.0.8 are used, licensees will be required to confirm that at least one train (or subsystem) of systems supported by the inoperable snubbers would remain capable of performing the system's required safety or support functions for postulated design loads other than seismic loads.
LCO 3.0.8 does not apply to non-seismic snubbers. In addition, a record of the design function of the inoperable snubber (i.e., seismic vs. non-seismic), the implementation of any applicable Tier 2 restrictions, and the associated plant configuration shall all be available on a recoverable basis for staff inspection.
: 2.      Should licensees implement the provisions of LCO 3.0.8 for snubbers, which include delay times to enter the actions for the supported equipment when one or more snubbers are out of service for maintenance or testing, it must be done in accordance with an overall CRMP to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are identified and avoided, as discussed in the proposed TS Bases. This objective is met by licensee programs to comply with the requirements of paragraph (a)(4) of the Maintenance Rule, 10 CFR 50.65, to assess and manage risk resulting from maintenance activities or when this process is invoked by LCO 3.0.8 or other TS. These programs can support licensee decisionmaking regarding the appropriate actions to manage risk whenever a risk-informed TS is entered. Because the 10 CFR 50.65(a)(4) guidance, the revised (May 2000) Section 11 of NUMARC 93-01, does not currently address seismic risk, licensees adopting this change must ensure that the proposed LCO 3.0.8 is considered in conjunction with other plant maintenance activities and integrated into the existing 10 CFR 50.65(a)(4) process. In the absence of a detailed seismic PRA, a bounding risk assessment, such as that utilized in this Safety Evaluation, shall be followed.
In its submittal, the licensee said that it reviewed the NRC staffs evaluation, as well as the information provided to support TSTF-372, and has concluded that the justifications presented in the TSTF proposal and NRC staff safety evaluation are applicable to DAEC and justify this amendment. Based on its own review, the staff agrees. Therefore, incorporating the aforementioned changes into the DAEC TS is acceptable.
 
==4.0    STATE CONSULTATION==
 
In accordance with the Commission's regulations, the Iowa State official was notified of the proposed issuance of the amendment. The State official had no comments.
 
==5.0    ENVIRONMENTAL CONSIDERATION==


assessment results.Based on this integrated evaluation, the NRC staff concludes that the proposed addition ofLCO 3.0.8 to the TS would lead to insignificant risk increases, if any. Indeed, this conclusion is true without taking any credit for the removal of potential undesirable consequences associated with the current inconsistent treatment of snubbers, such as the effects of avoiding a potential reduction in the snubber testing frequency and increased safety system unavailability.
The amendment changes a requirement with respect to the installation or use of a facility component located within the restricted area as defined in 10 CFR Part 20. The NRC staff has determined that the amendment involves no significant increase in the amounts, and no significant change in the types, of any effluents that may be released offsite, and that there is no significant increase in individual or cumulative occupational radiation exposure. The Commission has previously issued a proposed finding that the amendment involves no significant hazards consideration and there has been no public comment on such finding (71 FR 43534). Accordingly, the amendment meets the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9). Pursuant to 10 CFR 51.22(b) no environmental impact statement or environmental assessment need be prepared in connection with the issuance of the amendment.
Consistent with the staff's approval and inherent in the implementation of TSTF-372, licensees interested in implementing LCO 3.0.8 must, as applicable, operate in accordance with the following stipulations:1.Appropriate plant procedures and administrative controls will be used to implement thefollowing Tier 2 Restrictions.(a) At least one AFW train (including a minimum set of supporting equipmentrequired for its successful operation) not associated with the inoperable snubber(s) must be available when LCO 3.0.8a is used at PWR plants.  (b)At least one AFW train (including a minimum set of supporting equipmentrequired for its successful operation) not associated with the inoperable snubber(s), or some alternative means of core cooling (e.g., F&B, fire water system or "aggressive secondary cooldown" using the steam generators), must be available when LCO 3.0.8b is used at PWR plants.(c)LCO 3.0.8b cannot be used by West Coast PWR plants with no F&B capabilitywhen a snubber, whose non-functionality would disable more than one train of AFW in a seismic event of magnitude up to the plant's SSE, is inoperable.(d)BWR plants must verify, every time the provisions of LCO 3.0.8 are used, that atleast one success path, involving equipment not associated with the inoperable snubber(s), exists to provide makeup and core cooling needed to mitigate LOOP accident sequences.(e)Every time the provisions of LCO 3.0.8 are used, licensees will be required toconfirm that at least one train (or subsystem) of systems supported by the inoperable snubbers would remain capable of performing the system's required safety or support functions for postulated design loads other than seismic loads.
LCO 3.0.8 does not apply to non-seismic snubbers. In addition, a record of the design function of the inoperable snubber (i.e., seismic vs. non-seismic), the implementation of any applicable Tier 2 restrictions, and the associated plant configuration shall all be available on a recoverable basis for staff inspection.2.Should licensees implement the provisions of LCO 3.0.8 for snubbers, which includedelay times to enter the actions for the supported equipment when one or more snubbers are out of service for maintenance or testing, it must be done in accordance with an overall CRMP to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are identified and avoided, as discussed in the proposed TS Bases. This objective is met by licensee programs to comply with the requirements of paragraph (a)(4) of the Maintenance Rule, 10 CFR 50.65, to assess and manage risk resulting from maintenance activities or when this process is invoked by LCO 3.0.8 or other TS. These programs can support licensee decisionmaking regarding the appropriate actions to manage risk whenever a risk-informed TS is entered. Because the 10 CFR 50.65(a)(4) guidance, the revised (May 2000) Section 11 of NUMARC 93-01, does not currently address seismic risk, licensees adopting this change must ensure that the proposed LCO 3.0.8 is considered in conjunction with other plant maintenance activities and integrated into the existing 10 CFR 50.65(a)(4) process. In the absence of a detailed seismic PRA, a bounding risk assessment, such as that utilized in this Safety Evaluation, shall be followed.In its submittal, the licensee said that it reviewed the NRC staff's evaluation, as well as theinformation provided to support TSTF-372, and has concluded that the justifications presented in the TSTF proposal and NRC staff safety evaluation are applicable to DAEC and justify this amendment. Based on its own review, the staff agrees. Therefore, incorporating the aforementioned changes into the DAEC TS is acceptable. 


==4.0STATE CONSULTATION==
==6.0    CONCLUSION==
In accordance with the Commission's regulations, the Iowa State official was notified of theproposed issuance of the amendment. The State official had no comments.


==5.0ENVIRONMENTAL CONSIDERATION==
The Commission has concluded, based on the considerations discussed above, that: (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.
The amendment changes a requirement with respect to the installation or use of a facilitycomponent located within the restricted area as defined in 10 CFR Part 20. The NRC staff has determined that the amendment involves no significant increase in the amounts, and no significant change in the types, of any effluents that may be released offsite, and that there is no significant increase in individual or cumulative occupational radiation exposure. TheCommission has previously issued a proposed finding that the amendment involves no significant hazards consideration and there has been no public comment on such finding (71 FR 43534). Accordingly, the amendment meets the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9). Pursuant to 10 CFR 51.22(b) no environmental impact statement or environmental assessment need be prepared in connection with the issuance of the amendment.


==6.0CONCLUSION==
==7.0    REFERENCES==
The Commission has concluded, based on the considerations discussed above, that: (1) thereis reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.
: 1.      TSTF-372, Revision 4, Addition of LCO 3.0.8, Inoperability of Snubbers, April 23, 2004.
: 2.      Regulatory Guide 1.174, An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis, USNRC, August 1998.
: 3.      Regulatory Guide 1.177, An Approach for Plant-Specific, Risk-Informed Decisionmaking: Technical Specifications, USNRC, August 1998.
: 4.      Budnitz, R. J. et. al., An Approach to the Quantification of Seismic Margins in Nuclear Power Plants, NUREG/CR-4334, Lawrence Livermore National Laboratory, July 1985.
: 5.      Advanced Light Water Reactor Utility Requirements Document, Volume 2, ALWR Evolutionary Plant, PRA Key Assumptions and Groundrules, Electric Power Research Institute, August 1990.
: 6.      Bier V. M. et. al., Development and Application of a Comprehensive Framework for Assessing Alternative Approaches to Snubber Reduction, International Topical


==7.0REFERENCES==
Conference on Probabilistic Safety Assessment and Risk Management PSA 87, Swiss Federal Institute of Technology, Zurich, August 30-September 4, 1987.
1.TSTF-372, Revision 4, "Addition of LCO 3.0.8, Inoperability of Snubbers," April 23, 2004.2.Regulatory Guide 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis," USNRC, August 1998.3.Regulatory Guide 1.177, "An Approach for Plant-Specific, Risk-InformedDecisionmaking: Technical Specifications," USNRC, August 1998.4.Budnitz, R. J. et. al., "An Approach to the Quantification of Seismic Margins in NuclearPower Plants," NUREG/CR-4334, Lawrence Livermore National Laboratory, July 1985.5.Advanced Light Water Reactor Utility Requirements Document, Volume 2, ALWREvolutionary Plant, PRA Key Assumptions and Groundrules, Electric Power Research Institute, August 1990.6.Bier V. M. et. al., "Development and Application of a Comprehensive Framework forAssessing Alternative Approaches to Snubber Reduction,"  International Topical  Conference on Probabilistic Safety Assessment and Risk Management PSA '87, SwissFederal Institute of Technology, Zurich, August 30-September 4, 1987.7.NUREG-1488, "Revised Livermore Seismic Hazard Estimates for Sixty-Nine NuclearPower Plant Sites East of the Rocky Mountains," April 1994.8.NEI, Revised Section 11 of Revision 2 of NUMARC 93-01, May 2000.
: 7. NUREG-1488, Revised Livermore Seismic Hazard Estimates for Sixty-Nine Nuclear Power Plant Sites East of the Rocky Mountains, April 1994.
9.Regulatory Guide 1.182, "Assessing and Managing Risk Before Maintenance Activitiesat Nuclear Power Plants," May 2000.     Principal Contributors:T. TjaderE. ThomasDate: December 14, 2006}}
: 8. NEI, Revised Section 11 of Revision 2 of NUMARC 93-01, May 2000.
: 9. Regulatory Guide 1.182, Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants, May 2000.
Principal Contributors: T. Tjader E. Thomas Date: December 14, 2006}}

Latest revision as of 22:51, 22 March 2020

License Amendment 263 Regarding Inoperability of Snubbers
ML063330044
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 12/14/2006
From: Richard Ennis
NRC/NRR/ADRO/DORL/LPLIII-1
To: Vanmiddlesworth G
Duane Arnold
R. Ennis
References
TAC MD1393
Download: ML063330044 (15)


Text

December 14, 2006 Mr. Gary Van Middlesworth Vice President Duane Arnold Energy Center 3277 DAEC Road Palo, Iowa 52324-9785

SUBJECT:

DUANE ARNOLD ENERGY CENTER - ISSUANCE OF AMENDMENT RE: INOPERABILITY OF SNUBBERS (TAC NO. MD1393)

Dear Mr. Van Middlesworth:

The U.S. Nuclear Regulatory Commission (NRC or the Commission) has issued the enclosed Amendment No. 263 to Facility Operating License No. DPR-49 for the Duane Arnold Energy Center. The amendment consists of changes to the Technical Specifications (TSs) in response to your application dated April 28, 2006.

The amendment modifies the TS requirements for inoperable snubbers by adding Limiting Condition for Operation 3.0.8. This change is based on the NRC-approved Technical Specification Task Force (TSTF) standard TS change TSTF-372, Revision 4. A notice of availability for this TS improvement using the consolidated line item improvement process was published in the Federal Register on May 4, 2005 (70 FR 23252).

A copy of the Safety Evaluation is also enclosed. A Notice of Issuance will be included in the Commission's next biweekly Federal Register notice.

Sincerely,

/RA/

Richard B. Ennis, Senior Project Manager Plant Licensing Branch III-1 Division of Licensing Project Management Office of Nuclear Reactor Regulation Docket No. 50-331

Enclosures:

1. Amendment No. 263 to License No. DPR-49
2. Safety Evaluation cc w/encls: See next page

ML063330044 Package: ML063330036 TS: ML063530703 OFFICE LPL3-1/PM LPL3-1/LA ITSB/BC* OGC LPL3-1/BC NAME REnnis THarris TKobetz LRaghavan DATE 12/5/06 12/5/06 5/18/06 12/12/06 12/14/06 Duane Arnold Energy Center cc:

Mr. J. A. Stall Mr. M. Warner Senior Vice President, Nuclear and Chief Vice President, Nuclear Operations Nuclear Officer Support Florida Power & Light Company Florida Power & Light Company P. O. Box 14000 P. O. Box 14000 Juno Beach, FL 33408-0420 Juno Beach, FL 33408-0420 Mr. M. S. Ross Mr. D. A. Curtland Managing Attorney Plant Manager Florida Power & Light Company Duane Arnold Energy Center P. O. Box 14000 3277 DAEC Rd.

Juno Beach, FL 33408-0420 Palo, IA 52324-9785 Mr. R. E. Helfrich Mr. R. S. Kundalkar Senior Attorney Vice President, Nuclear Engineering Florida Power & Light Company Florida Power & Light Company P. O. Box 14000 P. O. Box 14000 Juno Beach, FL 33408-0420 Juno Beach, FL 33408-0420 Mr. W. E. Webster Daniel K. McGhee Vice President, Nuclear Operations Iowa Department of Public Health Florida Power & Light Company Bureau of Radiological Health P. O. Box 14000 321 East 12th Street Juno Beach, FL 33408-0420 Lucas State Office Building, 5th Floor Des Moines, IA 50319-0075 John Bjorseth Site Director Chairman, Linn County Duane Arnold Energy Center Board of Supervisors 3277 DAEC Road 930 1st Street SW Palo, IA 52324 Cedar Rapids, IA 52404 Steven R. Catron Manager, Regulatory Affairs Duane Arnold Energy Center 3277 DAEC Road Palo, IA 52324 U. S. Nuclear Regulatory Commission Resident Inspectors Office Rural Route #1 Palo, IA 52324 Regional Administrator, Region III U.S. Nuclear Regulatory Commission Suite 210 2443 Warrenville Road Lisle, IL 60532-4351 October 12, 2006

FPL ENERGY DUANE ARNOLD, LLC DOCKET NO. 50-331 DUANE ARNOLD ENERGY CENTER AMENDMENT TO FACILITY OPERATING LICENSE Amendment No. 263 License No. DPR-49

1. The U.S. Nuclear Regulatory Commission (the Commission) has found that:

A. The application for amendment by FPL Energy Duane Arnold, LLC dated April 28, 2006, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I; B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission; C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations; D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment and paragraph 2.C.(2) of Facility Operating License No. DPR-49 is hereby amended to read as follows:

(2) Technical Specifications The Technical Specifications contained in Appendix A, as revised through Amendment No. 263, are hereby incorporated in the license. FPL Energy Duane Arnold, LLC shall operate the facility in accordance with the Technical Specifications.

3. This license amendment is effective as of its date of issuance and shall be implemented within 180 days of the date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

/RA/

L. Raghavan, Chief Plant Licensing Branch III-1 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation Date of Issuance: December 14, 2006

ATTACHMENT TO LICENSE AMENDMENT NO. 263 FACILITY OPERATING LICENSE NO. DPR-49 DOCKET NO. 50-331 Replace the following page of the Facility Operating License No. DPR-49 with the attached revised page. The revised page is identified by amendment number and contain marginal lines indicating the areas of change.

REMOVE INSERT Page 3 Page 3 Replace the following pages of the Appendix A, Technical Specifications with the attached revised pages. The revised pages are identified by amendment number and contain marginal lines indicating the areas of change.

REMOVE INSERT 3.0-1 3.0-1 3.0-3 3.0-3

SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION RELATED TO AMENDMENT NO. 263 TO FACILITY OPERATING LICENSE NO. DPR-49 FPL ENERGY DUANE ARNOLD, LLC DUANE ARNOLD ENERGY CENTER DOCKET NO. 50-331

1.0 INTRODUCTION

By application dated April 28, 2006 (Agencywide Documents Access and Management System Accession No. ML061320019), FPL Energy Duane Arnold, LLC (the licensee) requested changes to the Technical Specifications (TSs) for the Duane Arnold Energy Center (DAEC)

(Facility Operating License No. DPR-49).

The proposed change would add Limiting Condition for Operation (LCO) 3.0.8 to address conditions where one or more snubbers are unable to perform their associated support function. The change is based on Technical Specification Task Force (TSTF) change traveler TSTF-372, Revision 4, which has been approved generically for the Standard Technical Specifications (STS; NUREGs-1430 - 1434) by the Nuclear Regulatory Commission (NRC or the Commission). A notice announcing the availability of this proposed TS change using the consolidated line item improvement process (CLIIP) was published in the Federal Register on May 4, 2005 (70 FR 23252). A description of TSTF-372 and its associated TS change now follows.

On April 23, 2004, the Nuclear Energy Institute Risk Informed Technical Specifications Task Force submitted a proposed change, TSTF-372, Revision 4, to the STS on behalf of the industry (TSTF-372, Revisions 1 through 3 were prior draft iterations). TSTF-372, Revision 4, is a proposal to add an LCO allowing a delay time for entering a supported system TS, when the inoperability is due solely to an inoperable snubber, if risk is assessed and managed. The postulated seismic event requiring snubbers is a low-probability occurrence, and the overall TS system safety function would still be available for the vast majority of anticipated challenges.

This proposal is one of the industrys initiatives being developed under the risk-informed TSs program. These initiatives are intended to maintain or improve safety through the incorporation of risk assessment and management techniques in the TSs, while reducing unnecessary burden and making TS requirements consistent with the Commissions other risk-informed regulatory requirements, in particular the Maintenance Rule.

The proposed change adds LCO 3.0.8 to the TSs. LCO 3.0.8 allows licensees to delay declaring an LCO not met for equipment that is supported by snubbers unable to perform their associated support functions when the risk associated with the delay is assessed and managed. This new LCO 3.0.8 states:

When one or more required snubbers are unable to perform their associated support function(s), any affected supported LCO(s) are not required to be declared not met solely for this reason if risk is assessed and managed, and:

a. the snubbers not able to perform their associated support function(s) are associated with only one train or subsystem of a multiple train or subsystem supported system or are associated with a single train or subsystem supported system and are able to perform their associated support function within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />; or
b. the snubbers not able to perform their associated support function(s) are associated with more than one train or subsystem of a multiple train or subsystem supported system and are able to perform their associated support function within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

At the end of the specified period the required snubbers must be able to perform their associated support function(s), or the affected supported system LCO(s) shall be declared not met.

2.0 REGULATORY EVALUATION

In Section 50.36 of Title 10 of the Code of Federal Regulations (10 CFR), the Commission established its regulatory requirements related to the content of the TSs. Pursuant to 10 CFR 50.36, TSs are required to include items in the following five specific categories related to station operation: (1) safety limits, limiting safety system settings, and limiting control settings; (2) LCOs; (3) surveillance requirements (SRs); (4) design features; and (5) administrative controls. The rule does not specify the particular requirements to be included in a plants TSs. As stated in 10 CFR 50.36(c)(2)(i), the Limiting conditions for operation are the lowest functional capability or performance levels of equipment required for safe operation of the facility. When a limiting condition for operation of a nuclear reactor is not met, the licensee shall shut down the reactor or follow any remedial action permitted by the technical specifications ... TS Section 3.0, on LCO and SR Applicability, provides details or ground rules for complying with the LCOs.

Snubbers are chosen in lieu of rigid supports in areas where restricting thermal growth during normal operation would induce excessive stresses in the piping nozzles or other equipment.

Although they are classified as component standard supports, they are not designed to provide any transmission of force during normal plant operations. However, in the presence of dynamic transient loadings, which are induced by seismic events as well as by plant accidents and transients, a snubber functions as a rigid support. The location and size of the snubbers are determined by stress analyses based on different combinations of load conditions, depending on the design classification of the particular piping.

Prior to the conversion to the improved STS, TS requirements applied directly to snubbers.

These requirements included:

! A requirement that snubbers be functional and in service when the supported equipment is required to be operable,

! A requirement that snubber removal for testing be done only during plant shutdown,

! A requirement that snubber removal for testing be done on a one-at-a-time basis when supported equipment is required to be operable during shutdown,

! A requirement to repair or replace within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> any snubbers, found to be inoperable during operation in Modes 1 through 4, to avoid declaring any supported equipment inoperable,

! A requirement that each snubber be demonstrated operable by periodic visual inspections, and

! A requirement to perform functional tests on a representative sample of at least 10 percent of plant snubbers, at least once every 18 months during shutdown.

In the late 1980s, a joint initiative of the NRC and industry was undertaken to improve the STS.

This effort identified the snubbers as candidates for relocation to a licensee-controlled document, based on the fact that the TS requirements for snubbers did not meet any of the four criteria in 10 CFR 50.36(c)(2)(ii) for inclusion in the improved STS. The NRC approved the relocation without placing any restriction on the use of the relocated requirements. However, this relocation resulted in different interpretations between the NRC and the industry regarding its implementation.

The NRC has stated that since snubbers are supporting safety equipment that is in the TS, the definition of OPERABILITY must be used to immediately evaluate equipment supported by a removed snubber and, if found inoperable, the appropriate TS required actions must be entered. This interpretation has, in practice, eliminated the 72-hour delay to enter the actions for the supported equipment that existed prior to the conversion to the improved STS (the only exception is if the supported system has been analyzed and determined to be OPERABLE without the snubber). The industry has argued that since the NRC approved the relocation without placing any restriction on the use of the relocated requirements, the licensee-controlled document requirements for snubbers should be invoked before the supported systems TS requirements become applicable. The industrys interpretation would, in effect, restore the 72-hour delay to enter the actions for the supported equipment that existed prior to the conversion to the improved STS. The industrys proposal would allow a time delay for all conditions, including snubber removal for testing at power.

The option to relocate the snubbers to a licensee-controlled document, as part of the conversion to improved STS, has resulted in non-uniform and inconsistent treatment of snubbers. On the one hand, plants that have relocated snubbers from their TS are allowed to change the TS requirements for snubbers under the auspices of 10 CFR 50.59, but they are not allowed a 72-hour delay before they enter the actions for the supported equipment. On the other hand, plants that have not converted to improved STS have retained the 72-hour delay if

snubbers are found to be inoperable, but they are not allowed to use 10 CFR 50.59 to change TS requirements for snubbers. It should also be noted that a few plants that converted to the improved STS chose not to relocate the snubbers to a licensee-controlled document and, thus, retained the 72-hour delay. In addition, it is important to note that, unlike plants that have not relocated, plants that have relocated can perform functional tests on the snubbers at power (as long as they enter the actions for the supported equipment) and at the same time can reduce the testing frequency (as compared to plants that have not relocated) if it is justified by 10 CFR 50.59 assessments. Some potential undesirable consequences of this inconsistent treatment of snubbers are:

! Performance of testing during crowded time period windows when the supported system is inoperable with the potential to reduce the snubber testing to a minimum since the snubber requirements that have been relocated from TSs are controlled by the licensee,

! Performance of testing during crowded windows when the supported system is inoperable with the potential to increase the unavailability of safety systems, and

! Performance of testing and maintenance on snubbers affecting multiple trains of the same supported system during the 7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> allotted before entering MODE 3 under LCO 3.0.3.

To remove the inconsistency in the treatment of snubbers among plants, the TSTF proposed a risk-informed TS change that introduces a delay time before entering the actions for the supported equipment, when one or more snubbers are found inoperable or removed for testing, if risk is assessed and managed. Such a delay time will provide needed flexibility in the performance of maintenance and testing during power operation and at the same time will enhance overall plant safety by:

! Avoiding unnecessary unscheduled plant shutdowns and, thus, minimizing plant transition and realignment risks,

! Avoiding reduced snubber testing and, thus, increasing the availability of snubbers to perform their supporting function,

! Performing most of the required testing and maintenance during the delay time when the supported system is available to mitigate most challenges and, thus, avoiding increases in safety system unavailability, and

! Providing explicit risk-informed guidance in areas in which that guidance currently does not exist, such as the treatment of snubbers impacting more than one redundant train of a supported system.

3.0 TECHNICAL EVALUATION

1 The industry submitted TSTF-372, Revision 4, Addition of LCO 3.0.8, Inoperability of Snubbers, in support of the proposed TS change. This submittal (Reference 1) documents a risk-informed analysis of the proposed TS change. Probabilistic risk assessment (PRA) results and insights are used, in combination with deterministic and defense-in-depth arguments, to identify and justify delay times for entering the actions for the supported equipment associated with inoperable snubbers at nuclear power plants. This is in accordance with guidance provided in Regulatory Guides (RGs) 1.174 and 1.177 (References 2 and 3, respectively).

The risk impact associated with the proposed delay times for entering the TS actions for the supported equipment can be assessed using the same approach as for allowed completion time (CT) extensions. Therefore, the risk assessment was performed following the three-tiered approach recommended in RG 1.177 for evaluating proposed extensions in currently allowed CTs:

! The first tier involves the assessment of the change in plant risk due to the proposed TS change. Such risk change is expressed (1) by the change in the average yearly core damage frequency (CDF) and the average yearly large early release frequency (LERF) and (2) by the incremental conditional core damage probability (ICCDP) and the incremental conditional large early release probability (ICLERP). The assessed CDF and LERF values are compared to acceptance guidelines, consistent with the Commissions Safety Goal Policy Statement as documented in RG 1.174, so that the plants average baseline risk is maintained within a minimal range. The assessed ICCDP and ICLERP values are compared to acceptance guidelines provided in RG 1.177, which aim at ensuring that the plant risk does not increase unacceptably during the period the equipment is taken out of service.

! The second tier involves the identification of potentially high-risk configurations that could exist if equipment in addition to that associated with the change were to be taken out of service simultaneously, or other risk-significant operational factors such as concurrent equipment testing were also involved. The objective is to ensure that appropriate restrictions are in place to avoid any potential high-risk configurations.

! The third tier involves the establishment of an overall configuration risk management program (CRMP) to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are identified. The objective of the CRMP is to manage configuration-specific risk by appropriate scheduling of plant activities and/or appropriate compensatory measures.

A simplified bounding risk assessment was performed to justify the proposed addition of LCO 3.0.8 to the TS. This approach was necessitated by (1) the general nature of the proposed TS changes (i.e., they apply to all plants and are associated with an undetermined 1

The following technical evaluation is presented in terms of the bounding assessment of this change for all commercial nuclear power plants, including DAEC, performed as part of the approval of TSTF-372, Revision 4, and publication of the CLIIP notices.

number of snubbers that are not able to perform their function), (2) the lack of detailed engineering analyses that establish the relationship between earthquake level and supported system pipe failure probability when one or more snubbers are inoperable, and (3) the lack of seismic risk assessment models for most plants. The simplified risk assessment is based on the following major assumptions, which the NRC staff finds acceptable, as discussed below:

! The accident sequences contributing to the risk increase associated with the proposed TS changes are assumed to be initiated by a seismically-induced loss-of-offsite power (LOOP) event with concurrent loss of all safety system trains supported by the out-of-service snubbers. In the case of snubbers associated with more than one train (or subsystem) of the same system, it is assumed that all affected trains (or subsystems) of the supported system are failed. This assumption was introduced to allow the performance of a simple bounding risk assessment approach with application to all plants. This approach was selected due to the lack of detailed plant-specific seismic risk assessments for most plants and the lack of fragility data for piping when one or more supporting snubbers are inoperable.

! The LOOP event is assumed to occur due to the seismically-induced failure of the ceramic insulators used in the power distribution systems. These ceramic insulators have a high confidence (95 percent) of low probability (5 percent) of failure (HCLPF) of about 0.1g, expressed in terms of peak ground acceleration. Thus, a magnitude 0.1g earthquake is conservatively assumed to have 5 percent probability of causing a LOOP initiating event. The fact that no LOOP events caused by higher magnitude earthquakes were considered is justified because (1) the frequency of earthquakes decreases with increasing magnitude and (2) historical data (References 4 and 5) indicate that the mean seismic capacity of ceramic insulators (used in seismic PRAs), in terms of peak ground acceleration, is about 0.3g, which is significantly higher than the 0.1g HCLPF value. Therefore, the simplified analysis, even though it does not consider LOOP events caused by earthquakes of a magnitude higher than 0.1g, bounds a detailed analysis that would use mean seismic failure probabilities (fragilities) for the ceramic insulators.

! Analytical and experimental results obtained in the mid-1980s as part of the industrys Snubber Reduction Program (References 4 and 6) indicated that piping systems have large margins against seismic stress. The assumption that a magnitude 0.1g earthquake would cause the failure of all safety system trains supported by the out-of-service snubbers is very conservative, because safety piping systems could withstand much higher seismic stresses even when one or more supporting snubbers are out of service. The actual piping failure probability is a function of the stress allowable and the number of snubbers removed for maintenance or testing. Since the licensee controlled testing is done on only a small (about 10 percent) representative sample of the total snubber population, typically only a few snubbers supporting a given safety system are out for testing at a time. Furthermore, since the testing of snubbers is a planned activity, licensees have flexibility in selecting a sample set of snubbers for testing from a much larger population by conducting configuration-specific engineering and/or risk assessments. Such a selection of snubbers for testing provides confidence that the supported systems would perform their functions in the presence of a design-basis earthquake and other dynamic loads and, in any case, the risk impact of the activity will remain within the limits of acceptability defined in risk-informed RGs 1.174 and 1.177.

! The analysis assumes that one train (or subsystem) of all safety systems is unavailable during snubber testing or maintenance (an entire system is assumed unavailable if a removed snubber is associated with both trains of a two-train system). This is a very conservative assumption for the case of corrective maintenance, since it is unlikely that a visual inspection will reveal that one or more snubbers across all supported systems are inoperable. This assumption is also conservative for the case of the licensee-controlled testing of snubbers, since such testing is performed only on a small representative sample.

! In general, no credit is taken for recovery actions and alternative means of performing a function, such as the function performed by a system assumed failed (e.g., when LCO 3.0.8b applies). However, most plants have reliable alternative means of performing certain critical functions. For example, feed and bleed (F&B) can be used to remove heat in most pressurized-water reactors (PWRs) when auxiliary feedwater (AFW), the most important system in mitigating LOOP accidents, is unavailable.

Similarly, if high-pressure makeup (e.g., reactor core isolation cooling) and heat removal capability (e.g., suppression pool cooling) are unavailable in boiling-water reactors (BWRs), reactor depressurization in conjunction with low-pressure makeup (e.g., low-pressure coolant injection) and heat removal capability (e.g., shutdown cooling) can be used to cool the core. A 10 percent failure probability for recovery actions to provide core cooling using alternative means is assumed for Diablo Canyon, the only West Coast PWR plant with F&B capability, when a snubber impacting more than one train of the AFW system (i.e., when LCO 3.0.8b is applicable) is out of service. This failure probability value is significantly higher than the value of 2.2E-2 used in Diablo Canyons PRA. Furthermore, Diablo Canyon has analyzed the impact of a single limiting snubber failure, and concluded that no single snubber failure would impact two trains of the AFW. No credit for recovery actions to provide core cooling using alternative means is necessary for West Coast PWR plants with no F&B capability, because it has been determined that there is no single snubber whose non-functionality would disable two trains of an AFW in a seismic event of magnitude up to the plants safe shutdown earthquake (SSE). It should be noted that a similar credit could have been applied to most Central and Eastern U.S. plants, but this was not necessary to demonstrate the low-risk impact of the proposed TS change due to the lower earthquake frequencies at Central and Eastern U.S. plants as compared to West Coast plants.

! The earthquake frequency at the 0.1g level was assumed to be 1E-3/year for Central and Eastern U.S. plants and 1E-1/year for West Coast plants. Each of these two values envelop the range of earthquake frequency values at the 0.1g level, for Eastern U.S.

and West Coast sites, respectively (References 5 and 7).

! The risk impact associated with non-LOOP accident sequences (e.g., seismically initiated loss-of-coolant accident (LOCA) or anticipated transient without scram sequences) was not assessed. However, this risk impact is small compared to the risk impact associated with the LOOP accident sequences modeled in the simplified bounding risk assessment. Non-LOOP accident sequences, due to the ruggedness of nuclear power plant designs, require seismically-induced failures that occur at earthquake levels above 0.3g. Thus, the frequency of earthquakes initiating non-LOOP accident sequences is much smaller than the frequency of seismically-initiated LOOP

events. Furthermore, because of the conservative assumption made for LOOP sequences that a 0.1g level earthquake would fail all piping associated with inoperable snubbers, non-LOOP sequences would not include any more failures associated with inoperable snubbers than would LOOP sequences. Therefore, the risk impact of inoperable snubbers associated with non-LOOP accident sequences is small compared to the risk impact associated with the LOOP accident sequences modeled in the simplified bounding risk assessment.

! The risk impact of dynamic loadings other than seismic loads is not assessed. These shock-type loads include thrust loads, blowdown loads, waterhammer loads, steamhammer loads, LOCA loads, and pipe rupture loads. However, there are some important distinctions between non-seismic (shock-type) loads and seismic loads which indicate that, in general, the risk impact of the out-of-service snubbers is smaller for non-seismic loads than for seismic loads. First, while a seismic load affects the entire plant, the impact of a non-seismic load is localized to a certain system or area of the plant. Second, although non-seismic shock loads may be higher in total force and the impact could be as much or more than seismic loads, generally they are of much shorter duration than seismic loads. Third, the impact of non-seismic loads is more plant specific, and, thus, is harder to analyze generically than is the impact of seismic loads.

For these reasons, licensees will be required to confirm, every time LCO 3.0.8a is used, that at least one train of each system that is supported by the inoperable snubber(s) would remain capable of performing the system's required safety or support functions for postulated design loads other than seismic loads.

3.1 Risk Assessment Results and Insights The results and insights from the implementation of the three-tiered approach of RG 1.177 to support the proposed addition of LCO 3.0.8 to the TS are summarized and evaluated in the following Sections 3.1.1 to 3.1.3.

3.1.1 Risk Impact The bounding risk assessment approach, discussed in Section 3.0, was implemented generically for all U.S. operating nuclear power plants. Risk assessments were performed for two categories of plants, Central and East Coast plants and West Coast plants, based on historical seismic hazard curves (earthquake frequencies and associated magnitudes). The first category, Central and East Coast plants, includes the vast majority of the U.S. nuclear power plant population (Reference 7). For each category of plants, two risk assessments were performed:

! The first risk assessment applies to cases where all inoperable snubbers are associated with only one train (or subsystem) of the impacted safety systems. It was conservatively assumed that a single train (or subsystem) of each safety system is unavailable. It was also assumed that the probability of non-mitigation using the unaffected redundant trains (or subsystems) is 2 percent. This is a conservative value, given that for core damage to occur under those conditions, two or more failures are required.

! The second risk assessment applies to the case where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of the same safety

systems. It was assumed in this bounding analysis, except for West Coast PWR plants, that all safety systems are unavailable to mitigate the accident. Credit for using F&B to provide core cooling is taken for plants having F&B capability (e.g., Diablo Canyon) when a snubber impacting more than one train of the AFW system is inoperable. Credit for one AFW train to provide core cooling is taken for West Coast PWR plants with no F&B capability (e.g., San Onofre), because it has been determined that there is no single snubber whose non-functionality would disable two trains of the AFW in a seismic event of a magnitude up to the plants SSE.

The results of the performed risk assessments, in terms of core damage and large early release risk impacts, are summarized in Table 1. The first row lists the conditional risk increase, in terms of CDF (core damage frequency), RCDF, caused by the out-of-service snubbers (as assumed in the bounding analysis). The second and third rows list the ICCDP (incremental conditional core damage probability) and the ICLERP (incremental conditional large early release probability) values, respectively. For the case where all inoperable snubbers are associated with only one train (or subsystem) of the supported safety systems, the ICCDP was obtained by multiplying the corresponding RCDF value by the time fraction of the proposed 72-hour delay to enter the actions for the supported equipment. For the case where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of the same safety system, the ICCDP was obtained by multiplying the corresponding RCDF value by the time fraction of the proposed 12-hour delay to enter the actions for the supported equipment. The ICLERP values were obtained by multiplying the corresponding ICCDP values by 0.1 (i.e., by assuming that the ICLERP value is an order of magnitude less than the ICCDP).

This assumption is conservative, because containment bypass scenarios, such as steam generator tube rupture accidents and interfacing system LOCAs, would not be uniquely affected by the out-of-service snubbers. Finally, the fourth and fifth rows list the assessed CDF and LERF values, respectively. These values were obtained by dividing the corresponding ICCDP and ICLERP values by 1.5 (i.e., by assuming that the snubbers are tested every 18 months, as was the case before the snubbers were relocated to a licensee-controlled document). This assumption is reasonable because (1) it is not expected that licensees would test the snubbers more often than what used to be required by the TS, and (2) testing of snubbers is associated with higher risk impact than is the average corrective maintenance of snubbers found inoperable by visual inspection (testing is expected to involve significantly more snubbers out of service than corrective maintenance). The assessed CDF and LERF values are compared to acceptance guidelines, consistent with the Commissions Safety Goal Policy Statement as documented in RG 1.174, so that the plants average baseline risk is maintained within a minimal range. This comparison indicates that the addition of LCO 3.0.8 to the existing TS would have an insignificant risk impact.

Table 1 Bounding Risk Assessment Results for Snubbers Impacting a Single Train and Multiple Trains of a Supported System Central and East Coast Plants West Coast Plants Single Train Multiple Train Single Train Multiple Train RCDF/yr 1E-6 5E-6 1E-4 5E-4 ICCDP 8E-9 7E-9 8E-7 7E-7 ICLERP 8E-10 7E-10 8E-8 7E-8 CDF/yr 5E-9 5E-9 5E-7 5E-7 LERF/yr 5E-10 5E-10 5E-8 5E-8 The assessed CDF and LERF values meet the acceptance criteria of 1E-6/year and 1E-7/year, respectively, based on guidance provided in RG 1.174. This conclusion is true without taking any credit for the removal of potential undesirable consequences associated with the current inconsistent treatment of snubbers (e.g., reduced snubber testing frequency, increased safety system unavailability, and treatment of snubbers impacting multiple trains) discussed in Section 1 above, and given the bounding nature of the risk assessment.

The assessed ICCDP and ICLERP values are compared to acceptance guidelines provided in RG 1.177, which aim at ensuring that the plant risk does not increase unacceptably during the period the equipment is taken out of service. This comparison indicates that the addition of LCO 3.0.8 to the existing TS meets the RG 1.177 numerical guidelines of 5E-7 for ICCDP and 5E-8 for ICLERP. The small deviations shown for West Coast plants are acceptable because of the bounding nature of the risk assessments, as discussed in Section 2.

The risk assessment results of Table 1 are also compared to guidance provided in the revised Section 11 of NUMARC 93-01, Revision 2 (Reference 8), endorsed by RG 1.182 (Reference 9),

for implementing the requirements of paragraph (a)(4) of the Maintenance Rule, 10 CFR 50.65.

Such guidance is summarized in Table 2. Guidance regarding the acceptability of conditional risk increase in terms of CDF (i.e., RCDF) for a planned configuration is provided. This guidance states that a specific configuration that is associated with a CDF higher than 1E-3/year should not be entered voluntarily. Since the assessed conditional risk increase, RCDF, is significantly less than 1E-3/year, plant configurations including out-of-service snubbers and other equipment may be entered voluntarily if supported by the results of the risk assessment required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TS.

Table 2 Guidance for Implementing 10 CFR 50.65(a)(4)

RCDF Guidance Greater than 1E-3/year Configuration should not normally be entered voluntarily.

ICCDP Guidance ICLERP Greater than 1E-5 Configuration should not normally be Greater than 1E-6 entered voluntarily Assess non-quantifiable factors; 1E-6 to 1E-5 Establish risk management actions 1E-7 to 1E-6 Less than 1E-6 Normal work controls Less than1E-7 Guidance regarding the acceptability of ICCDP and ICLERP values for a specific planned configuration and the establishment of risk management actions is also provided in NUMARC 93-01. This guidance, as shown in Table 2, states that a specific-plant configuration that is associated with ICCDP and ICLERP values below 1E-6 and 1E-7, respectively, is considered to require normal work controls. Table 1 shows that for the majority of plants (i.e.,

for all plants in the Central and East Coast category) the conservatively assessed ICCDP and ICLERP values are over an order of magnitude less than what is recommended as the threshold for the normal work controls region. For West Coast plants, the conservatively assessed ICCDP and ICLERP values are still within the normal work controls region. Thus, the risk contribution from out-of-service snubbers is within the normal range of maintenance activities carried out at a plant. Therefore, plant configurations involving out-of-service snubbers and other equipment may be entered voluntarily if supported by the results of the risk assessment required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TSs. However, this simplified bounding analysis indicates that, for West Coast plants, the provisions of LCO 3.0.8 must be used cautiously and in conjunction with appropriate management actions, especially when equipment other than snubbers is also inoperable, based on the results of configuration-specific risk assessments required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TSs.

The NRC staff finds that the risk assessment results support the proposed addition of LCO 3.0.8 to the TSs. The risk increases associated with this TS change will be insignificant (based on guidance provided in RGs 1.174 and 1.177) and within the range of risks associated with normal maintenance activities. In addition, LCO 3.0.8 will remove potential undesirable consequences stemming from the current inconsistent treatment of snubbers in the TSs, such as reduced frequency of snubber testing, increased safety system unavailability, and the treatment of snubbers impacting multiple trains.

3.1.2 Identification of High-Risk Configurations The second tier of the three-tiered approach recommended in RG 1.177 involves the identification of potentially high-risk configurations that could exist if equipment, in addition to that associated with the TS change, were to be taken out of service simultaneously. Insights from the risk assessments, in conjunction with important assumptions made in the analysis and defense-in-depth considerations, were used to identify such configurations. To avoid these potentially high-risk configurations, specific restrictions to the implementation of the proposed TS changes were identified.

For cases where all inoperable snubbers are associated with only one train (or subsystem) of the impacted systems (i.e., when LCO 3.0.8a applies), it was assumed in the analysis that there will be unaffected redundant trains (or subsystems) available to mitigate the seismically-initiated LOOP accident sequences. This assumption implies that there will be at least one success path available when LCO 3.0.8a applies. Therefore, potentially high-risk configurations can be avoided by ensuring that such a success path exists when LCO 3.0.8a applies. Based on a review of the accident sequences that contribute to the risk increase associated with LCO 3.0.8a, as modeled by the simplified bounding analysis (i.e., accident sequences initiated by a seismically-induced LOOP event with concurrent loss of all safety system trains supported by the out-of-service snubbers), the following restrictions were identified to prevent potentially high-risk configurations:

! For PWR plants, at least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable snubber(s), must be available when LCO 3.0.8a is used.

! For BWR plants, one of the following two means of heat removal must be available when LCO 3.0.8a is used:

S At least one high-pressure makeup path (e.g., using high-pressure coolant injection or reactor core isolation cooling or equivalent) and heat removal capability (e.g., suppression pool cooling), including a minimum set of supporting equipment required for success, not associated with the inoperable snubber(s),

or S At least one low-pressure makeup path (e.g., low-pressure coolant injection or core spray) and heat removal capability (e.g., suppression pool cooling or shutdown cooling), including a minimum set of supporting equipment required for success, not associated with the inoperable snubber(s).

For cases where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of the same safety system (i.e., when LCO 3.0.8b applies), it was assumed in the bounding analysis (except for West Coast plants) that all safety systems are unavailable to mitigate the accident. Credit for using F&B to provide core cooling is taken for plants having F&B capability (e.g., Diablo Canyon) when a snubber impacting more than one train of the AFW system is inoperable. Credit for one AFW train to provide core cooling is taken for West Coast PWR plants with no F&B capability (e.g., San Onofre) because it has been determined that there is no single snubber whose non-functionality would disable more than one train of the AFW in a seismic event of magnitude up to the plants SSE. Based on a review of the accident

sequences that contribute to the risk increase associated with LCO 3.0.8b (as modeled by the simplified bounding analysis) and on defense-in-depth considerations, the following restrictions were identified to prevent potentially high-risk configurations:

! LCO 3.0.8b cannot be used at West Coast PWR plants with no F&B capability when a snubber whose non-functionality would disable more than one train of AFW in a seismic event of magnitude up to the plants SSE is inoperable (it should be noted, however, that based on information provided by the industry, there is no plant that falls in this category),

! When LCO 3.0.8b is used at PWR plants, at least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable snubber(s), or some alternative means of core cooling (e.g., F&B, firewater system or aggressive secondary cooldown using the steam generators) must be available, and

! When LCO 3.0.8b is used at BWR plants, it must be verified that at least one success path exists, using equipment not associated with the inoperable snubber(s), to provide makeup and core cooling needed to mitigate LOOP accident sequences.

3.1.3 Configuration Risk Management The third tier of the three-tiered approach recommended in RG 1.177 involves the establishment of an overall CRMP to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are identified. The objective of the CRMP is to manage configuration-specific risk by appropriate scheduling of plant activities and/or appropriate compensatory measures. This objective is met by licensee programs to comply with the requirements of paragraph (a)(4) of the Maintenance Rule (10 CFR 50.65) to assess and manage risk resulting from maintenance activities, and by the TS requiring risk assessments and management using (a)(4) processes if no maintenance is in progress. These programs can support licensee decision-making regarding the appropriate actions to manage risk whenever a risk-informed TS is entered. Because the 10 CFR 50.65(a)(4) guidance, the revised (May 2000) Section 11 of NUMARC 93-01, does not currently address seismic risk, licensees adopting this change must ensure that the proposed LCO 3.0.8 is considered with respect to other plant maintenance activities and integrated into the existing 10 CFR 50.65(a)(4) process, whether the process is invoked by a TS or by (a)(4) itself.

3.2 Summary and Conclusions The option to relocate the snubbers to a licensee controlled document, as part of the conversion to Improved STS, has resulted in non-uniform and inconsistent treatment of snubbers. Some potential undesirable consequences of this inconsistent treatment of snubbers are:

! Performance of testing during crowded windows when the supported system is inoperable, with the potential to reduce the snubber testing to a minimum since the relocated snubber requirements are controlled by the licensee,

! Performance of testing during crowded windows when the supported system is inoperable, with the potential to increase the unavailability of safety systems, or

! Performance of testing and maintenance on snubbers affecting multiple trains of the same supported system during the 7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> allotted before entering MODE 3 under LCO 3.0.3.

To remove the inconsistency among plants in the treatment of snubbers, licensees are proposing a risk-informed TS change that introduces a delay time before entering the actions for the supported equipment when one or more snubbers are found inoperable or removed for testing. Such a delay time will provide needed flexibility in the performance of maintenance and testing during power operation and, at the same time, will enhance overall plant safety by (1) avoiding unnecessary unscheduled plant shutdowns, thus, minimizing plant transition and realignment risks; (2) avoiding reduced snubber testing, thus, increasing the availability of snubbers to perform their supporting function; (3) performing most of the required testing and maintenance during the delay time when the supported system is available to mitigate most challenges, thus avoiding increases in safety system unavailability; and (4) providing explicit risk-informed guidance in areas in which that guidance currently does not exist, such as the treatment of snubbers impacting more than one redundant train of a supported system.

The risk impact of the proposed TS changes was assessed following the three-tiered approach recommended in RG 1.177. A simplified bounding risk assessment was performed to justify the proposed TS changes. This bounding assessment assumes that the risk increase associated with the proposed addition of LCO 3.0.8 to the TS is associated with accident sequences initiated by a seismically-induced LOOP event with concurrent loss of all safety system trains supported by the out-of-service snubbers. In the case of snubbers associated with more than one train, it is assumed that all affected trains of the supported system are failed. This assumption was introduced to allow the performance of a simple bounding risk assessment approach with application to all plants and was selected due to the lack of detailed plant-specific seismic risk assessments for most plants and the lack of fragility data for piping when one or more supporting snubbers are inoperable. The impact from the addition of the proposed LCO 3.0.8 to the TS on defense-in-depth was also evaluated in conjunction with the risk assessment results.

Based on this integrated evaluation, the NRC staff concludes that the proposed addition of LCO 3.0.8 to the TS would lead to insignificant risk increases, if any. Indeed, this conclusion is true without taking any credit for the removal of potential undesirable consequences associated with the current inconsistent treatment of snubbers, such as the effects of avoiding a potential reduction in the snubber testing frequency and increased safety system unavailability.

Consistent with the staffs approval and inherent in the implementation of TSTF-372, licensees interested in implementing LCO 3.0.8 must, as applicable, operate in accordance with the following stipulations:

1. Appropriate plant procedures and administrative controls will be used to implement the following Tier 2 Restrictions.

(a) At least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable snubber(s) must be available when LCO 3.0.8a is used at PWR plants.

(b) At least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable snubber(s), or some alternative means of core cooling (e.g., F&B, fire water system or aggressive secondary cooldown using the steam generators), must be available when LCO 3.0.8b is used at PWR plants.

(c) LCO 3.0.8b cannot be used by West Coast PWR plants with no F&B capability when a snubber, whose non-functionality would disable more than one train of AFW in a seismic event of magnitude up to the plants SSE, is inoperable.

(d) BWR plants must verify, every time the provisions of LCO 3.0.8 are used, that at least one success path, involving equipment not associated with the inoperable snubber(s), exists to provide makeup and core cooling needed to mitigate LOOP accident sequences.

(e) Every time the provisions of LCO 3.0.8 are used, licensees will be required to confirm that at least one train (or subsystem) of systems supported by the inoperable snubbers would remain capable of performing the system's required safety or support functions for postulated design loads other than seismic loads.

LCO 3.0.8 does not apply to non-seismic snubbers. In addition, a record of the design function of the inoperable snubber (i.e., seismic vs. non-seismic), the implementation of any applicable Tier 2 restrictions, and the associated plant configuration shall all be available on a recoverable basis for staff inspection.

2. Should licensees implement the provisions of LCO 3.0.8 for snubbers, which include delay times to enter the actions for the supported equipment when one or more snubbers are out of service for maintenance or testing, it must be done in accordance with an overall CRMP to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are identified and avoided, as discussed in the proposed TS Bases. This objective is met by licensee programs to comply with the requirements of paragraph (a)(4) of the Maintenance Rule, 10 CFR 50.65, to assess and manage risk resulting from maintenance activities or when this process is invoked by LCO 3.0.8 or other TS. These programs can support licensee decisionmaking regarding the appropriate actions to manage risk whenever a risk-informed TS is entered. Because the 10 CFR 50.65(a)(4) guidance, the revised (May 2000) Section 11 of NUMARC 93-01, does not currently address seismic risk, licensees adopting this change must ensure that the proposed LCO 3.0.8 is considered in conjunction with other plant maintenance activities and integrated into the existing 10 CFR 50.65(a)(4) process. In the absence of a detailed seismic PRA, a bounding risk assessment, such as that utilized in this Safety Evaluation, shall be followed.

In its submittal, the licensee said that it reviewed the NRC staffs evaluation, as well as the information provided to support TSTF-372, and has concluded that the justifications presented in the TSTF proposal and NRC staff safety evaluation are applicable to DAEC and justify this amendment. Based on its own review, the staff agrees. Therefore, incorporating the aforementioned changes into the DAEC TS is acceptable.

4.0 STATE CONSULTATION

In accordance with the Commission's regulations, the Iowa State official was notified of the proposed issuance of the amendment. The State official had no comments.

5.0 ENVIRONMENTAL CONSIDERATION

The amendment changes a requirement with respect to the installation or use of a facility component located within the restricted area as defined in 10 CFR Part 20. The NRC staff has determined that the amendment involves no significant increase in the amounts, and no significant change in the types, of any effluents that may be released offsite, and that there is no significant increase in individual or cumulative occupational radiation exposure. The Commission has previously issued a proposed finding that the amendment involves no significant hazards consideration and there has been no public comment on such finding (71 FR 43534). Accordingly, the amendment meets the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9). Pursuant to 10 CFR 51.22(b) no environmental impact statement or environmental assessment need be prepared in connection with the issuance of the amendment.

6.0 CONCLUSION

The Commission has concluded, based on the considerations discussed above, that: (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.

7.0 REFERENCES

1. TSTF-372, Revision 4, Addition of LCO 3.0.8, Inoperability of Snubbers, April 23, 2004.
2. Regulatory Guide 1.174, An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis, USNRC, August 1998.
3. Regulatory Guide 1.177, An Approach for Plant-Specific, Risk-Informed Decisionmaking: Technical Specifications, USNRC, August 1998.
4. Budnitz, R. J. et. al., An Approach to the Quantification of Seismic Margins in Nuclear Power Plants, NUREG/CR-4334, Lawrence Livermore National Laboratory, July 1985.
5. Advanced Light Water Reactor Utility Requirements Document, Volume 2, ALWR Evolutionary Plant, PRA Key Assumptions and Groundrules, Electric Power Research Institute, August 1990.
6. Bier V. M. et. al., Development and Application of a Comprehensive Framework for Assessing Alternative Approaches to Snubber Reduction, International Topical

Conference on Probabilistic Safety Assessment and Risk Management PSA 87, Swiss Federal Institute of Technology, Zurich, August 30-September 4, 1987.

7. NUREG-1488, Revised Livermore Seismic Hazard Estimates for Sixty-Nine Nuclear Power Plant Sites East of the Rocky Mountains, April 1994.
8. NEI, Revised Section 11 of Revision 2 of NUMARC 93-01, May 2000.
9. Regulatory Guide 1.182, Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants, May 2000.

Principal Contributors: T. Tjader E. Thomas Date: December 14, 2006