ML20059H375: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML20059H375
| number = ML20059H375
| issue date = 10/05/1993
| issue date = 10/05/1993
| title = Essential Chilled Water Load.
| title = Essential Chilled Water Load
| author name = Starks V
| author name = Starks V
| author affiliation = HOUSTON LIGHTING & POWER CO.
| author affiliation = HOUSTON LIGHTING & POWER CO.

Latest revision as of 21:46, 6 January 2021

Essential Chilled Water Load
ML20059H375
Person / Time
Site: South Texas  STP Nuclear Operating Company icon.png
Issue date: 10/05/1993
From: Starks V
HOUSTON LIGHTING & POWER CO.
To:
Shared Package
ML20059H343 List:
References
MC-6412, MC-6412-R, MC-6412-R00, NUDOCS 9311100066
Download: ML20059H375 (105)


Text

{{#Wiki_filter:. C-a 2) SIP 3053 (10/91j DEP-3.070 Q{_ hy[L SOUTH TEXAS PROJECT ELECTRIC GENERATING STATION HOUSTON LIGHTING & POWER COMPANY PRELIM. , FINAL r CALCULATION COVER SHEET void i BUILDING / AREA / SYSTEMS: b I UNIT: 1

SUBJECT:

E 5564/TIA L Cri f u Eb VlA762 Lo4 A DISCtPUNE: [IbfII I OUAUTY CLASS: OBJECTIVE SEE SHT~ 7 ' L

                                                                                          )

i i P l l [ l SCOPE SEE SRT. 7 i l . t SueuAsv Or RESutTS

                                                                                      ?   !

sEe surs. 9 - /V " '

                                                                                       !  l I

l t TOT AL NO OF SHEETS I ' t/31 plo 'l4:skJ/es ' REV NO. O PREPARER !jkfs REVIEWER %L i ' l  ! ISSUE DATE 1,{}q%3 9311100066 931105 PDR il ADOCK 05000498 E P PDR ]_5 . _ ,

[ 03007C(12/G7) SOUTH TEXAS PRJJECT ELECTR:C CENERA'IING STAT;ON OEP-207Q INDEX TO OALCULATION FtEVISIONS SUBJECT ESS 44 WN 'o A b UNIT /S I i CALC. NO. MC- M l L SHEET A OF WJI CALC. CHANCE AFFECTED MODIFIED t REV. DOC. DESCRIPTION OF CHANGES CALC. CALC.  ! NO. N O. SHT. SHT. NO. ! 1 h i Q AV b (' C. kk i t r

                                                                                                 +

s e I i l 1

i l l ve e;419 3 of 43] CALC NO. Sgi or I PROJECT l REV. PREPARERIDATE REVIEWTRlDATE ELECTRICGENERATINGSTATION I HOUSTON UGHilNG &POWIR o g4 wr ff g f,j,7 l GENERAL COMPUTATION SHEET SUBJECT UNIT is i TABLE OF CONTENTS  ; SECTION PAGE I. PURPOSE 7 II. SCOPE 7 4 III.

SUMMARY

OF RESULTS 8 IV. DISCUSSION 15 A. SYSTEM DESCRIPTION 15 B. HISTORICAL PERSPECTIVE 16 C.

SUMMARY

OF METHODS 17 D.

SUMMARY

OF SPREADSHEETS 19 V. ASSUMPTIONS 24 , VI. REFERENCES 28 I VII. CALCULATION 33 A. Spreadsheet Model Description 33

1. EAB HVAC Model 33 ,
2. Control Room Envelope Model 34
3. Models of Rooms with Air Handling Units 34 l B. Failure of One Safety Injection Train 38
1. EAB 38
2. Control Room Envelope 42 45
3. CCW / Essential Chiller Room
4. Electrical Penetration Room 49
5. ESF Pump Roon 50 l

1 1

Mc-6412 4 [ tlbl STP 361(1248) ggg SOUTHTEXAS PROJECT RI.V. PREPARERlDATE REVIEWERIDATE ELECTRICGENERATINGSTATION _ 4 liOUSTON UGHilNG & POWER o gg ,, . gy g ,q4, GENERAL COMPUTATION SHEET SUBJECT UNITls

6. ESF Sump Isolation Valve Room 53
7. Spent Fuel Pit Pump Room 54
8. Radwaste Control Room 56
9. Other Rooms 57 C. Failure of One Chilled Water Train 57
1. Loss of Train A 59
2. Loss of Train B 63
3. Loss of Train C 64 D. Failure of One EAB Fan 65 E. Initial Transient Coil Load 68
1. EAB Transient 68
2. Control Room Envelope Transient 80
3. Room AHU Transient 83
4. Total Trar,sient Chiller Loads 86 F. Coil Heat Transfer Model, Description & Data Sources 100 G. Sensitivity Analysis of Chilled Water Flow to Cooling Coil!L4 H. Winter Minimum Load 119 I. Winter (Cold ECW) Maximum Load 135 FIGURE 1 -- EAB HVAC SCHEMATIC 140

Mc-6412 5 oh 2Pd STP 361(12w CALC HO. SH1 OF SOUTHTMPROJECT REY. PREPARERIDATE REVIEWERIDATE ELECTRICGENERATINGSTATION HOUSTONUGHilNG & POWER o WL m -M.7 G& /ch/n GENERAL COMPUTATION SHEET SUBJECT UNRls APPENDICES 141 A. DESCRIPTION OF HEAT TRANSFER MODEL OF COOLING COIL 151 B. AS-BUILT HEAT TRANSFER DATA FOR UNIT 1 COILS 159 C. AS-BUILT HEAT TRANSFER DATA FOR UNIT 2 COILS 167 D. DESIGN DATA AND HEAT TRANSFER MODEL RESULTS 175 E. DETERMINATION OF AIR SIDE FILM COEFFICIENTS 184 F. FAN POWER TEST DATA AND HEAT IDAD 190 G. EAB AND CONTROL ROOM ENVELOPE VOLUME

SUMMARY

193 H. EAB AND CONTROL ROOM ENVELOPE TEST AIR FLOW

SUMMARY

195 I. EAB AND CONTROL ROOM ENVELOPE ELECTRICAL LOAD

SUMMARY

198 J. EAB ELECT. IDAD

SUMMARY

BEFORE DCN EC-73 201 Kl. AIR HANDLING UNIT TRANSIENT LOADS,. UNIT 1, AS-IS K2. AHU TRANSIENT IDADS, UNIT 1, REDUCED ROOM TEMPS. 204 K3. AHU TRANSIENT IDADS, UNIT 1, REDUCED TEMPS & Ch FLOW 207 AIR HANDLING UNIT TRANSIENT IDADS, UNIT 2 210 L. 215 M1. S. S. LOAD, UNIT 1, LOSS OF A TRAIN S.I. M2. S. S. LOAD, UNIT 1, IDSS OF B TRAIN S.I. 233 M3. S. S. LOAD, UNIT 1, LOSS OF C TRAIN S.I. 236 M4. S. S. LOAD, UNIT 1, LOSS OF A TRAIN CHILL WATER 239 242 M5. S. S. IDAD, UNIT 1, LOSS OF B TRAIN CHILL WATER 245 M6. S. S. LOAD, UNIT 1, IDSS OF C TRAIN CHILL WATER 248 M7. S. S. LOAD, UNIT 1, IDSS OF A TRAIN EAB FAN 251 M8. S. S. IDAD, UNIT 1, IDSS OF B TRAIN EAB FAN 254 M9. S. S. IDAD, UNIT 1, LOSS OF C TRAIN EAB FAN 257 N1. S. S. IDAD, UNIT 2, IDSS OF A TRAIN S.I. 276 N2. S. S. IDAD, UNIT 2, IDSS OF B TRAIN S.I. 279 N3. S. S. LOAD, UNIT 2, IDSS OF C TRAIN S.I. 282 N4. S. S. LOAD, UNIT 2, LOSS OF A TRAIN CHILL WATER 285 N5. S. S. IDAD, UNIT 2, LOSS OF B TRAIN CHILL WATER 288 N6. S. S. IDAD, UNIT 2, IDSS OF C TRAIN CHILL WATER S. IDAD, UNIT 2, IDSS OF A TRAIN EAB FAN 291 N7. S. 294 NB. S. S. LOAD, UNIT 2, LOSS OF B TRAIN EAB FAN LOSS'OF C TRAIN EAB FAN 297 N9. S. S. LOAD, UNIT 2,

01. STEADY STATE LOAD, 42 'F CHILL WATER 300
02. STEADY STATE LOAD, 45 *F CHILL WATER 301
03. STEADY STATE LOAD, 48 *F CHILL WATER 302
04. STEADY STATE LOAD, 51 *F CHILL WATER 303 Pl. STEADY STATE IDAD WITH LOSS OF OFF-SITE POWER, 52 *F 304 P2. STEADY STATE LOAD WITH IDSS OF OFF-SITE POWER, 42 *F 322  !

Q1. NORMAL DUAL TRAIN OPERATION, A & B TRAINS 324 342 Q2. NORMAL DUAL TRAIN OPERATION, B & C TRAINS 344  : Q3. NORMAL DUAL TRAIN OPERATION, A & C TRAINS R1. NORMAL SINGLE TRAIN OPERATION, A TRAIN 346 R2. NORMAL SINGLE TRAIN OPERATION, B TRAIN 351 i R3. NORMAL SINGLE TRAIN OPERATION,- C TRAIN 353 S1. EAB/ CONTROL ROOM TRANSIENT FROM SINGLE TRAIN, 42 *F 355 l

1 i i vc e;4 n 6 of 4 31 STP 361(1246) g SOUTH TEXAS PROJECT REV. PREPARERIDATE REVIEWERIDATE  ! ELECTRICGENERATINGSTATiON HOUSTONUGHT!NG & POWER 6 Vf/- #-5-f3 cd /eff/s GENERAL COMPUTATION SHEET SUBJECT UNITls S2. EAB/ CONTROL ROOM TRANSIENT FROM SINGLE TRAIN, 48 'F 360 S3. EAB/ CONTROL ROOM TRANSIENT FROM SINGLE TRAIN, 52 'F 365 T1. EAB/ CONTROL ROOM TRANSIENT FROM DUAL TRAIN, 42 'F 370  ; T2. EAB/ CONTROL ROOM TRANSIENT FROM DUAL TRAIN, 48 *F 375 T., . F'B/ CONTROL ROOM TRANSIENT FROM DUAL TRAIN, 52 *F 380 - I U. . JNSITIVITY ANALYSIS OF CHILLED WATER FIDW TO COOLING COIL 85 V. ESF PUMP ROOM AHU MINIMUM FLOW 389 W. ESF PUMP ROOM EFFECTIVENESS & COEFFICIENT WITH REVISED FLOHO XI. WINTER, NORMAL, SINGLE TRAIN 394 X2. WINTER, LOOP FROM SINGLE TRAIN, MINIMUM IDAD 401 l X3. WINTER, SAFETY INJECTION FROM SINGLE TRAIN, MAX. TRANSIENT 08 Y1. WINTER, NORMAL, DUAL TRAIN 413 ' Y2. WINTER, LOOP FROM DUAL TRAIN, MINIMUM LOAD 420 Y3. WINTER, SAFETY INJECTION FROM DUAL TRAIN, MAX. TRANSIENT 427 , ATTACHMENTS: 3\" DISKETTES WITH QUATTROPRO SPREADSHEETS FOR APPENDIX B . THROUGH Y3 f l i i l l i

i MC-6412 7 d 46[ STP 361(1248) CMCNO. SM OF SOUTHTEXAS PROJECT REV. PREPARERIDATE REVIEWERlDATE ELECTRICGENERATINGSTATION I HOUSTON LIGHilNG & POWER o E(L m-(- f> Q - fefg/93 GENERAL COMPUTATION SHEET  ; SUBJECT UNIT is I. PURPOSE: This is an operation analysis of the chilled water system and associated air handling units during warm weather conditions. This includes determination of the essential chiller capacity required to meet post accident requirements and analysis of the capability of the air handling units to maintain design temperature under a variety of conditions. Maximum and minimum chiller loads during winter with cold ECW temperature are also determined. . II SCOPE: This calculation covers the essential chilled water system in both STP units. This calculation supersedes calc. no. MC-5232 Rev. 3. a i i i

MC-6412 8 O( N DI

               " ' " *
  • CALC NO. SHT og SOUTHTEXAS PROJECT REV. PREPARERlDATE - REVIEWERIDATE g ELECTRICGENERATINGSTA110N HOUSTONUGHilNG & POWER o c.f4 ,, y. f 3 g fgg GENERAL COMPUTATION SHEET SUBJECT UN! Tis III

SUMMARY

OF RESULTS:

1. The installed chiller capacity of 450 tons per train is sufficient to maintain adequate chilled water return temperatures during the worst case transient conditions following LOCA. The worst case transient occurs immediately after the Air Handling Units are actuated on a Safety Injection signal, assuming all rooms served by air handling ,

units are initially at the design temperature, the EAB is the lineup resulting in maximum return air temperatures, and the control room envelope are at its maximum temperature. The maximum load occurs on Train C. The maximum load as a function of chilled water supply temperature is: l i TRAIN C CHILLER LOAD, TONS CHILL WATER SUPPLY TEMPERATURE

  • 42*F 48*F 52*F ,

FROM SINGLE TRAIN OPERATION, NO CHANGES TO 514 456 4 17 . OPERATION l FROM SINGLE TRAIN OPERATION, REDUCED LIMITS 408 354 318 l ON ROOM TEMPERATURES FROM DUAL TRAIN OPERATION, NO CHANGES TO 473 416 377  ; OPERATION FROM DUAL TRAIN OPERATION, REDUCED LIMITS 367 314 278 i ON ROOM TEMPERATURE' FROM DUAL TRAIN OPERATION, LIMITS ON ROOM 353 304 268 , 2 h TEMP. , REDUCED FLOW TO ESF PUMP ROOM CLRS

1. Assumes all restrictions described below except reduced flow to ESF Pump Room Coolers. ,
2. Assumes all restrictions described below. -

l I l s o

                                                                                                                        )

l

j 1 v r-r;a1 > 9 d 'Ihl l STP361(1248) S0lfTHTEXASPROJECT REV. PREPARERlDATE REVIEWERIDATE ELECTRICGENERATINGSTATION g HOUSTONUGHTING & POWER o 474 g_ygj g ,,gjp, GENERAL CO$4PUTATl0N SHEET UNITis SUsfECT r

2. The chilled water system can meet required safety functional  !

requirements with only the 300 ton essential chiller , operable in one or more operable train (s). There are limits on room temperatures and system operation which must be met in this case:

                        . ECW flow will be secured through any non operable 150 ton essential chiller. This is required because heat                          j can be transferred from the ECW to chilled water through the' idle chiller (by natural convention of the                       !

refrigerate) if flow is maintained on both sides. ,

  • Any non operable 150 ton essential chiller in an .

operable chilled water train will be locked out ) electrically. J Chilled flow will be maintained through the D2D ' operable 150 ton chiller in an operable chilled water  ; j train. This lineup is adopted to avoid disturbing the L} flow balance of the chilled water system. (The j advantages of increased chilled water flow through the

  • j 1

300 ton chiller have not been fully explored. This lineup may be changed in the future.) i

                         . The chilled water temperature control of the operable                         :

300 ton chiller must be set to control at 48 *F ( i 1 >

                             *F ) at maximum chiller load. This will result in a chilled water supply temperature of about 52 *F after                        !

4 l mixing with the flow through the idle 150 ton chiller.

 '                          This will maintain reasonable EAB temperatures without                       ;

l requiring throttling of chilled water.

                          + The temperature control loops for the EAB cooling coils j

must be defaulted to the accident condition. This is  ! necessary to eliminate the transient load caused by , diverting full flow through the coils on an SI signal. l The outlet air of the cooling coils will be kept reasonably close to the design value by the higher i chilled water temperature. h e i 4 I l

     -          -.--           ~..    .- .            .-

I i 1

                                                                                                                               ]

vc_s432 to eI 4 51 ~  ! STP 361(12*e CALC NO. SHT OF SOUTHTEXAS PROJECT - 1 REV. PREPARERlDATE REVIEWERl0 ATE EECRICGENERAEN 3EADON I  ! HOUSTONLIGHTING & POWER e vfl ee-MJ M /oh/t3 , GENERAL COMPUTATION SHEET j SUBJECT UNIT is

                   . Operating with a single train of EAB fans, Control Room                                                j Envelope fans, and chilled water is not permissible,                                                      '

during warm weather conditions. This does not apply to

                       " Cold ECW" operations. Single train operation may be                                                    l allowable (based on future analysis) in some " warm                                                      i' 2                       weather" conditions based on increased chiller capacity                                                   I with lower ECW temperatures, if this information becomes available from York.                                                                              t
                   . The air handling units for the Radwaste Control Room                                                      J
                      - must be locked out electrically.                   These AHU's have no                                   !

safety function and are not needed for normal . j operation. These units could be restored to service after an a loss of off-site power after verifying the j train chilled water load. s j

                    -  Chilled water flow to the ESF Pump Room Air Handling Units should be set between 37 gpm and 43 gpm, using a                                                   ,

portable ultrasonic flow device. , i

                    . Selected rooms with air' handling units served by                                                      I  i essential chilled water must be maintained below the design temperature. This may be accomplished by I

i ' operating the essential Air Handling Unit in the room during normal operation, or by maintaining reduced room j temperature using the normal HVAC system. The rooms and reduced temperatures are shown below. This is  ! necessary to eliminate the large' transient load which occurs when the air handling units are started with j high room temperatures. This restriction applies if l the associated train of chilled water is operable with only a 300 ton chiller operable. l l ROOM NUMBER TRAIN MAXIMUM ROOM TEMPERATURE EAB 001 A 75 *F ' EAB 201 B 75 *F l EAB 301 C 75 *F FHB 004 C 75 *F FHB 005 B 75 *F FHB 006 A 75 *F

                                                                                                                              .j MAB 067           A                         _104 *F j

MAB 067E B 104 *F MAB 067F C 104 *F , l 1 l l

                                                                                                                              'I    I

_,m . - . _ _, , , - - _ . _

MC-6412 11 [ 4 % g p,g - M OF SOUTHTEXAS PROJECT REV. PREPARERIDATE ! REVIEWERIDATE i ELECTRICGENERATINGSTAllON HOUSTON UGHilNG & POWER 3 q[" g_g gq_ fg' GENERALCOMPUTATION SHEET SUBJECT UNIIh

3. All air handling units are capable of maintaining maximum room design temperatures with chilled water supply temperatures up to 52 *F. With the exception of the Train C Spent Fuel Pit Cooling Pump Cubicle Air Handling Unit (3V121VAH011) in Unit 1, all AHU's can maintain design temperatures with considerably higher chilled water supply temperatures. Several of the cooling coils, most notably the ESF Pump Cubicle coolers, are capable of thermal performance greatly in excess of the design specifications.
4. Steady state results are as follows:

POST IDCA CHILLED WATER TRAIN LOADS WITHOUT LOSS OF NON-lE POWER: UNIT 1 RESULTS ARE CONTAINED IN THE FOLLOWING FILES: SINGLE FAILURE AFFECTED TRAIN A B C-M1 M2 M3 LOSS OF SAFETY INJECTION TRAIN M4 MS M6 IDSS OF CHILL WATER TRAIN M7 MB M9 LOSS OF EAB FAN

Mc-6417 12 wbl6{ STP 361(1248) CALC NO. SE OF REV. PREPARERIDATE REVIEWERIDATE NE T GSTAilON I HOUSTONUGHTING & POWER e & s-r-1.3 G49 /o/r/ta GENERAL COMPUTATION SHEET SUBJECT UNIT h CHILLER TRAIN LOADS - UNIT 1 STEADY STATE, WITH 52*F CHILLED WATER , FILE TRAIN LOAD, TONS A B C 272 297 M1 275 286 M2 M3 294 276 M4 275 285 M5 279 302 M6 280 283 M7 12' 297 298 M8 289 133 295 M9 289 295 132 l - UNIT 2 RESULTS ARE CONTAINED IN THE FOLLOWING FILES: SINGLE FAILURE AFFECTED TRAIN A B C N1 N2 N3 LOSS OF SAFETY INJECTION TRAIN N4 N5 N6 IDSS OF CHILL WATER TRAIN N7 N8 N9 IDSS OF EAB FAN l l I

MC-6412 13' t[ t/A ] STP361(1248) C/1C NO. SHI OF REV. PREPARER /DATE REVIEWERfDATE ELE NEP T GSTAtl0N HOUSTON LIGHTING & POWER o uff_. /o-y-fJ Get& (cfr/n GENERAL COMPUTATION SHEET SUBJECT UNITis CHILLER TRAIN LOADS - UNIT 2 STEADY STATE, WITH 52*F CHILLED WAYER FILE TRAIN LOAD, TONS A B C N1 262 298 N2 273 287 N3 288 270 N4 268 289 N5 286 296 N6 272 270 N7 123 285 301 N8 283 129 299 N9 283 289 134 i A representative case was analyzed with Loss of Off-Site Power. Chilled water temperatures of 52 'F and 42 *F were assumed in separate cases. The results were significantly less than the non-loop case. FILE: P1 & P2 LOCA WITH LOSS OF OFF-SITE POWER, STEADY STATE FILE TRAIN LOAD, TONS A B C P1 NA 235 241 P2 NA 255 , 258

i Mc-6412 14 rik I-l7. l

 '"'""'"                                  CALC NO.                   SHI        OF         l l

SOUTHTEXAS PROJECT REV. PREPARERIDATE REVIEWERlDATE l ELECTRICGENERATINGSTATION ( HOUSTON UGHTING & POWER o g4 fy y.fy g fo g GENERAL COMPUTATION SHEET , SUBJECT UNllh

5. Minimum chiller loads during " Cold ECW" conditions are as  ;

follows. j From dual train operation -- 108 tons From single train operation -- 121 tons

6. Maximum chiller loads during " Cold ECW" conditions are as follows: ,

t From dual train operation -- 243 tons From single train operation -- 286 tons t i 5 i h r

i i uc- m > 1s ef 4N

  " " *
  • CALC NO. SHT or  ;

SOllIHTEXAS PROJECT REV. PREPARERJDATE REVIEWERlDATE ELECTRICGENERATINGSTATION g gg HOUSTONUGHTING & POWER o 4 ,,_y_p GENERALCOMPUTATION SHEET SUiUECT UNITis IV DISCUSSION: A. SYSTEM DESCRIPTION: i The EAB has three 50% fan / cooling trains and three major air distribution headers which correspond' closely to the power trains. However, the fan / cooling trains do not match exactly A limited amount of mixing i with the air distribution systems. between trains occurs as a consequence of the air distribution duct work. This mixing and resulting air temperatures affect the cooling load on each train. While the system was designed for only 2 fan / cooling trains operating, a Safety Injection signal will start all 3 trains. Thirty minutes is assumed for operator action to restore the normal lineup and/or respond to a single failure. With one fan / cooling train not operating, the heat load from the associated distribution header is shared by the remaining trains, but not equally. Due to the number of combinations it was necessary to model the EAB air flow in a simple spreadsheet. Those single failures which result in 2 fan trains running are accurately modeled using flow rates measured during the final air balance for each Unit. Flow rates in the t case with 3 fan trains running (failure of a chilled water train) are estimated using the fan curves and system resistances implied from the air balance data. The Control Room Envelope also has 3 50% fan / cooling trains, however, the air distribution system has a common supply and return duct. Two of the three single' failures result in 3 fan trains running (for the 30 minutes allowed for operator action). Air flow rates are estimated for these cases using fan curves and implied system resistances. Actual flow rates recorded during final air balancing are used for the single failure of a SI train. The single failure of one Control Room fan train is clearly not a limiting case regarding chiller capacity. A variety of individual air handling units served by the essential chilled water system provide safety related cooling in rooms normally served by the non-safety related MAB or FHB ventilation system. Most of these air handling units are started. by a Safety Injection signal. The Radwaste Control Room (MAB 217) air handling units are served by the essential chilled water system even though this room contains no safety related i equipment. . l The control of chilled water outlet temperature functions as a l proportional controller. The minimum setpoint and proportional j 40 *F and 3 *F respectively. Both items band are preset at about ( I

MC-6412 16 oE d ;: ,1

   * " " ' "                                   CALC NO.                 SHT        OF        l i

SOWH UDAS PRCUECT ' REV. PREPARERIDATE ~ REV!EWERfDATE ELECTRICGENERATINGSTATION ( HOUSTON UGHTING & POWER o q gy w gg GENERA COMPUTATION SHEET SUBJECT UNITis are adjustable in the field. The proportional band can be adjusted between 0 & 10 *F. (Ref. 57} , B. HISTORICAL PERSPECTIVE The calculations of building and room heat loads for areas cooled by the essential chilled water system, performed for original  ; design purposes, vere highly conservative. Electrical and I & C calculations of heat losses from lighting, cables, electrical equipment, control panels, etc., used conservative methods and/or conservative vendor data. In some cases arbitrary margins were added (i.e. for cable tray losses) for future additions or additional conservatism. Calculations for mechanical components frequently used the rated motor horsepower instead of the actual brake horsepower required by the component, and added arbitrary , margin to piping heat losses. An additional margin was added to the total heat load. The result ensured the chilled water system would not be undersized. This was appropriate for original design purposes. However, actual chiller loads experienced in normal operation are only a fraction of the calculated normal chiller loads. If post accident heat loads are conservative to a similar degree, then perhaps the 300 ton essential chillers are sufficient to meet  ; post accident requirements. In addition to conservative methods to obtain room heat loads, the original design calculation took combinations of events which were mutually exclusive. For example, emergency heat loads were calculated assuming no non-safety HVAC systems were operating, but no non-class lE heat loads were lost. The original design calculations also included several non- i conservative methods or assumptions. These included not accounting for the inexact match between EAB HVAC Trains and the , train related air distribution headers, not analyzing single I failures other than loss of one Safety Injection train, not accounting for heat added by the chilled water pump, not , accounting for latent heat loads in rooms in the Fuel Handling i Building, not considering the transient affects of diverting full chill water flow through the EAB and Control Room coils, and not considering actual cooling coil performance when calculating EAB

        & Control Room latent heat loads.

Since the calculated normal and post accident heat loads in the 1 original design calculations were so much higher than actual  ; loads, the capability of the system to meet minimum chiller loads j 1 I l

Mc-6412 17 cf 43,1 STP 361(1248) g g SOUTHTEXASPROJECT REV. REVIEWERIDATE ; PREPARERIDATE ELECTRICGENERATING STATION HOUSTONUGHilNG & POWER o gg y_y_f y cog g 7, fu GENERAllCOMPUTA11014 SHEET SUBJECT UNIT h under winter conditions has been questioned. The answer to this question requires a more realistic understanding of normal and  ; post accident chiller loads, under a variety of conditions. 4 C.

SUMMARY

OF METHODS Steady state heat loads were calculated for two scenarios, and the range of applicable single failures. P The initiating events studied in this analysis are Loss of and Coolant Accident (LOCA) withoutLOOP, LOCA without Loss of Off-Site where Power normal (LOOP) operating loads LOCA with LOOP. not tripped by SI signal or lost as a consequence of the LOCA conditions are assumed to continue to operate, is the limiting event with respect to maximum steady state chiller load. In the LOCA with loss of non-class 1E power, only components with diesel or battery backed power are assumed to operate (and generate heat). Conditions are assumed consistent with LOCA, , soon after initiating recirculation from the RCB emergency sump, and before operator action is taken to shed unnecessary loads. In the LOCA without loss of non-class lE power case, conditions i are assumed consistent with LOCA, soon after initiating recirculation from the RCB emergency sump, and before operator action is taken to shed unnecessary loads. Normal lighting and other non-safety related equipment is assumed to continue to operate (and generate heat).  ; The single failures which affect area heat loads and/or heat , removal capacity are 1) loss of one EAB supply fan, 2) loss of one chilled water train, and 3) loss of one Safety Injection system train. It is not obvious a priori which of these single > failures is limiting. The steady state heat load is useful in providing insight into effects of single failures but does not represent a condition which is actually expected to occur. The thermal lag of the i building structure insures that transient conditions will dominate the heat load past the time that operators would have ' secured unnecessary equipment. The dynamic effects which are non-conservative and which therefore must be considered are: l j

           +   The room temperature with the air handling unit running will be lower than design, and lower than the normal temperature in many cases. The AHU will be removing more heat than the room heat loads until equilibrium is achieved.

( 1

i i 1 vc-6412 18 c(4 %\ l STP 361(1248) ggg SOUMID%S PRCUR?T REV. PREPARERIDATE REVIEWERIDATE I ELECTRICGENERATINGSTATION HOUSTONUGHilNG & POWER o Q  %,g g gg ..i GENERAL CO$4PUTA110N SHEET i I SUBJECT UNIT /s f

               . The lowering room temperature will cause heat stored in the                                ;

concrete walls to be released into the room.

               . The cooling coils and fans in most of the AHU's are                                       j considerably oversized, and are capable of handling a much higher heat load than design specifications indicate. The                                  l rate of heat removal immediately after the AHU is started is                               i higher than the steady state room load, in some cases,much higher.                                                                                     .
                . The Control Room and EAB cooling coil outlet temperature is                                 '

controlled by temperature control valves which control chilled water flow through the coils during normal operation. A safety injection signal diverts full chilled. j water flow through the coil. This will immediately increase the heat removal through the coil. Because the coils are  ! significantly oversized, the increased load could be significant. l The highest chilled water load will occur either immediately when i g full chill water flow is diverted through the EAB and Control l Room coils, or about 30 minutes after the LOCA, when the Safety [-

        - Injection system switches to the recirculation mode withOn single                                    l approximately 15 tons of additional piping heat loads.

failure of a chilled water train, in some cases the heat added by l the EAB fans running in the affected train adds some heat load to  ! one or both of the adjacent trains. This peaks at the 30 minutes ' assumed for operator action. ' i Attempting to load the chiller beyond its design load does not mean the chilled water system can not perform its design l function. The chiller will remove heat up to its maximum l

l capability (which will actually be a little 'aigher than rated capacity because the peak chilled water load occurs within 30 minutes of the accident, long before ECW' temperatures have j reached design) and chilled water supply temperature (to the AHU's) will be higher than design. Because the coils are i

i - virtually all oversized, chilled water supply temperatures much higher than design can be tolerated without exceeding room design  ; temperature. l i This calculation uses air flows based on flows recorded in the final air balance for each unit. The heat loads from large fans , are calculated from final air balance test data. -The data for l individual fans and distribution headers was approximately 1 constant for different modes, so average data was used in this j j calculation. The actual thermal performance of each Air Handling  ;

                                                                                                                )

1 l

1 Mc-6412 . 19 rs (N l STP 361(USB) SOUnlTDMSPROIECT  : REV. PREPARERIDATE REVIEWERIDATE El.ECTRICGENEPANGSTATION [ HOUSTONUGHilNG & POWER o 94 gg gq j GENERAL COMPUTATION SHEET , SUBJECT UNITls Unit cooling coil is predicted under actual conditions using a basic heat transfer model described in Appendix A. Actual test l air flows were used when identical Air Handling Units had  ; significantly different flows and average data was used when the  ; identical AHU's had approximately the same flow rate.  : The distribution system in the EAB results in some air exchange between trains. The amount of air exchanged and resulting air  : i mix temperature differs with each combination of EAB fans running. This calculation accounts for each of these combinations. l Several of the rooms cooled by Air Handling Units (AHU's) have , AHU's from redundant trains. Depending on the single failure ( assumed, the steady state heat load in the room may be shared between 2 coolers. The transient heat load, which depends on i initial room temperature and chilled water supply temperature,  ! treats the coolers independently. j a D.

SUMMARY

OF SPREADSHEETS: ' t The QUATTROPRO spreadsheets in Appendices B and C (and attached , computer files A:\B and A:\C) were used to determine actual i cooling coil performance for the actual air flow rates (from l Final Air Balance test results) for Units 1 and 2 respectively. Design water flow rates and other coil data were taken from coil } data sheets listed in Reference 32. Methods and equations are j explained in Appendix A. The coil thermal effectiveness "THEFF" l is calculated for use in other. spreadsheets. i i The QUATTROPRO spreadsheet in Appendix D uses the' same heat i transfer model as B & C, using the design specifications for each  ! coil. In virtually every case the calculation model predicts a  ! I higher thermal effectiveness "THEFF" than the ' design specification requires ("EFFSPEC"). For those coils purchased  ! for the current conditions, this is the expected result of  ; selecting an available vendor model to meet or exceed specified conditions. Several of the coils were originally purchased for l much different conditions than the current design specifications f reflect, and in some of these cases the coil capability calculated herein is much greater than the design specification , indicates. The higher thermal effectiveness calculated by this calculation lLs conservative for purposes of determining maximum chiller loads. This is evident particularly in the transient j analysis of room Air Handling Units, wherein the maximum load is directly proportional to thermal effectiveness. A higher thermal i ( effectiveness is not conservative in the portion of this ,

                                                                                                   'I l

l I

                                                                                                   .)
                                                                                                   -4 I
    .. m             _             . - - _ -   - - - . _ _ _ - _ .       . _     ._     ._

nc_s412 20 cf *M  ! suom CALC NO. SHT OF l SOUTHTEXASPROJECT REVIEWERIDATE  : REV. PREPARERlDATE ELECTRICGENERATINGSTATION ( HOUSIONUGHTING kPOWER o #4 n-M3 Geo "/rhy GENERALCOMPUTATION SHEET i SUBJECT UNiiis calculation that confirms the capability of the air handling  ; units to maintain room temperature with higher chilled water-temperatures. In only one case is the calculated room  ! temperature even close to the design maximum'(Unit 1 Spent Fuel Pit Pump Room C), and in this case THEFF and EFFSPEC are in good _j agreement.  ! The QUATTROPRO spreadsheet in Appendix E and attached computer file A:\E uses standard AAF coil construction and catalog sizing i data to determine air side film coefficients as a function of '[i The results "HREF" and "N" are mass velocity and number of rows. used in the heat transfer models in the previous spreadsheets. . [ The final step in the determination of HREF and N are not shown  ! on the spreadsheet, however, the results are used in the basic ' model to duplicate the AAF results. i j The QUATTROPRO spreadsheet in Appendix F and computer file A:\F shows test volts and amperes from final air balance testing, l i motor power factors and motor efficiency (if needed) from motor i data sheets, and calculates determines heat input to the air flow .l and to the room (if applicable). Heat loads for the same fan run i with different combinations did not vary significantly and were  ! j i thus averaged for use in heat load determinations,  ! l The QUATTROPRO spreadsheet in Appendix G and computer file A:\G records individual room areas, volumes, and design air flows in i l the EAB and Control Room Envelope (from References 12 & 13). } This information is used to calculate a minimum surface area surrounding the room. This is used to understand the transient l 4 ' response of these areas. l 1 The QUATTROPRO spreadsheet in Appendix H and computer file A:\H l records final air balance flows in the EAB and Control Room  ! Envelope for both Units 1 and 2, for the range of test lineups. Some data is averaged for use in other spreadsheets. l i i The QUATTROPRO spreadsheet in Appendix I and computer file A:\I i

  =

records heat loads for rooms in the EAB and Control Room (from j References 7, 12, & 13), and finds the totals for each train. . The QUATTROPRO spreadsheet in Appendix J and computer file A:\J { records the same data as Appendix I, before reevaluating non-  ! l class 1E post LOCA heat loads in DCN EC-73. This is used to  ! determine an appropriate "use factor" for non-1E cable heat loads  ; in the EAB. i 4 4 n - ,

i i Mc-6412 21 o 4 ;( j

             " " *
  • CALC NO' SHI or  ;

SOUTHTEXASPROJECT REVIEWERfDATE  ! REV. PREPARERIDATE ELECTRICGENERAUNGSTATION ( HOUSTONLIGHENG & POWER o yg~ gg g ' i GENERALCOMPUTATION SHEET SUBJECT UNIT h The QUATTROPRO spreadsheets in Appendix K1 through K3 (and  ! corresponding computer files) are used to determine the initial f load on each Unit 1 air handling unit when the room AHU's are initiated. Results are given for chill water temperatures of 42, l j 48 and 52 *F. K1 assumes all rooms start at the higher of the design temperature or Tech Spec temperature (if applicable). K2K3  ! assumes selected rooms start at reduced initial temperatures. j assumes reduced initial room temperature and reduced chill water flow to the ESF pump room coolers as described later. The total  ; for each train is found, including heat from the chill water l pump. The QUATTROPRO spreadsheets in Appendix L (and the corresponding f computer file) are used to determine the initial load on each Unit 2 air handling unit when the room AHU's are initiated. f l Results are given for chill water temperatures of 42, 48 and 52 Results are also given I "F, and all rooms at design temperature.  ! for a chill water temperature of 52 *F and selected rooms at l reduced initial temperatures. The Unit 1 loads for the limiting l train (C) are slightly higher so the remaining cases studied in Appendix K2 & K3 are not included in Appendix L. The total for 4 each train is found, including heat from the chill' water pump. The QUATTROPRO spreadsheets in Appendices M1 through M9 (Unit 1), and N1 through N9 (Unit 2) are used to determine the steady state . j j load on each chilled water train for a given set of conditions and single failures. The EAB and Control Room Envelope HVAC i systems, and individual rooms with Air Handling Units, are modeled in this spreadsheet. The output from this spreadsheet j for each case is the load on each cooling coil which uses essential chilled water and the resulting steady state area or l j room temperature, as well as the total chilled water load on each

train. The EAB model uses a trial cooling coil outlet air temperature to determine a calculated cooling coil outlet' air  !

temperature. The steady state EAB load is found by iterating the trial cooling coil outlet air temperature to match the calculated  ; temperature. In a similar manner, the Control Room Envelope j model uses a trial control room temperature to calculate the j control room temperature. The QUATTROPRO spreadsheets in Appendices 01 through 04 (and  ; corresponding computer files) are used to determine theThe' effect on l i chiller load from different chill water temperatures.  ; spreadsheet from case M1 is used, varying only the chill water _ temperature and coil outlet humidity. Individual coil loads and l total loads for 42, 45, 48, and 51 *F are found. j (

1 Mc-6412 22 c4M .l

    * * " *
  • CALC NO. SHT or  !

93(AHID33 PROJECT REV. PREPARERIDATE REVIEWERIDATE i g ELECTRICGENERATINGSTATION HOUSTONUGHilNG & POWER o g p_y_ py @ ug  ; GENERALCOMPUTATION SHEET i SUMECT UNa ts  ! The QUATTROPRO spreadsheets are in Appendices used to determine P1 & P2 (and the steady i corresponding computer files) 'I state chiller load from LOCA with loss of off-site power. The spreadsheet from case M1 is used, with changes in "use factor",  ; ventilation flows, etc. as necessary to model the loss of off- ' site power. P1 assumes 52 'F chill water while P2 assumes 42 'F chill water. i { The QUATTROPRO spreadsheets in Appendices Ql, Q2, & Q3 (and i corresponding computer files) are used to determine Control Room, and initial various steady state temperatures in the EAB, rooms with AHU"s, in normal operation with two fan trains and two chilled water trains operating. The basic Unit 2 model from case N1 is modified extensively to reflect normal operation. The i ' principle output from this spreadsheet is the EAB return header  ! temperature for each train, which is used in following analysis of transient operation. Individual room temperatures and Control Room temperatures are calculated and recorded for general The three < interest, but are not used elsewhere in this calc. j cases reflect different combinations of trains. The QUATTROPRO spreadsheets in Appendices R1, R2, & R3 (and r i

  ~

corresponding couputer files) are used to determine initial steady state temperatures from normal operation with only one  ; train of EAB fans, Control Room fans, and chilled water in .! operation. ~ The QUATTROPRO spreadsheets in Appendices S1, S2, & S3 (and l corresponding computer files) are used to determine the transient  ; load on the EAB coils and Control Room coils from a Safety i Injection signal. The 3 cases reflect chilled water temperatures  ! of 42, 48, & 52 *F. This spreadsheet _used the N1 spreadsheet as  ! the starting point. The EAB model is iterated to match return fan predetermined (starting from single train operation) l inlet temperatures. The control room model uses a trial temperature of 78 *F, without iteration. Portions of the i spreadsheet related to other rooms was deleted. .l The QUATTROPRO spreadsheets in Appendices T1, T2, & T3 (and corresponding computer files) are used to determine the transient l load on the EAB coils, etc. similar to the above set, only with i the EAB return temperatures modified to reflect normal dual train operation. li I The QUATTROPRO spreadsheet in Appendix U (and corresponding computer file) is used to determine coil coefficients with increased and decreased chilled water flow. j

MC-6412 23 of 43J

    * * "2 "                                  CALC NO.                                                                            SHT                      or SOUTHTEXASPROJECT REV. PREPARERlDATE                                                                               REVIEWIRlDATE ELECTR!CGENERATINGSTATION

( HOUSTON UGHTING & POWER o v4 g_y_fy w ,.g, GENERAL. COMPUTATION SHEET , SUBJECT UNIT is  ; The QUATTROPRO spreadsheet in Appendix V (and corresponding computer file) is used to determine a minimum acceptable flow to , the ESF Pump Room AHU. The QUATTROPRO spreadsheet in Appendix W (and corresponding computer file) is used to determine new maximum coil coefficient for a revised maximum chilled water flow rate to the ESF Pump Room AHU's. The QUATTROPRO spreadsheet in Appendix X1 (and corresponding computer file) is used to determine normal cold weather operating conditions using a single HVAC train in the control room and EAB. The EAB return header temperatures are used to determine EAB fan inlet temperatures for transient cases X2 & X3. The QUATTROPRO spreadsheet in Appendix X2 (and corresponding ' computer file) is used to determine minimum chiller loads during a IDOP from single train operation. The QUATTROPRO spreadsheet in Appendix X3 (and corresponding i computer file) is used to determine maximum EAB and Control Room Coil loads during a Safety Injection during winter (cold ECW) from single train operation. The QUATTROPRO spreadsheet in Appendix Y1 (and corresponding computer file) is used to determine normal cold weather operating conditions using two HVAC trains in the control room and EAB. The EAB return header temperatures are used to determine EAB fan i inlet temperatures for transient cases Y2 & Y3. The QUATTROPRO spreadsheet in Appendix Y2 (and corresponding  ; computer file) is used to determine minimum chiller loads during a LOOP from dual train operation. The QUATTROPRO spreadsheet in Appendix Y3 (and corresponding computer file) is used to determine maximum EAB and Control Room Coil loads during a Safety Injection during winter (cold ECW) from dual train operation. n I

l l l l w- <; 4 r 33 6W 5"*"'* CALC NO. SHT OF ' SOWHID95 PROJECT REV. FREPARERIDATE REVIEWERlDATE l ELECTRICGENERATINGSTATION i HOUSTON UGHIING& POWER 3 g p_y g g nj,jy i GENERAL COMPUTATION SHEET > SUMECT UNRis i VII. CALCULATION: A. SPREADSHEET MODEL DESCRIPTION

1. EAB HVAC MODEL The EAB HVAC system is shown schematically in Figure A1. The air flow rates measured during final air balance testing at selected points are shown in Appendix H. The flow in the air handling unit train could not be measured during final air balancing, so
  • the flows were assumed to be equally split between trains. This is also assumed in this calculation. The small variation in header flows between different fan lineups indicates fan train performance does not vary significantly between trains.

The input data required for each case includes identification of which EAB fan trains, chilled water trains, and safety injection . trains are in operation; air flow rates in the train supply ducts  ! and train battery supply ducts from Appendix H; heat loads added by EAB supply and return fans from Appendix F; and thermal ( effectiveness of the EAB coils at the' actual air flow rate. I Each coil starts with an initial trial EAB coil outlet temperature of about 58 *F for each train, and the spreadsheet  : calculates a coil outlet temperature. If chilled water supply temperature is below 52 *F, the calculated outlet temperature will be below 58 *F, and the calculated EAB load higher than the load calculated at the final iteration. For the single failure of one train of chilled water, the affected EAB coil outlet and return header are set at temperatures determined by hand l calculation. Some of the hotter air mixes with the adjacent train, increasing supply and/or return air temperatures in that , train, and thus increasing the heat removed by the coil in the  ! adjacent train. The operable trains are iterated until the calculated temperature equals the trial temperature. This < converges after several iterations. l Failure of a set of EAB fans or failure of an entire Safety Injection train (i.e. failure of the initiation signal) resultIfin one of the tested configurations during air balance testing. , all 3 trains of fans are running, as in the case of failure of a chilled water train, then header flows and battery room i ventilation flows are estimated using fan curves and air balance data. ( I

Mc-6412 34 r[ d?d STP 361(12e CALC NO. SHI OF REV. PREPARERIDATE REVIEWERIDATE ELE TRC ERATN STATION I HOUSTONLIGHTING & POWER o */L io-y-17 de b d*/r/ts GENERAL COMPUTATION SHEET SUBJECT UNITis

2. CONTROL ROOM ENVELOPE MODEL The Control Room Envelope HVAC system has a common supply and return header, so the temperature to and from the distribution system does not depend of the combination of fans running. The recirculation and makeup flow rates are based on final air balance data for the case of failure of one Safety Injection The other two train, which results in two fan trains running.

single failures result in three trains of fans running until operator action is taken to stop the unnecessary fans. . The input data identifies which fan trains are running; whether or not the system is in the Recirculation Mode (this is for future use, no recirc. case is included in this calculation); makeup, cleanup, and return air flow rates; and heat loads to air stream and room for all fans. This Data data is taken from final air for the third fan is taken balance for the two fan case. from another mode of the final air balance. Flow rates and fan heat loads are adjusted based on fan curves for the three fan Cases. (

3. MODELS OF ROOMS WITH AIR HANDLING UNITS i Several rooms combine ventilation flow with one totalorroom two cooling air handling units with cooling coils. Thus the load is shared between two or more items. We are interested in l the load to the essential chilled water system. The method of determining the load to the chilled water system is demonstrated using the CCW/ ESSENTIAL CHILLER rooms as an example.

The CCW/ ESSENTIAL CHILLER rooms each contain two air handling The  : units, one cooled by ECW and one cooled by Chilled Water. heat load taken by each cooler depends on the room temperature, As a ECW inlet temperature and Chilled Water inlet temperature. each further complication, if normal MAB HVAC flow is not lost, room has a significant ventilation flow. In the case of LOCA without loss of non-essential power, most of the rooms with air handling units receive significant ventilation flows. These rooms are handled in the same manner. (

_ . _ _ _. --_ - _ -. .m

                                                                                                                    )

i 1 MC-6412 35 e[t(OA l STP 361(1248) SOUTHTEXASPROJECT i REV. PREPARERlDATE REVIEWERIDATE ELECTRICGENERATINGSTATION ( HOUSiONLIGHTING & POWER o g4 f,_ y_ fy c,g_, /c/r/u i GENERAL COMPUTATION SHEET SUBJECT UNiifs Using the case of room MAB 067, Train A CCW/ ESSENTIAL CHILLER  ! room, as the example, the method of determining room temperature and chilled water air handling unit load is explained below. l The heat transfer in a heat exchanger, such as an air handling unit, can bc described as (Ref. 21) i Q = c

  • C,in * (T 3,, gn-Teotdin)  ?

c= Thermal Effectiveness i C,;n = product of mass flow rate times heat  ! capacity, taking the lesser of the two sides.  ; il Tg ,, in = Inlet temperature of hot fluid - , s !. f j Teord in = Inlet temperature of cold fluid r

                                                                                                                 -1 Using subscript 1 to denote the CCW Supplemental Cooler and subscript 2 to denote the Essential Chiller Air Handling Unit:                                                                                           l Q3 =   C, * (Tr-Te)
  • C=c g 3
  • C,in3 d

Tr= Room Temperature, Hot Fluid Inlet temperature l Te= ECW Inlet Temperature, Cold Fluid Inlet temperature j l Q2= C2 * (Tr-Tc) { Tc= Chilled Water Inlet Temperature 4 The sensible heat removed by ventilation flow is: j i Q,= 1.09

  • CFM * (Tr-TI) l

- Ti= Inlet ventilation air temperature } + CFM= VENTILATION AIR FLOW, CFM . t

                                                                                                                 .i i
                                                                                                                  -i 1
    -   _                        -    . . _      ..     .~      .             -.      . - . -                             ~ _ ~ .

l P r MC-6412 36 C1 43l STP361(12* CALC NO. SHT OF , REV. PREPARERIDATE REVIEWERlDATE LEC C NE il STATION j ( HOUSTONUGHTING & POWER D d 104-f3 6 to/rh 3  ! GENERAL COMPUTATION SHEET . SUBJECT UNiils Assuming steady state conditions, the total heat removed through i these pathways equals the total heat load in the room. Or = Room Heat Load, BTU /HR Qr = Q, + Q, + O2 substituting equations and rearranging terms:  ; Tr = _(Or + 1. 09

  • CFM
  • Ti + C
  • Te + C2
  • Tc) 3 (1.09
  • CFM + C3 +C)2 In the individual room calculations, the numerator of'the above .

term is called ICxTx, and the denominator is called ICx And the load on the chilled water air handling unit is: Q2= C2 *( Tr-Tc) The thermal effectiveness, c, is a function of the overall heat l transfer coefficient, heat transfer area, Cg, and Cm. The  ! g QUATTROPRO spreadsheet in Appendix B or C is used to determine thermal effectiveness of each coil for the actual coil flow as i recorded in the final air balance. . In rooms with a latent heat load, the latent heat is assumed to-added to chilled water before starting to remove sensible heat. I The initial chilled water temperature is adjusted to reflect the

              " effective chilled water temperature".                 This reflects the reality                                        !

that more condensation occurs on the coldest coils.  ! In this case I EFFECT. CH WTR TEMP = CHILL WTR TEMP + LATENT IDAD + C,,, t C,,, = 500

  • GPM i

i

                                                                                                                                       )

L i

  -._.          ..    .             .             .     -        - - . -          -               - .- ~

l i l i MC-6417 ,37 [ tlSI , sam ores) L CALCHO. SHT OF i SOUTHTEXAS PROJECT  ! REV. PREPARERIDATE REVIEWERIDATE ELECTRICGENERATINGSTATION r ( HOUSTONLIGHTING & POWER GENERAL COMPUTATION SHEET o-  % lo4-6 (Ld)- to/r/97 } SUBJECT UNilis  : If the room has a source of ventilation flow from outside air, , the 1e. tent load is calculated by:  ; Latent Load, btu /hr = 4840

  • vent flow * (H -JI g 2 1 7000 grains /1b t

vent flow in cfm H, = absolute humidity of nakeup air, grains /lb of dry air  ; i H2= absolute humidity of coil outlet, grains /lb of dry air This model serves the dual purpose of calculating chiiled water load and verifying room temperatures are acceptable with higher l than design chilled water temperature. l Several rooms have redundant air handling units. If both AHU's would be operating according to single failure assumed, the load 1 split between the AHU's is calculated. { The thermal effectiveness calculated from the design I specifications for several of the safety related coils is much -! lower than the actual thermal effectiveness calculated from basic principles. This is particularly true of coils in which the  ! design was changed by Bechtel. A lower thermal effectiveness would underestimate the load removed by the chilled water system ~ when the total room load is shared by'several coolers and/or l ventilation. Therefore the higher thermal effectiveness I calculated is conservative for purposes of calculating cooling  ! coil load. With the exception of the Train C Spent Fuel Pit i Cooling Pump Cubicle, all areas or rooms are well below design  ! temperature. i r l I k i t

                                                                                                          }

a 4

                                                                                                -[

APPENDIX N1 CALC. WO. MC-6412 SHTJ57op(sa 6,3, / /g to-4 6 -l Wo/7/PJ  ; i WARM CONDITIONS SINGLE FAILURE: 2 -t 52 DEGREE CHILL WTR TRAIN A SAFETY INJECTION 3 , ( NO LOSS OF OFF-SITE POWER 4 f UNIT 2 STEADY STATE 5 { j 6 CHILLED WATER TEMP 52 52 52 7 INLET AIR TEMPERATURE, F 95 95 95 8 HUMIDITY OF MAKEUP A!R, GRAINS 139 139 139 9 i HUMIDITY COIL OUTLET, GRAINS 66 66 66 10 11  ! CHILLED WTR FLOW, GPM 168 168 108 12 ( EAB COILS CHILL WTR FLOW COO 600 600 13 14 , TRIAL EAB COtL OtJTLET AIR TEMP 57.62 56.95 58.09 15 COMPUTED EAB COIL OUTLET AIR TEMP 56.95 58.09 16 l COMPUTED RETURN FAN INLET TEMP. 68.97 77.27 , 17  ; 18 CONTROL ROOM TEMPERATURE TRIAL 65.61 19 - CONTROL ROOM TEMPERATURE RESULT 65.60 20 21 i 22 f l TOTAL TRAIN LOAD. TONS 260 298 l 23 1 24 EAB COIL LOAD, TONS 128.04 157.70 25 f { CONTROL ROOM CO!L LOAD TONS 37.97 3S.53 26 l ELECTICAL PENETRATION ROOM 10.47 13.49 27 I ESF PUMP ROOM 46.94 46.73 28 ESF VALVE CUBICLE 1.93- 1.81 29 CCW/ESS CHILLER ROOM 13.23 11.66 30 l SFP PUMP ROOM 6.89 8.04 31 j RAD WASTE CONTROL ROOM 7.14 32 RADIATION MONITORING ROOM 2.40 33 RWST ROOM (RM PUMP) 2.70 34 CVCS VALVE ROOM 033 0.54 35  ! r BORIC AC D PUMP ROOM 0.93 36 CVCS VALVE ROOM 226 0.30 0.30 37  ; CVCS VALVE ROOM 044 0.46 38 + CHILLED WATER PUMP HEAT, TONS 10.00 10.00 39 40 i i f i i l 1 l 1 l 1

i i APPEND 1X N1 CALC. NO. MC-6412 SHT.M80F#31 b,[ d[ lo-4-93  ! 1 RAIN TRAIN TRAIN 42

                                                                               &c/sfrs     i 3

A B C 4 NO YES YES 44 . EAB TRAIN IN SERVICE? i NO YES YES 45 ( CHILLED WATER TRAIN IN OPERATION? SAFETY INJECTION SIGNAL? NO YES YES 46 47 . 48 l EAB SUFPLY HEADER FLOW 36317 25629 34625 49 2738 1939 2204 50 EAB BATTERY SUPPLY HEADER FLOW RETURN FAN LOAD TONS 16.11 15.67 15.97 51 SUPPLY FAN LOAD TONS 37.92 37.08 37.61 52 53 [ EAB COIL EFFECTIVENESS 0.8555 0.8555 0.8555 54 > CONTROL ROOM HVAC INPUT. 55 CONTROL ROOM IN RECIRC. MODE? NO NO NO 56 CONTROL ROOM TRA!N IN SERVICE? NO YES YES 57 MAKEUP FAN FLOW, CFM 1040 1011 1001 58 . MAKEUP FAN HEAT INPUT, TONS 0.7839 0.8267 0.78 ~ 59  ! CLEANUP FAN FLOW, CFM 6025 6147 6141 60 RETURN FAN FLOW, CFM 15990 16929 16174 61 RETURN FAN HEAT INPUT, TONS 6.4547 6.4353 6.1509 62 1 CLEANUP FAN HEAT INPUT, TONS 3.0801 3.1128 2.5719 C3 CLEANUP FAN LOAD TO ROOM, TONS? 0.3271 0.3306 0.2731 64 CO!L EFFECTIVENESS? 0.9476 0.9414 0.9466 65 SUPPLY FAN LOAD, TONS? 7.51 6# 7.8877 7.4533 66  ; 67 f SUPPLY FAN LOAD TO ROOM TONS? 0.7982 0.8376 0.7915 REHEATERS ON? NO 68 l 69 70 71 72 } 73 74  ; 75  ! 76 i

                                                                                          .l 1

( l I

t i i

                                                                                          ' go-VM          \

APPEND!X N1 CALC. NO. MC-6412 SHT. MOF N b. I g EAB TRAIN A (RAIN B TRAIN C - 78 79 . I SUPPLY HEADER FLOW, CFM 36317 25C29 34625 80 I BATTERY ROOM SUPPLY FLOW, CFM 2738 1939 2204 81 f NUMBER OF FANS IN OPERATION 2 2 2 82 ( SUPPLY FAN FLOW, CFM 48286 48286 83 l MAKEUP AIR FLOW, CFM 3441 3441 84  : RETURN FAN FLOW, CFM 44845 44845 85 ~! RETURN HEADER FLOW, CFM 33579 23690 32421 86 .[ SUPPLY CROSS TRAIN FLOW, CFM 36317 13661 87 [ t COIL OUTLET TEMPERATURE, F 57.62 56.95 58.09 88 t RETURN CROSS TRAIN FLOW, CFM 33579 12424 89 SUPPLY HEADER TEMPERATURE 57.18 57.18 58.09 90 { EMERGENCY UGHTING. TONS 0.74 0.20 0.74 91 , 0 0 0 92 l USE FACTOR FOR EMERG. LIGHTING 93  ! CLASS 1E EQUIP. LOAD, TONS 21.58 19.15 17.52 USE FACTOR FOR 1E EQUIP. 0 1 1 ,94 CLASS 1E CABLE LOAD, TONS 16.51 11.29 12 95 ., USE FACTOR FOR 1E CABLE O 1 1 9S 1 NORMAL LIGHTING LOAD, TONS 8.48 1.05 10.12 97  ! 98 i USE FACTOR FOR NORMAL LIGHTING 1 1 1 NON-1E EQUIP LOAD, TONS 9.28 4.00 20.18 99  ! USE FACTOR FOR NON-1E EQUIP. 1 1 1 100 NON-1E CABLE LOAD, TONS 8.44 5.14 7.55 101 [ ( USE FACTOR FOR NON-1E CABLE 0.7 0.3 0.8 102 { TOTAL HEADER LOAD, TONS 23.67 37.03 65.86 103 RETURN HEADER TEMPERATURE, F 64.94 74.67 80.46 104  : RETURN FAN INLET TEMP., F 68.97 77.27 105 j RETURN FAN LOAD TONS 15.67 15.97 ,06 g MAKEUP AIR DRY BULB, F 95 95 107 j SUPPLY FAN LOAD, TONS 37.08 37.61 108 i DELTA TEMP ACROSS RETURN FAN 3.85 3.92 109 l SUPPLY FAN INLET TEMPERATURE, F 7/ 49 82.18 110 , DELTA TEMP. ACROSS SUPPLY FAN 8.46 8.58 111 , COOLING COIL INLET TEMP., F 82.85 90.75 112 , HUMIDITY OF MAKEUP AIR, GRAINS 139 .39 113 HUMIDITY CO!L OtJTLET, GRAINS 66 66 114 LATENT LOAD, TONS 14.47 14.47 115  ; COfL EFFECTIVENESS 0.8555 0.8555 116 i EFFECTIVE CHILL WTR TEMP. 52.58 52.58 117  ; CO!L OUTLET TEMPERATURE 56.95 58.09 118 -l SENSIBLE COOLING COTL LOAD, TONS 113.57 143.23 119 .[ TOTAL COOLING Colt LOAD, TONS 128.04 157.70 120

1 i

i

APPEND!X N1 CALC. WO. MC-6492 SHT. D OF@>l h, /dIb c  :' CONTROL ROOM TRAIN TRAIN TRAIN 122 A B C 123 NUMBER OF TRAINS IN OPERATION 2 2 2 124 i MAKEUP FAN FLOW, CFM 1011 1001 125 ( MAKEUP FAN HEAT INPUT, TONS 0.8267 0.78 125 MAKEUP FILTER HEATERS, KW 4.5 4.5 127  ; MAKEUP AIR TEMPERATURE, F 117.8 117.8 128 > MAKEUP FLOW TO TRAIN 1006 1006- 129 , CLEANUP FAN FLOW, CFM 6147 6141 130 RETURN HEADER TEMPERATURE 65.61 65.61 65.61 131 RETURN FAN FLOW, CFM 16929 16174 132 RETURN FAN HEAT, TONS 6.4353 6.1509 133 RETURN FAN OUILET TEMPERATURE 69.79 69.80 134 CLEANUP FAN INLET TEMPERATURE 77.65 77.66 135 2.5719 136  ; CLEANUP FAN HEAT INPUT, TONS 3.1128 CLEANUP FAN OUTLET TEMPERATURE 83.23 82.27 137 COIL INLET FLOW, CFM 17935 17180 ,138 COIL INLET TEMPERATURE 74.40 74.26 139 , Cair 19549 18726 140 COIL EFFECTIVENESS 0.9414 0.9466 141 LATENT LOAD, TONS 4.63 4.63 142 EFFECTIVE CHILLED WTR TEMP 52.66 52.66 143 COIL SENSIBLE LOAD, TONS 33E 31.90 144 COIL OUTLETTEMPERATURE, F 53.94 53.81 145 SUPPLY FAN FLOW,CFM 17935 17180 146 i ( SUPPLY FAN LOAD. TONS 7.888 7.453 147 SUPPLY FAN OUTLET TEMP. 58.78 58.59 148 EMERGENCY LIGHTING, TONS 0.33 149 USE FACTOR FOR EMERG. LIGHTING 0 150 CLASS 1E EOUIP. LOAD, TONS 9.12 151 USE FACTOR FOR 1E EOUIP. 1 152 CLASS 1E CABLE LOAD. TONS 0.49 153 USE FACTOR FOR 1E CABLE 1 154 NORMAL LIGHTING LOAD, TONS 9.6 155 USE FACTOR FOR NORMAL UGHTING 1 156 REHEATER LOAD, TONS 30.72 157 USE FACTOR FOR REHEATERS 0 158 NON-1E CABLE LOAD, TONS 0.12 159 USE FACTOR FOR NON-1E CABLE 1 160 HEADER ELECTRICAL LOAD, TONS 19.33 1 61 PERSONNEL SENSIBLE LOAD. TONS 0.5 162 PERSONNEL LATENT LOAD, TONS 0.4 163 SUPPLY FAN MOTOR TO ROOM, TONS 0.838 0.792 164 .l CLEANUP FAN MOTOR TO ROOM, TONS 0.331 0.273 165 TCTAL HEADER SENSIBLE LOAD, TONS 22.06 166 J TOTAL HEADER FLOW, CFM 35115 167 i i

APPENDIX N1 CALC. NO. MC-6412 SHT.MI ::O N3l hd. ~ casy191 SUPPLY HEADER TEMPERAWRE, F 58.69 168 RETURN HEADER TEMPERATURE, F 65.60 169 170 SENS!BLE COOLING COIL LOAD TONS 33.34 31.90 I TOTAL COOLING CO!L LOAD, TONS 37.97 36.53 171 , e r 3

                                                            ^

MO (

APPENDIX N1 CALC. NO. MC-6412 SHT.743OF9 3) Jb. /O-[,-f3

                                                                             &ft      fy  j CCW/ ESSENTIAL CHILLER ROOM           TRA!N A TRAIN B TRAIN C          173 EMERGENCY UGHTING, WATTS                    180       180        180   174 USE FACTOR FOR EMERG. UGHTING                  0         0          0  175 I CLASS 1E EQUlP. LOAD, WATTS                    0         0          0  176 USE FACTOR FOR 1E EQUIP.                       1         1          1  177 CLASS 1E CABLE LOAD, WATTS                 1540      1680       1503   178              j USE FACTOR FOR 1E CABLE                        1         1          1  179              l NORMAL LIGHTING LOAD, WATTS                1656      1380      2116    180              j USE FACTOR FOR NORMAL UGHTING                  1         1          1  181 NON-1E EQU;P LOAD, WATTS                       0         0          0  182              ,

USE FACTOR FOR NON-lE EQUIP. 1 1 1 183  ! NON-1E CABLE LOAD, WATTS 4110 1710 2790 184 USE FACTOR FOR NON-1E CABLE 1 1 1 185 CONDUCTION HEAT LOAD, WATTS 0 0 0 186 l USE FACTOR FOR CONDUCTION O O O 187 l PIPING HEAT LOAD, WATTS O O O 188 f USE FACTOR FOR PIPING LOAD 1 1 1 189 { CCW PUMP MOTOR LOAD, WATTS 39305 39305 35005 190  ; USE FACTOR CCW PUMP 1 1 1 191 CHILLWTR PUMP MOTOR LOAD, WATTS 4610 4610 4610 192 I USE FACTOR CHILL WTR PUMP 1 1 1 193  ; 300 TON MOTOR LOAD, WAITS 20156 20156 20156 194 USE FACTOR 300 TON 1 1 1 190 , 150 TONS HEAT LOAD, WATTS 1500 1500 1500 196 l USE FACTOR 150 TON 0.8 0.8 0.8 197 [ CCW SUPPLEMENTAL AHU LOAD, WATTS 4196 4196 4196 198 USE FACTOR CCW CLR 1 1 1 199 ESSENTIAL CH WTR AHU LOAD, WATTS 3330 3330 3330 200 USE FACTOR AHU 1 1 1 201 f NET ROOM LOAD, WATTS 80103 775S7 79206 202 ROOM VENTILATION FLOW, CFM 640 1275 1285 203 ROOM VENTILATION TEMPERATURE, F 65 65 65 204 , ROOM VENTILATION CONSTANT 915.6 1389.75 1400.65 205 CCW SUPPLEMENTAL AHU FAN CFM 29956 28966 31689 206  ! ECW FLOW TO CCW SUPPL CO!L 36 36 36 207 ECW TEMP.TO CCW SUPPL Coll, F 100 100 100 208  ; CCW SUPPL COIL EFFECTIVENESS 0.8536 0.8474 0.8634 209 CCW SUPPL COtt CONSTANT, C1 15365 15253 15541 210 1 CHILL WTR AHU FAN CFM 3642 3705 2997 211 j CHILL WTR FLOW TO Coll, GPM 40 40 40 212 3 CHILL WTR TEMP. TO Coll, F 52 52 52 213 CHILL WTR Colt EFFECTIVENESS 0.7680 0.7640 0.8114 214 CH!LL WTR COIL CONSTANT, C2 3049 3085 2651 215

  • ROOM LATENT HEAT LOAD, BTU /HR 0 0 0 216 EFFECTIVE CHILL WTR TEMP., F 52 52 52 217 [

SUM CONSTANTS X TEMP 2027923 2040829 2053325 218 I j

1 APPENDIX N1 CALC. NO. MC-6412 SHT.10OF43) , /O-id] SUM CONSTANTS 19329 19728 19592 219 w/dn ROOM TEMPERATURE, F 104.9 103.4 104.8 220 CH WTR CO!L SENSIBLE LOAD TONS 13.23 11.06 221 CHILL WTR TOTAL LOAD, TONS 13.23 11.06 222 b 9 s b i i 1 4

     .                                                                              b l

l l

APPENDIX N1 CALC. NO. MC-6412 SHTNIOFb fh /0 N ELECTRICAL PENETRATION ROOMS TRAIN A TRAIN B TRAIN C 224 ce9e/vfn - 1086 270 270 225 EMERGENCY UGHTING. WATTS 0 0 0 226 USE FACTOR FOR EMERG. UGHTING I CLASS 1E EQUIP. LOAD, WATTS 0 0 0 227  ! 1 1 1 228 USE FACTOR FOR 1E EQUIP. i CLASS 1E CABLE LOAD, WATTS 10200 3350 6750 229 1 1 1 230 USE FACTOR FOR 1E CABLE NORMAL UGHTING LOAD, WATTS 6266 4664 3836 231 . 5 USE FACTOR FOR NORMAL UGHTING 1 1 1 232 NON-1E EQUIP LOAD, WATTS 8485 12050 10076 233 USE FACTOR FOR NON-1E EQUIP. 1 1 1 234 NON-1E CABLE LOAD, WATTS 14000 10200 15720 235 USE FACTOR FOR NON-1E CABLE 1 1 1 236 CONDUCTION HEAT LOAD, WATTS 0 0 0 237 USE FACTOR FOR CONDUCTION 1 1 1 238 PIPING HEAT LOAD, WATTS O O O 239 , USE FACTOR FOR PIPING LOAD 1 1 1 240 NORMAL AHU FAN LOAD, WATTS 4663 46EG 6994 241 USE FACTOR FOR NORMAL AHU 1 1 1 242 , ESSENTIAL AHU FAN LOAD, WATTS 6050 6130 7300 243 USE FACTOR EMERGENCY AHU 1 1 1 244 NET ROOM LOAD, WATTS 49664 41057 50676 245 ROOM VEN11LATION FLOW, CFM 830 830 830 246 } ROOM VENTILATION TEMPERATURE, F 65 65 65 247 I ROOM VENTILATION CONSTANT 904.7 C04.7 904.7 248  ; NORMAL AHU FAN CFM 0 0 0 249 TSC CHILL WTR FLOW TO NORM. COIL 33 36 59 250 , TSC CHILL WTR TEMP TO NORM. COIL 42 42 42 251 , NORMAL AHU COIL EFFECTIVENESS 0.8763 0.8763 0.8763 252. NORMAL AHU COIL CONSTANT, C1 0 0 0 253 [ EMERGENCY AHU FAN CFM 5690 4943 7543 254 i CHILL WTR FLOW TO EMERG. COIL, GPM 61 56 78 255 CHILL WTR TEMP. TO COIL, F 52 52 52 256 CHILL WTR COIL EFFECTIVENESS tr.8532 0.8031 0.7815 257 CHILL WTR COLL CONSTANT, C2 5292 4327 6425 258 ROOM LATENT HEAT LOAD, BTU /HR 0 0 0 259 EFFECTIVE CHILL WTR TEMP., F 52 52 52 260 SUM CONSTANTS X TEMP 503474 423937 5658d3 261 SUM CONSTANTS 6196 5232 7330 262  ; ROOM TEMPERATURE, F B1.3 81.0 77.2 263 CH WTR Colt SENSIBLE LOAD, TONS 12.90 10.47 13.49 264-CHILL WTR TOTAL LOAD, TONS 10.47 13.49 265 E i l k

APPENDIX N1 ' C'ALC. NO. MC-6412 SHT.76S OFh b N~I^f3 ESF PUMP ROOMS TRAIN A TRAIN B TRAIN C 267 cab 1c/f93 EMERGENCY UGHTING, WATTS 360 360 360 268 USE FACTOR FOR EMERG. UGHTING 0 0 0 269 I CLASS 1E EQUIP. LOAD, WATTS 0 0 0 270 f USE FACTOR FOR 1E EQUIP. 1 1 1 271 { CLASS 1E CABLE LOAD, WATTS 740 280 .704 272 j USE FACTOR FOR 1E CABLE 1 1 1 273 j NORMAL UGHTING LCAD, WATTS 6200 6200 6200 274 j USE FACTOR FOR NORMAL UGHTING 1 1 1 275 NON-1E EQUIP LOAD, WATTS 0 0 0 276 USE FACTOR FOR NON-1E EQUIP. 1 1 1 277 NON-1E CABLE LOAD, WATTS 270 76 0 278 l USE FACTOR FOR NON-1E CABLE 1 1 1 279  ! CONDUCTION HEAT LOAD, WATTS 1658 795 0 280 USE FACTOR FOR CONDUCTION 1 1 1 281 PIPING HEAT LOAD, WATTS 39851 39851 39851 282 j USE FACTOR FOR PIPING LOAD 1 1 1 283  ! HHS! PUMP MOTOR LOAD, WATTS 35681 36883 35280 284 h USE FACTOR HHS! PUMP 1 1 1 285 , LHSI PUMP MOTOR LOAD, WATTS 22392 22392 22392 286 USE FACTOR CHILL WTR PUMP 1 1 1 287 CONT. SPRAY PUMP MOTOR LOAD, WATTS 22392 22392 22392 288 [ USE FACTOR CS PUMP 1 1 1 289 AHU FAN LOAD, WATTS 6368 6368 C368 290 ( USE FACTOR AHU 1 1 1 291 NET ROOM LOAD, WATTS 135552 135237 133187 292 f ROOM VENTil.ATION FLOW, CFM 272 1379 1431 293 ROOM VENTILATION TEMPERATURE, F 95 95 95 294 ROOM VENTILAT10N CONSTANT 296 1503 1560 295 AHU FAN CFM 33370 32495 34208 296 . CHILLWTR FLOW TO COIL, GPM 62.5 62.5 62.5 297  ! CHILL WTR TEMP. TO COIL, F 52 52 52 298 f CHILL WTH COIL EFFECTIVENESS 0.8200 0.8122 0.8271 299 j CHILL WTR COLL CONSTANT, C1 25625 25381 25847 300 > ROOM LATENT HEAT LOAD, BTU /HR 13729 69004 72229 301 EFFECTIVE CHILL WTR TEMP., F 52.4 54.2 54.3 302 > SUM CONSTANTS X TEMP 1834562 1980717 2006525 303 l SUM CONSTANTS 25921 26884 27407 304  ; ROOM TEMPERATURE, F 70.8 73.7 73.2 305 . 306 ' CH WTR COIL SENSIBLE LOAD TONS 39.15 41.13 40.71 CHILL WTR TOTAL LOAD, TONS 46.94 46.73 307 (^  ! i f i

APPENDIX N1 CALC. NO. MC4472 SHT.2 OOFdBl h, C6b'/olElL3 l ESF SUMP VALVE ROOMS - TRAIN A TRAIN B , TRAIN C 309 l EMERGENCY LIGHTING, WATTS 180 180 180 310 USE FACTOR FOR EMERG. UGHTING 0 0 0 311 i CLASS 1E EQUIP. LOAD, WATTS 0 0 0 312 , USE FACTOR FOR 1E EQUIP. 1 1 1 313 CLASS 1E CABLE LOAD, WATTS 0 0 0 314 USE FACTOR FOR 1E CABLE 1 1 1 315 NORMAL LIGHTING LOAD, WATTS 3350 3050 3050 316 l USE FACTOR FOR NORMAL LIGHTING 1 1 1 317 NON-1E EQUIP LOAD, WATTS 0 0 0 318 USE FACTOR FOR NON-1E EQUIP. 1 1 1 319 NON-1E CABLE LOAD, WATTS O O O 320

                                                                                       -f USE FACTOR FOR NON-1E CABLE                   1          1       1 321 CONDUCTION HEAT LOAD, WATTS                   0          0       0 322               ;

USE FACTOR FOR CONDUCTION 1 1 1 323 PIPING HEAT LOAD, WATTS 5166 5166 5166 324 f USE FACTOR FOR PIPING LOAD 1 1 1 325 AHU FAN LOAD, WATTS 339 339 339 326 USE FACTOR AHU 1 1 1 327 NET ROOM LOAD, WATTS 8855 8555 8555 328 ROOM VENT.'LATION FLOW, CFM 272 331 395 329 > ROOM VENTILATION TEMPERATURE, F 70.8 73.7 73.2 330 ROOM VENTILATION CONSTANT 295.48 '360.79 430.55 331 , AHU FAN CFM 1157 1092 946 332 ( CHILL WTR FLOWTO Colt, GPM 7 7 7 333 CHILL WTR TEMP.TO CO!L F 52 52 52 334 CHILL WTR CO!L EFFECTIVENESS 0.4860 0.5035 0.5425 335 CHILL WTR CO!L CONSTANT, C1 61 5 599 559 33G  ; ROOM LATENT HEAT LOAD, BTU /HR 0 0 0 337 l EFFECTIVE CHILL WTR TEMP., F 52 52 52 338 SUM CONSTANTS X TEMP B3208 86943 89809 339 l SUM CONSTANTS 912 960 990 340 ROOM TEMPERATURE, F 91.2 90.6 90.7 341 'f CH WTR CO!L SENSIBLE LOAD, TONS 2.01 1.93 1.81 342 CHILL WTR TOTAL LOAD TONS 1.93 1.81 343 1 I 1 I J

APPENDIX N1 CALC. NO. MC-6412 SHT.M OFM b), /D- N 3 TRAIN B TRAIN C 345 Cabic/2/73 SPENT FUEL PIT PUMP ROOMS - EMERGENCY UGHTING, WATTS 0 0 346 USE FACTOR FOR EMERG. LIGHTING 0 0 347 CLASS 1E EOUIP. LOAD, WATTS 0 0 348 (' USE FACTOR FOR 1E EQUIP. 349 1 1 f CLASS 1E CABLE LOAD, WATTS 0 0 350 ) USE FACTOR FOR 1E CABLE 1 1 351 l l NORMAL LIGHTING LOAD, WATTS 650 650 352 USE FACTOR FOR NORMAL UGHTING 1 1 3 53 NON-1E EQUIP LOAD, WATTS 0 0 354 USE FACTOR FOR NON-1E EQUIP. 1 1 355 NON-1E CABLE LOAD, WATTS 0 0 356 USE FACTOR FOR NON-1E CABLE 1 1 357 CONDUCTION HEAT LOAD, WATTS 0 0 358 ) USE FACTOR FOR CONDUCTION 1 1 359 PIPING HEAT LOAD, WATTS 3452 4016 360 USE FACTOR FOR PIPING LOAD 1 1 361 SFP PUMP MOTOR LOAD, WATTS 9658 9658 362 USE FACTOR SFP PUMP 1 1 363 AHU FAN LOAD, WATTS 585 585 354 USE FACTOR AHU 1 1 365 l NET ROOM LOAD, WATTS 14345 14909 366 ROOM VENTILATION FLOW, CFM 947 1246 367 ROOM VENTILATION TEMPERATURE, F 95 95 368 ROOM VENTILATION CONSTANT 1032 1358 369 AHU FAN CFM 985 1050 370 CHILL WTR FLOW TO COIL, GPM 12 12 371 l l CHILL WTR TEMP. TO COIL, F 52 52 372 CHILL WTR CO!L EFFECTIVENESS 0.6657 0.6493 373 CHILL WrR COLL CONSTANT, C1 715 743 374 ROOM LATENT HEAT LOAD, BTU /HR 47799 62891 375 EFFECTIVE CHILL WTR TEMP., F 60.0 62.5 376 SUM CONSTANTS X TEMP 189881 226339 377 SUM CONSTANTS 1747 2101 378 ROOM TEMPERATURE', F 108.7 107.7 379 CH WTR COtt SENS!BLE LOAD TONS 2.90 2.80 380 CHILL WTR TOTAL LOAD, TONS 6.89 8.04 381 k

APPENDIX N1 CALC. fdO. MC-6412 SHT OM F $I h, /N M CsB49]u RAD WASTE CONTROL ROOM TRAIN A TMAIN C 383 EMERGENCY LIGHTING, WATTS 93 90 384 USE FACTOR FOR EMERG. LIGHTING 0 0 385 I CLASS 1E EQUIP. LOAD, WATTS 0 0 386 i USE FACTOR FOR 1E EQUIP. 1 1 387 j CLASS 1E CABLE LOAD, WATTS 0 0 388 j USE FACTOR FOR 1E CABLE 1 1 389 ) NORMAL LIGHTING LOAD, WATTS 9734 9734 390 { USE FACTOR FOR NORMAL LIGHTING 1 1 391 + NON-1E EQUIP LOAD, WATTS 5300 5300 392 USE FACTOR FOR NON-1E EQUIP. 1 1 393 NON-1E CABLE LOAD, WATTS 0 0 394 USE FACTOR FOR NON-1E CABLE 1 1 395 CONDUCTION HEAT LOAD, WATTS 7646 7646 396 USE FACTOR FOR CONDUCDON O O 397 PlPING HEAT LOAD, WATTS 757 757 398 USE FACTOR FOR PIPING LOAD 1 1 399 PEOPLE LOAD, WATTS 402 462 400 USE FACTOR PEOPLE 1 1 401 AHU FAN LOAD, WATTS 8122 8122 402 USE FACTOR AHU 1 1 403 NET ROOM LOAD, WATTS 24375 24375 404 , ROOM VENTILATION FLOW, CFM 2000 2000 405 ROOM VENTILATION TEMPERATURE, F 65 65 406 ROOM VENTILATION CONSTANT 2180 2180 407 , ( AHU FAN CFM 11558 11558 408 CHILL WTR FLOW TO COIL, GPM 49 49 409 CHILL WTR TEMP.TO Coll, F 52 52 410 CHILL WTR COLL EFFECTIVENESS 0.5719 0.5719 411 7205 7205 412  ; CHILL WTR COIL CONSTANT, C1 ROOM LATENT HEAT LOAD, BTU /HR 0 0 413 { EFFECTIVE CHILL WTR TEMP., F 52 52 414 SUM CONSTANTS X TEMP 599548 599548 415 SUM CONSTANTS 9385 9385 416 ROOM TEMPERATURE, F C3.9 63.9 417 CH WTR COIL SENSIBLE LOAD, TONS 7.14 7.14 418 CHILL WTR TOTAL LOAD, TONS 7.14 419 (

APPENDIX N1 CALC. WO. MC-6412 SHT.ld OF O l y /A-/ $ ' TRAIN A TRAIN C 421 cse-7.pk RADIATION MON! TOR ROOM EMERGENCY LIGHTING, WATTS O O 422 USE FACTOR FOR EMERG. LIGHTING 0 0 423 (. ' CLASS 1E EQUIP. LOAD, WATTS O O 424 l I USE FACTOR FOR 1E EQUIP. 1 1 425 CLASS 1E CABLE LOAD, WATTS O O 426 j USE FACTOR FOR 1E CABLE 1 1 427 NORMAL LIGHTING LOAD, WATTS 1104 1104 428 USE FACTOR FOR NORMAL LIGHTING 1 1 429 j NON-1E EQUIP LOAD, WATTS 5703 5703 430  ; USE FACTOR FOR NON-1E EQUIP. 1 1 431 NON-1E CABLE LOAD, WATTS 0 0 432 USE FACTOR FOR NON-1E CABLE 1 1 433 > CONDUCTION HEAT LOAD,' WATTS 11100 11100 434  ; USE FACTOR FOR CONDUCTION O O 435 PIPING HEAT LOAD, WATTS 0 0 436 USE FACTOR FOR PIPING LOAD 1 1 437 PEOPLE LOAD, WATTS 0 0 438 USE FACTOR PEOPLE 1 1 -439 AHU FAN LOAD, WATTS 20S0 2080 440 USE FACTOR AHU 1 1 441 NET ROOM LOAD, WATTS 8887 8887 442 + ROOM VENTILATION FLOW, CFM 400 400 443 ROOM VENTILATION TEMPERATURE, F 65 65 444 ROOM VENTILATION CONSTANT 436 436 445 j. AHU FAN CFM 2150 2150 446 CHILL WTR FLOWTO Coll, GPM 21 21 447 CHILL WTR TEMP. TO COIL, F 52 52 448 CHILL WTR COtt EFFECTIVENESS 0.7401 0.7401 449 CHILLWTR COIL CONSTANT, C1 1734 1734 450 ROOM LATENT HEAT LOAD, BTU /HR 0 0 4 51 EFFECTIVE CHILL WTR TEMP., F 52 52 452 SUM CONSTANTS X TEMP 148651 148861 4 53 SUM CONSTANTS 2170 2170 454 ROOM TEMPERATURE, F 68.6 68.6 455 CH WTR COIL SENSIBLE LOAD, TONS 2.40 2.40 456 CHILL WTR TOTAL LOAD, TONS 2.40 457 t i I h i

            .   ~.              ..         -                                -

4 APPENDtXN1 CALC. NO. MC-6412 SHT)70 OF b } hCd. Y flod--ff { REACTOR MAKEUP TANK ROOM TRAIN A TRAIN B 459 EMERGENCYLIGHTING WATTS O O 460 , USE FACTOR FOR EMERG. LIGHTING . 0 0 461 ( CLASS 1E EQUIP. LOAD, WATTS 0 0 462 _ USE FACTOR FOR 1E EQUIP. 1 1 463 . CLASS 1E CABLE LOAD, WATTS 0 0 464 USE FACTOR FOR 1E CABLE 1 1 465 NORMAL LIGHTING LOAD, WATTS 3150 3150 466 l USE FACTOR FOR NORMAL LIGHTING 1 1 467 NON-1E EQUIP LOAD, WATTS 5300 5300 468 USE FACTOR FOR NON-1E EOUIP. 1 1 469 [ NON-1E CABLE LOAD, WATTS 0 0 470 i USE FACTOR FOR NON-1E CABLE 1 1 471  ! CONDUCTION HEAT LOAD, WATTS 10218 10218 472 USE FACTOR FOR CONDUCTION 0 0 473 i PIPING HEAT LOAD, WATTS 1463 1463 474 , USE FACTOR FOR PIPING LOAD 1 1 475 RM PUMP MOTOR WATTS 4610 4610 476 USE FACTOR RM PUMP 1 1 477  ! AHU FAN LOAD, WATTS 216 216 478 USE FACTOR AHU 1 1 479  ! NET ROOM LOAD, WATTS 14739 14739 480 ROOM VENTit.ATION FLOW, CFM 3312 3312 481 1 ROOM VENTILATION TEMPERATURE, F 65 65 482 3610.08 3610.08 483 i ROOM VENTILATION CONSTANT AHU FAN CFM 2263 2263 484 CHILLWTR FLOW TO COtt, GPM 12 12 485 CHILL WTR TEMP.TO Coll, F 52 52 486 i CHILL WTR COIL EFFECTIVENESS 0.7330 0.7330 487 , CHILL WTR COIL CONSTANT, C1 1808 1808 488 -- i ROOM LATENT HEAT LOAD, BTU /HR 0 0 489  ; EFFECTIVE CHILL WTR TEMP., F 52 52 490 [ SUM CONSTANTS X TEMP 378979 378979 491 SUM CONSTANTS 5418 5418 492 ROOM TEMPERATURE, F 69.9 69.9 493  ? CH WTR COIL SENSIBLE LOAD, TONS 2.70 2.70 494 CHILL WTR TOTAL LOAD. TONS 2.70 495 f-(

i APPENDIX N1 CALC. NO. MO-6412 SHT.Mf OF @d h, f- ([ /O*(,-f ?  ; 497 W/sjsfi3 l CVCS VALVE ROOM M033 TRAIN A TRAIN B EMERGENCY UGHTING, WATTS O O 49s . USE FACTOR FOR EMERG. UGHTING 0 0 499 , CLASS 1E EQUIP. LOAD, WATTS O O 500-( ' USE FACTOR FOR 1E EQUIP. 1 1 501 CLASS 1E CABLE LOAD, WATTS O O 502  ; USE FACTOR FOR 1E CABLE 1 1 503 { NORMAL UGHTING LOAD, WATTS 800 800 504 l USE FACTOR FOR NORMAL UGHTING 1 1 505 NON-1E EQUIP LOAD, WATTS 0 0 506 - USE FACTOR FOR NON-1E EQU;P. 1 1 507 f NON 1E CABLE LOAD, WATTS 0 0 508 I USE FACTOR FOR NON-1E CABLE 1 1 509 -l CONDUCTION HEAT LOAD, WATTS 752 752 510 USE FACTOR FOR CONDUCTION O O 511  ; P! PING HEAT LOAD, WATTS 1272 1272 512 l USE FACTOR FOR PIPING LOAD 1 1 513 l PEOPLE LOAD, WATTS 0 0 514 i USE FACTOR PEOPLE 1 1 515 AHU FAN LOAD, WATTS 800 BSO 516 USE FACTOR AHU 1 1 517  ; i NET ROOM LOAD, WATTS 2932 2332 318 ROOM VENTILATION FLOW, CFM 240 240 519 ROOM VENTILATION TEMPERATURE, F 65 65 520 [' ROOM VENTILATION CONSTANT 261.6 261.6 521 (-  ? AHU FAN CFM 260 448 522 , CHILL WTR FLOW TO Cott, GPM 2 2 523 CHILL WTR TEMP. TO COIL, F 52 52 524 CHILL WTR COtt EFFECTIVENESS 0.6576 0.5036 525 ( CHILL WTR COIL CONSTANT, C1 186 246 526  ! ROOM LATENT HEAT LOAD, BTU /HR 0 0 527 > EFFECTIVE CHILL WTR TEMP., F 52 52 528 , . SUM CONSTANTS X TEMP 36702 '39799 529 SUM CONSTANTS 448 508 530  ; i ROOM TEMPERATURE, F 81.9 78.4 531 CH WTR COIL SENSIBLE LOAD. TONS 0.46 0.54 532  ; CHILL WTR TOTAL LOAD, TONS 0.54 533 { i t I (  ;

I

                                                                              ~

APPENDIX N1 CALC. NO. MC-6412 SHT.DOFNbl ,

                                                                                /g. H ]

BORIC ACID PUMP ROOM TRAIN A TRAIN C 535 EMERGENCY UGHTING, WATTS 0 0 53G , USE FACTOR FOR EMERG. UGHTING 0 0 537  !

 !   CLASS 1E EQUIP. LOAD, WATTS                     0               0  538 USE FACTOR FOR 1E EQUIP.                        1               1  539 CLASS 1E CABLE LOAD, WATTS                      0               0  540 USE FACTOR FOR 1E CABLE                         1               1  541 NORMAL UGHTING LOAD, WATTS                 3400            3400    542 USE FACTOR FOR NORMAL UGHTING                   1               1  543               {

NON-1E EQUIP LOAD, WATTS 207 207 544  : USE FACTOR FOR NON-1E EQUIP. 1 1 545 NON-1E CABLE LOAD, WATTS 0 0 546  ! 1 1 547 I USE FACTOR FOR NON-1E CABLE CONDUCTION HEAT LOAD, WATTS 2448 2448 548-i USE FACTOR FOR CONDUCTION O O 549 P! PING HEAT LOAD, WATTS 895 895 550 . 1 551  ! USE FACTOR FOR PIPING LOAD 1 BORIC ACID PUMP LOAD, WATTS 0 0 552 USE FACTOR BORIC ACID PUMP 1 1 553 AHU FAN LOAD, WATTS 492 492 554 USE FACTOR AHU 1 1 555 i NET ROOM LOAD, WATTS 4994 4994 556 ROOM VENTILATION FLOW, CFM 1200 1200 557 ROOM VENTILATION TEMPERATURE, F 65 65 558'  ; ROOM VENTILATION CONSTANT 1308 1308 559 AHU FAN CFM 728 728 560 CHILL WTR FLOWTO COIL, GPM 7 7 561 CHILL WTR TEMP.TO CO!L, F 52 52 562 > CHILLWTR COIL EFFECTIVENESS 0.7993 0.7993 563 > CHILL WTR COLL CONSTANT, C1 634 634 564 ROOM LATENT HEAT LOAD, BTU /HR 0 0 565 , EFFECTIVE CHILL WTR TEMP., F 52 52 566 ' SUM CONSTANTS XTEMP 135046 135046 567 SUM CONSTANTS 1942 1942 568 ROOM TEMPERATURE, F 69.5 69.5 569 CH WTR COIL SENSIBLE LOAD. TONS 0.93 0.93 570 CHILLWTRTOTALLOAD TONS 0.93 571 i h i I

APPENDIX N1 CALC. NO. MC4412 SHT.N OFd3l g.,f_g g73 C&h/.Tfu CVCS VALVE ROOM M226 TRAIN B TRAIN C 574 EMERGENCY LIGHTING, WATTS 0 0 575 0 0 576 ( USE FACTOR FOR EMERG. LIGHTING CLASS 1E EQUIP. LOAD, WATTS 0 0 577 l USE FACTOR FOR 1E EQUIP. 1 1 578 CLASS 1E CABLE LOAD, WATTS 0 0 579 USE FACTOR FOR 1E CABLE 1 1 580 NORMAL LIGHTING LOAD, WATTS 692 692 581 USE FACTOR FOR NORMAL LIGHTING 1 1 582 , NON-1E EQUIP LOAD, WATTS 0 0 583 USE FACTOR FOR NON-1E EQUIP. 1 1 584 NON-1E CABLE LOAD, WATTS 0 0 585 USE FACTOR FOR NON-1E CABLE 1 1 586 CONDUCTION HEAT LOAD, WATTS 1866 1866 587 USE FACTOR FOR CONDUCTION O O 588 PIPING HEAT LOAD, WATTS 1156 1156 , 589  ; USE FACTOR FOR PIPING LOAD 1 1 590 PEOPLE LOAD, WATTS 0 0 591 USE FACTOR PEOPLE 1 1 592 AHU FAN LOAD, WATTS 216 216 593 i USE FACTOR AHU 1 1 594 NET ROOM LOAD, WATTS 2064 2064 595 ROOM VENTILATION FLOW, CFM 630 630 596 ROOM VENTILATION TEMPERATURE, F 65 65 597 ROOM VENTl!.ATION CONSTANT 686.7 686.7 598 AHU FAN CFM 533 533 599 CHILL WTR FLOW TO COIL, GPM 2 2 600 CHILL WTR TEMP. TO COIL, F 52 52 601 CHILL WTR COIL EFFECTIVENESS 0.4548 0.4548 602 CHILL WTR COIL CONSTANT, C1 2S4 264 603 ROOM LATENT HEAT LOAD, BTU /HR 0 0 604 EFFECTIVE CHILL WIR TEMP., F 52 52 605 SUM CONSTANTS X TEMP 79897 79897 606 SUM CONSTANTS 1215 1215 607 ROOM TEMPERATURE, F 65.8 65.8 608 CH WTR COTL SENSIBLE LOAD, TONS 0.30 0.30 609 CH!LL WTR TOTAL LOAD. TONS 0.30 0.30 610 (

  ~
                                     ^

I APPENDIX N1 CALC. NO. MC4412 SHT.NYOF 03\ hf 10-l,O 3 j TRAIN O 612

                                                                                &c           i CVCS VALVE ROOM M044 0    613                 e EMERGENCY LIGHTING. WATTS                                                                f 0    614 USE FACTOR FOR EMERG. LIGHTING

( CLASS 1E EQUIP. LOAD, WATTS 0 615 1 616 j USE FACTOR FOR 1E EOUIP. I CLASS 1E CABE LOAD, WATTS 0 617 USE FACTOR FOR 1E CABLE 1 618 l NORMAL LIGHTING LOAD, WATTS 1000 619 [ r 1 620 USE FACTOR FOR NORMAL LIGHTING NON-1E EQUIP LOAD, WATTS 0 621 USE FACTOR FOR NON-1E EQUIP. 1 622 f 0 623 NON-1E CABE LOAD, WATTS { 1 624 USE FACTOR FOR NON-1E CABLE CONDUCTION HEAT LOAD, WATTS 1477 625 j O 626 USE FACTOR FOR CONDUCTION ' PIPING HEAT LOAD, WATTS 1473 627 1 628 USE FACTOR FOR P! PING LOAD PEOPE LOAD, WATTS 0 629 1 630 [ USE FACTOR PEOPE 226 631  ! AHU FAN LOAD, WATTS 1 632 , USE FACTOR AHU NET ROOM LOAD, WATTS 2699 633 [ ROOM VENTILATION FLOW, CFM 300 634 ROOM VENTILATION TEMPERATURE, F 65 635 , 327 636 ROOM VENTILATION CONSTANT 384 637 AHU FAN CFM CHILL WTR FLOW TO CO!L, GPM 2 638 CHILL WTR TEMP. TO COIL, F 52 639 CHILL WTR CO!L EFFECTIVENESS 0.5481 640 . CHILL WTR COIL CONSTANT, C1 229 641 ROOM LATENT HEAT LOAD, BTU /HR 0 642 EFFECTIVE CHILL WIB TEMP., F S2 643 l 42396 644 SUM CONSTANTS X TEMP SUM CONSTANTS 556 645 I ROOM TEMPERATURE, F 76.2 646 CH WTR COIL SENSIBE LOAD, TONS 0.46 647 f 0.46 648  ; CHILL WTR TOTAL LOAD. TONS 649  ; i ( 1

                 *
  • 02M CALC NO. AC - L*b SHI li'l OF 431 - ,

REVIEWERIDATE ' NRNENERA GSTATION REV. PREPARERfDATE . HOUSTONUGHTING& POWER - 0 vfl (o 5-53 C4&ve/r/n  ; GENERALCOMPUTATION SHEET SUSJECT UNGis l H. v& b IG'i m u m Load

                                                                                                                              '~

fiu & aE g u *d J L yq wi % y M ,n icd k Au f qp pwet. m: A d s g qu E . i th v f +1a :m Anu's & J y up d kl dJic.v M usbs m da 6. M 3 .a &,v h q . l as s .

                                                                 -a- n aa p 1L a..-                                              l A

b w f xtp6k. -jk~q%t vkb.sv.a (.o1 m

                                                                                                                              )  ;

Q h Y vet *WI L%< v W tusq a d k w M . -l(w scWseM3 j C4h h AH L m~ h a A c1 a,mdh AL "d wu ecv/ w & ant  ! u ut.azD.  ! l i (  !

                                                                                                                         ~i
                                                                                                                         't STP 361(12429                               M CNO. Mc fe9 a                                 SHT 11'   OFd'f SOUTHTEXASPROJECT                                                                             REVIEWERIDATE.

REV. PREPARERIDATE ELECTRICGENERATINGSTATION HOUSTON UGHilNG& POWER o WL m-5-43 efeA/g l GENERALCOMPUTAT10N SHEET i i SUBJECT UNITls .I i

           %; ,       8 is    %      .G..vha'  %.:+ to          5                           mAAn                           l Craf.      Cmau               o Jg i L. Milc                                   Am2.s 1

m b' 8.  ! s i EAB spetg Fm 36.47 inz } e g3 % l

                      -    L Au, n     ,

16.93 3 d 5 Fw 3.7I

                                    - 4. e .,_  o.rz
                      ~

Re% n Q G.TD ., Cid%p Fw 3 89 l 4 u .. n b P,n 0 34 j oc%D Wh Twg to.Lo _ l 67.7 G b Aa 6 h q n b Lrpa .m fL_ i d A y ees i ca ps f du cKEP ucA ] n yea esl My sesal 6/Jo, md h ,e . Mik yf, l , r s

 -(

I

1 STP 361(1245) MC NO. M C. (a4i2- SHi tzi op /3I P J REV. PREPARERlDATE REVIEWERIDATE - l C EN p gyo HOUSTONUGHTING & POWER 0 Hf to f 3 (ko - r./r// 2 l i: GENERALCOMPUTATION SHEET ' SUBJECT UNIIis l i bt/Yk .CT/* ,

                         % she M 6 w                          etw.c IE 4.aioe e Ite d A c A                                         ;

1 WJ b 5O OT4 fl' c .cet.ks LgOn rE % Dav.l~ nuxls's u bM u a,r: .cm.oew Q~ vr%. L a & ,, a h A A />o te }

                          \QL                                                                                                       '

i n g s s .a u smg3n Loop. L th "( bk3 5BLG, 4L hcg MA to 9 c a . X W d ,n 3 347i cu1  % l qw f M Q ~ *L s w. su a as 4 ra naa A9 9uiJ.. g q fL % m lh h.icdla q

                          -      tmaa                       tg gat ~B                      tL woe M                             ]

c LS% 4

                                                       ,m. v%d J<& tL La 2                                                       I 2 0, _L            ,, 0. 63

. L M % Cs & k i.n i

                               =./r b                                                                                               ;
  '(                         &         J , o.63 -          0. W     A             0.5 ka tyu . u% -f ,

is ug j cdbe. A jguo. sad

                                                                           ~
                                     '20 i

l

       .                   .-                                . . . - . . ~ ~ .          .                           . ..      .-.         -  . . . .-            _ __

sTe astit:48) CALC NO. E 64 ' '2- SM -lik 7 4 ?>l . REV. PREPARERIDATE REVIEWERlDATE l

 '                                          NER     GSTADON HOUSTONUGHilNG & POWER                     .

o g$' m-G-43 Ced- 6/t/n l GENERAL COMPUTATION SHEET ;I

                                                                                                                                                             ?

SUBJECT UNITIs l

                                                             $           %d  &        ,

4 uE t s u cc i & k b d E 9-y. x3 Le auA by~ apel .43 y p rm. /6 l wy,s. LX, & hM jad .us 2

%
a. % a sn a suu.s a 4 x 4  ;

u zis. q Q u.J dwth k B LL  ;

                                         .en&D un- w k yhzva.                                                                                                          l 1       E
                                                *                                  $      W                                              ,

L mao wk- a&L L c%g j 1 IdMM @ BOO IM d t- $-0 i

                                        % w(W wikuld'n e{ mAK w k                m(Liid .                                                                                                  l i
                                                                                                                                                                       }

LM w&n b pl es. u]L l E6 .%d> .av.v 4[u & *b& ba*Ttug t 6 _ _ . _ _ _ _ _ - _ _ -. _ . . . . . _ . , , _ _ _ _ __ .r.

l STP361(1248) CALC NO. tAv 64e L SHT I 2 3 oras t SOUTHTEXASPROJECT REV. PREPARERlDATE REVIEWERJDATE ELECTRICGENERATING STATION HOUSTONUGHTING &POVER D yk /s.5-93 Cab /*///u l GENERAL. COMPUTATION SHEET SUBJECT UNITls i

         /W                 2 S S'f     C    .        M$4<kifu            D    IS 'F h 50 4&                    3--   la 50      'f,      Wa      W LvJ h
t. o 7 - z s tr x ( /s - sD) _ _ g, ( _g I L coo  ;

j'hu: *l c w k N m v.s. s& SCev b_. Dvt-S b4 u % LO ( w d n- J T f + l.5 - T = TD ha i

           ' ' bin is cwl               9JwkuO & ,Ibn   /

w w ,(fn1; - w m cm L 80 w', A qvlulcumuk h 924uda cad a % , a a wd kp4 f I l l I i

J l STP 361(1240) CMC NOi k(- b'i t t SE l'L 4 G '#31

     - SOUTHTEXASPROJECT                                                                                          <

REV. PREPARERIDATE REVIEWERIDATE e ELECTRICGENERATINGSTAllON HOUSTONUGHTING & POWER D vff , # .5-f3 C<S <-///*3 l GENERAL COMPUTATION SHEET  : SUBJECT UNilis I i JfAwM)-Ji>34 k A c 6 h a'&nk .hoL, th At&J ,lcal k Ac roa.4 c cD. edlu.1,md hva A~k A 2 M cA4 aa kgc&- , LL pk M fnt I l 5I m A 6 A ~ L v A L d v. e f// w m Soo b. W,G b~Lrp E 6dg yU a+-: C/a1 Jpm e w. l

                                          +a an
                     .Au           n1
                       -U,y s0% fh orr& k,zLe                           w u.woL    n sws 7 1 nMn..                                I                          e
                     *h         Y MLAh smr. /lcick                    a      LOdNY              CL b$

. swa a e ivo % cme ao %  : p ivi.tJJ AuJ %S f

                         ~      u<~ ~ C. c+r8 s *M ww.                                                            t ID                  b.4/V\        k. 4 -                        :.8 6-    ]

t cc,.TWM.kLW 4 m j .

                         . w. f.L, ion x J, c,     nrw.d wi                   c o upu)                 ;

(  ! i l l

                                                                                                                   )

i ETP 361(1246) CALCNO. IAC- W i'l- SHT t 2.5 or y g, ;j SOUTHTEXASPROJECT REV. PREPARERIDATE REVIEWERIDATE -  ; ELECTRICGENERATINGSTATION I ck62- to/r/fs HOUSTONLIGHTING & POWER p 9f/- io-5-fJ GENERAL COMPUTATION SHEET r SUBJECT - UNITIs i

                  'bh.rlsrc            h   sp           A           p%

c y(a kAJ kh a s .t. Fn 4 o f tett b , d % i- b l~ ' k p 4 ,u b% sde utiM Ec?  % f! a:L W .

                        'w akd c.B    0  F  ,l<Er     orXL            Ec d               1 ha y~ ~3 A a e c a h a.o ps. u.44,                                 ,

i h 5 M

  • h ,
                  % qvduw kon ilt %;,Ltappaa tL mae,uul            L ogan 4,Kg        j                                l cd w,<.,Lv$s,;%eJ % pag n)G r y m . % soo wak me w tL n.ar. Jnk                                                          :

i i Is  : l

1 4 t

             .                                                                                                               i STP 361(1246)                                         MCNa ML H ' 't -                       M 12(o OF Mi             8 SOUTHTEXASPROJECT.                                     REV.            PREPARERIDATE           REVIEWERIDATE ELECTRICGENERATINGSTATION .                                                                                          '

HOUSTONUGHTING & POWER D 4(?, I,,5,93 ag& -r,///P.r GENERAL COMPUTATION SHEET

                                                                                                                           } :
     ' SUBJECT                            UNITIs                                                                             '

i t Ced ro l' Ro% Tem teni - Loof wh dl 3 irb M , j i Oswa ccvLI' ,tecu .bucl.auc on a 72 'F, il I I b 'l!u b4b 'baw f tl e$.J ,Lo- , 7

                                                                                                                   'Z
                                                                                                               ~
                   ..n.J.<a   tw            flocs, r l                      f curJLo ? 5 G1oo       ^

( tT) T (7  ! t r

                                                                       ,                                                     i SsvI :n              1c$1.5se.$           b-osh            tcvn     4'O *i~ G ' w.h , &J3 '#I*'
                                                                            -11,      wf e >n 1.c a f/S fr u ,                  No + l !!E-do D > B           '/2.5 "F
                 $ l 1 >.y w f.s 5 h 5 m (2o0-30)                                 ;

6T2 = "6"' *

                                                        ,      y. 3 4

, o Gooy 636 115 ?ooo 2M ATx.m -  :- Goo < (( 3 f.4 3t o) . v2. s + 4, DI = Vg.8 4 j Mm wh 39 = ( s ,2pg ny =  %.swa.M = v 3. q s ur 41 l

                                  - .=.                             .            .        - - .                   _           ..         -_ .   ._   . - .

I i i sTrasw248) . CALC NO. IM- (Mi b SHT I M OF Ud j REV. PREPARERf DATE- REVIEWERlDATE

                  ELEC C NERATI                  STATION HOUSTONUGHTING & POWER '                                         o     4 f!r.-             10 1 3 CA9-1o/r/P.s                    ;

GENERAL COMPUTATION SHEET l SUBJECT UNITis j i

                            '$lu- sW L                                   AU h 1Avn ko                               <                 c
                                          %wn S & ah3snah,s                                                                             t. t *F Cclc.&& unJ1 Q % - n %w.p.                                                                                        l Te-7      %       = 0.S C ( I 2 - 6 < ) = (9. l L *F              -

[ Ch. cnLuldm . 5: k.-A AT = t.S - Scroo , LIG - 43.2_ b

                                                            ,t20oo                 - I to o o a

tad A; p A3 M p pM - sy. F b

                           %u d M 4 vla M &                                                          L%

a 1 hat;@ = b l.a + W .a+a h j1

                                                          =  5 4. s + 1 , o + s s , 2.             =

lot ( b  ; kwk red = ws al c.p. M Jn~Lo y squald , , l

                                                        =   3 5.1 -+     34,7 + 33.o                      =
                                                                                                                - 10 2. 9        b                          !
                          %~                     i        reJ     A      J.o1h                  p      d   6 ,du      %     ap d d mm x hid uua f/ of e b y A .

3_o fld  ! ( .v.uJLt L a .L M w.oudCTi< . i

i l l I STP361(12w CALCNO. Mc MF- SHT n B OF C'i .! SOUTHTEXAS PROJECT I REV. PREPARERlDATE REVIEWERIDATE ELECTRICGENERATINGSTATION , HOUSTON UGHilNG & POWER p V/4 p-5-43 cao /./s /fa . GENERALCOMPUTATION SHEET l SUBJECT UNITis 4 i EA% Q Lnk E.o nvda cJf Loop m ,q ,Q, i I Ud1 whG L h6Jh.J. f/ wal.- m p l LA ,%& o>m : . A ) A 12 s o o o 41' - B> 32voo 9t ' def. 6.  ! C. 7Q20o fT r i , i

               )a C1w%                      Y N Lrs %- d. 7/                      S tzdb WE uALL                       6 %J                            ehi A Jo wh.                                                  f nelhsAMsAm             (%njbJ                             % peb q/ %e Y        '

I. , i A 65.35 P i ~ B 57. 3 r P l C., 73.6E>"F  !

                                                                                                                                       )

h h 0 e hY {W pr m a s an ' so as' +W> Loop., cakk%. w l j nA

                           $ :id.nl    E
                                                   @p&               m %

tLa h, 8 v1Js kW., vufA% as u A Lm99&J a

                               ~

vt a m M tLlw o e i l u n a1 k k e w e e k % g : tie..)[ xt. l

i
                         ,                                                                                                             ?

I t I i f r -w.+m-- "7TN'*' - * -'W- * * " * * * " ' ' - * - ' - - '-"

i STP 361 (12* CALC NO. FAC 6Mi 2, SHT i t 'i or Jf./ SOUTHTEXASPROJECT REV. PREPARERIDATE REVIEWERIDATE ELECTRICGENERATING STATION ' 's HOUSTON UGHilNG & POWER o 9//- lo-5 9 C & ic///f3 GENERAL COMPUTATION SHEET SUBJECT UNITis bCN .,

                                                           ~

Jh o m ca. L a - r,_ ='gg .wh vn. c . I t t - T_ tJ a.Id ' Tph k 4 0 El(Tg-Tgd b: (,5

    <                       h = wA'. av.m h 99. c,.                                                           ,

b q a smat cumu 4 -um A M p.v, on u, fL W v4 _ , -d4 u c.p%lA s y.~ .+ Tm.y (BG T + 309o3< T2 + 6o97 vTc) A 37ef6o

                         % M LqkJA k a f ,ic.S}

(lf . T1u. M td M Lv+h J l

                            -4%4 a2tua a ve   egrw     w- w
                                                                    ,   rL          ys i
                                                                             ~

I  % ~ Net ,,d l

1 1 STP361(1248) CRCNO. mt to Mit SHT-'30 E46I l REVIEWERfDME LEC NERATI GSTATION REV. PREPARERIDATE l HOUSTONllGHilNG & POWER b @ Io 5-4) @r =/f/9.c j GENERAL COMPUTATION SHEET SUBJECT UNITis , T/t AL RETu Rtj Rh kw l AiP T - Add T. A 62.15 p.9 5 B JY. 75 (54.75 < 3o f 034 62f15 r 70+ 6k U rkoi7M%o: 565o  ; i C L 4.75 60.75  !

                                                                            =                     \

Q x = l.s < rzsooo r oSC- ( n.s. 3 5- 6235)/2.e. Z r. o - h t= ts, n%o - o.sc.- (s,.si sc5% .o = s.8 v l 'f s Oc: 15 < 7h x o,sLx (73.LP3- LL.75Mooo 36.o 1 i i EAB C DiL t o A-D i A #12. 9 -

                                            $2.,o     - M.B             =             'l o. E l;

i

                                                       - 15.9                                                         ##

531 5.1 W. s l 14 7 C.- 1 o 3. 5 - St.o _ is.s 3 c. o l I To7AL T2 A .,) f6 Lo A b = la/ fvwo l; i I (  ! . i l 1 1

I i 1 1 1 4 STP 361(1246) QgQ gg, gt yQg1 $g{ f3( QF 4/ 6( . SOUTHTEXAS PROJECT REVIEWIRlDATE REV. PREPARERIDATE ELECTRICGENERATINGSTATION HOUSTONUGHilNG & POWER o #f- p,5AJ CAD to/t/f3  : GENERAL COMPUTATION SHEET l SUBJECT UNITIs f.de c Th& Ti ount<a , t):v-v.k h,r'w.9t ,J b,,) k a,Q J i3o % . C h;llz& vHr cdl.et kw-p = 'to + 130-30 ,. t, - 43 3D5-3 O vaa, % C Aw<GA - G bi g,, = ISO 1 tw o . tj,9) sco GSG ATrem ' '30 ' n ooD  : 5 17 Soo 1 (L5L e 5th  ; r P4 U k 're y c 43 4 #l7/ ' 47 91

                 <         \% T        =  4*l.Rf - 3 2 7 - 4Y. {>                   ,

b WY [24-cd1 f.sef2.la c. cal /tciGJ4 f M$4

                                        .kbLCa uw%,    ArktLaumak(                                 ,

y fn hud %a. ) l l 1

STP 361(1248) CALCNO. tac. CrMit SHI 83 OF d;/ REV. PREPARERlDATE REVIEWERIDATE ELEC N I' STA110N ' HOUSTONUGHTING & POWER o 414 eo-5-1) M '*/f/73 GENERAL C0MPUTATION SHEET SUBJECT UN! Tis T2 Avis R42H126 lbt n rn vrn Loak l 00 P, kli 3 FROM A PR YI Relu rn hJr T-ps . A 54.93 S 50.75 -

c. St97 6frol Roo m E p. ( es.42% 72. of) s.snx, w aL34Lc.gf y2. Jo y a
                                                                               'O AAA W     IJ n 16 c*6 jk %y;c                  7WtLgy A- 52. s t 8- 52 4/                                             '

C- 50.52-d affe A i 8um b and htw.Lu% Julp4Rc.

                                                   .M fo k u A Wuu ' C va,nvs kN Auvn. .L4     tw,k        LCv       5                           m 4%
u. A.trvr e <& W ,
                                                                ,LA8 A t h          .c e % &                                                              l LTt     /08       }ru                                                                ;

P r

b

                                                                                                                         .i
                                                                                                                       ~l l

STP361(1248) CRC NO. 'A' b '( ' 2' SHI '3 3 OF #9 / I REV. PREPARERIDATE REVIEWERIDATE  ! fLEC NE STATION 4 HOUSTONUGHilNG& POWER o QJ. to-5-43 ca.B- re///f r -l GENERAL COMPUTATION SHEET SUBJECT UNITis C)t N & & sit y = 40 + ]#2~ 3D , ? =. $bb . 30 0 - 3 o l I

                                                                           ^

hW A wJ Ac-J. )  ; l i l i t 1 l l l I l l

                                                                                                                         'l t

I I l l

i stem o2*e CALC NO. MC- (At t SHT 834 OF 4

  • I C NE Til STATION REMii7 E RMME HOUSTON UGHTING & POWER o ti4  !>-5-Q CAD" i o/r/71 i GENERAL COMPUTATION SHEET SUBJECT UNIT ls M 'lwJ1L M /LAbud -c> @ mw;
       . 'o  /S 'F.      Om     nLg    S e d .4 h /99o luu     Tka M .a.4Tltuq ifl & Ac.s N rdn nyyt creayss aren
                        .afk%                  w L c k k eru d n , IW3 nrZ is +.
        . Lib M ,                  I 189 . on     /wik sec c.,-4 b P b w p k 1 4 d ygu ) p n 4 L                            is s u      i=
        >>y 2.           aL3 i 'F.

En c4 utd a v3 - tb -A y o.A) ith l u A O t & t / u.u M u A44 t-t 4tf d , na . n p s au a, n A 4L tw $ y%f udh A, .

         " aA " A .

i l

n nnc2** CALC NO. M L WtL SHI 8 35 OF W t SOUTHTEXASPROJECT REV. PREPARERfDATE REVIEMRlDATE ELECTRICGENERATINGSTATION HOUSTONUGHTING & POWER o aff. ,o,5-43 % ic/r/ta GENERAL COMPUTATION SHEET SUBJECT UNIT ls

1. y) h / . L O % DR?106 'tO L b Ec d OPSLA 7m/
          }{v cd U S .Abu f a AQ 49 ,                                       vo-y,           i isk( cn 5L d%) d Lob P h b o 'F h A.l kt d u lk e " cc kl E c0 W ' cr p b h1 lo dd J               ilu ,a iv.Jr -fE u r . e b c.s/ M m             -                               ..

Letn Akuyvun.y ,e tut L a j it. b w envALt m & .k g. Al C] ] web4

        %4 = %r0F J soa-ima k ~R.
              .s ig,    =     soo x 120* *              .=    11.3 s, o o     -  6 3 fc, Th A hu,                         2    Ffw II, 3 : S ef,3                      .

I Yu T -t Y Y d( ' ccLh Elv/ ' W '

           & hk                ca        so f.

9 bo 'F lo a nuv1 w'An Ecv);th.g a wvA M . -rp'~ & m & ,det, x aritJ orDbl~ ec% $un nuvl A m.

1 STP 361(1248) Qgg pg, MC hM(L $ $ J 3 (# QF Mb) RFV. PREPARERIDATE REVIEWERIDATE G NERATI STAilON HCUSiONUGHTING & POWER p 41 1 fo-5-93 G1B - t e/g/pg GENERAL COMPUTATION SHEET SUBJECT UNRis l 5.T. L O J h m SS ~t& l % Q. x 3) A W id f S kle d M fN ' T6= 3 3 576 x 6 5.3 5 + 2 36 fa x 57.3/ - 6 2. O L (33 676, + 2 3 67 0 ) C ' *l "f M "' go, yg

            %=       3avn x 73. 08 + izv2, x cz, oz.                   ,

( 2 2 y2 r + 142, ) LLg ccd5 /ma %s ! = 7f 0F (msgallctad) e 7efa Oo h [/ bW b / 2 7, .3 52.3

                                                      /05.5 zB k         /w                        ,

so Y C0F .is trw%k. I s l

STP 361(1248) ggg g g4 g g37 SOUTHTEXAS PROJECT REVIEWERIDATE REV. PREPARERIDATE ELECTRICGENERAT!NGSTATION e 41 9,5-43 @ 9/r/P1 ) HOUSTONLIGHTING & POWER GENERAL COMPUTATION SHEET j SUBJECT UNITis J

                                                                                                                -l i

l. } a 5.1.

                                     % A J . f M M [r hu } 7A A)                    a i

Tg= 3357( , S4.93 + D 3 Vto e 50,7.s_ _ r3,u  ; 3357 6 + 23 696 l f Sg.o9 Tc : 32cr x str7 + i2vzr < ss.7_o _ 314zt + tzv2-t  ; usa- tmCCw' t i w~ tcy - 7T P (>%x N $ > I tu % 0 _ cL C3.3o

  • Vm y 5 9 YS*r = AHn 's - 105.5 _

Mu u u kJa f43 & i uA ~HuhJI &a ' n scw Teg,4 l I

l STP 361 (1248' CEEMtMS SM $38 Orus/ SOUTHTEXASPROJECT REV. PREPARERlDATE REVIEWIRlDATE l ELECTRICGENERATINGSTATION ' HOUSTONUGHTING & POWER o gg/ - pf-q) G 4 3 (o f r /f.y GENERAL COMPUTATION SHEET SUBJECT UNITls Ok'34f Wh W

                    <@ +     94~5-30 -yTr=                '/6. 3 300- 3 o AT3      = W3 < llow             - ,      9.17 goo v LS L ATww e      '> '/ 3 < iuo o    _
                                                        -     6 II Coo x (s%+ 920 04w 0% Q =                       55.C 9 q. 4
                 %g OA % =

Abk 42 hn cps 1 - l'kh,5cuAo

                                   ,                                   d l

l l l ~. I

 - . . - _ = .            = - . .  .       .              .              .                   ..                      .-

l STP 361(12e CALONO. tac Wi L SHT 834 Or u -;i l SOUTHTEXASPROJECT REVIEWERfDATE ~! REV- PREPARERIDATE ELECTRICGENERADNGSTATION  ! HOUSTONUGHTING& POWER 0 (fM p.s-15 CAS- (c/f/93 l GENERAL COMPUTATION SHEET l SUBJECT ' UNIT Is  : A A0 Dt ANuf hY

u.  ;

i

                                                                           .                      ,        f CM       pTO,           A       51           4U                $-60    t          {e
                        %J .LaA .zico~ y c%l M, wkk                                                                          l xuoepqAha9.c d                                                 Lf g % w--                           l w &.                A          nw%                           6 L 4                                    . ;

I a u- a w. SL L . 1 N .WW e qwoh em 6 ed Lg b op d u

                          &n                     Wi& ,cn                                               pu % -                l
                          % nn G % au wealW p                                                                               ;

l LD* s L< NS Q&, urlA mfdd.x Yu Uc%

  • Je,f-k u

xRu A sca na w ew Jks ~.1tL , 4% 6ud +Lx - MLg &xpleuA 2p N Q .< I sap, t c a h d , e RvAt q A u . JJ p 6 L M j$ n j b 6 MMd*Jl N h "*"~0E -

                                                                                                                        ~

l ) l 1

SINGLE TRA!N NORMAL, W:NTER APPENDIX X1 CALC. NO. MC-6412 SHT.NOFh h, [ Vfh104-{] I COLD CONDITIONS ] , (' 45 DEGREE CHILL WTR 3  : NORMAL WlNTER OPERATION SINGLE TRAIN 4 UNIT 2 TRAIN C OPERATING S 6 f! CHILLED WATER TEMP 45 45 45 7 INLET AIR TEMPERATURE, F 50 50 50 8 HUM!DITY OF MAKEUP air, GRAINS 40 40 40 9 [ HUMIDITY COIL OUTLET, GRAINS 40 40 40 10 [ 11  ; CHILLED WTR FLOW, GPM 168 168 168 12 l EAB COILS CHILL WTR FLOW 600 600 600 13 14 TRIAL EAB COIL OUTLET AIR TEMP 52.00 52.00 51.24 15- l COMPUTED EAB COIL OUTLET AIR TEMP 51.24 16  ; COMPUTED RETURN FAN INLET TEMP. 66.24 17 i 18 l 19 CONTROL ROOM TEMPERATURE TRIAL 74.23 20 CONTROL ROOM TEMPERATURE RESULT 74.23 21 l 22 DOTAL TRAIN LOAD. TONS 150 l 23 24 I EAB COIL LOAD TONS 120.36 25  ! CONTROL ROOM COfL LOAD TONS 56.44 26 , ELECT 1 CAL PENETRATION ROOM 0.00 27 -i ESF PUMP ROOM 28 { ESF VALVE CUBICLE 29 l CCW/ESS CH!LLER ROOM 3.31 30 SFP PUMP ROOM 2.30 31 f RAD WASTE CONTROL ROOM 0.00 32 RADIATION MONITOR!NG ROOM 0.00 33 RWST ROOM (RM PUMP) 34  ! CVCS VALVE ROOM 033 35 j BORIC ACID PUMP ROOM 0.00 36 l CVCS VALVE ROOM 226 0.00 37 i CVCS VALVE ROOM 044 0.00 38 t CHILLED WATER PUMP HEAT. TONS 10.60 39-40 y

                                                                                                ]

e s

i l SINGLE TRAIN NORMAL, W!NTER APPENDIX X1 CALC. NO. MC-6412 SHT.NIOF fl htd. /i TRAIN TRAIN TRAIN 42

                                                                             & IVM)

( EAB TRAIN IN SERVICE 7 NO NO YES 44 CHILLED WATER TRAIN IN OPERATION? NO NO YES 45 SAFETY INJECTION SIGNAL? NO NO NO 46 , 47 , 48 , EAB SUPPLY HEADER FLOW 19974 14096 19044 49 . EAB BATTERY SUPPLY HEADER FLOW 1506 1066 1212 50  ; RETURN FAN LOAD, TONS 16.11 15.67 15.97 51 SUPPLY FAN LOAD TONS 37.92 37.08 3 7.61 52 l EAS CO!L EFFECTIVENESS 0.8000 0.8000 0.6000 53

                                                                                        -l 54 CONTROL ROOM HVAC INPU7.                                              55             '[

CONTROL ROOM IN RECIRC. MODE? YES YES YES 56 CONTROL ROOM TRAIN IN SERVICE? NO NO YES 57 ' MAKEUP FAN FLOW, CFM 1000 1000 1000 ' 58 . MAKEUP FAN HEAT INPUT TONS 0 0 0 59 f CLEANUP FAN FLOW, CFM 0 0 0 60  : RETURN FAN FLOW, CFM 19750 19860 19300 61 RETURN FAN HEAT INPUT, TONS 6.4547 6A353 6.1509 62 CLEANUP FAN HEAT INPUT. TONS 0 0 0 63  ; CLEANUP FAN LOAD TO ROOM, TONS? O O O 64 , COIL EFFECTIVENESS 7 0.9300 0.9300 0.9300 65 i i SUPPLY FAN LOAD, TONS? 7.5164 7.8877 7.4533 66 I SUPPLY FAN LOAD TO ROOM, TONS? 0.7982 0.8376 0.7915 67 REHEATERS ON? NO 68 , 69 ROOM TEMPERATURE

SUMMARY

TRAIN A TRAIN B TRAlN C 70 EAB RETURN HEADER TEMPERATURE 65.35 57.31 73.68 71 CONTROL ROOM TEMPERATURE 74.23 72 ELECTICAL PENETRATION ROOM TEMP. 78.13 74.15 66.05 73 I ESF PUMP ROOM TEMP. 167.83 82.91 80.32 74 ESF VALVE CUBICLE TEMP. 103.56 93.85 89.18 75 5 CCW/ESS CHILLER ROOM TEMP. 98.48 47.96 59.97 76 SFP PUMP ROOM TEMP. 110.50 82.14 77 , RAD WASTE CONTROL ROOM TEMP. 90.45 78 i RADIATION MONITORING ROOM TEMP. 118.29 79 [ RWST ROOM (RM PUMP) TEMP. 78.73 80 CVCS VALVE ROOM 033 TEMP. 92.03 81 BORIC ACID PUMP ROOM TEMP. 76.75 82 [ CVCS VALVE ROOM 226 TEMP. 74.18 83 CVCS VALVE ROOM 044 TEMP. 90.81 84 ) 85 [ e6 }* B7 i  ; b t t F 4

I SINGLE TRAIN NORMAL, WINTER APPEND!X X1 CALC.NO.MC-6412 SHTMOFh htd, - i t% ID-l.-O EAB TRAIN A TRAIN B TRAIN C 89 gg SUPPLY HEADER FLOW, CFM 19974 14096 19044 91 ( BATTERY ROOM SUPPLY FLOW, CFM 1506 1066 1212 92 , NUMBER OF FANS IN OPERATION 1 1 1 93 SUPPLY FAN FLOW, CFM 53114 94  ; MAKEUP AIR FLOW, CFM 3785 95 RETURN FAN FLOW, CFM 49330 96 r RETURN HEADER FLOW, CFM 18468 13030 17832 97 SUPPLY CROSS TRAIN FLOW, CFM 19974 34070 98 - COIL OUTLET TEMPERATURE, F 52 52 51.24 99 RETURN CROSS TRAtN FLOW, CFM 18468 31498 100 SUPPLY HEADER TEMPERATURE 51.24 51.24 51.24 101 i EMERGENCYUGHTING TONS 0.74 0.20 0.74 102 USE FACTOR FOR EMERG. UGHTING 0 0 0 103 CLASS 1E EQUIP. LOAD, TONS 21.58 19.15 17.52 104 USE FACTOR FOR 1E EQUIP. 0 0 0 ' 105 CLASS 1E CABLE LOAD, TONS 16.51 11.29 12 106 USE FACTOR FOR 1E CABLE O O O 107 NORMAL UGHTING LOAD TONS 8.48 1.65 10.12 108 USE FACTOR FOR NORMAL UGHTING 1 1 1 109 , NON-1E EQUIP LOAD. TONS 9.28 4.00 20.18 110 USE FACTOR FOR NON-1E EQUIP. 1 1 1 111 NON-1E CABLE LOAD TONS 8.44 5.14 7.55 112  ; USE FACTOR FOR NON-1E CABLE 0.7 0.3 0.8 113 TOTAL HEADER LOAD, TONS 23.67 7.19 36.34 114 , RETURN HEADER TEMPERATURE, F 65.35 57.31 73.68 115 RETURN FAN INLET TEMP., F 66.24 116 RETURN FAN LOAD. TONS 15.97 117 MAKEUP AIR DRY BULB, F 50 118 SUPPLY FAN LOAD, TONS 37.61 119 i DELTATEMP ACROSS RETURN FAN 3.56 120 SUPPLY FAN INLET TEMPERATURE, F 68.39 121 [ DELTA TEMP. ACROSS SUPPLY FAN 7.80 122 COOLING COIL INLET TEMP., F 76.19 123 HUMIDITY OF MAKEUP AIR, GRAINS 40 124 HUMIDITY COllOUTLET, GRAINS 40 125 LATENT LOAD, TONS 0.00 126 COtL EFFECTIVENESS 0.8000 127 EFFECTIVE CHILL WTR TEMP. 45.00 128 , COLL OUTLET TEMPERATURE 51.24 129 SENSIBLE COOUNG COIL LOAD, TONS 120.36 130 TOTAL COOLING COfL LOAD, TONS 120.36 131

                                                                                             }

i

                                                                                             +
  ~ .-                             -     ~.                    .-

i SINGLE TRAIN NORMAL, WINTER APPENDIX X1 CALC. NO. MC 6412 SHT3I70F_i/ be.o. fi , og to-i- tr . l CONTROL ROOM TRAIN TRAlrJ TRAIN 133 A 'B C 134 M ~f ( NUMBER OF TRAINS IN OPERATION 1 1 1 135 [ MAKEUP FAN FLOW, CFM 1000 136 MAKEUP FAN HEAT INPUT, TONS 0 137 MAKEUP FILTER HEATERS, KW 138 r MAKEUP AIR TEMPERATURE, F 50.0 139 , MAKEUP FLOW TO TRAIN 1000 140  ! CLEANUP FAN FLOW, CFM 0 141 RETURN HEADER TEMPERATURE 74.23 74.23 74.23 142 RETURN FAN FLOW, CFM 19300 143 , RETURN FAN HEAT TONS 6.1509 144 RETURN FAN OUTLETTEMPERATURE 77.74 145 CLEANUP FAN INLETTEMPERATURE 146 , CLEANUP FAN HEAT INPUT, TONS 0 147 i CLEANUP FAN OUTLETTEMPERATURE 148 f COIL INLET FLOW, CFM 20300

  • 149 j COIL INLET TEMPERATURE 77.74 150
  • Cair 22127 151 ,

COIL EFFECTIVENESS 0.9300 152 LATENT LOAD, TONS 0.40 153 , EFFECTIVE CHILLED WTR TEMP 45.05 154 COLL SENSIBLE LOAD. TONS 56.04 155 CO!L OUTLETTEMPERATURE, F 47.34 156  ! ( SUPPLY FAN FLOW, CFM 20300 157 SUPPLYFANLOAD TONS 7.453 158 SUPPLY FAN OUTLET TEMP. 51.39 159 i EMERGENCY LIGHTING, TONS 0.33 160 ~; USE FACTOR FOR EMERG. UGHTING 0 161 CLASS 1E EQUIP. LOAD, TONS 9.12 162 USE FACTOR FOR 1E EQUIP. 1 163 [ CLASS 1E CABLE LOAD. TONS 0.49 164 USE FACTOR FOR 1E CABLE 1 165  ; NORMAL LIGHTING LOAD. TONS 9.6 166 i USE FACTOR FOR NORMAL UGHTING 1 167 REHEATER LOAD, TONS 30.72 104 USE FACTOR FOR REHEATER 0.7 169 NON-1E CABLE LOAD. TONS 0.12 170 , USE FACTOR FOR NON-1E CABLE 1 171 . HEADER ELECTRICAL LOAD TONS 40.B3 172  ; PERSONNEL SENSIBLE LOAD. TONS 0.5 173 PERSONNEL LATENT LOAD. TONS 0.4 174 - SUPPLY FAN MOTOR TO ROOM TONS 0.792 175 CLEANUP FAN MOTOR TO ROOM, TONS 0.000 176 TOTN. HEADER SENSIBLE LOAD, TONS 42.13 177 TOTAL HEADER FLOW, CFM 20300 178

                                                                                                 -i

(~ l

SINGLE TRAIN NORMAL WINTER APPENDIX X1 CALC NO.MO6412 SHT3 0083 [gg, f SUPPLY HEADER TEMPERATURE, F 51.39 179

                                                                  \'ff (D-$~0 RETURN HEADER TEMPERATURE, F                74.23           180  @ (( /

( SENS!BLE COOLING COtt LOAD, TONS 56.04 1 81 TOTAL COOLING COIL LOAD, TONS 56.44 182 f I i l; i t i I l k

SINGLE TRAIN NORMAL, WINTER APPENDIX X1 CALC. NO. MC-6412 SHTMOFh bd, Vy lo-$-L? CCW/ ESSENTIAL CHILLER ROOM TRAIN A TRAIN B TRAIN C 184 EMERGENCY LIGHTING, WATTS 180 180 180 185 8 [.'/ ( USE FACTOR FOR EMERG.UGHTING 0 0 0 186 CLASS 1E EQUIP. LOAD, WATTS 0 0 0 187 USE FACTOR FOR 1E EQUIP. 1 1 1 188 CLASS 1E CABLE LOAD, WATTS 1540 1680 1503 189 USE FACTOR FOR 1E CABLE O O O 190 NORMAL UGHTING LOAD, WATTS 1656 1380 2116 191 USE FACTOR FOR NORMAL LIGHTING 1 1 1 192 NON 1E EQUIP LOAD, WATTS 0 0 0 193 USE FACTOR FOR NON-1E EQUIP. 1 1 1 194 NON-1E CABLE LOAD, WATTS 4110 1710 2790 195 USE FACTOR FOR NON-1E CABLE 1 1 1 196 CONDUCTION HEAT LOAD, WATTS 0 0 0 197 USE FACTOR FOR CONDUCTION O O O 198 P1 PING HEAT LOAD, WATTS 0 0 0 199 USE FACTOR FOR PAPING LOAD 1 1 1

  • 200 CCW PUMP MOTOR LOAD, WATTS 39305 39305 39305 201 USE FACTOR CCW PUMP O O 1 202 CHILL WTR PUMP MOTOR LOAD, WATTS 4610 4610 4610 203 USE FACTOR CHILL WTR PUMP O O 1 204 300 TON MOTOR LOAD, WATTS 20156 20156 20156 205 USE FACTOR 300 TON O.1 0.1 1 206 150 TONS HEAT LOAD, WATTS 1500 1500 1500 207 i USE FACTOR 150 TON 0.8 0.8 0.8 208 CCW SUPPLEMENTAL AHU LOAD, WATTS 4196 419S 4196 209 USE FACTOR CCW CLR 0 0 1 210 ESSENTIAL CH WTR AHU LOAD, WATTS 3330 3330 3330 211 USE FACTOR AHU 0 0 1 212 NET ROOM LOAD, WATTS 8982 6306 77703 213 ROOM VENTILATION FLOW, CFM B40 1275 1285 214 ROOM VENTILATION TEMPERATURE, F 65 65 65 215 ROOM VENT 1LATION CONSTANT 915.6 1389.75 1400.65 216 CCW SUPPLEMENTAL AHU FAN CFM 29956 28966 31689 217 ECW FLOW TO CCW SUPPL COtt 0 36 36 218 ECW TEMP. TO CCW SUPPL COIL, F 45 45 45 219 CCW SUPPL COtt EFFECTIVENESS 0.E536 0.8474 0.8634 220 CCW SUPPL COIL CONSTANT, C1 0 15253 15541 221 .

CHILL WTR AHU FAN CFM 0 0 2997 222 CHILL WTR FLOWTO COIL, GPM 40 40 40 223 CHILL WTR TEMP. TO COIL, F 45 45 45 224 CHILL WTR COIL EFFECTIVENESS 0.7680 0.7640 0.8114 225 CHILLWTR COilCONSTANT, C2 0 0 2651 226 ROOM LATENT HEAT LOAD, BTU /HR 0 0 0 227 EFFECTIVE CHILL WTR TEMP., F 45 45 45 22B SUM CONSTANTS X TEMP 93168.2 798248.8 1174875 229 (

i L SINGLE TRAIN NORMAL, WINTER APPENDIX X1 CALC. NO. MC-6412 SHT. M O N 3f f g [ i SUM CONSTANTS 916 16643 19592 230

                                                                                             ]f 10-6 t))

ROOM TEMPERATURE, F 98.5 48.0 60.0 231 b [ ff i CH WTR COIL SENSIBLE LOAD TONS 3.31 232 ( CHILLWm TOTAL LOAD, TONS 3.31 233  ; f b h i l l l i i

                                                                                                         ]

4 i I k I i

i LOOP, FROM SGL TRN, WINTER, MIN. LOAD APPENDIX X2 CALC. NO. MC-6412 SHT.YSI OFYN h[d.

                                                                                  & 10-b-Q           I 1 pg / y EXTREME COLD                      SINGLE FAILURE-                 2                    ,

( 44 DEGREE CH!LL WTR NONE 3 I LOSS OF OFF-SITE POWER 4  ! UNIT 1 TRANSIENT 5  ! 6 CHILLED WATER TEMP 44 44 44 7 f INLET AIR TEMPERATURE, F 15 15 15 8 , HUMIDITY OF M.AKEUP AIR, GRAINS 20 20 20 9 I HUMIDITY COIL OUTLET, GRAINS 20 20 20 10 11 j CHILLED WTR FLOW, GPM 168 168 168 12 i EAB COILS CHILL WTR FLOW 600 600 600 13 l 14 [ TRIAL EAS COIL OUTLET AIR TEMP 57.50 48.71 65.08 15 [ COMPUTED EAB COIL OUTLET AIR TEMP 48.34 47.51 48.86 16 [ COMPUTED RETURN FAN INLET TEMP. 62.95 56.50 66.75 - 17  ; BENCHMARK RETURN FAN INLET T. 62.95 56.50 66.75 18  ; 19 i CONTROL ROOM TEMPERATURE TRIAL 61.00 20  ; CONTROL ROOM TEMPERATURE RESULT 52.19 21 l 22  ! [ TOTAL TRAIN LOAD, TONS 139 121 148 l 23 f 24 .; EAB COIL LOAD, TONS 92.37 74.67 103.54 25  : CONTROL ROOM COIL LOAD, TONS 35.14 34.79 33.01 26 =f ELECTICAL PENETRATION ROOM 0.00 0.00 0.00 27 l ESF PUMP ROOM 28 i ESF VALVE CUBICLE 23  ! CCW/ESS CHILLER ROOM 0.68 0.70 0.B5 30 f SFP PUMP ROOM 0.00 0.00 31  ! RAD WASTE CONTROL ROOM 0.00 0.00 32 f RADIATION MONITORING ROOM 0.00 0.00 33 l RWST ROOM (RM PUMP) 0.00 0.00 34 [ CVCS VALVE ROOM 033 0.00 0.00 35 BORIC ACID PUMP ROOM 0.00 0 00 36 CVCS VALVE ROOM 226 0.00 0.00 37 CVCS VALVE ROOM 044 0.00 38  ! CHILLED WA1ER PUMP HEAT, TONS 10.60 10.00 - 10.00 39 f 40 l l t

                                                                                                     ?

f

                                                                                                     )

P B

LOOP, FROM SGL TRN, WINTER, MIN. LOAD APPENDIX X2 CALC. NO. MC 6412 SHT.Y k h ht,o, TRAIN 42

                                                                                        \f 10-$~

TRAIN TRAIN A B C 43 YES YES YES 44

  ~(  EAB TRAIN IN SERVICE?

CHILLED WATER TRAIN IN OPERATION? YES YES YES 45 SAFETY INJECTION SIGNAL 7 NO NO NO 46 47 48 EAB SUPPLY HEADER FLOW 34447 2S688 37854 49 EAB BATTERY SUPPLY HEADER FLOW 3425 2046 2443 50 RETLfRN FAN LOAD. TONS 15.60 16.93 15.77 51 SUPPLYFANLOAD TONS 36.40 36.47 36.24 52 EAB COIL EFFECTIVENESS 0.8503 0.8503 0.8503 53 54 CONTROL ROOM HVAC INPUT. 55 CONTROL ROOM IN RECIRC. MODE? YES YES YES 56 CONTROL ROOM TRAIN IN SERVICE? YES YES YES 57 MAKEUP FAN FLOW, CFM 0 0 0- 58 MAKEUP FAN HEAT INPUT, TONS 0 0 0 59 CLEANUP FAN FLOW, CFM 6290 6217 5912 60 RETURN FAN FLOW, CFM 18071 17410 16132 61 RETURN FAN HEATINPLIT, TONS 6.307 6.7046 6.5688 62 CLEANUP FAN HEAT INPUT, TONS 3.1144 3.1853 3.0141 63 CLEANUP FAN LOAD TO ROOM. TONS? 0.3307 0.3383 0.3201 64 COIL EFFECTIVENESS? 0.9331 0.9374 0.9478 65 i SUPPLY FAN LOAD. TONS? 7.5683 7.7065 7.2574 66 SUPPLY FAN LOAD TO ROOM, TONS? 0.8037 0.8164 0.7707 67 REHEATERS ON? NO G8 69 70 71 72 73

                                                                                   ' 74 75 76

i LOOP, FROM SGL TRN, WINTER, M!N. LOAD APPENDIX X2 CALC. NO. MC-6412 SHT. M OF N h , f ' EAB TRAIN A TRAIN B TRAIN C 78 hlo-h-$5

  • 79 U f [8 i SUPPLY HEADER FLOW, CFM 43059 33360 47355 80 BATTERY ROOM SUPPLY FLOW, CFM 4281 2558 3054 81 NUMBER OF FANS IN OPERATION 3 3 3 82 3 SUPPLY FAN FLOW, CFM 41258 41258 41258 83 UAKEUP A!R FLOW, CFM 3298 3298 3298 84 RETURN FAN FLOW, CFM 37960 37960 37960 85 RETURN HEADER FLOW, CFM 38778 30803 44301 86 i SUPPLY CROSS TRAIN FLOW, CFM 1801 6097 87  !

COIL OUTLET TEMPERATURE, F 57.5 48.71 65.08 88 RETURN CROSS TRAIN FLOW, CFM 817 6341 89 SUPPLY HEADER TEMPERATURE 57.33 48.71 62.90 90 , EMERGENCYUGHTING TONS 0.74 0.20 0.74 91 USE FACTOR FOR EMERG. UGHTING 1 1 1 92  ! CLASS 1E EQUIP. LOAD. TONS 21.58 19.15 17.52 93 , USE FACTOR FOR 1E EQUIP. 0.5 0.5 0.5 94 f CLASS 1E CABLE LOAD. TONS 1 6.51 11.29 12 95 l USE FACTOR FOR 1E CABLE 0.5 0.5 0.5 96 NORMAL UGHTING LOAD, TONS 8.48 1.65 10.12 97 l USE FACTOR FOR NORMAL UGHTING 0 0 0 98 NON-1E EQUIP LOAD, TONS 9.28 4.00 20.18 99 USE FACTOR FOR NON-1E EQU!P. 0 0 0 100 NON-1E CABLE LOAD. TONS BA4 5.14 7.55 101 I USE FACTOR FOR NON-1E CABLE O C 0 102 l TOTAL HEADER LOAD, TONS 19.79 15.42 15.50 103 RETURN HEADER TEMPERATURE, F 62.95 54.22 66.75 104 RETURN FAN INLET TEMP., F 62.95 56.50 66.75 105 RETURN FAN LOAD, TONS 15.60 16.93 15.77 106 + MAKEUP AIR DRY BULB, F 15 15 15 107 , SUPPLY FAN LOAD, TONS 36.395 36A67 36.242 108 DELTA TEMP ACROSS RETURN FAN 4.52 4.91 4.57 109 SUPPLY FAN INLETTEMPERATURE, F 63.28 57.70 66.82 110 DELTATEMP. ACROSS SUPPLY FAN 9.71 9.73 9.67 til COOLING COIL INLET TEMP., F 72.09 67A3 76.49 112 l HUMIDITY OF MAKEUP AIR, GRAINS 20 20 20 113  ; HUMtDITY COIL OUTLET, GRA!NS 20 20 20 114 i LATENT LOAD. TONS 0.00 0.00 0,00 115 , COIL EFFECTIVENESS 0.8503 0.8503 0.8503 116 EFFECTIVE CHILL WTR TEMP. 44.00 44.00 44.00 117 COIL OUTLETTEMPERATURE 48.34 47.51 48.83 118 , SENSIBLE COOUNG COIL LOAD, TONS 92.37 74.67 103.54 119 , TOTAL COOUNG COIL LOAD. TONS 92.37 74.67 103.54 120 I i ( , i

i LOOP, FROM SGL TRN, WINTER, MIN. LOAD APPENDIX X2 CALC. NO. MC-6412 SHT8#YOF M [ b . f TRAIN TRAIN TRAIN 122 k lO-b0 h CONTROL ROOM A B C 123 ff I NUMBER OF TRAINS IN OPERATION 3 3 3 124 MAKEUP FAN FLOW, CFM - 0 0 0 125 , MAKEUP FAN HEAT INDUT, TONS 0 0 0 126 MAKEUP FILTER HEATERS, KW 127 MAKEUP AfR TEMPERATURE, F 128 f MAKEUP FLOW TO TRAIN O O O 129 .j CLEANUP FAN FLOW, CFM E290 6217 5912 130 l RETURN HEADER TEMPERATURE 61 61 61 131 RETURN FAN FLOW, CFM 18071 17410 16132 132 RETURN FAN HEAT, TONS 6.307 6.7046 6.5688 133 RETURN FAN OUTLET TEMPERATURE 64.64 65.24 65.48 134 i i CLEANUP FAN INLET TEMPERATURE 64.64 65.24 65.48 135 CLEANUP FAN HEAT INPUT, TONS 3.1144 3.1653 3.0141 136 J 70.29 70.88 71.10 137 I CLEANUP FAN OUTLET TEMPERATURE CO!L INLET FLOW, CFM 18071 17410 16132 ~ 138 67.25 67.54 139  ! COIL INLET TEMPERATURE 66.74 C2 19697 18977 17584 140  ! 0.9374 0.9478 141 I CO!L EFFECTIVENESS 0.9331 LATENT LOAD, TONS 0.40 0.40 0.40 142 EFFECTIVE CHILLED WTR TEMP 44.06 44.06 44.06 143 { CO!L SENSIBLE LOAD, TONS 34.74 34.39 32.61 144  ! COLL OUTLET TEMPERATURE, F ~45.57 45.51 45.28 145 f SUPPLY FAN FLOW, CFM 18071 17410 16132 146 [ I SUPPLY FAN LOAD, TONS 7.568 7.707 7.257 147  ; 50.19 50.38 50 24 148 i 2 SUPPLY FAN OUTLET TEMP. EMERGENCY UGHTING, TONS 0.33 149 l USE FACTOR FOR EMERG. UGHTING 1 150 l 9.12 151 f CLASS 1E EQUlP. LOAD. TONS USE FACTOR FOR 1E EQUIP. 0.5 152 i 0.49 153 ] CLASS 1E CABLE LOAD, TONS f USE FACTOR FOR 1E CABLE 05 154 .j NORMAL UGHTING LOAD, TONS 9.6 155 j USE FACTOR FOR NORMAL UGHTING 0 156  ; REHEATER LOAD. TONS 30.72 157 USE FACTOR FOR REHEATER 0 158 i

                                                                                                 ~f NON-1E CABLE LOAD TONS                               0.12              159 USE FACTOR FOR NON-1E CABLE                              O             160              -f; HEADER ELECTRICAL LOAD, TONS                         5.14              161 PERSONNEL SENSIBLE LOAD. TONS                         0.5             162               j PERSONNELLATENTLOAD TONS                              0.4             163

{ SUPPLY FAN MOTOR TO ROOM, TONS 0.834 0.818 0.771 164 { CLEANUP FAN MOTOR TO ROOM, TONS 0.331 0.338 0.320 165 l TOTAL HEADER SENSIBLE LOAD, TONS 9.02 166 } TOTAL HEADER FLOW, CFM 51613 167 ( i

LOOP, FROM SGL TRN, WINTER, MIN. LOAD APPENDIX X2 CALC. NO. MC-6412 SHT.YMOFk3/ b. SUPPLY HEADER TEMPERATURE, F 50.27 108 Vf} k + 3 l RETURN HEADER TEMPERATURE, F 52.19 163 T f SENSIBLE COOLING COLL LOAD, TONS 34.74 34.39 32.61 170 ( , TOTALCOOLING CO!LLOAD TONS 35.14 34.79 33.01 171  ! 1 e 1 1 l i

  • l 5

1 I i l 1 l 1

                                                                                               .i i

1 l . i I l ( l

bg, LOOP, FROM SGL1 TIN, WINTER, MIN. LOAD APPENDIX X2 CALC. NO. MC-6412 SHT.VNOF 10 9 ] CCW/ ESSENTIAL CH:LLER ROOM TRAIN A TRAIN B TRAIN C 173 EMERGENCY UGHTING. WATTS 180 180 180 174 1 USE FACTOR FOR EMERG. UGHTING 1 1 1 175 (' CLASS 1E EQUIP. LOAD, WATTS 0 0 0 176 USE FACTOR FOR 1E EQUIP. 1 1 1 177 CLASS 1E CABLE LOAD, WATTS 1540 1680 1503 178 , USE FACTOR FOR 1E CABLE 0.6 0.6 0.6 179 NORMAL UGHTING LOAD, WATTS 1656 1380 2116 180 USE FACTOR FOR NORMAL UGHTING 0 0 0 181 NON-1E EQUIP LOAD, WATTS 0 0 0 182 USE FACTOR FOR NON-1E EQUIP. 0 0 0 183 - NON-1E CABLE LOAD, WATTS 4110 1710 2790 184 USE FACTOR FOR NON-1E CABLE O O O 185 CONDUCTION HEAT LOAD, WATTS 0 0 0 186 USE FACTOR FOR CONDUCTION O O O 187 PIPING HEAT LOAD, WATTS 0 0 0 188 USE FACTOR FOR PIP!NG LOAD 1 1 1 189 CCW PUMP MOTOR LOAD, WATTS 39305 39305 39305 190 USE FACTOR CCW PUMP 0.6 0.6 0.6 191 , CHILL WTR PUMP MOTOR LOAD, WATTS 4610 4610 4610 192 USE FACTOR CHILL WTH PUMP 0.6 0.6 0.6 193 300 TON MOTOR LOAD, WATTS 20156 20156 20156 194 ' USE FACTOR 300 TON 0.6 0.6 0.6 195 150 TONS HEAT LOAD, WATTS 1500 1500 1500 196 i USE FACTOR 150 TON O O O 197 CCW SUPPLEMENTAL AHU LOAD, WATTS 4196 4196 4196 198 USE FACTOR CCW CLR 0.6 0.6 0.6 199 ESSENTIAL CH WTR AHU LOAD, WATTS 3330 3330 3330 200 USE FACTOR AHU 0.6 0.6 0.6 201 NET ROOM LOAD, WATTS 44062 44146 44040 202 , ROOM VENTILATION FLOW, CFM 0 0 0 203 ROOM VENTILATION TEMPERATURE, F 65 65 65 204 . ROOM VENTILATION CONSTANT 0 0 0 205 f CCW SUPPLEMENTAL AHU FAN CFM 34540 29820 25748 206 ECW FLOW TO CCW SUPPL COIL 36 36 ' 36 207 ECW TEMP. TO CCW SUPPL CO!L, F 38 38 38 208 CCW SUPPL COIL EFFECTIVENESS 0.8773 0.8528 0.8237 209  ; CCW SUPPL COIL CONSTANT, C1 15791 15350 14827 210 CHILL WTR AHU FAN CFM 3116 28S7 3491 211 CHILL WTR FLOW TO COIL, GPM 40 40 40 212 4 CHILL WTR TEMP. TO COIL, F 44 44 44 213 f CHILL WTR COIL EFFECTIVENESS 0.8031 0.8207 0.7778 214 CHILL WTR COLL CONSTANT, C2 2728 2565 2960 215 ROOM LATENT HEAT LOAD, BTU /HR 0 0 0 216 [ EFFECTIVE CH:LL WTR TEMP., F 44 44 44 217 SUM CONSTANTS X TEMP 870475.5 646833.5 843945.1 218 i

i LOOP, FROM SGL TRN, WINTER, MIN. LOAD APPENDIX X2 CALC. NO. MC-6412 SHT.YO7 0F M,[f u). I Yf10-bS , SUM CONSTANTS 18519 17915 17786 219 g, ROOM TEMPERATURE, F 47.0 47.3 47.4 220 ( CH WTR COIL SENSIBLE LOAD. TONS 0.68 0.70 0.85 221 l CHILLWTRTOTALLOAD TONS 0.68 0.70 0.85 222

                                                                                           ?

r a l 1 l ( i t i L

j St FROM SGL TRN, TRANSIENT, MAX APPENDIX X3 CALC. NO. MC4412 SHT. M OF N b d, f ' 1 V& 10-4-93 COLD CONDITIONS SINGLE FAILURE: 2 D ff ( 48 DEGREE CHILL VER TRAIN A SAFETY INJECTION 3 I NO LOSS OF OFF-SITE POWER TRANSIENT FROM 4  ; UNIT 2 SINGLE TRAIN OPERATION 5 6 > CHILLED WATER TEMP 48 48 48 7 ) INLET AIR TEMPERATURE, F 60 60 60 8 HUMIDITY OF MAKEUP AIR, GRAINS 40 40 40 9 , HUM!DITY CO!L OUTLET, GRA!NS 40 40 40 10 11 , CHILLED WTR FLOW, GPM 168 168 168 12 EAB COILS CHILL WTR FLOW 600 600 000 13 14 TRIAL EAB CO!L OUTLET AIR TEMP 50.00 49.96 51.31 15 COMPUTED EAS COIL OUTLET AIR TEMP 51.74 52.90 16 i COMPUTED RETURN FAN INLET TEMP. 62.02 70.45 - 17 BENCH MARK RETURN FAN INLET TEMP. 62.02 70.45 18 CONTROL ROOM TEMPERATURE TRIAL 78.00 19 CONTROL ROOM TEMPERATURE RESULT 61.80 20 21 22 23 24 EAB COIL LOAD. TONS 4 97.19 127.27 l 25 , CONTROL ROOM COIL LOAD, TONS 55.72 53.30 l 26 j 27 28 29 30 31 32 33 34 I 35 3G 37 1 38 _l 39 40 i

t St FROM SGL TRN, TRANSIENT, MAX APPENDIX X3 CALC. NO. MC-6412 SHT. M OF h b , V#. Io-t-U l TRA!N TRAIN TRAIN 42 , A B C 43 [j c.AB TRAIN IN SERVICE? NO YES YES 44 ( LHILLED WATER TRAIN IN OPERATION? NO YES YES 45 l SAFETY INJECTION SIGNAL? NO YES YES 46 47 48 EAB SUPPLY HEADER FLOW 36317 25829 34625 49 EAB BATTERY SUPPLY HEADER FLOW 2738 1939 2204 50 RETURN FAN LOAD TONS 16.11 15.67 15.97 51 SUPPLY FAN LOAD. TONS 37.92 37.08 37.61 52 EAB COtL EFFECTIVENESS 0.8555 0.8555 0.8555 53 54 i CONTROL ROOM HVAC INPUT. 55 CONTROL ROOM IN RECIRC. MODE 7 NO NO NO 56 CONTROL ROOM TRAIN IN SERVICE? NO YES YES 57 i MAKEUP FAN FLOW, CFM 1040 1011 1001 - 58 MAKEUP FAN HEAT INPUT, TONS 0.7839 0.8267 0.78 59 CLEANUP FAN FLOW, CFM 0025 6147 6141 60 RETURN FAN FLOW, CFM 15990 16929 16174 61 RETURN FAN HEAT INPUT, TONS 6.4547 6.4353 6.1509 62 l CLEANUP FAN HEAT INPUT, TONS 3.0801 3.1128 2.5719 63 CLEANUP FAN LOAD TO ROOM. TONS? 0.3271 0.3306 0.2731 64 , CO!L EFFECTrENESS? 0.9476 0.9414 0.9466 65 i SUPPLY FAN LOAD, TONS 7 7.5164 7.6877 7.4533 66 SUPPLY FAN LOAD TO ROOM, TONS? 0.7982 0.8376 0.7915 67 l REHEATERS ON7 NO 68 Od l 70 l 71 , 72 73 74 75 , 76 , t w

                                                                                               ?

k 6

                                                                                               +

i St FROM SGL TRN, TRANS1ENT, MAX APPENDIX X3 CALC. NO. MC-6412 SHT.98ONN (co,f lO- & j EAB TRAIN A TRAIN B TRAIN C 78 i 79 b f7 ) SUPPLY HEADER FLOW, CFM 36317 25629 34625 80 j ( BATTERY ROOM SUPPLY FLOW, CFM 2738 1939 2204 81 l NUMBER OF FANS IN OPERATION 2 2 2 82 l SUPPLY FAN FLOW, CFM 48286 48286 83 l MAKEUP AIR FLOW, CFM 3441 3441 84 j RETURN FAN FLOW, CFM 44S45 44845 85  ; RETURN HEADER FLOW, CFM 33579 23090 32421. BS SUPPLY CROSS TRAIN FLOW, CFM 36317 13661 87  ; COIL OUTLETTEMPERATURE, F 50 49.96 51.31 88 { RETURN CROSS TRAIN FLOW, CFM 33579 12424 89 t SUPPLY HEADER TEMPERATURE 50.24 50.24 51.31 90 EMERGENCY LIGHTING. TONS 0.74 0.20 0.74 91 , USE FACTOR FOR EMERG. UGHTING 0 0 0 92 CLASS 1E EQUIP. LOAD. TONS 21.58 19.15 17.52 93 USE FACTOR FOR 1E EQUIP. 0 1 '1 - 94 CLASS 1E CABLE LOAD, TONS 16.51 11.29 12 95  : O 1 1 96  ! USE FACTOR FOR 1E CABLE NORMAL UGHTING LOAD, TONS 8.48 1.65 10.12 97 [ USE FACTOR FOR NORMAL UGHTING 1 1 1 93 NON-1E EQUIP LOAD. TONS 9.28 4 00 20.18 99 , USE FACTOR FOR NON-1E EQUIP. 1 1 1 100 j NON-1E CABLE LOAD. TONS 8.44 5.14 7.55 1 01 i USE FACTOR FOR NON-1E CABLE 0.7 0.3 0.8 102  ! TOTAL HEADER LOAD. TONS 23.67 37.63 65.80 103 RETURN HEADER TEMPERAlbRE, F 58.00 67.72 73.68 104 , RETURN FAN INLET TEMP., F 62.02 70.45 105 j RETURN FAN LOAD. TONS 15.67 15.97 106 MAKEUP AIR DRY BULB, F 60 60 107 SUPPLY FAN LOAD. TONS 37.08 37.61 108 DELTATEMP ACROSS RETURN FAN 3.85 3.92 109 SUPPLY FAN INLETTEMPERATURE, F 65.45 73.34 110 8.45 8.58 111 i DELTATEMP. ACROSS SUPPLY FAN COOUNG COIL INLET TEMP., F 73.90 81.92 112 f HUMIDITY OF V.AKEUP A!R, GRA!NS 40 40 113 l HUMIDITY CO!L OUTLET, GRAINS 40 40 114 , 0.00 0.00 115 , LATENT LOAD. TONS 0.8555 0.8555 116  : CO!L EFFECTIVENESS 48.00 48.00 117 i EFFECTIVE CHILLWTR TEMP. COIL OUTLET TEMPERATURE 51.74 52.90 11B SENSIBLE COOUNG COIL LOAD, TONS 97.19 127.27 119 TOTAL COOLING COIL LOAD, TON *. 97.19 127.27 120 f ( . i l l I

                                                                                         -l l

t

L SI FROM SGL TRN, TRANSIENT, MAX APPENDIX X3 CALC. NO. MC-6412 SHT.$I TRAIN TRAIN TRAIN 122 OFM[ V[ 10441 CONTROL ROOM A B C 123 NUMBER OF TRAINS IN OPERATION 2 2 2 124 ( ' MAKEUP FAN FLOW, CFM 1011 1001 125 MAKEUP FAN HEAT INPUT, TONS 0.8267 0.78 126 MAKEUP FILTER HEATERS, KW 4.5 4.5 127 , MAKEUP AIR TEMPERATURE, F 82.8 82.8 128  ; MAKEUP FLOW TO TRAIN 1006 1006 129 CLEANUP FAN FLOW, CFM 6147 6141 130 RETURN HEADER TEMPERATURE 78 78 78 131 RETURN FAN FLOW, CFM 16929 16174 132 RETURN FAN HEAT, TONS 6.4353 6.1509 133 RETURN FAN OUTLET TEMPERATURE B2.18 82.19 134 CLEANUP FAN INLET TEMPERATURE 82.29 82.29 135 CLEANUP FAN HEAT INPUT, TONS 3.1128 2.5719 136 CLEANUP FAN OUTLET TEMPERATURE 87.86 86.90 137 s COfL INLET FLOW, CFM 17935 17180 - 138 COtt INLET TEMPERATURE 84.13 83.87 '139 Cair 19549 18726 140 CO!L EFFECTIVENESS 0.9414 0.9466 141 LATENTLOAD TONS 0.40 0.40 142 EFFECTIVE CHILLED WTR TEMP 48.06 48.06 143 Coll SENSIBLE LOAD, TONS 55.32 52.90 144 COIL OUTLET TEMPERATURE, F 50.17 49.97 145 . 1 SUPPLY FAN FLOW, CFM 17935 17180 146 SUPPLY FAN LOAD, TONS 7.888 7.453 147 i SUPPLY FAN OUTLETTEMP. 55.01 54.75 148 EMERGENCY LIGHTING, TONS 0.33 149 USE FACTOR FOR EMERG LIGHTING 0 150  : CLASS 1E EQUIP. LOAD, TONS 9.12 151 ( USE FACTOR FOR 1E EQUIP. 1 152 CLASS 1E CABLE LOAD. TONS 0.49 153 USE FACTOR FOR 1E CABLE 1 154 NORMAL LIGHTING LOAD TONS 9.6 155 USE FACTOR FOR NORMAL UGHTING 1 156 REHEATER LOAD TONS 30.72 157 t USE FACTOR FOR REHEATERS 0 158 NON-1E CABLE LOAD. TONS 0.12 159 USE FACTOR FOR NON-1E CABLE 1 160 HEADER ELECTRICAL LOAD TONS 19.33 161 PERSONNEL SENSIBLE LOAD, TONS 0.5 162 , i PERSONNEL LATENT LOAD, TONS 0.4 163 SUPPLY FAN MOTOR TO ROOM, TONS 0.838 0.792 164 [ I CLEANUP FAN MOTOR TO ROOM, TONS 0.331 0.273 165 TOTAL HEADER SENS!BLE LOAD TONS 22.06 166 TOTAL HEADER FLOW, CFM 35115 167

                                                                                           )

{ 1 I

i t r St FROM SGL TRN, TRANSIENT, MAX APPENDIX X3 CALC. NO. MC-6412 SHT.Y/D N 1O. SUPPLY HEADER TEMPERATURE, F 54.88 168 RETURN HEADER TEMPERATURE, F C1.80 169' M SENS!BLE COOLING COIL LOAD. TONS 55.32 52.90 170 g TOTAL COOLING COIL LOAD. TONS 55.72 53.30 171 l

                                                                 ~

f t I  ; t t i i i t

                                                                                  ?

i j l

                                                                                   )
          .      -     .                                           .~

DUAL TRAIN NORMAL, WINTER APPENDIX Y1 CALC. NO. MC SHT. (O. W**" h0Fb

                                                                                $ w+93    i COLD CONDITIONS                    SINGLE FAILURE:                     2       ((/

g 44 DEGREE CHILL WTR N/A 3 NORMAL, WINTER DUAL TRAINS 4 UNIT 2 TRAINS A & C OPERATING S [ 6 CHILLED WATER TEMP 44 44 44 7

  • INLET AIR TEMPERATURE, F 50 50 50 8 HUMIDITY OF MAKEUP AIR, GRAINS 40 40 40 9 HUMIDITY CO!L OUTLET, GRAINS 40 40 40 10 i 11 CHILLED WTR FLOW, GPM 168 168 168 12 EAB ColLS CHILL WTR FLOW 600 600 600 13 14 I TRIAL EAS CO!L OUTLET AIR TEMP 47.17 50.00 47.63 15 COMPUTED EAB CO!L OUTLET AIR TEMP 47.17 47.63 16 1

COMPUTED RETURN FAN INLET TEMP. 53.88 57A2 - 17 18 19 CONTROL ROOM TEMPERATURE TRIAL 63.68 20  ; CONTROL ROOM TEMPERATURE RESULT 63.68 21 22 FOTAL TRAIN LOAD. TONS 134 ' 51]

                                                                      ,      23           l 24 i     EAB CO!L LOAD, TONS -                  82.25               94.20      25 CONTROL ROOM COTL LOAD, TONS           41.10              40.07       26 ELECTICAL PENETRATION ROOM              0.00                 0.00     27           ,

ESF PUMP ROOM 28 ESF VALVE CUBICLE 29 CCW/ESS CHILLER ROOM 0.00 6.12 30 . SFP PUMP ROOM 0.00 31 RAD WASTE CONTROL ROOM 0.00 0.00 32 e _RACIATION MONITORING ROOM 0.00 0.00 33

  • R_W3T ROOM (RM PUMP) 0.00 34  :

CVCS VALV6 ROOM 033 0.00 35

  • BORIC ACID PUMP ROOM 0.00 0.00 36  ;

CVCS VALVE ROOM 220 0.00 37 CVCS VALVE ROOM 044 0.00 3B CHILLED WATER PUMP HEAT, TONS 10.60 10.60 39 > 40 i r 1 J i a

r c I DUAL TRAIN NORMAL, WINTER APPENDIX Y1 CALC. NO. MC44 9 SHT.Nii OF htt ), f

                                                                              /C-[-k TRAIN     TRAIN      BAIN       42 A          B          C       43          /

( EAB TRAIN IN SERVICE? YES NO YES 44 i CHILLED WATER TRA!N IN OPERATION? YES NO YES 45  ! i~ SAFETY INJECTION SIGNAL 7 NO NO NO 46 3 47 48 j I EAB SUPPLY HEADER FLOW 36317 25629 34625 49 EAB BATTERY SUPPLY HEADER FLOW 2738 1939 2204 50  ! RETURN FAN LOAD, TONS 16.11 15'.67 15.97 51 SUPPLY FAN LOAD, TONS 37.92 37.08 37.61 52 EAB CO!L EFFECTIVENESS 0.8555 0.8555 0.P555 53  ! 54 ( CONTROL ROOM HVAC INPUT. 55 CONTROL ROOM IN RECIRC. MODE? YES YES YES 56 CONTROL ROOM TRAIN IN SERVICE? YES NO YES 57 MAKEUP FAN FLOW, CFM 1000 1000 1000 - 58 , MAKEUP FAN HEAT INPUT, TONS O O O 59 l CLEANUP FAN FLOW, CFM 0 0 0 60 l RETURN FAN FLOW, CFM 19750 19860 19300 61 RETURN FAN HEATINPUT, TONS F.4547 6.4353 6.1509 62 [ CLEANUP FAN HEAT INPUT, TONS 0 0 0 63 l CLEANUP FAN LOAD TO ROOM, TONS? O O ' O 64 [ 65 i COIL EFFECTIVENESS? 0.9300 0.9300 0.9300 i SUPPLY FAN LOAD, TONS? 7.5164 7.8877 7.4533 66 1 SUPPLY FAN LOAD TO ROOM, TONS? 0.7982 0.8376 0,7915 67  ; REHEATERS ON? YES 68 i 69 i I ROOM TEMPERATURE

SUMMARY

TRAIN A TRAIN B TRAIN C 70 EAB RETURN HEADER TEMPERATURE 54.93 50.75' 59.97 71 j CONTROL ROOM TEMPERATURE ' 63.68 72 l ELECTICAL PENETRATION ROOM TEMP. 78.13 74.15 66.05 73 i ESF PUMP ROOM TEMP. 167.83 82.91 80.32 74  ; ESF VALVE CUBICLE TEMP. 103.56 93.85 89.18 75 CCW/ESS CHILLER ROOM TEMP. 61.74 75.22 71.73 76 SFP PUMP ROOM TEMP. 83.29 101.00 77 l RAD WASTE CONTROL ROOM 1EMP. 90.45 78 RADIATION MONITORING ROOM TEMP. 118.29 79 RWST ROOM (RM PUMP) TEMP. 78.73 80  ; CVCS VALVE ROOM 033 TEMP. 92.03 81 { BORIC ACID PUMP ROOM TEMP. 76.75 82  ; CVCS VALVE ROOM 22S TEMP. 74.18 83 .l I CVCS VALVE ROOM 044 TEMP. 90.81 84 85 - BS 87 i i I

DUAL TRAIN NORMAL, WINTER APPENDIX Y1 CALC. NO. M SHT.'ll$OF 0.

                                                           ~'
                                                                             # ia43 .

EAB TRAIN A TRAIN B TRAIN C 89 g  ! SUPPLY HEADER FLOW, CFM 36317 25629 34625 91  ! ( BATTERY ROOM SUPPLY FLOW, CFM 2738 1939 2204 92 NUMBER OF FANS IN OPERATION 2 2 2 93 SUPPLY FAN FLOW, CFM 48286 48285 94  ; MAKEUP AIR FLOW, CFM 3441 3441 95 , RETURN FAN FLOW, CFM 44845 44845 96 + RETURN HEADER FLOW, CFM 33579 23690 32421 97 SUPPLY CROSS TRAIN FLOW, CFM 11969 13661 98 COIL OUTLET TEMPERATURE, F 47.17 50 47.63 99 RETURN CROSS TRAIN FLOW, CFM 11266 12424 100 SUPPLY HEADER TEMPERATURE 47.17 47.41 47.63 101 EMERGENCY UGHTING, TONS 0.74 0.20 0.74 102 , USE FACTOR FOR EMERG.UGHTING 0 0 0 103 CLASS 1E EQUlP. LOAD TONS 21.58 19.15 17.52 104 , USE FACTOR FOR 1E EQUIP. 0 0 0 105 CLASS 1E CABLE LOAD, TONS 16.51 11.29 12 106 , USE FACTOR FOR 1E CABLE O O O 107 , NORMAL UGHTING LOAD. TONS 8.48 1.65 10.12 108 USE FACTOR FOR NORMAL UGHTING 1 1 1 109 NONA E EQUIP LOAD, TONS 9.28 4.00 20.18 110 USE FACTOR FOR NON-1E EOUiP. 1 1 1 til = NON-1E CABLE LOAD, TONS 8.44 5.14 7.55 112 ( USE FACTOR FOR NON-1E CABLE 0.7 0.3 0.8 113 TOTAL HEADER LOAD, TONS 23.67 7.19 36.34 114 l RETURN HEADER TEMPERATURE, F 54.93 50.75 59.97 115 RETURN FAN INLET TEMP., F 53.88 57.42 116  ; RETURN FAN LOAD. TONS 16.11 15.97 117 MAKEUP AIR DRY BULB, F 50 50 118 SUPPLY FAN LOAD, TONS 37.915 37.61 119 DELTA TEMP ACROSS RETURN FAN 3.95 3.92 120 SUPPLY FAN INLETTEMPERATURE, F 57.28 60.S3 121 DELTATEMP. ACROSS SUPPLY FAN 8.64 8.58 122 l' COOLING COIL INLETTEMP., F 65.92 69.10 123 HUMIDITY OF MAKEUP AIR, GRAINS 40 40 124 HUMIDITY COIL OUTLET, GRAINS 40 40 125 LATENTLOAD TONS 0.00 0.00 126 COIL EFFECTIVENESS 0.8555 0.8555 127 r EFFECTIVE CHILL WTR TEMP. 44.00 44.00 128 CO!L OUTLET TEMPERATURE 47.17 47.C3 129 SENSIBLE COOUNG COIL LOAD, TONS 82.25 9420 130 TOTAL COOLING COIL LOAD. TONS 82.25 94.20 131 ( 1

i i DUALTRAIN NORMAL, WINTER APPENDIX Y1 . CALC. NO. MC-64 SHT.4fbOFh bM-

                                                                  ^"'

V6a+U j CONTROL ROOM TRAIN TRAIN TRAIN 133 ("go j j A B C 134 NUMBER OF TRAINS IN OPERATION 1 1 1 135  ; {. MAKEUP FAN FLOW, CFM 1000 1000 136 f MAKEUP FAN HEAT INPUT, TONS 0 0 137 l MAKEUP FILTER HEATERS, KW 138 , MAKEUP AIR TEMPERATURE, F 50.0 50.0 139 MAKEUP FLOWTO TRAIN 1000 1000 140 CLEANUP FAN FLOW, CFM 0 0 141 RETURN HEADER TEMPERATURE 63.68 63.68 63.68 142 RETURN FAN FLOW, CFM 19750 19300 143 RETURN FAN HEAT. TONS 6.4547 6.1509 144 l RETURN FAN OUTLETTEMPERATURE 67.28 67.19 145 CLEANUP FAN INLETTEMPERATURE 146  : t CLEANUP FAN HEAT INPUT, TONS 0 0 147 CLEANUP FAN OUTLET TEMPERATURE 148 , CO!L INLET FLOW, CFM 20750 20300 149 i COIL INLETTEMPERATURE 67.28 67.19 150 { Cair 22618 22127 151 f COIL EFFECTIVENESS 0.9300 0.9300 152 { LATENT LOAD. TONS 0.40 0.40 153 EFFECTIVE CHILLED WTR TEMP 44.06 44.06 154 COIL SENSIBLE LOAD, TONS 40.70 39.67 155 CO!L OUTLET TEMPERATURE, F 45.68 45.68 156 j ( SUPPLY FAN FLOW, CFM 20750 20300 157 i SUPPLY FAN LOAD, TONS 7.516 7.453 158 SUPPLY FAN OUTLET TEMP. 49.67 49.72 159 EMERGENCY UGHTING, TONS 0.33 160 [ USE FACTOR FOR EMERG. UGHTING 0 161 f CLASS 1E EQUIP, LOAD, TONS 9.12 162 } USE FACTOR FOR 1E EQUIP. 1 163 CLASS 1E CABLE LOAD. TONS 0.49 164 _j USE FACTOR FOR 1E CABLE 1 165 NORMAL UGHTING LOAD TONS 9.6 166  : USE FACTOR FOR NORMAL UGHTING 1 167  ; REHEATER LOAD, TONS 30.72 168 j USE FACTOR FOR REHEATER 1 169 i NON-1E CABLE LOAD, TONS 0.12 170 USE FACTOR FOR NON-1E CABLE 1 171 i HEADER ELECTRICAL LOAD. TONS 50.05 172 PERSONNEL SENSIBLE LOAD. TONS 0.5 173 f PERSONNEL LATENT LOAD. TONS 0.4 174 l SUPPLY FAN MOTOR TO ROOM, TONS 0.793 0.792 175 l CLEANUP FAN MOTOR TO ROOM TONS 0.000 0.000 176 TOTAL HEADER SENSIBLE LOAD. TONS 52.14 177 TOTAL HEADER FLOW, CFM 41050 178 ) k i i

DUAL TRAIN NORMAL, WINTER APPENDIXY1 CALC. NO. MO44 SHT.4'7 Ch 'h. l l>f- 93 SUPPLY HEADER TEMPERATURE, F 49.69 179 RETURN HEADER TEMPERATURE, F 63.68 180 7 SENSIBLE COOLING CO!L LOAD TONS 40.70 39.67 181 ( TOTAL COOLING CO!L LOAD TONS 41.10 40.07 182 h t i

                                                                               ?

I P r p h t 6 ( [

DUAL TRAIN NORMAL, WINTER APPENDIXY1 CALC.NO MC-640p ' SHT.96 OF NO VF *W n Kcd , CCW/ ESSENTIAL CHILLER ROOM TRAIN A TRAIN B TRAIN O 184 g EMERGENCY UGHTING, WATTS 180 180 180 185 USE FACTOR FOR EMERG. UGHTING 0 0 0 186 l CLASS 1E EQUIP, LOAD, WATTS 0 0 0 187 USE FACTOR FOR 1E EQUIP. 1 1 1 18S CLASS 1E CABLE LOAD, WATTS 1540 1680 1503 189

  • USE FACTOR FOR 1E CABLE O O O 190 NORMAL UGHTING LOAD, WATTS 1656 1380 2116 191 USE FACTOR FOR NORMAL UGHTING 1 1 1 192 .

NON-1E EQUIP LOAD, WATTS O O O 193 USE FACTOR FOR NON-1E EQUIP. 1 1 1 194 NON-1E CABLE LOAD, WATTS 4110 1710 2790 195  : I USE FACTOR FOR NON-1E CABLE 1 1 1 196 CONDUCTION HEAT LOAD, WATTS 0 0 0 197 USE FACTOR FOR CONDUCTION O O O 198 PIPING HEAT LOAD, WATTS 0 0 0 199 USE FACTOR FOR PIPING LOAD 1 1 1

  • 200 CCW PUMP MOTOR LOAD, WATTS 39305 39305 39305 201 USE FACTOR CCW PUMP 0 0 1 202 CHILL WTR PUMP MOTOR LOAD, WATTS 4610 4610 4610 203 USE FACTOR CHILL WTR PUMP O 1 1 204 j 300 TON MOTOR LOAD, WATTS 20156 20156 20156 205 USE FACTOR 300 TON O 1 1 206 150 TONS HEAT LOAD, WATTS 1500 1500 1500 207 I USE FACTOR 150 TON 0.8 0.8 0.8 208 CCW SUPPLEMENTAL AHU LOAD, WATTS 4196 4196 ~4195 209 USE FACTOR CCW CLR 0 0 1 210 ESSENTIAL CH WTR AHU LOAD, WATTS 3330 3330 3330 211 USE FACTOR AHU 0 1 1 212  ;

NET ROOM LOAD, WATTS 6956 32386 77703 213 ROOM VENTILATION FLOW, CFM 840 1275 1285 214 l ROOM VENTILATION TEMPERATURE, F 65 65 65 215 ROOM VENTILATION CONSTANT 915.6 1389.75 1400.65 216 CCW SUPPLEMENTAL AHU FAN CFM 29956 28966 31689 217 l ECW FLOWTO CCW SUPPL COIL 36 0 36 218  ! ECW TEMP. TO CCW SUPPL COIL, F 60 60 60 219 CCW SUPPL COfL EFFECTIVENESS 0.8536 0.8474 0.8S34 220 CCW SUPPL COIL CONSTANT, C1 15365 0 15541 221 CHILL WTR AHU FAN CFM 0 3705 2997 222 CHILL WTR FLOW TO COIL, GPM 40 40 40 223 } CHILL WTR TEMP. TO COfL, F 44 44 44 224 i 1 CHILL WTR COtt EFFECTIVENESS 0.7680 0.7640 0.8114 225 CHILL WTR COtL CONSTANT, C2 0 3085 2651 226 ROOM LATENT HEAT LOAD, BTU /HR 0 0 0 227 EFFECTIVE CHILL WTR TEMP., F 44 44 44 228 SUM CONSTANTS XTEMP 1005177 336623.7 1405342 229 ( l l x ~ - -

i I DUAL TRAIN NORMAL, WINTER APPENDIX Y1 CALC.NO.MC44k SHT. I70F 3/ &c. / l

                                                *~+v         Ulfto-t-L7   l SUM CONSTANTS                          1C280 4475 19592 230 Q$f gy     -

ROOM TEMPERATURE, F 61.7 75.2 71.7 231  ; { CH WTR COIL SENSIBLE LOAD, TONS 0.00 6.12 232 ) CHE WTR TOTAL LOAD TONS 0.00 6.12 233 j r l I t ( I

                                    .   ~..   ..
    ' LOOP, FROM DUAL TRN, WINTER, MIN. LOAD APPENDIX Y2 CALC. NO. MC4412    SHT.N OF h vg we    :

EXTREME COLD SINGLE FA! LURE: 2 @d fJ (. 44 CHILL WATER NONE 3 j LOSS OF OFF-SITE POWER 4 t UNIT 1 TRANSIENT 5 6 CHILLED WATER TEMP 44 44 44 7 INLET AIR TEMPERATURE, F 15 15 15 8 HUMID.T(OF MAKEUP AIR, GRA!NS 20 20 20 9 HUMIDITY COIL OUTLET, GRAINS 20 20 20 10  ; 11 CHILLED WTR FLOW, GPM 168 168 168 12 EAB ColLS CHILL WTR FLOW 600 600 600 13 14 , TRIAL EAB COIL OUTLET AIR TEMP 46.90 46.90 46.63 15 COMPUTED EAB COIL OUTLET AIR TEMP 46.90 46.00 46.63 16 COMPUTED RETURN FAN INLET TEMP. 52.52 52.10 50.52 17 { BENCHMARK RETURN FAN INLET T. N/A N/A N/A 18 19 l CONTROL ROOM TEMPERATURE TRIAL 61.00 20 i CONTROL ROOM TEMPERATURE RESULT 52.19 21  ; 22 l TOTAL TRAIN LOAD. TONS 108 108 100 l 23 24  ! EAB COIL LOAD. TONS 61.79 61.76 55.95 25 CONTROL ROOM COIL LOAD TONS 35.14 34.79 33.01 26 ELECTICAL PENETRATION ROOM 0.00 0.00 0.00 27 6 ESF PUMP ROOM 28 ESF VALVE CUBICLE 29  ; CCW/ESS CHILLER ROOM 0.68 0.70 0.85 30 SFP PUMP ROOM 0.00 0.00 31 RAD WASTE CONTROL ROOF 4 0.00 0.00 32 RADIATION MON!TORING ROOM 0.00 0.00 33 PWST ROOM (RM PUMP) 0.00 0.00 34 CVCS VALVE ROOM 033 0.00 0.00 35 0.00 36 ' BORIC ACID PUMP ROOM 0.00 CVCS VALVE ROOM 226 0.00 0.00 37 CVCS VALVE ROOM 044 0.00 38 CHILLED WATER PUMP HEAT TONS 10.60 10.60 10.60 39 40 l ( l l

LOOP, FROM DUAL TRN, WINTER, MIN. LOAD APPEWDIX Y2 CALC WO. MC-6412 ' SMT.#ldI O h - h, , TRAIN TRAIN TRAIN 42 if$ /H,-G A B C 43 [ O EAB TRAIN IN SERVICE 7 YES YES YES 44 ( ' CHILLED WATER TRAIN IN OPERATION 7 YES YES YES 45 SAFETY INJECTION SIGNAL? NO NO NO 46  ; 47 , ; 4S EAB SUPPLY HEADER FLOW 34447 26688 37884 49 EAB BATTERY SUPPLY HEADER FLOW 3425 2046 2443 50 RETURN FAN LOAD TONS 15.6u 16.93 15.77 51 SUPPLYFANLOAD TONS 36.40 36.47 36.24 52 EAB COIL EFFECTIVENESS 0.8503 0.8503 0.8503 53 54 I CONTROL ROOM HVAC INPUT. 55 CONTROL ROOM IN REC 1RC. MODE 7 YES YES YES 56 CONTROL ROOM TRAIN IN SERVICE? YES YES YES 57 j MAKEUP FAN FLOW, CFM 0 0 0 - 58 t MAKEUP FAN HEAT INPUT, TONS 0 0 0 59 t CLEANUP FAN FLOW, CFM C290 6217 5912 60 { RE1L'RN FAN FLOW, CFM 18071 17410 16132 61 RETURN FAN HEAT INPUT, TONS 6.307 6.7046 6.5688 62 CLEANUP FAN HEAT INPUT, TONS 3.1144 3.1853 3.0141 63 CLEANUP FAN LOAD TO ROOM, TONS? 0.3307 0.3383 0.3201 64 COIL EFFECTIVENESS? 0.9331 0.9374 0.9478 65 . I SUPPLY FAN LOAD, TONS? 7.5683 7.7065 7.2574 66 SUPPLY FAN LOAD Tu ROOM, TONS? 0.8037 0.8184 0.7707 67 REHEATERS ON? NO 68 i 69 } 70 71 72 73 74 75 76 6 i i a i i l I 1 l l l

3 p {2 g LOOP, FROM DUAL TRN, W NTER, MIN. LOAD APPENDIX Y2 CALC. NO. MC-6412 SHT. EAB TRA!N A TRAIN B TRAIN C 78 Vff.104 '13

                                                                             ~

79 SUPPLY HEADER FLOW, CFM 430'59 33360 47355 80 ( BATTERY ROOM SUPPLY FLOW, CFM azB1 2558 3054 81 NUMBER OF FANS IN OPERATION 3 3 3 82 SUPPLY FAN FLOW, CFM 41258 41258 41258 83 MAKEUP A!R FLOW, CFM 3298 3298 3298 84 RETURN FAN FLOW, CFM 37960 37960 37900 85 RETURN HEADER FLOW, CFM 38778 30803 44301 86 SUPPLY CROSS TRAIN FLOW, CFM 1801 6097 87 CO!L OUTLET TEMPERATURE, F 46.9 46.9 46.63 88 , RETURN CROSS TRAIN FLOW, CFM 817 6341 89 SUPPLY HEADER TEMPERATURE t.6.90 46.90 46.67 90 EMERGENCY LIGHTING, TONS 0.74 0.20 0.74 91 USE FACTOR FOR EMERG. UGHTING 1 1 1 92 CLASS 1E EQUIP. LOAD TONS 21.58 19.15 17.52 93 USE FACTOR FOR 1E EQUIP. 0.5 0.5 0.5 94 CLASS 1E CABLE LOAD. TONS 16.51 11.29 12 95 USE FACTOR FOR 1E CABLE 0.5 0.5 0.5 9S NORMAL UGHTING LOAD, TONS 8.48 1.65 10.12 97 USE FACTOR FOR NORMAL UGHTING 0 0 0 98 NON-1E EQU!P LOAD, TONS 9.28 4.00 20.18 99 USE FACTOR FOR NON-1E EQUIP. 0 0 0 100 NON-1E CABLE LOAD, TONS 8.44 5.14 7.55 101 ' USE FACTOR FOR NON-1E CABLE O O O 102 TOTAL HEADER LOAD. TONS 19.79 15.42 15.50 103 RETURN HEADER TEMPERATURE, F 52.52 52.41 50.52 104 RETURN FAN INLET TEMP., F 52.52 52.10 50.52 105 RETURN FAN LOAD, TONS 15.60 16.93 15.77 106 MAKEUP AIR DRY BULB, F 15 15 15 107 SUPPLY FAN LOAD, TONS 36.39S 36.467 36.242 108 DELTA TEMP ACROSS RETURN FAN 4.52 4.91 4.57 109 SUPPLY FAN INLET TEMPERATURE, F 53.68 53.65 51.89 110 DELTA TEMP. ACROSS SUPPLY FAN 9.71 9.73 9.67 111 COOUNG COIL INLET TEMP., F C3.39 63.38 61.56 112 HUMfDITY OF MAKEUP AIR, GRAtNS 20 20 20 113 HUMIDITY COIL OUTLET, GRAINS 20 20 20 114 LATENT LOAD, TONS 0.00 0.00 0.00 115  ; COIL EFFECTIVENESS 0.8503 0.8503 0.8503 116 EFFECTIVE CHILL WTR TEMP. 44.00 44.00 44.00 117 COIL OUTLET TEMPERATURE 46.90 46.90 46.63 118 SENSIBLE COOLING COIL LOAD, TONS 61.79 61.76 55.95 119 TOTAL COOUNG COfL LOAD. TONS 61.79 61.76 55.95 120 ( l 4 l l

LOOP, FROM DUAL TRN, WINTER, MIN. LOAD APPENDIX Y2 CALC. NO. MC 6412 SHT.N30F h b. [ CONTROL ROOM TRAIN TRAIN TRAIN 122 A B C 123 f3 NUMBER OF TRAINS IN OPERATION 3 3 3 124 MAKEUP FAN FLOW, CFM 0 0 0 125 MAKEUP FAN HEAT INPUT, TONS 0 0 0 126 l MAKEUP FILTER HEATERS, KW 127 MAKEUP AIR TEMPERATURE, F 128 MAKEUP FLOWTO TRAIN O O O 129 CLEANUP FAN FLOW, CFM 6290 6217 5912 130 1 RETURN HEADER TEMPERATURE 61 61 61 131 RETURN FAN FLOW, CFM 18071 17410 16132 132 RETURN FAN HEAT, TONS 6.307 6.7046 6.5688 133 RETURN FAN OUTLET EMPERATURE 64.84 65.24 65.48 134 CLEANUP FAN INLET TEMPERATURE 64.84 65.24 65.48 135 { CLEANUP FAN HEAT INPUT, TONS 3.1144 3.1853 3.0141 136 I CLEANUP FAN OUTLET TEMPERATURE 70.29 70.83 71.10 137 COIL INLET FLOW, CFM 18071 17410 16132 138 CO!L INLETTEMPERATURE 66.74 - 67.25 67.54 139 Cair 19097 18977 17584 140 I COIL EFFECTIVENESS 0.9331 0.9374 0.9478 141 LATENT LOAD. TONS 0.40 0.40 0.40 142 ' EFFECTIVE CHILLED WTR TEMP 44.06 44.06 44.06 143 COIL SENSIBLE LOAD, TONS 34.74 34.39 32.61 144 CorL OUTLET TEMPERATURE, F 45.57 4 5.51 45.28 145 ,

 , SUPPLY FAN FLOW, CFM                      18071     17410       16132  146 SUPPLY FAN LOAD, TONS                     7.568     7.707       7.257  147                    !

SUPPLY FAN OUTLET TEMP. 50.19 50.38 50.24 148 [ EMERGENCY UGHTING, TONS 0.33 149 f USE FACTOR FOR EMERG. UGHTING 1 150 l CLASS 1E EQUIP. LOAD, TONS 9.12 1 51

                                                                                              ~'

USE FACTOR FOR 1E EQUIP, 0.5 152 CLASS 1E CABLE LOAD. TONS 0.49 153 USE FACTOR FOR 1E CABLE 0.5 154 NORMAL UGHTING LOAD. TONS 9.6 155 USE FACTOR FOR NORMAL LIGHT!NG 0 156 REHEATER LOAD, TONS 30.72 157 USE FACTOR FOR REHEATER 0 158 NON-1E CABLE LOAD, TONS 0.12 159 USE FACTOR FOR NON-1E CABLE O 160 HEADER ELECTRICAL LOAD. TONS 5.14 1 61 PERSONNEL SENSIBLE LOAD, TONS 0.5 162 PERSONNEL LATENT LOAD. TONS 0.4 163 SUPPLY FAN MOTOR TO ROOM. TONS 0.804 0.818 0171 164 CLEANUP FAN MOTOR TO ROOM, TONS 0.331 0.338 0.320 165 TOTAL HEADER SENSIBLE LOAD TONS 9.02 166 TOTAL HEADER FLOW, CFM 51613 167 (

                                                                                             )

LOOP, FROM DUAL TRN WINTER, PAN LOAD APPENDIX Y2 CALC. NO. MC-6412 SHT. ON M / b , SUPPLYHEADERTEMPERATURE F 50.27 168 Vff to-t-93 RETURN HEADER TEMPERATURE, F 52.19 169 SENSIBLE COOUNG COIL LOAD. TONS 34.74 34.39 32.61 170 g TOTAL COOLING COIL LOAD, TONS 35.14 34.79 33.01 171 4 b b i r 5

               \

l l i I 1 i

LOOP, FROM DUAL TRN, WINTER, MIN. LOAD APPENDIX Y2 CALC. NO. MC-6412 SHT. N O h h , [ h fo-f,-f,3 i CCW/ ESSENTIAL CHILLER ROOM TRAIN A TRAIN B TRAIN C 173 ~ EMERGENCY LIGHTING, WATTS 180 180 180 .174 USE FACTOR FOR EMERG. LIGHTING 1 1 1 175 s g' CLASS 1E EQUlP. LOAD, WATTS 0 0 0 176 USE FACTOR FOR 1E EQUIP. 1 1 1 177 CLASS 1E CABLE LOAD, WATTS 1540 1680 1503 178 USE FACTOR FOR 1E CABLE O.6 0.6 0.6 179 NORMAL LIGHTING LOAD, WATTS 1656 1380 2116 180  ; USE FACTOR FOR NORMAL LIGHTING 0 0 0 181 NON-1E EQUIP LOAD, WATTS 0 0 0 182 , USE FACTOR FOR NON-1E EQUIP. 0 0 0 183 NON-1E CABLE LOAD, WATTS 4110 1710 2790 184 USE FACTOR FOR NON-1E CABLE O O O 185 CONDUCTION HEAT LOAD, WATTS 0 0 0 186 USE FACTOR FOR CONDUCTION O O O 187 PIPING HEAT LOAD, WATTS 0 0 0 188 USE FACTOR FOR PIPING LOAD 1 1 1 189  ! CCW PUMP MOTOR LOAD, WATTS 39305 39305 39305 190 USE FACTOR CCW PUMP 0.6 0.6 0.6 191 CHILL WTet PUMP MOTOR LOAD, WATTS 4610 4610 4610 192 , USE FACTOR CHILL WTR PUMP 0.6 0.6 0.6 193 300 TON MOTOR LOAD, WATTS 20156 20156 20156 194 USE FACTOR 300 TON 0.6 0.6 0.6 195 150 TONS HEAT LOAD, WATTS 1500 1500- 1500 19S- I USE FACTOR 150 TON O O O 197 { CCW SUPPLEMENTAL AHU LOAD, WATTS 4196 4196 4195 198 USE FACTOR CCW CLR 0.6 0.6 0.6 199 ESSENTIAL CH WTR AHU LOAD, WATTS 3330 3330 3330 200 USE FACTOR AHU 0.6 0.6 0.6 201 NET ROOM LOAD, WATTS 44062 44146 44040 202 [ ROOM VENTILATION FLOW, CFM 0 0 0 203 ROOM VENTILATION TEMPERATURE, F 65 65 65 204  ; ROOM VENTILATION CONSTANT 0 0 0 205 i CCW SUPPLEMENTAL AHU FAN CFM 34540 29820 25748 206 ECW FLOW TO CCW SUPPL COtt 36 36 36 17 ECW TEMP.TO CCW SUPPL COIL, F 38 38 38 200 , CCW SUPPL Colt EFFECTIVENESS 0.8773 0.8528 0.8237 209 CCW SUPPL COIL CONSTANT, C1 15791 15350 14827 210 CHILL WTR AHU FAN CFM 3116 2867 3491 211 CHILL WTR FLOW TO CO!L, GPM 40 40 40 212 CHILL WTR TEMP. TO CO!L, F 44 44 44 213 CHILL WTR COIL EFFECTIVENESS 0.8031 0.8207 0.7778 214 CHILL WTR COIL CONSTANT, C2 2728 2565 2960 215 ROOM LATENT HEAT LOAD, BTU /HR 0 0 0 216 , 44 217 EFFECTIVE CHILL WTR TEMP., F 44 44 SUM CONSTANTS X TEMP 870475.5 646833.5 843945.1 218 I i l l l l

 ~

1 i LOOP, FROM DUAL TRN, WINTER, MIN. LOAD APPENDIX Y2 CALC. NO. MC-6412 SHT.dboFI3/ h , [-. Yff IO~S' 0 SUM CONSTANTS 18519 17915 17786 219 -l ROOM TEMPERATURE, F 4T.0 47.3 47.4 220 8 ) CH WTR COLL SENSIBLE LOAD, TONS 0.68 0.70 0.85 221 4 CHILL WTR TOTAL LOAD, TONS 0.68 0.70 0.85 222 1 V 6 L f h t a l' e 9 t r t

St FROM DUAL TRN, TRANSIENT, MAX APPENDIX Y3 CALC. NO. MC-6412 SHT.D70Ffk hd,[5 Yff 10-f-0 COLD CONDITIONS SINGLE FAILURE: 2 b f 3 ' 48 DEGREE CHILL WTR TRAIN A SAFETY INJECTION ( NO LOSS OF OFF-SITE POWER TRANSIENT FROM 4 > UNIT 2 DUAL TRAIN OPERATION 5  ! 6 { CHILLED WATER TEMP 48 48 48 7 INLET AIR TEMPERATURE. F 60 60 60 0 HUMIDITY OF MAKEUP AIR, GRAINS 40 40 40 9 HUMIDITY COIL OUILET, GRAINS 40 40 40 10 11 CHfLLED WTR FLOW GPM 168 168 168 12  ; EAB COILS CHILL WTR FLOW 600 600 600 13 14 TRIAL EAB COIL OUTLET AIR TEMP 50.00 42.40 37.60 15 COMPUTED EAB COIL OUTLET AIR TEMP 50.56 51.24 16 COMPUTED RETURN FAN INLET TEMP. 53.20 58.09 17 , BENCH MARK RETURN FAN INLET TEMP. 53.20 58.09 18 CONTROL ROOM TEMPERATURE TRIAL 78.00 19

  • CONTROL ROOM TEMPERATURE RESULT 61.80 20 '

21 , 22 i 23 f 24  ; { EAB COIL LOAD. TONS 66.45 84.21 l 25 y OONTROL ROOM COIL LOAD TONS 55.72 53.30 l 26 i 27  ! 28  ; 29 i 30 , 31 32 33 1 34 35 36 , 37 3B 39 40 r 3 i I l

St FROM DUAL TRN, TRANS1ENT, MAX APPENDIX Y3 CALC. NO, MC-6412 SHT.DO OP h [. b .

                                                                             . h /O"S~ b TRAIN      TRAIN    TRAIN    42 A          B       C      43           f3 EAB TRAIN IN SERVICE?                    NO        YES      YES     44
 .(                                           NO        YES      YES     45 CHILLED WATER TRAIN IN OPERATION?

SAFETYINJECTION SIGNAL? NO. YES YES 46 47-48 EAB SUPPLY HEADER FLOW 36317 25629 34625 49 EAB BATTERY SUPPLY HEADER FLOW 2738 1939 2204 50 RETURN FAN LOAD, TONS 16.11 15.67 15.97 51 SUPPLYFANLOAD TONS 37.92 37.08 37.61 52 EAB Coil EFFECTIVENESS 0.8555 0.8555 0.8555 53 54 CONTROL ROOM HVAC INPUT. 55 l NO NO 56 CONTROL ROOM IN REClRC. MODE? NO CONTROL ROOM TRAIN IN SERVICE? NO YES YES 57 MAKEUP FAN FLOW, CFM 1040 1011 1001 58 MAKEUP FAN HEAT INPUT, TONS 0.7839 0.8267 0.78 59 CLEANUP FAN FLOW, CFM 6025 6147 6141 60 RETURN FAN FLOW, CFM 15990 16929 16174 61 RETURN FAN HEAT INPUT, TONS 6.4547 6.4353 6.1509 62 CLEANUP FAN HEAT INPUT, TONS 3.0801 3.1128 2.5719 63 CLE/J4UP FAN LOAD TO ROOM, TONS? 0.3271 0.3306 0.2731 64 COIL EFFECTIVENESS? 0.9476 0.9414 0.9466 65 l i SUPPLY FAN LOAD, TONS? 7.5164 7.8877 7.4533 66 SUPPLY FAN LOAD TO ROOM TONS? 0.7982 0.8376 0.7915 67 REHEATERS ON? NO 68 69 70 71 72 73 74 75 76 (

r St FROM DUALTRN, TRANSIENT, MAX APPENDIX Y3 CALC. NO. MC-6412 SKT.U f0 h b , [ EAB . TRAIN A TRAIN B ' TRAIN C 78 0ll Io+f3 79 SUPPLY HEADER FLOW, CFM 36317 25629 34625 80 - [ BATTERY ROOM SUPPLY FLOW, CFM 2738 1939 2204 81 , NUMBER OF FANS IN OPERATION 2 2 2 82 , SUPPLY FAN FLOW, CFM 48286 48286 83 MAKEUP AIR FLOW, CFM 3441 3441 84 RETURN FAN FLOW, CFM 44845 44845 85 ' RE'IURN HEADER FLOW, CFM 33579 23690 32421 86 i SUPPLY CROSS TRAIN FLOW, CFM 36317 13661 87 COIL OUTLET TEMPERATURE, F 50 42.4 37.6 BB , RETURN CROSS TRAIN FLOW, CFM 33579 12424 89  : SUPPLY HEADER TEMPERATURE 41.42 41.42 37.00 90 EMERGENCY UGHTING, TONS 0.74 0.20 0.74 91 USE FACTOR FOR EMERG. LIGHTING 0 0 0 92 CLASS 1E EQUIP. LOAD, TONS 21.58 19.15 17.52 93 USE FACTOR FOR 1E EOU!P. 0 1 1 94 I CLASS 1E CABLE LOAD, TONS 16.51 11.29 12 95 USE FACTOR FOR 1E CABLE O 1 1 96 NORMAL LIGHTING LOAD. TONS 8.48 1.65 10.12 97 USE FACTOR FOR NORMAL UGHTING 1 1 1 98 NON-1E EQUIP LOAD, TONS 9.28 4.00 20.18 99 USE FACTOR FOR NON-1E EQUIP. 1 1 1 100 NON-1E CABLE LOAD, TONS 8.44 5.14 7.55 101 ( USE FACTOR FOR NON-1E CABLE 0.7 0.3 0.8 102 TOTAL HEADER LOAD. TONS 23.67 37.63 65.86 103 RETURN HEADER TEMPERATURE, F 49.18 58.90 59.97 104 RETURN FAN INLET TEMP., F 53.20 58.09 105 RETURN FAN LOAD, TONS 15,67 15.97 106 MAKEUP AIR DRY BULB, F 60 60 107 SUPPLY FAN LOAD, TONS 37.09 37.61 10B DELTATEMP ACROSS RETURN FAN 3.85 3.92 109 SUPPLY FAN INLET TEMPERATURE, F 57.26 61.87 110 DELTA TEMP. ACROSS SUPPLY FAN 8.45 8.58 111 COOLING COIL INLET TEMP., F 65.71 70.44 112 HUMIDITY OF MAKEUP AIR, GRAINS 40 40 113 HUMIDITY COIL OUTLET, GRAINS 40 40 114 LATENT LOAD, TONS 0.00 0.00 115 COfL EFFECTIVENESS 0.8555 0.8555 116 EFFECTIVE CHILL WTR TEMP. 48.00 48.00 117 CO!L OUTLET TEMPERATURE 50.56 51.24 118 SENSIBLE COOLING CO!L LOAD TONS 66.45 84.21 119 TOTAL COOLING CO!L LOAD, TONS 66.45 84.21 120 _ , , , . . ---w v

St FROM DUAL TRN. TRANSIENT, MAX APPENDIX Y3 CALC. NO. MO-6412 SHT.Goph_kg,o,[ o tyA s-a CONTROL ROOM TRAIN TRAIN TRA!N 122 A B C 123 2 2 2 124 [ NUMBER OF TRAINS IN OPERATION MAKEUP FAN FLOW, OFM 1011 1001 125 MAKEUF FAN HEATINPLIT TONS 0.8267 0.78 126 MAKEUP FILTER HEATERS, KW 4.5 4.5 127 MAKEUP AIR TEMPERATURE, F 82.8 82.8 128 MAKEUP FLOWTO TRAIN 1006 1006 129 CLEANUP FAN FLOW, CFM 6147 6141 130 RETURN HEADER TEMPERATURE 78 78 78 131 RETURN FAN FLOW, CFM 16929 16174 132 RETURN FAN HEAT, TONS 6.4353 6.1509 133 RETURN FAN OUTLET TEMPERATURE 82.18 82.19 134 CLEANUP FAN INLET TEMPERATURE 82.29 82.29 135 CLEANUPFAN HEAT INPUT, TONS 3.1128 2.5719 136 I CLEANUP FAN OUTLETTEMPERATURE 87.86 86.90 137 COfL INLET FLOW, CFM 17935 17180 138 COIL INLET TEMPERATURE 84.13 83.87 139 Cair 19549 18726 140 COIL EFFECTIVENESS 0.9414 0.9466 141 LATENT LOAD, TONS 0.40 0.40 142 EFFECTIVE CHILLED WTR TEMP 48.06 48.06 143 COIL SENSIBLE LOAD, TONS 55.32 52.90 144 COLL OUTLET TEMPERATURE, F 50.17 49.97 145 ( SUPPLY FAN FLOW, CFM 17935 17180 146 SUPPLY FAN LOAD TONS 7.888 7.453 147 SUPPLY FAN OUTLET TEMP. 55.01 54.75 148 l EMERGENCYUGHTING TONS 0.33 149 USE FACTOR FOR EMERG. UGHTING 0 150 CLASS 1E EQUIP. LOAD, TONS 9.12 151 USE FACTOR FOR 1E EQUIP. 1 152 CLASS 1E CABLE LOAD, TONS 0 49 153 USE FACTOR FOR 1E CABLE 1 154 j I NORMAL LIGHTING LOAD, TONS 9.6 155 USE FACTOR FOR NORMAL UGHTING 1 156 REHEATER LOAD TONS 30.72 157 USE FACTOR FOR REHEATERS 0 158 NON-1E CABLE LOAD, TONS 0.12 159 USE FACTOR FOR NON-1E CABLE 1 160 HEADER ELECTRICAL LOAD, TONS 19.33 1 01 PERSONNEL SENSIBLE LOAD, TONS 0.5 162 PERSONNEL LATENT LOAD, TONS 0.4 163 l SUPPLY FAN MOTOR TO ROOM, TONS 0.838 0.792 164 CLEANUP FAN MOTOR TO ROOM, TONS 0.331 0.273 165 TOTAL HEADER SENSIBLE LOAD TONS 22.06 16S TOTAL HEADER FLOW, CFM 35115 1E7 ( l __ _ - - - - - - - - - - - - - - - - - - - - - -.----------_-J

St FROM DUAL TRN, TRANStENT, MAX APPEND:XY3 CALC. NO. MC-6412 SHT.OlOF h [cd. f - 108. f IO-{-93 SUPPLY HEADER TEMPERATURE, F 54.88 t ,  ; RETURN HEADER TEMPERATURE, F 61.80 109 f SENSIBLE COOLING COIL LOAD, TONS 55.32 52.90 170 , ( 55.72 53.30 171 l TOTAL COOLING COIL LOAD. TONS l t 7 f i

                                                                                     )

6 i l l l b e I i}}