ML20059H361

From kanterella
Jump to navigation Jump to search
Essential Chiller Performance Test
ML20059H361
Person / Time
Site: South Texas  STP Nuclear Operating Company icon.png
Issue date: 09/28/1993
From:
HOUSTON LIGHTING & POWER CO.
To:
Shared Package
ML20059H343 List:
References
MC-6406, MC-6406-R, MC-6406-R00, NUDOCS 9311100062
Download: ML20059H361 (54)


Text

C. .h7F STP 3053 (10/91)

OCP-3 07o CALC NO. MC-6406 SOUTH TEXAS PROJECT ELECTRIC GENERATING STATION HOUSTON LIGHTING & POWER COMPANY PRELIM.

FINAL xxxx CALCULATION COVER SHEET void l BUILDING / AREA / SYSTEMS: /CH UNIT: 162 ,

SUBJECT:

Essential Chiller Performance Test DISCIPLINE:. MECMAint AL QU ALITY CL ASS- 3 OBJECTIVE See Section 1.0 Purpose c .. . . UNFORMATION ONLY .I ,

':i/ 01 Si H ?r H/Ceu Lit 00:/C :

R FEN PErMM:

f 0s' THIS P";JGNI See Section 2.0 Scope t

'~

SUVV ARY OF RESULTS -

N '

See Section 3.0, Summary Of Results j k

f  ;\ '

j- - , , '; ~.;^~J^T 'I

\.'.- .. .?  !

/

saaa;_ - Y/4*7.5 TOTAL NO. OF SHEETS Total of 54 Pages. (1 Coversheet, 33 Calculation Pages, 1 Attachment Cover, 19 Pares of Attachments)

REV NO. o .

PREPARER ^$

REVIEWER @ i SE JMP M  :

DM gaf grf/4. - l lSSUE DATE C)-M-93 9311100062 931105 , ,

PDR ADOCK 05000498 e p PDR 1,j  ;

i

.j SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT I OF 33 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE I HOUSTON LIGHTING & POWER . o @B 9 Mi 95 2 CA.& 9il6h3 l GENERAL COMPUTATION SHEET

~

LJBJECT EssentialChiller Performare Test UNIT /S 112 i

i TABLE OF CONTENTS-

  • r Page i

.I Calculation Coversheet i  :

Table of Contents 1  ;

i

1. Purpose 2 t
2. Scope 3

{

3. Summary of Results 4  !
4. References 5  ?

i

5. Assumptions 7 l
6. Methodology 8 -

t

7. Input Data, Calculation and Results 15 j ATTACHMENTS- i Attachment A -

Copies of References 4,5,19, and 20 l Total of 19 Pages i i

i

l

-l

a SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT 2 OF % l i

ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON UGHTING & POWER c) iD3 eil4I4s c a . & 'i/16/9 3 ,

GENERAL COMPUTATION SHEET SUBJECT Enantial Chiller Performance Test UNIT /S_1.12

1. PURPOSE i i

The purpose of this calculation is to determine the acceptance criteria for the Essential }

Chiller Performance test for 300 ton and 150 ton essential chillers in both STP Units 1  !

and 2.-.lt also establishes thehmargin for plugging the condenser tubes.  !

.ld 0 "I l i

i t

i i

I

~# .. e  %- w q c -y-.-. - - - -- - q yge- y

l SOUTH TEXAS PROJECT CALCFO MC- 6406 SHT - 3 OF SS.3 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o (Un ciMiqS CdB 4/l6/93 GENERAL COMPUTATION SHEET SUBJECT Reentia! Chi!Ier Performarre Test UNIT /S 112

2. SCOPE This calculation covers both 150 ton and 300 ton machines. The essential chiller performance test should be performed with the hot gas bypass valve closed. This will provide better calculational heat balance between the condenser heat load and evaporator load and compressor power input.

r e

J e

a l

l I

SOUTH TEXAS PROJECT CALC NO MC- 6406 SHT 4- CF 2, S ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON UGHTING & POWER o Sf4 ai4M3 es q// & /93 GENERAL COMPUTATION SHEET ,

SUBJECT Essential Chitter Perfortnance Test UNIT /S_.tJ2

3.

SUMMARY

OF RESULTS The calculated U values for the 300 ton and 150 Ton should be greater than 40 Btu /hr ft2 cF. These values are absolute minimum values and are at the design conditions with the condenser and evaporator tubes fouled up to the design values of 0.002 and 0.0005 hr ft2 *F/ Btu. Normally, the calculated values will be greater than 93 and 73 Btu /hr ft2 F for 300 ton and 150 ton respectively, demonstrating a clean condenser and evaporator. As discussed in the calculation the fouling of evaporator is not

  • expected to cause any problems due to controlled water chemistry. The overall heat transfer lower than the normal range should be evaluated for the chiller performance.

The lower values may show either a fouled condenser or presence of noncondensables in the condenser.

These values do provide trending for the performance of the chiller condenser. The plugging of condenser tubes is assumed to be 3% and this number can be increased in the future by reducing the water side design fouling factor of the condenser and maintaining the condenser tubes in clean condition.

1 I

I l

l J

SOUTH TEYAS PROJECT CALC NO. MC- 6406 SHT % OF %

ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE I HOUSTON LIGHTING & POWER o @f$

~

M4Ms M 9//(,/M GENERAL COMPUTATION SHEET SUBJECT _.Essentia! Chi!!er Performare Test UNIT /S 13.2 ,

l

4. REFERENCES 1.ASHRAE Handbook,1989 Fundamentals, Inch-Pound Edition American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.

Atlanta, Ga

2. Performance Test Report for 300 ton chiller,4310-00166-AYD STPS-36, Performance, Sound and Vibration Test Report for Model OTK5C1-lMCS Refrigerant 11 Essential Water Chiller
3. Essential Cooling Pond Thermal Performance Analysis ,0400-00012-BNU (NUS-4325 Revision 1)
4. Wolverine Tube, Inc. Decatur, Alabama Type S/T Trufin Titanium Finned Tube - 32 FPI (Attached to this Calculation)
5. Wolverine Tube Inc., Decatur, Alabama Type S/T Trufin Copper and Copper Alloy Finned Tube 26 & 40 FPI (Attached to this calculation)
6. Principles of Heat Transfer, Frank Kreith,3 rd Edition Intext Educational Publishers, New York, N. Y. ,
7. Vendor Manual 4310-00180 - YD Revision D installation, operation & Maintenance Instructions for York Model OTK5C1 - IMCS Open Turbopak Centrifugal Liquid Chilling Units
8. Vendor Manual 4102 - 01033 BY Submittal G Installation, Operation & Maintenance Instructions for York Model HTH4B1-BBCS R-11 Hermatic Turbopak Centrifugal Liquid Chilling Units including ECN 90-J-0008-C
9. Bistable Instrument Analog Scaling Data, A1CH-PSH-9474, Revision 0
10. ASHRAE Handbook,1988 Equipment American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.

Atlanta, Ga 11 Bistable Instrument Analog Scaling Data, B1CH-PSH-9484, Revision 0  ;

12. Bistable Instrur ient Analog Scaling Data, C1CH-PSH-9494, Revision 1
13. Bistable Instrument Analog Scaling Data, A1CH-PSH-9504, Revision 0
14. Design Basis Document 5V369VB0120 Revision 0 ,

Essential Chilled Water System j l

1 i

1

SOUTH TEXAS PROJECT CALC NO. MC- 6406 SHT 6 OF 3 3 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE l HOUSTON UGHTING & POWER o @6 4 MMS cab 9// c/93 GENERAL COMPUTATION SHEET SUBJECT Essential ChiDer Performance Test UNIT /S_u2  ;

15. Standards of the Tubular Exchanger Manufacturers Association, Seventh Edition 1988
16. Bistable Inst ument Analog Scaling Data, B1CH-PSH-9510, Revision 0 l
17. Bistable instrument Analog Scaling Data, C1CH-PSH-9516, Revision 1
18. York Letter ST-BY-YB-0005 Dated November 5,1982

Subject:

Technical Evaluation Report for the STP Nuclear Safety and Non-Safety Related Water Chillers (Vendor Document 4101-00001-ABJ)

19. Code CMTR for condenser tubes (Attached to this calculation)
20. York Letter ST-BY-YB-0044 Dated August 30,1984 Letter from F. C. Bahr (York) to Project Engineering Manager

Subject:

Safety Class Water Chillers '

(Attached to this calculation)

21. ASHRAE Standard 22-1992 Methods of Testing for Rating Water-Cooled Refrigerant Condensers

.I SOUTH TEXAS PROJECT _ CALC NO. MC- 6406 SHT 7 OF . 3 3 )

ELECTRIC GENERATING STATION - REV PREPARER /DATE REVIEWER /DATE 1 HOUSTON LIGHTING & POWER o iiM qM14S O_etS. 9 h & h 3  !

-GENERAL COMPUTATION SHEET l SUBJECT _ Essentia! Chiller Performanae Test UNIT /S_1.12 L i q

5. ASSUMPTIONS j i
1. In evaluating the performance of the chiller condensers, the effect of desuperheating l of refrigerant vapor and subcooling of the refrigerant liquid is not considered. The '

justification for this is as follows: {

a. As per Reference 1 (Chapter 4 Page 4.9) When the superheated vapor is j condensed, the heat transfer coefficient depends upon the surface temperature. If the surface temperature is below saturation temperature, little error is made if the value of h for condensation of saturation vapor is used with the difference between the  ;

saturation temperature and the surface temperature. i

b. The amount of condensate subcooling provided by the condensing surface in a -

shell and tube condenser is small, generally in the range of 2 F. The York chillers do l not have any additional submerged tubes to provide subcooling. Any subcooling is l 1_- obtained by the normal gravity drainage of the condensed refrigerant. The condensed i refrigerant drains to a float chamber which controls the flow of refrigerant to the  ;

system.  !

i I

1 l

i 1

SOUTH TEXAS PROJECT CALCtc MC- 6406 SHT 9 OF M ELECTRIC GENERATING STATION REV P8EPARER/DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o @b q\9 W3 04h- 9/t& /93 GENERAL COMPUTATION SHEET SUEUECT Essential chiUer Performare Test UNIT /S_132

6. METHODOLOGY This section provides general discussion and methodology for evaluating the performance of the chiller:

QlSCUSSION A field test of the essential chillers at STP is more difficult than might be expected because the chillers are designed to operate at higher ECW temperatures than normal, and because the actual heat load in the essential chilled water system is significantly less than the 300 ton chiller capacity. Demonstrating the capability to meet the design basis conditions requires the test criteria be independent of the load and inlet water conditions, or the results be adjustable to design basis conditions.

The 3 major components of each essential chiller are:

1. Compressor
2. Condenser
3. Evaporator The chiller performance could be affected by degradation of any of these components.

Degradation of either of the heat exchangers would be caused by fouling of the heat exchangers eitherinside of the tubes or the outside of the tubes.

The fouling of the evaporator is not considered a credible occurrence because the [

chilled water inside the tubes is treated demineralized water, and because small amounts of oil would not significantly change the boiling heat transfer coefficients.

Fouling inside the condenser tubes is possible because ECW water is relatively high f; in dissolved solids and the water is heated as it passes through the condenser, which decreases the solubility of calcium carbonate. Chemical dispersants are added to the Essential Cooling Pond to minimize the amount of scale buildup. This has been effective to date, but scale buildup over a long time period is still considered possible.

In addition a small amount of oil contamination of the tube outside surface would have a disproportional affect on the condensing heat transfer surface by affecting the surface tension of the R-11 to tube surface. Lastly the presence of a small amount of non-condensable gas can significantly decrease the condensing heat transfer a coefficient in the condenser.  ;

For the above reasons, the most likely cause of performance degradation of an essential chiller is decreased heat transfer in the condensing section of the chiller.

High condenser pressure could limit chiller capacity through several possible '

avenues. First and most immediately, condenser pressures above a nominal 30 psig (or 26 psig considering instrument tolerance) will trip the chiller. Secondly, higher condenser pressure could cause reduced compressor flow. This would reduce the capacity of the chiller and result in an increase in leaving water temperature t

SOUTH TEXAS PROJECT CALCtc MC. 6406 SHT 9 OF33 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER O W6 eittiM3 0dS) edic /93 ,

GENERAL COMPUTATION SHEET SUBJECT Essential Chiller Performance Test UNIT /S_t12 The chillers are complex machines that have purge systems to vent the noncondensables from the condenser. The purge systems should be functioning properly. Any malfunctioning of the purge unit should be detected during the plant system walkdown. Hence it is concluded that the high pressure developed in the chiller condenser will be due to high ECP temperature.  :

As per Reference 14 (Section 4.0) the chiller condensers are designed for tube side (ECP water side) fouling factor of 0.002 and for the evaporator side fouling factor of 0.0005.

The fouling factor is a thermal resistance referenced to the waterside area of the heat-transfer surface. Thus, the temperature penalty imposed on the condenser surface is equal to the heat flux at the waterside area, multiplied by the fouling factor. Increased fouling increases the overall heat transfer resistance. Fouling increases the temperature difference required to obtain the same capacity- with a corresponding increase in condenser pressure and system power- or lowers system capacity. As the

  • system is designed for high fouling factor of 0.002, the condenser has additional very large surface area available to meet the design conditions. During normal plant operations and at lower condenser water (ECP Temperature) the condenser will operate at lower condensing temperature and corresponding saturation pressure. As per Reference 10 (page 15.3) under the worst case scenario the surface area required doubles with a fouling factor of 0.00049 as compared with that with no fouling case allowance. Under normal circumstances a fouling factor of 0.00072 doubles the required surface area compared with that with no fouling allowance. Water velocities above 3 fps are recommended to minimize the fouling. (Reference 10 page 15.4)  :

CALCULATION OF OVERALL HEAT TRANSFER FROM TEST l l

The performance of the chiller can be monitored by determining the overall heat transfer coefficient of the condenser. The overall heat transfer coefficient can be determined by measuring the condenser pressure, entering condenser water temperature, leaving condenser water temperature and condenser cooling water flow.

The equations for determining the overall heat transfer coefficient are provided below ,

(Reference 6, page 563):  !

O = E Cmin (Ts-T1)

O = Condenser heat Load, Btu /Hr E = Thermal effectiveness, dimensionless Cmin = Product of mass and specific heat lesser of the two fluids I With condensation this will always be the water flow of ECW side Btu / hr F

f SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT Io OF 33 '

ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o - W, ciM\O O A & q/tg/9 3 GENERAL COMPUTATION SHEET

- SUBJECT Essentia1 Chiller Performance Test UNIT /S_1A2 ,

i Cmin can be calculated from the ECW condenser water flow. The specific heat of the water for the temperature range is 1.0. The condenser water mass flow rate in Ibs/hr .l can be calculated from the known or measured flow in GPM multiplied by conversion .i factor of 500.. l l

Cmin = Condenser water flow rate (GPM) x 500 x 1.0, Btu /hr F The thermal effectiveness is given by l E = (T2-T1)/(Ts-T1)  !

. Ts = Saturation temperature of R-11, F T1 = ECW Inlet Temperature, F j i

T2 = ECW leaving Temperature, F i i

The thermal effectiveness for condensing of refrigerant vapor is defined as: l E = 1 - e-NTU {

Where NTU is defined as number of heat transfer units and defined as l

k NTU = UA/ Cmin  !

where j d

U = Overall heat transfer coefficient, Btu /hr ft2 F 1 A = Condenser heat transfer surface area, ft2 f

f The condenser heat transfer surface area is known for the condenser and is 1 determined by the condenser tube geometry and available from the vendor drawings. j Substituting the above NTU equation in the thermal effectiveness equation and rearranging for U, following equation is obtained:

U = - Cmin In(1 - E)/ A .l Hence from the known condenser pressure and its corresponding saturation temperature, measured inlet and outlet condenser water temperature, and condenser .,

water flow, the value of U, overall heat trecsfer coefficient, can be calculated. .l

.i

SOUTH TEXAS PROJECT CALCTO MC- 6406 SHT u OF 33 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON UGHTING & POWER o $70 'i M W5 cab 9//t/fJ GENERAL COMPUTATION SHEET SUBJECT Essentiat Chitler Performance Test UNIT /S_L12 Heat Balance The condenser heat load is determined from the ECW water flow rate and ECW inlet and outlet temperature through the condenser. The condenser heat load based on the flow and temperature is:

O = Condenser water flow rate (GPM) x 500 x (T2-T1)

The evaporator load can be determined from the known chilled water flow through the chiller evaporator and entering and leaving chilled water temperature. The evaporator load is calculated as:

Oevp = Chilled water flow rate (GPM) x 500 x (Tent-TLvg)

Where Tent = Entering Chilled Water Temperature, F ,

TLvg = Leaving Chilled Water Temperature, F The electrical energy input to the compressor can be measured. For open motor chiller machine (300 Ton Chiller) the electrical energy to the compressor will require motor efficiency correction to account for the motor losses to the ambient air. For hermatic motors (150 Ton Chiller), no efficiency correction is required as all the heat goes into refrigerant. The motor efficiency for 300 ton chiller can be obtained from Reference 7.

The motor efficiency for hermatic machine is 1.0.

The heat balance check is calculated as follows:

i Heat balance check = ( 1 - ( Oevp + kw (Input) x Motor Efficiency )/O) x 100 The above equation assumes that the hot gas bypass valve is closed.

As per Reference 21, the heat balance should be within +/- 3%.

CALCULATION OF OVERALL HEAT TRANSFER COEFFICIENT The overall heat transfer coefficient equation is given as ( Reference 15 Page 103):

(1/UO) = 1/(h0 Et ) + ro/Ef + rw + ri (A0/Ai) + (1/hi) (A0/Ai) l l

i U0 = Overall heat transfer coefficient , based on the external surface and the  ;

mean temperature difference between the extemal and internal fluids, Btu /hr ft2 F l

l

i 1

SOUTH TEXAS PROJECT CALCTO MC- 6406 SHT V2- CF 2,3 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON UGHTING & POWER O Qilh ea 141 cis Gets +//s/y3 i GENERAL COMPUTATION SHEET SUBJECT Essentiat Chitler Perbrmance Test UNIT /S_132 l h0 = Outside or refrigerant side coefficient, Btu /hr ft2 *F (Ao/Ai)= Ratio of external to internal surface area of tube, dimensionless hi = Internal or water-side film coefficient, Blu/hr ft2 F ri = fouling resistance water side, ft2 hr F/ Btu Ef = Weighted fin efficiency, dimensionless ro = fouling resistance refrigerant side, ft 2 hr F/ Btu rw = finned wall metal thermal resistance,ft2 hr F/ Btu  ;

The outside heat transfer coefficient for condensing refrigerant is given as (Reference 1 page 4.8):

h0 = 0.689 F1 ( hfg/ dt De) 0.25 where F1 = Condensing coefficient factor for R-11 hfg = latent heat of condensation, Btu /lb dt = temperature difference, F De = equivalent diameter, ft The equivalent diameter is determined from the following relationship:(Reference 1 page 4.8) i 1/(De)0.25 = 1.30 (As Ef)/(Aef (Lmf )0.25 ) + Ap/ (Aef (D)0.25) ,

where Aef = Aso + Ap Lmf = af/ Do Where As = Finned area, ft2 Et = Fin efficiency, dimensionless f

SOUTH TEXAS PROJECT CALC NO. MC- 6406 SHT \3 CF 33 ELECTRIC GENERATING STAllON REV PR.EPARER/DATE REVIEWER /DATE HOUSTON UGHTING & POWER o @f6 c@q s C3d.& c7/n /93 GENERAL COMPUTATION SHEET i SUBJECT Essentia! Chiper Performance Test UNIT /S_112 )

1 Ap = Unfinned area or prime area, ft2 Lmf = Mean fin height, inches af = Area of one fin,in2 Do = Outside diameter of the tube, inches D = Root diameter of the tube, inches The inside heat transfer coefficient for water E.t ordinary temperatures,40 F to 200 F is given by ( Reference 1, Table 6 Page 3.14):

hi = 150 (1 +0.011 twm) V 0.8/ d 0.2 twm = mean water temperature, F V = water velocity, feet per second d = tube inside diameter, inches The fin efficiency is calculated from Figure 12 of Reference 1 page 3.16.

The metal thermal resistance is given by (Reference 15 page 104) rw = (t/(12 k)) ( (d + 2 N w (d+w))/(d-t)) ,

Where t = thickness of tube wall, ft k = Thermal conductivity of tube material, Btu /hr ft F d = outside tube diameter or root diameter, inches N = number of fins per inch w = fin height, inches i

SOUTH TEXAS PROJECT CALCrc MC- 6406 SHT M- CF 3 3 ELECTRIC GENERATING STATIOrd REV PREPARER /DATE REVIEWER /DATE HOUSTON UGHTING & POWER o lif$ 9H ht cas 9/a/93 GENERAL COMPUTATION SHEET '

SUBJECT Essential Chiller Performance Test UNIT /S_.132 Following steps are used in determining the overall heat transfer coefficient , and

. establishing the instrumentation calibration and condenser tube plugging requirements:

1. Determine the worst case overall heat transfer coefficient from the maximum condenser pressure and corresponding saturation temperature with the maximum ECW entering water temperature and design basis load with the consideration of the design fouling factors. Calculate the design basis load from the known chiller capacity ( evaporator cooling load) and compressor heat input
2. From the factory performance test results of the chiller, calculate the overall heat transfer coefficient . The test results already account for the effect of fouling by increasing the inlet ECW temperature from the normal design temperature.
3. Calculate the overall heat transfer coefficient from the known theoretical equations. This is determined by calculating the refrigerant side heat transfer coefficient and water side heat transfer coefficient.
4. Evaluate the impact of condensing refrigerant coefficient due to part load and inside heat transfer coefficient due to change in water temperature on the overall heat transfer coefficient
5. Establish the instrumentation calibration requirements.
6. Establish the plugging of the condenser tubes.

i l

l l

)

SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT 1S OF 33 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o MT9 cil 9 h4 CoE 9/n/93 GENERAL COMPUTATION SHEET '

SUBJECT Essentiaf Chilter Performance Test UNIT /S_1.E2

7. Innut Data. Calculations and Results
1. Calcu'ation of Overall Heat Transfer Coefficient. Factory Test ,

Evaluation. and Theoretical Overall Heat Transfer Coefficient Calculation for 300 Ton Chiller Procerties Of 300 Ton chiffer Condenser Condenser Tubes (References 4, and 7 Attachment 21,22,23,24)

Total Number of Tubes = 800 Wolverine Model 70-325035 Average outside surface area = 0.503 ft2 /ft Surface area ratio (outside/inside) = 3.14 Internal cross sectional area = 0.294 in2 outside diameter = 0.75 in wall thickness = 0.035 in Root diameter = 0.675 in Minimum wall thickness = 0.031 in Material Titanium Number of fins 32 Inside diameter = 0.612 in Fin width = 0.010 inch ,

Fin height = 0.030 inch Overall outside heat transfer area = 5546.4 ft2 l (The overall outside heat transfer surface area is calculated as 800 tubes x 0.503 x 13.78 feet tube length. The condenser tube length is 171.375 inch (Reference 19). The heat transfer langth is assumed to be same as 150 ton chiller to account for the tube ,

supports.) l 1

l l

l

SOUTH TEXAS PROJECT CALCtO MC- 6406 SHT U; OF M ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o QX4 q Ftlq 9 OAb 9//6/7.3 GENERAL COMPUTATION SHEET  :

SUBJECT Essential chiffer Performance Test UNIT /S_.LE2 A. Minimum Overall Heat Transfer Coefficient for 300 Ton Machine The minimum overall heat transfer coefficient required to operate the chiller at design basis conditions is determined from the known design conditions. The overall heat transfer coefficient as calculated as follows:

U = 0 / (A dtm)

Where U = Overall heat transfer coefficient, Btu /hr ft2 F O = Total heat load, Blu/hr A = Condenser surface area, ft 2 -

dtm = Log mean temperature difference, F As per reference 3, the maximum ECW temperature is 105.2 to 105.7 F based on the spent fuel assemblies stored. For the calculation purposes a value of 106 F is used.

This is conservative for the analysis. In reality the peak ECW temperature would be reached several days after the accident initiation while the peak chiller load would 4 occur in first few hours of the accident.

As per reference 7 ( Section 5 Table 1, Page 186 or page 21, Form 160.44-01), the condenser high pressure cutout is set at 30 psig and high compressor discharge temperature is 220 F.  !

As per References 13,16, and 17 the required compressor trip setpoint on high condenser pressure is 30 psig and reset point is 24 psig. The tolerance for this trip and reset points is +/- 2.012 psig. For the calculation purposes the maximum reset value of 26 psig is used. The saturation temperature at 26 psig or 40.7 psia is 132.7 F ( From Ref 1, Chapter 17.3 Refrigerant Tables For R - 11).

Total load on the condenser is the sum of design basis load 300 tons plus the heat input from the compressor. The 300 ton machine is an open machine, hence the heat input to the condenser is the power input to the compressor multiplied by the electrical efficiency of the compressor motor. From reference 20, the compressor power requirement is 354 kw. The motor efficiency is 94.6%.(Reference 7, page 130)

Heat load = 300 tons x 12,000 Btu /hr/ ton + 354 kw x 0.946 x 3413 Blu/hr/kw

= 3.6 x 106+ 1.143 x 106 Btu /hr

= 4.743 x 106 Blu/hr i

l Condenser surface area = 5546.4 ft 2

SOUTH TEXAS PROJECT CALCto. MC- 64C6 SHT V7 OF 3 S ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o GW, 4R)4S Cah 9/n/r3 GENERAL COMPUTATION SHEET SUBJECT Essentia! ChH!er Pedormare Test UNIT /S 1_&2 Mass flow of ECW water = 1100 GPM x (60 min /hr) ( 1/0.01619) (1/7.48 )

= 544,998 lb/hr ECW temperature rise = O/( mass x specific heat)

= 4.743 x 106 / (544,998 x 0.999)

= 8.71 F Leaving water temperature = 106 + 8.71 = 114.71 *F Lmtd = (T2 - T1) / ( in (Ts-T1)/(Ts-T2))

Lmtd = (8.71)/( in ((132.7-106)/(132.7-114.71))

= 22.06 *F U

= (4.743 x 106 )/( 5546.4 x 22.06)

U = 38.77 Blu/hr ft2 op This is the minimum value of the overall heat transfer coefficient at the design conditicns. If the U is greater than or equal to the above calculated value the chiller is capable of performing its design function.

Justification for use of Discharae Pressure vs Temoerature The chiller also trips on high condenser temperature, however it is anticipated that pressure trip either will occur earlier than temperature trip or simultaneously with the temperature trip. Performance test result for the 300 Ton chiller (Reference 2 ) are used in demonstrating this.

From the test:

Condenser discharge pressure

= 19.5 psig + 14.7 = 34.2 psia Compressor discharge temperature

= 183.84 F Use 184 F Comp essor suction temperature = 41.72 F Saturated pressure @ 41.72 F = 7.35 psia Pressure ratio

= 34.2/7.35 = 4.65 Discharge temperature

= T1 (P2 /P1 ) (k-1)/k

SOUTH TEXAS PROJECT CALCNO. MC- 6406 SFff m OF 33 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o 4D6

~

9\4W % ( M S cf//c /f 3 GENERAL COMPUTATION SHEET >

SUBJECT Essentist Ch!!Ier Perfo*mance Test UNIT /S_1.32 k = 1.13 ,

Saturated Discharge Temperature = (460+41.72) (4.65) 0.115

~

= 598.7 R r

= 138.7 F Compressor efficiency Ratio = (598.7 - 501.72)/( 184-41.72)

= 0.68 At discharge pressure of 26 psig or 40.7 psia, the pressure ratio is (40.7/7.35) = 5.53 Calculating the discharge temperature using the suction temperature of 41.72 F and pressure of 7.35 psia as Saturated temperature = 501.72 (5.53) 0.115

= 610.7 R Difference = 610.7 - 501.72 = 109. F Compressor Discharge temperature = 41.72 + (109.0/ 0.68)

= 202.0 F ,

Hence the pressure trip will be reached prior to the temperature limit.

B. Evaluation of Factory Performance Test 300 Ton Chiller Reference 2 documents the performance test of the 300 ton chiller. The test accounted for the evaporator and condenser side fouling factors by adjusting the chilled water and condenser water temperatures in accordance with ARI standards 450 and 480-74.

The test data shows that the compressor discharge is superheated and the liquid is l subcooled. As per page 8 of Reference 2 the compressor discharge temperature is 183.84 F and the condenser temperature is 122.3 F and the liquid discharge temperature is 118.9 F. Hence the condenser provides for desuperheating and subcooling of the refrigerant. As explained in Section 5, Assumptions, the overall heat transfer coefficient is calculated using the saturated conditions in the condenser. The  ;

surface area required for desuperheating and subcooling of refrigerant is in the same  :

proportion to the desuperheating and subcooling load and thus would not impact the overall heat transfer coefficient. ,

Condenser pressure = 19.5 psig + 14.7 = 34.2 psia  !

i

SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT 19 CF 33 ELECTRIC GENERATING STATION REV PF3EPARER/DATE REVIEWER /DATE HOUSTON LIGHTING & POWER O W14 9)414 3 M 9#6/f3 GENERAL COMPUTATION SHEET SUBJECT Essential Chi!!er Performance Test UNIT /S_L52 Saturation temperature = 121.76 F Measured condenser temperature = 122.3 *F Entering condenser water temperature = 111.67 F Leaving condenser water temperature = 120.25 F Condenser surface area = 5546.4 ft2 Condenser heat rejection = 4.715 x 106 Btu /hr l Log mean temperature difference based on saturation temperature Lmtd = 8.58/(in ((121.76-111.67)/(121.76-120.25))

= 4.51 F Log mean temperature difference based on the measured condenser temperature Lmtd = 8.58/(In ((122.3-111.67)/(122.3-120.25))

= 5.21 F Calculating the Log mean temperature difference based on the average temperature of condenser saturation pressure and the measured condenser temperature.

Average condenser temperature = (121.76 + 122.3)/2 = 122.03 F Lmtd = 8.58/(In ((122.03-111.67)/(122.03-120.25))

= 4.87 F Overall heat transfer coefficient based on the saturation temperature U = (4.715 x 106) / (5546.4 x 4.51)

= 188.5 Btu /hr ft2 F Overall heat transfer coefficient based on the averaged condenser temperature U = (4.715 x 106) / (5546.4 x 4.87)

= 174.6 Blu/hr ft2 F Overall heat transfer coefficient based on the measured condenser temperature

SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT o o OF 33 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER O Wfb 914l4 3 C.dLbl- 9//6/93

  • GENERAL COMPUTATION SHEET SUBJECT Essentia! Chi!!er Perfomare Test UNIT /S_132 .

U = (4.715 x 106) / (5546.4 x 5.21)

= 163.17 Btu /hr ft2 F C. Calculation of the Overall Heat Transfer Coefficient usino Ecuations Metal Thermal Resistance ,

The metal thermal resistance is given by (Reference 15 page 104 )

rw = (t/(12 k)) ( (d + 2 N w (d+w))/(d-t))

Where t = thickness of tube wall. 0.035 inch k = Thermal conductivity of tube material, Titanium 12.358tu/hr ft F d = outside tube diameter or root diameter 0.675 inches N = 32 number of fins perinch w = fin height, 0.030 inches  !

rw = (0.035/(12 x 12.35)) ( (0.675 + 2 x 32x 0.030 (0.675+0.030))/(0.675-0.035)) j

= 0.0007486 ,

Calculation of inside heat transfer coefficient 0

hi = 150 (1+0.011 twm) V 0.8/ d .2 twm = (106 + 114.71)/2 = 110.35 F d = 0.612 incnes Water velocity = 1100 gpm/ ( 200 tubes per pass x 7.48 x 60 x 0.294 /144 )

= 6.0 feet per second hi = 150 (1+0.011 x 110.35) (6) 0.8/ (0.612) 0.2

= 1536.0

i l SOUTH TEXAS PROJECT CALC NO. M C-6406 SHT 2 4 OF 33 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o @R 9)4 lq 3 Gala- q//(,/93 GENERAL COMPUTATION SHEET SUBJECT Essemia!Chilter PerfomanceTest UNIT /S 13.2 Outside Heat Transfer Coefficient Calculation The outside heat transfer coefficient for condensing refrigerant is given as h0 = 0.689 F1 ( hfg/ ( dt De)) 0.25 where F1 = Condensing coefficient factor for R-11

= 151 ( From Reference 1 page 4.9 Table 4) hfg = latent heat of condensation, Btu /ib dt = temperature difference, F De = equivalent diameter, ft The temperature difference is determined from the following relationship based on the resistances being proportional to total heat transfer dt = O/ (ho Ao Ef)

Substituting the dt from the above equation in the ho equation and rearranging, following equation is obtained:

ho = (0.689 x F1) 4/3 ( hfg Ao Ef/O ) 1/3 (1/De ) 1/3 De - = 0.1839 inch = 0.0153 feet hfg = 72.69 Btu /lb Ao = 5546.4 ft2 Et = 0.73 O = 4.743 x 106 Btu /hr ho = 779.7 Btu /hr ft2 op  :

Overall Heat Transfer Calculation For clean condenser inside fouling factor 0.00025 and outside fouling factor 0.00025 (Reference 2), the overall heat transfer coefficient is calculated as: ,

(1/U0) = 1/(h0 Ef ) + ro/Ef + rw + ri (A0/Ai) + (1/hi) (A0/Ai) i

SOUTH TEXAS PROJECT CALC NO. MC-6408 - SHT 2 2 CF % l ELECTRIC GENERATING STATION _REV PREPARER /DATE REVIEWER /DATE l HOUSTON UGHTING & POWER o i(US ct)qMS CA/J (r//t/p.s  ;

GENERAL COMPUTATION SHEET  !

SUBJECT Essentialchiller PerformanceTest UNIT /S_112 'l (1/UO) = 1/(779.7 x 0.73 )+ 0.00025/0.73+0.0007486 + 0.00025 x 3.1 j

+3.14/1536

-l

=0.001756 +0.0003424+0.0007486+0.000785 +0.002044  !

1

= 0.005677 l 1

Uo = 176.14 Btu /hr ft2 F(For clean Condenser )

For a fouled condenser with 0.002 fouling factor the overall heat transfer coefficient is - l calculated as.  ;

i (1/Ud) =0.001756 +0.0003424+0.0007486+0.002 x 3.14 +0.00204

= 0.01117  !

Ud = 89.50 Btu /hr ft2 F This value is much higher than calculated from the worst case. l Fin Efficiency Calculation .

The fin efficiency is calculated from Figure 12 as per Reference 1 page 3.16, the value -  !

of ho is assumed as 850 l xe/xb = 0.75/0.675 = 1.11 w (h/k y) 1/2 = (0.030/12) ( 800/( 11.5 x (0.010/ 2 x 12)) 1/2 i

= 1.021 From the graph fin efficiency is 0.73 [

The calculated value of ho is 779 vs 800 assumed for fin efficiency calculation. The 1 calculated value is close to the assumed value, hence no iteration of efficiency and ho j calculation is performed.

j q

i

-l

~

l SOUTH TEXAS PROJECT CALCFC MC- 6406 SHT ?S OF 3 3 j ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON UGHTING & POWER O qf6 qMi43 p <f//6/73 GENERAL COMPUTATION SHEET SUBJECT Essentia! Chi!!er Performance Test UNIT /S_112 i

Calculation of Ecuivalent Diameter for 300 Ton Machine ,

The fin surface area, tube primary surface area , effective area is calculated based on one foot length of the tube. The equivalent diameter is calculated from the following equation (Reference 1, page 4.8):

1/(De)0.25 = 1.30 (As Ef)/(Aef (Lmf )0.25 ) + Ap/ (Aef (D)0.25) where Aef = Aso + Ap Lmf = af/ Do ,

t Where .

r af = area of fin = pi (Do2 Dr2 )f4

=pi (0.7502_0.6752)f4

= 0.0839 Lmf = 0.0839/ 0.750

= 0.1119 inch Finned surface area = 0.0839 x 2 x 32 fins / inch x 12 inch / foot /144

= 0.4476 Ft 2 /ft Primary surface area based on one foot length primary length per inch = 1 inch - (32 fins x 0.010 fin width)

= 0.68 inch / inch length Area = pi x 0.675 x (0.68 ) x 12 /144 2

= 0.1201 ft /ft l Total effective area = finned surface + primary surface

)

l 1

1 l

SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT 24 OF 33 j ELECTRIC GENERATING STATION HEV PflEPARER/DATE REVIEWER /DATE {

HOUSTON LIGHTING & POWER o WB '11419 3 Crf)9 9//6 /f3 I GENERAL COMPUTATION SHEET i SUBJECT Essentiat Chmer Performance Test UNIT /S._tA2 l

= 0.4476 + 0.1201

= 0.5677 Fin efficiency = 0.73 1/(De)0.25=1.30 (0.4476 x 0.73)/( 0.5677 x (0.1119 )0.25 ) + 0.1201/ (0.5677 (0.675)0.25)

= 1.2935 + 0.2334

= 1.5270 De = 0.1839 inch

SOUTH TEXAS PROJECT CALC NO. MC- f#A SHT ') 6 OF %

ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTONUGHTING &i'9WER O 173 qi9l % OttS 9//(,/93 GENERAL COMPUTATION SHEET SUBJECT Essential Chi!!er Performance Test UNIT /S_1JL2  ;

2. Calculation of Overall Hete Transfer Coefficient. Factory Test Evaluation. and Theoretical Overall Heat Transfer Coefficient Calculation  ;

for 150 Ton Chiller Procedies of 150 ton chiller i

Condenser Tubes ( Reference 5, and 18 )

Total Number of Tubes = 347 Wolverine Model 65-265049 Average outside surface area = 0.640 ft2 /ft Surface area ratio (outside/inside) = 4.61 internal cross sect ional area = 0.221 in2 outside diameter = 0.75 in wall thickness = 0.049 in Root diameter = 0.625 in Minimum wall thickness = 0.044 in f Material 90-10 Cu-Ni Number of fins 26 Inside diameter = 0.53 in Fin width = 0.012 inch Fin height (minimum) = 0.056 inch Overall total outside surfacc area = 3061 ft2 (Reference 18 Page 16)

A. Minimum Overall Heat Transfer Coefficient for 150 Ton Machine .

As per Reference 8 (Drawing 076- 12921 D), the condenser high pressure cutout is set at 30 psig and high compressor discharge temperature is 220 F.  ;

SOUTH TEXAS PROJECT CALCNO. MC- 6406 SKT 26 OF 33 ELECTRIC GENERATING STATION REV PR.EPARER/DATE REVIEWER /DATE HOUSTON LIGHTING & POWER c> in 9 HW3 Cd 9//6/93 GENERAL COMPUTATION SHEET .

SUBJECT EssentialChmerPetrmanceTest UNIT /S 132 1

As per References 9,11, and 12 the required compressor trip setpoint on high condenser pressure is 30 psig and reset point is 24 psig. The tolerance for this trip and >

reset points is +/- 2.012 psig. For the calculation purposes the maximum reset value of k 26 psig is used. The saturation temperature at 26 psig or 40.7 psia is 132.7 F ( From Ref 1 Chapter 17.3 Refrigerant Tables For R - 11).

Total load on the condenser is the sum of design basis load 150 tons plus the heat input from the compressor. The 150 ton machine is a hermatic machine, hence the ,

heat input to the condenser is the power input to the compressor. From reference 20, the compressor power requirements is 186 kw. The maximum power input requirement is 215 kw. Hence for conservatism, the maximum power input value is used in the analysis.

Heat load = 150 tons x 12,000 Btu /hr/ ton + 215 kw x 3413 Btu /hr/kw

= 1.8 x 106 + 0.734 x 106 Btu /hr

= 2.534 x 106 Btu /hr Condenser surface area = 3061 ft 2 Mass flow of ECW water = 600 GPM x (60 min /hr) ( 1/0.01619) (1/7.48 )

= 297272 lb/hr ECW temperature rise = O/ ( mass x specific heat)

= 2.534 x 10 6/ (297272 x 0.999)

= 8.53 F Leaving water temperature = 106 + 8.53 = 114.53 F  !

Lmtd = (T2 - T1)-/ ( in (Ts-T1)/(Ts-T2))

Lmtd = (8.53)/( in ((132.7-106)/(132.7-114.53))

= 22.16cF U = (2.534 x 106 )/( 3061 x 22.16)

U = 37.35 Btu /hr ft2 F This is the minimum value of the overall heat transfer coefficient at the design conditions. If the U is greater than or equal to the above calculated value the chiller is capable of performing its design function.

~

c l

' SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT 27 . OF 33 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o @% eH414 3 ca.& 'r#6/93  !

GENERAL COMPUTATION SHEET l SUBJECT Essarttial Chiller Performance Test UNIT /S 1A2 B. Evaluation of Factory Performance Test 150 Ton Chiller j t

There is no actualin shop test data available for these chillers and hence are not ,

evaluated. j C. Calculation of the Overall Heat Transfer Coefficient usina Eouations  ;

Metal Thermal Resistance i f

+

1 The metal thermal resistance is given by (Reference 15 page 104)  !

rw = (t/(12 k)) ( (d + 2 N w (d+w))/(d-t))

Where ]

t = thickness of tube wall,0.049 inches k = Thermal conductivity of tube material 90-10 Cu Nickel,30.0 Btu /hr ft F ,

d = outside tube diameter or root diameter,0.625 inches- l t

N = 26 number of fins perinch t

w = fin height,0.056 inches  ;

i j

i rw = (0.049/12 x 30.0) ( (0.625 + 2 x26x 0.056 (0.625+0.056))/(0.625-0.049)) {

= 0.000616 l

Calculation of Inside Heat Transfer Coefficient  :

0 0 hi = 150 (1+0.011 twm) V .8/ d .2 l twm = mean water temperature, F f V = water velocity, feet per second i

d = tube inside diameter, inches  !

twm = (106 + 114.53)/2 = 110.26 F

-d = 0.53 inches ,

Water velocity = 600 gpm/ ( (347/4) tubes per pass x 7.48 x 60 x 0.221/144 )

i l

i SOUTH TEXAS PROJECT _ CALC NO. MC- 6406 SHT N OF %3 l ELECTRIC GENERATING STATION - REV RREPARER/DATE REVIEWER /DATE l HOUSTON LIGHTING & POWER O Gb qMM G etu9 y//6/93 '

GENERAL COMPUTATION SHEET SUBJECT Essentist Chitter Perfortnance Test UNIT /S 1.12 l

= 10.0 feet per second l hi = 150 (1+0.011 x 110.26) (10.0) 0.8/ (0.53) 0.2 l

= 2370.3 Outside Heat Transfer Coefficient Calculation ho = (0.689 x F1) 4/3 ( hfg Ao Ef/O ) 1/3 (1/pe ) 1/3 De = 0.2839 inch = 0.0237 feet hfg = 72.69 Btu /lb Ao = 3061 ft2 Ef = 0.71 O = 2.534 X 106 Btu /hr ho = 675.7 Btu /hr ft2 ep Overall Heat Transfer Calculation For clean condenser inside fouling factor 0.00025 and outside fouling factor 0.00025 (Reference 2), the overall heat transfer coefficient is calculated as:

(1/U0) = 1/(h0 Ef ) + ro/Et + rw + ri (A0/Ai) + (1/hi) (A0/Ai)

(1/UO) = 1/(675.7 x 0.71 )+ 0.00025/0.71+0.000616 + 0.00025 x 4.61 +4.61/2370.3

=0.002084 +0.0003521+0.000616+0.001152 +0.001944

= 0.006149 Uo = 162.6 Blu/hr ft2 F(For clean Condenser )

i For a fouled condenser with 0.002 fouling factor the overall heat transfer coefficient is I calculated as:

(1/Ud) =0.002084 +0.0003521+0.000616+0.002 x 4.61 +0.001944 i

' = 0.01421 j Ud = 70.33 Btu /hr ft2 F I

L i SOUm TEXAS PROJECT - CALCfC MC- 6406 SHI 29 CF 33 --

ELECTRIC GENERATING STATION REV P,REPARER/DATE REVIEWER /DATE l HOUSTON UGHTING & POWER o WS 9Iqles cab q//t/93 ,

GENERAL COMPUTATION SHEET j

SUBJECT Essential Chiller Pedermance Test UNIT /S_1.12 l

l This value is much higher than calculated from the worst case.

Fin Efficiency Calculation  !

The fin efficiency is calculated from Figure 12 as per Reference 1, page 3.16.  ;

xe/xb = 0.75/0.625 = 1.20 i i

w (h/k y) 1/2 = (0.056/12) ( 700/( 26 x (0.012/2.0 x 12)) 1/2 l

. +

= 1.083 3 From the graph fin efficiency is 0.71. The calculated value of ho is very close to the i assumed value for the fin efficiency calculation. {

a

[

i I

h i

1 I

r I

i

-}

-i l

l i

i

i SOUTH TEXAS PROJECT CALC NO. MC- 6406 SHI 9o OF gg .j ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE j

_ HOUSTON LIGHTING & POWER __ o W9, m cd6 e.a.L+ 9//t/93 - :j

- GENERAL' COMPUTATION SHEET SUBJECT Essential Chiller Performance Test UNIT /S_1.&2  !

-l Calculation of Eauivalent Diameter for 150 ton Machine i

The fin surface area, tube primary surface area , effective area is calculated based on i one foot length of the tube l I

1/(De)0.25 = 1.30 (As O)/(Aef (Lmf )0.25 ) + Ap/ (Aef (D)0.25) where i Aef = Aso + Ap l Lmf = ef/ Do r Where af = area of fin = pi (Do2 Dr2)f4 f t

= pi (0.750 2 2 0.625 )f4 l

= 0.1349 in2 f

\  !

Lmf = 0.1349/ 0.750  ;

'I

= 0.1799 inch  ;

h

-1 Finned surface area = 2 x 0.1349 x 26 fins / inch x 12 inch / foot /144

= 0.5849 Ft2 /ft  ;

i Primary surface area based on one foot length l primary length per inch = 1 inch - (26 fins x 0.012 fin width) .j r

= 0.688 inch / inch length j Area = pi x 0.625 x (0.688 ) x 12 /144  !

= 0.1125 ft2/ft j

-Total effective area = finned surface + primary surface

= 0.5849 + 0.1125 I

SOUTH TEXAS PROJECT CALCtc MC- 6406 SHT %i OF 3,3 ELECTRIC GENERATING STATION REV PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER O @ll 4WMS 6 9//6/73 GENERAL COMPUTATION SHEET SUBJECT Essent!af Chi!!er Performance Test UNIT /S.16.2 l

= 0.6974 Fin efficiency = 0.71 1/(De)0.25=1.30 (0.5849 x 0.71)/( 0.6974 x (0.1799 )0.25 ) + 0.1125/ (0.6974 (0.625)0.25)  ;

= 1.1883 + 0.1815

= 1.3698 De = 0.2839 inch l

SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT % OF 33

- ELECTRIC GENERATING STATION REV- PREPARER /DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o EN2, cM g3 - g g pffgjff GENERAL COMPUTATION SHEET SUBJECT Essentini Chitler Performance Test UNIT /S_.1.12

3. Evaluation of Imoact of Part Load Chiller Operation and Lower Than Design Condenser Cooling Water Temnerature During the part load conditions, the condenser will have excess sudace area available and would result in efficient operation of the chiller.The' condensing coefficient is given as ho = (0.689 x F1) 4/3 ( hfg Ao Ef/O ) 1/3 (1/De ) 1/3 hence ho is inversely proportional to 1/3 power of the rejected heat load. as the heat load decreases, the ho will increase and condenser will act efficiently.

The inside heat transfer coefficient is given as:

0 l hi = 150 (1 +0.011 twm) V 0.8/ d .2 From the above equation inside heat transfer coefficient is function of mean water -

temperature at constant velocity. Lower condenser water temperature will result in lower inside heat transfer coefficient. As the magnitude of the inside heat transfer coefficient is in the 1100 Btu / hr ft2 *F range, change in the water temperature is not expected to significantly impact the overall heat transfer coefficient. Any effect of the lower inside heat transfer coefficient will also be compensated by the increase in condensing heat transfer coefficient. However to establish the criteria, overall heat transfer is calculated assuming the condenser inlet water temperature at 72 F.

l 300 Ton Chiller Condenser leaving temperature = 72 + 8.71 = 80.71 F Average temperature = (72 + 80.71) = 76.35 F 0

hi = 150 (1 +0.011 twm) V 0.8/ d .2 l

d = 0.612 inches V= 6.0 feet per second 1

hi = 150 (1+0.011 x 76.35) (6) 0.8/ (0.612) 0.2

= 1276.6 overall heat transfer coefficient:

(1/Ud)=0.00176 +0.0003424+0.0007486+0.002 x 3.14 +3.14/1276.6

.. ]

P SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT U OF 33 ELECTRIC GENERATING STATION REV PREPARER /DATE 8 REVIEWER /DATE HOUSTON UGHTING & POWER o @9 4M\O w y/a/95 GENERAL COMPUTATION SHEET SUBJECT Essential Chmer Performance Test UNIT /S_1.12

=0.011590 Ud = 86.27 Btu /hr ft2 F vs 89.50 Btu /hr ft2 F Hence higher value should be used for acceptance criteria.

Similarly for 150 ton chiller higher value should be used for the acceptance criteria.

4. Instrumentation Calibration The test is performed by measuring the condenser water flow , condenser inlet and ,

outlet temperature and condenser pressure. Accuracy of the test instrumentation is critical in determining the overall heat transfer coefficient. It is recommended that the following accuracy of instruments be used:

Temperature = +/-0.2 F Pressure = +/-0.1 psi Flow = +/-2 %

These factors should be considered in evaluating the test results in the test procedure.

5. Establish Condenser Tube Pluaaina Marain As stated earlier, the chiller condenser has large surface area to account for high fouling factors and if required, some condenser tubes can be plugged without having any significant impact on the chiller performance. To account for plugging, a 3%

plugging margin is considered and can be included in the overall heat transfer acceptance criteria.

300 Ton Chiller = 89.50 x 1.03 = 92.2 Btu /hr ft2 F say 93 Btu /hr ft2 op 150 Ton Chiller = 70.33 x 1.03 = 72.44 Btu /hr ft2 F say 73 Btu /hr ft2 op Minimum overall heat transfer with tube plugging 300 Ton Chiller = 38.77 x 1.03 = 39.93 Btu /hr ft2 'F say 40 Blu/hr ft2 F 150 Ton Chiller = 37.35 x 1.03 = 38.47 Btu /hr ft2 F say 40 Btu /hr ft 2 F  ;

i

i SOUTH TEXAS PROJECT CALCNO. MC- 6406 SHT_b$_OF Ad.

ELECTRIC GENERATING STATION REV PR.EPARER/DATE REVIEWER /DATE HOUSTON LIGHTING & POWER o iDD 4\9193 c@ 9//t/93 GENERAL COMPUTATION SHEET SUBJECT Essential Chiffer Performance Test UNIT /S_1.&2 t

i ATTACHMENT A Copies of References 4,5,19, and 20 Total of 19 Pages i

J

-I 1

i

'Q*WQf,5 5%;

~

~

v . . .. a. .

C.ALc M C 6.4-067 E'./. o. . .

m m,.- E E 4*. 3t th. . :v. pt

1. . _ ' ' * : i <- g .p.

m.i w4./[p.

A p 'd- C. .;. h I .m. ATTaco...rR.u7-)n.e.

ee%.i)m .

PWK:y.e,MP;EWSMRUEIN@

$ g g % g; ,,. w . . :. n . ~ w-L.m. . . . . . . .

R$.pepkNO.mN...M:2

.v qt.b 51 s ..

. 4 V$.

  • Wolverinettu6emonshiph
  1. N c.~.

A@:ih@OMN..;.xD i N MEIN we r-N

%. eif [ w}$

1 W,W,1:@&yWe i .J'@dN.A r Lt' h >0 iiiP8e^ e.'.

. :sT,M '. .I. M 4W

. N O'bii}'.U,iW 0. .l*h.,. D' n ?:Nes?a$kh:L- l' ,v -

4 , c1..C. ." . . -

a

<1

.'. .- .g$rp:.Mggk:q .2 :v;.. W p h ):.n vpihm to:fq;q.:!;*.m.-

. ....: ; .s :c . : . . '

, 7 5:,d.Titanlum,~. Type:8/T;Trdfin IEan integtal finned tube :

Pf aln tube mechanical properties per goveming p :

I ';l.'6 and/or ASME standard - minimum tenslie strength,b. .

i

' . h.D.(tuheslpF, produced Grad ,1(or; frondGrade.2. (welded.and/orTitanium madeseamless to purchased 50 KSl(345MPa); ,,

minimum'yleid strength 40 KSl(275 : .  :

i MPa ).The UNS number for this alloy is R50400. - .:-

" Qrequirements: opASTMistandard B338, or ASME ~ 7

." 6Se . :: -

. ' ~

in N ,i . n: .

~

4. ; standard SB33BTgd

" To!erances - Applicable tolerances for'dfameter and., .

_. ' 21. f;AllTruf.n . .NijE whichMjg;M meets the requirements $ m : of Paragraph wall thickness are shown in Table 1. Other tcierance s -

are per the goveming ASTM or ASME' standard; , ..  ;

. '.; UG S(b)PASME-Boller and Pressure Vessel Code,

.. g,, Sect!on. Vill,.ls made,to an average wall in the fin .c . - , .t . O .f 4 : . ; . ' ,

Plain Section Requirements-Plain er,d leng:hs 1"(25A > ;

. O ., TMt area. ,Vfhen a ' minimum, wall ls ;tequired, the next .

m!!!! meters) and over are suppfled as standard.lf plain !' ".

, 3. .I: M heav'er.wafsize should be ordered.

ends less than 1' (25,4. millimeters) are. required,E*f . !

..? $4.e 'St : h M ;! $ ;i ..

t contact the Wehrerine Marketing Depart.menl.M.."..'@-. :.

, .. ~.9 Range of. sizes.;+. See Table 1; . .

fd .!j Land Lengths

  • M.N

.!Ih'.: mit!! meters)Gi 1',(25.4. W!?C d: ,

' MThe hWd4. standardd 'd,max @'j;%i ym.le.. ngth T ..for, shipment by truck . ?andr.ovedare

.suppie ld s. tan . dardcif' land:lengins(down to'5/

(15.9 as

7 1

.O is 44 feet (13'4 iseteri)fFor sh!pinent oflongerleng hs, ..;.

contact the Wolverine Marketing Department. e mil!! meters) minimum arp requir +

H . Wolverine Marketing Department.ipKg N$r. .

- T 8 /:t M . 9 : qt .

$3iEnginhing Date@)SeeTable 2.p.. . " W .. .. 91-4 9 6 @ C ... W h 'rM. !

E ' -

. A (,t v D!stancea of18"(457.2millirr}ejers)and,oyprpetweenf&

f. .

E ' _,l.;M: WiM.b6MN' Test!ng All .T. eddy

%M.. .

rufin is current and air tested, at' N . lands are supptled,as:stardard.;tf #ista t

" : 4 250 pal, af:er finntrig per ASME standards.

8"(203.2 m!!!! meters) mlnlmum. art tegulred/pontac

  • 5.i.7.pgi?.F:.:M M A. 4

~

J iT WTempere.Grada"2.Titanlunits supp!!ed in the as the Wotverine Marketing '

yK ix .

Department -

p finned'!.tqm'ppr,.:.Pli.!n'onds 'and lands are supp!ied.v;.i.. e :Thanium c 7 .f.d..in the conc!!!9nWdesgrlbed by the goveming p!ain v . (both extemalandIntem

- Please ref6tbo r

n. . Mtubh6BTMbrQ g'ndard.b....  : .- 19.Nto tipo S/T/ Turbo. Chile Broch'u'r6@$yN$.! l 1 N .

. - I .

b s.  ;

%V ' ' .d.

o .: ).mw 4- 1. /M. ..Qp..e(i

. kpM Ti~.[@i $sR v.d. :

$ w!w ~ ,

otwassicHAt. Nournet.ATURE uSED FoR TYPE ET TMuPW s.. - <

M9.  %'# :c D .3

- .,. . f.f ,.-;: - .. E Q... :a;.; W. . 7, D 54. M '4 :  ;

..; m- . . :.n. r 1.:. ..s . .; ; .

c.w.J

. y .3..tr,p,,

m .. . . -. - . - , . .

.s wwg. . . L.,

i .. . s.

l g .mn,66, e m.i.c or ptsn ene r.. .q:. ' p. li..:s ,

3

. .. o, d,

.is .:. .:. .M.QR.U.i^ +j.III3,4.;; .o

- d; d, d e, ,own.w m.w w.pnn.o uo , acson g,. .a e;.cg;p ...gip

" ,, P@.gry.g; cvE .~  :

fi; .'px -- :. . ..

,g 4

.  : d i-holes somew et Am.d potoa frP ','.J; ., . .g .g'.4' * '

,1.

y p-

~ ~ - _

"' I' - - A 4

, .m. .-W *e.E.#.dchms a a n.4 of p* .;

y.[e

. s

- hw,a$w.j9*.,

h,'y . :xhij$m bN.@iMh,$iD w~ . . .v. 7 S ji ; ( m ..

.g h t

.us1Mxp .

C.3'.+U.'.

l :.

- +

1. , \ ., '

w@@y$ ::.;f.4 I 6 !:E4!. '...

".~ . .

i'.."

'+...t'-

u:r g: t t :, u .*. .i e .n Q ., ' r.V,A

.*j M :.ig.3. .,

N',.g y - '.. l

., " '%. '[ khh.)

QTr!.}..h. f i .

.. . , }. ;. kw.< *

.. ,. d.' I t,.

le

k. u k,, Q ggm .n%:.

p .

.r.

.. c'5W; ' . . " "* " $.2: % %.r?W. .

. +' g ..i- . c.

5

...e-;w* y; g, g. i .:.. : . a.~ ~ '. t ' a>+M

.% t.n u . :t. , ,, .

.c. .,

[u . .- .

w,na.1,,, l

. c A L.c M c 6 4 o L Rlo l AT 7ACH . REE 4-

$' R , '), op 7 l STANDARD 31ZES. TYPE &T TRUFIN  !

32 Fks pw inch (25A mBWmeters) 7etd.1 stswe4 84*a mein boetton Dimensione ass toitersimee Mn Section Dw%nelone [

(d) Outeldo DL4 motor (Is} Wau thieknene M-A. Point Merdmum Meet won (vg) Nomine( Tolereness Diameter Thiskness i Outside Eo!! Cata3pg Mominal Tenorenene Number 8:34 Stoo (dy) i Distre 4r TNokness W (mm) h (mm) k (mm) In. (mm) h (mm) - h (mm) h(mm) .

h (fr.m)  !

.825(15.9) .004(.10) A40Fl.25) .0060L.13) .557 (14.1) .C25 ( .64)  !

E'8(18.8) .C26 ( .71) 704240s8  !

7D434C38 .0MF1.47) .006BL.14) A31 ( .79)

.C3& ( .88)

.C 42 L1.07) 4 314042 .06!d.*t) .0000f.15) .037 [ A4) l 70 434049 A72q1.83) A070(.18? .044 (1.19) l r .048Lt.35) .0005 5 .22j AM (1.47)

.066 L1.63) 70 424068 .083 ,3.11) ,

.004 (.10) .C49 L1.26) .0CM L.12) .f76 (17,1) .025 '.64) 3/4(18.1) .024 ( .71) 70426C28 .75C (15.1) e-70415C35 .068 ,1.47) .0088 l.14) A31 .79) c 3p. .C35 ( .89)

.0060L.15 A37u.64)  !

.042 (1.C7) 70425042 .065[1.64) .

.C72 1J3) .0070 .18 .044 (1,12)

.048(1.25) 70 325048

.C&3 d2.11) .0065I.23 .068 (1.47;

.C53 (1.85) 4 325068

.C 43 (2.11) 7042504$ .109(2.77) .0100 dJS) .C76 (1J1) 70-136028 .573(12.3) 004 (.iC) .C48 (1.25) .0080 L.12) .007 (23.5) .C25 ( .64) 714 (22.2) .028 ( .71)

.C35 (. 89) 70 426035 .C68 (1.47) .0065L.14) .C31 ( .79)

.cs s (1.85) .0060J.15) .C37 ( .64) l

.042(1.07) 70425042 nassc4e .072 (t.as) .0c70L.16) .c44 41.13) t

.c4e (1.2 s) .ess. 1.47)

. css (1.es) musesg .C a3 (2.11) .004sL.22) 7e4260s1 .108(2.77) .c100 L.25) .C7sLt.e1) .

.cs3 (2.11) i 70427428 1.000 (25.4) SC4 (.10) .048 (1.25) .0C50 (.12) .312 (23.7) .C28 ( .64) 1 (25.4) .C28 ( .71)

.C31 ( .7e)

.c3s ( .55) 70 3270H . css (1.47) .0055(.14)

.042 1.07) 70-32n42 -

.C65 (1.65) .0060(.18 .C37 ( .54)

.049 1.25) 4 327048 .072 (1.83) .0070(.15 .044(1.12) '

) . css (1.47)

.065 1.63) 70-327065 453 2.11) .0045(.22

.C43 (2.11) 70-127083 .109((2.77).C100 (.25 4 78 (1.01) l C

[

Tolerances are pkte or m4 nut.

a ENGINEERING DATA -TYPE S!T TRUFIN ,

32 Ans por hoh(n.4 mmmeters) 7 ewe 2 Sverspo Burtace LD. Cross Appros. Woight Catalog Outolo, Aw not',o sectional Wmber Aree (Outado Ate 6.AvFope (T!tantam) [

to Inside) ~ -

r

?Pih omkom in* I cm' ItMt l ~ kiWM l

.157 1.27 .148 .22  ;

4 70 324028 .413 12.4 3.19 70 324036 Ats 12.8 3.26 .188 1.20 .170 J5 4 324342 418 12.4 3.33 .178 1.14 .164 .28 4 334049 .415 12.5 Las .1H 1.00 .206 .31 70 324088 415 12.6 3.71 .143 C.D2 .222 .33 ,

70426024 .503 15J 3.07 .304 1J8 .177 JS

.503 1&J Lia Jte 1.30 .107 J1 4- -*

! Q 70426035x 70 413042 .503 15.3 EJ1 .281 1.81 .230 .34 '

~

73425C4 A03 15.3 129 .268 1.73 R2 .37 ,

70426C68 .503 15.3 3.48 JH 1.54 .256 43 7042s.ca3 . sos 1s.3 3.72 .sps us .ut .54 1

70426c25 18.0 E41 R$ 348 .308 .31 n = =.u .E.B1

.1 1.J u .or 2.n m. u 70429042 .s ith 3.12 .411 2J5 .272 40 .

m m 04. .. e. 1 t ut 21 mi u .2c - .a - .

1 n4=Cu us no u. 30 zu .m .a 70 4 26083 .581 18.0 233 .323 144 431 44 70 4 27095 .476 20.7 2H .003 5.58 J41 .35  !

704270u .en a7 sti .su in .2:2 e 4 327042 .579 20.7 3 06 . pts .314' 47 70.une .n mr .11 u. .a 3.At u. .n 70 327066 .4 30.7 313 .600 L18 .3t3 .58 n.unn . 76n 20.7 tu .ui u7 .ai ." & WOLVERINE TUBE,INC.

WW 2100 Mame( S: ect N E

  • P.O. Box 2202 Decatur,/ebama 35609-2202

--Nne per inch . 32 +0. 9 Rn Wldin . .cto in Avg. Telephono 205e353-1310 Fin Me!gMt . C.30 in min .C32 kt Av3

. . .. .s - % .i. w a . . . . 3.. .a e .3r. 4.,gre t sf.WT 32 7/Da

.,y mp .p e - . . + - ,:m , q w y . .p . .; w .4g 4 4 y ;. 4 <y g p 44,y. .y.. - ,,

Rv_.vE6fce g g 33 _

3, 33- _

_ v - _1 -

- ') n _ _ -- -

3

__U - -

- v L -

Wolverine tubemonship@

CALC Mc 6406 R/o ATTA CH. R EF. 5 EHT. I oF 4 Type S/T Trufin is manuf actured f rom copper,and standard. If plain ends less than 1" (25.4 copper alloys produced by Wolverine, in millimeters) are required, contact the Wolverine accordance with ASTM standard B-359 or ASME Marketing Department.

  • standard SB-359.

Land lengths 1" (25.4 millimeters) and over are All Trufin which meets the requirements of supplied as standard. If land lengths down 1o 5/8" Paragraph UG-8 (b), ASME Boiler and Pressure (15.9 millimeters) minimum are required, contact Vessel Code, Section Vill, is made to an average the Wolverine Marketing Department.

wall in the fin area. When a minimum wall is required, the next heavier wall size should be ordered. Distances of 18" (457.2 millimeters) and over between lands are supplied as ' standard. If

@ Range of sizes - See tables 1 and 3 for 26 Fin and 40 distances down 1o 8" (203.2 millimeters) minimum Fin Trufin. are required, contact the Wolverine Marketing Department, The standard maximum length for shipment by truck is 44 feet (13.4 meters). For shipment of Stripped ends are available in length up to 4 longer lengths, contact the Wolverine Marketing inches (101.6 millimeters) maximum.The shortest

' Department. . ice . + --- -

' over-all tube length that can be stripped is 12 '

inches (304.8 millimeters).

Packaging - Unless otherwise specified, type S/T

, Trufin is packaged in wooden boxes.

Testing - All Trufin is eddy current and air tested, at a" '

. 250 psi, after finning per ASME standards.

Temper - Copper and copper alloy Tr,ufin are supplied in either the "as-finned" or annealed condition. Type S/T U-Bends - U-Bends of type S/T Trufin can be made with either full finned or plain surf ace in the bend area. U-Bends are air tested, at 1000 Alloys - Applicable plain tube specifications and r

. mechanical properties - see table 5.

psi, after bending. All brass Trufin is relief annealed in the bend area af ter bending and before air testing. Bends normally show some

Engineering Data - See tables 2 and 4 for 26 Fin and 40 Fin Trufin.

discoloration because of the relief annealing ,

operation. l Tolerances - Applicable tolerances for diameter Duplex type S/T Trufin - This is available in a and wall thickness are shown in Tables 1 and 3. variety of combinations (copper finned tube overa l Other tolerances are per the governing ASTM or steel liner, admiralty finned tube JVer a Copper- l ASME standard. nickel liner, etc.). Tubes in this catagory can be I furnished with ferrules of the liner material up to  !

' ) Plain Section Requirements - Plain end lengths 1" and including 2 inches (50.8 millimeters)in length, (25.4 millimeters) and over are supplied as applied to one or both ends. i

CALC MC 64% R/o  ;

ATT* R E E 5 STANDARD St2ES - TYPE S/T TRUFIN 26 Fins per inch (25.4 mlltimeters) $M  % OF 4 T.dia 1  !

Standard Sizes l Plam Section Dimensions and Tolerances rm Sechon Dimensions (d) Outside D ameter (Xo) Wali Thickness At- A-Point Minimum Available )

(Xf ) Root Wall Alloys Outside Wali Catalog Nominal Tolerances Nominal Tolerances Diameter Thickness . See Diameter Thickness Number Sue Size (dr) Table 5 ,

in (mm) in (mm) m (mm) in (mm) in (mm) in (mm) in im m ) m (mmt (01.02.26 5/8 (15 9) .049 (1.24) 65-264049 .625 (15 9) 003 (.076) .069 (1.75) .0040 ( .10) .500 (13 0) 044 (1.12) /

(53,55 3/4 (19.1) .028 ( .71) 65-265028 .750 (19 1) .003 ( 076) .049 (1.25) .0'i35 (.089) .625 (15.9) .025 ( .64) 01,02

.035 ( 89) 65-265035 .055 (1.39) .0035 (.089) .031 ( .79) 53,55

.042(137) f,5-265042 .062 (1.57) .0040 ( .10) .037 ( .94) 01.02.26 GG (1.25) 65-265049 069 (1.75) .0040 ( .10) .044 (1.12) 53,55

.056 (1 47) 65-265058 079 (2.00) .0040 ( .10) .049 (1.25)

.065 (1.65) 65-265065 .066 (2.18) 0050 ( .13) .058(1.47)

.072 (1.83) 65-265072 .092 (2.33) .0050 ( .13) .065 (1 65) 1 (25 4) .026 ( .71) 65-267028 1.000 (25 4) 003 ( 076) 050 (1.27) .0035 ( 089) .875 (22.2) 025 ( .64) 032 ( 81) 65-267032 052 (1.32) .0035 (.089) .028 ( .71) 65-267042 052 (1.57) .0040 ( .10) .037 ( .94) 01,02 042 (1.07)

.049 (1.25) 65-267049 .069 (1.75) .0040 ( .10) .044 (1.12) 26.51

.056 (1.47) 65-267058 .079 (2.00) .0040 ( .10) .049 (1.25) 53.55

.065 (1.65) 65-267065 .086 (2.18) .0050 ( .13) .058 (1.47)

.072 (1.83) 65-267072 .092 (2.33) .0050 ( .13) .065 (1.65)

Tolerances are plus or minus.

\'

STANDARD SIZES - TYPE S/T TRUFIN 40 fins per inch (25.4 millimeters) Table 3 Standard Sizes Plain Section Dimensions and Tolerances hin Section Dimensions (d) Outside Diameter (xo) Wall Thickness At-A-Point Minerwm Average IXf l Root Wali Fm Outside Walt Catalog Nominal Tolerances Nominal Tolerances Diameter Thickness Height Diameter T hic k ness Number See Size (dr) in (mm) in (mm) m (mm) in (mm) in (mmi in (mm) in (mm) - in (m m) in. (nim) 3/4 (19.1) .028 ( .71) 70-4050128 .750 (19.1) .003 (.076) .043 (1.09) .003 (.076) .675 (17.1) .025 ( .64) .034 ( .86) 035 ( .89) 70-4050135 .052 (1.32) .003 (076) .M ( .79)

.042 (1.07) 70-4050142 .058 (1.47) .004 (.102) .037 ( 94)

.049 (1.25) 70-4050149 .065 (1.65) .004 (.102) .044 (1 12)

.065 (1.65) 70-4050165 .083 (2.11) .005 (.127) .05B (147) 3/4 (19.1) .028 ( .71) 70-4050228 .750 (19.1) D03 (.076) .052 (1.32) .003 (.076) .625 (15 9) 025 ( .54) .056 (1.42)

.035 ( .89) 70-4050235 .055 (1.40) .004 (.102) .031 ( .79)

.042 (1.CT7) 70-4050242 .062 (1.57) .004 (.102) 037 ( .94)

.049 (1.25) 70-4050249 065 (1.65) .004 (.102) .044 (1.12)

.065 (1.65) 70-4050265 .083 (2.11) .005 (.127) .058 (1.47) l I

Available Alloys - 01 and 53. also in 51 for 035 mch wall and heavier - See Table 5.

Tolerances are ph . or minu.,

i l

l

i cat.c Mc s+o 6 B/ D ENGtHEERING DATA - TYPE S/T TRUFIN ATTACR RE%.6 j 26 Fins per inch (25.4 militmetirs) $gT 3 g)f. 4 Tebla 2 i Average Surface 1 D. Cross Approx. Weight j g Catalog Outsice Area Ratio Sectional  ;

/ Number Area (Outside Area - Average (Copper)

{

to inside) .

l ft 2/tt em'/cm in' '

cm' tt s/tt kos/m __ j 65-264049 .549 16.73 5.16 .129 .B32 407 .605 65-265028 .640 19.50 4.27 .257 1.657 .374 .557  !

65-265035 .640 19 50 4.38 .245 1.5B0 411 .612 65-265042 .640 19.50 4.49 .232 1.496 458 .682 65-265049 .640 19.50 4.61 .221 1.425 .503 .74S 65-265058 .640 19.50 4.77 .206 1.329 .560 .833 65-265065 640 19.50 4.91 .195 1.258 .603 .897 65-265072 .640 19.50 5.05 .185 1.193 .646 .961 '

65-267028 .893 27.22 4.06 .534 3A45 .507 .754 i 65 267032 .893 27.22 4.09 .527 3.400 .547 .814 05-267042 .893 27.22 4.31 A91 3.168 .644 .959 65-267049 .693 27.22 4.40 .474 3.058 .711 1.058 65-267058 .893 27.22 4 49 452 2.916 .795 1.183 65-267065 .893 27.22 4.57 436 2.B13 .860 1.250 65-267072 .893 27.22 4.68 .420 2.710 .955 1.421 Fins Per inch - 26 + 1 -0 Fin Width .012 in. Avg.

. Fin Height .056 in. thn., .057 in. Avg.

ENGINEERING DATA - TYPE S/T TRUFIN 1 40 Fins per inch (25.4 millimeters)

Table 4 I

~

Average Surface 1.D. Cross Approx. Wt. j

~ Catalog'- - - Area Ratio Sectional

~~~ ' Outside .- -

l

- ' Number - Area - ~ D ' (Outside Area - Average (Copper) to inside) ft 2/tt em'/cm in' c m' Ibs/tt k os/m 70-4050128 645 19.66 3.97 .302 1.949 .352 .524 l

70-4050135 .645 19.66 4.06 .2BB 1.858 421 .626 i

. 70-4050142 ' .645 19.66 4.17 .275 1.774 472 .702 ,

70-4050149 .645 19.66 4.27 .262 1 690 .522 .777

]

70-4050165 .645 19.66 4.52 .233 1.503 .630 .537 70-4050228 .924 28.16 6.07 .266 1.716 .391 .582 70-4050235 .924 28.16 612 .253 1.632 460 .664 70-4050242 .924 28.16 6 37 .241 1.555 .507 .754 70-4050249 .924 28.16 6.54 .229 1.478 .552 .E21 70-4050265 .924 28.16 6.71 192 1.239 .669 .995 Fans Per inch - 40 + 1,4 I Fin Wedth .009 in. Avg l

i

CALC f46 64 06 R/o ALLOYS . APPLICABLE PLatN TUBE SPECIFICATION TIACIS

  • kbY. 5 ,

A;eD MECH ANICAL PROPERTIES THT. 4 0F 4 Tabb S Wolverine UNS

  • ASTM Tensile Strength Yield Strength Alloy Number Spec. Minimum Minimum Temper -1 ,

Number Number

~l KSt M Pa l KS1 MPa 01 C12200 B359 30 205 9 02 Annealed I i

36 250 30 205 Lt. Drawn 1

)

02 C14200 B359 30 205 9 02 Annealed i 36 250 30 205 Lt. Drawn 26 C44300 B359 45 310 15 105 Annealed 28 C23000 B359 40 275 12 85 Annealed 30 C66700 B359 50 345 18 125 Annealed 51 C71500 B359 52 360 18 125 Annealed 53 C70500 B359 40 275 15 105 Annealed 45 310 35 245 Lt. Drawn 55 C70400 B359 38 265 12 65 Annealed 40 275 30 205 Lt. Drawn

'For equivalent ASME specification, mechanical property data is identical.

DIMENSIONAL NOMENCLATURE USED FOR TYPE S/TTRUFIN w-d - outside 04ameter of pfaen end d _ __ .g c o- diameter over tens a

gfg O d,. root ciameter of finned secteon j d, - snsede diameler of finned section sp- wall InsCAneES of pipen SeClaOn LX p - Xg at - *ali th Ch ne55 of lef'ned EeCleon Wolverine one of The Signal Companies 9

)

________-_/

i

'"'**** -- /v i 01120i M TYoE 3A

..e , , ,*/k ( 007-07508-00D,

  • ^ 't 05310 mx

<- e P.O.D*2207'eCA e.

E.

35002

'f-\ .w n. -

50338 GR 2/R1043 007-07500A E 7452202 .

"",*,* AFFIDAVrf . m.-.

7168 ' .20700ft 570322 7/11/B4 02 2425 pc OCCATUR PLANT ,

k-2-_WELDEDFINNED7b-3d5035-1d.1713/8"W/2"P.E.&4LANDSHUCLEARSECI!ICt.3

' " ' ' M'" UUHU WARfitR AIR CUtiU. I til, . '

uAA.

UURL,U) dALUU)

YORK DIV PURCil DEPT ,

'^""^'

11/24/04 6927)

~-C shin To:

CENTRIFUGAL SYSTEMS PLANT MANCitESTER ST., BLOG 3G STORAGE m P.O. BOX 1592 ' 8" " "'8 YORK, PA. 17401 YORK, PA. 17405 MECHANICAL PROPE RittS CHEMICAL ANALY$lS (PER CENT)

[ _

15 15 WAl.L UliUtR LU i

~

! 1 _ KSI KS! P.E._ FIN _

.Ubu .VJb

  • 3B __ __ 7 0.0 57.4 .058_ .037

.UJ6 HEAT # 140386T

.Ub8 36 73.7 60.7 .058 .036 llEAT #1403887 ~ . .Ubu .ud /

, 40 69.4 57.0 .059 .037 llEAT # 1404'07T _ _

m 40 m

0 2

n m.

Y t9 '

, itst ntsutis Rever$e Flattentriq w

qyo 7 y p:

- m m- xgm mtmx

- , , m . . _ _ .

OK* --I g O OX

  • A ** OK 7800 ..OK_250 ** .

_Or* . Q)(*

t HEDEDY CERTIFY THIS MATERIAL CONFORMS TO $PECIFICAf t0N n y

' BEFORE FtNNING AFTER FINNING ' AFTER FINAL ANNCAL l

-R1043/ASME_5B_338. GR 2. SEC 111. Cl 3.

-?D

,W/83ADJ. p

$TERIALWASMANUFACTURED(PRODUCED)INACCORDANCEWitil WOLVERINE-A SIGNAL C0'S. QUALITY ASSURANCE PROGRAM DATED f 1, c, 83

(( attyqorst Q e8' MAY 15, 1981, milch HAS BEEN SURVEYED, QUAL.IFIED, AND IS

. gi, &-

OElHG AUDITED BY BORG WARNER AIR CONDITIONING,ilNC.

/ 00

  • ON/O '
  • E* og f& yfe, Q o

/

& c e*?- 07Fbh000

  • 3~/WY f 30 - )*8-f/pfty

/ *1 2 "?joc.t.

to Cn fe df

  • 2/V /-2:-!'f~ .

~ mi . -o oo ,oc 49-064-002-001 Ep o.n e-viate o., .c cysi o.oi. .

( WOLVERINE 2100 MARKET STREETUNIT N.E. OF SIGNAL CD .c- +-uocco m .. ons A2123 o.o. .co ,c.

  • LDECATUR,AL 35602 Sa* 10 kaaf S SOLD To U**L18$ boon"to wow

'I

WDLVERINE CALC M t 64- % 6 0 I
~<  ;

ATTACH. REF.19 CPTIG2 "

.?

SM T. 2 0F 6 Op ***LL 4t *G'" I'1C'** GAL %E 10L j 6*tcas oDAD TD6 5*tc44 Le e.Gt.e lo. l 750" 5 94

-s, ...o .e . ..n ,u a . ....o . . .n ui e,c vo.o ot co.. ,

XX XX XX XX XX XX XX tc . cue- c un ms -

ASTil B3381AStE SA 338(NUCLEAR) YES-BOTH(3) .

SEC 111, D1Y l NO 1983 ED WINTER 1983 ADDENDLH CERTIFICATE OF TEST Corrected tertificate.

p ,

ALS Metals Company aercs14,1985 P.O. BOX 410 PMTSBURGH. PA 15230 3 5 September 26, 1984 ' " * "

220026 ~"' 1511 Pieces M at -o w '

C i H I Fe i O Pc A6 V wo Zr sn N. Te t

3403BST .01 .01 .0002 '

.04 .11 >

$ CHECK .01 .01 1 .04 .13

3403BST .01 . 01 _ . 0 01 . 04_. .11 _

i a CHECK .01 . 01 .04 .12 '

t  :

-u, -o 1 o .cs vi-s a wto o i sito a vi-s e 4 mio . - 6o-o j

, $ 3403 BET 70.5 56.0 36 70.5 55.5 37 t

340385T 67.0 53.5 38 70.0 56.0 35 a 71. 0 56.0 33 -

71.5 57.6 35 c .

1 a .

)

1 " ' " " " "

.: 1 180K l'CbK *1*Btk DES 7 e+ em,t e,,mo re m ee. 4,u) ne er ,,,eted

'"*'ffd)1'ete d "'*omplete d l

-. nn.e +. .+a .

The Ultra sont'c test coc'pleted per ASME SB338. '

Authorization; Telex 11-2-84 S.L. Patton, Wolverine to T. Scholl ALS Metals. '

l Finish tube H. content 340388T .006 340385T .0016 I Mat.erial was manufactured " produced" in accordance with Tubular Products Division QA program ated 8/19/85, which has been Surveyed, Qualified and audited by Wolverine, one of the Signal

.'.o.

A sm osa

. f l

ro.os.zio -az .

u 2a March 14,1985 . oo7-o75cB-cx:o -

o-83-9/4,529 .*

_w qatm. t%29 9es."TalM- s mL' .Thi. In ci ""RI>L & * -l l

4NId-002-001 l L IWOLVERINE LNIT OF SIGNAL CO u .. m. o.u .c.. cusi o.oi. .o A2123 A 2100 MARKET STREET H.E.

.c.. m aastoou~t.,o n o.cmo cs A{DECATUR,AL 35602 l s P 10 a.a.E as SOLD to v.sLE&& 3 0- Mtom

~ ~ " " ' " ' " " ~ ~'"'

} f watvERinE calc Mt 696 R/0 ]

ATTACn. KEF. M 5}iT. 3 0F 6 gg2 g

.- &*Tc4% L(h&1m TOs I

Lt"L'" &*1c.at GAUGE 10. S*1c.% CLAD 704 OO .* 64 750* 5 91 .

. . , ..... .. c. .... .. ui . ,c o o, - t w s, ...se '

XX XX XX XX XX Y.X - XX - --

c. . et ,

.. .c., m.i.o o '

YES-BOTH(3) .

ASTil B338 & ASIE SA 33B(HUCLEAR) m 2 u, ulv i tw 1.wa r.o liiMut 1963 ADou.aun .

CERTIFICATE OF TEST '

Corrected Certificate.

ALS Metals Company arca 14. us5 P.O. BOX 410 PITTSBURGH. PA 15230.

-ect - ' "

luu

! WoverGer 7,1981 220033 411 Pieces C M Fe O ! Pd A8 V MO I Z' '

Sn No f Te {

181 NO l N I  ! 1

! 3403867 .01 .01 .0002 .04 .11

- 1

.01 . 01 .04 .13

, CHECK 3a03B5T .01 .01 .001 .04 .11 -

CHECK .01 .01 .04 .12 3 4404077 .004 .01 .0001 .04 .12 - -- -- -- . _.

l t CHECK .0 04 .002 .04 ,

.11 1

iso a i .sto a vtws as. ww.to us. =e60-s

. i .i ao o res it s as.

3403BST 73.0 57.0 36 72.5 57.0 36

[

n 340386T 70.5 56.0 37 71.0 58.5 37 a

r 240407T 70.0 54.0 35 70.5 54.0 34 I -

72.0 54.0 35 71.5 56.0 34 l t

. ar o c vm nsi, rs.

1 ,ui egna arv ,wi ress, i,,, co e=

A-0X 4-OK 1-OK Comieted Com1 ete.d cnmt.ted Other test requirements passed and/or completed, ~

The Ultra Sonic test cocpleted per ASE 58338.

Authorization; Telex 11-2-.84 5.L. Patton, Wolverine to T. Scholl ALS Metals.

Fin,ish tube H. cor: tent 3403BBT .005 340336T .0016 440407T .0015

'5terial was r.anuf actured " produced" in accordance with Tubular Products Division QA program ated 8/19/35, which has been Surveyed, Qualified and audited by Wolverine, one of the Signal -

l

. Gow us

. _ 27 mrch 14,1985 at4%wc.M

._. .. . . .. ~ . . . _ _ . - _ _ _

CALL }4C 6f06 R[o - l ATTActi . Ke e, . g3 l]

Wolverine o.s.on SNT. 40 F (, i PO Eba 2202 Decate.mbama 35602 i Teie: tore 205 353-13to

, EDDY CURRENT TEST REPORT j DATE' //~/ 7 l

~

SHIFT / .l CUSTDMER hlW5 P.O. O /lZ 0 S I 6' I t

TUBE SIZE 305 03.5~ ALLOY /7 j 0.D. WALL {

TEST SPECIFICATION 68 -33 h NOTCH DEPTH f TEST PROCEDURE b -/390-5 F/E-u_3 DRitt 32Zt oS/  !

LEVEL I OPERATOR .I h BADGE YM2 '

LEVEL 111 APPROVAL f

U '

l

i NUM3ER N01CHES NUP3ER OF 5 11ME CHECKED OR HDLES DETECTED PCS. ACCEPTED  !

t/ /So i f:t5

9. -- --

4 --

2 7.5 .

m2n 4 345  !

//70 y g 75 3

/2.90 4' 7po

/,*10 '4 . <T 2 7 i

, q 2.27ocr m ! Oaeicch i j .~.

-l A1 of"Jir/O f r - co7- o7S~0 F o ve I

Se f.S -P/6SL7 89 &7 fc ' .

fg) *f/Y /~2 7W

/ Y p . -c) g-

.% ,n. . UDP-24-1609 , z ,ic ,e -

..e-. .

.~

~

t CAtt, ' Mc 6fot, qo Rey, l ATTAca .

ty fHT. 9 OF 6  !

Wolverine ce -

PO Boa 2202 Decav. Atadama35602 .

Te4e:rone 205 353-1310 -l EDDY CURRENT TEST REPORT  :

//-/E i cATE

. SHIFT /

_- 1 i

kM,l[ P.O. O//2OL . l CUSTOMER .[

I i TUBE 51IE 9O$ 03[ ALLOY /(/  ;

0.D. WALL

- i

$b' 33 b NOTCH DEPTH TEST SPECITICATION G - 13 90 8 t=//Z-/ov3 DRittsizE ]

itsi nxEounE f .-I M/O BADGE 4/d77 LEVEL 1 OPERATOR p-LEVEL 111 APPROVAL i 1

dO  !

1 ,.

NUMSER NOTCHES NutSER OF d TIME  !

OR HOLES DETECTED PCS. ACCEPTED '  ;

CHECKED --

ll -

2:10

</ .i 3 0 ,

' 1 4 2.80

~ '

9.IS -

a-

.i

/020 4 396  :

j I1 *Lo ~k 5 NO 13.3 0 Y '$$b i i

t s I

,j M6nes ran Oxais " ..

i I

.i A r, e~ys d- o? (u.- 3 7 ; yf' > r/- r. r o Su- SE-T// TZ T tC 2.1 sr

.., i .er l

,,p ,,a

-m .. UDP-24-1609 Sh ff$c ,.

Q

.ve 5 0 '.

I l

'I

i

_.: , l

=

CALt. Mc 6&ot R/a , .l ATTACH. KEP. I'l

~

Wotverine o.- I ro u.no2-cmavm.mssw2 CHT* G0F(, .l Tectore 20535M310 ..

~

EDDY CURRENT TEST REPORT l

~ DATE //- / 7  ;

SHIFT 3 u

CUSTOMER YORY P.O. O //Z O 2- ,  ;

TUBE SIZE 30 I 0.D.

_. O35WALL ALLOY /y 1

r TEST"5PECIFICATION 68-33b NOTCH DEPTH i

TEST PROCEDURE G - /3 9 o G I:/#-wa DR!tt size os/

~

LEVEL I OPERATOR /dkw BADGE uOn ~7 -[

LEVEL III APPROYAL zz s_/ SM oo IlME NUMBER NOICHES NUMBER Of PCS. ACCEPTED- i CHECKED OR HOLES DETECTED 4:30 * ' 4 l00  !

530 N I75 {/'2'fY 6.30 4 32s i 9.30 LI 44V l,

i i

W V ou fes4ro*

/

/ m= %/

iec/- ~ i r

i k

i 30

& of.yE- s2.. p"5 ou 7 o TA" % t Ev- f3 -&5 55 I is?? fa - .

-1 ?^

fgf *-fij' b

- --uop = .

f d e' W W 29 00P-24-1609 7-f/ # --

Air Conditioning Group 6th 1 0F 7  % '

m ... en. .,

P Q sos 1S*R SG'* Formp.ac.a 11CS ST-BY-YB-0044

5. n riserri rey;
wx smsress ST-YD-YB-0075 i . s a is )

August 30, 1984 1

,I l 10-1695 g ., y, g, ,g ,i t na c I

ST P-1t tn 3 04  ;

Bechtel Energy Corporation South Texas Project 1 j

P.O. Box 2166 Houston, Texas 77252-2166 RECElVED . J  !

j Attention: Project Engineering Manager  !

OCT 2 4 934 Subje ct: South Texas Project e Tn nye-Electric Generating Station , '.

Units 1 and 2 's "

Houston, Lighting & Power Corgany, Job No. 14926 a ,

- Purchase Order Nos. 35-1197-4101/8102 W --lo. +

York Orders 77-780615 and 77-780616 Purchase Order Nos. 1492G-4310/8310 'd-' b York Orders 83-916519 and 83-916529 Safety Class Water Chillers //Jh//,[ .. [

Reference:

Bechtel/Borg-Warner 8-23-84 Conference -

)

~

Gentlemn : j The following attachments contain summaries of the 150 and 300 ton " i STP chiller performance data discussed and data requested by Bechtecl4 a during the August 23, 1984 reeting: u 9-t ATTACHMENT F

A S'17 F.AB Safety Class' 150 Ton Water Chillers k Custorer P.O. Nos . 35-1197-4102/8102 {

B-W S.O. Nos.77-780,615/616(H)

B STP Essential Safety Class 300 Ton Water Chillers Customer P.O. Nos. 14926-4310/8310 .

B-W S.O. Nos.83-916,519/529(H)  ;

C Full Load Design Performance Data for a York Turbopak Model HTH4B1-BBCS, g R-ll, Unit Duty 150 Tg 0 Predicted Full and Part Load Performance Curve 4 for a York Model HTH4B1-BBCS R-11 Turbopak j ec E Predicted Full and Part Load Performance Curve j for a York Ibdel OTK5Cl-lMCS R-ll Turbopak 4 5

_ _ _ _ _ _ _ - . _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ ___J

.w ,:p:a. w w c -asxns p:su m v qvg y . 4 g y .gg g ggg y ... g _.,,.,y,

~

e

  • ~

CALC 14C 6406 d[0 N- D s FA-1695 8-30-84 m] g ;3 94.1 oF 'l 3.

]

7274 If there are any questions, please call Tony Shanko, Ext.

.a Vary truly yours, h6b F. C. Bahr-hl

~

Contract Supervisor f

FCB/njm b '

6

- Att achments- 'n di cc: R. A. Friede - EM Rouston A.R. Shanko - 083A g.,

l q

D 1

4 s

" i

_- ..e  :

m '

o ai

'J1 $5 e

& 5 3

}

-df

g' c y. , - q, . -

R CKt Mc 6 40( R/o ATTACHMEKr "A' ATTAG, ScT. 2o ,

STP EAB SAFETI CLASS 150 TON WATER CHTT1FRS TH 30 F ~7 'f CUSTOMER P . O. NOS. 35-1197-4102/8102 B-V S.O. NOS.77-780.615/616(10  ;

2 Predicted coc: pressor :notor KW Input, minimu:n EWI and corresponding '

condens er pre s sure s allowed at various load conditions at a design condenser water flow rate of 600 CPM follow: f t CORRESPONDING y LOAD CONDITION W MINIFY CONDCISING PRESSURE EVAPORATOR TONS 7. LOAD INPUT ECWT, F IN HG Vac 15 0 100 111 53.8 3.41 113 75 84 52.1 6.02 75 50 63 50.2 8.52 ,

38 25 53 48.5 10.6 .

15 10 51 47.4 11.82 Predicted co= pressor =otor G Input and cini:2.nn condensar water ~

flow rates at various load conditions and head pressure valva cou-a, .ti troller settings follow: .

a C '

EEAD PRESSURE VALVE

- ~

LOAD CONDITION KW CONTROLLER SEu.tNG U C '1 CONDCISER EVAPORATOR TONS 7. LOAD INPITT IN HG Vac WATER FLOW, GPM g ;

{

150 100 111 3.41 136 .

2 -. ' I 75 50 72 3.41 69 2 ~ .

  • 5-.

75 50 63 8.52 96 2 ~

?

38 25 57 3.41 43

~

15 10 51 11.82 3 50 m -

NOTES: g{ -

1. Constants: 319 GFM of chilled water. 1 42 F Leaving Chilled Water Teeperatura. 3.

32 F ECWI i

2. Data requested by Bechtel during the August 23, 1984 =eeting '

in York, PA.

e- D 6

l _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ARS, 8/24/84

A t

5,

GAcc Mc 640t. je{o  :

AT TMFt. REF. 20 A CH. 4 0F ]

sfi ESSENTIAL SAFETY CLASS 300 TON WATER CHIILERS CUSTOMER P .O. MOS. 14926-4310/8310_

B-W S.O. NOS.83-916 ,519 / 529 (H) mini =n,un ECWI and corresponding Predicted compressor motor W Input, load conditions at a design condenser pressures allented at various condenser water flow rate of 1,100 GPM follow:

CORRESPONDING LOAD CONDITION, W MINEGM CONDENSING PESSURE

7. LOAD INPUT ECWI, F IN HG Vac l EVAPORATOR TONS 100 354 53.3 5.2 300 265 51.8 6.9 225 75 19 4 50.1 9.2 150 50 25 139 48.4 11.1 75

~

10 125 47.5 12.2 30 A Predicted co= pressor rotor W Input and minimu:n condanser vatar fIow I rates at various load conditio6s and head pressura valva controller ~ o  ;

settings follow:

1 y HEAD PRESSUPI VALVE CONTROLLER SETTING CONDENSER K*n WATER FLOW, CFN LOAD CONDITION IN llG Vac EVAPORATOR TONS ~. LOAD INPUT 260 100 202 5.2 300 150 2 50 120 5.2 150 a 2 9.2 198 150 50 103 5.2 102 o 75 25 93 12.2 105 g 30 10 87 NOIES:

1. Constants: 637 GPM of chilled water.

42 F Leaving Chilled Water Temperature. '

32 F ECWI 23, 1984

2. Data requested by Bechtel during the August ceeting in York, PA.

APS, 8/24/ 84 1

4-i . 4

. m Artnemm ERT G" uEo. AUG 22. 1934. 6847 AM C. A LC MC 6406 R/o USER NAt-E ggUSIUTNE_(N4RE__ ATTAQi, OEF, &

LOcA T ION __u A m m. Em O 77-780615 /616(H) .

BY A . R ._ _S M G'O J _R ,

SOlmt TEXAS PROJECT SAFETT CLASS WATER CMTT TTRS NO. UNITS RTY (6)

POWER INPUT 186 KW MAXIMUM KW = 215

4 VOLTS 460 /3/ 60 i

~

t FLA_2)2.25 -

il LRA DELTA _1209 ,,

s LRA STAR _ _ . -

7

__ s STARTER TYPE __A90SS-TEE ~L_Ib'E. .% )

O ( htA Fall LonD DES)SN PsnDemancE DKi~e 1%e R o , }

TURBOPAK MODEL NO HTH491 -BBCS) R-IlyUNIT DUTY 150 TR  ;;

n i W

CONDENSER COOLER FLUID TYPE WATER WATER -

_ y. ;

GPM 600. 319. 1 TEMP ON -F 107.9 , 53.3 TEMP OFF - F 116.1 42.0 ,+

FOULING FACTOR .00200 .00050 J F' PASSES 4 4 TUBE VEL - FPS 10.17 6.17 # ' >

PRESS DROP - FT 46.60 22.28 _ . ,, l k

TUBE TYPE STANDARD FIN STANDARD FIN TUBE MATL ?s NO. 90/10 CU NI - 347 COPPER - 304 EXT SURF - SO FT 3061. ( 26 FPI) 2681. ( 26 FPI)

DWP - WATER SIDE 150 PSIG 150 PSIG COMPR MODEL B1 SPEED CODE LP REFR 11 NOTE:

REVISED PEPJOPl'GiCE J PAPJJETEPJi SPECIFIED III ADDE:iDLM 1 TO  ;

SPECIFIC /J10:4 3V249V50034 REV. O DATED 5-29-84. '

ChLc IAC C4% R/0, cAcc REF ?> ATTM -

gg , g ep 7

.:.:. -_ - ._r == _ ___ -

f N D.

.1____.t=.~g..._-4.--_...y_..-...g

. _ . . - . . ....._.._-___.---__:1.._.

_. _. g,_ ...__ . - - _ - . . . ,s.__,..._;_____

~ ~- ~ \

7_ ' C ._~__

t.___.._=._,.==x=._.__.2.:_-

. 2 qggp 2231CE  :.= NSYb@bOfLD ga gg g

, ~ . . ... . ._ ._ _ . ... _. . . ___ .. .. . . . Y

. E ".= . _ _ . ,j .

. ; * =. y. _ . . . . ..w . ...... . = R. . .-j_ _ ;_ ...... _-_ _.___.__..

.- p *s. ;_. . ., .,. .._ ,_____-_.

_ ; - ; ; ;-. . -_ .t- .. .

C

~

___.____.__[a.____,_..... _~- - .T*MS-DLDNMD' D 36-DdD ME8.". .- '. Z 7.~. .~._~_

[ :h .: ~... : : .: _ :- i .- -- ~~ L~ _E'i t,M ;w _: 2~=..-_E^=

~

= = ~~=

.: . = . t = : = =. _. _.._aAc;.pw._a,m.AA3

,w3-yA. a_ . _ _ . . . _ _ _ . . _ _ . _., , _ _

\

J_ - . -_ : T..Ct!STOM22FMET _3 5EH97 w<&tOTf.810f.__ .

l

'--===-:--- _

,z . : . . _ u ; . _-;=.

. . c v tO=^1,. .w. : a .. p , ..v.),-es=epv.,uA.af uAug.y;.._

=_ ---

C.

-.SPECIP.ICATICE 3_"g49'#S00042. . _ - _ _ . _ . . . . _ . _ .REQG_ADOSNDim-..T_____._. 1

=

we. - . _ _ _ _ .._

~~7*~_'~ l_-- MAL 11I*bEi-1iINA T N W

_-'"_L.  %

R -- m - nnTmm a m r e m..ing>_;__

...T .

_---_1. __ __-- _ ._ -. _grnn. . _- .- -._

m N , _ _ . -_ _ l=10Z _ _ _ _;_ _ _ _

e  : -1._m W w

_ ___.tra?w a v ._. s..

=-------..---~-~~~~ .. .1

' ~

.a

_. _ _ ,4

~~

.)

g-. f -

_SY-FASSEQ3 2.1 % _-

- . _ - . . _ _ - j _ ..

._-. _ M,. -- .,

-i ~~ ; - = __ {$g . . . _ .

.c

_. /

/ _.

g -w_  ; - - _ _ . ._p..__.-_.-_. ._ _ _ _ _ ,

,. _=_- -

. __ /  :-. -

.-s - -_._ _ __..___ -_

, -m . a. .. . _ . . _ .

_ /_-- __ _ ._ . : = _ __ - - - -

-~ . -- h '#~-'

~

I'; yyy 3 *-lpf -n .-

.=Mr-

_ = t:: _ - - - u y ,- ___ _3__ -

- + 2---, we w CN- /-- - s

: 5 w \ _- _-- -.__.==/. ____._...______ __ _. _____ _.

.- g - - - -

_ _ _ , . f--g

._ _ .__ c _

j.

- .---.-Q --p. . 6 --~-. u __ . . . . ,/ Ci5M:IS : == r1.- . .

+

y . = - . _

_ q - _;}yU__.,g----

-. -- .3 _; .E=107".W F.75M CLTU.R ==

E1 r_.; _ _; -J _, _ _ _ Yb -_etu ,.. .

o _

.; w . arw.r -. . .-

u c ur_g . ...- u_a u:.c'Jr __

v, t- -

._.._ -- a.. _. L,, -,._ * - ,r =r

_z a } -- - ;,- ,

-j ( _ . . ~ -

p.a. __ ; _319 e.cp_t m mq:m. -

,_w,,

o. ---.

i l

L [:=

p --

- - ~-_~ J T'l_ i. .- .m--e+E-GEc _a-h..s. _ T_-

. u- _ r- .= : . ---.-

r=- -

., : c,___  : _- __-

_ . _ . .. _. . _ _.-_._.. _=. .. _ =_ . ___ :_ __. . _ _ _

u -[ _7 '_ 7 - F = g . c : .= 1 - = ==.-- =.- - .:----- 2 _ _.- ;_-_

_, =: . ~ _ . . - . .==:.=..___-.-:--- -- - - . -

t- ric: = 1 -

. = - - . _ _ _ _ _ . _:. _ _ _ - _ _ . _. _._.

f : - - . : _._. .. . J _ .__._- _ . _._ . _ __. _ - _ _ _ _ - -

._-_.._r__-_-___..___-.._r_; _ . . . . _ . .

t = .. _ =. =:==m: _

.==_._....__._._- _ . . _ = = _ _ _ _ _ _

._bb-h_ - h - - I--- - k I,----.A._---_; f 4--_.. I_ ._._!.__ _ j _._

[.._ *_. ..;- - - - - - -

j ------ 0 -- 20 Z. _ AS Z .Grf._-_ _51.._T__T_ J . 121_ -143 . 19 Z:  : . J.- _ J_-

O _u._ ._ _

_ . ; . __ . 6 t l I~~~I~'.~~'~~~~-'"-**r---* -

f ** * --

h _,,_., -- E'-' -

bu= i ~ t ._._i r - ' . I__:_.. :; I._?/.M PEC21E*JIOd CAP.V.ITf ' = =.

~

T. = _ -m_. _7_T~ ___ g _- ~._- '.. _- .: _-

- --- :- =_ . - - -l

.__ ;__ p,_ _

; --- . . . .
. _ . p" _. =; . = __u -

. - m .c.p jy- .rg .;..-.---- -!=- : ; a --

O

__. . .. n = r n ~_ = :: = __..  ;.;-1: .: - -

t . : . - . = _-

i iu -F i
q. y- qE= =7_:.:x g = 2_p_ _ :g- - .pg==p - -

.p - 3;

' m --  :-

r-- F l.___ _ _1.=--'

1._ _.__ 4. BGG :_ _ _ .

EER AIR C7.UITIMI:G, EC . ai . . i. "- - ,

' j!

1.;;1 dMd ,d,M:

  • p a r .L l

a' ,

c i ;I 1

- .qs . %;?a'

. .d .r fy$y 4gp,[*r. h.

,g{p 0

[ . .

. t

~ i '

L

,y( . ,

a ~ W p'x Wo ,: O

,.'.i

~ -

?.,m4 .

- . om Q

- a_ .

,.! i.;,-

j.i ,

. r;

,if. -

epadign

- l ad  %':. -.*  :

-.t[p .gM a g ,. .: mr";..

et:

i

} .

_ ij ,. * - ;

-1;, af

.5. :" i-

,. .l::j v

..j '

i .

il.

f.' U. [!;.'- . h1.p;.-

1  :.!e. . . hma_

,g:, ,"- M , . .

.[ 7 ;_

t!! ;i- . -

M gi,"!gd

. t_ .  ! .

. i' l.

_' ffi'  % .j n .!;

. ;i i

. ._h-d : . .r t'I

._[... t:

0 5

.i - p.q.,!.lm y

_1:. @' . -* .j, g'

.I, ;I . . 'i a.

p !i lAI g.

O i

,  ! t

. i

.i

, ix ij i

t

. i N

b.h;tl-i ' . .'Dd -

l

.ii; 1[I n.p;.,r. :j - l g- .

i

d.
.1niy.,:i.mi r.

t n

t

. j t

$I[' ' i. l i

2 h ,e'n .; j: h 3

u _

.I . a

'.g t

-ii'gQj!.. nie-i et .p-i . hh. u p t e W' .- - ,'

nD

- q" j!!r 'N ;Wiu h.! j6:.p.i ;r

. . l

. hl.s iir( a i

O

' 1j- ! .; .!

\. . 1 'l

. . ':1

.
[f:.9

.:1 y ( nMi -

j . .

. - jd ,-

!I i f,. - j- io. pi l q  !.- '

}

t 6. 0- . '

i

r,1l,ti I mlt  :-

,qQ :i jyg.!

.ei ,! '

2" h(.

i-L pji . i*dp' .i lh4 . ," ;o - -

IthE .

i!i u r, G .

._'f I

l; "i f l

7 phg.., : . - . . ; , u, i E i,p. .'

ii !;;  : f l. h'j lq

. t o l - .'"

d

, - ,.. '1

ji -

O

. . ir 4

. ., ;f ' -

!: . 4I

,kh .i:l ..';.- P e! pb.x y .iE d4kArF(1'-;

i .

, p Eh-!p.. yl...,

~

.g del  !

l r - .. ,l 41

,  :!l.

s*; ,' , O1i' . p-lgl"f N .i ,

.O 7 1 ?O!il ; F e l- , y .

4 . .

{

i t'u -

T. 3 K .

, R 4 :1' ,.!l 7  : .'

0l

.j- :il

)rIS1 0k1.lp1gf1,e, ,-

)

l 0

-i- ] p .' W

,byDD ti .

)lih QP e. !  ! 1 li -(

B1 . 9 1; i :i

  • 0-0<

R V i0' ;l." q' t -

A m y

.B OdIO .

p ll

' . ; h. t .

2.

.] g.j ll:,l,y-Qp1 l

L 9 2 ;- , .'

' , h3 (41 i

t. I ' ,. B ,

u C R pL

.i

) ! l

, ' dg .!

u c8 5 /

2 l

p,ni j ,i 1] i l

t!ll < 4l

. n p. ,,.  % l CI

. %T V: I' i i ! j) -- . . [j  ; \ -

9 .'E /t  !

yI.V'i1qp.y!M :M [! hl l 't fj0  :--l 'Il V I h"l[i.uk. G.;p i R  :' (  :

l

... E oL E 1 1 . i

/

!i} ,;l fjJ3j. Jl tmh d j

r F .

R[A[07 iSq:.fr ,,l F [ Fl ;..Iy.

g-

!_ R 4

- 1 ,0,r .

!ilj- , :l;  ;;jn .;.. Y 7.'i T '

. l!  ;

6l? 0 I

[l i T l S 1 i . j .'I

'l l il; !lq I;L, I i

.O-C s2 - p!p' ,C ! hl rp t i'jg:'5 h  :, -

N ,i l i

6 V- F .r u g. g .o :$. ,.- }; .,..,j l- ,

i

.,h ; , . l' M

1 0

A. 14 )4 q' v ", i

p. h,i l,j yl' i '
, !ql l

.bb l ic , i.j o .

.A  !

)

% g @' m" ' 'kg!! n ,,

.' I. 3 2

,:.h ll ' ' ;i g,, ,: : C l C

7f .

k}'5 K i) . .l l 9 j.tIj p;{,HtL m on h. )i

. i i 0 k 3 -

}: d. ;;

N C 3

.  : }I 1 I -

b:' -

.; g! l'iq j i )

, tso .iyihg; '! e I ,

f t .:

l!l: iit

h. E 20P sT , T5! . 0 l

. 6 .

I 4l ' '-: $,p[.

O .

n 7. ';

l

-j.t gI T.

t i

f

-@j.tm j '*i  : .a:[yI

. l.i!

p .ji

!h..

g t Ml i n 3hd p.qiil l h.h D i d.K;0 t t.

A , h 3 l mi

! 'l i .

0 t N..[U Nt l

E E 1 .n 4iu m ' # .i .-

., .+

U -. .*l. ., ,. ~1 G

I l lll l

l it m t il  !:i I,

E0 .n ]; - i u2 ms.

!' i

=

t

,I, - .

. , i- F l o M,I nat *; :,f V ipq

t
i C 4-c c! E h .

_ T'EO nI'e'S s T,u E' n ]tc W-r

-d-

r. ;p. -

.K

.g D Y C

sU -

n Cd, P'o -. - . .n  ;

a

. %u- .,.;%4 s g ;

O2 - - n i . . t.

n t

==

H M. T A o t nti -

M .

' .- 4 <

Rs u r!

C yva n D 0 s

'B

.j i .:.t

- - .r)

.n i

r t

M'..c.?i.

  • .- 0 C " . .

e;2 - . 5 R .(

. ![@ .lr

. ctn

-:2tultW,' w

sW a /* g' j w .

P

. i L

..q -

1-

a t

t  !

t

[

i-m <

ia m

{ '2

. w.

! h :. H. l- . . - t .l- . -  ;

g n 1

,_.~ . ; o 1~ :

t -

.!r  :: . .

L

..!. Fr. a:

._ :h 7:. U

_S ; 1.i ' -

. .i. . . .' i

_ P :-

h

. ' _Li- - . -

.~  ;

O

- O - ,

0' i M-_'0

. - . 3 ,

1 r'

__ 0 1 2 2 .

- j' j

/, _. ~ -- . .

. j

'j-J

~

I f il

_ ~

O -

1

_ .! l t

  • m ,.cTpM i.

~

.I

. _: ;l

. , ,. i 4

l l l! /