ML092321080: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:Brunswick Units 1 and 2 MELLLA+ Iltti I mp l emen t a ti onAugust192009 August 19 , 2009 Eric Geyer Bill Murray John Siphers Agenda Introduction and objectivesMELLLA+ benefits for Brunswick (BSEP)Fuel and plant licensing analysis strategyThermalhydraulicstabilitysolution Thermal hydraulic stability solutionATWS analysis and mitigationFueldesign Fuel design ScheduleQuestions and answers 2
{{#Wiki_filter:Brunswick Units 1 and 2 MELLLA+
Introduction and objectives MELLLA+ overview1100120.0BrunswickMELLLA+ with Representative EO-III NTSP Channel Exclusion Region ScramAPRM STP Scram NTSP80090.0100.0110.0APRM STP Rod Block NTSPEO-III ChannelExclusion  60.070.0 80.0% PowerMELLL LineEO-III ChannelExclusion  and NC Line Scram MELLLA+ LineSPT AL Line30.040.0 50.0Scram AvoidanceRegion(Immediate Exit)ScramBSP Region0.010.0 20.0 00 77154231308385462539616693770847924Mlbs/hrCoreFlowOPRM Enabled Region 3 0.0 7.7 15.4 23.1 30.8 38.5 46.2 53.9 61.6 69.3 77.0 84.7 92.4Mlbs/hr Core Flow0              10             20             30             40             50             60           70             80             90           100           110           120       % Core Flow Introduction and objectivesBSEP MELLLA+ licensing progress to dateNov 2002: BSEP MELLLA+ LAR submittedSignificant NRC review completed; BSEP RAI responses:May 2003Moisture carryover FACJun2003,Oct2003Vesselfluence Jun 2003, Oct 2003 Vessel fluenceJul 2003SLO APRM STP scramSep 2003ATWS responseN2003HfiiN ov 2003 H uman factors, operator tra i n i ngApr 2004, Mar 2005Irradiated stress corrosion crackingAug2005:MELLLA
I Implementation l         t ti August 19 19, 2009 Eric Geyer Bill Murray John Siphers
+LARwithdrawn Aug 2005:  MELLLA LAR withdrawnIntent to resubmit at late r date "as soon as practical"Pending resolution of concerns with supporting generic LTRs 4
 
Introduction and objectivesProgress toward LAR readinessBSEP fuel supplier change approvedJl2007 ANP2638AREVAEPUthdlibilitJ u l 2007: ANP-2638 AREVA EPU me th o d s app li ca bilit yMar 2008:BSEP ATRIUM-10 reloadSupportinggenericLTRsapproved Supporting generic LTRs approvedSep 2007:NEDC-33006 GEH generic MELLLA+ for GE14Jan 2008:NEDC-33173 GEH methods for GE14M2008 ANP10262AREVAEOIIISbiliM ay 2008: ANP-10262 AREVA EO-III S ta bili ty ObjectivesProvidecomplete,efficientLARthatleveragespastwork Provide complete, efficient LAR that leverages past workReduce challenges to reactivity management and fuel integrityMaintain and improve safety marginsImprove reactivity management 5
Agenda Introduction and objectives MELLLA+ benefits for Brunswick (BSEP)
MELLLA+ benefits for BSEPReactivity can be controlled with flow or control rodsMELLLA+ expands flow window from 5.5% to 19.5%MELLLA requires ~75% more rod movement than MELLLA+Ctldthll C on t ro l ro d movemen t c h a ll enges:Reactivity management (2007 INPO Area For Improvement)Fuelintegrity(2008INPORecommendation)Fuel integrity (2008 INPO Recommendation)MELLLA+ improves reactivity management and fuel integrityCostsavingsdonotsupportMELLLA+implementation Cost savings do not support MELLLA+ implementationAnalyses do not support significant fuel utilization improvementReduced pumppowerprovidesonlysmall generation increaseReduced pump power provides only small generation increase 6 MELLLA+ benefits for BSEP 8%10%(Percent)4%6%ntrol Rod Desnity 0%
Fuel and plant licensing analysis strategy Thermal hydraulic stability solution ATWS analysis and mitigation Fuel design Schedule Questions and answers 2
2%Co n 105%e d)95%100%w (Percent Rat e 85%90%05101520Core Flo 7Cycle Exposure (GWd/MtU)MELLLAMELLLA Plus MELLLA+ benefits for BSEPParameterMELLLA C ycle Av g / C ycleLimitin g MELLLA+C ycle Av g / C y cle Limitin gygy gygygCore flow101.5% / 99.0%93.1% / 86.0%Core max radialpeak1.35 / 1.461.33 / 1.38CPRmargin119%/68%89%/53%CPR margin 11.9% / 6.8%8.9% / 5.3%Core avg void46.4% / 50.4%47.9% / 52.2%
 
Core max exitvoid84.3% / 87.7%85.4% / 87.9%LHGR margin19.3% / 10.1%17.9%/ 11.1%MAPRATmargin23.7% / 13.4%22.9% / 16.7%
Introduction and objectives MELLLA+ overview Brunswick MELLLA+ with Representative EO-III NTSP Channel Exclusion Region Scram 120.0 APRM STP Scram NTSP 110 0 110.0 APRM STP Rod Block NTSP 100.0 90.0 EO-III Channel Exclusion 80 0 80.0                 SPT AL Line 70.0 EO-III Channel Exclusion MELLLA+ Line
Inlet subcooling21.6Btu/lb/NA23.9Btu/lb/NA Inlet subcooling 21.6 Btu/lb / NA 23.9 Btu/lb / NA*Radial peaking and excess CPR margin exchanged for reduced flow
% Pow er and NC Line Scram 60.0 MELLL Line 50.0 Scram Avoidance Region 40.0                                                      (Immediate Exit)
*Core performance margins maintained 8
Scram 30.0                                                   BSP Region 20.0 OPRM Enabled Region 10.0 0.0 00 0.0         77 7.7     15 4 15.4         23 1 23.1   30 8 30.8   38 5 38.5       46 2 46.2     53 9 53.9   61 6 61.6     69 3 69.3       77 0 77.0   84 7 84.7     92 4 92.4      Mlbs/hr Core Flow 0          10         20         30     40       50         60       70     80       90       100     110         120   % Core Flow 3
Fuel and plant licensing analysis strategyGeneric GEH M+ LTR process (NEDC-33006PA) will address:NonfuelimpactsNon-fuel impactsLong term ATWS and ATWS instability for GE14 fuelAREVA methodologies and analyses will address:Fuel, core design, COLR fuel limitsATWS overpressureGE14 ATWS analysis applicability to AREVA fuelMethods applicability to MELLLA+Progress Energy will address:IntegrationofGEHandAREVAanalyses Integration of GEH and AREVA analysesAPRM and Enhanced Option III set pointsRisk evaluation, EPG/SAGs, operator trainingPlantmodificationstomitigateATWSPlant modifications to mitigate ATWS Stability scram activation 9
 
Fuel and plant licensing analysis strategy Preliminary Technical Specification changesTLO APRM flow biased STP scram line (3.3.1.1.2b)Scrammargin:expansionforM+region;reductionforEO
Introduction and objectives BSEP MELLLA+ licensing progress to date Nov 2002: BSEP MELLLA+ LAR submitted Significant NRC review completed; BSEP RAI responses:
-IIIstabilitysolutionScram margin: expansion for M+ region; reduction for EO III stability solutionCorresponding changes in fl ow biased rod blockExisting AL-AV-NTSP set-point margins maintainedDefineMELLLA+regionaddEO
May 2003                    Moisture carryover FAC Jun 2003, Oct 2003         Vessel fluence Jul 2003                    SLO APRM STP scram Sep 2003                   ATWS response N 2003 Nov                        H Human    ffactors, operator training i i Apr 2004, Mar 2005          Irradiated stress corrosion cracking Aug 2005: MELLLA+
-IIItoCOLRmethods(565) Define MELLLA+ region , add EO-III to COLR methods (5.6.5)New equipment OOS LCO actions (various TS's)SRVOOS (if required), SLO and OPRM inoperableEitMELLLAiithi12hfdilldditiE x it MELLLA+ reg i on w ithi n 12 h ours f or di sa ll owe d con diti on OPRM inoperableImplement manual BSP regions in COLR (no change)Exit MELLLA+ region within 12 hours; OPRM OOS or reduced FWT (new)APRM scram natural circ line protection above BSP scram region (new protection)1 SLCS pump OOSExit MELLLA+ region within 12 hours (new)Shutdown in 7 days (no change) 10 Thermal hydraulic stability solution Enhanced Option III TLO APRM Scram 110 120MELLLA+ APRM SPT Scram ReductionEnhancedOptionIIIChannelExclusion 80 90 100 110 (%)EnhancedOption III Channel ExclusionStability Protection Trip (SPT) Reduction 50 60 70 ated NTSP Power 20 30 40Estim a 0 100102030405060708090100110120Drive Flow (%)
MELLLA LAR withdrawn Intent to resubmit at later date as soon as practical Pending resolution of concerns with supporting generic LTRs 4
11EO-III APRM STP ScramEO-III APRM STP RB Thermal hydraulic stability solution Power flow map1100120.0BrunswickMELLLA+ with Representative EO-III NTSP Channel Exclusion Region ScramAPRM STP Scram NTSP80090.0100.0110.0APRM STP Rod Block NTSPEO-III ChannelExclusion  60.070.0 80.0% PowerMELLL LineEO-III ChannelExclusion  and NC Line Scram MELLLA+ LineSPT AL Line30.040.0 50.0Scram AvoidanceRegion(Immediate Exit)ScramBSP Region0.010.0 20.0 00 77154231308385462539616693770847924Mlbs/hrCoreFlowOPRM Enabled Region 12 0.0 7.7 15.4 23.1 30.8 38.5 46.2 53.9 61.6 69.3 77.0 84.7 92.4Mlbs/hr Core Flow0              10             20            30             40              50            60            70              80            90            100          110          120      % Core Flow ATWS analysis and mitigationLong term responseBSEP EPU increased SLCS B10 enrichment  to 47 w/oATWSrulecompliancebasisremainstwopumpsbutATWS rule compliance basis remains two pumps , butSingle pump meets ATWS rule boron injection rate requirementEPU risk assessment and current PSA model credit pump redundancyLong term ATWS MELLLA+ margin improvement will be demonstrated with GE14 ODYN analysesMELLLA+ rod line intercepts NC line post 2RPT ~20% higher in powerFaster B10 injection reduces heat load (HSBW injected faster)BSEP can increase SLCS B10 enrichment by up to a factor of 2Potential to offset MELLLA+ heat load increase clearly sufficientNo loss of margin with MELLLA+; no increase in risk with single SLCS pumpAREVAfuelapplicabilitytobedispositionedsimilartoBSEPAREVA AREVA fuel applicability to be dispositioned similar to BSEP AREVA fuel transition 13 ATWS analysis and mitigation Post depressurizationNEDC-33006P Generic M+ LTR and SER:  Best estimate TRACGorequivalentanalysisofpostdepressurizationATWS TRACG or equivalent analysis of post depressurization ATWS required if HSBW not injected before HCTL reachedBSEP has potential to inject HSBW before HCTLIncrease SLCS B10 enrichment (x2)Credit both SLCS pumps (x2)NewTSLCOactiontoexitMELLLA
 
+if1SLCSpumpOOS New TS LCO action to exit MELLLA if 1 SLCS pump OOSApplicability of GE14 analysis to AREVA fuel will be dispositionedSubstantial physical safety improvementSimplifies analysis Simplifies NRC reviewNRC feedback critical 14 ATWS analysis and mitigationOverpressure and instabilityATWS instabilityShltdtthiifS ame approac h as l ong t erm; d emons t ra t e c h ange i n marg i n f or GE14 core with increased B10 injection rateB10 injection rate increase expected to provide some mitigation even with shorter event timing than long term containment heatingApplicability to AREVA fuel to be addressed by dispositionNRC feedback criticalATWS overpressure mitigationMG set replacement with adjustable speed drive improves 2RPT coastdownrate coastdown rateSRVOOS support for MELLLA+ to be evaluatedCycle specific AREVA overpressure analysis 15 Fuel design ATRIUM-10XM (A10XM)MELLLA+ LAR to be based on A10XM if timing and reviews supportA10XMrequiresaddingtwoCOLRmethodologiestoTS A10XM requires adding two COLR methodologies to TSACE CPR correlation and RODEX4 fuel rod TM methodologyLAR will demonstrate SER complianceGenerically approved; no sample problemA10XM LAR separate from MELLLA+Separate submittal preceding MELLLA+A10XM approval (both Units) preceding MELLLA+ approvalMELLLA+ LAR sample problem and cycle applicationB2C20reloadanalysisreportsampleproblem;firstUnit2A10XMreloadB2C20 reload analysis report sample problem; first Unit 2 A10XM reloadB1C19 reload analysis report cycle specific application; first Unit1 A10XM reload and MELLLA+
Introduction and objectives Progress toward LAR readiness BSEP fuel supplier change approved Jul J l 2007 2007:         ANP 2638 AREVA EPU methods ANP-2638                    th d applicability li bilit Mar 2008:         BSEP ATRIUM-10 reload Supporting generic LTRs approved Sep 2007:         NEDC-33006 GEH generic MELLLA+ for GE14 Jan 2008:         NEDC-33173 GEH methods for GE14 May M 2008:
16 Fuel design ATRIUM-10XM fuel cycle operationParameterMELLLA+ A10 C ycle Av g / C ycleLimitin g MELLLA+ A10XM C ycle Av g / C y cle Limitin gygy gygygCore flow93.1% / 86.0%91.4% / 85.7%Core max radialpeak1.33 / 1.381.39 / 1.47CPRmargin89%/53%148%/50%CPR margin 8.9% / 5.3%14.8% / 5.0%Core avg void47.9% / 52.2%47.7% / 52.9%
2008        ANP 10262 AREVA EO ANP-10262            EO-III III S Stability bili Objectives Provide complete, efficient LAR that leverages past work Reduce challenges to reactivity management and fuel integrity Maintain and improve safety margins Improve reactivity management 5
Core max exitvoid85.4% / 87.9%87.5% / 90.0%LHGR margin17.9%/ 11.1%13.7%/ 7.3%MAPRATmargin22.9% / 16.7%22.9% / 16.4%
 
Inlet subcooling23.9Btu/lb/NA24.2Btu/lb/NA Inlet subcooling 23.9 Btu/lb / NA 24.2 Btu/lb / NA*Improved CPR margin supports radial peaking increase and reduced flow
MELLLA+ benefits for BSEP Reactivity can be controlled with flow or control rods MELLLA+ expands flow window from 5.5% to 19.5%
*Core performance margins maintained 17 ScheduleA10XM LAR; ACE and RODEX (both Units)Spring 2010MELLLA+LARsubmittal(bothUnits)Fall2010 MELLLA+ LAR submittal (both Units)Fall 2010B2C20 sample problem with A10XMATRIUM-10XM approval (both Units)Spring 2011First ATRIUM-10XM reload (B2C20)Spring 2011B1C19 cycle specific applicationFall 2011First MELLLA+ c y cle with A10XM yMELLLA+ approval (both Units)Spring 2012NRCfdbkitil NRC f ee db ac k cr iti ca l 18 SummaryReduce challenges to reactivity managementRdhlltflitit R e d uce c h a ll enges t o f ue l i n t egr it yMaintain and improve safety marginsEfficientLARapproach Efficient LAR approachLeverage past workAddress fuel design 19 BSEP Units 1 and 2 MELLLA+ ImplementationQti?Q ues ti ons?20}}
MELLLA requires ~75% more rod movement than MELLLA+
C t l rod Control    d movementt challenges:
h ll Reactivity management (2007 INPO Area For Improvement)
Fuel integrity (2008 INPO Recommendation)
MELLLA+ improves reactivity management and fuel integrity Cost savings do not support MELLLA+ implementation Analyses do not support significant fuel utilization improvement Reduced pump power provides only small generation increase 6
 
MELLLA+ benefits for BSEP 10%
Con ntrol Rod Desnity (Percent) 8%
6%
4%
2%
0%
105%
Core Flow (Percent Rate ed) 100%
95%
90%
85%
0  5              10            15  20 Cycle Exposure (GWd/MtU)
MELLLA    MELLLA Plus 7
 
MELLLA+ benefits for BSEP Parameter                      MELLLA                      MELLLA+
Cycle y Avg  g / Cycle y    Limiting g Cycle y Avg  g / Cycle y   Limiting g
Core flow                  101.5% / 99.0%               93.1% / 86.0%
Core max radial peak          1.35 / 1.46                  1.33 / 1.38 CPR margin                   11 9% / 6 11.9%   6.8%
8%                8 9% / 5.3%
8.9%    5 3%
Core avg void                46.4% / 50.4%               47.9% / 52.2%
Core max exit void          84.3% / 87.7%               85.4% / 87.9%
LHGR margin                  19.3% / 10.1%               17.9% / 11.1%
MAPRAT margin                23.7% / 13.4%               22.9% / 16.7%
Inlet subcooling            21.6 Btu/lb / NA           23.9 Btu/lb / NA
* Radial peaking and excess CPR margin exchanged for reduced flow
* Core performance margins maintained 8
 
Fuel and plant licensing analysis strategy Generic GEH M+ LTR process (NEDC-33006PA) will address:
Non-fuel Non fuel impacts Long term ATWS and ATWS instability for GE14 fuel AREVA methodologies and analyses will address:
Fuel, core design, COLR fuel limits ATWS overpressure GE14 ATWS analysis applicability to AREVA fuel Methods applicability to MELLLA+
Progress Energy will address:
Integration of GEH and AREVA analyses APRM and Enhanced Option III set points Risk evaluation, EPG/SAGs, operator training Plant modifications to mitigate ATWS Stability scram activation 9
 
Fuel and plant licensing analysis strategy Preliminary Technical Specification changes TLO APRM flow biased STP scram line (3.3.1.1.2b)
Scram margin: expansion for M+ region; reduction for EO-III EO III stability solution Corresponding changes in flow biased rod block Existing AL-AV-NTSP set-point margins maintained Define MELLLA+ region , add EO-III to COLR methods (5.6.5)           (5 6 5)
New equipment OOS LCO actions (various TSs)
SRVOOS (if required), SLO and OPRM inoperable Exit E it MELLLA MELLLA+ region i within ithi 12 hhours ffor di disallowed ll   d condition diti OPRM inoperable Implement manual BSP regions in COLR (no change)
Exit MELLLA+ region within 12 hours; OPRM OOS or reduced FWT (new)
APRM scram natural circ line protection above BSP scram region (new protection) 1 SLCS pump OOS Exit MELLLA+ region within 12 hours (new)
Shutdown in 7 days (no change) 10
 
Thermal hydraulic stability solution Enhanced Option III TLO APRM Scram MELLLA+ APRM SPT Scram Reduction 120 110           Enhanced Option III Channel Exclusion Stability Protection Trip (SPT) Reduction 100 90 Estimaated NTSP Power (%)
80 70 60 50 40 30 20 10 0
0          10      20      30      40        50        60        70        80  90  100  110  120 Drive Flow (%)
EO-III APRM STP Scram       EO-III APRM STP RB 11
 
Thermal hydraulic stability solution Power flow map Brunswick MELLLA+ with Representative EO-III NTSP Channel Exclusion Region Scram 120.0 APRM STP Scram NTSP 110 0 110.0 APRM STP Rod Block NTSP 100.0 90.0 EO-III Channel Exclusion 80 0 80.0                SPT AL Line 70.0 EO-III Channel Exclusion MELLLA+ Line
% Pow er and NC Line Scram 60.0 MELLL Line 50.0 Scram Avoidance Region 40.0                                                       (Immediate Exit)
Scram 30.0                                                  BSP Region 20.0 OPRM Enabled Region 10.0 0.0 00 0.0        77 7.7      15 4 15.4        23 1 23.1  30 8 30.8    38 5 38.5        46 2 46.2      53 9 53.9  61 6 61.6      69 3 69.3      77 0 77.0    84 7 84.7    92 4 92.4      Mlbs/hr Core Flow 0          10        20          30    40      50        60      70      80        90        100      110        120  % Core Flow 12
 
ATWS analysis and mitigation Long term response BSEP EPU increased SLCS B10 enrichment to 47 w/o ATWS rule compliance basis remains two pumps pumps, but Single pump meets ATWS rule boron injection rate requirement EPU risk assessment and current PSA model credit pump redundancy Long term ATWS MELLLA+ margin improvement will be demonstrated with GE14 ODYN analyses MELLLA+ rod line intercepts NC line post 2RPT ~20% higher in power Faster B10 injection reduces heat load (HSBW injected faster)
BSEP can increase SLCS B10 enrichment by up to a factor of 2 Potential to offset MELLLA+ heat load increase clearly sufficient No loss of margin with MELLLA+; no increase in risk with single SLCS pump AREVA fuel applicability to be dispositioned similar to BSEP AREVA fuel transition 13
 
ATWS analysis and mitigation Post depressurization NEDC-33006P Generic M+ LTR and SER: Best estimate TRACG or equivalent analysis of post depressurization ATWS required if HSBW not injected before HCTL reached BSEP has potential to inject HSBW before HCTL Increase SLCS B10 enrichment (x2)
Credit both SLCS pumps (x2)
New TS LCO action to exit MELLLA+
MELLLA if 1 SLCS pump OOS Applicability of GE14 analysis to AREVA fuel will be dispositioned Substantial physical safety improvement Simplifies analysis Simplifies NRC review NRC feedback critical 14
 
ATWS analysis and mitigation Overpressure and instability ATWS instability S
Same approach  h as llong tterm; d demonstrate t t change h     iin margin i ffor GE14 core with increased B10 injection rate B10 injection rate increase expected to provide some mitigation even with shorter event timing than long term containment heating Applicability to AREVA fuel to be addressed by disposition NRC feedback critical ATWS overpressure mitigation MG set replacement with adjustable speed drive improves 2RPT coastdown rate SRVOOS support for MELLLA+ to be evaluated Cycle specific AREVA overpressure analysis 15
 
Fuel design ATRIUM-10XM (A10XM)
MELLLA+ LAR to be based on A10XM if timing and reviews support A10XM requires adding two COLR methodologies to TS ACE CPR correlation and RODEX4 fuel rod TM methodology LAR will demonstrate SER compliance Generically approved; no sample problem A10XM LAR separate from MELLLA+
Separate submittal preceding MELLLA+
A10XM approval (both Units) preceding MELLLA+ approval MELLLA+ LAR sample problem and cycle application B2C20 reload analysis report sample problem; first Unit 2 A10XM reload B1C19 reload analysis report cycle specific application; first Unit1 A10XM reload and MELLLA+
16
 
Fuel design ATRIUM-10XM fuel cycle operation Parameter                  MELLLA+ A10               MELLLA+ A10XM Cycle y Avg  g / Cycle y    Limiting g  Cycle y Avg  g / Cycle y    Limiting g
Core flow                  93.1% / 86.0%               91.4% / 85.7%
Core max radial peak          1.33 / 1.38                  1.39 / 1.47 CPR margin                   8 9% / 5.3%
8.9%    5 3%                14 8% / 5 14.8%    5.0%
0%
Core avg void              47.9% / 52.2%               47.7% / 52.9%
Core max exit void          85.4% / 87.9%               87.5% / 90.0%
LHGR margin                17.9% / 11.1%                 13.7% / 7.3%
MAPRAT margin              22.9% / 16.7%               22.9% / 16.4%
Inlet subcooling          23.9 Btu/lb / NA              24.2 Btu/lb / NA
* Improved CPR margin supports radial peaking increase and reduced flow
* Core performance margins maintained 17
 
Schedule A10XM LAR; ACE and RODEX (both Units) Spring 2010 MELLLA+ LAR submittal (both Units)   Fall 2010 B2C20 sample problem with A10XM ATRIUM-10XM approval (both Units)     Spring 2011 First ATRIUM-10XM reload (B2C20)     Spring 2011 B1C19 cycle specific application      Fall 2011 First MELLLA+ cycle y   with A10XM MELLLA+ approval (both Units)         Spring 2012 NRC feedback f db k critical iti l 18
 
Summary Reduce challenges to reactivity management R d Reduce    challenges h ll       tto ffuell iintegrity t it Maintain and improve safety margins Efficient LAR approach Leverage past work Address fuel design 19
 
BSEP Units 1 and 2 MELLLA+ Implementation Q
Questions?
ti ?
20}}

Latest revision as of 04:03, 14 November 2019

MELLLA Plus Implementation
ML092321080
Person / Time
Site: Brunswick  Duke Energy icon.png
Issue date: 08/20/2009
From: Farideh Saba
Plant Licensing Branch II
To:
Progress Energy Co
References
Download: ML092321080 (20)


Text

Brunswick Units 1 and 2 MELLLA+

I Implementation l t ti August 19 19, 2009 Eric Geyer Bill Murray John Siphers

Agenda Introduction and objectives MELLLA+ benefits for Brunswick (BSEP)

Fuel and plant licensing analysis strategy Thermal hydraulic stability solution ATWS analysis and mitigation Fuel design Schedule Questions and answers 2

Introduction and objectives MELLLA+ overview Brunswick MELLLA+ with Representative EO-III NTSP Channel Exclusion Region Scram 120.0 APRM STP Scram NTSP 110 0 110.0 APRM STP Rod Block NTSP 100.0 90.0 EO-III Channel Exclusion 80 0 80.0 SPT AL Line 70.0 EO-III Channel Exclusion MELLLA+ Line

% Pow er and NC Line Scram 60.0 MELLL Line 50.0 Scram Avoidance Region 40.0 (Immediate Exit)

Scram 30.0 BSP Region 20.0 OPRM Enabled Region 10.0 0.0 00 0.0 77 7.7 15 4 15.4 23 1 23.1 30 8 30.8 38 5 38.5 46 2 46.2 53 9 53.9 61 6 61.6 69 3 69.3 77 0 77.0 84 7 84.7 92 4 92.4 Mlbs/hr Core Flow 0 10 20 30 40 50 60 70 80 90 100 110 120  % Core Flow 3

Introduction and objectives BSEP MELLLA+ licensing progress to date Nov 2002: BSEP MELLLA+ LAR submitted Significant NRC review completed; BSEP RAI responses:

May 2003 Moisture carryover FAC Jun 2003, Oct 2003 Vessel fluence Jul 2003 SLO APRM STP scram Sep 2003 ATWS response N 2003 Nov H Human ffactors, operator training i i Apr 2004, Mar 2005 Irradiated stress corrosion cracking Aug 2005: MELLLA+

MELLLA LAR withdrawn Intent to resubmit at later date as soon as practical Pending resolution of concerns with supporting generic LTRs 4

Introduction and objectives Progress toward LAR readiness BSEP fuel supplier change approved Jul J l 2007 2007: ANP 2638 AREVA EPU methods ANP-2638 th d applicability li bilit Mar 2008: BSEP ATRIUM-10 reload Supporting generic LTRs approved Sep 2007: NEDC-33006 GEH generic MELLLA+ for GE14 Jan 2008: NEDC-33173 GEH methods for GE14 May M 2008:

2008 ANP 10262 AREVA EO ANP-10262 EO-III III S Stability bili Objectives Provide complete, efficient LAR that leverages past work Reduce challenges to reactivity management and fuel integrity Maintain and improve safety margins Improve reactivity management 5

MELLLA+ benefits for BSEP Reactivity can be controlled with flow or control rods MELLLA+ expands flow window from 5.5% to 19.5%

MELLLA requires ~75% more rod movement than MELLLA+

C t l rod Control d movementt challenges:

h ll Reactivity management (2007 INPO Area For Improvement)

Fuel integrity (2008 INPO Recommendation)

MELLLA+ improves reactivity management and fuel integrity Cost savings do not support MELLLA+ implementation Analyses do not support significant fuel utilization improvement Reduced pump power provides only small generation increase 6

MELLLA+ benefits for BSEP 10%

Con ntrol Rod Desnity (Percent) 8%

6%

4%

2%

0%

105%

Core Flow (Percent Rate ed) 100%

95%

90%

85%

0 5 10 15 20 Cycle Exposure (GWd/MtU)

MELLLA MELLLA Plus 7

MELLLA+ benefits for BSEP Parameter MELLLA MELLLA+

Cycle y Avg g / Cycle y Limiting g Cycle y Avg g / Cycle y Limiting g

Core flow 101.5% / 99.0% 93.1% / 86.0%

Core max radial peak 1.35 / 1.46 1.33 / 1.38 CPR margin 11 9% / 6 11.9% 6.8%

8% 8 9% / 5.3%

8.9% 5 3%

Core avg void 46.4% / 50.4% 47.9% / 52.2%

Core max exit void 84.3% / 87.7% 85.4% / 87.9%

LHGR margin 19.3% / 10.1% 17.9% / 11.1%

MAPRAT margin 23.7% / 13.4% 22.9% / 16.7%

Inlet subcooling 21.6 Btu/lb / NA 23.9 Btu/lb / NA

  • Radial peaking and excess CPR margin exchanged for reduced flow
  • Core performance margins maintained 8

Fuel and plant licensing analysis strategy Generic GEH M+ LTR process (NEDC-33006PA) will address:

Non-fuel Non fuel impacts Long term ATWS and ATWS instability for GE14 fuel AREVA methodologies and analyses will address:

Fuel, core design, COLR fuel limits ATWS overpressure GE14 ATWS analysis applicability to AREVA fuel Methods applicability to MELLLA+

Progress Energy will address:

Integration of GEH and AREVA analyses APRM and Enhanced Option III set points Risk evaluation, EPG/SAGs, operator training Plant modifications to mitigate ATWS Stability scram activation 9

Fuel and plant licensing analysis strategy Preliminary Technical Specification changes TLO APRM flow biased STP scram line (3.3.1.1.2b)

Scram margin: expansion for M+ region; reduction for EO-III EO III stability solution Corresponding changes in flow biased rod block Existing AL-AV-NTSP set-point margins maintained Define MELLLA+ region , add EO-III to COLR methods (5.6.5) (5 6 5)

New equipment OOS LCO actions (various TSs)

SRVOOS (if required), SLO and OPRM inoperable Exit E it MELLLA MELLLA+ region i within ithi 12 hhours ffor di disallowed ll d condition diti OPRM inoperable Implement manual BSP regions in COLR (no change)

Exit MELLLA+ region within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />; OPRM OOS or reduced FWT (new)

APRM scram natural circ line protection above BSP scram region (new protection) 1 SLCS pump OOS Exit MELLLA+ region within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> (new)

Shutdown in 7 days (no change) 10

Thermal hydraulic stability solution Enhanced Option III TLO APRM Scram MELLLA+ APRM SPT Scram Reduction 120 110 Enhanced Option III Channel Exclusion Stability Protection Trip (SPT) Reduction 100 90 Estimaated NTSP Power (%)

80 70 60 50 40 30 20 10 0

0 10 20 30 40 50 60 70 80 90 100 110 120 Drive Flow (%)

EO-III APRM STP Scram EO-III APRM STP RB 11

Thermal hydraulic stability solution Power flow map Brunswick MELLLA+ with Representative EO-III NTSP Channel Exclusion Region Scram 120.0 APRM STP Scram NTSP 110 0 110.0 APRM STP Rod Block NTSP 100.0 90.0 EO-III Channel Exclusion 80 0 80.0 SPT AL Line 70.0 EO-III Channel Exclusion MELLLA+ Line

% Pow er and NC Line Scram 60.0 MELLL Line 50.0 Scram Avoidance Region 40.0 (Immediate Exit)

Scram 30.0 BSP Region 20.0 OPRM Enabled Region 10.0 0.0 00 0.0 77 7.7 15 4 15.4 23 1 23.1 30 8 30.8 38 5 38.5 46 2 46.2 53 9 53.9 61 6 61.6 69 3 69.3 77 0 77.0 84 7 84.7 92 4 92.4 Mlbs/hr Core Flow 0 10 20 30 40 50 60 70 80 90 100 110 120  % Core Flow 12

ATWS analysis and mitigation Long term response BSEP EPU increased SLCS B10 enrichment to 47 w/o ATWS rule compliance basis remains two pumps pumps, but Single pump meets ATWS rule boron injection rate requirement EPU risk assessment and current PSA model credit pump redundancy Long term ATWS MELLLA+ margin improvement will be demonstrated with GE14 ODYN analyses MELLLA+ rod line intercepts NC line post 2RPT ~20% higher in power Faster B10 injection reduces heat load (HSBW injected faster)

BSEP can increase SLCS B10 enrichment by up to a factor of 2 Potential to offset MELLLA+ heat load increase clearly sufficient No loss of margin with MELLLA+; no increase in risk with single SLCS pump AREVA fuel applicability to be dispositioned similar to BSEP AREVA fuel transition 13

ATWS analysis and mitigation Post depressurization NEDC-33006P Generic M+ LTR and SER: Best estimate TRACG or equivalent analysis of post depressurization ATWS required if HSBW not injected before HCTL reached BSEP has potential to inject HSBW before HCTL Increase SLCS B10 enrichment (x2)

Credit both SLCS pumps (x2)

New TS LCO action to exit MELLLA+

MELLLA if 1 SLCS pump OOS Applicability of GE14 analysis to AREVA fuel will be dispositioned Substantial physical safety improvement Simplifies analysis Simplifies NRC review NRC feedback critical 14

ATWS analysis and mitigation Overpressure and instability ATWS instability S

Same approach h as llong tterm; d demonstrate t t change h iin margin i ffor GE14 core with increased B10 injection rate B10 injection rate increase expected to provide some mitigation even with shorter event timing than long term containment heating Applicability to AREVA fuel to be addressed by disposition NRC feedback critical ATWS overpressure mitigation MG set replacement with adjustable speed drive improves 2RPT coastdown rate SRVOOS support for MELLLA+ to be evaluated Cycle specific AREVA overpressure analysis 15

Fuel design ATRIUM-10XM (A10XM)

MELLLA+ LAR to be based on A10XM if timing and reviews support A10XM requires adding two COLR methodologies to TS ACE CPR correlation and RODEX4 fuel rod TM methodology LAR will demonstrate SER compliance Generically approved; no sample problem A10XM LAR separate from MELLLA+

Separate submittal preceding MELLLA+

A10XM approval (both Units) preceding MELLLA+ approval MELLLA+ LAR sample problem and cycle application B2C20 reload analysis report sample problem; first Unit 2 A10XM reload B1C19 reload analysis report cycle specific application; first Unit1 A10XM reload and MELLLA+

16

Fuel design ATRIUM-10XM fuel cycle operation Parameter MELLLA+ A10 MELLLA+ A10XM Cycle y Avg g / Cycle y Limiting g Cycle y Avg g / Cycle y Limiting g

Core flow 93.1% / 86.0% 91.4% / 85.7%

Core max radial peak 1.33 / 1.38 1.39 / 1.47 CPR margin 8 9% / 5.3%

8.9% 5 3% 14 8% / 5 14.8% 5.0%

0%

Core avg void 47.9% / 52.2% 47.7% / 52.9%

Core max exit void 85.4% / 87.9% 87.5% / 90.0%

LHGR margin 17.9% / 11.1% 13.7% / 7.3%

MAPRAT margin 22.9% / 16.7% 22.9% / 16.4%

Inlet subcooling 23.9 Btu/lb / NA 24.2 Btu/lb / NA

  • Improved CPR margin supports radial peaking increase and reduced flow
  • Core performance margins maintained 17

Schedule A10XM LAR; ACE and RODEX (both Units) Spring 2010 MELLLA+ LAR submittal (both Units) Fall 2010 B2C20 sample problem with A10XM ATRIUM-10XM approval (both Units) Spring 2011 First ATRIUM-10XM reload (B2C20) Spring 2011 B1C19 cycle specific application Fall 2011 First MELLLA+ cycle y with A10XM MELLLA+ approval (both Units) Spring 2012 NRC feedback f db k critical iti l 18

Summary Reduce challenges to reactivity management R d Reduce challenges h ll tto ffuell iintegrity t it Maintain and improve safety margins Efficient LAR approach Leverage past work Address fuel design 19

BSEP Units 1 and 2 MELLLA+ Implementation Q

Questions?

ti  ?

20