ML17349A250: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 25: Line 25:
(4 pages)5.Westinghouse F-Series Heater Selection and Trip Curve.(2 pages)6.Asea Brown Boveri (ABB)OD61 Breaker Information.
(4 pages)5.Westinghouse F-Series Heater Selection and Trip Curve.(2 pages)6.Asea Brown Boveri (ABB)OD61 Breaker Information.
(3 pages)7.ITE Circuit Breaker Curve for HF frame breaker (1 page)/8.Asea Brown Boveri Breaker Characteristics of SS-3 device (1 page)9.Asea Brown Boveri Overcurrent Relay Characteristics of ITE-51IM relay.(1 page)10.General Electric Overcurrent Relay Characteristics for IAC66 relay.(1 page)11.Square D Overload Relay Time Current Characteristics.
(3 pages)7.ITE Circuit Breaker Curve for HF frame breaker (1 page)/8.Asea Brown Boveri Breaker Characteristics of SS-3 device (1 page)9.Asea Brown Boveri Overcurrent Relay Characteristics of ITE-51IM relay.(1 page)10.General Electric Overcurrent Relay Characteristics for IAC66 relay.(1 page)11.Square D Overload Relay Time Current Characteristics.
(1 page)12.General Electric Motor Starter Heater Time Current Curves.(2 pages)13.Qualified Air Corp/General Electric Motor Data.(4 pages)14.General Electric Time-Voltage curves for IAV Relays.(2 pages)15.Cope)and Letter Dated 3/25/92 for compressor motor data.(2 pages)I 16.REA No.91-289 with ABB Test Report Data for trip device settings.(6 pages)0'SSUED FOR USE ger/rz Date Ap prov Date Date c~gCI CALCULATION SHEET JOB NO.21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED 03/27/92 REV.NO.SHEET NO.0 2 DATE Table of Contents Sheet 1.0 Purpose/Objective 2.0 Scope 3.0 Assumptions/Bases
(1 page)12.General Electric Motor Starter Heater Time Current Curves.(2 pages)13.Qualified Air Corp/General Electric Motor Data.(4 pages)14.General Electric Time-Voltage curves for IAV Relays.(2 pages)15.Cope)and Letter Dated 3/25/92 for compressor motor data.(2 pages)I 16.REA No.91-289 with ABB Test Report Data for trip device settings.(6 pages)0'SSUED FOR USE ger/rz Date Ap prov Date Date c~gCI CALCULATION SHEET JOB NO.21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED 03/27/92 REV.NO.SHEET NO.0 2 DATE Table of Contents Sheet 1.0 Purpose/Objective
 
===2.0 Scope===
3.0 Assumptions/Bases


==4.0 References==
==4.0 References==
Line 37: Line 40:
These loads are not subject to overheating at low voltages nor will they draw current to the extent that overcurrent device actuation is a concern.The remaining safety related loads consist of 4kV and 480 Volt motors supplied at the switchgear, load center and motor control center levels.3.0 ASSUMPTIONS/
These loads are not subject to overheating at low voltages nor will they draw current to the extent that overcurrent device actuation is a concern.The remaining safety related loads consist of 4kV and 480 Volt motors supplied at the switchgear, load center and motor control center levels.3.0 ASSUMPTIONS/
BASES: 3.1 The following assumptions and bases were used in the performance of this calculation Motor breakdown torques were assumed equal to the NEMA Standard MG 1 (Ref.4,2), section MG 1-12.39, minimum values unless motor specific values were available.
BASES: 3.1 The following assumptions and bases were used in the performance of this calculation Motor breakdown torques were assumed equal to the NEMA Standard MG 1 (Ref.4,2), section MG 1-12.39, minimum values unless motor specific values were available.
3.2 Thermal damage curves or safe time curves are not available for motors supplied from Motor Control Centers.Thermal overloads on MCC motors were assumed sized to adequately protect the motors.Motors in this range follow standard designs and overload relays settings are generally based on a percentage of motor full load current.As noted in ANSI Standard C37.96 (Ref.4.8), overload relays are normally adequate to protect motors in this horsepower range.The NEC, (Ref.4.3), indicates that overload relays with trip currents up to 140%of motor full load current are adequate to prevent overheating for motors with a 1.15 service factor.Motors applied at the MCC level have a service factor of 1.15 or greater per NEMA MG-1 (Ref.4.2)and Specification 5610-E4B (Ref.4.5).This service factor increases the allowable current which a motor can withstand without damage.The ratios between motor Ml load amps and overload pickup were reviewed to confirm this assumption.
 
===3.2 Thermal===
damage curves or safe time curves are not available for motors supplied from Motor Control Centers.Thermal overloads on MCC motors were assumed sized to adequately protect the motors.Motors in this range follow standard designs and overload relays settings are generally based on a percentage of motor full load current.As noted in ANSI Standard C37.96 (Ref.4.8), overload relays are normally adequate to protect motors in this horsepower range.The NEC, (Ref.4.3), indicates that overload relays with trip currents up to 140%of motor full load current are adequate to prevent overheating for motors with a 1.15 service factor.Motors applied at the MCC level have a service factor of 1.15 or greater per NEMA MG-1 (Ref.4.2)and Specification 5610-E4B (Ref.4.5).This service factor increases the allowable current which a motor can withstand without damage.The ratios between motor Ml load amps and overload pickup were reviewed to confirm this assumption.
-ev.
-ev.
I j(il q Q t'~i CALCULATION SHEET JOB NO.21701-523 ORIGINATOR p CALO.No.21701-523-E-02 DATE CHECKED 03/27/92 qQ~g REV.NO.SHEET No.0 4 DATE 3/>W'o~3.3 The voltage drops across individual feeders were calculated neglecting the relative phase between the current and feeder impeihmce.
I j(il q Q t'~i CALCULATION SHEET JOB NO.21701-523 ORIGINATOR p CALO.No.21701-523-E-02 DATE CHECKED 03/27/92 qQ~g REV.NO.SHEET No.0 4 DATE 3/>W'o~3.3 The voltage drops across individual feeders were calculated neglecting the relative phase between the current and feeder impeihmce.
Line 51: Line 56:
5610-EAB,"Specifications for Station Auxiliary Motors", Rev.6.4.6 Motor Data Sheets, Attachments 2, 3, 13, 15.4.7 Calculation 21701-523-E41, Rev.0,"Unit 3 Load Center's Undervoltage Relay Setpoints".
5610-EAB,"Specifications for Station Auxiliary Motors", Rev.6.4.6 Motor Data Sheets, Attachments 2, 3, 13, 15.4.7 Calculation 21701-523-E41, Rev.0,"Unit 3 Load Center's Undervoltage Relay Setpoints".
4.8 ANSI Standard C37.96-1988,"IEEE Guide for AC Motor Protection".
4.8 ANSI Standard C37.96-1988,"IEEE Guide for AC Motor Protection".
4.9 Electric Power Research Institute Power Plant Electrical Reference Series, Volume 6,"Motors".4.10 Relay Coordination Study, FLO 53-20.5004, Rev.11.4.11 PC/M 90-211,"Replacement of Control RM.HVAC Condensing Sections+V.l.5.0 METHODOLOGY:
 
5.1 General Methodology The methodology employed to demonstrate that the undervoltage relays adequately protect the safety related motors consists of determining the motor current corresponding to various voltages on the undervoltage relay characteristic curves and plotting that current as a function of the undervoltage relay trip time for the specific voltage.A typical current vs.voltage plot for an undervoltage condition is shown in Figure A.Since the voltage seen at the motor terminals will vary from the bus voltage sensed by the undervoltage relays (relays are located at the Load Center level), the calculation takes the voltage drop across bus to bus and individual motor feeder circuits into account.The exact treatment of feeder voltage differs between voltage classes and is addressed in detail later in this calculation.
===4.9 Electric===
Power Research Institute Power Plant Electrical Reference Series, Volume 6,"Motors".4.10 Relay Coordination Study, FLO 53-20.5004, Rev.11.4.11 PC/M 90-211,"Replacement of Control RM.HVAC Condensing Sections+V.l.5.0 METHODOLOGY:
 
===5.1 General===
Methodology The methodology employed to demonstrate that the undervoltage relays adequately protect the safety related motors consists of determining the motor current corresponding to various voltages on the undervoltage relay characteristic curves and plotting that current as a function of the undervoltage relay trip time for the specific voltage.A typical current vs.voltage plot for an undervoltage condition is shown in Figure A.Since the voltage seen at the motor terminals will vary from the bus voltage sensed by the undervoltage relays (relays are located at the Load Center level), the calculation takes the voltage drop across bus to bus and individual motor feeder circuits into account.The exact treatment of feeder voltage differs between voltage classes and is addressed in detail later in this calculation.
Once the motor currents are calculated and correlated to undervoltage relay operating times, these values are plotted on a time vs.current scale along with the motor overcurrent device characteristics and motor safe heating curves where available.
Once the motor currents are calculated and correlated to undervoltage relay operating times, these values are plotted on a time vs.current scale along with the motor overcurrent device characteristics and motor safe heating curves where available.
Motors at the 480V level, particularly smaller horsepower rating are not typically furnished with safe heating curves.Since motors applied at the motor control center level generally follow standard frame size and designs, overcurrent protection for these motors is selected using standard pickup to FLA ratios between 115 and 140%.For motors where safe heating-ev.
Motors at the 480V level, particularly smaller horsepower rating are not typically furnished with safe heating curves.Since motors applied at the motor control center level generally follow standard frame size and designs, overcurrent protection for these motors is selected using standard pickup to FLA ratios between 115 and 140%.For motors where safe heating-ev.

Revision as of 11:24, 18 October 2018

Verification of Degraded Voltage Relay Protection for Safety-Related Equipment (Coordination Between Undervoltage & Overcurrent Protection) for Unit 3
ML17349A250
Person / Time
Site: Turkey Point NextEra Energy icon.png
Issue date: 03/27/1992
From:
BECHTEL CORP.
To:
Shared Package
ML17349A248 List:
References
21701-523-E-02, 21701-523-E-02-R00, 21701-523-E-2, 21701-523-E-2-R, NUDOCS 9206050157
Download: ML17349A250 (220)


Text

ATTACHMENT 3 CALCULATION FOR COORDINATION BETWEEN UNDERVOLTAGE AND OVERCURRENT PROTECTION 920b050157 920b02't PDR ADOCK 05000250

P.PDR pA)I)l;ll l m I,'i I 1 CALCULATION COVER SHEET JOB NO.21701-523 PROJECT Turke Point Unit 3 SUBJECT Verification of Degraded Voltage Relay Protection for Safety Related CALC NO.21701-523-E~

SHEET TOTAL NCL OS IICEtS IAST SIGNET NO.L2.Equipment (Coordination between U/V and Overcurrent Protection)

DISCIPUNE Electrical

'ALCULATION STATUS DESIGNATION PREUMINARY COMMITTED CONFIRMED SUPERSEDED CANCELED[)l)l x)l)COMPUTER PROGRAM SCP MAP NCP NONE.)))l)lx)PROGRAM NO.(S)mAppgmle VERSION/RELEASE NO.Not Applicable 1.Figures 1-28 associated with this calculations verification of degraded voltage relay protection.

(28 pages)I 2.PC/M 9136, Input Data Ref.No.8 (excerpt), Motor Data and Safe Heating curves.(9 pages)3.Miscellaneous Motor Data Sheets and Safe Heating curves.(10 pages)4.ITE G30 Heater Selection Tables and Overload Tripping Characteristics.

(4 pages)5.Westinghouse F-Series Heater Selection and Trip Curve.(2 pages)6.Asea Brown Boveri (ABB)OD61 Breaker Information.

(3 pages)7.ITE Circuit Breaker Curve for HF frame breaker (1 page)/8.Asea Brown Boveri Breaker Characteristics of SS-3 device (1 page)9.Asea Brown Boveri Overcurrent Relay Characteristics of ITE-51IM relay.(1 page)10.General Electric Overcurrent Relay Characteristics for IAC66 relay.(1 page)11.Square D Overload Relay Time Current Characteristics.

(1 page)12.General Electric Motor Starter Heater Time Current Curves.(2 pages)13.Qualified Air Corp/General Electric Motor Data.(4 pages)14.General Electric Time-Voltage curves for IAV Relays.(2 pages)15.Cope)and Letter Dated 3/25/92 for compressor motor data.(2 pages)I 16.REA No.91-289 with ABB Test Report Data for trip device settings.(6 pages)0'SSUED FOR USE ger/rz Date Ap prov Date Date c~gCI CALCULATION SHEET JOB NO.21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED 03/27/92 REV.NO.SHEET NO.0 2 DATE Table of Contents Sheet 1.0 Purpose/Objective

2.0 Scope

3.0 Assumptions/Bases

4.0 References

'.0 Methodology

6.0 Calculation

10 7.0 Results 8.0 Conclusion 12 Appendix A 20 pages evr I C 1 I'~

CALCULATION SHEET t JOB NO.21701-523 CALC.No.21701-523-E-02 REV.NO.SHEET NO.0 3 ORIGINATOR DATE 03/27/92 CHECKED DATE 3/~y q~1.0 PURPOSE: The purpose of this calculation is to demonstrate that the settings of undervoltage relays, 327I (ITE)and 327T (IAV)are adequate to protect and ensure the operability of safety related equipment connected to the AC distribution system.Specifically this calculation will demonstrate that the undervoltage relays will trip and separate the distribution system from offsite power before either equipment is damaged from the effects of low voltage or rendered inoperable due to the operation of other protective devices.2.0 SCOPE: The scope of this calculation includes all safety related loads on the 4.16kV vital switchgear, 480V Load Centers and 480V Motor Control centers except as noted below.Loads which are not susceptible to either damage or tripping through overcurrent devices due to undervoltage have been excluded for the following reasonsl Motor operated valves and dampers, being intermittent loads will likely not.be operating during a degraded voltage transient.

The design, application, and overcurrent protection for motor operated valves also allows for extended overload or stalled conditions.

~Battery chargers and resistive loads may become inoperable during exposure to lower than rated voltage but these effects will only last as long as the voltage transient.

These loads are not subject to overheating at low voltages nor will they draw current to the extent that overcurrent device actuation is a concern.The remaining safety related loads consist of 4kV and 480 Volt motors supplied at the switchgear, load center and motor control center levels.3.0 ASSUMPTIONS/

BASES: 3.1 The following assumptions and bases were used in the performance of this calculation Motor breakdown torques were assumed equal to the NEMA Standard MG 1 (Ref.4,2), section MG 1-12.39, minimum values unless motor specific values were available.

3.2 Thermal

damage curves or safe time curves are not available for motors supplied from Motor Control Centers.Thermal overloads on MCC motors were assumed sized to adequately protect the motors.Motors in this range follow standard designs and overload relays settings are generally based on a percentage of motor full load current.As noted in ANSI Standard C37.96 (Ref.4.8), overload relays are normally adequate to protect motors in this horsepower range.The NEC, (Ref.4.3), indicates that overload relays with trip currents up to 140%of motor full load current are adequate to prevent overheating for motors with a 1.15 service factor.Motors applied at the MCC level have a service factor of 1.15 or greater per NEMA MG-1 (Ref.4.2)and Specification 5610-E4B (Ref.4.5).This service factor increases the allowable current which a motor can withstand without damage.The ratios between motor Ml load amps and overload pickup were reviewed to confirm this assumption.

-ev.

I j(il q Q t'~i CALCULATION SHEET JOB NO.21701-523 ORIGINATOR p CALO.No.21701-523-E-02 DATE CHECKED 03/27/92 qQ~g REV.NO.SHEET No.0 4 DATE 3/>W'o~3.3 The voltage drops across individual feeders were calculated neglecting the relative phase between the current and feeder impeihmce.

This simplifying assumption introduces a small conservatism since voltage drops calculated in this manner will be greater than those derived in a more rigorous fashion.3.4 Motor power factor and efficiency were assumed equal to 0.85 and 0.92 (Ref.4.1)respectively in the absence of specific motor data, except for motors at and below 2 HP where the following values will be used;2 HP.85 pf.65 eff.1 HP.85 pf.61 eff.3/4 HP.85 pf.59 eff.The use of these factors provide motor full load currents which are close to typical values provided in the NEC Table 430-150, Reference 4.3.Since the phase angle os the motor current is not being used in this calculation, the adjustment of the'effiiciency to obtain the target full load amps rather than the power factor is of no concern.3.5 3.6 The voltage seen on the 4.16kV buses was assumed equal to that registered by the undervoltage relays on the 480V loads centers adjusted by the LC transformer turns ratio (including 2.5%boost).By neglecting the voltage drop across the LC transformer, the voltage used for the 4.16kV bus at a given load center voltage is lower than would actually exist.This assumption adds a slight conservatism in the evaluation of the effects of undervoltage on the 4kV motors.//Disturbances in the offsite power network are considered to be either prolonged undervoltage at levels slightly below the design minimum values, short term voltage excursions

((1 second)caused by system faults, or total system collapse.The setpoint of the 1TE relay is selected to prevent motor stalls at prolonged degraded voltages.The second case, short term dips caused by external faults, are of such a limited duration that operating motors will remain at near full speed.System undervoltages of the third type, severe drops which persist for more than a few seconds, are considered to be indicative of a system collapse and the fact that motors may stall under these conditions is not a concern since undervoltage relaying will eventually trip the buses.This calculation is intended only to show that no motor damage wiH occur in the period before the buses are tripped, not that the distribution system can experience severe undervoltages for several seconds and return to normal operation.

4.0 REFERENCES

0 4.1 Calculation EC-145, Rev.5, PSB-1, Voltage Analysis for Electrical Auxiliary System".This calculation was used as a source for motor data, cable impedances, and load center to MCC voltage drops.Where more specific motor data was available, such data was used in lieu of the EC-145 information.

ev, Eiq)z I 4'>,V h c+to Irg 8' CALCULATION SHEET JOB NO.21701-523 CALO.NO~21701-523-E-02 AEV.NO.SHEET NO.0 5 OAIGINATOA DATE CHECKED DATE 4.2 NEMA Standard MG 1-1987, Rev.1,"Motors and Generators", Section MG 1-12.39,"Breakdown Torque of Single Speed Polyphase Squirrel Cage Medium Motors with Continuous Ratings', Table 12-2, Service Factor" 4.3 National Electrical Code, 1990, Table 430-150,"Full Load Current Three-Phase Alternating-Current Motors", Section 430-34,"Selection of Overload Relay" 4.4 Project drawings as referenced throughout the calculation.

4.5 Specification

5610-EAB,"Specifications for Station Auxiliary Motors", Rev.6.4.6 Motor Data Sheets, Attachments 2, 3, 13, 15.4.7 Calculation 21701-523-E41, Rev.0,"Unit 3 Load Center's Undervoltage Relay Setpoints".

4.8 ANSI Standard C37.96-1988,"IEEE Guide for AC Motor Protection".

4.9 Electric

Power Research Institute Power Plant Electrical Reference Series, Volume 6,"Motors".4.10 Relay Coordination Study, FLO 53-20.5004, Rev.11.4.11 PC/M 90-211,"Replacement of Control RM.HVAC Condensing Sections+V.l.5.0 METHODOLOGY:

5.1 General

Methodology The methodology employed to demonstrate that the undervoltage relays adequately protect the safety related motors consists of determining the motor current corresponding to various voltages on the undervoltage relay characteristic curves and plotting that current as a function of the undervoltage relay trip time for the specific voltage.A typical current vs.voltage plot for an undervoltage condition is shown in Figure A.Since the voltage seen at the motor terminals will vary from the bus voltage sensed by the undervoltage relays (relays are located at the Load Center level), the calculation takes the voltage drop across bus to bus and individual motor feeder circuits into account.The exact treatment of feeder voltage differs between voltage classes and is addressed in detail later in this calculation.

Once the motor currents are calculated and correlated to undervoltage relay operating times, these values are plotted on a time vs.current scale along with the motor overcurrent device characteristics and motor safe heating curves where available.

Motors at the 480V level, particularly smaller horsepower rating are not typically furnished with safe heating curves.Since motors applied at the motor control center level generally follow standard frame size and designs, overcurrent protection for these motors is selected using standard pickup to FLA ratios between 115 and 140%.For motors where safe heating-ev.

1" h h f~4 ,f yah vji CALCULATION SHEET JOB NO.21701-523 GALS NO.21701-523-E-02 DATE CHECKED<>>/$7/$$REV.NO.SHEET NO.0 6 DATE 34)v>curves are not available the undervoltage induced current curves will be plotted against thermal overload curves only with the assumption that thermal overloads are sized adequately to protect the motors.Ty$1cO I CI/'POAt VO~$0lteOe$10$Loc.Y Rchoc.Cvrrcwir The calculation of motor overcurrent induced by undervoltage is based on the motor acting as a constant power device, ie.the motor current increases inversely to the decrease in motor terminal volta e, This 10$.$$$$.4$$$A$$$.OI$$.4$$4.$$$$$0$$.$$$$.$$treatment is valid until the voltage reaches a point where the motor can no longer develop sufficient torque to drive the attached load, at which point the motor begins to stall, The voltage at which stall occurs, referred to as"Stall Voltage" in the calculation is related to the breakdown torque of the motor.The motor torque developed varies as the square of the applied voltage, therefore for a reduction in applied voltage of 20%, the developed torque is 0.8'r 0.64 per unit.The maximum torque developed by a motor at rated voltage, the breakdown torque, is similarly reduced with voltage.The stall voltage, that voltage where the breakdown torque equals the rated torque, can then be calculated given the breakdown torque.This stall voltage represents the highest voltage at which a motor may stall, however the motor may coptinue to run at lower voltages.Breakdown torque information specific to individual motors has been used where available.

Por other cases the minimum breakdown torque for the motor frame size from NEMA Standard MG 1, (Ref.4.2), Section MG 1-12.39, (200%for NEMA Design A 8c B, 190%for NEMA Design C)will be used.This approach has added conservatism in that it ignores the margin between motor rated horsepower and load brake horsepower.

Once the voltage at the motor terminals falls below the stall voltage discussed above, one of two things happen, the motor may stall, drawing locked rotor current, or may continue to spin due to the combined effects of inertia, motor vs.load torque margin.Since a motor under locked rotor conditions is essentially a fixed impedance, the current drawn at low voltages will decrease proportionally with the voltage.In order to address either possibility, both the stall point and operating points will be plotted below the stall voltage.The motor will be deemed adequately protected by the bus undervoltage protection if the undervoltage induced overcurrent is shown to persist for less time than the motor protection takes to trip.In other terms, if the motor overcurrent due to undervoltage curve does not intersect the overcurrent protection or thermal damage curves the motor is considered adequately protected.

eve p 43 f il 4 k i' CALCULATION SHEET JOB NO.21701-523 CALO.No~21701-523-E-02 DATE CHECKED 03/27/92~g REV.No.SHEET No.0 7 DATE 5.2 Calculations Equations The calculation of motor currents for selected undervoltage relay setpoint was calculated using a spreadsheet.

The calculation inputs required are as follows;Per Switchgear Bus, Load Center or MCC~U/V Relay Setpoints for Connected Load Center~Cable Drop data for MCCs only Per Motor Load Horsepower Power Factor EKciency Feeder Cable Resistance Feeder Cable Reactance Locked Rotor/Pull Load Amps ratio Percent Stall Torque (Breakdown Torque)The results and intermediate values were derived as follows;Switchgear, Load Center or MCC values Relay Voltage=ITE Relay Se~int for Dropout at 60 Seconds=IAV Relay Setpoint~Time Dial 5 Curve (Ref.4.7 and Attachment 14)Attachment 1 figures are plotted to the ITE dropout value of 60 secs in addition to a 6.5 sec relay tolerance and a 1 sec sequencer time delay per drawing 5610-T-L1, Sh.13 Rev.9.The IAV relay tolealn~will not be accounted for in the actual data.However, this margin will be addressed in section 8.0, the conclusion section of this calculation.

Voltage at Load Center~VLc~Relay Voltage~480/120 Voltage at Switchgear

=V~=VLc~4160/(480 1.025)Voltage at MCC=Vlcc=VLc-MCC Feeder DroP MCC Feeder DroP~VDiicc=Vm Vwcc=VLc Iwcc'ciicc Iiicc=MCC Load Current=PmaccJVMcc Zcwcc=MCC Feeder Cable Impedance P~cc=MCC Load (KVA)-ev.

>'l iA aIgI I)i~(P e JOB No.21701-523 CALCULATION SHEET CALO.NO.21701-523-E-02 REV.No.SHEET NO.0 8 ORIGINATOR DATE CHECKED~~A~A DATE Vlcc'-Vlcc'Vic+Pic Zcucc=0 This equation is a quadratic of the form ax~+bx+c=0 whose solution is-b+V'(b~-4 a c)2'a For this application the proper solution is Vlcc Vic+V (Vm 4'Pnkcc'ZcMcc)

The value P~cc Zcwcc is derived from values of VLc and Vwcc obtained from Calculation EC-145, (Ref.4.1), which resulted in the lowest voltage for a particular MCC bus.E P~cc'Zcwcc

=VLc'Vlcc Vwcc The Bus Per Unit Voltage is expressed on a motor voltage base, V~=Vs/4000 for 4kV motors=Vs/460 for MCC and LC motors Motor Values Motor KVA=HP.746/(Power Factor~Efficiency)

Motor Base Amps~Motor KVA/(/3~Motor Base Volts)Cable Iagedance=V'(Cable Resistance~+

Cable Reactance' PU Impedance=Cable Impedance~Motor KVA/Motor Base Volts'ull Load Torque~Breakdown Torque Vrv~va%Breakdown Torq=Breakdown Torq/Full Load Torq Therefore, PU Stall Voltage V (1/(Percent Stall Torque/100))

-ev.

lr eI$i))~'

JOB NO.21701-523 CALCULATION SHEET CALO.NO.21701-523-E-02 REV.NO.SHEET NO.0 9 OR IGINATOA DATE 03/27/92 CHECKED DATE Motor Amps (pu)I~=P~/V~=(Va-VM)/Zcw Vs=Var+IM Zc~=P22/IM+IM Zcu IM=Motor Amps(pu)P~=Motor KVA(pu)=1 VM=Motor Voltage(pu)

Va=Bus Voltage(pu)

Swgr, LC, or MCC ZCM=Motor Cable Impedance(pu)

AH per unit values are determined on a motor KVA base I 2-V/~I+P/~~0 Solving the quadratic equation: IM=Va/Zc~+V (Vai/Zcws-4 P~/Zc Running Amps I~Motor Base Amps Motor Volts=VM=Va-I~~Cable Drop~Va-Vwr'ocked Rotor Amps are calculated when the motor voltage falls below the calculated stall voltage.The locked rotor current is calculated using the combined impedance of the motor feeder cable and the motor locked rotor impedance.

In Per Unit Itac=Va/(l/LRC Ratio+Cable Impedance)

Locked Rotor Current=Itac~Motor Base Amps Since the stall voltage calculated represents the maximum voltage at which the motor may stall, both the running amps and locked rotor amps will be plotted for voltages below the calculated stall voltage.Bve

JDB No.21701-523 CALCULATION SHEET CALO.NO.21701-523-E-02 REV.NO.SHEET No.0 10 ORIGINATOR DATE 03/27/92 CHECKED DATE~/~7 0'8-6.0 CALCULATION Appendix A provides a listing of the tag numbers for the loads examined, relay settings and overload heater sizes, as well as references for this data.6.1 4.16 kV Buses 3A, 3B, and 3D~RHR Pump 3P210A&B~SI Pump 3P215A&B~ICW Pump 3P9A,B&C~CCW Pump 3P211A,B&C The safety related loads examined for these buses consisted of the following motors;Figures 3 1 2&6 4&5 Since the A&B pumps have identical protective device settings, they have been combined on;one plot with the highest motor currents for each case.0 The motor currents on bus 3D were examined for two cases, supply from 3A and supply from 3B.Overcurrent plots for these motors include the motor overcurrent caused by varying levels of undervoltage, the motor protective relay curves and the motor safe heating curves.6,2 480 V Load Centers 3B01, 3B02, 3BSO The following loads were examined at the load center level;Figures 7&8 9~Charging Pump 3P201A,B&C~Cont.Spray Pump 3P214A&B The motor current on LC 3H (3BSO)was examined for two cases, supply from 3A (3B01)and 3B (3B02).Since the A&B pumps have identical protective device settings, they have been combined on one plot with the highest motor currents for each case.Settings for 3P214A&B and 3P201A&B are based on ABB Test Reports (Attachment 16).Where different settings for like equipment is used, the most conservative settings (ie.lowest)were utilized.Overcurrent plots for these motors include the motor overcunent caused by varying levels of undervoltage, the trip device curves and the motor safe heating curves (where available).

fj\"C IlJ JOB No~21701-523 ORIGINATOR P DATE CHECKED 03/27/92~~f-CALCULATION SHEET CALO.No.21701-523-E-02 REV.No.SHEET No.0 ll DATE 3/a7 6.3 480 V Motor Control Centers 3B05, 3B06, 3B07, 3B08, 3B52 The following loads were examined at the MCC level;EMERG CONT CLR PAN 3V30A,B&C EMERG CONT PILTER PAN 3V3A,B&C EDG PO XFER PUMP 3P10A&B EDG ROOM VENT PAN 3V34A&B CONTROL ROOM A/C AHU E16A&C Figures 10 11 14&15 16&17 12&13 SWGR 3D ROOM SUPPLY FAN 3V65A&B COMPUTER ROOM CHILLER S74B COMPUTER ROOM CHILLER S75B COMPUTER ROOM A/C AHU S77B COMPUTER ROOM A/C'AHU S78B CNTRL RM EMERG PLTR PAN V29B ELECT EQPT ROOM AHU V77/E231 AIR,PART&GAS MONITOR 3V36 18 21&22 19 19 19 20&, 25, 26 23 The motor currents for MCC 3B08 (3D)were examined both for the case of supply from Load Center 3B03 and Load Center 3B04 via Load Center 3H./Plots for motors at the MCC level include only the voltage induced motor overcurrent and the thermal overload characteristics.

Safe heating or thermal damage curves are not generally available for these motors.Plots obtained from vendors for the Emergency Containment Filter Fans and the Emergency Containment Cooler Fans were included.The Control Room HVAC units E16/E17 include several motors fed from a common molded case breaker.These motors are individually thermally protected by internal devices.The effect on tho feeder breaker of overloading all motors simultaneously is examined for this case.7.0 RESULTS As shown by the individual time vs.current plots, the motor current induced by degraded system will not persist long enough to cause spurious tripping of motors due to overcurrent devices, nor will any of the established safe heating times be exceeded for those motors which safe heating curves have been supplied by the manufacturer.

The motor overload curves overlap the safe heating curves for the Emergency Containment Cooler and Emergency Containment Filter Fans.Although this is not a concern for tho purposes of this calculation, the juxtaposition of these two curves suggests that a problems exists with the overcurrent protection for these motors.Purther review of the overload heater selection indicates that each is applied within the guidelines for their applicationi The motor vendor (Reliance) was contacted concerning the application of tho thermal damage curves.Reliance indicated that these curves represented the time and current which would cause the motor to reach-ev.

Ig J t If*I A fag l>'0 lt e JOB No.21701-523 CALCULATION SHEET CALC.No.21701-523-E-02 REV.No.SHEET No.0 12 ORIGINATOR P DATE 03/27/92 CHECKED DATE 215'C, a temperature indicative of accelerated thermal aging rather than catastrophic failure.Furthermore these curves were calculated assuming no heat transfer from the motor, and neglects the additional cooling effects of the vane-axial fan installation.

Given the degree of conservatism which was used in the generation of the thermal damage curve and the importance of continued operation of these motors in accident conditions the present overload settings for these fans is prudent.Likewise, the Containment Spray Pump safe heating curve is shown to underlay its breaker tripping protection (OD61 trip device).However, there is an alarm which will notify the operator of an overload.

8.0 CONCLUSION

S On review of Attachment 1, the margin between U/V protection and overload protection is substantial in relation to the IAV operating margin.Therefore, the degraded voltage relaying provided on the 480V load center buses will operate and trip the 4.16kV and 480V distribution buses in adequate time to preclude damage to safety related motors and to prevent spurious tripping of those motors.The adequacy of the 480V motor control center overload relays was reviewed by comparison of the OL relay pickup to the motor full load currents.The ratio between OL trip setting and motor full load amps was below 140%for all MCC motors except for the 3/4 HP EDG Fuel Oil Transfer Pumps and the Electrical Equipment Room AHU.Since the service factor for these motors are 1.15 or higher, all overload relays in this range should provide adequate motor protection.

The full load current for motors in the 3f4 HP range may vary widely and the higher ratio for these pumps may be necessary.

The undervoltage/overcurrent curve for the EDG F.O.Transfer Pumps was also reviewed against an overload curve sized for a lower motor FLA and was shown to coordinate with that curve as well (Figure 27&, 28), indicating that the U/V protection would protect these motors.'Ihe AHU unit overloads are sized according to vendor speci6cations and are considered reasonable for this application.

-ev.

)'t$',C'v 1 b l,>,'1 il e+

JOB NO.'21701-523 DATE 03/27/92 CHECKED CALO.NO.21701-523-E-02 SHEET AEV.NO.SHEET NO.DATE APPENDIZ A Jpg Zl tOl-gpg CAR 2l-tb-%ZS-E-oX sHT I z.w OP HOTOR CONTROL CENTER LOADS*Note: Also Ref.5613-E-10 Sh.1 4 2 Rev.0*EHERG CONT CLR FAN TAG 3160A 3V30B 3V30C RATED HP 30 30 30 HCC 3806 3808 3B07 OL¹OF HTR SIZE HTRS G30T52 2 G30T52 2 G30T52 2 STARTER OL HIN SIZE FLA 3 40 3 40 3 40 OL TRIP SETTING 50 50 50 LOAD FLA 3S.46 38.46 38.46 OL TO FLA REFERENCE RATIO 1.30 5613-E-25/SH.

118 Rev.2 1.30 5613-E-25/SH.

11D Rev.2 1.30 5613-E-25/SH.

11F Rev.2<<EHERG CONT FILTER FAN<<EDG FO XFER PIMP*EDG ROON VENT FAN 3V3A 3V38 3V3C 3P10A 3P10B 3V34A 31648 3806 3BOS 3807 0.75 3B05 0.75 3852 3805 3B52 G30T60 2 G30T59 3 G30T60 2 G30T23 2 FH22 2 G30T36 2, FH37 3 1.65 1.63 6.07 6.5 112.5 100.0 112.5 2.0625 2.0375 7.5875'.125 87.69 87.69 87.69 1.4 1.4 5.99 5.99 1.28 1.14 1.28 1.47 1.46 1.27 1.36 5613-E-25/SH.

11A Rev.2 5613-E-25/SH.

11C Rev.2 5613-E.25/SH.

11E Rev.2 5613-E-27/SH.

11B Rev.1 5613-E.27/SH.

11A Rev.1 5613-E-27/SH.

SA Rev.0 5613-E-27/SH.

88 Rev.0 CONTROL ROOH A/C AHU E16A/E17A E16C/E17C<<SMGR 3D ROOH SUPPLT FAN 3V65A 3V65B 3B07 3852 FH27 3 FH27 3 3B06 50A bkr (HF3-8050) 3BOS 50A bkr (HF3-8050) 2.59 3.2375 2.59 3.2375-38.3 38.3 2.68 2.68 1.21 1.21 5610.E-1433 Rev.4 and 5613-E-8-8 Rev.1 8 PC/H 90-211 (Ref.4.11)5613-E-27/SH.

SC Rev.0 5613-E-27/SH

~SD Rev.0 CNIPVTER ROON CHILLER COHPRESSOR FAN 1 FAN 2 CHILLER PNIP S74B ELECT EQPT ROON AHU AHU COHP FAN V77/E231<<COHPUTER ROB(CHILLER S75B<<C(NPUTER ROOH A/C AHU S778<<COIPUTER ROON A/C AHV S788<<CNTRL RH EHERG FLTR FAN V298 65 50 5 5 5 3BOB 5 3808 CR123 F7728 CR123C778A CR123C77SA CR123C778A FH37 5 3BDS FH37 3 5 3808 FH37 3 5 3808 G30T37 3 36 3BOS 815~5 832.B10.2 63.3 79.125 7.2 9 7.2 9 7.2 9 6.5 8.125 6.5 8.125 6.5 8.125 6.3 7.875 1'l.1 13.875 23.0 28.75 7.32 9.15 62 6.8, 6.8 6.8 1~28 1.32 1.32 1.32 9.3 17,3 6.3 1.49 1.66 1.45 6.8 1.20 6.8 1.20 6.8 1.20 6.8 1~16 5613-E.27/SH.

318 Rev.1 5177-206-H724-31-3

&5177-206-H724-27-4 8 5177-206-H724-43-1 5610-E-27/SH.

32D Rev.O&5177-206.H711-34-1 5610-E-27/SH.

32E Rev.0&5177-206-H711-34.1 5610-E-27/SH.

32F Rev.0-&5177-206-H711.34.1 5610.E-27/SH.

45F Rev.5&5177-349-H713-10-1 5613-E-27/SH.

95A Rev.0 Vendor Han.V000475&Attachment 13 V000475 8 5610-H-38-24 Sh.'1 Rev.0 V000475 8 Attachment 13<<AIR PART.&GAS HOMITOR 3V36 3B06 G30T26 2.27 2.8375 2.7 1.05 5613-E-25/SH.

26A Rev.0&Attach.3 I t L.II rsT lg A e JOB HO.21701-523 CALO.NO.21701-523-E-02 DATE CHECKED.03/27/92 REV.HO.SHEET HO.DATE 5/a7 g CALCULATION SHEET APPENDS gpg 1 ol-823~g 2)0)-523,-C SHY~OP 4.16 KV SMITCHGEAR LOADS RATED RELAY HP HOD EL TAP TAG 450 IAC66K 4.5 450 1AC66K 4.5 450 ITE-51IH 5 CNPONENT COOLING MATER PP 3P211A 3P211B 3P211C TIKE DIAL 4 4 3 HORKAL DROPOUT PU ANPS 40 40 45.6 REFERENCE 5613-E-315/91-036 SH.21 Rev.0 4 Attachment 2 SH.46 Rev.0 t Attachment 2 SH.75 Rev.0 t Attachment 2 INTAKE COOLING MATER PNIP 3P9A*3P98 3P9C 325 IAC66K 3.5 325 IAC66K 3.5 325 ITE-51IH 3.75 2.5 2.5 2 40 40 39.2 SH.28 Rev.0 4 Attachment 2 SH.50 Rev.0 4 Attachment 2 SH.76 Rev.0 4 Attachanet 2 SAFETY IHJECTIOH PINIP 3P215A 3P215B 350 IAC66K 4 350 IAC66K 4 2.5 2.5 40 40 SH.22 Rev.0 t Attachment 2 SH.45 Rev.0 4 Attachment 2 RESIDUAL HEAT REMOVAL PUN 3P210A 3P2108 300 IAC66K 3.1 300 1AC66K 3.1 3.5 3.5 30 30 SH.24 Rev.0 t Attachment 2 SH.48 Rev.0 t Attachment 2 LOAD CENTER LOADS CHARGING PNIP CONTAINHEHT SPRAY PUMP TAG 3P201A 3P201B 3P201C 3P214A 3P214B 250 250 0061 0061 300 300 RATED BREAKER SENSOR HP NOEL TAP 150 0061 225 150 0061 225 150 SS.3 400 LONG TIHE INST.TAP T IKE BAND TAP 1.9 INTERMEDIATE 10.0 1.55 WLXIHUH 10.0 1.0 HINIIRNI 5.0 2.2 INTERNEDIATE 12.5 2.5 WNIHUH

10.0 REFERENCES

ATTACHMENTS 6!16, 5613-E-5 Rev.0 ATT(CHMENTS 6 t 16, 5613-E-5 Rev.0 FLO 53-20.5004 REV.1'I (Ref.4.10)4 5613-E-5 Rev.0 ATTACHMENTS 6 t, 16, 5613-E-5 Rev.0 ATTACHMENTS 6 4 16, 5613-E-5 Rev.0 1'I',Y'l I ff t, I if)

JOB NO.21701-523 ORIGINATOR CALO.KO.21701-523-E-02 DATE CHECKED 03/27/92 REV.NO.SHEET NO.DATE CALCULATI N SHEET APPENDIX J QK l~5~srrT>op~~SMGR 3A 4.16KV Degraded Voltage Protection:

LC 3801 Srrgr voltage assrnned equal to LC voltage times xfmr turns ratio including 2.5 X tap Drop across xfmr ignored for conservatism 11 0.860 84.93 339.7 3017.7 0.7544 13 0.890 87.89 351.6 3122.9 0.7807 12 0.876 86.51 346.0 3073.8 0.7685 Time PU-60 60-14 IAV Dial 5---0.900 Relay Voltage 105.48 88.88 Voltage QLC 421.9 355.5 Voltage Q Srrgr 3748.1 3158.0 pu V (4KV Base 0.9370 0.7895',-ITE Relay--',------IAV RELAY Pickup Setting: 98.75 10 0.843 83.25 333.0 2958.0 0.7395 V.8 0.800 79.00 316.0 2807.1 0.7018 6 0.720 71.10 284.4 2526.4 0.6316 4 0.545 53.82 215.3 1912.4 0.4781 Motor: 3P215A Horseporrer 350 PF 0.88 Efficiency 0.94 Cable Rest.0.0393 Cable React 0.0346 LRC/FLA 6.40 Stall Torque 266 Motor: 3P9A Horseporrer 325 PF 0.82 Efficiency 0.928 Cable Rest.0.044 Cable React 0.0387 LRC/FLA 5.80 Stall Torque 230 Notor: 3P211A Horseporrer 450 PF 0.9 Efficiency 0.93 Cable Rest.0.0374 Cable React 0.0329 LRC/FLA 4.74 Stall Torch 200 SI Prnrp Cable Impedance P.U.Irrpedance Base KVA Hotor Base Amps Stall Volts ICM Prnrp Cable lnpedance P.U.Impedance Base KVA Motor Base Amps Stall Volts CCM Prnrp Cable Inpedance P.U.I npedance Base KVA Motor Base Amps Stall Volts 0.0524 0.0010 315.6 45.6 0.613 0.0586 0.0012 318.6 46.0 0.659 0.0498 0.0012 401.1 57.9 0.707 TIHE (sec)PU-60 60-14 CABLE DROP(pu)0.0011 0.0013 NTR VOLTS(pu)0.9359 0.7882 AHPS(pu)1.0685 1.2687 RUNNING AHPS 48.7 57.8 LRC AHPS CURVE P01NTS 48.7 57.8 TIHE (sec)PU-60 60-14 CABLE DROP(pu)0.0012 0.0015 HTR VOLTS(pu)0.9358 0.7880 AHPS(pu)1.0686 1.2690 RUNNING AHPS 49.1 58.4 LRC AHPS CURVE POINTS 49.1 58.4 TIKE (sec)PU-60 60-14 CABLE DROP(pu)0.0013 0.0016 HTR VOLTS(pu)0.9357 0.7879 AHPS(pu)1.0687 1.2692 RUHNING AMPS 61.9 73.5 LRC AHPS CURVE POINTS 61.9 73.5 13 0.0013 0.7794 1.2830 58.5 58.5 13 0.0015 0.7792 1.2833 59.0 59.0 13 0.0016 0.7791 1'835 74.3 74.3 12 0.0013 0.7671 1.3036 59 4 59.4 12 0.0015 0.7669 1.3039 60.0 60.0 12 0.0016 0.7668 1.3041 75.5 75.5 11 0.0014 0.7530 1.3279 60.5 60.5 11 0.0015 0.7529 1.3283 61.1 61.1 11 0.0017 0.7528 1.3284 76.9 76.9 10 0.0014 0.7381 1.3548 61.7 61.7 10 0.0016 0.7379 1.3552 62.3 62.3 10 0.0017 0.7378 1.3554 78.5 78.5 8 0.0015 0.7003 1.4279 65 F 1 65.1 8 0.0017 0.7001 1.4283 65.7 65.7 8 0.0018 0.7000 1.4286 82.7'i91.4 191.4 6 0.0016 0.6300 1.5874 72.3 72.3 6 0.0019 0.6298 1.5879 73.0 167.3 167.3 6 0.0020 0.6296 1.5M3 9'1.9 172.3 172.3 4 0.0022 0.4759 2.1012 95.7 138.5 138.5 0.0025 0.4756 2.1024 96.7 126.7 126.7 4 0.0026 0 4755 2.1032 121.8 130.4 130.4 Notor: 3P210A RHR Pump Horseporrer 300 Cable Inpedance PF 0.89 Cable lnped.pu Ef f iciency 0.934 Base KVA Cable Rest.0.0363 Hotor Base Anps Cable React 0.0319 LRC/FLA 6.22 Stall Torque 270 Stall Volts 0.0483 0.0008 269.2 38.9 0.609 TIKE (sec)PU-60 CABLE DROP(pu)0.0009 HTR VOLTS(pu)0.9361 AHPS(pu)1.0682 RUNNING AHPS 41~5 LRC ANPS CURVE POINTS 41.5 60-14 0~0010 0.7885 1.2683 49.3 49.3 13 0.0010 0.7797 1.2826 49.8 49.8 12 0.0011 0.7674 1.3031 50.6 50.6 11 0'011 0.7533 1.3274 51.6 51.6 10 0.0011 0.7384 1.3543 52.6 52.6 8 0.0012 0.7006 1.4273 55.5 55'6 0.0013 0.6303 1.5865 61.7 61.7 0.0017 0.4764 2.0992 81.6 115.0 115.0

kl 1 j t l ,"pa'f Jf I JOB NO.'1701-523 OAIGINATOA CALO.NO.21701-523-E-02 DATE CHECKED 03/27/92 AEV.NO.SHEET NO.DATE APPENDIX~os~cd,>Ulh~INT OP-zo SMGR 38 4.16KV LC Supply: 3802 IAV controls voltage Silgr voltage assuaed equal to LC vol'tage times xfmr turns ratio including 2.5 X tap Drop across xfmr ignored for conservatism 12 M.04 352.2 3128.3 0.7821 13 89.45 357.8 3178.3 0.7946 11 86.43 345.7 3071.1 0.7678 Time PU-60 60-14 Relay Voltage 106.22 90.45 Voltage QLC 424.9 361.8 Voltage 9 S~r 3774.4 3214.0 pu V (4KV Base 0.9436 0.8035',-ITE Relay-I IAV RELAY P'ickup Setting: 10 84.72 338.9 3010.4 0.7526 8 80.40 321.6 2856.9 0.7142 100~5V-6 72.36 289.4 2571.2 0.6428 4 54.77 219.1 1946.2 0.4866 Motor: 3P2158 Horsepower 350 PF 0.88 Ef f iciency 0.94 Cable Rest.0.0371 Cable React 0.0326 LRC/FLA 6 40 Stall TorqX 266 Motor: 3P9B Horsepcwer 325 PF 0.82 Ef f iciency 0.928 Cable Rest.0.0449 Cable React 0.0395 LRC/FLA 5.SO Stall TorqX 230 Motor: 3P2118 Horsepower 450 PF 0.9 Efficiency 0.93 Cable Rest.0.0371 Cable React 0.0326 LRC/FLA 4.74 Stall TorqX 200 SI Pcmp Cable lspedance P.U.Ispedance Base KVA Hotol Base Amps Stall Volts IQI Pump Cable Impedance P.U.Impedance Base KVA Hotor Base Amps Stall Volts CCM Pcmp Cable Impedance P.U.Ispedance Base KVA Motor Base Amps Stall Volts 0.0494 0.0010 315.6 45.6 0.613 0.0598 0.0012 318.6 46.0 0.659 0.0494 0.0012 401.1 57.9 0.707 TIKE (sec)PU-60 60-14 CABLE DROP(pu)0.0010 0.0012 IITR VOLTS(pu)0.9426 0.8023 AMP S(pu)1.0609 1.2464 RUNNING AHPS 48.3 56.8 LRC AHPS CURVE POINTS 4S.3 56.8 TIKE (sec)PU-60 60-14 CABLE DROP(pu)0.0013 0.0015 HTR VOLTS(pu)0.9423 0.8020 AMP S(pu)1.0612 1.2469 RUNNING AHPS 48.8 57.3 LRC AHPS CURVE POINTS 48.8 57.3 TIHE (sec)PU-60 60-14 CABLE DROP(pu)0.0013 0.0015 HTR VOLTS(pu)0.9423 0.8020 AKPS(pu)1.0613 1.2470 RUHHIHG ANPS 61.4 72.2 LRC AHPS CURVE POINTS 61 4 72.2 13 0.0012 0.7933 1.2605 57.4 57.4 13 0.0015 0.7931 1.2609 58.0 58.0 13 0.0016 0.7930 1.2610 73.0 73.0 12 0.0012 0.7808 1.2807 58.3 58.3 12 0.0015 0.7805 1.2812 58.9 58.9 12 0.0016 0.7805 1.2813 74.2 74.2 11 0.0013 0.7665 1.3046 59.4 59 4 11 0.0016 0.7662 1.3051 60.0 60.0 11 0.0016 0.7662'1.3052 75.6 75.6 10 0.0013 0.7513 1.3310 60.6 60.6 10 0.0016 0.7510 1.3315 61.2 61.2 10 Q.0016 0.7510 1.3316 77.1 77.1 8 0.0014 0.7129 1.4028 63.9 63.9 8 0.0017 0.7125 1.4034 64.5 64.5 8 0.0017 0.7125 1.4035 81.3 81.3 6 0.0015 0.6413 1.5594 71.0 71.0 6 0.0019 0~6409 1.5602 71.8 170.3 170.3 6 0.0019 0.6409 1.5604 90.3'175.4 175.4 0.0020 0.4846 2.0638 94.0 141.0 141.0 0.0025 0.4841 2.0657 95.0 128.9 128.9 4 0.0026 0.4840 2.0661 119.6 132.7 132.7 Motor: 3P2'IOB Norsepouer 300 PF 0.89 Ef f iciency 0.934 Cable Rest.0.0343 Cable React 0.0302 LRC/FLA 6.22 Stall TorqX 270 RHR Pump Cable Impedance P.U.Ispedance Base KVA Hotor Base Amps Stall Volts 0.0457 0.0008 269.2 38.9 0.609 TIHE (sec)PU-60 60-14 CABLE DROP(pu)0.0008 0.0010 HTR VOLTS(pu)0.9428 0.8025 AHPS(pu)1.0607 1.2460 RUNNING AKPS 41.2 48.4 LRC ANPS CURVE POINTS 41.2 48.4 13 0.0010 0.7936 1.2601 49.0 49.0 12 0.0010 0.7811 1.2803 49.8 49.8 11 0.0010 0.7668 1.3041 50.7 50.7 10 0.0010 0.7516 1.3305 51.7 51.7 8 0.0011 0.7131 1.4022 54.5 54.5 6 0.0012 0.6416 1.5586 60.6 60.6 0.0016 0.4850 2.0620 80~1 117.1 117.1 I,~e)t'i c<+'5, JOB NO.21701-523 CALO.NO.21701-523-E-02 REV.NO.SHEET NO.GALCULATI N SHEET APPENDIX gOI)2.OL-G2-S QIL43-K-sHT>op ZCo ORIGINATOR DATE CHECKED 03/27/92 DATE SMGR 30 4.16KV Tied to Bus 3A Degraded Voltage Protection:

LC 3801 via 3A 3A-30 tie cable~.0072+I.016 ohms'.0175 30 Bus Loading I CM 318.6 CCM 401.1 30 Total 719.7 ,'-ITE Relay--'-----IAV RELAY Time PU-60 60-14 13 IAV Dial 5---0.900 0.890 Relay Voltage 105.48 M.M 87.89 Voltage QLC 421.9 355.5 351.6 Voltage 8 3A 3748.1 3158.0 3122.9 Voltage 8 30 3742.3 3151.1 3116.0 pu V (4KV Base 0.9356 0.7878 0.7790 Pickup Setting: 12 11 0.876 0.860 86.51 84.93 346.0 339.7 3073.8 3017.7 3066.7 3010.5 0.7667 0.7526 98.75 10 0.843 83.25 333.0 2958.0 2950.7 0.7377 V 8 0.800 79.00 316.0 2807.1 2799.4 0.6998 6 0.720 71.10 284.4 2526.4 2517.8 0.6295 4 0.545 53.82 215.3 1912.4 1900.9 0.4752 Rotor: 3P9C Horsepower 325 PF 0.82 Efficiency 0.928 Cable Rest.0.0298 Cable React 0.0262 LRC/FLA 5.80 Stall Torch, 230 ICM Pcmp Cable Impedance P.U.Impedance Base KVA Notor Base Amps Stall Volts 0.0397 0.0008 318.6 46.0 0.659 TINE (sec)PU-60 60-14 CABLE DROP(pu)0.0008 0.0010 NTR VOLTS(pu)0.9347 0.7868 ANPS(pu)1.0698 1.2710 RUNNING ANPS 49.2 58.5 LRC AHPS CURVE POINTS 49.2, 58.5 13 0.0010 0.7780 1.2854 59.1 59.1 12 0.0010 0.7657 1.3061 60.1 60.1 11 0.0011 0.7516 1.3306 61.2 61.2 10 0.0011 0.7366 1.3576 62.4 62.4 8 0.0011 0.6987 1.4312 65.8 65.8 6 0.0013 0.6282 1.5919 73.2 167.1 167.1 4 0.0017 0.4736 2.1116 97.1 126.2 126.2 Rotor: 3P211C CCM Pcmp Horse@war 450 Cable Impedance PF 0.9 P.U.Impedance Efficiency 0.93 Base KVA Cable Rest.0.0382 Notor Base Amps Cable React 0.0336 LRC/FLA 4.74 Stall Torcpf, 200 Stall Volts 0.0509 0.0013 401.1 57.9 0.707 TINE (sec)PU-60 60-14 CABLE DROP(pu)0.0014 0.0016 NTR VOLTS(pu)0.9342 0.7862 ANPS(pu)1.0704 1.2720 RUNNING ANPS 62.0 73.6 LRC ANPS CURVE POINTS 62.0 73.6 13 0.0016 0.7774 1.2864 74.5 74.5 12 0.0017 0.7650 1.3072 75.7 75.7 11 0.0017 0.7509 1.3317 77.1 77.1 10 0.0017 0.7359 1.3588 78.7 78.7 8 0.0018 0.6980 1.4326 82.9 190.9 190.9 6 0.0020 0.6274 1.5938 92.3 171.7 171.7 4 0.0027 0.4725 2.1162 122.5 129.6 129.6

)7'4 1 IP t~lW a'%i JOB NO.'21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED.03/27/92 REV.NO.SHEET NO.DATE GALCVMTXON SHEET hPPBNDlX Jog Zl70-523 Jl-5.E-SHT+OP SMGR 3D 4.16KV Tied to Bus 3B Degraded Voltage Protection:

LC 3802 via 38 38-30 tie cablei.0077+J.0172 ohms~0.0188 3D Bus Loading ICM 318.6 CCM 401.1 3D Total 719.7 f-ITE Relay--,'-


IAV RELAY Time PU-60 60-14 13 IAV Dial 5---0.900 0.890 Relay Voltage 106.22 90.45 89.45 Voltage QLC 424.9 361.8 357.8 Voltage 9 3A 3774.4 3214.0 3178.3 Voltage 9 30 3768.2 3206.7 3170.9 pu V (4KV Base 0.9420 0.8017 0.7927 Pickup Setting: 12 11 0.876 0.860 88.04 86A3 352.2 345.T 3128.3 3071.1 3120.8 3063.5 0.7802 0.7659 100.5 V 10 0.843 84.72 338.9 3010.4 3002.7 O.rsor 8 0.800 80.40 321.6 2856.9 2848.7 0.7122 6 0.720 72.36 289.4 2571.2 2562.1 0.6405 4 0.545 54.77 219.1 1946.2 1934.2 0.4835 Hotor: 3P9C Horsepower 325 PF 0.82 Ef f iciency 0.928 Cable Rest.0.0298 Cable React 0.0262 LRC/FLA 5.80 Stall TorqX 230 ICM Pulp Cable Impedance P.U.Ispedance Base KVA Motor Base Amps Stall Volts 0.0397 0.0008 318.6 46.0 0.659 TINE (sec)PU-60 60-14 CABLE DROP(pu)0.0008 0.0010 HTR VOLTS(pu)0.9412 0.8007 AHPS(pu)1.0625 1.2489 RUNNING AHPS 48.9 57.4 LRC AHPS CURVE POINTS 48.9 57.4 13 0.0010 0.7917 1.2631 58.1 58.1 12 0.0010 0.7792 1.2834 59.0'9.0 11 0.0010 0.7649 1.3074 60.1 60.1 10 0.0011 0.7496 1.3340 61.4 61.4 8 0.0011 0.7111 1.4063 64.7 64.7 6 0.0012 0.6393 1.5642 71.9 170.1 170.1 0.0016 0.4819 2.0751 95.4 128.4 128.4 Hotor: 3P211C CCM Pump Korsepoeer 450 Cable Impedance PF 0.9 P.U.Iapedance Efficiency 0.93 Base KVA Cable Rest.0.0382 Hotor Base Aaps Cable React 0.0336 LRC/FLA 4.74 Stall TorcPf, 200 Stall Volts I I 0.0509 0 0013 401.1 57.9 I I 0.707 TINE (sec)PU-60 60-14 CABLE DROP(pu)0.0014 0.0016 HTR VOLTS(pu)0.9407 0.8001 AHPS(pu)1.0631 1.2499 RUNNING AHPS 61.5 72.4 LRC ANPS CURVE POINTS 61.5 72.4 13 0.0016 0.7911 1.2640 73.2 73.2 12 0.0016 0.7786 1.2844 74.4 74.4 11 0.0017 0.7642 1.3085 75.8 75.8 10 0.0017 0.7490 1.3352 77.3 77.3 8 0.0018 0.7104 1A077 81.5 81.5 6 0.0020 0.6385 1.5661 90.7 174.7 174.7 4 0.0027 0.4M9 2.0794 120.4 131.9 131.9 P, i,c t>>>.4 JOB NO.21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED 03/27/92 REV.NO.SHEET NO.DATE f-Mae>~7 9'4 CALCULATION SHEET hPPENDtX J~g 2Q)-M.3--02 SHT OP LC 3801 3A (-ITE Relay--',-----IAV RELAY Time PU-60 60-14 13 IAV TD 5 0.900 0.890 Relay Voltage 105A8 88.M 87.89 Voltage Q(CC 421.9 355.5 351.6 P.U.Voltage 0.9172 0.7728 0.7642 Pickup Setting: 12 11 0.876 0.860 86.51 84.93 346.0 339.7 0.7522 0.7385 98.75 10 0.843 83.25 333.0 0.7239 V-8 0.800 79.00 316.0 0.6870 6 0.720 71.10 284.4 0.6183 4 0.545 53.82 215.3 OA680 Motor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall Torque 3P201A 150 0.9 0.925 0.0254 0.0275 5.80 230 Charging Pm@Cable Impedance P.U.Impedance Hotor Base KVA Notor Base Amps Stall Volts 0.0374 0.0238 134~41 168.71 0.659 TIHE (sec)PU-60 60-14 CABLE DROP(pu)0.0267 0.0321 HTR VOLTS(pu)0.8905 0.7407 AHPS(pu)1.1229 1.3500 RUNNING ANPS 189.5 227.8 LRC ANPS CURVE POINTS 189.5 227.8 13 0.0325 0.7317 1.3666 230.6 230.6 12 0.0331 0.7192 1.3905 234.6 234.6 11 0.0337 0.7047 1 4190 239.4 239.4 10 0.0345 0.6894 1.4506 244.7 244.7 8 0.0366 0.6504 1.5375 259.4 590.7 590.7 6 0.0412 0.5771 1.7329 292.4 531.7 531.7 4 0.0580 0.4100 2.4391 411.5 402.4 402.4 Hotor: Horsepower PF Efficiency Cable Rest.Cable React.LRC/FLA Stall Torch 3P214A Cont.Spray Pm@250 Cable Impedance 0.9 P.U.Impedance 0.94 Hotor Base KVA 0.0065 Motor Base Amps 0.015 6.18 200 Stall Volts 0.0163 0.0170 220.45 276.70 0.707 TINE (sec)PU-60 CABLE DROP(pu)0.0190 HTR VOLTS(pu)0.8983 ANPS(pu)1.1133 RUNNING ANPS 308.0 LRC ANPS CURVE POINTS 308.0 60-14 0.0227 0.7501 1.3331 368.9 368.9 13 0.0230 0.7413 1.3490 373.3 373.3 12 0.0234 0.7288 1.3720 379.6 379.6 11 0.0238 0.7146 1.3993 387.2 387.2 10 0.0243 0.6995 1 4295 395.5 1119.9 1119.9 8 0.0258 0.6612 1.5124 418.5 1062.8 1062.8 6 0.0289.0.5894 1.6967 469.5 956.5 956.5 4 0.0398 0.4282 2.3353 646.2 724.0 724.0 IJ1 J08 NO.21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED 03/27/92 REV.NO~SHEET NO.DATE>>~/<>CALCULATION SHEET APPENDIX JOB~OZ sarM'p~~LC 3802 38',-ITE Relay--',------IAV RELAY Pickup Setting: Time PU-60 60-14 13 12 11 IAV TD 5 0.900 0.890 0.876 0.860 Relay Voltage 106.22 90.45 89.45 88.04 86.43 Voltage QICC 424.9 361.8 357.8 352.2 345.7 P.U.Voltage 0.9237 0.7865 0.7778 0.7655 0.7516 100.5 10 0.843 84.72 338.9 0.7367 V 8 0.8N 80.40 321.6 0.6991 6 0.720 72.36 289.4 0.6292 0.545 54.77 219.1 0.4763 Motor: Horsepower PF Ef f iciency Cabl~Rest.Cable React.LRC/FLA Stall Torque 3P2018 150 0.9 0.925 0.0325 0.0352 5.80 230 Charging Punp Cable Ispedance P.U.Impedance Motor Base KVA Motor Base Asps Stall Volts 0.0479 0.0304 134.41 168.71 0.659 TIKE (sec)PU-60 60-14 CABLE DROP(pu)0.0342 0.0408 HTR VOLTS(pu)0.8894 0.7457 AHPS(pu)1.1243 1.3410 RUNNING AKPS 189.7 226.2 LRC AKPS CURVE POINTS 189.7 226.2 13 0.0413 0.7365 1.3578 229.1 229.1 12 0.0421 0.7235 1.3822 233.2 233.2 11 0.0429 0.7086 1.4112 238.1 238.1 10 0.0439 0.6928 1.4435 243.5 243.5 8 0.0466 0.6525 1.5326 258.6 581.5 581.5 6 0.0528 0.5764 1.7348 292.7 523.3 523.3 4 0.0760 0.4002 2.4985 421.5 396.1 396.1 Hotor: Horsepower PF Efficiency Cable Rest.Cable React.LRC/FLA Stall To ref 3P2148 Cont.Spray Pump 250 Cable Impedance 0.905 P.U.Ispedance 0.94 Motor Base KVA 0.0077 Hotor Base Asps 0.0178 6.18 200 Stall Volts 0.0194 0.0201 219.23 275.17 0.707 TIKE (sec)PU-60 60-14 CABLE DROP(pu)0.0223 0.0264 HTR VOLTS(pu)0.9014 0.7601 AKPS(pu)1.1094 1.3156 RUNNING AKPS 305.3 362.0 LRC AKPS CURVE POINTS 305.3 362.0 13 0.'0268 0.7510 1.3315 366.4 366.4 12 0'272 0.7383 1.3544 372.7 372.7 11 0.0278 0.7238 1.3816 380.2 380.2 10 0.0284 0.7083 1.4117 388.5 388.5 8 0.0300 0.6691 1.4945 411.2 1057.6 1057.6 6 0.0337 0.5955 1.6793 462.1 951.8 951.8 4 0.0468 0.4295 2.3283 640.7 720.5 720.5 C J Jf1 JOB NO.21701-523 ORIGINATOR CALO.NO.21701-523-E-02 REV.NO.SHEET NO.DATE 03/27/92 CHECKED DATE CALCULATION SHEET APPEND JOB 2~2.333T~O9>LC 3H (3850)LC Supply: 3803 PSB-1 LC Volts: PSB-1 MCC V PSB-1 V Drop Calculated PmZc EC-145 Ref.366 App.11 Case 9 353 App.11 Case 9 13 4589 I I Tis3e IAV TD 5 Relay Voltage Voltage QLC Voltage QMCC P.U.Voltage ITE Relay-3 IAV RELAY PU-60 60-14 13 0.90 0.89 108.31 88;20 87.22 433.2 352.8 348.9 422.4 339.3 335.2 0.9182 0.7376 0.7287 Pickup Setting: 12 11 0.88 0.86 85.85 84.28 343 4 337.1 329.5 322.9 0.7162 0.7020 98 V 10 0.84 82.61 330.5 315.9 0.6868 8 0.80 78AO 313.6 298.2 0.6483 6 0.72 70.56 282.2 264.9 0.5759 4 0.55 53.41 213.6 189.4 0.4118 Motor: Horsepcwer PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall To~3P201C 150 0.9 0.92 0.0226 0.0245 5.80 230 Charging Pm@Cable Impedance P.U.Impedance Motor Base KVA Motor Base Amps Stall Volts 0.0333 0.0213 135.14 169.63 0.659 TIME (sec)PU 60 60-14 CABLE DROP(pu)0.0238 0.0301 MTR VOLTS(pu)0.8944 0.7075 AMPS(pu)1.1181 1.4135 RUNNING AMPS 189.7 239.8 LRC AMPS CURVE POINI'S 189.7 239.8 13 0.0305 0.6982 1.4323 243.0 243.0 12 0.0311 0.6852 1 4595 247.6 247.6 11 0.0318 0.6702 1.4921 253.1 253.1 10 0.0325 0.6543 1.5284 259.3 601 4 601.4 8 0.0347 0.6136 1.6297 276.4 56r.r 567.7 6 0.0397 0.5362 1.8650 316.3 504.3 504.3 4 0.0606 0.3511 2.8479 483.1 360.6 360.6 f.q Cl'I JOS NO.21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED 03/27/92 REV.NO.SHEET NO~0-DATE 3p7 fW CALCULATION SHEET~ppswom 1QaLSZ+-2~SHY>c'F LC 3H (3850)LC Supply: 3B04 PSB-1 LC Volts: PSB 1 MCC V PSB-1 V Drop Calculated PmZc EC-145 Ref.371 App.9 Case 10 358 App.9 Case 10 13 4654)-ITE Relay-~IAV RELAY Time PU-60 60-14 13 IAV TD 5 0.900 0.890 Relay Voltage 108.22 88.20 87.22 Voltage QLC 432.9 352.8 348.9 Voltage QLCC 421.8 339.1 335.0 P.U.Voltage 0.9171 0.7371 0.7282 Pickup Setting: 12 11 0.876 0.860 ,85.85 84.28 343.4 337.1 329.3 322.7 0.7158 0.7015 98 10 0.843 82.61 330.5 315.7 0.6863 V 8 0.800 78.40 313.6 298.0 0.647S 6 0.720 70.56 282.2 264.7 0.5753 4 0.545 53.41 213.6 189.0 0.4109 Motor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall TorqX 3P201C 150 0.9 0.92 0.0226 0.0245 5.80 230 Charging Pmp Cable la@cdance P.U.Impedance Motor Base KVA Kotor Base Amps Stall Volts 0.0333 0.0213 135.14 169.63 0.659 TIKE (sec)PU-60 60-14 CABLE DROP(pu)0.0238 0.0301 KTR VOLTS(pu)0.8932 0.7070 AMP S(pu)1.1195 1.4144 RUNNING AKPS 189.9 239.9 LRC AKPS CURVE POINTS 189.9 239.9 13 0.0305 0.6977 1.4332 243.1 243.1 12 0.0311 0.6847 1.4605 247.7 247.7 11 0.0318 0.6697 1 A931 253.3 253.3 10 0.0326 0.6538 1.5296 259.5 60'1.0 601.0 8 0.0347 0.6131 1.6312 276.7 567.3 567.3 6 0.0397 0.5356 1.8671 316.7 503.8 503.8 4 0.060&0.3501 2.8563 484.5 359.8 359.8 t l fA J ly'\y(

JOS NO.21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED03/27/92 REV.NO.SHEET NO.DATE CALGULATI N SHEET APPENDIX ChLC.~I l(-)L-5 arr~~op~~NCC 3A (3B05)LC Supply: 3801 PSB-1 LC Volts: PSB-1 NCC V PSB-1 V Drop Calculated PmZc EC-145 Ref.369.5 App.11 Case 9 369 App.11 Case 9 0.5 184.5 I I Time IAV TD 5 Relay Voltage Voltage QLC Voltage eMCC P.U.Voltage ITE Relay--,'----IAV RELAY PU-60 60-14 13 0.900 0.890 105.48 88.8S 87.89 421.9 355.5 351.6 421.5 355.0 351.0 0.9163 0.7717 0.7631 Pickup Setting: 12 11 0.876 0.860 S6.51 84.93 346.0 339.7 345.5 339.2 0.7511 0.73?3 98.75 10 0.843 83.25 333.0 332.4 0.7227 V 8 0.800 79.00 316.0 315.4 0.6857 6 0.720 71.10 284.4 283.7 0.6168 0.545 53.82 215.3 214.4 0.4661 Motor: Horse@war PF Ef f fciency Cable Rest.Cable React.LRC/FLA Stall TorqX 3P10A EDG FO XFER 0.?5 Cable Ispedance 0.85 P.U.Iapedance 0.59 Motor Base KVA 0.5612 Motor Base Amps 0.0122 6.00 190 Stall Volts 0.5613 0.0030 1.12 1.40 0.725 TINE (sec)PU-60 CABLE DROP(pu)0.0032 NTR VOLTS(pu)0.9130 ANPS(pu)1.0953 RUNNING ANPS 1.5 LRC ANPS CURVE POINTS 1.5 60-14 0.0039 0.76?8 1.3024 1.8'I.S 13 0.0039 0.?592 1.3172'I.S 1.8 12 0.0040 0.7471 1.3385 1.9 1.9 11 0.0040 0.7333 1.3638 1.9 1.9 10 0.0041 0.7186 1.3917 1.9 6.0 6.0 8 0.0043 0.6813 1.4677 2.1 5.7 5.7 6 0.0048 0.6120 1.6340 2.3 5.1 5.1 0.0064 0.4597 2.1754 3.0 3.8 3.8 Motor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall Torque 3V34A 5 0.85 0.92 0.4807 0.0104 6.00 190 EDG ROON VENT FAN Cable Ispedance P.U.Is@cdance Motor Base KVA Motor Base Amps Stall Volts 0.4808 0.0108 4.77 5.99 0.725 TINE (sec)PU-60 60-14 CABLE DROP(pu)0.0120 0.0143 NTR VOLTS(pu)0.9043 0.?574 ANPS(pu)1.1059 1.3203 RUNNING ANPS 6.6 7.9 LRC ANPS CURVE POINTS 6.6 7.9 13 0.0145 0.7486 1.3358 8.0 8.0 12 0.0147 0.7363 1.3581 8.1 8.1 11 0.0150 0.7223 1.3845 8.3 24.9 24.9 10 0.0153 0.7074 1.4137 8.5 24.4 24.4 8 0.0162 0.6695 1.4937 8.9 23.1 23.1 6 0.0181 0.5987 1.6702 10.0 20.8 20.8 4 0.0245 0.4416 2.2646 13.6 15.7 15.7

~c-",'i}K<<C~h;2)N~pk JOB HO.21701-523 ORIGINATOR CALO.HO.21701-523-E-02 REV.NO.SHEET NO.DATE 03/27/92 CHECKED DATE)a7 CALCULATION SHEET APPBND1X JQQ\~C Zl'lOl-Q3-F-o SHT~~OF HCC 3B (3B06)LC Supply: 3802 PSB-1 LC Volts: PSB-1 IICC V PSB-'I V Drop Calculated PmZc EC-145 Ref.385 App.5 Case 10 379 App.5 Case 10 6 2274 I I Time IAV TD 5 Relay Voltage Voltage QLC Voltage QICC P.U.Voltage 11 0.860 86.43 345.7 339.0 0.7370 13 0.890 89A5 357.8 351.3 0.7637 PU-60 106.22 424.9 419.5 0.9119 12 0.876 88.04 352.2 345.6 0.7512 60-14 0.900 90.45 361.8 355.4 0.7726 ITE Relay--',------IAV RELAY Pickup Setting: 100.5 10 0.843 84.72 338.9 332.0 0.7218 V-8 0.800 80.40 321.6 314A 0.6834 6 0.720 72.36 289.4 281.4 0.6116 4 0.545 54.77 219.1 208.2 0.4525 Motor: Horsepower PF Efficiency Cable Rest.Cable React.LRC/FLA Stall Torque 3V30A ENERG CONT CLR FAN 30 Cable Iapedance 0.808 P.U.Impedance 0.904 Motor Base KVA 0.1939 Kotor Base Amps 0.0256 6.18 263 Stall Volts 0.1956 0.0283 30.64 38.46 0.617 TINE (sec)PU-60 CABLE DROP(pu)0.0322 HTR VOLTS(pu)0.8797 ANPS(pu)1.1368 RUNNING ANPS 43.7 LRC ANPS CURVE POINTS 43.7 60-14 0.0386 0.7340 1.3623 52A 52.4 13 0.0391 0.7246 1.3800 53.1 53.1 12 0.0398 0.7114 1.4056 54.1 54.1 11 0.0407 0.6963 1.4361 55.2 55.2 10 0.0416 0.6802 1.4702 56.5 56.5 8 0.0443 0.6391 1.5647 60.2 60.2 6 0.0505 0.5612 1.7820 68.5 123.7 123.7 0.0750 0.3775 2.6489 101.9 91.5 91.5 Motor: Horsepower PF Efficiency Cable Rest.Cable React.LRC/FLA Stall TorqX 3V3A 75 0.862 0.929 0.032 0.0218 6.30 247 EHERG CONT FILT Cable Impedance P.U.Impedance Hotor Base KVA Motor Base Amps Stall Volts FAN 0.0387 0.0128 69.87 87.69 0.636 CABLE DROP(pu)0.0142 HTR VOLTS(pu)0.8976 ANPS(pu)1.1141 RUNNING AHPS 97.7 LRC ANPS CURVE POINTS 97.7 0.0169 0.7557 1.3233 116.0 116.0 TIME (sec)PU-60 60-14 13 0.0171 0.7466 1.3394 117.5 117.5 12 0.0174 0.7338 1.3627 119.5 119.5 11 0.0178 0.7192 1.3904 121.9 121.9 10 0.0182 0.7037 1.4212 124.6 124.6 e 0.0192 0.6642 1.5057 132.0 132.0 6 0.0217 0.5900 1.6950 148.6 312.7 312.7 4 0.0303 0.4223 2.3682 207.7 231.4 231.4 Hotor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall Torque E16A/E17A CONT ROOH A/C ANU 34 Cable impedance 0.1316 0.85 P.U.Impedance 0.0202 0.92 Notor Base KVA 32.43 0.1308 Motor Base Aaps 40.71 0.0143 Base Amps t LRC are total 4.53 for 4 Hotors.(Ref.4.11)190 Stall Volts 0.725 CABLE DROP(pu)0.0227 NTR VOLTS(pu)0.8892 ANPS(pu)1.1246 RUNNING AHPS 45.8 LRC AHPS CURVE POINTS 45.8 0.0271 0.7456 1.3413 54.6 54.6 TINE (sec)PU-60 60-14 13 0.0274 0.7363 1.3581 55.3 55.3 12 0.0279 0.7234 1.3824 56.3 126.9 126.9 11 0.0285 0.7085 1.4114 57.5 124.5 124.5 10 0.0291 0.6927 1.4436 5e.e 122.0 122.0 e 0.0309 0.6525 1.5326 62.4 115.5 115~5 6 0.0350 0.5767 1~7341 70.6 103A 103.4 4 0.0501 0.4024 2A850 101.2 76.5 76.5 Motor: 3V36 Horsepower 2 PF 0.88 Ef f iciency 0.79 Cabte Rest.0.9101 Cable React.0.0198 LRC/FLA 6.00 Stall Torque 190 Note: FLA based on PC/H AIR, PART.KGAS HONI TOR Cable Impedance 0.9103 P.U.Iapedance 0.0092 Kotor Base KVA 2.15 Motor Base Aaps 2.70 NOTE: Cable not in EC-145 407'12 per CER schedule Stall Volts 0.725 89-587 which replaced the TIKE (sec)PU-60 CABLE DROP(pu)0.0102 HTR VOLTS(pu)0.9016 AMP S(pu)1~1091 RUNNING ANPS 3.0 LRC AHPS CURVE POINTS 3.0 motor.(See Attachment 3)60-14 0.0121 0.7605 1.3150 3.6 3.6 13 0.0123 0.7514 1.3308 3.6 3.6.12 0.0125 0.7387 1.3536 3.7 3.7 11 0.0127 0.7242 1.3808 3.7 11.3 11.3 10 0.0130 0.7088 1A108 3.8 11.1 11.1 8 0.0138 0.6696 1.4934 4.0 10.5 10.5 6 0.0155 0.5962 1.6774 4.5 9.4 9.4 0.0214 0.4311 2.3195 6.3 6.9 6.9

\1 p't)H I'I I JOB MO.21701-523 ORIGINATOR CALCULATION CALO.MO.21701-523-E-02 DATE CHECKED 03/27/92 SHEET REV.NO.SHEET NO.0=DATE APPENDIX D~CAI.C~IW)-S-S-oZ.SHY~OP PXS Sfn+HCC 3C (3807)LC Supply: 3803 PSB-1 LC Volts: PSB-1 NCC V PSB-1 V Drop Calculated PmZc EC-145 Ref.366 App.11 Case 9 355 App.11 Case 9 11 3905 I I Time IAV TD 5 Relay Voltage Voltage QLC Voltage ISICC P.U.Voltage PU-60 108.22 432.9 423.7 0.9210 60-14 13 0.900 0.890 88.20 S?.22 352.8 348.9 341.4 337.3 0.7421 0.7333 ITE Relay--,'----

-IAV RELAY Pickup Setting: 12 11 0.876 0.860 85.85 84.28 343.4 337.1 331.6 325.1 0.?209 0.7068 98 10 0.843 82.61 330.5 318.2 0.6917 V.8 0.800 78.40 313.6 300.6 0.6535 6 0.720 70.56 282.2 267.7 0.5818 4 0.545 53.41 213.6 193.5 0.4206 Hotor: Morsepcwer PF Efficiency Cable Rest.Cable React.LRC/FLA Stall Torque 3V30C ENERG CONT COOLER 30 Cable Iapedance 0.808 P.U.Impedance 0.904 Motor Base KVA 0.2617 Motor Base Amps 0.0312 6.18 263 Stall Volts FAN 0.2636 0.0382 30.64 38.46 0.617 CABLE DROP(pu)0.0435 HTR VOLTS(pu)0.87?5 AHPS(pu)1.1396 RUNNING AHPS 43.8 LRC ANPS CURVE POINTS 43.8 0.0556 0.6865 1.4567 56.0 56.0 TINE (sec)PU-60 60-14 13 0.0564 0.6769 1.47?3 56.8 56.8 12 0.0575 0.6634 1.5074 58.0 58.0 11 0.0589 0.6479 1.5436 59.4 59.4 10 0.0605 0.6312 1.5842 60.9 60.9 8 0.0648 0.5887 1.6987 65.3 125.7 125.7 6 0.0753 0.5065 1.9743 75.9 111.9 111.9 4 0.1325 0.2881 3.4712 133.5 80.9 80.9 Motor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall Torque 3V3C EHERG CONT.FILTER 75 Cable Iapedance 0.862 P.U.Impedance 0.929 Motor Base KVA 0.035S Hotor Base Amps 0.0243 6.30 247 Stall Volts FAN 0.0433 0.0143 69.87 87.69 0.636 0.0198 0.7223 1.3844 121.4 121.4 CABLE DROP(pu)0.0158 HTR VOLTS(pu)0.9052 ANPS(pu)1.1047 RUNNING ANPS 96.9 LRC ANPS CURVE POINTS 96.9-TIME (sec)PU-60 60-14 13 0.0200 0.7132 1.4021 123.0 123.0 12 0.0204 0.7005 1.4275 125.2 125.2 11 0.0208 0.6859 1.45?9 12?.8 127.8 10 0.0213 0.6?04 1.4917 130.8 130.8 8 0.0226 0.6309 1.5852 139.0 331.2 331.2 6 0.0257 0.5562 1.7980 157.7 294.9 294.9 4 0.03?3 0.3833 2.6091 228.8 213.2 213.2 Notor: Horsepower PF Efficiency Cable Rest.Cable React.LRC/FLA Stall Torcpf 0.529 3V65A SlKR 3D ROOH SUPPLY FAN 2 Cable Impedance 0.8554 0.808 P.U.Impedance 0.0086 0.865 Notor Base KVA 2.13 0.855 Notor Base Amps 2.68 0.0272 7.63 358 Stall Volts 0.0118 0.?303 1.3694 3.7 3.7 CABLE DROP(pu)0.0095 HTR VOLTS(pu)0.9115 AHPS(pu)1.0970 RUNNING ANPS 2.9 LRC AMPS CURVE POINTS 2.9 TINE (sec)PU-60 60-14 13 0.0120 0.7213'l.3864 3.7 3.7 12 0.0122 0.7087 1.4110 3.8 3.8 11 0.0124 0.6943 1.4402 3.9 3.9 10 0.0127 0.6?90 1;4728 3.9 3.9 8 0~0135 0.6400 1.5625 4.2 4.2 6 0.0152 0.566&1.7649 4.7 4.7 4 0.0216 0.3989 2.5068 6.7 8.1 8.1 4Pg4 pP ,V 1" p1'4l JOB NO.21701-523 ORIG IHATOA CALO.HO.21701-523-E-02 REV.HO.SHEET KO.DATE 03/27/92 CHECKED DATE CALCULATION SHEET APPENDS Jpp l ol-ggg21 Ol"5 ssv2Mop+~HCC 30 (3B08)LC Supply: 3803 PSB-1 LC Volts: PSB-1 HCC V PSB-1 V Drop Calculated PmZc EC-145 Ref.366 App.11 348 Case 9 18 6Z64 Time IAV TD 5 Relay Voltage Voltage QLC Voltage QHCC P.U.Voltage PU-60 108.31 433.2 418.2 0.9092 60-14 13 0.90 0.89 88.20 87.22 352.8 348.9 334.0 329.9 0.7262 0.7172 ITE Relay--'------IAV RELAY Pickup Setting: 12 11 0.88 0.86 85.85 84.28 343 4 337.1 324.1 317.4 0.7045 0.6900 98 10 0.84 82.61 330.5 310.3 0.6745 V 8 0.80 78.40 313.6 292.2 0.6351 6 0.72 70.56 282.2 258.0 0.5608 4 0.55 53.41 213.6 178.6 0.3882 Hotor: HorsepoMer PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall Torque Hotor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall TorqX 3V3B EHERG CONT FILTER 75 Cable Impedance 0.862 P.U.Impedance 0.929 Motor Base KVA 0.0379 Hotor Base Amps 0.0258 6.30 247 Stall Volts 3V308 EMERG CONT COOLER 30 Cable Impedance O.SM P.U.Ispedance 0.904 Motor Base KVA 0.249 Motor Base Amps 0.0294 6.1e 263 Stall Volts FAN 0.0458 0.0151 69.87 87.69 0.636 FAN 0.2507 0.0363 30.64 38.46 0.617 TIHE (sec)PU-60 CABLE DROP(pu)0.0170 HTR VOLTS(pu)0.8922 AHPS(pu)1.1208 RUNNING AHPS 98.3 LRC AMPS CURVE POINTS 98.3 TIHE (sec)PU-60 CABLE DROP(pu)0.0419 HTR VOLTS(pu)0.8673 AMPS(pu)1.1530 RUNNING AHPS 44.3 LRC AHPS CURVE POINTS 44.3 60-14 0.0215 0.7047 1 4190 124.4 124 4 60-14 0.0540 0.6722 1.4877 57.2 57.2 13 0.0218 0.6954 1.4380 126.1 126.1 13 0.0548 0.6623 1.5098 58.1 58.1 12 0.0222 0.68Z3 1.4656 128.5 128.5 12 0.0560 0.6485 1.5420 59.3 59.3 11 0.0227 0.6673 1.4986 131.4 131.4 11 0.0574 0.6326 1.5808 60.8 60.8 10 0.0232 0.6512 1.5355 134.7 134.7 10 0.0590 0.6155 1.6247 62.5 130.9 130.9 8 0.0248 0.6103 1.6385 143.7 320.3 320.3 8 0.0635 0.5716 1.7494 67.3 123.3 123.3 6 0.0284 0.5323 1.8785 164.7 282.8 282.8 6 0.0747 0.4861 2.0572 79.1 108.9 108.9 4 0.0440 0.3442 2.9054 254.8 195.8 195.8 4 0.1572 0.2310 4.3286 166.5 75.3 75.3 Motor: S74B COMPUTER ROON CHILLER UNIT Horsepower 65 Cable Impedance 0.0759 PF P.U.Ispedance 0.0236 Ef f iciency Motor Base KVA 65.65 Cable Rest.0.0691 Total Load Amps 82.40 Cable React.0.0315 Compressor Amps 62 LRC/FLA 5.48/6.44 Fan/Pump A ea.6.8 Stall TorqK 230/274 Stall Volts.659/.604 Note:S748 consists of 2 fans,1 punp 8 1 comp.mtr Total Load Amps equals sue of all loads Motor FLA Ref.5177-206-H724-27-4, also LRC and Stall TorqK data available via Ref.5177-206-H724-43-1

~Horst case Stall TorqX and LRC used for the Pump/Fan carbination.

TIME (sec)PU-60 CABLE DROP(pu)0.0267 HTR VOLTS(pu)0.8825 AHPS(pu)1.1332 RUN AHPS COHP.70.3 LRC AHPS COMP COMP.CURVE PT 70.3 RUN AHPS P/FAN 7.7 LRC AHPS P/FAN PUMP/FAN PTS 7.7 60-14 0.0340 0.6922 1.4448 89.6 89.6 9.8 9.8 13 0.0345 0.6826 1.4649 90.8 90.8 10.0 10.0 12 0.0352 0.6693 1.4941 92.6 92.6 10.2 10.2 11 0.0360 0.6539 1.5292 94.8 207.6 207.6 10.4 10.4 10 0.0370 0.6375 1.5685 97.2 203.0 203.0 10.7 10.7 e 0.0396 0.5956 1.6791 104.1 191.1 191.1 11.4 24.1 24.1 6 0.0457 0.5150 1.9416 120.4 168.7 168.7 13.2 21.3 21.3 4 0.0753 0.3129 3.1963 198.2 116.8 116.8 21.7 14.8 14.8 P'($t)~'i JOB NO.'21701-523 OAIGINATOA CALGULATI CALO.NO.21701-523-E-02 DATE CHECKED, 03/27/92 SHEET AEV.No.SHEET No.0 DATE APPEND1X~K-o~~~Motor: Horsepower PF Efficiency Cable Rest.Cable React.LRC/FLA Stalt TorciK S75B COMPUTER ROON CHILLER 5 Cable lapedance 0.6391 0.84 P.U.Impedance 0.0164 0.82 Hotor Base KVA 5.42 0.6388 Motor Base Aaps 6.N 0.0203 6.04 274 Stall Volts 0.604 TINE (sec)PU-60 CABLE DROP(pu)0.0184 MTR VOLTS(pu)0.8908 ANPS(pu)1.1226 RUNNING ANPS 7.6 LRC AHPS CURVE POINTS 7.6 60-14 0.0233 0.7029 1.4226 9.7 9.7 13 0.0236 0.6936 1.4418 9.8 9.8 12 0.0240 0.6804 1 4696 10.0 10.0>>0.0246 0.6654 1.5029 10.2 10.2 10 0.0252 0.6493 1.5401 10.5 10.5 8 0.0269 0.6082 1.6441>>.2>>.2 6 0.0309 0.5299 1.8871 12.8 21.0 21.0 4 0.0481 0.3401 2.9405 20.0 14.5 14.5 Motor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall TorqX S77B CONPUTER ROOH AC-AHU 5 Cable Iapedance 0.8077 0.84 P.U.Iapedance 0.0207 0.82 Motor Base KVA 5.42 0.8073 Hotor Base Amps 6.80 0.0257 6.04 274 Stall Volts TIME (sec)PU-60 60-14 CABLE DROP(pu)0.0233 0.0297 HTR VOLTS(pu)0.8858 0.6965 ANPS(pu)1~1289 1.4357 RUHHIHG AHPS 7.7 9.8 LRC AHPS CURVE POINTS 7.7 9.8 13 O'.P301 0.6sri 1.4555 9.9 9.9 12 0.0307 0.6738 1.4841 10.1 10.1>>0.0314 0.6586 1.5184 10.3 10.3 10 0.0322 0.6423 1.5569 10.6 10.6 8 0.0344 0.6007 1.6647 11.3 23.2 23.2 6 0.0397 0.52>>1.9190 13.0 20.5 20'4 0.0637 0.3245 3.08ZO 20.9 14.2 14.2 Motor: Horsepower PF Ef f i clancy Cable Rest.Cable React.LRC/FLA Stall To~S788 5 0.84 0.82 0.716 0.0228 6.04 Zr4 Stall Volts 0.604 COMPUTER ROON AC-AHU Cable lapedance 0.7164 P.U.Impedance 0.0183 Motor Base KVA 5.42 Motor Base Amps 6.80 TIHE (sec)PU-60 CABLE DROP(pu)0.0206 HTR VOLTS(pu)0.8885 AHPS(pu)1.1254 RUNNING AHPS 7.6 LRC AMPS CURVE POINTS 7.6 60-14 0.0262 0.7000 1.4286 9.7 9.7 13 0.0265 0.6906 1.4480 9.8 9.8 12 0.0271 0.6774 1.4762 10.0 10.0>>0.0277 0,6623 1.5099.10.3 10.3 10 0.0284 0.6461 1.5477 10.5 10.5 8 0.0303 0.6048 1.6534>>.2>>.2 6 0.0349 0.5259 1.9014 12.9 20.7 zo.'r 4 0.0550 0.3331 3.0017 20.4 14.3 14.3 Motor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall Topcgf V298 5 O.BS 0.81 0.5335 0.017 6.44 307 CONT.ROON EHERG Cable lapedance P.U.Iapedance Motor Base KVA Notor Base Amps Stall Volts FILTER FAH 0.5338 0.0137 5.42 6.80 0.571 TIHE (sec)PU-60 CABLE DROP(pu)0.0153 HTR VOLTS(pu)0.8939 ANPS(p)1.>>87 RUHNIHG AHPS 7.6 LRC ANPS CURVE POINTS 7.6 60-14 0.0193 0.7069 1.4147 9.6 9.6 13 0.0196 0.6976 1'336 9.7 9.7 12 0.0200 0.6845 1.4609 9.9 9.9>>0.0204 0.6696 1.4935 10.2 10.2 10 0.0209 0.6536 1.5300 10.4 10.4 8 0.0223 0.6128'l.6318>>~1>>.1 6 0.0255 0.5352'l.8683 12.7 22.6 22.6 4 0.0392 0.3490 2.8652 19.5 15.6 15.6 1'i f%

JOB NO.21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED.03/27/92 REV.KO.SHEET NO.DATE APPENDIX~I~'Zl 01-523-"02 sm>c.op~c'otor: Horsepcwer PF Efficiency Cable Rest.Cable React.LRC/FLA Stall TorqX E16C/E'I7C CONT ROON AC-AHU 34 Cable Impedance 0.1539 P.U.Inpedance 0.0222 Load Base KVA 30.48 0.153 Load Base Amps 38.30 0.0167 Base amps 4 LRC are total 4.53 for 4 Notors.(Ref.4.11)190 Stall Volts 0.725 TINE (sec)PU-60 CABLE DROP(pu)0.0251 NTR VOLTS(pu)0.8841 ANPS(pu)1.1311 RUNNING ANPS 43.3 LRC ANPS CURVE POINTS 43.3 60-14 0.0319 0.6943 1.4404 55.2 114.5 114.5 13 0.0324 0.6848 1.4603 55.9 113.1 113.1 12 0.0330 0.6715 1.4893 57.0 111.1 111.1 11 0.0338~0.6562 1.5240 58.4 108.8 108.8 10 0.0346 0.6398 1.5629 59.9 106.3 106.3 8 0.0371 0.5981 1.6721 64.0 100.1 100.1 6 0.0428 0.5180 1.9306 73.9 88.4 88.4 4 0.0696"0.3186 3.1389 120.2 61.2 61.2 V77/E231 ELECT EQPT ROON AHU 36 Cable Impedance 0.0786 P.U.Is@cdance 0.0098 Load Base KVA 26.45 0.0773 Load Base Amps 33.20 0.0142 Cony Amps 17.3 AHU Alps 9.3 Condenser Fan 6.3 Stall TorqX Stall Volts Note: Notor Data for the AHU and Condenser Fan can be referenced in Attachment 13 Curve Pts calculated separately for each Notor: Horsepcwer PF Ef f iciency Cable Rest.CabLe React.LRC/FLA 11 0.0145 0.6754 1.4806 25.3 69.5 69.5 13.8 13.8 9.3 9.3 a to 6 0.0181 0.5427 1.8427 31.4 56.5 56.5 17.1 33.4 33.4 11.6 24.1 24.1 bs c 10 0.0149 0.6596 1.5161 25.9 67.9 67.9 14.1 14.1 9.5 9.5 value 4 0.0272 0.3610 2.7704 46.2 39.1 39.1 25.7 23.1 23.1 17.4 16.7 16.7 ed uith 8 0.0159 0.6193 1.6148 27.6 64.0 64.0 15.0 37.8 37.8 10.2'10.2 f 43 ft-l 13 0.0140 0.7032 1.4221'(4 4 24 4 13.2 13.2 9.0 9.0 f 17.3 12 0.0142 0.6903 1.4488 24.8 70.9 70.9 13.5 13.5 9.1 9.1 60-14 0.0138 0.7124 1.4037 24.1 24.1 13.1 13.1 8.8 8.8 The FLA TINE (sec)PU-60 CABLE DROP(pu)0.0109 NIR VOLTS(pu)0.8982 AHPS(pu)1.1133 CORP RUN ANPS 19.1 CORP LRC ANPS CONP CURVE PTs 19.1 AHU RUN ANPS 10 4 AHU LRC ANPS AHU CURVE PTs 10.4 COND FAN RUN A 7.0 COND FAX LRC A COND FAN CURVE 7.0 based on Attachment 15 The 200X stall torque asssmad for the conpressor is~0 u Q ve rque 0~onpa r a max.torque value of 114 ft-Lbs giving us a breakckan torque X of 265.Therefore, our 200X asswption is Pxtremely conservative.

>,,s p 1 El" ,9 JOB HO.21701-523 OIIIGIIIATOA CALO.NO.21701-523-E-02 AEV.NO.SHEET NO.DATE CHECKEO.DATE CALCULATI M SHEET hPPBNDIX~op'2'L-2'l-H3-'E-0 saTML op>~03/27/92 3~2 0~HCC 3D (3808)LC Supply: 3804 PSB-1 LC Volts: PSB-1 IICC V PSB-1 V Drop Calculated PmZC EC-145 Ref.371 App.9 Case 10 354 App.9 Case 10 17 6018)-ITE Relay--,'------IAV RELAY Time PU-60 60-14 13 IAV TD 5 0.90 0.89 Relay VoLtage 108.22 88.20 87.22 Voltage QLC 432.8 352.8 34S.9 Voltage QHCC 418.4 334.8 330.7 P.U.Voltage 0.9096 0.7279 0.7189 Pickup Setting: 12 11 0.88 0.86 85.85 84.28 343 A 337.1 324.9 318.2 0.7062 0.6918 98 V 10 0.84 82.61 330.5 311.1 0.6763 8 0.80 78.40 313.6 293.1 0.6371 6 0.72 70.56 282.2 259.0 0.5631 4 0.55 53.41 213.6 180.3 0.3919 Notor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall TorqX 3V3B EMERG CONT FILTER 75 Cable Impedance 0.862 P.U.la@cdance 0.929 Motor Base KVA 0.0379 Notor Base Ass 0.0258 6.30 247 Stall VoLts FAN 0.0458 0.0151 69.87 S7.69 0.636 TINE (sec)PU-60 60-14 CABLE DROP(pu)0.0170 0.0214 HTR VOLTS(pu)0.8926 0.7065 AMPS(pu)1.1203 1.4155 RUNNING ANPS 98.2 124.'I LRC AHPS CURVE POINTS 98.2 124.1 13 0.0217 0.6972 1.4344 125.8 125.8 12 0.0221 0.6841 1.4618 128.2 128.2 11 0.0226 0.6691 1.4945 131.1 131.1 10 0.0232 0.6532 1.5310 134.3 134.3 8 0.0247 0.6124 1.6330 143.2 321.3 321.3 6 0.0283 0.5347 1.8701 164.0 284.0 284.0 4 0.0435 0.3484 2.8702 251.7 197.6 197.6 Hotor: Horsepower PF Efficiency Cable Rest.Cable React.LRC/FLA Stall TorqX 3V30B ENERG CONT COOLER 30 Cable Impedance 0.808 P.U.Impedance 0.904 Motor Base KVA 0.249 Hotor Base Amps 0.0294 6.18 263 Stall Volts FAH 0.2507 0.0363 30.64 38.46 0.617 TIHE (sec)PU-60 CABLE DROP(pu)0.0418 HTR VOLTS(pu)0.8678 AMP S(pu)1.1524 RUNNING AHPS 44.3 LRC AHPS CURVE POINTS 44.3 60-14 0.0539 0.6740 1'836 57.1 57.1'3 0.0547 0.6642 1.5055 57.9 57.9 12 0.0558 0.6504 1.5375 59.1 59.1 11 0.0572 0.6345 1.5759 60.6 60.6 10 0.0588 0.6175 1.6193 62.3 62.3 8 0.0633 0.5738 1.7427 67.0 123.7 123.7 6 0.0743 0.4888 2.0459 78.7 109.3 109.3 4 0.1503 0.2416 4.1397 159.2 76.1 76.1 Hotor: S74B COHPUTER ROON CHILLER UNIT Horsepower 65 Cable Impedance 0.0759 PF P.U.Impedance 0.0236 Ef f iciency Motor Base KVA 65.65 Cable Rest.0.0691 Hotor Base Amps 82.40 Cable React.0.0315 Compressor Amps 62 LRC/FLA 5.48/6.44 Fan Amps 6.8 Stall TorqX 230/274 Stall Volts.659/.604.Note:S748 consists of 2 fans,1 pump B 1 coap mtr Total Load Amps Equals Sua of all loads Hotor FLA Ref.5177-206-N724-27-4, also LRC and Stall TorqX data available via Ref.5177-206-H724-43-1

~Ilorst case Stall TorqX, and LRC used for the Puap/Fan combination.

TIME (sec)PU-60 CABLE DROP(pu)0.0267 HTR VOLTS(pu)0.8829 AMPS(pu)1.1326 RUN ANPS COMP.70.2 LRC AHPS COMP.'COMP.CURVE PT 70.2 RUN AHPS P/FAN 7.7 LRC AHPS P/FAHPUMP/FAN PTS 7.7 60-14 0.0340 0.6939 1.4411 89.3 89.3 9.8 9.8 13 0.0344 0.6844 1.4610 90.6 90.6 9.9 9.9 12 0.0351 0.6711 1.4900 92.4 92.4 10.1 10.1 11 0.0359 0.6558 1.5248 94.5 208.2 208.2 10A 10A 10 0.0368 0.6395 1.5638 97.0 203.5 203.5 10.6 10.6 8 0.0394 0.5977 1.6731 103.7 191.7 191.7 11.4 24.2 24.2 6 0.0455 0.5175 1.9323 119.8 169.4 169.4 13.1 21.4 21 A 4 0.0742 0.3177 3.1477 195.2 117.9 117.9 21.4 14.9 14.9 iY l'a wl 4 J'l,~)

JOB NO.'1701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED 03/27/92 REV.NO.SHEET NO~DATE CALCULATION SHEET APPEND1X Cog ZllOl-623-Em SHT Mk op~~Hotor: Korsepcwer PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall Torch Notor: Norsepster PF Ef f ici ency Cable Rest.Cable React.LRC/FLA Stall Torque Hotor: Horsepower PF Ef f i clancy Cable Rest.Cable React.LRC/FLA Stall Torque S75B 5 0.84 0.82 0.6388 0.0203 6.04 274 5 0.84 0.82 0.8073 0.0257 6.04 274 5 0.84 0.82 0.716 0.0228 6.04 274 Stall Volts 0.604 CONPUTER R(XN AC-AHU Cable Impedance 0.7164 P.U.I apedance 0.0183 Hotor Base KVA 5.42 Hotor Base Amps 6.80 Stall Volts 0.604 CDHPUTER ROOH CHILLER Cable Iapedance 0.6391 P.U.Impedance 0.0164 Notor Base KVA 5.42 Notor Base Amps 6.80 I I 0.604 COHPUTER ROON AC-AHU Cable Ispedance 0.8077 P.U.Ispedance 0.0207 Notor Base KVA 5.42 Hotor Base Amps 6.80 TIHE (sec)PU-60 CABLE DROP(pu)0.0184 NTR VOLTS(pu)0.8913 ANPS(pu)1.1220 RUNNING AHPS 7.6 LRC AHPS CURVE POINTS 7.6 TINE (sec)PU-60 CABLE DROP(pu)0.0233 HTR VOLTS(pu)0.8863 ANPS(pu)1.1283 RUNNING ANPS, 7.7 LRC AHPS CURVE POINTS 7 7 TIHE (sec)PU-60 CABLE DROP(pu)0.0206 HTR VOLTS(pu)0.8890 ANPS(pu)1.1249 RUNNING AHPS 7.6 LRC ANPS CURVE POINTS 7.6 60-14 0.0232 0.7047 1.4191 9.6 9.6 60-14 0.0296 0.6983 1.4321 9.7 9.7 60-14 0.0261 0.7018 1.4250 9.7 9.7 13 0.0235 0.6953 1.4381 9.8 9.8 13 0.0300 0.6889 1.4517 9.9 9.9 13 0.0265 0.6924 1.4443 9.8 9.8 12 0.0240 0.6823 1.4657 10.0 10.0 12 0.0306 0.6756 1.4801 10.1 10.1 12 0.0270 0.6?92 1.4722 10.0 10.0 11 0.0245 0.6672 1.4987 10.2 10.2 ll 0.0313 0.6605 1.5141 10.3 10.3 11 0.0276 0.6642 1.5057 10.2 10.2 10 0.0251 0.6512 1.5356 10A 10.4 10 0.0321 0.6442 1.5522 10.6 10.6 10 0.0283 0.6480 1.5431 10.5 10.5 8 0.0268 0.6103 1.6385 11.1 11.1 8 0.0343 0.6028 1.6589 11.3 23.3 23.3 8 0.0302 0.6069 1.6477 11.2 11.2 6 0.0307 0.5323 1.8785 12.8 21.0 21.0 6 0.0395 0.5236 1.9099 13.0 20.5 20.5 6 0.0347 0.5284 1.8927 12.9 20.8 20.8 0.0475 0.3444 2.9040 19.7 14.6 14.6 4 0.0628 0.3290 3.0392 20.7 14.3 14.3 4 0.0543 0.3375 2.9626 20.1 14.5 14.5 Notor: Horsepower PF Efficiency Cable Rest.Cable React.LRC/FLA Stall TorqX V298 CONT.ROON EHERG 5 Cable Iapedance 0.85 P.U.Iapedance 0.81 Hotor Base.KVA 0.5335 Hotor Base Amps 0.01?6A4 307 Stall Volts FILTER FAN 0.5338 0.0137 5.42 6.80 0.571 TIHE (sec)PU-60 CABLE DROP(pu)0.0153 NTR VOLTS(pu)0.8943 ANPS(pu)1.1182 RUNNING AHPS 7.6 LRC AHPS CURVE POINTS 7.6 60-14 0.0193 0.7086 1.4112 9.6 9.6 13 0.0195 0.6993 1A299 9.7 9.7 12 0.0199 0.6863 1.4570 9.9 9.9 11 0.0204 0.6714 1.4894 10.1 10.1 10 0.0208 0.6555 1.5256~10.4 10.4 8 0.0222 0.6149 1.6264 11.1 11.1 6 0.0254 0.5376 1.8600 12.6 22.7 22.7 0.0387 0.3532 2.8316 19.3 15.8 15.8 1 t e l 0 JOB NO.'21701-523 ORIGINATOR CALO.NO.21701-523-E-02 DATE CHECKED.03/27/92 REV.NO.SHEET NO.DATE CALCULATI N SHEET APPENDIX SHT~OF Kotor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA Stall TorqX E16C/E17C CONT ROOK AC-AHU 34 Cable Impedance 0.1539 P.U.Impedance 0.0222 Load Base KVA 30A8 0.153 Load Base Amps 38.30 0.0167 Base asps 4 LRC are total 4.53 for 4 motors.(Ref.4.11)190 Stall Volts 0.725 TIKE (sec)PU-60 CABLE DROP(pu)0.0251 KTR VOLTS(pu)0.8845 AKPS(pu)1.1305 RUNNING AKPS 43.3 LRC AKPS CURVE POINTS 43.3 60-14 0.0319 0.6960 1~436'7 55.0 114.8 114.8 13 0.0323 0.6866 1.4565 55.8 113.3 113.3 12 0.0329 0.6733 1.4852 56.9 111.3 111.3 11 0.0337 0.6581 1.5196 58.2 109.1 109.1 10 0.0345 0.6418 1.5581 59.7 106.6 106.6 8 0.0369 0.6002 1.6662 63.8 100.4 100.4 6 0.0426 0.5205 1.9214 73.6 SS.S 88.8 4 0.0686 0.3233'3.0933 118.5 61.8 61.8 V77/E231 ELECT EQPT ROOK AHU 36 Cable Impedance 0.0786 P.U.Impedance 0.0098 Load Base KVA 26.45 0.0773 Load Base Amps 33.20 0.0142 Cclp Amps 17.3 AHU Amps 9.3 Condenser Fan 6.3 Stall TorqX Stall Volts Note: Kotor data for the AHU and Condenser Fan can be referenced in Attachment 13 4 Attachment 15 for compressor data.Curve Pts calculated separately for each Kotor: Horsepower PF Ef f iciency Cable Rest.Cable React.LRC/FLA 60-14 0.0138 0.7141 1A003 24.0 24.0 13.0 13.0 8.8 8.8 The FLA TIKE (sec)PU-60 CABLE DROP(pu)0.0109 KTR VOLTS(pu)0.8987 AKPS(pu).1.1128 COKP RUN AKPS 19.1 COHP LRC AKPS COKP CURVE PTs 19.1 AHU RUN AKPS 10.3 AHU LRC AKPS AHU CURVE PTs 10.3 COND FAN RUN A 7.0 COND FAN LRC A COND FAN CURVE 7.0 based on Attachment 15 13 0.0139 0.7049 1.4186'(4.3 24.3 13.2 13.2 8.9 8.9 f 17.3 12 0.0142 0.6920 1.4450 24.8 71.1 71.1 13.4 13.4 9.1 9.1 ill 11 0.0145 0.6772 1.4766 25.3 69.7 69.7 13.7 13.7 9.3 9.3 a to 10 0.0149 0.6615 1.5118 25.9 68.1 68.1 14.1 14.1 9.5 9.5 value 6 0.0180 0.5450 1.8348 31.2 56.7 56.7 17.1 33.5 33.5 11.6 24.2 24.2 8 0.0158 0.6213 1.6096 27.5 64.2 64.2 15.0 37.9 37.9 10.1 10.1 4 0.0269 0.3649 2.7402 45.7 39.5 39.5 25.5 23.3 23.3 17.3 16.8 16.8 ed Mith The 200X staLl torque asssuoed for the cclprcssor is~o u g vc rque of 43 ft-lbs, ccmpar a max.torque value of 114 ft-lbs giving us a breakdcwn torque X of 265.Therefore, our 200X assumption is extremely conservative.

t l (k I JOB NO~'21701-523 CALO.HO.21701-523-E-02 REV.NO.SHEET NO.CALCULATION SHEET APPBNDlX JOB~3.sHTW~op 2.~ORIGINATOR DATE CHECKED.03/27/92 DATE HCC 3K (3B52)LC Supply: 3804 PSB-1 LC Volts: PSB-1 HCC V PSB-1 V Drop Calculated PmZc EC.145 Ref.371 App.5 Case 10 370.5 App.5 Case 10 0.5 185.25 I I Time IAV TD 5 Relay Voltage Voltage QLC Voltage QICC P.U.Voltage ITE Relay--,'---IAV RELAY PU-60 60-14 13 0.900 0.890 108.22 88.20 87.22 432.9 352.8 348.9 432.5 352.3 348.3 0.9401 0.7658 0.7573 Pickup Setting: 12 11 0.876 0.860 85.85 84.28 343.4 337.1 342.9 336.6 0.7453 0.7317 98 10 0.843 82.61 330.5 329.9 0.7172 V-8 0.800 78.40 313.6 313.0 0.6805 6 0.7ZO 70.56 282.2 281.6 0.6121 4 0.545 53A1 213.&212.8 0.4625 Notor: Horsepower PF Efficiency Cable Rest.Cable React.LRC/FLA Stall TorqX Notor: Horsepater PF Efficiency Cable Rest.Cable React.LRC/FLA Stall TorqX 3V34B EDG ROOH VENT FAN 5 Cable In@cdance 0.85 P.U.is@cdance 0.92 Motor Base KVA 0.0208 Motor Base Amps 0.0023 6.00 190 Stall Volts 3P10B EDG FO XFER PMP 0.75 Cable Impedance 0.85 P.U.Impedance 0.59 Motor Base KVA 0.1615 Motor Base Amps 0.0051 6.00 190 Stall Volts 0.0209 0.0005 4.77 5.99 I 0.1616 0.0009 1.12 1.40 0.725 TINE (sec)PU-60 CABLE DROP(pu)0.0005 HTR VOLTS(pu)0.9396 ANPS(pu)1.0643 RUNNING ANPS 6.4 LRC AMPS CURVE POINTS 6.4 TIME (sec)PU-60 CABLE DROP(pu)0.0009 HTR VOLTS(pu)0.9392 AMP S(pu)1.0647 RUNNING ANPS 1.5 LRC AHPS CURVE POINTS 1.5 60.14 0.0006 0.7652 1.3069 7.8 7.8 60-14 0.0011 0.7647 1.3077 1.8 1.8 13 0.0006 0.7567 1.3216 7.9 7.9 13 0.0011 0.7562'1.3225 1.9'1.9 12 0.0006 0.7447 1.3428 8.0 8.0 12 0.0011 0.7442 1.3438 1.9 1.9 11 0.0006 0.7310 1.3679 8.2 8.2 11 0.0012 0.7305 1.3689 1.9 1.9 10 0.0007 0.7165 1.3957 8.4 25.7 25.7 10 0.0012 0.7160 1.3967 2.0 6.0 6.0 8 0.0007 0.6798 1.4711 8.8 24A Z4.4 8 0.0013 0.6792 1A723 2.1 5.7 5.7 6 0.0008 0.6114 1.6357 9.8 21.9 21.9 6 0.0014 0.6107 1.6374 2.3 5.1 5.1 4 0.0010 0.4615 2.1668 13.0 16.6 16.6 4 0.0018 OA607 2.1706 3.0 3.9 3.9 Hotor.Korsepwer PF Efficiency Cable Rest.Cable React.LRC/FLA Stall TorqX 0.529 3V658 SNGR 30 ROON SUPPLY FAN 2 Cable Impedance 1.0035 0.85 P.U.Impedance 0.0090 0.92 Hotor Base KVA 1.91 1.003 Hotor Base Amps 2.39 0.0319 6.00 358 Stall Volts TIME (sec)PU-60 CABLE DROP(pu)0.0097 HTR VOLTS(pu)0.9304 AMP S(pu)1.0748 RUNNING ANPS 2.6 LRC AHPS CURVE POINTS 2.6 60-14 0.0120 0.7538 1.3266 3.2 3.2 13 0~0121 0.7451 1.3420 3.2 3.2 12 0.0123 0.7330 1.3643 3.3 3.3 11 0.0126 Oi7191 1.3906 3.3 3.3 10 0.0128 0.7043 1.4198 3.4 3.4 8 0.0136 0.6669 1A995 3.6 3.6 6 0.0152 0.5970 1.6751 4.0 4.0 4 0.0205 0.4421 2.2621 5.4 6.3 6.3 l I'I P t'I II I u~4 g 1k 1't g1 I~

IOOb 6.7AE.9 1 CURRENT IN AMPERES 2 3 4 5 6 7 8910 20 30 405060708090 5 5 5 5 5 55 I hu 4 70 10'9 8 7 g6.E.=~.r~I t 10 9 Z 3 Itu 3~" 1.9.8.7.6.5.E El.AE9 AE8.07 AE6.05 07 05 ut'u.03 02 0 t 01 5.6.7AE9 1 2 3 4 5 6 78910 20 30 40 50607080908 g P$g g 8 g g$CURRENT IN AMPERES 01 For BASIS FOR DATA Standard 1.Tests made at 2.Curves are plotted to TIMEWURRENT CHARACTERISTIC CURVES Fuse Unks.In Dated Volts ac at p I startin6 at 25C with no initbrl load Test points so variattons should be FIGURE 1 8/iB/82 TEMLCURRCNT CEEARACTCREsTEC 48 5258 EtsurllL~ssssa co.saoE a r E s g XTX E/A7/F2 gl1-4p',t l I lf 1 R (r,4 t II iQ p 5.6.7A.91 3 4 5 6 78910 CURRENT IN AMPERES 1000 81 70 70 10~*~\10 Z3 I~I Sm 4 Z 3~".1~07.05.06...05.04.02 01.5.6.7 AI.9 1 2 3 4 5 6 78910 3o ao 5060708090@

y y y y y8yyy CURRENT IN AMPERES 01 ZCM PUPIP 3P9A TIMEWURRENT CHARACTERISTIC CURVES For FuSe Unffa.In BASIS FOR DATA Standards Dated I.I I I l Vdl t pt., sta rtfng at 25C with no Initial load FZGURE 2 3t/1 9/'92 TIIALCVnntNT CHAnACTafflsTIC 48 5258 ttaurrlL~aastlf co.awt a tan~~s)n~x Q<xx.~/~z~1x P L 9*II,'l~)id p'I L 5.6.74.9 I 2 3 4 5 678910~r~rnrl 3 3 l 33lHNNN~jj 70 70 s L L'Wr<iuj 20 10 8 m5 Z3.r~t$~ljt;Sl j t n t.j'l j+.4'r'.l!10 6 Sm 4 X2 05 n njl 7 09 07.06 05.01 5.6.7 AI.9 I For BASIS FOR DATA Standard 1.Tests made at 2.Cufves are plotted to j j 3 4 5 6 7 S910 20 30 40 50607080908 g q 8 y g8(g)))g (3 g)((CURRENT IN AMPERES TIMEWURRENT CHARACTERISTIC CURVES RHR PUMP QP218A Fuse UnkL In Dated Volts aw et p I.~starting at 25C with no Inldal load est points so veltadons should be TtMt&VnnsNT CHARACTXmsTIC 48 5258 Icrurrrs,~ssssn co.tjjtjr e e JA s)nh~gz,y~h~/~~

YC k, I 7~3}t" l,~l (i'1 S,v l 5.d.7 ll.9 I 3 a S 678910 CURRENT IN AMPERES 30 a050607080905 5 5 5 5 5558)3 3 3 f~~33E 1000 e=77 70 c-.>t 100 90 80 70 60 50 IL, t.7 20 10 9 8 7 7'7 I~'1 10 9 8 7 0 va I~I 7t~t'"~I.9.7.6.5.9.7 S A.I.07 A6.05 L 7~~I A8 AS a7 AS s 6.74.9 I 2 3 a 5 d 7 8910 20 30 40 50607080908 g g 8)g 8 ggg CURRENT IN AMPERES 01 for BASIS FOR CATA Standard I.Testsmadeat 2.Cunres sre plotted t TIMEWURRENT CHARACTERISTIC CURVES Fuse Unks.In Oated Volts as et p fstarting at 25C with no Inidsl load 418e V est points so varia5ons shoukl be No.Oats TIMLCVIIIICNT CHAIIAClsnlsTIC 4 8 77surrlL~ssaaII co,%kg w L7A PAW)/27/'qg I"fl 1 fr, 1 gk.t aP<i',(

6.74.91 3 4 5 678910 r r rrnH 3 3 3 3(Him>1 tu it.n t u 70 t*70 i 10-t,~~t 10 9 8 g6 z5 t2 z 3~".I A8.08.07 AN.05 07.06 05.04'" 5.6.7 AI.9 I 2 3 1 S 6 78910'20 30 40 50607080908 g 8 8 g g8ggg CURRENT IN AMPERES 01 I)>3)Him For BASIS FOR DATA Standard 1.Tests made at 2.Curves are plotted to TIME-CURRENT CHARACTERISTIC CURVES Fuse Unks.In Dated Volts aw at p f..starting at 25C with no inl5al load Test points so vs rla dona ahoukl be No.FIGURE 6 Date TIMLCVIIIIEIIT CHARACTartisTIC 48 5258 ttsttprsr a ssssn co aw w 0 44~Q>/~7/w>

'I I

~5.6.7>.91 100'3 4 5 678910~r~~8srl 3 3 ()mHm>1000 e--70 5 70 30 30 10 10 g6 z'.5 O.V4 u 2 3 07 05 I.09 AS ,.07.06..05.04 01 5.6.7 AI.9 I 2 3 4 5 6 7 8 910 20 30 40 50607080908 CURRENT IN AMPERES 5 8 55H55 TIMEWURRENT CHARACTERISTIC CURVES For Fuse Unks.In BASIS FOR DATA Standards Dated t.T~I t Ddt t p f..staring at 25C with no Inlttal load i.1 Di tt~I Test points so varhrUons should be FZGURE 6 D te pat Tlra&cvnRcrrr crrartacTsrtlsrlc 48 5258 Ksurrss~ssssn co.aalu a Di k"w<<>/~z/y~

IJ 1~4 t'r g V'I f (i

~5 6.78.91'URRENT IN AMPERES 5 4 5 6 78910 20 30 s05060708090 5 5 5 I Il n 100 90 80 70 60 50 70'l ns 10~W s'0 g6 2:5 O cP s nn'=.g 2 1.9.7.5 05 01 5.6.74.91 t 2 3 4 5 6 7 8910 20 30 so 50607080908 Nt g 8 g g 8mgia CURRENT IN AMPERES X hO I m ilmlil For BASIS FOR DATA Standard 1.Tests tnade at TIME-CURRENT CHARACTERISTIC CURVES Fuse Unks.In Dated Vohs a<at p I., stetting at 25C with no Inklal load est points so vana5ons should be Date FIGURE get Tl~nnsÃT CHASSCTSSISTIC 48 5258 nsurrst, a Asst co.saNnaaa~Q s(~~)iz.~gg.x 3/~p~+<

'l'e r 4'y K P IIh yj

~5 he.7S.91 3 4 5 678910 Ro Ro ao 50607080908 5 5 5 5 5 558 I I.I I IN III 1000 I~100 70 1 ht 70>>10 g 6,.-zs s 3 I tt;tt'11~~t thII'l uu.r,"'-.I.I'I h 4>>1 10 9 4<1.9.8.1 1.9.7.5 h h.1.01.05.1 h09 AS AIT AS.05 03 0>>01 5.6 74.9 1 R 3 4 5 678910 3O ao SOeOTO809O8 g y 8 g I8ggl CURRENT IN AMPERES'X L 0 0'I For BASIS FOR DATA Standard 1.Testsmadeat 2.Curves sro plotted to CHRG PP 3C TIME~RRENT CHARACTERISTIC CURVES Fuse Units.In Dated Volts ac at p I starting at 25C with no Initial load Test points so variadons should bo FIGURE No.Date TlstscunnsNT cttattttcvxlusvlc 48 5358 tcsurr5,~sssstt coh wl 8 tlA gnf~z gag>4p/q~

>s$'s t I r C'4~'

~$.5.74.91 3 4 5 678910 s 5 5 s 55s5H u 70 u 70 10 l 10 9 cn 6 rs z$0 0~4 z 3".9.7.6.5.I A8.07 AS.0$t~.1.AO AS Al7 A5.A$5.6.74.9 I 2 3 4$6 78910 20 30 40 50 50 708090/Q CURRENT IN AMPERES X,$Cs 01 For BASIS FOR DATA Standard 1.Tests road e at 2.Curves are protted t TIME~RRENT CHARACTERISTIC CURVES Fuse 13nks.In Dated Volts as at p<<h nl I~t2SC~I W II 1 H Test potnts so vsdadons shoukl be Date FIGURE Tlr48CVnrtsrr7 CHAltACTXlusTIC 48 8258 KswfsL~cool co.as(e ala)LE.Q)/ot7f f+

q P'k ly'y I)E')j 1b v'f

~5.6.74.9 I 345676910 70 70 30 10 6, I I CW't tt et~I 10 zS O vs 2:3 I.t~'I~tt 3 1.9 1.5.5 A Hatt 1.9.7.6.07.05.1 Ars AN A)7 Akt.05 02.0".01 7 A.S 5.6~1.01 2 3 4 5 6 76910 20 30 so 50607060908 g g 8 g g8ggg CURRENT IN AMPERES For BASIS FOR DATA Standard 1.Tests made at 2 CorVes ara plotted to VIMEWURRENT CHARACTERISTIC CURVES Fuse Unks.In Dated Volts a<at p.lstarting at 25C with no Ini5sl load No.Test points so vaIIa5ons shorrld be Date FIGURE le TIM~nnsrrT cNAnAclxrtlsTrc 455255 ItsttrrsL e wsn ork RN e 1JA p1j.~3 l4'I'll tl~)5'1

~5.6.7>.91 3 i 5 678910 3 3 33H3>~~~~4 IEC tin IIP 70 2\2 2 I 20 ,'I~22, 2 10 9 8, 7 cn 6 CE z5 CE va ll~C WNI~lt 2 22~I ut.Cd 2 10 9 8 7 X2.6.5 2 IE 1.9.7.6.I'07.OS IC~2.06 02 01 S 6.74.9 I 3 i 5 6 7 8910 20 30 iO 50507080908 y y 8 y g 8 ggg CURRENT IN AMPERES.01 For BASIS FOR OATA Standard 1.Testslnsdeat TIMEWURRENT CHARACTERISTIC CURVES Fuse Unks.In Oated Volts e2c at lt, tdt2 tdtdCtt ICII I 2 SI URKI'I est poInts so vanadons should be 2 t TIIC5CVIIIISNT CHAItACTEI%ISTIC ie 8258 Rscertt, e ssssn co.ccrc c RAA Qn)tt+X~>/y7/q~

"'j lf V>/IF fi, fllTi.$1 4w I 5.5.74.9 1 3 4 5 678910 20 30 s0 50507050908 5 0 8 5 5ÃIH)I'mm I HII 70 70 sf 4 10 9 8 7 g6 2:5-f~TI~~l'r~\)f s*rf 10 5 53 4 Z 3 rff n C)2 2'fff.6 I.9.7.5 05.06 03 02 5.6.74.9 1 2 3 4 5 675910 01 30~~6070~~8~y 8 y y8yg I mI y I I3m3aII CURRENT IN AMPERES For BASIS FOR DATA Standard 1.Tests made at Comma~TIME~RRENT CHARACTERISTIC CURVES Fuse Unks.In Dated Volts~at II I II I IIIC~I IIII I Test points so vs riadons should be USE 1 get T)KCCU)trfafrT CHAI)ACTSft)STIC a5 5250 rfsurrsf a ssssn c)A wrsuk~Wpg Vi7/q~

h K 5.d.74.9 1 3 a 5 678910~r~rnid I i.i iimmali-st'I 2 cr 2.Itt.n Wtt I II 2 55 70 70=I-.I-4\10 9 8 7 2nd 25 vs Z3 554 C 15 V 21 U 4n'Cr 15 55 I 10 dw dm a Z 3 51 1.9.7.1.07.05 03 5.6.74.9 1 3 3 a 5 6 78910 01 30~~6070~~8 y y y y ysyyy I mm y Imylali CURRENT IN AMPERES For BASIS FOR OATA Standard CONTROL ROON Ar'C TIME~URRENT CNARACTERISTIC CURVES Fuse Uncs.In Dated Volts ac et II..I Cl I IIIC~I II Ik I 2 Test points so vartadons should be Date FIGURE 1 h TIM8CVIIIIssrr CNAnACT88ISTIC 4$5858 ttsurrst~ssssn sts ctct n CAA s>>i><z W4>Shy/g~

Ay ,~Yi~t~g l, 4~I g1 5.6.7 AI.9 I 2365678910 3o ao 5oeo7oeoeo8 5 5 5 5 5555m 3m Ia I I IHII 70 k tt 70~.I 4 2 10 9 10 Z3 Z 3~" 1.9.7.6.5 Ill!I!'I 26 07 05 k 09 07.06 oc~!.01 5.6.7A 9 1 2 3 a 5 6 7 8910 20 30 ao 50607080908

~g g 8 g$8ggg CURRENT IN AMPERES 01 For BASIS FOR DATA Standard Volts a~at EDG FUEL OIL XFER lFIRZARENT CHARACTERISTIC CURVES Fuse Unks.In Dated p4t, I 2!I ltltktt I tl~II I est points so vsrtadons should be Date TIMMXIRRsNT CHARACTZRISTIC tso 5258 KswlL a ssssn co.Cttt s teak S(T ti%Z.PKX 3/a)/~

J Ycg V't ir lt II l if h+g4

~5.6.7>.9 I a 5 6 78910 CURRENT IN AMPERES 5 Ss59~I.IIINII 700 70 4 70 55 l I t l.4 I 10 9 8 7 to 6 z5 3, Z 3 0" 10 z 3 m 8 8.7.6.6.07 ,05 5 5.6.74.9 I 2 3 a 5 6 7 8910 20 30 ao 50607080908 g g 8 g g 8(gg CURRENT IN AMPERES.01 3I I!IHmmii For BASIS FOR DATA Standard 1.Testsmsdast 2.Cunres are plotted t EDG FUEL OZL XFER'Q~URRENT CNARACTERISTIC CURyES Fuse Unks.In Dated Volts ec at~ptstarttng at 25C with no Inldal load No.est points so varlauons should be Date FZGURE IS 3/18/92 TIM8cunnsrrr cHArtActsrtlsrlc ao 8258 Itsurrss~ssssn s5L 4544 a tu 4~l~il<<" XW~3/~7/q~

C$g)'l n~I~j Jf j 5.6.7A.91 3 4 5 678910 s 8>sam>I I I I immmNII 80 70 100 70 10 10'7 g6 z5 7 6~Z3 sr=..-r 1 s a 2 3~".9.8.7.6.5.I.07.05 09 07.06 05.03 02 ,.0 Art 5.6.74.9 I 70 80908 g g 8 2 3 4 5 6 78910 20 30 40 5060 5 5H55 CURRENT IN AMPERES ct For BASIS FOR DATA Standard 1.Testsrnadest 2.Curves are plotted to EDG RM VENT FAN 8 6IMEURRENT CHARACTERISTIC CURVES Fuse Unks.In Dated Volts s~at p f..starting st 25C with no Inidal load Test points so vsrlaeons should be Date FIGURE l(y" I s~zZ (~Z.vrr4ecunnsrrr ctranacvssusrrc 4e 825e Kmtrrss a assot co.stor w Isa 0 tf J I I II 5 lg I 5.5.74.91 3 4 5 578910 30 4050607080908 5 5 5 5 58~58)I.I mI Immiim~'=70 t ftL 100 90 70 60 50 10 9 2:3 s t t i 10 9 8 7.aw 5m 4 Z 3 m~" 1.7.6.5 1 9.7.5 09.07.05 5.6.74.9 I 2 3 4 5 6 7 8910 20 30 40 50607080908 y y y y g 8gg CURRENT IN AMPERES 01 For BASIS FOR DATA Standard 1.Testsmadeat 3.Cunfes are phrttsd t RIME~RRENT CHARACTERISTIC CURVES t Fuse Links.In Dated Volts a<at'f tnlt tttc~ttttttd tt est points so varla5ons should be Date FIGURE l>3/1 8/92 TIMC41rmtsNT CMAIIACTssusTIC 48 5258 Ifsurrsl e wH c4 wlsssA~%X v>7/q~

li V$/)>)g.1 Ih W t g)5 t 5 6.7>.91 2 3 4 5 675910~8~~n~l)I.3 3H33>e=.~l 70 70 10 6 10 8~" 1.7.6.5 aft%l l ac.9 J.1.07.05 5.6.7>.91 2 3 i S 6 7 691O 20 30 aO SO607O509O8 y y 8 y y8yyy~~~~~y~~~CURRENT IN AMPERES For BASIS FOR DATA Standard 1.Teats made at 2.Curves are plotted to SWOR 3D RN SUPPLY FN TIMEWURRENT CHARACTERISTIC CURVES Fuse Untrs.In Dated Volts as at p I starting at 2SC with no Initial load No.Test points so vartadons should be Date FIGURE get=VISI50urrrtarn OHartadtanrerro no 5255 nsuvrlL a ssssn co.saot s au i l r 6.7A.91 2 3 s 5 6'91o 2o ao so so60708oso8 g g 8 g g~8gmfIR I k t~80 70 u 10 9 8 n*t~~tl 10 z5 Cf tfs t'I'~1~lrf A 1.9.7.5 A.1.07.05 tt'.05 02.5.6.7 AI.9 I 3 s 5 6 78910 20 30 so 50607080908 g P 8 g g 8 ggg CURRENT IN AMPERES I m mI Immall 01 BASIS FOR DATA Standard 1.Tests roads at 2." Curves are plotted t 48 e COMPUTER RM CHZLL~E~URRENT CNARACTERISTIC CURRIES Fuse Unks.In Dated Volts sc at~p f., stsrdn8 at 25C with no Inldal load est potnts so vsltadons shoukl be No.Date Tl Msctrnrrsrrt cHAIIAcrKnfsvlc 6 8 5 2 8 s KsusrsL~tasse ctL attt e EIA 5lDlM'Lg~v7/~P/q P

)C>>I I Wc F ,A l u" 8~4'f 5.6.7A.91 2 3 4 5 678910 r 8S>8S>>m 3 3 3HB>e--4 4~.~I II 70 70 sf I 8 4 I t 4 4 10 8 7 I~ht~4 I ttt II 4 4 10 8 7 Cf O4 2: 3 ni ff tl ftl!Jlf Z 3 X2 1.9.7.6~'.9.I AS.07 AS.05 0A.03 Ch 5.6.74.91 2 3 4 5 6 7 8910 20 30 40 50607080908 g g g g g8ggg CURRENT IN AMPERES 01 For BASIS FOR DATA Standard 1.Testsfnsdeat 2.Cunfes ara plotted t'i1MEWURRENT CHARACTERISTIC CURVES Fuse Unks.In Dated Volts sW st P I stsrdng at 25C with no Initial kNd Test points so trsrisbons should be FIGURE 0/le/92 Tl MsCVffffsfrr CHAIIACfsfflsrIC ttsurrsl.a ssssa OCL attt a tu I lf ts J I pJ Hlg, t kg j~i'i i~>>'

5.6.7A.9 1 CURRENT IN AMPERES 2 3 4 5 6 7 8 910 20 30 40 50 60708090 N5 2a 8 I}I 5 r III I}I 55}I 1000 70 I 2\~I I n 70 as 5 2 t 2 10 5~-2~a52}2%25 10 zS Z3 5I II..n 2 3.6 1.9.7.6.5 07 09 02.03 02 5.6.7 4.9 1 2 3 5 6 7 8 910 20 30 40 5060'7080908 g g 8 y y 8 yyNa CURRENT IN AMPERES OL For BASIS FOR DATA Standard 1.Testsmadeat 2.Curves ere plotted t CoNP RN CHZLLER C IIt4FWURRENT CHARACTERISTIC CURVES Fuse Unks.In Dated Vorts ac at I I 2 5l I IIICHlh I 52II I est points so vsriauons should be FZGURE Date Tlrascvltrtsrrr cHAltactartlartc 48 8258 2}surrsr,~assur oo.ua e IJA WLX 3/~/q~

V<)f e, k P~II I 0 5 6.74.91 CURRENT IN AMPERES 3 s 5 6 7 891o 20 30 s050607080908 5 5 5 5 5855m)I I I IHII if'r i I I 4'0 70 30 10 8 7 g6 O vs t 4'f~t~'t'c f 10 9 8 7 6~s-3 X2 1.9.7.5 6 05 05.5.6.7 A.9 I For BASIS FOR DATA Standard l.Tests made st 2.Cunfes ere plotted t 5 6 7 8 910 20 30 40 5060708090/

g g 8 g g 8 g gNa CURRENT IN AMPERES CONF RI1 CHZLLER FAN TIMEWURRENT CHARACTERISTIC CURVES Fuse Untie.In Dated Vohs ac at p f., stsrdng st 25C with no Inidal load No.Test points so vs riadons should be Date FZGURE ZZ.01 TIMscurrrrsrrT cHArractxnfstlc 48 5258 I(susrsr~ssasn cxL EA0E e Ml

~I f I h t I t~$Q4'A',

e=-6.7>.91 3 4 5 678910s 5 5 55I85H u'Kr tu 80 70 70 10 9 8 7 g6 z5 8 ur 4 Z3~I a In vI 10 7.sm 5m 4 z 3 0".9.7.6.9.7.5 AS.07 AS.05 tt nil.1.09 AS A7 AO or 02 5.6.74.9 I 2 3 4 5 6 78910 20 30 40 50607080908 g g g g g 8 I g CURRENT IN AMPERES 01 For BASIS FOR DATA Standard 1.Tests mad e et 2.Curves are plotted t AIR PART L GAS CONTR TIMEWURRENT CHARACTERISTIC CURVES Fuse unks.In Dated Volts ac at P4.I htb 125C ttt SABIN 4 N Test points so vartadons should be Date FIGURE ZQ Trkcovnrrsrrr olanactsrtlsTlc 48 KrurrsL a saran oo.saK s MA g>>hp&7E,X~A~/g~

II h}R 5.6.74.9 t 3 4 5 6 7 6910 20 30 40 506070IN908 5 5~8 g g 8~ggk)m<<0 I IN Imi 70 70 10 re~10 z5 0 Vs Z3 stti r~N u.r M.6>>Sm 4 1.9.1.6.5 t!.9 01 05 A6.03;A2 5.6.74.9 I 01\2 3 4 5 6 7 8910 20 30 40 50607030908 g g 8 g g 8ggNa I I Na mI I)mali CURRENT IN AMPERES For BASIS FOR DATA Standard 1.Tests made at 2.Cunres are plotted to ELEC EQ RI1 COFIPRSSR TIMEWURRENT CHARACTERISTIC CURVES Fuse Unks.In Oated Volts ac at p.f., starting at 25C with no Initial load est points so varlsSons should be No.Oate FIGURE g4-TtMLcvrtrtstrr crtanActxnlsTlc 40 0250 Kallrrll.~Saaan CL aM w uA

".s A'f'a k Vrt)}0 i 5.6.7A.9 I 2 3 4 5 6 78910 CURRENT IN AMPERES 30 so 50607080903 5 5 5 5 5 555~70 70.I-.'irl.10 8 7 g6 z5 0 vs~',u 10 2Z u 1.7.6 A 07 05~1 AS ASI AI7 Ant A>5 02.02 5.6.7A.9 I For BASIS FOR DATA Standard 1.Tests nlsde et 2.Curvessre plotted t 2 3 4 5 6 7 8910 20 30 40 50607080908

)g 8 y g 8 gyes CI: R R ENT IN AM PER ES VIHEWURRENT CHARACTERISTIC CURVES Fuse Unks.In Dated Vohs ac at p.f., starting st 25C with no Initial lead No.Test points so va tta5ons should be Date 3<33B3f FIGURE 01 TIM'LCVnnsNT CMAIIACIXnlsTIC 48 5258 IourfQ~ssssn ce ws w LIA jAr)Q r/k,.'t.i$k 1 E 5.6.7A.9 I 3 a 5 6 78910 30 ao 50607080908 5 5 5 5 5 555m I I I mI I m 3NII 1St 1000-fin j 1~~N 70 70 30 10, 9 8 7 j~10 9 8 7 z5 O vs Z3 4~nun."~z 3 g 2 1.9.7.6 6.05~I.09 AS AP.06.05.03 02 5.6.74.9 I 2 3 a 5 6 78910 20 30 ao 60607080908 g g 8 g g 8 ggII CURRENT IN AMPERES 01 For BASIS FOR DATA Standard 1.Tests roads at ELEC EQ RM AHU TIMEWURRENT CHARACTERISTIC CURVES Fuse Uncs.In Dated Volts as at p.f..starting at 25C wtth no Initial kNd est po/nts so vartadons should be No.Date FIGuRE 2Q TIMncUnrtsrrr cHAnaotsÃlsTlc 48 lsjjjprst a ssssn cjs ajjj 0 IJJ I (I I'If Il I 8 I lg 5 5.7S.91 3 4 5 678910 CURRENT IN AMPERES r s~sn>L3 I I.I malmllm LJ Mt J'I I I I t.22 70~2 100 90 80 70 50 50 10~I 10 Z5 CI V4 Z3 2 J v sual I Sm 4 3 2Z 0 I.9.8.7.6 1.9.5.1.09.07 AS AI5 t~.I AI9 AS AI7 AS AC5.03 02.02 5.6.7S.9 I 2 3 4 5 5 78910 20 30 40 50507080908 I3 g 8 g g I3 g g CURRENT IN AMPERES 01 for BASIS FOR DATA Stsndanl 1.Tests made at 2.Curvesara plotted t EDG FUEL OZL XFERTCPWNENT CHARACTERISTIC CURVES Fuse Untcs.In Dated Volts e<st p f., sta rung at 25C with no Inlusl load est points so variadons should be FZGURE 2 Grzerea TIMscUltrcsrcT cHAIIActsrtlsTcc 48 5258 I csttrrlL~ssssa oct wt a JAA 3&1/q~

f s%a'e<<C tjj k~y'I;(4 h, 1 J F gl)."IK" 5.6.74.9 j 2 3 4 5 678910 r 8>seri 3 I I IININII 70 70 i=ir ii iu in 10 is t~1'!10 0 vs Z3 3 1.9 S.7 09 05 05:-ui i I 5.6.7A.91 2 3 a 5 6 7 8910 20 30 40 50607080908 8 g 8 g$8lgNa CURRENT IN AMPERES EOG FUEL OIL XFER FWMhEN C ARACTERI~C CURVES For BASIS FOR CATA Standard 1.Testsrnadeat 2.Cunres are plotted to Fuse Unks.In Oatad Vohs a<al p f..starting at 25C with no inidal k!ad Test points so vada6ons should be FIGURE Oats Tl MtAxl Itnsrn'nanactsnI STl 0 Ksufrsl 4 ssssn co~n~al<~l~X XXX'sary'g/g~

'I

~~~~~~~~Mr.W.E.Coe I W.H.Rogers, Jr./J.B.Olmstead J.R.Bensen w/enclosure C.R.Stone w/enclosure TURKEY POINT UNIT 3 4 KV MOTOR DATA F c.FLORIDA POWER fh LIG I~)INTER-CIFF ICE CCIRRESPC I~F'UW oS DATE August ll l97p Attached is the~formation requested in your August 4, 1970, memo less the items noted'n the Bechtel letter.JBO/mm Attachment No.z-Job 2.I 7ctl-$z.p C ic No.Rev.No.Sht.<of~s+COURTESY WIHS FRIEHDS...FoR FLQRIDA...FoR YoUR coMPANY".FoR YDUI pE.

Mr.C,ir~W.H.Rogera, Jr./S.G.Brain COPICS TO E.L.Bivans w/enc.Herb Paul w/enc.J.W.Williams, Jr.w/enc.(: J.R.Bensen w/enc.II'ROM suaas:cT~Ttggg~POINT UNITS f3&t4 TIME CURRENT CURVES-PC/M'I I-o ZC (u)FLORIDA POINKR&LI PROC I g WTKI%&FFICE CORRKS IN Pu7 TB"~EF nlu p~7+op OATC October 12, 1970 Enclosed are the time current curves for Turkey Point f3&f4, safety infection pumps, component..cooling pumps and residual heat removal pumps'GB/am Enclosures

~z~a~<:+Ly'+'i~A>>'

Attachment No.Job Ls lo\-$+Q Gale No 21 i-ZM-oz Rev.No.ShI.~of~3 v COURTESY WINS FNEHDS.,FOR FLORIDA...FOR YOUR COMPANY...FOR YOUl

\i gl p t , I, I'I Itotors&itwrst/Oleltem D'Noel+topi seals fields t'ower at@Isbn censyeey~OWCN PLAJIT CkrllkECRlN4 DATC AKCKiVKO AUG Xo)970 IWIIOC rllltlslO IININlg lA4lhl F'l-f-fSf'vmr7-gg PAGE.F Pv~a+F oF"+st Office Box 607 Shady Grove Road aithersburg, Maryland 20760 August 6, 1970 Mr.W.H.R ilLs ICE Power Plant Engineering Manager Florida Power&Light Company P.0.Box 3100 Miani, Florida 33101 Attachment No.Job zl~o i-9M'icwp.

<<R.N.~Sht.~of

Dear Mr..Rogers:

Sub)cct: Florida Power&Light Company Turkey Point, Units No.l&4 Bechtel Job 561.0 4160V.Motor Data Bechtel File: 5700 FB-1201 Our Pro)ect Superintendent has forwarded to us your'equest for 4160 volt motor data for thc benefit of relay settings.We attach two sets of the following data: Motor Data Sheets 25.11>>1 and-2 covering all 4160 volt motors.Safe TQne/Current curves on:~Steam Generator Feed Pump Motor~Condensate Pump Motor Turbine Plant Cooling Water Pump Motor Circulating Water Pump Motor Xntake Cooling Water Pump Motor-Heater Drain Pump Motor The renaining four motors are part of the NSSS and we do not have their safe time/current curves.We are writing to Westinghouse requesting that they promptly send you these curves.JTP:tst Enclosures

{2 sets)Very truly yours, ggGlNAt.SlGNED SY~L 5HATlh N.K.Bhatia Pro)ect Engineer cc: G.Kinsman, J.Coughlin, B.H.Merry, J.W.Keck/J.C.Waldcn J.W, Will,iams, 2.L.Bivans, J.R.Benscn.(w/)

g(p>4>, l leaf 4'I 5 V'>>" h di'Wf]j p"k 1 r4 f, 4g~I C)IMPVT Mo.g gaffe<OV i'+Heater Drain P ur~Cl.WtrPp Intake Cl.WtrP Condens.Pump Circ.Vi Pun-.MANUFACTURE R TYP f FRAME DESIGNATION HORSEPOWER OUTPUT T IME RATING/TEMP.

RISE C PPM AT FUl.L LOAD VOLTAGE FULL LOAD AMPS'ENCLOSURE 800 Ct.0 1785 4000 400 Ct.60 1785 4000 WPX 325 Ct.60 8 0 4000 WPX CS 4000 4000 188 276~WP II WP II 2250 I 1250 Ct.0 Ct.60 11 0 Z O I O.CC Ll th lal Cl~I V g Q~'0 0 V 4 M 2 U I~1 U VERTICAL OR HORI ZONTAL BEARINGS (SLEEVE OR BALL)TYPE OF LUBRICATION INSULATION CLASS ROTAT ION (V I EWED FROM ENO OPP SHFA FULL LOAD TORQUE STARTING TORQUE~'4 OF FULL LOAD f FF IC I ENCY~100'4 LOAD~75'L I OAO 50%LOAD SERV I CE FACTOR IS THfRMAL PROTECTION PROVIDED WEIGHT PHASE FREQUENCY L'OCKED ROTOR CURRENT POWERFACTOR 100%LOAD~15%LOAD 50%LOAD NEMA DESIGN LETTER SECONDARY AMPS 8 FULI.LOAD SfCONDARY VOLTAGE SECONDARY O~S/BREN<DOWN OR PULLOUT TORCUE~'%ATED FIELD CURRENT RATED EXCITER VOLTAGE RATED POWER FACTOR PULL IN TORQUE~'%F FULL LOAD TYPE OF WINDING SHUNT FIELD CURRENT ALLOWABLE WK~OF LOAD SPACE HEATERS WATTS/VOLTS TWO SPEED MOTORS NO OF WINOINGS TORQUE THRUST BEARING CAPACITY U>(LBS)CAPAC ITY DOWN (LBS)a ll 2333 l.15 6 00 7 0 Attachm a.c o.100 2 2 Sleeve 1175 3.8 3.0 l.15 3350 81 ntN.i IPi 35.8 2 0 20 Ball Either 1900 101 3.0 2.2 l.15 Ball'W 9843 118 5.8 95.8 5.5 l.15 Kin~s.Oil CCW 28, 000 l.15 5500 15 0004 23, 200 2 2 78.0 0.0 88.860 265 270 1050 I 41, 000 40 120 540/120 3000!2 6000 30 o 1 5 0 1 500 42.000 O FNCI OSURfi OR IPPROOF (DP), SPLASMPROOF SP),WEATHER PROTECTEO V~e TOTAlLY c'."IC JS NONi VENT I LATED (TENV)~TOTAI LY ENCLOSED FAN COOLED (TEFC)~TOTALLY ENCLO ED P I PE VE'I ILATFD (TEPV)ETC.oEXPl OSIONPROOF XP, TO INDICATE GUARDED ADO'G'bECHTEL CORPORATION POWER OIVISION ENGINEERING ELECTR(C MOTOR OATA SHEET FLORIDA POWER ttc LIGHT COMPANY TURKEY POINT UNITS 3 IlI 4 O No 25.11-1 Eg, (A~'p E (~5 l 4, V lt I lag~I-I O lWPVT 0 6 F'.hl Q.$~T oE Reactor C l.Stm.Gcn.esx ua Fd P'eat Safety 6 C om(: C1.F a IL'CL MANUFACTURER TYP E FRANE DESI GNATION HORSEPOWER OUTPUT T Ih F.RAT I NG/TELIP.R I SE C PPM AT FUL I LOAD VOLTAGE FULL LOAD AMPS ENCLOSURE CS 6000 Ct.70 1189 4000 GE 7000 Ct.60 3575 4000 873 0 P 300 4000 37.CSP 7)Y6.i 450 1180 45.'P I i 5'WP I 350 Ct.0 i 66 400 Z 0 I IL f,l Vl UJ CI 8 0 4 I M 0*o IJ II 4 V V Q v>>>>V VERTICAL OR HORIZONTAL BEARINGS (SLEEVE OR BALL)TYPE OF LUBRICATION I N SUL AT I ON CLASS ROTATION (VIEWED FROM END OPPSH FULL LOAD TORQUE STARTING TORQUE~'4 OF FULL LOAD EFFICIENCY' 100'4 LOAD 75%LOAD 50'%OAD SERV'ICE FACTOR IS THERMA(.PROTECTION PROVIDED WEIGHT PHASE'REQUENCY LOCKED ROTOR CURRENT POWERFACTOR

~100%LOAD 75m LOAD 50%LOAD NEMA DESIGN LETTER SECONDARY AMPS C FULL LOAD SECONDARY VOLTAGE SECONDARY Ol+AS BREAKDOWN OR l'ULLOUT TORQUE RATED FIELD CURRENT RATED EXCITER VOLTAGE RATED POWER FACTOR PL L IN TORQUE~'4 OF FULL LOAD TYPE OF WINDING SHUNT F I EI.D CURRENT AI.LOWABLE ViK2 OF LOAD SPACE HEATERS WATTS/VOLTS TWO SPEED MOTORS-No OF WINOINGS TORQUE THRUST BEARING CAoACITY U>tl BS)CAPAC I TY.DOWN (LBS)CCW 68 700 ac me 2 2 Sleeve 10 300 5.l.15 200 93.4 3 4 2.5 l.15 3400 86.1 270 Ball CW 108 94'.7 2.4 1.15 3 0 88.3 86.1 2ee 200 120'H I Ba ll 4200 60 270 ENCLOSURE1 DRIPPROOF (DP)e SPLASHPROOF SP),WEATHER PROTECTED WP e TOT>>'Y ENCL.i" I NON VENT ILATED (TENV)TOTALLY ENCLOSED FAN COOLED t TEFC)TOTALLY ENCLOSED P I PE V'LATED (TEPV)ETC., EXPI OS IONP+OOF XP, TO INDI CATE GUAIIDED ADD'G'0 ECII T EL COlt POR AT I Olt P 0"'f R OIVISIOII KHOIIIC:f RIHG ELECTRIC MOTOR DATA SHEET FI.ORIDA POWER Ec LIGEIT COMPANY TURI<EY POINT UNITS 3 I';0 No)0 25, 11-2 na fj Vj ,p(I P," 1'4 I l1 ,Qf P 4;A I g II l)I

'I tgte L ae!'a ri.te i L I I at e LI-D~~e I~I e~t I II~;I~rre~I PC/M e r~P:.a I Ihh I:=..I Ia'5g~Ia~Ier~~~I I~~~~~eeI Ig NV.I:"..<rgb

I Il g.~I'g'al j I I t 0~~'I,~4 Meg~'I'4 Ia'o, Ig,'I.~'Ia L~5~~~a~~I~~I.L te I~~4'~I~,'i"g~~~~e e~~W~~~~e\a~~~'I~~I~I~~~~~r~~~~~e~~~~~'I~~I e e~~g--I lf P~-j-j~I-r t-I-I-"~I I~I e~le~~~~~la"I-r~a/~4-I s~I-~~~~~~I~~~~I~~~I ef I'l I~~ee~rl~I rt-'-t~~t ee I~)H l~g t t~~le e~g*e~~~~~\~~~~~0 100 200 FIHS rov.(o)R)f ()$0 Q9 300}00$RAT}:D CUR!Kt}T$00 600 70'nnrvd.b;~'61-1 I j)~)I, (4'f l.'-

!Iilrr 7~4~~I l~~jg;!: i:":i I.I~I~~I I~~~i=".~q=l.l'I.tl~>>0>>0 It I~o~e I~4 i":-1 9.j!.L j+r P-j=~I'~I'~~~~W I~~~~~~t>>~::-/ALL I~~~~~~>>~~>>4 M~~~~~I~~l-.-: e~C~~'1~~~N 4;VV Z 7+>-<3 4 (uuzr 0)FA 2~y~QQ IPPuz Der'w-ivo.g oc/IJ>4 0>>4 o5~4~~~'~~~~h~~~~..~~~~~~'I~~~~>>~~~>>~I~2 0 1$4o oa JPO boo Coo/o o

~1 t~5 lt 1 II"I i l In%~l I P~!I~I i!i~~~~I~~L'~~~~~~~~~4~~I~~<<WW<f~w I W I f~I~W~<g~~~~~~ww I Iw 4 ww~~p~p(gag(Om/1 V Pwzc O]/vpg7/gQ'd'EE7=I 4-~~g Ol 2 0~I)0>0 I E 0X ne~oO 0 o7 0 n 44~~I~~~4~4~~w w.A~1!'w 4 p P~~~4~~w~~~~ww~~&~-ww~~4~~~4~4 4-f 1 KOO'~goo goo~Op oo 700 gE h 1~~1 cap 1 V i(I rc 11 i!~~~t>>~>>~4~~4 I~~f~~~I~~~~'~~~~I h~4 f~~~I I+.~I L~I~~\~o al e e c/n1 9z-opg(u~iT+)Pw lNP~7 8 I F/Yd$HT L~~~~W~~~J~g5~~~~~~~~~t~~~~~~>>~a~~~g>>L~s~'~I~>>>>-rM~~~~~~~~~t>>~~Goo 70'5 1~1$P t)

MOTOR DATA SHEET QANTITY EXI TING PROPOSED IY VENDOR Service Manufacturer Type Frame Horsepover Time Rating/Temp.

Rise C RPM at Full Load Voltage Full Load AMPS Enc losure Vertical or Horizontal Bearings (Sleeve or Ball Type of Lubrication Insulation Class Rotation (Vi.eved From End pposite From Shaft)Full Load Torque Starting Torque,'X of Full Load Efficiency 100'X Load 75'L Load 50'X Load Service Factor Ia Thermal Protection Provided Meight Phase Frequency'ocked Rotor Current Pover Factor lOOX Load 75K Load 50'X Load NEMA Deaign Letter Rated Pover Factor Pullout Torque,'X of Full Load Pull in Torque, X of Jull Load Type of Minding Allovable N(of Load Space Heatcra Matte/Volta Max.NO.of'Starta Per Hour 4 Min.leoath o!ties betweso starts Power Cableloroood Cable Site Component Cooling Water Pum Motor Westin house CSP<GaIC NQ 2<0--K-E~g Reis.Np.o Slit.~pf~g 1'4';r.C REuANQE WI WOPNIO COMPANY Cl>>o>>lo>>d lf, Ohio RPA!f631066352 Attachment C Page 2 of 3 NRFORMANCE OATA SHHT memtaZI DAZA Attachment No.Job XI'lCll-5LM Calc No.z Rev.No.Shf.'7 of HP TYt%PNAIE PtÃtli IIE RTZ TO4P.hNC 04 OCIION CONC CNC I RTTWN I,ITTWh EC444 75 P/BE 3/60 1185 460 88 Cont.G TK4 DNNN DATA NTATOh ItSSI4TANCC AT>>IORTWCM IJNR4 OH%%597318 604882-1-R'-324253 1/27/71.1.'114 I OAO 38 57 94 28 50'8 1]o 1195 1192 I]S 1185 POWCN PACTOh.6 77.0 8.2 86.2 86.8.6 92.0 28 92.5 KW INPMT 3o.8 4 60.6 75.8 PQL'L IIP OhgANINIWN HltJ LOAO 200 11 0 1189 134 TONOIIR M>>PT.446 369 333 ANPEhCS 554 28 88 AL,I>>DATA ON VCN-TAO W NCNAhXII WR~39o4 VOI TIOC CONNLCTION ANPWhgi AT OTHWh VOI T jog4 WILL VANV INVEhiLI-Y WITH T APPNOVRO OV oATW 3/1 4~1)c)PI(h)~

Attachtnent No.Gale No, Rev.Ne--SNI.00 DA SE-RPA 4631066285 Attachment B Page 1 of 3 QUANTITY ervice.......................

S Hanufacturer

..................

T ype~~~~~~~~~"~-"--~-~-~~---F rame.........................

Horsepower

....................

Time Rating/Temp.

Rise'C.....RPH at Full Load..............

Full Load AHPS................

Enclosure.....................

Vertical or Horizontal

........Bearings (Sleeve or Ball)......

Type of Lubrication

...........

Insulation Class..............

Rotation (Viewed Looking Down From Top)...........

Full Load Torque..............

Starting Torque, 5 of Full Load Efficiency 10ÃLoad.........75K Load..........

5ÃLoad..........

Service Factor................

Thermal Protection

............

M'ight o~~~~~~~~~~~~~~~~~~~~~~~P hase Frequency.....................

Locked Rotor Current..........

Power Factor 10ÃLoad.......75%Load........50K Load........NEHA Design Letter............

Pull out Torque,%of Full Load Pull in Torque,%of Full Load Type of Minding.......,.......

Allowable MKa of Load.........Space Heaters Matts/Volts

......Hax No of Starts'Per Hour.....Length of time between starts.Power Cable/Ground Cable Size.Thrust Bearing: Capacity Up (lbs.).......'apacity Down (lbs.)......

Hinimum Starting Voltage......Seismic gualifications

........EX ST NG d etio 30 0 0 0 60 39 T AO Ba G ea e Lb-90.4%90.3%88.3%1.5 8 bs 60 3-t 1 St t in 600 16 0 ot ected 0y 4 ff 4 ti+i;Jg 4('I Attachment No.Job x<qa l-Lag ga(cwp z i---a2 Rev.No.Sht.~~of MOTOR DATA SHEET RPA 4631066352 Attachment C Page 1 of 3 gUANTITY S erv>ce.......................

Manufacturer

..................

T ype~~~~'~~~~~~~~~~~~~~~~~~~~~F rame................

Horsepower

....................

Time Rating/Temp.

Rise'C.....RPM at Full Load..............

Full Load AMPS................

Enclosure.....................

Vertical or Horizontal

........Bearings (Sleeve or Ball)......

Type of Lubrication

.........., Insulation Class..............

Rotation (Viewed Looking Down From Top)Full Load Torque..............

Starting Torque, I of Full Load Efficiency 10$'oad.........751.Load..........

5R Load..........

Service Factor................

Thermal Protection

............

W'ight........................

P hase~~~~~~~~~~~~~~~~~0~~~4~~Frequency.....................

Locked Rotor Current..........

Power Factor 10$'oad.......~75%Load........'5No'oad........NEMA Design Letter............

Pull up Torque,%of Full Loa'd Breakdown Torque, 5 of Full L'oad Type of Minding...............

Allowable WKz of Load.........Space Heaters Watts/Volts

.....Max No of Starts Per Hour.....Length of time between starts.Power Cable/Ground Cable Size.Thrust Bearing: Capacity Up (lbs.).......Capacity Down (lbs.).....;

Minimum Starting Voltage......EXISTING Fan Reliance 1 ectri c Inductio 444TC 75 Con 1 85 460 88 T 0 Vert c Ba G e e C ass T e RN CW Look'n own 333 b-Ft 134/o 92.9%9 No 1.15 No 1300 Lbs 4'60 554 Am s 86.2 o 83.2%77.(C Random S ui rel a e~944 44-44 64 60 Co d ot r N M¹4¹4 WG PROPOSED BY VENDOR Q;g Q,lyon-94'~~o.CW~

f i 0~,~4 t, REL.S.O.SYZ-00344 FRAME 146T HP TYPE PHASE/HERTZ 3/60 RPM 1740 I VOLTS I 460 DUTY AMB~C/INSUL.S.F~NEMA DESIGN CODE LETTER ENCL.2.7 CONT 40/H'.15 TEAO E/S 536030 ROTOR 602482-09-AE TEST S.O.PERFORMANCE TEST DATE STATOR RES~e25'C OHMS (BETWEEN LINES)7.79 LOAD HP AMPERES RPM POWER FACTOR EFFICIENCY NO LOAD 1/4 2/4 3/4 4/4 5/4.50~1.00 1.60 2.00 2.50 1.3 1.4 1.7 2.1 2.7 3.3 1800 1786 1772 1757 1741 1722 8.67 42.3 64.2 75.6 80.8 82.7 79.7 86.1 87.1 86.5 85.0 SPEED TORQUE LOCKED ROTOR PULI.UP BREAKDOWN FUI.L LOAD RPM/250 1375 1741 TORQUE%FULL LOAD 265 253 368 100 TORQUE LB.-FT.15.4 15.2 21.6 6.04 AMPERES 20.6 20 F 6 13.0 2.7 AMPERES SHOWN FOR 460.vOLT CONNECTION.

IF OTHER YOLTAOE CONNECTIONS ARE AVAILABLE, THE AhlPERES WILL VARY INVERSELY WITH THE RAYED vOLTAaE.The motor is capable of starting wI th 75%of rated voltage.REMARKS s TYP I CAL DATA'TYPE RH INSULATION P.O.116647, E+W CODE K0388 REI IANCE 8'Lf C7RiCJO CI.EYELAND, OHIO 4411'1 U~S.A oe.BY cK>>bY bY OAT 4M MOTOR E2001A A 001 PERFORM4NCE 04/20/90 D4T4 ISSUE DATE Swab.3D 0~5.~.~V~<SV(,5A FII~W7925B 88-8 q,J.p(Vga'4'T/Al>>>>t>>RE Job+ac)\-Qx3 Gale No.>>.>>.~sht.~oI~~~i E 18 t ty t lp 4w i~l I'l II 3 s,'Si W O SERVICE ANTI Screen Wash P Inst.Air Com.Charging Spt.Fuel Pum Pit Pum Cont.Sy Pun O MANUFACTURER TYP E FR~K DESI GNAT ION HORSEPOWER OUTPUT T I MF, RAT I NG/TEMP.R I SE C PPM AT FULL LOAD VOL T AGE FULL LOAD AA4PS ENCLOSURE VERTICAL OR HORIZONTAL BEARINGS (SLEEVE OR BALL)TYPE OF I.UBRICATION I NSUI AT ION CL ASS ROTATION (VIEWED FROM END OPP.SH FULL LOAD TOROUE START I NG TORQUE 4 OF FULL LOAD EFFICIENCY

~100'%OAD~75%LOAD~50'%OAD SERVICE FACTOR IS THERMAL PROTECTION PROVIDED WE I GHT PHASE CS 44 100 all CCW 293 0 0 88.0 1.15 75 Ball l.15 NO 150 1770 4 0 2.5 92.6 91.9 l.15 NO I 3 100 1775 4eo H NO 4 W 50 Ct.3550 4eo 275 WP I'H Ba 9.1850 X 0 I O.L'l IO lal Cl 0 v O~F REOUENCY LOCK ED ROTOR CURRENT POWERFACTOR

~100%LOAD~>5%LOAD~50%LOAD NEMA DESIGN LETTER SECONDARY ALPS 0 FULL LOAD SECONDARY VOLTAGE SECONDARY OthlS BREAKDOWN OR PULLOUT TORCUE'%ATED FIELD CURRENT RATED EXCITER VOLTAGE RATED POWER FACTOR PULL IN TORO)K~%OF FULL LOAD TYPE OF WINDING SHUNT FIELD CURRENT ALLOWABLE WK2 OF I.OAO SPACE HEATERS WATTS/VOLTS TWO SPEED MOTORS NA hF WINOINGS TOROUE THRUST BEARING CAPAC I TY.U>(LBS)CAP AC I TY DOWN (l.BS)89.0 88.0 3 5 200 3213 558 60 81 0.1 88,7 230 21 0-~5-6~2, 150 1 0 1800 90.5 0.0'OO ENCLOSURE1 DR I PPROOF (DP)~SPL ASHPROOF SP)~WEATHER PROTECTED WP~TO ALLY F>C NON VENT I LATED (TENV)TOTALLY ENCLOSED FAN COOL EO (TEFC)~TOTAl LY KNCLOSED P I P f VENT ILATED (TEPV)ETC.e EXPLOS IONPROOF XP, TO INDICATE GUAROKD ADD'G'0 V~~5~KCIITKL CORP ORATION POWf.R DIVISION CIIOIIIKCIIINO ELECTRIC MOTOR DATA SHEET FLORIDA POWER h LIGHT COMPANY TURKEY POINT UNITS 3 a, 4 K 5610 11-3 RKV.0 J." i'I 5~ii J I k$'n'<i, 1 FEB 28'92 13: 18 FROM RRC CUST.SERV.(gg~+T~TOC Lint'YE@Q.PAGE.882.ig'g Z>r.<Yt).Gale No.<Rev.No.Sht.'3--<<~3+krtWt~(k++I}t64k 4 IO REL e S.O.S YZ>>00423 PRAISE 4 4 4TCZ HP 7S-, TYPE~P PHASEIHERTZ 3/BO RPx 1 180 VOLTS 4 60 AxPs 88.3 DuTY CONT~1 IHsuL 50/H'"~i'i}t SeP~1~0 HERA DES IOH B OCOE LETTER H EHDLosuRE TEAO EI 9 4972 1 1 ROToR 4 1 4967 7P-QE TYP 1CAL DATA TEST DATE STATOR RESrO ZINO~1 1 7 OIS4S{SETWEEK LIKES).()J-e.it crt~et}r: i'>'C e*I fi":~" 4's t~~t'r~~i*~~t i~',~'t r e~'~~~'t r~~~~~~~~~et e'tr tgrWerre~p4 ie~'8 e'e trr el'~~e~'~e w<<~~~e~~~i~'~~e~i~~tl,g*i t'eLl~i~i\~4f Fk4)~\vP~r~~~i~i~~~~THERMAL L)MtT CVRYE RIDsutRse~TYPE RN 1 NSVLAT 1 ON P.O.e NG8612.JOY P/N 600276-7R~ERES SHOWH 460 VOLT OOIIHEOTIOHe OR OTHER VOLTASS COHHSOTIORS ARE AVAILASLE~THE AICPERES WILL VAItY IHVERSELY'WITH THE RATED VOLTAGE RELIANCE ELEC rRIC OR~SY CKe SY APPr.SY CLRVELAXD OHIO 4411U.S.DA PERPORMANgg E8268A-A-001 CURyES ISSLN DATE OE/R6/$2 F I I~W19335 t'q l"~<yi'g,g I 3g k~J i';)'i; FEB 28'92 13: 12 FROM RRC CUST.SERV.PAGE.883 RaL.S.o.SYZ-00393 364TCZ 30 TYPE P PHAsKJHERTz 3/60 S.F.1.15 KKMA OKS ION h ODDS LSTTah H ENOLosuhE TEAO ais 59 1242 RPII 1 175 YoLTs 460 ALPS 39.0 ouTY CONT~l INSUL 4 5/H hoToh 417032-1-BPF TEST e.o.TYP1CAL DATA TROT OATS sTAToh hae.~z~, 394 OI%8 (SETWKKN LINKS)J It, I L r I.~4~&'I'13'4 4 W.L-.IS""aB~X'E-:.1<ll'C asar muser~~W....L-ham 4 44 44 C I4 4'I I rt~~It 4~4~~~I<<~4~~~I~I.%4 4 I" 4~L~~4 4'4 P AMER~4~44'4 4~I~~~~4~~I~~~~~~I~~~~~~~4\41 4~1.4 44~~~II'4 I'I 4'~~~~'I~~~I4WJ~~44~~~I I~~~~~~~~~~'=1 x..'la~4 ltlrt CVI-,.~~.L 4 444~.~5~"i~I~~4~4~Iy 4~~~44441 4~4 4+I'I p I~'I Lm m~r 4~~~~~~~Job X'I lO CG)c NO z-Lz3-E,-ou Rev.No.THERMAL L i@I T CURVE'TTCE RN INSULATlON C.O.NQ6339.C/N 600276-8R RB44QCec RELIANCELEC TRIC CLEVELAND~OH10 441 17 U.$.A.OR.IY I%4 ST AFP4 eY OAT PERFORMANCE QQRQQ$I SSIIK ohTS OR/25/92 FII~N79833 TOTAL PAGE.883 ht.AHPKRES SHONN F 46O YOLT OONNKOT I ON, OF OTHah&OLTASS OONNK ARFahae HILL YANY INYKRSKLY WITH THE RATKD YOLTASE~

II F$'g$1>*lp if'a f'I$~

.BOOL..J Copy'.Zgg05 yg A'DCRCL" 1 I C i I C'J b U CCl..V'I V~\j V 0 I~-'--S-8rP-ChH-8-4'-u 8-88RS-r-O.:Z!C 5 l ev.Mo-.~'Ln 1x 5%Fo~l, 4~AD CcRRgey-i I~'s I aa Pf', c",, (-f I!.

FRCP1:EC 4JEST BAY 382 TQ'FP TLRKEY PQtNT Attachment No.Sob QL 7C)l j~+Calc No.21l-523-E-c z.Rev.bio.Sht.~~of CEQ 28>'969 9:46a" Pv vl pp-5'7 R A~PAQ"-~i~EQUIPMENT QUALIFIED:

ELECTRIC MOTOR MUIPMKNT DISCRIPTION:

~2.Hp 145T FRAME 1.15 SERVICE FACTOR 2.l ave,aem~S 1730 RPM TEFC-SXT INCLOSURE 460/3/60 Volta/Phaaea/I&quettcy 613062-14 MOTOR D/S No.2 4 AX,mOKHp SEISMIC 40ADINO: (6 Live SSE HorhontII 8@V KU Horhqntal N 6.0 VertIoal 6.0 L SOQhCSOF DATA;Notor Seismic gualification

-Input Oata OBE iK 4.8 4.8 TYPE OF ANALYSIS Scists6c anal~has bcca performed Qtiiiaiae a proprletey corn@ger program No, gQ sad Qlpported Q a aambcr of ot}Nt prop'ootapater proirams and hand calcnistioeL COMPUTIR RUNS, 2100.044;2100.0441 FWCTIONAL RaauiREMENTS:

The cqaipsaeat is reqllired to operate without damage to itscif aad arrolmdiag eplipmcnt daring aad dtet the meats spccÃecL EXTERNAL LOADS.Motor sheave wefght, 15 lbs.Located at end of shaft.8elt pull of 111 lbs.EYENT(a)ANALYZED: OBB Anelymlat"e..'umber of Events: One SSE Analyze4 Yes OATAtURNIIHIsD Sy.Astinghouse Electric Corporation ACCKPTANCI CRITERIA'he equi pmeat ai5 operate ehhoat dentate to itself or sattemdiag eqldpmeat before, during, aad atter the events aaalyxedIrith the safe Smka of the assteriais and hnctioasl design.MARGIN!Margia is spcciTicaity given for each material ia.the Saalmary of Resaits fouadin this Section.89b-R-42 I ly"l 0 Mt'Aa'~k MOTOR CONTROL CENTERS~~I B-6.10-1 PAGE 7 achment No.~<~c t-3l, Q 0 NP., Rei.NP.'3tH.~of~-CLASS G 30 HEATER SELECTIOH TABLES Class A20 FYHR, Class A22 Two Speed, Closs A21 Roverslny HEATER REQUIPEMENTS BY OPEPATING CONDITIONS Motor Continuous RatingoC Riso Ambient Some At Starter And Motor Ambient Hiyher At Stortor Than gt Motor Ambient Higher At Storter Than At Motor 40 As spacifiod from tables One size larger than specified for each 15oC difference One size smoller than specified for eoch 15 C difference 50-55 One size smaller than 40oC.above One size smaller thon 40oC above One size smoller than 40oC obove Tha current at which heaters will trip the overload relay with the knob at 100~i@mark in on ambiont of 40oC,is 1+25 times the minimum full lood motor currant in the table Heoters so selected give 125'5 protection HEMA SIZE 0-1 STARTERS HEMA SIZE 0-1 STARTERS FULL LOAO MOTOR CURRENT F UL L LO AO MOTO R CU RR ENT.HEATER CAT NO, 2 OL REl AYS MAX, MIN, MAX, 3 OL RELAYS HEATER CAT NO+2OL RELAYS MAX, MIN, MAX~3 OL RELAYS G30'Q G30T7 G30TB G30T9 G30T10 G30T11 G30T12 G30T13 G30T'l4 G30T15 G30T16 G30T17 G30TIB G30T19 G30T20 G30T21 G30T'22 G3DT23 G30T24 G30T25 G30T26 G3OT27 G30T28 G30T29.32.35.39.43.46.50.57.62.7'I.78.87.97 1.07 1.15 1.26 1.40 1.53 1.65 1.82 2.05 2.27 2.48 2.74 3.08.34.38.42~45.49.56.61.70.77.86.96 1.06 1.14 1.25 1.39 1.52 1.64 1.81 2.04 2.26 2.47 2.73 3.07 3.41.29.32.35.38.42.46.51.57.64.71.79.88.97'I.OS 1.12 1.25 1.36 1.47 1.63 1.84 2.03 2.21.2.45 2.75.31.34.37.41.45.50.56.63.70.78.87.96 1.04 1.11 1.24 1.35 1.4S 1.62 1.83 2.02 2.20 244 2,74 3.05 G30T30 G30T31 G30T32 G30T33 G30T34 G30T35 G30T36 G30T37 G30T38 G30T39 G30T40 G30T41 G30T42 G30T43 G30T44 G30T45 G30T46 G30T47 G30T48 G30T49 G30TSO G30T51 G30TS2 3>>42 3.85 432 4.81 5.06 5.56 6.07 6.90 7.80 8.72 9.75 10.9'l2.2 12.8 14.3 I5.2 16.7 18.8 20.2 22.3 25.5 28.3 3.84 4.31 480 5.05 5.55 6.06 6.89 7.79 8.71 9.74 10.8 12.1 12.7 14.2 15.1 16.6 18.7 20.1 22.2 25.4 28.2 30.0 3.06 3.48 3.90 4.34 4.63 5.04 5.55 6.30 7.05 7.86 8.82 9o85 11.0 11.7 12.4 13.7 14.8 16.8 18.1 49.5 21.7 24.4 27.8 3 47 3.89 4.33 462 5.03 5.54 6.29 7.04 7.85 8.81 9.84 lOdf 11.6 12.3 13.6 14.7 16.7 18.0 19.4 21.6'4.3'7.7 30.0 i!"I)4 h.~~/~i , ir A'I I S-5.10-l PAGE 8 h'lOTOR COH TRO'EH T ERS CLASS HEMA SIZE 2 G30 HEATER SELECTIOH TABLES REMA SIZE 2 FULL I OAO MOTOR CURRENT FULL LOAO MOTOR CURRENT HEATER CAT NO.G3QT36 G30T37 G30T38 G30T39 G30T40 MIN, 6.42 7.23 7.87 8.93 10.1 MAX, 7.22 7.86 8.91 10.0 11.5 2 OL RCLAYS MIN~6.16 6.95 7.57 8.56 9.72 MAX, 6,94 7.56 8.55 9.71 10.6 3 OI RELAYS HEATER CAT NO, G30T47 G30748 G30T49 G30TSO G30TSI MIN, IBA 199 21.3 25.3 28.3 MAX, 19.2 2202 25.2 18.2 30.3 2 OL RKLAYS MIN, 174 188 21.4 2$.3 27.2 MAX, IBA 21.3 24 2 27.1 29 1 3 OL RKI AYS G30T41 G30 742 G30T43 G30T44 G30745 G30T46 11.6 12.8 13.6 14.7 15.3 16.7 12.7 139 14.6 15.2 16.6 18.3 I4EMA SIZE 3 10.7 12.0 13.1 14 F 1 14.8 16.1 11.9 13.0 14.0'I4.7 16.0 17.7 G30T52 G30T53 G30T54 G30TSS G30T56 30A 34.1 37.7 41.1 47.'I 34,1 37.6 41.0 47.0 53.5 HEltA SIZE 4 29.2 324 364 398 45.2 32.4 36.2 39A 45.1 50.3 FULL LOAO MOTOR CURRKNT FULL LOAO MOTOR CURRENT HEATER'AT NOi 2 OL RELAYS MAX MIN, 3 OL RKLAYS MAX, MINo HKATKR CAT NO+2 OL RELAYS MIN MAX'OL RELAYS MIN, MAX+G30T46 G30T47 G30T48 G30T49 G30T50 G30T51 G30T52 G30T53 G30 754 G30T55 G30T56 G30T57 G30TSB G30T59 G30T60 G30T61 20.8 24.0 26A 28.0 31.8 35.2 40.0 45.6 SOA 52.8&I.d 68.8 75.2 83.4 90.0 23.9 16.3 27.9 32.7 35.'I 39.9 45.5 50.3 52.7 6'I 9 68.7 75.1 83.3 89.9 100.0 HEI4A SIZE 5 19.2 21.6 248 25A 30A 32.8 37.7 40.8 46.5 497 578 64.0 704 788 85.6 95.2 21.5 24.7 25.3 30.3 32.7 37.6 40,7 46A 49.6 57A 63.9 70A 78.4 854 95.1 100.0 G30T51 G30T52 G30TS3 G30TS4 GSOTSS G30T56 G3o 757 G30T58 G3OTS9 G30T&0 G30T61 G30Td2 830 T63 G30T64 G30TdS 35o2 40.0 45.6 SOA 52.7&ID&BLAB.75.2 83.4 90.0 102.0 114.0 12S.O 133.0 39,9 454 504 52.6 61.5 68e7 75.1 83.3 89,9 101.0 113.0'124.0 1324 150.0 32.8.$37'0.8.464~49,7 57.S 64.8 71.2 80.0 85.6 95.3 104.0 115.0 130.0.133.0 37.6 40 7.4dA 494 57.4 64.7 71.1 799 854 95.2 1034 114.0 129.0 133.0 150.0 HEATER CAT NO~HEATER COOK MARKING HEATER RAT ING 2or3OL MI No MAX'OTOR CURRKNT 1597771 1597772 1597773 1597774 1597775 1597776 1597777 1597778 1597779 1597780 1745083 4 84 CA CS CC CD CE CF CG CH CI CJ CG~CG CHo CH 93 105 117 133 152 172 192 211 133 250 2&5 300 74A 84.0 93.5 105 121 137 153 ld9 186 200 212 240 83.9 93.i 104 120 136 152 Id8 185 199 211.239~259 Attachment No.J00 4'I HI-5~5 2Ylol-S'LE-2 M2 Rev.No.Shf.~of 4

'h+c~g I I'r~nt t I II'g I f, I'I MULTIPLES QF OVERLOAD RELAY CURRENT ELEMENT R~NG (REF.TEST REQUIREMENT 3}+oOVK~0%Lkl'C~.

ELElCPtT RATII(G (N~~as(.xa8 m II$II>mliM 3OCO 8000%CO 6000 SXQ LENGTHS IMII IIMUMI 4<QQT~R TERMINAL 00 ao 500 TEST REQUIREMENTS I OVERU3AD RELAY TIME-CURRENT CHARACTERISTICS AT 4CPC (IO4 Ff, 2.3 POLES IN SERIESTEST.

3.Cv'..RBP(KLEKIB4T RNINM25 4 CF hlINN4N~TER CURRENT'NLLK.3000 4.QURING FIELD TESTS EMPLOY Tl+300'1o TO 600%TER'ANGES.

axe REFER TG NEMA IC.S.2C22 OESma TEST PROCEDURES.

5.0 CT POWER SOURCE IhNEDIATELY FR OvER'LOAD RELAY TRIPS.%8 8 FQGT WIRE~~~<4P~WIRE LENGTHS (MINIMUM)~i~~(r~~~~~~~Y.:.)I~j TEST'CONNEiCAONNAGRAI4

'%7'auusT~tKMASZEO,I

$2 OVERSAEk%ULYS:--.;:,-.

'.::"".'.LKV K20 SAM:4RPCR'N%

I~~~~~~~~~~~~I~~~~~~~~~~~~~~~~r~Il<<<<<<(C~5 b<<I<<~<<(~<<<<<<0~M<<~~0~0 S<<I<<<<a gi w a.pJ QWI~O~I o.p)0 oo 8 Q (,'+carr"rr

~Q CEv'"~e..Iy (,t~mao~~'L~I~I ewe~~',;ye'I I~~', vp I'+I~'

'frI(I1 4.g~y3';~s*'

0 0 0 0 0 0 0 0~~I~l 0 0 I~0~3 1~~~~C S~a c 0 e<<eo~&~~Oi)i lX, 0~0~~~0~I~~~~<<f.~V 0 0'i~I~'<<l~~~0 0 l'4 Sr Qa g)ot I.~NEOSS~~QSOSSSOOSN~~

, SISPP~SSSSSSSSP~

..SSSSP~RSESESISRI~R

...OSIIIWHOSRSIISNIIW%

aaIIImmraaaIIaaIIImm 4SIII~~OOSSII 5~~OOOISO HOSSSQ...SSNI.WWRSSSII SSIII~MHOQIII

" MRIINlMWRRRIIIRIIII~&

,%RESP 5~%%$PSWRSP~~.HRRSPHM~KRSRRIMSR~~

., QQSSINOSQSSSQNSNRS

~aaP~EIIRaall~

WaPPPMPP~W&PPP&meP~

ESPPPSSRSSSEPPESSPP~

SQSS%KQSQISlkSSSRRR

..SSSWK%%ISSIISIWS IIIII%%OiOSIIItQIII&R

..%IIII~551515IIll~&

ImlmlWSNIIIIIIRIIIW

.IIIIIQNHIIIIIIIIIIS

%080$~~4g~NOOIHQO%SKeNM

.SSOSR~H+gggOCRRNSOiCN%

~S~M&8tSRSISSSII~W

, QNIII~&RSRIIIOSIIl~&

SSSSI~~Q CCt<NSNOQ~~

, OSSSL~~O%ta54QQRiNNS~R SOON'N~QSRQR.QQJSII~R

.%%01 I~~M&hl%PeNQSII~~

aasma~maSR%4~85IIIaRRIRI IIIII~WRSIQIMIRlhMRW IIIIIWRSIIINImllIWR

.5DHI1111llllmm8$

1%$%0%4~~M SQNAS 8 WLIRIf4~~M%QCRSRRS~~4%l&%%SW&k~04R~i&

II 455IRKS QMH!'NS5I&RSi~VKBSh N5IRf RQ5g 35955@QIIIQSIIZ~

&%R%0~~M%0&H 0 0 W&%0 0 4AM HlRSRg~~~ag<g gg&%08%%a+K 804Si CRg%N$5 8 SOSSil SSOQ%%$%IIRIRNQliggM W%511iROSII R RA SI CB55ig gmig SSIf RSIIICRR%%

II INR5&%81%'IISIIIIRNIm 1515!

t't~~&I Al ,ft$<<pp id'~g%'i~j.P Pi.Qk l~g i 0 SOP%CN 2~E E THEIINAI.OVEEt,eke EELAje E PQI.E 1.L 16054A HEATEM Heaters are not included with the overload relay and must be ordered separately per the heater Selection table and the Information listed below.When Installing heaters be sure that connecting surfaces are clean and heaters are attached securely to the relay In the proper location with the screws provided.The trip rating ot a heater In a 40'C Ambient la 125%of the minimum full load current shown In Table V, When tested at 600 per-cent of Its trip rating, the relay will trip in 20 seconds or lese (class 20).Heaters should be selected on the basis ot the actual full load current and sefvlce factor aa shown on the motor nameplate or In the manufac-turer'8 published literature, When the service fac-tor ot the motor la 1.15 to 1M, select heaters from the heater application table.If the service factor of the motor is 1.0, or there ls no service factor shown, or a maximum of 115'h protection ls desired, select one size smaller heater than ln.dlcated.When motor and overload relay are ln dlt-terent amblents and when using non-compensated over/oad relays, select heaters from the table using ad)usted motor currents as follows: decrease rated motor current 1'h for each'C motor ambient exceeds controller am-bient.Increase rated motor current 1'h tor each'C controller ambient exceeds motor ambient.For ambient compensated overload relays no ad-Justment In heater selection ls necessary for nor-mal varlatlons in ambient temperatures.

SHORT CIRCUIT PRQTECTION

The relay will provide protection against abnor-mal load conditions to current values exceed)ng:normal locked rotor current: however, to protect~e relay from short circuit currents, branch cir-cuit protection must be provided per the National Electric Code.Protective-device ratings should not exceed the maximum values listed in the heater application table.The relays, as protected.

are suitable for use on a circIIIt capable of deliver.ing not more than 5000 rms'symmetrical amperes, 600 volts maximum.MNNTKNANCE Other than the normal tightening of all wire and heater connections, no maintenance should be at-tempted on the unit.Complete replacement of the unit must be made in the event of damage.NARNINO: To provide continued protection against tire and shock hazard, the complete overload relay must be replaced If burnout ot a current element occurs.See Table I.t Attachment NO.Jn>4 i'KA-SZ 5 t~~C M0.-'3-E.-Z Ac Y, SHT 1(.>t.~FH03 FH04 FHOS FHOS FHN FH09 FH10 FH11 FH12 FH13 FH14 FH1S e<<a FH17 FH18 FH19 FH20 FH21 FH22 FH23 FH24 FH25 FH28 FH27 FH28 FH29 FH30 FH31 FH32 FH33 FH34 FH35 FH38 FH37 FH38 FH39 FH40 FH41 FH42 FH43 FH44 FH45 FH48 FH47 FH48 FH40 FHSO FH51~25~.31.32.34.35-.35.39 A2 A3-AS AT.50.51.55.55.52.53-.SS ,59.75.Ta Jo.Si.91.92 1.00 1.01 1.11 1.12 t~M5 1.3l 1W 1.4T 1 AS 1.82 1$51.78 1.79 1.95 180 2.15 2,18 L%238 258 L%2'84 3.11 3.12 3A2 3A3 3.73 3.74-4.07 4.08 4.39 4AO 4%L3 5.1 K9 LO-L4 5$-7.1 Td-7.8 7.9 LS S.S-9.4 9S-104 10A 112 11A 12A 125 1LS 188-14.9 1LO-1L3 1L4 1LO 1L1 198 tL9-21.7 218-RL9 140 2L2 1'~10 1~1 20 3t 30 30 30 30 30 3e 30 p ao 8')l so 8 10 10~10'5 15 15 15 15 15 20 20 20 25 25 30 30 35 35 40 45 45 50 50 50 70 SO SO<<14 N4 Nl Ntl<<14 N14 N4 N14 Ntl<<14<<14 N14<<14~N<<14<<14 N4<<14 N14 Nl Ni Nl N4 N4 N4 Ntl Nl N14 N4 Nt4 Nl N14 Nl<<14<<14 N4 N4 N14 Nl<<14<<14 N'l4<<11<<12 N12<<12 NO<<10<<10 Abc'eetere tor oee ort Site 1 2L3~2LT 2L8-31A 318-345 34037.9 4M 414 4LO 90 1 125 125 125 150 Ahorse Heetere for oee ort SIEe 2~1S~lere protective dgrloe le Oennltted bY NEC.Fuee Elze Eltown In table Ilmlte faN oorrerIt.TAILI>-tr IMII HEATER 8LleVtON For oeeteetEeeeee OLFe Ie NIY elec eeeteeeeg erase non-oanpalaEtee OM'e Ie eIIoteetgee eeet Eete~eet Ieee tben SIOeo.Ie.Wtre~TSW Erb>>.-For Uee Wltb Tltree Heetere OoIY Foe Loco Corrltt of Meters<<geyeree)

(~AeItNNI ll/'{4~'$~t~t.iP J,,hg

'SINM E TYPE 8 TIIEEMAL OVEEtOAIPEELEY, 0 POLS-I.L.<eeeeA R O I00 8dl 40 30 I I I Flg.5 Dlmenalon Dravrlnga (Dlm.In Incheaj r TO OONTAOYON" I00 I 50 200 300 400 600%S SNlea TIIP ANltty AI 4I'C AttOI4al Flg.C TlmelCurrent Trip and Reset Curvea The trip rating of a heater ln a 40'C ambient ls tr25 times the minimum value of full load current listed for each heater.To T%TS Y To CootTol VottoEo YO<<eVOa lS FNAMl Fig.d Connection Diagram To AWm-Oroott (Oooo eeraoih Attachment No.Job z na.s~>Calc No.Rev.No.Sht.~Of~EffOCtIYO4lbi Suyorcodoa I.L tINIi{11I83l W Ih4I 8 hl C q Control Olvlalon Aahevllle, N.C.U.SA.28813 Printed In USA.

J ,$T'e~i 0~P a~~~'~~ee 0 e el o'~~w 0~~~~~~~~~t.@+I I~~~~I~~~W~0'~wr~o I~ci~I 1 , Vr tp(w'" E f,'l

"'0l>ON'04c<PDO kS 8 3 lS B~4 I.~~4 TNT olL HQ 04 p R,bb S 3 ra o IB t.00 O oe/zip A.0 8o.T N p egQ-lOX.tSt~Sh Jsh Sa Cs..fe.a (D N K Z;IC4 t 4'0 l (1~0 8 s 5'--g COO 9'A l4~To H P~+i Sfe cc an~2 meow~~g~.n pZ OO~oh~0 0 (p~V Pz S~SS CKOF al.PIQCOP ear'04K tQAf I OM ,N~~t4.8g.Macaw'PaeIPee4 SPEC.Ch1.AS NOl Ovtat.~LNeic I~grym letlaiAaNKOeb PQHT SHAY I 4$%5PFfkb OH SPA'/CY.}LC l.f ll pr H.~l rg 7 i'p~1$lg

>>a>>>>>>>>>>S llf I~It lCTIAL CSIENT TO COIL 441 S St S S SeSSI Attachment No.Job Q,I ttO\-5Z.P Calc No.Rev.No.Sht.~of 5tECIALIEEO IELEDTITE Aee esasaah-reams SIRCUT-AUTINN TNI~ICTICIC." I.Y.5~OD-I, OD4, OMOO 4 OD400 QS<<LINI-TINE tIONt IETTINI AIIIITAILE TI 44$.}445.II&, I44$Ol 144$0 CIIL NATINfI (INDINIICT AT'IIII)LNI<INE Il44 UttEN LIIIT EEC NITC I~Iit 000~404 lees iles aae aaatl>>lies solos ella Iasiasloeooes IV.~000~IN~Iles~its I0010010Mwo hots 11 los 0000~I I~I I~I 110 1000~00~ossa~~I~0 Iles~taa 110~call~I 00~Ioet~0~I sall I lal~~tso~loa ef Iao~l tool 1~toss~to faa wf est~~Isola~iles~I I I 10 stool I~~~I~0~1100 110 essot I I~Ii~I 110 ause olssl I too ot lot los lo~I~oi soli CINSOCISO)l I 000.eet tohoti<<ilu) asfs sl Iss tout I I~IC~I 11~0000 to~tssssto tss Iles fot wise coa afotsettwc aof totoi~I sf 11~oif N soles ws lhsa otso lo sse ot ios 1004 IIM~Isoee et sss~I Iao oaotl IIN~I~01~~llaoet Cf INI~0 Ihs~I twit awosot fho solaol~Ialeee t tie~104 lteo ri I I~leofa ao Ia~100~0~I 11S~Scot l lait Oi 110 SIOSI Ssaot~Iao~f Oof los I~0 000I~00~(1004 CI~0)I I SNo uoi toes~I CIN)Itot~0.cslulo~Isslsatosoau sl~hee eclat oetoteluo~leo Solof sefu~ol+tl~0 I I os P 1OO r 0 t I~I I WI aoto 01 csl~tscle40 e.'l4.T~1~I 04~44)0 SOI h40 lls-140 1)s 444.Oil.ae.004, sai, 34~.400.'000'IS44.

laser 1444.V4o.4444.heC A oAAD Nun ssolf ellhl~Ihs 000~t~oltseii oettoai'tatlas ol tu oosiloehl~~ltsell stoeseto 401~41 fsototf ssctlsao{uisss elaatolN esullioo)~0+ties~loses i ISSS~I soll tailaa ttittae~lafea i ossa el osll tallal aslsaleooose slsieo-Isoos ol soll tellal Ties ooso~I~I aee IIOI~~I ceto os~I~sool loNI~tst N/Ms sfocue Ns ata hoses N 0 aotssl Nil~~tailoa Iusototet~fossa~I IS 04$~Ice aa stoslaeo loss 10104 004IIN te cso 1 tl~aofl000 NOI~TI cell~0~to~I~Itss oa tati~sot wei hosl~fo~~00~tai eloI~Ith solt~~I IOS 00 eall~I SSN Slotilae Nleal Cwtatullu Oefe~0 Ia SOSOINI Oo~IIIN'I~0 loss<<llao~Shelf ties No/0~Is~iulwwea SI0~0~001~los~I lhs Oolosloe~Nsto folios el tat~tho HI~010~I~toaso 1~ON 110 oootos~I~I~awso f toe 110~etfoe~Its ta~Outot Ot tao saae N Iho soloslss Nsste fslWo IS W-W>>I 4 U t-TINC DANI.LNIT CITE II LONI TIE IIUI.IIII NACHO INTEEIIAT I NINIM tea ao 1 se I 444 IC T 0 INIIT f ICE ICLlf~ICNIt ICTT tll AIIUITAILC TI A44$.i$4$44 IOOI$(ININN IET AT 414$ANI IO44$)INDIT TIEC NAS LORN LIIIT IEC NITC I I Elf ANTANEIUI tlCIIt AIIIITlILE tIN 444$TI I$445 Ot-C4IL ElTINI (INIS IET AT IDOI AND IID45)41E IDTE I INST TINE IAS IttER LIIIT ICC MTE I 00-4 ANI CI 444 ONLT INIIT TIEC ICLAV IASC NXI~>>IIT EISIIATC IINII44 NANINS C ICCIIT IAEAEEI CLEAIINI TINE NITN IEIIANEOLC Tll~<>>>>I!a I.I IIIIII IATII It ACTUAL%RIANT TO COIL IATINI a CURRENT CIIAIIACZKNIIT)C SOII ICILNN 0 IC4CN C)I)CUIT NNNAICNI)$

I f I TftEI 44 I AS 44 4$$LlSN TIIE ONfaTIEE'IITAITQSS>>

IIIECT-ACTINI flit IETICEI, tN ItECIAL ICLECTITE TNIttl44'AttLIIATINI" TftCI S~AS 44 444<<LIN4TINC AN INITANTANEIII.

~0I'ICCT ACTINI flit OETICCI tN If-ItIS ClLIIIAfla EEEEIEEEENE-I

~tD=66%$: CAI I alta.B~>>In~<<CIu a~~e~f sill I II'ti"')5 4'1~~I,

~~If I I" 1F~I I'I INN I NN IIN INI IIN N N>>NN*INN NN INI INI I IN IN IN IN IN'IN IN IN lU 1 Z IN~~1 I I I ii I~I I Wt'1]TO T.EI IMP INgrANlf TINS I PEIIES tST SO-7P TO 1 1 DI E TION I ANEO jm BSO j t 11M INI IN IN IN Nl SN IN 8 X C IN I I, PININI Attachment No.b 7\7D'L-S4Q Cajc~o.~~>>~-+>>-'-

lt.I.~Sht.~of~II II I~II ,1 I r~.I.I.I I.I.I I~~1~.:II'.II: 1~~I~I'I~1~I~'~I I~I, I., I I',~I I I ANEOLIS IIIAXI ANTt NEO S Il I I I I g Z 8 I o I.I.I.I.S 0.I.11.II.II AS.Ii.n IS NTANECQS jul AJ TAFT OUS TAI T IILE Pl I OllLY).I~II Al.II Al AS~j li~I r...i~N.NNIS N P N NNNgyi g g$IIIIII~IIII IIPI I>>~If~'1111~111 Illll'AIF f11 I'1111111111 11'11'Fl FOR API'LICATION ANO COORDINATION PURPOSES ONLY.BASFD ON 40 C AMBIENT COLD START.500 VOLTS 50 HZ, 250 VOLTS DC.

I'I I k 1~f F'V I'~'y II Jp I V Q~~Sl%san rs SNkiRSSg%P t~'~~~'~i~I WlilillNi aI~s IIII!i~~lfgglllgllIII

........:::--.,'

-.'-lI~l':',j!.j,"!milt

~Is~l OSSpa%'4'SL'Qa O'EISISR~SS

~I Q)IlLWlL%i.%L'i>'%IIISSIIHES

~!~I~I RSRIIR.LWL>L11 aa aaLSI~RS~I SSII~%1A~LI LiP%SQIWRS

~I Il~IlllM w%li<~t/ki, IIRQI II~"a'/j~mg"II aS g)l¹III IllllHREIllllllg) 4 a (L s,'.i L 4a'arais>ra s~eQiHHrssiR~iksrssQi rssss I I I I%IN la RK~NOSkk$1 OIE~WRrLIlahfTIII~Y

%Sill ERIES~e a~~lit)%.L1Laa"LQSSQIIIlk)Sk~Rial\llNIIIIlllllIIL'IlhP

~~~~1l:ESII fiji I aa'%%E Q!I 0 I S I IN 0 g k I I I 0 0 5 I r%lH'4'5'9 I 1 i Q)8 g4'lL i..Ih.'H+Rs)Ills NII/O J'e NIIIP5%)R~I ws%cs<~)%5IIl+maaa 1.KOVISILaaalROESSEIS>OI~OiQkÃQJ%'Ea a"'"'SIII q)'Q1EQa$%1%SSISESSSER~SFIPQQC ISIISR(ilESIIJII:gSEI E'i%%Lao.VSllSlpINSNS QQLQQIiaaaa~~ewaaiRV'SIEI ll IL"45ÃiRI'l ITiFiiFiiliRIliiliillIII

'jlij~e II llllllllllsasllllgllgl I)Ilats Rg IRIINE4)aalu RBaaaraaa Sl lli>gal~~~RSSQS 1 QII P1 N lhiORFJ a a lRfSSSiSILEH

~a I%I(SR.-a SRIIallBEI lEEsll~SIaslllalll IO S.:.I IIII'IHIIIIIII I IlSasllllllll I~ss~~sross>res s 4i Nil ROC/isIONss!

IIS SIN~g WOW)LS EEII 4,i~igg'+3>...'~IOCIll pQIl%555 I I>I1N+1VAAik~LHh1k~I'fiaai%8a.liL>L1%~1 81$$~ASrWISlrSIS 4.li>i%a.iahrOaWi>h,l I 1ii'a4%%SW'%tiaal ISSS~OWSSI>ESSCS (Pi>h Ci Mi%%'Ii 0 itkb+ihfih'%k~h%lrQlfQSslSIISQB iqlldi wwhQO 1bi%iii>a"..i iw>iW lb'%" IaaaIaL51%IIlalaIi

."Ilia%)~i%2WL>Q1ÃiNViiBL~Qii5'8i5%IIIIOSLIIIliQIl Clio>if350I%5Q55iM%~i)L%5MI7IRFilaSIIQSS aSllEaSSI'iigCi~iggsg>~i.'p~gi4>@@gag:i5illgg I~I I i asg+aaaali~g>q%q%iw

+a%aaa~bj~paal 1>jan%>qs+l)aaa%%aa

/IS 4igE l" I 4'It l4I gPr PP'j'P-h'I~h d'4 gP-OQRRE~NOSQSINkSl>I~QSOWslQNOEI~~

OSiNS~OSNSiNtSQ~NOSSim)OOQkQQ LQlR~QO sarraaa~a QssraM&Q rahsrraM%~S!IWRRHllliSllWQSIIQRSQll%Q OSISI~~OOOggglQ~~SSOSNRSSIR~O RQi)~QORQSOSia~Q SSSWRiQi~~

NSRN~NSSS)SNSQNN~W

~sraHQsssratssa~s M QBRHRRBEQiSIIIHS QlllRRSQllllllll%8 i'IIIR1$~Ila mlle IIIIRlE" R L SOSSLVNSRQRESSIIE~~

SQklRL1%Vi%QQNQS) 5~0 SQIIR%L~aVRQQSOSE~Q RRSaL%L~AkiSSNSQaHQSSQrSQra%

RQllR1iLihi%NRQSB)&QSHllQBQHQ r SISN%%%1L%%'%hi+OSS k R~~OS S>NISIOS~~ESOR%L%%LE'BQLQSk~ROSSSSiEQ~O kSSl~k)Qk>L"(i~I'MSSR~rSQSSSISCQR SSrak%i%i%LLidPii%

%~~OSSraSASaQL SQlL)LlL~it" l>iPaih>OQASIISIQILL RQN%%555hfhtSRh4%~~CR~ISQEmlRS

~IIIISl~rmla~gPPFa+LRLl,glllgg kllllWE85IVII'l!<<ia:i

'IWE 5 Q l k~l~ONL>SNhhDS I~~ORaa,'5.iS I S~Q SISSSWE'HRRSQISOSNh~~~&a~OSSE~SRH SSl~i%SSSQOQILWSl5bR'25RSSI~S ss!ra&hxREQraArra&a

%sprlsQraHL QlllLS'%EQllQSPiaQLShRRS,INlllQL S>ES~~E1SSWNOSlhhg%~851klSSkllk~~

SQS~O5~%SSRS!%~~%RQSQSR~S ISS~LSS'%5)!ill!

I~Ra'%SSSSSQQ~L raaramaraamraaarramaraaaa':arrrama 15EIRRQRSSSVilSIIIROWQIBQRRIRQ

~EllEMKQIRRBSa~%lE~&EREQllQEQIMR

~IIIIWirallllallll~+OkallllallllWR IIIIISEllllllllllISR%

aaHIIIIISE QSAS~~OSISNNSSSR~~SSSNISSSS~+

QSES~NORSESASSi~WRROS!

SQRR~Q IQIE~ROSEOEklQ~SQSEBSESH~R isQa%%sssrasikraHRWRRsassraHR

.SSi8%%5RSQEREBWREQIQESltHR SSSS~~OSSSSSQII~~SSSSSSSSB~~

QSQ~SSOSSSSS~SOSQQQSSR~+

kQQ~LWIQSESSB~QWIESHSISSE~T

, AiiraHQQWQraiirrawLRkoAraRQra%a kiBIRRSQQLQEIEKOSEiSIRQI8%8 lllllMHSIElll55%15~%%RElll5%%1IM%

allllRirallllallllKSRallllallllRR IIIHEEIIIIIIIIIIHEIHIISI'NIRE j<i7 i'l i4il'i D'(v' I MULTIPL 3F PICK.UP SETTING I I IN~N IN I Io e'-)IO~~I I I I~I~~I~N)0 se I~NIONN%Attachment No.Job s)L-l u(-52,3 Calc No.zi toi-s~wc-m R.M.~stc.~cf~I NO NO IN~N I IO IO 10 10 IO)I))10 Time Un IN N N N N~.I s W IO t 0 7 d 5 4 c OI a 2 4 E I N 0 0 ,I.N.N ,01.N.N Iastaataaowo Visit.I 4t ks.~I I 4,1~01)~0~I~~I~ro)o u so 00)SOON MULTIPLES OF PICK UP SHTINO~0~I 0~10 CISISSIt)to)SIC TIME OVERCURRENT RELAY IAC 66 RELAY GES.700i A'OHoSS I ANPOOOOI 1 neo Unit tnISontonooos Unit 2.5-5 2&4.0-4 4 14 1~0 20-40 40 l40 I leo till)Inverse Long Time TI~)trrent CUrves (Othet Iclays~Its dop4cate time delay chatacteristtcs IACTO POWER STSTEASS)4ANAGBAENT DEPT., P)I)IADELPNA PA T)~u~Pops)2.5, 2.5, S,l, 2.5, 4.0.4.5.5.0 4.0, 4.5, 5.0, 5.4, 43.y.l.4.0 Inst.Un)0 Centhwoosty Adioskklo 1.\h p w4%1 I)g MAR 17'92 84:46PM SQUARE D MIAMI PRUS SK3 (z.cKz"'000~'tw ION 100 000 1N 000 400 I~I I~4tPC f104'F)Ambtegit Cold Start MAXIMUM AVERAGE OVERLOAD RELAY TIME-CURRENT CHARACTER ISTI CS'X Melting Alloy RELAY OES(Gh(: Q Slmetalllo Q Temperature.

Compensated THERMAL UNiT 80 44 950 TYPE[S): Curves apply only for equipment indicated below: gyl 4 0 V sn IN ll le 10 l0 se[g AC Magnetic Starter Q AC Manual Starter Q Separate Overload Relay Size~0 i Type SB, SC Forrtt'erfes A With (sty.)3 Thermal Unit(al When installed in: u7Lsl PPJ tr(f Small Enoloaurs (Clam Onfyj Q Motor Control Center (Clara 8998, 8999, QM8, f-Line)Cl All Other (Largerl Enalolurea 4MB X~LI 84zz (8ased on table 830068-389 g(3~C(S~~W h~2 c3 gag c3~Fe-ac.rc(~.0.7 AA I NVLTfPLES 0 I~~~r~~0 l 7 Seie F TRfP CURRENT RATfNO Trip current ratlnp can be determfned from instructions piven with appropriate thermal unft selection table.Characteristics shown do necessarily apply to equipment manufactured before date of drawinp.ttCV e OATC tl 2tL d RO(03'08 L2~eggs eV CgggIOs eV RNtg 80UIIRE ti EEMPRNY Egtgeggaugg CC 8 Ee WI SCONE(gge ur L As 4stt%tt M%X E42 EC-UK MASTall$20008250 s eu.s i7'a'30068-%07 ueTS~L>IW Hd3 Wdat:ta 26, ZT WM gj I , lr%4~lQ.Sf Cg'+p,$*

1986 ISSUE NEMA Rated Motor Starter Heaters CB123 OVERLOAD HEATERS MAGNETIC STARTERS-Full Voltage (Cont'd)NEMA SIZES 00, 0 AND 1 PRICING INFORMATION 0.48 0.55 0.57 0.65 0.69 0.46 0.50 0.57 0.62 0.68 0.45 0.49 0.53 0.59 0.65 0.43 0.48 0.53 0.58 0.64 leea'No(oe Fu84ood Atopotoo....

C'-'.Cat Ncx~CRQS-.C054A C060A~C066A C071A C078A CR123C (All)olL O.All CR123C and 123F heaters are packaged three to a carton.Items of these heaters, being ordered for customer'stock, are to be specified In multiples of three (such as 3, 6, 9, 12, 15, etc.).Minimum order quantity is three.0.83 0.97 1.03 1.12 1.26 1.40 1.46 1.63 1.79 1.97 2.25 2.43 2.60 2.96 3.57'.88 4.43}4.87 5.37 5.*8.72 ,'0.5 , 11.7 12.2")3.5)5.1 17.5 18.9 20.8 22.4 25.5 28.2 27.0J'.80 0.91 0.99 1.09 1.22 1.31 1.46 1.59 1.74 1,93 2.13 2.37 2.52 2.87 3.39 3.59 4.31 4.57 5.31 5.86.19 6.61 7.61 8'.4e 9.35 10.4 11.3 11.9 13.0 14.5 17.4 18.6 20.5 22.3 24.7 25.7 27.(k 0.76 0.84~0.93 1.04 1.15 1.27 1.39 1.55 1.73 1.89 2.05 2.28 2.47 2.79 3.31 3.70 4.06 4.47 4.'95 5.49 5.91 6.47 7.20 8,22 8.72 9.67 10.4 I 1.0 12.4 13.2 15.4 17.1 18.1 20.0 21.5 22.5 23.9 26.3 27.0 14.2 17.3 18.7 20.6 225 24,7 25.5 26.7 27.9 32.1 I 4.2 17.3 18.7 20.8 22.5 24.7 25.5 26.7 27.9 32.1 36.0 iNEMA slzE 1P.i tee)L Notoe.'".,'ttt/)oa~a 0.74 0.84 0.92 1.02 1.10 1.23 1.38 1.49 1.67 1.79 1.98 2.24 2.43 2.75 3.25 3.43 4.03 4.43 4.94 5.36 5.77 6.35 6.92 7.99 8.47 9.19 10.0 10.7 12.0 12.9 15.1 16.3 17.9 19.7 212 22.3 23.5 25.5 27.0 C087A C097A C109A C118A C131A C148A C163A C184A C196A C220A C239A C268A C301A C326A C356A C379A C419A C466A C526A C592A C630A C695A C778A k C867A C955A C1048 C1138 C1258 C1378 C1518 C1638 C1808 C1988 C2148 C2288 C2508 C2738 C3038 C3308 C1518 C1638 C1808 C1988 C2148 C2288 C2508 C2738 C3038 C3308 C3668 NEMA SIZE 2~n~JMOt AHMo'aber)ttt)oae'v

&Aweaw.n: "..'Law cw 5.92 6.23 6.63 7.72 8.96 9.92 10.4 11.7 12.1 13.5 14.7 18.3 20.1 22 3 25.0 27.7 29.3 30.7 32.7 35.6 39.4 45.0 5.79 6.12 6.49 7.59 8.71 9.19 10.1 11.2 11.9 12.8 14.5 17.7 19.1 21.4 22.9 24.7.25.9 27.1 30.2 34.8 38.7 45.0 5.85 6.47 7.35 8.06 9.03 9.81 10.5 11.6 12.5 13.6 16.7 17.9 18.7 20.4 22.7 24.7 26.3 29.5 32.5 36.7 41.9 43.2 45.0 5.72 6.30 7.04 7.91 8.80 9.27 9.99 11.1 12.1 13.1 15.5 16.8 18.0 19.7 21.8 23.9 25.5 28.2 31.6 34.7 87.8 40.6 45.0 NEMA SIZE 3~y 19.3 22.1 23.4 27.0 29.1 31.8 33.9 37.6 41.9 47.7 52.1 55.8 59.7 68.1 71.5 78.2 87.5 90.0 18.4 21.1 22.1 26.1 28.0 31.3 33.3 34.3 40.9 44.7 51.1 52.0 55.4 63.3 66.1 73,5 82.2 90.0 C592A C630A C695A C778A C867A C955A C1048 C1138 C1258 C1378 C1518 C1638 C1808 C1988 C2148 C2288 C2508 C2738 C3038 C3308 C3668 C4008 C4408 C4608 F2338 F2438 F2708 F3008 F3278 F3578 F3958 F4308 F4878 F5678 F6148 F6588 F7198 F7728~F8488 F9148 F104C F114C NEMA SIZE 4.!NH 32.2 34.0 36.8 44.6 48.4 57.4 60.0 69.5 71.7 79.9 92.3 97.0 108.0 118.0 131.0 135.0 32.0 34.2 36.7 43.9 46.6 52.8 55.6 58.7 67.1 70.6 78.3 88.7 93.4 102.0 110.0 122.0 131.0 135.0 32.0 34.0 38.7 43.9..46.6 52.6 55.6 58.7 67.1 70.8-76.3 88.7 93.4 105.0 114.0 128.0 131.0 135.0 F3578 F3958 F4308 F4878 F5678 F6148 F6588 F7198 F7728 F8488 F9148 F104C F114C F118C F133C F149C F161C F174C NEMA SIZE 6 118 128 138 155 168 184 200 221 237 282 270 115 125 135 151 164 179 195 215 231 255 270 C592A C630A C695A C778A C867A C955A C1048 C1138 C1258 C1378 C1518 Attachment No.Job 7,(lO(-2P Calc Itlo Zl>t"523-t-c()Rev.No.Sat, N)ano t)ata aub(ect to change without notice.

h 6\ll (4) oo~MULTIPLES OF CURRENT RATING (TRIP CURRENT)1 1 e e 1~1~~I~a eo N eo<<Toee<<I~te se N ee se ee sese<<-0='I<<a Te a a CR22OC C D 32i RD CR22 00 l te 1 e 1~, J 0JJ CEAEIIAL el ELECTAIC Cettooe Rottoyo-OA1 to 270 saapotoe toeeoeoty Rottog 25 to O0 Hotle N N e<<<<g 1 1 o 1 e~1 o~N Ao eo<<e<<<<se<<NI MULTIPLES OF CURRENT RATING (TRIP CURRENT)THERMAL OVERLOAD RELAYS TYPE CR224,'CR324 CR224C, D, E, F and G CR324C, D, E, F and G TItnowurrent Cursros (Ceaes shaw relet As AO C eahteat)GES 720%A Comas sottlatts f0 to 110'/e or heotee cvneat toaay.Cams showa ot 100Ye.

~w k J'rP P~r e W.&C,!>QUALtFtEP AtR CQRPQRATIQN

', ZNSEA IJLEIDN, OPERATION,&P.O.BOX 44099 CINCINNATI, OHIO 45244-" MAINTENANCE

~l4 DOC.NO.89M402 REV.2 DATE 12/12/90 PAGE 76 OF 4 7.0!@SWIM%~".4 4CNtg~C W GS DRAWXNG CRIPZLal OUTLINE VIEWS: CONDENSING UNIT...OUTLINE VIEWS: AZR HANDLING UNIT.OUTLXNE VIEWS: THERMOSTAT........

DRAWING KHAKI.................-....89C402-001

...1..................89C402-002

....oo......89B402-007 REFRXGERANT PIPING SCHEMATIC.........

.....-........89C402-003 REFRIGERANT PIPING INTERFACE DETAIL..............--....89B402-006 ELEMENTARY DIAGRAM........................

..........89C402-004 ELECTRICAL WIRING INTERFACE DIAGRAM.............

......89B402-256 CONTROL PANEL DETAIL.........

.~.~~......89C402-008 FINAL ASSEMBLY: CONDENSING UNIT.......

~.........~.-~...89C402-167 FINAL ASSEMBLY: AIR HANDLING UNIT.......<<...

........89C402-168 FINAL.ASSEMBLY: THERMOSTAT.......................

/FINAL ASSEMBLY/WIRING DIAGRAM: CONTROL ENCLOSURE DETAIL: AHU FAN MOTOR.............................

89C4'02-115

.....89C402-114

.....89C402-037 DETAIL: CONDENSER FAN MOTOR.....

.................89C402-036 DETAIL: DETAIL: AZR FILTER..............................

-.....89A402-124 SOLENOID VALVE COIL.....,....

-..............

89A402-192 DETAIL: CRANKCASE HEATER............

................

.89A402-255 Attachment No.l3 C6h ff tTDt-428-f-02 Rev.Mo.Sht.~of f'I l l li SOO OtCOD TDOQVO ONVO Grease Fittings 3.38 Hin.00 00 5.25'.5~0.41 Dia.Holes (4)FOOT MOUNTED 0 5.$3.5 1.38 so O w 00 II OO~0 so 00 10 C 10~0 00~0\Dt tDLL LOAD ODODVO 040 Q.@o B flP1 RPM1 1800 (NcaIinal)

NNL'R1 460V/3Hf/60HZ t43DIPIEO FKN GB PART N).5KS213BD05 0 CUSTOIIER FPaL Turkey'oint Plant CORTRACT NO B-8-6~PEC$1CQYOR g.QUALIFIED AIR CORPORATION P.O.BOX 44089 CINCINNATI, OHIO 45244 DRAMR BT DAT.2k.Cist.)C- I CBECEED Y DATE/-A3-9 DATE QA 89A402-037 REV1S10N 0 1-23-91 QAC RRO1ECT SO 89Z402 SCA1E one SUEET 1 nv 7-1/2 HP MOTOR AND DATA 1, lg ,v,if 5'I E StSSD TOSQUS CUSVS ass ss 2.75 Nin.Grease Pittings~s ss II ss II as ss 4.50 1.12 7.5 0.41 Dia.Holes (4)FOOT MOUNTEP Ca mgt-~~Q-oS g.I I" O 3'P: 5 RPMI 1800 (NOIninal)

PDKRI 460V/3PH/60H7i NRI1tllD 11'E PART N).5KS184SB208-5.5 2.75 as CDSTORER~,,~FPaL Turkey Point Plant 84NV640061 N5V-'NP2tb'O2 C~s~ss as~Ot tULL 10lD aosQVA QUALIFIED AIR CORPORATION 1 P.O.BOX 44099 CINCINNATI, OHIO 45244 5 HP MOTOR AND DATA DAT/-<3-DRA SY (JA~89A402-036 CA:EDY DATE/-A-REVISION 0 1-23-91 Q DATE/Esti f'8 6-I sueET ot 1 SCALE None QAC PROJECT ISO Xn~E Og C)S PERFORMANCE DATA WA4lC SnJiZEK'-Phase Productlen Designs: 482-2SS Frames, 230/460V, Amperes Torque ENcleney Full-Full.NEMA Full-load toad Locked NEMA Full.ST BD Full Load Horse load I O Rotor Code toad%FL%FL Guar.3/4-1/2-power RPM 460v 200v (max.)l.etter Lb.4.(avg,)(avg.)Nom.Mln.load load Full 3/4-toad toad 1/2-Max.load KVAR 1.15 SF Power Factor 1 885 1.5 1170 865 2 1165 675 3 3520 1785 1175 875 5 3515~1755 1170 SSS 1.5 3530 1765 1160 885 10 3525 1760 1115 15 354$17701180 20 3S40 1765 1175 25 3560 1770 30 3555 1765 2.1 2.3 3,0 2.9 3.8 3.7 4.0 4,3 52 6.0 6.3 7.0 99'.?98" 10.7'14.2 1'j.S 12,7 14,3 17.3 18.7 , 20.1 22.S 24.4 26.7 21.9 30.0 33.4 38.0 4.0 4.8 S.Q 6.3 7.5 8.2 8.1 9.1 10.9 13.$144 15.1 10.8 20.2 21.9 23.5 28.6 28.S 29.4 31.4 39.6 43.6 45.8 52.1 58.5 83.1 64,8 70.7 17,8 85.8 150, N 20.0 M 20.0 M 25.0 L 25,0 l.32.0 K 32.0 K 32.0 K 32.0 K 46.0 J 46.0 J 4LO J 46,0 J 63.5 H 63.5 H 63,5 H 83.5 H 81.0 H 81.0 H 81.0 H 116.0 8 1180 8 116.0 6 145.0.6 145.0 8 145.0 6 217.5 6 182.5 0 182 5 8 217.5 8 8.1 6.7 9.1 9.0 12.0 4,S 8.9 13.4 18.0 7.5 15.0 22.4 20.1 11.2 22.3 33.4 44,5 14.9 29.8 44.6 22.2 44.5 66.9 29.7.59,5 89.5 38,9 74.2 44.3 89.1 175-240 248 341 103 253 242 33S 175 249 218 335 281 382 243 333 188 251 210 330 247 336 261 352 223 234 152 273 212 252 202 244 216 225 161 284 216 252 207 245 169 208 183 230 169 19s'81 292 178 211 156 186 197 2?9 162 20S 194 274 165 206 75.6 87.5 80,0 61.5 82'.5 88.5 89.6 80.5 84.0 89.5 90,2 89.5 85.5 91.1 91.7 05.7 86.5 91.7 91.?91.7 91.7 92.4 91.7 92.4 93.0 02.4 92.4 93.6 92.4 93.8 74.0 75.9 11.4 86.5 88.4 SS.4 78.5&0.8 77.4 86.5 88.8 87.2 81.s 63.4 80.4 87.5 90.4 89.2 88.5 90.3 88,8 86,5 01.0 80.3 82.5 SSA 83.0 88.5 00.2 88.0 89.5 91.3 90.1 88.5 91.6 90.5 84.0 86.5 83.3 91.0 93.1 02A 01.0 92.4 9'l.8 91.0 92.3 91.0 85.5 67,8 65.1 91.0'93,3 92.9 91.0 92.6 92.1 91.0 92,4 91.4 91.0 92.8 91.S 91.7 93.4 92.7 91.0 02.1 01.3 91,7 93.8 92.9 92,4 93.9 93.6 91.7 93.4 93.3 91.7 93.2 02.1 93,0 94.4 94.1 01.7 93,4 92.6 93.0 94.4 94,3 60.5 53.7 72.0 86,2 60,0 53.1 74.0 88.4 64.0 51.4 87.0 86.8 80.0 75.S 74.5 69.2 64.5 58.3 SS.O 87.9 83.0?0.1 75.0 70.8 55.5 49.1 68.0 89.1 82.5 81.0 72,0 81.8 51.5 51,8 88.5 89.1 81.0 79.6 71.S 87.3 88,5 88.8 81.5 80,2?B.s 74,8 00,0 91.2&2.5 82.1?B.O 75,2 9'l.O S1.8 83,5 83.6 91.0 91.8 83.5 83.8 41.9 53.5 41.1 SS.S 45.0 78.8 64.6 57.1 45.8 81.2 70,7 58.3 38.0$83.9: 13A 66,2'0.3 83,1 71.7 56.0 832 72.3 65.7 87,4?5.?.61.4 88.2 78.0 88,0 78.1 1.2 1.0 1.7 1.3 2.0 0,9 1.5 1.8 2.8 1.4 2.0 2.9 5.0 1.1 2,5 4,4 7.9 2.3 3,6 5.9 3.6 5,3 6.6 3.7 6.0 8.2 4.6 6.9 S.S 8,2 NOTE;Starting and breakdown torques are average expected values, 8/89, rev.3/90 t/5.01 AttaChment IIJO.Job Canc No.RSV.NO.Sht.188'3BUd 5.06 0>><<t v p I k.~h GEH-1768E INSTRUCTIONS UNDERVOLTAGE RELAYS TYPES: ZAV54E ZAV55C ZAV54P IAV55P IAV54H ZAV55H ZAV55J Attachment No.Job 2lac<-5~Caic Np 2I c)l 5L3-6-0 Rev.No.Sht.~.pt GENERA GE Meter and Control 205 Great Valley Parkway Malvern, PA 79355-07:15 f P jr II)i lp, 0 GEH-1768 rd 0 I~r a-g 5 gj o S': 10 8.:: 6 2 I/2 Hei Figure 2 (0362A0648-2)

Time-Voltage Curves for Type ZAV54E and ZAV55C Relays*Revised since last issue 10

Cngralanct'ttachment No.Job 4'L loi-swQ Gale No.Z>'7o'z Rev.No.Sht.t of~Mr.T.C.Higgins Florida Power and Light Co.P.o.Box 3088 Florida City,'FL 33034 March 25, 1992

Dear Mr.Higgins:

Enclosed is the data on the 3DS3-1000 series compressor.

This compressor has the same motor as unloaded version 3DP3-1000.

Sincerely, t SG: dw cc: f ax 8407-694-.0549 Steve Garstang Manager, Adv.Application Engineering COPEUIND CORPORATION, 187S VY.CAMPSCU.RD..8IDNKY, OHIO 4538&0668~PHONE (Q3)498.3011

'p M j 1 I MAR 25'92 16:88 COPELAND CORP RPPL ENG P.6rB 0 (=$3 R W 4 A hl 6 L=i k:-5'T R X$5 53F" F':V.eg.iE'ui auLrtrt rt.8>43 BATL 2/13/56 SEBMEQ Billy Smith hl'EmhttvEo p~HC 3675 F'RANK 90 STACK 5.25 gP10 POLL=, 4 PH 3 HZ 60 V<)LTS 460 STATOR NC 131931-03 ROTOR NC.131934<<01 SPFCm 31874'AflPS 105 ST Tngg 112 HA>;roke 114,'~T 1502 kPg LR RT/RISE DKO F rSF'C,'STAT 7 ROT 11 L.L RFS825C 1.137+7X aCFekCVCE:

Ltse TOAST Nn, 4306 KSKSCRIF'TEQN-L:3193l-03:<0-54$

ROTOR PERF<jkliANCE.AT-"'C AND tbO VOLTS=~TORQUE 100 9 c'0 85 30 7c 10 65 60 C'0'-45 40 3 C'0 25 20 1 m'~10 a'kPI'h.1 656 166.1678 L689 1699 l703 1717 1725 4733'L 74C 1747 1753 1759 1765%771 L776 1781 4786~'790 l79 1800 AHEPQ<<3 o I<<3 39e9 3717 35mb BL il 28m9 26e7 5 22m'4 20.3 Lsm4 1665 14 (7 Ll m v'0m 3 9m~st@7 0 7i1 EF WP 80 so 83 84 35 86 37 87-88 89'9 90 90 90 90-89 36 76 T i9~mr~oh~<<o m<<'oQ~o~O o IJ m 7<<h~6 7~I~3~m, I mFo 3962 SS m.'i 38 87i6 87 i'<<yo 87.2 37 m 1 87el 87 86m9 Fj6+5 85'34+8 82m9 79 an 75'68o2 ri8 e 44o9 27i6 6>6 K4l IN 29e88 28ml29 26~4<<y7 24+81 23.194 21m602Ã0.035'Ls~492 166974 l56 m)78 1 4 t<><36 l<<3~Q'g e" ffm126 9 e 717-5k67 8 s',~p28 95 h,h'.i m 607 r?e 957 Li658 t374 KWOUT 2$~524 2ii464 2Gi398 19~a<'Lso201 1'r"<'7 4 LGm 9Z 77 L5~596 12 t 4<49 LL m'209 9 6 95'9 8'78 76547 6.308 5e061 8i806 2 m 4644 1 i274 G THESE DATA REl%ESEHT iMNHNCE OF SE NOTOR AHD%ST NT BE COHSTDERED AS REl'PESEHTTHO AVERASE OR OUtNAHTEED NLUES FOR PRONtCT1N$

NTORSh ghtmchrnent No.aa)o 1-g.3 JOb WnO\-SZS-E~Z Came No.ReV.NO.Sht.

T j I J~c jV REQUEST FOR ENGINEERING ASSISTANCE RRA Vc~t/-2 6 SYS V<.~CP d GS Yo.project'Title:

4~+il" 7>L~r o c~~7w~I3IwRW~o'a~ci.=.~~

v 7<is PTN Unit Vo.Q3 Q4 gg Common WANo.PWO No.0 Commitment Source: (Document No.)Licensing Category Code: fS 0'racking No.F'R-'tl-Io-ddt-'l(CTRAC, etc.)S.Expedited work@Yes Q'Vo Outage Work P Yes giVo DesiredComptetion Date: I Z-0 0 (0 Problem Description and Proposed Solution: (Attach documentation for background and necessity.)

~~g<4 Ti f l-treR~~~/<I~(/2P'744a-g-S rp 5 ivt G.I<c=I-Rg sv ar 3)bc-'tg tvsga>i gO rPt=<lP'y>rt C 7)q~c+cg.C~r c.a~T WC<P s=-T7irI+LS g~yg I)~Scrap V Sag 7 S d os<r+rp CG<p~'Iee4.R+<<'S TIr<<Cg=-" eZ A7=,.~CII~~<7 ws>GT+zs>-p~erS&i~acme T 2,~pp,pet-rgb/

rpgI 7/Vei 7 r c'tv AC d SQX gt<9l 7"5 d"/t-i&57&~'lS f/Ls'I rl>~-.-.---pa vn-7z I/jt=>+r I~</vs 7//r7 4)I'3+i-/I7-y'tsgi-QK's 75:Ii/p c--N~7~I p t<+>!+~.p;w+~~~IRC3il

/Zy o-F-7F$Z PCS<>7+j-"s G: Fl5,~=-rA-~v-endor Vfanual Vo'S,mt'~,<g 7-g a<Pa~/Ikd<l)r~r.a>>u achments/sketches attached g Yes Q No Dwg No.P..No.4ggcislp<'-~MCCcn partment: SX<<wN c.c I omitted by: S or'tur proved by: 7~Pj/+pl~0-II'-ii pr///J Prin i t2-Z 4--S t Date ngor'2 Supcrugcor Sig c Print Date M A I T Maintcnancc Dept Heed Signature Print 7.Work Force Can Support Implementation es Q No (If No, provide reason)w'H].~V.+~I O Iv'~S-ES C:<L.7 Date 8.Priority Code Approved by: r nat Approved ModiYication List Q Yes[PS/A trlOC OPL'f Q.C LA&K-62 2 gIn E C H 9 Approval Qis A~Ed<Is ok dc<.ssc~Std'n/eln/ndc Potential Operability Concerns Q Yes No (Provide basis.)//S T4e C ur stl an&A/Ldo D E P T Sy tom Engine Signature Print Da I lt z Cesar Breoker d rici/i ct knom//eEja s/R'/tsofco/I~lol Je kre t/hd'srp rno e I Qrrr4nc ttt/c><t<<~<<~rty cogroS.I<'ty g~ntt.rais t ptist~<.((c~nc Su port ri/icor Signature Print 10.Approved by:~~t.l22/la/<tobe<

le/I/et I cdh p4 upcroicor Signature Print Date

'I I Cl pgP 3u//O 2 3c;i'd+3tiQ7$C~l PP 3 c:I c:~r 3(2 c'~Dc.'~~'~Q c3 Wl c 3>Bc 2-PC yGP 3agov pC Qd 3c Hog'i'y/0 5u'r j~3c//

<<I'-I I 4I Vg I f!~l So105 t" H'P.BOVID CUSTNER BREAKER TYPE CIRCUIT BREAKER TEST SHEET JOB NO.34-02417-C i ht-Yutke Point.'ERIAL NO.42503 AB23 5-8C TRIP COIL RATING 225', TRIP UN T SETTING AS FOUND TRIP UNIT TYPE 00 0 LONG DELAY 428/225 INSTANTANEOUS 2250 425 2250 300 SHORT DELAY GROUND PRIVY INJECTION TEST Reduced RacinE SECONDARY CONTROL TESTS DEVICE CHARGING NOTOR RATING 25VDC'ART NO.OPERATION.'CHECK 125VDC MICROHNS ACT Cl ICT,~.C.NEGGAR.TEST 61000, VOLTS BREAKER OPEN BREAKER CLOSED C A B.C.h-SN 8<RN..-C-NN-:...

AB.."BC CA'EMESIS'<:"-': 000+2000+2000+20atA:;ZObO+.'Zoo&'0NH

" 2000+ZOOO+HI POT TESi.O.'" le:i': C A B: C:.URN t'~URN::: C<RN'--'N'BC CA 1'.NIN.NA~~CONTACT OPENING TIME NA CONTACT CLOSING TINE REMARKS: H$pot leakage currant recorded fn mkcroampa (TESTED BY R S imone11i DATE 05/8/9..~~rp t Vo/05 anaChment NO.Job Cl C.RBV.itjo.Sht.~of~

vi,1I" d, gq5 Wl 3 CIRCUiT 9 ol K>9 csP CUSTOMER Florida Dover Li ht-Turke Point 305 NO.BREAKER TYPE TRIP UNIT TYPE TRIP UNIT SETTINGS AS FOUND LONG DELAY INSTANTANEOUS 3750.Int.~qC g C.t SERIAL NO.TRIP COIL RATING SHORT DELAY GROUND PRINRY IN ECTI TE T 3 0 NA SECONDARY NTR L STS DEVICE CHARGING NTOR RATING 125VDC PART NO.OPERATION,":CHECK 12SVDC NI CROHNS C l ll C C.~.~C.BEGGAR TEST 01000 VOLTS NEGOfNS HI POT TEST'.6 KV 1.NIN 8REAKER OPEN'A.8"C 100000 100000 00000 A BREAKER CLOSED h~B<RN.URN'S-'-'.-"':CA'.

'-.-::5~r+100000'00b 10000'100000 100000'" I'OOQO IC C AWRN BARN CWRN"AS 8C-".CA CONTACT Ot ENING TWE CONTACT CLOSING TNE RENRKS: Hi pet loakepe current recorded in microalps" TESTED 8Y DATE~i r, Iot AttaChment No.JOb Q/'7 1 51.+Ca~c No Milord-5x>-6-o Rev.No.Sht.>Df~~C,~)~I 14>i<2 I~g I l V, 1~: i,,gm f~pl 4 l>I I 1 I I ggoN SOVERI gAT'y5/L/CIRCUIT BREAKER TEST SHEET s 3 a203 ggP cusToNER BREAKER TYPE TRIP UNIT TYPE TRIP UNIT SETTINGS AS FOUND JOB NO.34-02417-C SERIAL NO.42503-AB23-1-BC TRIP COIL RATING~2ps ss s LONG DELAY 349/225 INSTANTANEOUS SHORT DELAY GROUND PRINARY INJECTION TEST NA NA.0 SECONDARY CONTRO TESTS DEVICE CHARGING NOTOR RATING 125VDC VDC'ART No.;Pe i.T1')N CHECK NICROHNS CONTACT RESISTANCE A.125VDC B..118 117 NEGGAR TEST 91000.VOLTS I-'..-NEGO.HI POT CQ'"::.;: 8"'I-fet~-1'NH:'I BREAKER OPEN A B..."...C,.:

ibOOOO iOOq)XODiO'DO A-GRN~:8.BREAKER CLOSED CHAN AB BC CA A-GRNWRN'WRN"AB BC CA 4000.':.+000;4000 I 00000 3000 00000 CONTACT OPENING TINE RKS-H<pet leakage currant recorded in TESTED BY Attachment No.JOb Calc No.>'l~'2~

~RaV.NO.Shf.+Gt A ,.l j hI'1'qY P lt>

~~I;I~~I~~I I I l~~~~~I I~~If I~~~I I I f I~.I~I I I I~~1'K%II!mKHBR I%I IINI~I KISS&IIIIIIW~II~~~I I~~I A~~~t I~I e'I~~'0J I'~Ql'Ma III II III II III II III II III II III II III II III II III I KRKiRRiR~RiRQM~5iRSR

~~~~I