ML17349A250

From kanterella
Jump to navigation Jump to search
Verification of Degraded Voltage Relay Protection for Safety-Related Equipment (Coordination Between Undervoltage & Overcurrent Protection) for Unit 3
ML17349A250
Person / Time
Site: Turkey Point NextEra Energy icon.png
Issue date: 03/27/1992
From:
BECHTEL CORP.
To:
Shared Package
ML17349A248 List:
References
21701-523-E-02, 21701-523-E-02-R00, 21701-523-E-2, 21701-523-E-2-R, NUDOCS 9206050157
Download: ML17349A250 (220)


Text

ATTACHMENT 3 CALCULATION FOR COORDINATION BETWEEN UNDERVOLTAGE AND OVERCURRENT PROTECTION 920b050157 920b02 't PDR ADOCK 05000250

P . PDR

pA

)I )

l; ll l

m I,'i I

1

CALCULATION COVER SHEET PROJECT JOB NO. CALC NO. SHEET Turke Point Unit 3 21701-523 21701-523-E~

SUBJECT TOTAL NCL OS IICEtS IAST SIGNET NO.

Verification of Degraded Voltage Relay Protection for Safety Related L2.

DISCIPUNE Equipment (Coordination between U/V and Overcurrent Protection) Electrical

'ALCULATION PREUMINARY COMMITTED CONFIRMED SUPERSEDED CANCELED STATUS DESIGNATION [ ) l ) l x ) l )

COMPUTER SCP MAP NCP NONE. PROGRAM NO. (S) VERSION/RELEASE NO.

PROGRAM

) ) ) l ) lx) mAppgmle Not Applicable

1. Figures 1 - 28 associated with this calculations verification of degraded voltage relay protection. (28 pages)

I

2. PC/M 9136, Input Data Ref. No. 8 (excerpt), Motor Data and Safe Heating curves. (9 pages)
3. Miscellaneous Motor Data Sheets and Safe Heating curves. (10 pages)
4. ITE G30 Heater Selection Tables and Overload Tripping Characteristics. (4 pages)
5. Westinghouse F-Series Heater Selection and Trip Curve. (2 pages)
6. Asea Brown Boveri (ABB) OD61 Breaker Information. (3 pages)
7. ITE Circuit Breaker Curve for HF frame breaker (1 page)

/

8. Asea Brown Boveri Breaker Characteristics of SS-3 device (1 page)
9. Asea Brown Boveri Overcurrent Relay Characteristics of ITE-51IM relay. (1 page)
10. General Electric Overcurrent Relay Characteristics for IAC66 relay. (1 page)
11. Square D Overload Relay Time Current Characteristics. (1 page)
12. General Electric Motor Starter Heater Time Current Curves. (2 pages)
13. Qualified Air Corp/General Electric Motor Data. (4 pages)
14. General Electric Time-Voltage curves for IAVRelays. (2 pages)
15. Cope)and Letter Dated 3/25/92 for compressor motor data. (2 pages)

I

16. REA No.91-289 with ABB Test Report Data for trip device settings. (6 pages) 0'SSUED FOR USE ger/rz Date Ap prov Date Date

c ~g CI

CALCULATION SHEET JOB NO. CALO. NO. REV. NO. SHEET NO.

21701-523 21701-523-E-02 0 2 ORIGINATOR DATE CHECKED DATE 03/27/92 Table of Contents Sheet 1.0 Purpose/Objective 2.0 Scope 3.0 Assumptions/Bases 4.0 References

'.0 Methodology 6.0 Calculation 10 7.0 Results 8.0 Conclusion 12 Appendix A 20 pages evr

I C 1

I'~

t JOB NO.

21701-523 ORIGINATOR CALCULATION CALC. No.

21701-523-E-02 DATE 03/27/92 CHECKED SHEET REV. NO.

0 DATE 3/~y SHEET NO.

3 q~

1.0 PURPOSE

The purpose of this calculation is to demonstrate that the settings of undervoltage relays, 327I (ITE) and 327T (IAV) are adequate to protect and ensure the operability of safety related equipment connected to the AC distribution system. Specifically this calculation will demonstrate that the undervoltage relays will trip and separate the distribution system from offsite power before either equipment is damaged from the effects of low voltage or rendered inoperable due to the operation of other protective devices.

2.0 SCOPE

The scope of this calculation includes all safety related loads on the 4. 16kV vital switchgear, 480V Load Centers and 480V Motor Control centers except as noted below. Loads which are not susceptible to either damage or tripping through overcurrent devices due to undervoltage have been excluded for the following reasonsl Motor operated valves and dampers, being intermittent loads will likely not .

be operating during a degraded voltage transient. The design, application, and overcurrent protection for motor operated valves also allows for extended overload or stalled conditions.

~ Battery chargers and resistive loads may become inoperable during exposure to lower than rated voltage but these effects will only last as long as the voltage transient. These loads are not subject to overheating at low voltages nor will they draw current to the extent that overcurrent device actuation is a concern.

The remaining safety related loads consist of 4kV and 480 Volt motors supplied at the switchgear, load center and motor control center levels.

3.0 ASSUMPTIONS/ The following assumptions and bases were used in the BASES: performance of this calculation 3.1 Motor breakdown torques were assumed equal to the NEMA Standard MG 1 (Ref. 4,2), section MG 1-12.39, minimum values unless motor specific values were available.

3.2 Thermal damage curves or safe time curves are not available for motors supplied from Motor Control Centers. Thermal overloads on MCC motors were assumed sized to adequately protect the motors. Motors in this range follow standard designs and overload relays settings are generally based on a percentage of motor full load current. As noted in ANSI Standard C37.96 (Ref. 4.8), overload relays are normally adequate to protect motors in this horsepower range. The NEC, (Ref. 4.3), indicates that overload relays with trip currents up to 140% of motor full load current are adequate to prevent overheating for motors with a 1.15 service factor. Motors applied at the MCC level have a service factor of 1.15 or greater per NEMA MG-1 (Ref. 4.2) and Specification 5610-E4B (Ref. 4.5). This service factor increases the allowable current which a motor can withstand without damage. The ratios between motor Ml load amps and overload pickup were reviewed to confirm this assumption.

- ev.

I j(

il q Q

t'

~i

CALCULATION SHEET JOB NO. CALO. No. REV. NO. SHEET No.

21701-523 21701-523-E-02 0 4 ORIGINATOR DATE CHECKED DATE p 03/27/92 qQ~ g 3/>W'o~

3.3 The voltage drops across individual feeders were calculated neglecting the relative phase between the current and feeder impeihmce. This simplifying assumption introduces a small conservatism since voltage drops calculated in this manner willbe greater than those derived in a more rigorous fashion.

3.4 Motor power factor and efficiency were assumed equal to 0.85 and 0.92 (Ref. 4.1) respectively in the absence of specific motor data, except for motors at and below 2 HP where the following values willbe used; 2 HP .85 pf .65 eff.

1 HP .85 pf .61 eff.

3/4 HP .85 pf .59 eff.

The use of these factors provide motor full load currents which are close to typical values provided in the NEC Table 430-150, Reference 4.3. Since the phase angle os the motor current is not being used in this calculation, the adjustment of the'effiiciency to obtain the target full load amps rather than the power factor is of no concern.

3.5 The voltage seen on the 4.16kV buses was assumed equal to that registered by the undervoltage relays on the 480V loads centers adjusted by the LC transformer turns ratio (including 2.5% boost). By neglecting the voltage drop across the LC transformer, the voltage used for the 4.16kV bus at a given load center voltage is lower than would actually exist. This assumption adds a slight conservatism in the evaluation of the effects of undervoltage on the 4kV motors.

//

3.6 Disturbances in the offsite power network are considered to be either prolonged undervoltage at levels slightly below the design minimum values, short term voltage excursions ((1 second) caused by system faults, or total system collapse. The setpoint of the 1TE relay is selected to prevent motor stalls at prolonged degraded voltages. The second case, short term dips caused by external faults, are of such a limited duration that operating motors will remain at near full speed. System undervoltages of the third type, severe drops which persist for more than a few seconds, are considered to be indicative of a system collapse and the fact that motors may stall under these conditions is not a concern since undervoltage relaying will eventually trip the buses. This calculation is intended only to show that no motor damage wiH occur in the period before the buses are tripped, not that the distribution system can experience severe undervoltages for several seconds and return to normal operation.

4.0 REFERENCES

4.1 Calculation EC-145, Rev. 5, PSB-1, Voltage Analysis for Electrical Auxiliary 0

System". This calculation was used as a source for motor data, cable impedances, and load center to MCC voltage drops. Where more specific motor data was available, such data was used in lieu of the EC-145 information.

ev,

Eiq I

)z 4'>,

V h c

+to Irg 8'

CALCULATION SHEET JOB NO. CALO. NO ~ AEV. NO. SHEET NO.

21701-523 21701-523-E-02 0 5 OAIGINATOA DATE CHECKED DATE 4.2 NEMA Standard MG 1-1987, Rev. 1, "Motors and Generators", Section MG 1-12.39, "Breakdown Torque of Single Speed Polyphase Squirrel Cage Medium Motors with Continuous Ratings', Table 12-2, Service Factor" 4.3 National Electrical Code, 1990, Table 430-150, "Full Load Current Three-Phase Alternating-Current Motors", Section 430-34, "Selection of Overload Relay" 4.4 Project drawings as referenced throughout the calculation.

4.5 Specification 5610-EAB, "Specifications for Station Auxiliary Motors", Rev. 6.

4.6 Motor Data Sheets, Attachments 2, 3, 13, 15.

4.7 Calculation 21701-523-E41, Rev. 0, "Unit 3 Load Center's Undervoltage Relay Setpoints".

4.8 ANSI Standard C37.96-1988, "IEEE Guide for AC Motor Protection".

4.9 Electric Power Research Institute Power Plant Electrical Reference Series, Volume 6, "Motors".

4.10 Relay Coordination Study, FLO 53-20.5004, Rev. 11.

4.11 PC/M 90-211, "Replacement of Control RM. HVAC Condensing Sections +V. l.

5.0 METHODOLOGY

5.1 General Methodology The methodology employed to demonstrate that the undervoltage relays adequately protect the safety related motors consists of determining the motor current corresponding to various voltages on the undervoltage relay characteristic curves and plotting that current as a function of the undervoltage relay trip time for the specific voltage. A typical current vs. voltage plot for an undervoltage condition is shown in Figure A. Since the voltage seen at the motor terminals willvary from the bus voltage sensed by the undervoltage relays (relays are located at the Load Center level), the calculation takes the voltage drop across bus to bus and individual motor feeder circuits into account. The exact treatment of feeder voltage differs between voltage classes and is addressed in detail later in this calculation.

Once the motor currents are calculated and correlated to undervoltage relay operating times, these values are plotted on a time vs. current scale along with the motor overcurrent device characteristics and motor safe heating curves where available.

Motors at the 480V level, particularly smaller horsepower rating are not typically furnished with safe heating curves. Since motors applied at the motor control center level generally follow standard frame size and designs, overcurrent protection for these motors is selected using standard pickup to FLA ratios between 115 and 140%. For motors where safe heating

- ev.

1" h

h f~4

,f yah vji

CALCULATION SHEET JOB NO. GALS NO. REV. NO. SHEET NO.

21701-523 21701-523-E-02 0 6 DATE CHECKED DATE

<>>/$ 7/$ $ 34) v>

curves are not available the undervoltage induced current Ty$ 1cO I CI/'POAt VO ~ $ 0lteOe $ 10$

curves willbe plotted against thermal overload curves only with the assumption that thermal overloads are sized adequately to Loc.Y protect the motors. Rchoc.

Cvrrcwir The calculation of motor overcurrent induced by undervoltage is based on the motor acting as a constant power device, ie. the motor current increases inversely to the decrease 10$ .$ $ $$ .4$ $ $ A$ $$ .OI $$ .4$ $ 4.$ $ $$ $0 $ $ .$ $ $ $ .$ $

in motor terminal volta e, This treatment is valid until the voltage reaches a point where the motor can no longer develop sufficient torque to drive the attached load, at which point the motor begins to stall, The voltage at which stall occurs, referred to as "Stall Voltage" in the calculation is related to the breakdown torque of the motor. The motor torque developed varies as the square of the applied voltage, therefore for a reduction in applied voltage of 20%,

the developed torque is 0.8'r 0.64 per unit. The maximum torque developed by a motor at rated voltage, the breakdown torque, is similarly reduced with voltage. The stall voltage, that voltage where the breakdown torque equals the rated torque, can then be calculated given the breakdown torque. This stall voltage represents the highest voltage at which a motor may stall, however the motor may coptinue to run at lower voltages.

Breakdown torque information specific to individual motors has been used where available. Por other cases the minimum breakdown torque for the motor frame size from NEMA Standard MG 1, (Ref. 4.2), Section MG 1-12.39, (200% for NEMA Design A 8c B, 190% for NEMA Design C) will be used. This approach has added conservatism in that it ignores the margin between motor rated horsepower and load brake horsepower.

Once the voltage at the motor terminals falls below the stall voltage discussed above, one of two things happen, the motor may stall, drawing locked rotor current, or may continue to spin due to the combined effects of inertia, motor vs. load torque margin. Since a motor under locked rotor conditions is essentially a fixed impedance, the current drawn at low voltages will decrease proportionally with the voltage. In order to address either possibility, both the stall point and operating points will be plotted below the stall voltage.

The motor will be deemed adequately protected by the bus undervoltage protection ifthe undervoltage induced overcurrent is shown to persist for less time than the motor protection takes to trip. In other terms, if the motor overcurrent due to undervoltage curve does not intersect the overcurrent protection or thermal damage curves the motor is considered adequately protected.

eve

p 43 fil 4 k

i'

CALCULATION SHEET JOB NO.

21701-523 CALO. No ~

21701-523-E-02 DATE 03/27/92 5.2 Calculations Equations

~

CHECKED g

REV. No.

0 DATE SHEET No.

7 The calculation of motor currents for selected undervoltage relay setpoint was calculated using a spreadsheet. The calculation inputs required are as follows; Per Switchgear Bus, Load Center or MCC

~ U/V Relay Setpoints for Connected Load Center

~ Cable Drop data for MCCs only Per Motor Load Horsepower Power Factor EKciency Feeder Cable Resistance Feeder Cable Reactance Locked Rotor/Pull Load Amps ratio Percent Stall Torque (Breakdown Torque)

The results and intermediate values were derived as follows; Switchgear, Load Center or MCC values Relay Voltage = ITE Relay Se~int for Dropout at 60 Seconds

= IAVRelay Setpoint Time Dial 5 Curve (Ref. 4.7

~

and Attachment 14)

Attachment 1 figures are plotted to the ITE dropout value of 60 secs in addition to a 6.5 sec relay tolerance and a 1 sec sequencer time delay per drawing 5610-T-L1, Sh. 13 Rev. 9.

The IAV relay tolealn~ willnot be accounted for in the actual data. However, this margin willbe addressed in section 8.0, the conclusion section of this calculation.

Voltage at Load Center ~ VLc ~ Relay Voltage ~

480/120 Voltage at Switchgear = V~ = VLc ~ 4160/(480 1.025)

Voltage at MCC = Vlcc = VLc-MCC Feeder DroP MCC Feeder DroP ~ VDiicc = Vm Vwcc = VLc Iwcc 'ciicc Iiicc = MCC Load Current = PmaccJVMcc Zcwcc = MCC Feeder Cable Impedance P~cc = MCC Load (KVA)

- ev.

>'l iA a

Ig I)i I

(

P

CALCULATION SHEET e JOB No.

21701-523 ORIGINATOR CALO. NO.

21701-523-E-02 DATE Vlcc'- Vlcc'Vic +

~

CHECKED Pic Zcucc = 0

~A~A REV. No.

0 DATE SHEET NO.

8 This equation is a quadratic of the form ax~+bx+c=0 whose solution is

-b + V'(b~-4 a c) 2'a For this application the proper solution is Vlcc Vic + V (Vm 4'Pnkcc'ZcMcc)

The value P~cc Zcwcc is derived from values of VLc and Vwcc obtained from Calculation EC-145, (Ref. 4.1), which resulted in the lowest voltage for a particular MCC bus.

E P~cc'Zcwcc = VLc'Vlcc Vwcc The Bus Per Unit Voltage is expressed on a motor voltage base, V~ = Vs / 4000 for 4kV motors

= Vs / 460 for MCC and LC motors Motor Values Motor KVA = HP .746 /(Power Factor ~

Efficiency)

Motor Base Amps ~ Motor KVA/ (/3 Motor Base

~

Volts)

Cable Iagedance = V'(Cable Resistance~+ Cable Reactance' PU Impedance = Cable Impedance ~

Motor KVA/MotorBase Volts'ull Load Torque ~ Breakdown Torque Vrv ~va

% Breakdown Torq = Breakdown Torq/Full Load Torq Therefore, PU Stall Voltage V( 1 / (Percent Stall Torque/100))

- ev.

lr e

I i

)) ~'

CALCULATION SHEET JOB NO. CALO. NO. REV. NO. SHEET NO.

21701-523 21701-523-E-02 0 9 OR IGINATOA DATE CHECKED DATE 03/27/92 Motor Amps (pu) I~ = P~/V~ = (Va - VM)/Zcw Vs = Var + IM Zc~ = P22/IM + IM Zcu IM = Motor Amps(pu)

P~ = Motor KVA(pu) = 1 VM = Motor Voltage(pu)

Va = Bus Voltage(pu) Swgr, LC, or MCC ZCM = Motor Cable Impedance(pu)

AH per unit values are determined on a motor KVAbase I 2 -V /~ I + P /~ ~ 0 Solving the quadratic equation:

IM = Va/Zc~ + V (Vai/Zcws - 4 P~/Zc Running Amps I~ Motor Base Amps Motor Volts = VM = Va - I~ ~

Cable Drop ~ Va - Vwr Rotor Amps are calculated when the motor voltage falls below the calculated stall

'ocked voltage. The locked rotor current is calculated using the combined impedance of the motor feeder cable and the motor locked rotor impedance.

In Per Unit Itac = Va / (l/LRC Ratio + Cable Impedance)

Locked Rotor Current = Itac ~

Motor Base Amps Since the stall voltage calculated represents the maximum voltage at which the motor may stall, both the running amps and locked rotor amps willbe plotted for voltages below the calculated stall voltage.

Bve

CALCULATION SHEET JDB No. CALO. NO. REV. NO. SHEET No.

21701-523 21701-523-E-02 0 10 ORIGINATOR DATE CHECKED DATE 03/27/92 ~/~7 0'8-6.0 CALCULATION Appendix A provides a listing of the tag numbers for the loads examined, relay settings and overload heater sizes, as well as references for this data.

6.1 4.16 kV Buses 3A, 3B, and 3D The safety related loads examined for these buses consisted of the following motors; Figures

~ RHR Pump 3P210A & B 3

~ SI Pump 3P215A & B 1

~ ICW Pump 3P9A,B & C 2&6

~ CCW Pump 3P211A,B & C 4&5 Since the A & B pumps have identical protective device settings, they have been combined on; one plot with the highest motor currents for each case.

The motor currents on bus 3D were examined for two cases, supply from 3A and supply from 0 3B.

Overcurrent plots for these motors include the motor overcurrent caused by varying levels of undervoltage, the motor protective relay curves and the motor safe heating curves.

6,2 480 V Load Centers 3B01, 3B02, 3BSO The following loads were examined at the load center level; Figures

~ Charging Pump 3P201A,B & C 7&8

~ Cont. Spray Pump 3P214A & B 9 The motor current on LC 3H (3BSO) was examined for two cases, supply from 3A (3B01) and 3B (3B02).

Since the A & B pumps have identical protective device settings, they have been combined on one plot with the highest motor currents for each case.

Settings for 3P214A & B and 3P201A & B are based on ABB Test Reports (Attachment 16).

Where different settings for like equipment is used, the most conservative settings (ie. lowest) were utilized.

Overcurrent plots for these motors include the motor overcunent caused by varying levels of undervoltage, the trip device curves and the motor safe heating curves (where available).

fj \

"C Il J

CALCULATION SHEET JOB No ~ CALO. No. REV. No. SHEET No.

21701-523 21701-523-E-02 0 ll ORIGINATOR DATE CHECKED DATE P 03/27/92 ~~f- 3/a7 6.3 480 V Motor Control Centers 3B05, 3B06, 3B07, 3B08, 3B52 The following loads were examined at the MCC level; Figures EMERG CONT CLR PAN 3V30A,B & C 10 EMERG CONT PILTER PAN 3V3A,B & C 11 EDG PO XFER PUMP 3P10A & B 14 & 15 EDG ROOM VENT PAN 3V34A & B 16 & 17 CONTROL ROOM A/C AHU E16A & C 12& 13 SWGR 3D ROOM SUPPLY FAN 3V65A & B 18 COMPUTER ROOM CHILLER S74B 21 &22 COMPUTER ROOM CHILLER S75B 19 COMPUTER ROOM A/C AHU S77B 19 COMPUTER ROOM A/C'AHU S78B 19 CNTRL RM EMERG PLTR PAN V29B 20 ELECT EQPT ROOM AHU V77/E231 &, 25, 26 AIR,PART & GAS MONITOR 3V36 23 The motor currents for MCC 3B08 (3D) were examined both for the case of supply from Load Center 3B03 and Load Center 3B04 via Load Center 3H.

/

Plots for motors at the MCC level include only the voltage induced motor overcurrent and the thermal overload characteristics. Safe heating or thermal damage curves are not generally available for these motors. Plots obtained from vendors for the Emergency Containment Filter Fans and the Emergency Containment Cooler Fans were included.

The Control Room HVAC units E16/E17 include several motors fed from a common molded case breaker. These motors are individually thermally protected by internal devices. The effect on tho feeder breaker of overloading all motors simultaneously is examined for this case.

7.0 RESULTS As shown by the individual time vs. current plots, the motor current induced by degraded system willnot persist long enough to cause spurious tripping of motors due to overcurrent devices, nor willany of the established safe heating times be exceeded for those motors which safe heating curves have been supplied by the manufacturer.

The motor overload curves overlap the safe heating curves for the Emergency Containment Cooler and Emergency Containment Filter Fans. Although this is not a concern for tho purposes of this calculation, the juxtaposition of these two curves suggests that a problems exists with the overcurrent protection for these motors.

Purther review of the overload heater selection indicates that each is applied within the guidelines for their applicationi The motor vendor (Reliance) was contacted concerning the application of tho thermal damage curves. Reliance indicated that these curves represented the time and current which would cause the motor to reach

- ev.

I J

g t If*I A

fag l>'

0 lt

CALCULATION SHEET e JOB No.

21701-523 ORIGINATOR CALC. No.

21701-523-E-02 DATE CHECKED REV. No.

0 DATE SHEET No.

12 P 03/27/92 215'C, a temperature indicative of accelerated thermal aging rather than catastrophic failure. Furthermore these curves were calculated assuming no heat transfer from the motor, and neglects the additional cooling effects of the vane-axial fan installation.

Given the degree of conservatism which was used in the generation of the thermal damage curve and the importance of continued operation of these motors in accident conditions the present overload settings for these fans is prudent.

Likewise, the Containment Spray Pump safe heating curve is shown to underlay its breaker tripping protection (OD61 trip device). However, there is an alarm which willnotify the operator of an overload.

8.0 CONCLUSION

S On review of Attachment 1, the margin between U/V protection and overload protection is substantial in relation to the IAV operating margin. Therefore, the degraded voltage relaying provided on the 480V load center buses will operate and trip the 4.16kV and 480V distribution buses in adequate time to preclude damage to safety related motors and to prevent spurious tripping of those motors.

The adequacy of the 480V motor control center overload relays was reviewed by comparison of the OL relay pickup to the motor full load currents. The ratio between OL trip setting and motor full load amps was below 140% for all MCC motors except for the 3/4 HP EDG Fuel Oil Transfer Pumps and the Electrical Equipment Room AHU. Since the service factor for these motors are 1.15 or higher, all overload relays in this range should provide adequate motor protection. The full load current for motors in the 3f4 HP range may vary widely and the higher ratio for these pumps may be necessary. The undervoltage/overcurrent curve for the EDG F.O. Transfer Pumps was also reviewed against an overload curve sized for a lower motor FLA and was shown to coordinate with that curve as well (Figure 27 &, 28),

indicating that the U/V protection would protect these motors. 'Ihe AHU unit overloads are sized according to vendor speci6cations and are considered reasonable for this application.

- ev.

)'t$

',C

'v 1 l,b

>,'1 il e+

SHEET APPENDIZ A Jpg Zl tOl gpg JOB NO. CALO. NO. AEV. NO. SHEET NO.

CAR 2l-tb -%ZS -E-oX

'21701-523 21701-523-E-02 sHT I OP z.w DATE CHECKED DATE 03/27/92 HOTOR CONTROL CENTER LOADS

  • Note: Also Ref. 5613-E-10 Sh. 1 4 2 Rev. 0 RATED TAG HP HCC OL ¹ OF STARTER OL HIN OL TRIP LOAD OL TO FLA REFERENCE HTR SIZE HTRS SIZE FLA SETTING FLA RATIO
  • EHERG CONT CLR FAN 3160A 30 3806 G30T52 2 3 40 50 3S.46 1.30 5613-E-25/SH. 118 Rev. 2 3V30B 30 3808 G30T52 2 3 40 50 38.46 1.30 5613-E-25/SH. 11D Rev. 2 3V30C 30 3B07 G30T52 2 3 40 50 38.46 1.30 5613-E-25/SH. 11F Rev. 2

<<EHERG CONT FILTER FAN 3V3A 3806 G30T60 2 112.5 87.69 1.28 5613-E-25/SH. 11A Rev. 2 3V38 3BOS G30T59 3 100.0 87.69 1.14 5613-E-25/SH. 11C Rev. 2 3V3C 3807 G30T60 2 112.5 87.69 1.28 5613-E.25/SH. 11E Rev. 2

<<EDG FO XFER PIMP 3P10A 0.75 3B05 G30T23 2 1.65 2.0625 1.4 1.47 5613-E-27/SH. 11B Rev. 1 3P10B 0.75 3852 FH22 2 1.63 2.0375 1.4 1.46 5613-E.27/SH. 11A Rev. 1

  • EDG ROON VENT FAN 3V34A 3805 G30T36 2, 6.07 7.5875 5.99 1.27 5613-E-27/SH. SA Rev. 0 31648 3B52 FH37 3 6.5 '.125 5.99 1.36 5613-E-27/SH. 88 Rev. 0 CONTROL ROOH A/C AHU E16A/E17A 3B06 50A bkr (HF3-8050) -38.3 5610.E-1433 Rev. 4 and E16C/E17C 3BOS 50A bkr (HF3-8050) 38.3 5613-E-8-8 Rev.1 8 PC/H 90-211 (Ref. 4.11)

<<SMGR 3D ROOH SUPPLT FAN 3V65A 3B07 FH27 3 2.59 3.2375 2.68 1.21 5613-E-27/SH. SC Rev. 0 3V65B 3852 FH27 3 2.59 3.2375 2.68 1.21 5613-E-27/SH ~ SD Rev. 0 CNIPVTER ROON CHILLER S74B 65 3BOB 5613-E.27/SH. 318 Rev. 1 COHPRESSOR 50 CR123 F7728 63.3 79.125 62 1 ~ 28 5177-206-H724-31-3 &

FAN 1 5 CR123C778A 7.2 9 6.8, 1.32 5177-206-H724-27-4 8 FAN 2 5 CR123C77SA 7.2 9 6.8 1.32 5177-206-H724-43-1 CHILLER PNIP 5 CR123C778A 7.2 9 6.8 1.32

<<COHPUTER ROB( CHILLER S75B 5 3808 FH37 6.5 8.125 6.8 1.20 5610-E-27/SH. 32D Rev.O &

5177-206.H711-34-1

<<C(NPUTER ROOH A/C AHU S778 5 3BDS FH37 3 6.5 8.125 6.8 1.20 5610-E-27/SH. 32E Rev. 0 &

5177-206-H711-34.1

<<COIPUTER ROON A/C AHV S788 5 3808 FH37 3 6.5 8.125 6.8 1.20 5610-E-27/SH. 32F Rev. 0- &

5177-206-H711.34.1

<<CNTRL RH EHERG FLTR FAN V298 5 3808 G30T37 3 6.3 7.875 6.8 1 ~ 16 5610.E-27/SH. 45F Rev. 5 &

5177-349-H713-10-1 ELECT EQPT ROON AHU V77/E231 36 3BOS 5613-E-27/SH. 95A Rev. 0 AHU 815 ~ 5 1'l.1 13.875 9.3 1.49 Vendor Han. V000475 & Attachment 13 COHP 832. 23.0 28.75 17,3 1.66 V000475 8 5610-H-38-24 Sh.'1 Rev. 0 FAN B10.2 7.32 9.15 6.3 1.45 V000475 8 Attachment 13

<<AIR PART. & GAS HOMITOR 3V36 3B06 G30T26 2.27 2.8375 2.7 1.05 5613-E-25/SH. 26A Rev. 0 & Attach. 3

I t L

.II rs T

lg A

e

CALCULATION SHEET APPENDS CALO. NO. REV. HO. SHEET HO. gpg 1 ol-823 JOB HO.

21701-523 21701-523-E-02 ~g 2) 0)-523,-C DATE CHECKED. DATE SHY ~ OP 03/27/92 5/a7 g 4.16 KV SMITCHGEAR LOADS RATED RELAY HORKAL TAG HP HOD EL TAP TIKE DROPOUT REFERENCE DIAL PU ANPS CNPONENT COOLING MATER PP 3P211A 450 IAC66K 4.5 4 40 5613-E-315/91-036 SH. 21 Rev. 0 4 Attachment 2 3P211B 450 1AC66K 4.5 4 40 SH. 46 Rev. 0 t Attachment 2 3P211C 450 ITE-51IH 5 3 45.6 SH. 75 Rev. 0 t Attachment 2 INTAKE COOLING MATER PNIP

  • 3P9A 325 IAC66K 3.5 2.5 40 SH. 28 Rev. 0 4 Attachment 2 3P98 325 IAC66K 3.5 2.5 40 SH. 50 Rev. 0 4 Attachment 2 3P9C 325 ITE-51IH 3.75 2 39.2 SH. 76 Rev. 0 4 Attachanet 2 SAFETY IHJECTIOH PINIP 3P215A 350 IAC66K 4 2.5 40 SH. 22 Rev. 0 t Attachment 2 3P215B 350 IAC66K 4 2.5 40 SH. 45 Rev. 0 4 Attachment 2 RESIDUAL HEAT REMOVAL PUN 3P210A 300 IAC66K 3.1 3.5 30 SH. 24 Rev. 0 t Attachment 2 3P2108 300 1AC66K 3.1 3.5 30 SH. 48 Rev. 0 t Attachment 2 LOAD CENTER LOADS TAG RATED BREAKER SENSOR LONG TIHE INST. REFERENCES HP NOEL TAP TAP T IKE BAND TAP CHARGING PNIP 3P201A 150 0061 225 1.9 INTERMEDIATE 10.0 ATTACHMENTS 6! 16, 5613-E-5 Rev. 0 3P201B 150 0061 225 1.55 WLXIHUH 10.0 ATT(CHMENTS 6 t 16, 5613-E-5 Rev. 0 3P201C 150 SS.3 400 1.0 HINIIRNI 5.0 FLO 53-20.5004 REV. 1'I (Ref. 4.10) 4 5613-E-5 Rev. 0 CONTAINHEHT SPRAY PUMP 3P214A 250 0061 300 2.2 INTERNEDIATE 12.5 ATTACHMENTS 6 t, 16, 5613-E-5 Rev. 0 3P214B 250 0061 300 2.5 WNIHUH 10.0 ATTACHMENTS 6 4 16, 5613-E-5 Rev. 0

1

'I

'l

',Y I

ff t, I if)

CALCULATI N SHEET APPENDIX JOB NO.

21701-523 ORIGINATOR CALO. KO.

21701-523-E-02 DATE CHECKED REV. NO.

DATE SHEET NO.

J QK srrT l~5~

> op ~~

03/27/92 SMGR 3A 4.16KV ',- ITE Relay--',------IAV RELAY Pickup Setting: 98.75 V.

Time PU - 60 60-14 13 12 11 10 8 6 4 Degraded Voltage Protection: LC 3801 IAV Dial 5 --- 0.900 0.890 0.876 0.860 0.843 0.800 0.720 0.545 Relay Voltage 105.48 88.88 87.89 86.51 84.93 83.25 79.00 71.10 53.82 Srrgr voltage assrnned equal to LC voltage Voltage QLC 421.9 355.5 351.6 346.0 339.7 333.0 316.0 284.4 215.3 times xfmr turns ratio including 2.5 X tap Voltage Q Srrgr 3748.1 3158.0 3122.9 3073.8 3017.7 2958.0 2807.1 2526.4 1912.4 Drop across xfmr ignored for conservatism pu V (4KV Base 0.9370 0.7895 0.7807 0.7685 0.7544 0.7395 0.7018 0.6316 0.4781 Motor: 3P215A SI Prnrp Horseporrer 350 Cable Impedance 0.0524 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.88 P.U. Irrpedance 0.0010 CABLE DROP(pu) 0.0011 0.0013 0.0013 0.0013 0.0014 0.0014 0.0015 0.0016 0.0022 Efficiency 0.94 Base KVA 315.6 NTR VOLTS(pu) 0.9359 0.7882 0.7794 0.7671 0.7530 0.7381 0.7003 0.6300 0.4759 Cable Rest. 0.0393 Hotor Base Amps 45.6 AHPS(pu) 1.0685 1.2687 1.2830 1.3036 1.3279 1.3548 1.4279 1.5874 2.1012 Cable React 0.0346 RUNNING AHPS 48.7 57.8 58.5 59 4 60.5 61.7 65 F 1 72.3 95.7 LRC/FLA 6.40 LRC AHPS 138.5 Stall Torque 266 Stall Volts 0.613 CURVE P01NTS 48.7 57.8 58.5 59.4 60.5 61.7 65.1 72.3 138.5 Motor: 3P9A ICM Prnrp Horseporrer 325 Cable lnpedance 0.0586 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.82 P.U. Impedance 0.0012 CABLE DROP(pu) 0.0012 0.0015 0.0015 0.0015 0.0015 0.0016 0.0017 0.0019 0.0025 Efficiency 0.928 Base KVA 318.6 HTR VOLTS(pu) 0.9358 0.7880 0.7792 0.7669 0.7529 0.7379 0.7001 0.6298 0.4756 Cable Rest. 0.044 Motor Base Amps 46.0 AHPS(pu) 1.0686 1.2690 1.2833 1.3039 1.3283 1.3552 1.4283 1.5879 2.1024 Cable React 0.0387 RUNNING AHPS 49.1 58.4 59.0 60.0 61.1 62.3 65.7 73.0 96.7 LRC/FLA 5.80 LRC AHPS 167.3 126.7 Stall Torque 230 Stall Volts 0.659 CURVE POINTS 49.1 58.4 59.0 60.0 61.1 62.3 65.7 167.3 126.7 Notor: 3P211A CCM Prnrp Horseporrer 450 Cable Inpedance 0.0498 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.9 P.U. I npedance 0.0012 CABLE DROP(pu) 0.0013 0.0016 0.0016 0.0016 0.0017 0.0017 0.0018 0.0020 0.0026 Efficiency 0.93 Base KVA 401.1 HTR VOLTS(pu) 0.9357 0.7879 0.7791 0.7668 0.7528 0.7378 0.7000 0.6296 0 4755 Cable Rest. 0.0374 Motor Base Amps 57.9 AHPS(pu) 1.0687 1.2692 1 '835 1.3041 1.3284 1.3554 1.4286 1.5M3 2.1032 Cable React 0.0329 RUHNING AMPS 61.9 73.5 74.3 75.5 76.9 78.5 82.7 9'1.9 121.8 LRC/FLA 4.74 LRC AHPS 'i91.4 172.3 130.4 Stall Torch 200 Stall Volts 0.707 CURVE POINTS 61.9 73.5 74.3 75.5 76.9 78.5 191.4 172.3 130.4 Notor: 3P210A RHR Pump Horseporrer 300 Cable Inpedance 0.0483 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.89 Cable lnped. pu 0.0008 CABLE DROP(pu) 0.0009 0 ~ 0010 0.0010 0.0011 0 '011 0.0011 0.0012 0.0013 0.0017 Ef f iciency 0.934 Base KVA 269.2 HTR VOLTS(pu) 0.9361 0.7885 0.7797 0.7674 0.7533 0.7384 0.7006 0.6303 0.4764 Cable Rest. 0.0363 Hotor Base Anps 38.9 AHPS(pu) 1. 0682 1.2683 1.2826 1.3031 1.3274 1.3543 1.4273 1.5865 2.0992 Cable React 0.0319 RUNNING AHPS 41 ~ 5 49.3 49.8 50.6 51.6 52.6 55.5 61.7 81.6 LRC/FLA 6.22 LRC ANPS 115.0 Stall Torque 270 Stall Volts 0.609 CURVE POINTS 41.5 49.3 49.8 50.6 51.6 52.6 55 ' 61.7 115.0

kl 1

j t l

,"pa

'f Jf I

APPENDIX

~os ~

JOB NO. CALO. NO. AEV. NO. SHEET NO.

cd,>Ulh~

'1701-523 OAIGINATOA 21701-523-E-02 DATE CHECKED DATE INT OP zo 03/27/92 SMGR 38 4.16KV ',- ITE Relay- I IAV RELAY P'ickup Setting: 100 ~ 5V-LC Supply: 3802 IAV controls voltage Time PU - 60 60-14 13 12 11 10 8 6 4 Relay Voltage 106.22 90.45 89.45 M.04 86.43 84.72 80.40 72.36 54.77 Silgr voltage assuaed equal to LC vol'tage Voltage QLC 424.9 361.8 357.8 352.2 345.7 338.9 321.6 289.4 219.1 times xfmr turns ratio including 2.5 X tap Voltage 9 S~r 3774.4 3214.0 3178.3 3128.3 3071.1 3010.4 2856.9 2571.2 1946.2 Drop across xfmr ignored for conservatism pu V (4KV Base 0.9436 0.8035 0.7946 0.7821 0.7678 0.7526 0.7142 0.6428 0.4866 Motor: 3P2158 SI Pcmp Horsepower 350 Cable lspedance 0.0494 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.88 P.U. Ispedance 0.0010 CABLE DROP(pu) 0.0010 0.0012 0.0012 0.0012 0.0013 0.0013 0.0014 0.0015 0.0020 Ef f iciency 0.94 Base KVA 315.6 IITR VOLTS(pu) 0.9426 0.8023 0.7933 0.7808 0.7665 0.7513 0.7129 0.6413 0.4846 Cable Rest. 0.0371 Hotol Base Amps 45.6 AMP S(pu) 1.0609 1.2464 1.2605 1.2807 1.3046 1.3310 1.4028 1.5594 2.0638 Cable React 0.0326 RUNNING AHPS 48.3 56.8 57.4 58.3 59.4 60.6 63.9 71.0 94.0 LRC/FLA 6 40 LRC AHPS 141.0 Stall TorqX 266 Stall Volts 0.613 CURVE POINTS 4S.3 56.8 57.4 58.3 59 4 60.6 63.9 71.0 141.0 Motor: 3P9B IQI Pump Horsepcwer 325 Cable Impedance 0.0598 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.82 P.U. Impedance 0.0012 CABLE DROP(pu) 0.0013 0.0015 0.0015 0.0015 0.0016 0.0016 0.0017 0.0019 0.0025 Ef f iciency 0.928 Base KVA 318.6 HTR VOLTS(pu) 0.9423 0.8020 0.7931 0.7805 0.7662 0.7510 0.7125 0 ~ 6409 0.4841 Cable Rest. 0.0449 Hotor Base Amps 46.0 AMP S(pu) 1.0612 1.2469 1.2609 1.2812 1.3051 1.3315 1.4034 1.5602 2.0657 Cable React 0.0395 RUNNING AHPS 48.8 57.3 58.0 58.9 60.0 61.2 64.5 71.8 95.0 LRC/FLA 5.SO LRC AHPS 170.3 128.9 Stall TorqX 230 Stall Volts 0.659 CURVE POINTS 48.8 57.3 58.0 58.9 60.0 61.2 64.5 170.3 128.9 Motor: 3P2118 CCM Pcmp 450 Cable Impedance 0.0494 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 4 Horsepower PF 0.9 P.U. Ispedance 0.0012 CABLE DROP(pu) 0.0013 0.0015 0.0016 0.0016 0.0016 Q.0016 0.0017 0.0019 0.0026 Efficiency 0.93 Base KVA 401.1 HTR VOLTS(pu) 0.9423 0.8020 0.7930 0.7805 0.7662 0.7510 0.7125 0.6409 0.4840 Cable Rest. 0.0371 Motor Base Amps 57.9 AKPS(pu) 1.0613 1.2470 1.2610 1.2813 '1.3052 1.3316 1.4035 1.5604 2.0661 Cable React 0.0326 RUHHIHG ANPS 61.4 72.2 73.0 74.2 75.6 77.1 81.3 90.3 119.6 LRC/FLA 4.74 LRC AHPS '175.4 132.7 Stall TorqX 200 Stall Volts 0.707 CURVE POINTS 61 4 72.2 73.0 74.2 75.6 77.1 81.3 175.4 132.7 Motor: 3P2'IOB RHR Pump Norsepouer 300 Cable Impedance 0.0457 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.89 P.U. Ispedance 0.0008 CABLE DROP(pu) 0.0008 0.0010 0.0010 0.0010 0.0010 0.0010 0.0011 0.0012 0.0016 Ef f iciency 0.934 Base KVA 269.2 HTR VOLTS(pu) 0.9428 0.8025 0.7936 0.7811 0.7668 0.7516 0.7131 0.6416 0.4850 Cable Rest. 0.0343 Hotor Base Amps 38.9 AHPS(pu) 1.0607 1.2460 1.2601 1.2803 1.3041 1.3305 1.4022 1.5586 2.0620 Cable React 0.0302 RUNNING AKPS 41.2 48.4 49.0 49.8 50.7 51.7 54.5 60.6 80 ~ 1 LRC/FLA 6.22 LRC ANPS 117.1 Stall TorqX 270 Stall Volts 0.609 CURVE POINTS 41.2 48.4 49.0 49.8 50.7 51.7 54.5 60.6 117.1

I

, ~e

)

t'i c<

+ '5,

GALCULATI N SHEET APPENDIX gOI) 2. OL- G2- S JOB NO. CALO. NO. REV. NO. SHEET NO.

QIL43-K-21701-523 21701-523-E-02 sHT > op ZCo ORIGINATOR DATE CHECKED DATE 03/27/92 SMGR 30 4.16KV Tied to Bus 3A ,'- ITE Relay--'-----IAV RELAY Pickup Setting: 98.75 V Degraded Voltage Protection: LC 3801 via 3A Time PU - 60 60-14 13 12 11 10 8 6 4 3A - 30 tie cable~.0072+I.016 ohms'.0175 IAV Dial 5 --- 0.900 0.890 0.876 0.860 0.843 0.800 0.720 0.545 Relay Voltage 105.48 M.M 87.89 86.51 84.93 83.25 79.00 71.10 53.82 30 Bus Loading Voltage QLC 421.9 355.5 351.6 346.0 339.7 333.0 316.0 284.4 215.3 I CM 318.6 Voltage 8 3A 3748.1 3158.0 3122.9 3073.8 3017.7 2958.0 2807.1 2526.4 1912.4 CCM 401.1 Voltage 8 30 3742.3 3151.1 3116.0 3066.7 3010.5 2950.7 2799.4 2517.8 1900.9 30 Total 719.7 pu V (4KV Base 0.9356 0.7878 0.7790 0.7667 0.7526 0.7377 0.6998 0.6295 0.4752 Rotor: 3P9C ICM Pcmp 325 Cable Impedance 0.0397 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 Horsepower PF 0.82 P.U. Impedance 0.0008 CABLE DROP(pu) 0.0008 0.0010 0.0010 0.0010 0.0011 0.0011 0.0011 0.0013 0.0017 Efficiency 0.928 Base KVA 318.6 NTR VOLTS(pu) 0.9347 0.7868 0.7780 0.7657 0.7516 0.7366 0.6987 0.6282 0.4736 Cable Rest. 0.0298 Notor Base Amps 46.0 ANPS(pu) 1.0698 1.2710 1.2854 1.3061 1.3306 1.3576 1.4312 1.5919 2.1116 Cable React 0.0262 RUNNING ANPS 49.2 58.5 59.1 60.1 61.2 62.4 65.8 73.2 97.1 LRC/FLA 5.80 LRC AHPS 167.1 126.2 Stall Torch, 230 Stall Volts 0.659 CURVE POINTS 49.2, 58.5 59.1 60.1 61.2 62.4 65.8 167.1 126.2 Rotor: 3P211C CCM Pcmp Horse@war 450 Cable Impedance 0.0509 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.9 P.U. Impedance 0.0013 CABLE DROP(pu) 0.0014 0.0016 0.0016 0.0017 0.0017 0.0017 0.0018 0.0020 0.0027 Efficiency 0.93 Base KVA 401.1 NTR VOLTS(pu) 0.9342 0.7862 0.7774 0.7650 0.7509 0.7359 0.6980 0.6274 0.4725 Cable Rest. 0.0382 Notor Base Amps 57.9 ANPS(pu) 1.0704 1.2720 1.2864 1.3072 1.3317 1.3588 1.4326 1.5938 2.1162 Cable React 0.0336 RUNNING ANPS 62.0 73.6 74.5 75.7 77.1 78.7 82.9 92.3 122.5 LRC/FLA 4.74 LRC ANPS 190.9 171.7 129.6 Stall Torcpf, 200 Stall Volts 0.707 CURVE POINTS 62.0 73.6 74.5 75.7 77.1 78.7 190.9 171.7 129.6

)7 '4 1

IP t~

lW a'%i

GALCVMTXON SHEET hPPBNDlX Jog Zl70 523 Jl -5 .E-JOB NO. CALO. NO. REV. NO. SHEET NO.

'21701-523 21701-523-E-02 ORIGINATOR DATE CHECKED . DATE SHT + OP 03/27/92 SMGR 3D 4.16KV Tied to Bus 3B f- ITE Relay--,'----IAV RELAY Pickup Setting: 100.5 V Degraded Voltage Protection: LC 3802 via 38 Time PU - 60 60-14 13 12 11 10 8 6 4 38-30 tie cablei.0077+J.0172 ohms ~ 0.0188 IAV Dial 5 --- 0.900 0.890 0.876 0.860 0.843 0.800 0.720 0.545 Relay Voltage 106.22 90.45 89.45 88.04 86A3 84.72 80.40 72.36 54.77 3D Bus Loading Voltage QLC 424.9 361.8 357.8 352.2 345.T 338.9 321.6 289.4 219.1 ICM 318.6 Voltage 9 3A 3774.4 3214.0 3178.3 3128.3 3071.1 3010.4 2856.9 2571.2 1946.2 CCM 401.1 Voltage 9 30 3768.2 3206.7 3170.9 3120.8 3063.5 3002.7 2848.7 2562.1 1934.2 3D Total 719.7 pu V (4KV Base 0.9420 0.8017 0.7927 0.7802 0.7659 O.rsor 0.7122 0.6405 0.4835 Hotor: 3P9C ICM Pulp Horsepower 325 Cable Impedance 0.0397 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.82 P.U. Ispedance 0.0008 CABLE DROP(pu) 0.0008 0.0010 0.0010 0.0010 0.0010 0.0011 0.0011 0.0012 0.0016 Ef f iciency 0.928 Base KVA 318.6 HTR VOLTS(pu) 0.9412 0.8007 0.7917 0.7792 0.7649 0.7496 0.7111 0.6393 0.4819 Cable Rest. 0.0298 Motor Base Amps 46.0 AHPS(pu) 1.0625 1.2489 1.2631 1.2834 1.3074 1.3340 1.4063 1.5642 2.0751 Cable React 0.0262 RUNNING AHPS 48.9 57.4 58.1 59.0 60.1 61.4 64.7 71.9 95.4 LRC/FLA 5.80 LRC AHPS 170.1 128.4 Stall TorqX 230 Stall Volts 0.659 CURVE POINTS 48.9 57.4 58.1 '9.0 60.1 61.4 64.7 170.1 128.4 I

Hotor: 3P211C CCM Pump I Korsepoeer 450 Cable Impedance 0.0509 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.9 P.U. Iapedance 0 0013 CABLE DROP(pu) 0.0014 0.0016 0.0016 0.0016 0.0017 0.0017 0.0018 0.0020 0.0027 Efficiency 0.93 Base KVA 401.1 HTR VOLTS(pu) 0.9407 0.8001 0.7911 0.7786 0.7642 0.7490 0.7104 0.6385 0.4M9 Cable Rest. 0.0382 Hotor Base Aaps 57.9 AHPS(pu) 1.0631 1.2499 1.2640 1.2844 1.3085 1.3352 1A077 1.5661 2.0794 Cable React 0.0336 I RUNNING AHPS 61.5 72.4 73.2 74.4 75.8 77.3 81.5 90.7 120.4 I

LRC/FLA 4.74 LRC ANPS 174.7 131.9 Stall TorcPf, 200 Stall Volts 0.707 CURVE POINTS 61.5 72.4 73.2 74.4 75.8 77.3 81.5 174.7 131.9

P, i,c t

4

CALCULATION SHEET hPPENDtX JOB NO. CALO. NO. REV. NO. SHEET NO. J 21701-523 21701-523-E-02 ~g 2Q) -M.3- -02 ORIGINATOR DATE CHECKED DATE SHT OP 03/27/92 f- Mae > ~7 9'4 LC 3801 3A (- ITE Relay--',-----IAV RELAY Pickup Setting: 98.75 V-Time PU - 60 60-14 13 12 11 10 8 6 4 IAV TD 5 0.900 0.890 0.876 0.860 0.843 0.800 0.720 0.545 Relay Voltage 105A8 88.M 87.89 86.51 84.93 83.25 79.00 71.10 53.82 Voltage Q(CC 421.9 355.5 351.6 346.0 339.7 333.0 316.0 284.4 215.3 P.U. Voltage 0.9172 0.7728 0.7642 0.7522 0.7385 0.7239 0.6870 0.6183 OA680 Motor: 3P201A Charging Pm@

Horsepower 150 Cable Impedance 0.0374 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.9 P.U. Impedance 0.0238 CABLE DROP(pu) 0.0267 0.0321 0.0325 0.0331 0.0337 0.0345 0.0366 0.0412 0.0580 Ef f iciency 0.925 Hotor Base KVA 134 ~ 41 HTR VOLTS(pu) 0.8905 0.7407 0.7317 0.7192 0.7047 0.6894 0.6504 0.5771 0.4100 Cable Rest. 0.0254 Notor Base Amps 168.71 AHPS(pu) 1.1229 1.3500 1.3666 1.3905 1 4190 1.4506 1.5375 1.7329 2.4391 Cable React. 0.0275 RUNNING ANPS 189.5 227.8 230.6 234.6 239.4 244.7 259.4 292.4 411.5 LRC/FLA 5.80 LRC ANPS 590.7 531.7 402.4 Stall Torque 230 Stall Volts 0.659 CURVE POINTS 189.5 227.8 230.6 234.6 239.4 244.7 590.7 531.7 402.4 Hotor: 3P214A Cont. Spray Pm@

Horsepower 250 Cable Impedance 0.0163 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.9 P.U. Impedance 0.0170 CABLE DROP(pu) 0.0190 0.0227 0.0230 0.0234 0.0238 0.0243 0.0258 0.0289 0.0398 Efficiency 0.94 Hotor Base KVA 220.45 HTR VOLTS(pu) 0.8983 0.7501 0.7413 0.7288 0.7146 0.6995 0.6612 . 0.5894 0.4282 Cable Rest. 0.0065 Motor Base Amps 276.70 ANPS(pu) 1.1133 1.3331 1.3490 1.3720 1.3993 1 4295 1.5124 1.6967 2.3353 Cable React. 0.015 RUNNING ANPS 308.0 368.9 373.3 379.6 387.2 395.5 418.5 469.5 646.2 LRC/FLA 6.18 LRC ANPS 1119.9 1062.8 956.5 724.0 Stall Torch 200 Stall Volts 0.707 CURVE POINTS 308.0 368.9 373.3 379.6 387.2 1119.9 1062.8 956.5 724.0

I J'

'1

CALCULATION SHEET APPENDIX J08 NO. CALO. NO. REV. NO ~ SHEET NO. JOB 21701-523-E-02 ~ OZ 21701-523 ORIGINATOR DATE CHECKED DATE sarM'p ~~

03/27/92 >>~/<>

LC 3802 38 ',- ITE Relay--',------IAV RELAY Pickup Setting: 100.5 V Time PU - 60 60-14 13 12 11 10 8 6 IAV TD 5 0.900 0.890 0.876 0.860 0.843 0.8N 0.720 0.545 Relay Voltage 106.22 90.45 89.45 88.04 86.43 84.72 80.40 72.36 54.77 Voltage QICC 424.9 361.8 357.8 352.2 345.7 338.9 321.6 289.4 219.1 P.U. Voltage 0.9237 0.7865 0.7778 0.7655 0.7516 0.7367 0.6991 0.6292 0.4763 Motor: 3P2018 Charging Punp 150 Cable Ispedance 0.0479 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 4 Horsepower PF 0.9 P.U. Impedance 0.0304 CABLE DROP(pu) 0.0342 0.0408 0.0413 0.0421 0.0429 0.0439 0.0466 0.0528 0.0760 Ef f iciency 0.925 Motor Base KVA 134.41 HTR VOLTS(pu) 0.8894 0.7457 0.7365 0.7235 0.7086 0.6928 0.6525 0.5764 0.4002 Cabl~ Rest. 0.0325 Motor Base Asps 168.71 AHPS(pu) 1.1243 1.3410 1.3578 1.3822 1.4112 1.4435 1.5326 1.7348 2.4985 Cable React. 0.0352 RUNNING AKPS 189.7 226.2 229.1 233.2 238.1 243.5 258.6 292.7 421.5 LRC/FLA 5.80 LRC AKPS 581.5 523.3 396.1 Stall Torque 230 Stall Volts 0.659 CURVE POINTS 189.7 226.2 229.1 233.2 238.1 243.5 581.5 523.3 396.1 Hotor: 3P2148 Cont. Spray Pump 250 Cable Impedance 0.0194 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 4 Horsepower PF 0.905 P.U. Ispedance 0.0201 CABLE DROP(pu) 0.0223 0.0264 0.'0268 0 '272 0.0278 0.0284 0.0300 0.0337 0.0468 Efficiency 0.94 Motor Base KVA 219.23 HTR VOLTS(pu) 0.9014 0.7601 0.7510 0.7383 0.7238 0.7083 0.6691 0.5955 0.4295 Cable Rest. 0.0077 Hotor Base Asps 275.17 AKPS(pu) 1.1094 1.3156 1.3315 1.3544 1.3816 1.4117 1.4945 1.6793 2.3283 Cable React. 0.0178 RUNNING AKPS 305.3 362.0 366.4 372.7 380.2 388.5 411.2 462.1 640.7 LRC/FLA 6.18 LRC AKPS 1057.6 951.8 720.5 Stall To ref 200 Stall Volts 0.707 CURVE POINTS 305.3 362.0 366.4 372.7 380.2 388.5 1057.6 951.8 720.5

C J

J f1

CALCULATION SHEET APPEND JOB NO.

21701-523 ORIGINATOR CALO. NO.

21701-523-E-02 DATE CHECKED REV. NO.

DATE SHEET NO. JOB 333T 2~2.

~ O9 >

03/27/92 LC 3H (3850)

I I ITE Relay- IAV RELAY Pickup Setting: 98 V LC Supply: 3803 Tis3e PU - 60 3 60-14 13 12 11 10 8 6 4 EC-145 Ref. IAV TD 5 0.90 0.89 0.88 0.86 0.84 0.80 0.72 0.55 PSB-1 LC Volts: 366 App. 11 Case 9 Relay Voltage 108.31 88;20 87.22 85.85 84.28 82.61 78AO 70.56 53.41 PSB-1 MCC V 353 App. 11 Case 9 Voltage QLC 433.2 352.8 348.9 343 4 337.1 330.5 313.6 282.2 213.6 PSB-1 V Drop 13 Voltage QMCC 422.4 339.3 335.2 329.5 322.9 315.9 298.2 264.9 189.4 Calculated PmZc 4589 P.U. Voltage 0.9182 0.7376 0.7287 0.7162 0.7020 0.6868 0.6483 0.5759 0.4118 Motor: 3P201C Charging Pm@

Horsepcwer 150 Cable Impedance 0.0333 TIME (sec) PU 60 60-14 13 12 11 10 8 6 4 PF 0.9 P.U. Impedance 0.0213 CABLE DROP(pu) 0.0238 0.0301 0.0305 0.0311 0.0318 0.0325 0.0347 0.0397 0.0606 Ef f iciency 0.92 Motor Base KVA 135.14 MTR VOLTS(pu) 0.8944 0.7075 0.6982 0.6852 0.6702 0.6543 0.6136 0.5362 0.3511 Cable Rest. 0.0226 Motor Base Amps 169.63 AMPS(pu) 1.1181 1.4135 1.4323 1 4595 1.4921 1.5284 1.6297 1.8650 2.8479 Cable React. 0.0245 RUNNING AMPS 189.7 239.8 243.0 247.6 253.1 259.3 276.4 316.3 483.1 LRC/FLA 5.80 LRC AMPS 601 4 56r.r 504.3 360.6 Stall To~ 230 Stall Volts 0.659 CURVE POINI'S 189.7 239.8 243.0 247.6 253.1 601.4 567.7 504.3 360.6

f. q Cl

'I

JOS NO.

21701-523 ORIGINATOR CALO. NO.

CALCULATION 21701-523-E-02 DATE 03/27/92 CHECKED SHEET REV. NO.

0-DATE 3p7 fW SHEET NO ~

~ppswom SHY 2~

1QaLSZ+

>c'F LC 3H (3850) )- ITE Relay- ~

IAV RELAY Pickup Setting: 98 V LC Supply: 3B04 EC-145 Ref. Time PU - 60 60-14 13 12 11 10 8 6 4 IAV TD 5 0.900 0.890 0.876 0.860 0.843 0.800 0.720 0.545 PSB-1 LC Volts: 371 App. 9 Case 10 Relay Voltage 108.22 88.20 87.22 ,85.85 84.28 82.61 78.40 70.56 53.41 PSB 1 MCC V 358 App. 9 Case 10 Voltage QLC 432.9 352.8 348.9 343.4 337.1 330.5 313.6 282.2 213.6 PSB-1 V Drop 13 Voltage QLCC 421.8 339.1 335.0 329.3 322.7 315.7 298.0 264.7 189.0 Calculated PmZc 4654 P.U. Voltage 0.9171 0.7371 0.7282 0.7158 0.7015 0.6863 0.647S 0.5753 0.4109 Motor: 3P201C Charging Pmp Horsepower 150 Cable la@cdance 0.0333 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.9 P.U. Impedance 0.0213 CABLE DROP(pu) 0.0238 0.0301 0.0305 0.0311 0.0318 0.0326 0.0347 0.0397 0.060&

Ef f iciency 0.92 Motor Base KVA 135.14 KTR VOLTS(pu) 0.8932 0.7070 0.6977 0.6847 0.6697 0.6538 0.6131 0.5356 0.3501 Cable Rest. 0.0226 Kotor Base Amps 169.63 AMP S(pu) 1.1195 1.4144 1.4332 1.4605 1 A931 1.5296 1.6312 1.8671 2.8563 Cable React. 0.0245 RUNNING AKPS 189.9 239.9 243.1 247.7 253.3 259.5 276.7 316.7 484.5 LRC/FLA 5.80 LRC AKPS 60'1.0 567.3 503.8 359.8 Stall TorqX 230 Stall Volts 0.659 CURVE POINTS 189.9 239.9 243.1 247.7 253.3 601.0 567.3 503.8 359.8

t l

fA J

ly

'\

y(

CALGULATI N SHEET APPENDIX JOS NO. CALO. NO. REV. NO. SHEET NO.

ChLC. ~ I l(-)L -5 21701-523 21701-523-E-02 ORIGINATOR DATE CHECKED DATE arr ~~ op ~~

03/27/92 NCC 3A (3B05) I I ITE Relay--,'----IAV RELAY Pickup Setting: 98.75 V LC Supply: 3801 Time PU - 60 60-14 13 12 11 10 8 6 EC-145 Ref. IAV TD 5 0.900 0.890 0.876 0.860 0.843 0.800 0.720 0.545 PSB-1 LC Volts: 369.5 App. 11 Case 9 Relay Voltage 105.48 88.8S 87.89 S6.51 84.93 83.25 79.00 71.10 53.82 PSB-1 NCC V 369 App. 11 Case 9 Voltage QLC 421.9 355.5 351.6 346.0 339.7 333.0 316.0 284.4 215.3 PSB-1 V Drop 0.5 Voltage eMCC 421.5 355.0 351.0 345.5 339.2 332.4 315.4 283.7 214.4 Calculated PmZc 184.5 P.U. Voltage 0.9163 0.7717 0.7631 0.7511 0.73?3 0.7227 0.6857 0.6168 0.4661 Motor: 3P10A EDG FO XFER Horse@war 0.?5 Cable Ispedance 0.5613 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.85 P.U. Iapedance 0.0030 CABLE DROP(pu) 0.0032 0.0039 0.0039 0.0040 0.0040 0.0041 0.0043 0.0048 0.0064 Ef f fciency 0.59 Motor Base KVA 1.12 NTR VOLTS(pu) 0.9130 0.76?8 0.?592 0.7471 0.7333 0.7186 0.6813 0.6120 0.4597 Cable Rest. 0.5612 Motor Base Amps 1.40 ANPS(pu) 1.0953 1.3024 1.3172 1.3385 1.3638 1.3917 1.4677 1.6340 2.1754 Cable React. 0.0122 RUNNING ANPS 1.5 1.8 'I.S 1.9 1.9 1.9 2.1 2.3 3.0 LRC/FLA 6.00 LRC ANPS 6.0 5.7 5.1 3.8 Stall TorqX 190 Stall Volts 0.725 CURVE POINTS 1.5 'I.S 1.8 1.9 1.9 6.0 5.7 5.1 3.8 Motor: 3V34A EDG ROON VENT FAN Horsepower 5 Cable Ispedance 0.4808 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.85 P.U. Is@cdance 0.0108 CABLE DROP(pu) 0.0120 0.0143 0.0145 0.0147 0.0150 0.0153 0.0162 0.0181 0.0245 Ef f iciency 0.92 Motor Base KVA 4.77 NTR VOLTS(pu) 0.9043 0.?574 0.7486 0.7363 0.7223 0.7074 0.6695 0.5987 0.4416 Cable Rest. 0.4807 Motor Base Amps 5.99 ANPS(pu) 1.1059 1.3203 1.3358 1.3581 1.3845 1.4137 1.4937 1.6702 2.2646 Cable React. 0.0104 RUNNING ANPS 6.6 7.9 8.0 8.1 8.3 8.5 8.9 10.0 13.6 LRC/FLA 6.00 LRC ANPS 24.9 24.4 23.1 20.8 15.7 Stall Torque 190 Stall Volts 0.725 CURVE POINTS 6.6 7.9 8.0 8.1 24.9 24.4 23.1 20.8 15.7

~c

- ",'i

}K<<

C~

h

2)

N

~

pk

CALCULATION SHEET APPBND1X JQQ \

JOB HO. CALO. HO. REV. NO. SHEET NO.

~C Zl'lOl-Q3-F -o 21701-523 ORIGINATOR 21701-523-E-02 DATE CHECKED DATE SHT ~~ OF 03/27/92 ) a7 HCC 3B (3B06) I I ITE Relay--',------IAV RELAY Pickup Setting: 100.5 V-LC Supply: 3802 EC-145 Ref. Time PU - 60 60-14 13 12 11 10 8 6 4 IAV TD 5 0.900 0.890 0.876 0.860 0.843 0.800 0.720 0.545 PSB-1 LC Volts: 385 App. 5 Case 10 Relay Voltage 106.22 90.45 89A5 88.04 86.43 84.72 80.40 72.36 54.77 PSB-1 IICC V 379 App. 5 Case 10 Voltage QLC 424.9 361.8 357.8 352.2 345.7 338.9 321.6 289.4 219.1 PSB-'I V Drop 6 Voltage QICC 419.5 355.4 351.3 345.6 339.0 332.0 314A 281.4 208.2 Calculated PmZc 2274 P.U. Voltage 0.9119 0.7726 0.7637 0.7512 0.7370 0.7218 0.6834 0.6116 0.4525 Motor: 3V30A ENERG CONT CLR FAN Horsepower 30 Cable Iapedance 0.1956 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.808 P.U. Impedance 0.0283 CABLE DROP(pu) 0.0322 0.0386 0.0391 0.0398 0.0407 0.0416 0.0443 0.0505 0.0750 Efficiency 0.904 Motor Base KVA 30.64 HTR VOLTS(pu) 0.8797 0.7340 0.7246 0.7114 0.6963 0.6802 0.6391 0.5612 0.3775 Cable Rest. 0.1939 Kotor Base Amps 38.46 ANPS(pu) 1.1368 1.3623 1.3800 1.4056 1.4361 1.4702 1.5647 1.7820 2.6489 Cable React. 0.0256 RUNNING ANPS 43.7 52A 53.1 54.1 55.2 56.5 60.2 68.5 101.9 LRC/FLA 6.18 LRC ANPS 123.7 91.5 Stall Torque 263 Stall Volts 0.617 CURVE POINTS 43.7 52.4 53.1 54.1 55.2 56.5 60.2 123.7 91.5 Motor: 3V3A EHERG CONT FILT FAN Horsepower 75 Cable Impedance 0.0387 TIME (sec) PU - 60 60-14 13 12 11 10 e 6 4 PF 0.862 P.U. Impedance 0.0128 CABLE DROP(pu) 0.0142 0.0169 0.0171 0.0174 0.0178 0.0182 0.0192 0.0217 0.0303 Efficiency 0.929 Hotor Base KVA 69.87 HTR VOLTS(pu) 0.8976 0.7557 0.7466 0.7338 0.7192 0.7037 0.6642 0.5900 0.4223 Cable Rest. 0.032 Motor Base Amps 87.69 ANPS(pu) 1.1141 1.3233 1.3394 1.3627 1.3904 1.4212 1.5057 1.6950 2.3682 Cable React. 0.0218 RUNNING AHPS 97.7 116.0 117.5 119.5 121.9 124.6 132.0 148.6 207.7 LRC/FLA 6.30 LRC ANPS 312.7 231.4 Stall TorqX 247 Stall Volts 0.636 CURVE POINTS 97.7 116.0 117.5 119.5 121.9 124.6 132.0 312.7 231.4 Hotor: E16A/E17A CONT ROOH A/C ANU Horsepower 34 Cable impedance 0.1316 TINE (sec) PU - 60 60-14 13 12 11 10 e 6 4 PF 0.85 P.U. Impedance 0.0202 CABLE DROP(pu) 0.0227 0.0271 0.0274 0.0279 0.0285 0.0291 0.0309 0.0350 0.0501 Ef f iciency 0.92 Notor Base KVA 32.43 NTR VOLTS(pu) 0.8892 0.7456 0.7363 0.7234 0.7085 0.6927 0.6525 0.5767 0.4024 Cable Rest. 0.1308 Motor Base Aaps 40.71 ANPS(pu) 1.1246 1.3413 1.3581 1.3824 1.4114 1.4436 1.5326 1 ~ 7341 2A850 Cable React. 0.0143 Base Amps t LRC are total RUNNING AHPS 45.8 54.6 55.3 56.3 57.5 5e.e 62.4 70.6 101.2 LRC/FLA 4.53 for 4 Hotors. (Ref. 4.11) LRC AHPS 126.9 124.5 122.0 115.5 103A 76.5 Stall Torque 190 Stall Volts 0.725 CURVE POINTS 45.8 54.6 55.3 126.9 124.5 122.0 115 ~ 5 103.4 76.5 Motor: 3V36 AIR, PART. KGAS HONI TOR Horsepower 2 Cable Impedance 0.9103 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.88 P.U. Iapedance 0.0092 CABLE DROP(pu) 0.0102 0.0121 0.0123 0.0125 0.0127 0.0130 0.0138 0.0155 0.0214 Ef f iciency 0.79 Kotor Base KVA 2.15 HTR VOLTS(pu) 0.9016 0.7605 0.7514 0.7387 0.7242 0.7088 0.6696 0.5962 0.4311 Cabte Rest. 0.9101 Motor Base Aaps 2.70 AMPS(pu) 1 ~ 1091 1.3150 1.3308 1.3536 1.3808 1A108 1.4934 1.6774 2.3195 Cable React. 0.0198 NOTE: Cable not in EC-145 RUNNING ANPS 3.0 3.6 3.6 3.7 3.7 3.8 4.0 4.5 6.3 LRC/FLA 6.00 407'12 per CER schedule LRC AHPS 11.3 11.1 10.5 9.4 6.9 Stall Torque 190 Stall Volts 0.725 CURVE POINTS 3.0 3.6 3.6. 3.7 11.3 11.1 10.5 9.4 6.9 Note: FLA based on PC/H 89-587 which replaced the motor. (See Attachment 3)

1

\

p't

)H I

'I I

JOB MO.

21701-523 ORIGINATOR CALO. MO.

CALCULATION 21701-523-E-02 DATE 03/27/92 CHECKED SHEET REV. NO.

0 =

DATE SHEET NO.

D SHY

~

APPENDIX CAI.C~IW)-S

~ OP

-S-oZ.

PXS Sfn+

HCC 3C (3807) I I ITE Relay--,'---- IAV RELAY Pickup Setting: 98 V.

LC Supply: 3803 EC-145 Ref. Time PU - 60 60-14 13 12 11 10 8 6 4 IAV TD 5 0.900 0.890 0.876 0.860 0.843 0.800 0.720 0.545 PSB-1 LC Volts: 366 App. 11 Case 9 Relay Voltage 108.22 88.20 S?.22 85.85 84.28 82.61 78.40 70.56 53.41 PSB-1 NCC V 355 App. 11 Case 9 Voltage QLC 432.9 352.8 348.9 343.4 337.1 330.5 313.6 282.2 213.6 PSB-1 V Drop 11 Voltage ISICC 423.7 341.4 337.3 331.6 325.1 318.2 300.6 267.7 193.5 Calculated PmZc 3905 P.U. Voltage 0.9210 0.7421 0.7333 0.?209 0.7068 0.6917 0.6535 0.5818 0.4206 Hotor: 3V30C ENERG CONT COOLER FAN Morsepcwer 30 Cable Iapedance 0.2636 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.808 P.U. Impedance 0.0382 CABLE DROP(pu) 0.0435 0.0556 0.0564 0.0575 0.0589 0.0605 0.0648 0.0753 0.1325 Efficiency 0.904 Motor Base KVA 30.64 HTR VOLTS(pu) 0.87?5 0.6865 0.6769 0.6634 0.6479 0.6312 0.5887 0.5065 0.2881 Cable Rest. 0.2617 Motor Base Amps 38.46 AHPS(pu) 1.1396 1.4567 1.47?3 1.5074 1.5436 1.5842 1.6987 1.9743 3.4712 Cable React. 0.0312 RUNNING AHPS 43.8 56.0 56.8 58.0 59.4 60.9 65.3 75.9 133.5 LRC/FLA 6.18 LRC ANPS 125.7 111.9 80.9 Stall Torque 263 Stall Volts 0.617 CURVE POINTS 43.8 56.0 56.8 58.0 59.4 60.9 125.7 111.9 80.9 Motor: 3V3C EHERG CONT. FILTER FAN 75 Cable Iapedance 0.0433 TIME (sec) PU - 60 60-14 13 12 11 10 8 6 4 Horsepower PF 0.862 P.U. Impedance 0.0143 CABLE DROP(pu) 0.0158 0.0198 0.0200 0.0204 0.0208 0.0213 0.0226 0.0257 0.03?3 Ef f iciency 0.929 Motor Base KVA 69.87 HTR VOLTS(pu) 0.9052 0.7223 0.7132 0.7005 0.6859 0.6?04 0.6309 0.5562 0.3833 Cable Rest. 0.035S Hotor Base Amps 87.69 ANPS(pu) 1.1047 1.3844 1.4021 1.4275 1.45?9 1.4917 1.5852 1.7980 2.6091 Cable React. 0.0243 RUNNING ANPS 96.9 121.4 123.0 125.2 12?.8 130.8 139.0 157.7 228.8 LRC/FLA 6.30 LRC ANPS 331.2 294.9 213.2 Stall Torque 247 Stall Volts 0.636 CURVE POINTS 96.9- 121.4 123.0 125.2 127.8 130.8 331.2 294.9 213.2 Notor: 3V65A SlKR 3D ROOH SUPPLY FAN 2 Cable Impedance 0.8554 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 Horsepower PF 0.808 P.U. Impedance 0.0086 CABLE DROP(pu) 0.0095 0.0118 0.0120 0.0122 0.0124 0.0127 0 ~ 0135 0.0152 0.0216 Efficiency 0.865 Notor Base KVA 2.13 HTR VOLTS(pu) 0.9115 0.?303 0.7213 0.7087 0.6943 0.6?90 0.6400 0.566& 0.3989 Cable Rest. 0.855 Notor Base Amps 2.68 AHPS(pu) 1.0970 1.3694 'l.3864 1.4110 1.4402 1;4728 1.5625 1.7649 2.5068 Cable React. 0.0272 RUNNING ANPS 2.9 3.7 3.7 3.8 3.9 3.9 4.2 4.7 6.7 LRC/FLA 7.63 LRC AMPS 8.1 Stall Torcpf 358 Stall Volts 0.529 CURVE POINTS 2.9 3.7 3.7 3.8 3.9 3.9 4.2 4.7 8.1

4P g4 pP

,V 1"

p1

'4l

CALCULATION SHEET APPENDS Jpp l ol-JOB NO. CALO. HO. REV. HO. SHEET KO.

ggg21 Ol"5 21701-523 ORIG IHATOA 21701-523-E-02 DATE CHECKED DATE ssv2Mop +~

03/27/92 HCC 30 (3B08) ITE Relay--'------IAV RELAY Pickup Setting: 98 V LC Supply: 3803 Time PU - 60 60-14 13 12 11 10 8 6 4 EC-145 Ref. IAV TD 5 0.90 0.89 0.88 0.86 0.84 0.80 0.72 0.55 PSB-1 LC Volts: 366 App. 11 Relay Voltage 108.31 88.20 87.22 85.85 84.28 82.61 78.40 70.56 53.41 PSB-1 HCC V 348 Case 9 Voltage QLC 433.2 352.8 348.9 343 4 337.1 330.5 313.6 282.2 213.6 PSB-1 V Drop 18 Voltage QHCC 418.2 334.0 329.9 324.1 317.4 310.3 292.2 258.0 178.6 Calculated PmZc 6Z64 P.U. Voltage 0.9092 0.7262 0.7172 0.7045 0.6900 0.6745 0.6351 0.5608 0.3882 Hotor: 3V3B EHERG CONT FILTER FAN HorsepoMer 75 Cable Impedance 0.0458 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.862 P.U. Impedance 0.0151 CABLE DROP(pu) 0.0170 0.0215 0.0218 0.0222 0.0227 0.0232 0.0248 0.0284 0.0440 Ef f iciency 0.929 Motor Base KVA 69.87 HTR VOLTS(pu) 0.8922 0.7047 0.6954 0.68Z3 0.6673 0.6512 0.6103 0.5323 0.3442 Cable Rest. 0.0379 Hotor Base Amps 87.69 AHPS(pu) 1.1208 1 4190 1.4380 1.4656 1.4986 1.5355 1.6385 1.8785 2.9054 Cable React. 0.0258 RUNNING AHPS 98.3 124.4 126.1 128.5 131.4 134.7 143.7 164.7 254.8 LRC/FLA 6.30 LRC AMPS 320.3 282.8 195.8 Stall Torque 247 Stall Volts 0.636 CURVE POINTS 98.3 124 4 126.1 128.5 131.4 134.7 320.3 282.8 195.8 Hotor: 3V308 EMERG CONT COOLER FAN Horsepower 30 Cable Impedance 0.2507 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF O.SM P.U. Ispedance 0.0363 CABLE DROP(pu) 0.0419 0.0540 0.0548 0.0560 0.0574 0.0590 0.0635 0.0747 0.1572 Ef f iciency 0.904 Motor Base KVA 30.64 HTR VOLTS(pu) 0.8673 0.6722 0.6623 0.6485 0.6326 0.6155 0.5716 0.4861 0.2310 Cable Rest. 0.249 Motor Base Amps 38.46 AMPS(pu) 1.1530 1.4877 1.5098 1.5420 1.5808 1.6247 1.7494 2.0572 4.3286 Cable React. 0.0294 RUNNING AHPS 44.3 57.2 58.1 59.3 60.8 62.5 67.3 79.1 166.5 LRC/FLA 6.1e LRC AHPS 130.9 123.3 108.9 75.3 Stall TorqX 263 Stall Volts 0.617 CURVE POINTS 44.3 57.2 58.1 59.3 60.8 130.9 123.3 108.9 75.3 Motor: S74B COMPUTER ROON CHILLER UNIT 65 Cable Impedance 0.0759 TIME (sec) PU - 60 60-14 13 12 11 10 e 6 4 Horsepower PF P.U. Ispedance 0.0236 CABLE DROP(pu) 0.0267 0.0340 0.0345 0.0352 0.0360 0.0370 0.0396 0.0457 0.0753 Ef f iciency Motor Base KVA 65.65 HTR VOLTS(pu) 0.8825 0.6922 0.6826 0.6693 0.6539 0.6375 0.5956 0.5150 0.3129 Cable Rest. 0.0691 Total Load Amps 82.40 AHPS(pu) 1.1332 1.4448 1.4649 1.4941 1.5292 1.5685 1.6791 1.9416 3.1963 Cable React. 0.0315 Compressor Amps 62 RUN AHPS COHP. 70.3 89.6 90.8 92.6 94.8 97.2 104.1 120.4 198.2 LRC/FLA 5.48/6.44 Fan/Pump A ea. 6.8 LRC AHPS COMP 207.6 203.0 191.1 168.7 116.8 Stall TorqK 230/274 Stall Volts .659/.604 COMP. CURVE PT 70.3 89.6 90.8 92.6 207.6 203.0 191.1 168.7 116.8 Note:S748 consists of 2 fans,1 punp 8 1 comp. mtr RUN AHPS P/FAN 7.7 9.8 10.0 10.2 10.4 10.7 11.4 13.2 21.7 Total Load Amps equals sue of all loads LRC AHPS P/FAN 24.1 21.3 14.8 Motor FLA Ref. 5177-206-H724-27-4, also PUMP/FAN PTS 7.7 9.8 10.0 10.2 10.4 10.7 24.1 21.3 14.8 LRC and Stall TorqK data available via Ref. 5177-206-H724-43-1 ~ Horst case Stall TorqX and LRC used for the Pump/Fan carbination.

P

(

t

) ~

'i

APPEND1X CALGULATI JOB NO.

'21701-523 CALO. NO.

21701-523-E-02 SHEET AEV. No.

0 SHEET No. ~K- o~ ~~

OAIGINATOA DATE CHECKED, DATE 03/27/92 Motor: S75B COMPUTER ROON CHILLER Horsepower 5 Cable lapedance 0.6391 TINE (sec) PU - 60 60-14 13 12 >> 10 8 6 4 PF 0.84 P.U. Impedance 0.0164 CABLE DROP(pu) 0.0184 0.0233 0.0236 0.0240 0.0246 0.0252 0.0269 0.0309 0.0481 Efficiency 0.82 Hotor Base KVA 5.42 MTR VOLTS(pu) 0.8908 0.7029 0.6936 0.6804 0.6654 0.6493 0.6082 0.5299 0.3401 Cable Rest. 0.6388 Motor Base Aaps 6.N ANPS(pu) 1.1226 1.4226 1.4418 1 4696 1.5029 1.5401 1.6441 1.8871 2.9405 Cable React. 0.0203 RUNNING ANPS 7.6 9.7 9.8 10.0 10.2 10.5 >>.2 12.8 20.0 LRC/FLA 6.04 LRC AHPS 21.0 14.5 Stalt TorciK 274 Stall Volts 0.604 CURVE POINTS 7.6 9.7 9.8 10.0 10.2 10.5 >>.2 21.0 14.5 Motor: S77B CONPUTER ROOH AC-AHU Horsepower 5 Cable Iapedance 0.8077 TIME (sec) PU - 60 60-14 13 12 >> 10 8 6 4 PF 0.84 P.U. Iapedance 0.0207 CABLE DROP(pu) 0.0233 0.0297 O'.P301 0.0307 0.0314 0.0322 0.0344 0.0397 0.0637 Ef f iciency 0.82 Motor Base KVA 5.42 HTR VOLTS(pu) 0.8858 0.6965 0.6sri 0.6738 0.6586 0.6423 0.6007 0.52>> 0.3245 Cable Rest. 0.8073 Hotor Base Amps 6.80 ANPS(pu) 1 ~ 1289 1.4357 1.4555 1.4841 1.5184 1.5569 1.6647 1.9190 3.08ZO Cable React. 0.0257 RUHHIHG AHPS 7.7 9.8 9.9 10.1 10.3 10.6 11.3 13.0 20.9 LRC/FLA 6.04 LRC AHPS 23.2 20.5 14.2 Stall TorqX 274 Stall Volts CURVE POINTS 7.7 9.8 9.9 10.1 10.3 10.6 23.2 20 ' 14.2 Motor: S788 COMPUTER ROON AC-AHU Horsepower 5 Cable lapedance 0.7164 TIHE (sec) PU - 60 60-14 13 12 >> 10 8 6 4 PF 0.84 P.U. Impedance 0.0183 CABLE DROP(pu) 0.0206 0.0262 0.0265 0.0271 0.0277 0.0284 0.0303 0.0349 0.0550 i

Ef f clancy Cable Rest.

0.82 0.716 Motor Base KVA Motor Base Amps 5.42 6.80 HTR VOLTS(pu)

AHPS(pu) 0.8885 1.1254 0.7000 1.4286 0.6906 1.4480 0.6774 1.4762 0,6623 1.5099 0.6461 1.5477 0.6048 1.6534 0.5259 1.9014 0.3331 3.0017 Cable React. 0.0228 RUNNING AHPS 7.6 9.7 9.8 10.0 .10.3 10.5 >>.2 12.9 20.4 LRC/FLA 6.04 LRC AMPS 20.7 14.3 Stall To~ Zr4 Stall Volts 0.604 CURVE POINTS 7.6 9.7 9.8 10.0 10.3 10.5 >>.2 zo.'r 14.3 Motor: V298 CONT.ROON EHERG FILTER FAH Horsepower 5 Cable lapedance 0.5338 TIHE (sec) PU - 60 60-14 13 12 >> 10 8 6 4 PF O.BS P.U. Iapedance 0.0137 CABLE DROP(pu) 0.0153 0.0193 0.0196 0.0200 0.0204 0.0209 0.0223 0.0255 0.0392 Ef f iciency 0.81 Motor Base KVA 5.42 HTR VOLTS(pu) 0.8939 0.7069 0.6976 0.6845 0.6696 0.6536 0.6128 0.5352 0.3490 Cable Rest. 0.5335 Notor Base Amps 6.80 ANPS(p ) 1.>>87 1.4147 1 '336 1.4609 1.4935 1.5300 'l.6318 'l.8683 2.8652 Cable React. 0.017 RUHNIHG AHPS 7.6 9.6 9.7 9.9 10.2 10.4 >> ~ 1 12.7 19.5 LRC/FLA 6.44 LRC ANPS 22.6 15.6 Stall Topcgf 307 Stall Volts 0.571 CURVE POINTS 7.6 9.6 9.7 9.9 10.2 10.4 >>.1 22.6 15.6

1

'i f%

APPENDIX JOB NO. CALO. NO. REV. KO. SHEET NO.

~I~ 'Zl 01-523- "02 21701-523 21701-523-E-02 CHECKED. DATE sm >c. op ORIGINATOR DATE 03/27/92

~c'otor:

E16C/E'I7C CONT ROON AC-AHU Horsepcwer 34 Cable Impedance 0.1539 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF P.U. Inpedance 0.0222 CABLE DROP(pu) 0.0251 0.0319 0.0324 0.0330 0.0338 0.0346 0.0371 0.0428 0.0696 Efficiency Load Base KVA 30.48 NTR VOLTS(pu) 0.8841 0.6943 0.6848 0.6715 ~ 0.6562 0.6398 0.5981 0.5180 "0.3186 Cable Rest. 0.153 Load Base Amps 38.30 ANPS(pu) 1.1311 1.4404 1.4603 1.4893 1.5240 1.5629 1.6721 1.9306 3.1389 Cable React. 0.0167 Base amps 4 LRC are total RUNNING ANPS 43.3 55.2 55.9 57.0 58.4 59.9 64.0 73.9 120.2 LRC/FLA 4.53 for 4 Notors. (Ref. 4.11) LRC ANPS 114.5 113.1 111.1 108.8 106.3 100.1 88.4 61.2 Stall TorqX 190 Stall Volts 0.725 CURVE POINTS 43.3 114.5 113.1 111.1 108.8 106.3 100.1 88.4 61.2 Notor: V77/E231 ELECT EQPT ROON AHU Horsepcwer 36 Cable Impedance 0.0786 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF P.U. Is@cdance 0.0098 CABLE DROP(pu) 0.0109 0.0138 0.0140 0.0142 0.0145 0.0149 0.0159 0.0181 0.0272 Ef f iciency Load Base KVA 26.45 NIR VOLTS(pu) 0.8982 0.7124 0.7032 0.6903 0.6754 0.6596 0.6193 0.5427 0.3610 Cable Rest. 0.0773 Load Base Amps 33.20 AHPS(pu) 1.1133 1.4037 1.4221 1.4488 1.4806 1.5161 1.6148 1.8427 2.7704 CabLe React. 0.0142 Cony Amps 17.3 CORP RUN ANPS 19.1 24.1 '(4 4 24.8 25.3 25.9 27.6 31.4 46.2 LRC/FLA AHU Alps 9.3 CORP LRC ANPS 70.9 69.5 67.9 64.0 56.5 39.1 Condenser Fan 6.3 CONP CURVE PTs 19.1 24.1 24 4 70.9 69.5 67.9 64.0 56.5 39.1 Stall TorqX Stall Volts AHU RUN ANPS 10 4 13.1 13.2 13.5 13.8 14.1 15.0 17.1 25.7 Note: Notor Data for the AHU and Condenser Fan AHU LRC ANPS 37.8 33.4 23.1 can be referenced in Attachment 13 AHU CURVE PTs 10.4 13.1 13.2 13.5 13.8 14.1 37.8 33.4 23.1 Curve Pts calculated separately for each COND FAN RUN A 7.0 8.8 9.0 9.1 9.3 9.5 10.2 11.6 17.4 COND FAX LRC A 24.1 16.7 COND FAN CURVE 7.0 8.8 9.0 9.1 9.3 9.5 '10.2 24.1 16.7 The 200X stall torque asssmad for the conpressor is based on Attachment 15 ~ The FLA 0 f 17.3 u Q ve a to rque value 0 f 43 ft-lbs ~ c onpa r ed uith a max. torque value of 114 ft-Lbs giving us a breakckan torque X of 265. Therefore, our 200X asswption is Pxtremely conservative.

p

>,,s 1

E l"

,9

CALCULATI M SHEET hPPBNDIX

'2'L 2 JOB HO. CALO. NO. AEV. NO. SHEET NO. ~op

'l-H3-'E-0 21701-523 21701-523-E-02 DATE CHECKEO. DATE saTML op >~

OIIIGIIIATOA 03/27/92 3~2 0~

HCC 3D (3808) )- ITE Relay--,'------IAV RELAY Pickup Setting: 98 V LC Supply: 3804 Time PU - 60 60-14 13 12 11 10 8 6 4 EC-145 Ref. IAV TD 5 0.90 0.89 0.88 0.86 0.84 0.80 0.72 0.55 PSB-1 LC Volts: 371 App. 9 Case 10 Relay VoLtage 108.22 88.20 87.22 85.85 84.28 82.61 78.40 70.56 53.41 PSB-1 IICC V 354 App. 9 Case 10 Voltage QLC 432.8 352.8 34S.9 343 A 337.1 330.5 313.6 282.2 213.6 PSB-1 V Drop 17 Voltage QHCC 418.4 334.8 330.7 324.9 318.2 311.1 293.1 259.0 180.3 Calculated PmZC 6018 P.U. Voltage 0.9096 0.7279 0.7189 0.7062 0.6918 0.6763 0.6371 0.5631 0.3919 Notor: 3V3B EMERG CONT FILTER FAN Horsepower 75 Cable Impedance 0.0458 TINE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.862 P.U. la@cdance 0.0151 CABLE DROP(pu) 0.0170 0.0214 0.0217 0.0221 0.0226 0.0232 0.0247 0.0283 0.0435 Ef f iciency 0.929 Motor Base KVA 69.87 HTR VOLTS(pu) 0.8926 0.7065 0.6972 0.6841 0.6691 0.6532 0.6124 0.5347 0.3484 Cable Rest. 0.0379 Notor Base Ass S7.69 AMPS(pu) 1.1203 1.4155 1.4344 1.4618 1.4945 1.5310 1.6330 1.8701 2.8702 Cable React. 0.0258 RUNNING ANPS 98.2 124.'I 125.8 128.2 131.1 134.3 143.2 164.0 251.7 LRC/FLA 6.30 LRC AHPS 321.3 284.0 197.6 Stall TorqX 247 Stall VoLts 0.636 CURVE POINTS 98.2 124.1 125.8 128.2 131.1 134.3 321.3 284.0 197.6 Hotor:

Horsepower 3V30B ENERG CONT COOLER FAH 30 Cable Impedance 0.2507 TIHE (sec) PU - 60 60-14 0.0539

'3 0.0547 0.0558 12 11 0.0572 0.0588 10 0.0633 8

0.0743 6

0.1503 4

PF 0.808 P.U. Impedance 0.0363 CABLE DROP(pu) 0.0418 Efficiency 0.904 Motor Base KVA 30.64 HTR VOLTS(pu) 0.8678 0.6740 0.6642 0.6504 0.6345 0.6175 0.5738 0.4888 0.2416 Cable Rest. 0.249 Hotor Base Amps 38.46 AMP S(pu) 1.1524 1 '836 1.5055 1.5375 1.5759 1.6193 1.7427 2.0459 4.1397 Cable React. 0.0294 RUNNING AHPS 44.3 57.1 57.9 59.1 60.6 62.3 67.0 78.7 159.2 LRC/FLA 6.18 LRC AHPS 123.7 109.3 76.1 Stall TorqX 263 Stall Volts 0.617 CURVE POINTS 44.3 57.1 57.9 59.1 60.6 62.3 123.7 109.3 76.1 Hotor: S74B COHPUTER ROON CHILLER UNIT Horsepower 65 Cable Impedance 0.0759 TIME (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF P.U. Impedance 0.0236 CABLE DROP(pu) 0.0267 0.0340 0.0344 0.0351 0.0359 0.0368 0.0394 0.0455 0.0742 Ef f iciency Motor Base KVA 65.65 HTR VOLTS(pu) 0.8829 0.6939 0.6844 0.6711 0.6558 0.6395 0.5977 0.5175 0.3177 Cable Rest. 0.0691 Hotor Base Amps 82.40 AMPS(pu) 1.1326 1.4411 1.4610 1.4900 1.5248 1.5638 1.6731 1.9323 3.1477 Cable React. 0.0315 Compressor Amps 62 RUN ANPS COMP. 70.2 89.3 90.6 92.4 94.5 97.0 103.7 119.8 195.2 LRC/FLA 5.48/6.44 Fan Amps 6.8 LRC AHPS COMP. 208.2 203.5 191.7 169.4 117.9 Stall TorqX 230/274 Stall Volts .659/.604 'COMP. CURVE PT 70.2 89.3 90.6 92.4 208.2 203.5 191.7 169.4 117.9

.Note:S748 consists of 2 fans,1 pump B 1 coap mtr RUN AHPS P/FAN 7.7 9.8 9.9 10.1 10A 10.6 11.4 13.1 21.4 Total Load Amps Equals Sua of all loads LRC AHPS P/FAH 24.2 21.4 14.9 Hotor FLA Ref. 5177-206-N724-27-4, also PUMP/FAN PTS 7.7 9.8 9.9 10.1 10A 10.6 24.2 21 A 14.9 LRC and Stall TorqX data available via Ref. 5177-206-H724-43-1 ~ Ilorst case Stall TorqX, and LRC used for the Puap/Fan combination.

iY l'a wl 4

J

'l,

~

)

CALCULATION SHEET APPEND1X JOB NO. CALO. NO. REV. NO. SHEET NO ~

Cog ZllOl-623-Em

'1701-523 21701-523-E-02 SHT Mk op~~

ORIGINATOR DATE CHECKED DATE 03/27/92 Hotor: S75B CDHPUTER ROOH CHILLER Korsepcwer 5 Cable Iapedance 0.6391 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.84 P.U. Impedance 0.0164 CABLE DROP(pu) 0.0184 0.0232 0.0235 0.0240 0.0245 0.0251 0.0268 0.0307 0.0475 Ef f iciency 0.82 Notor Base KVA 5.42 NTR VOLTS(pu) 0.8913 0.7047 0.6953 0.6823 0.6672 0.6512 0.6103 0.5323 0.3444 Cable Rest. 0.6388 Notor Base Amps 6.80 ANPS(pu) 1.1220 1.4191 1.4381 1.4657 1.4987 1.5356 1.6385 1.8785 2.9040 Cable React. 0.0203 I RUNNING AHPS I 7.6 9.6 9.8 10.0 10.2 10A 11.1 12.8 19.7 LRC/FLA 6.04 LRC AHPS 21.0 14.6 Stall Torch 274 0.604 CURVE POINTS 7.6 9.6 9.8 10.0 10.2 10.4 11.1 21.0 14.6 Notor: COHPUTER ROON AC-AHU Norsepster 5 Cable Ispedance 0.8077 TINE (sec) PU - 60 60-14 13 12 ll 10 8 6 4 PF 0.84 P.U. Ispedance 0.0207 CABLE DROP(pu) 0.0233 0.0296 0.0300 0.0306 0.0313 0.0321 0.0343 0.0395 0.0628 Ef fici ency 0.82 Notor Base KVA 5.42 HTR VOLTS(pu) 0.8863 0.6983 0.6889 0.6756 0.6605 0.6442 0.6028 0.5236 0.3290 Cable Rest. 0.8073 Hotor Base Amps 6.80 ANPS(pu) 1.1283 1.4321 1.4517 1.4801 1.5141 1.5522 1.6589 1.9099 3.0392 Cable React. 0.0257 RUNNING ANPS, 7.7 9.7 9.9 10.1 10.3 10.6 11.3 13.0 20.7 LRC/FLA 6.04 LRC AHPS 23.3 20.5 14.3 Stall Torque 274 Stall Volts 0.604 CURVE POINTS 7 7 9.7 9.9 10.1 10.3 10.6 23.3 20.5 14.3 Hotor: CONPUTER R(XN AC-AHU Horsepower 5 Cable Impedance 0.7164 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.84 P.U. I apedance 0.0183 CABLE DROP(pu) 0.0206 0.0261 0.0265 0.0270 0.0276 0.0283 0.0302 0.0347 0.0543 i

Ef f clancy Cable Rest.

0.82 Hotor Base KVA 0.716 Hotor Base Amps 5.42 6.80 HTR VOLTS(pu)

ANPS(pu) 0.8890 1.1249 0.7018 1.4250 0.6924 1.4443 0.6?92 1.4722 0.6642 1.5057 0.6480 1.5431 0.6069 1.6477 0.5284 1.8927 0.3375 2.9626 Cable React. 0.0228 RUNNING AHPS 7.6 9.7 9.8 10.0 10.2 10.5 11.2 12.9 20.1 LRC/FLA 6.04 LRC ANPS 20.8 14.5 Stall Torque 274 Stall Volts 0.604 CURVE POINTS 7.6 9.7 9.8 10.0 10.2 10.5 11.2 20.8 14.5 Notor: V298 CONT.ROON EHERG FILTER FAN Horsepower 5 Cable Iapedance 0.5338 TIHE (sec) PU - 60 60-14 13 12 11 10 8 6 PF 0.85 P.U. Iapedance 0.0137 CABLE DROP(pu) 0.0153 0.0193 0.0195 0.0199 0.0204 0.0208 0.0222 0.0254 0.0387 Efficiency 0.81 Hotor Base.KVA 5.42 NTR VOLTS(pu) 0.8943 0.7086 0.6993 0.6863 0.6714 0.6555 0.6149 0.5376 0.3532 Cable Rest. 0.5335 Hotor Base Amps 6.80 ANPS(pu) 1.1182 1.4112 1A299 1.4570 1.4894 1.5256 1.6264 1.8600 2.8316 Cable React. 0.01? RUNNING AHPS 7.6 9.6 9.7 9.9 10.1 ~ 10.4 11.1 12.6 19.3 LRC/FLA 6A4 LRC AHPS 22.7 15.8 Stall TorqX 307 Stall Volts 0.571 CURVE POINTS 7.6 9.6 9.7 9.9 10.1 10.4 11.1 22.7 15.8

1 t

e l

0

CALCULATI N SHEET APPENDIX JOB NO.

'21701-523 ORIGINATOR CALO. NO.

21701-523-E-02 DATE 03/27/92 CHECKED .

REV. NO.

DATE SHEET NO.

SHT ~ OF Kotor: E16C/E17C CONT ROOK AC-AHU Horsepower 34 Cable Impedance 0.1539 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF P.U. Impedance 0.0222 CABLE DROP(pu) 0.0251 0.0319 0.0323 0.0329 0.0337 0.0345 0.0369 0.0426 0.0686 Ef f iciency Load Base KVA 30A8 KTR VOLTS(pu) 0.8845 0.6960 0.6866 0.6733 0.6581 0.6418 0.6002 0.5205 0.3233 Cable Rest. 0.153 Load Base Amps 38.30 AKPS(pu) 1.1305 1 ~ 436'7 1.4565 1.4852 1.5196 1.5581 1.6662 1.9214 '3.0933 Cable React. 0.0167 Base asps 4 LRC are total RUNNING AKPS 43.3 55.0 55.8 56.9 58.2 59.7 63.8 73.6 118.5 LRC/FLA 4.53 for 4 motors. (Ref. 4.11) LRC AKPS 114.8 113.3 111.3 109.1 106.6 100.4 SS.S 61.8 Stall TorqX 190 Stall Volts 0.725 CURVE POINTS 43.3 114.8 113.3 111.3 109.1 106.6 100.4 88.8 61.8 Kotor: V77/E231 ELECT EQPT ROOK AHU Horsepower 36 Cable Impedance 0.0786 TIKE (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF P.U. Impedance 0.0098 CABLE DROP(pu) 0.0109 0.0138 0.0139 0.0142 0.0145 0.0149 0.0158 0.0180 0.0269 Ef f iciency Load Base KVA 26.45 KTR VOLTS(pu) 0.8987 0.7141 0.7049 0.6920 0.6772 0.6615 0.6213 0.5450 0.3649 Cable Rest. 0.0773 Load Base Amps 33.20 AKPS(pu) . 1.1128 1A003 1.4186 1.4450 1.4766 1.5118 1.6096 1.8348 2.7402 Cable React. 0.0142 Cclp Amps 17.3 COKP RUN AKPS 19.1 24.0 '(4.3 24.8 25.3 25.9 27.5 31.2 45.7 LRC/FLA AHU Amps 9.3 COHP LRC AKPS 71.1 69.7 68.1 64.2 56.7 39.5 Condenser Fan 6.3 COKP CURVE PTs 19.1 24.0 24.3 71.1 69.7 68.1 64.2 56.7 39.5 Stall TorqX Stall Volts AHU RUN AKPS 10.3 13.0 13.2 13.4 13.7 14.1 15.0 17.1 25.5 Note: Kotor data for the AHU and Condenser Fan AHU LRC AKPS 37.9 33.5 23.3 can be referenced in Attachment 13 4 AHU CURVE PTs 10.3 13.0 13.2 13.4 13.7 14.1 37.9 33.5 23.3 Attachment 15 for compressor data. COND FAN RUN A 7.0 8.8 8.9 9.1 9.3 9.5 10.1 11.6 17.3 Curve Pts calculated separately for each COND FAN LRC A 24.2 16.8 COND FAN CURVE 7.0 8.8 8.9 9.1 9.3 9.5 10.1 24.2 16.8 The 200X staLl torque asssuoed for the cclprcssor is based on Attachment 15 ~ The FLA o 17.3 uf ill g vc a to rque value of 43 ft-lbs, ccmpar ed Mith a max. torque value of 114 ft-lbs giving us a breakdcwn torque X of 265. Therefore, our 200X assumption is extremely conservative.

t l

(

k I

CALCULATION SHEET APPBNDlX JOB NO ~

'21701-523 CALO. HO.

21701-523-E-02 REV. NO. SHEET NO.

JOB

~3.

sHTW~ op 2.~

ORIGINATOR DATE CHECKED . DATE 03/27/92 HCC 3K (3B52) I I ITE Relay-- ,'--- IAV RELAY Pickup Setting: 98 V-LC Supply: 3804 Time PU - 60 60-14 13 12 11 10 8 6 4 EC.145 Ref. IAV TD 5 0.900 0.890 0.876 0.860 0.843 0.800 0.7ZO 0.545 PSB-1 LC Volts: 371 App. 5 Case 10 Relay Voltage 108.22 88.20 87.22 85.85 84.28 82.61 78.40 70.56 53A1 PSB-1 HCC V 370.5 App. 5 Case 10 Voltage QLC 432.9 352.8 348.9 343.4 337.1 330.5 313.6 282.2 213.&

PSB-1 V Drop 0.5 Voltage QICC 432.5 352.3 348.3 342.9 336.6 329.9 313.0 281.6 212.8 Calculated PmZc 185.25 P.U. Voltage 0.9401 0.7658 0.7573 0.7453 0.7317 0.7172 0.6805 0.6121 0.4625 Notor: 3V34B EDG ROOH VENT FAN Horsepower 5 Cable In@cdance 0.0209 TINE (sec) PU - 60 60.14 13 12 11 10 8 6 4 PF 0.85 P.U. is@cdance 0.0005 CABLE DROP(pu) 0.0005 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 0.0008 0.0010 Efficiency 0.92 Motor Base KVA 4.77 HTR VOLTS(pu) 0.9396 0.7652 0.7567 0.7447 0.7310 0.7165 0.6798 0.6114 0.4615 Cable Rest. 0.0208 Motor Base Amps 5.99 ANPS(pu) 1.0643 1.3069 1.3216 1.3428 1.3679 1.3957 1.4711 1.6357 2.1668 Cable React. 0.0023 I RUNNING ANPS 6.4 7.8 7.9 8.0 8.2 8.4 8.8 9.8 13.0 LRC/FLA 6.00 LRC AMPS 25.7 24A 21.9 16.6 Stall TorqX 190 Stall Volts CURVE POINTS 6.4 7.8 7.9 8.0 8.2 25.7 Z4.4 21.9 16.6 Notor: 3P10B EDG FO XFER PMP Horsepater 0.75 Cable Impedance 0.1616 TIME (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.85 P.U. Impedance 0.0009 CABLE DROP(pu) 0.0009 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0014 0.0018 Efficiency 0.59 Motor Base KVA 1.12 HTR VOLTS(pu) 0.9392 0.7647 0.7562 0.7442 0.7305 0.7160 0.6792 0.6107 OA607 Cable Rest. 0.1615 Motor Base Amps 1.40 AMP S(pu) 1.0647 1.3077 '1.3225 1.3438 1.3689 1.3967 1A723 1.6374 2.1706 Cable React. 0.0051 RUNNING ANPS 1.5 1.8 1.9 1.9 1.9 2.0 2.1 2.3 3.0 LRC/FLA 6.00 LRC AHPS 6.0 5.7 5.1 3.9 Stall TorqX 190 Stall Volts 0.725 CURVE POINTS 1.5 1.8 '1.9 1.9 1.9 6.0 5.7 5.1 3.9 Hotor. 3V658 SNGR 30 ROON SUPPLY FAN Korsepwer 2 Cable Impedance 1.0035 TIME (sec) PU - 60 60-14 13 12 11 10 8 6 4 PF 0.85 P.U. Impedance 0.0090 CABLE DROP(pu) 0.0097 0.0120 0 ~ 0121 0.0123 0.0126 0.0128 0.0136 0.0152 0.0205 Efficiency 0.92 Hotor Base KVA 1.91 HTR VOLTS(pu) 0.9304 0.7538 0.7451 0.7330 Oi7191 0.7043 0.6669 0.5970 0.4421 Cable Rest. 1.003 Hotor Base Amps 2.39 AMP S(pu) 1.0748 1.3266 1.3420 1.3643 1.3906 1.4198 1A995 1.6751 2.2621 Cable React. 0.0319 RUNNING ANPS 2.6 3.2 3.2 3.3 3.3 3.4 3.6 4.0 5.4 LRC/FLA 6.00 LRC AHPS 6.3 Stall TorqX 358 Stall Volts 0.529 CURVE POINTS 2.6 3.2 3.2 3.3 3.3 3.4 3.6 4.0 6.3

l I

'I P

t'I II I

u~

4 1k g

1't g1 I

~

CURRENT IN AMPERES 6 .7AE.9 1 2 3 4 5 6 7 8910 20 30 405060708090 5 5 5 5 5 55 IOOb I

hu 4

70 10 10

'9 ~ .r ~ I 9 8 . E. = t 7

g6 Itu Z3 3

~" 1

.9 .E

.8 El .

.7

.6

.5 AE9 AE8

.07 07 AE6

.05 05 ut 'u

.03 t

02 0 01 01 5 .6.7AE9 2 3 4 5 6 78910 20 30 40 50607080908 8 1

g P $ g g g g$

CURRENT IN AMPERES TIMEWURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Dated

1. Tests made at Volts ac at p I startin6 at 25C with no initbrl load FIGURE 1
2. Curves are plotted to Test points so variattons should be 8/iB/82 48 5258 g XTX E/A7/F2 TEMLCURRCNT CEEARACTCREsTEC EtsurllL ~ ssssa co. saoE a r E s

gl1-4p

,t l

I lf 1

R (

r,4 t II iQ p

CURRENT IN AMPERES 5 .6 .7A.91 3 4 5 6 78910 1000 81 70 70 10 ~* ~ \

10 I I

~ Sm 4

Z Z3 3

~"

.1

~ 07

.06

.05 ...05

.04

.02 01 01

.5 .6 .7 AI.9 2 3 4 5 6 78910 3o ao 5060708090@

y8yyy 1

y y y y CURRENT IN AMPERES ZCM PUPIP 3P9A TIMEWURRENT CHARACTERISTIC CURVES For FuSe Unffa. In BASIS FOR DATA Standards Dated I. I I I l Vdl t pt., sta rtfng at 25C with no Initial load FZGURE 2 3t/1 9/'92

~~ s)n ~x~/~z~1x TIIALCVnntNTCHAnACTafflsTIC ttaurrlL ~ aastlf co. awt a tan 48 5258 Q <xx.

L P

9*

II,

'l~

)

id p 'I L

5 .6 .74.9 I 2 3 4 5 678910 ~ r ~rnrl 3 3 l 33lHNNN

~ jj 70 70 s L 'Wr < iuj 20 10 10 8

.r ~ t $ ~ ljt  ; Sl j t n t 6

m5 Sm

.j'l j+.4

'r '.l! 4 Z3 X2 09 n njl 7 07

.06 05 05 j

j

.01 5 .6 .7 AI.9 I 3 4 5 6 7 S910 20 30 40 50607080908 g q 8 y g8(g) ) ) g ( 3 g)((

CURRENT IN AMPERES RHR PUMP QP218A CURVES TIMEWURRENT CHARACTERISTIC For Fuse UnkL In BASIS FOR DATA Standard Dated

1. Tests made at Volts aw et p I. starting at 25C with no Inldal load

~

2. Cufves are plotted to est points so veltadons should be s)nh~

TtMt&VnnsNT CHARACTXmsTIC Icrurrrs, ~ ssssn co. tjjtjre e JA 48 5258 gz,y ~h~/~~

l, YC k,

I 7~ 3

}t (i'1

~l S,v l

CURRENT IN AMPERES 5 .d .7 ll.9 I 3 a S 678910 30 a050607080905 5 5 5 5 5558 ) 3 3 3 f~~33E 1000 e= 77 100 90 80 c . >t 70 70 60 50 IL, t.7 20 10 10 9

8 7'7 I~

1 9

8 7 7 0 I~I va 7t ~

t'"

~ I .9

.9

.7 .7

.6

.5 S A

.I ~ I A8 AS

.07 a7 A6 AS

.05 L 7~

01 s 6.74.9 I 2 3 a 5 d 7 8910 20 30 40 50607080908 g g 8 ) g8 ggg CURRENT IN AMPERES TIMEWURRENT CHARACTERISTIC CURVES for Fuse Unks. In BASIS FOR CATA Standard Oated I. Testsmadeat Volts as et p fstarting at 25C with no Inidsl load No.

2. Cunres sre plotted t 418e V est points so varia5ons shoukl be Oats TIMLCVIIIICNTCHAIIAClsnlsTIC 48 77surrlL ~ ssaaII co, %kg w L7A PAW )/27/'qg

I "fl 1

fr, 1

gk

.t aP

<i',(

6 .74.91 3 4 5 678910 r r rrnH 3 3 3 3(Him>

1 tu it. n t

u t

  • 70 70

~ t i 10 10

-t, ~

9 8

g6 z5 t2 z 3

~"

.I A8

.08

.07 07 AN .06

.05 05

.04 I

01 I 78910 '20 40 50607080908 5 .6 .7 AI.9 2 3 1 S 6 30 g 8 8 g g8ggg ) > 3)Him CURRENT IN AMPERES TIME-CURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Dated FIGURE 6

1. Tests made at Volts aw at p f.. starting at 25C with no inl5al load No.
2. Curves are plotted to Test points so vs rla dona ahoukl be Date TIMLCVIIIIEIITCHARACTartisTIC 48 5258 ttsttprsr a ssssn co aw w 0 44 ~Q >/~7/w>

'I I

~5 100'

.6 .7>.91 3 4 5 678910 ~ r ~~8srl 3 3 ( )mHm> 1000 e--

70 70 5

30 30 10 10 u

g6 z'. 5 O.

V4 2 3 I

.09 AS 07 , .07

.06 05 ..05

.04 01 5 .6 .7 AI.9 I 2 3 4 5 6 7 8 910 20 30 40 50607080908 5 8 55H55 CURRENT IN AMPERES TIMEWURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standards Dated FZGURE 6

t. T~ I t Ddt t p f.. staring at 25C with no Inlttal load
i. 1 Di tt ~ I Test points so varhrUons should be D te pat Tlra&cvnRcrrr crrartacTsrtlsrlc Ksurrss ~ ssssn co. aalu a Di k 48 5258 "w<<>/~z/y~

IJ 1~4 t'r g

V

'I f

(i

s'0

'URRENT IN AMPERES

~5 6 .78.91 5 4 5 6 78910 20 30 s05060708090 5 5 5 I Il n

100 90 80 70 70 60 50

'l ns 10

~ W g6 2:5 O

cP s nn '=.

g 2 1

.9

.7

.5 05 t

01 5 .6.74.91 2 3 4 5 6 7 8910 20 30 so 50607080908 CURRENT IN AMPERES Nt X hO g 8 g g 8mgia I m ilmlil TIME-CURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Dated FIGURE

1. Tests tnade at Vohs a< at p I., stetting at 25C with no Inklal load est points so vana5ons should be Date Tl~nnsÃT CHASSCTSSISTIC

~Q s(~~)iz.

get nsurrst, a Asst co. saNnaaa 48 5258 ~ gg.x 3/~p~+<

'l 'e r

4'y K P II

h yj

~5 he .7S.91 3 4 5 678910 Ro Ro ao 50607080908 5 5 5 5 5 558 I I. I I IN III 1000 I~

100 1 ht 70 70>>

1 4>>

10 10 h 9

I tt;tt ' thII 11 ~

~ t 6,.- 4<

g zs '

I

'l uu.r," '-. I.I s 3 1

1

.9

.9

.8

.7

.1

.5 h

h

.1

.1 h09 AS AIT

.01 AS

.05

.05 0>>

03 0'I 01 5 .6 74.9 1 R 3 4 5 678910 3O ao SOeOTO809O8 g y 8 g I8ggl CURRENT IN AMPERES 'X L 0 CHRG PP 3C TIME~RRENT CHARACTERISTIC CURVES For Fuse Units. In BASIS FOR DATA Standard Dated FIGURE

1. Testsmadeat Volts ac at p I starting at 25C with no Initial load No.
2. Curves sro plotted to Test points so variadons should bo Date gnf~z TlstscunnsNT cttattttcvxlusvlc 48 5358 tcsurr5, ~ sssstt coh wl 8 tlA gag >4p/q~

>s s t I

r C'4

~ '

~$ .5 .74.91 3 4 5 678910 s 5 5 s 55s5H u

u 70 70 l

10 10 9

cn 6 rs z$

0 0~4 z 3

.9

.7

.6

.5

.I .1.

AO AS A8 Al7

.07 AS A5

. A$

.0$

t ~

01 5 .6.74.9 I 2 3 4 $ 6 78910 20 30 40 50 50 708090/ Q CURRENT IN AMPERES X, $ Cs TIME~RRENT CHARACTERISTIC CURVES For Fuse 13nks. In BASIS FOR DATA Standard Dated FIGURE

1. Tests road e at Volts as at p<<h nl I ~ t2SC~ I W II 1 H
2. Curves are protted t Test potnts so vsdadons shoukl be Date Tlr48CVnrtsrr7 CHAltACTXlusTIC KswfsL ~ cool co. as( e ala 48 8258 )LE.Q )/ot7f f+

q P'k ly y

I

)E'

) j 1b v 'f

~5 .6 .74.9 I 345676910 70 70 30 10 10 I I CW't tt et ~ I 6,

zS O I .t~'I~tt vs 2:3 3 1

1

.9 .9 1 .5 Hatt .7

.6

.5 A

.1 Ars AN A)7

.07 Akt

.05

.05

.0" 02

.01

.01 5 .6 7 A.S 1 2 3 4 5 6 76910 20 30 so 50607060908 8 g g8ggg

~

g g CURRENT IN AMPERES VIMEWURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard

1. Tests made at Volts a< at Dated p.lstarting at 25C with no Ini5sl load No.

FIGURE le 2 CorVes ara plotted to Test points so vaIIa5ons shorrld be Date TIM~nnsrrT cNAnAclxrtlsTrc 455255 ItsttrrsL e wsn ork RN e 1JA

p1j

. ~3 l4

'I

'll tl

~

)5' 1

~5 .6 .7>.91 3 i 5 678910 3 3 33H3>

~ ~ ~ ~ 4 IEC tin IIP 2\2 70 2 I 20

'I ~

22, 2 10 10 ~ I 9

9 ll lt 8,

7

~ C ~

ut . 8 7

cn 6 CE z5 CE 2

Cd 2 va WNI 22 X2 1

.9 IE 2

.7

.6 .6

.5

.I

'07 2

.06

.OS IC ~

02

.01 01 S 6.74.9 I 3 i 5 6 7 8910 20 30 iO 50507080908 y y 8 y g8 ggg CURRENT IN AMPERES TIMEWURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR OATA Standard Oated

1. Testslnsdeat Volts e2c at lt, tdt2 tdtdCtt ICII I 2 SI URKI'I est poInts so vanadons should be 2 t Qn)tt TIIC5CVIIIISNTCHAItACTEI%ISTIC Rscertt, e ssssn co. ccrc c RAA ie 8258 +X~ >/y7/q ~

"'j lf V>

/IF fi, fll' Ti.

$1 4w I

5 .5 .74.9 1 3 4 5 678910 20 30 s0 50507050908 5 0 8 5 5 ÃIH ) I' mm I HII 70 70 sf 4 10 10 9 -f ~ TI ~

8 s*rf 7

5 g6 53 2:5

~ l'r ~ \ )f 4 Z

3 rff n

C) 2 2' fff I

.9

.7

.6

.5

.06 05 03 02 01 675910 ~~6070~~8 y8yg 5 .6.74.9 1 2 3 4 5 30

~ y 8 y I y I I3m3aII

~

mI CURRENT IN AMPERES Comma TIME~RRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Dated

1. Tests made at Volts ~ at II I II I IIIC~ I IIII I USE 1 Test points so vs riadons should be a5 5250 get T)KCCU)trfafrT CHAI)ACTSft)STIC rfsurrsf a ssssn c)A wrsuk ~Wpg Vi7/q~

h K

5 .d .74.9 1 3 a 5 678910 ~ r ~rnid I i.i iimmali

-st' I 2 cr 2 .Itt.n Wtt I II 2

55 70 70

=I-.I-4\

10 10 9 C 15 4n 'Cr 55 I 8

7 2nd dw 25 dm 15 vs 554 V

21 U a

Z Z3 3 1

.9

.7 51

.1

.07

.05 03 01

.6.74.9 78910 ~~6070~~8 ysyyy 5 1 3 3 a 5 6 30 CURRENT IN AMPERES y y y y I mm y Imylali CONTROL ROON Ar'C TIME~URRENT CNARACTERISTIC CURVES For Fuse Uncs. In BASIS FOR OATA Standard Dated Volts ac et II.. I Cl I IIIC~ I II Ik I 2 FIGURE 1 h Test points so vartadons should be Date s>>i><z TIM8CVIIIIssrrCNAnACT88ISTIC 4$ 5858 ttsurrst ~ ssssn sts ctct n CAA W4> Shy/g~

Ay

, ~

Yi~

t~g l

4~

I g1

5 .6 .7 AI.9 I 2365678910 3o ao 5oeo7oeoeo8 5 5 5 5 5555m 3m Ia I I IHII k tt 70 70

~ .I 2

4 10 10 9

Z Z3 3

~" 1

.9

.7

.6

.5 Ill!

I!'I 26 09 07 07

.06 05 k

oc

~ !

01

.01 5 .6.7A 9 1 2 3 a 5 6 7 8910 20 30 ao 50607080908 ~

g g 8 g $ 8ggg CURRENT IN AMPERES EDG FUEL OIL XFER lFIRZARENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Dated Volts a~ at p4t, I 2! I ltltktt I tl~ II I est points so vsrtadons should be Date S(T ti%Z.

TIMMXIRRsNTCHARACTZRISTIC tso 5258 KswlL a ssssn co. Cttt s teak PKX 3/a)/~

J Ycg V

't ir lt II ifl h

+g4

~5 .6 .7>.9 I a 5 6 78910 CURRENT IN AMPERES 5 Ss59 ~ I.IIINII 700 4

70 70 l I t l.

55 4 I 10 10 9

8 7

to 6 z5 3,

z Z3 3 m

0" 8 8

.7

.6 .6

.07

,05 5

5 .6.74.9 I 2 3 a 5 6 7 8910 20 30 ao 50607080908 CURRENT IN AMPERES g g 8 g g 8(gg 3I I! IHmmii

.01 EDG FUEL OZL XFER 'Q~URRENT CNARACTERISTIC CURyES For Fuse Unks. In BASIS FOR DATA Standard Dated Testsmsdast Volts ec at ~

ptstarttng at 25C with no Inldal load No. FZGURE IS 1.

2. Cunres are plotted t est points so varlauons should be Date 3/18/92 4~l~il<< "

TIM8cunnsrrr cHArtActsrtlsrlc ao 8258 Itsurrss ~ ssssn s5L 4544 a tu XW~ 3/~7/q~

C g

)'l n ~

I ~j Jf j

5 .6 .7A.91 3 4 5 678910 s 8>sam>I I I I immmNII 100 80 70 70 10 10

'7 7 g6 6~

z5 sr =..-r 1 s a 2 Z3 3

~"

.9

.8

.7

.6

.5

.I 09

.07 07

.06

.05 05

.03 02 , .0 Art ct

.6.74.9 I 78910 5 2 3 4 5 6 20 30 40 5060 70 80908 g g 8 5 5H55 CURRENT IN AMPERES EDG RM VENT FAN 8 6IMEURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Dated

1. Testsrnadest Volts s~ at p f.. starting st 25C with no Inidal load FIGURE l(y "

I

2. Curves are plotted to Test points so vsrlaeons should be Date s~zZ (~Z.

vrr4ecunnsrrr ctranacvssusrrc 4e 825e Kmtrrss a assot co. stor w Isa

0 tf J

I I

II 5 lg I

5 .5 .74.91 3 4 5 578910 30 4050607080908 5 5 5 5 58~58 ) I. I mI Immiim

~ '=

100 90 t ftL 70 70 60 50 10 10 9 9 s t 8 t i 7.

aw 5m 4

Z 2:3 3 m

~" 1 1

9

.7 .7

.6

.5 .5 09

.07

.05 01 5 .6.74.9 I 2 3 4 5 6 7 8910 20 30 40 50607080908 y y y y g 8gg CURRENT IN AMPERES RIME~RRENT CHARACTERISTIC CURVES t

'f tnlt tttc~

For Fuse Links. In BASIS FOR DATA Standard Dated

1. Testsmadeat Volts a< at ttttttd tt FIGURE l>
3. Cunfes are phrttsd t est points so varla5ons should be Date 3/1 8/92 48 5258 TIMC41rmtsNT CMAIIACTssusTIC Ifsurrsl e wH c4 wlsssA ~%X v>7/q~

li V

$/

)>)

g.1 Ih W

t g

)5 t

5 6 .7>.91 2 3 4 5 675910 ~ 8~~n~l ) I. 3 3H33>

e=.

~

l 70 70 10 10 8

6

~" 1

.9 ac aft% ll

.7 J

.6

.5

.1

.07

.05 5 .6.7>.91 2 3 i S 6 7 691O 20 30 aO SO607O509O8 y y 8 y y8yyy ~ ~ ~ ~ ~ y~~~

CURRENT IN AMPERES SWOR 3D RN SUPPLY FN TIMEWURRENT CHARACTERISTIC CURVES For Fuse Untrs. In BASIS FOR DATA Standard Dated FIGURE

1. Teats made at Volts as at p I starting at 2SC with no Initial load No.
2. Curves are plotted to Test points so vartadons should be Date get= VISI50urrrtarn OHartadtanrerro no 5255 nsuvrlL a ssssn co. saot s au

i l r

6 .7A.91 2 3 s 5 6 '91o 2o ao so so60708oso8 g g 8 g g ~8gmfIR I k t ~

80 70 u

10

  • t ~

10 9 n ~ tl 8

z5 Cf t'I' ~1 tfs ~ lrf 1

.9

.7

.5 A A

.1

.07

.05 .05 tt '

02 01 78910 so 50607080908

.5 .6 .7 AI.9 I 3 s 5 6 20 30 CURRENT IN AMPERES g P 8 g g 8 ggg I m mI Immall COMPUTER RM CHZLL~E~URRENT CNARACTERISTIC CURRIES Fuse Unks. In BASIS FOR DATA Standard Dated

1. Tests roads at Volts sc at ~

p f., stsrdn8 at 25C with no Inldal load No.

2. " Curves are plotted t 48 e est potnts so vsltadons shoukl be Date 5lDlM Tl Msctrnrrsrrt cHAIIAcrKnfsvlc KsusrsL ~ tasse ctL attt e EIA 68 528s 'Lg~ v7/~P/q P

)C>>

I I Wc F

,A l

u" 8

~4

'f

5 .6 .7A.91 2 3 4 5 678910 r 8S>8S>> m 3 3 3HB>

II e--

~ I 4

~.

4 70 70 sf I 8 4 4 I

t 4 10 ht ~

10 I~ 4 I 4 8 ttt II 8 4

7 7 Cf O4 ff tl ftl! Jlf ni Z

2: 3 3

~ '

X2

.9 1

.9

.7

.6

.I AS

.07 AS 0A

.05

.03 Ch 01 5 .6.74.91 2 3 4 5 6 7 8910 20 30 40 50607080908 g g g g g8ggg CURRENT IN AMPERES

'i1MEWURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Testsfnsdeat Volts sW st Dated P I stsrdng at 25C with no Initial kNd FIGURE 0 1.

2. Cunfes ara plotted t Test points so trsrisbons should be

/le/92 Tl MsCVffffsfrrCHAIIACfsfflsrIC ttsurrsl. a ssssa OCL attt a tu

I lf ts J

I pJ Hlg, t kg j

~i'i '

i~>>

CURRENT IN AMPERES 6 7 8 910 30 40 50 60708090 8 I}I 5 r III I}I 5 .6 .7A.9 1 2 3 4 5 20 N5 2a 1000 55 }I

\~I I n 70 I 70 2

2 as 5 t 2 10 10 5~ -2 ~ a52 } 2% 25 zS 5I II 2

..n Z3 3 1

.9

.7

.6 .6

.5 09 07 02

.03 02 OL 5 .6 .7 4.9 1 2 3 5 6 7 8 910 20 30 40 5060'7080908 8 y y 8 yyNa g g CURRENT IN AMPERES CoNP RN CHZLLER C IIt4FWURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Dated 52II I FZGURE

1. Testsmadeat Vorts ac at I I 2 5l I IIICHlh I
2. Curves ere plotted t est points so vsriauons should be Date Tlrascvltrtsrrr cHAltactartlartc 2}surrsr, ~ assur oo. ua e IJA 48 8258 WLX 3/~/q ~

V

<)f e,

k P~

II I 0

CURRENT IN AMPERES 5 6 .74.91 3 s 5 6 7 891o 20 30 s050607080908 5 5 5 5 5855m ) I I I IHII if'r i I I 4'0 70 30 10 10 9

t t~

8 8 4'f

't'c f

~

7 7 g6 6~

O vs s- 3 X2 1

.9

.7 6

.5 05 05 01

.5 .6 .7 A.9 I 5 6 7 8 910 20 30 40 5060708090/ 8 g g 8 g gNa g g CURRENT IN AMPERES CONF RI1 CHZLLER FAN TIMEWURRENT CHARACTERISTIC CURVES For Fuse Untie. In BASIS FOR DATA Standard Dated

l. Tests made st Vohs ac at p f., stsrdng st 25C with no Inidal load No.

FZGURE ZZ.

2. Cunfes ere plotted t Test points so vs riadons should be Date TIMscurrrrsrrT cHArractxnfstlc 48 5258 I(susrsr ~ ssasn cxL EA0E e Ml

~

I f

h I

t I

t~

$ Q4

'A',

6 .7>.91 3 4 5 678910 s 5 5 55I85H Kr tu e=- u 80 70 70 10 10 9 In vI 8

7 7.

sm g6 z5 5m 8ur 4 ~ I a 4

z Z3 3 0" .9

.9

.7 .7

.6

.5

.1

.09 AS AS A7

.07 AO AS or

.05 tt nil 02 01 5 .6.74.9 I 2 3 4 5 6 78910 20 30 40 50607080908 CURRENT IN AMPERES g g g g g 8 Ig AIR PART L GAS CONTR TIMEWURRENT CHARACTERISTIC CURVES For Fuse unks. In BASIS FOR DATA Standard Dated FIGURE ZQ

1. Tests mad e et Volts ac at P4. I htb 125C ttt SABIN 4 N
2. Curves are plotted t Test points so vartadons should be Date g>>hp Trkcovnrrsrrr olanactsrtlsTlc KrurrsL a saran oo. saK s MA 48 &7E,X ~A~/g~

II h

} R

5 .6 .74.9 t 3 4 5 6 7 6910 20 30 40 506070IN908 5 5 ~8 g g 8~ggk ) m <<0 I IN Imi 70 70 10 10 re ~

6>>

z5 0

Sm Vs stti r~

N u .r M.

4 Z3 1

.9 t  !' ' .9

.1

.6

.5 01 A6 05

.03

A2

\ 01

.6.74.9 I 8910 40 50607030908 5 2 3 4 5 6 7 20 30 CURRENT IN AMPERES g g 8 g g 8ggNa I I Na mI I )mali ELEC EQ RI1 COFIPRSSR TIMEWURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Oated FIGURE g4-

1. Tests made at Volts ac at p.f., starting at 25C with no Initial load No.
2. Cunres are plotted to est points so varlsSons should be Oate TtMLcvrtrtstrr crtanActxnlsTlc 40 0250 Kallrrll.~ Saaan CL aM w uA

".s A'f a

k Vrt

)}0 i

CURRENT IN AMPERES 5 .6 .7A.9 I 2 3 4 5 6 78910 30 so 50607080903 5 5 5 5 5 555~

70 70

.I-.' irl.

10 10

~ ' ,u 8

7 g6 z5 0

vs 2Z 1

u .7

.6 A

~1 AS ASI 07 AI7 Ant 05 A>5 02 .02 01

.7A.9 I 8910 40 50607080908 5 .6 2 3 4 5 6 7 20 30 CI: R R ENT IN AMPER ES

) g 8 y g 8 gyes 3 < 33B3f VIHEWURRENT CHARACTERISTIC CURVES For Fuse Unks. In BASIS FOR DATA Standard Dated p.f., starting st 25C with no Initial lead FIGURE

1. Tests nlsde et Vohs ac at No.
2. Curvessre plotted t Test points so va tta5ons should be Date TIM'LCVnnsNT CMAIIACIXnlsTIC 48 5258 IourfQ ~ ssssn ce ws w LIA

jAr

)Q r/

k,.

't.

i$k 1

E

5 .6 .7A.9 I 3 a 5 6 78910 30 ao 50607080908 5 5 5 5 5 555m I I I I mI m 3NII 1000 1St 1~

fin j ~ N 70 70 30 10 10 9

, j ~

9 8 8 7 7 z5 O 4 vs nun."

~

~

z Z3 3 g 2 1

.9

.7

.6 6

~ I

.09 AS AP

.06

.05

.05

.03 02 01 5 .6.74.9 I 2 3 a 5 6 78910 20 30 ao 60607080908 8 g g 8 g g ggII CURRENT IN AMPERES ELEC EQ RM AHU TIMEWURRENT CHARACTERISTIC CURVES For Fuse Uncs. In BASIS FOR DATA Standard Dated Volts as at p.f.. starting at 25C wtth no Initial kNd No.

FIGuRE 2Q

1. Tests roads at est po/nts so vartadons should be Date TIMncUnrtsrrr cHAnaotsÃlsTlc 48 lsjjjprst a ssssn cjs ajjj 0 IJJ

I

(

I I' If Il I 8 I

lg

CURRENT IN AMPERES 5 5 .7S.91 3 4 5 678910 r s ~sn>L3 I I. I malmllm LJ Mt J'I I I I t.

22 100 90 80 70 70 50 50

~2 10 I 10

~

Z5 CI Sm J v V4 sual I 4 2

Z3 3 2Z 0 I 1

.9 .9

.8

.7

.6 .5

.1 t~ .I

.09 AI9 AS AI7

.07 AS AS AC5 AI5

.03 02 .02 01 5 .6.7S.9 I 2 3 4 5 5 78910 20 30 40 CURRENT 50507080908 IN AMPERES I3 g 8 g g I3 g g EDG FUEL OZL XFERTCPWNENT CHARACTERISTIC CURVES for Fuse Untcs. In BASIS FOR DATA Stsndanl Dated

1. Tests made at Volts e< st p f., sta rung at 25C with no Inlusl load FZGURE 2
2. Curvesara plotted t est points so variadons should be Grzerea TIMscUltrcsrcT cHAIIActsrtlsTcc 48 5258 3&1/q~

IcsttrrlL ~ ssssa oct wt a JAA

f s%a

'e

<<C t

jj

~k

'I;y (4

h, 1 J F

gl)

."IK"

0 70 10 vs Z3 05 5 .6 5

For

.74.9

.6.7A.91 j

is

- ui t~

BASIS FOR CATA Standard

1. Testsrnadeat 2

i

2. Cunres are plotted to 2

3 3

4 a

Tl MtAxlItnsrn'nanactsnI STl 0 Ksufrsl 4 ssssn co ~~

n 5

5 678910 6 7 8910 EOG FUEL Vohs a< al 20 OIL 30 I

40 50607080908 CURRENT XFER FWMhEN Fuse Unks.

Oatad Test points so vada6ons should be IN AMPERES In C

8 ARACTERI~C r

g p f.. starting at 25C with no inidal k!ad 8>seri i

8 g $ 8lgNa CURVES

=

Oats 1'!

3 ir ii iu FIGURE in I I IININII al<~l~X XXX 'sary'g/g~

70 10 3

1

.9 S

.7 09 05

'I F c. ~

FLORIDA POWER fh LIG )

INTER-CIFFICE CCIRRESPC I I~F'UW oS Mr.~ W.~ E.~ Coe I

DATE August ll l97p W.~ H.~ Rogers, Jr./J.

~ ~ B.~ Olmstead J. R. Bensen w/ enclosure C. R. Stone w/ enclosure TURKEY POINT UNIT 3 4 KV MOTOR DATA Attached is the~ formation requested in your August 4, 1970, memo less the items noted'n the Bechtel letter.

JBO/mm Attachment No. z-2.I 7ctl $ z.p Job C ic No.

Rev. No.

Sht. <

of ~

s+

COURTESY WIHS FRIEHDS ...FoR FLQRIDA...FoR YoUR coMPANY".FoR YDUI

pE.

FLORIDA POINKR & LI PROC

-PC/M 'I I o ZC (u )

WTKI%&FFICE CORRKS I g IN Pu7 TB"~EF nlu p

~7 +op Mr. C,ir ~

OATC October 12, 1970 II'ROM W. H. Rogera, Jr./S. G. Brain COPICS TO E. L. Bivans w/enc.

Herb Paul w/enc.

suaas:cT~ Ttggg~ POINT UNITS f3 & t4 J. W. Williams, Jr. w/enc. (:

TIME CURRENT CURVES J. R. Bensen w/enc.

Enclosed are the time current curves for Turkey Point f3 & f4, safety infection pumps, component..cooling pumps and residual heat removal pumps'GB/am Enclosures

~ z ~a~ <:+ Ly'+'i~A>>'

Attachment No.

Ls lo\-$+Q Job Gale No 21 i- ZM-oz ShI.~of~

Rev. No.

3 v COURTESY WINS FNEHDS .,FOR FLORIDA ...FOR YOUR COMPANY...FOR YOUl

\

i gl p

t I

I'I

fields t'ower at @Isbn censyeey F' l -f-fSf'vmr7- gg

~ OWCN PLAJIT CkrllkECRlN4 DATC AKCKiVKO PAGE. F AUG Xo )970 Pv~ a + F IWIIOC rllltlslO IININlg lA4lhl oF "+

Itotors +topi

&itwrst st Office Box 607 seals

/ Shady Grove Road Oleltem D'Noel aithersburg, Maryland 20760 August 6, 1970 ilLs ICE

.N.~

Mr. W. H. R Attachment No.

Power Plant Engineering Manager zl~o Florida Power & Light Company Job

<< i-9M'icwp.

P. 0. Box 3100 R Miani, Florida 33101 Sht. ~ of

Dear Mr.. Rogers:

Sub)cct: Florida Power & Light Company Turkey Point, Units No.

Bechtel Job 561.0 l & 4 4160V. Motor Data Bechtel File: 5700 FB-1201 Our Pro)ect Superintendent has forwarded to us your'equest for 4160 volt motor data for thc benefit of relay settings.

We attach two sets of the following data:

Motor Data Sheets 25.11>>1 and -2 covering all 4160 volt motors.

Safe TQne/Current curves on:

~

Steam Generator Feed Pump Motor ~

Condensate Pump Motor Turbine Plant Cooling Water Pump Motor Circulating Water Pump Motor Xntake Cooling Water Pump Motor Heater Drain Pump Motor The renaining four motors are part of the NSSS and we do not have their safe time/current curves. We are writing to Westinghouse requesting that they promptly send you these curves.

Very truly yours, ggGlNAt. SlGNED SY

~

L 5HATlh N. K. Bhatia Pro)ect Engineer JTP:tst Enclosures {2 sets) cc: G. Kinsman, J. Coughlin, B. H. Merry, J. W. Keck/J. C. Waldcn J. Will,iams, (w/ ) L. Bivans, W, 2. J. R. Benscn.

g(p

>4>,

l leaf 4

'I 5 V'>>"

h di'Wf

]j p

"k 1 r4 f,

4g ~

I C)

IMPVT Mo. g gaffe< OV i'+ Heater ur ~

Intake Condens. Circ. Vi Drain P Cl. WtrPp Cl. WtrP Pump Pun-.

MANUFACTURER TYP f WPX WPX CS FRAME DESIGNATION HORSEPOWER OUTPUT 800 400 325 2250 I 1250 T IME RATING/TEMP. RISE C Ct. 0 Ct. 60 Ct. 60 Ct. 0 Ct. 60 PPM AT FUl.L LOAD 1785 1785 8 0 11 0 VOLTAGE 4000 4000 4000 4000 4000 FULL LOAD AMPS 276 ~

188

'ENCLOSURE WP II WP II VERTICAL OR HORI ZONTAL BEARINGS (SLEEVE OR BALL) a ll Sleeve Ball Ball Kin~s.

TYPE OF LUBRICATION Oil INSULATION CLASS

'W ROTAT ION ( V I EWED FROM ENO OPP SHFA Either CCW FULL LOAD TORQUE 2333 1175 1900 9843 28, 000 STARTING TORQUE ~ '4 OF FULL LOAD 101 118 f FF IC I ENCY ~ 100'4 LOAD 5.8

~ 75'L I OAO 3. 8 3. 0 95. 8 50% LOAD 3. 0 2.2 5.5 SERV I CE FACTOR l. 15 l. 15 l. 15 l. 15 l. 15 IS THfRMAL PROTECTION PROVIDED WEIGHT 6 00 3350 5500 15 0004 23, 200 PHASE FREQUENCY L'OCKED ROTOR CURRENT 860 POWERFACTOR 100% LOAD 2 2 0. 0

~ 15% LOAD 7 0 81 78. 0 88.

~ IV 50% LOAD g

Q

~ ' NEMA DESIGN LETTER 0 SECONDARY AMPS 8 FULI. LOAD 0

V SfCONDARY VOLTAGE 4 /

SECONDARY O~S BREN<DOWN OR PULLOUT TORCUE ~ 265 FIELD CURRENT '%ATED Attachm ntN .

RATED EXCITER VOLTAGE i IPi RATED POWER FACTOR a.c o.

PULL IN TORQUE ~ '%F FULL LOAD TYPE OF WINDING SHUNT FIELD CURRENT ALLOWABLE WK~ OF LOAD 100 35. 8 270 1050 I 41, 000 SPACE HEATERS WATTS/VOLTS 2 2 2 0 20 40 120 540/120 3000 !2 TWO SPEED MOTORS NO OF WINOINGS Z TORQUE O M 2 U I I THRUST BEARING CAPACITY U> (LBS) 30 o 6000 O. ~ 1 U CC CAPAC ITY DOWN (LBS) 1 5 0 1 500 42. 000 Ll th lal Cl FNCI OSURfi OR IPPROOF (DP), SPLASMPROOF SP),WEATHER PROTECTEO V~ e TOTAlLY c'."IC JS NONi VENT I LATED (TENV) TOTAI LY ENCLOSED FAN COOLED (TEFC) ~ TOTALLY ENCLO ED P I PE VE'I ILATFD (TEPV) ETC.oEXPl OSIONPROOF XP, TO INDICATE GUARDED ADO 'G'

~

O bECHTEL CORPORATION ELECTR(C MOTOR OATA SHEET O No FLORIDA POWER ttc LIGHT COMPANY TURKEY POINT UNITS 3 IlI 4 25. 11-1 POWER OIVISION ENGINEERING

Eg, (A~

'p E

(~5 l

4, V

lt

I lag I- I

~

0 O lWPVT '.

6 F hl Q . $ 6

~T oE Reactor C l.

Stm. Gcn.

Fd P

'eatesx ua Safety C om(:

C1. F MANUFACTURER GE aIL' TYP E CS CSP FRANE DESI GNATION 0 P 7)Y6. i CL HORSEPOWER OUTPUT 6000 7000 300 350 450 T Ih F. RAT I NG/TELIP. R I SE C Ct. 70 Ct. 60 Ct. 0 i PPM AT FUL I LOAD 1189 3575 66 1180 VOLTAGE 4000 4000 4000 400 FULL LOAD AMPS 873 37. 45.'P i 5 ENCLOSURE I 'WP I VERTICAL OR HORIZONTAL 'H BEARINGS (SLEEVE OR BALL) Sleeve Ball I Ba ll TYPE OF LUBRICATION I N SUL AT I ON CLASS ROTATION (VIEWED FROM END OPPSH CCW CW FULL LOAD TORQUE 10 300 STARTING TORQUE ~ '4 OF FULL LOAD 108 EFFICIENCY' 100'4 LOAD 5. 93. 4 94 75% LOAD 3 4 '.7 50'% OAD 2. 5 2.4 SERV'ICE FACTOR l. 15 l. 15 1. 15 IS THERMA(. PROTECTION PROVIDED WEIGHT 68 700 3400 4200 PHASE' 3 REQUENCY 60 LOCKED ROTOR CURRENT 0 270 POWERFACTOR ~ 100% LOAD 88. 3 75m LOAD 86. 1 86. 1 50% LOAD 8 0 4 NEMA DESIGN LETTER I M 0 SECONDARY AMPS C FULL LOAD

  • o IJ II SECONDARY VOLTAGE 4

SECONDARY Ol+AS BREAKDOWN OR l'ULLOUT TORQUE 200 270 2ee RATED FIELD CURRENT RATED EXCITER VOLTAGE RATED POWER FACTOR ac me PL L IN TORQUE ~ '4 OF FULL LOAD TYPE OF WINDING SHUNT F I EI.D CURRENT AI.LOWABLE ViK2 OF LOAD SPACE HEATERS WATTS/VOLTS 2 2 200 120 TWO SPEED MOTORS-No OF WINOINGS V

Z TORQUE 0 v>> VQ I THRUST BEARING CAoACITY U> tl BS)

IL >> V CAPAC I TY. DOWN (LBS) f,l Vl UJ CI ENCLOSURE1 DRIPPROOF (DP) e SPLASHPROOF SP),WEATHER PROTECTED WP e TOT>>'Y ENCL. i" I NON VENT ILATED (TENV) TOTALLY ENCLOSED FAN COOLED t TEFC) TOTALLY 'G' ENCLOSED I PE P

(TEPV) ETC., EXPI OS IONP+OOF XP, TO INDI CATE GUAIIDED ADD V'LATED 0 ECII T EL COlt POR ATI Olt ELECTRIC MOTOR DATA SHEET 0 No )0 na FI.ORIDA POWER Ec LIGEIT COMPANY TURI<EY POINT UNITS 3 I'; 25, 11-2 P 0"'fR OIVISIOII KHOIIIC:fRIHG

fj Vj

,p(

I P,"

1

'4 I l1

,Qf P 4;

A I

g II l

) I

'I tgte L ae  !'a ri.te i L I D

LI-

~

~e e e

I I ~

t I II

~

I I at ~;

~

rre

~

I e

r I ~P Ihh

.a I:=.

Ier

.I Ia'5g ~

PC/M ~ Ia ~

~ ~ I I ~ eeI

~ ~ ~ ~

Ig NV . I

"..<rgb

Il I

. ~ I 'g'al I I j

t g

0

~ ~

'I, ~

4 Meg Ia

~ 'I ' 4

'I.

o, Ig, ~

Ia L

~ 5

~ ~

~ a~

I.

~ ~

~ I L

I ~

te

~,'

~ 4 ' ~ I i"g~ ~ ~ ~

e ~ ~ W e

~ ~ ~

e

\a~

~

~'

I ~ I ~ ~ ~

~ ~

e

~ ~

~

~

I ~

~ ~ r ~ ~ ~ ~

~ *

"~ I I ~

ee

~ ~ g g le t~

~ ~ ' e e ~ e ~ ~

~I e le ~ ~ ~ ~

rl

~ ~

I ~ ~ ~ ~ ~

I

-r t-I-I- ~

~ la

~ ~ ~

~

~

~ ~

~

I ~ I~

~

~ ~ I t e "I-r rt-

~

~ g--I

~ I

-j-j lfP ~

-I a/~4 s ~ I- ef I

I 'l I

'-t~

~ )H l

~t ee I ~

~

~

\

~

~

~

200 300 }00 $ 00 600 0 100 FIHS rov. (o)R)f () $ 0 Q9 $ RAT}:D CUR!Kt}T b;~'61-1 70'nnrvd.

I j)

~)I, (4

f l.'-

! Iilrr I.I 7 ~

~ I i ":-1 9 .j!.L j ~ ~

~ t>> ~

~

~

~

~

I~ I +r P-j=

-/ALL I' I' W I It

~ ~ ~ ~ ~ ~ ~

I~

jg;!: i:":i i=". ~q= o ~

4e I ~

4 ~ ~ I l ~ >> 'I.tl l.l 0>>

~ ~

l-.-: I

~ ~ 0 ~

>> >>4

~

C~~'1 N 4 ;VV

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ I e ~

~~

M~

Z 7 FA

+> - < 3 4 (uuzr 0

)

2~ y~ QQ IPPuz Der 'w-ivo. g oc /

IJ

> 4 0

>>4 o5

~ 4 ~ '

~ ~ ~ ~ ~

~ ~

~ ~

h ~ ~

~

~ ~ ~ >> ~ ~

~ ~

I

~'

~ ~

~ >> ~

I

~ 2 0

1$

4o oa JPO boo Coo /o o

~1 t

~ 5 lt 1 II "I i l

In%

~ l I P~! I I

i!i

~

~ ~

~ ~

I~ ~ L' ~

~ ~ 4 ~ ~

~

~ ~

~

~ ~

I~ 4 ww

~ ~

~ <<WW W I f f~

< ~ w I I~W ~ ~ ~ ~ ~ ~ ww I Iw

~ <g p ~ p( gag(Om/1 V Pwzc

]/vpg7 / gQ 'd' O EE7

=I 4- ~ ~

Ol I g ~

2 0

)> 0 I 0

0 X

E ne 0

~

oO o7 ~ ~

4 4~

0 I ~

n 44 ~ ~ ~ ~

w

w. A

~ 1

!'w4 4 ~

p ~ ~ ~ ~

~ -

ww ww

~ ~&

~

P ~

~ ~ ~ w

~ 4 ~~

~4 ~ 4 4-f 1

KOO

' ~ goo goo ~Op oo 700

gE h

1~~

1 cap 1

V i(

I rc 11

i!

~ ~

~ >> ~

~ 4 ~

t>>

~ 4 I ~ ~ f ~

~ ~ I ~

~ ~ ~ I L I ~ I h 4

+.

~

~' ~ ~ f

~ ~

~ ~

~ I ~ ~

\ ~

I c/n1 9z- opg(u~iT + )

Pw lNP~7 8 I F /Yd $

o al e HT e

L ~

~ ~ ~ W ~

~ ~

J ~

g5

~ ~ -rM

~

g>> L

~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

>> ~

~ a~ ~

~~

' I ~ ~ ~ ~

~

~

~

~

t ~ s ~ ~ ~ t>>

Goo 70 '5

1

~ 1$

P t)

MOTOR DATA SHEET EXI TING PROPOSED IY VENDOR QANTITY Component Cooling Water Service Pum Motor Manufacturer Westin house Type CSP<

2< 0 -

o pf

-K-E~g

~g

'4' 1

r.

C

RPA !f631066352 Attachment C of REuANQE WI WOPNIO COMPANY Cl>>o>>lo>>d lf, Ohio Page 2 3 NRFORMANCE OATA SHHT Attachment No.

Job XI'lCll-5LM Calc No. z Rev. No.

memtaZI DAZA Shf. '7 of TYt% PNAIE TO4P. OCIION CONC HP hNC CNC PtÃtli IIERTZ 04 I RTTWN I,ITTWh EC444 75 P/BE 3/60 1185 460 88 Cont. G TK4 DNNN DATA NTATOh ItSSI4TANCC AT>>

IORTWCM IJNR4 OH%%

597318 604882 R '-324253 1/27/71 .1.'114 I OAO KW INPMT POWCN PACTOh 28 .6 8 .6 38 50'8 1195 77.0 92. 0 3o.8 57 1192 8 .2 28 4 I]S 86. 2 60.6 94 1]o 1185 86. 92. 5 75.8 TONOIIR ANPEhCS M>> PT.

134 446 554 PQL'L IIP 200 369 OhgANINIWN 11 0 28 HltJ LOAO 1189 333 88 AL,I>> DATA ON VOI TIOC CONNLCTION ANPWhgi AT OTHWh VOI Tjog4 WILL VANV INVEhiLI-YWITH T VCN-TAOW NCNAhXII WR ~ 39o4 APPNOVRO OV oATW 3/ 1

4~

1'

')c )

PI(

h

)

~

Attachtnent No.

Gale No,

-RPA 4631066285 Rev. Ne--

SNI.

Attachment B Page 1 of 3 00 DA SE QUANTITY EX ST NG S ervice .......................

Hanufacturer ..................

Type F

~ ~ ~ ~ ~ ~ ~ ~ ~ " -"-- - - ~---

rame .........................

~ ~ ~ ~ d etio Horsepower .................... 30 Time Rating/Temp. Rise 'C ..... 0 0

0 RPH at Full Load ..............

60 Full Load AHPS ................ 39 Enclosure ..................... T AO Vertical or Horizontal ........

Bearings (Sleeve or Ball)...... Ba Type of Lubrication ........... G ea e Insulation Class ..............

Rotation (Viewed Looking Down From Top) ...........

Full Load Torque .............. Lb-Starting Torque, 5 of Full Load Efficiency 10Ã Load ......... 90.4%

75K Load .......... 90.3%

5Ã Load .......... 88.3%

Service Factor ................ 1. 5 Thermal Protection ............

M 'ight o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 bs P hase Frequency ..................... 60 Locked Rotor Current ..........

Power Factor 10Ã Load .......

75% Load ........

50K Load ........

NEHA Design Letter ............

Pull out Torque, % of Full Load Pull in Torque, % of Full Load Type of Minding .......,.......

Allowable MKa of Load ......... 3 - t Space Heaters Matts/Volts ......

Hax No of Starts'Per Hour ..... 1 St t in Length of time between starts .

Power Cable/Ground Cable Size .

Thrust Bearing:

Capacity Up (lbs.) 600 Down (lbs.)......

.......'apacity 16 0 Hinimum Starting Voltage ......

Seismic gualifications ........ ot ected

0y 4

ff 4 t i+i; Jg 4(

'I

Attachment No.

Job x<qa l-Lag ga(cwp z i- -- a2 Rev. No.

Sht. ~~ of RPA 4631066352 Attachment C Page 1 of 3 MOTOR DATA SHEET gUANTITY EXISTING PROPOSED BY VENDOR S erv>ce ....................... Fan Manufacturer .................. Reliance 1 ectri c Type ~ ~ ~ ~' Inductio rame ................

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

F 444TC Horsepower .................... 75 Time Rating/Temp. Rise 'C ..... Con RPM at Full Load .............. 1 85 460 Full Load AMPS ................ 88 Enclosure ..................... T 0 Vertical or Horizontal ........ Vert c Bearings (Sleeve or Ball)...... Ba Type of Lubrication .........., G e e Insulation Class .............. C ass T e RN Rotation (Viewed Looking Down From Top) CW Look'n own Full Load Torque .............. 333 b-Ft Starting Torque, I of Full Load 134/o Efficiency 10$ 'oad ......... 92.9%

751. Load .......... 9 No 5R Load ..........

Service Factor ................ 1.15 Thermal Protection ............ No W 'ight ........................ 1300 Lbs P hase 4' Frequency .....................

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ 4 ~ ~

60 Locked Rotor Current .......... 554 Am s Power Factor 10$ 'oad .......~ 86.2 o 75% Load ........ 83.2%

'5No'oad ........ 77. (C NEMA Design Letter ............

Pull up Torque, % of Full Loa'd Breakdown Torque, 5 of Full L'oad Type of Minding ............... Random S ui rel a e Allowable WKz of Load ......... ~944 44-44 Space Heaters Watts/Volts ..... 64 60 Max No of Starts Per Hour ..... Co d ot r N M Length of time between starts .

Power Cable/Ground Cable Size . ¹4 ¹4 WG Thrust Bearing:

Capacity Up (lbs.) .......

Capacity Down (lbs.).....;

Minimum Starting Voltage ......

- 94'~~o. CW~

Q;g Q,lyon

f i

0

~, ~ 4 t,

REL. PHASE/ I FRAME HP TYPE RPM VOLTS S.O. HERTZ I SYZ-00344 146T 3/60 1740 460 AMB~C/ NEMA CODE DUTY INSUL. S.F ~

DESIGN LETTER ENCL.

2.7 CONT 40/H'.15 TEAO TEST TEST STATOR RES e25'C

~

E/S ROTOR S.O. DATE OHMS (BETWEEN LINES) 536030 602482-09-AE 7.79 PERFORMANCE LOAD HP AMPERES RPM POWER FACTOR EFFICIENCY NO LOAD 1.3 1800 8.67 1/4 .50 1.4 1786 42.3 79.7 2/4 ~

1.00 1.7 1772 64.2 86.1 3/4 1.60 2.1 1757 75.6 87.1 4/4 2.00 2.7 1741 80.8 86.5 5/4 2.50 3.3 1722 82.7 85.0 SPEED TORQUE TORQUE TORQUE AMPERES

/RPM  % FULL LOAD LB.-FT.

LOCKED ROTOR 265 15.4 20. 6 PULI. UP 250 253 15.2 20 6 F

BREAKDOWN 1375 368 21.6 13.0 FUI.L LOAD 1741 100 6. 04 2.7 AMPERES SHOWN FOR 460. vOLT CONNECTION. IF OTHER YOLTAOE CONNECTIONS ARE AVAILABLE, THE AhlPERES WILL VARY INVERSELY WITH THE RAYED vOLTAaE. The motor is capable of starting wI th 75%

of rated voltage.

REMARKS s TYP I CAL DATA

'TYPE RH INSULATION P.O. 116647, E+W CODE K0388 REI IANCE oe. BY 4M MOTOR E2001A A 001 8'LfC7RiCJO cK>> bY OAT bY PERFORM4NCE D4T4 ISSUE DATE 04 / 20 /

90 CI.EYELAND, OHIO 4411'1 U ~ S.A FII ~ W7925B Swab. 3D 0 ~ 5.~.~ V~< SV(,5A 88-8 i18

.>>.~

RE Al>>>> t >> ~

q,J.p( Vga'4'T/ Job +ac)\ - Qx3 E sht.~oI ~~

Gale No.

t ty t

lp 4w i~l I'

l II 3 s,'Si

W O ANTI Screen Inst. Air Charging Spt. Fuel Cont. Sy SERVICE Wash P Com . Pum Pit Pum Pun MANUFACTURER W TYP E CS O 44 FR~K DESI GNAT ION HORSEPOWER OUTPUT 100 75 150 100 50 T I MF, RAT I NG/TEMP . R I SE C Ct.

PPM AT FULL LOAD 1770 1775 3550 VOL T AGE 4 0 4eo 4eo FULL LOAD AA4PS 275 ENCLOSURE WP I VERTICAL OR HORIZONTAL H 'H BEARINGS (SLEEVE OR BALL) all Ball Ba TYPE OF I.UBRICATION I NSUI AT ION CL ASS ROTATION (VIEWED FROM END OPP.SH CCW FULL LOAD TOROUE 293 START I NG TORQUE 4 OF FULL LOAD EFFICIENCY ~ 100'%OAD 2. 5 9

~ 75% LOAD 0 0 92. 6

~ 50'%OAD 88. 0 91. 9 SERVICE FACTOR 1. 15 l. 15 l. 15 IS THERMAL PROTECTION PROVIDED NO NO NO 4 WE I GHT . 1850 I 3 PHASE F REOUENCY 60 LOCK ED ROTOR CURRENT 558 81 1800 POWERFACTOR ~ 100% LOAD 89. 0 0. 1 90. 5

~ >5% LOAD 88. 0 88,7 0. 0 0 v

~ 50% LOAD 3 5 O ~ NEMA DESIGN LETTER SECONDARY ALPS 0 FULL LOAD SECONDARY VOLTAGE SECONDARY OthlS BREAKDOWN OR PULLOUT TORCUE 200 230 'OO FIELD CURRENT '%ATED RATED EXCITER VOLTAGE RATED POWER FACTOR PULL IN TORO)K ~ % OF FULL LOAD 21 0-~ 5-6~2, TYPE OF WINDING SHUNT FIELD CURRENT ALLOWABLE WK2 OF I.OAO SPACE HEATERS WATTS/VOLTS 150 1 0 TWO SPEED MOTORS NA hF WINOINGS X TOROUE 0

I THRUST BEARING CAPAC I TY. U> (LBS)

O.

CAP AC I TY DOWN (l. BS) 3213 L'l IO lal Cl WP ~ TO ALLY F >C ENCLOSURE1 DR I PPROOF ( DP ) ~ SPL ASHPROOF SP ) ~ WEATHER PROTECTED NON VENT I LATED ( TENV) TOTALLY ENCLOSED FAN COOL EO ( TEFC) ~ TOTAl LY KNCLOSED 'G' P IP f VENT ILATED (TEPV) ETC. e EXPLOS IONPROOF XP, TO INDICATE GUAROKD ADD 0 ~ KCIITKL CORP ORATION ELECTRIC MOTOR DATA SHEET FLORIDA POWER h LIGHT COMPANY TURKEY POINT UNITS 3 a, 4 K 5610 11-3 RKV.

0 V

~ 5~ POWf.R DIVISION CIIOIIIKCIIINO

J 'I."

i 5 ~

ii I

J k$

n'<i, 1

FEB 28 '92 13: 18 FROM RRC CUST. SERV. PAGE.882 (gg ~ +T~TOC Lint'YE@ Q. .ig'g Z>r.< Yt ).

< 3+

Gale No.

Rev. No.

Sht. '3-- << ~ I krtWt

}t64k

~ (k++

4 REL e S.O. S YZ>>00423 RPx 1 180 SeP ~ 1 ~ 0 ROToR 41 4967 7P-QE PRAISE 4 4 4TCZ VOLTS 4 60 HERA DES IOH B TYP 1CAL DATA HP 7S-, AxPs 88.3 OCOE LETTER H TEST DATE TYPE ~

PHASEIHERTZ P

3/ BO ~1 DuTY CONT IHsuL 50/H'"

EHDLosuRE EI 9 4972 TEAO 1 1 STATOR RESrO ZINO OIS4S {SETWEEK

~ 1 1 7 LIKES)

IO

~i 'i }t

.() J-e .it crt ~

et} r: i'> C e

I fi":

~"

4's t r

~

', ~

't r e ~ '

t'

~ ~

~ t

~

i~ i* ~

't~ r~

~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

tgrWerre ~ p4 ie '

8 e'e trr et e'tr el

' ~ ~ e

~ ' ~

e w<<

~ ~

e i ~ ' ~ ~ tl,g

~ ~ ~ ~ ~ ~ e

~ i t'eLl

  • i ~ i \ ~

~ i 4fFk4 )

~ \

vP ~ r ~ ~

~ i ~ i ~ ~ ~ ~

THERMAL L)MtT CVRYE RIDsutRse ~TYPE RN 1 NSVLAT1 ON P.O.e NG8612. JOY P/N 600276-7R

~ERES SHOWH 460 VOLT OOIIHEOTIOHe OR OTHER VOLTASS COHHSOTIORS ARE AVAILASLE~ THE AICPERES WILL VAItY IHVERSELY 'WITH THE RATED VOLTAGE RELIANCE OR ~ SY E8268A-A-001 ELEC CLRVELAXD OHIO 4411

rRIC U.S CKe SY APPr .SY

. DA PERPORMANgg CURyES ISSLN DATE OE/R6/$ 2 FI I~ W19335

t'q l

" ~<yi'g,g I

3g k

~J i';

)'i;

FEB 28 '92 13: 12 FROM RRC CUST. SERV. PAGE.883 RaL. S.o. SYZ-00393 RPII 1 175 S.F. 1.15 hoToh 417032-1-BPF 364TCZ YoLTs 460 KKMA OKS ION h TEST e.o. TYP1CAL DATA 30 ALPS 39.0 ODDS LSTTah H TROT OATS TYPE PHAsKJHERTz P

3/ 60 ~l ouTY CONT INSUL 45 H/

ENOLosuhE ais 59 1242 TEAO sTAToh hae. ~ z~, 394 OI%8 (SETWKKN LINKS)

&' I '13'4 4 J It, I L r I. ~ 4 ~

W.L-. IS" "aB~X'E -:.1<ll'C asar muser~

~ W....L-ham 4 44 44 C I4 4 'I AMER I rt ~~It 4

~ 4 ~

~ ~ ~

~ ~ I<< ~ 4 I ~ I. %4 4

~ L ~ ~4 4 I"4 '4 P

~ 4

~44

'4 4 ~ I

~ ~

4

~ ~ ~ ~ ~ ~ I ~

~ I

~ ~ ~ ~

~ ~ ~ ~ ~

4\

41 4~

1. 4 4 4 ~

'I 4' I ~ ~

4 I I'

~ ~

'I ~

~ ~ I

~ ~ ~

~

'4WJ ~ ~

~ ~ I ~

44 ~ ~

~ ~ I ~ ~

~ ~

'=1 x..' la

~ 4 ltlrtCVI-,.

~ ~. L 4

~

. ~ 5 ~"i ~ I ~ ~4 ~

4 ~

444 Iy 4~

~ ~ 44441 4+ I 'I p I ~' I 4~4 m~ r 4

~ ~ ~ ~ ~ ~ ~

Lm X'I lO THERMAL L i@I T CURVE Job RB44QCec 'TTCE RN INSULATlON CG)c NO z -Lz3-E,-ou C.O. NQ6339. C/N 600276-8R Rev. No.

ht.

AHPKRES SHONN F 46O YOLT OONNKOT I ON, OF OTHah&OLTASS OONNK ARFahae HILL YANY INYKRSKLY WITH THE RATKD YOLTASE ~

OR. IY RELIANCELEC I%4 ST TRIC AFP4 eY PERFORMANCE CLEVELAND ~ OH10 441 17 U . $ .A. OAT QQRQQ$ I SSIIK ohTS OR/25/92 FII ~ N79833 TOTAL PAGE.883

II if'a F$

'g

$ 1>

  • lp f'

I

$ ~

.BOOL..

Copy'. Zgg05 yg J

A'DCRCL i I

" I C 1

C'J b

U CCl..

V

'I I V

~ \j V

0 O.

S-8rP ChH-8 4'-u 8-88RS-r- ~ '

Z C

5 l

ev.Mo . ~ '

Ln i '

I ~ s 5

I 1x aa

% Fo~l, 4~AD CcRRgey-

c",, (-

Pf' f

I! .

FRCP1:EC 4JEST BAY 382 TQ'FP TLRKEY PQtNT CEQ 28> '969 9:46a" Attachment No. Pv vl pp - 5' 7 Sob Sht. ~~

Rev. bio.

QL 7C)l Calc No.21l-523-E-of j~+

c z.

R A~

PAQ"-

~~ i EQUIPMENT QUALIFIED: ELECTRIC MOTOR MUIPMKNTDISCRIPTION:

~2. Hp 1730 RPM 145T FRAME TEFC-SXT 1.15 SERVICE FACTOR INCLOSURE 460/3/60 Volta/Phaaea/I&quettcy 2.l ave,aem~S 613062-14 MOTOR D/S No.

2 4 AX,mOKHp TYPE OF ANALYSIS Scists6c anal~ has bcca performed Qtiiiaiae a proprletey corn@ger program No, gQ sad Qlpported Q a aambcr of ot}Ntprop ' ootapater proirams and hand calcnistioeL COMPUTIR RUNS, 2100.044; 2100.0441 FWCTIONALRaauiREMENTS:

The cqaipsaeat is reqllired to operate without damage to itscif aad arrolmdiag eplipmcnt daring aad dtet the meats spccÃecL EXTERNAL LOADS. Motor sheave wefght, 15 lbs. Located at end of shaft. 8elt pull of 111 lbs.

EYENT(a) ANALYZED:

OBB Anelymlat SSE Analyze4 "e

Yes

..'umber of Events: One SEISMIC 40ADINO: (6 Live SSE OBE HorhontII 8@V KU iK Horhqntal N 6.0 4.8 VertIoal 6.0 4.8 L

SOQhCSOF DATA; Notor Seismic gualification - Input Oata OATAtURNIIHIsDSy. Astinghouse Electric Corporation ACCKPTANCI CRITERIA'he equi pmeat ai5 operate ehhoat dentate to itself or sattemdiag eqldpmeat before, during, aad atter the events aaalyxedIrith the safe Smka of the assteriais and hnctioasl design.

MARGIN!

Margia is spcciTicaity given for each material ia.the Saalmary of Resaits fouadin this Section.

89b-R-42

I ly "l

0 Mt 'Aa' ~ k

MOTOR CONTROL CENTERS ~ ~

I B-6.10-1 PAGE 7

~

achment No.

0 NP.

, Rei. NP.

'3tH.

~ <~c t-3l, Q of ~-

CLASS G 30 HEATER SELECTIOH TABLES Class A20 FYHR, Class A22 Two Speed, Closs A21 Roverslny HEATER REQUIPEMENTS BY OPEPATING CONDITIONS Motor Continuous Ambient Some At Ambient Hiyher At Stortor Ambient Higher At Storter RatingoC Riso Starter And Motor Than gt Motor Than At Motor As spacifiod One size larger than specified One size smoller than 40 from tables for each 15oC difference specified for eoch 15 C difference One size smaller than One size smaller thon 40oC One size smoller than 50-55 40oC. above above 40oC obove Tha current at which heaters will trip the overload relay with the knob at 100~i@ mark in on ambiont of 40oC,is 1+25 times the minimum full lood motor currant in the table Heoters so selected give 125'5 protection HEMA SIZE 0-1 STARTERS HEMA SIZE 0-1 STARTERS FULL LOAO MOTOR CURRENT F ULL LO AO MOTO R CU RR ENT.

HEATER 2 OL REl AYS 3 OL RELAYS HEATER 2OL RELAYS 3 OL RELAYS CAT NO, MAX, MIN, MAX, CAT NO+ MAX, MIN, MAX~

G30'Q .32 .34 .29 .31 G30T30 3>>42 3.84 3.06 3 47 G30T7 .35 .38 .32 .34 G30T31 3.85 4.31 3.48 3.89 G30TB .39 .42 .35 .37 G30T32 432 480 3.90 4.33 G30T9 .43 ~ 45 .38 .41 G30T33 4.81 5.05 4.34 462 G30T10 .46 .49 .42 .45 G30T34 5.06 5.55 4.63 5.03 G30T11 .50 .56 .46 .50 G30T35 5.56 6.06 5.04 5.54 G30T12 .57 .61 .51 .56 G30T36 6.07 6.89 5.55 6.29 G30T13 .62 .70 .57 .63 G30T37 6.90 7.79 6.30 7.04 G30T'l4 .7'I .77 .64 .70 G30T38 7.80 8.71 7.05 7.85 G30T15 .78 .86 .71 .78 G30T39 8.72 9.74 7.86 8.81 G30T16 .87 .96 .79 .87 G30T40 9.75 10.8 8.82 9.84 G30T17 .97 1.06 .88 .96 G30T41 10.9 12.1 9o85 lOdf G30TIB 1.07 1.14 .97 1.04 G30T42 'l2.2 12.7 11.0 11.6 G30T19 1.15 1.25 'I.OS 1.11 G30T43 12.8 14.2 11.7 12.3 G30T20 1.26 1.39 1.12 1.24 G30T44 14.3 15.1 12.4 13.6 G30T21 1.40 1.52 1.25 1.35 G30T45 I5.2 16.6 13.7 14.7 G30T'22 1.53 1.64 1.36 1.4S G30T46 16.7 18.7 14.8 16.7 G3DT23 1.65 1.81 1.47 1.62 G30T47 18.8 20.1 16.8 18.0 G30T24 1.82 2.04 1.63 1.83 G30T48 20.2 22.2 18.1 19.4 G30T25 2.05 2.26 1.84 2.02 G30T49 22.3 25.4 49.5 21.6'4.3 G30T26 2.27 2.47 2.03 2.20 G30TSO 25.5 28.2 21.7 G3OT27 2.48 2.73 244 24.4

'7.7 2.21 . G30T51 28.3 30.0 G30T28 2.74 3.07 2.45 2,74 G30TS2 27.8 30.0 G30T29 3.08 3.41 2.75 3.05

i "I) 4 h .

~~/~i

, ir A

'I

I S-5.10-l h'lOTOR COH TRO'EH T ERS PAGE 8 CLASS G30 HEATER SELECTIOH TABLES HEMA SIZE 2 REMA SIZE 2 FULL I OAO MOTOR CURRENT FULL LOAO MOTOR CURRENT HEATER 2 OL RCLAYS 3 OI RELAYS HEATER 2 OL RKLAYS 3 OL RKI AYS CAT NO. MIN, MAX, MIN~ MAX, CAT NO, MIN, MAX, MIN, MAX, G3QT36 6.42 7.22 6.16 6,94 G30T47 IBA 19.2 174 IBA G30T37 7.23 7.86 6.95 7.56 G30748 199 2202 188 21.3 G30T38 7.87 8.91 7.57 8.55 G30T49 21.3 25.2 21.4 24 2 G30T39 8.93 10.0 8.56 9.71 G30T40 10.1 11.5 9.72 10.6 G30TSO 25.3 18.2 2$.3 27.1 G30TSI 28.3 30.3 27.2 29 1 G30T41 11.6 12.7 10.7 11.9 G30T52 30A 34,1 29.2 32.4 G30 742 12.8 139 12.0 13.0 G30T43 13.6 14.6 13.1 14.0 G30T53 34.1 37.6 324 36.2 G30T44 14.7 15.2 14 F 1 'I4.7 G30T54 37.7 41.0 364 39A G30745 15.3 16.6 14.8 16.0 G30TSS 41.1 47.0 398 45.1 G30T46 16.7 18.3 16.1 17.7 G30T56 47.'I 53.5 45.2 50.3 I4EMA SIZE 3 HEltA SIZE 4 FULL LOAO MOTOR CURRKNT FULL LOAO MOTOR CURRENT HEATER'AT 2 OL RELAYS 3 OL RKLAYS HKATKR 2 OL RELAYS OL RELAYS NOi MIN, MAX MINo MAX, CAT NO+ MIN MAX' MIN, MAX+

G30T46 20.8 23.9 19.2 21.5 G30T51 35o2 39,9 32.8.$ 37.6 G30T47 24.0 16.3 21.6 24.7 G30T52 40.0 454 40 7 37'0.8 G30T48 26A 27.9 248 25.3 G30TS3 45.6 504 . . 4dA G30T49 28.0 32.7 25A 30.3 G30TS4 SOA 52.6 464 ~

494 G30T50 31.8 35.'I 30A 32.7 52.7 61.5 49,7 GSOTSS 57.4 G30T51 35.2 39.9 32.8 37.6 G30T56 &ID 68e7 57.S 64.7 G30T52 40.0 45.5 37.7 40,7 G3o 757 &BLAB. 75.1 64.8 71.1 G30T53 45.6 50.3 40.8 46A G30 754 SOA 52.7 46.5 49.6 G30T58 75.2 83.3 71.2 799 G30T55 52.8 6'I 9 497 57A G3OTS9 83.4 89,9 80.0 854 G30T&0 90.0 101.0 85.6 95.2 G30T56 & I.d 68.7 578 63.9 68.8 G30T61 102.0 113.0 95.3 1034 G30T57 75.1 64.0 70A G30Td2 114.0 '124.0 104.0 114.0 G30TSB 75.2 83.3 704 78.4 G30T59 83.4 89.9 788 854 830 T63 12S.O 1324 115.0 129.0 G30T60 90.0 100.0 85.6 95.1 G30T64 133.0 150.0 130.0 133.0 G30T61 95.2 100.0 G30TdS .133.0 150.0 HEI4A SIZE 5 HEATER HEATER COOK HEATER CURRKNT RAT ING MAX'OTOR CAT NO~ MARKING 2or3OL MI No 1597771 CA 93 74A 83.9 1597772 CS 105 84.0 93.i Attachment No.

1597773 CC 117 93.5 104 J00 4 'IHI -5 ~ 5 1597774 CD 133 105 120 2Ylol - S'LE-2 M2 1597775 CE 152 121 136 Rev. No.

1597776 CF 172 137 152 Shf. ~ of 4 1597777 CG 192 153 Id8 1597778 CH 211 ld9 185 1597779 CI 133 186 199 1597780 CJ 250 200 211.

1745083 CG ~ CG 2&5 212 239 ~

4 84 CHo CH 300 240 259

'h

+

c~g I I' r

~n t

t

'g I

II I

f, I

I

MULTIPLES QF OVERLOAD RELAY CURRENT ELEMENT R~ NG (REF. TEST REQUIREMENT 3}

~~

+oOVK~0%Lkl'C~. ELElCPtT RATII(G (N

as(.xa8 m II $ II>mliM TEST REQUIREMENTS 3OCO 8000 I OVERU3AD RELAY TIME-CURRENT %CO CHARACTERISTICS AT 4CPC (IO4 Ff, 6000 SXQ

2. 3 POLES IN SERIESTEST.
3. Cv'..RBP( KLEKIB4T RNINM25 4 CF hlINN4N ~TER CURRENT 'NLLK. 3000
4. QURING FIELD TESTS EMPLOY Tl+

300'1o TO 600% TER'ANGES. axe REFER TG NEMA IC.S. 2C22 ~<

OESma TEST PROCEDURES.

5. 0 CT POWER SOURCE IhNEDIATELY FR OvER'LOAD RELAYTRIPS.

8 FQGT WIRE %8 ~ ~

LENGTHS IMIIIIMUMI 00 4 <QQT ~R ao TERMINAL 500 4P~ WIRE LENGTHS (MINIMUM) ~ (r

~ ~

~ ~

~ ~ ~

Y.:.~

~ i ~

)I j ~ ~

~ ~

TEST'CONNEiCAONNAGRAI4 ~

~

~

~

~

'%7

~ ~

~ I ~

~ ~

r ~

auusT~ '.::" " .'.

tKMASZEO,I $ 2 OVERSAEk%ULYS:--.;:,-. ~ ~~

~ ~

LKVK20 SAM:4RPCR'N% ~ ~

~

~

~

~

~ ~

I pJ '" e

~

~ I ewe

..Iy Il<<<<<< QWI (,

t ~ ~

~ O~

M<< ~ ~ ~

I I

~b<<I<<~<<(~

( C ~ ',;ye'

~ 5 ~ 'L

<<<<<<0 0 0 I I~

S<<I<<

o.p) 0

~

<<a gi w a. '

vp I

~ mao ~

+I oo ~ '

8 Q

(,'+carr"rr

~Q CEv

'fr I(

I 1

4

.g

~

y3';

~

s

0 0 0 0 0 0 0 0 NEOSS~~QSOSSSOOSN~~

SISPP~SSSSSSSSP~

,.. SSSSP~RSESESISRI~R

~ ~ I ~ l

... OSIIIWHOSRSIISNIIW%

0 0 I

~ 0 aaIIImmraaaIIaaIIImm

4SIII~~OOSSII 5 ~~OOOISO HOSSSQ SSNI.WWRSSSII SSIII~MHOQIII " M

~

~

~ ~

3 1 ~

C S RIINlMWRRRIIIRIIII~&

~ a c 0 ~ Oi) lX, i e <<eo 0 ~

~ & ~ 0

, %RESP 5~%%$ PSWRSP~~

. HRRSPHM~KRSRRIMSR~~

QQSSINOSQSSSQNSNRS

~ ~

aaP~EIIRaall~

~WaPPPMPP~W&PPP&meP~

ESPPPSSRSSSEPPESSPP~

SQSS%KQSQISlkSSSRRR SSSWK%%ISSIISIWS IIIII%% OiOSIIItQIII&R

.. %IIII~ 551515IIll~&

ImlmlWSNIIIIIIRIIIW

. IIIIIQNHIIIIIIIIIIS

%080$ ~~4g~NOOIHQO%SKeNM SSOSR~H+gggOCRRNSOiCN%

~ S~M&8tSRSISSSII~W

~0 ~

I ~ ~

, QNIII~&RSRIIIOSIIl~&

SSSSI~~Q CCt<NSNOQ~~

, OSSSL~~O%ta54QQRiNNS~R SOON'N~QSRQR.QQJSII~R

.  %%01 I~~M&hl%PeNQSII~~

aasma~maSR%4~85IIIaRRIRI IIIII~WRSIQIMIRlhMRW IIIIIWRSIIINImllIWR

<<l 1 0% ~ ~MSQNAS 8 WLIRIf4~~

I~ '

~ ~

~

<< f.

V 0

~

~ 0 Qa 0 l '4 g)

~~

Sr ot I . ~

. 5DHI1111llllmm8$

%$ % 4 0 ' M%QCRSRRS ~~4%l&%%SW&k~04R~i&

II455IRKS QMH!'NS5I&RSi~VKBSh N5IRf

& %R%0 ~~

RQ5g 35955@QIIIQSIIZ~

HlRSRg~~~ag<g M%0 &H 0gg&%08%%a+K 0 W &% 0 0 4AM 804Si CRg %N $ 5 8 SOSSil SSOQ%

%$ % IIRIRNQliggMW%511iROSII R RA SI CB55ig gmig SSIf RSIIICRR%%

II 1515!

INR5&%81%'IISIIIIRNIm i

t't g%'i

~ ~&IAl

,ft

$ <<pp id'~

~ j.P Pi.Qk l~g i

0

SOP% CN 2 ~E E THEIINAI.OVEEt,eke EELAje E PQI.E 1.L 16054A HEATEM TAILI> tr IMIIHEATER 8LleVtON Heaters are not included with the overload relay For oeeteetEeeeee OLFe Ie NIY elec eeeteeeeg erase non-and must be ordered separately per the heater oanpalaEtee OM'e Ie eIIoteetgee eeet Eete~eet Ieee Selection table and the Information listed below. tben SIOeo. Ie. Wtre~ TSW Erb>>.-

When Installing heaters be sure that connecting For Uee Wltb Tltree Heetere OoIY surfaces are clean and heaters are attached Foe Loco Corrltt of Meters<<geyeree) securely to the relay In the proper location with the screws provided. The trip rating ot a heater In FH03

(~ ~ 25 AeItNNI 1' <<14 a 40'C Ambient la 125% of the minimum full load

~

FH04 .31 ~

N4 current shown In Table V, When tested at 600 per- FHOS .32 .34 10 Nl cent of Its trip rating, the relay will trip in 20 FHOS .35 .35 1

~

Ntl seconds or lese (class 20). .39 A2 <<14 A3 1

FHN AS N14 Heaters should be selected on the basis ot the FH09 AT .50 20 N4 actual full load current and sefvlce factor aa FH10 .51 .55 N14 shown on the motor nameplate or In the manufac- FH11 .55 .52 3t Ntl turer'8 published literature, When the service fac- FH12 .53 .SS 30 <<14 FH13 ,59 .75 30 <<14 tor ot the motor la 1.15 to 1M, select heaters from FH14 .Ta Jo 30 N14 the heater application table. If the service factor FH1S .Si .91 30 <<14 of the motor is 1.0, or there ls no service factor e<<a .92 1.00 30 ~ N shown, or a maximum of 115'h protection ls FH17 1.01 1.11 3e <<14 desired, select one size smaller heater than ln. FH18 1.12 t~ 30 <<14 dlcated. When motor and overload relay are ln dlt- FH19 M5 1.3l p N4 FH20 1W 1.4T ao <<14 terent amblents and when using non- FH21 1 AS 1.82 8')l N14 compensated over/oad relays, select heaters from FH22 1 $ 51.78 Nl the table using ad)usted motor currents as FH23 1.79 1.95 so Ni follows: decrease rated motor current 1'h for FH24 180 2.15 8 Nl FH25 2,18 L% 10 N4 each 'C motor ambient exceeds controller am- FH28 238 258 10~ N4 bient. Increase rated motor current 1'h tor each FH27 L% 10'5 N4

'C controller ambient exceeds motor ambient. FH28 3.11 2'84 Ntl For ambient compensated overload relays no ad- FH29 3.12 3A2 15 Nl FH30 3A3 3.73 15 N14 Justment In heater selection ls necessary for nor- FH31 3.74- 4.07 15 N4 mal varlatlons in ambient temperatures. FH32 4.08 4.39 15 Nt4 FH33 4AO 4% 15 Nl SHORT CIRCUIT PRQTECTION FH34 L3 20 N14 FH35 5.1 K9 20 Nl

The relay will provide protection against abnor- FH38 LO L4 20 <<14 mal load conditions to current values exceed)ng FH37 5$ 25 <<14
normal locked rotor current: however, to protect FH38 Td 7.17.8 25 N4

~e relay from short circuit currents, branch cir-cuit protection must be provided per the National FH39 FH40 FH41 7.9 S.S 9S 9.4 104 LS 30 30 35 N4 N14 Nl Electric Code. Protective-device ratings should FH42 10A 112 35 <<14 not exceed the maximum values listed in the FH43 11A 12A 40 <<14 FH44 125 1LS 45 N'l4 heater application table. The relays, as protected. FH45 188 14.9 45 <<11 are suitable for use on a circIIIt capable of deliver. FH48 1LO 1L3 50 <<12 ing not more than 5000 rms'symmetrical amperes, FH47 1L4 1LO 50 N12 600 volts maximum. FH48 1L1 198 50 <<12 FH40 tL9 21.7 70 NO FHSO 218 RL9 SO <<10 MNNTKNANCE FH51 140 2L2 SO <<10 Other than the normal tightening of all wire and Abc'eetere tor oee ort Site 1 heater connections, no maintenance should be at- 2L3 ~ 2LT 90 tempted on the unit. Complete replacement of the 2L8 31A 1 unit must be made in the event of damage. 318 -345 125 34037.9 125 4M 125 NARNINO: To provide continued protection 414 4LO 150 t

against tire and shock hazard, the complete Ahorse Heetere for oee ort SIEe 2 overload relay must be replaced If burnout ot a current element occurs. See Table I. ~

1S ~lere protective dgrloe le Oennltted bY NEC. Fuee Elze Eltown In table Ilmlte faN oorrerIt.

Attachment NO.

Jn> 4 i'KA-SZ5 Z

-'3-E.-

~~C

.~

t M0.

Ac Y, SHT 1(. >t

ll

/

'{4

~ '$

~t~t

.iP J,

,hg

SINM E TYPE 8 TIIEEMALOVEEtOAIPEELEY, 0 POLS - I.L. <eeeeA R

O I00 8

I I I dl 40 30 Flg. 5 Dlmenalon Dravrlnga (Dlm. In Incheaj r

TO OONTAOYON" To T% TS Y I00 I 50 200 300 400 600

% S SNlea TIIP ANltty AI 4I'C AttOI4al To AWm-Oroott (Oooo eeraoih To Flg. C TlmelCurrent Trip and Reset Curvea CootTol VottoEo The trip rating of a heater ln a 40'C ambient ls YO <<eVOa tr25 times the minimum value of full load current lS FNAMl listed for each heater.

Fig. d Connection Diagram Attachment No.

Job Calc No.

Rev. No.

Sht. ~

z na. s~>

Of ~ W Ih4I 8 hl C q Printed In USA.

EffOCtIYO4lbi Control Olvlalon Suyorcodoa I.L tINIi{11I83l Aahevllle, N.C. U.SA. 28813

J T'

e

~ i

0 ~

P a

~ ~

~'

~

~ ee 0 e el o '

~ ~

w 0

~ ~ ~ ~ ~ ~ ~ ~~ t. @+I I ~ ~ ~ ~ I~ ~ ~ W ~ 0' ~ wr ~o I ~ ci ~ I

1 w'"tp(

Vr E

f,

'l

/zip A

~4 .0

"'0l 4 TNT olL p egQ T N

>ON

'04c I

.~ ~

HQ 04 p 00 - lOX. tSt

<PDO R,bb ~

Sh kS Jsh 8 Sa 3 S lS 3 B ra o 8o.

IB O

t. oe Cs a

..fe.

8 s

K Z; 5'-

IC4 cc an~2 meow~~ g

~ . n t 4'0 pZ l

-g COO 9' OO

~oh~

( 1 ~

0 0

(p

~V 0

(D A

+i N

Pz S~

SS CKOF I

~

,N~ ~I~grym SPEC. Ch1.AS NOl Ovtat.

LNeic l4 ~To t4.8g. Macaw'PaeIPee4 letlaiAaNKOeb H P ~ Sfe

/CY.

al . PIQCOP OM PQHT SHAY I 4$ %5PFfkb OH SPA } LC ear'04K tQAf '

l

.f ll pr H.~l rg 7

i

'p~

1$

lg

>> a>>>>>>>>>>S llfI ~ It lCTIAL CSIENT TO COIL 441 S St S S SeSSI

~

5tECIALIEEO IELEDTITE Aee I.Y.5 Job Calc No.

Rev. No.

Sht.

esasaah-reams

~

Attachment No.

OD-I, OD4, OMOO 4 OD400 Q,I ttO\-5Z.P of SIRCUT-AUTINN TNI ~ ICTICIC."

QS<<

LINI-TINE tIONt IETTINI AIIIITAILETI 44$ . }445.

I44$ Ol 144$ 0 II&,

CIIL NATINfI IV.Iit~ 000 ~

000 ~404 lees iles aae aaatl>>lies solos IN~Iles ~ its I0010010Mwo ella Iasiasloeooes hots 11 los 0000 ~ I I ~ I I ~ I 110 1000 ~ 00 ~ ossa ~ ~ I ~ 0 Iles ~ taa 110 ~ call ~ I 00 ~ Ioet ~ 0 ~ I sall I lal ~ ~ tso ~ loa ef Iao ~ l tool 1 ~ toss ~ to faa wfest ~ ~ Isola ~

~ I I I 10 stool I ~ ~ ~ I ~ 0 ~ 1100 110 essot I I ~ Ii ~ I 110 ause lo ~ I ~ oi soli CINSOCISO)l I 000. eet tohoti<<ilu) olssl I too ot lotileslos (INDINIICT AT 'IIII) asfs sl Iss tout I I ~ IC ~ I 11 ~ 0000 to ~ tssssto tss Iles fot wise coa afotsettwc aof totoi ~ I sf 11 ~ oifN soles ws lhsa otso lo sse ot ios 1004 IIM ~ Isoee et sss

~ I Iao oaotl IIN ~ I ~ 01 ~ ~ llaoet Cf INI~ 0 Ihs ~ I twit awosot t tie ~ 104 lteo ri I I ~ leofa ao Ia ~ 100 ~ 0 ~ I 11S ~ Scot l lait Oi 110 fho solaol ~ Ialeee SIOSI Ssaot ~ Iao

~ f Oof los I ~ 0 000I ~ 00 ~ (1004 CI ~ 0)I I SNo uoi toes ~ I CIN) IS Itot ~ 0. cslulo ~ Isslsatosoau sl ~ hee eclat oetoteluo ~ leo Solof sefu ~ ol+tl ~ W-0 I I os P 1OO r 0 t I ~ I I WI W>>

aoto 444.

01 csl ~ tscle40 e. 'l4. 1 ~ I 04 ~ 44 )0 SOI h40 Oil. ae. 004, sai, 34 ~ T. ~400.'000'IS44. lls- 140 1)s Nun laser 1444. V4o. 4444. heC A oAAD LNI<INE Il44 ssolf ellhl ~ Ihs 000 ~ t~oltseii oettoai 'tatlas ol tu oosiloehl ~ ~ ltsell stoeseto UttEN LIIIT EEC NITC I~ 401 ~ 41 fsototf ssctlsao {uisss elaatolN esullioo)

~ 0+ties ~ loses ttittae ~ lafea ii ISSS ~ I soll tailaa el osll tallal aslsaleooose slsieo - ossa Isoos ol soll tellal Ties ooso ~ I ~ I aee IIOI~ ~ I ceto os ~ I ~

tailoa Iusototet ~ sool loNI~ tst N/Ms sfocue Ns ata hoses N 0 aotssl

~

1 tl fossa ~ I IS 04$ ~ Ice aa stoslaeo loss 10104 004IIN teNil~ cso

~ aofl000 NOI ~ TI cell ~ 0 ~ to ~ I ~ Itss oa tati ~ sot wei hosl ~ fo ~ ~ 00 ~ tai eloI ~ Ith solt

~ ~ I IOS 00 eall ~ I

'I ~ 0 SSN Slotilae loss<<llao ~ Shelf ties No/0 ~Nleal Cwtatullu Oefe ~ 0 Ia Is ~ iulwwea SI0 ~ 0 ~ 001 ~ losSOSOINI Oo ~ IIIN

~ I lhs Oolosloe

~ Nsto folios el tat ~ tho HI~ 010 ~ I ~ toaso 1 ~ ON 110 oootos ~ I ~ I ~ awso f toe 110

~ etfoe ~ Its ta ~ Outot Ot tao saae N Iho soloslss Nsste fslWo LONI TIE IIUI.IIII tea ao NACHO

-TINC DANI.

LNIT INTEEIIAT I 4

I CITE II NINIM 1 se 444 I

IC T

U 0 t

INIIT fICE ICLlf ~ ICNIt ICTT TI A44$ . i$4$ 44 IOOI$

tll AIIUITAILC (ININN IET AT 414$ ANI IO44$ )

INST TINE IAS IttER LIIIT ICC MTE I 00-4 ANI CI 444 ONLT INIIT TIEC INDIT TIEC NAS ICLAV IASC LORN LIIIT IEC NITC I NXI~>> NANINS C ICCIIT IAEAEEI IITEISIIATC CLEAIINI TINE IINII44 NITN IEIIANEOLC I ElfANTANEIUI Tll~

tlCIIt AIIIITlILE tIN 444$ TI I $ 445 Ot-C4IL ElTINI (INIS IET AT IDOI AND IID45) 41E IDTE I IATII It ACTUAL %RIANT TO COIL IATINI

<>>>>I! a I. I IIIIII a CURRENT CIIAIIACZKNIIT)C SOII ICILNN 0 IC4CN C) I)CUIT NNNAICNI)$

I f I TftEI 44 I AS 44 4$$ LlSN TIIE ONfaTIEE'IITAITQSS>>

IIIECT-ACTINI flit IETICEI, tN ItECIAL ICLECTITE TNIttl44'AttLIIATINI" TftCI S ~ AS 44 444 <<LIN4TINC AN INITANTANEIII. CAI I 0I'ICCT ACTINI flit OETICCI tN If-ItIS ClLIIIAflaEEEEIEEEENE-I

~

~ tD=66%$  : alta.B

~ >>In ~ <<CIu a ~ ~ e ~ f sill I

II' ti"'

)5 4'

1~

~ I,

~ ~ If I I" 1F ~ I I 'I N N>>NN*

INN I INN NN NN INI IIN INI INI IIN I

I 1

I ii Wt' TO I 1]

~

I I E T.EI IMP TION INI I IN IN IN IN IN IN IN ~ ~

Nl IN SN

'IN IN TINS PEIIES I

INgrANlf DI I ANEO IN tST SO- jm BSO j IN lU 11M 8 1 7P TO 1 X

Z IN 1 t IN C

.I.~

I I,

~of ~

PININI Attachment No. 7D'L-S4Q 7\

b Cajc ~o.

~~>>~-+>>-'-

lt Sht.

Il II I II I I~ I

,1 III I I g r ~ ~ 1 ~

~

.:II Z

'.II:

1 ~ ~

8 I ~ I I

o

' I I I ',

~ 1 ~

~

~

I I I

'~I I I I ~ I, .I

.I

.I

.I I., .I

.I I .S

.I IIIAXI 0

.I ANEOLIS ANTtNEO S IS NTANECQS Pl I OllLY) jul OUS TAI .I

.I ~ II

.11 AJ TAFT T IILE Al

.II .II

.II Al AS AS

.Ii

.n

~

lij

~

r... i ~N

~

IIIIIIPI I>> If I

~ ~ '1111 ~ 111

.NNIS Illll'AIFf11 I'1111111111 N P 11'11'Fl N NNNgyi g g $ IIIIII FOR API'LICATIONANO COORDINATION PURPOSES ONLY. BASFD ON 40 C AMBIENTCOLD START. 500 VOLTS 50 HZ, 250 VOLTS DC.

I'I I k 1~

f F'

V I'~'y II Jp I V

Q ~ ~ Sl %san SNkiRSSg rs

%P t ~ ' ~

~ ~

~ i

~ I WlilillNi aI

~s IIII!i~~lfgglllgllIII ........:::--.,' -

lI

~l ':',j!.j,"!milt OSSpa%'4'SL'Qa O'EISISR~SS

~ Is ~

~

lI Q)IlLWlL%i.%L'i>'%IIISSIIHES ~  !

~ I

~I RSRIIR.LWL>L11 SSII~%1A~LILiP%SQIWRS aa aaLSI~RS ~I

~ I Il IlllM IIRQI II

~ w%li<~t/ki,

~ "a'/j~mg "II 4 %IN a (L s,'.i 4a'arais>

la LRK~NOSkk$

¹IIII IllllHREIllllllg) aS g) ra sl ~eQiHHrssiR~iksrssQi 1 OIE~ WRrLIlahfTIII~Y ~ %Sill

~ ~~1l:ESII rssss ERIES

~ e a ~

~ lit)%. I '%% E Q!I S I fiji 0 INII/O IN I 0 0 ws L1Laa"LQSSQIIIlk)Sk~Rial\llNIIIIlllllIIL'IlhP 0 k I I g NIIIP5%)R~I 5 I r% lH '4'5 '9 I Q ) 8

"'SIII i

i.. Ih.'H+Rs) Ills 1

%cs <~)%5IIl aa g4'lL I J'e I '

KOVISILaaalROESSEIS>OI~OiQkÃQJ%'Ea

+maaa E

I 1.

q)'Q1EQa$ % 1%SSISESSSER~SFIPQQC

'i%%Lao. VSllSlpINSNS QQLQQIiaaaa~~ewaaiRV'SIEI ISIISR(ilESIIJII:gSEI a"

ll IL"45ÃiRI'l ITiFiiFiiliRIliiliillIII

'jlij~e II llllllllllsasllllgllgl I)Ilats Rg IRIINE4 )aalu RBaaaraaa SlN lli>gal~ 'RSSQS 1 QII a SRIIallBEI lhiORFJ

~ ~

a lRfSSSiSILEH I%I(SR a

P1

~a .

IO S .:. lEEsll~ SIaslllalll I IIII'IHIIIIIII I~ IlSasllllllll ss~~sross>res I 4iSIN~gROC/isIONss!

IIS Nil WOW)LS EEII s

4,i~igg '+3 > ...'~IOCIll

+1VAAik~LHh1k~I'fiaai%8a.liL>L1%~1 pQIl%555 81$ $ ~ASrWISlrSIS I I>I1N 4.li>i%a.iahrOaWi>h,l I 1ii'a4%%SW'%tiaal ISSS~OWSSI>ESSCS (Pi>h Ci Mi%%'Ii 0 itkb+ihfih'%k~h%lrQlfQSslSIISQB iqlldiwwhQO 1bi%iii>a"..i iw>iW lb'%" IaaaIaL51%IIlalaIi .

"Ilia%)~i%2WL>Q1ÃiNViiBL~Qii5'8i5%IIIIOSLIIIliQIl Clio>if350I%5Q55iM%~i)L%5MI7IRFilaSIIQSS aSllEaSSI

'iigCi~iggsg>~i.'p~gi4>@@gag:i5illgg asg+aaaali~g>q%q%iw+a% aaa~bj~paal 1>jan%>qs+l)aaa%%aa /IS I i ~ II

4i gE l" I 4'It l4I gP r h PP'j

'P-

'I

~ h d'4 gP-

OQRRE~NOSQSINkSl>I~QSOWslQNOEI~~

OSiNS~OSNSiNtSQ~NOSSim)OOQkQQ LQlR~QO QssraM&Q sarraaa~a rahsrraM%

~ S! IWRRHllliSllWQSIIQRSQll%Q OSISI~~OOOggglQ~~SSOSNRSSIR~O RQi)~QORQSOSia~Q NSRN~NSSS)SNSQNN~W SSSWRiQi~~

~ sraHQsssratssa~s M QBRHRRBEQiSIIIHS QlllRRSQllllllll%8

'IIIR1$ ~ Ilamlle IIIIRlE "

SOSSLVNSRQRESSIIE~~

SQklRL1%Vi%QQNQS)

R 5~0 i

L SQIIR%L~aVRQQSOSE~Q RRSaL%L~AkiSSNSQaHQSSQrSQra%

SISN%%%1L%%'%hi+OSS k R~~OS S> NISIOS ~~

rESOR%L%%LE'BQLQSk~ROSSSSiEQ~O RQllR1iLihi%NRQSB)&QSHllQBQHQ kSSl~k)Qk>L"(i~I'MSSR~rSQSSSISCQR SSrak%i%i%LLidPii%  %~~OSSraSASaQL SQlL)LlL~it" l>iPaih>OQASIISIQILL RQN%%555hfhtSRh4%~~CR~ISQEmlRS

~ IIIISl~rmla~gPPFa+LRLl,glllgg kllllWE85IVII'l!<<ia:i ' IWE Q lk~l~ONL>SNhhDS I~~ORaa,'5 I ~ Q 5SISSSWE'HRRSQISOSNh~~~&a~OSSE~SRH .iS S SSl~i%SSSQOQILWSl5bR'25RSSI~S ss! ra&hxREQraArra&a %sprlsQraHL QlllLS'%EQllQSPiaQLShRRS,INlllQL S>ES~~E1SSWNOSlhhg%~851klSSkllk~~

SQS~O5~%SSRS!%~~%RQSQSR~S ISS~LSS'%5)!ill! I~Ra '%SSSSSQQ~L raaramaraamraaarramaraaaa':arrrama 15EIRRQRSSSVilSIIIROWQIBQRRIRQ

~ EllEMKQIRRBSa~%lE~&EREQllQEQIMR

~ IIIIWirallllallll~+OkallllallllWR IIIIISEllllllllllISR%

QSAS~~OSISNNSSSR~~SSSNISSSS~+

QSES~NORSESASSi~WRROS! SQRR~Q aaHIIIIISE IQIE~ROSEOEklQ~SQSEBSESH~R isQa%%sssrasikraHRWRRsassraHR

. SSi8%%5RSQEREBWREQIQESltHR SSSS~~OSSSSSQII~~SSSSSSSSB~~

QSQ~SSOSSSSS~SOSQQQSSR~+

kQQ~LWIQSESSB~QWIESHSISSE~T

, AiiraHQQWQraiirrawLRkoAraRQra%a kiBIRRSQQLQEIEKOSEiSIRQI8%8 lllllMHSIElll55%15~%%RElll5%%1IM%

allllRirallllallllKSRallllallllRR IIIHEEIIIIIIIIIIHEIHIISI'NIRE

j<

i7 i

'l i4'

'il'i D'(v'

I MULTIPL 3F PICK.UP SETTING I I I I I I

.M.~

~

I IN

~ ~ ~ ~ I~ N )0 se I~ NIONN%

~ N Attachment No. I NO IN s) L-l u(-52,3 NO Job zi toi-s~wc-m e'-

IIo IN Calc No.

)IO stc.~cf~

R

~ N I IO IO IN 10 N 10 N

IO N

)I N Time Un

))

10 t0IO N 0

7 0 d

5 4 c OI a

2 4

~ .

I I

E s

W

,I .I

.N

.N

,01 4t

.N

.N ks Iastaataaowo Visit

.~ I I 4,1 ~ 01 ) ~ 0 ~ I ~ ~ I~ ro )o u so 00 )SOON

~ 0 ~ I 0 ~ 10 till)

MULTIPLES OF PICK UP SHTINO CISISSIt)to)SIC TIME OVERCURRENT RELAY GES.700i A IAC 66 RELAY OHoSS I ANPOOOOI 1 neo Unit tnISontonooos Unit Inverse Long Time T)~ u~ Pops) Inst. Un)0 2.5-5 2& TI~)trrent CUrves Centhwoosty 4.0-4 4 14 1~0 Othet Iclays ~Its dop4cate time delay chatacteristtcs 2.5, 2.5, S,l, 2.5, 4.0. 4.5. 5.0 Adioskklo 20-40 4.0, 4.5, 5.0, 5.4, 43. y.l. 4.0 40 l40 ( IACTO I leo POWER STSTEASS )4ANAGBAENT DEPT., P)I)IADELPNA PA

1 .\

h pw4

%1 I

)g

MAR 17 '92 84:46PM SQUARE D MIAMI PRUS SK3 (z.cKz OVERLOAD RELAY "'000 TIME-CURRENT CHARACTER ISTI CS

~ 'tw 'X Melting Alloy 4tPC f104'F) Ambtegit Cold Start RELAY OES(Gh(: Q Slmetalllo ION I

I I

~

~

MAXIMUM Q Temperature.

Compensated 100 AVERAGE 000 1N THERMAL UNiT 000 TYPE[S): 80 44 950 400 Curves apply only for equipment indicated below:

[g AC Magnetic Starter gyl 4 Q AC Manual Starter 0V Q Separate Overload Relay sn IN ll le 10 l0 0 i Type SB, SC

~

se Size Forrtt 'erfes A With (sty.) 3 Thermal Unit(al When installed in:

tr(f Small Enoloaurs (Clam Onfyj u7Lsl Q Motor Control Center (Clara 8998, 8999, QM8, f-Line)

PPJ Cl All Other (Largerl Enalolurea 4MB X~LI84zz (8ased on table 830068-389 g(3 ~

d RO(03'08 L2 C(S ~~ W h~

c3~

2 c3 Fe-ac.rc(

gag

~ I

~ ~ ~ r ~ ~

.0 .7 AA I 0 l 7 Seie NVLTfPLES 0F TRfP CURRENT RATfNO ttCVe OATC ~ eggs eV CgggIOs eV tl 2tL RNtg Trip current ratlnp can be determfned from instructions piven with appropriate thermal unft selection table. Characteristics shown do 80UIIRE ti EEMPRNY necessarily apply to equipment manufactured before date of Egtgeggaugg CC 8 Ee WI SCONE(gge ur L As drawinp.

4stt %tt M%X MASTall $ 20008250 E42 EC - UK s eu.s i7'a '30068-%07 ueTS~ L>IW Hd3 Wdat:ta 26, ZT WM

gj I

, lr%

4~

lQ

.Sf Cg

'+

p,$

1986 ISSUE NEMA Rated Motor Starter Heaters CB123 OVERLOAD HEATERS MAGNETIC STARTERS Full Voltage (Cont'd)

NEMA SIZES 00, 0 AND 1 PRICING INFORMATION leea'No(oe Fu84ood Atopotoo.... olL O.

'. Cat Ncx~ CR123C (All)

C '- CRQS-.

0.48 0.46 All CR123C and 123F heaters are packaged three to a 0.45 0.43 C054A 0.55 0.50 0.49 0.48 C060A carton. Items of these heaters, being ordered for customer' 0.57 0.57 0.53 0.53 ~ C066A stock, are to be specified In multiples of three (such as 3, 0.65 0.62 0.59 0.58 C071A 0.69 0.68 0.65 0.64 C078A 6, 9, 12, 15, etc.). Minimum order quantity is three.

0.83 0.76 0.74 C087A 0.97 0.91 0.84 0.84 C097A 1.03 0.99 0.93 1.12 1.09

~

1.04 0.92 1.02 C109A C118A NEMA SIZE 2 NEMA SIZE 4 1.26 1.22 1.15 1.10 C131A 1.40 1.27

~n~JMOt&Aweaw.n: AHMo'aber)ttt)oae'v

".. 'Law cw

.!NH 1.31 1.23 C148A 1.46 1.46 1.39 1.38 C163A 1.63 1.59 1.55 1.49 C184A 1.79 1.74 1.73 1.67 C196A 5.92 5.79 C592A 32.2 32.0 32.0 F3578 1.97 1,93 1.89 1.79 C220A 6.23 6.12 5.85 5.72 C630A 34.0 34.2 34.0 F3958 6.63 6.49 6.47 6.30 C695A 36.8 36.7 38.7 F4308 2.25 2.13 2.05 1.98 C239A 7.72 7.59 7.35 7.04 C778A 44.6 43.9 43.9 F4878 2.43 2.37 2.28 2.24 C268A 8.96 8.71 8.06 7.91 C867A 48.4 46.6 .. 46.6 F5678 2.60 2.52 2.47 2.43 C301A 9.92 9.19 9.03 8.80 C955A 2.96 2.87 2.79 2.75 C326A 52.8 52.6 F6148 3.57 3.39 3.31 3.25 C356A 10.4 10.1 9.81 9.27 C1048 57.4 55.6 55.6 F6588 11.7 11.2 10.5 9.99 C1138 60.0 58.7 58.7 F7198

'.88 3.59 3.70 3.43 C379A 12.1 13.5 11.9 12.8 11.6 12.5 11.1 C1258 C1378 69.5 67.1 67.1 F7728 4.43 4.31 4.06 4.03 C419A 12.1 71.7 70.6 70.8- F8488 4.87 4.57 4.47 4.43 C466A 14.7 14.5 13.6 13.1 C1518

}

5.37 5.31 4.'95 4.94 C526A 79.9 78.3 76.3 F9148

5. 5.86 5.49 5.36 C592A 18.3 17.7 16.7 15.5 C1638 92.3 88.7 88.7 F104C 20.1 19.1 17.9 16.8 C1808 97.0 93.4 93.4 F114C

.19 5.91 5.77 C630A 22 3 21.4 18.7 18.0 C1988 108.0 102.0 105.0 F118C 6.61 6.47 6.35 C695A 25.0 22.9 20.4 19.7 C2148 118.0 110.0 114.0 F133C 8.72 7.61 8'.4e 7.20 8,22 6.92 7.99 C778A C867A k 27.7 24.7 22.7 21.8 C2288 131.0 122.0 128.0 F149C 9.35 8.72 8.47 C955A 29.3 . 25.9 24.7 23.9 C2508 135.0 131.0 131.0 F161C 27.0J'.80 30.7 27.1 26.3 25.5 C2738 135.0 135.0 F174C

,'0.5 10.4 9.67 9.19 C1048 32.7 30.2 29.5 28.2 C3038

, 11.7 11.3 10.4 10.0 C1138 35.6 34.8 32.5 31.6 C3308 11.9 I 1.0 C1258 39.4 38.7 36.7 34.7 C3668 12.2

")3.5 13.0 12.4 10.7 12.0 C1378 NEMA SIZE 6

)5.1 14.5 13.2 12.9 C1518 45.0 45.0 41.9 87.8 C4008 43.2 40.6 C4408 17.5 17.4 15.4 15.1 C1638 45.0 45.0 C4608 18.9 18.6 17.1 16.3 C1808 20.8 20.5 18.1 17.9 C1988 118 115 C592A 22.4 25.5 22.3 24.7 20.0 21.5 19.7 212 C2148 C2288 NEMA SIZE 3 128 125 C630A 138 135 C695A 28.2 25.7 22.5 22.3 C2508 155 151 C778A 27.(k 23.9 23.5 C2738 168 164 C867A 26.3 25.5 C3038 ~y 27.0 27.0 C3308 184 179 C955A 19.3 18.4 F2338 200 195 C1048 22.1 21.1 F2438 221 215 C1138 iNEMA slzE 1P 23.4 27.0 22.1 26.1 F2708 F3008 237 282 231 255 C1258 C1378

. i tee)L Notoe .'".,'ttt/)oa~a 29.1 28.0 F3278 270 270 C1518 31.8 31.3 F3578 33.9 33.3 F3958 37.6 34.3 F4308 14.2 I 4.2 C1518 41.9 40.9 F4878 17.3 17.3 C1638 47.7 44.7 F5678 18.7 18.7 C1808 20.6 20.8 C1988 52.1 51.1 F6148 225 22.5 C2148 55.8 52.0 F6588 24,7 25.5 24.7 25.5 C2288 C2508 59.7 68.1 71.5 55.4 63.3 66.1 F7198 F7728 F8488

~ Attachment No.

Job 7,( lO(- 2P 26.7 27.9 32.1 26.7 27.9 32.1 C2738 C3038 C3308 78.2 87.5 73,5 82.2 F9148 F104C Calc Itlo Zl>t "523-t -c()

36.0 C3668 90.0 90.0 F114C Rev. No.

Sat, N) ano t)ata aub(ect to change without notice.

h 6

\

ll

(

4)

MULTIPLES OF CURRENT RATING (TRIP CURRENT) 1 1 e e 1 ~ 1 ~ ~ I~ a eo N eo <<Toee<<I oo ~ ~ te se N ee se ee sese<<-

0=

'I<<

a Te a

a 00 CR22OC C D 32i RD CR22 l

te 1

e 1

~,

J 0JJ N N e<<<<g 1 1 o 1 e ~ 1 o ~ N Ao eo <<e<<<<se<<NI MULTIPLES OF CURRENT RATING (TRIP CURRENT)

THERMAL OVERLOAD RELAYS CEAEIIAL el ELECTAIC TYPE CR224, 'CR324 GES 720%A Cettooe Rottoyo- CR224C, D, E, F and G OA1 to 270 saapotoe CR324C, D, E, F and G TItnowurrent Cursros Comas sottlatts f0 to 110'/e or heotee cvneat toaay. Cams toeeoeoty Rottog (Ceaes shaw relet As AO C eahteat) showa ot 100Ye.

25 to O0 Hotle

~ w k

J rP P~r e

W .&C,!>

QUALtFtEP AtR CQRPQRATIQN ', ZNSEA IJLEIDN, DOC. NO. 89M402 OPERATION, & REV. 2 DATE 12/12/90 P.O. BOX 44099 CINCINNATI, OHIO 45244 -"

MAINTENANCE PAGE 76

~ l4 OF 4

!@SWIM%~" .4 4CNtg~

7.0 C W GS DRAWXNG DRAWING CRIPZLal KHAKI OUTLINE VIEWS: CONDENSING UNIT... .................-....89C402-001 OUTLINE VIEWS: AZR HANDLING UNIT. ...1..................89C402-002 OUTLXNE VIEWS: THERMOSTAT........ ....oo......89B402-007 REFRXGERANT PIPING SCHEMATIC......... .. .. .-... .....89C402-003 REFRIGERANT PIPING INTERFACE DETAIL..............--....89B402-006 ELEMENTARY DIAGRAM........................ ..... .....89C402-004 ELECTRICAL WIRING INTERFACE DIAGRAM............. . .....89B402-256 CONTROL PANEL DETAIL......... . ~ . ~ ~ ... ...89C402-008 FINAL ASSEMBLY: CONDENSING UNIT....... ~ ......... ~ . - ~ ...89C402-167 FINAL ASSEMBLY: AIR HANDLING UNIT .......<<... .. ......89C402-168 FINAL.ASSEMBLY: THERMOSTAT.......................

/

89C4'02-115 FINAL ASSEMBLY / WIRING DIAGRAM: CONTROL ENCLOSURE .....89C402-114 DETAIL: AHU FAN MOTOR............................. .....89C402-037 DETAIL: CONDENSER FAN MOTOR..... ....... ... .. .....89C402-036 DETAIL: AZR FILTER.............................. -.....89A402-124 DETAIL: SOLENOID VALVE COIL.....,.... -.............. 89A402-192 DETAIL: CRANKCASE HEATER............ ................ .89A402-255

~

Attachment No. l3 C6h ff tTDt-428-f-02 Rev. Mo.

Sht. of

f

'I l

l li

OtCOD TDOQVO ONVO SOO Grease Fittings 3.38 Hin. 00 00 so O

0 w 00 5.25 II OO 1.38

~ 0.41 Dia.

Holes (4)

'.5 5.$ 3.5

~0 so 00 FOOT MOUNTED 10 C 10 ~0 00 ~0 040

\ Dt tDLL LOAD ODODVO Q.

@o B QUALIFIED AIR CORPORATION P.O. BOX 44089 CINCINNATI,OHIO 45244 flP1 0

RPM1 1800 (NcaIinal) 7-1/2 HP MOTOR AND DATA 460V/3Hf/60HZ NNL'R1 CUSTOIIER FPaL Turkey DRAMR BT

.2k.Cist.)C-DAT

- 9- I 89A402-037

'oint Plant CBECEED Y DATE

/-A3-9 DATE REV1S10N 1-23-91 CORTRACT NO QA 0 B-8 6 SCA1E SUEET t43DIPIEO FKN GB PART N). 5KS213BD05 ~PEC 1CQYOR g. QAC RRO1ECT SO 89Z402 one 1 nv

1, lg

,v,if 5 'I E

StSSD TOSQUS CUSVS ass ss Grease Pittings 2.75 Nin.

~s ss II ss II 4.50 1.12 as ss 7.5 0.41 Dia.

Holes (4) 5.5 2.75 as FOOT MOUNTEP C as ~ ss ~s

~ Ot tULL 10lD aosQVA Ca mgt-~

~Q oS g.

I I" O 3'P:

QUALIFIED AIR CORPORATION P.O. BOX 44099 CINCINNATI,OHIO 45244 1

5 5 HP MOTOR AND DATA RPMI 1800 (NOIninal)

CDSTORER DRA SY DAT PDKRI 460V/3PH/60H7i ~,, ~FPaL Turkey ( JA~ /- <3- 89A402-036 CA:EDY DATE Point Plant /-A- REVISION Q DATE 0 1-23-91 84NV640061 /Esti f'8 6 - I SCALE sueET NRI1tllD 11'E QAC PROJECT ISO PART N). 5KS184SB208- N5V-'NP2tb'O2 None ot 1

Xn

~E Og C

S

)

PERFORMANCE DATA WA4lC SnJiZEK'-Phase Productlen Designs: 482-2SS Frames, 230/460V, 1.15 SF Amperes Torque ENcleney Power Factor Full- Full. NEMA Full-Horse load I load toad Locked NEMA Full. ST O Rotor Code toad %FL %FL BD Full Load power RPM 460v 200v (max.) l.etter Lb.4. (avg,) (avg.) Nom. Mln. load Guar. 3/4- 1/2-load Full toad 3/4-toad 1/2- Max.

load KVAR 1 885 2.1 4.0 150, N 8.1 175 -

240 75.6 74.0 75.9 11.4 60.5 53.7 41.9 1.2 1.5 1170 2.3 4.8 20.0 M 6.7 248 341 87.5 86.5 88.4 SS.4 72.0 86,2 53.5 1.0 865 3,0 S.Q 20.0 M 9.1 103 253 80,0 78.5 &0.8 77.4 60,0 53.1 41.1 1.7 2 1165 2.9 6.3 25.0 L 9.0 242 33S 61.5 86.5 88.8 87.2 74.0 88.4 SS.S 1.3 675 3.8 7.5 25,0 l. 12.0 175 249 82'.5 81.s 63.4 80.4 64.0 51.4 45.0 2.0 3 3520 3.7 8.2 32.0 K 4,S 218 335 88.5 87.5 90.4 89.2 87.0 86.8 78.8 0,9 1785 4.0 8.1 32.0 K 8.9 281 382 89.6 88.5 90.3 88,8 80.0 75.S 64.6 1.5 1175 4,3 9.1 32.0 K 13.4 243 333 80.5 86,5 01.0 80.3 74.5 69.2 57.1 1.8

~ 52 875 10.9 32.0 K 18.0 188 251 84.0 82.5 SSA 83.0 64.5 58.3 45.8 2.8 5 3515 6.0 13.$ 46.0 J 7.5 210 330 89.5 88.5 00.2 88.0 SS.O 87.9 81.2 1.4 1755 6.3 144 46.0 J 15.0 247 336 90,2 89.5 91.3 90.1 83.0 ?0.1 70,7 2.0 1170 7.0 15.1 4LO J 22.4 261 352 89.5 88.5 91.6 90.5 75.0 70.8 58.3 2.9 SSS 99 10.8 46,0 J 20.1 223 234 85.5 84.0 86.5 83.3 55.5 49.1 38.0$ 5.0 1.5 3530 '.? 20.2 63.5 H 11.2 152 273 91.1 91.0 93.1 02A 68.0 89.1 83.9: 1.1 1765 "

98 21.9 63.5 H 22.3 212 252 91.7 01.0 92.4 9'l.8 82.5 81.0 13A 2,5 1160 10.7 23.5 63,5 H 33.4 202 244 05.7 91.0 92.3 91.0 72,0 81.8 66,2'0.3 4,4 885 '14.2 28.6 83.5 H 44,5 216 225 86.5 85.5 67,8 65.1 51.5 51,8 7.9 10 3525 1'j.S 28.S 81.0 H 14.9 161 284 91.7 91.0 '93,3 92.9 88.5 89.1 83,1 2.3 1760 12,7 29.4 81.0 H 29.8 216 252 91.? 91.0 92.6 92.1 81.0 79.6 71.7 3,6 1115 14,3 31.4 81.0 H 44.6 207 245 91.7 91.0 92,4 91.4 71.S 87.3 56.0 5.9 15 354$ 17.3 39.6 116.0 8 22.2 169 208 91.7 91.0 92.8 91.S 88,5 88.8 832 3.6 1770 18.7 43.6 1180 8 44.5 183 230 92.4 91.7 93.4 92.7 81.5 80,2 72.3 5,3 1180 , 20.1 45.8 116.0 6 66.9 169 19s 91.7 91.0 02.1 01.3 ?B.s 74,8 65.7 6.6 20 3S40 22.S 52.1 145.0. 6 29.7. '81 292 92.4 91,7 93.8 92.9 00,0 91.2 87,4 3.7 1765 24.4 58.5 145.0 8 59,5 178 211 93.0 92,4 93.9 93.6 &2.5 82.1 ?5.? .

6.0 1175 26.7 83.1 145.0 6 89.5 156 186 02.4 91.7 93.4 93.3 ?B.O 75,2 61.4 8.2 25 3560 21.9 64,8 217.5 6 38,9 197 2?9 92.4 91.7 93.2 02.1 9'l.O S1.8 88.2 4.6 1770 30.0 70.7 182.5 0 74.2 162 20S 93.6 93,0 94.4 94.1 83,5 83.6 78.0 6.9 30 3555 33.4 17,8 182 5 8 44.3 194 274 92.4 01.7 93,4 92.6 91.0 91.8 88,0 S.S 1765 38.0 85.8 217.5 8 89.1 165 206 93.8 93.0 94.4 94,3 83.5 83.8 78.1 8,2 NOTE; Starting and breakdown torques are average expected values, 8/89, rev. 3/90 t/5.01 AttaChment IIJO.

Job Canc No.

RSV. NO.

Sht.

5.06 188'3BUd

0>>

<<t v p I

k.~

h

GEH-1768E INSTRUCTIONS UNDERVOLTAGE RELAYS Attachment No.

Job 2lac <-5~

TYPES: Caic Np 2I c)l 5L3-6-0 ZAV54E ZAV55C Sht. ~.pt Rev. No.

ZAV54P IAV55P IAV54H ZAV55H ZAV55J GENERA GE Meter and Control 205 Great Valley Parkway Malvern, PA 79355-07:15

f P jr II

)

i lp, 0

GEH-1768 rd 0

a-g

~ r I 5 o gj S

': 10 8

.:: 6 2

I/2 Hei Figure 2 (0362A0648-2) Time-Voltage Curves for Type ZAV54E and ZAV55C Relays

  • Revised since last issue 10

Cngralanct'ttachment

~

No.

4'L loi- swQ Job Gale No.

Z>'7o'z Rev. No.

Sht. t of March 25, 1992 Mr. T.C. Higgins Florida Power and Light Co.

P.o. Box 3088 Florida City,'FL 33034

Dear Mr. Higgins:

Enclosed is the data on the 3DS3-1000 series compressor. This compressor has the same motor as unloaded version 3DP3-1000.

Sincerely, Steve Garstang t

Manager, Adv.

Application Engineering SG: dw cc: fax 8407-694-.0549 COPEUIND CORPORATION, 187S VY. CAMPSCU. RD.. 8IDNKY, OHIO 4538&0668 ~ PHONE (Q3) 498.3011

'p M

1 j

I

MAR 25 '92 16:88 COPELAND CORP RPPL ENG P.6rB 0 (= $ 3 R W 4 A hl 6 L= i k:-5 auLrtrt rt.

'T R X 8>43

$ 5 53F" F':V.eg.iE'ui BATL 2/13/56 SEBMEQ Billy Smith hl'EmhttvEo p~ HC 3675 F'RANK 90 STACK 5.25 gP10 POLL=, 4 PH 3 HZ 60 V<)LTS 460 STATOR NC 131931-03 ROTOR NC. 131934<<01 SPFCm 31874

' AflPS 105 ST Tngg 112 HA>; roke 114,'~T 1502 kPg LR RT/RISE DKO F rSF'C,'STAT 7 ROT 11 L. L RFS825C 1.137 + 7X aCFekCVCE: Ltse TOAST Nn, 4306 KSKSCRIF'TEQN- L:3193l-03:<0-54$ ROTOR PERF<jkliANCE .AT -"'C AND tbO VOLTS TORQUE kPI'h . AHEPQ EF T I mFo K4l IN KWOUT 100 1 656 I <<3

<<3 o WP i9 3962 29e88 2$ 524

~

9 c'0 166. 39e9 80 SS m.'i 28ml29 1678 3717 so 38 26 4<<y7 ~ 2ii464 85 L689 35mb 87i6 24+81 2Gi398

~

~ mr 30 1699 83 oh 87 i '<<yo 23.194 19 ~ a<'

il

~

=

7c l703 BL 84 <<o~ 87.2 21m602 Lso201 10 1717 28m9 35 m <<' 37 m 1 Ã0.035 1'r" <'7 4 65 1725 26e7 86 87el 'Ls ~ 492 LGm 9Z 60 C'

4733 5 37 87 166974 77

'L 74C 22m'4 87 oQ 86m9 l56 m)78 L5 ~ 596 0'- 1747 20. 3 88 ~ O ~ o Fj6+ 5 14 t <><36 12 t 4<49 45 1753 Lsm4 89'9 o IJ 85 ' l <<3 ~

Q'g e" LL m'209 40 1759 1665 34+8 ffm126 9 6 95'9 3 C'0 1765 14 (7 90 m 7<<h 82m9 9 e 717 -5k67 8 '78

%771 90 ~ 6 79 an 8 s ',~p28 76547 25 L776 Ll m 90 I7 ~ 75' 95 h,h 6.308 1781 90 ~ 3 68o2 '.i 607 5e061 v'0m 20 3 m 1

m'~ 4786 9m~ -89 ~ m, ri8 e 8i806 10 ~'790 st@ 36 44o9 r? e 957 2 4644 m

a' l79 7 0 76 27i6 Li658 1 i274 1800 7i1 6>6 t374 G THESE DATA REl%ESEHT iMNHNCE OF SE NOTOR AHD %ST NT BE COHSTDERED AS REl'PESEHTTHO AVERASE OR OUtNAHTEED NLUES FOR PRONtCT1N$ NTORSh ghtmchrnent No.

aa)o - g.3 1

JOb WnO \-SZS-E~Z Came No.

ReV. NO.

Sht.

T j I J~c jV

REQUEST FOR ENGINEERING ASSISTANCE RRA Vc ~t/- 2 6 SYS V<.~CP d GS Yo.

project'Title: 4 ~+ il" 7> L~r o c~~7w~ I3IwRW~ o'a~ci.=.~~ v 7<is PTN Unit Vo. Q3 Q4 gg Common WANo. PWO No.

Commitment Source: (Document No.)

Licensing Category Code: fS 0 'racking No. F'R -'tl-Io-ddt-'l(CTRAC,etc.)

0 Z-S. Expedited work @Yes Q 'Vo Outage Work P Yes giVo DesiredComptetion Date: I 0 gO rPt=<

~~g<4 Ti lP'y rt C>

f l- treR~~

g 7)q~

~yg I)

~~

Problem Description and Proposed Solution: (Attach documentation for <c=

/<I~

c + cg. C ~r c.a~T WC <P

( /2P '744a-g-S rp 5 ivt G. I V Sag 7 S d s=- T7irI os <r+ rp

+LS CG<p~

background and necessity.)

I- Rg sv ar 3)bc-'tg tvsga > i

'Iee4.R +<<'S Scrap TIr<

<Cg =-" eZ A7=,.~CII ~~<7 ws >GT+zs>

~erS & i ~acme T 2,

~pp,pet-rgb/ rpgI 7"5 7 /Vei d"

7

/t-r c'tv i&57&

AC d

~'

SQX-p lS f gt< 9l 0 'I rl >~- . . pa vn-7z I /jt= >+r /Ls (0 I ~ </vs 7 / /r7 4) I' 3+ ~ i

=-rA-~

v- /I7- y'tsgi- QK 75 's

Ii /p c--N~ 7~ I p t<+>  !+ ~. j-"s G: Fl5, p; w +~~~IRC3il /Zy o-F- 7F$ Z PCS<>7+

a>>u Vo r~r .Vfanual g 7-g a< Pa~ /Ikd<l) endor 'S,mt'~,<

P..

achments/sketches attached g Yes Q No Dwg No. No.

partment: SX<<wN c.c I 7~ Pj/+pl~

omitted by: 0-II'- ii pr ///J i t2 - Z 4- -S t 4ggcislp S or' tur Prin Date

'-~MCCcn <

proved by:

ngor'2 Supcrugcor Sig c Print Date Work Force Can Support Implementation es Q No (IfNo, provide reason)

M A

7.

w' H ] .~V.+~I O Iv'~S-ES C:< L.7 I

T Maintcnancc Dept Heed Signature Print Date

8. Priority Code Approved ModiYication List Q Yes [PS/A trlOC OPL'f Approved by: Q.C LA&K- 62 2 gI' r nat 'n E No (Provide basis.)

9 Approval Potential Operability Concerns Q Yes C

H Qis A~Ed< Is ok dc<.ssc ~ Std'n/ eln /ndc / /S T4e C ur stl an&A / Ldo D Cesar Breoker d rici /i ct knom/ /eEja s /R'/tsofco/I~lol Je kre t/hd'srp rno e I Qrrr4nc E ttt/c><t<< ~<<~rty cogroS.I<'ty g~ntt.rais t ptist ~

P < .((c~

T Sy tom Engine Signature Print Da I

lt z nc Su port ri/icorSignature Print

10. Approved by: ~

cdh p4 upcroicor Signature Print Date

~ t.l22/la/<tobe< le/I/et I

'I I Cl

pgP 3c;i'd+

3u //O 2 3tiQ7

$ C~l PP 3 c:I c:~r 3( 2 c'~ //

Dc.'~~'~

Q c3 Wl c 3 >Bc 2-PC yGP 3agov 5u'r j~ 3c pC Qd 3c Hog'i'y/0

<<I'

-I I4 I

Vg I f!

~l

BOVID So105 CIRCUIT BREAKER TEST SHEET t" H 'P.

CUSTNER i ht-Yutke Point.'ERIAL JOB NO. 34-02417-C BREAKER TYPE NO. 42503 AB23 5-8C TRIP UNIT TYPE 00 0 TRIP COIL RATING 225',

TRIP UN T SETTING AS FOUND LONG DELAY 428/225 SHORT DELAY INSTANTANEOUS 2250 GROUND PRIVY INJECTION TEST Reduced RacinE 425 300 2250 SECONDARY CONTROL TESTS

'ART

~

DEVICE RATING NO. OPERATION.'CHECK CHARGING NOTOR 25VDC 125VDC MICROHNS ACT Cl ICT, . C.

BREAKER OPEN BREAKER CLOSED NEGGAR. TEST C 61000, VOLTS A B . C . h-SN 8<RN ..-C-NN-:... AB .. "BC CA

'EMESIS '<:" -': 000+ 2000+ 2000+ 20atA:; ZObO+.'Zoo&'0NH " 2000+ ZOOO+

HI O

POT TESi.

. '" le:i':

1'.NIN .

A NA B: C:. URN t'~URN:::

~ ~

C C<RN '- - 'N 'BC CA CONTACT OPENING TIME NA CONTACT CLOSING TINE REMARKS: H$ pot leakage currant recorded fn mkcroampa

(

TESTED BY R S imone11i DATE 05/ 8/9

.. ~ ~ rp t

~

anaChment NO.

Vo/05 Job Cl C.

RBV. itjo.

Sht. ~ of

vi

,1 I"

d,

gq5 Wl 3 9 ol K>9 CIRCUiT csP CUSTOMER Florida Dover Li ht - Turke Point 305 NO.

BREAKER TYPE SERIAL NO.

TRIP UNIT TYPE TRIP COIL RATING TRIP UNIT SETTINGS AS FOUND

~qC LONG DELAY g C.t SHORT DELAY INSTANTANEOUS 3750. Int. GROUND PRINRY IN ECTI TE T 3 0 NA SECONDARY NTR L STS

~~

DEVICE RATING PART NO. OPERATION,":CHECK CHARGING NTOR 125VDC 12SVDC C l NI CROHNS ll C C. . C.

BEGGAR TEST 01000 VOLTS NEGOfNS

'A 8REAKER OPEN

.8 "C h~ B<RN. URN

~ r+

'S BREAKER CLOSED

-'- ' '.-"':CA'. '- .-::5 100000 100000 00000 100000'00b 10000 '100000 100000'" I'OOQO IC HI POT TEST'. C 6 KV A AWRN BARN CWRN "AS 8C -" '. CA

1. NIN CONTACT Ot ENING TWE CONTACT CLOSING TNE RENRKS: Hi pet loakepe current recorded in microalps TESTED 8Y DATE ~i r, Iot AttaChment No.

JOb Q/'7 1 51.+

Ca~c No Milord-5x>-6 -o Rev. No.

Sht. > Df

~

~

C, ~ ) ~ I

14>

2 i<

I

~g I l

V, 1~

i,,gm f~

pl 4

l

>I I 1

s I

gAT'y5 / L/

I 3 a203 ggoN SOVERI CIRCUIT BREAKER TEST SHEET ggP JOB NO. 34-02417-C cusToNER BREAKER TYPE SERIAL NO. 42503-AB23-1-BC TRIP UNIT TYPE TRIP COIL RATING ~2ps ss s TRIP UNIT SETTINGS AS FOUND 349/225 SHORT DELAY NA LONG DELAY INSTANTANEOUS GROUND PRINARY INJECTION TEST

.0 NA SECONDARY CONTRO TESTS DEVICE RATING 'ART No. ;Pe i.T1')N CHECK CHARGING NOTOR 125VDC VDC 125VDC NICROHNS CONTACT RESISTANCE A. B.. 118 117 BREAKER OPEN BREAKER CLOSED NEGGAR TEST 91000.VOLTS I -'. A B ..."...C,.: A-GRN ~:8. CHAN AB BC CA

- NEGO. :ibOOOO iOOq )XODiO'DO 4000. ':. +000; 4000 I 00000 3000 00000 HI POT CQ'"::.;:

8 " 'I-fet~- A-GRN WRN 'WRN "AB BC CA 1'NH:' I CONTACT OPENING TINE RKS- H< pet leakage currant recorded in Attachment No.

JOb Calc No.>'l~'2~ ~

TESTED BY RaV. NO.

Shf. + Gt

A

,.l j

h

I

'1 qY P

lt>

~

~ I; I

~ ~ I ~

~ I I I l ~

~ ~ ~ ~ I I ~ ~

I'

'f I

~ ~ ~

~ 1' I~ . I K%II!mKHBRI%IIINI~I I

I If ~ II II~ KISS&IIIIIIW

~ I I

~ ~ ~

I I ~ ~

I A

~ ~

~ t I

~ e I

'I ~

~

' 0J I ' ~ Ql

'Ma II III II III II III II III II III II III II III II III I III KRKiRRiR~RiRQM~5iRSR

~ ~ ~ ~ I