RS-20-069, Additional Information Supporting Request for License Amendment Regarding Automatic Operation of Transformer Load Tap Changer

From kanterella
Jump to navigation Jump to search

Additional Information Supporting Request for License Amendment Regarding Automatic Operation of Transformer Load Tap Changer
ML20181A267
Person / Time
Site: Clinton Constellation icon.png
Issue date: 06/29/2020
From: Simpson P
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
RS-20-069
Download: ML20181A267 (12)


Text

4300 Winfield Road Warrenville, IL 60555 630 657 2000 Office RS-20-069 June 29, 2020 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Clinton Power Station, Unit 1 Facility Operating License No. NPF-62 NRC Docket No. 50-461

Subject:

Additional Information Supporting Request for License Amendment Regarding Automatic Operation of Transformer Load Tap Changer

References:

1. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "Request for License Amendment Regarding Automatic Operation of Transformer Load Tap Changer," dated January 14, 2020
2. Email from J. Wiebe (U.S. NRC) to K. M. Nicely (Exelon Generation Company, LLC), "Final RAIs for Clinton Load Tap Changer License Amendment Request," dated June 1, 2020 In Reference 1, Exelon Generation Company, LLC (EGC) requested approval for a change to the Updated Safety Analysis Report (USAR). The proposed change implements the use of an automatic load tap changer (LTC) on the emergency reserve auxiliary transformer (ERAT) that provides offsite power to Clinton Power Station, Unit 1.

The NRC requested additional information that is needed to complete review of the proposed change in Reference 2. In response to this request, EGC is providing the attached information.

EGC has reviewed the information supporting a finding of no significant hazards consideration, and the environmental consideration, that were previously provided to the NRC in Attachment 1 of Reference 1. The additional information provided in this submittal does not affect the bases for concluding that the proposed license amendment does not involve a significant hazards consideration. In addition, the additional information provided in this submittal does not affect the bases for concluding that neither an environmental impact statement nor an environmental assessment needs to be prepared in connection with the proposed amendment.

There are no regulatory commitments contained in this letter. Should you have any questions concerning this letter, please contact Mr. Kenneth M. Nicely at (630) 657-2803.

June 29, 2020 U.S. Nuclear Regulatory Commission Page 2 I declare under penalty of perjury that the foregoing is true and correct. Executed on the 29th day of June 2020.

Respectfully, Patrick R. Simpson Sr. Manager Licensing

Attachment:

Response to Request for Additional Information cc: NRC Regional Administrator, Region III NRC Senior Resident Inspector - Clinton Power Station Illinois Emergency Management Agency - Division of Nuclear Safety

ATTACHMENT Response to Request for Additional Information NRC Request 1 On Page 2 of the LAR, Attachment 1, the licensee stated, "the proposed change requests NRC approval to operate the ERAT LTC in the automatic mode (i.e., in lieu of the static VAR compensator (SVC)) to regulate the voltage at the safety-related buses."

The location/connection of SVC is not shown in any drawings currently available in the USAR, Chapter 8. Provide a copy of Drawing E02-1AP03 referenced in USAR, Chapter 8, or any other drawing which shows location/connection of SVC.

Response

Drawing E02-1AP12, Sheet 130, "Single Line Diagram ERAT SVC System," and drawing E02-1AP12, Sheet 133, "Single Line ERAT SVC Interconnections," are provided at the end of this Attachment. These drawings show the location/connection of the SVC.

NRC Request 2 On Page 6 of the LAR, Attachment 1, the licensee stated that in the automatic mode, the LTC is controlled by a primary VRR [voltage controller] and a backup VBR [voltage controller]. The function of the VRR/VBR is to control the ERAT's secondary voltage by adjusting LTC tap position on the primary winding. The VRR/VBR gets its voltage feedback signal from a potential transformer (PT) on the LTC ERAT secondary winding. The VRR/VBR requires user input setpoints for its voltage control point (i.e., Bandcenter), and tolerance around that voltage control point (i.e., Bandwidth).

Regarding LTC and VRR/VBR, provide the following information:

(a) Provide a frontal diagram of the LTC control panel showing location and name tag of each device.

(b) Provide the available range and actual setpoints for the VRR Bandcenter and Bandwidth to provide adequate voltage at the Class 1E 4.16 kV ESF buses (within certain design limits) for satisfactory functioning of ESF equipment.

Response

Photos showing the location and name tag of the LTC equipment are provided below.

Page 1

ATTACHMENT Response to Request for Additional Information Left and Right Sides of ERA T Control Panel e ( r JI EQUIPMENT MTD.

ON WALL BEHIND THIS PANEL IS OPERATING AT TEST-Rt:SET-oN OFF SEEIURK COLUMBUS OH

.G)

II~** .

  • - ' I Page 2

ATTACHMENT Response to Request for Additional Information Alarm Panel ERATVRR OEYAPOBO 30 ERAT VOLTAGE REG RELAY '90' I

90 INERTAIRE LOSS OF NORMAL SUPPLY FAULT PRESSURE RELAY SUDDEN PRESSURE RELAY .

LOSS OF VOLTAGE TAPCHANGER PRESSURE RELAY r LOW OIL LEVEL MECHANICAL RELIEF DEVICE HOTSPOT r THERMOMETER HOT 'OIL THERMOMETER TEST-RESET-<>N Off SEEl\IRK COLUMBUS OH Page 3

ATTACHMENT Response to Request for Additional Information LTC Manual Control Panel RELAY CONTACTS CLOSED "TL" RELAY LOCAL TEST CONTROL RELAY OPERATE "TS" The available range and actual setpoints for the VRR bandcenter and bandwidth are provided below.

VRRActual Parameter VRR Available Range Setpoint Band center Adjustable from 100 V to 121.9 v 135 Vin 0.1 V increments Bandwidth Adjustable from 1 V to 10 V 3.0V in 0.1 V increments NRC Request 3 On Page 7 of the LAR, Attachment 1, the licensee stated that in the event VRR fails, and the voltage rises or falls outside its operating voltage band, the VBR controller will take over automatic operation of the LTC. The VBR also utilizes a redundant relaying scheme to ensure the LTC does not raise or lower the voltage beyond the limits set within the VBR itself. Also, in the LAR, Attachment 1, Page 8, the licensee stated that the VBR will also lower the voltage if the regulated voltage remains above the upper voltage limit past its time delay setpoint.

Provide the available range and actual VBR limits and time delay setpoint to provide adequate voltage at the Class 1E4.16 kV ESF buses if the VRR lowers the voltage too much and to prevent exceeding the maximum voltage requirements on the Class 1E 4.16 kV ESF buses if the VRR raises the voltage too much.

Page 4

ATTACHMENT Response to Request for Additional Information

Response

The available range and actual VBR limits and time delay setpoint are provided below.

VBR Actual Parameter VBR Available Range Limits Bandcenter 100 VAC to 140 VAC 121.5 V Bandwidth 6 V to 24 V for 120 VAC 8.0 V Time Delay 1 second to 30 second 5 second Blocking Contacts 0.2 second fixed 0.2 second Time Delay NRC Request 4 On Page 4 of the LAR, Attachment 1, the licensee stated that an engineering evaluation has been performed to determine the acceptability of using the ERAT LTC in automatic mode without the ERAT SVC.

Regarding the impact of LTC in automatic mode on safety-related voltages, provide the following information:

(a) The minimum steady state voltages calculated at safety-related buses in the scenario "138 kV system voltage at 0.94 pu, ERAT LTC in automatic operation with ERAT SVC out-of-service, and maximum LOOP/LOCA loading condition."

(b) The maximum steady state voltages calculated at safety-related buses in the scenario "138 kV system voltage at 1.06 pu, ERAT LTC in automatic operation with ERAT SVC out-of-service, and minimum loading condition."

Response

The analysis to evaluate the performance and acceptance of the LTC in "AUTO" voltage regulation mode on the ERAT was performed in the Electrical Transient Analyzer Program (ETAP). Clinton Power Station (CPS) is proposing to use the "AUTO" voltage regulation features of the ERAT LTC in lieu of the SVC to regulate the voltages at engineered safety feature (ESF) buses 1AP07E (Division 1), 1AP09E (Division 2), and 1E22-S004 (Division 3).

Therefore, the ERAT SVC was disabled in the ETAP model and the ERAT LTC was placed in "AUTO."

Page 5

ATTACHMENT Response to Request for Additional Information (a) Minimum steady state voltages with 138 kV at 0.94 pu and maximum loading condition on ERAT The most limiting case study performed in ETAP is as follows:

1) ERAT Train B: In this category, all ESF buses were aligned to the ERAT with Train B of Control Room HVAC in service.

The duration for ETAP simulations were based on Technical Specifications (TS) defined reset times of Degraded Voltage Relays for ESF buses. TS Table 3.3.8.1-1 identifies the following degraded voltage relay (2nd Level) licensing basis limits:

2nd Level [Degraded Voltage] Relays

  • Division 1 and Division 2 o Dropout: > 4051 V (97.4%)

o Reset: > 4102.2 V and < 4109.3 V (98.6% and 98.8%)

o Time Delay: > 14 and < 16 seconds

  • Division 3 o Dropout: > 4051 V (97.4%)

o Reset: > 4102.2 V and < 4109.3 V (98.6% and 98.8%)

o Time Delay: > 13.2 and < 16.8 seconds For conservatism, the most limiting reset time (i.e., 13.2 seconds for Division 3) was chosen to evaluate the timely reset of degraded voltage relays on all three ESF buses.

Table 1 below provides the steady state voltages after the above-mentioned transient for ERAT B with the 138 kV switchyard at 0.94 pu (138 kV Base).

Table 1: ERAT Train B and 138kV at 0.946 pu 138 kV HVAC Steady State Voltage ESF Bus Loading Voltage Train at T=13 seconds 1AP07E LOCA 0.946 pu B 4215.49 V 1AP09E LOCA 0.946 pu B 4212.66 V 1E22-S004 LOCA 0.946 pu B 4217.40 V (b) Maximum steady state voltages with 138 kV at 1.06 pu with minimum loading condition on ERAT To calculate the maximum steady state voltages with minimum loading on the ERAT and 138 kV at 1.056 pu (1.06 pu), a load flow study case with only Mode 1 operating loads on the ERAT was performed. Table 2 below provides the maximum steady voltages for the above-mentioned case.

Page 6

ATTACHMENT Response to Request for Additional Information Table 2: Mode 1 Loading on ERAT, 138kV at 1.056 (1.06) pu 138 kV ESF Bus Loading Steady State Voltage Voltage 1AP07E Mode 1 1.056 pu 4150 V 1AP09E Mode 1 1.056 pu 4150 V 1E22-S004 Mode 1 1.056 pu 4151 V NRC Request 5 On Page 9 of the LAR, Attachment 1, the licensee stated that the failure probability of the ERAT LTC to spuriously operate or to have a failure of both controllers due to a failure common to both of the controllers was calculated to be 9.77E-07.

Provide a summary of the relevant calculation information that determined the failure probability of the ERAT LTC to spuriously operate or to have a failure of both controllers due to a common failure to be 9.77E-07, very low and acceptable.

Page 7

ATTACHMENT Response to Request for Additional Information

Response

A summary of the probability calculation was provided on page 9 of Attachment 1 to Reference 1. The summary described the assumptions used in the probability calculation, as well as the sources used for the failure data. Specific inputs and results are shown in the following table.

INDEPENDENT BASIC EVENT INFORMATION CCF INPUTS RESULTS INPUTS GENERIC FAILURE MISSION RATE TIME TOTAL DESCRIPTION (/HR) (HOURS) ALPHA COEFFICIENT PROB A ERAT LTC DRIVE MOTOR FAILS 3.24E-08 24 - - 7.78E-07 B PRIMARY ERAT LTC CONTROLLER 4.28E-07 24 - - 1.03E-05 FAILS C BACKUP ERAT LTC CONTROLLER 1.15E-07 24 - - 2.76E-06 FAILS D CC FAILURE OF PRIMARY & 2.72E-07 24 3.05E-02 1 1.99E-07(1)

BACKUP ERAT LTC CONTROLLER Cumulative Failure Probability for ERAT LTC 9.77E-07 A + [((B

  • C) + D) - (B
  • C
  • D)] - ((A * [((B
  • C) + D) - (B
  • C
  • D)))]

(1)Note: The common cause failure probability is calculated using the following equation:

=

Where:

  • ProbCCF = common cause failure probability
  • ProbIndep = independent failure rate of the component (/hour)
  • AlphaCC = common cause Alpha factor for two failures in a group of two components
  • Coefficient (C) = Alpha factor coefficient for two failures in a group of two components Reference
1. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "Request for License Amendment Regarding Automatic Operation of Transformer Load Tap Changer,"

dated January 14, 2020 Page 8

ATTACHMENT Response to Request for Additional Information 8 7 f

G 4 3 2 4 3 2


+-----------IUinol~~wer~~--

ERAT--- __ - - _ _ _ _ _ _ ~ _ _ _ _ _ _ ~B Power ~s~~

1 NEW (RAT SHOWN F I LTC 17 STEPS 1.5" /STEP 600/SA.CBOO -Tl 138/4.16kV Y/Y I LEGEND DESCRIPTION F

1B/24/JOMVA R£ACTOR 600/5'..CBOO -T2 OA/FA/FA 65' u 0

\

200/5 C.S B-0.5i-T3

-T~~

4000/5A.caoo -rs caoo

-T4 ~gu5" 600/SA -G1 '

I tI I CURRENT 1"ANSFOR*ER I;___, I

~ THYRISTOR VALVE L

L -2~00 _<:.::P~~)_ /120 - - IPC LOA~ - -- - - __J POTENrlAl. TRANSF'ORMER I~~~,-ESTER

-=- RESISTOR I F I S>/C. w ~--- - - - - - - - - - i,4000A- - - - - - - -----,

W°I-; /- ~ :,~-** -:~~ A/~

OISCONNEC'i S"..;.iTCH I D r \_ _',

v ( 16/04RKV 75KVA CIRCUIT BREAKER

.ilQQ/ 120 I- 120

-TJ

-i T (CA.Pl 18E) 3 PHASE ,A,LJJ(

~'OWlR IC MJP-1 (l1A~'15Cl~

CAP>CllOR WYE CONNECTION l l I DELTA CONNECTION

'{31-'{3 '{3 V ---it , (RrT_ ltl7-1APqq_171) 1

-noi:f 40oo(SA.caoo ~

I ci -Tit 4VUU/0A,(.;tlUU I - I POWER TRANSFORMER 1-im-I 1 ,..J-,

J

  • ooo>.. 63kA

-T20 4000/SA.CBOO D,, FVSE D

-T2t 4000/5A.C800

=m., =~;,t~gg LJ L ___________ :J L L--+:-----i 2 11 4

~n~ Annn /ta. ,....,..,.,,

=1<1 t_:;SA:caoo 000A,.

Ic I I ITCR 121.5 MVAR I

--.,:-89J I

.-01==---

121 MVAR

-+-- I ~~

--~ ,--- - - - - - - __- _-_--=:__- ~'~- _-- - - - -

I ~

-i I

H BI

.J000/5A II H1 H1

-TlO C400 -T10 3000/SA C400 5TH

3. 75 HARM

[ 7111/HP

-3.15 WAR H2 H2 MVAR

-V rJzs. TC~" -T10Jf,ootsA -T20J~5A 3

Tl,"'

-Tl 1 erog/5A H2

  • t*L II H2 0.5;l!H2 O.;gftRl.~~

T22 B f'fto5A I . . . ._

-L 6.405mH -L x.x 0.34 _:_H -C -C2 H*

I 1-c']' 1' :t:t L

-T,!.2 t I T1' T16o 't I l!i. _L 5015A l L..-m--J '----m-'

I -T11 W66

-121 f.66 L _____ __J I- I I SVC. TCR S>IC. TSC - - -- - - SVC. FC- - - - - - - - - - - - - - - - - - ____ _J A I I r.-1 ""

,,,_ l,,,,.n ""'"'"'o" I::: I:::: I::;*I IA I

I SHJGL_ U~J[ DIAGi<!l.i*A Ii-=="-;.::;...;,;;;--

ERA- SVC SYS-EM CUNTOI\ P0 1NCP STATIOl\I Ul\IIT I

-LINC-CUI\ T~Jl\j, IL_INOIS STATIC VAR COMP£NSATOR SYSJ'EMS I I E-fil ERAT SYSTEM "-' '""' I CLINJDN POWER STATION DW 7021 SLN02 Exelon,, on E02 1AP12 JUJNOIS POWER COMPNN'

~--~~ Cl1n:on 'Sta:ion

'Juel~"

""' i l'l\;,\f.t.UJ,'ti """""

'"' '" J'2L 5HEC NUMBER. 1 .)0 l3FE Fr.*?I 8 I 7 I 6 I 5 4 I .3 I 2 i 1 Page 9

ATTACHMENT Response to Request for Additional Information 7 G 5 4 2

~~I' ~~~4.16KV I TPNJSFORMrnP~OTECT:~:.Js::~E~ o~~~J:~o:J

'000; r *--- ---- ----- --- ---- ---- -- -- ---- ----- --- -,-- ---- -*r--i~ l" --:i AeB Po:;-sy;,:;;;;-

'O"';' . -Tl ia/24/J:J\WA DIFF. PROTECTION TRIP INPUT 85SRT1 TRIP INPLJT aef'RTi llllnofs Powe~ Co. LEGEND DESCRIPTION

  • w '" 1 i~r~Ni~~200/50.68--0.5:?-r3 ERAT:~~~;~GENCY~ESERVEAUXTRANSFORMER) i :-!-= -- - --=======================--=-- -

600/5A.C800_ -T2 OA/FA/F~ ~

  • 5

==-===-==--:---- - -~-: ~e~~ ~e~~

REACTOR F F

-T ~ -T~ Lo I' I -m1p--------~--------+--  : : * ~:  ! ____  ;,_;,_1"".'.~Hm"",~rn_1_P_-<k_

g ---] CURRENT TRANSFORMER

~1* ~ I  ; '-------H- -- ,_ --,,.___,

~:gi::~r~iEPS ~000/5A,C800~~~~0/5A 1*-:--\~~,.";';;~\~!.G?P D~U. -rn1P------0---------------,,,--l II ---T~---- --<Brn*P~----,1:

TlllP---~ 1:1 J

-*;1 . -----.-'-

H TO LTC ,.,, T")I  !:800 I 'I  : : -A

,---- .. --------uN~vo~rA9E  :

i I I, IiIi:

VOLTAGECONTR0..-*---3~ u~s -a~~ll!

--~-~==J~~:*_~u~~*:'__ J.. ~r-= s;

  • I  ::  :: THYRISTOR VALVE

, 1 ~~-'I~~-"-"'--

-:_r=,,:

w-n tJES,e~E~1:T;;,*:i:'i:;-"

I  ! ~~RJT,!~,:  !: :i  ::

F  :

1 i --  :

\A-Pk*SE ONL<) yuNDE!lGROl!ND CABLE , , 1


L l-m1P---------------<J>-- 1'1 POTENTii>.i_ TRANSFORMER

-~ I ________ f_'::. .. ~~FITTI LJQ  :

llllnols Power Co. ' '

--AOOP;w-;;-sy;t;m-;--- ------  :: I I l_ :I =~~E~~TECTION

. , :

  • J\!'.; * =~:*i:
  • lf-------ow-r2 _L_ I LL~+/-~-=f-= -~"

RESISTOR


=--:=~}~, ::ti: HAR~ I 1_w_ _ _1 0

j: SURGE Af1RE5TER w-a 9 i 1---~+/-==-i=~~~ ~~~T::T 1 GROUND lr---:-----+--r--~, ::r;~~:;~HAA.. !I 5Tfj w~ll  : 1--------- I~ ---------------------------------

I  : i E E i :-----------:-~------------- ------------------

DISCONNECT SWITCH

~=ili::g ~ ~$~!:~_.::_::_t :: .:,:::-~:~::~:-::~*j*j*t: __ : _

~~~i:'Ji~~:51~1;::1,B[~ 11  :  :  :  : --ESOFF D CIRCUIT BREAKER 0

"9 ffilP~l Ii 1 CAPACITOR H

n-1

~

1!111 1 WYE CONNECTION

,c:;;-,,

W-T3.1A,B,C W-T3.2A.B.C h~ ~~7-~2;-v------L DP~

j ~--"!___ ".!°________

B:- ~- - - -

I

~

HAR~ UNB B ----------.,-~-~-~------------l--~-J-,------------

I

-===i=~:~~ ~~~T~ ~'~"

LINE VCUAGE I : I

! I :

I I

I I I 1 -~- ----~1: _____:_____ ~_J _______ J__ 1:~H~IP~~ij11lo 1  :

I Ii

1 i!J DELTA CONNECTION

- =t, --- - -  :: I  :

1 POWER TRANSFORMEJ<

1 I I 1 ' J 1

1 ----: ---r------~----+-- --------:-- """'BTRIP~,:1:

w-nOA.B.c W-T11A.B.C

,~~o;,-~.~~"~====----=

'"' "-~**

--=-i*;H_~~-~==========~-:-t, I I I ' ---------- '

1-m~-------~

HARM' -  ! j i I II

I  :

-An<IP---~11

-BffilP~-- 1:

ruoe w-~2-1 ----------------------.l(j!Wsaam1PA>---

______________________ JI____ --<~&./B6B TRIP B>----1 1 1 '

_L_

B

.. LINE VOLTAGE I I:I :'1 1 I

86 B

I 1:

PKSC TCR AND TSC VALVE CONTROL PROTECTION SYS 4000.0., QkA OVERLOAD AND UNB.IJ.ANCE 0 I ... BSF RT1 1eoc D

'  : I  :  :

W-T20A,B,C ~LINE CURRENT RElAY SPA.I


~-- =~~~~T~OTECTION

' , ::~o:LI~

ll'-T21A.B.C  !

  • LOCK-OUT RELAY 11'-TJOA.B,C W-T31A.8,C I

1~--- ----------1-i-------------!

--:- I L'::"~-::::~;--~.::::f+=----=~--+-~- ::~;:

L:-------~----1-+-I ---------:- - - e a MULTIFUNCTION RELAY OPl! 2000R

\IOLTAGE UNBALANCE RELAY

: I  : J I .,_ E50FF f ---tr~--------.

1 t"""""""'-,~;.;;~;;,;,

HARMONIC CURRENT PROTECTION DEVICE

*: __________ :_::::::::::::::::::::::::::::::: _____ 1 1 '"" DEVICE OUTPUT I W-H1A.~C -CP~O~>----~~--=~---=---~=-----------------------------, I'  : I 1!

li ~

-- ~-~~=~=f=~=~~

DEVICE INPUT CONTROL PANEL L 1

'"" =.J 1I , !I INTERN""- INTERLOCK - PHSC c -~,:~--r-=-----, wn ~ ~=~=~+-------, J ~:::::; 0 II SPARK G>.P c

r:i'---11*  : r:i'---11* I:L -- ~ rl'---11*  : I n r

--1--~<> H1 ~-89G ---1-----Gifil:>------ H1 1SC-~9G FC-BSG  : - =~l::~T~

I I i

3Q00/5A c~oo TCR-T10A,B,C 112

I1 3000/!IA c.1-00 TSC-TlOA,B,C 112 STH HARM 7TH HA.Rt.I

______--::.:.:::::::.:::::- .,_LINE CURRENT

.. RESISTOR O/L OR OPEN CIRCUIT

~ ~AR :~-T10A.B.C  :~:T::~:: r~~~~~~~~~~~~1 ~~&~~~~ V~~~ gj~ THER~L 6 3-IS 6

00/5A - REACTOR 0/L TSC-F1 ~~USA H2 T200 H2 1 I- __ -:_--:_-:_--:_-:_ =~~~~ST~: V~~ gj~ REACTOR THERIML O/L

";;';,,u ,,_"
  • tr
-1 --~

2ll00/5A TCR-T11A,B.C ~;-:: r 2.5 n_  : '

L____;__f_L. ~

-t- -f C200 H2 1 1

' ' FC T22ABC

  • : ' i-,---'

~o?;--P:',~a>-

_l___

I ' ,,

I 60 n r

'°"-' *.W>m" rc-ul_ - l_ l_ -

Jic-c2  :

.. Cff'. CURRENT 1'

L 1 0

~j'- ~*1-n*~ L__;,'~,:',-~_;_,'~._l,-c,:

I T

....Lrsc_ ....Lrsc- .,_LINE CURRENT

'T'T12ABC 'T'T13A.BC 1

¢5o/5A ¢' $.i;SA _l__

t

_l__

_L 't

_l__

T FC--T11  ? FC-T21 HOTES:

'L __;_:________ tJ : ' L_~!~::~~==-:':'.::~~~~i~~~~:f-:-:-:-:-:-:-:-:-:t;:~'.~+:c'-:

'T100 I T100 1. SEE ABB POWER T&D CIJ.DRAWING 'DW-7021-f'SL02' FOR THE PROTECTION SCH£~£.

6.

i t__ ' .,_ C'J'. CURRENT 1 ~ :"'" c~~~rnT

2. THIS DRAWING CREATED FROM ABB #EC-E-1.

L_ ______ ,,~~I ~rsc_J

/\

A l_---- -GHSD- - - - -\=-------_-_-_-_~ -- --------------1 SI\JGLE LIN:_ ERA

'3VC I\JTE"'ICCl\j~JECTIO~S

' - e+---+---------+-+--+---+ CLINTO~I PO'NER STA-[Q\J L~IIT CLINTO~, ILLINOIS E02 1AP12 Nlll/kC~*1jj '"'" f- UE!

B I 7 I 13 I 5 I 4 I 3 I 2 I

Page 10