RC-14-0179, Calculation - DC00040-123 - Rod Ejection Accident - TSC

From kanterella
Jump to navigation Jump to search
Calculation - DC00040-123 - Rod Ejection Accident - TSC
ML14324A329
Person / Time
Site: Summer South Carolina Electric & Gas Company icon.png
Issue date: 07/30/2012
From: Feehan M
South Carolina Electric & Gas Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML14324A264 List:
References
LAR-13-02396, RC-14-0179 DC00040-123, Rev. 0
Download: ML14324A329 (133)


Text

ES-412 ATTACHMENT I PAGE 1 OF 2 REVISION 5 Subject Code SOUTH CAROLINA ELECTRIC AND GAS COMPANY 004 CALCULATION RECORD Page 1 of 126 Calculation Title Calculation Number Revision Status Rod Ejection Accident - TSC D000040-123 0 A Parent Document System Safety Class q Partial Calc. Revision ECR 50786 N/A q NN q QR SR Complete Calc. Revision Originator Discipline Organization Date XREF Number Michael Feehan AE WorleyParsons 07/30/2012 N/A CALCULATION INFORMATION Content

Description:

The calculation determines the impact of the Alternate Source Term (AST) on the new Nuclear Operations Building (NOB) VC Summer Unit 1 Technical Support Center (TSC) dose following a postulated Rod Ejection Accident. This analysis is performed in accordance with the requirements of Appendix H of the USNRC Regulatory Guide 1.183.

Affected Components/Calculations/Documents: FSAR Section 15.4.6 Piping Reconciliation Completed per QA-CAR-0089-18: qThis Revision q Previous Revision N/A Contains Preliminary Data/Assumptions: No q Yes, Affected Pages:

Computer Program Used: q No Yes, Validated per WorleyParsons computer program validation process (others) vendors name q Yes, Validated in accordance with SAP-1040/ES-413 (ref. 3.4 & 3.5) q Yes, Validated [ES-0412]

q Computer Program Validation Calculation VERIFICATION q Continued, Attachment Scope: Verify input, methodology, output and assure that the calculation is in compliance with ES-412 and addresses the work scope and deliverables documented in CGGS-11-114.

Verifier: Michael Waselus //.

Assigned by: Paul L. Bunker 7/s'/iz. ^c a^ l / ee lla,.+ 07^30120^2 Engineering Personnel /Date Owner' ceptance Review A

^/W^rt^ 7-30-^iZ 7a 247-Verifier/Date Responsible Engin er/Date Required for all engineering work performed by contractor personnel not enrolled in the VCSNS Engineering Training Program RECORDS t /^ Z To Records Mgmt: 11.1 kA/ 10 A roval/ ate Initials/Date Distribution: Calc'f?ile (Original)

ES-412 ATTACHMENT I PAGE 2 OF 2 REVISION 5 SOUTH CAROLINA ELECTRIC & GAS COMPANY REVISION

SUMMARY

Page 2 of 126 Calculation Number DC00040-123 Revision Number. Summary Description 0 Initial Revision

D000040-123, Revision 0 Page 3 of 126 TABLE OF CONTENTS DESCRIPTION PAGE

1.0 INTRODUCTION

.................................................................................................................. 5 1.1 Purpose .................................................................................................................................... 5 1.2 Objective ................................................................................................................................. 5 1.3 Acceptance Criteria ................................................................................................................. 5 1.4 Approach ................................................................................................................................. 6 2.0 ASSUMPTIONS ..................................................................................................................... 7 3.0 COMPUTER CODES ............................................................................................................. 9

4.0 REFERENCES

..................................................................................................................... 10 5.0 DESIGN INPUTS ................................................................................................................. 12 6.0 METHODOLOGY ............................................................................................................... 18 7.0 COMPUTATIONS ............................................................................................................... 20 7.1 Conservative Case- Containment Leakage ........................................................................... 20 7.1.1 Calculation of Activity Released to Containment ................................................................ 20 7.1.2 RADTRAD Input Description .............................................................................................. 23 7.2 Conservative Case - SG PORV Release ............................................................................... 25 7.2.1 Calculation of Activity Released to Environment ................................................................ 25 7.2.2 RADTRAD Input Description .............................................................................................. 30 8.0

SUMMARY

OF RESULTS ................................................................................................. 32 9.0 DISPOSITION OF RESULTS ............................................................................................. 32

D000040-123, Revision 0 Page 4 of 126 TABLE OF CONTENTS ATT. # DESCRIPTION PAGE 1 RADTRAD Models ...............................................................................................................33 2 Conservative Source Terms ...................................................................................................36 3 RADTRAD Source Input Files for Conservative Cases ........................................................52 4 RADTRAD Release Fraction Files ........................................................................................73 5 Containment Leakage - Conservative Case RADTRAD Input/Output File .......................... 76 6 SG PORV - Conservative Case RADTRAD Input/Output File ............................................97 7 Westinghouse Letter (Reference 4.20) ................................................................................114 8 Westinghouse Transmittal #CGE-93-0007SGUL (PS-CGE-0807) dated 3/1/93 ................118 9 Memo from D. Lengel to L. Cartin "Control Room Velocity Measurement Instrument Uncertainties" ....................................................................................................121 10 Telephone Conference Memo ..............................................................................................124 TABLE # DESCRIPTION PAGE 1 Core Activity at T = 0 ............................................................................................................12 2 Reactor Coolant Fission and Corrosion Specific Activity at Equilibrium .............................13 3 Fraction of Fission Product Inventory in the Gap Available for Release ..............................13 4 TSC & Offsite Atmospheric Dispersion Factors ...................................................................15 5 TSC & Offsite Breathing Rates .............................................................................................16 6 TSC Occupancy Factors ........................................................................................................16 7 Isotopic Decay Constants .......................................................................................................17 8 RADTRAD Input/Output File Identification .........................................................................19 9 Rod Ejection Dose in Rems TEDE ........................................................................................32

DO00040-123, Revision 0 Page 5 of 126

1.0 INTRODUCTION

1.1 PURPOSE The purpose of this calculation is to assess the impact of the Alternative Source Term (AST) of a Rod Ejection accident on the doses to Technical Support Center (TSC) personnel. This analysis was performed in accordance with the requirements of USNRC Regulatory Guide 1.183 (Reference 4.3). As a result of the accident, a small fraction of the core is assumed to melt and 10% of the fuel rods in the core are considered to fail and their gap activity is released to, and simultaneously mixed with, the reactor coolant.

The conservative analysis assumes that the plant is operating at equilibrium levels of radioactivity in the primary and secondary systems prior to the postulated rod ejection accident as a result of coincident fuel defects (1%) and steam generator tube leakage (1gpm).

Following the postulated rod ejection accident, two activity release pathways are analyzed to determine the radiological consequences of the accident. The first release pathway is via containment leakage of activity released to the containment from the reactor coolant. No credit is assumed for removal of iodine within containment by the reactor building sprays.

The second pathway is via the contaminated steam from the secondary system which is released through the relief valves since it is assumed that offsite power is lost. No mass transfer from the primary to the secondary system through steam generator tube leakage is assumed after system pressures are equalized.

1.2 OBJECTIVE The objective of this analysis is to demonstrate that the VCSNS design features, following the Rod Ejection accident, provide sufficient margin to ensure that the post accident TSC doses satisfy the IOCFR50.67 Accident Source Term criteria (Reference 4.1), 10CFR50 Appendix A, General Design Criteria (GDC) 19 (Reference 4.2), and the guidance in USNRC Regulatory Guide (RG) 1.183 (Reference 4.3).

1.3 ACCEPTANCE CRITERIA The TSC is to provide direct management and technical support to the control room during an accident; consequently it shall have the same radiological habitability as the control room under accident conditions. TSC personnel shall be protected from radiological hazards, including direct radiation and airborne radioactivity from in-plant sources under accident conditions, to the same degree as control room personnel.

The TSC acceptance criteria for the radiological consequences of this accident are the same as the control room radiation exposures; within the IOCFR50.67 limits; specifically:

Adequate radiation protection is provided to permit access to and occupancy of the TSC under accident conditions without personnel receiving radiation exposures in excess of 0.05 Sv (5 rem) total effective dose equivalent (TEDE) for the duration of the accident.

DO00040-123, Revision 0 Page 6 of 126 1.4 APPROACH To demonstrate the margin provided by the plant's design features in complying with the regulatory guidelines and requirements, a design basis analysis for the Rod Ejection accident is evaluated. The dose models used to calculate the TSC radiological consequences are based on those presented in RG 1.183. The RADTRAD computer code (Reference 4.4) is used to calculate the TSC doses. This code was developed for the NRC and is used to calculate radiation doses by simulating the movement of radioactivity through various regions of the Containment, its removal by various processes, and its leakage to the environment. The protected TSC operator doses from the inleakage of radioactive materials into the control building are calculated based upon a whole body geometry factor as described by Murphy-Campe (Reference 4.5).

DC00040-123, Revision 0 Page 7 of 126 2.0 ASSUMPTIONS 2.1 The analysis is consistent with the guidance provided in USNRC Regulatory Guide 1.183 (Reference 4.3, Appendix H).

2.2 Acceptable assumptions regarding core inventory and the release of radionuclides from the fuel are provided in Regulatory Position 3 and Appendix H of Reference 4.3. For the rod ejection accident, the release from the breached fuel is based on the estimate of the number of fuel rods breached, the radial peaking factor, and the assumption that 10% of the core inventory of the noble gases and iodines is in the fuel gap (Table 3, Note 11 of Reference 4.3). For conservative reasons, 12% of the alkali metals are assumed to be released from the gap (Table 3, Note 11 of Reference 4.3). The release attributed to fuel melting is based on the fraction of the fuel that reaches or exceeds the initiation temperature for fuel melting, the radial peaking factor, and Table 2 and Appendix H.1 of Reference 4.3. It is assumed that 100% of the noble gases and 25% of the iodines contained in that fraction are available for release from containment. For conservative reasons, it is also assumed that 30% of the alkali metals are available for release from containment. For the secondary system release pathway, 100% of the noble gases and 50% of the iodines in that fraction are released to the reactor coolant. For conservative reasons, it is also assumed that 50% of the alkali metals are available for release in that fraction, are released to the reactor coolant. (Reference 4.3, Appendix H.1).

23 Two release cases are to be considered. In the first, 100% of the activity released from the fuel should be assumed to be released instantaneously and homogeneously through the containment atmosphere. In the second, 100% of the activity released from the fuel should be assumed to be completely dissolved in the primary coolant and available for release to the secondary system (Reference 4.3, Appendix H.3).

2.4 The chemical form of radioiodine released to the containment atmosphere should be assumed to be 95% cesium iodide (CsI), 4.85% elemental iodine, and 0.15% organic iodide. If containment sprays do not actuate or are terminated prior to accumulating sump water, or if the containment sump pH is not controlled at values of 7 or greater, the iodine species should be evaluated on an individual case basis. Evaluations of pH should consider the effect of acids created during the rod ejection accident event, e.g., pyrolysis and radiolysis products.

With the exception of elemental and organic iodine and noble gases, fission products should be assumed to be in particulate form (Reference 4.3, Appendix H.4).

2.5 Iodine releases from the steam generators to the environment should be assumed to be 97%

elemental and 3% organic (Reference 4.3, Appendix H.5).

2.6 A reduction in the amount of radioactive material available for leakage from the containment that is due to natural deposition, containment sprays, recirculating filter systems, dual containments, or other engineered safety features may be taken into account. Refer to Appendix A to this guide for guidance on acceptable methods and assumptions for evaluating these mechanisms (Reference 4.3, Appendix H.6. 1). Credit is taken for natural deposition removal of aerosols using the RADTRAD 10% Power's model in this analysis.

D000040-123, Revision 0 Page 8 of 126 2.7 The containment should be assumed to leak at the rate incorporated in the technical specifications at peak accident pressure for the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, and at 50% of this leak rate for the remaining duration of the accident. Peak accident pressure is the maximum pressure defined in the technical specifications for containment leak testing. Leakage from sub atmospheric containments is assumed to be terminated when the containment is brought to a sub atmospheric condition as defined in technical specifications (Reference 4.3, Appendix H.6.2).

2.8 A leak rate equivalent to the primary-to-secondary leak rate limiting condition for operation specified in the technical specifications should be assumed to exist until shutdown cooling is in operation and releases from the steam generators have been terminated (Reference 4.3, Appendix H.7.1).

2.9 The density used in converting volumetric leak rates (e.g., gpm) to mass leak rates (e.g., lbm/hr) should be consistent with the basis of surveillance tests used to show compliance with leak rate technical specifications. These tests typically are based on cooled liquid. The facility's instrumentation used to determine leakage typically is located on lines containing cool liquids.

In most cases, the density should be assumed to be 1.0 gm/cc (62.4 lbm/ft3) (Reference 4.3, Appendix H.7.2).

2.10 All noble gas radionuclides released to the secondary system are assumed to be released to the environment without reduction or mitigation (Reference 4.3, Appendix H.7.3).

2.11 The transport model described in assumptions 5.5 and 5.6 of Appendix E should be utilized for iodine and particulates (Reference 4.3, Appendix H.7.4). Please note, since there is no steam generator failure, portions of Appendix E.5 are not applicable. Section E.6 does not apply because steam generator tube uncovery does not occur.

The primary-to-secondary leakage to the SGs is assumed to mix instantaneously and homogeneously with the secondary water without flashing.

The radioactivity in the secondary water is assumed to become a vapor at a rate that is the function of the steaming rate and the partition coefficient. A partition coefficient for iodine of 100 may be assumed. Although Reference 4.3, Appendix E, footnote 3 defines the partition coefficient in terms of 12, or elemental iodine, it is assumed that the factor of 100 is an overall partition coefficient, applicable to all iodine species. It is conservatively assumed that the partition coefficient for the alkali metals is 100, the same as the halogens.

2.12 No credit is taken for the pressure reducing effect of the pressurizer relief valves, pressurizer spray, steam dump or controlled feedwater flow after plant trip.

2.13 It is assumed that at the time of reactor trip, there is a loss of offsite power. This drives the release from the secondary coolant system through the steam generator atmospheric relief valves or safety valves, since condenser cooling is lost.

2.14 Isotopes considered in the AST radiological consequence analyses are restricted to the 60 isotopes addressed in the RADTRAD Computer Code (Reference 4.4).

D000040-123, Revision 0 Page 9 of 126 2.15 The release from the Reactor Building is assumed for the duration of the accident; 0 - 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />. The release from the secondary system as a result of steam dump through the relief valve to the atmosphere terminates at 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. At this point, no steam and activity are released to the environment.

2.16 Per Reference 4.3, Table 3, the non-LOCA fraction of fission products inventory in the gap is acceptable for use if the peak fuel bumup does not exceed 62,000 MWD/MTU and the maximum linear heat generation rate does not exceed 6.3 kw/ft. peak rod average power for burnups exceeding 54 GWD/MTU. To account for possible variation in burnup and rod power, the Table 3 non-LOCA fraction of fission products inventory in the gap is conservatively doubled based on Reference 4.15.

2.17 It is assumed that the TSC does not isolate for the Reactor Building release pathway or the steam generator release pathway for the duration of the accident. There is no filtration or reduction in the make-up air supply.

2.18 It is assumed that the mass and associated activity released for various time periods is linear.

3.0 COMPUTER CODES 3.1 RADTRAD version 3.03 validated by WorleyParsons 5/27/2003.

D000040-123, Revision 0 Page 10 of 126

4.0 REFERENCES

4.1 Title 10, Code of Federal Regulations Part 50.67, "Accident Source Term."

4.2 Title 10 Code of Federal Regulations Part 50 Appendix A, "General Design Criteria for Nuclear Power Plants", Criterion 19.

4.3 USNRC Regulatory Guide 1.183, July 2000, "Alternate Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors."

4.4 NUREG/CR-6604, "RADTRAD: A Simplified Model for Radionuclide Transport and Removal and Dose Estimation", December 1997 and NUREG/CR-6604 (SAND98-0272/1),

Supplements I & 2, "RADTRAD: A Simplified Model for Radionuclide Transport and Removal and Dose Estimation", June 8, 1999 & October 2002.

4.5 "Nuclear Power Plant Control Room Ventilation System Design for Meeting General Design Criteria GDC 19", K. G. Murphy and K. M. Campe, USAEC, 13th AEC Air Cleaning Conference, August 1974.

4.6 VCSNS Calculation D000040-111, Revision 0, "Short Term Accident X/Qs."

4.7 VCSNS Calculation D000040-079, Revision 3, "Atmospheric Dispersion Coefficients for Control Room."

4.8 Westinghouse Transmittal #CGE-93-0007SGUL (PS-CGE-0807) dated 3/1/93, Transmittal of VCSNS RSG/Uprating: Steam Release for Dose Analysis and Write-up for Source Terms (Attachment 8).

4.9 USNRC Regulatory Guide 1.49, "Power Levels of Nuclear Power Plants", Revision 1.

4.10 GMK Associates, Inc. drawings for VC Summer Nuclear Operations Building.

a. I MS-82-202 (A2.0) - "Basement Floor Plan", RO
b. 1MS-82-213 (A4.0) - "Building Sections", RO
c. I MS-82-700 (M2.0) - "Basement Plan HVAC Ductwork", RO
d. IMS-82-717 (M7.2) - "HVAC Schedules", RO 4.11 VC Summer Nuclear Operations Building, A/E Project #07023.05, "Project Manual Including Specifications Issued for Construction", GMK Associates, Inc., May 6, 2011.

4.12 Westinghouse Radiation Analysis Manual, Revision I for VCSNS Uprating updated 10/98 (attachment to letter CGE-98-036).

4.13 VCSNS Calculation D000040-038, Revision 4, "Iodine Spike."

4.14 Memo from D. Lengel to L. Cartin, "Control Room Velocity Measurement Instrument Uncertainties" (Attachment 9).

DO00040-123, Revision 0 Page 11 of 126 4.15 Byron Station, Unit Nos. land 2, and Braidwood Station, Unit Nos. I and 2 - Issuance of Amendments RE: Alternate Source Term (TAC nos. MC6221, MC6222, MC6223, and MC6224), issued September 8, 2006.

4.16 VCS Technical Specification Bases 3/4.4.5, Amendment 179.

4.17 NUREG-1465, "Accident Source Terms for Light-Water Nuclear Power Plants", February 1995.

4.18 VCSNS Calculation DC00040-005, Revision 4, "Secondary Coolant System Equilibrium Analysis."

4.19 VCSNS FSAR Section 15.4.6.

4.20 Westinghouse Letter PS-CGE-0823, dated March 10, 1993, Buddy B. Jolley, II to R. B.

Clarey concerning the rod ejection parameters for dose analysis (included as Attachment 7).

4.21 Telephone Conference Memo, dated 3/2/93, concerning VCSNS RSG/Uprating - NSSS/BOP Interface Information for Containment/Dose Analyses (included as Attachment 10).

4.22 VCSNS Calculation DC00040-103, Revision 0, "Calculation of Secondary Side Extended Mass Releases During Cooldown for AST Analyses."

4.23 "Radioactive Decay Data Tables - A Handbook of Decay Data for Application to Radiation Dosimetry and Radiological Assessments", David C. Kocher, 1981.

4.24 VCSNS Calculation DC00040-101, Revision 1, "Rod Ejection Accident - AST Analyses."

DC00040-123, Revision 0 Page 12 of 126 5.0 DESIGN INPUTS 5.1 Consistent with RG 1.183, Section 3.1 and Appendix H.1 (Reference 4.3) and Reference 4.9, the AST Rod Ejection dose analysis is performed at 102% of the core thermal power level (1.02 x the Original License Thermal Power of 2900 MWth), or 2958 MWth (Reference 4.12).

5.2 The core inventory of the radionuclide groups required for non-LOCA events, based on Tables 3 and 5 of Regulatory Position 3.0 of Reference 4.3, at 102% of the core thermal power is obtained from Reference 4.12 and reproduced below in Table 1. Please note, only the noble gas, halogen, and alkali metal isotopes required per References 4.3, 4.4, and 4.17 are included. Core inventories for the design basis source term are taken from Reference 4.12, Table 5-9. Iodine activity is increased by a factor of 2 to account for the Reference 4.12 TID-14844 release fraction.

Table 1: Core Activity at T = 0(1)

Activity Activity Isotope (Ci) Isoto pe (0)

Kr-85 8.30E+05 Xe-133 1.70E+08 Kr-85m 2.72E+07 Xe-135 3.70E+07 Kr-87 4.96E+07 Cs-134 1.01E+07 Kr-88 6.71E+07 Cs-136 3.08E+06 Rb-86 4.43E+04 Cs-137 5.66E+06 I-131 8.20E+07 1-132 1.20E+08 1-133 1.68E+08 1-134 1.80E+08 1-135 1.54E+08 (1). Please note, for conservative reasons, for all isotopes not included in Reference 4.12, the default core inventories from Table 1.4.3.2-2 of Reference 4.4, corrected to a core thermal power of 2958MWt, are included in this analysis. In addition, the noble gas and iodine core inventories from Reference 4.12 and the corrected core inventories from Reference 4.4 were compared and the larger of the two concentrations is used in this analysis.

The release fraction from the melted fuel is based on Attachment H and Regulatory Position 3.2, Table 2 of Reference 4.3, 100% for the nobles, 25% for the iodines, and 30% for the alkali metals for the containment release pathway and 100% for the nobles, 50% for the iodines, and 50% for the alkali metals for the steam generator release pathway. Per Reference 4.19, 0.25% of the core is conservatively assumed to experience fuel melt.

D000040-123, Revision 0 Page 13 of 126 5.3 Reactor coolant equilibrium fission and corrosion product specific activity, based on 1% fuel defects, is taken from Reference 4.12, Table 5-15 and summarized below for the applicable isotopes.

Table 2: Reactor Coolant Fission and Corrosion Product Specific Activity at Equilibrium Activity Activity Isotope Ci/ m Isotope Ci/ m Kr-85 7.6E+00 Xe-133 2.9E+02 Kr-85m 1.8E+00 Xe-135 8.6E+00 Kr-87 1.1E+00 Cs-134 4.4E+00 Kr-88 3.2E+00 Cs-136 4.5E+00 Rb-86 3.6E-02 Cs-137 2.1E+00 1-131 3.0E+00 1-132 3.1E+00 1-133 4.6E+00 1-134 6.0E-01 1-135 2.4E+00 5.4 The release fraction from the breached fuel is based on Regulatory Position 3.2, Table 3 (reproduced below as Table No. 3) and Note 11 of Reference 4.3 which specifies for the PWR rod ejection accident, the gap fractions are assumed to be 10% for iodines and noble gases. Per Section 2.16, the release fractions are conservatively doubled. The percent of the fuel rods breached is 10 percent per Reference 4.8. The release fractions from Table 3 are used in conjunction with the fission product inventory calculated with the maximum core radial peaking factor. The maximum radial peaking factor, which is also referred to as the peak integral pin power channel factor or nuclear enthalpy rise hot channel factor, for the core is 1.7, Reference 4.12.

Table 3: Fraction of Fission Product Inventory in the Gap Available for Release Corrected Group Fraction Fraction Noble Gases 0.10 0.20 Halogens 0.10 0.20 Alkali Metals 0.12 0.24 5.5 Per References 4.19, 4.20, 4.21, and 4.22:

Previous analysis evaluated a steam release from the 3 steam generators of 33,000 lbs (0 - 150 seconds). This analysis assumes the mass release is identical to the mass released utilized for the locked rotor analysis:

Steam released from the 3 steam generators is:

447,900 lbs (0 - 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />) 868,300 lbs (2 - 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />) 1,200,000 lbs (8 - 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />)

DO00040-123, Revision 0 Page 14 of 126 5.6 The dose acceptance criteria (References 4.1 & 4.3) is 5 Rem TEDE for the TSC.

5.7 Per Reference 4.12, the mass of the reactor coolant system is 1.8E+08 grams or 4.0E+05 lbs (1.8E+08 gm

  • 1 lb/454 gm).

5.8 Per Reference 4.12, Table 7.1 the total water mass of the three steam generators is 340,000 lbs.

5.9 Secondary coolant specific activity in uCi/lb, based on the technical specification limit of 0.1 uCi/gm of Dose Equivalent I-131 of the primary coolant specific activity from Section 5.1.4 of Reference 4.13 is provided below. Note that the specific activity is in units of uCi/lb.

1-131 3.93E+01 1-134 4.07E-04 1-132 2.90E-02 1-135 2.59E-01 1-133 5.74E+00 5.10 The VCSNS TSC design features include post accident isolation with filtered supply and pressurization. The following parameters are utilized in accessing the post-accident dose consequences to TSC personnel.

The total free volume of the TSC envelope located in the basement of the new Nuclear Operations Building (elevation 100') is 207,000 ft3 per Reference 4.10. The TSC envelope, consists of all the areas depicted on the basement floor plan (Reference 4.10.a) excluding the south stairwell and area way open to above (southwest corner). The area between column lines B and G.2 and 2 and the fire wall running north-south is approximately 80' by 110' or 8,800 ft2. The area between column lines B and V and the fire wall running north-south and 5 is approximately 36' by (200' - 12') or 6,768 ft2. The total area is 8,800 ft2 + 6,768 ft2 or 15,568 ft2.

The height of the TSC envelope is determined per Reference 4.10.b, Cross Section 3. The basement and first floor finished elevations of 100' and 120' are used. A first floor thickness of 1' is assumed. The total height is (120' - 1') - 100' or 19'. The total volume of the TSC envelope is 15,568 ft2

  • 19' or 295,792 ft3. It is assumed that 30 percent of the volume consists of components and/or structures, thus the total available free air volume is:

VTSC Envelope - 295 ,792 ft3

  • 0.7 or 2.07E+05 ft3 For this accident analysis, manual operator action is required for the TSC to function in the emergency mode of operation. Consequently, it is conservatively assumed that the TSC never enters the emergency mode of operation (no filtration of make-up air through through the filtered air handling unit FFU- 1.

TSC Normal Air Handling System flow rates, flow path and potential unfiltered leakage are determined below.

The Basement plan HVAC ductwork is provided in Reference 4.10.c. During normal operation, supply air enters the TSC envelope through the fan filter unit (FFU-1). The filters are by-passed and the make-up air is distributed throughout the TSC envelope with air handling unit AHU-0-1. Per Reference 4.10.d, AHU-0-1 has a capacity of 12,000 cfm.

D000040-123, Revision 0 Page 15 of 126 Per Reference 4.11, Section 15940 - HVAC sequence of operation is as follows:

3.09 Technical Support Center (TSC)

A. Non-Emergency Mode of Operation.

1. AHU-0-1 shall operate as specified for VAV air handling unit(s) with static pressure optimization.
2. Modulate return air damper in TSC space to maintain 1/8" wg positive pressure between the TSC space and the adjacent corridor.

Flow Rates under TSC Normal Operation Makeup air through AHU-0-1: 12,000 cfm It is assumed that the TSC does not isolate for the duration of the accident. A total of 13,000 cfm of unfiltered outside air is assumed to flow into and out of the TSC. 13,000 cfm conservatively bounds the expected design flow rate (AHU-0-1) of 12,000 cfm. The doses are conservatively calculated assuming no credit for filtration for the duration of the accident.

5.11 Reference 4.6 provides post-accident offsite x/Q's (sec/m3) at the EAB and LPZ. These values were utilized in other calculations to determine the offsite doses as a result of FSAR Chapter 15 design basis accidents. These X/Q's are included in the RADTRAD files as a "check" for model correctness.

Reference 4.7 Appendix 2 provides the post-accident X/Q's at the TSC. For conservative reasons, releases from Containment and through the safety release valves are assumed to be from the southwest corner of the Intermediate Building. TSC atmospheric dispersion factors are not adjusted to reflect the anticipated post-accident occupancy factors of Reference 4.3. Results are summarized in Table 4 below.

Table 4: TSC & Offsite Atmospheric Dispersion Factors Time TSC TSC Period EAB LPZ Cont. Release SG Release 0 - 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.24E-04 - 3.9E-05 3.9E-05 0 - 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2.42E-05 2 - 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 3.3E-05 3.3E-05 8 - 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.68E-05 1.6E-05 1.6E-05 1 - 4 days 7.55E-06 1.2E-05 1.2E-05 4 - 30 days 2.40E-06 8.7E-06 8.7E-06 (1) Note: These values have not been corrected for TSC occupancy.

DC00040-123, Revision 0 Page 16 of 126 5.12 Offsite and TSC breathing rates are per Reference 4.3, Sections 4.1.3, and 4.2.6.

Table 5: TSC & Offsite Breathing Rates Offsite EAB and LPZ) TSC Time Rate (m3/sec) Time Rate (m3/sec) 0-8 hr 3.5E-04 0-30 days 3.5E-04 8-24 hr 1.8E-04 1-30 days 2.3E-04 5.13 Per Reference 4.3, Section 4.2.6, TSC Occupancy Factors are as follows:

Table 6: TSC Occupancy Factors Time Occupancy Factor 0-24 hours 1.0 1-4 days 0.6 4-30 days 0.4 5.14 Containment Volume: The free air volume of the Reactor Building is given in FSAR Table 6.2-1 and is equal to 1.84E+06 ft3.

5.15 Containment Leak Rate: The design basis leakage rate for the Reactor Building is given in FSAR Table 6.2-1 as 0.2 percent/day for the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, reduced to 0.1 percent/day thereafter for the duration of the accident. Per Section 2.7, the leak rate may be reduced after the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> to 50% of the Technical Specification leak rate.

5.16 Technical specification maximum primary to secondary leak rate is 1.0 gpm (500.5013 lbs/hr) from all three intact steam generators per Reference 4.16. Per Reference 4.22, primary to secondary system pressures are equalized after 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, thus terminating primary to secondary leakage in the steam generators.

D000040-123, Revision 0 Page 17 of 126 5.17 Isotopic decay constants are taken from FSAR Table 15A-2 and Reference 4.23.

Table 7: Isotopic Decay Constants Decay Decay Constant Constant Isotope (1/sec) Isotope (1/sec)

Kr-85 2.04E-09 Xe-133 1.52E-06 Kr-85m 4.41E-05 Xe-135 2.11E-05 Kr-87 1.48E-04 Cs-134 1.07E-08 Kr-88 6.95E-05 Cs-136 6.10E-07 Rb-86 4.30E-07 Cs-137 7.28E-10 I-131 9.96E-07 1-132 8.26E-05 1-133 9.20E-06 1-134 2.20E-04 1-135 2.86E-05 (1) Rb-86 half-life = 18.66 days, Cs-134 half-life = 2.062 years (1) Cs-136 half-life = 13.16 days, Cs-137 half-life = 30.17 years

D000040-123, Revision 0 Page 18 of 126 6.0 METHODOLOGY Consistent with the current licensing basis, as discussed in the VCS UFSAR Section 15.4.6 and RG 1.183, Appendix H (Reference 4.3), this analysis considers two conservative events with 1 percent fuel defects with 10 percent failed fuel and 0.25% melted fuel.

Case 1: Containment Leakage For Case 1, the ejected control rod is assumed to breach the reactor pressure vessel (RPV),

effectively causing the equivalent of a small break loss of coolant accident. In this case, all activity from damaged fuel that has been mixed with the primary coolant of the reactor coolant system (RCS) leaks directly to the containment volume. This flashed release is assumed to instantaneously and homogeneously mix with the containment atmosphere and subsequently be available for release to the environment via a containment leak rate limit per Technical Specification limits at peak accident pressure for the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and reduced by 50% after 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, based on the containment pressure decreasing over time.

Case 2: Steam Generator Safety Relief Valves Release For Case 2, no breach of the RPV is assumed following the rod ejection. In this case, reactor coolant system (RCS) integrity is maintained and all activity from damaged fuel that has been mixed with the RCS leaks to the secondary side through the steam generator (SG) tubes at a technical specification limit rate of 1.0 gpm total leakage. Activity is available for release to the environment through steaming of the SG power operated relief valves (PORVs). In addition to the activity released from the primary to secondary coolant, iodine activity in the secondary coolant at the TS limit is also assumed to be released.

Utilizing the assumptions in Section 2.0 and the design input data presented in Section 5.0, the Rod Ejection accident is calculated in compliance with RG 1.183 (Reference 4.3). This evaluation is provided in Section 7.0.

The applicable design inputs, as previously presented, are used to model the Rod Ejection accident utilizing the RADTRAD computer code (Reference 4.4). The detailed description of the RADTRAD inputs can be found in Section 7.0. Attachment 2 provides the activity available for release to the environment from the breached fuel and existing equilibrium primary and secondary radioisotopic concentrations.

The conservative activities released to the containment and environment are input into RADTRAD NIF file (Attachment 3). Based on assumption 2.15, the containment leakage RFT file release time is set from 0 to 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> with 100 percent of the source available for release at T = 0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> and the SG PORV release RFT file release time is set from 0 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The release fractions for the 0 - 2, 2 - 8, and 8 - 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> time periods are based on the fraction of the activity released to the environment for a specified time period as a function of the total release of activity to the environment. The dose conversion factor INP file is the RADTRAD default file.

DO00040-123, Revision 0 Page 19 of 126 Table 8 summarizes the 3 cases analyzed.

Table 8: RADTRAD Input/Output File Identification Release Case Att. # File Name Containment Conservative 7 Containment Leakage - Conservative Case.oO Case 1 SGPORV Conservative 8 SG Dump - Conservative Case.oO Case 2

DC00040-123, Revision 0 Page 20 of 126 7.0 COMPUTATIONS 7.1 Conservative Case - Containment Leakage 7.1.1 Calculation of Activity Released to Containment Activity released to the containment results from 3 sources; (a) activity in the primary system based on 10% failed fuel with a gap release per Table 3, Note 11 of Reference 4.3, (b) activity in the primary system based on 0.25% melted fuel with a release per Appendix H.1 and Table 2 of Reference 4.3, and (c) equilibrium activity in the primary system based on 1% fuel defects.

Primary system reactor coolant activity release to the containment is calculated as follows:

A. The activity in the reactor core released from the gap, based on 10% failed fuel is calculated as follows:

The equilibrium activity in the reactor core is given in Section 5.2, Table 1.

Cp(ff) = Ac;

  • FG where:

Cp(ff) = activity of isotope i in the primary coolant in curies resulting from 10%

failed fuel Ac; = curies of isotope i in the core, including the uncertainty factor of 1.02 per Section 5.2, Table I FRP = maximum radial peaking factor assumed for damaged fuel assembly per Section 5.4 (unit less) 1.7

%FF = percent failed fuel per Section 5.4 (unit less)

= 10 percent FG = fraction of isotope i activity in damaged fuel rods that escapes as a gap release per Section 5.4 (unit less).

Using this methodology, the design basis activity released to the primary coolant as a result of 10% failed fuel is provided in Attachment 2.

D000040-123, Revision 0 Page 21 of 126 B. The activity in the reactor core released, based on melted fuel is calculated as follows:

The equilibrium activity in the reactor core is given in Section 5.2, Table 1.

Cp(fm) = Ac;

  • FG where:

Cp(fm) = activity of isotope i in the primary coolant in curies resulting from fuel melt Ac; curies of isotope i per core, including the uncertainty factor of 1.02 per Section 5.2, Table 1 FRP = maximum radial peaking factor assumed for damaged fuel assembly per Section 5.4 (unit less) 1.7

%FM = percent fuel melt per Section 5.2 (unit less) = 0.25%

FG fraction of isotope i activity in damaged fuel rods that reaches or exceeds initiation temperature for fuel melt release per Section 5.2 (unit less).

Using this methodology, the design basis activity released to the primary coolant as a result of fuel melt is provided in Attachment 2.

D000040-123, Revision 0 Page 22 of 126 C. Equilibrium reactor coolant activity based on 1% fuel defects is calculated as follows:

The equilibrium activity in the reactor coolant, based on I% fuel defects, is provided in Section 5.3, Table 2 in uCi/gm. Assuming 1 pound is equal to 454 grams and I curie is equal to IE+06 uCi, the equilibrium reactor coolant activity is converted to Ci. The activity in the reactor coolant is calculated as follows.

Cp(fd) = Aci

  • 454
  • I/IE+06
  • M where:

Cp(fd) = equilibrium activity of isotope i in the primary coolant in curies resulting from I% fuel defects Aci uCi/gm of isotope i in the primary. equilibrium reactor coolant (based on 1% fuel defects) per Section 5.3, Table 2 M = mass of primary reactor coolant per Section 5.7 is 4.00E+05 lbs The activity released to containment is the sum of the three sources calculated above. Release from the reactor building to the environment is per plant technical specification limits provided in Section 5.15.

Using this methodology, the design basis activity from the reactor building available for release to the environment for the time period 0 -720 hours at the plant technical specification limit is provided in Attachment 2.

Computer program RADTRAD source input file (NIF file) Design Containment Release.nif is created based on the activity available for release calculated above and provided in Attachment 3. The associated release fraction file (RFT file) Design Containment Release.rft is provided in Attachment 4.

DO00040-123, Revision 0 Page 23 of 126 7.1.2 RADTRAD Input Description A visual representation of the Rod Ejection event is given in Attachment 1 and developed below (per Sections 2.0, 5.0, 6.0, and 7.1.1).

The activity released to the environment is assumed to be released as a ground level release from the southwest corner of the Intermediate Building for the duration of the accident; 0 -

720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> (Section 2.15). All leakage (per technical specification limits) is immediately released to the environment without holdup, plateout, filtration, or dilution.

The RADTRAD model input consists of 3 volumes, 4 flow pathways, and 3 dose locations.

Source inventory (activity available for release to the environment) is input as a user defined NIF file provided in Attachment 3.

Release fractions and timing data for the Rod Ejection event are input as a user defined RFT file provided in Attachment 4.

7.1.2.1 RADTRAD Volume 1 represents the activity available for release to the environment from the Reactor Building:

  • Volume is 1.84E+06 ft3 (Section 5.14) 7.1.2.2 RADTRAD Volume 2 represents the Environment:
  • No input required 7.1.2.3 RADTRAD Volume 3 represents the TSC:
  • TSC habitability volume equals 2.07E+05 ft3 (Section 5.10) 7.1.2.4 RADTRAD Pathway 1 represents the activity release to the environs:
  • Release rate is per technical specification limits: 0.2 percent/day for the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, reduced to 0.1 percent/day thereafter for the duration of the accident (Section 5.15) 7.1.2.5 RADTRAD Pathway 2 represents the TSC Outside Air Makeup Pathway:
  • Normal Mode - Outside air intake equals 12,000 cfm 0 minutes through the duration of the accident (Section 5.10)
  • No Emergency Mode or Filtration 7.1.2.6 RADTRAD Pathway 3 represents the TSC Unfiltered Air Inleakage Pathway:
  • TSC unfiltered air inleakage is conservatively assumed to be 1,000 cfm 0 minutes through the duration of the accident (Section 5.10)
  • No filter is applied to this pathway (Section 5.10) 7.1.2.7 RADTRAD Pathway 4 represents the TSC Exhaust Air Pathway:
  • Exhaust air flow equals intake and inleakage, 12,000 cfm plus 1,000 cfm = 13,000 cfm 0 minutes through the duration of the accident (Section 5.10)
  • No filter is applied to this pathway (Section 5.10)

DC00040-123, Revision 0 Page 24 of 126 7.1.2.8 RADTRAD Dose Location 1 - EAB:

  • X/Q value per Table 4 used for 0 - 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />
  • Breathing rate values per Table No. 5 (0 - 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />) 7.1.2.9 RADTRAD Dose Location 2 - LPZ:
  • X/Q values per Table 4
  • Breathing rate values per Table 5 7.1.2.10 RADTRAD Dose Location 3- Protected TSC
  • X/Q values per Table 4
  • Breathing rate per Table 5
  • Occupancy values per Table 6 7.1.2.11 RADTRAD Source Term:
  • Use the user defined source inventory file Design Containment Release.nif. This file is determined in Attachment No. 2 and provided in Attachment 3.
  • Modeled power level as 1.000000 MWth-
  • Model isotopic decay and daughter in-growth
  • Use the user defined RADTRAD release fraction file, Design Containment Release.rft.
  • Use the default RADTRAD FGR 11 & 12 dose conversion factors for the MACCS 60 isotope inventory, Fgrl I& 12.inp
  • Iodine chemical fractions: aerosol - 0.9500, elemental - 0.0485, and organic - 0.00 15 7.1.2.12 RADTRAD Control Options:
  • Applicable Control Options are selected for the additional data supplied in the output printout The resulting RADTRAD output files (see Table 8) is: Containment Leakage - Conservative Case.oO (Attachment 5).

DC00040-123, Revision 0 Page 25 of 126 7.2 Conservative Case - SG PORV Release 7.2.1 Calculation of Activity Released to Environment Primary coolant activity released to the steam generators results from 3 sources; (a) activity in the primary system based on 10% failed fuel with a gap release per Table 3, Note 11 of Reference 4.3, (b) activity in the primary system based on 0.25% melted fuel with a release per Appendix H.1 and Table 2 of Reference 4.3, and (c) equilibrium activity in the primary system based on I% fuel defects.

Primary system reactor coolant activity release to the steam generators is calculated as follows:

A. The activity in the reactor core released from the gap, based on 10% failed fuel is calculated as follows:

The equilibrium activity in the reactor core is given in Section 5.2, Table 1.

Cp(ff) = Ac;

  • Fes, * %FF
  • FG where:

Cp(ff) = activity of isotope i in the primary coolant in curies resulting from 10%

failed fuel Act curies of isotope i in the core, including the uncertainty factor of 1.02 per Section 5.2, Table I FRP = maximum radial peaking factor assumed for damaged fuel assembly per Section 5.4 (unit less) 1.7

%FF = percent failed fuel per Section 5.4 (unit less) 10 percent FG fraction of isotope i activity in damaged fuel rods that escapes as a gap release per Section 5.4 (unit less).

Using this methodology, the design basis activity released to the primary coolant as a result of 10% failed fuel is provided in Attachment 2.

D000040-123, Revision 0 Page 26 of 126 B. The activity in the reactor core released, based on melted fuel is calculated as follows:

The equilibrium activity in the reactor core is given in Section 5.2, Table 1.

Cp(fm) = Ac1

  • FG where:

Cp(fm) = activity of isotope i in the primary coolant in curies resulting from melted fuel Ac; = curies of isotope i per core, including the uncertainty factor of 1.02 per Section 5.2, Table 1 FRP maximum radial peaking factor assumed for damaged fuel assembly per Section 5.4 (unit less) 1.7

%FM = percent fuel melt per Section 5.2 (unit less) = 0.25%

FG fraction of isotope i activity in damaged fuel rods that reaches or exceeds initiation temperature for fuel melt release per Section 5.2 (unit less).

Using this methodology, the design basis activity released to the primary coolant as a result of fuel melt is provided in Attachment 2.

D000040-123, Revision 0 Page 27 of 126 C. Equilibrium reactor coolant activity based on 1% fuel defects is calculated as follows:

The equilibrium activity in the reactor coolant, based on 1% fuel defects, is provided in Section 5.3, Table 2 in uCi/gm. Assuming 1 pound is equal to 454 grams and 1 curie is equal to 1E+06 uCi, the equilibrium reactor coolant activity is converted to Ci. The activity in the reactor coolant is calculated as follows.

Cp(fd) = Aci

  • 454* 1/1E+06
  • M where:

Cp(fd) = equilibrium activity of isotope i in the primary coolant in curies resulting from I% fuel defects Aci uCi/gm of isotope i in the primary equilibrium reactor coolant (based on 1% fuel defects) per Section 5.3, Table 2 M = mass of primary reactor coolant per Section 5.7 is 4.00E+05 lbs The activity released from the primary reactor coolant to the steam generator is calculated as follows:

D. Activity leaked to steam generator.

Csg=Cp* 1/M*Lp*PF*T Where:

Csg = primary system activity leaked to steam generator in Ci Cp = primary coolant concentration in Ci Cp = Cp(ff) + Cp(fm) + Cp(fd)

M = mass of the primary reactor coolant 4.00E+05 pounds, Section 5.7 Lp = primary to secondary leak rate, 1.0 gpm 1.0 gpm = 1 gal/min

  • 60 min/hr
  • 1 ft3/7.4805 gal
  • 62.4 lb/ft3 500.5013 lbs/hr The density of 62.4 lb/ft3 for the pressurized primary fluid for the primary to secondary leak rate is based on the guidance of Section 2.9 and utilized in the secondary coolant system equilibrium analysis (Reference 4.18).

PF = steam generator partition coefficient is 0.01 for iodines and alkali metals; no holdup for the noble gases (1), Section 2.11 T = time in hours Using this methodology, the design basis activity from the primary reactor coolant (based on 10% failed fuel, I% fuel defects, and 0.25% melted fuel) available for release to the environment is provided in Attachment 2 for the time periods 0 -2, 2 - 8, and 8 - 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at 1.0 gpm primary to secondary system leak rates.

D000040-123, Revision 0 Page 28 of 126 E. Secondary system activity is calculated utilizing the single member decay chain methodology of Reference 4.18, Section 1.2 assuming 1 pound is equal to 454 grams and 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is equal to 3600 seconds as follows:

Csg = Lp

  • Cp
  • 454/(Lb + k
  • Msg
  • 3600)

Csg = equilibrium activity concentration in secondary coolant for isotope i (uCi/Ib)

Lp = primary to secondary system leak rate (lb/hr). 1.0 gpm for the conservative case - Reference 4.18, Section 2.1(E):

1.0 gpm = 500.501303 lb/hr Cp = primary coolant activity concentration 1% fuel defects (uCi/gm)

Lb = steam generator blowdown (lbs/hr)

Conservative SG Blowdown = 12,756 lb/hr (Reference 4.16, Section 3.1.1)

X = isotope decay constant (1/sec), Section 5.17, Table 7 Msg = steam generator water mass (total of all 3 in lbs).

340,000 (Reference 4.12, Table 7-1)

Using this methodology, the design basis activity from the equilibrium secondary reactor coolant available for release is provided in Attachment 2.

F. The activity released from the equilibrium secondary reactor coolant to the environment is calculated as follows:

Activity Released = Cp

  • M / PF
  • IE+06 Cp = secondary equilibrium coolant concentration in uCi/lb M = mass of the steam release from the 3 steam generators. Per Section 5.5, 447,900 lbs (0 - 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />), 868,300 lbs (2 - 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />), and 1,200,000 lbs (8 - 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />) 1/IE+06 = conversion factor, uCi to Ci PF = steam generator partition coefficient is 0.01 for iodines and alkali metals; no holdup for the noble gases (1)

Using this methodology, the design basis activity from the equilibrium secondary reactor coolant (based on 1% fuel defects) released to the environment is provided in Attachment 2 for the time periods 0 -2, 2 - 8, and 8 - 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at 1.0 gpm primary to secondary system leak rates.

DC00040-123, Revision 0 Page 29 of 126 The total release from the steam generators to the environment is the sum of the primary and secondary releases for the 0 - 2, 2 - 8, and 8 - 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> time periods at 1.0 gpm primary to secondary system leak rates. Total releases as a function of time are presented in Attachment 2.

Computer program RADTRAD source input file (NIF file) Design SG Release.nif is created based on the released activity calculated above and provided in Attachment 3. One file is created; a 0 - 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> release for the I gpm primary to secondary leak rates. The release fractions for the 0 -2, 2 - 8, and 8 - 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> time periods are based on the fraction of the activity released to the environment for a specified time period as a function of the total release of activity to the environment. The associated release fraction file (RFT file) Design SG Release.rft is provided in Attachment 4.

DO00040-123, Revision 0 Page 30 of 126 7.2.2 RADTRAD Input Description A visual representation of the Rod Ejection event is given in Attachment I and developed below (per Sections 2.0, 5.0, 6.0, and 7.2.1).

The activity released to the environment is assumed to be released as a ground level release from the southwest corner of the Intermediate Building in a time period not to exceed 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> (Section 2.15). All leakage (steaming through either the steam generator atmospheric relief valves or safety valves) is immediately released to the environment without holdup, plateout, filtration, or dilution.

The RADTRAD model input consists of 3 volumes, 4 flow pathways, and 3 dose locations.

Source inventory (activity available for release to the environment) is input as user defined NIF file provided in Attachment 3 for the 0 - 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> time period for the 1.0 gpm primary to secondary reactor coolant leak rate.

Release fractions and timing data for the Rod Ejection event are input as a user defined RFT file provided in Attachment 4 for the 0 - 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> time period.

7.2.2.1 RADTRAD Volume I represents the activity available for release to the environment:

  • Volume is arbitrarily modeled as IE+04 ft3 (this has no impact on results) 7.2.2.2 RADTRAD Volume 2 represents the Environment:
  • No input required 7.2.2.3 RADTRAD Volume 3 represents the TSC:
  • TSC habitability volume equals 2.07E+05 ft3 (Section 5.10) 7.2.2.4 RADTRAD Pathway 1 represents the activity release to the environs:
  • Release rate is arbitrarily modeled as 1E+10 ft3 to ensure a complete release of the source (this is conservative). No removal mechanisms, such as filtration or holdup are assumed to reduce the source term.

7.2.2.5 RADTRAD Pathway 2 represents the TSC Outside Air Makeup Pathwa Normal Mode - Outside air intake equals 12,000 cfm 0 minutes through the duration of the accident (Section 5.10)

  • No Emergency Mode or Filtration 7.2.2.6 RADTRAD Pathway 3 represents the TSC Unfiltered Air Inleakage Pathway
  • TSC unfiltered air inleakage is conservatively assumed to be 1,000 cfm 0 minutes through the duration of the accident (Section 5.10)
  • No filter is applied to this pathway (Section 5.10) 7.2.2.7 RADTRAD Pathway 4 represents the TSC Exhaust Air Pathway:
  • Exhaust air flow equals intake and inleakage, 12,000 cfm plus 1,000 cfm = 13,000 cfm 0 minutes through the duration of the accident (Section 5.10)
  • No filter is applied to this pathway (Section 5.10)

DO00040-123, Revision 0 Page 31 of 126 7.2.2.8 RADTRAD Dose Location 1 - EAB:

  • X/Q value per Table 4 used for 0 - 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />
  • Breathing rate values per Table No. 5 (0 - 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />) 7.2.2.9 RADTRAD Dose Location 2 - LPZ:
  • X/Q values per Table 4
  • Breathing rate values per Table 5 7.2.2.10 RADTRAD Dose Location 3- Protected TSC
  • X/Q values per Table 4
  • Breathing rate per Table 5
  • Occupancy values per Table 6 7.2.2.11 RADTRAD Source Term:
  • Use the user defined source inventory file Design SG Release.nif for the I gpm primary to secondary leak rate. This file is determined in Attachment No. 2 and provided in Attachment 3.
  • Modeled power level as 1.0442 MWth, to obtain total I-131 activity release at 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, 1.0422 for increased inleakage case
  • Model isotopic decay and daughter in-growth
  • Use the user defined RADTRAD release fraction file, Design SG Release.rft.
  • Use the default RADTRAD FGR 11 & 12 dose conversion factors for the MACCS 60 isotope inventory, Fgrl l&12.inp
  • Iodine chemical fractions: aerosol - 0.0000, elemental - 0.9700, and organic - 0.0300 7.2.2.12 RADTRAD Control Options:
  • Applicable Control Options are selected for the additional data supplied in the output printout The resulting RADTRAD output files (see Table 8) is: SG Dump - Conservative Case.oO (Attachment 6).

D000040-123, Revision 0 Page 32 of 126 8.0

SUMMARY

OF RESULTS Table 9 summarizes the results of the conservative hypothetical accident scenarios.

Table 9: Rod Ejection Dose In Rems TEDE Case Inte rated Dose Rem - TEDE Attachment EAB LPZ TSC NRC Acceptance Criteria 6.3 6.3 5.0 Containment Release 1.31 1.46 2.13 7 SG PORV Release 0.77 0.68 0.76 8 Per Section 1.3, the dose acceptance criteria (References 4.1 & 4.3) for the Rod Ejection event is given as 5 Rem TEDE for the TSC. Based on the results of Table 9, the TSC doses resulting from the Rod Ejection event are acceptable.

The EAB and LPZ doses are the same as those provided in the AST Rod Ejection calculation D000040-101, Revision I (Reference 4.24).

9.0 DISPOSITION OF RESULTS The results of this calculation are incorporated into the VCSNS FSAR Section 15.4.6.

DO00040-123, Revision 0 Attachment 1 Page 33 of 126 Attachment 1 RADTRAD Models

D000040-123, Revision 0 Attachment 1 Page 34 of 126 RADTRAD Ro d Ejection Mode l Containm ent Release Volume 1 FP 2 - 12,000 cfm unfiltered makeup (0 -720 hr. Volume 3 Volu me 2 TSC Containment FP 1 Enviro nment Habit ability Volume 0.2%/day 0 - 24 hrs. Enve lope 0.1%/day 24 - 720 hrs.

1.84E+06 ft3 FP 3 - 1,000 cfm unfiltered inleakage (0 - 720 hr. (2.07E+05 ft)

FP 4 - TSC exhaust: makeup plus unfiltered inleakage 13,000 cfm (0 - 720 hr.)

D000040-123, Revision 0 Attachment 1 Page 35 of 126 RADTRAD Rod Ejection Model SG PORV Release Volume 1 FP 2 - 12,000 cfm unfiltered makeup (0 - 720 hr.), Volume 3 Source FP 1 Volume 2 TSC Volume 1.0E+10 cfm Habitability (arbitrary flow rate) Environment Envelope 1.0+04 ft3 No filtration or holdup FP 3 - 1,000 cfm unfiltered inleakage (0 - 720 hr. (2.07E+05 ft3)

(arbitrary volume)

FP 4 - TSC exhaust: makeup plus unfiltered inleakage 13,000 cfm (0 - 720 hr.)

DO00040-123, Revision 0 Attachment 2 Page 36 of 126 Attachment 2 Conservative Source Terms

DO00040-123, Revision 0 Attachment 2 Page 37 of 126 Containment Release Calculation of Activity Released to the Primary Reactor Coolant 10% Failed Fuel from the Gap (Conservative Case Only)

Core(') Radial Percent Available Gap Primary RC Activity Peaking Failed Gap Activity Release Activity Isotopes Ci Factor (2) Fuel(2) Ci Fraction (3) Ci Kr-85 8.30E+05 1.7 0.1 1.41E+05 0.2 2.82E+04 Kr-85m 2.72E+07 1.7 0.1 4.62E+06 0.2 9.25E+05 Kr-87 4.96E+07 1.7 0.1 8.43E+06 0.2 1.69E+06 Kr-88 6.71E+07 1.7 0.1 1.14E+07 0.2 2.28E+06 Rb-86 4.43E+04 1.7 0.1 7.53E+03 0.24 1.81E+03 1-131 8.20E+07 1.7 0.1 1.39E+07 0.2 2.79E+06 1-132 1.20E+08 1.7 0.1 2.04E+07 0.2 4.08E+06 1-133 1.68E+08 1.7 0.1 2.86E+07 0.2 5.71E+06 1-134 1.80E+08 1.7 0.1 3.06E+07 0.2 6.12E+06 1-135 1.54E+08 1.7 0.1 2.62E+07 0.2 5.24E+06 Xe-133 1.70E+08 1.7 0.1 2.89E+07 0.2 5.78E+06 Xe-135 3.70E+07 1.7 0.1 6.29E+06 0.2 1.26E+06 Cs-134 1.01E+07 1.7 0.1 1.72E+06 0.24 4.12E+05 Cs-136 3.08E+06 1.7 0.1, 5.24E+05 0.24 1.26E+05 Cs-137 5.66E+06 1.7 0.1 9.62E+05 0.24 2.31E+05 Notes:

1. Section 5.2, Table 1
2. Section 5.4
3. Section 5.4, Table 3

D000040-123, Revision 0 Attachment 2 Page 38 of 126 Containment Release Calculation of Activity Released to the Primary Reactor Coolant Melted Fuel (Conservative Case Only)

Core(') Radial Percent Fuel Primary RC Activity Peaking Melted Fraction Activity Isotopes Ci Factor (2) Fuel(s) Release^4) Ci Kr-85 8.30E+05 1.7 0.0025 1 3.53E+03 Kr-85m 2.72E+07 1.7 0.0025 1 1.16E+05 Kr-87 4.96E+07 1.7 0.0025, 1 2.11E+05 Kr-88 6.71 E+07 1.7 0.0025 1 2.85E+05 Rb-86 4.43E+04 1.7 0.0025 0.3 5.65E+01 I-131 8.20E+07 1.7 0.0025 0.25 8.71E+04 I-132 1.20E+08 1.7 0.0025 0.25 1.28E+05 I-133 1.68E+08 1.7 0.0025 0.25 1.79E+05 I-134 1.80E+08 1.7 0.0025 0.25 1.91E+05 I-135 1.54E+08 1.7 0.0025 0.25 1.64E+05 Xe-133 1.70E+08 1.7 0.0025 1 7.23E+05 Xe-135 3.70E+07 1.7 0.0025 1 1.57E+05 Cs-134 1.01E+07 1.7 0.0025 0.3 1.29E+04 Cs-136 3.08E+06 1.7 0.0025 0.3 3.93E+03 Cs-137 5.66E+06 1.7 0.0025 0.3 7.22E+03 Notes:

1. Section 5.2, Table 1
2. Section 5.4
3. Section 5.2
4. Section 5.2

D000040-123, Revision 0 Attachment 2 Page 39 of 126 Containment Release Calculation of Total Primary Coolant Activity Based on 1% Fuel Defects (Conservative Case Only) 1% FD Primary Primary Primary Primary Coolant Coolant Coolant Coolant Concentration(') Concentration (2) Mass (3 Activity sotopes uCi/gm Ci/Ib Ibm Ci Kr-85 7.60E+00 3.45E-03 4.00E+05 1.38E+03 Kr-85m 1.80E+00 8.17E-04 4.00E+05 3.27E+02 Kr-87 1.10E+00 4.99E-04 4.00E+05 2.00E+02 Kr-88 3.20E+00 1.45E-03 4.00E+05 5.81E+02 Rb-86 3.60E-02 1.63E-05 4.00E+05 6.54E+00 1-131 3.00E+00 1.36E-03 4.00E+05 5.45E+02 1-132 3.10E+00 1.41 E-03 4.00E+05 5.63E+02 1-133 4.60E+00 2.09E-03 4.00E+05 8.35E+02 1-134 6.00E-01 2.72E-04 4.00E+05 1.09E+02 1-135 2.40E+00 1.09E-03 4.00E+05 4.36E+02 Xe-133 2.90E+02 1.32E-01 4.00E+05 5.27E+04 Xe-135 8.60E+00 3.90E-03 4.00E+05 1.56E+03 Cs-134 4.40E+00 2.00E-03 4.00E+05 7.99E+02 Cs-136 4.50E+00 2.04E-03 4.00E+05 8.17E+02 Cs-137 2.10E+00 9.53E-04 4.00E+05 3.81E+02 Notes:

1. Section 5.3, Table 2, based on 1 % fuel defect
2. Conversion Factor = 454 gm/lb
  • 1 Ci/1 E+06 uCi
3. Section 5.7

D000040-123, Revision 0 Attachment 2 Page 40 of 126 Containment Release Total Primary Coolant Activity Available for Release from Containment Total Activity Released to Coolant(')

sotopes Ci Kr-85 3.31 E+04 Kr-85m 1.04E+06 Kr-87 1.90E+06 Kr-88 2.57E+06 Rb-86 1.87E+03 1-131 2.88E+06 1-132 4.21E+06 1-133 5.89E+06 1-134 6.31E+06 1-135 5.40E+06 Xe-133 6.56E+06 Xe-135 1.42E+06 Cs-134 4.26E+05 Cs-136 1.30E+05 Cs-137 2.39E+05 Notes:

1. 10% failed fuel + melted fuel + 1 % fuel defect

D000040-123, Revision 0 Attachment 2 Page 41 of 126 SG Dump Calculation of Activity Released to the Primary Reactor Coolant 10% Failed Fuel from the Gap (Conservative Case Only)

Core(') Radial Percent Available Gap Primary RC Activity Peaking Failed Gap Activity Release Activity Isotopes Ci Factor (2) Fuel") Ci Fraction (3) Ci Kr-85 8.30E+05 1.7 0.1 1.41 E+05 0.2 2.82E+04 Kr-85m 2.72E+07 1.7 0.1 4.62E+06 0.2 9.25E+05 Kr-87 4.96E+07 1.7 0.1 8.43E+06 0.2 1.69E+06 Kr-88 6.71E+07 1.7 0.1 1.14E+07 0.2 2.28E+06 Rb-86 4.43E+04 1.7 0.1 7.53E+03 0.24 1.81E+03 1-131 8.20E+07 1.7 0.1 1.39E+07 0.2 2.79E+06 1-132 1.20E+08 1.7 0.1 2.04E+07 0.2 4.08E+06 1-133 1.68E+08 1.7 0.1 2.86E+07 0.2 5.71 E+06 1-134 1.80E+08 1.7 0.1 3.06E+07 0.2 6.12E+06 1-135 1.54E+08 1.7 0.1 2.62E+07 0.2 5.24E+06 Xe-133 1.70E+08 1.7 0.1 2.89E+07 0.2 5.78E+06 Xe-135 3.70E+07 1.7 0.1 6.29E+06 0.2 1.26E+06 Cs-134 1.01E+07 1.7 0.1 1.72E+06 0.24 4.12E+05 Cs-136 3.08E+06 1.7 0.1 5.24E+05 0.24 1.26E+05 Cs-137 5.66E+06 1.7 0.1 9.62E+05 0.24 2.31E+05 Notes:

1. Section 5.2, Table 1
2. Section 5.4
3. Section 5.4, Table 3

D000040-123, Revision 0 Attachment 2 Page 42 of 126 SG Dump Calculation of Activity Released to the Primary Reactor Coolant Melted Fuel (Conservative Case Only)

Core(1) Radial Percent Fuel Primary RC Activity Peaking Melted Fraction Activity Isotopes Ci Factor (2) Fuel (3) Release(4) Ci Kr-85 8.30E+05 1.7 0.0025 1 3.53E+03 Kr-85m 2.72E+07 1.7 0.0025 1 1.16E+05 Kr-87 4.96E+07 1.7 0.0025 1 2.11E+05 Kr-88 6.71E+07 1.7 0.0025 1 2.85E+05 Rb-86 4.43E+04 1.7 0.0025 0.5 9.41E+01 1-131 8.20E+07 1.7 0.0025 0.5 1.74E+05 1-132 1.20E+08 1.7 0.0025 0.5 2.55E+05 1-133 1.68E+08 1.7 0.0025 0.5 3.57E+05 1-134 1.80E+08 1.7 0.0025 0.5 3.83E+05 1-135 1.54E+08 1.7 0.0025 0.5 3.27E+05 Xe-133 1.70E+08 1.7 0.0025 1 7.23E+05 Xe-135 3.70E+07 1.7 0.0025 1 1.57E+05 Cs-134 1.01E+07 1.7 0.0025 0.5 2.15E+04 Cs-136 3.08E+06 1.7 0.0025 0.5 6.55E+03 Cs-137 5.66E+06 1.7 0.0025 0.5 1.20E+04 Notes:

1. Section 5.2, Table 1
2. Section 5.4
3. Section 5.2
4. Section 5.2

D000040-123, Revision 0 Attachment 2 Page 43 of 126 SG Dump Calculation of Primary Coolant Activity Based on 1% Fuel Defects (Conservative Case Only) 1% FD Primary Primary Primary Primary Coolant Coolant Coolant Coolant Concentration(') Concentration (2) Mass (3 Activity sotopes uCi/gm Ci/lb Ibm Ci Kr-85 7.60E+00 3.45E-03 4.00E+05 1.38E+03 Kr-85m 1.80E+00 8.17E-04 4.00E+05 3.27E+02 Kr-87 1.10E+00 4.99E-04 4.00E+05 2.00E+02 Kr-88 3.20E+00 1.45E-03 4.00E+05 5.81E+02 Rb-86 3.60E-02 1.63E-05 4.00E+05 6.54E+00 1-131 3.00E+00 1.36E-03 4.00E+05 5.45E+02 1-132 3.10E+00 1.41 E-03 4.00E+05 5.63E+02 1-133 4.60E+00 2.09E-03 4.00E+05 8.35E+02 1-134 6.00E-01 2.72E-04 4.00E+05 1.09E+02 1-135 2.40E+00 1.09E-03 4.00E+05 4.36E+02 Xe-133 2.90E+02 1.32E-01 4.00E+05 5.27E+04 Xe-135 8.60E+00 3.90E-03 4.00E+05 1.56E+03 Cs-134 4.40E+00 2.00E-03 4.00E+05 7.99E+02 Cs-136 4.50E+00 2.04E-03 4.00E+05 8.17E+02 Cs-137 2.10E+00 9.53E-04 4.00E+05 3.81E+02 Notes:

1. Section 5.3, Table 2, based on 1 % fuel defect
2. Conversion Factor = 454 gm/lb
  • 1 Ci/1 E+06 uCi.
3. Section 5.7

D000040-123, Revision 0 Attachment 2 Page 44 of 126 SG Dump Calculation of Activity Release to the Environment from Primary Reactor Coolant in the Steam Generator During this Event - 1.0 GPM - SG PORV Release Total Activity Primary Primary Activity Released Coolant Coolant Leak Released to Coolant(') Mass (2) Concentration Rate (3) Rate sotopes Ci lbs Ci/Ib lb/hr Ci/hr Kr-85 3.31E+04 4.00E+05 8.28E-02 500.5013 4.15E+01 Kr-85m 1.04E+06 4.00E+05 2.60E+00 500.5013 1.30E+03 Kr-87 1.90E+06 4.00E+05 4.74E+00 500.5013 2.37E+03 Kr-88 2.57E+06 4.00E+05 6.42E+00 500.5013 3.21E+03 Rb-86 1.91E+03 4.00E+05 4.77E-03 500.5013 2.39E+00 1-131 2.96E+06 4.00E+05 7.41E+00 500.5013 3.71E+03 1-132 4.34E+06 4.00E+05 1.08E+01 500.5013 5.42E+03 1-133 6.07E+06 4.00E+05 1.52E+01 500.5013 7.59E+03 1-134 6.50E+06 4.00E+05 1.63E+01 500.5013 8.14E+03 1-135 5.56E+06 4.00E+05 1.39E+01 500.5013 6.96E+03 Xe-133 6.56E+06 4.00E+05 1.64E+01 500.5013 8.20E+03 Xe-135 1.42E+06 4.00E+05 3.54E+00 500.5013 1.77E+03 Cs-134 4.34E+05 4.00E+05 1.09E+00 500.5013 5.43E+02 Cs-136 1.33E+05 4.00E+05 3.33E-01 500.5013 1.66E+02 Cs-137 2.43E+05 4.00E+05 6.08E-01 500.5013 3.04E+02 Notes:

1. 10% failed fuel + melted fuel + 1 % fuel defect
2. Section 5.7
3. Section 5.16 (1 gpm)

D000040-123, Revision 0 Attachment 2 Page 45 of 126 SG Dump Calculation of Activity Released as a Function of Time to the Environment from Primary Coolant in the Steam Generator - 1.0 GPM Leakage - SG PORV Release Activity Activity Activity Activity Activity Not Activity Not Activity Not Released Released Released Released Released Released Released 8-24 Rate artition 0 - 2 Hrs 0 - 2 Hrs 2 - 8 Hrs 2 - 8 Hrs Hrs 8 - 24 Hrs sotopes Ci/hr Fraction') Ci Ci Ci Ci Ci Ci Kr-85 4.15E+01 1 8.29E+01 0.00E+00 2.49E+02 0.00E+00 6.63E+02 0.00E+00 Kr-85m 1.30E+03 1 2.60E+03 0.00E+00 7.81 E+03 0.00E+00 2.08E+04 0.00E+00 Kr-87 2.37E+03 1 4.75E+03 0.00E+00 1.42E+04 0.00E+00 3.80E+04 0.00E+00 Kr-88 3.21 E+03 1 6.42E+03 0.00E+00 1.93E+04 0.00E+00 5.14E+04 0.00E+00 Rb-86 2.39E+00 0.01. 4.78E-02 4.73E+00 1.43E-01 1.42E+01 3.82E-01 3.78E+01 1-131 3.71E+03 0.01 7.41E+01 7.34E+03 2.22E+02 2.20E+04 5.93E+02 5.87E+04 1-132 5.42E+03 0.01 1.08E+02 1.07E+04 3.25E+02 3.22E+04 8.68E+02 8.59E+04 1-133 7.59E+03 0.01 1.52E+02 1.50E+04 4.56E+02 4.51E+04 1.22E+03 1.20E+05 1-134 8.14E+03 0.01 1.63E+02 1.61E+04 4.88E+02 4.83E+04 1.30E+03 1.29E+05 1-135 6.96E+03 0.01 1.39E+02 1.38E+04 4.18E+02 4.14E+04 1.11E+03 1.10E+05 Xe-133 8.20E+03 1 1.64E+04 0.00E+00 4.92E+04 0.00E+00 1.31E+05 0.00E+00 Xe-135 1.77E+03 1 3.55E+03 0.00E+00 1.06E+04 0.00E+00 2.84E+04 0.00E+00 Cs-134 5.43E+02 0.01 1.09E+01 1.08E+03 3.26E+01 3.23E+03 8.70E+01 8.61E+03 Cs-136 1.66E+02 0.01 3.33E+00 3.30E+02 9.99E+00 9.89E+02 2.66E+01 2.64E+03 Cs-137 3.04E+02 0.01 6.09E+00 6.03E+02 1.83E+01 1.81 E+03 4.87E+01 4.82E+03 Notes:

1. Section 2.11

D000040-123, Revision 0 Attachment 2 Page 46 of 126 SG Dump Secondary Coolant Specific Activity based on Reference 4.14, Table 5-15 LB(1) Conservative SG Blowdown = 12756 Ibm/hr MSG (1) Water Mass in All 3 SGs = 340000 Ibm Lp(1) Leak Rate = 1 gpm = 500.501303 Ibm/hr Sec. Coolant Eq. Conc.

Decay (2) RC(3) Cs uCi/lb 4 5 Constant Concentration 1 Isotopes 1/sec Ci/ m m Rb-86 4.30E-07 3.60E-02 6.16E-01 1-131 9.96E-07 3.00E+00 4.88E+01 1-132 8.26E-05 3.10E+00 6.19E+00 1-133 9.20E-06 4.60E+00 4.35E+01 1-134 2.20E-04 6.00E-01 4.83E-01 1-135 2.86E-05 2.40E+00 1.14E+01 Cs-134 1.07E-08 4.40E+00 7.83E+01 Cs-136 6.10E-07 4.50E+00 7.57E+01 Cs-137 7.28E-10 2.10E+00 3.74E+01 Notes:

1. Sections 7.1.1(B) & 7.2.1(B)
2. Section 5.17, Table 7
3. Reference 4.14, Table 5-15
4. RC concentrations based on 1 % failed fuel. Conservative case assumes 1% failed fuel.
5. Methodology per Sections 7.1.1 and 7.2.1 B

D000040-123, Revision 0 Attachment 2 Page 47 of 126 SG Dump Calculation of Activity Released as a Function of Time to the Environment from Secondary Coolant in the Steam Generator - 1.0 GPM Leakage (0 - 2 Hrs.)

Activity I GPM Leakage Total Available Activity Not Activity Activity Secondary Mass Release for Released to Available Released to Equilibrium Rate Release Environment for Release Environment Concentration 0 - 2 Hrs. 0 - 2 Hrs. 0 - 2 Hrs. 0 - 2 Hrs. artition 0 - 2 Hrs.

sotopes uCi/Ib Ibm(') Ci Ci Ci Factor (2 Ci Rb-86 6.16E-01 447900 2.76E-01 4.73E+00 5.00E+00 100 5.00E-02 1-131 4.88E+01 447900 2.18E+01 7.34E+03 7.36E+03 100 7.36E+01 1-132 6.19E+00 447900 2.77E+00 1.07E+04 1.07E+04 100 1.07E+02 1-133 4.35E+01 447900 1.95E+01 1.50E+04 1.51E+04 100 1.51E+02 1-134 4.83E-01 447900 2.17E-01 1.61E+04 1.61E+04 100 1.61E+02 1-135 1.14E+01 447900 5.11E+00 1.38E+04 1.38E+04 100 1.38E+02 Cs-134 7.83E+01 447900 3.51E+01 1.08E+03 1.11E+03 100 1.11E+01 Cs-136 7.57E+01 447900 3.39E+01 3.30E+02 3.63E+02 100 3.63E+00 Cs-137 3.74E+01 447900 1.68E+01 6.03E+02 6.20E+02 100 6.20E+00 Notes:

1. Section 5.5
2. Section 2.9

D000040-123, Revision 0 Attachment 2 Page 48 of 126 SG Dump Calculation of Activity Released as a Function of Time to the Environment from Secondary Coolant in the Steam Generator - 1.0 GPM Leakage (2 - 8 Hrs.)

Activity 1 GPM Leakage Total Available Activity Not Activity Activity Secondary Mass Release for Released to Available Released to Equilibrium Rate Release Environment for Release Environment Concentration 2 - 8 Hrs. 2 - 8 Hrs. 2 - 8 Hrs. 2 - 8 Hrs. artition 2 - 8 Hrs.

sotopes uCi/Ib Ibm(l) Ci Ci Ci Factor (2 Ci Rb-86 6.16E-01 868300 5.35E-01 1.42E+01 1.47E+01 100 1.47E-01 1-131 4.88E+01 868300 4.24E+01 2.20E+04 2.21E+04 100 2.21E+02 1-132 6.19E+00 868300 5.37E+00 3.22E+04 3.22E+04 100 3.22E+02 1-133 4.35E+01 868300 3.78E+01 4.51E+04 4.52E+04 100 4.52E+02 1-134 4.83E-01 868300 4.20E-01 4.83E+04 4.83E+04 100 4.83E+02 1-135 1.14E+01 868300 9.91E+00 4.14E+04 4.14E+04 100 4.14E+02 Cs-134 7.83E+01 868300 6.80E+01 3.23E+03 3.30E+03 100 3.30E+01 Cs-136 7.57E+01 868300 6.58E+01 9.89E+02 1.05E+03 100 1.05E+01 Cs-1.37 3.74E+01 868300 3.25E+01 1.81E+03 1.84E+03 100 1.84E+01 Notes:

1. Section 5.5
2. Section 2.9

D000040-123, Revision 0 Attachment 2 Page 49 of 126 SG Dump Calculation of Activity Released as a Function of Time to the Environment from Secondary Coolant in the Steam Generator - 1.0 GPM Leakage (8 - 24 Hrs.)

1 GPM Activity Leakage Total Available Activity Not Activity Activity Mass Secondary Release for Released to Available Released to for Equilibrium Rate Release Environment Release Environment 8-24 8-24 Concentration 8 - 24 Hrs. Hrs. 8 - 24 Hrs. Hrs. Partition 8 - 24 Hrs.

Isotopes uCi/Ib lbm0) Ci Ci Ci Factor (2) Ci Rb-86 6.16E-01 1.20E+06 7.39E-01 3.78E+01 3.86E+01 100 3.86E-01 1-131 4.88E+01 1.20E+06 5.85E+01 5.87E+04 5.88E+04 100 5.88E+02 1-132 6.19E+00 1.20E+06 7.42E+00 8.59E+04 8.59E+04 100 8.59E+02 1-133 4.35E+01 1.20E+06 5.22E+01 1.20E+05 1.20E+05 100 1.20E+03 1-134 4.83E-01 1.20E+06 5.80E-01 1.29E+05 1.29E+05 100 1.29E+03 1-135 1.14E+01 1.20E+06 1.37E+01 1.10E+05 1.10E+05 100 1.10E+03 Cs-134 7.83E+01 1.20E+06 9.40E+01 8.61 E+03 8.70E+03 100 8.70E+01 Cs-136 7.57E+01 1.20E+06 9.09E+01 2.64E+03 2.73E+03 100 2.73E+01 Cs-137 3.74E+01 1.20E+06 4.49E+01 4.82E+03 4.87E+03 100 4.87E+01 Notes:

1. Section 5.5
2. Section 2.9

D000040-123, Revision 0 Attachment 2 Page 50 of 126 SG Dump Calculation of Total Activity (Primary & Secondary) Released as a Function of Time to the Environment from the Steam Generators - 1.0 GPM Leakage - SG PORV Release Primary Secondary Total Primary Secondary Total Primary Secondary Total Total Total Coolant Coolant Total Coolant Coolant Total Total Coolant Coolant Activity Activity Activity Activity Activity Activity Activity Activity Activity Activity Release Release Release Release Release Release Release Release Release Release 0 - 2 Hrs. 0 - 2 Hrs. 0 - 2 Hrs. 2 - 8 Hrs. 2 - 8 Hrs. 2 - 8 Hrs. 8 - 24 Hrs. 8 - 24 Hrs. 8 - 24 Hrs. 0 - 24 Hrs.

uclide Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Kr-85 8.29E+01 0.00E+00 8.29E+01 2.49E+02 0.00E+00 2.49E+02 6.63E+02 0.00E+00 6.63E+02 9.95E+02 Kr-85m 2.60E+03 0.00E+00 2.60E+03 7.81E+03 0.00E+00 7.81E+03 2.08E+04 0.00E+00 2.08E+04 3.13E+04 Kr-87 4.75E+03 0.00E+00 4.75E+03 1.42E+04 0.00E+00 1.42E+04 3.80E+04 0.00E+00 3.80E+04 5.70E+04 Kr-88 6.42E+03 0.00E+00 6.42E+03 1.93E+04 0.00E+00 1.93E+04 5.14E+04 0.00E+00 5.14E+04 7.71E+04 Rb-86 4.78E-02 5.00E-02 9.78E-02 1.43E-01 1.47E-01 2.90E-01 3.82E-01 3.86E-01 7.68E-01 1.16E+00 1-131 7.41E+01 7.36E+01 1.48E+02 2.22E+02 2.21E+02 4.43E+02 5.93E+02 5.88E+02 1.18E+03 1.77E+03 1-132 1.08E+02 1.07E+02 2.16E+02 3.25E+02 3.22E+02 6.48E+02 8.68E+02 8.59E+02 1.73E+03 2.59E+03 1-133 1.52E+02 1.51E+02 3.02E+02 4.56E+02 4.52E+02 9.07E+02 1.22E+03 1.20E+03 2.42E+03 3.63E+03 1-134 1.63E+02 1.61E+02 3.24E+02 4.88E+02 4.83E+02 9.71 E+02 1.30E+03 1.29E+03 2.59E+03 3.89E+03 1-135 1.39E+02 1.38E+02 2.77E+02 4.18E+02 4.14E+02 8.31E+02 1.11E+03 1.10E+03 2.22E+03 3.33E+03 Xe-133 1.64E+04 0.00E+00 1.64E+04 4.92E+04 0.00E+00 4.92E+04 1.31E+05 0.00E+00 1.31 E+05 1.97E+05 Xe-135 3.55E+03 0.00E+00 3.55E+03 1.06E+04 0.00E+00 1.06E+04 2.84E+04 0.00E+00 2.84E+04 4.25E+04 Cs-134 1.09E+01 1.11E+01 2.20E+01 3.26E+01 3.30E+01 6.56E+01 8.70E+01 8.70E+01 1.74E+02 2.62E+02 Cs-136 3.33E+00 3.63E+00 6.96E+00 9.99E+00 1.05E+01 2.05E+01 2.66E+01 2.73E+01 5.39E+01 8.14E+01 Cs-137 6.09E+00 6.20E+00 1.23E+01 1.83E+01 1.84E+01 3.67E+01 4.87E+01 4.87E+01 9.74E+01 1.46E+02

D000040-123, Revision 0 Attachment 2 Page 51 of 126 SG Dump Release Fractions as a Function of Time for RADTRAD RFT File Input - SG PORV Release 0 - 2 Hrs. 2 - 8 Hrs. 8 - 24 Hrs.

Nuclide Hours Hours Hours Kr-85 8.33E-02 2.50E-01 6.67E-01 Kr-85m 8.33E-02 2.50E-01 6.67E-01 Kr-87 8.33E-02 2.50E-01 6.67E-01 Kr-88 8.33E-02 2.50E-01 6.67E-01 Rb-86 8.46E-02 2.51 E-01 6.64E-01 1-131 8.34E-02 2.50E-01 6.67E-01 1-132 8.33E-02 2.50E-01 6.67E-01 1-133 8.34E-02 2.50E-01 6.67E-01 1-134 8.33E-02 2.50E-01 6.67E-01 1-135 8.33E-02 2.50E-01 6.67E-01 Xe-133 8.33E-02 2.50E-01 6.67E-01 Xe-135 8.33E-02 2.50E-01 6.67E-01 Cs-134 8.40E-02 2.51 E-01 6.65E-01 Cs-136 8.55E-02 2.52E-01 6.62E-01 Cs-137 8.39E-02 2.51 E-01 6.65E-01

DO00040-123, Revision 0 Attachment 3 Page 52 of 126 Attachment 3 RADTRAD Source Input Files for Conservative Cases

D000040-123, Revision 0 Attachment 3 Page 53 of 126 Containment Release Nuclide Inventory Name:Design Containment Release.nif Normalized MACCS Sample 3412 MWth PWR Core Inventory Power Level:

0.1000E+01 Nuclides:

60 Nuclide 001:

Co-58 7

0.6117120000E+07 0.5800E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 002:

Co-60 7

0.1663401096E+09 0.6000E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 003:

Kr-85 1

0.3382974720E+09 0.8500E+02

3. 31E+04 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 004:

Kr-85m 1

0.1612800000E+05 0.8500E+02 1.04E+06 Kr-85 0.2100E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 005:

Kr-87 1

0.4578000000E+04 0.8700E+02 1.90E+06 Rb-87 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 006:

Kr-88

D000040-123, Revision 0 Attachment 3 Page 54 of 126 1

0.1022400000E+05 0.8800E+02 2.57E+06 Rb-88 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 007:

Rb-86 3

0.1612224000E+07 0.8600E+02 1 . 87E+03 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 008:

Sr-89 5

0.4363200000E+07 0.8900E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 009:

Sr-90 5

0.9189573120E+09 0.9000E+02 0.0000E+00 Y-90 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 010:

Sr-91 5

0.3420000000E+05 0.9100E+02 0.0000E+00 Y-91m 0.5800E+00 Y-91 0.4200E+00 none 0.0000E+00 Nuclide 011:

Sr-92 5

0.9756000000E+04 0.9200E+02 0.0000E+00 Y-92 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 012:

Y-90 9

D000040-123, Revision 0 Attachment 3 Page 55 of 126 0.2304000000E+06 0.9000E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 013:

Y-91 9

0.5055264000E+07 0.9100E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 014:

Y-92 9

0.1274400000E+05 0.9200E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 015:

Y-93 9

0.3636000000E+05 0.9300E+02 0.0000E+00 Zr-93 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 016:

Zr-95 9

0.5527872000E+07 0.9500E+02 0.0000E+00 Nb-95m 0.7000E-02 Nb-95 0.9900E+00 none 0.0000E+00 Nuclide 017:

Zr-97 9

0.6084000000E+05 0.9700E+02 0.0000E+00 Nb-97m 0.9500E+00 Nb-97 0.5300E-01 none 0.0000E+00 Nuclide 018:

Nb-95 9

0.3036960000E+07

D000040-123, Revision 0 Attachment 3 Page 56 of 126 0.9500E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 019:

Mo-99 7

0.2376000000E+06 0.9900E+02 0.0000E+00 Tc-99m 0.8800E+00 Tc-99 0.1200E+00 none 0.0000E+00 Nuclide 020:

Tc-99m 7

0.2167200000E+05 0.9900E+02 0.0000E+00 Tc-99 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 021:

Ru-103 7

0.3393792000E+07 0.1030E+03 0.0000E+00 Rh-103m 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 022:

Ru-105 7

0.1598400000E+05 0.1050E+03 0.0000E+00 Rh-105 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 023:

Ru-106 7

0.3181248000E+08 0.1060E+03 0.0000E+00 Rh-106 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 024:

Rh-105 7

0.1272960000E+06 0.1050E+03

D000040-123, Revision 0 Attachment 3 Page 57 of 126 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 025:

Sb-127 4-0.3326400000E+06 0.1270E+03 0.0000E+00 Te-127m 0.1800E+00 Te-127 0.8200E+00 none 0.0000E+00 Nuclide 026:

Sb-129 4

0.1555200000E+05 0.1290E+03 0.0000E+00 Te-129m 0.2200E+00 Te-129 0.7700E+00 none 0.0000E+00 Nuclide 027:

Te-127 4

0.3366000000E+05 0.1270E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 028:

Te-127m 4

0.9417600000E+07 0.1270E+03 0.0000E+00 Te-127 0.9800E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 029:

Te-129 4

0.4176000000E+04 0.1290E+03 0.0000E+00 1-129 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 030:

Te-129m 4

0.2903040000E+07 0.1290E+03 0.0000E+00

D000040-123, Revision 0 Attachment 3 Page 58 of 126 Te-129 0.6500E+00 1-129 0.3500E+00 none 0.0000E+00 Nuclide 031:

Te-131m 4

0.1080000000E+06

0. 1310E+03 0.0000E+00 Te-131 0.2200E+00 1-131 0.7800E+00 none 0.0000E+00 Nuclide 032:

Te-132 4

0.2815200000E+06 0.1320E+03 0.0000E+00 1-132 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 033:

1-131 2

0.6946560000E+06 0.1310E+03 2.88E+06 Xe-131m 0.1100E-01 none 0.0000E+00 none 0.0000E+00 Nuclide 034:

1-132 2

0.8280000000E+04

0. 1320E+03 4.21E+06 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 035:

1-133 2

0.7488000000E+05 0.1330E+03

5. 89E+06 Xe-133m 0.2900E-01 Xe-133 0.9700E+00 none 0.0000E+00 Nuclide 036:

1-134 2

0.3156000000E+04 0.1340E+03

6. 31E+06 none 0.0000E+00

D000040-123, Revision 0 Attachment 3 Page 59 of 126 none 0.0000E+00 none 0.0000E+00 Nuclide 037:

1-135 2

0.2379600000E+05 0.1350E+03

5. 40E+06 Xe-135m 0.1500E+00 Xe-135 0.8500E+00 none 0.0000E+00 Nuclide 038:

Xe-133 1

0.4531680000E+06 0.1330E+03

6. 56E+06 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 039:

Xe-135 1

0.3272400000E+05 0.1350E+03 1.42E+06 Cs-135 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 040:

Cs-134 3

0.6507177120E+08 0.1340E+03 4.26E+05 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 041:

Cs-136 3

0.1131840000E+07 0.1360E+03 1.30E+05 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 042:

Cs-137 3

0.9467280000E+09

0. 1370E+03 2.39E+05 Ba-137m 0.9500E+00 none 0.0000E+00

D000040-123, Revision 0 Attachment 3 Page 60 of 126 none 0.0000E+00 Nuclide 043:

Ba-139 6

0.4962000000E+04 0.1390E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 044:

Ba-140 6

0.1100736000E+07 0.1400E+03 0.0000E+00 La-140 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 045:

La-140 9

0.1449792000E+06 0.1400E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 046:

La-141 9

0.1414800000E+05 0.1410E+03 0.0000E+00 Ce-141 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 047:

La-142 9

0.5550000000E+04 0.1420E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 048:

Ce-141 8

0.2808086400E+07 0.1410E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00

D000040-123, Revision 0 Attachment 3 Page 61 of 126 Nuclide 049:

Ce-143 8

0.1188000000E+06

0. 1430E+03 0.0000E+00 Pr-143 0.1000E+01 none O.0000E+00 none 0.0000E+00 Nuclide 050:

Ce-144 8

0.2456352000E+08 0.1440E+03 0.0000E+00 Pr-144m 0.1800E-01 Pr-144 0.9800E+00 none 0.0000E+00 Nuclide 051:

Pr-143 9

0.1171584000E+07 0.1430E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 052:

Nd-147 9

0.9486720000E+06 0.1470E+03 0.0000E+00 Pm-147 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 053:

Np-239 8

0.2034720000E+06 0.2390E+03 0.0000E+00 Pu-239 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 054:

Pu-238 8

0.2768863824E+10 0.2380E+03 0.0000E+00 U-234 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 055:

D000040-123, Revision 0 Attachment 3 Page 62 of 126 Pu-239 8

0.7594336440E+12 0.2390E+03 0.0000E+00 U-235 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 056:

Pu-240 8

0.2062920312E+12 0.2400E+03 0.0000E+00 U-236 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 057:

Pu-241 8

0.4544294400E+09 0.2410E+03 0.0000E+00 U-237 0.2400E-04 Am-241 0.1000E+01 none 0.0000E+00 Nuclide 058:

Am-241 9

0.1363919472E+ll

0. 2410E+03 0.0000E+00 Np-237 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 059:

Cm-242 9

0.1406592000E+08 0.2420E+03 0.0000E+00 Pu-238 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 060:

Cm-244 9

0.571508136E+9 0.2440E+03 0.0000E+00 Pu-240 0.1000E+01 none 0.0000E+00 none 0.0000E+00 End of Nuclear Inventory File

D000040-123, Revision 0 Attachment 3 Page 63 of 126 SG Dump Nuclide Inventory Name:Design SG Release.nif Normalized MACCS Sample 3412 MWth PWR Core Inventory Power Level:

0.1000E+01 Nuclides:

60 Nuclide 001:

Co-58 7

0.6117120000E+07 0.5800E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 002:

Co-60 7

0.1663401096E+09 0.6000E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 003:

Kr-85 1

0.3382974720E+09 0.8500E+02

9. 95E+02 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 004:

Kr-85m 1

0.1612800000E+05 0.8500E+02

3. 13E+04 Kr-85 0.2100E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 005:

Kr-87 1

0.4578000000E+04 0.8700E+02

5. 70E+04 Rb-87 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 006:

Kr-88

D000040-123, Revision 0 Attachment 3 Page 64 of 126 1

0.1022400000E+05 0.8800E+02 7.71E+04 Rb-88 0.2000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 007:

Rb-86 3

0.1612224000E+07 0.8600E+02 1.16E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 008:

Sr-89 5

0.4363200000E+07 0.8900E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 009:

Sr-90 5

0.9189573120E+09 0.9000E+02 0.0000E+00 Y-90 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 010:

Sr-91 5

0.3420000000E+05 0.9100E+02 0.0000E+00 Y-91m 0.5800E+00 Y-91 0.4200E+00 none 0.0000E+00 Nuclide Oll:

Sr-92 5

0.9756000000E+04 0.9200E+02 0.0000E+00 Y-92 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 012:

Y-90 9

D000040-123, Revision 0 Attachment 3 Page 65 of 126 0.2304000000E+06 0.9000E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 013:

Y-91 9

0.5055264000E+07 0.9100E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 014:

Y-92 9

0.1274400000E+05 0.9200E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 015:

Y-93 9

0.3636000000E+05 0.9300E+02 0.0000E+00 Zr-93 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 016:

Zr-95 9

0.5527872000E+07 0.9500E+02 0.0000E+00 Nb-95m 0.7000E-02 Nb-95 0.9900E+00 none 0.0000E+00 Nuclide 017:

Zr-97 9

0.6084000000E+05 0.9700E+02 0.0000E+00 Nb-97m 0.9500E+00 Nb-97 0.5300E-01 none 0.0000E+00 Nuclide 018:

Nb-95 9

0.3036960000E+07

D000040-123, Revision 0 Attachment 3 Page 66 of 126 0.9500E+02 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 019:

Mo-99 7

0.2376000000E+06 0.9900E+02 0.0000E+00 Tc-99m 0.8800E+00 Tc-99 0.1200E+00 none 0.0000E+00 Nuclide 020:

Tc-99m 7

0.2167200000E+05 0.9900E+02 0.0000E+00 Tc-99 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 021:

Ru-103 7

0.3393792000E+07 0.1030E+03 0.0000E+00 Rh-103m 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 022:

Ru-105 7

0.1598400000E+05 0.1050E+03 0.0000E+00 Rh-105 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 023:

Ru-106 7

0.3181248000E+08 0.1060E+03 0.0000E+00 Rh-106 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 024:

Rh-105 7

0.1272960000E+06 0.1050E+03

D000040-123, Revision 0 Attachment 3 Page 67 of 126 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 025:

Sb-127 4

0.3326400000E+06 0.1270E+03 0.0000E+00 Te-127m 0.1800E+00 Te-127 0.8200E+00 none 0.0000E+00 Nuclide 026:

Sb-129 4

0.1555200000E+05 0.1290E+03 0.0000E+00 Te-129m 0.2200E+00 Te-129 0.7700E+00 none 0.0000E+00 Nuclide 027:

Te-127 4

0.3366000000E+05 0.1270E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 028:

Te-127m 4

0.9417600000E+07 0.1270E+03 0.0000E+00 Te-127 0.9800E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 029:

Te-129 4

0.4176000000E+04 0.1290E+03 0.0000E+00 1-129 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 030:

Te-129m 4

0.2903040000E+07 0.1290E+03 0.0000E+00

D000040-123, Revision 0 Attachment 3 Page 68 of 126 Te-129 0.6500E+00 1-129 0.3500E+00 none 0.0000E+00 Nuclide 031:

Te-131m 4

0.1080000000E+06 0.1310E+03 0.0000E+00 Te-131 0.2200E+00 1-131 0.7800E+00 none 0.0000E+00 Nuclide 032:

Te-132 4

0.2815200000E+06 0.1320E+03 0.0000E+00 1-132 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 033:

1-131 2

0.6946560000E+06 0.1310E+03 1.77E+03 Xe-131m 0.1100E-01 none 0.0000E+00 none 0.0000E+00 Nuclide 034:

1-132 2

0.8280000000E+04 0.1320E+03 2 . 59E+03 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 035:

1-133 2

0.7488000000E+05 0.1330E+03

3. 63E+03 Xe-133m 0.2900E-01 Xe-133 0.9700E+00 none 0.0000E+00 Nuclide 036:

1-134 2

0.3156000000E+04 0.1340E+03

3. 89E+03 none 0.0000E+00

D000040-123, Revision 0 Attachment 3 Page 69 of 126 none 0.0000E+00 none 0.0000E+00 Nuclide 037:

1-135 2

0.2379600000E+05 0.1350E+03

3. 33E+03 Xe-135m 0.1500E+00 Xe-135 0.8500E+00 none 0.0000E+00 Nuclide 038:

Xe-133 1

0.4531680000E+06 0.1330E+03 1.97E+05 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 039:

Xe-135 1

0.3272400000E+05 0.1350E+03 4.25E+04 Cs-135 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 040:

Cs-134 3

0.6507177120E+08 0.1340E+03 2.62E+02 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 041:

Cs-136 3

0.1131840000E+07 0.1360E+03 8.14E+01 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 042:

Cs-137 3

0.9467280000E+09 0.1370E+03 1.46E+02 Ba-137m 0.9500E+00 none 0.0000E+00

D000040-123, Revision 0 Attachment 3 Page 70 of 126 none 0.0000E+00 Nuclide 043:

Ba-139 6

0.4962000000E+04 0.1390E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 044:

Ba-140 6

0.1100736000E+07 0.1400E+03 0.0000E+00 La-140 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 045:

La-140 9

0.1449792000E+06

0. 1400E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 046:

La-141 9

0.1414800000E+05 0.1410E+03 0.0000E+00 Ce-141 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 047:

La-142 9

0.5550000000E+04 0.1420E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 048:

Ce-141 8

0.2808086400E+07 0.1410E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00

D000040-123, Revision 0 Attachment 3 Page 71 of 126 Nuclide 049:

Ce-143 8

0.1188000000E+06

0. 1430E+03 0.0000E+00 Pr-143 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 050:

Ce-144 8

0.2456352000E+08 0.1440E+03 0.0000E+00 Pr-144m 0.1800E-01 Pr-144 0.9800E+00 none 0.0000E+00 Nuclide 051:

Pr-143 9

0.1171584000E+07 0.1430E+03 0.0000E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 052:

Nd-147 9

0.9486720000E+06 0.1470E+03 0.0000E+00 Pm-147 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 053:

Np-239 8

0.2034720000E+06 0.2390E+03 0.0000E+00 Pu-239 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 054:

Pu-238 8

0.2768863824E+10 0.2380E+03 0.0000E+00 U-234 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 055:

D000040-123, Revision 0 Attachment 3 Page 72 of 126 Pu-239 8

0.7594336440E+12 0.2390E+03 0.0000E+00 U-235 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 056:

Pu-240 8

0.2062920312E+12 0.2400E+03 0.0000E+00 U-236 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 057:

Pu-241 8

0.4544294400E+09 0.2410E+03 0.0000E+00 U-237 0.2400E-04 Am-241 0.1000E+01 none 0.0000E+00 Nuclide 058:

Am-241 9

0.1363919472E+11

0. 2410E+03 0.0000E+00 Np-237 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 059:

Cm-242, 9

0.1406592000E+08 0.2420E+03 0.0000E+00 Pu-238 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 060:

Cm-244 9

0.571508136E+9 0.2440E+03 0.0000E+00 Pu-240 0.1000E+01 none 0.0000E+00 none 0.0000E+00 End of Nuclear Inventory File

DO00040-123, Revision 0 Attachment 4 Page 73 of 126 Attachment 4 RADTRAD Release Fraction Files

D000040-123, Revision 0 Attachment 4 Page 74 of 126 Containment Release - Design Release Fraction and Timing Altered for Rod Ejection, Design Containment Release.rft PWR, NUREG-1465, Tables 3.12 & 3.13, June 1992 Duration (h):

1.0000E-06 0.0000E+00 0.0000E+00 0.0000E+00 Noble Gases:

1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Iodine:

1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Cesium:

1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Tellurium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Strontium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Barium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Ruthenium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Cerium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Lanthanum:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Non-Radioactive Aerosols (kg):

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 End of Release File

D000040-123, Revision 0 Attachment 4 Page 75 of 126 SG Release - Design Release Fraction and Timing Altered for Design SG Release.rft PWR, NUREG-1465, Tables 3.12 & 3.13, June 1992 Duration (h):

2.0000E+00 6.0000E+00 1.6000E+01 0.0000E+00 Noble Gases:

8.3300E-02 2.5000E-01 6.6700E-01 0.0000E+00 Iodine:

8.3400E-02 2.5000E-01 6.6700E-01 0.0000E+00 Cesium:

8.4000E-02 2.5100E-01 6.6500E-01 0.0000E+00 Tellurium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Strontium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Barium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Ruthenium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Cerium:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Lanthanum:

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Non-Radioactive Aerosols (kg):

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 End of Release File

DC00040-123, Revision 0 Attachment 5 Page 76 of 126 Attachment 5 Containment Leakage Conservative Case RADTRAD Input/Output File

D000040-123, Revision 0 Attachment 5 Page 77 of 126 Conservative Case - Containment Leakage RADTRAD Version 3.03 (Spring 2001) run on 11/09/2011 at 12:52:44 File information Plant file = C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\Containment Leakage - Conservative Case.psf Inventory file = c:\program files\radtrad3 03\vcs tsc\rod ejection\design containment release.nif Release file = c:\program files\radtrad3 03\vcs tsc\rod ejection\design containment release.rft Dose Conversion file = c:\program files\radtrad3 03\vcs tsc\rod ejection\fgrll&12.inp Radtrad 3.03 4/15/2001 Containment Leakage - Conservative Case Containment Release Nuclide Inventory File:

c:\program files\radtrad3 03\vcs tsc\rod ejection\design containment release.nif Plant Power Level:

1.0000E+00 Compartments:

3 Compartment 1:

Containment 3

1.8400E+06 0

0 0

1 0

Compartment 2:

Environment 2

0.0000E+00 0

D000040-123, Revision 0 Attachment 5 Page 78 of 126 0

0 0

0 Compartment 3:

TSC 1

2.0700E+05 0

0 0

0 0

Pathways:

4 Pathway 1:

Containment Leakage to Environment 1

2 4

Pathway 2:

Environment to TSC - Makeup 2

3 2

Pathway 3:

Environment to TSC - Inleakage 2

3 2

Pathway 4:

TSC to Environment - Exhaust 3

2 2

End of Plant Model File Scenario Description Name:

Plant Model Filename:

Source Term:

1 1 1.0000E+00 c:\program files\radtrad3 03\vcs tsc\rod ejection\fgrll&12.inp c:\program files\radtrad3 03\vcs tsc\rod ejection\design containment release.rft 0.0000E+00 1

9.5000E-01 4.8500E-02 1.5000E-03 1.0000E+00 Overlying Pool:

0 0.0000E+00 0

0 0

0

D000040-123, Revision 0 Attachment 5 Page 79 of 126 Compartments:

3 Compartment 1:

1 1

0 0

0 0

0 3

1 1.0000E+01 1

1 0.0000E+00 0.0000E+00 Compartment 2:

0 1

0 0

0 0

0 0

0 Compartment 3:

0 1

0 0

0 0

0 0

0 Pathways:

4 Pathway 1:

0 0

0 0

0 0

0 0

0 0

1 3

0.0000E+00 2.0000E-01 2.4000E+01 1.0000E-01 7.2000E+02 0.0000E+00 0.

D000040-123, Revision 0 Attachment 5 Page 80 of 126 Pathway 2:

0 0

0 0

0 1

2 0.0000E+00 1.2000E+04 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0

0 0

0 0

0 Pathway 3:

0 0

0 0

0 1

2 0.0000E+00 1.0000E+03 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0

0 0

0 0

0 Pathway 4:

0 0

0 0

0 1

2 0.0000E+00 1.3000E+04 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0

0 0

0 0

0 Dose Locations:

3 Location 1:

EAB 2

1 2

DC0004O-123, Revision 0 Attachment 5 Page 81 of 126 0.0000E+00 1.2400E-04 7.2000E+02 0.0000E+00 1

2 0.0000E+00 3.5000E-04 7.2000E+02 0.0000E+00 0

Location 2:

LPZ 2

1 5

0.0000E+00 2.4200E-05 8.0000E+00 1.6800E-05 2.4000E+01 7.5500E-06 9.6000E+01 2.4000E-06 7.2000E+02 0.0000E+00 1

4 0.0000E+00 3.5000E-04 8.0000E+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.0000E+00 0

Location 3:

tsc 3

0 1

2 0.0000E+00 3.5000E-04 7.2000E+02 0.0000E+00 1

4 0.0000E+00 1.0000E+00 2.4000E+01 6.0000E-01 9.6000E+01 4.0000E-01 7.2000E+02 0.0000E+00 Effective Volume Location:

1 6

0.0000E+00 3.9000E-05 2.0000E+00 3.3000E-05 8.0000E+00 1.6000E-05 2.4000E+01 1.2000E-05 9.6000E+01 8.7000E-06 7.2000E+02 0.0000E+00 Simulation Parameters:

1 0.0000E+00 0.0000E+00 Output Filename:

C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\Containment Leakage Conservative Case.o0 1

1

DO00040-123, Revision 0 Attachment 5 Page 82 of 126

D000040-123, Revision 0 Attachment 5 Page 83 of 126 RADTRAD Version 3.03 (Spring 2001) run on 11/09/2011 at 12:52:44 Plant Description Number of Nuclides = 60 Inventory Power = 1.0000E+00 MWth Plant Power Level = 1.0000E+00 MWth Number of compartments = 3 Compartment information Compartment number 1 (Source term fraction = 1.0000E+00 Name: Containment Compartment volume = 1.8400E+06 (Cubic feet)

Compartment type is Normal Removal devices within compartment:

Deposition Pathways into and out of compartment 1 Exit Pathway Number 1: Containment Leakage to Environment Compartment number 2 Name: Environment Compartment type is Environment Pathways into and out of compartment 2 Inlet Pathway Number 1: Containment Leakage to Environment Inlet Pathway Number 4: TSC to Environment - Exhaust Exit Pathway Number 2: Environment to TSC - Makeup Exit Pathway Number 3: Environment to TSC - Inleakage Compartment number 3 Name: TSC Compartment volume = 2.0700E+05 (Cubic feet)

Compartment type is Control Room Pathways into and out of compartment 3 Inlet Pathway Number 2: Environment to TSC - Makeup Inlet Pathway Number 3: Environment to TSC - Inleakage Exit Pathway Number 4: TSC to Environment - Exhaust Total number of pathways = 4

DC0004O-123, Revision 0 Attachment 5 Page 84 of 126 RADTRAD Version 3.03 (Spring 2001) run on 11/09/2011 at 12:52:44 Scenario Description Radioactive Decay is enabled Calculation of Daughters is enabled Release Fractions and Timings GAP EARLY IN-VESSEL LATE RELEASE RELEASE MASS 0.000001 hr 0.0000 hrs 0.0000 hrs (gm)

NOBLES 1.0000E+00 0.0000E+00 0.0000E+00 1.204E+02 IODINE 1.0000E+00 0.0000E+00 0.0000E+00 3.061E+01 CESIUM 1.0000E+00 0.0000E+00 0.0000E+00 3.079E+03 TELLURIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 STRONTIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 BARIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 RUTHENIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 CERIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 LANTHANUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 Inventory Power = 1. MWt Nuclide Group Specific half Whole Body Inhaled Inhaled Name Inventory life DCF Thyroid Effective (Ci/MWt) (s) (Sv-m3/Bq-s) (Sv/Bq) (Sv/Bq)

Kr-85 1 3.310E+04 3.383E+08 1.190E-16 0.000E+00 0.000E+00 Kr-85m 1 1.040E+06 1.613E+04 7.480E-15 0.000E+00 0.000E+00 Kr-87 1 1.900E+06 4.578E+03 4.120E-14 0.000E+00 0.000E+00 Kr-88 1 2.570E+06 1.022E+04 1.020E-13 0.000E+00 0.000E+00 Rb-86 3 1.870E+03 1.612E+06 4.810E-15 1.330E-09 1.790E-09 1-131 2 2.880E+06 6.947E+05 1.820E-14 2.920E-07 8.890E-09 1-132 2 4.210E+06 8.280E+03 1.120E-13 1.740E-09 1.030E-10 1-133 2 5.890E+06 7.488E+04 2.940E-14 4.860E-08 1.580E-09 1-134 2 6.310E+06 3.156E+03 1.300E-13 2.880E-10 3.550E-11 1-135 2 5.400E+06 2.380E+04 8.294E-14 8.460E-09 3.320E-10 Xe-133 1 6.560E+06 4.532E+05 1.560E-15 0.000E+00 0.000E+00 Xe-135 1 1.420E+06 3.272E+04 1.190E-14 0.000E+00 0.000E+00 Cs-134 3 4.260E+05 6.507E+07 7.570E-14 1.110E-08 1.250E-08 Cs-136 3 1.300E+05 1.132E+06 1.060E-13 1.730E-09 1.980E-09 Cs-137 3 2.390E+05 9.467E+08 2.725E-14 7.930E-09 8.630E-09 Nuclide Daughter Fraction Daughter Fraction Daughter Fraction Kr-85m Kr-85 0.21 none 0.00 none 0.00 Kr-87 Rb-87 1.00 none 0.00 none 0.00 Kr-88 Rb-88 1.00 none 0.00 none 0.00 1-131 Xe-131m 0.01 none 0.00 none 0.00 1-133 Xe-133m 0.03 Xe-133 0.97 none 0.00 1-135 Xe-135m 0.15 Xe-135 0.85 none 0.00 Xe-135 Cs-135 1.00 none 0.00 none 0.00 Cs-137 Ba-137m 0.95 none 0.00 none 0.00

DC00040-123, Revision 0 Attachment 5 Page 85 of 126 Iodine fractions Aerosol = 9.5000E-01 Elemental = 4.8500E-02 Organic = 1.5000E-03 COMPARTMENT DATA Compartment number 1: Containment Natural Deposition (Powers' model): Aerosol data Reactor type: 1 Percentile = 10 (%)

Natural Deposition: Elemental Removal Data Time (hr) Removal Coef. (hr^-l) 0.0000E+00 0.0000E+00 Compartment number 2: Environment Compartment number 3: TSC PATHWAY DATA Pathway number 1: Containment Leakage to Environment Convection Data Time (hr) Flow Rate (% / day) 0.0000E+00 2.0000E-01 2.4000E+01 1.0000E-01 7.2000E+02 0.0000E+00 Pathway number 2: Environment to TSC - Makeup Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 1.2000E+04 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Pathway number 3: Environment to TSC - Inleakage Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 1.0000E+03 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Pathway number 4: TSC to Environment - Exhaust Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic

D000040-123, Revision 0 Attachment 5 Page 86 of 126 0.0000E+00 1.3000E+04 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 LOCATION DATA Location EAB is in compartment 2 Location X/Q Data Time (hr) X/Q (s

  • m^-3) 0.0000E+00 1.2400E-04 7.2000E+02 0.0000E+00 Location Breathing Rate Data Time (hr) Breathing Rate (m^3
  • sec^-1) 0.0000E+00 3.5000E-04 7.2000E+02 0.0000E+00 Location LPZ is in compartment 2 Location X/Q Data Time (hr) X/Q (s
  • m^-3) 0.0000E+00 2.4200E-05 8.0000E+00 1.6800E-05 2.4000E+01 7.5500E-06 9.6000E+01 2.4000E-06 7.2000E+02 0.0000E+00 Location Breathing Rate Data Time (hr) Breathing Rate (m^3
  • sec^-1) 0.0000E+00 3.5000E-04 8.0000E+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.0000E+00 Location tsc is in compartment 3 Location X/Q Data Time (hr) X/Q (s
  • m^-3) 0.0000E+00 3.9000E-05 2.0000E+00 3.3000E-05 8.0000E+00 1.6000E-05 2.4000E+01 1.2000E-05 9.6000E+01 8.7000E-06 7.2000E+02 0.0000E+00 Location Breathing Rate Data Time (hr) Breathing Rate (m^3
  • sec^-1) 0.0000E+00 3.5000E-04 7.2000E+02 0.0000E+00 Location Occupancy Factor Data Time (hr) Occupancy Factor 0.0000E+00 1.0000E+00 2.4000E+01 6.0000E-01 9.6000E+01 4.0000E-01 7.2000E+02 0.0000E+00 USER SPECIFIED TIME STEP DATA - SUPPLEMENTAL TIME STEPS

D000040-123, Revision 0 Attachment 5 Page 87 of 126 Time Time step 0.0000E+00 0.0000E+00

DC0004O-123, Revision 0 Attachment 5 Page 88 of 126 RADTRAD Version 3.03 (Spring 2001) run on 11/09/2011 at 12:52:44 Dose, Detailed model and Detailed Inventory Output Detailed model information at time (H) = 0.0000 Natural deposition - Powers' Model, Compartment 1 Deposition Lambda (1 / Hours)

Noble Elemental Organic Aerosol 0.0000E+00 0.0000E+00 0.0000E+00 1.8203E-02 Deposition Net DF Noble Elemental Organic Aerosol 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 EAB Doses:

Time (h) = 0.0000 Whole Body Thyroid TEDE Delta dose (rem) 4.5749E-08 7.9547E-06 3.4689E-07 Accumulated dose (rem) 4.5749E-08 7.9547E-06 3.4689E-07 LPZ Doses:

Time (h) = 0.0000 Whole Body Thyroid TEDE Delta dose (rem) 8.9285E-09 1.5524E-06 6.7700E-08 Accumulated dose (rem) 8.9285E-09 1.5524E-06 6.7700E-08 tsc Doses:

Time (h) = 0.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.4474E-15 4.7137E-12 1.7989E-13 Accumulated dose (rem) 1.4474E-15 4.7137E-12 1.7989E-13 Containment Compartment Nuclide Inventory:

Time (h) = 0.0000 Ci kg Atoms Decay Kr-85 3.3100E+04 8.4367E-02 5.9773E+23 4.4089E+12 Kr-85m 1.0400E+06 1.2637E-04 8.9534E+20 1.3853E+14

DC00040-123, Revision 0 Attachment 5 Page 89 of 126 Kr-87 1.9000E+06 6.7077E-05 4.6431E+20 2.5308E+14 Kr-88 2.5700E+06 2.0496E-04 1.4026E+21 3.4232E+14 Rb-86 1.8700E+03 2.2982E-05 1.6093E+20 2.4908E+11 I-131 2.8800E+06 2.3231E-02 1.0679E+23 3.8362E+14 I-132 4.2100E+06 4.0786E-04 1.8608E+21 5.6077E+14 I-133 5.8900E+06 5.1995E-03 2.3543E+22 7.8455E+14 I-134 6.3100E+06 2.3654E-04 1.0630E+21 8.4049E+14 I-135 5.4000E+06 1.5376E-03 6.8592E+21 7.1928E+14 Xe-133 6.5600E+06 3.5046E-02 1.5869E+23 8.7379E+14 Xe-135 1.4200E+06 5.5605E-04 2.4805E+21 1.8914E+14 Cs-134 4.2600E+05 3.2926E-01 1.4797E+24 5.6743E+13 Cs-136 1.3000E+05 1.7738E-03 7.8542E+21 1.7316E+13 Cs-137 2.3900E+05 2.7477E+00 1.2078E+25 3.1835E+13 Containment Transport Group Inventory:

Time (h) = 0.0000 Atmosphere Sump Noble gases (atoms) 7.6166E+23 0.0000E+00 Elemental I (atoms) 6.7957E+21 0.0000E+00 Organic I (atoms) 2.1018E+20 0.0000E+00 Aerosols (kg) 3.1078E+00 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 7.7694E-05 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 9.9094E-05 Total I (Ci) 2.4690E+07 Deposition Recirculating Time (h) = 0.0000 Surfaces Filter Noble gases (atoms) 0.0000E+00 0.0000E+00 Elemental I (atoms) 0.0000E+00 0.0000E+00 Organic I (atoms) 0.0000E+00 0.0000E+00 Aerosols (kg) 2.8286E-08 0.0000E+00 Containment Leakage to Environment Transport Group Inventory:

Time (h) = 0.0000 Leakage Transport Noble gases (atoms) 3.1736E+13 Elemental I (atoms) 2.8315E+ll Organic I (atoms) 8.7574E+09 Aerosols (kg) 1.2949E-10 Detailed model information at time (H) = 8.0000 Natural deposition - Powers' Model, Compartment 1 Deposition Lambda (1 / Hours)

Noble Elemental Organic Aerosol 0.0000E+00 0.0000E+00 0.0000E+00 8.1110E-02 Deposition Net DF Noble Elemental Organic Aerosol 1.0000E+00 1.0000E+00 1.0000E+00 1.4282E+00 EAB Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 3.0559E-01 1.1008E+02 4.4708E+00 Accumulated dose (rem) 3.0559E-01. 1.1008E+02 4.4708E+00

DC0004O-123, Revision 0 Attachment 5 Page 90 of 126 LPZ Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 5.9639E-02 2.1483E+01 8.7253E-01 Accumulated dose (rem) 5.9639E-02 2.1483E+01 8.7253E-01 tsc Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 4.3636E-03 2.9943E+01 1.1374E+00 Accumulated dose (rem) 4.3636E-03 2.9943E+01 1.1374E+00 Containment Compartment Nuclide Inventory:

Time (h) 8.0000 Ci kg Atoms Decay Kr-85 3.3083E+04 8.4324E-02 5.9743E+23 3.5263E+19 Kr-85m 3.0143E+05 3.6628E-05 2.5951E+20 6.3549E+20 Kr-87 2.4249E+04 8.5609E-07 5.9258E+18 4.5831E+20 Kr-88 3.6448E+05 2.9067E-05 1.9892E+20 1.2033E+21 Rb-86 1.2926E+03 1.5886E-05 1.1124E+20 1.7979E+18 1-131 2.0003E+06 1.6135E-02 7.4172E+22 2.7616E+21 1-132 2.7003E+05 2.6160E-05 1.1935E+20 1.6286E+21 1-133 3.2249E+06 2.8468E-03 1.2890E+22 5.0620E+21 1-134 8.0755E+03 3.0272E-07 1.3605E+18 1.0499E+21 1-135 1.6682E+06 4.7502E-04 2.1190E+21 3.6311E+21 Xe-133 6.4712E+06 3.4572E-02 1.5654E+23 6.9519E+21 Xe-135 2.0235E+06 7.9236E-04 3.5346E+21 2.0301E+21 Cs-134 2.9803E+05 2.3035E-01 1.0352E+24 4.1190E+20 Cs-136 8.9386E+04 1.2196E-03 5.4005E+21 1.2468E+20 Cs-137 1.6725E+05 1.9229E+00 8.4524E+24 2.3112E+20 Containment Transport Group Inventory:

Time (h) = 8.0000 Atmosphere Sump Noble gases (atoms) 7.5797E+23 0.0000E+00 Elemental I (atoms) 6.0552E+21 0.0000E+00 Organic I (atoms) 1.8728E+20 0.0000E+00 Aerosols (kg) 2.1726E+00 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 4.9652E-05 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 5.7789E-05 Total I (Ci) 7.1715E+06 Deposition Recirculating Time (h) = 8.0000 Surfaces Filter Noble gases (atoms) 0.0000E+00 0.0000E+00 Elemental I (atoms) 0.0000E+00 0.0000E+00 Organic I (atoms) 0.0000E+00 0.0000E+00 Aerosols (kg) 9.3025E-01 0.0000E+00 Containment Leakage to Environment Transport Group Inventory:

Time (h) = 8.0000 Leakage Transport Noble gases (atoms) 5.0669E+20 Elemental I (atoms) 4.2519E+18 Organic I (atoms) 1.3150E+17 Aerosols (kg) 1.8830E-03

DC0004O-123, Revision 0 Attachment 5 Page 91 of 126 Detailed model information at time (H) = 24.0000 Natural deposition - Powers' Model, Compartment 1 Deposition Lambda (1 / Hours)

Noble Elemental Organic Aerosol 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E-02 Deposition Net DF Noble Elemental Organic Aerosol 1.0000E+00 1.0000E+00 1.0000E+00 2.1925E+00 EAB Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.2465E-01 1.1083E+02 4.3439E+00 Accumulated dose (rem) 4.3024E-01 2.2091E+02 8.8147E+00 LPZ Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.6888E-02 7.7221E+00 3.1087E-01 Accumulated dose (rem) 7.6527E-02 2.9205E+01 1.1834E+00 tsc Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 8.9667E-04 1.4801E+01 5.6440E-01 Accumulated dose (rem) 5.2602E-03 4.4744E+01 1.7018E+00 Containment Compartment Nuclide Inventory:

Time (h) = 24.0000 Ci kg Atoms Decay Kr-85 3.3038E+04 8.4209E-02 5.9661E+23 1.0572E+20 Kr-85m 2.5322E+04 3.0770E-06 2.1800E+19 8.7307E+20 Kr-87 3.9499E+00 1.3945E-10 9.6524E+14 4.6423E+20 Kr-88 7.3308E+03 5.8463E-07 4.0008E+18 1.3981E+21 Rb-86 8.2130E+02 1.0094E-05 7.0681E+19 3.7357E+18 1-131 1.2760E+06 1.0292E-02 4.7313E+22 5.7977E+21 1-132 1.4689E+03 1.4230E-07 6.4922E+17 1.7268E+21 1-133 1.2784E+06 1.1285E-03 5.1097E+21 9.0151E+21 1-134 1.7490E-02 6.5562E-13 2.9465E+12 1.0511E+21 1-135 2.1051E+05 5.9944E-05 2.6740E+20 4.9515E+21 Xe-133 6.0686E+06 3.2421E-02 1.4680E+23 2.0325E+22 Xe-135 9.0742E+05 3.5533E-04 1.5851E+21 5.0985E+21 Cs-134 1.9400E+05 1.4994E-01 6.7386E+23 8.6382E+20 Cs-136 5.6203E+04 7.6685E-04 3.3956E+21 2.5802E+20 Cs-137 1.0893E+05 1.2524E+00 5.5051E+24 4.8480E+20 Containment Transport Group Inventory:

Time (h) = 24.0000 Atmosphere Sump Noble gases (atoms) 7.4502E+23 0.0000E+00 Elemental I (atoms) 5.2811E+21 0.0000E+00 Organic I (atoms) 1.6333E+20 0.0000E+00 Aerosols (kg) 1.4134E+00 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 2.8690E-05

D000040-123, Revision 0 Attachment 5 Page 92 of 126 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 3.1385E-05 Total I (Ci) 2.7663E+06 Deposition Recirculating Time (h) = 24.0000 Surfaces Filter Noble gases (atoms) 0.0000E+00 0.0000E+00 Elemental I (atoms) 0.0000E+00 0.0000E+00 Organic I (atoms) 0.0000E+00 0.0000E+00 Aerosols (kg) 1.6855E+00 0.0000E+00 Containment Leakage to Environment Transport Group Inventory:

Time (h) = 24.0000 Leakage Transport Noble gases (atoms) 1.5092E+21 Elemental I (atoms) 1.1784E+19 Organic I (atoms) 3.6444E+17 Aerosols (kg) 3.9484E-03 Detailed model information at time (H) = 96.0000 Natural deposition - Powers' Model, Compartment 1 Deposition Lambda (1 / Hours)

Noble Elemental Organic Aerosol 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E-02 Deposition Net DF Noble Elemental Organic Aerosol 1.0000E+00 1.0000E+00 1.0000E+00 4.5217E+00 EAB Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 7.7772E-02 1.2977E+02 5.2061E+00 Accumulated dose (rem) 5.0801E-01 3.5068E+02 1.4021E+01 LPZ Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 4.7353E-03 5.1923E+00 2.0993E-01 Accumulated dose (rem) 8.1263E-02 3.4398E+01 1.3933E+00 tsc Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 2.4798E-04 7.7019E+00 3.0448E-01 Accumulated dose (rem) 5.5082E-03 5.2446E+01 2.0063E+00 Containment Compartment Nuclide Inventory:

Time (h) = 96.0000 Ci kg Atoms Decay Kr-85 3.2922E+04 8.3913E-02 5.9451E+23 4.2201E+20 Kr-85m 3.6662E-01 4.4550E-11 3.1563E+14 8.9486E+20 Kr-88 1.7065E-04 1.3609E-14 9.3132E+10 1.4021E+21 Rb-86 3.5654E+02 4.3819E-06 3.0684E+19 9.0505E+18 1-131 5.3019E+05 4.2766E-03 1.9660E+22 1.3865E+22 1-132 2.9809E-07 2.8879E-17 1.3175E+08 1.7274E+21

D000040-123, Revision 0 Attachment 5 Page 93 of 126 1-133 6.2452E+04 5.5130E-05 2.4963E+20 1.2843E+22 1-135 5.9594E+01 1.6969E-08 7.5698E+16 5.1968E+21 Xe-133 4.1860E+06 2.2363E-02 1.0126E+23 6.9205E+22 Xe-135 5.1819E+03 2.0291E-06 9.0517E+18 6.8820E+21 Cs-134 9.3888E+04 7.2566E-02 3.2612E+23 2.1801E+21 Cs-136 2.3272E+04 3.1752E-04 1.4060E+21 6.1441E+20 Cs-137 5.2855E+04 6.0766E-01 2.6711E+24 1.2248E+21 Containment Transport Group Inventory:

Time (h) = 96.0000 Atmosphere Sump Noble gases (atoms) 6.9578E+23 0.0000E+00 Elemental I (atoms) 3.6968E+21 0.0000E+00 Organic I (atoms) 1.1433E+20 0.0000E+00 Aerosols (kg) 6.8405E-01 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.0375E-05 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 1.0496E-05 Total I (Ci) 5.9270E+05 Deposition Recirculating Time (h) 96.0000 Surfaces Filter Noble gases (atoms) 0.0000E+00 0.0000E+00 Elemental I (atoms) 0.0000E+00 0.0000E+00 Organic I (atoms) 0.0000E+00 0.0000E+00 Aerosols (kg) 2.4090E+00 0.0000E+00 Containment Leakage to Environment Transport Group Inventory:

Time (h) = 96.0000 Leakage Transport Noble gases (atoms) 3.6678E+21 Elemental I (atoms) 2.4926E+19 Organic I (atoms) 7.7091E+17 Aerosols (kg) 6.9630E-03 Detailed model information at time (H) = 720.0000 Natural deposition - Powers' Model, Compartment 1 Deposition Lambda (1 / Hours)

Noble Elemental Organic Aerosol 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E-02 Deposition Net DF Noble Elemental Organic Aerosol 1.0000E+00 1.0000E+00 1.0000E+00 2.3981E+03 EAB Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 6.2560E-02 1.1203E+02 4.5505E+00 Accumulated dose (rem) 5.7057E-01 4.6270E+02 1.8571E+01 LPZ Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.2108E-03 1.4249E+00 5.8293E-02 Accumulated dose (rem) 8.2473E-02 3.5823E+01 1.4516E+00

DC00040-123, Revision 0 Attachment 5 Page 94 of 126 tsc Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 9.4036E-05 3.1547E+00 1.2651E-01 Accumulated dose (rem) 5.6022E-03 5.5601E+01 2.1328E+00 Containment Compartment Nuclide Inventory:

Time (h) = 720.0000 Ci kg Atoms Decay Kr-85 3.1930E+04 8.1384E-02 5.7659E+23 3.1169E+21 Rb-86 2.5786E-01 3.1691E-09 2.2191E+16 1.3125E+19 1-131 1.0598E+04 8.5483E-05 3.9297E+20 2.1366E+22 1-133 1.0937E-05 9.6551E-15 4.3718E+10 1.3045E+22 Xe-l33 1.3160E+05 7.0305E-04 3.1834E+21 1.6674E+23 Cs-134 1.7415E+02 1.3460E-04 6.0492E+20 3.4123E+21 Cs-136 1.1170E+01 1.5241E-07 6.7489E+17 8.6614E+20 Cs-137 1.0025E+02 1.1525E-03 5.0662E+21 1.9208E+21 Containment Transport Group Inventory:

Time (h) = 720.0000 Atmosphere Sump Noble gases (atoms) 5.7978E+23 0.0000E+00 Elemental I (atoms) 3.7807E+20 0.0000E+00 Organic I (atoms) 1.1693E+19 0.0000E+00 Aerosols (kg) 1.2880E-03 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 2.0340E-07 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2.0340E-07 Total I (Ci) 1.0598E+04 Deposition Recirculating Time (h) = 720.0000 Surfaces Filter Noble gases (atoms) 0.0000E+00 0.0000E+00 Elemental I (atoms) 0.0000E+00 0.0000E+00 Organic I (atoms) 0.0000E+00 0.0000E+00 Aerosols (kg) 3.0875E+00 0.0000E+00 Containment Leakage to Environment Transport Group Inventory:

Time (h) = 720.0000 Leakage Transport Noble gases (atoms) 1.9631E+22 Elemental I (atoms) 6.2574E+19 Organic I (atoms) 1.9353E+18 Aerosols (kg) 9.7901E-03 837 1-131 Summary Containment Environment TSC Time (hr) 1-131 (Curies) 1-131 (Curies) 1-131 (Curies) 0.000 2.8800E+06 1.2000E-04 2.8713E-08 0.401 2.8559E+06 9.5714E+01 . 1.1803E-02 0.701 2.8527E+06 1.6706E+02 1.4029E-02 1.001 2.8495E+06 2.3832E+02 1.4735E-02

D000040-123, Revision 0 Attachment 5 Page 95 of 126 1.301 2.8463E+06 3. 0951E+02 1.4951E-02 1.601 2.8432E+06 3.8062E+02 1.5010E-02 1.901 2.8400E+06 4.5164E+02 1.5017E-02 2.201 2.8368E+06 5.2259E+02 1.3786E-02 2.501 2.8336E+06. 5.9345E+Q2 1.3038E-02 2.801 2.8304E+06 6.6424E+02 1.2787E-02 3.101 2.8272E+06 7.3495E+02 1.2696E-02 3.401 2.8240E+06 8.0558E+02 1.2657E-02 3.701 2.8208E+06 8.7612E+02 1.2635E-02 4.001 2.7534E+06 9.4579E+02 1.2502E-02 4.301 2.6877E+06 1.0138E+03 1.2258E-02 4.601 2.6236E+06 1.0802E+03 1. 1983E-02 4.901 2.5611E+06 1. 1450E+03 1.1703E-02 5.201 2.5001E+06 1.2082E+03 1. 1426E-02 5.501 2.4407E+06 1.2699E+03 1.1155E-02 5.801 2.3828E+06 1.3302E+03 1.0890E-02 6.101 2.3264E+06 1.3891E+03 1.0632E-02 6.401 2.2713E+06 1.4465E+03 1.0380E-02 6.701 2.2177E+06 1.5026E+03 1.0135E-02 7.001 2.1653E+06 1.5574E+03 9.8952E-03 7.301 2.1143E+06 1.6109E+03 9. 6618E-03 7.601 2.0646E+06 1.6631E+03 9.4342E-03 7.901 2.0161E+06 1.7141E+03 9.2123E-03 8.000 2.0003E+06 1.7308E+03 9.1400E-03 8.300 1.9534E+06 1.7802E+03 5.8462E-03 8.600 1.9077E+06 1.8284E+03 4.7160E-03 8.900 1.8632E+06 1.8755E+03 4.2852E-03 9.200 1.8197E+06 1.9216E+03 4.0818E-03 9.500 1.7773E+06 1.9665E+03 3.9533E-03 9.800 1.7360E+06 2.0104E+03 3.8506E-03 10.100 1.6958E+06 2.0533E+03 3.7576E-03 10.400 1.6565E+06 2.0952E+03 3.6694E-03 24.000 1.2760E+06 3. 6321E+03 2.7767E-03 96.000 5.3019E+05 6. 1620E+03 4.3256E-04 720.000 1.0598E+04 8.5108E+03 6.2553E-06 Cumulative Dose Summary EAB LPZ tsc Time Thyroid TEDE Thyroid TEDE Thyroid TEDE (hr) (rem) (rem) (rem) (rem) (rem) (rem) 0.000 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.401 6.3339E+00 2.7422E-01 1.2361E+00 5.3517E-02,9.5186E-01 3.6291E-02 0.701 1.1033E+01 4.7459E-01 2.1532E+00 9.2622E-02 2.2335E+00 8.5096E-02 1.001 1.5708E+01 6.7183E-01 3.0656E+00 1.3112E-01 3.6410E+00 1.3864E-01 1.301 2.0361E+01 8.6634E-01 3.9736E+00 1.6908E-01 5.0841E+00 1.9350E-01 1.601 2.4991E+01 1.0584E+00 4.8773E+00 2.0656E-01 6.5340E+00 2.4859E-01 1.901 2.9600E+01 1.2484E+00 5.7768E+00 2.4363E-01 7.9815E+00 3.0356E-01 2.201 3.4188E+01 1.4364E+00 6.6721E+00 2.8033E-01 9.3810E+00 3.5670E-01 2.501 3.8754E+01 1.6227E+00 7.5634E+00 3.1668E-01 1.0659E+01 4.0523E-01 2.801 4.3301E+01 1.8073E+00 8.4507E+00 3.5272E-01 1.1889E+01 4.5193E-01 3.101 4.7828E+01 1.9905E+00 9.3341E+00 3.8848E-01 1.3101E+01 4.9790E-01 3.401.5.2335E+01 2.1724E+00 1.0214E+01 4.2397E-01 1.4302E+01 5.4352E-01

D000040-123, Revision 0 Attachment 5 Page 96 of 126 3.701 5.6823E+01 2.3530E+00 1.1090E+01 4.5921E-01 1.5498E+01 5.8889E-01 4.001 6.1242E+01 2.5303E+00 1.1952E+01 4.9383E-01 1.6683E+01 6.3390E-01 4.301 6.5541E+01 2.7026E+00 1.2791E+01 5.2744E-01 1.7847E+01 6.7807E-01 4.601 6.9726E+01 2.8699E+00 1.3608E+01 5.6009E-01 1.8982E+01 7.2118E-01 4.901 7.3799E+01 3.0324E+00 1.4403E+01 5.9181E-01 2.0088E+01 7.6318E-01 5.201 7.7764E+01 3.1904E+00 1.5177E+01 6.2265E-01 2.1165E+01 8.0407E-01 5.501 8.1624E+01 3.3440E+00 1.5930E+01 6.5262E-01 2.2213E+01 8.4387E-01 5.801 8.5381E+01 3.4933E+00 1.6663E+01 6.8176E-01 2.3234E+01 8.8263E-01 6.101 8.9039E+01 3.6386E+00 1.7377E+01 7.1011E-01 2.4228E+01 9.2037E-01 6.401 9.2602E+01 3.7798E+00 1.8072E+01 7.3767E-01 2.5195E+01 9.5711E-01 6.701 9.6070E+01 3.9172E+00 1.8749E+01 7.6448E-01 2.6138E+01 9.9289E-01 7.001 9.9448E+01 4.0509E+00 1.9408E+01 7.9057E-01 2.7055E+01 1.0277E+00 7.301 1.0274E+02 4.1809E+00 2.0051E+01 8.1595E-01 2.7949E+01 1.0617E+00 7.601 1.0594E+02 4.3075E+00 2.0676E+01 8.4066E-01 2.8819E+01 1.0947E+00 7.901 1.0906E+02 4.4307E+00 2.1285E+01 8.6470E-01 2.9667E+01 1.1269E+00 8.000 1.1008E+02 4.4708E+00 2.1483E+01 8.7253E-01 2.9943E+01 1.1374E+00 8.300 1.1309E+02 4.5897E+00 2.1693E+01 8.8112E-01 3.0598E+01 1.1623E+00 8.600 1.1603E+02 4.7054E+00 2.1898E+01 8.8947E-01 3.1068E+01 1.1802E+00 8.900 1.1889E+02 4.8180E+00 2.2097E+01 8.9760E-01 3.1471E+01 1.1955E+00 9.200 1.2168E+02 4.9277E+00 2.2291E+01 9.0551E-01 3.1847E+01 1.2098E+00 9.500 1.2439E+02 5.0346E+00 2.2481E+01 9.1321E-01 3.2207E+01 1.2234E+00 9.800 1.2704E+02 5.1386E+00 2.2665E+01 9.2070E-01 3.2557E+01 1.2367E+00 10.100 1.2962E+02 5.2400E+00 2.2845E+01 9.2800E-01 3.2897E+01 1.2496E+00 10.400 1.3213E+02 5.3387E+00 2.3020E+01 9.3510E-01 3.3228E+01 1.2622E+00 24.000 2.2091E+02 8.8147E+00 2.9205E+01 1.1834E+00 4.4744E+01 1.7018E+00 96.000 3.5068E+02 1.4021E+01 3.4398E+01 1.3933E+00 5.2446E+01 2.0063E+00 720.000 4.6270E+02 1.8571E+01 3.5823E+01 1.4516E+00 5.5601E+01 2.1328E+00 Worst Two-Hour Doses EAB Time Whole Body Thyroid TEDE (hr) (rem) (rem) (rem) 0.0 1.3392E-01 3.1121E+01 1.3107E+00

DC00040-123, Revision 0 Attachment 6 Page 97 of 126 Attachment 6 SG PORV Conservative Case RADTRAD Input/Output File

D000040-123, Revision 0 Attachment 6 Page 98 of 126 Conservative Case - SG PORV RADTRAD Version 3.03 (Spring 2001) run on 11/09/2011 at 12:50:54 File information Plant file = C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\SG Dump

- Conservative Case.psf Inventory file = C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\Design SG Release.nif Release file = C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\Design SG Release.rft Dose Conversion file = C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\Fgrll&12.inp Radtrad 3.03 4/15/2001 Conservative Case - SG Dump Nuclide Inventory File:

C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\Design SG Release.nif Plant Power Level:

1.0442E+00 Compartments:

3 Compartment 1:

Source Volume 3

1.0000E+04 0

0 0

0 0

Compartment 2:

Environment 2

0.0000E+00 0

DC0004O-123, Revision 0 Attachment 6 Page 99 of 126 1

2.0700E+05 0

0 0

0 0

Pathways:

4 Pathway 1:

Source Volume to Environment 1

2 2

Pathway 2:

Environment to TSC - Makeup 2

3 2

Pathway 3:

Environment to TSC - Inleakage 2

3 2

Pathway 4:

TSC to Environment - Exhaust 3

2 2

End of Plant Model File Scenario Description Name:

Plant Model Filename:

Source Term:

1 1 1.0000E+00 C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\Fgrll&12.inp C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\Design SG Release.rft 0.0000E+00 1

0.0000E+00 9.7000E-01 3.0000E-02 1.0000E+00 Overlying Pool:

0 0.0000E+00 0

0 0

0

D000040-123, Revision 0 Attachment 6 Page 100 of 126 Compartments:

3 Compartment 1:

1 1

0 0

0 0

0 0

0 Compartment 2:

0 1

0 0

0 0

0 0

0 Compartment 3:

0 1

0 0

0-0 0

0 0

Pathways:

4 Pathway 1:

0 0

0 0

0 1

2 0.0000E+00 1.0000E+10 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0

0 0

0 0

0 Pathway 2:

0 0

0 0

D000040-123, Revision 0 Attachment 6 Page 101 of 126 0

1 2

0.0000E+00 1.2000E+04 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0

0 0

0 0

0 Pathway 3:

0 0

0 0

0 1

2 0.0000E+00 1.0000E+03 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0

0 0

0 0

0 Pathway 4:

0 0

0 0

0 1

2 0.0000E+00 1.3000E+04 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0

0 0

0 0

0 Dose Locations:

3 Location 1:

EAB 2

1 2

0.0000E+00 1.2400E-04 7.2000E+02 0.0000E+00 1

2 0.0000E+00 3.5000E-04

D000040-123, Revision 0 Attachment 6 Page 102 of 126 7.2000E+02 0.0000E+00 0

Location 2:

LPZ 2

1 5

0.0000E+00 2.4200E-05 8.0000E+00 1.6800E-05 2.4000E+01 7.5500E-06 9.6000E+01 2.4000E-06 7.2000E+02 0.0000E+00 1

4 0.0000E+00 3.5000E-04 8.0000E+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.0000E+00 0

Location 3:

Control Room 3

0 1

2 0.0000E+00 3.5000E-04 7.2000E+02 0.0000E+00 1

4 0.0000E+00 1.0000E+00 2.4000E+01 6.0000E-01 9.6000E+01 4.0000E-01 7.2000E+02 0.0000E+00 Effective Volume Location:

1 6

0.0000E+00 3.9000E-05 2.0000E+00 3.3000E-05 8.0000E+00 1.6000E-05 2.4000E+01 1.2000E-05 9.6000E+01 8.7000E-06 7.2000E+02 0.0000E+00 Simulation Parameters:

1 0.0000E+00 0.0000E+00 Output Filename:

C:\Program Files\radtrad3 03\VCS TSC\Rod Ejection\SG Dump - Conservative Case.oO 1

1 1

0 1

End of Scenario File

D000040-123, Revision 0 Attachment 6 Page 103 of 126 RADTRAD Version 3.03 (Spring 2001) run on 11/09/2011 at 12:50:54 Plant Description Number of Nuclides = 60 Inventory Power = 1.0000E+00 MWth Plant Power Level = 1.0442E+00 MWth Number of compartments = 3 Compartment information Compartment number 1 (Source term fraction = 1.0000E+00 Name: Source Volume Compartment volume = 1.0000E+04 (Cubic feet)

Compartment type is Normal Pathways into and out of compartment 1 Exit Pathway Number 1: Source Volume to Environment Compartment number 2 Name: Environment Compartment type is Environment Pathways into and out of compartment 2 Inlet Pathway Number 1: Source Volume to Environment Inlet Pathway Number 4: TSC to Environment - Exhaust Exit Pathway Number 2: Environment to TSC - Makeup Exit Pathway Number 3: Environment to TSC - Inleakage Compartment number 3 Name: TSC Compartment volume = 2.0700E+05 (Cubic feet)

Compartment type is Control Room Pathways into and out of compartment 3' Inlet Pathway Number 2: Environment to TSC - Makeup Inlet Pathway Number 3: Environment to TSC - Inleakage Exit Pathway Number 4: TSC to Environment - Exhaust Total number of pathways = 4

D000040-123, Revision 0 Attachment 6 Page 104 of 126 RADTRAD Version 3.03 (Spring 2001) run on 11/09/2011 at 12:50:54 Scenario Description Radioactive Decay is enabled Calculation of Daughters is enabled Release Fractions and Timings GAP EARLY IN-VESSEL LATE RELEASE RELEASE MASS 2.000000 hr 6.0000 hrs 16.0000 hrs (gm)

NOBLES 8.3300E-02 2.5000E-01 6.6700E-01 3.778E+00 IODINE 8.3400E-02 2.5000E-01 6.6700E-01 1.967E-02 CESIUM 8.4000E-02 2.5100E-01 6.6500E-01 1.965E+00 TELLURIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 STRONTIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 BARIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 RUTHENIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 CERIUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 LANTHANUM 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 Inventory Power= 1. MWt Nuclide Group Specific half Whole Body Inhaled Inhaled Name Inventory life DCF Thyroid Effective (Ci/MWt) (s) (Sv-m3/Bq-s) (Sv/Bq) (Sv/Bq)

Kr-85 1 9.950E+02 3.383E+08 1.190E-16 0.000E+00 0.000E+00 Kr-85m 1 3.130E+04 1.613E+04 7.480E-15 0.000E+00 0.000E+00 Kr-87 1 5.700E+04 4.578E+03 4.120E-14 0.000E+00 0.000E+00 Kr-88 1 7.710E+04 1.022E+04 1.020E-13 0.000E+00 0.000E+00 Rb-86 3 1.160E+00 1.612E+06 4.810E-15 1.330E-09 1.790E-09 1-131 2 1.770E+03 6.947E+05 1.820E-14 2.920E-07 8.890E-09 1-132 2 2.590E+03 8.280E+03 1.120E-13 1.740E-09 1.030E-10 1-133 2 3.630E+03 7.488E+04 2.940E-14 4.860E-08 1.580E-09 1-134 2 3.890E+03 3.156E+03 1.300E-13 2. 880E-10 3.550E-11 1-135 2 3.330E+03 2.380E+04 8.294E-14 8.460E-09 3.320E-10 Xe-133 1 1.970E+05 4.532E+05 1.560E-15 0.000E+00 0.000E+00 Xe-135 1 4.250E+04 3.272E+04 1.190E-14 0.000E+00 0.000E+00 Cs-134 3 2.620E+02 6.507E+07 7.570E-14 1.110E-08 1.250E-08 Cs-136 3 8.140E+01 1.132E+06 1.060E-13 1.730E-09 1.980E-09 Cs-137 3 1.460E+02 9.467E+08 2.725E-14 7.930E-09 8.630E-09 Nuclide Daughter Fraction Daughter Fraction Daughter Fraction Kr-85m Kr-85 0.21 none 0.00 none 0.00 Kr-87 Rb-87 1.00 none 0.00 none 0.00 Kr-88 Rb-88 1.00 none 0.00 none 0.00 1-131 Xe-131m 0.01 none 0.00 none 0.00 1-133 Xe-133m 0.03 Xe-133 0.97 none 0.00 1-135 Xe-135m 0.15 Xe-135 0.85 none 0.00 Xe-135 Cs-135 1.00 none 0.00 none 0.00 Cs-137 Ba-137m 0.95 none 0.00 none 0.00

DC00040-123, Revision 0

. Attachment 6 Page 105 of 126 Iodine fractions Aerosol = 0.0000E+00 Elemental = 9.7000E-01 Organic = 3.0000E-02 COMPARTMENT DATA Compartment number 1: Source Volume Compartment number 2: Environment Compartment number 3: TSC PATHWAY DATA Pathway number 1: Source Volume to Environment Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 1.0000E+10 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Pathway number 2: Environment to TSC - Makeup Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 1.2000E+04 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Pathway number 3: Environment to TSC - Inleakage Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 1.0000E+03 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Pathway number 4: TSC to Environment - Exhaust Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 1.3000E+04 0.0000E+00 0.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 LOCATION DATA Location EAB is in compartment 2

D000040-123, Revision 0 Attachment 6 Page 106 of 126 Location X/Q Data Time (hr) X/Q (s

  • m^-3) 0.0000E+00 1.2400E-04 7.2000E+02 0.0000E+00 Location Breathing Rate Data Time (hr) Breathing Rate (m^3
  • sec^-l) 0.0000E+00 3.5000E-04 7.2000E+02 0.0000E+00 Location LPZ is in compartment 2 Location X/Q Data Time (hr) X/Q (s
  • m^-3) 0.0000E+00 2.4200E-05 8.0000E+00 1.6800E-05 2.4000E+01 7.5500E-06 9.6000E+01 2.4000E-06 7.2000E+02 0.0000E+00 Location Breathing Rate Data Time (hr) Breathing Rate (m^3
  • sec^-1) 0.0000E+00 3.5000E-04 8.0000E+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.0000E+00 Location Control Room is in compartment 3 Location X/Q Data Time (hr) X/Q (s
  • m^-3) 0.0000E+00 3.9000E-05 2.0000E+00 3.3000E-05 8.0000E+00 1.6000E-05 2.4000E+01 1.2000E-05 9.6000E+01 8.7000E-06 7.2000E+02 0.0000E+00 Location Breathing Rate Data Time (hr) Breathing Rate (m^3
  • sec^-1) 0.0000E+00 3.5000E-04 7.2000E+02 0.0000E+00 Location Occupancy Factor Data Time (hr) Occupancy Factor 0.0000E+00 1.0000E+00 2.4000E+01 6.0000E-01 9.6000E+01 4.0000E-01 7.2000E+02 0.0000E+00 USER SPECIFIED TIME STEP DATA - SUPPLEMENTAL TIME STEPS Time Time step 0.0000E+00 0.0000E+00

D000040-123, Revision 0 Attachment 6 Page 107 of 126 RADTRAD Version 3.03 (Spring 2001) run on 11/09/2011 at 12:50:54 Dose, Detailed model and Detailed Inventory Output Detailed model information at time (H) = 2.0000 EAB Doses:

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 3.8530E-01 1.0066E+01 7.6636E-01 Accumulated dose (rem) 3.8530E-01 1.0066E+01 7.6636E-01 LPZ Doses:

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 7.5195E-02 1.9646E+00 1.4956E-01 Accumulated dose (rem) 7.5195E-02 1.9646E+00 1.4956E-01 Control Room Doses:

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 5.4130E-03 2.7361E+00 1.0897E-01 Accumulated dose (rem) 5.4130E-03 2.7361E+00 1.0897E-01 Source Volume Compartment Nuclide Inventory:

Time (h) = 2.0000 Ci kg Atoms Decay Kr-85 7.2127E-07 1.8384E-12 1.3025E+13 1.9214E+08 Kr-85m 1.6650E-05 2.0232E-15 1.4334E+10 5.1983E+09 Kr-87 1.3889E-05 4.9034E-16 3.3942E+09 6.7024E+09 Kr-88 3.4301E-05 2.7355E-15 1.8720E+10 1.1780E+10 Rb-86 8.4527E-10 1.0388E-17 7.2744E+07 2.2553E+05 1-131 1.2753E-06 1.0287E-14 4.7290E+10 3.4097E+08 1-132 1.0287E-06 9.9663E-17 4.5468E+08 3.7607E+08 1-133 2.4645E-06 2.1756E-15 9.8508E+09 6.7892E+08 1-134 5.8071E-07 2.1768E-17 9.7830E+07 3.7776E+08 1-135 1.9594E-06 5.5795E-16 2.4889E+09 5.8077E+08

DC00040-123, Revision 0 Attachment 6 Page 108 of 126 Xe-133 1.4126E-04 7.5466E-13 3.4170E+12 3.7835E+10 Xe-135 2.6711E-05 1.0460E-14 4.6658E+10 7.6468E+09 Cs-134 1.9149E-07 1.4800E-13 6.6515E+11 5.1015E+07 Cs-136 5.9237E-08 8.0824E-16 3.5789E+09 1.5816E+07 Cs-137 1.0672E-07 1.2269E-12 5.3930E+12 2.8429E+07 Source Volume Transport Group Inventory:

Time (h) =' 2.0000 Atmosphere Sump Noble gases (atoms) 1.6525E+13 0.0000E+00 Elemental I (atoms) 5.8377E+10 0.0000E+00 Organic I (atoms) 1.8055E+09 0.0000E+00 Aerosols (kg) 1.3757E-12 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 6.1765E-15 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 7.5717E-15 Total I (Ci) 7.3087E-06 Source Volume to Environment Transport Group Inventory:

Pathway Time (h) = 2.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 5.0514E+21 Elemental I (atoms) 0.0000E+00 1.8372E+19 Organic I (atoms) 0.0000E+00 5.6820E+17 Aerosols (kg) 0.0000E+00 4.1982E-04 Detailed model information at time (H) = 8.0000 EAB Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 4.7816E-01 2.8507E+01 1.5592E+00 Accumulated dose (rem) 8.6346E-01 3.8574E+01 2.3255E+00 LPZ Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 9.3319E-02 5.5635E+00 3.0429E-01 Accumulated dose (rem) 1.6851E-01 7.5281E+00 4.5385E-01 Control Room Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 6.8882E-03 7.6508E+00 2.9701E-01 Accumulated dose (rem) 1.2301E-02 1.0387E+01 4.0599E-01 Source Volume Compartment Nuclide Inventory:

Time (h) = 8.0000 Ci kg Atoms Decay Kr-85 7.2163E-07 1.8393E-12 1.3031E+13 7.6885E+08 Kr-85m 6.5828E-06 7.9990E-16 5.6672E+09 1.3871E+10 Kr-87 5.2787E-07 1.8636E-17 1.2900E+08 9.9689E+09 Kr-88 7.9342E-06 6.3275E-16 4.3301E+09 2.6177E+10 Rb-86 8.3413E-10 1.0251E-17 7.1786E+07 8.9527E+05 1-131 1.2471E-06 1.0060E-14 4.6244E+10 1.3485E+09 1-132 1.6852E-07 1.6326E-17 7.4485E+07 7.5591E+08

DC00040-123, Revision 0 Attachment 6 Page 109 of 126 1-133 2.0163E-06 1.7799E-15 8.0591E+09 2.4627E+09 1-134 5.0504E-09 1.8932E-19 8.5083E+05 4.7466E+08 1-135 1.0436E-06 2.9716E-16 1.3256E+09 1.7421E+09 Xe-133 1.3679E-04 7.3080E-13 3.3090E+12 1.4896E+11 Xe-135 1.7355E-05 6.7960E-15 3.0316E+10 2.4995E+10 Cs-134 1.9069E-07 1.4738E-13 6.6236E+11 2.0343E+08 Cs-136 5.8226E-08 7.9445E-16 3.5179E+09 6.2659E+07 Cs-137 1.0629E-07 1.2220E-12 5.3716E+12 1.1338E+08 Source Volume Transport Group Inventory: '

Time (h) = 8.0000 Atmosphere Sump Noble gases (atoms) 1.6381E+13 0.0000E+00 Elemental I (atoms) 5.4033E+10 0.0000E+00 Organic I (atoms) 1.6711E+09 0.0000E+00 Aerosols (kg) 1.3702E-12 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 5.6997E-15 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 6.6358E-15 Total I (Ci) 4.4806E-06 Source Volume to Environment Transport Group Inventory:

Pathway Time (h) = 8.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 5.0650E+22 Elemental I (atoms) 0.0000E+00 3.8549E+19 Organic I (atoms) 0.0000E+00 1.1922E+18 Aerosols (kg) 0.0000E+00 9.1311E-04 Detailed model information at time (H) = 24.0000 EAB Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 3.0957E-01 6.7658E+01 2.9089E+00 Accumulated dose (rem) 1.1730E+00 1.0623E+02 5.2345E+00 LPZ Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 4.1942E-02 4.7142E+00 2.2306E-01 Accumulated dose (rem) 2.1046E-01 1.2242E+01 6.7691E-01 Control Room Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 2.2117E-03 8.8978E+00 3.4401E-01 Accumulated dose (rem) 1.4513E-02 1.9285E+01 7.4999E-01 Source Volume Compartment Nuclide Inventory:

Time (h) = 24.0000 Ci kg Atoms Decay Kr-85 7.2197E-07 1.8402E-12 1.3037E+13 2.3076E+09 Kr-85m 5.5402E-07 6.7320E-17 4.7696E+08 1.9064E+10 Kr-87 8.6142E-11 3.0411E-21 2.1051E+04 1.0098E+10 Kr-88 1.5987E-07 1.2750E-17 8.7252E+07 3.0422E+10

DC00040-123, Revision 0 Attachment 6 Page 110 of 126 Rb-86 8.0846E-10 9.9359E-18 6.9576E+07 2.6398E+06

'1-131 1.1781E-06 9.5025E-15 4.3683E+10 3.9328E+09 1-132 1.3575E-09 1.3152E-19 6.0001E+05 8.2983E+08 1-133 1.1836E-06 1.0448E-15 4.7309E+09 5.7950E+09 1-135 1.9502E-07 5.5533E-17 2.4772E+08 2.8206E+09 Xe-133 1.2545E-04 6.7019E-13 3.0346E+12 4.2830E+ll Xe-135 5.3838E-06 2.1082E-15 9.4045E+09 4.6823E+10 Cs-134 1.8934E-07 1.4634E-13 6.5766E+ll 6.0707E+08 Cs-136 5.5844E-08 7.6195E-16 3.3740E+09 1.8380E+08 Cs-137 1.0560E-07 1.2140E-12 5.3366E+12 3.3844E+08 Source Volume Transport Group Inventory:

Time (h) = 24.0000 Atmosphere Sump Noble gases (atoms) 1.6082E+13 0.0000E+00 Elemental I (atoms) 4.7203E+10 0.0000E+00 Organic I (atoms) 1.4599E+09 0.0000E+00 Aerosols (kg) 1.3611E-12 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 4.8760E-15 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 5.3351E-15 Total I (Ci) 2.5580E-06 Source Volume to Environment Transport Group Inventory:

Pathway Time (h) = 24.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 1.1258E+23 Elemental I (atoms) 0.0000E+00 2.4909E+20 Organic I (atoms) 0.0000E+00 7.7038E+18 Aerosols (kg) 0.0000E+00 2.2199E-03 Detailed model information at time (H) = 96.0000 EAB Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.7251E-10 6.5229E-08 2.7094E-09 Accumulated dose (rem) 1.1730E+00 1.0623E+02 5.2345E+00 LPZ Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.0504E-11 2.6099E-09 1.1201E-10 Accumulated dose (rem) 2.1046E-01 1.2242E+01 6.7691E-01 Control Room Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 2.2387E-05 1.5863E-01 6.1920E-03 Accumulated dose (rem) 1.4535E-02 1.9443E+01 7.5618E-01 Source Volume Compartment Nuclide Inventory:

Time (h) = 96.0000 Ci kg Atoms Decay Source Volume Transport Group Inventory:

DC00040-123, Revision 0 Attachment 6 Page 111 of 126 Time (h) = 96.0000 Atmosphere Sump Noble gases (atoms) 0.0000E+00 0.0000E+00 Elemental I (atoms) 0.0000E+00 0.0000E+00 Organic I (atoms) 0.0000E+00 0.0000E+00 Aerosols (kg) 0.0000E+00 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 0.0000E+00 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 0.0000E+00 Total I (Ci) 0.0000E+00 Source Volume to Environment Transport Group Inventory:

Pathway Time (h) = 96.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 1.1306E+23 Elemental I (atoms) 0.0000E+00 2.5051E+20 Organic I (atoms) 0.0000E+00 7.7476E+18 Aerosols (kg) 0.0000E+00 2.2608E-03 Detailed model information at time (H) = 720.0000 EAB Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.0000E+00 0.0000E+00 0.0000E+00 Accumulated dose (rem) 1.1730E+00 1.0623E+02 5.2345E+00 LPZ Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.0000E+00 0.0000E+00 0.0000E+00 Accumulated dose (rem) 2.1046E-01 1.2242E+01 6.7691E-01 Control Room Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.0327-123 1.0644-119 4.5283-121 Accumulated dose (rem) 1.4535E-02 1.9443E+01 7.5618E-01 Source Volume Compartment Nuclide Inventory:

Time (h) = 720.0000 Ci kg Atoms Decay Source Volume Transport Group Inventory:

Time (h) = 720.0000 Atmosphere Sump Noble gases (atoms) 0.0000E+00 0.0000E+00 Elemental I (atoms) 0.0000E+00 0.0000E+00 Organic I (atoms) 0.0000E+00 0.0000E+00 Aerosols (kg) 0.0000E+00 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 0.0000E+00 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 0.0000E+00 Total I (Ci) 0.0000E+00 Source Volume to Environment Transport Group Inventory:

Pathway

D000040-123, Revision 0 Attachment 6 Page 112 of 126 Time (h) = 720.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 1.1306E+23 Elemental I (atoms) 0.0000E+00 2.5051E+20 Organic I (atoms) 0.0000E+00 7.7476E+18 Aerosols (kg) 0.0000E+00 2.2608E-03 837 1-131 Summary Source Volume Environment TSC Time (hr) 1-131 (Curies) 1-131 (Curies) 1-131 (Curies) 0.000 1.2845E-06 4.2816E-02 1.0234E-05 0.401 1.2827E-06 3.0886E+01 3.8090E-03 0.701 1.2813E-06 5.3958E+01 4.5340E-03 1.001 1.2799E-06 7.7005E+01 4.7643E-03 1.301 1.2785E-06 1.0003E+02 4.8351E-03 1.601 1.2772E-06 1.2302E+02 4.8543E-03 1.901 1.2758E-06 1.4600E+02 4.8570E-03 2.000 1.2753E-06 1.5356E+02 4.8564E-03 2.300 1.2729E-06 1.7648E+02 4.3451E-03 2.600 1.2716E-06 1.9938E+02 4.1772E-03 2.900 1.2702E-06 2.2225E+02 4.1201E-03 3.200 1.2688E-06 2.4510E+02 4.0986E-03 3.500 1.2675E-06 2.6792E+02 4.0887E-03 3.800 1.2661E-06 2.9072E+02 4.0826E-03 4.100 1.2647E-06 3.1349E+02 4.0776E-03 4.400 1.2634E-06 3.3624E+02 4.0730E-03 4.700 1.2620E-06 3.5897E+02 4.0686E-03 5.000 1.2606E-06 3 .8167E+02 4.0642E-03 5.300 1.2593E-06 4.0434E+02 4.0598E-03 5.600 1.2579E-06 4.2699E+02 4.0554E-03 5.900 1.2566E-06 4.4962E+02 4.0511E-03 6.200 1.2552E-06 4.7222E+02 4.0467E-03 6.500 1.2539E-06 4.9480E+02 4.0423E-03 6.800 1.2525E-06 5. 1735E+02 4.0380E-03 7.100 1.2512E-06 5.3988E+02 4.0336E-03 7.400 1.2498E-06 5.6239E+02 4.0293E-03 7.700 1.2485E-06 5.8487E+02 4.0249E-03 8.000 1.2471E-06 6.0732E+02 4.0206E-03 8.300 1.2464E-06 6.2977E+02 2.6160E-03 8.600 1.2451E-06 6.5219E+02 2.1615E-03 8.900 1.2437E-06 6.7458E+02 2.0135E-03 9.200 1.2424E-06 6.9695E+02 1.9644E-03 9.500 1.2411E-06 7.1930E+02 1.9471E-03 9.800 1.2397E-06 7 .4162E+02 1.9401E-03 10.100 1.2384E-06 7.6392E+02 1.9365E-03 10.400 1.2370E-06 7.8620E+02 1.9339E-03 24.000 1.1781E-06 1.7699E+03 1.8414E-03 96.000 0.0000E+00 1.7699E+03 2.1225-121 720.000 0.0000E+00 1.7699E+03 0.0000E+00

D000040-123, Revision 0 Attachment 6 Page 113 of 126 Cumulative Dose Summary EAB LPZ Control Room Time Thyroid TEDE Thyroid TEDE Thyroid TEDE (hr) (rem) (rem) (rem) (rem) (rem) (rem) 0.000 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.401 2.0456E+00 1.7321E-01 3.9923E-01 3.3804E-02 3.0745E-01 1.2404E-02 0.701 3.5664E+00 2.9535E-01 6.9603E-01 5.7641E-02 7.2179E-01 2.9030E-02 1.001 5.0797E+00 4.1188E-01 9.9136E-01 8.0384E-02 1.1772E+00 4.7218E-02 1.301 6.5856E+00 5.2339E-01 1.2853E+00 1.0215E-01 1.6442E+00 6.5795E-02 1.601 8.0844E+00 6.3037E-01 1.5778E+00 1.2302E-01 2.1135E+00 8.4392E-02 1.901 9.5762E+00 7.3327E-01 1.8689E+00 1.4311E-01 2.5820E+00 1.0290E-01 2.000 1.0066E+01 7.6636E-01 1.9646E+00 1.4956E-01 2.7361E+00 1.0897E-01 2.300 1.1548E+01 8.6434E-01 2.2537E+00 1.6869E-01 3.1739E+00 1.2620E-01 2.600 1.3023E+01 9.5906E-01 2.5416E+00 1.8717E-01 3.5805E+00 1.4216E-01 2.900 1.4492E+01 1.0508E+00 2.8282E+00 2.0508E-01 3.9758E+00 1.5763E-01 3.200 1.5954E+01 1.1398E+00 3.1136E+00 2.2245E-01 4.3664E+00 1.7289E-01 3.500 1.7410E+01 1.2264E+00 3.3978E+00 2.3934E-01 4.7544E+00 1.8803E-01 3.800 1.8860E+01 1.3106E+00 3.6807E+00 2.5578E-01 5.1404E+00 2.0306E-01 4.100 2.0304E+01 1.3927E+00 3.9626E+00 2.7181E-01 5.5248E+00 2.1800E-01 4.400 2.1742E+01 1.4729E+00 4.2432E+00 2.8746E-01 5.9075E+00 2.3287E-01 4.700 2.3175E+01 1.5513E+00 4.5228E+00 3.0275E-01 6.2887E+00 2.4766E-01 5.000 2.4601E+01 1.6280E+00 4.8012E+00 3.1773E-01 6.6684E+00 2.6237E-01 5.300 2.6022E+01 1.7032E+00 5.0786E+00 3.3240E-01 7.0466E+00 2.7701E-01 5.600 2.7438E+01 1.7769E+00 5.3548E+00 3.4679E-01 7.4233E+00 2.9159E-01 5.900 2.8848E+01 1.8494E+00 5.6300E+00 3.6092E-01 7.7986E+00 3.0610E-01 6.200 3.0253E+01 1.9205E+00 5.9042E+00 3.7481E-01 8.1725E+00 3.2055E-01 6.500 3.1653E+01 1.9905E+00 6.1774E+00 3.8847E-01 8.5449E+00 3.3493E-01 6.800 3.3047E+01 2.0594E+00 6.4495E+00 4.0192E-01 8.9160E+00 3.4925E-01 7.100 3.4436E+01 2.1273E+00 6.7206E+00 4.1517E-01 9.2858E+00 3.6352E-01 7.400 3.5820E+01 2.1943E+00 6.9908E+00 4.2824E-01 9.6541E+00 3.7773E-01 7.700 3.7200E+01 2.2603E+00 7.2599E+00 4.4113E-01 1.0021E+01 3.9188E-01 8.000 3.8574E+01 2.3255E+00 7.5281E+00 4.5385E-01 1.0387E+01 4.0599E-01 8.300 3.9944E+01 2.3899E+00 7.6236E+00 4.5915E-01 1.0677E+01 4.1718E-01 8.600 4.1309E+01 2.4535E+00 7.7187E+00 4.6435E-01 1.0890E+01 4.2538E-01 8.900 4.2670E+01 2.5165E+00 7.8135E+00 4.6947E-01 1.1078E+01 4.3259E-01 9.200 4.4026E+01 2.5787E+00 7.9080E+00 4.7451E-01 1.1256E+01 4.3947E-01 9.500 4.5377E+01 2.6403E+00 8.0021E+00 4.7947E-01 1.1432E+01 4.4622E-01 9.800 4.6723E+01 2.7014E+00 8.0960E+00 4.8437E-01 1.1606E+01 4.5292E-01 10.100 4.8066E+01 2.7619E+00 8.1895E+00 4.8919E-01 1.1779E+01 4.5959E-01 10.400 4.9403E+01 2.8218E+00 8.2827E+00 4.9396E-01 1.1952E+01 4.6624E-01 24.000 1.0623E+02 5.2345E+00 1.2242E+01 6.7691E-01 1.9285E+01 7.4999E-01 96.000 1.0623E+02 5.2345E+00 1.2242E+01 6.7691E-01 1.9443E+01 7.5618E-01 720.000 1.0623E+02 5.2345E+00 1.2242E+01 6.7691E-01 1.9443E+01 7.5618E-01 Worst Two-Hour Doses EAB Time Whole Body Thyroid TEDE (hr) (rem) (rem) (rem) 0.0 3.8530E-01 1.0066E+01 7.6636E-01

DO00040-123, Revision 0 Attachment 6 Page 114 of 128 Attachment 7 Westinghouse Letter (Reference 4.32)

D000040-123, Revision 0 Attachment 6 Page 115 of 128 CGE-93-0009SGUL Energy Sysrems puele$ am Awanced Eleesl ric Goruparation :ecenofn Ohilim 601355 Pittsiup Peeaybenia 15230-0355 March 10, 1993 PS-CGE-0823 Mr. R. B. Clary Manager, SG Project South Carolina Electric & Gas Co.

P.O. Box 88 Jenkinsville, SC 29065 Attention: John S. Frick

Subject:

Purchase Order No. Q594687 VCSNS RSG/Uprating: Rod Ejection Parameters for Dose Analysis

Attachment:

Letter ET-NSASD-SAI-93-182, dated March 9, 1993

Dear Mr. Clary:

Attached for your information and for Gilbert Commonwealth's use in the dose analysis for VCSNS is a letter from our Safeguards Analysis group confirming that parameters currently listed in Table 15.4-43 of the VCSNS FSAR are still valid for the Replacement Steam Generator/Uprating analyses. Specifically, these parameters are the steam dump from the relief valves and the time between accident and equalization of primary and secondary system pressure. This information was provided verbally (8s preliminary) to Mr. Paul Bunker of Gilbert Commonwealth in a phone conference held on March 2, 1993. A copy of this latter has been telecopied to Mr. Bunker today for his use as a reference in the dose analysis.

Please contact D. B. Augustine on 412-374-4213 if you have any questions or comments regarding the attached information.

VOW truly yours, Buddy B. Jolley, II Key Accounts Manager Carolinas District Power Systems Field Sales D. B. Augustine/mm aox1mt:DU-031093

DO00040-123, Revision 0 Attachment 6 Page 116 of 128 CGE-93-0009SGUJL cc: L. R. Cartin - SCEBG (iL, IA)

A. R. Rice - SCE&G (1L, 1A)

J. S. Frick - SCE&G (1L)

P. Bunker - Gilbert Commonwealth (IL, 1A)

W. A. Fisher - $ Pensacola (1L)

P. R. Harden - PSFS.charlotte (it)

B. B. Jolley - PSFS Columbia (1L, 1A)

DC00040-123, Revision 0 Attachment 6 Page 117 of 128 Westinghouse Proprietary Class 2 ET-HSASD-sAI 93-182 From: Safeguards Analysis I WIN: 284-4777 Date: March 9; 1993

Subject:

V. C. Summer Rod Felon Accident Analysis To: D. S. Augustine' E4-20 ec M. R. Zawalirk' E408 P. W. Robertson' E4-12

  • Without attachment.

An avalnation was performed to determine the adequacy of the WFLASH analysis values for the Rod Ejection Accident Analyses at uprated power. Specifically, the steam dump from relief valves. and the time between accident and equalization of primary and secondary system pressure of FSAR Table 15.4-43 were considered.

it was determined that the WFLASH analysis for the Rod Ejection Accident Anayses was performed at core power Iml of 293$ MWt. which is equal to the desired upratad power of 2900 MWt plus a 2% calorimetric uncertainty. Therefore, the steam dump from relief valves of 38000 Ibs and the time between accident and equalization of primary and secondary system pressure of 176 seconds in FEAR Table 18.4-43 remains applicable for use in the current uprated Rod Ejection Accident Analyses.

Reviewed . ^ l?^ Y " 2 S. R. D. E. Lochtefald Safeguards Analysis I Safeguards Analysis I Approved:

W. D. Tauche, Manager Safeguards Analysis I

DO00040-123, Revision 0 Attachment 8 Page 118 of 126 Attachment 8 Westinghouse Transmittal

  1. CGE-93-0007SGUL (PS-CGE-0807) dated 3/1/93

D000040-123, Revision 0 Attachment 8 Page 119 of 126 CCE-93-0007SGUL wesringtlouse Energy Systems RixtW at5 RO^a!

ecnn^yCinaFn Electric Corparation Bat 33$

Pettspcgn P fl :frame 15?3G0355 March 1, 1993.

PS-CCE-0807 Mr. R.. B. Clary Manager, SG Project South Carolina Electric & Gas Co.

P.O. Box 88 Jenkinsville, SC 29065 Attention: John S. Frick Subjects Purchase Order No. Q594667 VCSNS RSG/trprating: Steam Release for Dose Analysis and Write-up for source Terms

Dear Mr. Clary:

Attached for your information and reference in Gilbert Commonwealth's analyses for the VCSNS RSG/Uprating are:

1) The steam releases and feedwater delivery for use in the dose analysis (documented in Westinghouse internal letter ET-NSASD-TAT-93-60, 2 pages), and The licensing write-up for the source terms used in the dose analysis (no internal Westinghouse letter, 5 pages).

This information is supplied in response to Mr. Paul Bunker's (Gilbert Commonwealth) request and was telecopied to him on March.

1, per the agreed-upon schedule. Please contact D. B. Augustine on 412-374-4213 if you have any questions regarding the attached:

information.

Very truly yours, Buddy B. Jolley11 Kay Accounts Manager Carolinas District Power Systems Field Sales D. B. Augustine/em SotAMQD DlAd70rn

D000040-123, Revision 0 Attachment 8 Page 120 of 126 WESTINGHOUSE PROPRIETARY CLASS 2 Loss of Offsite Power Steam Release. From Three Steam Generators 447900 Ibm (0-2 hours) 868300 Ibm (2.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />)

Feedwater Delivery To Three Steam Generators 375500 Ibm (0.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />) 841800 Ibm (2.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />)

Stea ine Break Failed Fuel 090 Steam Release From Two Unlaulted 343700 Ibm (0-2 hours)

Steam Generators 733900 Ibm (2-8 hours)

Feedwater Delivery To Two Unlaulted 445600 Ibm (0-2 hours)

Steam Generators 721500 Ibm (2-8 hours)

Locked Rotor Failed Fuel 15%

Steam Release From Three Steam Generators 447900 Ibm (0-2 hours) 888300 Ibm (2-8 hours)

Feedwater Delivery To Three Steam Generators 375500Ibm (0-2 hours) 841800 Ibm (2-8 hours)

Rod Election Failed Fuel 10%

DO00040-123, Revision 0 Attachment 9 Page 121 of 126 Attachment 9 Memo from D. Lengel to L. Cartin "Control Room Velocity Measurement Instrument Uncertainties"

D000040-123, Revision 0 Attachment 9 Page 122 of 126 Page I of I

  • .CARTIN, LUCIUS R .

From: LENGEL, DAVID Sent:. Tuesday, November 09, 2004 10:43 At4 To: CARTIN, LUCIUS R Cc: RICE, CHARLES H

Subject:

Control Room Velocity Measurement Instrument Uncerlatntios Lou, Per our discussion yesterday, hero Is the information you requested on Instrument accuracies. I am also including a pdf file of page 9-3 from "Industrial Ventilation, A Recommended Practice". IV Edition so you can see f ie5asboTcf?`the nurnbers I am providing. Note that these values are based on a. standard pilot tube with an inclined manometer. Slightly better accuracies can be obtained by using specialty pilot tubes with micro-manometers but I do not think the site uses them.

Outside air 1000 cfm Duct size 18"x 18" Duct Area 2.25 square feet Duct Velocity 444 fpm As can be seen from the attached pdf file, this velocity is below the useful: range of the pilot tube. Accuracy at 444 fpm can be approximated at +1- 25%. If a hot-wire anemometer or deflecting vane anemometer are used, this could be reduced to +1- 2004.

Return air 19143 cfm Duct size 42" x 42" Duct Area 12.25 square feet Duct Velocity 1562 fpm At approximately 1550 rpm, the expected error for a pilot tube with Inclined manometer would be approximately

=1.2%,

If you vary the flow rates for some of your analysis from those listed above, you can use the pdf rile information to estimate your expected accuracies.

Let me know if you need any additional information. Thanks:

Dave 11-1912004

D000040-123, Revision 0 Attachment 9 Page 123 of 126 TSSTBIO OF VENTILATION SYSTEMS 9.3 The dtvicc conoista of two concentric tubes, one serving to measure the total or impact prossvre existing In the air, stream, the. other to measure the itattu pressure only. When the aunutar space and the center tube are connected' across a U>tubo manometer, the differened between the total pressure and the static pressure is Indicated an the manometer. This difterenee between the total pressure and the static pressure is the velocity pressure.

The velocity pressure can tie used to compete the velocity at the air stream it the density cd the air is lntown The following equation can be used; - - .}o.. e'^ftr..

a, lv"3tX-2suss r .it, v=1096 o.675d >4tt 4t,<.^rd x, m tt t1^"

w b c i t : d o d e n s i t y f a c t o r (p i c o r e 6.14) as eaten atoll frown: J ,,, x !>! (for dry nit).

T,-

where B . barometric pressure, "leg t air tcmperaturo, F This formula does not consider rrwir"re present in the air stream. Under conditions of elevated, moisture content, obtain the density Iactoa ditecily from the psychometric c'haat, page 13.22, 13.$i. Feline ail is at standard conditions (d = 3-0), the tint equation above becomes:

V - 4405 -

Figure 0-I6 is a velocity vs, velocity pressure table for standard air.. This table can be used for air at densi-ties other than standard conditions by correcting the measured valooty pressure Inversely as the density factor as in the following equation:

Corrected VP = Measured VP x The corrected VP can then be used in the velocity vs, valocity.pressure table, Figure 0-16, to give the actual velocity at duct conditions.

From Figure 6-16 it can be seen that at low velocities (below 1000 fpm) the VP values are small (below 0.06' wgk The accuracy of the Phut tube Is limited at these velocities as the manometer is not precise enoufdh to necnratoly measure the small pressarea. A carefully made and accurately leveled. loft Inclined manometer calibrated against a book gage can be read to approximately !. 0.0051 wg, A standard Pith tube with an inclined maoontetdr can be used with the following degree of accuracy:

Vaorit  % error W 4000 0.25 3000 0.3 2000 1.0 1000 '4.0 600 d,0 600 15.0 It can be seen that the use of the Picot tube in the field is limited at velocities lower than 600-600 rpm.

Inasmuch as the air flow to the cress-section of a duct is not uniform, It to neecosary to obtain the aver-age by men uring VP at points in a number of equal areas in the erosp-secftcn. The approved method in to make two traverses across the diameter of the duct at right angles to each other. Twenty readings are taken at the center of annular rings of equal area (see Figure 9.3)) `Tables 9-1, 9.3 and 0-3 give traverse points for various duct diameters. Whenever possible'the traverse should be made 7.5 duct diameters or more down stream from any major alp disturbance such as an elbow hood, branch entry, etc. Where mcanure-tnents are main eloper to dlgturbaacea.than, 7.S daiSaiemeterst the. results, mest.lie.considered subject-(q.

some doubt. and-checked against s.seeond-lorttion if agreement drfthiit 10% is,obtaLxd. reasoable seat=

raty caabe: assumed , and the, average of the two. readings aOvd. Where vasiatian exceeds 10% 2' third Inca-tion',idtcOld be srleated add the two volumes to best agreement averaged and used.

For round duets 6" and smallero at least 6 traverse points should be used. For round ducts larger than 6" diameter, at tease 10 traverse points should be employed. For very large ducts and discharge stacks with wide variation In velocity, 20 traverse points will increase the precision at the air, flow measurement. She, ten and twenty point traverse dimensions arc given in Tables 9-1, 9-2 altd 4-3. Ducts Manlier than 12" diameter will require a Pilot tube mailer than the 5tatldard 5/16" O0. I)

With square or rectangular dude the procedure is to divide the cross-section into a number of equal roc tangulait areas and measure the velocity pressure at the center of oaeh. The number of readings should not be less than 10. However, enough readings should be mate so the greatest distance between centers is approxiniatety nix Inches. (See Figure 9-4)-

Reference:

Industrial Ventilation, A Manual of Recommended Practice, t6th E=d 1980

D000040-101, Revision 1 Attachment 10 Page 124 of 126 Attachment 10 Telephone Conference Memo

D000040-101, Revision 1 Attachment 10 Page 125 of 126 TELEPHONE CONFERENCE MEMO - 3/Z193 VCSNS RSG/UPRATING - NSSSBOP INTERFACE INFORMATION FOR CONTAINMENT/DOSE ANALYSES Dlstribotioat Westinghouse: R. McFetridge, P. Robertson(WEC E 4-12),'S. Griffith (WEC E 4-11),

'M. Zawalick (WEC E 408), 'K. Rubin (WEC E 348)

SCE&G: L. Catlin Gilberr/Commcnwealth: 'F. Bunker, M. Cambria; 'R. Anderson, 'M. Waselos,

'M. Feeban

'Phone Conference Participants Discussion Dataib*

The purpose of the call was to discuss, and, if possible, supply'input data needed by Gilbert Commonwealth to complete containment and/or dose analyses. The details of the call are provided below. Other than the final revised SO rube rupture data (due out by 315/93) and the final iterations on Main Steam Line Break M/E releases inside containment (also expected to be completed in early March), this phone conference responds to all outstanding Toque= for information from Gilbert Commonwealth to Westinghouse. A formal letter will follow this week to document the information regarding rod' election and steam lime break (tong term release from faulted steam generator}

The first topic to be addressed during the phone conference was Gilbert Commonwealth's raciest for Wouse to confirm the data in Table 15.4-43 of the TSAR (Parameters used In Rod Ejection Accident Analysis), specifically the values of 33,000 lbs of steam dump from the relief valves and 175 seconds for the time between accident and equalization of primary and secondary system pressure. If these ttutnbees could not be confirmed to be applicable under the RSO Ipratiag conditions, Gilbert Commonwealth was looking to Westinghouse to supply new numbers that an. Scott Griffith responded to this request;- his check of the basis for these numbers confirmed that the power level assumed for the TSAR (1970's vintage) values incorporated troth a power uprating to the stretch AND the 24b additional power wbich is customarily Included currently. 'therefore, neither the steam dump nor the equalization times will need to change.

Nast, the question of steam fine break analysts releases was addressed. Paul Bunker had asked for Paul Robertson to confirm or suggest now numbers for FSAR Table IS.4-23 (Parameters used In Steam' We Break Analysis); specifially the values of 165,000 lb (0 - 30 minutes, initial steam and water release from faulted SO) and 1,300 lb (0.8 bours, for the tong term steam release from the faulted SO). It was decided that Paul Bunker will calculate the Initial steam and water release, based on the SG Inventory. For the long term steam release, Paul Robertson will write a letter recommending that this release be deleted from consideration, based on the fact that. after 30 minutes, the operator Isolates EFW flow to the steam generator. Any further steam release from the faulted steam generator would be the result of primary to secondary leakage for the remainder of the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> duration of the release.

The Real item discussed was the iodine partition factor to use in the doss calculation for SG tube rupture; Paul Bunker was looking for advice from Eea Rabin on the appropriate value to use. Ken p.12 f

D000040-101, Revision 1 Attachment 10 Page 126 of 126 PHONE CONFERENCE MEMO; 3!2/93 (cautioned) mentioned that the NRC staff is currently thinking of lowering the default value of the partition coefficient; based: on this, he would advise using a value of 10. Paul Bank et concurred. Paul also asked if: in actual SO tube rupture experience, we were aware of doses in excess of what was analyzed for the event; Ken responded, that the actual doses, to ow knowledge, have never exceeded the analysis values.

END OF CONFERENCE' NOTES

p. 2/2

TECHNICAL WORK RECORD Originator: Michael Waselup^

Date: 07/30/2012 System: N/A Project Title Verification of D000040-123, RO ECR 50786 Page 1 of 3

1.0 Purpose

This TWR is developed to document the verification of D000040-123, R0, "Rod Ejection Accident - TSC."

2.0

Reference:

Calculation 'D000040-123, R0, "Rod Ejection Accident - TSC."

3.0 Discussion

The verification of the calculation is to assure that the calculation has been completed lAW ES-412. The verification is performed IAW ES-110. ES-110, Attachment III is included as Attachment 1 to this TWR.

The verification included check of input, mathematical manipulations, computer code input/output and results. The RADTRAD computer code was utilized in the analysis. RADTRAD is a validated and verified code for nuclear use IAW WorleyParsons QA procedures. There are no assumptions in the calculation requiring future confirmation.

4.0 Comments

Technical comments resulted from the review.

1. None Editorial comments:
1. Add FSAR Section 15.4.6 to Affected Documents
2. Add VC Summer Calculation D000040-101 R1, "Rod Ejection - AST", to References.
3. Add EAB and LPZ doses to Summary of Results to compare to results in D000040-101.
4. Miscellaneous small typographical changes provided to originator incorporated.

5.. Successfully incorporated David McCreary comments.

5.0 Results

The verifier comments have been resolved and the results of the calculation are acceptable for use.

TECHNICAL WORK RECORD Originator: Michael Waselus Date: 07/30/2012 System: N/A Project Title Verification of D000040-123, RO ECR 50786 Page 2 of 3 ES-110 ATTACHMENT III PAGE 1 OF 2 REVISION 2 VERIFICATION RECORD: CALCULATION Calculation # D000040-123 Revision 0 The following questions, as a minimum should be answered for calculation verification.

Yes N/A q Have inputs, including codes, standards, regulations, requirements, procedures, data and engineering methodology been correctly selected and applied?

q Has the calculation been developed in accordance with applicable station procedures (e.g., ES-412).

Is the plant design basis/criteria maintained?

Have assumptions been identified, especially those requiring later confirmation?

Have references been properly identified and complete?

Have the calculation, results, tables and figures been reviewed with regard to numerical accuracy, units and consistency?

q Has the calculation been developed/revised in a clear and understandable manner as to not require recourse to the originator?

Is the output reasonable compared to the input?

Do the diagrams or models depicted represent the physical situation correctly and incorporate necessary features for a correct analysis?

Has the calculation cover page been completed in an accurate manner?

Are the sign conventions used in figures and equations consistent?

Is consistent nomenclature used throughout the calculation (e.g., figures, tables)?

Are symbols used on figures and in the text defined?

Are concurrent in-process revisions been addressed and coordinated with this revision?

Has the Calculation Index been updated?

Additional considerations (see attached TWR)?

TECHNICAL WORK RECORD Originator: Michael Waselus Date: 07/30/2012 System: N/A Project Title Verification of DC00040-123, RO ECR 50786 Page 3 of 3 ES-110 ATTACHMENT III PAGE 2 OF 2 REVISION 2 VERIFICATION RECORD: CALCULATION Calculation # D000040-123 Revision 0 CALCULATIONS UTILIZING COMPUTER PROGRAMS:

Has the program been appropriately defined, including the version?

Is the basic methodology used by the program appropriate for the calculation?

Has the appropriate computer program been used?

Has the calculation been performed within the known limits of the program?

Has the computer program been verified and validated in accordance with SAP-1040? Validated by WorleyParsons.

Has the program been defined, controlled, and benchmarked so that the results reported are traceable to a particular version of the program and a particular set of input data?

Have limits for the program been defined, as appropriate?

Comments have been included and resolved.

Is the Validation Data set for the application complete, and provide repeatable results?

M. M. Waselus/ / A,.A') ems.--,.- 07/30/2012 Verifier's Printed Name VCrifi!Sr's Signature Date

ES-0110 ATTACHMENT XVI PAGE 1 OF/Z A,,'

REVISION 2 g1FIf2 REVIEW CONSIDERATIONS: OWNER'S ACCEPTANCE REVIEW D ECR/Document Number: D000040-079, D000040-118 Through -123 Project

Title:

Review of New NOB TSC Dose Calculations The following questions should be considered, as a minimum, during the performance of an Owner's Acceptance Review of vendor developed engineering documents.

Yes N/A q Is the technical information/design complete, consistent, and correct for the activity under review?

Were inputs, including codes, standards, and regulatory requirements correctly selected and applied?

q Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are the assumptions identified for subsequent re-verification when the detailed design activities are completed?

Is the document/package developed in a clear and understandable manner?

q Is the plant design basis/criteria maintained?

q Are references properly identified and complete?

El M Were design considerations from EC-01, Attachment I and II adequately addressed/incorporated?

q Were technical, design, program or procedure requirements adequately addressed/incorporated?

q Have applicable construction and operating experiences been considered?

q Were designs developed in accordance with good engineering practices and established ES guidance documents?

q Have impacted documents, databases (EC-02) and equipment changes been identified?

q Is the document/package developed in accordance with applicable station procedures (e.g., SAP-133, ES-453, ES-455)?

q Is the document/package developed in a clear and understandable manner as to not require recourse to the Originator?

ES-0110 ATTACHMENT XVI PAGE 2OF,'( 0-0-'--,

REVISION 2 0911 D

11 Does the design meet interfacing organizations operational/maintenance requirements? .

Is technical information adequate to perform the task?

Is the acceptance criteria adequate for the activity under review?

I Is the post modification testing adequate to confirm the design?

I I Has the 10CFR50.59 Review Process been completed, if required?

For work performed in accordance with VC Summer Nuclear Station Procedures, the.

procedure forms must be signed by the originator and if not qualified must be co-signed by a qualified person. Check the qualifications of the contractor personnel signing the procedure forms.

Yes No q Are contractor personnel signing the VCSNS procedure forms qualified under a vendor qualification program or the VCSNS Nuclear Training Manual for those procedures?

q If not have the VCSNS forms been co-signed by a person qualified to the applicable procedure?

Technical Reviews q Are all technical reviews complete and all comments resolved to the satisfaction of the commenter?

TECHNICAL REVIEW: Check all blocks that apply q Principal Piping Engineer q Principal Engr Analysis Engineer q Principal I&C Engineer q Principal Mechanical Engineer q Principal Civil Engineer q Principal PSA Enqi neer q Principal Nuclear Fuels Engineer q Principal Digital Engineer q Principal Electrical Engineer q Principal EQ Engineer q Principal Fire Protection Engineer El NAnalysis Engineer Dave McCreary q q Dave McCreary i 3o -2 01 -L Reviewer's Printed Name Reviewer's Signature Date

r-,. ° 01/o Detailed Owners Acceptance Review Notes izr` 3 0^ V There are three general comments in all of the dose calculations that should bez addressed:

1) The initiation of the HVAC "Emergency Mode" would only be manually. There are statements in the calculations of SI signal initiation. These should be removed to avoid confusion with the Unit 1 Control Room Habitability Envelope and it's automatic Emergency Mode initiation on an SI signal.

SPON ree Statements regarding Sl sgnals;will berremoved

2) The 1000 cfm allotted for TSC "inleakage" isn't applicable in these scenarios since it is very conservatively assumed that none of the air flowing through the TSC is filtered or recirculated. Therefore, 13,000 cfm of unfiltered outside air is flowing into the TSC and out of the TSC. The discussions should be cleaned up to state that the 13,000 cfm assumed conservatively bounds the expected design flow rate value of 12,000 cfm, and that the doses calculated due to assuming no filtration throughout the accident is very conservative since the TSC filtration capability and isolation times are currently unknown.

SPONSE . Agree as no e text will be ;revised to state "The 13,000 cfm'ass.umed conservatively bounds he expected design flow' rate value of 4^^,^y^ c fm wThe do ses a re co n se rva t iv el yr`calculated assumingno credit for, fi ltration t h roughout the accid en" Prefer not to state that the TSC filtration capabili iso la tion ti m es a currently unknown. There is a P&ID showing filters am I we could actually I assumed an.oaerator..action.isuch:as 30,minutes,if;we gad chosen to do so

3) Suggest not listing procedure revision levels in the verification TWR's. ES-412 and

-110 have been updated.

ESPON "M lelete revision levels RES Pi individ ual '.commen ree tor; comments/corrections noted below Main Steam Line Break, D000040-118, Rev. 0:

1. Follows same format and methodology as in MSLB dose calculation D000040-099 for CR/EAB/LPZ.
2. Table of Contents needs to be updated for page number corrections.
3. Section 5.3 should be revised for the,general comments above.

-0/ia

^. XVI p 2,4 /,/. If Locked Rotor, DC00040-119, Rev. 0:

^l3 p^/2

4. Follows same format and methodology as in LR dose calculation DC00040-100 for CR/EAB/LPZ.

Sections 2.16 and 5.10 should be revised for the general comments above.

5. References 4.11 and 4.14 are the same. Per DI-5.10, Ref. 4.11 should be same reference as used in DC00040-118 Ref. 18.
6. Reference 4.17 is up to Rev 3... Affects DI-5.9 (10gpm value is now 30gpm), but calc uses the correct mass rate so no change in results.

Fuel Handling Accident, DC00040-120, Rev. 0:

7. Follows same format and methodology as in Fuel Handling dose calculation DC00040-102 for CR/EAB/LPZ.
8. Sections 2.15 and 5.12 should be revised for the general comments above.

SGTR, DC00040-121, Rev. 0:

9. Follows same format and methodology as in SGTR dose calculation D000040-098 for CR/EAB/LPZ.
10. Section 5.3 should be revised for the general comments above.

LOCA, DC00040-122, Rev. 0:

11. Follows same format and methodology as in LOCA dose calculation D000040-097 for CR/EAB/LPZ.
12. Section 5.7 should be revised for the general comments above.

CREA, DC00040-123, Rev. 0:

13. Follows same format and methodology as in CREA dose calculation D000040-101 for CR/EAB/LPZ.
14. References 4.11 and 4.12 are the same. Per DI-5.10, Ref. 4.11 should be same reference as used in DC00040-118 Ref. 18.
15. Section 5.10 should be revised for the general comments above./