RA10-061, Unit 1 Cycle 14, Revision 1 Core Operating Limits Report (COLR)

From kanterella
(Redirected from RA10-061)
Jump to navigation Jump to search
Unit 1 Cycle 14, Revision 1 Core Operating Limits Report (COLR)
ML102670033
Person / Time
Site: LaSalle Constellation icon.png
Issue date: 09/23/2010
From: Rhoades D
Exelon Generation Co, Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
RA10-061
Download: ML102670033 (29)


Text

LaSalle Generating Station www.exeloncorp.com 2601 North 21st Road Nuclear Marseilles, I L 61341-9757 10CFR50.4 RA1 0-061 September 23, 2010 U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555 LaSalle County Station, Unit 1 Facility Operating License No. NPF-1 1 NRC Docket No. 50-373

Subject:

Unit 1 Cycle 14, Revision 1 Core Operating Limits Report (COLR)

The purpose of this letter is to transmit Revision 1 to the LaSalle County Station (LSCS) Unit 1 Cycle 14 Core Operating Limits Report (COLR). This report is being submitted in accordance with LSCS Technical Specification 5.6.5, "Core Operating Limits (COLR)," item d.

The LaSalle Unit 1 Cycle 14 (L1 C14) Core Operating Limits Report (COLR) has been revised to reflect implementation of the LaSalle Unit 1 Facility Operating License Amendment #198 for the Measurement Uncertainty Recapture (MUR) Power Uprate.

Exelon Generation Company, LLC (EGC) has performed a review of the relevant licensing documents, associated TS Bases, and applicable references. The review process concluded that these revisions do not require NRC review and approval.

Should you have any questions concerning this submittal, please contact Mr. Terrence W.

Simpkin, Regulatory Assurance Manager, at (815) 415-2800.

Respectfully, David P. Rhoades Site Vice President LaSalle County Station Attachment cc: Regional Administrator - NRC Region III NRC Senior Resident Inspector - LaSalle County Station

COLR LaSalle 1 Revision 9 Core Operating Limits Report for LaSalle Unit 1 Cycle 14 Revision 1 Page 1 of 28

COLR LaSalle 1 Revision 9 Table of Contents

1. References .......................................................................................................................................................... 4
2. Terms and Definitions ......................................................................................................................................... 5
3. General Information ............................................................................................................................................ 6
4. Average Planar Linear Heat Generation Rate .................................................................................................... 7
5. Operating Limit Minimum Critical Power Ratio ................................................................................................... 8 5.1. Manual Flow Control MCPR Limits .............................................................................................................8 5.1.1. Power-Dependent MCPR ..................................................................................................................... 8 5.1.2. Flow - Dependent MCPR ...................................................................................................................... 8 5.2. Automatic Flow Control MCPR Limits ......................................................................................................... 8 5.3. Scram Time ................................................................................................................................................. 8 5.4. Recirculation Flow Control Valve Settings .................................................................................................. 8
6. Linear Heat Generation Rate ............................................................................................................................ 16
7. Rod Block Monitor ............................................................................................................................................ 24
8. Traversing In-Core Probe System ................................................................................................................... 25 8.1. Description ................................................................................................................................................ 25 8.2. Bases ........................................................................................................................................................ 25
9. Stability Protection Setpoints ........................................................................................................................... 26
10. Modes of Operation ........................................................................................................................................ 27
11. Methodology ................................................................................................................................................... 28 Page 2 of 28

COLR LaSalle 1 Revision 9 List of Tables Table 4- 1 MAPLHGR for AREVA ATRIUM - 10 Fuel ..............................................................................................7 Table 4-2 MAPLHGR SLO Multiplier for AREVA ATRIUM-10 Fuel ......................................................................7 Table 5-1 MCPR(P) for AREVA ATRIUM-10 Fuel BOC to NEOC Nominal Scram Speed (NSS) ........................ 9 Table 5 -2 MCPR(P) for AREVA ATRIUM - 10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS) ........................................................................................................................................................10 Table 5-3 MCPR(P) for AREVA ATRIUM - 10 Fuel NEOC to EOC Nominal Scram Speed (NSS) ........................ 11 Table 5 -4 MCPR(P) for AREVA ATRIUM-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS) ........................................................................................................................................................ 12 Table 5-5 MCPR(P) for AREVA ATRIUM - 10 Fuel Coastdown Operation Nominal Scram Speed (NSS) ..........................................................................................................................................................13 Table 5 -6 MCPR(P) for AREVA ATRIUM - 10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS) ....................................................................................................................... 14 Table 5-7 MCPR(F) Limits for AREVA ATRIUM - 10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with All TBV Opening via the Pressure Control System ........................................................ 15 Table 5- 8 MCPR(F) Limits for AREVA ATRIUM - 10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with 2 or more TBV Opening via the Pressure Control System ............................................ 15 Table 5 - 9 MCPR(F) Limits for AREVA ATRIUM-10 Fuel, DLO and SLO Supports Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System ............................................ 15 Table 6-1 LHGR Limit for AREVA ATRIUM-10 Fuel ............................................................................................. 16 Table 6 -2 LHGRFAC(P) Multipliers for AREVA ATRIUM - 10 Fuel BOC to NEOC Nominal Scram Speed (NSS) ..................................................................................................................................................................... 17 Table 6-3 LHGRFAC(P) Multipliers for AREVA ATRIUM-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS) ............................................................................................................................................ 18 Table 6-4 LHGRFAC(P) Multipliers for AREVA ATRIUM - 10 Fuel NEOC to EOC Nominal Scram Speed (NSS) .....................................................................................................................................................................19 Table 6 - 5 LHGRFAC(P) Multipliers for AREVA ATRIUM-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS) ............................................................................................................................................ 20 Table 6 -6 LHGRFAC(P) Multipliers for AREVA ATRIUM - 10 Fuel Coastdown Operation Nominal Scram Speed (NSS) .....................................................................................................................................................................21 Table 6-7 LHGRFAC(P) Multipliers for AREVA ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS) ............................................................................................................................................ 22 Table 6-8 LHGRFAC(F) Multipliers for AREVA ATRIUM - 10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with all TBV Opening via the Pressure Control System ................................................. 23 Table 6 - 9 LHGRFAC(F) Multipliers for AREVA ATRIUM - 10 Fuel, DLO and SLO Supports Base Case, FHOOS, Combined EOOS 1, Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System ......................................................................................................................................................23 Table 7 - 1 Rod Block Monitor Setpoints ................................................................................................................. 24 Table 9 - 1 OPRM PBDA Trip Setpoints .................................................................................................................. 26 Page 3 of 28

COLR LaSalle 1 Revision 9

1. References 1.

Exelon Generation Company, LLC Docket No. 50-373 LaSalle County Station, Unit 1, License No. NPF-1 1.

2. NRC Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
3. AREVA Report ANP-2924, Revision 1, "LaSalle Unit 1 Cycle 14 MUR Reload Analysis," AREVA NP Inc., July 2010.
4. AREVA Report ANP-2909(P), Revision 1, "LaSalle Unit 1 Cycle 14 MUR Principal Transient Analysis Parameters," April 2010.
5. Nuclear Fuels Letter NFM:MW:01 -0106, from A. Giancatarino to J. Nugent, "LaSalle Unit 1 and Unit 2 Rod Block Monitor COLR Setpoint Change," April 3, 2001.
6. AREVA document 51-9114888-000, "Plant Startup Testing Requirements for Power Distribution Uncertainty Verification", AREVA NP, Inc., July 2009.
7. GE Nuclear Energy Document GE-NE-Al 300384-07-01, Revision 1, "LaSalle County Station Power Uprate Project Task 201: Reactor Power/Flow Map", September 1999.

GE Hitachi8. Nuclear Energy, GE-NE -0000-0099-8344-R1, Revision 1, "Exelon Nuclear LaSalle Units 1 and 2 Thermal Power Optimization Task T0201: Operating Power/Flow Map", November 2009.

Page 4 of 28

COLR LaSalle 1 Revision 9

2. Terms and Definitions APLHGR Average planar linear heat generation rate APRM Average power range monitor BOC Beginning of cycle DLO Dual loop operation EFPH Effective full power hours ELLLA Extended load line limit analysis EOC End of cycle EOOS Equipment out of service FFTR Final feedwater temperature reduction FHOOS Feedwater heater out of service ICF Increased core flow LHGR Linear heat generation rate LHG R FAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MCPR Minimum critical power ratio MCPR(F) Flow dependent MCPR MCPR(P) Power dependent MCPR MELLLA Maximum extended load line limit analysis MSIV Main steam isolation valve MSIVOOS Main steam isolation valve out of service MUR Measurement Uncertainty Recapture (power uprate) V NEOC Near end of cycle NSS Nominal scram speed OLMCPR Operating limit minimum critical power ratio OPRM Oscillation power range monitor PBDA Period based detection algorithm PLUOOS Power load unbalance out of service PPD Plant Parameter Document PROOS Pressure regulator out of service RBM Rod block monitor RPT Recirculation pump trip RPTOOS Recirculation pump trip out of service RWE Rod withdrawal error SLMCPR Safety limit minimum critical power ratio SLO Single loop operation SRVOOS Safety-relief valve out of service TBV Turbine bypass valve TBVOOS Turbine bypass valve out of service TCV Turbine control valve TCVOOS Turbine control valve out of service TIP Traversing in-core probe TIPOOS Traversing in-core probe out of service TSSS Technical specification scram speed TSV Turbine stop valve TSVOOS Turbine stop valve out of service Page 5 of 28

COLR LaSalle 1 Revision 9

3. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 108.5 Mlb/hr. Operation up to 105% rated flow is licensed for this cycle. Licensed rated thermal power is 3546 MWth (post MUR power uprate).

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.

The thermal limits provided in the COLR support SLO for all analyzed equipment out of service options.

However, SLO thermal limit sets for Base case and Combined EOOS 3 are only provided for online monitoring.

Additional thermal limit sets can be provided for online monitoring as necessary.

Core Exposure Definitions (Reference 3):

Core Average Exposure Exposure Nomenclature (MWd/MTU)

NEOC14 30342 EOC14 34262 Maximum Core Exposure 39262 Page 6 of 28

COLR LaSalle 1 Revision 9

4. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice of each fuel type as a function of average planar exposure is given in Table 4-1. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 4-
2. The MAPLHGR values in Table 4-1 and MAPLHGR SLO multiplier in Table 4 -2 encompass all modes of operation.

Table 4-1 MAPLHGR for AREVA ATRIUM-10 Fuel (Reference 3)

Avg. Planar Exposure MAPLHGR (GWd/MT) (kW/ft) 0.00 12.5 15.00 12.5 55.00 9.1 67.00 7.1 Table 4-2 MAPLHGR SLO Multiplier for AREVA ATRIUM - 10 Fuel (Reference 3)

SLO Fuel Type Multiplier ATRIUM-10 0.82 Page 7 of 28

COLR LaSalle 1 Revision 9

5. Operating Limit Minimum Critical Power Ratio 5.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

5.1.1. Power- Dependent MCPR The power-dependent MCPR limit, MCPR(P), is determined from Tables 5-1 through 5-6, and is dependent on exposure, fuel type, and scram speed, in addition to power level.

5.1.2. Flow - Dependent MCPR Tables 5-7 through 5-9 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.

5.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.

5.3. Scram Time NSS and TSSS refer to scram speeds.

To utilize the MCPR limits for Technical Specification Scram Speed (TSSS), the scram speed insertion time must be equal to or less than the values provided below (Reference 4).

To utilize the MCPR limits for Nominal Scram Speed (NSS), the scram speed insertion time must be equal to or less than the values provided below (Reference 4).

Notch Position TSSS Time sec. NSS Time sec.

45 0.53 0.38 39 0.85 0.68 25 1.90 1.68 05 3.45 2.68 5.4. Recirculation Flow Control Valve Settings Cycle 14 was analyzed with a maximum core flow runout of 105%; therefore the recirculation pump flow control valve must be set to maintain core flow less than 105% (113.9 Mlb/hr) for all runout events (Reference 4). This value is consistent with the analyses of Reference 3.

Page 8 of 28

COLR LaSalle 1 Revision 9 Table 5-1 MCPR(P) for AREVA ATRIUM-10 Fuel BOC to NEOC Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.14 2.14 1.55 1.40 Base Case SLO 2.15 2.15 1.56 1.41 FHOOS 2.23 2.23 1.61 1.40 FHOOS SLO 2.24 2.24 1.62 1.41 Combined EOOS 1 2.29 2.29 x 1.74 1.53 1.45

^x Combined EOOS 1 SLO 2.30 2.30 1.75 1.54 1.46 Combined EOOS 2 2.29 2.29 1.74 1.53 1.44 Combined EOOS 2 SLO 2.30 2.30 1.75 1.54 1.45 Combined EOOS 3 2.29 2.29 1.74 1.54 1.46 Combined EOOS 3 SLO 2.30 2.30 1.75 1.55 1.47 Page 9 of 28

Page 10 of 28 COLR LaSalle 1 Revision 9 Table 5-3 MCPR(P) for AREVA ATRIUM-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.14 2.14 1.55 1.42 Base Case SLO 2.15 2.15 1.56 11, 1.43 g M`

FHOOS 2.23 2.23 1.61 4g^ 1.42 4

FHOOS SLO 2.24 2.24 1.62 1.43 Combined EOOS 1 2.29 2.29 1.74 1.53 1.49 Combined EOOS 1 SLO 2.30 2.30 1.75 1.54 1.50 Combined EOOS 2 2.29 2.29 1.74 1.53 1.48 Combined EOOS 2 SLO 2.30 2.30 1.75 1.54 1.49 Combined EOOS 3 2.29 2.29 1.74 1.54 1.48 Combined EOOS 3 SLO 2.30 2.30 1.75 1.55 1.49 Page 11 of 28

COLR LaSalle 1 Revision 9 Table 5-4 MCPR(P) for AREVA ATRIUM -10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 1 2.19 2.19 1 1.58 1.45 Base Case SLO 2.20 2.20 1.59 1.46 FHOOS 2.29 2.29 1.64 1.45 FHOOS SLO 2.30 2.30 1.65 1.46 Combined EOOS 1 2.31 2.31 1.74 1.57 1.52 2.32 Combined EOOS 1 SLO 2.32 1.75 1.58 1.53 Combined EOOS 2 2.31 2.31 1.74 1.56 1.52 Combined EOOS 2 SLO 2.32 2.32 1.75 1.57 1.53 Combined EOOS 3 2.31 2.31 1.74 1.58 1.52 Combined EOOS 3 SLO 2.32 2.32 1.75 1.59 1.53 Page 12 of 28

COLR LaSalle 1 Revision 9 Table 5-5 MCPR(P) for AREVA ATRIUM-10 Fuel Coastdown Operation Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MC PRP Base Case 2.14 2.14 1.55 1.43 Base Case SLO 2.15 2.15 1.56 1.44 FHOOS 2.23 2.23 1.61 1.43 FHOOS SLO 2.24 2.24 1.62 1.44 Combined EOOS 1 2.29 2.29 1.74 1.54 1.50 Combined EOOS 1 SLO 2.30 2.30 1.75 1.55 1.51 Combined EOOS 2 2.29 2.29 1.74 1.54 1.50 Combined EOOS 2 SLO 2.30 2.30 1.75 1.55 1.51 Combined EOOS 3 2.29 2.29 1.74 1.54 1.50 Combined EOOS 3 SLO 2.30 2.30 1.75 1.55 1.51 Page 13 of 28

COLR LaSalle 1 Revision 9 Table 5-6 MCPR(P) for AREVA ATRIUM -10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.19 2.19 1.58 1.45 Base Case SLO 2.20 2.20 1.59 1.46 FHOOS 2.29 2.29 1.64 1.45 FHOOS SLO 2.30 2.30 1.65 1.46 Combined EOOS 1 2.31 2.31 1.74 1.58 1.53 Combined EOOS 1 SLO 2.32 2.32 1.75 1.59 1.54 Combined EOOS 2 2.31 2.31 1.74 1.57 1.53 Combined EOOS 2 SLO 2.32 2.32 1.75 1.58 1.54 Combined EOOS 3 2.31 2.31 1.74 1.58 1.53 Combined EOOS 3 SLO 2.32 2.32 1.75 1.59 1.54 Page 14 of 28

COLR LaSalle 1 Revision 9 Table 5-7 MCPR(F) Limits for AREVA ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with All TBV Opening via the Pressure Control System (Reference 3)

Flow MCPR(F)

(% rated) Limit 105.0 1.15 40.0 1.65 0.0 1.65 Table 5-8 MCPR(F) Limits for AREVA ATRIUM -10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with 2 or more TBV Opening via the Pressure Control System (Reference 3)

Flow MCPR(F)

(% rated) Limit 105.0 1.30 40.0 1.70 0.0 1.70 Table 5-9 MCPR(F) Limits for AREVA ATRIUM -10 Fuel, DLO and SLO Supports Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System (Reference 3)

Flow MCPR(F)

(% rated) Limit 105.0 1.40 40.0 1.80 0.0 1.80 Page 15 of 28

COLR LaSalle 1 Revision 9

6. Linear Heat Generation Rate The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Table 6-1 and the minimum of: the power dependent LHGR Factor, LHGRFAC( P), or the flow dependent LHGR Factor, LHGRFAC( F) as applicable. The LHGRFAC( P) is determined from Tables 6-2 through 6-7. The LHGRFAC(F) is determined from Tables 6-8 through 6-9.

Table 6-1 LHGR Limit for AREVA ATRIUM - 10 Fuel (Reference 3)

Pellet Exposure (GWd/MTU) 17.70 13.40 61.10 9.10 Page 16 of 28

COLR LaSalle 1 Revision 9 Table 6-2 LHGRFAC(P) Multipliers for AREVA ATRIUM-10 Fuel BOC to NEOC Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.72 0.72 0.99 1.00 r; '* 1.00 Base Case SLO 0.72 0.72 0.99 1.00 1.00 FHOOS 0.69 0.69 0.95 1.00 1.00 FHOOS SLO 0.69 0.69 0.95 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.97 1.00 Combined EOOS 1 SLO 0.65 0.65 0.87 0.97 1.00 Combined EOOS 2 0.65 0.65 0.87 0.99 1.00 Combined EOOS 2 SLO 0.65 0.65 0.87 0.99 1.00 Combined EOOS 3 0.65 0.65 0.87 0.96 1.00 72 72, Combined EOOS 3 SLO 0.65 0.65 0.87 0.96 1.00 Page 17 of 28

COLR LaSalle 1 Revision 9 Table 6-3 LHGRFAC(P) Multipliers for AREVA ATRIUM -10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier IA, Base Case 0.71 0.71 0.97 1.00 1.00 Base Case SLO 0.71 0.71 0.97 1.00 1.00 FHOOS 0.68 0.68 0.94 1.00 1.00 FHOOS SLO 0.68 0.68 0.94 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.94 0.97 Combined EOOS 1 SLO 0.65 0.65 0.87 0.94 0.97 Combined EOOS 2 0.65 0.65 0.87 0.96 1.00 Combined EOOS 2 SLO 0.65 0.65 0.87 0.96 1.00 Combined EOOS 3 0.65 0.65 0.87 0.93 0.97 Combined EOOS 3 SLO 0.65 0.65 0.87 0.93 0.97 Page 18 of 28

COLR LaSalle 1 Revision 9 Table 6-4 LHGRFAC(P) Multipliers for AREVA ATRIUM-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)

(Reference 3) 60 I 80 I 80.01 I 100 LHGRFACP Multiplier 0.72 0.72 0.99 1.00 1.00 0.72 0.72 0.99 1.00 1.00 0.95 0.69 0.69 1.00 1.00 0.69 0.69 0.95 1.00 1.00 0.65 0.65 0.87 0.97 0.97 0.87 0.97 0.97 Combined EOOS 2 0.65 0.65 0.87 0.97 0.97 Combined EOOS 2 SLO 0.65 0.65 0.87 0.97 0.97 Combined EOOS 3 0.65 0.65 0.87 0.96 0.97 Combined EOOS 3 SLO 0.65 0.65 Page 19 of 28

COLR LaSalle 1 Revision 9 Table 6-5 LHGRFAC( P) Multipliers for AREVA ATRIUM -10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.71 0.71 0.97 1.00 1.00 Base Case SLO 0.71 0.71 0.97 1.00 1.00 FHOOS 0.68 0.68 0.94 1.00 1.00 FHOOS SLO 0.68 0.68 0.94 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.94 0.96 Combined EOOS 1 SLO 0.65 0.65 0.87 0.94 0.96 Combined EOOS 2 0.65 0.65 0.87 0.96 0.97 Combined EOOS 2 SLO 0.65 0.65 0.87 0.96 0.97 Combined EOOS 3 0.65 0.65 0.87 0.93 0.97 Combined EOOS 3 SLO 0.65 0.65 0.87 0.93 0.97 Page 20 of 28

COLR LaSalle 1 Revision 9 Table 6-6 LHGRFAC(P) Multipliers for AREVA ATRIUM -10 Fuel Coastdown Operation Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated) 0 25 60 80 80.01 100 LHGRFACP Multiplier 0.72 0.72 0.99 1.00 1.00 0.72 0.72 0.99 1.00 1.00 0.69 0.69 0.69 0.69 0.65 0.65 0.65 0.65 0.65 0.65 0.87 0.96 0.97 0.65 0.65 0.87 0.65 0.65 0.87 Page 21 of 28

COLR LaSalle 1 Revision 9 Table 6-7 LHGRFAC(P) Multipliers for AREVA ATRIUM -10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Combined EOOS 1 Combined EOOS 1 SLO Combined EOOS 2 Combined EOOS 2 SLO Combined EOOS 3 Combined EOOS 3 SLO Page 22 of 28

COLR LaSalle 1 Revision 9 Table 6-8 LHGRFAC(F) Multipliers for AREVA ATRIUM -10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with all TBV Opening Via the Pressure Control System (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 105.00 1.00 80.00 1.00 30.00 0.75 0.00 0.75 Table 6-9 LHGRFAC(F) Multipliers for AREVA ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, Combined EOOS 1, Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 105.00 1.00 80.00 1.00 30.00 0.75 0.00 0.75 Page 23 of 28

COLR LaSalle 1 Revision 9

7. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 5):

Table 7-1 Rod Block Monitor Setpoints ROD BLOCK MONITOR UPSCALE TRIP FUNCTION I ALLOWABLE VALUE Two Recirculation Loop 0.66 Wd + 54.0%

Operation Single Recirculation Loop 0.66 Wd + 48.7%

Operation The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked. The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 108.5 Mlb/hr.

Page 24 of 28

COLR LaSalle 1 Revision 9

8. Traversing In-Core Probe System 8.1. Description When the traversing in-core probe (TIP) system (for the required measurement locations) is used for recalibration of the LPRM detectors and monitoring thermal limits, the TIP system shall be operable with the following:
1. movable detectors, drives and readout equipment to map the core in the required measurement locations, and
2. indexing equipment to allow all required detectors to be calibrated in a common location.

The following applies for use of the SUBTIP methodology (Reference 6):

The total number of failed and bypassed LPRMs does not exceed 50%. With one or more TIP measurement locations inoperable, the TIP data for an inoperable measurement location may be replaced by data obtained from a 3-dimensional BWR core monitoring software system algorithm, provided the total number of simulated channels (measurement locations) does not exceed 42% (18 channels).

Otherwise, with the TIP system inoperable, suspend use of the system for the above applicable calibration functions.

8.2. Bases The operability of the TIP system with the above specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core. The normalization of the required detectors is performed internal to the core monitoring software system.

Substitute TIP data, if needed, are derived from adjusted 3-dimensional BWR core monitoring software calculated data, which is based on measured and calculated axial and radial factors. Since the simulation and adjustment process could introduce uncertainty, a maximum of 18 channels may be simulated to ensure that the uncertainties assumed in the substitution process methodology remain valid.

Page 25 of 28

COLR LaSalle 1 Revision 9

9. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):

Table 9-1 OPRM PBDA Trip Setpoints Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp) Confirmation Count Setpoint (Np) 14 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Page 26 of 28

COLR LaSalle 1 Revision 9

10. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:

Equipment Out of Service Options {1}{2}{4} Thermal Limit set Base Case Base Base Case + SLO Base SLO Base Case + feedwater heater out-of-service (FHOOS) (Up to 100 degree F reduction) FHOOS Base Case + TCV slow closure + EOCRPTOOS + PROOS Base Case + TCV slow closure + EOCRPTOOS + 5 turbine bypass valves out of service (5 Combined EOOS 1 TBVOOS) (i.e., base case + 4)

Base Case + TCV slow closure + EOCRPTOOS + FHOOS (Up to 100 degree F reduction)

Base Case + TCV slow closure +EOCRPTOOS + one Stuck Closed TCV and/or TSV{3} + one Combined EOOS 2 MSIVOOS{3}

Base Case + TCV Slow Closure + EOCRPTOOS + one Stuck Closed TCV and/or TSV{3} +

Combined EOOS 3 one MSIVOOS{3} + FHOOS (up to 100 degree reduction) + PROOS + 2 TBVOOS (i.e., base case + 1)

Base Case + TCV Slow Closure + EOCRPTOOS + one Stuck Closed TCV and/or TSV{3} +

Combined EOOS 3 one MSIVOOS{3} + FHOOS (up to 100 degree reduction) + PROOS + 2 TBVOOS (i.e., base SLO case + 1 + SLO

{1} Base case includes a feedwater temperature reduction of up to 30 F + 1 SRVOOS + 1 TBVOOS + PLUOOS, and also includes 2 TIPOOS (or the equivalent number of TIP channels) any time during the cycle, including BOC, and up to 50% of the LPRMs out-of-service. The base case limits support the ICF, ELLLA, and MELLLA operating domains and coastdown operation. SLO operation is only valid for ELLLA (References 7 and 8). See Section 3 for SLO.

{2} The TBVOOS nomenclature described in the specific equipment out of service options represents the number of turbine bypass valves that the specific analysis supports not fast opening on either turbine control valve fast closure or turbine stop valve position. Additionally, the thermal limit sets in place to support all EOOS options (including the base case) require at least two turbine bypass valves opening on pressure control.

{3} The one Stuck Closed TCV and/or TSV EOOS conditions require power level <_ 85% of rated. The one MSIVOOS condition is also supported as long as thermal power is maintained <_ 75% of the rated.

{4} The + sign that is used in the Equipment Out of Service Options descriptions designates an "and/or".

Page 27 of 28

COLR LaSalle 1 Revision 9

11. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. XN-NF-81-58 (P)(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," March 1984.
2. ANF-524 (P)(A) Revision 2 and Supplements 1 and 2, "ANF Critical Power Methodology for Boiling Water Reactors," November 1990 [XN-NF -524 (P)(A)].
3. ANF-913 (P)(A) Volume 1 Revision 1, and Volume 1 Supplements 2, 3, 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses," August 1990.
4. XN-NF-84-105 (P)(A), Volume 1 and Volume 1 Supplements 1 and 2; Volume 1 Supplement 4, "XCOBRA-T:

A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis," February 1987 and June 1988, respectively.

5. EMF-2209 (P)(A), Revision 3, "SPCB Critical Power Correlation," September 2009.
6. ANF-89-98 (P)(A), Revision 1 and Revision 1 Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995.
7. EMF-85-74 (P) Revision 0 Supplement 1 (P)(A) and Supplement 2(P)(A), "RODEX2A (BWR) Fuel Rod Thermal - Mechanical Evaluation Model," February 1998.
8. EMF-CC-074 (P)(A) Volume 4 Revision 0, "BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN - B2," August 2000.
9. ANF-CC-33 (P)(A) Supplement 1 Revision 1 and Supplement 2, "HUXY: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K Heatup Option," August 1986 and January 1991, respectively.
10. XN-NF-80-19 (P)(A) Volume 4 Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors:

Application of the ENC Methodology to BWR Reloads," June 1986.

11. XN- NF-85 -67 (P)(A) Revision 1, "Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel",

September 1986.

12. XN-NF-80-19 (P)(A) Volume 3 Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description," January 1987.
13. XN-NF-80-19 (P)(A) Volume 1 and Supplements 1 and 2, "Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis," March 1983.
14. EMF-2158 (P)(A), Revision 0, "Siemens Power Corporation Methodology for Boiling Water Reactors:

Evaluation and Validation of CASMO-4/MICROBURN-B2", Siemens Power Corporation, October 1999.

15. EMF-2245 (P)(A), Revision 0, "Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel", August 2000.
16. EMF-2361 (P)(A), Revision 0, "EXEM BWR-2000 ECCS Evaluation Model", May 2001.
17. NEDO-32465-A, "BWR Owner's Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.
18. ANF-1358 (P)(A), Revision 3, "The Loss of Feedwater Heating Transient in Boiling Water Reactors",

September 2005.

Page 28 of 28