RA23-019, Cycle 20 Core Operating Limits Reports
| ML23080A015 | |
| Person / Time | |
|---|---|
| Site: | LaSalle |
| Issue date: | 03/21/2023 |
| From: | Hansett P Constellation Energy Generation |
| To: | Office of Nuclear Reactor Regulation, NRC/RGN-III, Document Control Desk |
| References | |
| RA23-019 | |
| Download: ML23080A015 (1) | |
Text
J.
Constellation.
RA23-019 March 21, 2023 U.S. Nuclear Regulatory Commission Attention: NRC Region Ill Administrator 2443 Warrenville Road, Suite 210 Lisle, IL 60532-4352
Subject:
LaSalle County Station, Unit 2 Renewed Facility Operating License No. NPF-18 NRC Docket Nos. 50-37 4 Unit 2 Cycle 20 Core Operating Limits Reports
~
LaSalle County Station 2601 North 21 st Road Marseilles, IL 61341 815-415-2000 Telephone 10 CFR 50.4 In accordance with LaSalle County Station (LSCS) Technical Specifications (TS) 5.6.5.d, "CORE OPERATING LIMITS REPORT (COLR)," attached is a copy of the Unit 2 revision 20.
The Unit 2 COLR was revised for LSCS Unit 2 Cycle 20 (L2C20).
There are!no regulatory commitments contained within this letter.
I Should you have any questions concerning this letter, please contact Mr. Dan Mearhoff, Regulatory Assurance Manager, at (815) 415-2800.
R**w~
Phil W. Hansett Site Vice President LaSalle County Station
Enclosure:
LaSalle Unit 2 COLR revision 20 cc:
Regional Administrator - NRC Region Ill NRC Senior Resident Inspector - LaSalle County Station
Prepared By:
Reviewed By:
COLR LaSalle 2 Revision 20 Core Operating Limits Report For LaSalle Unit 2 Cycle 20 Vaughn, Edward ~~~:ar1J~::dbyVaughn, J
DN: cn=Vaughn, Edward James a meS Date: 2023.02.22 14:40:37-06'00' Date: _____ _
Edward Vaughn, NF CM d
Digitally signed by Eastmond, Eastmon Ann Ann 1
Date: 2023.02.22 14:44:32-06'00' Date: _____ _
Annie Eastmond, NF CM Butler Christopher Digitally signed by Butler, Christopher James Reviewed By:
James Date:2023.02.2318:48:19-05'00' Date: ------
Reviewed By:
Approved By:
SQR By:
Chris Butler, ESA Wise, Aaron R.
~
2023-02-2318:22-06:00 Aaron Wise, RE Digitally signed by Mccoskey, Kristin Date: 2023.02.24 17:12:58 -06'00' Kristin Mccoskey, NF CM Eric Rash, RE Rash, Eric J 2023-02-26 05:42-06:00 LaSalle Unit 2 Cycle 20 Page 1 of24 Date: _____ _
Date: _____ _
Date: ------
COLR LaSalle 2 Revision 20 Table of Contents Page Revision History...................................................................................................................... 3 List of Tables........................................................................................................................... 4
- 1. Terms and Definitions......................................................................................................... 5
- 2. General Information............................................................................................................. 6
- 3. MAPLHGR.......................................................................................................................... 7
- 4. MCPR.................................................................................................................................. 8 4.1. MCPR Limits................................................................................................................. 8 4.1.1. Power-Dependent MCPR........................................................................................ 8 4.1.2. Flow-Dependent MCPR.......................................................................................... 8 4.1.3. Safetly Limit MCPR................................................................................................. 8 4.2. Scram Time................................................... +*******************************.. ***************************** 9 4.3. Recirculation Flow Control Valve Settings..... 1............................................................... 9
- 5. LHGR................................................................................................................................ 14
- 6. Rod Block Monitor............................................................................................................. 19
- 7. Traversing In-Core Probe System.................................................................................... 20
- 7. 1. Description.................................................................................................................. 20 7.2. Bases.......................................................................................................................... 20
- 8. Stability Protection Setpoints............................................................................................. 21
- 9. Modes of Operation........................................................................................................... 22
- 10. Methodology.................................................................................................................... 23
- 11. References...................................................................................................................... 24 LaSalle Unit 2 Cycle 20 Page 2 of24
Revision History Revision 20 COLR LaSalle 2 Revision 20 Record of COLR LaSalle 2 Cycle 20 Revisions Description Initial issuance for L2C20.
LaSalle Unit 2 Cycle 20 Page 3 of 24
COLR LaSalle 2 Revision 20 List of Tables Table 2-1 Cycle Exposure Range Definitions............................................................................................................ 6 Table 3-1 MAPLHGR versus Average Planar Exposure for GNF2 Fuel................................................................... 7 Table 3-2 MAPLHGR versus Average Planar Exposure for GNF3 Fuel................................................................... 7 Table 3-3 MAPLHGR SLO Multiplier for GNF2 and GNF3 Fuel............................................................................... 7 Table 4-1 Scram Times Required for Option A and Option B Application at Notch Position 39............................... 9 Table 4-2 Operating Limit Minimum Critical Power Ratio (OLMCPR) for GNF2 and GNF3 Fuel........................... 10 Table 4-3 Power-Dependent MCPR Multipliers (KP) for GNF2 and GNF3 Fuel..................................................... 11 Table 4-4 DLO Flow-Dependent MCPR Limits (MCPRF) for GNF2 Fuel................................................................ 12 Table 4-5 DLO Flow-Dependent MCPR Limits (MCPRF) for GNF3 Fuel................................................................ 12 Table 4-6 SLO Flow-Dependent MCPR Limits (MCPRF) for GNF2 Fuel................................................................ 12 Table 4-7 SLO Flow-Dependent MCPR Limits (MCPRF) for GNF3 Fuel................................................................ 13 Table 4-8 Cycle Specific SLMCPR (MCPRss.s%)..................................................................................................... 13 Table 5-1 LHGR Limit for GNF2 Fuel...................................................................................................................... 14 Table 5-2 LHGR Limit for GNF3 Fuel...................................................................................................................... 14 Table 5-3 Power-Dependent LHGR Multipliers (LHGRFACP) for GNF2 Fuel, DLO and SLO................................ 15 Table 5-4 Power-Dependent LHGR Multipliers (LHGRFACP) for GNF3 Fuel, DLO and SLO................................ 16 Table 5-5 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF2 Fuel, BOC to EOC, All Application Groups except Base Case with TCV/TSV In-Service and Base Case+ MSROOS with TCV/TSV In-Service................... 17 Table 5-6 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF2 Fuel, BOC to EOC, Base Case with TCV/TSV In-Service and Base Case + MSROOS with TCV/TSV In-Service......................................................... 17 Table 5-7 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF3 Fuel, BOC to EOC, All Cases................... 18 Table 6-1 Rod Block Monitor Setpoints................................................................................................................... 19 Table 8-1 OPRM PBDA Trip Setpoints.................................................................................................................... 21 Table 9-1 Allowed Modes of Operation andiEOOS Combinations.................................................................. ~...... 22 I
I LaSalle Unit 2 Cycle 20 Page 4 of24
COLR LaSalle 2 Revision 20
- 1. Terms and Definitions ARO ARTS BOC CRD DLO EOC EOOS EOR FFWTR FWHOOS GE GNF ICF KP LHGR LHGRFACF LHGRFACP LOCA LPRM L2C20 MAPLHGR MCPR MCPR99.9%
MCPRF MCPRP MELLLA MOC MSIVOOS MSR MSROOS NRC OLMCPR OOS OPRM PBDA PLUOOS PROOS RPTOOS RWE SLMCPR SLO SRVOOS TBV TBVOOS TCV TCVIS TCVSC TIP TSV 3DM All rods out Average power range monitor, rod block monitor and technical specification improvement program Beginning of cycle Control rod drive Dual loop operation End of cycle Equipment out of service End of rated - Cycle exposure corresponding to all rods out, 100% power/100% flow, and normal feedwater temperature Final feedwater temperature reduction Feedwater heater out of service General Electric Global Nuclear Fuels - Americas Increased core flow Power-dependent MCPR multiplier Linear heat generation rate Flow-dependent LHGR multiplier Power-dependent LHGR multiplier Loss of coolant accident Local power range monitor LaSalle Unit 2 Cycle 20 Maximum average planar linear heat generation rate Minimu"' critical power ratio I
Limiting MCPR value such that 99.9% of the fuel in the core is not susceptible to boiling transition 1
Flow-dependent MCPR Power-dependent MCPR Maximum extended load line limit analysis Middle of cycle point for licensing purposes Main steam isolation valve out of service Moisture separator reheater Moisture separator reheater out of service Nuclear Regulatory Commission Operating limit minimum critical power ratio Out of service Oscillation power range monitor Period based detection algorithm Power load unbalance out of service Pressure regulator out of service Recirculation pump trip out of service Rod withdrawal error Safety limit minimum critical power ratio Single loop operation Safety/relief valve out of service Turbine bypass valve Turbine bypass valve out of service Turbine control valve All turbine control valves/turbine stop valves in-service Turbine control valve slow closure Traversing in-core probe Turbine stop valve 3D Monicore LaSalle Unit 2 Cycle 20 Page 5 of24
COLR LaSalle 2 Revision 20
- 2. General Information The data provided in this report is valid for (Reference 7):
Maximum Extended Load Line Limit down to 82.8% of rated core flow during full power operation (rated core flow is 108.5 Mlb/hr) (Reference 6).
ICF to 105% of rated core flow.
Coastdown to 40% rated power (rated core thermal power is 3546 MWth) (Reference 6).
o Operation at a power level above that which can be achieved with ARO, ICF, FFWTR, and steady-state equilibrium Xenon concentrations is not supported.
Maximum reduction of 100°F of the feedwater temperature for FWHOOS/FFWTR.
Throughout this report, power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.
Table 2-1 defines the three exposure ranges used in the COLR. The term (EOR20- 5248 MWd/ST) means the Cycle 20 EOR exposure minus 5248 MWd/ST of exposure. The value of the EOR exposure is based on actual plant operation and is thus determined from projections to this condition made near, but before, the time when the EOR20 - 5248 MWd/ST exposure will be reached. For cycle exposure dependent limits at the exact MOC exposure, the more limiting of the BOC to MOC and the MOC to EOC limits should be used. This can be achieved by applying the MOC to EOC limits to the MOC point as all cycle exposure dependent limits in the MOC to EOC limit sets are the same as, or more limiting than, those in the BOC to MOC limit sets.
Nomenclature BOC to MOC MOCtoEOC BOC to EOC Table 2-1 Cycle Exposure Range Definitions (Reference 7)
Cycle Exposure Range BOC20 to (EOR20 - 5248 MWd/ST)
(EOR20 - 5248 MWd/ST) to EOC20 BOC20 to EOC20 LaSalle Unit 2 Cycle 20 Page 6 of24
COLR LaSalle 2 Revision 20
- 3. MAPLHGR Technical Specification Sections 3.2.1 and 3.4.1 MAPLHGR values as a function of average planar exposure are given in Tables 3-1 and 3-2. During SLO, these limits are multiplied by the SLO multiplier listed in Table 3-3. Tables 3-1, 3-2 and 3-3 provide coverage for all modes of operation.
Table 3-1 MAPLHGR versus Average Planar Exposure for GNF2 Fuel (Reference 7)
Avg. Planar MAPLHGR Exposure (kW/FT)
(GWd/ST) 0.00 13.78 17.15 13.78 60.78 6.87 63.50 5.50 Table 3-2 MAPLHGR versus Average Planar Exposure for GNF3 Fuel (Reference 7)
Avg. Planar MAPLHGR Exposure (kW/FT)
(GWd/ST) 0.00 14.36 21.22 13.01 40.82 10.75 57.60 8.00 63.50 6.00 Table 3-3 MAPLHGR SLO Multiplier for GNF2 and GNF3 Fuel (Reference 7)
SLO Fuel Type MAPLHGR MultlDller GNF2 0.78 GNF3 0.90 LaSalle Unit 2 Cycle 20 Page 7 of24
COLR LaSalle 2 Revision 20
- 4. MCPR Technical Specification Sections 3.2.2, 3.3.4.1. 3.4.1, and 3.7.7 4.1. MCPR Limits The rated OLMCPRs given in Table 4-2 are the maximum values obtained from analysis of the pressurization events, non-pressurization events, and the Option Ill stability evaluation. MCPR values are determined by the cycle-specific fuel reload analyses in Reference 7. Table 4-2 is used in conjunction with the ARTS-based power (Kp} and flow (MCPRF} dependencies presented in Tables 4-3, 4-4, 4-5, 4-6, and 4-7 below. The OLMCPR is determined for a given power and flow condition by evaluating the power and flow dependent MCPR values and selecting the greater of the two.
4.1.1. Power-Dependent MCPR The power-dependent MCPR multiplier, KP, is determined from Table 4-3, and is dependent only on the power level and the Application Group (EOOS}. The product of the rated OLMCPR and the proper KP provides the power-dependent OLMCPR (MCPRP).
4.1.2. Flow-Dependent MCPR Tables 4-4 through 4-7 give the MCPRF limit as a function of the core flow, based on the applicable plant conditions. The MCPRF limit determined from these tables is the flow-dependent OLMCPR.
4.1.3. Safety Limit MCPR The cycle-specific SLMCPR, known as MCPR99.9%,\\can be found in Table 4-8 for dual loop and single loop operating conditions. The values in Table 4-8 were used to calculate the rated and off-rated MCPR limits.
LaSalle Unit 2 Cycle 20 Page 8 of 24
COLR LaSalle 2 Revision 20 4.2. Scram Time Option A and Option B MCPR analyses and results are dependent upon core average control rod blade scram speed insertion times.
The Option A scram time is the Improved Technical Specification scram speed based insertion time. To utilize the MCPR limits for the Option A scram speed insertion times, the core average scram speed insertion time for 20% insertion must be less than or equal to 0.900 seconds (Reference 10) (0.875 seconds at notch position 39, Reference 11 ).
To utilize the MCPR limits for the Option B scram speed insertion times, the core average scram speed time for insertion to notch 39 must be less than or equal to r8 (Reference 14, see equation 1 ).
TB=µ+ 1.65
( ~)
<T or TB= 0.603 + 1.65 L~=1N1 (1)
Whereµ (0.603 for LaSalle) is the mean of means plus two standard deviations scram insertion time to notch position 39 dropout and u (0.0106 for LaSalle) is the standard deviation of the distribution for average scram insertion time to notch position 39 dropout used in the Option B scram speed statistical analysis, and where n is the number of surveillance tests performed in the cycle, N1 is the number of active control rods measured in surveillance test i, and N1 is the total number of active rods measured.
Alternatively, to use Option B, omitting the right-hand side of the r8 equation would be conservative, and is acceptable. See Table 4-1 for a summary of scram time requirements related to the use of Option A and Option B MCPR limits.
If the core average scram insertion time does notlmeet the Option B criteria, but is within the Option A criteria, the appropriate steady state MCPR value' may be determined from a linear interpolation between the Option A and B limits with standard mathematical rounding to two decimal places.
Table 4-1 Scram Times Required for Option A and Option B Application at Notch Position 39 (References 11 and 14)
Notch Position*
Scram Time Required for Option A Scram Time Required for Option B Application (sec)
Application (sec)-
s 0.603 OR 39 s 0.875 (r:* ) 0.0106
~ 0.603 + 1.65 1=1NI
- The insertion time to a notch pos1t1on 1s conservatively calculated using the CRD reed switch drop-out time per Reference 11 and interpolation with scram time values per Reference 10.
4.3. Recirculation Flow Control Valve Settings Cycle 20 was analyzed with a maximum core flow runout of 105%; therefore, the recirculation pump flow control valves must be set to maintain core flow less than 105% (113.925 Mlbm/hr) for all runout events (Reference 7).
LaSalle Unit 2 Cycle 20 Page 9of24
COLR LaSalle 2 Revision 20 Table 4-2 Operating Limit Minimum Critical Power Ratio (OLMCPR) for GNF2 and GNF3 Fuel (Reference 7)
Application Group Base Case Base Case + TCVSC
+ RPTOOS + PROOS +
MSROOS Base Case + TCVSC +
TBVOOS (all S valves)
Base Case + TCVSC +
TBVOOS (all S valves)
+ RPTOOS + PROOS +
MSROOS Base Case with TCVIS Base Case + TCVSC +
TBVOOS (all S valves)
+ RPTOOS + PROOS +
MSROOS with TCVIS Base Case + MSROOS Base Case + MSROOS withTCVIS DLO/SLO Exposure Range/
Fuel Type BOC-MOC DLO MOC-EOC SLO BOC-EOC (GNF2)
BOC-EOC (GNF3)
BOC-MOC DLO MOC-EOC SLO BOC-EOC (GNF2)
BOC-EOC (GNF3)
BOC-MOC DLO MOC-EOC SLO BOC-EOC (GNF2)
BOC-EOC (GNF3)
BOC-MOC DLO MOC"'FOC SLO BOC-EOG (GNF2)
BOC-EOC (GNF3)
BOC-MOC DLO MOC-EOC SLO BOC-EOC (GNF2)
BOC-EOC (GNF3)
BOC-MOC DLO MOC-EOC SLO BOC-EOC (GNF2)
BOC-EOC (GNF3)
BOC-MOC DLO MOC-EOC SLO BOC-EOC (GNF2)
BOC-EOC (GNF3)
BOC-MOC DLO MOC-EOC SLO BOC-EOC (GNF2)
BOC-EOC (GNF3)
LaSalle Unit 2 Cycle 20 Page 10 of 24 Option A Option B 1.33 1.30 1.36 1.30 1.S9 1.S9 1.54 1.54 1.3S 1.30 1.39 1.33 1.S9 1.S9 1.54 1.54 1.33 1.30 1.38 1.32 1.S9 1.S9 1.54 1.54 1.38 1.31 1.42 1.3S 1.S9 1.S9 1.54 1.54 1.33 1.30 1.36 1.30 1.S9 1.59 1.S4 1.54 1.38 1.31 1.42 1.3S 1.S9 1.59 1.54 1.54 1.33 1.30 1.38 1.32 1.S9 1.59 1.54 1.54 1.33 1.30 1.38 1.32 1.S9 1.59 1.54 1.54
COLR LaSalle 2 Revision 20 Table 4-3 Power-Dependent MCPR Multipliers (KP) for GNF2 and GNF3 Fuel (Reference 7)
Application Group 0
Base Case 1.150 Base Case + TCVSC +
RPTOOS + PROOS +
1.242 MSROOS Base Case + TCVSC + 1.150 TBVOOS (all 5 valves)
Base Case + TCVSC +
TBVOOS (all 5 valves) 1.242
+ RPTOOS + PROOS
+MSROOS Base Case with TCVIS 1.150 Base Case + TCVSC +
TBVOOS (all 5 valves)
+ RPTOOS + PROOS 1.242
+MSROOS withTCVIS Base Case + MSROOS 1.242 Base Case + MSROOS 1.242 withTCVIS Core Thermal Power (% rated) 25 45 60 S85
>85 KP, Operating Limit MCPR Multiplier 1.150 1.150 1.150 1.242 1.207 1.178 1.150 1.150 1.150 1.242 1.207 1.178 I
I I
1.150 1.150 1.150 1.242 1.207 1.178 1.242 1.207 1.178 1.242 1.207 1.178 LaSalle Unit 2 Cycle 20 Page 11 of 24 1.056 1.056 1.111 1.064 1.058 1.058 1.111 1.070 1.056 1.056 1.111 1.070 1.111 1.070 1.111 1.070 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
COLR LaSalle 2 Revision 20 Table 4-4 DLO Flow-Dependent MCPR Limits (MCPRF) for GNF2 Fuel (Reference 7)
Flow MCPRF
(% Rated) 0.0 1.88 30.0 1.70 105.0 1.24*
Table 4-5 DLO Flow-Dependent MCPR Limits (MCPRF) for GNF3 Fuel (Reference 7)
Flow MCPRF
(% Rated) 0.0 1.75 30.0 1.55 83.0 1.20*
105.0 1.20*
Table 4-6 SLO Flow-Dependent MCPR Limits (MCPRF) for GNF2 Fuel (Reference 7)
Flow MCPRF
(% Rated) 0.0 1.91 30.0 1.73 105.0 1.27
- This value is lower than the initial MCPR analyzed in the LOCA analysis. However, because PANACEA calculates the offrated MCPR by taking the maximum of the MCPRp, MCPRf, and OLMCPR, the offrated MCPR is inherently higher than analyzed in the LOCA analysis and the LOCA analysis remains applicable at all conditions.
LaSalle Unit 2 Cycle 20 Page 12 of 24
COLR LaSalle 2 Revision 20 Table 4-7 SLO Flow-Dependent MCPR Limits (MCPRF) for GNF3 Fuel (Reference 7)
Flow MCPRF
(% Rated) 0.0 1.78 30.0 1.58 83.0 1.23*
105.0 1.23*
- This value is lower than the initial MCPR analyzed in the LOCA analysis. However, because PANACEA calculates the offrated MCPR by taking the maximum of the MCPRp, MCPRf, and OLMCPR, the offrated MCPR is inherently higher than analyzed in the LOCA analysis and the LOCA analysis remains applicable at all conditions.
Table 4-8 Cycle Specific SLMCPR (MCPRss.s%)
(Reference 7)
Flow MCPRee.9%
DLO 1.07 SLO 1.09 LaSalle Unit 2 Cycle 20 Page 13 of24
COLR LaSalle 2 Revision 20
- 5. LHGR Technical Specification Sections 3.2.3 and 3.4.1 The LHGR limit is the product of the exposure dependent LHGR limits from Table 5-1 and Table 5-2 and the minimum of the power dependent LHGR Factor, LHGRFACP, or the flow dependent LHGR Factor, LHGRFACF, as applicable. The LHGRFACP multiplier is determined from Table 5-3 and Table 5-4. The LHGRFACF multiplier is determined from Table 5-5, Table 5-6 or Table 5-7. The SLO multipliers in Table 5-5 and Table 5-6 have been limited to a maximum value of 0.78, the SLO LHGR multiplier for GNF2 fuel. The SLO multipliers in Table 5-7 have been limited to a maximum value of 0.90, the SLO LHGR multiplier for GNF3 fuel (Reference 7).
Table 5-1 LHGR Limit for GNF2 Fuel (References 5 and 8)
Peak Pellet Ex osure U02 LHGR Limit See Table B-1 of Reference 8 Peak Pellet Exposure Most Limiting Gadollnla LHGR Limit See Table B-2 of Reference 8 Table 5-2 LHGR Limit for GNF3 Fuel (References 5 and 9)
Peak Pellet Ex osure U02 LHGR Limit See Table A-1 of Reference 9 Peak Pellet Exposure Most Limiting Gadollnla LHGR Limit See Table A-2 of Reference 9 LaSalle Unit 2 Cycle 20 Page 14 of 24
COLR LaSalle 2 Revision 20 Table 5-3 Power-Dependent LHGR Multipliers (LHGRFACP) for GNF2 Fuel, DLO and SLO (Reference 7)
Application Group 0
Base Case 0.608 Base Case + TCVSC +
RPTOOS + PROOS +
0.608 MSROOS Base Case + TCVSC + 0.608 TBVOOS (all 5 valves)
Base Case + TCVSC +
TBVOOS (all 5 valves) 0.608
+ RPTOOS + PROOS
+MSROOS Base Case with TCVIS 0.608 Base Case + TCVSC +
TBVOOS (all 5 valves)
+ RPTOOS + PROOS 0.608
+MSROOS withTCVIS Base Case+
0.608 MSROOS Base Case+
0.608 MSROOS with TCVIS Core thermal Power (% rated) 25 45 60 LHGRFACP Multiplier 0.608 0.713 0.608 0.703 0.608 0.713 0.608 0.703 0.608 0.713 0.608 0.703 0.608 0.713 0.608 0.713 LaSalle Unit 2 Cycle 20 Page 15 of24 0.791 0.761 0.791 0.761 0.79~
0.761 0.791 0.791 85 0.922 0.831 0.922 0.822 0.922 0.822 0.922 0.922 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
COLR LaSalle 2 Revision 20 Table 5-4 Power-Dependent LHGR Multipliers (LHGRFACP) for GNF3 Fuel, DLO and SLO (Reference 7)
Application Group Base Case Base Case + TCVSC +
RPTOOS + PROO$ +
MSROOS Base Case + TCVSC +
TBVOOS (all 5 valves}
Base Case + TCVSC +
TBVOOS (all 5 valves}
+ RPTOOS + PROO$
+MSROOS Base Case with TCVIS Base Case + TCVSC +
TBVOOS (all 5 valves}
+ RPTOOS + PROO$
+MSROOS withTCVIS Base Case+
MSROOS Base Case+
MSROOS with TCVIS Core thermal Power (% rated) 0 25 45 60 LHGRFACP Multiplier 1.000 1.000 1.000 0.720 0.720 0.850 0.955 0.955 0.955 0.720 0.720 0.850 I
I 1.000 1.000 1.000 0.720 0.720 0.850 0.720 0.720 0.850 0.720 0.720 0.850 LaSalle Unit 2 Cycle 20 Page 16 of24 1.000 0.940 1.000 0.940 1.000 0.940 0.940 0.940 85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
COLR LaSalle 2 Revision 20 Table 5-5 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF2 Fuel, BOC to EOC, All Application Groups except Base Case with TCV/TSV In-Service and Base Case +
MSROOS with TCV/TSV In-Service (Reference 7)
Flow DLO LHGRFACF SLO LHGRFACF
(% Rated) 0.0 0.11 0.11 30.0 0.41 0.41 67.0 0.78 0.78 89.0 1.00 0.78 105.0 1.00 0.78 Table 5-6 Flow-Dependent LHGR Multipli*rs (LHGRFACF) for GNF2 Fuel, BOC to EOC, Base Case with TCV/TSV In-Service and Base Case + MSROOS with TCV/TSV In-Service (Reference 7)
Flow
(% Rated) 0.0 30.0 53.0 75.0 105.0 DLO LHGRFACF 0.25 0.55 0.78 1.00 1.00 LaSalle Unit 2 Cycle 20 Page 17 of24 SLO LHGRFACF 0.25 0.55 0.78 0.78 0.78
COLR LaSalle 2 Revision 20 Table 5-7 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF3 Fuel, BOC to EOC, All Cases Flow
(% Rated) 0.0 30.0 64.2 75.0 105.0 (Reference 7)
DLO LHGRFACF 0.307 0.584 0.900 1.000 1.000 LaSalle Unit 2 Cycle 20 Page 18 of24 SLO LHGRFACF 0.307 0.584 0.900 0.900 0.900
COLR LaSalle 2 Revision 20
- 6. Rod Block Monitor Technical Specification Sections 3.3.2.1 and 3.4.1 The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 3):
Table 6-1 Rod Block Monitor Setpoints Rod Block Monitor Upscale Trip Function Allowable Value Two Recirculation Loop 0.66 Wd + 54.0%
Operation Single Recirculation Loop 0.66 Wd + 48.7%
Operation Wd - percent of recirculation loop drive flow required to produce a rated core flow of 108.5 Mlbm/hr.
The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE} analysis because RWE is analyzed unblocked (Reference 7). The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd} of 100%.
LaSalle Unit 2 Cycle 20 Page 19 of24
COLR LaSalle 2 Revision 20
- 7. Traversing In-Core Probe System (References 2, 4, and 12) 7.1. Description When the traversing in-core probe (TIP) system (for the required measurement locations) is used for recalibration of the LPRM detectors and monitoring thermal limits, the TIP system shall be operable with the following:
- 1. Movable detectors, drives and readout equipment to map the core in the required measurement locations, and
- 2.
Indexing equipment to allow all required detectors to be calibrated in a common location.
The following applies for use with 3DM:
At any time, including BOC, the total number of failed and/or bypassed LPRMs does not exceed 25%
(Reference 4). In addition, no more than 22 TIP channels can be OOS (failed or rejected) (Reference 2).
Otherwise, with the TIP system inoperable, suspend use of the system for the above applicable calibration functions.
7.2. Bases The operability of the TIP system with the above specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core.I The normalization of the required detectors is performed inter~al to the core monitoring software syster,.
1 LaSalle Unit 2 Cycle 20 Page 20 of24
COLR LaSalle 2 Revision 20
- 8. Stability Protection Setpoints Technical Specification Section 3.3.1.3 Table 8-1 OPRM PBDA Trip Setpoints (Reference 7)
PBDA Trip Amplitude Setpolnt (Sp)
Corresponding Maximum Confirmation Count Setpoint (Np) 1.15 16 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.
The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.
LaSalle Unit 2 Cycle 20 Page 21 of24
COLR LaSalle 2 Revision 20
- 9. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below (Reference 7).
Table 9-1 Allowed Modes of Operation and EOOS Combinations (Reference 7)
Equipment Out of Service Options <1> <2> <3> <4> <5> <6> <7>
Short Names Base Case BASE_DLO _ OPTB(A)
Base Case + SLO BASE_SLO_OPTB(A)
Base Case + TCVSC + RPTOOS + PROOS + MSROOS EOOS1_DLO _ OPTB(A)
Base Case + TCVSC + RPTOOS + PROOS + MSROOS + SLO EOOS1_SLO _ OPTB(A)
Base Case+ TCVSC + TBVOOS (all 5 valves)
EOOS2_DLO _ OPTB(A)
Base Case+ TCVSC + TBVOOS (all 5 valves)+ SLO EOOS2_SLO _ OPTB(A)
Base Case + TCVSC + TBVOOS (all 5 valves)+ RPTOOS + PROOS +
EOOS3_DLO _ OPTB(A)
MSROOS Base Case+ TCVSC + TBVOOS (all 5 valves)+ RPTOOS + PROOS +
EOOS3_SLO _ OPTB(A)
MSROOS+SLO Base Case with TCVIS BASE_ TCVIS_DLO _ OPTB(A)
Base Case + SLO with TCVIS BASE_ TCVIS_SLO _ OPTB(A)
Base Case+ TC\\fSC + TBVOOS (all 5 valves)+ RPTOOS + PROOS +
Epos3_TCVIS_DLO_OPTB(A)
MSROOS with TCVIS Base Case+ TCVSC + TBVOOS (all 5 valves)+ RPTOOS + PROOS +
EOOS3_ TCVIS_SLO_OPTB(A)
MSROOS + SLO with TCVIS Base Case + MSROOS EOOS4_DLO _ OPTB(A)
Base Case + MSROOS + SLO EOOS4_SLO_OPTB(A)
Base Case + MSROOS with TCVIS EOOS4_ TCVIS_DLO _ OPTB(A)
Base Case + MSROOS + SLO with TCVIS EOOS4_TCVIS_SLO_OPTB(A)
(1) Base case includes 1 SRVOOS + 1 TCVfTSV 00S + FWHOOS/FFWTR + 1 MSIVOOS + 1 TBVOOS + PLUOOS. The one TCV and/or TSV 00S conditions require power level s 85% of rated. The one MSIVOOS condition is confirmed for reactor power s 75% of rated (Reference 7).
(2) The 1 TBVOOS in the Base Case assumes one of TBVs #1-4 are not credited for pressure control and one of TBVs #1-5 are not credited for fast opening (Reference 6). The #5 TBV is not available for pressure relief and thus cannot be used as one of the credited valves to open in pressure control (Reference 13).
(3) The 5 TBVOOS application conditions assume three of TBVs #1-4 are not credited for pressure control and all five of TBVs #1-5 are not credited for fast opening (Reference 6). The #5 TBV is not available for pressure relief and thus cannot be used as one of the credited valves to open in pressure control (Reference 13).
(4) The+ sign that is used in the Equipment Out of Service Option/ Application Group descriptions designates an "and/or" (Reference 6).
(5) All EOOS Options are applicable to the entire range of licensed flow and feedwater temperature (MELLLA, ICF, FFWTR, and coastdown) unless otherwise specified (Reference 7). SLO is not applicable to MELLLA or ICF.
(6) All EOOS options in Table 9-1 can be used in Option A or B (Reference 7).
(7) MSR is considered to be in-service when second stage reheat is receiving full flow (Reference 15).
LaSalle Unit 2 Cycle 20 Page 22 of 24
COLR LaSalle 2 Revision 20
- 10. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
- 1. GNF Report NEDE-24011-P-A-31 (Revision 31 ), "General Electric Standard Application for Reactor Fuel,"
November 2020 and the U.S. Supplement NEDE-24011-P-A-31-US, November 2020.
LaSalle Unit 2 Cycle 20 Page 23 of24
COLR LaSalle 2 Revision 20
- 11. References
- 1.
Constellation Energy Generation, LLC Docket No. 50-37 4 LaSalle County Station, Unit 2, Facility Operating License No. NPF-18.
- 2.
GNF Report 005N6665, Revision 0, "Exelon BWR Fleetwide Technical Evaluation of 50% TIP Strings Out-of-Service on Methods Uncertainties," March 2020.
- 3.
Constellation Nuclear Fuels Letter NFM:MW:01-0106, "LaSalle Unit 1 and Unit 2 Rod Block Monitor COLR Setpoint Change," April 3, 2001.
- 4.
GE Nuclear Energy Report NEDC-32694P-A, Revision 0, "Power Distribution Uncertainties for Safety Limit MCPR Evaluations," August 1999.
- 5.
GNF Report 006N6306, Revision 0, "Fuel Bundle Information Report for LaSalle Unit 2 Reload 19 Cycle 20,"
December 2022.
- 6.
Constellation TOOi NF220470, Revision 1, "LaSalle Unit 2 Cycle 20 FRED Form," November 18, 2022.
- 7.
GNF Report 006N6305, Revision 0, "Supplemental Reload Licensing Report for LaSalle Unit 2 Reload 19 Cycle 20," December 2022.
- 8.
GNF Document No. NEOC-33270P, Revision 11, "GNF2 Advantage Generic Compliance with NEDE-24011-P-A (GESTAR II)," August 2020.
- 19.
GNF Document No. NEDC-33879P, Revision 4, "GNF3 qeneric Compliance with NEDE-24011-P-A 1
(GESTAR II)," August 2020.
1
- 10.
Constellation TOOi NF220537, Revision 0, "LaSalle Unit 2 Cycle 20 Completed OPL-3 Form," August 9, 2022.
- 11.
GNF Letter ORF A 12-00038-3, Vol. 4, "Scram Times versus Notch Position," May 22, 1992.
- 12.
NRC Letter, "Issuance of Amendments (TAC Nos. M95156 and M95157)," October 29, 1996.
- 13.
Constellation TOOi ES1900018, Revision 2, "LaSalle GNF3 Nuclear Fuel Transition Design Inputs - F0900 Cycle-Independent Transient Analysis," November 13, 2020.
- 14.
GNF Report 005N5612, Revision 0, "LaSalle County Station Option B' Scram Speed Implementation Engineering Report," January 2020.
- 15.
Constellation EC 630152, Revision 1, "GNF3 NFI F0900 MCFA and MSROOS Inputs," November 13, 2020.
LaSalle Unit 2 Cycle 20 Page 24 of24