RA21-019, Unit 2 Cycle 19 Core Operating Limits Reports

From kanterella
Jump to navigation Jump to search
Unit 2 Cycle 19 Core Operating Limits Reports
ML21097A035
Person / Time
Site: LaSalle Constellation icon.png
Issue date: 04/07/2021
From: Washko J
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
RA21-019
Download: ML21097A035 (25)


Text

Exelon Generation RA21-019 April 7, 2021 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Subject:

LaSalle County Station, Unit 2 Renewed Facility Operating License No. NPF-18 NRC Docket No. 50-374 Unit 2 Cycle 19 Core Operating Limits Reports LaSalle County Station 2601 North 21 st Road Marseilles, IL 61341 815-415-2000 Telephone www.exeloncorp.com 10 CFR 50.4 In accordance with LaSalle County Station (LSCS) Technical Specifications (TS) 5.6.5.d, "CORE OPERATING LIMITS REPORT (COLR)," attached is a copy of the Unit 2 COLR revision 18. The Unit 2 COLR was revised for LSCS Unit 2 Cycle 19 (L2C19).

There are no regulatory commitments contained within this letter.

Should you have any questions concerning this letter, please contact Mr. Dan Mearhoff, Regulatory Assurance Manager, at (815) 415-2800.

Respectfully,

~~~

JohM,JJhko Site Vice President LaSalle County Station Attachments: LaSalle Unit 2 COLR revision 18 cc:

Regional Administrator - NRC Region Ill NRC Senior Resident Inspector - LaSalle County Station 4,.:.... ~ '

,' t ~ I 1 I

l ~~~-

I

, 4-1.u.J,.

l1 t 11 1 j.! ~l...

H!

.t..i...*J-.

Prepared By:

COLR LaSalle 2 Revision 18 Core Operating Limits Report For LaSalle Unit 2 Cycle 19 Vaughn, Edward James EJ Vaughn, NF CM 1 Digitally signed by Vaughn, Edward James ON: cn=Vaughn, Edward James Date: 2021.03.07 22:26:11 -06'00' Smith, Kevin DigitallysignedbySmith, Kevin David Date: _____ _

D

  • d ON: cn=Smith, Kevin David Co-Prepared By: __

a_v_i _______

o_ate_: _20_21_.0_3_0_1_20_:4_1 :_s1_-0_6_*00_* __

Date: 3/7/2021 Reviewed By:

Reviewed By:

Reviewed By:

Approved By:

SQR By:

Kevin Smith, NF CM Annie Eastmond, NF CM

Simmons, John Digitally signed by Simmons, John ON: cn=Simmons, John Date: 2021.03.08 10:28:28-06"00' John Simmons, ESA Karl Hachmuth, RE 2021-03-07 20:48-06:00 Digitally signed by Kovacs, Ashley ON: cn=Kovacs, Ashley Date: 2021.03.08 11 :34:29 -06'00' Ashley Kovacs, NF CM Josh Shea, RE Shea, Joshua 2021 08 14:32-06:00 LaSalle Unit 2 Cycle 19 Page 1 of 24 Date: _____ _

Date: -------

Date: -------

Date: _____ _

Date: -------

COLR LaSalle 2 Revision 18 Table of Contents Page Revision History...................................................................................................................... 3 List of Tables........................................................................................................................... 4

1. Terms and Definitions......................................................................................................... 5
2. General Information............................................................................................................. 6
3. MAPLHGR.......................................................................................................................... 7
4. MCPR.................................................................................................................................. 8 4.1. MCPR Limits.......................................................................................................................................... 8 4.1.1. Power-Dependent MCPR........................................................................................................... 8 4.1.2. Flow-Dependent MCPR............................................................................................................... 8 4.1.3. Safetly Limit MCPR...................................................................................................................... 8 4.2. Scram Time............................................................................................................................................. 9 4.3. Recirculation Flow Control Valve Settings.................................................................................... 9
5. LHGR................................................................................................................................ 14
6. Rod Block Monitor............................................................................................................. 19
7. Traversing In-Core Probe System.................................................................................... 20
7. 1. Description............................................................................................................................................ 20 7.2. Bases..................................................................................................................................................... 20
8. Stability Protection Setpoints............................................................................................. 21
9. Modes of Operation........................................................................................................... 22
10. Methodology.................................................................................................................... 23 11. References...................................................................................................................... 24 s ' *.1...+-o*.,i.

LaSalle Unit 2 Cycle 19 Page 2 of 24

!.. ~

I

  • ..............a.**

.1,

Revision History Revision 18

,.t..-.. J I

I COLR LaSalle 2 Revision 18 Record of COLR LaSalle 2 Cycle 19 Revisions Description Initial issuance for L2C19.

LaSalle Unit 2 Cycle 19 Page 3 of 24

--* <1--..

11

  • ,J...t....-1,....

COLR LaSalle 2 Revision 18 List of Tables Table 2-1 Cycle Exposure Range Definitions............................................................................................................ 6 Table 3-1 MAPLHGR versus Average Planar Exposure for GNF2 Fuel................................................................... 7 Table 3-2 MAPLHGR versus Average Planar Exposure for GNF3 Fuel................................................................... 7 Table 3-3 MAPLHGR SLO Multiplier for GNF2 and GNF3 Fuel............................................................................... 7 Table 4-1 Scram Times Required for Option A and Option B Application at Notch Position 39............................... 9 Table 4-2 Operating Limit Minimum Critical Power Ratio (OLMCPR) for GNF2 and GNF3 Fuel........................... 10 Table 4-3 Power-Dependent MCPR Multipliers (KP) for GNF2 and GNF3 Fuel..................................................... 11 Table 4-4 DLO Flow-Dependent MCPR Limits (MCPRF) for GNF2 Fuel................................................................ 12 Table 4-5 DLO Flow-Dependent MCPR Limits (MCPRF) for GNF3 Fuel................................................................ 12 Table 4-6 SLO Flow-Dependent MCPR Limits (MCPRF) for GNF2 Fuel................................................................ 12 Table 4-7 SLO Flow-Dependent MCPR Limits (MCPRF) for GNF3 Fuel................................................................ 13 Table 4-8 Cycle Specific SLMCPR (MCPRss.s%)..................................................................................................... 13 Table 5-1 LHGR Limit for GNF2 Fuel...................................................................................................................... 14 Table 5-2 LHGR Limit for GNF3 Fuel...................................................................................................................... 14 Table 5-3 Power-Dependent LHGR Multipliers (LHGRFACP) for GNF2 Fuel, DLO and SLO................................ 15 Table 5-4 Power-Dependent LHGR Multipliers (LHGRFACP) for GNF3 Fuel, DLO and SLO................................ 16 Table 5-5 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF2 Fuel, BOC to EOC, Pressurization (All Application Groups except Base Case with TCV/TSV In-Service).......................................................................... 17 Table 5-6 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF2 Fuel, BOC to EOC, No Pressurization (Base Case with TCV/TSV In-Service).............................................................................................................................. 17 Table 5-7 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF3 Fuel, BOC to EOC, All Cases................... 18 Table 6-1 Rod Block Monitor Setpoints................................................................................................................... 19 Table 8-1 OPRM PBDA Trip Setpoints.................................................................................................................... 21 Table 9-1 Allowed Modes of Operation and EOOS Combinations......................................................................... 22 LaSalle Unit 2 Cycle 19 Page 4 of 24 I..a..!.,.....

I I I'

  • ---....,..L..

I

COLR LaSalle 2 Revision 18

1. Terms and Definitions ARO ARTS BOC CRD DLO EOC EOOS EOR FFWTR FWHOOS GNF ICF KP LHGR LHGRFACF LHGRFACP LOCA LPRM L2C19 MAPLHGR MCPR MCPR99.9%

MCPRF MELLLA MOC MSIVOOS MSROOS OLMCPR OOS OPRM PBDA PLUOOS PROOS RPTOOS RWE SLMCPR SLO SRVOOS TBV TBVOOS TCV TCVIS TCVSC TIP TSV 30M All rods out Average power range monitor, rod block monitor and technical specification improvement program Beginning of cycle Control rod drive Dual loop operation End of cycle Equipment out of service End of rated - Cycle exposure corresponding to all rods out, 100% power/100% flow, and normal feedwater temperature Final feedwater temperature reduction Feedwater heater out of service Global Nuclear Fuels -Americas Increased core flow Power-dependent MCPR multiplier Linear heat generation rate Flow-dependent LHGR multiplier Power-dependent LHGR multiplier Loss of coolant accident Local power range monitor LaSalle Unit 2 Cycle 19 Maximum average planar linear heat generation rate Minimum critical power ratio Limiting MCPR value such that 99.9% of the fuel in the core is not susceptible to boiling transition Flow-dependent MCPR Maximum extended load line limit analysis Middle of cycle point for licensing purposes Main steam isolation valve out of service Moisture separator reheater out of service Operating limit minimum critical power ratio Out of service Oscillation power range monitor Period based detection algorithm Power load unbalance out of service Pressure regulator out of service Recirculation pump trip out of service Rod withdrawal error Safety limit minimum critical power ratio Single loop operation Safety/relief valve out of service Turbine bypass valve Turbine bypass valve out of service Turbine control valve All turbine control valves/turbine stop valves in-service Turbine control valve slow closure Traversing in-core probe Turbine stop valve 30 Monicore LaSalle Unit 2 Cycle 19 Page 5 of 24

  • .c... '.

I

COLR LaSalle 2 Revision 18

2. General Information The data provided in this report is valid for (Reference 7):

Maximum Extended Load Line Limit down to 82.8% of rated core flow during full power operation (rated core flow is 108.5 Mlb/hr) (Reference 6).

ICF to 105% of rated core flow.

Coastdown to 40% rated power (rated core thermal power is 3546 MWth) (Reference 6).

o Operation at a power level above that which can be achieved with ARO, ICF, FFWTR, and steady-state equilibrium Xenon concentrations is not supported.

Maximum reduction of 100°F of the feedwater temperature for FWHOOS/FFWTR.

Throughout this report, power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Table 2-1 defines the three exposure ranges used in the COLR. The term (EOR19 -4260 MWd/ST) means the Cycle 19 EOR exposure minus 4260 MWd/ST of exposure. The value of the EOR exposure is based on actual plant operation and is thus determined from projections to this condition made near, but before, the time when the EOR19 - 4260 MWd/ST exposure will be reached. For cycle exposure dependent limits at the exact MOC exposure, the more limiting of the BOC to MOC and the MOC to EOC limits should be used. This can be achieved by applying the MOC to EOC limits to the MOC point as all cycle exposure dependent limits in the MOC to EOC limit sets are the same as, or more limiting than, those in the BOC to MOC limit sets.

,...,._;. J.

Nomenclature BOC to MOC MOC to EOC BOCtoEOC

...l-i......a.

.-11 Table 2-1 Cycle Exposure Range Definitions (Reference 7)

Cycle Exposure Range BOC19 to (EOR19 -4260 MWd/ST)

(EOR19-4260 MWd/ST) to EOC19 BOC19 to EOC19 LaSalle Unit 2 Cycle 19 Page 6 of 24 I'......,,...... " "

, I*

\\.

,1,..J..u J.

  • COLR LaSalle 2 Revision 18
3. MAPLHGR Technical Specification Sections 3.2.1 and 3.4.1 MAPLHGR values as a function of average planar exposure are given in Tables 3-1 and 3-2. During SLO, these limits are multiplied by the SLO multiplier listed in Table 3-3. Tables 3-1, 3-2 and 3-3 provide coverage for all modes of operation.

Table 3-1 MAPLHGR versus Average Planar Exposure for GNF2 Fuel (Reference 7)

Avg. Planar MAPLHGR Exposure (kW/FT)

(GWd/ST) 0.00 13.78 17.15 13.78 60.78 6.87 63.50 5.50 Table 3-2 MAPLHGR versus Average Planar Exposure for GNF3 Fuel (Reference 7)

Avg. Planar MAPLHGR Exposure (kW/FT)

(GWd/ST) 0.00 14.36 21.22 13.01 40.82 10.75 57.60 8.00 63.50 6.00 Table 3-3 MAPLHGR SLO Multiplier for GNF2 and GNF3 Fuel (Reference 7)

SLO Fuel Type MAPLHGR Multiplier GNF2 0.78 GNF3 0.90 LaSalle Unit 2 Cycle 19 Page 7 of 24

COLR LaSalle 2 Revision 18

4. MCPR Technical Specification Sections 3.2.2, 3.3.4.1, 3.4.1. and 3.7.7 4.1. MCPR Limits The rated OLMCPRs given in Table 4-2 are the maximum values obtained from analysis of the pressurization events, non-pressurization events, and the Option Ill stability evaluation. MCPR values are determined by the cycle-specific fuel reload analyses in Reference 7. Table 4-2 is used in conjunction with the ARTS-based power (Kp) and flow (MCPRF) dependencies presented in Tables 4-3, 4-4, 4-5, 4-6, and 4-7 below. The OLMCPR is determined for a given power and flow condition by evaluating the power and flow dependent MCPR values and selecting the greater of the two.

4.1.1. Power-Dependent MCPR The power-dependent MCPR multiplier, KP, is determined from Table 4-3, and is dependent only on the power level and the Application Group (EOOS). The product of the rated OLMCPR and the proper KP provides the power-dependent OLMCPR.

4.1.2. Flow-Dependent MCPR Tables 4-4 through 4-7 give the MCPRF limit as a function of the core flow, based on the applicable plant conditions. The MCPRF limit determined from these tables is the flow-dependent OLMCPR.

4.1.3. Safety Limit MCPR The cycle-specific SLMCPR, known as MCPR99.9%, can be found in Table 4-8 for dual loop and single loop operating conditions. The values in Table 4-8 were used to calculate the rated and off-rated MCPR limits.

LaSalle Unit 2 Cycle 19 Page 8 of 24

COLR LaSalle 2 Revision 18 4.2. Scram Time Option A and Option B MCPR analyses and results are dependent upon core average control rod blade scram speed insertion times.

The Option A scram time is the Improved Technical Specification scram speed based insertion time. To utilize the MCPR limits for the Option A scram speed insertion times, the core average scram speed insertion time for 20% insertion must be less than or equal to 0.900 seconds (Reference 10) (0.875 seconds at notch position 39, Reference 11 ).

To utilize the MCPR limits for the Option B scram speed insertion times, the core average scram speed time for insertion to notch 39 must be less than or equal to r8 (Reference 14, see equation 1).

TB = µ + 1.65 (_.!!..L_) a or r 8 = 0.603 + 1.65 L?=1Ni

( ~:1.) 0.0106 Li,=1 N, (1)

Whereµ (0.603 for LaSalle) is the mean of means plus two standard deviations scram insertion time to notch position 39 dropout and u (0.0106 for LaSalle) is the standard deviation of the distribution for average scram insertion time to notch position 39 dropout used in the Option B scram speed statistical analysis, and where n is the number of surveillance tests performed in the cycle, Ni is the number of active control rods measured in surveillance test i, and N1 is the total number of active rods measured.

Alternatively, to use Option B, omitting the right-hand side of the r8 equation would be conservative, and is acceptable. See Table 4-1 for a summary of scram time requirements related to the use of Option A and Option B MCPR limits.

If the core average scram insertion time does not meet the Option B criteria, but is within the Option A criteria, the appropriate steady state MCPR value may be determined from a linear interpolation between the Option A and B limits with standard mathematical rounding to two decimal places.

Table 4-1 Scram Times Required for Option A and Option B Application at Notch Position 39 (References 11 and 14)

Notch Position*

Scram Time Required for Option A Scram Time Required for Option B Application (sec)

Application (sec)**

0.603 OR 39
0.875 (Ltl.) 0.0106

$ 0.603 + 1.65 t=lN,

  • The insertion time to a notch position is conservatively calculated using the CRD reed switch drop-out time per Reference 11 and interpolation with scram time values per Reference 10.
    • Reference 14 uses the term Option B'. However, since Option B' is a plant-specific Option B scram speed, demonstrating compliance remains the same as the generic Option B scram speed, and LaSalle will continue to use the term Option B.

4.3. Recirculation Flow Control Valve Settings Cycle 19 was analyzed with a maximum core flow runout of 105%; therefore, the recirculation pump flow control valves must be set to maintain core flow less than 105% (113.925 Mlbm/hr) for all runout events (Reference 7).

LaSalle Unit 2 Cycle 19 Page 9 of 24

COLR LaSalle 2 Revision 18 Table 4-2 Operating Limit Minimum Critical Power Ratio (OLMCPR) for GNF2 and GNF3 Fuel (Reference 7)

Application Group Base Case Base Case + TCVSC

+ RPTOOS + PROOS +

MSROOS Base Case + TCVSC +

TBVOOS (all 5 valves)

Base Case + TCVSC +

TBVOOS (all 5 valves)

+ RPTOOS + PROOS +

MSROOS Base Case with TCVIS Base Case + TCVSC +

TBVOOS (all 5 valves)

+ RPTOOS + PROOS +

MSROOS with TCVIS DLO/SLO Exposure Range/

Fuel Type BOC-EOC (GNF2)

DLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

SLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

DLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

SLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

DLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

SLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

DLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

SLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

DLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

SLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

DLO BOC-EOC (GNF3)

BOC-EOC (GNF2)

SLO BOC-EOC (GNF3)

LaSalle Unit 2 Cycle 19 Page 10 of 24 Option A Option B 1.39 1.36 1.39 1.36 1.59 1.59 1.57 1.57 1.44 1.38 1.44 1.38 1.59 1.59 1.57 1.57 1.43 1.37 1.43 1.37 1.59 1.59 1.57 1.57 1.49 1.46 1.49 1.46 1.59 1.59 1.57 1.57 1.39 1.36 1.39 1.36 1.59 1.59 1.57 1.57 1.49 1.46 1.49 1.46 1.59 1.59 1.57 1.57

COLR LaSalle 2 Revision 18 Table 4-3 Power-Dependent MCPR Multipliers (KP) for GNF2 and GNF3 Fuel (Reference 7)

Core Thermal Power (% rated)

Application Group 0

25 45 60 S85

>85 KP, Operating Limit MCPR Multiplier Base Case 1.150 1.150 1.150 1.150 1.056 1.056 Base Case + TCVSC +

RPTOOS + PROOS +

1.242 1.242 1.207 1.178 1.111 1.064 MSROOS Base Case + TCVSC +

1.150 1.150 1.150 1.150 1.058 1.058 TBVOOS (all 5 valves)

Base Case + TCVSC +

TBVOOS (all 5 valves) 1.242 1.242 1.207 1.178 1.111 1.070

+ RPTOOS + PROOS

+ MSROOS Base Case with TCVIS 1.150 1.150 1.150 1.150 1.056 1.056 Base Case + TCVSC +

TBVOOS (all 5 valves) 100 1.000 1.000 1.000 1.000 1.000

+ RPTOOS + PROOS 1.242 1.242 1.207 1.178 1.111 1.070 1.000

+MSROOS with TCVIS LaSalle Unit 2 Cycle 19 Page 11 of 24

COLR LaSalle 2 Revision 18 Table 4-4 DLO Flow-Dependent MCPR Limits (MCPRF) for GNF2 Fuel (Reference 7)

Flow MCPRF

(% Rated) 0.0 1.88 30.0 1.70 105.0 1.24*

Table 4-5 DLO Flow-Dependent MCPR Limits (MCPRF) for GNF3 Fuel (Reference 7)

Flow MCPRF

(% Rated) 0.0 1.78 30.0 1.58 87.4 1.20*

105.0 1.20*

Table 4-6 SLO Flow-Dependent MCPR Limits (MCPRF) for GNF2 Fuel (Reference 7)

Flow MCPRF

(% Rated) 0.0 1.90 30.0 1.72 105.0 1.26

  • This value is lower than the initial MCPR analyzed in the LOCA analysis. However, because PANACEA calculates the offrated MCPR by taking the maximum of the MCPRp, MCPRf, and OLMCPR, the offrated MCPR is inherently higher than analyzed in the LOCA analysis and the LOCA analysis remains applicable at all conditions.

LaSalle Unit 2 Cycle 19 Page 12 of 24

COLR LaSalle 2 Revision 18 Table 4-7 SLO Flow-Dependent MCPR Limits (MCPRF) for GNF3 Fuel (Reference 7)

Flow MCPRF

(% Rated) 0.0 1.80 30.0 1.60 87.4 1.22*

105.0 1.22*

  • This value is lower than the initial MCPR analyzed in the LOCA analysis. However, because PANACEA calculates the offrated MCPR by taking the maximum of the MCPRp, MCPRf, and OLMCPR, the offrated MCPR is inherently higher than analyzed in the LOCA analysis and the LOCA analysis remains applicable at all conditions.

Table 4-8 Cycle Specific SLMCPR (MCPR99.93/4)

(Reference 7)

Flow MCPR99.9%

DLO 1.09 SLO 1.11 LaSalle Unit 2 Cycle 19 Page 13 of 24

COLR LaSalle 2 Revision 18

5. LHGR Technical Specification Sections 3.2.3 and 3.4.1 The LHGR limit is the product of the exposure dependent LHGR limits from Table 5-1 and Table 5-2 and the minimum of the power dependent LHGR Factor, LHGRFACP, or the flow dependent LHGR Factor, LHGRFACF. as applicable. The LHGRFACP multiplier is determined from Table 5-3 and Table 5-4. The LHGRFACF multiplier is determined from Table 5-5, Table 5-6 or Table 5-7. The SLO multipliers in Table 5-5 and Table 5-6 have been limited to a maximum value of 0.78, the SLO LHGR multiplier for GNF2 fuel. The SLO multipliers in Table 5-7 have been limited to a maximum value of 0.90, the SLO LHGR multiplier for GNF3 fuel (Reference 7).

Table 5-1 LHGR Limit for GNF2 Fuel (References 5 and 8)

Peak Pellet Ex osure U02 LHGR Limit See Table B-1 of Reference 8 Peak Pellet Exposure Most Limiting Gadolinia LHGR Limit See Table 8-2 of Reference 8 Table 5-2 LHGR Limit for GNF3 Fuel (References 5 and 9)

Peak Pellet Ex osure U02 LHGR Limit See Table A-1 of Reference 9 Peak Pellet Exposure Most Limiting Gadolinia LHGR Limit See Table A-2 of Reference 9 LaSalle Unit 2 Cycle 19 Page 14 of 24

COLR LaSalle 2 Revision 18 Table 5-3 Power-Dependent LHGR Multipliers (LHGRFACP) for GNF2 Fuel, DLO and SLO (Reference 7)

Application Group Base Case Base Case + TCVSC +

RPTOOS + PROOS +

MSROOS Base Case + TCVSC +

TBVOOS (all 5 valves)

Base Case + TCVSC +

TBVOOS (all 5 valves)

+ RPTOOS + PROOS

+ MSROOS Base Case with TCVIS Base Case + TCVSC +

TBVOOS (all 5 valves)

+ RPTOOS + PROOS

+MSROOS with TCVIS Core thermal Power(% rated) 0 25 45 60 85 LHGRFACP Multiplier 0.608 0.608 0.713 0.608 0.608 0.703 0.608 0.608 0.713 0.608 0.608 0.703 0.608 0.608 0.713 0.608 0.608 0.703 LaSalle Unit 2 Cycle 19 Page 15 of 24 0.791 0.922 0.761 0.831 0.791 0.922 0.761 0.822 0.791 0.922 0.761 0.822 100 1.000 1.000 1.000 1.000 1.000 1.000

COLR LaSalle 2 Revision 18 Table 5-4 Power-Dependent LHGR Multipliers (LHGRFACP) for GNF3 Fuel, DLO and SLO (Reference 7)

Application Group 0

Base Case 1.000 Base Case + TCVSC +

RPTOOS + PROOS +

0.720 MSROOS Base Case + TCVSC + 0.955 TBVOOS (all 5 valves)

Base Case + TCVSC +

TBVOOS (all 5 valves) 0.720

+ RPTOOS + PROOS

+ MSROOS Base Case with TCVIS 1.000 Base Case + TCVSC +

TBVOOS (all 5 valves)

+ RPTOOS + PROOS 0.720

+MSROOS with TCVIS Core thermal Power(% rated) 25 45 60 LHGRFACP Multiplier 1.000 1.000 0.720 0.850 0.955 0.955 0.720 0.850 1.000 1.000 0.720 0.850 LaSalle Unit 2 Cycle 19 Page 16 of 24 1.000 0.940 1.000 0.940 1.000 0.940 85 1.000 1.000 1.000 1.000 1.000 1.000 100 1.000 1.000 1.000 1.000 1.000 1.000

COLR LaSalle 2 Revision 18 Table 5-5 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF2 Fuel, BOC to EOC, Pressurization (All Application Groups except Base Case with TCV/TSV In-Service)

(Reference 7)

Flow DLO LHGRFACF SLO LHGRFACF

(% Rated) 0.0 0.11 0.11 30.0 0.41 0.41 67.0 0.78 0.78 89.0 1.00 0.78 105.0 1.00 0.78 Table 5-6 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF2 Fuel, BOC to EOC, No Pressurization (Base Case with TCV/TSV In-Service)

Flow

(% Rated) 0.0 30.0 53.0 75.0 105.0 (Reference 7)

DLO LHGRFACF 0.25 0.55 0.78 1.00 1.00 LaSalle Unit 2 Cycle 19 Page 17 of 24 SLO LHGRFACF 0.25 0.55 0.78 0.78 0.78

COLR LaSalle 2 Revision 18 Table 5-7 Flow-Dependent LHGR Multipliers (LHGRFACF) for GNF3 Fuel, BOC to EOC, All Cases Flow

(% Rated) 0.0 30.0 64.2 75.0 105.0 (Reference 7)

DLO LHGRFACF 0.307 0.584 0.900 1.000 1.000 LaSalle Unit 2 Cycle 19 Page 18 of 24 SLO LHGRFACF 0.307 0.584 0.900 0.900 0.900

COLR LaSalle 2 Revision 18

6. Rod Block Monitor Technical Specification Sections 3.3.2.1 and 3.4.1 The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 3):

Table 6-1 Rod Block Monitor Setpoints Rod Block Monitor Upscale Trip Function Allowable Value Two Recirculation Loop 0.66 Wd + 54.0%

Operation Single Recirculation Loop 0.66 Wd + 48.7%

Operation Wd - percent of recirculation loop drive flow required to produce a rated core flow of 108.5 Mlbm/hr.

The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked (Reference 7). The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%.

LaSalle Unit 2 Cycle 19 Page 19 of24

COLR LaSalle 2 Revision 18

7. Traversing In-Core Probe System (References 2, 4, and 12) 7.1. Description When the traversing in-core probe (TIP) system (for the required measurement locations) is used for recalibration of the LPRM detectors and monitoring thermal limits, the TIP system shall be operable with the following:
1.

Movable detectors, drives and readout equipment to map the core in the required measurement locations, and

2.

Indexing equipment to allow all required detectors to be calibrated in a common location.

The following applies for use with 3DM:

At any time, including BOC, the total number of failed and/or bypassed LPRMs does not exceed 25%

(Reference 4). In addition, no more than 22 TIP channels can be OOS (failed or rejected) (Reference 2).

Otherwise, with the TIP system inoperable, suspend use of the system for the above applicable calibration functions.

7.2. Bases The operability of the TIP system with the above specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core. The normalization of the required detectors is performed internal to the core monitoring software system.

LaSalle Unit 2 Cycle 19 Page 20 of24

COLR LaSalle 2 Revision 18

8. Stability Protection Setpoints Technical Specification Section 3.3.1.3 Table 8-1 OPRM PBDA Trip Setpoints (Reference 7)

PBDA Trip Amplitude Setpoint (Sp)

Corresponding Maximum Confirmation Count Setpoint (Np) 1.15 16 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

LaSalle Unit 2 Cycle 19 Page21 of 24

COLR LaSalle 2 Revision 18

9. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below (Reference 7).

Table 9-1 Allowed Modes of Operation and EOOS Combinations (Reference 7)

Equipment Out of Service Options <1> <2> <3> <4> <5> <6> <7>

Short Names Base Case BASE_DLO _ OPTB(A)

Base Case + SLO BASE_SLO_OPTB(A)

Base Case + TCVSC + RPTOOS + PROOS + MSROOS EOOS1_DLO_OPTB(A)

Base Case + TCVSC + RPTOOS + PROOS + MSROOS + SLO EOOS1_SLO_OPTB(A)

Base Case+ TCVSC + TBVOOS (all 5 valves)

EOOS2_DLO _ OPTB(A)

Base Case+ TCVSC + TBVOOS (all 5 valves)+ SLO EOOS2_SLO _ OPTB(A)

Base Case+ TCVSC + TBVOOS (all 5 valves) + RPTOOS + PROOS +

EOOS3_DLO _ OPTB(A)

MSROOS Base Case+ TCVSC + TBVOOS (all 5 valves) + RPTOOS + PROOS +

EOOS3_SLO_OPTB(A)

MSROOS + SLO Base Case with TCVIS BASE_ TCVIS_DLO _ OPTB(A)

Base Case + SLO with TCVIS BASE_TCVIS_SLO_OPTB(A)

Base Case+ TCVSC + TBVOOS (all 5 valves) + RPTOOS + PROOS +

EOOS3_ TCVIS_DLO_OPTB(A)

MSROOS with TCVIS Base Case+ TCVSC + TBVOOS (all 5 valves) + RPTOOS + PROOS +

EOOS3_ TCVIS_SLO _ OPTB(A)

MSROOS + SLO with TCVIS (1) Base case includes 1 SRVOOS + 1 TCV/TSV OOS + FWHOOS/FFWTR + 1 MSIVOOS + 1 TBVOOS + PLUOOS. The one TCV and/or TSV OOS conditions require power level s 85% of rated. The one MSIVOOS condition is also supported if thermal power is maintained s 75% of the rated (Reference 7).

(2) The 1 TBVOOS in the Base Case is not credited for fast opening or opening on pressure control (Reference 6). The assumption is that 1 TBV does not open on any signal and thus remains shut for the transients analyzed (i.e. 4 TBVs are credited and assumed in service) (Reference 10).

(3) For Application Conditions involving 5 TBVOOS, the 5 TBVs are NOT credited for fast opening and 3 TBVs will not open on pressure control (Reference 6). The #5 TBV is not available for pressure relief and thus cannot be used as one of the credited valves to open in pressure control (Reference 13).

(4) The+ sign that is used in the Equipment Out of Service Option I Application Group descriptions designates an "and/or" (Reference 6).

(5) All EOOS Options are applicable to the entire range of licensed flow and feedwater temperature (MELLLA, ICF, FFWTR, and coastdown) unless otherwise specified (Reference 7). SLO is not applicable to MELLLA or ICF.

(6) All EOOS options in Table 9-1 can be used in Option A or B (Reference 7).

(7) MSR is considered to be in-service when second stage reheat is receiving full flow (Reference 15).

LaSalle Unit 2 Cycle 19 Page 22 of 24

COLR LaSalle 2 Revision 18

10. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. GNF Report NEDE-24011-P-A-31 {Revision 31), "General Electric Standard Application for Reactor Fuel,"

November 2020 and the U.S. Supplement NEDE-24011-P-A-31-US, November 2020.

LaSalle Unit 2 Cycle 19 Page 23 of24

COLR LaSalle 2 Revision 18

11. References
1.

Exelon Generation Company, LLC Docket No. 50-374 LaSalle County Station, Unit 2, Facility Operating License No. NPF-18.

2.

GNF Report 005N6665, Revision 0, "Exelon BWR Fleetwide Technical Evaluation of 50% TIP Strings Out-of-Service on Methods Uncertainties," March 2020.

3.

Exelon Nuclear Fuels Letter NFM:MW:01-0106, "LaSalle Unit 1 and Unit 2 Rod Block Monitor COLR Setpoint Change," April 3, 2001.

4.

GE Nuclear Energy Report NEDC-32694P-A, Revision 0, "Power Distribution Uncertainties for Safety Limit MCPR Evaluations," August 1999.

5.

GNF Report 005N3434, Revision 0, "Fuel Bundle Information Report for LaSalle Unit 2 Reload 18 Cycle 19,"

December 2020.

6.

Exelon TOOi NF205787, Revision 1, "LaSalle Unit 2 Cycle 19 FRED Form Revision 1," November 18, 2020.

7.

GNF Report 006N3804, Revision 0, "Supplemental Reload Licensing Report for LaSalle Unit 2 Reload 18 Cycle 19," December 2020.

8.

GNF Document No. NEDC-33270P, Revision 11, "GNF2 Advantage Generic Compliance with NEDE-24011-P-A (GEST AR II)," August 2020.

9.

GNF Document No. NEDC-33879P, Revision 4, "GNF3 Generic Compliance with NEDE-24011-P-A (GESTAR II)," August 2020.

10.

Exelon TOOi NF205870, Revision 1, "LaSalle Unit 2 Cycle 19 Completed OPL-3 Form," September 30, 2020.

11.

GNF Letter ORF A12-00038-3, Vol. 4, "Scram Times versus Notch Position," May 22, 1992.

12.

NRC Letter, "Issuance of Amendments (TAC Nos. M95156 and M95157)," October 29, 1996.

13.

Exelon TOOi ES1900018, Revision 2, "LaSalle GNF3 Nuclear Fuel Transition Design Inputs-F0900 Cycle-Independent Transient Analysis," November 13, 2020.

14.

GNF Report 005N5612, Revision 0, "LaSalle County Station Option B' Scram Speed Implementation Engineering Report," January 2020.

15.

EC 630152, Revision 1, "GNF3 NFI F0900 MCFA and MSROOS Inputs," November 13, 2020.

LaSalle Unit 2 Cycle 19 Page 24 of 24