ML050960461

From kanterella
Jump to navigation Jump to search
Nonproprietary Version of LaSalle Unit 2, Cycle 11 Core Operating Limits Report, Revision 0
ML050960461
Person / Time
Site: LaSalle Constellation icon.png
Issue date: 03/30/2005
From:
Global Nuclear Fuel - Americas
To:
Office of Nuclear Reactor Regulation
References
Download: ML050960461 (28)


Text

COLR LaSalle 2 Revision 0 Page 1 LaSalle Unit 2 Cycle 11 Core Operating Limits Report Revision 0

COLR LaSalle 2 Revision 0 Page 2 Proprietary Information Notice This document is the GNF non-proprietary version of the GNF proprietary report. From the GNF proprietary version, the information denoted as GNF proprietary (enclosed within double brackets,

[....1) was deleted to generate this version.

COLR LaSalle 2 Revision 0 Page 3 Table of Contents

1. References ................................... 5
2. Terms and Definitions .................................. 6
3. General Information .................................. 7
4. Average Planar Linear Heat Generation Rate ............................ . . . 8
5. Operating Limit Minimum Critical Power Ratio . . 10 5.1. Manual Flow Control MCPR Limits . . ............................... 10 5.1.1. Power-Dependent MCPR ................................. 10 5.1.2. Flow - Dependent MCPR ................................. 10 5.2. Automatic Flow Control MCPR Limits . . ...............................10 5.3. Scram lime ................................... 10 5.4. Recirculation Flow Control Valve Settings . . 10
6. Linear Heat Generation Rate ................................. .. 15
7. Rod Block Monitor .................................. 21
8. Traversing In-Core Probe System ................................. .. 22 8.1

Description:

.................................. 22

8.2 Bases

.................................. 22

9. Modes of Operation .................................. 23
10. Methodology............................................................................................................................ 25

COLR LaSalle 2 Revision 0 Page 4 List of Tables Table 4-1 MAPLHGR for bundle(s):

ATRM9-P9CATB410-19GZ-SPC100M-9WR-149-T6-2798 ATRM9-P9CATB396-12GZ-SPCIOOM-9WR-149-T6-3923 .......................................... 8 Table 4-2 MAPLHGR for bundle(s):

ATRMV10-P1 OCAZB398-15GZ-10OU-9WR-149-T6-2805 ATRM10-PIOCAZB179-NOG-1OOU-9WR-149-T6-2803 ATRMI0-PI OCAZB403-15GZ-1OOU-9WR-149-T6-2804 .......................................... 8 Table 4-3 MAPLHGR for bundle(s):

GE14-Pl OCNAB406-18GZ-120T-150-T6-2823 GE14-PI OCNAB407-16GZ-120T-150-T6-2822 ........................................................ 8 Table 44 MAPLHGR SLO multiplier for GE and FANP Fuel ............................................ 9 Table 5-1 MCPR Option A Base Operating Limits ........................................................ 11 Table 5-2 MCPR Option B Base Operating Limits ........................................................ 12 Table 5-3 MCPR(P) for GE and FANP Fuel ................................................................. 13 Table 54 MCPR(F) Limits for GE and FANP Fuel DLO, with greater than or equal to 115%

Steam Flow Capacity ................................................................. 14 Table 5-5 MCPR(F) Limits for GE and FANP Fuel DLO, with less than 115% Steam Flow Capacity .................................................................. 14 Table 5-6 MCPR(F) Limits for GE and FANP Fuel SLO, with greater than or equal to 115%

Steam Flow Capacity ................................................................. 14 Table 5-7 MCPR(F) Limits for GE and FANP Fuel SLO, with less than 115% Steam Flow Capacity ................................................................. 14 Table 6-1: LHGR Limit for GE14-PlOCNAB406-18GZ-120T-150-T6-2823 ......................... 15 Table 6-2: LHGR Limit for: GE14-P1OCNAB406-18GZ-120T-1 50-T6-2823, Lattice 6815...... 16 Table 6-3: LHGR Limit for: GE14-P1OCNAB407-16GZ-120T-150-T6-2822 ......................... 17 Table 6-4: LHGR Limit for GE14-PlOCNAB407-16GZ-120T-150-T6-2822, Lattice 6810 ........ 17 Table 6-5: LHGR Limit for FANP ATRIUM-10 Fuel ATRM1 0-POCAZB398-15GZ-10OU-9WR-149-T6-2805 ATRM10-Pl OCAZB179-NOG-10OU-9WR-149-T6-2803 ATRM10-Pl OCAZB403-15GZ-10OU-9WR-149-T6-2804 ............................................. 18 Table 6-6: LHGR Limit for FANP ATRIUM-9 Fuel ATRM9-P9CATB410-19GZ-SPCIOOM-9WR-149-T6-2798 ATRM9-P9CATB396-12GZ-SPC100M-9WR-149-T6-3923 ....................................... 18 Table 6-7 LHGRFAC(P) for GE and FANP Fuel ............................................................ 19 Table 6-8 LHGRFAC(F) Multipliers for All Modes of Operation, greater than or equal to 115%

Steam Flow Capacity ................................................................. 20 Table 6-9 LHGRFAC(F) Multipliers for All Modes of Operation, less than 115% Steam Flow Capacity.............................................................................................................. 20 Table 6-10 LUIGR SLO multiplier for GE and FANP Fuel ................................................. 20

COLR LaSalle 2 Revision 0 Page 5

1. References
1. Exelon Generation Company, LLC, Docket No. 50-374, LaSalle County Station, Unit 2, Facility Operating License, License No. NPF-18.
2. Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Conceming the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
3. EMF-2830 Revision 1, OLaSalle Unit 2 Cycle 10 Reload Analysis%, Framatome-ANP, Inc.,

April 2003.

4. Letter from A. Giancatarino to J. Nugent, 'LaSalle Unit 1 and Unit 2 Rod Block Monitor COLR Setpoint Change," NFM:MW:01-0106, April 3,2001.
5. Letter from R. G. Grummer to N. J. Carr, "Plant Startup Testing with POWERPLEX-Ill",

RGG:04:001, January 8, 2004.

6. GNF 0000-0034-6783-SRLR, Rev. 1, 'Supplemental Reload Licensing Report for LaSalle Unit 2 Reload 10 Cycle 11,1 February 2005.
7. GE-NE-0000-0026-4769-00, 'GE14 Fuel Design Cycle-Independent Analyses for LaSalle Unit I and Unit 2,' Revision 0, January 2005.
8. FRL-EXN-HA2-04-006, Letter from F. Russell Lindquist to C. de la Hoz, 'Transmittal of Peak Pellet LHGR Limits for LaSalle Unit 2 Cycle 11 GE1 4 Bundles with Gad Suppression,' August 5, 2004.
9. 'Final OPL3 for LaSalle Unit 2 Cycle 111', TODI NF0400243, Rev. 0, October 12, 2004.
10. 'Final FRED for LaSalle Unit 2 Cycle 11', TODI NF0400173, Rev. 1, October 13, 2004.
11. 'Exelon LaSalle Unit I and 2 SAFERIGESTR Loss-of-Coolant-Accident Analysis for GE14 Fuel', GE-NE-0000-0022-8684-Rl, December 2004.
12. 'Scram Times Versus Notch Position', DRF A12-00038-3, Vol. 4. G. A. Wafford, May 22, 1992.
13. Turbine Control System Impact in Transient Analysis', SC04-15, I OCFR Part 21 Communication, October 31, 2004.
14. OLaSalle 1 and 2 Offrated Analyses Below the PLU Power Level Power, GE-NE-0000-0036-5084-RO, Revision 0, February 2005.

COLR LaSalle 2 Revision 0 Page 6

2. Terms and Definitions APLHGR Average planar linear heat generation rate APRM Average power range monitor ATRM9 ATRIUM-9B fuel BOC Beginning of cycle DLO Dual loop operation ELLLA Extended load line limit analysis EOC End of cycle EOOS Equipment out of service EOR End of rated conditions (i.e. cycle exposure at 100% power, 100% flow, all-rods-out)

FANP Framatome Advanced Nuclear Power FWHOOS Feedwater heater out of service GE14 GE14C fuel GNF Global Nuclear Fuel ICF Increased core flow LHGR Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPFAC(F) Flow dependent MAPLHGR multiplier MAPFAC(P) Power dependent MAPLHGR multiplier MAPLHGR Maximum average planar linear heat generation rate MCPR Minimum critical power ratio MCPR(F) Flow dependent MCPR MCPR(P) Power dependent MCPR MELLLA Maximum extended load line limit analysis MSIV Main steam isolation valve OLMCPR Operating limit minimum critical power ratio PLUOOS Power load unbalance out of service PROOS Pressure regulator out of service RBM Rod block monitor RPTOOS Recirculation pump trip out of service SLMCPR Safety limit minimum critical power ratio SLO Single loop operation SRVOOS Safety-relief valve out of service TBPOOS Turbine bypass valve out of service TCV Turbine control valve TCVOOS Turbine control valve out of service TIP Traversing Incore Probe TSV Turbine stop valve TSVOOS Turbine stop valve out of service

COLR LaSalle 2 Revision 0 Page 7

3. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 108.5 Mlbthr. Operation up to 105% rated flow is licensed for this cycle.

Licensed rated thermal power is 3489 MVth.

MCPR(P) and MCPR(F) values are independent of scram time.

LHGRFAC(P) and LHGRFAC(F) values are independent of scram speed For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.

COLR LaSalle 2 Revision 0 Page 6

4. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of each fuel type as a function of average planar exposure is given in Tables 4-1, 4-2 and 4-3. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 4-4.

Table 4-1 MAPLHGR for bundle(s):

ATRM9-P9CATB410-19GZ-SPCIOOM-9WR-149-T6-2798 ATRM9-PCATB396-12GZ-SPCIOOM-9WR-149-T6-3923 (Reference 3)

Avg. Planar Exposure MAPLHGR (GWd/MT) (kW1) 0.00 13.50 20.00 13.50 64.30 9.07 Table 4-2 MAPLHGR for bundle(s):

ATRMI0-Pi OCAZB398-1 5GZ-100U-9WR-149-TU-2805 ATRMI0-PIOCAZBi79-NOG-10OU-9WR-149-T6-2803 ATRMI 0-PI OCAZB403-15GZ-40OU-9WR-149-T6-2804 (Reference 3)

Avg. Planar Exposure MAPLHGR (GWdlMT) (kWlft) 0.00 12.5 15.00 12.5 55.00 9.1 64.00 7.6 Table 4-3 MAPLHGR for bundle(s):

GE14-PI OCNAB406-18GZ-120T-150-T6-2823 GE14-PI OCNAB407-16GZ-120T-150-T6-2822 (Reference 6)

Avg. Planar Exposure MAPLHGR (GWdIMT) (kWlft) 0.00 13.40 16.00 13.40 63.50 8.00 70.00 5.00

COLR LaSalle 2 Revision 0 Page 9 Table 4-4 MAPLHGR SLO multiplier for GE and FANP Fuel (Reference 3 and 6)

Fuel Fuelype Type SLO Multiplier ATRIUM -9 0.90 ATRIUM-10 0.90 GE14 0.78

COLR LaSalle 2 Revision 0 Page 10

5. Operating Limit Minimum Critical Power Ratio 5.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

5.1.1. Power-Dependent MCPR The OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Table 5-1 or 5-2 by the applicable MCPR multiplier K(P) given in Table 5-3.

5.1.2. Flow - Dependent MCPR Tables 5-4 through 5-7 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.

5.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided 5.3. Scram Time Option A and Option B refer to scram speeds.

Option A scram speed is the Improved Technical Specification scram speed. The core average scram speed insertion time for 20% insertion must be less than or equal to the Technical Specification scram speed to utilize Option A MCPR limits. Reload analyses performed by (GNF) for Cycle 11 Option A MCPR limits utilized a 20% core average insertion time of 0.900 seconds (Reference 9).

To utilize the MCPR limits for the Option B scram speed, the core average scram insertion time for 20% insertion must be less than or equal to 0.694 seconds (Reference

9) (0.672 seconds at notch position 39, References 9 and 12). If the core average scram insertion time does not meet the Option B criteria, but is within the Option A criteria, the appropriate MCPR value may be determined from a linear interpolation between the Option A and B limits with standard mathematical rounding to two decimal places.. When performing a linear interpolation to determine MCPR limits, ensure that the time used for Option A is 0.900 seconds (0.875 seconds at notch position 39, Reference 12).

5.4. Recirculation Flow Control Valve Settings Cycle 11 was analyzed with a maximum core flow runout of 112%; therefore the recirculation pump flow control valve must be set to maintain core flow less than 112%

(121.5 Mlb/hr) for all runout events (Reference 10). This value is consistent with the analyses of Reference 7.

COLR LaSalle 2 Revision 0 Page 11 Table 6-1 MCPR Option A Base Operating Limits (References 6 and 7)

Cycle E posure

< EOR -3570 > EOR - 3570 EOOS Combination Fuel Type MWdlMT MWdlMT ATRIUM 1.44 1.50 BASE GE14 1.44 1.50 ATRIUM 1.45 1.51 BASE SLO GE14 1.45 1.51 ATRIUM 1.55 1.68 RPTOOS GE14 1.56 1.68 ATRIUM 1.56 1.69 RPTOOS SLO GE14 1.57 1.69 ATRIUM 1.49 1.54 TBPOOS GE14 1.50 1.55 ATRIUM 1.50 1.55 TBPOOS SLO GE14 1.51 1.56 ATRIUM 1.55 1.68 TCV SLOW CLOSURE + RPTOOS GE14 1.56 1.68 ATRIUM 1.56 1.69 rCV SLOW CLOSURE + RPTOOS SLC GE14 1.57 1.69 ATRIUM 1.44 1.50 1TCV or 1TSV STUCK CLOSED GE14 1.44 1.50 ATRIUM 1.45 1.51 1TCV or 1TSV STUCK CLOSED SLO GE14 1.45 1.51 ATRIUM 1.50 1.61 PROOS GE14 1.52 1.64 ATRIUM 1.51 1.62 PROOS SLO GE14 1.53 1.65

COLR LaSalle 2 Revision 0 Page 12 Table 6-2 MCPR Option B Base Operating Limits (References 6 and 7)

Cycl E posure

< EOR - 3570 EOR - 357O EOOS Combination Fuel Type MWdIMT MWdIMT ATRIUM 1.41 1.47 BASE GE14 1.41 1.47 ATRIUM 1.42 1.48 BASE SLO GE14 1.42 1.48 ATRIUM 1.44 1.51 RPTOOS GE14 1.45 1.51 ATRIUM 1.A5 1.52 RPTOOS SLO GE14 1.46 1.52 ATRIUM 1.46 1.51 TBPOOS GE14 1.47 1.52 ATRIUM 1.47 1.52 TBPOOS SLO GE14 1.48 1.53 ATRIUM 1.44 1.51 TCV SLOW CLOSURE + RPTOOS GE14 1.45 1.51 ATRIUM 1.45 1.52 TCV SLOW CLOSURE + RPTOOS SLC GE14 1.46 1.52 ATRIUM 1.41 1.47 1TCV or ITSV STUCK CLOSED GE14 1.41 1.47 ATRIUM 1.42 1.48 1TCV or 1TSV STUCK CLOSED SLO GE14 1.42 1.48 ATRIUM 1.41 1.47 PROOS GE14 1.41 1.A7 ATRIUM 1.42 1.48 PROOS SLO GE14 1.42 1.48

COLR LaSalle 2 Revision 0 Page 13 Table 5-3 MCPR(P) for GE and FANP Fuel (References 6, 7 and 14)

Core Thermal Power (% of Rated) 0 1 25 1 40 1 60 1 80 1 80 100 EOOS Combinations OLMCPR Multiplier, Kp Base 1.55 1.55 1.347 1.15 1.10 1.0 RPTOOS 1.55 1.55 1.347 1.15 110 1.0 TBPOOS 1.55 1.55 1.347 1.15 g 110 1.0 TCPorS 1.55 1.55 1.347 1.15 1.10 1.0 Closed 1 14.

RPSTOOS 1.80 1.80 1.64 1.21 1.15 1.0 PROOS 1.80 1.80 1.64 f 1.21 1.15 1.0

.'pt. .!jN

COLR LaSalle 2 Revision 0 Page 14 Table 5-4 MCPR(F) Limits for GE and FANP Fuel DLO, with greater than or equal to 115% Steam Flow Capacity (Reference 7)

Flow MCPR(F)

(% rated) Limit 112.0 1.27 86.8 1.27 30.0 1.625 0.0 1.625 Table 5-5 MCPR(F) Limits for GE and FANP Fuel DLO, with less than 115% Steam Flow Capacity (Reference 7)

Flow MCPR(F)

(% rated) Limit 112.0 1.27 104.5 1.27 30.0 1.735 0.0 1.735 Table 5-6 MCPR(F) Limits for GE and FANP Fuel SLO, with greater than or equal to 115% Steam Flow Capacity (Reference 7)

Flow MCPR(F)

(% rated) Limit 112.0 1.28 86.8 1.28 30.0 1.635 0.0 1.635 Table 6-7 MCPR(F) Limits for GE and FANP Fuel SLO, with less than 115% Steam Flow Capacity (Reference 7)

Flow MCPR(F)

(% rated) Limit 112.0 1.28 104.5 1.28 30.0 1.745 0.0 1.745

COLR LaSalle 2 Revision 0 Page 15

6. Linear Heat Generation Rate The maximum LHGR shall not exceed the zero exposure limit of 13.4 (kWlft) for the following fuel bundles (Reference 8):

GE14-P1 OCNAB406-18GZ-120T-150-T6-2823 GE14-P1 OCNAB407-16GZ-120T-150-T6-2822 The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 6-1 through 6-6 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), the flow dependent LHGR Factor, LHGRFAC(F), or the single loop operation (SLO) multiplication factor where applicable. The LHGRFAC(P) is determined from Table 6-7.

The LHGRFAC(F) is determined from Table 6-8 or 6-9. The SLO multiplication factor can be found in Table 6-10.

Table 6-1: LHGR Limit for GEi4-PIOCNAB406-I8GZ-120T-150-T6-2823 (Reference 8)

Lattices 6806, 6812, 6813, 6814 and 6816 LHGR Limit kWlft 6806: P1 OCNALO7T -NOG-120T-T6-6806 6812: P1 OCNAL435-18G7.0-120T-T6-6812 6813: P1OCNAL435-6G7.019G6.0-120T-T6-6813 6814: PIOCNAL429-6G7.0/9G6.0-120T-E-T6-6814 6816: P1 OCNAL071 -18GE-120T-V-T6-6816 U02 Pellet Burnup LHGR Limit (GWd/MTU) (kWlft) 0.0 13.4 If i 1311

COLR LaSalle 2 Revision 0 Page 16 Table 6-2: LHGR Limit for: GE14-PIOCNAB406-I8GZ-120T-150-T6-2823, Lattice 6815 (Reference 8)

Lattice 6815 LHGR Limit kWt P1OCNAL429-6G7.019G6.0-120T-V-T6-6815 U02 Pellet Burnup LHGR Limit (GWd/MTU) (kW/ft) 0.0 13.40 11 I

.. 3_

COLR LaSalle 2 Revision 0 Page 17 Table 6-3: LHGR Limit for GE14-PIOCNAB407-16GZ-120T-150-T6-2822 (Reference 8)

Lattices 6806, 6807, 6808, 6809 and 6811 LHGR Limit kWift 6806: PIOCNAL071 -NOG-120T-T6-6806 6807: P1OCNAL437-6G8.0I1 OG7.0-120T-T6-6807 6808: P1 CNAL437-2G8.017G7.015G6.0-120T-T6-6808 6809: Pi1 OCNAL430-2G8.017G7.0/5G6.0-120T-E-T6-6809 6811: PIOCNAL074-I6GE-120T-V-T6-6811 U02 Pellet Burnup LHGR Limit (GWd/iMTU) (kWtft) 0.0 13.4 It I {3,11 Table 6-4: LHGR Limit for GE14-PIOCNAB407-I6GZ-120T-150-T6-2822, Lattice 6810 (Reference 8)

Lattice 6810 ILHGR Limit kWMft PiOCNAL430-2G8.017G7.015G6.0-120T-V-T6-6810 U02 Pellet Burnup LHGR Limit (GWdIMTU) (kWlft) 0.0 13.40

[a. ___

_ _ ____ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4.

4.

4.

4.

(3

COLR LaSalle 2 Revision 0 Page 18 Table 6-5: LHGR Limit for FANP ATRIUM-10 Fuel ATRMIO-PlOCAZB398-15GZ.IOOU-9WR-149-T6-2805 ATRM1 0-PI OCAZB179-NOG-1 OOU-9WR-1 49-T6-2803 ATRMI 0-Pl OCAZB403-15GZ-IOOU-9WR-149-T6-2804

__ _ -(Reference 3)

Nodal Exposure LHGR Limit (GWd/MTU) (kWMft) 0.00 13.40 15.00 13.40 55.00 9.10 64.00 7.30 Table 6-6: LHGR Limit for FANP ATRIUM-9 Fuel ATRM9-P9CATB410-1 9GZ-SPCI OOM-9WR-149-T6-2798 ATRM9-P9CATB396-1 2GZ-SPCI OOM-9WR-149-T64923 (Reference 3)

Nodal Exposure LHGR Limit (GWd/MTU) (kW/ft) 0.00 14.40 15.00 - 14.40 64.30 7.90

COLR LaSalle 2 Revision 0 Page 19 Table 6-7 LHGRFAC(P) for GE and FANP Fuel (Reference 7)

Core Thermal Power (% of Rated) 0 1 25 1 100 EOOS Combinations LHGR Multiplier, LHGRFAC(P)

Base 0.608 0.608 1.0 RPTOOS 0.608 0.608 1.0 TBPOOS 0.608 0.608 1.0 1TCV or ITSV Stuck 0.608 0.608 1.0 Closed-TCV Slow Closure + 0.40 0.40 1.0 RPTOOS0 PROOS 0.40 0.40 1.0

COLR LaSalle 2 Revision 0 Page 20 Table 6-8 LHGRFAC(F) Multipliers for All Modes of Operation, greater than or equal to 115% Steam Flow Capacity (Reference 7)

Flow LHGRFAC(F)

(% rated) Multiplier 112.00 1.00 83.60 1.00 30.00 0.55 0.00 0.55 Table 6-9 LHGRFAC(F) Multipliers for All Modes of Operation, less than 115% Steam Flow Capacity (Reference 7)

Flow LHGRFAC(F)

(%rated) Multiplier 112.00 1.00 100.20 1.00 30.00 0.41 0.00 0.41 Table 6-10 LHGR SLO multiplier for GE and FANP Fuel (Reference 3 and 6)

Fuel Fuelype Type SLO Multiplier ATRIUM9 1.00 ATRIUM10 1.00 GE14 0.78

COLR LaSalle 2 Revision 0 Page 21

7. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 4):

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.66 Wd + 54.0%

Operation Single Recirculation Loop 0.66 Wd + 48.7%

Operation__ _ _ _ _ _ _ _ _ _

The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked.

The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 108.5 Mlb/hr.

COLR LaSalle 2 Revision 0 Page 22

8. Traversing In-Core Probe System 8.1

Description:

When the traversing in-core probe (TIP) system (for the required measurement locations) is used for recalibration of the LPRM detectors and monitoring thermal limits, the TIP system shall be operable with the following:

1. movable detectors, drives and readout equipment to map the core in the required measurement locations, and
2. indexing equipment to allow all required detectors to be calibrated in a common location.

The following applies for use of the SUBTIP methodology:

With one or more TIP measurement locations inoperable, the TIP data for an inoperable measurement location may be replaced by data obtained from a 3-dimensional BWR core monitoring software system adjusted using the previously calculated uncertainties, provided the following conditions are met:

1. All TIP traces have previously been obtained at least once in the current operating cycle when the reactor core was operating above 20% power, (Reference 5) and
2. The total number of simulated channels (measurement locations) does not exceed 42% (18 channels).

Otherwise, with the TIP system inoperable, suspend use of the system for the above applicable monitoring or calibration functions.

8.2 Bases

The operability of the TIP system with the above specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core. The normalization of the required detectors is performed internal to the core monitoring software system.

Substitute TIP data, if needed, is 3-dimensional BWR core monitoring software calculated data which is adjusted based on axial and radial factors calculated from previous TIP sets. Since the simulation and adjustment process could introduce uncertainty, a maximum of 18 channels may be simulated to ensure that the uncertainties assumed in the substitution process methodology remain valid.

COLR LaSalle 2 Revision 0 Page 23

9. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:

3 Equipment Out of Service ELAM LIICCasdw Opon' 22 Options ELLLA MELILLA ICIF Coastdown3 Base Case Yes Yes Yes Yes Base Case SLO Yes No N/A Yes RPTOOS Yes Yes Yes Yes RPTOOS SLO Yes No NIA Yes TBPOOS Yes Yes Yes Yes TEPOOS SLO Yes No N/A Yes TCV Slow Closure + RPTOOS Yes Yes Yes Yes TCV Slow Closure + RPTOOS SLO Yes No N/A Yes ITCV or 1TSV Stuck Closed Yes Yes Yes Yes 1TCV or 1TSV Stuck Closed SLO Yes No NIA Yes PROOS' Yes Yes Yes Yes PROOS SLO' Yes No NA Yes Each OOS option is applicable for Option A or B and may be combined with up to 2 TIP machines OOS (or less than TIP channels equivalent to 42% of the total0 number of channels with 100% available at startup), feedwater temperature reduction of 100 F, ITBVOOS, 1SRVOOS and up to 50% of the LPRMs OOS with an LPRM calibration frequency of 1250 effective full power hours (EFPH) (1000 EFPH +25%).

2A single MSIV may be taken OOS (shut) under any and all OOS Options, so long as core thermal power is maintained <75% of 3489 MWt, and operating dome pressure will be maintained at or above normal off-rated operating dome pressure, but below the Limiting Condition for Operation (LCO) maximum dome pressure (Reference 7).

3 Coastdown operation is defined as any cycle exposure beyond full power/flow, all rods out condition with plant power slowly lowering while core flow is held constant.

COLR LaSalle 2 Revision 0 Page 24 4 Operation with a PROOS is only allowed for short term use, 2 - 3week duration (Reference 7, Table 1-1).

COLR LaSalle 2 Revision 0 Page 25

10. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. XN-NF-81-58 (P)(A), Revision 2 and Supplements 1 and 2, 'RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model,' March 1984.
2. Letter from Ashok C. Thadini (NRC) to R.A. Copeland (SPC), 'Acceptance for Referencing of ULTRAFLOWiM Spacer on 9x9-IX/X BWR Fuel Design," July 28, 1993.
3. ANF-524 (P)(A) Revision 2 and Supplements I and 2, "ANF Critical Power Methodology for Boiling Water Reactors," November 1990.
4. XN-NF-80-19 (P)(A) Volume 1 Supplement 3, Supplement 3 Appendix F, and Supplement 4, "Advanced Nuclear Fuels Methodology for Boiling Water Reactors: Benchmark Results for CASMO-3G/IMICROBURN-B Calculation Methodology,' November 1990.
5. XN-NF-85-67 (P)(A) Revision 1, 'Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel,' September 1986.
6. ANF-913 (P)(A) Volume 1 Revision 1, and Volume 1 Supplements 2, 3, 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses,' August 1990.
7. XN-NF-84-105 (P)(A), Volume 1 and Volume 1 Supplements 1 and 2; Volume I Supplement 4, "XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis,"

February 1987 and June 1988, respectively.

8. ANF-89-014 (P)(A) Revision 1 and Supplements 1 & 2, 'Generic Mechanical Design for Advanced Nuclear Fuels Corporation 9X9 - IX and 9x9 - 9X BWR Reload Fuel," October 1991.
9. EMF-2209 (P)(A), Revision 1, 'SPCB Critical Power Correlation," July 2000.
10. ANF-89-98 (P)(A), Revision I and Revision 1 Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995.
11. ANF-91-048 (P)(A), "Advanced Nuclear Fuels Corporation Methodology for Boiling Water Reactors EXEM BWR ECCS Evaluation Model," January 1993.
12. EMF-85-74 (P)(A) Revision 0 and Supplement 1(P)(A) and Supplement 2(P)(A), 'RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model," February 1998.
13. EMF-CC-074 (P) Volume 4 Revision 0, 'BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2,. August 2000.
14. ANF-1 125 (P)(A) and ANF-1 125(P)(A) Supplements 1 and 2, 'ANFB Critical Power Correlation," Advanced Nuclear Fuels Corporation, April 1990.
15. ANF-1125 (P)(A) Supplement 1 Appendix E, "ANFB Critical Power Correlation Determination of ATRIUM TM -9B Additive Constant Uncertainties," September 1998.

COLR LaSalle 2 Revision 0 Page 26

16. ANF-CC-33(P)(A) Supplement 1 Revision 1 and Supplement 2, "HUXY: A Generalized Multirod Heatup Code with 10CFR50, Appendix K Heatup Option," August 1986 and January 1991, respectively.
17. XN-NF-80-19 (P)(A) Volume 4 Revision 1, 'Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads," June 1986.
18. XN-NF-80-1 9 (P)(A) Volume 3 Revision 2, 'Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX Thermal Limits Methodology Summary Description," January 1987.
19. ANF-91 -048 (P)(A) Supplement 1 and Supplement 2, "BWR Jet Pump Model Revision for RELAX," October 1997.
20. XN-NF-80-19 (P)(A) Volumes 2, 2A, 2B, and 2C, *Exxon Nuclear Methodology for Boiling Water Reactors: EXEM BWR ECCS Evaluation Model,' September 1982.
21. XN-NF-80-19 (P)(A) Volume 1 and Supplements 1 and 2, 'Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis," March 1983.
22. NEDE-2401 1-P-A-14, June 2000 and the U.S. Supplement NEDE-2401 1-P-A-14-US, June 2000, 'General Electric Standard Application for Reactor Fuel".
23. EMF-2158(P)(A), Revision 0, "Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4IMICROBURN-B2", Siemens Power Corporation, October 1999.
24. NEDC-32981 P(A), Revision 1, GEXL96 Correlation for ATRIUM-9B Fuel', May 2002.
25. NEDC-33106P, Revision 1, 'GEXL97 Correlation for ATRIUM-10 Fuel", June 2003.

Appendix J LASALLE UNIT 2 CORE OPERATING LIMITS REPORT

Technical Requirements Manual Appendix J (Amendment 56)

LaSalle Unit 2 Cycle 11 Core Operating Limits Report Revision 0