ML20212L053

From kanterella
Jump to navigation Jump to search
Revised Spec for Seismic Review of Major Structures for 7.5M Hosgri Earthquake
ML20212L053
Person / Time
Site: 05000000, Diablo Canyon
Issue date: 02/08/1977
From:
PACIFIC GAS & ELECTRIC CO.
To:
Shared Package
ML20150F500 List: ... further results
References
FOIA-86-391 NUDOCS 8608250181
Download: ML20212L053 (42)


Text

{{#Wiki_filter:ea: -a. a ......1-- .a...... =

1.. 4 I-

. ENCLOSURE 2 i 'l DI AlsLO. CAllY0Il i SPECIFICATI0fl FOR SEISMIC REVIElf 0F iMJOR STRUCTURES FOR 7.5!1 Il0SGRI EARTilQUAKE t FEBRUARY 2, 1977 REVISED FEBRUARY 8. 1977 8606230101 060001 PDR FOIA HOUGH 86-391 PDR

n. -- - - - - - - - ~ ~ ~^*~ ,te \\ ,tt "'t ,... a' i'

i.,5 '

4. g y 9 ~ 1 { DIABLO CA14Y011 SPLCiflCAll0!1 FOR SElSillC REVit\\1 Or i MAJOR STRUCTURES FOR 7.5ft HOSGRI EARTilquAKE i e g i , 3 (u u t t' t C0llTErlTS , p ( e i r P.aLc. 1. Basic Approach................................................. 1 2. Se i stn i c i npu t s t o S t ruc tu re s................................... 2 i A. Iforizontal D. Vertical C. Damping and Ductility 3. Ma t e r i a l. P ro p e r t i e s............................................ 4 'A. Steel-B. Concrete

4. Analysis Procedures............................................

S t A. Class 1 Structures B. s Class Il:3tructures o gb; i 5. Smoothing Raw Hosgri Floor Response Spectra ............'..S...... 7 (

6. Tirae-History Motions...........................................

8 f 1. Acce p t a nc e C r i t e r i a............................................ 9 A. Class 1 Structures i i 8. Class 11 Structures 8. P,eferences ......................-...p 10 4 ( } C es em

_ - ~. ~, ~- o t ( ( FIGURES 1. 7.5M liosgri Translational Blume tau a O period spectra 2. 7.5M llosgri Translational Blume tau =.04 period spectra 3

7. Sit llosgri Translational Blume tau =.052 period spectra 4.
7. Sit llosgri Translational Itlume tau a.08 period t.pectra 5.

7.5H Hosgri Translational Blume tau = 0 frequency spectra 6.

7. Sit Hosgri Translational Blume tau =.04 frequency spectra 7.

7.5M liosgri Translational Blume tau =.052 frequency spectra 8.

7. Sit ilosgri Translational Blune tau =.08 frequency spectra 9.

7.5tt Hosgri Translational Newmark tau = 0 period spectra 10. 7.5ft Hosgri Translational Newmark ta'u =.04 period spectra 11. 7.St1 Hosgri Translational Newmark tau =.052 period spectra 12. 7.5ft Hosgri Translational Newmark tau 3 067 period spectra 13. 7.5M ilosgri Translational Newmark tau = 0 frequency spectra 14. 7.5M Hosgri Translational Newmark tau =.04 frequency spectra 15.

7. Sit ilosgri Translational Newmark tau

.052 frequency spectra 16. 7.5M llosgri Translational Newmark tau 3,.067 frequency spectra 17.

7. Sit Hosgri Vertical Blume period spectra 18.

7.5M liosgri Vertical Blume frequency spectra 19. 7.5M Hosgri Vertical Newmark period spectra 20. 7.5M Hosgri Vertical Newmark f requency spectra 21, 7.5M Hosgri Translational Blume tau = 0 Acceleration T-li 22. 7.5M llosgri Translational Blume tau =.04 Acceleration T-l! 23. 7.5M Hosgri Translational Blume tau =.052 Acceleration T-Il 24. 7.5M Hosgri Translational Blume tau =.08 Acceleration T-il 25. 7.5H Hosgri Translational Newmark tau = 0 Acceleration T-il 26.

7. Sit Hosgri Translational Newmark tau =.04 Acceleration T-il 27.

7.5f t liosgri Translational Newmark tau =.052 Acceleration T-il 28 7.5ft Hosgri Translational Newmark tau 2,.067 Acceleration T-il 1 A . 3; _ <e _

i o g ( 1. Basic /.pproach This specificat ion delineates ce lteria' to be used in reviewing the major Diablo Canyon structures for response to the postulated 7 5M Hosgri earthquake. The structures considered and their seismic classifications are: (a) Containment Structure (Class 1) (b) Auxiliary Building (Class I) (c) Turbine Building (Class ll) (d) Intake Structure (Class II) The basic approach to be used in this review calls for use of the same analysis procedures and criteria which were used and accepted at the time of the original DDE analyses, but with the following specific changes each as clarified in the following pages: (a) use the new 7.5M Hosgri spectra (b) use Reg. Guide 1.61 dampings (c) use actual omterial properties (d) allow ductility in certain cases (e) use of fixed based mathematical models permitted (V > 3500 fps) s ,(f) use accidental torsica or equivalent (in addition to geometric torsion) (g) use vertical response analysis or equivalent (h) use modified smoothing of the new raw floor spectra (i) combine' horizontal and vertical responses on 3-component SRSS basis or equivalent The purpose of this specification is to delineate criteria only and not to spqcify that seismic reviews be accomplished by complete reanalyses. Such reviews may be possible with brief generic approaches, whenever they can be shown to satisfy the basic criteria, in lieu of more lengthy, complete reanalyses. Where the criteria and procedures used in the 7.5M Hosgri seismic review depart in any significant way from present NRC approved approaches, para-metric and other studies will be simultaneously performed. L t 6 ,e

e ( 2. Seismic inputs to Structures A. Ito r izon ta l. The free-field horizontal response spectra for the site are the Blumel and Newmark2 spectra shown on Figurcs 1 and 9, respectively, u!th 0 759 peak ground acceleration (PGA) values. These spectro conservatively define the 7.5M Hosgri motions in the free-field. In the presence of structures having large, relatively rigid foundations in plan, these free-field motions can be expected to have reduced effective inputs to structures. These effective inputs are summarized in Table A and given on Figures 2 through 8 (Blume) and 10 through 16 (Newmark). The effective inputs have been derived by spatial averaging of accelerations across the foundations of each structure by the tau filtering procedure. In no case shall the ef fective responses in structures be less than those produced by the use of Newnark's criteria. TABLE A - tau and PGA Values Structure tau Blume PGA Newmark PGA Containment .040 .679 .60g Auxiliary Bldg. .052 .639 559 Turbine Bldg. .080/.067* .549 50g * - f Intake .040 .679 .60g

  • Newmark PGA corresponds to a maximum tau =.067 B.

Vertical. The 7.5M Hosgri vertical response spectra will be the free-field (tau = 0) Blume and Newmark translational spectra with amplitudes scaled two-thirds. Peak vertical acceleration is 0.50. 9 The Blume and Newmark vertical spectra are given on Figures 17 and 18 and on Figures 19 and 20, respectively. C. Damping and Ductility. In conjunction with use of the Blume and Newmark 7.5M Hosgri spectra, damping and ductility to be used are indicated in Table B. t-f

n.,__- TABLE D - Damping and Ductility" Blume Newmark Structure Damping Ductility Ductility Containment 7% 1.3 1.0b Auxiliary Bldg. 7% I.3 1.0 Class l Non-Class l Turbinc Bldg. 7% c 1.0b b intake 7% c 1.0 d Ductilities arc on story basis; however, floor response spectra a. will, in general, be computed on an clastic analysis basis. 2 b. Under normal conditions Newmark ductility is 1.0 maximum; how-ever, NRC will consider special cases where supporting evidence justifies its use. Blume ductility for Class I structures is 1.3, and will be used only in specific situations. Cor. crete 1.3; steel 3, with up to 6 locally. c. d. Or as may be required to demonstrrte that function of Design Class 1 equipment will not be adversely affected. )

0 6- '= 3 ( 3 Itaterial P,ropert ies for the determination of the strength and stiffness of structures undes the 7. Sit Hosgri r.otions, actual material properties as determined by properly substantiated test results will be used. These values more realistically characterize the actual properties of materials used in the Diablo Canyon structures than would be derived frora the specified minimums used in design. Octailed strength values and substantiating data will be submitted in a separate report. A. Concrete. Thecompressivestrengthofconcrete,fj,willbetaken as the average of the 28-day or 60-day test values, depending on the original curing period specification. The substential addition-al vargin of strength associated with the gain in compressive strength by aging will not be considered. B. Steel. Doth reinforcing and structural steel yield strengths, f, U will be taken as the average of actual test values. In no case will the yield strength value used in strength computations be taken as greater than 70 percent of the corresponding average ultimate strength value. r t 4-

. =. _.. _.. '4. Analysis Procedures A. Class i Structures. Analyses of the Class I Containment Structure and Auxiliary Building will utilize the same mathematical models and analysis procedures as used in the DDE analyses, excepting the following: i (1) mathenatical nodel stiffness properties will reflect the increased material properties; (2) in conjunction with use of the structure-specific inputs resulting from spatial averaging of accelerations, models will have fixed bases without soil-structure interaction; (3) 7 percent damping will be used; (4) vertical response will be determined by dynamic analysis; (5) individual responses to the two horizontal and one vertical components will be combined on the SRSS basis unless it can be shown that the absolute sum combination of individual responses due to one horizontal and the vertical components ~ is essentially equivalent; ) (6) the seismic inputs of the second horizontal component in the 3-component SRSS procedure is generally recognized as being less than the first; however for conservatism both components will be taken as equal. (7) accidental torsion will be included by consideration of an additional eccentricity in the mathematical models of 5-percent of the building dimension in direction perpendicular to the applied loads or 7 percent if torsional results are computed independently and combined by SRSS basis with trans-lational results, whichever is greater, or an equivalent amount for buildings without rigid floor diaphragms; (8) ductility, when applied in accordance with Table B is to be by reduction of the clastic response by approximate procedures. -..-...... ~..... J o' B. Class 11 Structures. Analyses of the Class ll lurbine Building and intake Structure will utilize the same scismit inputs as for the Class I structures because both of these structures contain limited amounts of Class i equipment. (1) Turbine Building response will be determined by both linear clastic and nonlinear inelastic methods. Except for the use of nonlinear analysis procedures, the analysis procedures will be similar to those for the Class I structures. The inelastic response to the Hosgri motions must be such that ductilities in steel bracing and framing do not exceed 3 on a story basis or 6 locally. Ductilities in concrete shear walls will be limited to 1 3, and to 6 in reinforcing steel. Because of the configuration of the building, longitudinal and transverse analyses will be uncoupled. Torsion will be considered in the models, and an accidental torsion will be applied as an equiva-lent 5 percent eccentricity. The possibility of impingement between the Turbine Building structure and the Turbine Pedestal will be considered in the response calculations, with the assumption that limited (controlled) local structural damage, such as concrete chipping or spalling, is permissible provided the overall safety of the structures or the Class I equipment is not impaired. Where nonlinear me: hods are employed, the lower bound of material strength shall be used but the ductility in bracing shall not exceed 3 In generating the floor response spectra for Class I the leTrer equipment, twoanalysesshallbemade,elasticandinelasticJusing the lower bound of material strength. The final floor response spectrum shall be the envelope of the two spectra. (2) Intake Structure contains the Class 1 Auxiliary Salt-water Pumps. Thus, the structure must be shown to avoid collapse which would impair the safety of the pumps and prevent their receiving an adequate supply of water. Response of this structure to the i ( 8 Hosgri motions will be determined sinifor t, that for the Class I structures. Where stresses calculated on an elastic basis exceed allowable values, more detailed investigations will be made, including consideration of behavior in the inelastic range to ~ verify that the Hosgri motions will be resisted without structural collapse and that an adequate supply of water is maintained. 5 Smoothing Raw Hosgri Floor Response Spectra The following smoothing procedure is to be used on the new, raw 7.5M Hosgri floor spectra generated by the time-history method. It is based on appropriate consideration of the~ effects of new structural strengths and mathematical model properties. Peak spectral amplitudes, associated with the structural modes of vibration, will be widened and smoothed as follows: A. High Frequency Side of any Peak. In conjunction with use of the structure-specific inputs resulting from spatial averaging of accelerations, use 5 percent period broadening to smooth spectra. Consideration of higher structural stif fnesses associated with the ) estimated actual concrete strengths and the use of fixed-base mathemat'ical models eliminates the need for more conservative smoothing in this situation. New stiffness properties are vir~ tually the highest values expected and further shifts of spebtra spikes toward higher frequencies are essentially precluded. B. Low Frequency Side of any Peak. Use 15 percent period broadening to account for possible softening of material and soll stiffness properties under extreme seismic motions and corresponding high stresses. Smooth lesser Hosgri peaks and valleys by free-hand averaging as for the original DDE analyses. Representative floor response spectra, computed by the time-history approach, will be reviewed against similar spectra computed by approximate procedures, not involving time-history computations. Peak spectral ordinates will not be clipped 10 percent, as in the - 7. -

'{ DDE anal ~yses, except in special ce,cs where tne very conservative ~' effects of a smoothing without peak cilppings will be reviewed on an individual basis. 6. Time-History Motions For purposes of floor response spectra computations and time-history response analyses, several artificial horizontal acceleration time histories have been developed. Each time history closely matches a smooth 7.5M Hosgri response spectrum and models the expected amplitude, frequency content, and duration characteristics. Figures 21 through 24 (Blume) and 25 through 28 (Newmark) show the various time histories for the free-field and cach of the major structures. 8 I

- - ~ " " ' ~ ~ ~ ' ' ~ ' ' ' " ~ ~ .a I f 7. Acceptance Criteria Allowable stresses in structural steel and reinforced concrete cicruents will be based on actual material properties in lieu of the specified minimum values used in the original DDE structural design. A) Class i Structures. For the Class I structures, allowable stresses will be based on those codes and standards listed in the FSAR unicss otherwise noted. B) Class 11 Structures. For purposes of evaluating the seismic adequacy of the Class ll structures, the following criteria are to be used: (1) Load Combinations. Dead, actual acting live, and 7.5M Hosgri earthquake loads will be combined as follows: U D + L' + EQ = where U total load to be resisted = D dead weight load = L' actual li~ve load, if any, acting on element = considered EQ total combined seismic loads due to both hori- = zontal and vertical inputs (2) Allowable Stresses (Ultimate Strength Design Basis) Element Code Concrete shear walls SEAOC (1974), Section 3(C) - : Reinforced concrete elements ACl 318-73 Structural steel AISC 7th Edition, Part 11 (3) Ductility. Lateral forcing resisting elements will be allowed inelas' tic deformations according to those indicated in Table B. For these elements, the allowable stress limitations of item B above need not apply. [ FtMrfu D/scVsstsA/S w /r H 7-# 4 CFAff Adi A/ECESSMY //= SECAC /s ro 6L NsED /MSNJD OF A C/ 2/8-73 .g.

w..,. .a.a.. - =... -...,....

-.c......=..

~i q 0. References l. URS/ John A. Blume & Assuciates, Engineers, "Diablo Canyon, llosgri

7. Sit Blume & ilewnark Spectra Plots," report to PGCE, September 22,
1976, 2.

flevsaark, Nathan 11., "A Rationale for Development of Design Spectra for Diablo Canyon Reactor Facility," a report to the U.S. fluclear Regulatory Com:aist, ion, Septeraber 3,1976. 3. " Recommended Lateral Force Requirements and Commentary," Seismology Conwnittee, Structural Engineers Association of California, 1974. 1 . b

l ~. j t 2.5 I .. c. r. ^ g -{ v r ,r ^ // 9 4 m N 2.0 [ \\ [1 \\ ^ i k N \\ H / D .5 [ \\ \\ h .g g 4 NNQ b MISC. SMALL STRUCTURES ~ , i.o O [ x b \\ 5 i5 / DIA B LO C ANYON UNITS /$2 ~ { 0.75 HOSGR/

7. SM./ /BLUME h5lQ S PE C TR A o.5 h

E t = 0. 0 EL A S TIC g \\ 0 0.1

0. 2 0.3
0. 4
0. 5
0. 6

'O. 7 0.8 T S E C O N /> f r-w,

1

2. 6

( 7 ( t.o / y\\

  • t x

\\xN N i,s ~ 5 th,,, / CONTAINM5NTSTRUCTURE y s,, ~ l N s tt D /ABLO CAN YON UNIT 3 ' / -l 2 w s HOSGRI 7,5M / /9 L UA4E y seecras ~~ Q 0.s \\ T= 0, o f GLAsTic' g o g. O o.1 0.2 0.3 04 0.5 0.C. 0.7 0.8 7i r e c o /vc S y, a.,.,,

) i t.s l r 2.0 f NNN i r R / 7% \\ \\ i f.5 ~ E N N\\ %i N N k s A 5,,, _/ AUXILIARY BUI.LDING x q s N, f D /A /3 LQ CAN YON UNITS I(2.) ? N 0 63 HOSGRI 7.5M //3 L UM E SPE C TR A j g 0.5 j 5 ,h t ~ 0. 052 E L A S TI C .R o a 0 0,1 0.2 0.2 0,4 0.5 Q.4 0,7 0.8 T SECONOS FI G tJ R E 3 a

. j j i 25 l i, s ~ t j 2.0 7 i y "- mN 7 ** \\ / /,5 N Q' ^ !l t 'N Q\\

h, s.

c:: /,0 TURBIN.E BUILDING ~ N r-I en ,s. \\ D/A/3LQ CANYON UN/TS I/ 2 no HOSGRI 7.GM / /SLUME 'O o,yg SPEC TR A h o.5 i g T:

0. 0 8.

EL A S Tic a 0 i o 0,1 0.2 0.3 0.4 0.s 0,4 o.7 a.s

.i t t.5 $c i \\f 2,o f 'a / g k1.5 s N N i s u o O.I S o.,s-l !h g= MISC SMALL STliUCTURES 0.5 I '~ [ q$ DIAthLO CANVON UNITS I l 2 HOSGRI

7. 5 M / B L UM E l

(%. SP E C TRA h T=0 SLASTIC \\ 0 o S to is to 25 30 i as !s. FREQUENCY HERTE i { f r a u x. E 5 l 1

T l l = i 2.5 I !J.p i J -/' I} .o 2.o \\d v) i -o q, 1 l o { s

  1. 2 1

s 1,5 rd' \\ .b a i o ~ g o.5 CONTAINMENT STRUCTURE i i g -_t.. i D/A/ SLO CANYON UN/TS /l2 i \\~ -HOSGR/ 7.5M. /AL UM E '&m SP EC TR A i; o 2 = 0. 04-EL. A C TI C i i 0 'S 10 15 20

g 25 30 3G FREQUGNcY; HER T L '

f / G U E lo

{ l,l{l{ C o 3 2 7 .o / 3 / e S u T E ,0 s M 3' i I N-N U f U C L / N B T / S C A G Y L 5 M 2 N wY N 5 E I DL A I 7 A 2 U C B R 5 I R T 0 E O R T A L G C Q B oR I L S E %A zE M O P H I X l U DH S 2 Y C s 5N 1 G u Q N E R \\\\ P i ' \\ o og* \\ t 3 v 4 + g p& i 'o 9 3 x _T S ( f 1 o 5 o. 5 o, 3, 2 s l f o 9 $3= '4 n ". ~ > ! R e. h

  • 4W &m L

'll 1lI

1 ik' I ? l 5 ^ 4 3 5 S o 2' G / L / e 0 G 3 / S M F T u c /N L i u r e / s N i A 5 h~-- o m t 2 y s e n .7 A A c e n o 2 i a a r T c c 0 t 0 R s s s E -{ 2 A = / a e H onst Y C G N 5 N I 1 D E L U I U Q B E E N R e F I B \\ R 0 U 1 T ot Y. Qy e0 \\ S 8 T i j O 5 o. S. 0 5 I / 0 2 e %ss23 e5 1. a bh%%og g y* g=% u. t t i! 1 ,!i,

s 1% OAMIDING a.5 s "/, I ..s y. i h 2.0 J / 'N N 7 x. /- N b / \\ gi I'# N YN l s w a M N p; N N = N s ~ w-4 /.o MISC. SMALL STRUCTURES N c: w D/AIB L O CAhlYON Uh//TS /{2 u 0.25 HO S GRI

7. SM /NEWMAR i<

Q SPECTRA n g 0.5 f T=0 EL AS TIC m5 m o. i 0 0,/ o.2 0.3 0.4 0.5 O. 6 0.7 0.8 7, g p e o n n.n

i\\ i!

1l!
I

\\ s w ~ 8 / / \\ N 0 2 \\ 2 2 / i \\ L ~ K 7, G I 0 / S R F T A IN M U WE C G. s K\\ N N I 0 O /. T G \\ N S Y I A D N M L L I 5 U E 5 'B l A 7 0 C A Y 2 R R 5 S A I O R T 0 D I L N L G C 0 I X B 4 o f S E G i U l A O P A = 0 c N / D H S t e I P s M A D 3 T r. 0 2 ,a 5 7 i 2 O i / / /. [ 0 0 0 S 5 0 5 S. s C' 2 2 1 1 0a %L b 5 t o-N& 1 > tr h h % Q o. B y *,

e.s e.o 2 % DAMPING s E a% ( g.,- m s x l.g E 7% N i // NN ( l.a // TURBINE BUILDING ~ s ,E D/ABLO CANYON UNITS / p' 2 HOsGR/ 7.5M /NEWAAARK i ^ 'E SPECTRA i h' O.5 j E 'C' Z O.067 E L A S TIC ,E 'a* O O 0.1 0.2 03 0.4 05

0. 6 0.7 0.8 g

7 i seconds fic ..'e 5 12

2% DAMPIND r 2s J% l e.o s 7% u t. 5 \\ \\ s ,L d 1* ,0 i 1 .w ~% o.rs 4 MISC., SMALL STRUCTURES o.s 4ij DIAISLO CANYON UNITS I{8 y 140 C Glti 7.GM./NEWhfARM SPE C TR A f Z~ = 0 El A f T/ C 0 I m. O 5 /0 15 20 26 30 35 f f/C*gjQuGN CY, HE/t T 2 5/G UT = 13

,1 i f ti j

t 5

O 9 4 G 1 .0 2 e h / i R u 0 s S A 3 i T M f NE IN W C I U E T N S N /. A 5 Rb U L 2 T Y M G C N G URT A 7 A ( S C R 4 T 7 ) O. R T 0 N T E M '0 R N E G C o 2 B S e I E A = H T A O P N I O D H S t C Y C x N S/E U Q E RF \\ 0 \\ / \\ \\ G N IP M S A D r. g s 7 3 2 j4, o s. 0 5 o. o, 0 2 2 1 i %b g hM x' [ h4oQg'YD l

i .l !I

l lls{

~ C 3 5 1 2 G f._ .R / K U S R 0 G Y A i 3 I 1 P I A C N W / U E T AG N S N /. A O L 5 Y M' 2 N E I N 5 DL 7 A A 2 I UB C R 5 Z R O R T 0 T I Y R A L G C 0 i t oE I L B H NA / S E = I X A O P U /D H ST Y C N 5 G 1 N u Q E K F 0 1 , s\\ \\ G h i P M 5 A D 5 7 2 3 ( r ) 7 O o s. o. s, i, 3 o hsb % / S t t r REmg h*y , 'QmNh% o e ,1l!1j 1,l

l I

G 6 s 3 / .o 2 E { / X G R i 3 0 I S A F T M / c N W i U E T N S N / A._. 5 O 2 Y M L 5 E N 7 A A 7 C Z R 6 G I O R T 0 T N l 0 R b 'L G C 0 2E S I I S E H UB A O P 3 I E D HS 2 N I I B Y R C UT 5N E i P 1 U .Q E Y-R l 0 / I N G N I P S ih A )1 a 7 2 l 1 0 5 0 5 o, 3, o 2 2 1 / %lD 4 A D bR g% m%, Qm % QM ~

lF : l i;;!

s' l

.it 7 8 1 0 2 "t NN 4 e. l u J E I 7 , s T A 0 i N I / f N U U L A t N [ T I 6 / 6 0 k O / C Y A E A N 5 PJ A 7 I 5 ~ C 0 \\ k~ N l S. O A I L R c D N 5 G i T O 1 y A S I

4. C a

/ O / 0 y e E 3 H V J 1 'i ,T 9 .0

  • 4m 7, u

5 1 s 2 e 2 O [ ~ / I O o 0 0 5 O -l 0 2 'eS 4 l

,4 c!, [r' 7 I' t Jb' 5 3 2 8 1 8 I E T. R T E U I O G N M A B I / U U R f L T N S C O I E Y / P I 6 N A J d h 2 A S C 7 L 2 T o A R I C l R E I bf G T l oH t A S R / O E Y 3 H V C 1 N E 5U \\ /Q E R P 0 \\ 1 v@ 4 .a m S -[ l l [ o O. o s. o 2 i. o p~k m e5 t l l

l ' i i! i ,} 9 1 8 2 0 R4 " N N N ?. U bN G / <l P / 5 K I 7 0 T. A / N M A U W R 6 E T I N N N NW 0 C O / E Y M P N 5 S. 7 I 5 A C L 0 J A O D I N R C N L I s G T 4O a A J R I .C 0 O E E l 'G J O H V N ( I

6. T, P

0 AD v. 2 3 e 7 2 0 / 1 /a 0 0 o. o 5 o 0 ? a 1 1 l

,.}i' l z m 5 o 3 2 2 E / K u S s T R I 0 i r i A 3 I N M A U W R A E T N N C O / E Y M P I 5 2 N 5 S A 7 C L Z A T / C R O R E / 0 L I 2 H G T 5 = f J R . Y, A o E I C D H V N E U 6 Q N I ERF W 0 \\ 1 \\ GN /P MA 5 D 2 5 5 7 I /' l Y O ) 0 6 5 o o 2 / )k1

d o. h /. 00 = D 0,So I o.co y ~% k l. 1 i M 1 1 \\ \\ .to e J k l nu l u -o.go st -1.00 o.o 2.4 4.S 7.2 9.6 12.0 14.4 IG.a 19.2 21.6 24.0 TIME IN JECONDS TIM G Hlf 70RY GENERATED 70 march 7% DAMPED H O J S R.I 7.5M/fblUM E R E J/* oNJE JPE C TR.UM (T = 0.00) MISC, SMALL STRUCTURES FI G t.: 7E 21

i t /,00 .i ,0 o,go 3 ,'i

  1. 1 hy b *W V

A N'I A-~ N ( I ^ -L o'oo N, [(1 { L-- l-I l ll '= \\ Ul,) ( p!

(

( IV' / ' V j [T/ "V q u tu i-6 a 1 i l W 1: d -o.So l T -1.00 0.0 2.4 4,8 7.2 9.6 12.0 14.4 /G.B 19.2 ti.G 24 o TIME IN JE CONDJ TIM E HIJTORY GENGR A TED 70 MA7"CH ~7 */o DAMPED HOJORI 7.5M/SLUME REJPON.fE Ji*ECT/tuM (< = 0.04 ) C0l1TAllMENT AND IllTAKE STRUCTURES r FI G * : R. E 22

[ /.co l

  • o,so 3

l l ? A Y. t I \\ l \\ l _Q f Y. i, h (.nn fd n., hk A 'i l L g o,co y/ { en. n u, i 1 / ;l L l 1 I1 j i 1 I jt Wypy y'y' V ] ['V]"V vv i l - oc I l l i to 1 .a 1 i l to U -0.50 \\ ~ l -l. 0 0 0.0 ?.4 , 4.6 7.2 9.G 12.0 14. /G.S 19.2 ti.G 24.C TIME IN JE C OND.T TIM E HISTORY GSNeRATED 7'O MA TCH 7% DAMPED H o J G Al 7.5M//blUM E R E JP ON r5 JPECTRUM (T = 0. 0 5 2) l 6 AUXILIARY BUILDIliG f/ G LJ f E 25

,ji'l l l' iti i ,i Ih, iil t !Y

  • A s

0 ~ 4 t 2 f =_ )0 s y t f D 6 s f s. E0 / fn P G tt M / 0 r M S ko A= 2 D T-k %( 9 n 1 r u 7 e M \\ [t a. HU m G c R. i r t I 7' T y A C

4. T.

M EP 4D J 1 N O 1 O T G 5 t E N C S I p{a

0. E D

D L N i 2 I J E 1 U o B Tc I N w I E sJ 1 I f I G R E R

9. E E

U B M R T N I i ( T-EE 2 GM 7 i p' u b Ylb \\n R// 8 O M 4 T dp 5 h s7 i HI 4 2 R. p eGJ M h b o L o. tYH o 0 o o-o 0 0 g o. S. 0 / o o o 1 e 0, ks

a.Wu l

/.00 .p o.so et L_ _. n o i k i L ElllL.i'._ _, '.k __[ I _. i 1 l } i l l l 1 R g i I I h ;kuhA f} AlkL IA. A O M ' t b__JL (\\ pl j .. ). W a d o.co 4,. p '. [I ( WM{\\Tl Yy (1l T' ' y to j l \\ I a \\ tb I 1 -0.50 -/.00 o.o e.4 4,8 7.2 9.G /e.o /4.4 /G.8 / S.e et.G ev.c ~ TIM E IN JEC ONOJ i TIMS HIJTORY GENERA TED TO MA TCH 7% DAMPED 4 H0JGRI 7 SM/NEWMARK REJPONs2 JPECTRUM (Z'= 0.00) MISC. SMALL STRUCTURES i. f / G U.o. E 25

p i

^ 4 1.00 .n. ii.. i i ,0 o,So ~ I l; l ( . Aban.m m. ! W n_. In A _l i j. __h_ _. h I rf'f- ;hlL al o oo _V j ] nfrenq /1 m' ) 't ,1 11 i w i g to t l J I l g to j O -o.so i -1.00 ~ l 0.o e.4 4.6 7.2 9.s te.o 14.4 tra.s

19. e et.s 24.o l

rtMG IN JEC ONOJ ?

335 i

1 TIME HIJTORY SENERA TED To MA rcH 7% DAMPED HOSSRI 7.5M/NEWhtARK RESPONs2 JPECTRUM (T= 0.04) C0ilTAlliMENT MD litTAKE STRUCTURES m e, u r e n

1.00 "D I I l'! l Il f,s o.So 3 l I

t i

i r l (- / y 'y(("f yf o.00 l ji -] f \\ nn 1 1 \\ \\ M i l u y-o.60 -1.00 0.0 2.4-4.8 7.2 9.G 12.0 /4.4 /G.8 /9.2 g/.G e4.o TIME IN SECONI)f i TIM E HISTORY GENER A TED To M A TCH 7 % DAA4 PED H oJ G R'l 7.5M/NEV/AAARK RESPONJE JPECTRUM (C= 0.052) i AUXILIARY BUILDING i i P/ G 113 5 3 'T

( ( l' O g 1 q) c=6 m d 4 O g P s v G QO l ~ D O

==

Q I C CJg E se I f %b

==-

?

l Qv i

:

I l f I $Q a e 2 8= J Q l b W Q gb e r U l -E y% b* g ~ U v o S i --- _. - 3., - sy X5 S w to T ~ s S 0 %u t m m ~ 0 ^ ~- WD bQ tu O 5 ss UJ G R E "L l-U1 5 a 3 I o 5: b to ) 6 b TT "r Ty 'A*+ 'u y NT - _ l - ~.'_ m ~- N Wq 1 ---n._ e eg t yu } T \\s as e w T. OW b4 _w -w m-- DN Ab %~ 2-T ~% %\\ k9 m-O n o b od O 8 0 O f O o ~ = t 3 9, NI NOI.LVW3*)gpp y a e nr,--

I ? jy}a a . 2.5 i 2 % DAMPING / >ii in .o a li-i I 2.0 3 y- / x s%

l. h a

a / NN:' NN '( CONTAINMENT STRUCTURE ] Q l I I k rn D/ABLO CANYON UNITS /{2 HOSGRI '7,5M./NEWM ARK

  • s h

0.6 SPECTRA 0.5 B T = 0. 04 E L AS TIC a m O Q O O.I O.2 03 04 0,5 0.6 0,7 0,8 ~ Tg SECONOS cin, o r-om

( ( 9 MEETING SUSNARY Docket File H. Denton NRC PDR D. Nuller Local PDR Project Manager: D. Allison TIC Attorney, ELD NRR Reading E. Hylton LWR-#1 File J. Knight B. Rusche D. Ross E. Case R. Tedesco R. Boyd R. Bosnak R. DeYoung S. Pawlicki D. Vassallo I. Sihweil D. Skovholt P. Check J. Stolz T. Novak K. Kniel Z. Rosztoczy O. Parr IE (3) S. Varga-G. Lainas R. Denise V. Benaroya R. Clark T. Ippolito T. Speis V. Moore P. Collins R. Vollmer C. Heltemes M. Ernst i R. Houst6n F. Rosa L. Crocker W. Gamill J. Miller EP Branch Chief F. Williams L. Dreher R. Ileineman ACRS (25) R. Goddard NRC

Participants:

D. A11'ison P. Chen A. Latoni S. Levine D. Jeng l L. Shao I. Sihweil

11. Levin P. Kuo J. Wetmore R. Hofmann J. Knight L. Davis R. DeYoung J. Stolz Fo TA449/

4-se}}