ML20206S118

From kanterella
Jump to navigation Jump to search
Rev 2 to NSP-21Q-302, Charpy V-Notch (Cvn) Test Data Files for Monticello RPV Plates,Curve Fits of Cvn Data & Calculation of Plant Specific Chemistry Factors
ML20206S118
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 05/11/1998
From:
STRUCTURAL INTEGRITY ASSOCIATES, INC.
To:
Shared Package
ML20206S096 List:
References
NSP-21Q-302, NSP-21Q-302-R02, NSP-21Q-302-R2, NUDOCS 9905210052
Download: ML20206S118 (79)


Text

F i

l Attachment 3 l -

Structural Integrity Calculation No. NSP-210-302 i

I i

1 i

)

l l

1

~

9905210052 990517 PDR ADOCK 05000263 !

P PDR :c

~ --

r M

^

RECORD COPY STaucTcRAL '

INTEGRITY CALCD_LATION i

Associates,Inc.

PACKAGE FILE No: NSP-21Q-302 l i PROJECT NAME: Third Party Review for Revision PROJECTNo: to Pr NSP-21Q I essure / Temperature Curves for Monticello CLIENT:Nonhem States Power CALCULATION 11ILE:

Calculation oi Plant Specific Chemistry factors.Charpy V ates, Curve Fits of the CVN Data, and Monticello has tested two surveillance capsules s Rev. 2 [1] to determine how the measured this calculation package are: radiation e analyzed per Regulatoryshift Guide comp1.99,

1. ares to the predicted shift. The objectives of
2. Verify the data files used for curve fitting.

3 Detennine the best fit curves through the CVN data for each ca

\

Charpy test results are fitted using a hyperbolic y = a + b

  • tanh((x-c)/d) , where:

tangent relationpsule a

[2]

where y= impact energy, ft lb; x= test temperature (*F or 'C); and

3. coefficients. Reference 2 uses "T"instead of"x", "'11)" instead of"c"a, Verify that the two curve fitting programs yield within reas of"d".

, and "C"instead coefficients and estimates of the 30onable andaccuracy, 50 ft-Ib thetransition same curve fit temperatu

4. b. CurveExpen available as shareware .

ect)[2]. [3].a. CVGraph Detennine a reasonable baseline, unirradiated Charpy curve f radiation shift using the surveillance data and this baseline curve d tro factor is necessary perRegulatory Guide 1.99, Rev 2 Position

5. The Monticello Technical Specification [4] uses P-T curves th . .

based upon a plant specific chemistry factor. function o ence curve for use with the Tech Spec.

Document Affected Project Mgr. l Revision Pages Revision Description Preparer (s)

Approval Signature & Checker (s) 1 0 Signatures &

l l-9,9a,10-93,93a, Date Initiallssue Date 1

94-97 p , 7 p

(/g '

g ,

1, %,lt tz.11+ii 6 l>kuL

%oyJ i  :'

S/I'Iff7 sn, n,iep1,12, 2-i,1.s p o - ec.ut. .,sn,1 , 4 a :s M9; cS- Ac k e a y~ .q4 7 ,

e'

&N ']

PAGE _._1JOF.pC._

{

?8 hA G 3h-S  ;

(

4

^ STRUCTURAL CALCULATION l INTEGRITY FILE NO:N5P-184-30L j AS S OC:AT E S . ; N C.

PACKAGE PROJECT NO: A11P-2.19 (Subsequent Page)

PROJECT NAME: ev T h*'d Cu, <e>90 4/

C Revi tw  %. h 9-ev858*% fo 97R.5 5w t [

f.cclia CLIENT: Tgc ~ ( g '1C.< g g je,,, p , g g Document Af fected Prol. M gr. Signature, initials Revision Description Approval and Date Revision Pages f Preparers

/Dak and Checkers 1 $!.' y banjoe- rfv858A k'I (my+ 1) m e n p.<a.h ~ o % L h [

gj,ijgs r grols Nl lg2-2.1, N,W,~o$ & 5 W +3, 544%

gd-?%

sluin i

I I

l PAG E _I c. op 76 l  !

947 j

Introduction The Monticello Nuclear Power Plant has tested two surveillance capsules containing Monticello beltlin materials. One of the capsules was irradiated in the Monticello RPV. The second capsule contained a second set of samples removed from the first capsule. These samples were encapsulated in a holder designed for the Prairie Island RPV (a PWR plant) and were given an accelerated exposure. NSP requested that SI assist with the evaluation of the surveillance data. A hyperbolic tangent (tanh) equa i

is used to define the Charpy curve (y = a + b

  • tanh((x-c)/d)). The surveillance data were evaluated using two curve fitting programs [2,3). The Reference 2 curve fitting program (CVGraph) was s by NSP for use on this program and will be assumed to be verified. However, a second curve fit

{

program (CurveExpert) [3] was obtained to check the curve fits. Both curve fitting programs comparedI well. An estimate of the unitradiated baseline properties of the plate was developed in this Calculation Package. This Calculation Package summarizes the data used for the curve fits and the analysis of the data. Charts and the plot files for Excel comparison curves are also included for verification.

I

. l Contents of this calculation package are:

A. Surveillance Capsule 1 (some documents refer to this as Capsule G-1)

The data in the following are from Reference 5.

Page 10 CVGraph - Charpy V-Notch Data Report for Capsule G-1 Plate l

Page11 CVGraph - Charpy V-Notch Data Report for Capsule G-1 Weld Page 12 CVGraph - Charpy V-Notch Data Report for Capsule G-1 Heat Aff'd Zone 1

Page 13 CVGraph Analysis of Capsule G-1 Plate Impact Energy l 1

(Note that in the input column of the CVGraph analyses that there many cases where the

\

l values ofthe input data have been slightly modilled by CVGraph. For example, at 40 *F i the CVNEnergy is shown as 24.79 not the input value of 24.8 (page 10). No explanation' for this changeis given.)

Page 14 CVGraph Analysis of Capsule G-1 Plate Lateral Expansion Page 15 CVGraph Analysis ofCapsule G-1 Plate Percent Shear Page 16 CVGraph Analysis of Capsule G-1 Weld Impact Energy Page 17 CVGraph Analysis of Capsule G-1 Weld Lateral Expansion Page 18 CVGraph Analysis of'apsule G-1 Weld Percent Shear Revision 2 Preparer /Date ')/;f,4 5/so/75 CheckerIDate L 't'-u 23 File No. NSP-210'302 Page No. 2 of 78 I

948

c Page 19 CVGraph Analysis of Capsule G ' Heat Affected Zone (HAZ) Impact Energy Page 20 CVGraph Analysis of Capsule G-1 Heat Affected Zone (HAZ) Lateral Expansion Page 21 CVGraph Analysis of Capsule G-1 Heat Affected Zone (HAZ) Percent Shear Page 22 CurveExpert - CVN Data File for Capsule G-1 Plate Energy (SURV1 BAS.DAT)

Page 23 CurveExpen - CVN Data File for Capsule G-1 Plate Lateral Expansion (SlBASMLE.DAT)

Page 24 CurveExpert - CVN Data File for Capsule G-1 Plate Shear (SIBASSHR.DAT)

Page 25 CurveExpert - CVN Data File for Capsule G-1 Weld Energy (SURV1WLD.DAT)

Page 26 CurveExpert - CVN Data File for Capsule G-1 HAZ Energy (SURVIHAZ.DAT)

Page 27 CurveExpert Analysis of Capsule G-1 Plate Impact Energy Page 28 CurveExpert Analysis of Capsule G-1 Plate Lateral Expansion Page 29 CurveExpen Analysis of Capsule G-1 Plate Percent Shear Page 30 CurveExpen Analysis of Capsule G-1 Weld Impact Energy Page 31 CurveExpert Analysis of Capsule G-1 HAZ Impact Energy B. Sun'eillance Capsule 2 (some documents refer to this as CaDsule W)

The data in the following are from Reference 6.

Page 32 CVGraph - Charpy V-Notch Data Report for Capsule W Plate [2]

Page 33 CVGraph - Charpy V-Notch Data Repon for Capsule W Weld [2]

Page 34 CVGraph - Charpy V-Notch Data Report for Capsule W Heat Aff d Zone [2]

Page 35 CVGraph Analysis of Capsule W Plate Impact Energy Page 36 CVGraph Analysis of Capsule W Plate Lcteral Expansion Page 37 CVGraph Analysis of Capsule W Plate Percent Shear Page 38 CVGraph Analysis of Capsule W Weld Impact Energy Page 39 CVGraph Analysis of Capsule W Weld Lateral Expansion Page 40 CVGraph Analysis of Capsule W Weld Percent Shear Page 41 CVGraph Analysis of Capsule W Heat Affected Zone (HAZ) Impact Energy Page 42 CVGraph Analysis of Capsule W Heat Affected Zone (HAZ) Lateral Expansion Page 43 CVGraph Analysis of Capsule W Heat Affected Zone (HAZ) Percent Shear Revision 2 Preparer /Date Jr/(d 3/25/99 Checker /Date ' k tqi .,

~

File No. NSP-21Q'-302 Pace No. 3 of 78 1

949

c.

~

9 Page 44 CurveExpert - CVN Data File for Capsule W Plate Energy (SURV2 BAS.DAT)

Page 45 CurveExpen - CVN Data File for Capsule W Plate Lateral Expansion (S2BASMLE.DA Page 46 CurveExpen - CVN Data File for Capsule W Plate Shear (S2BASSHR.DAT)

Page 47 CurveExpert - CVN Data File for Capsule W Weld Energy (SURV2WLD.DAT)

Page 48 CurveExpen - CVN Data File for Capsule W HAZ Energy (SURV2HAZ.DAT)

Page 49 CurveExpen Analysis of Capsule W Plate Impact Energy Page 50 CurveExpen Analysis of Capsule W Plate Lateral Expansion Page 51_ CurveExpert Analysis of Capsule W Plate Percent Shear Page 52 CurveExpen Analysis of Capsule W Weld Impact Energy Page 53 CurveExpert Analysis of Capsule W HAZ Impact Energy C.

E*=*= of the Unirradi=*ad Pra-A of the Siir.-"*?- s Heat The data in the following are from Reference 7.

A necessary component in the measurement of shift in the surveillance capsules is the establishment of a well defined and characterized baseline curve for the surveillance heat in the unirradia Unionunately, there is no indication that GE, CB&I or NSP tested the surveillance heat in the pr irradiation condition. However, ORNL obtained a ponion of plate C2220-2 from GE for a progr evaluating the ductile fracture toughness of modified ASTM A302 Grade B plate (including ASTM A533, Grade B, Class 1 plate). As a part of the program ORNL perfonned sufficient Charpy V-notc impact tests to produce full Charpy curves. The dimensions of the test plate received by ORNL a similar to the test plate identified in Reference 11 as STP1, helping to establish its pedigree.

1 i

ORNL conducted tests on specimens of three orientations from test plate C2220-2, STPl. The im data for the LT (lateral-transverse, longitudinal), the TL (transverse-lateral, transverse) and the LS (lateral-short transverse) are summarized in the tables on pages 54 to S6. The CVGraph curves for t three data sets are shown on pages 57 to 65. The curves for the LT orientation energy and lateral expansion will be used for comparison with the surveillance data since the data is from an LT orientation The C2220-2 energy, lateral expansion and shear curves are shown on pages 57 to 59.

Revision i 2

Prwarer/Date - Wih4 sho/96 Checker /Date M 6u u File No. NSP-21Q'-3'i)2 Page No. 4 of 78 950

I For this analysis plates C2220-1 and C2220-2 are going to be treated as identical for the purposes of establishing:

(1) Baseline, unirradiated 30 ft-lb. transition temperature for the calculation of the measured I irradiation shift.

1 (2) that a mixture of samples from both plates C2220-1 and C2220-2 in the surveillance program does not compromise the significance of the program. i l

The available chemical analyses show that all samples identified with heat C2220, whether from the ladle i

analysis (CMTRs in References 8 and 10), "J" prefix test samples or a sample from the GE test plate STP1 from C2220-2, are from one heat, as shown in " Table 2-2" on page 66. The average Cu and Ni composition will be used to calculate the chemistry factor per Reference 1. As shown in Reference 10, Plates C2220-1 and C2220-2 were ordered on the same mill order number, were austenitized on the same day in the same furnace (but not the same furnace load), and were tempered in the same furnace on successive days. The simulated post weld heat treatments on the test materials and the stress relief after gas cutting of the plate are the same. The only significant difference noted is the slightly lower temper temperature used on plate C2220-1. The heat treatment information is summarized in " Table 2-3" on page 67. The tensile properties reported in the CMTRs, the CB&I as fabricated tests and the ORNL tests are shown in " Table 2 4" on pai;e 68 and are essentially identical. The Charpy V-notch test results from the CMTRs and the CB&l as fabricated tests for the two plates from C2220 are shown in Reference 8 and are essentially identicah C2220-1 10"F 60 - 93 ft-!bs.

40 F 77 - 89 ft lbs.

C2220-2 10'F 33 - 81 ft-lbs.

40 F -

77 - 79 ft-lbs.

The slightly lower temper temperature.used on plate C2220-1 did not adversely affect the tensile or impact properties compared to C2220-2. Based upon the information discussed above it isjustifiable to consider plates C2220-1 and C2220-2 as a single plate for the purposes of evaluation of the Monticello surveillance data.

Revision I 2 _

i Preparer /Date %TJ 3/2.</94  !

Checker /Date ' yi f(t'-%

File No. NSP-210-302 Page No. 5 of 78 951

Page 54 CVGraph - Charpy V-Notch Data Report for Plate C2220-2 in the Lateral Transverse, LT, (Longitudinal) Orientation Page 55 CVGraph - Charpy V-Notch Data Report for Plate C2220-2 in the Transverse Lateral, TL, (Transverse) Orientation Page 56 CVGraph - Charpy V-Notch Data Report fo. Plate C2220-2 in the Lateral- Short Transverse, LS, Orientation Page 57 CVGraph Analysis of Plate C2220-2, LT Orientation, Impact Energy Page 58 CVGraph Analysis of Plate C2220-2, LT Orientation, Lateral Expansion Page 59 CVGraph Analysis of Plate C2220-2, LT Orientation, Percent Shear Page 60 CVGraph Analysis of Plate C2220-2, TL Orientation, Impact Energy Page 61 CVGraph Analysis of Plate C2220-2, TL Orientation, Lateral Expansion Page 62 CVGraph Analysis of Plate C2220-2, TL Orientation, Percent Shear '

Page 63 CVGraph Analysis of Plate C2220-2, LS Orientation, Impact Energy Page 64 CVGraph Analysis of Plate C2220-2, LS Orientation, Lateral Expansion Page 65 CVGraph Analysis of Plate C2220-2, LS Orientation, Percent Shear Page 66-68 See Text. '

D. Summarv of Results from Curve Fits Page 69 " Table 2-1" with a Summary of the Charpy V-Notch Test Results for Monticello This table summarizes the results of the curve analyses. By comparing the analyses performed by CVGraph and CurveExpert it can be seen that the results are identical in almost all cases. Both of the programs have the capability to give the values for points on the curves. Both programs estimated the same temperatures at 30 and 50 ft-lbs., and almost identical upper and lower shelf energies.

E. Calculation of Shift and Plant Specific Chemistrv Factors Page 70-71 Summary of the Estimated Shift per Regulatory Guide 1.99, Rev. 2 and the Measured Shift for the Plate.

i Revision 2 '

Preparer /Date MfM T/>r,/9b Checker /Date h eJp%

File No. NSP-210-302 i Page No. 6 of 78 1 952

Regulatory Guide 1.99, Rev. 2, Position 1 [1], defmes the procedure for estimating the shift due to irradiation, if surveillance data is not available from two credible capsules. And, the measured shift is obtained by subtracting the 30 ft-lb. unirradiated transition temperature from the 30 ft-lb. irradiated transition temperature.

The table (labeled " Table 3-1") is for the plate. It can be seen that the measured shift is slightly larger than the Regulatory Guide 1.99, Rev. 2 estimates. The table on Page 71 (labeled " Table 3-2") is for the surveillance weld. The results are shown, although the shifts can not be calculated since there is no baseline weld data.

Page 72-73 Calculation of the plant specific chemistry factor As was shown on page 70, the measured shifts are slightly larger than would be predicted by Regulatory Guide 1.99, Rev. 2. Therefore, per Regulatory Guide 1.99, Rev. 2, Position 2.1

{

[1] a new chemistry factor must be calculated. This position defines the procedures to be I used with the two or more credible surveillance data sets ( for this analysis it is assumed that k 1

both data sets are credible).

l The table labeled " Table 3-3" shows the calculation of the plant specific chemistry factor of l

130.8 F. The table labeled " Table 3-4" on page 73 is for the other three beltline plates and j the beltline welds. Since there is no surveillance data for these three plates and there is no baseline curve for the surveillance weld, the irradiation shifts and plant specific chemistry factors cannot be calculated directly. The procedures of Regulatory Guide 1.99, Rev. 2, Position 2.1 for calculating the chemistry factors for non-surveillance materials are, therefore, applied to these materials. It is assumed, to provide conservatism, that the surveillance plate plant specific chemistry factor and Position 2.1 of Reference 1 can be used to adjust the weld chemistry factor.

F. Calculation of ARTynr versus Fluence Curve 1 l

Page 74-75 The technical specification P-T curves used by Monticello stan with a baseline unirradiated l

Revision 2 Preparer /Date Wf/ k1A/9f(

Checker /Date M pu n File No. NSP-21Q-302 Page No. 7 of 78 953

. 1 condition [9]. The P-T curves are used with a shift curve that provides an estimate of the irradiation shift plus margin as a function of accumulated fluence. During operation th baseline P-T curves are shifted by adding the appropriate value from the shift curve.

Equation 2 from Regulatory Guide 1.99, Rev. 2, Position 1.1 is used to calculate the shift.

And the margin value is from Equation 4 of Position 1.1 [1] assuming r that o =0 and that or17 F if the Regulatory Guide 1.99, Rev. 2 chemistry factors are used and 1/2 of that value (8.5 F) if the calculated plant specific chemistry factors are used (see Positio The full margin v.ill be used in this calculation to maintain conservatism due to the uneenainties associated with the irradiation of one set of samples in the Prairie Island reactor. The calculated plant specific chemistry factor (see section E. above) for the lim

(

beltline material (this is the surveillance plate for Monticello)is used to generate the new shift curve. Page 74 is the plot file showing the input data and Page 75 shows the chan. Fo comparison purposes the original shift curve using the Regulatory Guide 1.99, Rev. 2 chemistry factor is also shown.

G.

Comparison of Charov V-Notch Impact Enerrv Curves for the Baseline Condition and After Irradiation of the Surveillance Plate Page 76-77 The Excel table (plot file) for the best fit curves of the baseline and irradiated f

base material CVN data shown on page 78 (" Figure 3-1").

I Page 78 Excel chart (" Figure 3-1") showing the relationships between the impact energy curves for the base metal in the unirradiated and inadiated conditions.

j

References:

i 1.

U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, " Radiation

\

Embrittlement of Reactor Vessel Materials," May,1988 2.

CVGraph, Version 4.1, "Charpy Graphics Program User's Manual and Software (includi Files); ATI Consulting, March 1996, Structural Integrity File NSP-21Q-219.  !

3.

CurveExpert, Version 1.3, "A Comprehensive Curve Fitting System for Windows," Shareware Software by Daniel Hyams,1996.

Revision 2, Preparer /Date W g J 3/2.5/S $

Checker /Date ' Sq c- Q - %

File No. NSP-21Q-3'02 Page No. 8 of 78 l

1 954 i i

i i

4. Monticello Technical Specification. 3.0 Limiting Conditions for Operation,4.0 Surveillance Requirements, and Figures 3.6.1 through 3.6.4", Revision 122,11/2/89, Structural Integrity File

- No. NSP-21Q-212.

5. Battelle ," Final Report on Examination, Testing, and Evaluation ofIrradiated Pressurc Vessel Surveillance Specimens from the Monticello Nuclear Generating Plant," BCL-585-84-2, Revision 1, Dated November 5,1984, Structural Integrity File No. NSP-21Q-206.
6. Framatome Technologies, " Test Results of Capsule W, Northern States Power Company, Monticello Nuclear Generating Plant, (Irradiated at Prairie Island Unit 1), Reactor Vessel .

Material Surveillance Program," BAW-2277, Dated June 1996, Structural Integrity File No. -

NSP-21Q-207.

{

7. " Ductile Fracture Toughness of Modified A 302 Grade B Plate Materials," NUREG/CR-6426, ORNL-6892/V2, Vol. 2, February 1997, Structural Integrity File No. NSP-21Q-240.
8. Chicago Bridge and Iron Company, " Skirt Knuckle, Heads & Shell & Misc Heat Number Summary", Dwg. No. R-7, Rev. O, Dated 3-6-69 (8290-133), Structural Integrity File No. NSP-21Q-213.
9. GE Nuclear Energy, " Implementation of Regulatory Guide 1.99, Revision 2 for the Monticello Nuclear Generating Plant," SASR 88-99, DRF 137-0010, Rev.1, Dated January 1989, Structural Integrity File No. NSP-21Q-202.
10. " Transmittal Manifest, Northern States Power Company, Nuclear Support Services Departnent, Monticello Nuclear Generating Plant, Response to Generic Letter 92-01, Reactor Vessel Structural Integrity", by Mark Hugo, dated July 6,1992, Structural Integrity File No. NSP 21 Q-203.
11. GE Nuclear Energy, "Monticello Nuclear Generating Plant Information on Reactor Vessel 3 i

Material Surveillance Program", NEDO-24197, Rev.1, Dated October 1979, Structural Integrity File No. NSP-21Q-211.

l i

i Revision 2 Preparer /Date $6/ 3/2.4/TS Checker /Date 4 t -#M ~

File No. NSP-21Q 302 Page No. 9 of 78 1

955

. Table B1 CVGraph - Charpy V-Notch Data Report for Capsule G-1 Plate PLANT  : MON MONTICELLO -

CAPSULE ID  : G-1 ~

PRODUCT CODE : PLATE MATERIAL ID  : SA533B1 ORIENTATION  : LT Lateral-Transverse HEAT-NO  : C2220 -- J COMMENT Capsule tested by Battelle SPECIMEN INFORMATICN __

specimen ID Test Temperature Impact Energy Lateral Expansion t shear

  • F
  • ft lb riuence Capsule Temperature mil n/cm8 er JE3 0.00 7.00 11.60 10.00 2.SE17 JDU 550.00 40.00 24.80 22.60 25.00 2.SE17 550.00 fDJ 60.00 30.50 30.00 25.00 2.SE17 550.00 JE1 76.00 44.10 35.30 30.00 2.9E17 550.00 JDY 100.00 55.40 43.50 35.00 2.9E17 550.00 JD1 110.00 $8.70 45.80 40.00 2.9E17 550.00 JE5 120.00 43.30 40.60 40.00 2.9E17 JCP 550.00 160.00 15.50

, , 57.60 55.00 2.9E17 550.00 JE4 200.00 31.00 74.40 100.00 2.9E17 550.00 N 300.00 110.00 65.80 100.00 2. SE17 550.00 JD5 350.00

  • 103.00 73.80 100.00 2.9E17 JD4 550.00 400.00 105.00 71.20 100.00 2.fE17 550.00 End of Report Prepared byM47h 3/2,/9s l' Checked by: WRd Ni-M File No. N S AMQN L #co A .

l Page 10 -11 of 79

{

j 956  !

SIR-97-003, Rev.1 A B-1 1

StructuralIntegrity Associates, Inc.

/o >

9 Table B2 CVGraph - Charpy V-Notch Data Report for Capsule G-1 Weld PLANT  : MON MONTICELLO CAPSULE ID

G-1

~

PRODUCT CODE : WELD MATERIAL ID  :

ORIENTATION  :

HEAT NO,

E0018 WELD, HEAT UNKNOWN SPECIMEN INFORMATION Specimen ID Test Temperature Ispact Energy Lateral Expansion % Shear rluence Capsule Temperature r re-1d mil n/cma r i

JEE -80.00 24.50 20.90 25.00 2.9E17 550.00 JEL -60.00 22.50 20.60 20.00 2. 9E1"[ 550.00 JJE -40.00 68.70 54.00 40.00 2.9E17 550.00 JJP -35.00 22.00 24.60 30.00 2.9E17 550.00 D6B -30.00 22.30 32.00 30.00 2.9E17 550.00 JEM -20.00 39.50 34.40 35.00 2.9E17 550.00 D57 -15.00 78.50 70.20 65.00 2.9E17 550.00 JJM 0.00 36.30 30.80 35.00 2.9E17 $50.00 JEP 0.00 65.20 51.20 55.00 2.9E17 550.00 JEY 20.00 75.80 58.80 50.00 2.9E17 550.00 JJT 76.00 ~ ~

96.00 81.40 90.00 2.9E17 550.00 JJ7 160.00 118.50 90.20 100:00 ,2.9E17 550.00 JEU 225.00 127.80 86.80 100.00 2.9E17 550.00 End of Report 957 SIR-97-003, Rev.1 A B-2 Structural Integrity Associates, Inc.

II

Table B3 CVGraph - Charpy V-Notch Data Report for Capsule G-1 Heat Aff'd Zone PLANT  : MON MONTICFJ.10 CAPSULE ID  : G-1

  • PRODUCT CODE : HEAT AFF'D ZONE MATERIAL ID : SA533B1 ORIENTATION : LT Lateral-Transverse HEAT NO ..: C2220 / E8018 WELD HAZ '

SPECIMEN IIEORMATION Specimen ID Test Temperature Impact Energy

  • Lateral twpansion t Shear Fluence

'F ft-lb capsule Temperature all n/cm e er JED -79,.00 19.50 32.60 15.00 2.9E17 550.00 JLE 40.00 28.50 25.40 20.00 2.9E17 550.00 JII -40.00 65.00 49.40 35.00 2.9E17 550.00 JEA -30.00 11.30 54.00 50.00 2.9E17 550.00 JLC 20.00 40.D0 33.60 50.00 2.9E17 550.00 JET -10.00 33.00 27.60 40.00 2.9E17 550.00 JLB -10.00 50.10 38.60 50.00 2.9E17 550.00 JL2- 0.00 57.90 43.00 50.00 2.9E17 550.00 JEM 76.00 110.20 84.40 100.00 2.9E17 550.00 J1AI 159.00 103.00 78.00 100.00 2.9E17 550.00 JLK 225.00 - 123.30 94.80 100.00 2.9E17 550.00

, JK5 300.00 113.00 82.00 100.00 2.9E17 550.00 End of Report 958 SIR-97-003, Rev.1 A B-3 StructuralIntegrity Associates, Inc.

IL

U

~

MONTICELLO CAPSULE G-1 ENERGY (STANDARD FIT) J

- l CVGPAPH 4.1 Hyperbolic langent Curve Pnnted at 17:2051 on 02-2S-1996 )

Page1 Corificients of Curre 1 A 4531 B = Q23 C = 13597  % 9032 Equation is CYN : A + B ' l tanh((T - 11))/C) }

Upper Shelf Energr.109D4 Temp. at 3) A-lbs 55B Temp at 50 ft-lbc 993 lower Shelf Energy. -17.42 l

Matenah PLATE SA533B1 Heat Number: CZO Onentatier.: LT

. Capsule G-1 Total Fluene: 29E17 j Prepared by:2 k/ f d 4 3/y/g

'T Checkec by: h43rJ c.qi _w J MI. Ala A/(M- b ,YI, f, 5 . f.3 N 200 - --- ---- . ., , w .u  ;

Page 1 3 -2.1 d gg ' j h

u

- 130 e

a M e I 100 g g' 0 c su _

. o o 6 i i i l l l i  !

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Setfs) Plottal .

Plant: MON Cap:G-1 Materiah PIATE SA533B1 Ori: 1.7 HeatfC2220 Charpy V-Notch Data Temperature Input CVN Energy Computed CYN Energy. Differential 0

7 E96 -!S6 40 2429 2329 L5 60 305 313 -13 76 44.09 3933 ED6 100 E4 50J6 523 110 S&7 5435 3.94 12 0 43 3 5926 -15.96 160 755 7.,53 .03 200 91 87S5 3.04

~300 110 103.48 651 3 103 10S 21 -321 400 105 107.P. -232 SUM of RISIDUAIS = 0 Figure Bl. CVGraph Analysis of Capsule G-1 Plate Impact Energy 959 SIR-97-003, Rev. I A Etwa In eg I ssociates, Inc.

B-4 I 3-

MONTICELLO CAPSULE G-1 MLE (STANDARD FIT)

CVGRAPH 42 liyperbolic Tangent Curve Printed at 17:363 on 02-2S-199B Page1 Coefficients of Curve 1 A = T/.15 B = 3E15 C = 103S4 E = 8625 Equation in M = A + B 'I tanh((T - E)/C)]

Upper Shelf !.E: 331 Temperature at 2 35: 80 Imer Shelf 1.E: 1 Fixed Materiah PLATE SA533B1 Heat Number: (Z20 Orientation: LT Capsule G-1 Total Fluence 2SE17 200 m

. F 15 0

)

a M

100 es y n - '

e , ,, u Y

a su

/

x y

u1 i i i i i i i i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Setis) Plotted .

Plant: MON Cap: G-1 Material: PLATE SA533B1 Ori: LT

, Heatf.(220 Charpy V-Notch Data Temperature Input lateral Expansion -Computai LF. Differential l

0 11 3 17.46 -36 40 m 21s7 32 60 76 30 35.79 2E16 3358 133 '

l 221 10 9 4359 4194 135 110 4E79 45 2 .47 I 12D 4039 4856 -736 ,

160 5739 59 2 -LE j 200 74.4 6Ett 828 300 693 '7218 -236 350 US 2.56 31 400 7119 2 15 -L95 SUM of RISIDUAIS : Lil Figure B2. CVGraph Analyris of Capsule G-1 Plate Lateral Expansion 5IR-97-003. Rev.1 A 960 B-5 StructuralIntegrity Associates, Inc.

14 -

MONTICELLO CAPSULE G-1 SHEAR (STANDARD FIT)

CVGRAPH 43 Hyperbolic Tangent curre Pnnted at 17236 on 02-2S-1998 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 10258 1V = 13 97 Equation is Shearx = A + B ' [ tanh@r - TU)/C) ]

Tempenture at 50x Shean 159 Material PIATE SA53381 Heat Numbe= C2Z20 Orientation LT Capsule G-1 Total Fluence 2SE17 100 -f-a .eu ,

c5 ..

e

.c M . so a O c

e O

5

  • r 4 0 00 as o .

U J j j g l l t j i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Setfs) Plotted .

Plant: MON , Cap: G-1 Materiah PLATE SA533B1 Ori: LT Heatf.C220 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 10 739 2.1 40 25 IE70 924 60 25 2L64 325 76 30 27.4 259 <

100 3 373 -2S l 11 0 40 4227 -227 1 120 40 4729 -739 l IM 5 E -H I 200 10 0 8029 19 1

  • X10 100 9E74 325 20 100 9&74 125 400 100 0933 .47 SUM of PEIDUAIS : 114 Figure B3. CVGraph Analysis of Capsule G-1 Plate Percent Shear 961 SIR-97-003. Rev.1 A B-6 Structural integr/Wssociates, Inc.

IC -

i MONTICELLO CAPSULE G-1 ENERGY (STANDARD FIT)

CVGPAPH 41 Byperbohe Tangent Cune Printed at 17M45 on 02-28-1998 Page1 Coefficients of Cune 1 A = 64 2 B=6i42 C = 11&73 3 = 11.3 F4 uation is CVN : A + B ' I tanh((T - 3)/C) ]

Upper Shelf Energy.13Q01 Temp at 30 ft-lbc -5&! Temp, at 50 ft-lbs -151 lower Shelf Energy:-23 Materiah YELD Beat Number:IB018 TEII HEAT UNEN0TN Orientation-

. Capsule G-1 Total Fluence 2.9E17 300 m 250 4

m ..

i _.

j o

x 20u N

t:D 5*

c  : I N

100

[

2:

> aa t-) ,

su o

o

/

o i i i i i i i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plottal .

Plant: MON Cap:G-1 Materiah TD2 Ori: Heat f. IB018 TELD, HEAT UNEN0iN Charpy V-Notch Data Temperature input CVN Energy Computed CYN Ene.T Dtiferential

-80 245 22.16 233

-60 225 2925 -6.75

-40 68S9 37.75 30.94

-35 22 40DB -1E08

-30 2239 4?.48 -1958

-2D 395 475 -8

-15 785 50.09 214 0 6519 5813 736 0 3629 5823 -2133

~ ~

  • 20 718 6912 657 76 96 9E39 -39 160 1185 120.06 -15 Z5 1273 12E5 129 SUM of PJSIDUAIS : 0 Figure B4. CVGraph Analysis of Capsule G-1 Weld Impact Energy ggg h StructuralIntegrityAssociates,Inc. j SIR-97-003. Rev.1 A B-7 Ih -

MONTICELLO CAPSULE G-1 MLE (STANDARD FIT)

CVGRAPH 4J Hyperbolic Tangent Curve Printed at 176&l0 on 02-2S-1996 Page1 Coefficients of Curve 1 A = 4625 B : 4525 C : 10172 E = .t03 Equation is II : A + B ' [ tanh((T 'ID)/C) )

Upper Shelf II: 915 Tempenture at 113E -37J hver Shelf 1.E: 1 Fixed Materiah TELD Hest Numben IB018 TE!A EAT UNEN0fN Orientatiac

. Capsule G-1 Total Fluence 29E17 20u

~

ro

_ = 150 ..

E x

100 r,

e 0 7 U

-.s d 0 .

,--a Su o

0 Uj g g l l l l g  ;

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MON , Cap: G-1 Materiah TELD 0:i: lient f. IB018 NELD, EAT UNF.':0TN Charpy V-Notch Data Temperatun Input hteral Erpannon -Computed 11 Differential

-80 '

2039 20.1 .79

-60 20.6 25.42 -182

-40 54 ll337 2022

-25 24S 3537 -11Z/

-30 '2 3/.92 -5.92

-20 34.4 4211 -7."'I

-15 7029 4424 2E95 0 512 50 5 54 0 'l0.3 5035 -195 20 S&79 5&88 -2 76 BL4 7E71 438 ISO 9019 8&D3 216 I25 863 90.46 - 166 SUM of PJ5IDUAIS : -#7 Figure B5. CVGraph Analysis of Capsule G-1 Weld Lateral Expansion 963 SIR-97-003. Rev.1 A f StructuralIntegrityAssociates,Inc.

B-8 17 -

MONTICELLO CAPSULE G-1 SHEAR (STANDARD FIT)

CVGRAPH 43 Hyperbolic Tangent Cu re Printed at 18M36 on 02-2S-1998 Page1 l Coefficients of Cune 1 A : 50 B=50 C = 10181 70 = -33 Equation is Shear /. : A ' B ' l tanh((T '!D)/C) l Temperatun at 50x Shear. -S l

Mate-ih TELD Heat Numbe- IB018 YELD, HEAT UNEN0TN Orientation:  !

. Capsule G-1 Total Fluem 29E17

~

100

' 5 3 o

/

so C3 ..

e d o i W so a o C o e >

0 /

4 5 n w

  • a f

O g l l  ; g i g

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MON , Cap: G-1 Mateiah YELD Ori: B'est l: 1E018 YELD, HEAT UNKNOTN l

Charpy V-Not.ch Data Temperatum Input Percent Shear . Computed Percent Shear Diffenntial

-80 '

25 17 5 7J4

-60 20 2423 -423 l

-40 40 3139 8 i

-35 30 3433 -413

-30 30 3623 -623

-:l0 J5 40S -53

-15 65 4325 2L74 0 55 50.45 454 0 35 50.45 -li4C

  • 20 50 59S6 -9S6 76 90 8153 E46 160 100 9E71 428 235 100 9&7J 126 SUM of REIDUAIS = 9.43 Figure B6. CVGraph Analysis of Capsule G.1 Weld Percent Shear 964 sin.97-oo3. nev.1 A s.9 @ Simctural Integrity Associates, Inc IO

MONTICELLO CAPSULE G-1 ENERGY (STANDARD FIT)

CVGRAPH 4.1 Hyperbolic Tanpnt Cune Printed at 1823 on 03-01-1998 l

Page1 Coefficients of Cune 1 A = 8925 B = 4631 C = 7E16 'lV = IE4 Fquation is CYN = A + B ' [ tanh((T - 10)/C) ]

Upper Shelf Energy:!!538 Temp. at 30 ft-lbs -614 Temp. at 50 ft-!bs -l&9 !aer Shelf Energy. 2331 Material: HEAT AFFD 20NE S&5EB1 Best Number: CZ!20 / IB018 NELD HAZ Orientation: LT Capsule G-1 Total Fluena: 2SE17 300 m 25o

.c

~

1 l

3 i x am x '

to b*

C a M orn .

2, o

I M o U l l l l l 1 l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F .

Data Set (s) Plotted .

Plant: MON Cap: Q-1 , Material: HEAT AFFD 20NE SA52B1 Ori: LT Heat h CZ20 / E8018 TELD HAZ Charpy V-Notch Data Temperature Input CYN Energy Computad CYN Energy Differential

-79 . 19 5 30.73 - 11 3

-60 2!t5 343 -63

-40 65 41 2 2:L97

-30 713 44S7 26 2

-20 40 495 -95

-10 33 54 51 -2157

-10 50D9 MSI -4.47 0 57.9 60K -2.17 75 11039 99.42 10.7 7

' 159 103 113E3 -1033 225 1233 11554 7.75 300 113 "*" -192 SUM of RISIDUAIS = 0 Figure B7. CVGraph Analysis of Capsule G-1 Heat Affected Zone (HAZ) Impact Energy 965 SIR-97-003, Rev. l A B-10 I9 -

MONTICELLO CAPSULE G-1 MLE (STANDARD Frf) 1 CVCPAPH 4J Hyperbolic Tangent Curve Printed at 1&!SM on 03-01-1998 Page1 Coefficients of Curve 1 A = 4E76 B = 44.75 C = 143S2 E = -832 Iquation is II = A + B * [ tanh((T - E)/C) l Upper Shelf II: 9a52 Temperature at 1135: -433 Imer Shelf II: 1 Fired T

Mate:ial: HEAT Ar D ZONE SA533B1 Heat Numbe- CEO / IB018 YELD HAZ Orientation: LT Capsule G-1 Total Fluence 2907 200 m

- = h ,,

6 a

M M m a o

g gg- -

o e>

CU _O a w -

7 d

O O

- f Ui j l  : l g l

-300 -200 - 100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap G,-1 , Mate:ial: HEAT AFFD ZONE SAf3B1 Ori: LT Heat f. C2220 / EB018 TELD HAZ Charpy V-Notch Data Temperature Input lateal Expannon -Computed 12 Differential

-79 . T.59 2143 7.16

-60 2139 00.4 -5

-40 49.4 3613 1326

-30 54 39J4 1425

-20 3259 42 2 -832

-10 27E 45 3 -17. 3

-10 2 59 45 3 -6.D 0 43 4&44 -i44 76 St4 69.45 14.94

'159 3 ESI -451 225 943 Sil9 73 300 2 89 2 -72 SGI of RI5DUAIS = 236

~

Figure B8. CVGraph Analysis of Capsule G-1 Heat Affected Zone (HAZ) Lateral Expansion 966 i

f StructuralIntegrity Associates, Inc.

SIR-97-003, Rev. l A B-11 20 .,

i MONTICELLO CAPSULE G-1 SHEAR (STANDARD FIT)

CVGRAPH 4.1 Hypernahe Tangent Curn Pitai at 18242 on 03-01-1998 Page1 Coeffisnts of Curn 1 A = 50 B = 50 C = 7LTI TO = -1171 Equation is Shear:'. = A + B ' I tanh((T - 10)/C) ]

Temperature at 5k Shear. -1L7 Materiah HEAT AFFD ZONE SA533B1 Heat Number: C220 / 2018 TEIS HAZ Orientation LT CapsuleG'l Total Fluence 29E17 100 2 2

- ..m g _.

0 C

M So a r c i e

O e =

'g w

su j

U i u l g g 3 i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Setid Plotted .

Plant: MON Cap.: E-1 Materiah HEAT AFTD 20NE 'SA533B1 Ori: LT lient f. C220 / 2018 YELD HAZ Charpy V-Notch Data Temperatun -

Input Perant Shear . Computed Percent Shear Differential

-79 . 15 1521 -22

- 11 0 20 2258 -258

-40 35 3?.7 229

-30 50 3854 11.4 5

-20 50 44.3 526

-10 40 5109 -1LD9

-10 50 SLD9 -139 0 50 57.42 -7.42 76 100 90.16 933

' 15 9 100 903 126 225 10 0 9W.76 23 X)0 100 99S6 33 S13! of RESIDUAIS = 7.76 ,

Figure B9. CVGraph Analysis of Capsule G-1 Heat Affected Zone (HAZ) Percent Shear 967 SIR-97-003. Rev.1 A h StructuralIntegrityAssociates,Inc.

B-12 21

r SURV1 BAS.DAT Ted<h# h#$l $$5 :"stel 0 7 7.083 40 24.8 7.083 60 30.5 7.083 1 76 44.1 7.083 1 100 55.4 7.083 110 58.7 7.083 120 43.3 7.083 160 75.5 7.083 .

200 91 7.083 '

300 110 7.083 350 103 7.083 400 105 7.083

)

l l

l 968

~

k[MO Prepared by.

7k

'/i>/9)

" Cl9/f7 Checked by: _210 -So L R ec .L.

File No. F SP-YMZht M >716' Page -

9V1[0 S{I3[$)

Page 1  % fi 3/L9/M,

F i S13ASMLE.DAT I s

f q $$, *',os

~

Rd yY c!

O 11.6 4.4354 40 22.6 4.4354 60 30 4.4354 76 35.8 4.4354 (

100 43.6 4.4354 110 45.8 4.4354 120. 40.6 4.4354 160 57.6 4.4354 200 74.4 4.4354 300 69.8 4.4354 350 73.8 4.4354 400 71.2 4.4354 l

\ \

.]

\

1 I

969 r gg 3/ ' lads 2 -

Prepared . -- g { v fy,f 79 7 _

Checked by:

,g, ,p g ,j, .

File No. - g y yrJg )

Page -

12/30/96 Page 1 p +s flutl'1

,$ 6

S1BASSHR.DAT

,/ por

  • $g,f4 3 d 0 10 7.3953 40 25 7.3953 60 -25 7.3953 76 30 7.3953

-100 35 7.3953 110 40 7.3953 120 40 7.3953 160 55 7.3953 200 100 7.3953 300 100 7.3953 350 100 7.3953 400 100 7.3953

'l I

O i 1

I 1

j 970 Prepared by: N '#!D  !

Checked by: PY '*N 7 I File No N J P- 2. f o ~40 L . Re 0. L .

Page - # W Of 12/30/96 Page 1 NN 'I

'M D 3/2.9/96

..' g Su:v1wid p\eI, i (/'[

. V h

-80 24.5 12.757

-60 22.5 18.757

-40 68.7 18.757

-35 22 18.757

-30 22.9 18.757 i

-20 39.5 18.757

-15 78.5 18.757 ,

0 36.3 18.757 0 65.2 18.757 20 75.8 18.757 76 96 18.757 160 118.5 18.757 225 127.8 18.757 l

l 4

i 1

l i

l l

971 Prepared by:50Y9lzs/n2 Checked by: Md120 64.a, File No. N S P - t rq . 3 , p p e o ,, ,g Page 1 Page MYof WSg

'7A 9 J/29/%

~ 4

= Y / Survlha-L' Y h fl

-79 19.5 17.001

-60 28.5 17.001 65 17.001

-30 71.3 17.001

-20 40 17.001

-10 33 17.001

-10 50.1 17.001 0 57.9 17.001 76 110.2 17.001

-159 103 17.001 225 123.3 17.001 300 113 17,001 t

i l

972  !

Prepared by:[/CIOY6/T I

Checke  : NM %4-97 '

File No. N MI- 114 - kt. .9mf Page 1 U Bg9 WN Of D

'? M P J 3 I m l9 '

Adpg ownswswawwwnn#x;:awnuwwwm irear *xc w 8:www f  :* 'f }

j

a n .

m E:d$#

h:. r:W m 1 I

  • kh'50 $ l <

mn .- -

A i

o I {

g --

9 T "l m$$

ng

'ie g

m i ,

T .

t O

i n

ett i

i- a I -

~l l Nd t

.t .; --

l E

l l; I

"-~

i

') 'l i

~j" i T

i DR nit

[j,ja i , -.

i , ,

d

,  !. -.a .i @

, j ' '

' _-l-l :f-W k@i .smse M

! i i ~e gg : '

j j t f;%

I ll l l l--g l l

i j

-.- w - -- -

$k lu,l d

e -:. 4@

M l l ,

l l  !

i ,

' $?

4 #1 l .

D I '1 -

el l l l l l l l i '

4 .

_. I id ih M l l/ l l l l l  !

h

& y;pp wegwswee==r$gwesseq L =g4l J45i i llB1 d

gi it

. til?k?S nN ?HRMS &ib"$$$iiMWndW...., " T T User-Defined Mo&d: y=a+b*tanh((x-c)/d)

Coef5cient Data-a= 45.802899 b= 63.258675 c= 90.613176 d= 136.09598 User-Defined Model: y=a+b*tanh((x-c)/d) .

Standard Error: 7.0830240 Correlation CoefEcient: 0.9844198 Comments: -

The fit converged to a tolerance of le46 in 10 iterations. No weighting used.

30 ft-lbs = 55.88 50 ft-lbs = 99.66 450 F = 108.42 Lower Shelf Not Defined i Prepared by: I #'IbI Checked by: P' C U W/f/f7 File No. N 9- 219 - t o t- . p ,_o , t i Page M of H N5 i 2.7- 33 Pu4 3/2.S h 9 Figure A7. Curve Expert Analysis ofG-1 Plate Impact Energy Fte : 59 " 15 5 **"

1 973 12/30/96 SIR-97-003, Rev. A A-10 27

O

..: ; $,g oy g,fm .v,e:+4 . . os.y s e s  :. . h <9-.s.

^L v,C * %

  • R *: Ja w . .tr n

. .;<A.,y--,:, a; .w..., n-

2h'f;'MP.sh 'NINdM k?Njl

~f ,N,h' .I , ),N 4r((h's $. v

4 <

" N' 5hk,(,..hkhhf

<d ',h"(

," it ~T f ~ hN' h[' ;N0$NNSI;::),h

  • M%:qQ=
ypH.

a B$2 & R y @a#lb.? * - 8 m.m wm mcMMA va- "a4ps*p:Fw&4:6 S U 0 s6 *- midm- + m %sngna e - wn$: ew

'"MB%gf%k?

m:;M .: m4 dlm ,'$u ~;:g.

g- V w-Fp"fWtw WW %g,gweu m;M'^tyd@em-,-Ymf nMk :wnN t.tfr*~w'N 4, t;ngn

.(.JddI :mpw.Gwr:v;-?:pV< .,- < nn anma>%w.tia&PS?S??i.

sa;;LMf?:%dw#dtfM? ensaanswnv%%;i?bCafg~??.J%UM4 . +n m~ ~> / i w r-@$$h";%&x r menn9 E S.- i  ; i .

W A.ys. . ::- <  ! i j j i i i y MMIj -g ;

cy <y ,s . To-

          • - 9**

i 4 . -

papw;- t, i

ayec: 4 i r

m%ggi.pm-f

, 1 t - a.-

w ein-g-  ! -

T , \ -c1 ec: ,

I

. f/

@g p };

^p--

r I

I ... $ $ p:.; ._

}

l :M j l j j g ges -

1 I

. i i y

W JJ i , i i i  !~ >p

$Igez$pg:-

RE I i

4,T. IS i h

Ra' iw :

i ' i

,1.igi c%g- l I __ l l l  :

- g .

! w#

-s E .

5 l ..Ik1

s i l l I

i l-a ke - h==M l J. l :If p

j.

e, e

I r

s- -

! I n I w

i  ;

2  : i

- i

- m {

  • - o 2 q ill 16 M: M h:p: 'ih
  1. 3 %

[.",e e ifieee er t s i t"~i it t iei t t iei i et i , eie' iset t t t e i eee ie,,

[

y#i,T q-

o%,_' %. s.. ^ ~w%zgh=d$

h p 00!4Ivag"nP 4 04 1.= ?n3)m *%rwespegyewetamas+9wesse wrlDlhj'M505020042507lG AJ m mm=a 4 300; M400W450s n3 wagemst trea = -

C SUigd i%

We *me h 3_Ad$/i M P M!Mi 22 W & b@M$f 9 E 3Ef g% Mik.Mi wg w eb 3Wr N9 s ID v gfaw w Wl  ;

1 User-De5ned Model: y=a+b*tanh((x-c)/d)

CoefHeient Data-a= 37.854596 I b= 35.500608 c= 88.293491 d= 102.11354 i

User-De5ned Model: y=a+b*tanh((x-c)/d) .

{

Standard Error. 4.4353634 1 Correlation CoefHeient: 0.9841045 Cornments:

The 51 converged to a tolerance of le-06 in 3 iterations. No neighting used.

35 MLE = 80.06 F 974 Figure A8. Curve Expen Analysis of G-1 Plate Lateral Expansion

%S9 cQiQ-302.

SIR-97-003, Rev. A A-11 12/30s 6 y

?}1%

1h el%

. 1 s- p v.v.v .....:g.n., re,

><...- f.,;... -

M~ vs;-.j.v t,yW.y .Byt 6$@f6W.,.cz g .Wg@yggFtMda :.:..:.v:.. u..g#g% $,$5t. .s 7

..e yis1B$tn3 W

Mdf@M Ml!@f#n#

d MICHiisUl6WGWRiaW$pte,N.,,M,e..EMMR h M@AMinnMdOM!EsMMSMy-<e^:;H9lreergky a tss$ W *b:gEs

!6Mwin Mpw N.+wwwmgeqnAb 69and AD,, hi!R9%$E,,5 sb mu whys w -

,, i, w *j a

5p%::thm-:

it 2sER(O!

cc:nne ,

Yd:

L EN.a;&lm?.

umv T-Es m

gC-M4Pg M -

Ci Jg - ' -

i j if'*% B.mMTM 6n., ~

} i  ; '@M

.w$p%r$

.6 g-we - - .:. ,

1 I T

i

M.*

f

- r~ m, l, An i ' q?:a u { l l 3.

p:

~

w t-i ra

)

ST .

L. ,$  ! I i  !, i#;

a-

  • 4.v: t 1 , u w $ e. ..

a i  ! , -

l I_$

$.A$_r*a g d__

i i i i i l

  1. g g- ,

i . i qP i u

j

% 1: 1 1 i n!2 d

?" - . a l?

' l l

g. y '

1

' l ,

+

l @

f. aw m .a q:

__ g ,! ---

t ca q

l_- . I y f.a.,.

gg s

e i . i i e i e m .-  :: i l l l j B p

7 g'- t. .

o --- -l -- l -

jij

- i98mu ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,," ,,,, E ik - Adsn;n ' ymz f y ~ .-

dwS0 ilh00'![4QGQh. rey ~4dM&'R&aQ@xh\y%1an

';Qlgty "p* in'T"qsgj g ". e---MT486]h.wtWyx?- m+l00l: _f 50;}

l 1mN i wa m sg dL i  : e.,

b $N [ PF @@W9$Mdk

  • Mi@dEz%Y$m:s.MM9*#re ....MN@IE@MElkbI$N$$$
d. *

'a zemsedspi9fNN. 4 User-De5ned Model: y=a+b*tanh((x-c)/d)

Coef5cient Data:

a= 60.486874 b= 41.473022 e= 151.07786 d= 62.798615 User-Denned Model; y-a+b*tanh((x-c)/d)

Standard Error: 7.3952806 Correlation Coef5cient- 0.9835391 Comments:

The Et converged to a tolerance of le-06 in 17 iterations. Regression weighted by uncertainty.

l 975 i

l Figure A9. Curve Expert Analysis of G-1 Plate % Shear Ms9 - ai9 - 3c>2.

SIR-97-003, Rev. A A-12 12/30/96 Just

> 1. c / ~c

, .,yggcyg- ,yy,77p ,,. y g u p5$5% ? b v @:*EW4ki:cainili'iWi n..%,g,gg,y iSNJ6Mi zut**rda.=mm, -n $

l v.x m w & y#

.-T-- .

lM 3 . . ..- . . ..

4 . . . .

.( . .,. .

j .  :

A.

l -

User-Defined Model: y=a+b*tanh((x-c)/d)

Coefficient Data:

a= 64.55567 b= 65.493987 c= 11.692249 d= 118.93523 User-Defined Model: y=a+b*tanh((x-c)/d)

Standard Error: 18.7573788 Correlation Coefficient: 0.8986325 .

Comments:

The fit converged to a tolerance of le-006 in 11 iterations. Regression weighted by uncenainty.

30 ft-lbs = -58.10 50 ft-lbs = -15.19 976 350"F = 129.61

-350 F = -0.25 Prepared byhAM9/tf/9)

E

. Curve Expen Analysis of G-1 Weld Impact Energy Checked File No. Mi by: f I>ITPlo Li k " q b -4 SW Page Y 10 _ of _ W p s ~

pu <d 3lts[%

3o

, x.swe. +. .. ;,n. .Wmmm . . mmr WW"t' l$ f r,wwc:a,e ,,-n,,a w R WX* - M a c N e:11$$

7:

1.

i e i 3

I

.. ..T

e. . V-7 i

.T ,,

e-- .

_,O --

,1

/

2p .

.. /.. .9 .

g. .

User-Defined Model: y=a+b*tanh((x-c)/d) .

Coefficient Data:

a= 69.709258 b= 46.276763 c= 16.533372 d= 77.995781 User-Defined Model: y=a+b*tanh((x-c)/d)

Standard Error: 17.0010162 Correlation Coefficient: 0.9165205 Conunents:

The fit converged to a tolerance of le-006 in 17 iterations. Regression weighted by uncertainty.

30 ft-lbs = -83.77 g77 50 ft-lbs = -18.95 350 F = 115.97

-350 F = 23.44 Prepared byNfEO 9l2.fh 7 Checked by: hk A L Lit &

Curve Expert Analysis of G-1 HAZ Impact Energy File No. Af5PUM-Mo'2._,4ef,j Page N 31 of M 79 Mt(4 Jhsfss a/

Table C1 CVGraph - Charpy V-Notch Data Repon for Capsule W Plate [2]

PLANT  : MON MONTICELLO

, CAPSULE ID :W -

PRODUCT CODE : PLATE ~

MATERIAL ID  : SA533B1 ORIENTATION  : LT Lateral-Transverse HEAT NO ,,

C2220 "

COMMENT "

Additional Irradiation in Prairie Island SPECIMEN INFORMATION specimen ID Test Temperature impact Energy lateral Expanston 8 Shear riurnee capsule Temperature

  • r ft-lb mil n/ cme er D3E -50.00 3.50 5.00 0.00 3.33n8 545.00 D1C 0.00 4.00 2.00 0.00 3.33E18 545.00 D37 50.00 ,10.50 14.
  • 0.00 3.33E18 545.00

, D3 6 ' 70.00 11.00 15.00 10.00 3.33n8 545.00 D3P 100.00 23.50 23.00 10.00 3.33E18 545.00 D3Y 125.00 33.00 29.00 30.00 3.33E18 545.00 D33 150.00 50.00 41.00 50.00 3.33ns $45.00 D3M 200.00 66.50 63.00 70.00 3.33E18 545.00 D3A 225.00 98.50 50.00

. . 95.00 3.33n8 545.00 JE1 250.00 94.50 86.00 100.00 3.33E18 645.00 D35 300.00 99.50 79.00 100.00 3.33E18 545.00 l D3:. 250.00 105.50 88.00 100.00 3.33ns 545.00 D34 4o0.00 105.00 as.00 100.00 3.33nt 545.00 End of Report 978 Prepared byM6/d 9/19/n

, Checked by: N 7+ d t - // - a :s File No. N 5P-lWTo % . Res. . 2.,

Page 32- % 4- of_  ? grl SIR-97-003, Rev.1 A C-1 f StructuralIntegrityAssociates,Inc.

32

Table C2 CVGraph - Charpy V-Notch Data Report for Capsule W Weld [2]

. PLANT  : MON MONTICELLO-CAPSULE ID :W -

PRODUCT CODE : WELD MATERIAL ID  :

ORIENTATION ,

HEAT NO  : E8018 WELD, HEAT UNKNOWN--

COMMENT Additional Irradiation in Prairie Island 1 SPECIMEN INFORMATION Specimen ID Test Temperature Impact Energy lateral P9ansion t shear Fluence Capsule Temperature

  • r ft-lb mil n/cm* *F D52 -100.00 2.50 0.00 0.00 3.2EE18 545.00 DSB -50.00 10.00 13.00 5.00 l! .26E18 545.00

, D51 -25.00 15.00 19.00

  • 20.00 3.26E18 545.00 DES 0.00 55.00 44.00 60.00 3.2EE18 545.00 D5A 25.0C 21.00 24.00 50.00 3.26E18 545.00 D53 10.00 77.50 65.00 75.00 3.2EE18 545.00 D6A 150.00 106.50 84.00 100.00 3.26E18 545.00 DSS 200.00 ,, , 118.50 97.00 100.00 3.26E18 545.00 DSC 300.00 117.50 95.00 100.00 3.26E18 545.00 End of Report 979  ;

SIR-97-003. Rev.1 A C-2 f StructuralIntegrityAssociates,Inc.

u .

Table C3 CVGraph - Charpy V-Notch Data Report for Capsule W Heat Aff d Zone [2]

PLANT . MON MONTICELLO CAPSULE ID :W PRODUCT CODE : HEAT AFF'D ZONE MATERIAL ID : SA533B1 ORIENTATION  : LT Lateral-Transverse HEAT NO "

C2220 / E8018 WELD HAZ ..

COMMENT Additional Irradiation in Prairie Island

  • I k

I SPECIMEN INFORMATION Specimen ID Test Tempera 0ure Ispact Energy Lateral Expansion % shear Fluence

, er ft-lb Capsule Temperature mil n/cma 'r D77 -50.00 9,50 20.00 5.00 3.31E18 545.00 D75 0.00 4.50 10.00 5.00 3.31Z18 545.00 D71 50.00 50.50 11.00 0.00 3.31E18 545.00

'D74 70.00 12.00 13.00 5.00 3.31E18 545.00 DSU 100.00 30.00 34.00 40.00 3.31E18 545.00 DAE 125.00 28,50 29.00 40.00 3.31E18 545.00 D16 150.00 65.00 68.00 75.00 3.31E18 545.00 D7E 175.00 37.00 39.00 50.00 3.31E18 545.00 D7A 200.00 73.50 48.00 100.00 3.31E18 545.00 DET 250.00 16.00 10.00 100.00 ' 3.31E18 545.00 D73 300.00 , 84.00 10.00 100.00 3.31E18 545.00 End of Report 980 51R-97-003. Rev.1 A C-3 StructuralIntegrity Associates, Inc.

34-

MONTICELLO CAPSULE W ENERGY (STANDARD FIT)

CVGRAPH 4.1 Hyperbolic Tangent Curve P .nted at IP"'" on 03-01-1998 Page1 Coefficients of Curve 1

)

A = 54.18 B = 5133 C=8155 E = 160.78 )

Equation ic CYN = A + B ' I tanh((T - ID)/C) l Upper Shelf Energy:10531 Temp at 30 ft-Ibc 1183 Temp at 50 ft-lbc 154 lower Shelf Energy: 254 Material: PIATE SA533B1 Heat Number: C220 Orientation: LT Capsule T Total Fluence 323DB A

t Cn 250

~

,o T

Prepared bkf1 L3dt.t[91, <

Checked 3y:_b b5Vb CMI -9A

$ 200 File N o. - N5P-l/#'-W2.Qm z ge 35 -43 Pa ?s '

_ of _

u L

150 .

c) c w -

z  ?--

o - /n o

_ J l l l l l t 1 i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: _EDN, Cap: i Material: PIATE SA533B1 OrbLT Heat f. CED Charpy V-Notch Dats.

Temperature input CYN Energy Computed CYN Energy Differential

-50 . 35 32 29 0 4 4.7 .7 50 10 5 925 114 70 11 121 -21 100 225 22D9 14 12 5 33  ::32 -2 150 50 4755 244 200 665 75 2 -102S 2'5 985 B754 ~

1035 250 945 94.9 .4 300 995 1G?.25 - 2 75

'l50 1055 104.71 .3 400 105 10 i 47 .47 SUM of PEIDUAIS = 0 Figure C1. CVGraph Analysis of Capsule W Plate Impact Energy gg1

      1. ### #####ID#80CI8I88' IUC-SIR-97-003. Rev.1 A C-4 3f

MONTICELLO CAPSULE W MLE (STANDARD FIT)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at IE2530 on 03-01-1998 Page1 Coefficients of Curve 1 A : 44 5 B = 43 5 C = 89.1 TO = 15146 Equation is E = A + B ' I tanh((T - 70)/C) )

Upper Shelf I.E: BE12 Temperature at 11. 35: 1315 lower Shelf I.E 1 Fized Materiah PLATE SA533B1 Heat Numbe.~. C:220 Orientation: LT Capsule T Total Fluenz 3.33E18 20u f.n ..

.O 150 --

)

a M

100

- c e o n a

5 i a

e so

/

1 I j o

ul i l 1 l t l l l

-300 -200 -100 0 100 200 300 400 f40 600 Temperature in Degrees F '

l Data Setis) Plotted .

Plant:.)f0N. Cap Y Materiah P! ATE SA533B1 Ori: LT Heat f. C2220 Charpy V-Notch Data l 1

Temperature !nput lateral Erpansion ' Computed E Differential

-50 . 5 IS3 3.06 0 2 331 -121 50 14 9J 429 70 15 1105 IS4 100 23 21N !J2 125 29 3Lo9 -299 15 0 41 4334 -234 200 63 6619 -319

'25 80 74D9 59 250 86 7932 6.47 300 79 8532 -622 l50 88 87J2 R 400 86 Fl.79 -L79 SUM of RISIDUAIS : 551 Figure C2. CVGraph Analysis of Capsule W Plate Lateral Expansion 982 SIR-97-cos. aev. ia c.5 36 --

MONTICELLO CAPSULE W SHEAR (STANDARD FIT)

CVGRAPH 4J Bypermhe Tangent Cme Printed at 18?ld7 on 03-01-1998 Page1 Coefficients of Cune 1 A = 50 B=50 C=6421  % = 15521 Equation le Shearx = A + B ' I tanh((T - E)/C) 1 Temperatun at 5k Shear: 1552 Material: PIATE SA533B1 Heat Numien 220 Orientation: 1.T Capsule T Total Fluena: 333D8 D

- .. w '

e q) o

.c M

80 a

c c)

CJ 5

  • a

/

O 1 u i i 1

i i i i i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Setts) Plotted .

Plant: MON

, Cap:Y Materiah PIATE SL53381 Ori: 1T Beat f. C:220 Charpy V-Notch Data Temperature Input Penent Shar - Computed Percent Shear Differential

@ . 0 3 -J6 0 0 .79 -19 50 0 364 -164 70 10 657 142 100 10 1518 -538 125 30 2lLO4 1.95 150 50 459 4D9 200 70 80DB -10.08 225 95 89.74 525

'250 100 9501 4S8 300 100 98S LD9 ll50 100 9926 23 400 100 9935 D4 SUM of PEIDUALS = 12 Figure C3. CVGraph Analysis of Capsule W Plate Percent Shear STR-97-003, Rev.1 A C-6 StructuralIntegrity Associates, Inc.

37

MONTICELLO CAPSULE W ENERGY (STANDARD FIT)

CVCRAPH 42 Hyperbolic Tangent Curre Printed at 2259 on OH1-1998 Page1 Coeffidents of Curve 1 A : 59 2 B = 6144 C=9552 11) = 5032 Equation is CVN = A + B ' I tanh((T - 10)/C) !

  • Upper Shelf Energy:120.73 Temp. at 30 fHbc -j Temp at 50 ft-lhe 353 lower Shelf Energy:-135 Materiah YELD Heat Number. 2018 TELD, HEAT UNDl0TN Orientation:

Capsule i Total Fluence 326D8 300 m 250

,o ..

I a

% am x

u 25 5

C ,,

y - r.

100 f 0 a w -

j jo Dl i I I I I i i 1

-300 -200 -100 0 100 200 300 400 500 600

. Temperature in Degrees F Data Set (s) Plotted Plant: MON . Cap.:Y Materiah TED Ori: Heat f. 2018 TEIA HEAT UNKN0YN Charpy V-Notch Data Temperatum Input CVN Energy Coinpute! CYN Energy Diffenntial 4

-10 0 . 25 354 -13 4 l

-50 10 11 2 -12 1

-25 15 19.44 -4.44 0 55 3036 2433 25 21 43E9 "S9 70 775 713 559 i 15 0 1065  !!Til8 -E l 200 118 5 115 5 25 3)0 117 5 12051 -L9  :

SUM of REIDUAIS = 0 1

084 Figure C4. CVGraph Analysis of Capsule W Weld Impact Energy 51R-97-003. Rev.1 A C-7 StructuralIntegrity Associates, Inc.

30

MONTICELLO CAPSULE W MLE (STANDARD FIT)

CVGRAPH 41 Hypecolie Tangnt Curve Printed at 1821 on 03-01-1998 Pap 1 Coefficients of Curve !

A : 4911 B = 4E!! C = 9851 E : 4535 Equation is E : A + E ' ! tanh((T - E)/C) )

Upper Shelf 1.E: 7722 Tempeature at 2 3fx 15 5 love Shelf I.E: 1 RIed Material: YELD Hat Numbe::12018 TELD, HEAT UhDOTN Orientatiam Capsule T' Total Fluenz 32SE18 200 cn ..

.O 150 --

a M

f.:Q 100  % ,.

~

CU

._, o CC 4 50 g C

_m oi I T I i l l I i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MON _ Cap:Y Materiah TELD Ori: Heat f.12018 TELD, EAT UhDOWN Charpy V-Notch Data Temperature input lateral Expanman ' Computed E Differential

-100 . 0 58 -53

-50 13 13.16 -16

-25 19 1934 -34 0 44 2143 1556 25 24 39.T -1522 W 55 6038 4 11 15 0 84 8E92 -292 ,

200 71 9321 178 000

{

95 9657 -L67 i SUM of RESIDUAIS = -107 j Figure C5. CVGraph Analysis of Capsule W Weld Lateral Expansion 985 l

SIR-97-003. Rev.1 A C-8 Structuralintegrity Associates, Inc.

M

1 MONTICELLO CAPSULE W SHEAR (STANDARD FIT) i CVGRAPH 4J Hyperbobe Tangent Cune Pnnted at 18 17 on 03-01-1998 Page1 Coefficients of Cune !

A = 50 B=50 C = 73E2 TD = 15.46 Equation is ShearA = A + B ' l tanh((T - TO)/C) 1 Temperature at 5k Shear: 114 Mateiah TELD Heat Number. 3018 WD.D. HEAT UNDiOTN Orientation- l Capsule i Total Fluence 326D8

~

100

. .au

/

d -'

as

.c W

so a

c c)

C) b * '

w au

~

c 0 ) [ t j i l

-soo -200 -100 o too 200 soo 400 soo soo Temperature in Degrees F Data Set (s) Plotted ~

Plant: MON . Cap:T Mateiah YELD Ori: Heat f. 2018 TDA HEAT UNDiOYN Charpy V-Notch Data Temperature Input Pemmt Shear - Computed 'Permat Shear Differential

-100 . 0 416 -416

-50 5 14.45 -9.45

-25 20 24 2 -42 0 60 39M 20 5 25 50  % 43 -6.43 70 75 81.4 7 -6.47 150 100 E47 252 200 100 9933 E M M  %% M SUM of PEIDUAIS = -75 Figure C6. CVGraph Analysis of Capsule W Weld Percent Shear 986 sm-97-003, Rev. l A ' '

C-9

+o

i MONTICELLO CAPSULE W ENERGY (STANDARD FIT)

CVGRAPH 41 Hyperoche Tangent Curve Printed at 18242 on 03-01-1998 Page1 Coefficients of Curve 1 A = 4453 B=4051 C = 8929 10 = 14656 Equation is: CVN : A + B ' I tanh((T - 1D)/C) i Upper Shelf Energy: 25.05 Temp at 3) ft-lhe: 10 Temp. at 50 ft-lhe: ISBS laer Shelf Energy. 42 Materiah HEAT AFD ZONE SA533B1 Heat Number. CZ!D / IB01P YELD HAZ Orientation: LT Capsuleif Total Fluence 231DB 300 1

1 m 25u . i

.a ..

1 r= 2m .

N )

to -

L 150 c) c N

100 z . 1

> U U

a/ [ '

~ n/o .

o d '

o i i i i i i i l

-300 -200 -100 0 100 200 300 -400 500 600 Temperature in Degrees F l Data Seta Pioua .

Plant: MON Cap.:J . Materiah HEAT AFD 20NE SA533B1 Ori: LT Heat f. C2!D / E20181rELD HAZ Charpy V-Notch Data Temperatmt input CYN Enegy Codputd CVN Energy Differential

-50 - 95 5 4.49 0 45 ESS -2.45 50 10 5 12 3 -188 70 12 16 3 -42 100 30 2 i14 45 12 5 285 3404 -6.44 15 0 65 46.09 1E9 175 37 57m -20m 200 T5 6625 724

'250 3 77 3 -1.78 300 84 B252 1.47 SISI of RISIDUAIS = 0 Figure C7. CVGraph Analysis of Capsule W Heat Affected Zone (HAZ) Impact Energy 987 f StructuralIntegrityAssociates,Inc.

SIR-97-003. Rev.1 A C-10 g ,,

MONTICELLO CAPSULE W MLE (STANDARD FIT)

CVGRAPH 41 Hyperbolic Tangent Cu:Te Printed at IE3606 on (0-01-!998 Page1 Coefficients of Quve 1 A : 1 41 B : 241 C : 1%S4 3 : 17/31 F4 uation in E : A + B ' I tanhf(T - E)/C) l Upper Shelf 11.: 7/23 Temperature at LF. 3E 1213 leer Shelf I.E: 1 Rzed Material HEAT AFFD ZONE SA533B1 Heat Number. C2:20 / 2016 TEIS HAZ Orientation 1.T Capsule T' Total Fluence 3.'!1E18 200 Cn ..

- ~

150 --

E M

100 Q

~ r b

Q >

A 50 0 U

o C

_d U g g j g l i i  ;

-300 -200 -100 0 100 200 300 400 500 600

. Temperature in Degrees F Data Setts) Plotted .

Plant: MON Cap: I . Materiah HEAT Af7D ZONE SA53381 Ori: LT Beat l:(2220 / 2018 WELD HAZ Charpy V-Notch Data Temperature Input lateral Expansen Ccmputed !.F. Diffen:ntial

-50 . 20 53 1429 0 10 10Zi -Z1 50 11 1732 -6.92 70 13 Zm3 -9m 10 0 34 2924 4.75 12 5 29 35S2 - 4 92 150 68 42m 2536 fl5 39 4952 -1052 200 48 Sif2 -7f22

'250 70 6515 434 300 70 7LO9 -1D9 SUM of RES'DUAIS : 654 Figure C8. CVGraph Analysis of Capsule W Heat Affected Zone (HAZ) Lateral Expansion 988 f StructuralIntegrityAssociates,Inc.

SIR-97-003. Rev. l A C-l ! 47~1

MONTICELLO CAPSULE W SHEAR (STANDARD FIT)

CVGRAPH 41 Hyperbolic Tangent Curve Pnnted at 1838:19 on 03-01-1998 Page1 Codficients oi Curve 1 A = 50 B = 50 0 : El 'lV = 13188 Equation ie Shearx = A ' B ' I tanh((T - 70)/C) ]

Temperature at 50x Shear.1333 Material: EAT AITD 20NE SAf31B1 Heat Number: C2:20 / 2018 TELD HAZ Orientation 1.T Capsule i Total Buence 331D8 100 ,

- Bo

/

g ..o o

.c to ,

d D e

O

'g @ '

a -

)

20 a o a s -

C 1 I i

~

l i I I I

-300 -200 - 100 0 100 200 300 400 500 600 Temperature in Degrees F -

Data Set (s) Plottej .

Plant: MON Cap:J . Materiah EAT AITD ZONE SA5'DB1 Ori: LT Heat f. (Z20 / 2018 TELD HAI Charpy V-Notch Data Temperature input Percent Shear - Com'puted' Percent Shear Differential

-50 - 5 52 4.47 0 5 233 25 50 0 834 -834 70 5 1338 -B38 100 40 2752 17.47 12 5 40 43SB -168 150 75 613 13E9 175 50 7639 -2S.39 200 100 8625 1114

'250 100 9E49 15 000 100 9933 36 SUM of RISIDUAIS = 3E9 Figure C9: CVGraph Analysis of Capsule W Heat Affected Zone (HAZ) Pe.rcent Shear 989 STR-97-003. Rev.1 A C-12 Struct"ralIntegrity Associaos, Inc.

z}.3--

[J' SURV2 BAS.DAT

,X g+ p q@<"'

-50 3.5 5.257 -

0 4 5.257 50 10.5 5.257 70 11 5.257 100 23.5 5.257-125 33 5.257 150 50 5.257 200 66.5 5.257 225 98.5 5.257 250 94.5 5.257 300 99.5. 5.257-350 105.5 5.257 400 105 5.257 b

Preparea byddM %//f p Checked by
7LC ' #1/97 File No. N SP- 2.N- 30 t , pig, g

~

j Paje WMQ M 917g

'h Ed ([s 5/97 Page 1 3 fd l[2 A 4- >

i- ,

f 7 S2BASMLE.DAT

~

,,a N f #*

-50 5 4.2429 0 2 4.2429 50 14 4.2429 70 15 4.2429 100 23 4.2429 125 29 4.2429 150 41 4.2429 200 63 4.2423 225 80 4'.2429 250 86 4.2429 300 79 4.2429 350 88 4.2429 400 86 4.2429

,)

l l

1 1 c. ,eo oy 2vekh>

~.5e::ked by: P/ e " W/i/f7 Cile No. N sp 2.l q - 3 01 , Re,o g

,Page NM60f FMl

. ?u a Slais?

%Q 3/19/99 12/30/96, Page 1 gg1 4

S2BASSER.DAT-ff

.e yd

~

b

/

. N b

-50 0 4.9128 0 0 4.9128 50 0 4.9128' 70 10 4.9128 100- 10. 4.9128 125 30 4.9128 150 50 4.9128 200 70 4.9128 225 95- 4.9128 250 100 4.9128 300 100 4.9128 350 .100 4.9128 400 100 4.9128 t

\

I l

reparea ny:h/M '/if/97 giggy Chs ked by: tlc  !

File No, N $9- 219 ~ So u , Re a,1 l i

Page _

l# A*?& W 9+ 7e '

% v sl.ilv 12/30/96 Page 1 992

SURV2WLD.DAT s i

,g\ /b p.b'",/

-100' 2 . 5. 15.546

-50 10 15.546

-25 15 15.546 0 55 15.546 25 21 15.546 70 77.5 15.546 )

150 106.5 15.546 1 200 118.5 15.546 300 117.5 15.546 ,

i

~

I O

s I

.ceverso o?//fA-V #

'leh> .

, Checked by: PbC fIIWS7 f

, File No. Md- 2-10 -30 L. . Qd x i

Page 9 NYdf 2dT' M 78

. y u S{osl9) br54 shshs l 993 Page 1

1

/' SURV2EAZ.DAT v

($

t %*s Q

-50 9.5 11.5274 0 4.5 11.5274 50 10.5 11.5274 70 12 11.5274 j 100 30 11.5274 l 125 28.5 11.5274 150 65 11.5274 175 37 '.'1.5274 200 73.5 11.5274 250 76 11.5274 300 84 11.5274 b

j =reparea by$5 f g j,,m

Checked by
_ft-c o fy, -

l File No. _NSP- 2.Io .Soz , p I9* # NIf _ Wh .

' At r4 t/,sto MU 3/2.5/tg Page 1 994

e 4

I i

e

,$u.%;;;m <

z' j Mf:tyfGg..iQf ,:.

p;${s.ggyjgq;t;QQ;hz ;a@.syf;&x"is:

s w - i 2.zk;&nf:fi@W5) 'p;if]Q"gryf';;fMhi.QiDG%iQ: v; S. %Q5NH:1 G

'.[$dII $+4 ;zq:;<.i: gpv;o s;:msC "'W*ule1; >: ~..a:crub**b:g tva>:L7 6.M Dfsj;pfhM E d*($.$:

M&l=8 N ESGNO v.What.

h 4Auud5A:5aa D W.

6:+-v "ggs % gg.gg *M%+m$Up?$[f,;g!$:bh #'Lmu ELT E wudiaaiy>

35$.:g.;,,.a' g

g. .y m3 a.p...S,3..q,gA
.c.y
gjghd&;

y . h pie wwas:y.pewmpt/t*J;MLi%F2b;.sg%pyAmss.M.ps s: 2 i ugh .

5W.3C 1eiSi:E.tN:Gi::M.4@i::g{-  !

hk-6amd. .. v f f j

,f I  ! #

[

.IdW n&rk ,./ '

$N,

?

. .. Z l l  ! l i l '

Q'r@gf M -

M

-a tll i y  ;

=

i l j j { g I -

$3 1

pg i

. ~ . A. -

1 i . t I t I A;l lT -

4 4?g' as l  ! i a - - 5 ^.

l fl.

i w I.:c.? n - wp s i l l .

j .y4_.

8 6% . .e b l ~

} l  !  !

.heas.. \ \

} '

!  ! l 4 ID r -

e -~ .ig%g i l 1 1 I li r i j f I l %C

$""sNk l i  !

I i l l

- l, t v4 8 ;k - - - ,I a i

m E l I - ,i i

I i  ! #%s y g::.p.W,%: a i

-:. w 1 i t t 4',rf s: i  : i i i j  !

9 '

. . wk a.s.a M ?& 44 3

wr"U -

n 1 I

.+

i i

i

< i i l @t h-dt

{  : 1 1 @!

_ -- l l .__, l --){ i d

b-]

e

~

. i. i i

h d_L l l

.+

I l.

l l $$

n j

j h):

w  ! I j j 98

& , I -- i  ! .

w 2

g& ^

i r -- l - ,[,  !

+

Ri

' =*

j:*$

-$gi ,-

=

j i n _. iti 1

=%b I l ,

ih

"$ Je ' MM4/Wf l'dAhMjUdid4WaW'WWW4"WMM

"" 60M00$MrDE ei;30M t

5$$200*'~

Wr~"

a  ! 9 M3#WNI I4603 i

emmaggwd iaWe go. a se"MrssseneM@m4 sew"gi@pF"ET 4 ' #1~"

. .Mhu _ &

C  !

v W[. f wetw jN s,% 3?iL J n4tw b  ?

eb dIkN  % m m Mpptram m m.,,C w. Y MM%Aldh b j

l User-Defined Model: y=a+b*tanh((x-c)/d)

CoefBeient Data:

a= 54.170559 1 i

b= 51.620818 4 c= 160.73631 d= 83.482587

~ d' l 4h

  • 3 e @

User-Defined Model: y=a+b*tanh((x c)/d) q * ~

N Standard Error: 5.2573785 w $ 'k j h Correlation CoefHeient: 0.9941374 u* 3 Cornments: 1 en i .'O w The St converged to a tolerance of Ie-06 in 4 iterations. No weighting used.

b y

-J pd 30 ft-Ibs = 118.34 ' " N* l 50 ft-lbs = 153.98

{" n 350 F = 104.70 A M, e

h g

-350 F = 2.55 4 g 9 m xO y e o.

m $ m en -

m c U u:= c.

l Figure B7. Curve Expen Analysis of W Plate Impact Energy l

l l

995 f'-), : So W 2. EN 6 .Do e-- pfe - '

m,

' 49 5 h l 7x@ 3/2,/%

SIR-97-003, Rev. A B-10 12/30/96 49

ca%@a@r spit % t*92 ge@

% tpi m ybr=Eg  % %qqmune tM4m mw wrok%:m n@%anns#y!;WSP% sa dEgm&ga.cwisul#2W lRI' Cap.3$gscMGM$@nDiv

-- i t e M ?%)tmM

@me@2aw w  : m.

mees.mmha+upM*HWie!M?r#LpMRM%.9WEMMMfWM21MeNMES LQggyy:4 g S &W O O **ts n

.mkm..w.wn amar .

Wmy)E1hwww ers uus kw _.g%ps~&

e 9 agh@urp?m"$a 3?JEMMMFWRusWs f

I.ffAkh.m 4m g N5

! l  !

t i

T w

n. -c. -

4 a i-m, n

a ,

9 -

w m

w E46g&ewA: i l

b 4 Ma gg$pf.-

J r 5 i

i 4#. $ @

' i =

N

+ 7diff y-I 't i j i l Ih a 4 .

,. m A> -

x

i i j i i i p gg w x-  ; ,
{ { t.

! as i

g i O.= '

i I l i i
j. .[  ; E

.=

.w w a

m. n I. i 4
i. l 1

i v

i

. m g&

Sk . 45:  !

9 ,.ta- C.

,I ,

1 l, t. l i n y=

gr 1 i g I l w  :-

i l Wiy m.a tw i a:

i i  ; -

l l gg Ett l1: l i l L l i a

.y .

-- - i Faj 1 s

g

.m

_/m s _m. n- ..

.i i .a

, i j2 g tw - --

%; y  :- # .

Op t e e edIi e t efeoft $q 9 @ $Li;iiegli,etlttetIttt t tt, tvet ittt ttti eeit tef f efifl g l g E_qgrag.a.t- ~ %#We~ --

y -ia

._%_@it W"_ de@_4&h.ew_negs,+4E

7. __ .,

N t

d, /m IR 91Billid i y a.k.. s..e "pgl pa 1

~L MlEIM8  !

! ~ - '

==anmeb-s hbr  % i \ n. Y;  % . kiik .. Sh}

User-De5ned Model: y=a+b*tanh((x c)/d)

Coefficient Data:

a= 46.135666 b= 41.077958 c= 156.23414 d= 78.247295 User-De5ned Model: y=a+b*tanh((x-c)/d)

Standard Error: 4.2428742 Correlation Coef5cient- 0.9941676 Comrnents: .

The St converged to a tolerance of le-06 in 5 iterations. No weighting used.

35 mils = 134.48 F i

i Figure B8. Curve Expen Analysis of W Plate Lateral Expansion 996 NSP - &Icp- 302. j SIR-97-003, Rev. A B-11 12/30/96 gN 9 )

9 v s / [4 j[.[^~p h,.N y ( , v83 j. y.}'^ ) ' v Q:i y;4LQp 7M[.{' , ^.gys4y,9;i*d3g;gt (3p7;;yf,; .9:~ 4:. ,y N idy,5;p4 S.. 4 x.g:.: - m - ^ p 7.. .'s. T dsf[p4fE33LQq ks.hNbddMIfh:e+ +b!dC., # s.%u: m~ e l692?p:?;4 (gww e

.a.wdM:  ;;:.y.,,q 4:4x;::. viPis' -w jn;f'45E$WQvm.4!

_n, M +E aG WMJ hey @g

.,e. .wu,.,, .ym .pp:n w..q:vr; xm v.4x- .y ,

e.,, ,

y9 ,jv . xe.

-g:u. g.,

ym
; :wy
<<,g:.w",. gg  :;u.:. ..ws, w.,

~~ .s;.g ., a . . rey. . wr s.3. . .;.,g.

w 7,.9> .:.. x.;.s :.g>A c;q:wwyq. m., ^@,.gc  ;.e.f.~ygg .2 w,g  ;;;:

.,pL:p.:

.x . -n -

' '0455# ^D-N,^$1).W'"*EYW.lihi[bN NN;E4N:.s:4.p+w[yry:ww.e4.,-

4: 5;

..7

. ;i SN@Ns'MD.f:d*D dd'  ??.h5!;:;k} 2]jf[ .

'""jf [DjE((d' [$ gj:} [x :yk$h*

m. ,
A.

s:ye w e 4P P 1F qy 4.g.-

9 W'&'uN'eg,M-  : g i i  %

4+,9 -

t I l' n ww 3:c kmai.+ f

n. .

~

I i.,

l m.

C'j@%%q$M%e-u q

,m;p , , i , .

e[A w::.

,G, . _L7 %gs:~ t _. ,- i i I

i i

>:2, m.s..-.

w aw a  %.2.. ~

sy h,#w r s i

g I  ;#

m n s_: e i

i i, i j -

l i l

i I

m 3;5 wEWy.%. i l

i  ! .

  1. lipegSt ,

,TWSMS,..:  ! , ,

l l i I g!$

e l , l n NM-nlSh i1 T , r , -r &

4:2 Radt:  ! l  !

M

+e.E. g?g%-

2

n. x.

. r m s 7 S:_= -i  ! I }

%m 4A :. l e

f l ii 4 i  ; l I nM

4.

gr . mm-estV l g

~

l

= - -. - A M i

, i

& {

.: , i ad .

l 1' a

%s'.i,c,a q

g;,. ,

s a

c

~_. ,

s. ,

l _w

&a w w ...

_ , i i 4 1 1

4

, , i

g. g l

%q cd m !l i:

f,,,, ,,,, ,,,,- ,,,,m,,,,n,%, ,, ,,,,

2 g

n i' sg F3 min i

=

pgemm$espriWMr!$s+K$wg e m we.p100@#44 150 ge h p m2Wymw g 01f=p:

s-a@ege;cewmnen;g"mpd3 4---M RT:

r c a=%c,,-

menh we"460'3 d vd. , a.nmenspmempuna i

_AWygKid.M>iMmmsMM43rw g '~jE m; e 4t p_: ILr66 gw -m'a n tTe- mpera~t==re u g$Ry$$i@c ,.f4 Lha 2 i; W pM M Pm.w M#n=- @ =~u WSM d~~+@Te++s~t: ews4wagumg@4 -

uew~ -tyg@ygijj$$ 1 l

User-Denned Model: y=a+b*tanh((x-c)/d)

Coefficient Data:

a= 50.128898 b= 51.502981 c= 155.81589 d= 67,912247 User-Defined Model: y=a+b*tanh((x-c)/d)

Standard Error: 4.9127839 Correlation CoefHeient: 0.9953691 Comments: .

The fit converged to a tolerance of le-06 in 11 iterations. No weighting used.

Figure B9. Curve Expert Analysis of W Plate % Shear 997 NS P - Gip- 502 2

SIR-97-003, Rev. A B-12 12/30/96 Jyf I SI

N

..= + -

.u. .

i

-l A ge 4RFis, , Cap'su..le- "" "'l'd' -'r"t' M 9uM"E,l e

FM4 m{$$6ib ELjgMifhERpJenesse:2:(W' )**W'#'rN99EMrady  % %sstdF,f MiET F 429 A$g i ' --

FF t

L 1 sk

m .

e

..'e jf.

~

ta _,_

\

n.

i  :* , 'aen; e *

~

g

, A - '

MM - ' -

w pu m y g 1 j i  ! , __ i' / -

j $._

4 gg i  !

f 1 ) ,

[' MEN  ! I +

i  ! l l

[kh gp-XG

  • i i  !- , i .! ;g Et
  • j i i l '
, l i M ir  ; I  !  ! i i i >

i qi

- J m

x l

!  ! O __ i i

! l a4 l

l l  ! I -~ {- l l l l

'  !  ! l @!

ql i -

, i if4

' 1 l l --

l l l l l l l "!d i

wa e

l 1 i l l l l l l M a -

__ea  : -

l a

s P' '

w l / l l l l l l

@w Is [, I I I l l

! l

! f!

m%.,

n ka mw mL .__ .p * " t"M10$M 4%  %;;g de"mfew4mdspAgautapes;am4wd@3 Nr'I  !-

sM^ "!8%& M 58

  • i q; m1 wI C.?L3g " i sdEEM gpgv n l' g ;f
a qqggy ;g

^i fh $w :. kh NNF? .. ..,. l%is$fC9%Qil%b$ thk @fM nl IY$$hr hk User-Defined Model: y=a+b*tanh((x c)/d)

Coeflicient Data: ,

a= 59.684564 b= 61.035953 e= 50.603007 d= 95.495727 User-Defined Model: y=a+b*tanh((x c)/d) -

Standard Erron 15.5460958 Correlation Coefficient: 0.9668691 Comments:

The fit converged to a tolerance of le-06 in 5 iterations. Regression weighted by uncertainty.

30 ft-lbs = -0.13 50 ft-Ins = 35.32 350 F = 120.49

-350 F = -1.32 oa6 aaO Figure B10. Curve Expert Analysis of W Weld Impact Energy t%P-9,19-So2.

SIR-97-003, Rev. A B-13 12/30/96 fq $

52-

l 1

, 1 s

b .h . yym:ww'bb i (.h-! bN:4 - !b+8 Mb YNb2.' hh2['

~

[

hY'k k

f

$'5 .ng:h,w:'

kh, DYi s.TN.mg>; ,

us as.n.g.]w <

w$:wga h' ,sw%q.a.ps E

ggt fu m*M g<eg09*0?%j@4Ca~~pSul.32:NWsk&p

. k es J+ :LakhHAZ4 wowsp%rawm tw;u ..wua.a?nM&.%a^Q,6p2.n.ny..

iDnWK us;

?; , s%~#

W unmn. ii!MN%s .-iln+~ un Ri&myyby pr

-n@5qa

<~9 eb a ' ' '

3:

+

w -

iN$g%eghNad i M i

- - s. l

Mihig*st:

f;

.gj. -

IM g-i $

ff

v. .;

4

fV1 s e- 6 t ' '  !

k a

eN m ,  !

a a d-- _. M 4@.-I , , - ,i 3 a ew a

j "', .

j

~t m$:m x-m r

w. . .  ;

i  : i ,

A. 1 -

9, w W A +.. y

- t l

l I  ! A y V.v.:

'?g%.

4 m

m

$e ' 3 q i  !  !

I _I. __ [_ i L

T-M e

tp%r e

F

, ss I l i

i l /r . l  ! l ER l l l i l --! __ /lOl t 1' $,

rkw O 81 a) m , . !lil t j -- 1 l-n W:. .n .

+#a .

'T Q $ l[

' ,) t

' l l RM

$b i

I -- }

f* g 6 M.SI 'ly  !

O-g i  ! <@:MM;

~n m,

u l m i 1 l - I

.. l 1

I I

I i

i

?g k I gr.i gl.- b%

jisg#. ?f y- - j M $ t e M M y w c.v yn a e$ ti#lp, &gLs--Aggw- wwww-

- neezuwsiMLg -

m.we*4

  • gwB

-m  ;&t: 50 .- pw _ -maili -

I,P3503 <

N;;AIb y G3 ljaqf h& @ Nf

  • T+

R $lhEEy " zH

..}$

. FM ma .. T 9 na c  ? a f l User-Defined Model: y-a+b*tanh((x-c)/d)

Coefhcient Data- .

a= 44.501878 b= 40.50658 c= 146 40929 d= 89.292654 i l

User-Defined Model: y-a+b*ranh((x.c)/d) -

Standard Error: 11.5273943 Correlation Coef5cient: 0.9472588 Comments:

The 51 converged to a tolerance of le-06 in 6 iterations. Regression weighted by uncertainty.

30 ft-lbs = 112.95 50 ft-Ibs = 158.61 350 F = 84.17

-350 F = 4.00 l Figure B11. Curve Expert Analysis of W HAZ Impact Energy 999 N s p- a i (p- o 2.-

l SIR-97-003, Rev. A B-14 12/30/96 V gl99

.f3

-w, Table Al CVGraph - Charpy V-Notch Data Report for Plate C2220-2 in the Lateral Transverse, LT, (Longitudinal) Orientation

~

PLANT  : MON MONTICELLO __

CAPSULE ID  :

PRODUCT CODE : PLATE MATERIAL ID  : SA533Bb. .

ORI_ENTATION  : LT Lateral-Transverse _,

HEAT NO  : C222g-2ArchiveLong SPECIMEN INFORMATION Specimen ID Test Temperature Impact Energy Iaceral Expansion t Shear Fluence Capsule Temperature

  • r ft.lb mil n/cma er 2820 50.00 4.50 3.00 5.00 0 0.00 2819 -25.00 16.00 13.00 5.00 0 0.00 2818 0.00 22.00 18.00 10.00 0 0.00 2817 25.00 ~ 23.10 22.00 20.00 0 0.00 2816 50.00 54.20 41.00 40.00 0 0.00 2815 75.00 73.40 51.00 50.00 0 0.00 Z821 100.00 103.90 74.00 70.00 0 0.00 Z825 125.00 114.80 75.00 85.00 0 0.00 2822 150.00 132.10 83.00 90.00 0 0.00 2823 200.00 140.00 81.00 100.00 0 0.00 2824 300.00 127.00 81.00 100.00 0' O.00 2825 400.00 130.30 82.00 100.00 0 0.00 End of Report Prepared b9#CN3/2.9/90 Checked by: A15/T4 U e-o -n File No. N 5f- 2.W-II) i_. TRe.o.1 Page 54 -Sb of  % 3 1060 l l

SIR-97-003, Rev.1 A A-1 StructuralIntegrity Associates, Inc.

\

(

Table A2 CVGraph - Charpy V-Notch Data Repon for Plate C2220-2 in the Transverse Lateral, TL, (Transverse) Orientation

,PIANT  : MON MONTICELLO __

CAPSULE ID  :

PRODUCT CODE : PLATE MATERIAL ID' : SA533B5. '

I ORI.ENTATION  : TL Transverse-Lateral ..

HEAT NO  :

C222g-2ArchiveTransvers )

SPECIMEN INFORMATION Specimen ID Test Temperar Are Impar.t Energy lateral Expansion 4 Shear F3uence

  • F fn.lb Capsule Temperature all n/ cme 7 1834 50.00 9.80 8.00 5.00 0 0.00 2833 25.00 10.00 15.00 5.00 0 0.00 3832 0.00 25.46 24.00 10.00 0 0.00 3831 25.00 ~ 20.60 21.00 15.00 0 0.00

" 2830 50.00 42.40 38.00 35.00 0 0.00 2829 75.00 53.00 44.00 40.00 0 0.00 2839 100.00 57.10 49.00 55.00 0 0.00 3840 - 125.00 70.40 54.00 35.00 0 0.00 2836 150.00 86.70 65.00 90.00 0 0.00 1836 200.00 93.60 69.00 100.00 0 0.00 3837 300.00 86.20 68.00 100.06 0 0.00 183* 400.00 99.00 1

69.00 100.00 0 0.00 l

  • End of Report l

~

l l

1001 l SIR-97-003, Rev.1 A A'1 f StructuralIntegrityAssociates,Inc.

<c

Table A3 I

1 CVGraph - Charpy V-Notch Data Repon for Plate C2220-2 in the Lateral - Short Transverse, LS, Orientation PLANT  : MON MONTICELLO.

CAPSULE ID  : -

PRODUCT CODE : PLATE MATERIAL ID  : SA533B1 -

)

ORIENTATION  : ..

i HEAT NO  : C2220-2 Archive LS -.

COMMENT g LS= Lateral w/Short Transverse Fracture SPECIMEN INFORMATION _ _ _

specimen ID Test Temperature lupact Energy , Lateral Expansion 4 Shear Fluence capsule Temperature

'F ft.lb all n/ce' *F Z86 -50.00 4.40 3.00 0.00 0 0.00 285 -25.00 15.10 13.00 5.00 0 0.00 284 0.00 15.00 14.00 15.00 0

  • 0.00 283 25.00 46.40 38.00 30.00 0 0.00 282 50.00 82.50 60.00 60.00 0 0.00 281 75.00 101.50 69.00 75.00 0 0.00

^

289 100.00 98,50 65.00 70.00 0 0.00 287 125.00 116.50 81.00

, , 85.00 0 0.00 288 150.00 117.70 71.00 50.00 0 0.00 2810 175.00 135.20' 83.00 100.00 0 0.00 2011 200.00 141.50 85.00 100.00 0 0.00 2012 250.00 133.00 85.00 100.00 0 0.00 2813 400.00 156.10 79.00 100.00 0 0.00 2814 400.00 180.10 87.00 100.00 0 0.00 End of Repore 1002 SIR-97-003, Rev. l A A-3 Structural Integrity Associates, Inc.

ci, t

C2220-2 ARCHIVE LT ENERGY (STANDARD FIT)

CVGRAPH 4.1 Hyperbolic Tangent Curve PrinM at 186054 on 03-01-1998 Page1 Coefficients of Curve 1 A = 70.75 B = 6258 C = 5436  % = 6953 Equation is CYN : A + B ' l tanh((T - W)/C) l Upper Shelf Energy:13334 Temp, at 30 ft-Ibc 26.7 Temp at 50 ft-lle 505 kwer Shelf Energy: EIB Mate:iat PLATE SA533B1 Heat Number: C2220-2 Archive lag Orientation 1.T

. Capule Total Fluence 0 300 j 5  %:;=dL2;;flO, .?!2i Che :ked bp_ M d 7" File No.A/

o'e.n ,

,+n

-> sA-Zb ^$iim Reo.<a.

200 Pago 57- W _

of_ 76 h

t:$  ;

L s , l l

0 "

100 U

So o

y \

O i l 1 i l i i 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F .

Data Set (s) Plotted .

Plant: MON , Cap: Materi.h PIATE SA5:UB1 Ori: 1.T Heat f. CE)-2 Archive lag Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-50

  • 459 9.7i - 1 17

-25 16 1207 3S2 0 22 17.41 458 25 211 2!L85 -i75 50 54 2 49.41 4.3 75 714 7697 -357 100 1019 10229 L6 12 5 114 3 II8f4 -356 150 13?.1 12SS9 51

,200 140 l'2_'7 7.~2 300 127 l'U31 -01 400 1333 l'234 -104 SI'M of REIDUA!S : 0 Figure A1. CVGraph Analysis of Plate C2220-2, LT Orientation. Impact Energy -

1003 5IR-97-003. Rev.1 A A.4 h StructuralIntegrityAssociates,Inc.

e7

P"0-2 ARCHIVE LT MLE (STANDARD FIT)

CVGRAPH 4J Hyperbolic Tangent Curve Pnnled at 185301 on 03-01-1.98 0 Page! ,

Coefficients of Curve 1 -

A = 423i B = 4125 C = 6454 E = 525 j Equation is E = A + B ' [ tanh((T - E)/C) ]

Upper Shelf !.I: 8151 Temperatun at 1.F. 3E 41 Inwer Shelf 11 Fixed Materfah PIATE SA533B1 Best Number: (Z2D-2 Archive lang Capsule Total Fluence 0 Orientation LT

)

I i

200 1

i rn O ' ISO _. )

b

\

100

- l u ..

,J C5 A 50 o

D, I i i i i l I i  !

-300 -200 -100 0 100 200 300 400 500 600 3 Temperature in Degrees F lI Data Setis) Plotted Plant: MON , Cap: Material P! ATE SA533B1 Ori: LT. Heat f. C"!n-2 Archive long Charpy V-Notch Data Temperature Input lateral Expansion -Computed E Differential

-50 ~

3 43 -t3

-25 13 735 534 i 0 18 1415 3.44 25 22 2ES7 -357 50 41 4035 34 75 51 EDB -508  ;

100 74 68.!! 538 125 75 TaS2 37 150 83 7957 332

'200 81 82.66 -136 000 81 8147 -? 47 400 82 8331 -lil SUM of PEIDUAIS = 23  :

Figure A2. CVGraph Analysis of Plate C2220-2. LT Orientation. Lateral Expansion SIR-97-003. Rev.1 A A5 f StructuralIntegrity Associates,Inc.

59

C2220-2 ARCHIVE LT SHEAR (STANDARD FIT)

CVGP.APH 4.1 H,vperbolic Tar. gent Curve Pnnted at 1254:39 on 03-01-Lo98 Page!

Coefficients of Curve 1 A = 50 B = 50 C = 6837 1D = 7031 Equation in Shear.: = A + B ' I tanh((T - TU)/C) l Temperature at 50. / Shean 703 Material: PLATE SA533B1 Heat Numben CED-2 Archive long Orientation: LT Capsule Total Fluence 0 100 v p .80 g ..

OJ I

&.)

) -

C 0

9

  • 8 2a a

Ul i l i i l i l i 1

-soo -200 -100 o too 200 soo 400 soo coo Temperature in Degrees F Data Setis) Plottal .

Plant: MON _ Cap: Materiah PLATE SA533B1 Ori: LT Heat l: C22D-2 Archive long Charpy V-Notch Data Temperature input Percent Shear - Computed fercent Shear Diffe ential

-50 . 5 2S4 2.05

-25 5 5S -3 0 10 - 11.4 8 -L48 25 20 2U5 -1.15 50 40 3536 423 75 50 5329 -329 100 70 703 -3 125 25 83.03 L96 150 90 91 -l

~200 100 97.73 226 300 10 0 9957 .12 400 100 9939 0 SUM of PEIDUAIS = 148 Figure A3. CVGraph Analysis of Plate C2220-2. LT Orientation, Percent Shear 1005 f SintcturalIntegrity Associates, Inc.

SIR-97-003, Rev. l A A-6 T9 -

l<

C2220-2 ARCHIVE TL ENERGY (STANDARD FIT)

~

CYCRAPH 41 Byperbolic Tangent Curve Printed at IE!7:49 on 03-02-1998 Page1 j Coefficients of Curve 1 A = 51.9 B=4236 C = N 34 m = TE43 Equation i:: CYN = A + E

  • l tanh((T - E)/C) ]

Upper Shelf Energy: 94.76 Temp at 30 ft-lbs 303 Temp at 50 ft-lbs 743 lower Shelf Energy: 9.04 Material: PLATE SA533B1 Heat Numben C3-2 Archive Transvers Orientation: TL Capsule Total Fluence 0 300 en 250 4

~ ..

l a

x 2m h

no L 150 c) c E:0 100 Z c cn >

0 '

50 _

i o -

n

)

i o 4 I I l I i l i i l

-300 -200 -100 0 100 200 300 400 500 600 l

Temperature in Degrees F Data Setls) Plotted

{

Plant: MON _ Cap:,, Material PLATE SA533B1 Ori: TL ' Heat f. CS2 Archive Transvers Charpy V-Notch Dat.a Temperature

]

input CVN Energy Computed CVN Energy Differential

-50 . 98 1293 - 1 13

-25 18 1533 216 0 2529 2039 43 25 20S 2738 -728 50 424 J/97 4.42 Ta 53 5035 234 100 5739 6252 -552 .

12 5 70.4 7142 -102 150 86f9 8L49

{

52 200 9159 9022 327 300 8629 9422 -&12 ,

400 99 94.72 4 71 SUM of PJSIDUAIS = 0 .

\

Figure A4. CVGraph Analysis of Plate C2220-2.TL Orientation, Impact Energy gg SIR-97-003. Rev.1 A A-T f Structurallategrity Associates, Inc.  ;

40- J

C2220-2 ARCHIVE TL MLE (STANDARD FIT)

CVGRAPH 4J Hyperbohe Tangent Curve Pnnted at 18824 on 0:H)l-1998 Page1

)

Coefficients of Curve 1 l, A = 3551 B = 3451 C = 10123 IV = 502 Equation is 12 = A + B ' I tanh((T - 1V)/C) l Upper Shelf I.E: 702 Temperature at II 3E 491 Icwer Shelf !.E: 1 Fixed Wate:iah PIATE SA533B1 Heat Number: C23-2 Archive Transvers Orientatiam T1.

Capsule Total Fluence 0 20u

~

rn ..

.O 150 ..

E a

N 100 e

b ,,

a so

~

[I

-f Ul i i i l i i i 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON _ Cap:, Materiah PLATE SA533B1 Ori: TL Heat f. C50-2 L@ve Transvers Charpy V-Notch Data Temperature input lateral Erpansion -Computed 1.F. Differential

-50 , 8 g23 _t33

-25 15 13S7 L32 0 24 1957 4.42 25 21 2697 -597 -

50 38 352 2S9 75 44 43fi6 23 100 49 5112 -2J2 125 54 571 -11 15 0 65 6L52 3.47 l 200 69 ~ 609 2.4 300 68 6953 -L53 400 69 69.96 .96 SIS! of REIDUAIS : -26 Figure A5. CVGraph Analysis of Plate C2220-2. TL Orientation. Lateral Expansion 1007 Structural Integrity ilssociates, Inc.

SIR-97-003. Rev. l A A-8 g/ ,

J

C2220-2 ARCHIVE TL SHEAR (STANDARD FIT)

CVGRAPH 41 Hyperbohe Tangent Cune Printed at 19205 on 03-01-1998 Page1 Caerficients of Cune 1 A = 50 B=50 C=8145  % = 78.75 Equation is Shear /. = A + B ' [ tanh((T - W)/C) ]

Temperature at 50. / Shear: 78.7 Materiah PLATE SA533B1 Hent Number. [2220-2 Archive Transvers Orientation: TL Capsule Total Fluence 0 c

Q .

ce ,,

e E ou J

ce O

h a a

20

- t U

of i i i l l l I i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Setts) Plottai Plant: MON , Cap:, Materiah PIATE SA533B1 Ori: TL ' Heat l:(2220-2 Archive Transvers Charpy V-Notch Data Temperature input Pennt Shear Computed htent Shear Differential

-50 . 5 1.91 108

-25 5 4D3 .96 0 10 8Z1 Ln 25 15 1621 -121 50 35 2935 SS4 75 40 47J3 -713 10 0 65 65fi8 -2 125 85 80.42 451 150 90 8931 JB

~200 100 E59 P4 300 100 99 5 ll 400 100 99J19 0 SUM of RESIDUAIS = 957 Figure A6. CVGraph Analysis of Plate C2220-2, TL Orientation, Percent Shear l 1008 NfM #fWINSSociates, Inc.

srR-97-003. Rev. I A A-9 6L !

C2220-2 ARCHIVE LS ENERGY (STANDARD FIT)

CVGRAPH 41 Eyptbolic Tangent Curve Fnnled at 1&45:39 on 0341-1098 Pap 1 Coeffi::ients of turre 1 A = 2102 B = 1414 C = IE9  % = -1438 Equation h CYN = A + B ' I tanh((T - TD)/C) l Upper Shelf Energy: Ira 42 Temp. at 30 ft-Ibc -55 Temp at 50 ft-Ihc 21 laer Shelf Energy:-1202 Material: PLATE SA533B1 Heat Numben (222D-2 Archive IS Orientation-Capsule Total Fluence: 0 300 ca 250

{

_ O"

-. f J l g 200 -

a j h i uD s - a 1 L 150 7 C) o C

. m l Z e U

f - l, u

O Ol l l l l l l l l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Setts) Plotted .

Plant: MON, , Cap: Material: PLATE SA53381 Ori: Heat f. (2220-2 Archive IS Charpy V-Notch Data

. Temperature Input CVN Energy

  • Computed CVN Energy Differential 1

-50 . 4.4 -16 8

-25 15 1 1516 .06 0 15 34 3 -193 1 25 46.4 5187 - 4 47 1 50 ES 7053 11 S 6 75 1015 E71 14.78 10 0 985 101 5 -259 125 115 5 11154 T.35 150

~

117 5 124M -65

~ 175 13E19 1318 229 200 141S 139 S 3 IS6 250 133 15025 -1725 400 1801 16199 171 400 1%! 16199 -639 ,

SIP.' of R!EDUAIS = 0 Figure A7. CVGraph Analysis of Plate C2220-2. LS Orientation,Irnpact Energy 169 f StructuralIntegrity Associates, Inc.

SIR-97-003. Rev.1 A A.10 (3 3,

C2220-2 ARCHIVE LS MLE (STANDARD FIT)

CVGRAPH 41 E.rpebolic Tangent Curve Pnnted at 1&4728 on 0:H)!-1998 Page!

Coefficients of Curve !

A = 4105 B = 40D5 C = 5321  % = 3033 Fquation in E : A + B ' I tanh((T - TO)/C) l Upper SheH E: 8111 Temperzttue at E 31 213 lower Shelf !.E: 1 Fired 1 i

Mateiah PuTE nsm acat Numbe . C50-2 Archive IS Orientation-Capsu$ Total Fluena: 0 f

200 1 i

)

m ..

= 150

$ )

n

>t M 100 <

ge f y

,, o o 0 U U J o C5

,- a so o

y i i i i i i i i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F l Ihta Set (s) Plotted .

Plant: MON. Cap: Mateiah PMTE nstml Ori: Heat f. C220-2 Archive IS Charpy V-Notch Da,ta Temperature . Input lateral Expanson Comp'uta! E Diffe:ential 1

-50 -

3 435 -155

-25 13 9.2 327 0 14 20DB -608 25 38 IS 129 50 60 54E ld7 75 69 6827 .72 100 65 7555 -1055 12 5 81 7834 2.15 150 71 8021 -921 17 5 83 E6 223 200 85 8057 4D2 250 85 81D9 3S 400 87 81.11 538 400 W Bill -211 SUM of PISIDUAIS = -34 Figure A8. CVGraph Analysis of Plate C2220-2. LS Orientation. Lateral Expansion 1010 f StructuralIntegrityAssociates,Inc.

SIR-97-003, Rev. l A A-11 5b

C2220-2 ARCHIVE LS SHEAR (STANDARD FIT) >

CVGRAPH 41 Hyperbolic Tangent Cune Printel at 1&49:!2 on 03-01-1998 Page!

Coefficients of Cune 1 A = 50 B=50 C = 6757 'IV : 49.76 Equation is Shear /. = A + B ' [ tanh((T - TO)/C) ]

Temperatum at Sh Shear: 49.7 Materiah PLATE SA533B1 Heat Number: C2220-1 Archive IS Orientation-

~

Capsu$ Total Fluence 0 100 2 -

~ ~

o o

b a e

e o

@ su i

a \

c l o.

O 40 b l w -

i 1

2u <

1 o

o i  :

i i i i i i i l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F -

Data Set (s) Plotted .

Plant: MON- Cap.: Materiah PLATE SA533B1 Ort Heat l: C2220-2 Archive IS Charpy V-Notch Da,ta Temperature Input Permnt Shear Computed Penent Shear Differential l

-50 -

0 5.02 -5D2

-25 5 934 -4S4 0 15 1&75 -175 25 30 T.52 -?.52 50 60 50l7 932 75 75 67.77 72 100 70 BL45 -IL45 12 5 85 9037 -517 15 0 90 95D4 -5D4

~ 175 100 775S 2.43 200 100 9E81 LIB 5,0 10 0 99.72 27 400 100 9939 0 400 10 0 999) -

0 SUM of PEIDUAIS :-1638 Figure A9. CVGraph Analysis of Plate C2220-2. LS Orientation, Percent Shear II f StructuralIntegrity Associates, Inc.

SIR-97-003. Rev. l A A-12 (,,f _

0

. 9 l

o

. 2 0

R RR R R R R R R 6 {l -

l N N N N N N N N N 0 1 S

A 0 0

4 Y -

6 R R 7 e C 0 N N U 0 u I.

1 7

1 1 7

0 7

1 0

1 7

0 7

1 0

7 1

0 6

6 1

0 in l

n o

hb3 -

1 R R R R R R R R R 2 n e If $l0A. ~

C o 0 0

N N N N N N N N N 0 1 ig v b f e

0 s .R R,9 a

0 R R R R R R R R R 3 N N N N N N N N N 0 u yJ _7 b 0 C 1 N 0 t p

-g l

9 0 R R R 1 1 1 2 1 1 2 e

c x

~ _M of -

N N N 0 0 0 0 0 0 1 e - y V 0 0 0 0 0 0 0 ,

0 i s

s y I 2

_~

f-o 5

4 0

5 4

0 5

4 0

5 4

0 0 3

4 3

4 0

4 4

3 4

4 4

4 4

0 0 4 9

3 l

a n

a 2y ;y95 A nd M 0 0 0 e b 6 bM6 m d d R R R a 0 r 2

I. N N N 1

0 1

0 1 1 0 0 0 0 1 1 0 0 s e eeo r

ak 2

2 C 0 1 0

ht pcN e- _

2 e e e eg -

C r a

r hlia -

t a i 8

6 8

5 8

5 8

5 6

6 5

6 6

6 5

6 5

6 5

6 8

4 d PCFP e N 0 0 0 0 0 0 0 0 0 0 6 n I 0 . a I L ]

m 3 2 2 2 2 2 2 3 3 2 0 N 7 1 o 2 2 2 2 3 3 3 0 0 3 9 R [

r I 2 O s F S 0 0 0 0 0 0 0 0 R 0 o T 2- se t 2 a t 2 0

1 0

1 1 1 1 1 1 1 1 2 t

n M el P 0 0 0 0 0 0 0 0 1 0

e s C 8-l S 0 0 0 0 0 0 0 0 0 0 3 s e ba en 0 8 a h t 2

Ti 2 e l 1 0 0 0 1 1 0 1 1 1 7 1 t

a m l

t 0 1 1 1 0 0 0 0 0 0 l o e P 0 0 0 0 0 = p f r D 00 0 0 0 0 0 0 0 i

N e er f m a O 9  % a 1 1 1 1 2 2 1 3 1 3 S 3 y n 4 3 3 3 4 4 4 4 4 4 1 5 r 4 6 . d t

M 1 1 1 1 1 1 1 1 1 1 2- n s 1 0 a d 0 2 im 7 0 0 0 n 2 2 s e 2 2 2 2 4

2 4

2 4

2 5 5 5 2 a 2 e i 2 2 2 4 u C in l

C C 0 0 0 0 0 0 0 0 0 0 2 C l 0

f

% o no _

I 7

) ) ) e, e e , 1 P n a a a l l l s T w E 2- 1 2- 2- ( ( ( p p p t 0 S oh T 0 0 0 0 2- 2- 2- m m m n r _

A 2 2 2 2 0 0 0 a a a e f o te s T) L 2 2 2 2 2 2 2 S S S m a s 2

l L L e F 2

p s e 2 2 2 l _

9 P W(2d r .

[ C 23/'

$p B B u C p \ C C J / J s

a t

s l y d e

e e an t r _

[

3 f n f t

a op o l E o o r a e C 7 t / e c R I

N I

f gf. (f f n o eimt r o A

[ hF i

E N

{tj #

1 T

    1. / r f#

t j p

- c h m e c =

I F / o h R v E / r e

/ \ a F T N R R /

/ [ ,\ r e . ,

a. b S c 3 T /

/ 0 b@,

t

') ')l b b 0-7

- . ' E ( (4 ( 9-N 0 e * %n R N' \

I L \

I

[

2 l

3 Q

5 6 7 8 9 1 N

t o i I

S 2

r 2$iQ$k4$E%" g' be

/5. y 2 .

9 CF l e l e e e 5 - .

T* x 0 0 p p 0 0 l

p l

p 5 3 u o

u o

5 4 u u ,/[1 yM C d dn a 6 2 o o

,bO1 6 2 c c o 2M c 1 1 l

o o 1 1 c

I o o 6 I m r

m r m m ,

- 7 9 g r r _

e e e e 2

/ n _

M3a i r CF h

T h

T h

T h

T

_ _f_p r

u 0 0 e e o l H/ 3 D T* di n 6 5 3 2

l g

l g

0 5 4 0 l e

g lg e

C._ -

I / ,

n n n 6 2 n l

s e

p 2M 1 1 i

S i

S 1 1 i

S i

S n

_ I.

2 u I .1- 7 -

c n

o c f- 8 y c5P 4 o 1 . b b e

r e m CF 5 5 0 0 /

f 0 5 0 0

/ dentN _

a 2 e T *xa 63 _

f r 8 5 0 5

  • _

e 1

0 ' e o

0%/(

r 6

4" [f -

t h s 1 1 2 1 ak R T iM 1 1 1 1 1 1 1 1 # pcN e . -

m l d e e eg o o r c d _- rhl a i

'f (

r t n f . PCFP y

o h 20 2- C T C*F 5 5 0 0 5 0 0

- f 0 n 3 8 5 0*

0*

1 5 0 #

2 2

2 t

1 sM i 6 1

1 I i 1

1" -

6 1

2 1

1 1

0 4" 7 "6 C /

1 d 5-n ere 5 a c x 1 ab 0

nm r 2 7 A 6 2 7 B 6 2

/ -

- 2 u u l 32 2 FN 2 3

2C t 1 ,

e s e o t o x 9- =

l b a 6 6 7 6 l 6 6' l 0

t 6 6 6 t 6 6 al e / / 6 / a 6 / 6 6 6

/

t a 9 2 -

TP t

a 0 0 /

9 e r 0

/ /

9 e 3 3 3 1 1 6 r f

o D /

1

/

1 1

/

1

/

2 t

t 3

/ /

2

/

2 1

/

t t

i s

s 1 a 1 1 1 2 a s he i

. I e

"g he 1 1 "g

1 t t n l l a e 't a n e 't n e l p

a ~

t m e r n n M im t

t ua n n M i

t t

ua m o a u i i i i e t at M M s s t

Cs n M M s s t

Cs w er a r s t T e 0 0 r e r s a i 0 0 r e r si n s

e mp 2 2 hT h 2 hT h a ht 3"G 02

.ta 0 2 0 r r n 3 "G. 02 -

n -

Tme r i

c 5 r f I

I I

I I o r2 I

1 1

1 5 o r2 o I

e T 5 5 T t e2 f 2 5 5 T e2 h I I ft 2 c ht f

t I

W AC I W AC a e

o e P f d 0 P f d f SF i e n a 1 e n o n e* 0 5 0 d 0 e l

0 0 de 0 e i a l

e o

ct 5 2 5 e 0R t z s a n 6 2 1 t

a 1

- 5 6 0 5 t a 0R 1

- i -

n r o 1 1 i

r i

1 1 1 l s0 l 1

s0 s a u i s2 1

3 i u 1 s2 e p uP m e2 2 m e2 ht m F -

i tr2 1

i tr2 o S SC S SC t a

C r e r 1 1 ht d e - -

w m r b 8 8 Omu 4 4 o A l 2 2 h l

7 s I 7

MN i -

]

4 4 1 v 1 e

[ R _

s ,

1 2- R 3 _

e 0 ec 4 0 e5 T 0 -

t a 2 2 c 0-l P 2i e 1

2i e 1

- M 7 2P1 2P1 C 9-C C h

T e

wo$ R I

S o

tkE!  !

hhgy$m. g _

s.
  • _

w

Table 2-4 Base Metal Tensile Propenies for Plates from Heat C2220 Fluence 70 F 550 F Source Refyee Factor OgYS y RgA Egng :0.gS g RgfA Egng CMTR C2220-1 [Jf g 0 64.8 90 N.R.* 30 Not determined CMTR C2220-2 [ yf g } 0 65.2 91.4 N.R.*- 31 Not determined CB&IC22201 f Ji g j 0 63.1 89.8 N.R." 26 Not detetmined CB&I NO-2 11g I O 62.2 88 N.R.* 30 Not determined ORNL C2220-2 pf,7 0 63.7 89.5 N.R.* 27 573 87.1 N.R. 26 ORNL C2220-2 47 0 62.7 88 3 N.R.** 25 57.6 87 3 N.R. 27 Capsule G-1 ( .i 71.59 8534 73.5 27.4 62.63 90.12 61.1

( j0.2166 19.6-Capsule W

\V6 v

/0.6974 79.6 103 67.2 24.7 Not determmed

  • N.R. = Not Reported)pfQ 3 g[g Table 2-5 Tensile Fivrosqforf Weld Metal Samples from the Mo ' o Surveillance Capsules Fluence 550 F Source Reference Factor Og gg El og OgS y Rgf,A gong Capsule G-1 4 p 67.24 91.73, 66.iy 583 87.65 59.5 22.1 Capsule W y' O.6974 79.2 89 72 N.R. W 85 70.6 19.1 ailed outside of the gage secdon Not pad of 4 5

&l s.  :

y () 3f2.5f98 r

j hepared by rf" m!I'l

-# l l Fife NnCheck90bh

.. I{ % 9 e .- k B

--Q_f L Ml _

y 1014 SIR-97-003, Rev l A 2-10 f StructuralIntegrityAssociates,Inc. l 6s

i r

l

. . l

. I.73

'p sp Table 2-1 gp ummary of Charpy V-Notch Impact Test Results for Monticello

\ Temperamre. *F Shelf Energy. ft-lbs Material C dition Source of 30 ft-lbs 50 ft-Ibs 35 mils lat. exp. Lower Upper Estimate (1)

Base Metal \

Uni.rediated \ CV Graph l 27 l 51 l 41 l 8 l 133 Plate C2220-2(44) -

For ORNL das on NO-2. LT orientation.

Bauelle(41 56 100 --

85 N.R. 109 1" Capsule (G-1) CV Graph \ 56 100 80 Note 2 109 CrvExpt 56 100 80 Note 2 108 2" Capsule (W) CVGraph i 118 154 132 3 106 (Note 3) CrvExpt 118 154 134 3 105 Weld Metal-U6 irradiated (1) No Data Avaibhic for Esnmation of Unnr=&ntad Properties l

BattelleG4h -58 -15 -37 N.R. 129 )

1" Capsule (G-1) CVGraph 1 -58 -15 -37 Note 2 130 I CrvExpt 58 -15 Not Plotted . # :2 _ 129 2" Capsule (W) CVGraph 0 35 16 (~ Note 1. I 2. i )

(Note 3)

HAZ CrvExpt 0 35 Not Plotted " notez 120 M[se/9 f

Unirradiated (1) No Data Ava l=hle for Esnmation of Unuradiated Properties Bauelle[4 -67 -22 -45 N.R. 118 1" Capsule (G-1) CVGrapf \ -83 (4) -19 44 23 (4) 116 CrvExpt 1 -34 (4) -19 Not Ploued 23 (4) 116 2" Capsule (W) CVGraph i 113 159 122 4 85 (Note 3) CrvExpt \ 113 159 Not Plotted -4 84 1.

\ Es]NA Sl21hs CrvExpt = CurveExpert, Version 1.3, Shareware Software CVGraph = CVGraph, Version 4.1, Produced by ATI

2. Tanh curve fit does not define lower shelf; value less than zero (0) '
3. Framatome did not curve fit the data and did not esumate the 30 ft-lbs., 50 ft-lbs., or 35 mils lateral expansion transition temperanres or the upper shelf energies.
4. Care should be used with this value. 'Ihere was insufficient data in the transition and lower shelf regions to provide a good estimation of the 30 ft-Ib transition temperamre (the lower shelf was estimated as about 30 ft-lb) and the lower shelf energy.
5. N.D. = Not Determinable. "Ibe data in Reference does not include lateral expansion.

N.R. c Not Reported B

% 9WD s}solqs M* lv+eparec w

{LAylgf; l Checksc M . %QOng

, File % JV2 u W g- io ->Cg,gg,;H

'% __63_

_t i

SIR-97-003, Rev. l A 2-7 1015 '

t9

i

- - 2 5 de de*F 1 1 r t c ,

uit s f a d i e eh r MPS d - 9 1 2

d - e 2 9 6 eF r

t a

u

  • e i t

l ud s fp rs ai a r

eh ai .

. MSCn U I

)

e 7 6 8 7 t

a h 2 5 e*F , pras 1

1 l 1 r 6 P

( u l

t a

r b sGi s t

a e -

I Vly

  • 2 e ipf Ca n t

,vM . t s

e3i0 onA b g ee t

9 Rs

, a T@F r if h

s

/

y ng jg p

9B 8 e 9 he )

3 5

7' . 9 l

u s

[L J

p].

1 t e( 2 8 p e r d 2 d F i a d o u v.t ce* c g

i f u t d /

f Gt a GgR ed eh i i f 2

n l y

e yD a e R 9 r

S o v M .

l t

r ot a e s 9.

1 P

- i t

t s

it c .

et ps e ,

r

~

Y uT 3 3 3 s r e

r e}

=

- gh 2- 8 1

e c yF 2 2 8

2 8

2 ,tng ~

3Rt o r " e 1 1 1 5i r dn ot co f -

er t 4-b peN l

l s r,b mo a wN i

- at n a 3 Tf a

i t

h p V

y h e c T CFa m t

o 4i oyf s

e~p r t ITyb b c es .dl S ra

. rep o.M

' r nhi i , -

F et me ,. - '

d h r t eC akcN peel e-t a e 6 4 f eah 6 7 eec ..

mh e 1 9 Rc nh e ehl n i

(' CFp -.

i t c r ) 2 6 r i nt o2 met t

s Em e u aF c( 0 0 ol us 1{

. o f rf i '

F FF eF f r l of ehC r

t t yf ri - a s e ah si r 0 ) 3 ef eh mS Ve 9 2

3 lue w mde " 0 3

0 s

per ,

u r 0 'm M 0 ah )

S us 1

/c cwF a

e

/

f n >

I dn ', F *

(

E M 2 * F d'

)

d n C n

a

)

f ) Ve 0 7 1

+ +

8 1 a" t'

( '

1s *f

( 1

=

e( M E E r he=

3 3 o ce 'm n I 9 2

3 t

FT u _

lu /c > 3 rFR o A F nE f =A I s r f t v

e oi ut e c hs a a l

n R

o d vf d ,

i e e l e ee e 3 t

t l u c c tc 0 i

d a u s n ni 0-n d p a i

s p e ed o ra a u u er l l 7 _

C r C C sFFP e

9-in s dn U I t

2 t

o NI 2 3

. . . $u R I

S o E c.EnIg E$Rga 9?

43

=

l _

n n 7Na d

e F r

  • e ia l d

- et w

o n

w o

n e

c n

e k (3 u ud k k r s t ai fp sr a r

n U U n

f e _

eh ai '

e i

a MSCn U R

'e m n 5 o M eF ph 1

w 6- 0 4 9 f r

s d r o - 6 l

e u 's, ar s n 9 u e

t ab G is ki l .

W r e - Vly iU I

t pf Ca a

v 2 ec v.n m0 mA e3 n

Mdue r

@h9. 5f Na el a o  :' ,

Ri e l T@F r s e ll=W_.

9,vr - 8 7 m ~ S 9 u ) 0 1

ec S e(

3 d 2 d F i

7 1

6 5 9 3 Nte h s

u v ce*

g - .

di . t i

Mh%

i t Ged i ur it

(

y-f .

y -

Gof gR ehr e 9 l

e ya r t R 9. P S t i

v

]90

/

5 .

} - _

oa 1 f

i t

c aD t

h et =

l s e  ;

s _

p s((i 2 2 2 ut s e e r e r

N

- 1-2 ge 8 8 8 l _

u ,t n d _

3R eT yF) r s

p 5i n p' /

' f a J er h c t

r. 4e a s dn o r%

Qy i c o 5-l et ba po mot o d at n c6 t . I 3

e t c n 4i of a0 Tf N t h aN 2 s p ~ _

i -

hV CF( o e y=0 r

~

s e _

S y t

t cet nh su ~

< N .

d p s et iC o 3 e r ea mf i r t l

- 6 8 eo I r, a a t i f

6 1 eeh Rc nc n f l e 1 9 - _

mhC c r ) 2 6 o ,I '

nt o2 ei t i

t s e e c( 0 0 meut his _

Eh t u aF .olrf s o p F FF l

f f _

omo i

e ehFm yr r t a s Coc rf a ,l0 3 6 si e t

9 2 ef r ae mif Ve 2 3 l

ueh r mh uS 0 mM 2 0 0 s per wf o 1 0 '

ah ,

Sd /c - _

dc w F) 3e I

e /

n >

r u

f E

n 0, (F cn s 2 ** )* re _

a dn "" F fe e 0 7 8 M f) ) V 1 1

+ + a ** (Ce R e( e

( 1 t*

s d E E 1* =

n c M 3 6 ( r m a n he=

oo e 'm 1 9 2 uf r u /c > 2 3 t FTs l

F nE rFRi o r A fs =Aor t t I

e utoia f c v l

c hf e n a a s y R o d vf d r e e i

t e l l

u ee cc tets 3

i t a u c i 0

d n d i s s p nnim e ed 0-p a e o a a uu eh 7 C dC r r C ir l l sFFPC e

9-n t n

t R

U i s

2 o

NI 234.

$%w I S

o tG E4qg88 g

J%

Table 3-3 Calculation of Plant Specific Chemistry Factor for Heat C2220 per Regulatory Guide 1.99, Rev. 2, Position 2.1 g Jurf 1/wh6 Measured 2

' Fluence (f) f /10"' Fluence ~

FF Shift *F 2 2 n/cm (1) n/cm Factor Irradiated - FF*ARTm>r E> 1 MeV E> 1 MeV FF(2) Unirradiated "F Unirradiated 0 0 - -

1st Capsule 2.93E+17 0.0293 0.2166L 0.0469 29 6.3 2nd Capsule 3.33E+18 0.333 0.6974 0.4864 91 63.5 o,CS31s W 2

f/49s -

CF,=I(FF i*ARTmm)1I(FF i)= 130.8*F 69.?+

M fr J '

1. Fluence values for the 1st and 2nd capsules are from References d respectively. Gs/59
2. Fluence factor = FF = f( """80, where fis the fluence at the poin of interest Q

S ad G M 3/tt/fe

\ Prepared by2f4EA Jv shoisi

- -- Checked by: MIME vy l

' File No. NiFM4-M.,ho, [9o ,

I S

ype -- 7 L- _ of 76' _

1018 4

SIR-97-003, Rev.1 A 3-6 Structural Integrity Associates, Inc.

72  !

, )

Table 3-4 Calculation of Plant Specific Chemistry Factor for Other Beltline Materials per Regulatory Guide 1.99, Rev. 2, Position 2.1 m ya.sfiIs CO/k145(u.(vo

/)M fA [ Measured Chemistry CF Ratio

~

Fluence (f) f/10" Fluence FF Shift 'F Factor Adjusted n/cm2 N n/cm 2

Fact r Gadiated - Shift FF*ARTum E> 1 MeV E> 1 MeV FF _ Umrrad(3) Ratiok)

(4 ARTe.'F 'F Plate A0946-1(Chemistry: Cu=0.14%,Ni=0.56%fl0,11])CF=98.2Ff3') )HG (hal%

1st Capsule 2.93E+17 0.0293 0.2166 10.0469 [ 29 98.2/1283 22.2 4.8 2nd Capsule 333E+18 0333 0.6974 0.4864 / 91 98.2/128.3 69.7 48.6 Sum 0.5333 53.4

[B,91 i 2

7w (d W4/n __

-( CF, TO =M4I(FFi g/* ART ss @) /I(FF ) = 100 Plate C2193-1 (Chemistry: Cu=0.17%, Ni=0.50%(10,1]f CF=118.5F(f) ]

1st Capsule 2.93E+17 0.0293 0.2166 0.0469 29 118.5/1283 26.8 5.8 2nd Capsule 333E+18 0333 0.6974 0.4864 91 118.5/1283 84.0 58.6 Sum 0.5333 64.4 CF, = E(FFi *ARTmm) / I(FFi2) = 120.8'F Weld Metal- Surveillance Capsule (Chemistry: Cu=0.06%, Ni=0.95T@, CF=82.0F[3J)

/29 1st Capsule 2.93E+17 0.0293 0.2166 0.0469 82/1283 18.5 4.0 2nd Capsule 3.26E+18 0326 0.6918 0.4786 / 91 82/1283  ; 58.2 40.2 Sum [/3 Jyf fd gQ 443) 6 a..$ I'3 wa slal* '"' " *' T"*)' *' " *# '

4 ,

Weld Metal- Limiting Case [10] (Chemistry: Cu=0.10%, Ni=0.99%110). CF=134.9Ff31)

M3 1st Capsule h 2.93E+17 0.0293 0.2166 0.0469 29 134.9/1283 30.5 6.6r/,o/g, 2nd Capsule 3.26E+18 0326 0.6918 0.4786 j 91 134.9/128 3 95.7 66.2 Sum 0.5256

) 2 72.8

[9] g g / CF, = I(FFi *ARTmm) /I(FF ) i =138.5'F S ^ yu gu.In

1. Fluence values for the 1st and 2nd capsules are from References 4 and , respectively.
2. Fluence factor = FF = fmi s o, where f is the fluence at the point of interest 4 . f ARTum is adjusted by the ratio of the chemistry factor of the heat in question to the surveillance heat
1. 4 Measured shift is for the surveillance plate.

s1,,1n ' nentec vaf4Dw 6hd

. Crisci ed bv: NdM bH -kB -

i ?ile No N SP 'ti P 5o1. ,2<,o,i.

% ge M g _78 10.19

}

5IR-97-003, Rev.1 A 3-7 Structural Integrity Associates, Inc.

n

l A I B 1 c I p i E I F l G l H Plot File for Momicello Limiting Beltline Shift Curve - MONTCVN3.XLS Chart " Fig 6-4" 3 Fluence (f) f /10 f /10" Fluence R.G.1.99. Rev. 2 [9] Revised Chemistry factor (3) 2 2 4 n/cm n/cm n/cm* Factor rhemicry ARTur,P N Chemistry ART3 w,P 5 E> 1 MeV E> 1 MeVE> 1 MeV FF(1) Factor, P + Margin (347) Factor, P + Margin (347) 6 Curve Titles = > GE Estimated Shift Curve +Marcio (347) Revised Shift Curve + Marrm G47) 7 2E+15 0.002 0.0002 0.0039 125.3 34.5 130.8 34.5 i a 2.2E+16 0.022 0.0022 0.0354 125.3 38.4 130.8 38.6 9 4.2E+16 0.042 0.0042 0.0588 125.3 41.4 130.8 41.7 to 6.2E+16 0.062 0.0062 0.0784 125.3 43.8 130.8 44.3 11 8.2E+16 0.082 0.0082 0.0956 125.3 46.0 130.8 46.5 12 1.02E+17 0.102 0.0102 0.1111 125.3 47.9 130.8 48.5 13 1.22E+17 0.122 0.0122 0.1253 125.3 49.7 130.8 50.4 14 1.42E+17 0.142 0.0142 0.1384 125.3 51.3 130.8 52.1 15 1.62E+17 0.162 0.0162 0.1507 125.3 52.9 130.8 53.7 16 1.82E+17 0.182 0.0182 0.1622 125.3 54.3 130.8 55.2 17 2E+17 0.2 0.02 0.1720 125.3 55.6 130.8 56.5 is 4E+17 0.4 0.04 0.2589 125.3 66.4 130.8 67.9 19 6E+17 0.6 0.06 0.3225 125.3 74.4 130.8 76.2 20 8E+17 0.8 0.08 0.3737 125.3 80.8 130.8 82.9 21 1E+18 1 0.1 0.4169 125.3 86.2 130.8 88.5 22 1.2E+18 1.2 0.12 0.4543 125.3 90.9 130.8 93.4 23 1.4E+18 1.4 0.14 0.4875 125.3 95.1 130.8 97.8 24 1.6E+18 1.6 0.16 0.5174 125.3 98.8 130.8 101.7 25 1.8E+18 1.8 0.18 0.5445 125.3 102.2 130.8 105.2 26 2E+18 2 0.2 0.5694 125.3 105.3 130.8 108.5 27 2.2E+18 2.2 0.22 0.5924 125.3 108.2 130.8 111.5 2s 2.4E+18 2.4 0.24 0.6138 125.3 110.9 130.8 114.3 29 2.6E+18 2.6 0.26 0.6338 125.3 113.4 130.8 116.9 m 2.8E+18 2.8 0.28 0.6526 125.3 115.8 130.8 119.4 31 3E+18 3 0.3 0.6703 125.3 118.0 130.8 121.7 32 3.2E+18 3.2 0.32 0.6870 125.3 120.1 130.8 123.9 n 3.4E+18 3.4 0.34 0.7029 125.3 122.1 130.8 125.9 34 3.6E+18 3.6 0.36 0.7179 125.3 124.0 130.8 127.9 ss 3.8E+18 3.8 0.38 0.7323 125.3 125.8 130.8 129.8 36 4E+18 4 0.4 0.7460 125.3 127.5 130.8 131.6 7

,37, Notes ss 1. Fluence factor = FF = f**'"*80, where fis the fluence at the point ofinterest 39 2. ART3m = FF

  • CF 7 3. Chemistry factor is from " Table 3-3" pagd ? 2- 7s4 f> (/so/ H

-. 2nct shs wm27d&J7/Os

)I'i.CPfC p r b h c-h .,g j ris M. NSP-NP3e t "gid,s

%,ue __

74- 39

g q .1020 i

MONTCVN3.XLSData Fig 6 4 3/22/98 7+

8

. 0

=

4 #

3

- > . " 8 7 2 " 3 r

t d .

. . - [ 6

_ c-- 3, _

". 3

og. -

L ~_m_

" 4

'o 3 l

)

e c

- a >T Mi "

" 2 F

4 3

(

n e

u p -

- [- o-l s

3 ig n

r a

l " 0 F

, y .

. " 3 M

+

_t A(f7 s.

t s

v n

w- -

I y c. @ ~4 i

b

~ 8 2 C e

v r

u e dl _.

. t

- ee ,

if n

m ' s lo 6 h S

t ak s

u pe n f e .

2 d e

j e e y s

/-

d ...

'rh C l

i F

-a

._o

. 4 i

v e

A t

p j 2 ) R 2

e -

m v "

c r

f,7

- 2 /

u -

2 n C

" )

s . '0 F *

" 0 1 i

t ( 4 3 -

2 e (

m .

c n 7~~- n ig i .

L .

. 8 e r u a g

F M 1 l i

n .

t

+

e 6,-

t v a

r

. 6 r u

e -

1 C

p . f t

e'

. i O .

. 4 h S

e .

1 d e

n .

. t i .

a l

t . 2 m l it e .

1 E

s g~'

B .

. E -

e r

. 0 G _

1 o .

C o d .

. 8 -

og, l

l

. 0 l e .

i c .

t . 6 n .

0 o

}r' M , .

. 4 0

}, .

. 2

/ .

0 4-6 g

_ : .  :  : _: . : .: .  :  : 2 . 0 H S

0 L 0

4 0 0 0 0 0 o 0 0 0 0 0 g H

3 2 1 0 8 t 6 5 4 2 1 1 1 1 1 1 N v

t g';.y2sa + sH% m o

M s

ao crW jD

Al Il l C l D i E l F i G l H l I J J l K 1 Plot Fue for Figure .tl. CVGra ' h Coefncients a

13 Temp Ist Cansune E.nergy 2nd Cnnsule C2220-2. LT 4 -200 2.56bi h.167j 5 -195 2.57Ii' E.l bEj list C.ansune J Energy =45.El+63.23*TANH((T 90.62yl35.97) 6 -190 2.5731 8.1901 7 185 2.576I 8.19Il 12nd Cansule l Energy =54.lS+51.63*TANH((T 160.7 bye 3.55) 8 -180 2.580! 8.194 9 I75 2.58 7 8.197 lC222w2. LTl Energy =70.76+62.58'TANH((T 69.53)/54.%)

10 -170 2.588 S.201 11 165 2.592 8.205 12 -160 2.598 8.210, 13 155 2.604 8.215 14 150 2.611 8.222 15 -145 2.618 8.231 16 140 2.627 8.241 17 135 2.637 8.253 18 130 2.648' 8.268 19 -125 2.660 8.285 20- I20 2.674 8.306 21 -115 2.690 , 8332 22 110 2.708 8362 23 -105 2.728 8398 24 100 2.750 8.441 25 -95 2.776 8.493 26 -90 2.805 8.556 27 -85 2.837 8.631 28 -80 2.873 8.720 29 -75 2.914 8.827l 30 70 2.960 8.956 31 -65 3.012 9.109 32 -60 3.071 9.293 33 -55 3.136 9.513 34 -50 '3.210 9.775

~

35 -45 3.294 10.089 36 -40 3388 10.463 37 -35 3.493, 10.908 38 -30 0.919 3.612 11 439 39 -25 2.103 3.745 12.069 40 -20 3348 3.895 12.816 41 -15 4.656 4.064 13.700 42 -10 6.029 4.253 14.744 43 -5 7.466 4.466 15.972 44 0 8.%9 4.704 17.413 45 5 10.538 4.972 19.095 46 10 12.172 5.272 21.049 47 15 13.871 5.607 -

23306 48 20 15.635 5.983I 25.898 49 25 17.462 6.403i* 28.849 50 30 19350 6.873 32.183 51 35 21.297 7397 35.911 52 40 23.301 7.980j 40.037 53 45 25357 44.547 8.630{

54 50 27.463 9352 49.413 55 55 29.614 10.154 54.590 56 60 31.807 11.041 60.016 _ . , , . ,

57 65 - ' " ~ ~-

34.035 12.021 65.614 58 70 9 f 36.294 13.103 71.295 _ _ ~ =

w..g.g 93y _ __ _,

59 75 38.578 76.% 8 4 g4Q-) {

60 80 40.88 l 14.29]61 15.59 82.539 -i '9C.L PC. ,M, .

61 85 43.198

,,g' g M 1 b- - -_ C 01.h.

JB57,7,{417.022 ] 7.924 62 90 45.522 N 7g 63 95 47.846 20.2651 93.047j 97.849 b* 7}

  • 64 100 50.165 22.0911 102.289] ~~~

65 105 106.340 52.472[ 24.058{

66 110 54.762 109.994 26.168{

67 115 57.027 28.4181 113.254 68 120 59.264 30.807i~ 116.136 69 125 61IS 33329 118.663 70 130 63.627 35.976 120.861 71 135 65.745 38.736 122.761 72 140 67.814 41.597 124 3 93 MONTCVN3.XLS / Data Fig 3-1 Page1 3/24N8

4 .,

Al B l C l D l E l F 1 G l H l l l .1 l K 1 Plot File for Drure 3-1. CVGrs ph Coefficien~J 2 larnp Energy 4 T Ist Capsule 2nd Caosule C2220 2. LT 73 145 69.831 44.S43 125.794 74 150 71.792 47.555 126.985 75 155 73.695 50.614 127.997 76 160 75.537 53.698 128.854 77 165 77317 56.786 129.578 78  !?O 79.033 59.855 130.188 79 175 80.683 62.883 130.701 80 180 82.268 65.852 131.133 81 185 83.787 68.741 131.494 82 190 85.241 71.535 131.798 83 195 86.630 74.218 132.052 84 200 87.954 76.780 132.264 85 205 89.2 7 79.211 132,442 86 210 90.413 81.505 132.590 87 215 91.551 83.659 132.714 88 220 92.630 85.670 132.818 89 225 93.652 87.5g40 _132.905 90 230 94.619 89.271 132.977 91 235 95.532 90.867 133.037 92 240  % 3 94 92332 133.087 93 245 97.207 93.674 133.129 94 250 97.973 94.898 133.164 95 255 98.693  %.012 133.194 96 260 99371 97.024 133.218 97 265 100.007 97.939 133.233 98 270 100.605 98.766 133.255 99 275 101.166 99.512 133.269 100 280 101.692 100.184 133.281 101 285 102.185 100.788 133.291 102 290 102.646 101.330 133.299 103 295 103.078 101.816 133306 104 300 103.482 102.251 133311 105 305 103.860 102.640 133 316 106 310 104.213 102.988 133320 107 315 104.544 103.298 133323 108 320 104.852 103.576 1333 26 109 325 105.140 103.823 133.329

~~

110 330 105.408 104.043 133330 111 335 105.659 104.239~ 133332 112 340 105.893 104.414I 133333 113 345 106.111 104.570i 133334 114 350 106314 104.708I 133335 115 355 106.503 104.831I 133336 116 360 106.686} 104.9417 133337 117 365 106.8441 105.038I 133.337 118 370 106.997 " 105.1257 133 338 119 375 107.140 133338 105.20]

120 380 107.273 105.2701 133338 121 122 385 107397 10533 j 133.339 ' ' k*% , __ _

390 107.512 105384 133339 %r,g 7 ,

123 395 107.619 105.432 133339 "*~ -,=

124 400 107.719 105.475 133339]

d ' t~ % D' '

  • [

125 405 126 410 107.811 107.898 105.512 105.546 133339]

133339;

. ;. i s.

e. ,,

-=  %,

"%~ - l  ;

127 415 107.978 - + ~

105.576 4 133340J D

128 420 108.053

__ _4 105.6021,_,,,1,33340j .

129 425 108.122 105.625I 133.3401 130 430 108.187 105.646I 133340 131 435 108.247" 105.665I~133340]1 132 440 108303 105.6813 133 340) 133 445 108.355 105.6961 133340s 134 450 108 403 105.708I~~ 133.340i 1023 MONTCVN3.XLS / Data Fig 3-1 Page 2 3/24/98 N

5 s 2 sa 3 m ,

a ,

0 0

3 o

s

. . l i l 5 e 7 c 2 i t

n 0

o 5

2 M

Y m

. 5 o r

j .

2 2

0 f

l i

s a

r W .

0 2

t e

a e .

/l M l

, u .

- / s p

. 5 7 e c

[ >[

1 a ,

1 n g G e

C .

0 F l

l i

a _

l 5 , e u

s / . 1 e r v r

f u

C p

a / [

. 5 2

t u

a r l S .

// '[ ~s r

i 1

0 e

p m M t

a e

/ t 0 e e

[ .

1 T s a 8-A -

'/

[ '

5 t

s B 3 e e

) 7 T r

/ o v ,

r ,

f u2 ,

s C 0 - [ r e

0 5

e v

e2 s . r n22 .

u i

l eC s

[r .

5 2

C i

t F

a

/

7 .

B 2 t

s f .

e

.  ! __ j l .:- j j -

0 D E30 0 '0 ' g g 0 0 0 0 g, 2fM r, 2 1 7 6 4 ,

1 I 1 1 1 3 - - 5 -

2- 3 e

0 ig r

u 5- F 5

7-

. 0 0

1 A

jg hej.g .

I v

t e

I iu1 t O

, V $n2c'7 .

Y5Q&~ . ;

X

(

l$,f;

'1 3- j ih ..

7 9-lIa9 R e *t e

?

me9 p oN" t i

- . l

?k gM q .

S y,

I' E 3Mb$Q&M k o'I' '

yG