ML20206S133
ML20206S133 | |
Person / Time | |
---|---|
Site: | Monticello |
Issue date: | 04/06/1998 |
From: | Sauby M STRUCTURAL INTEGRITY ASSOCIATES, INC. |
To: | |
Shared Package | |
ML20206S096 | List: |
References | |
NSP-21Q-304, NSP-21Q-304-R01, NSP-21Q-304-R1, NUDOCS 9905210054 | |
Download: ML20206S133 (32) | |
Text
!-
Attachment 4 Structural Integrity Calculation No. NSP-21Q-304 9905210054 990517 3 '
4-J 1 RECORD COPY Rexmn= yg l
(
i STRUCTURAL CALCULATION FILE No: NSP-21Q-304 INTEGRITY Associates. Inc.
PACKAGE PROJECT No: NSP-21Q PRO.iECT NAME:
Monticello P-T Curve Evaluation and Development CLIENT: Northern States Power CALCULATION TITLE: - _.
Pressure Test, Non-Critical Core Operation, and Critical Core Operation P-T Curve Development
'l 1
l 1
PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION: k I
The purpose of this calculation is to independently develop pressure-tem various regions of the Monticello RPV and verify the beltline materials receiving more irradiation in the operation.
l l
i Document Affected Project Mgr. Preparer (s) &
Revision Revision Description Approval Pages Checker (s)
Signature & Signatures &
Date Date 0 1-22, A0-A3, OriginalIssue M. E. Sauby ?eterL Chen
'BO-B3, l 7/31/97 PLC July 30,1997 1 disk H. L Gustin 1 7/30/97 1,c, 4, 0, , i b-i 6, Revised to correct errors and M. E. Sauby 10 21, C, incorporate modified RT Gary L Stevens l
i disk m.
gg
'2. 3, Ao A 3 3I',/N
/
f f 60- 6 '3
( $$ . . Gustin 7ua + ;
fg PAOE 1 OF 23
- 1. c. i y \.C.i, e Jn9
1.0 INTRODUCTION
The pugose of this calculation is to independently develop initial pressure-temperature (P-T) curves for the feedwater nozzle, beltline, and bottom head regions of the Monticello reactor pressure vessel (RPV) based on the calculations in Reference 1. This calculation will also review the non-beltline materials to vedfy that the beltline materials are limiting after a certain amount of irradiation.
Revision 1 incorporates an updated value of RT, for the beltline material, corrects the temperature drop between the fluid and crack tip for the bottom head, correctly used the crack tip temperature for computing Km, and incorporates a temperature drop between the fluid and crack tip for the nozzle location. Revisions are marked by " bars"in the right hand margin.
2.0 TECHNICAL APPF.OACII & METHODOLOGY P-T curves will be generated for each of the following three (3) regions:
Reeion Reason Feedwater Nozzle Potentially limiting due to high stresses.
Beltline Potentially limiting due to irradiation effects.
Bottom Head Potentially limiting because of discontinuity stresses.
The approach used is defined in [2 and 3]. This is summarized below:
a.
Assume a coolant temperature, T. Calculate metal temperature Ty., at 1/4 t.
b.
Calculate the critical stress intensity factor, Km, based on Tp.,, using the relationship from [2 and 3]:
Km = 1.223e "*^^"M + 26.78 l
where: T =Tv.,= temperature permitted at 1/4 t ART =
adjusted reference temperature, F
=
Km allowable. stress intensity factor, ksiVinch l Note that a maximum value of200 ksidinch is allowed.
Revision 1 l 1
Preparer /Date M 3MlW Checker /Date l)h]fjf4T File No. NSP-21Q-304 Page No. 2- of 23 13S0
- c. Calculate the allowable pressure stress intensity factor. Kr. using the appropriate safety factor, n. i.e., K, = Km/y . y = 1.5 for the pressure test [2): y = 2.0 for normal heatup and cooldown process [2].
- d. Compute the allowable pressure stress intensity factor. for the heatup/cooldown transients, K,, using an appropriate releionship between K and P developed using the methods of[2 and 3].
K,= * "
9 where:
Krr = thermal stress intensity factor (ksiVinch) due to thermal stress.
The value ofKgforfeedwater no=le will be computed by Figure 4-5 ofReference 10, which is conservative. The Kgfor beltline and bottom head will be computed based on the " Pipe-TS2"[8] temperature solution and method ofReference 2. The detailed calculationsfor KliareProvidadin a later section ofthis calculation.
K, = allowable pressure stress intensity factor (ksiVinch)
- e. Compute the pressure, P. The relationship for the pressure, P, to the allowable pressure stress intensity factor, K,, is as follows:
K, - M. c. + M6 c6 LP : - where: M. ; -
membrane stress correction factor from Figure G-2214-1 of Reference 2. The upper hne for M. in Figure G-2214-1 (corresponding to o/cr. - 1.0)is consenadvely used.
- c. membrane stress due to pressure Osi)
PR/t for a beltline region .
5, -
K x PR/(2t) for bonom head. Take K-3 for considering structural discontinuity, which is conservative. )
P -
pressure Gai)
{
R -
vessel radius (inches) i t vessel minimum wall thickness (inches)
M6 -
bending stress correction factor - (2/3)M.
1 i
Revision 1 l I
Preparer /Date M 3/kj98 i Checker /Date /)h4/y/W l l
File No. NSP-21Q-304 Page No. 3 of 23 1381
c, -
bendin:; stress due to pressure Gai)-0 for a thin-mdled vessel i.
Thus, P - K,t/(RM.) for behline.
P - 2Krt/(K RM.) for honom head.
where K, = 3.0 is the stress concentration factor for bottom head which is applied to account for geometric discontinuities.
l The relation between K and P for a comer crack in a 2" nozzle has been determin 3
in Reference 12 as P = 21.53K, based upon 3D finite element analysis. Here, this equation is used for feedwater nozzle. This gives a conservative value at t = 1/4 ta for feedwater nozzle at Monticello.
- f. Repeat steps (a) through (e) for other temperatures to generate the P-T curve.
hLa or
- g. (Subtract any applicable instrument errors for temperature and temperature and P respectively. The resulting pressure and temperature series 5/nftg constitutes the P-T curve. Instrument errors were assumed to be zero for Monticello Plant. The P-T curve relates the minimum required reactor fluid temperature to the corresponding reactor pressure in the considered regions.
Per reference 2, the temperature limits for the core in critical operation are established by adding 40*F to the non-critical curve limits. It is also noted that all P-T curves have a stepped portion representing a 707 bolt-up temperature and 100 F (70T+307) heatup.
3.0 DESIGN INPUTS The following inputs were used to develop the P-T curves documented in this calculation:
Limiting Beltline Material = Plate 1-15 (Initial RT, = 277) [13, pg. 4]
Feedwater Nozzle Material = Forging N4A-N4D (Initial RT, = 40 F) l
[1, pg. 29]
Bottom Head Material = Plate 1-26 (Initial RT, = 267) [1,*pg. 29]
Vessel Dimension:
[4]
Base Metal Thickness = 5.0625" Inside Radius = 103.0" (to surface of cladding)
Cladding Thickness = 0.1875" Bottom Head Dimension:
[4]
Base Metal Thickness = 5.9375" l q Revisicn l 1 Preparer /Date $ 3fgff8 Checker /Date h ff,[7f File No. NSP-21Q-304 Page No. 'l of 23 i
13S2
. i Inside Radius = 103.0" (to surface of cladding)
Cladding Thickness = 0.1875" Feedwater Nozzle Dimension:
[5]
Outer Radius = 11.5"
. Inner Radius = 5.25" Heat Transfer Coefficient: [6, pg. I-T3-4]
h = 235(AT)" for a warm vessel wall exposed to cool fluid, where AT= T
- Tw.
~ 4.0 THERMAL STRESS INTENSITY FACTOR ANALYSIS ligat transfer analvsis for beltline and bottom haad under heatun and cooldown oneration i A heat transfer analysis was conducted to establish the following two items: (1) the temperature drop between the reactor fluid and the crack tip (i.e., at the 1/4T location), and (2) the through-wall temperature drop for computing Ky. Both of these values were obtained using the " PIPE-TS2" computer program [8].
A 1007/hr cooldown transient [9] was run using PIPE-TS2. The input file and temperature i results'at t = 18,000 seconds (end of cooldown period, when steady state cooldown effects are
. present) are included in Appendix A. The input is based on the data in Section 3.0 of this calculation, and material properties were obtained from Reference [11] at an intennediate temperature 3507. The heat transfer coefficient used was established by trial-and-error, and its adequacy is demonstrated below.
From Appendix A, the following temperature results for beltline were obtained:
Fluid temperature at 18,000 seconds, Tu = 507 1Ts = 70.47 (@ R=104.4531")
,Inside surface temperature at 18,000 seconds, T,,,n = 56.27 Outside surface temperature at 18,000 seconds, T. = 83.37
, Fluid-to-1/4T temperature drop = Twr - Tu = 70.4 - 50 = 20.47 ,
Fluid-to-surface temperature drop = T,,.n - Tu = 56.2 6.27
- Throdgh-wall temperatum drop = T,- T, n = 83.3 - 56.2 = 27.17 h = 235 (AT)* = 235 (6.2)" = 431.7 Btu /hr-ft2 ,9 With respect to the thermal stress intensity factor, Kn, Figure G-2214-2 of Reference [2] is consulted. For a wall thickness of 5.0625", M, = 0.26. Accounting for differences in E and at, Revi
- . ion 1 Preparer /Date $ 3fghg Checker /Date hfb[$7 File No. NSP-21Q-304 Page No. 5 of 23 13S3
the following is obtained:
Kn= M,At (Fam,y,,/E%) = 0.26x27.1 x (27.7x0.75)/(29.2x0.7) =7.162 ksiVin ,
From Appendix B, the following temperature results for bottom head were obtained:
Fluid temperature at 18,000 seconds, Teso = 507 Tmr = 74.12102'F (@ R=104.48438")
Inside surface temperature at 18,000 seconds, T = 56.97 l Outside surface temperature at 18,000 seconds, T,, = 93.4*F Fluid-to-1/4T temperature drop = Tmr - Tng, = 74.12102 - 50 = 24.121027 Fluid-to-surface temperature drop = T - Tns, = 56.9 - 50 = 6.9'F Through-wall temperature drop = T., - T = 93.4 - 56.9 a 36.57 2
h = 235 (AT)* = 235 (6.9)" = 447.3879 Bru/hr-ft *F j l
With respect to the thermal stress intensity factor, Kn, Figure G-2214-2 of Reference [2] is consulted. For a wall thickness of 5.9375", M, = 0.286. Accounting for differences in E and ot, the following is obtained:
Kn = M, At (Ect.,yg,/Ea_) = 0.286x36.5x (27.7x0.75)/(29.2x0.7) =10.61 ksiVin Thermal stress intensity factor for feedwater nozzle under heatun and cooldown operation For Kn fothe feedwater nozzle, Figure 4-5 of Reference 10 is used. Since there is no cooling rate for 100*F/hr, the Kn for 100*F/hr is obtained by:
Kn(@l00"F/hr) = 2 x Krr(@50*F/hr) = 2 x 3.2 = 6.4 ksiVin The temperature drop between the fluid and the crack tip for the feedwater nozzle is assumed to be the same as the beltline, or 20.4 F. This is reasonable based on past work performed by SI.
5.0 The Resulting P-T Cun'es The P-T curves (for no inadiation shift) for pressure test, non-critical core operation, and core critical operation are generated in Figure 1,2, and 3, respectively. They are also tabulated in Table 1,2, and 3 using the inputs previously described.
Revision 1 Preparer /Date M 3)lt.fg Checker /Date h[) hfir File No. NSP-21Q-304 Page No. 4 of 23 l 1
1384 )
1
A specific case for pressure test (RTs.m = 150'F for beltline. i.e.. due to a radiation shift of 150 -
27 = 123'F) was also run using the above-mentioned worksheet. This is tabulated in Table 4.
Figure 4 shows the beltline material tends to be more limiting than any other region in the RPV after receiving some irradiation.
(
l 9
1 Revision 1 Preparer /Date M 3jlbfTS Checker /Date h iff[77 File No. NSP-21Q-304 Page No. 7 of23_
1385 l
I 1
. l
. Structur:IInt:grity Asacci t:s,Inc.
.'. Tabi c.1 Pressure-Temperature Curve Calculation (for Hydro Test Condition) 10PJGEl Plant a hnteceito :
Component = F.W. Nozzle RT,an = 40- *F (@ 0 EFPY)
TemperatureinstrumentError= : 0 *F Pressure instrument Error = 0- psig Code Hydro Test Pressure = ! 1662.5 psi 9 Boltup Temperature = - - 70 ' 'F Safety Factor = - .1.6 :
Coolant Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T K. Ks P for P.T Curve P-T Curve
(*F) eksPinch") (ksFinch") (psi) (*F) (psi) 70 46.01 30.67 660 70 0 70 46.01 30.67 660 70 312.5 100 56.48 37.66 811 100 312.5 100 56.48 37.86 811 100 811 100 $6.48 37.66 811 100 811 105 58.72 39.15 843 105 843 110 61.12 40.75 877 110 877 115 63.70 42.47 914 115 914 120 66.48 44.32 954 120 954 125 69.46 46.31 997 125 997 130 72.67 48.45 1043 130 1043 135 76.12 50.75 1093 135 1093 ,
140 79.83 53.22 1146 140 1146 j 145 83.82 55.88 1203 145 1203 150 88.11 58.74 1265 150 1265 155 92.72 61.82 1331 155 1331 180 97.68 65.12 1402 160 1402 165 103.01 88.88 1479 165 1479 170 108.75 72.50 1561 170 1561 170.54 109.39 72.93 1570 170.54 1570.1 175 114.91 76.61 1649 175 1649 180 121.54 81.02 1744 180 1744 185 128.66 85.77 1847 185 1847 190 136.32 90.88 1957 190 1957 195 144.56 9637 2075 195 2075 200 153.41 102.28 2202 200 2202 205 162.94 108.62 2339 205 2339 210 173.17 115.45 2486 210 2486 215 184.18 122.79 2644 215 2644 220 196.02 130.68 2814 220 2814 J
I i
g .- --
- f. : ... 3
? ' pgg ha*; y -
. :. . : 4 ',r .
ALh 0 0 W
'. M., W-U Q - M Fat:. 1 _ _.
' ~
l . i. -
m.c i. =r . 7.0 .-2. %u. , '
l PT PRE 2.XLS, Calculation 1386
h structur.nnr.,,,rru..cm one.
Taie.1 (.c.onW '
Pressure-Temperature Curve Calculation (for Hydro Test Conskon)
M* Raft a B4enticeno Corroonert = sottom Head ~
R7.e, = . :28 Y (@ 0 EFPf)
Terroefature instrumert Error = 0' v Pressure instrumert Error = = ,0 psig Come hvoro Test Ptsesure = : ' 1882.5 - pasg Boltto Tempetature a E70 f FT Safety Factor = . ' t.E .
Mirurrum Vessel WallTts mess = ; ' E.9375 s inch Maurrum Waselinside Ross = : ' 103.1575.l tch Mm. F 2.5381.j Calcunsted Adjusted Adjusted Temperature Pressure Temperature Pressure for T K. K. P for P-T Curve P T Curve f'F) (ksf*tneh") (ksf*lnch") (psi) (*P) (psi) 160 27.75 16 50 281 -150 281
-125 26 17 18.78 265 125 285 100 26.78 19 19 291 100 291 75 2906 19.77 300 -75 300
-50 30.91 20.61 313 50 313 25 3172 21.81 331 25 331 0 35.32 23.54 358 0 358 25 39.05 26.03 395 25 395 50 44 40 29.60 450 50 450 70 50.33 33.56 510 70 $10 100 63.17 4111 640 100 640 105 65.91 43.94 067 105 667 110 68 85 45.90 697 110 897 115 7101 48.01 729 115 729 120 75 41 50.28 764 120 764 125 79 07 5171 001 125 801 130 83 00 55.33 840 130 8@
135 87.23 58.15 883 135 883 140 91.77 61.18 929 140 929 145 96.06 64 44 979 145 S79 150 101.92 67.94 1032 150 1032 155 107.57 71.71 1089 155 1089 160 113 64 75.76 1151 160 1151 165 120.17 8ati 1217 165 1217 170 ' L'i.19 64 80 1286 170 1288 175 13474 89.83 1364 175 1364 180 14186 95.24 1447 180 1447 200 181.92 121.28 1842 200 1842 I i
1
)
w- m -
m,. . .
f "repared by: 3/I6lN . . .
,, e +s,. V/6/ fir ..
- t. . me-ve-301 Ret l i
t
.: 9 N
- m. . ., .
- _. _._ 23.m.m.__,,,m,.,.,.-
.1387 rr_pec m s.C. - .n m
-m
s Struerur:;lintegerry Asioseres,Jnc.
.- Tc.bk i (_condu.ded)
Pressure-Temperature curve Calculation (for Hydtv Test Condition)
E!P,141; Piant a montecono Cornponent* Delunne g
Temperature instrument Error s l e Y Pressure instrument Error s e psg Code 6tvoro Test Pressure e 16624 pai9 Eonup Temperature s 70 T Safety Fa:2or e 15 Minimum vessel Wall Truckness a . 5.0626 mch Maximum VesselInsane Radius a 103.1575 inch BAm - 2.335 Calculsand Adjusted Adjusted Temperature Pressure Temperature Pressurefor T 4 K. P for P.T Curve P-T Curve
(*F) (ksr"sneh") (ksMach"p test) fv) (psi) 150 27.74 16 49 386 150 386 125 28 15 18 77 394 -125 394 100 28.75 19 17 403 100 403
-75 29.62 19.74 415 -75 415 50 30.85 20.57 432 50 432 25 32.64 21.76 457 25 457 0 35.19 . 23 46 493 0 493 25 36 87 25.91 544 25 544 50 44.15 29 43 618 50 618 70 50.00 33.33 700 70 700 10&- C2 65
- 41.76 877
- 100 877 105 55.34 43.56 915 105 915 110 68.24 45.50 956 110 956 115 71.36 1000 115 ~ 1000
'47.57 ~ ~ ~ ~ ~~
120' 74.71 '49.81 104ii' ' 120 1046 125 78 32 52.21 1097 125 1097 130 62.19 54.00 1151 130 1151 135 86.36 57.57 1210 135 1210 140 90.64 50.56 1272 140 1272 145 95 86 E3.77 1340 145 1340 1$0 100.83 67.22 1412 150 1412 155 106 40 70.94 1490 155 1490 160 112.39 74.93 1574 180 1574 l 165 118.83 79.22 1864 165 1864 170 125.75 83.83 1761 170 1781 175 133.19 88.79 1866 175 1686 180 141.19 94.13 1978 180 1978 200 179.68 119.73 2517 200 2517 l 225 246 49 164.33 3452 225 3452 250 342 48 228.32 4797 250 4797 275 480 42 320.28 6729 275 6729 300 67863 452.42 9505 300 9505 Go
/. -
- r n:: c y: M 3/r/Sg
- aarth*Fg . a
- : - M 'ildhr ~ ~ '
~
. #SP-21Q-3ui. rt,.,.__f- .
- . I.O g g
++-wwa..,..,,,, , , ,
138S PT, PRE 2 XLS. Calculation (2)
e Structur:Iinsignry Associ:tu,Inc.
4
. 'Ilblt ?-
Pressure-Temperature Curve Calculation (for Norr-Cntical Core Operation) h Plant = Monticel6o i Component = F.W. Not.zie '
Temperature instrument Error = 0 *F Pressure instrument Error = 0 psis Code Hydro Test Pressure = 1562.5 psig bottup Temperature = 70 *F Safety Factor = 2.0 Thermal Stress intensity Fac'er K!! = 6400 ksFmch'8 l Fluid-to-1/4T Temp. Adj. = - 20400 *F l Rx Water Adjusted Calculated Adjusted Temperature Temperature Pressure Pressure for T for P-T Curve K. K. P P-T Curve
(*F) (*F) (ksFinch") (ksFmch") (psi) (psi) 70 90 52.62 23.11 496 0 70 90 52.62 23.11 498 312.5 100 120 66.71 30.15 649 312.5 100 120 66.71 30.15 649 649 100 120 66.71 30.15 649 649 105 125 69.71 31.66 682 682 l 110 130 72.94 3327 716 716 ;
115 135 76.41 35.01 754 754 1 120 140 80.14 3637 794 794 l 125 145 84.15 38.88 837 837 130 150 88.47 41.03 883 883 135 155 93.11 43.35 933 933 140 160 98.1'O 45.85 987 987 145 165 103.46 48I3 1045 1045 j 150 170 109.22 51.41 1107 1107 l 155 175 115.42 54.51 1174 1174 160 180 122.09 57.84 1245 1245 185 185 12925 61.43 1323 1323 170 190 136.96 6528 1405 1405 170.54 191 137.83 85.71 1415 1414.8 175 195 14524 69.42 1495 1495 180 200 154.15 7338 1591 1591 185 205 163.73 78.66 1694 1894 190 210 174.03 83.81 1804 1804 195 215 185.10 89.35 1924 1924 200 220 107.00 9530 2052 2052 205 225 201.80 101.70 2190 2190 210 230 22J.56 108.58
- 2338 2338 215 235 238.36 115.98 2497 2497 220 240 25427 123.94 2668 2668 I
p - ..
'".'E.*M hy* 3 ffg [
' *:C :~.]*:
. N0 I{f(o fiY
~
.. me-2m -y>q
. - nat.l
. _.B
_on 23
.'~ ~ ' * **-=- % ,m,.,,% ,
I
.1389 i
I PT_NON.XLS. Calculation
. l i
.- 1
$srucrurslinr:grury Asssesacs, tnc. *
- Tabic, 2. (conW)
Pressure-Temaerature Curve Calculation (forNon-CtttscalCore Operatsortl trjaggi Paarne 34ent6coHe Componed e Bottom Hoed i
RTce- ^ 26 . T (0 0 EFPY) i Temperatureinstrument Errora 8- fY Pressure erstnament Error a s 8 . psig )
Code Hydre Test Pressure e - 1862.5 - psig Boltup Temperature e ' 79' T Sekty Fe: tor a ' '2.8 Mmimum Vessel Web Thickness e .: . 5A375 mch !
Mammum Vesselinside Redius e 2 - 103.1875 mch {
Fluid 4o-1MT Temp. A4 e 24.121 , T l Therme! Stress inton. Fe= tor e - 2 10A19 ' (ksMach")
Mme 2A26 -
Adjusted Calculated Adjusted Adsusted Temperature Temperature Pressure Teasperature Pressure for T st 1M T Ke K. P for P-T Curve P-T Curve (T) fvl iksNneh") (ksMnch") (pst) fv) (psi)
-150 126 26.16 6 77 200 -150 200
-125 101 28.76 9 07 207 125 207
- 100 -76 29.62 9.51 '217 100 217
-75 -51 30 86 10.13 231 75 231 50 26 32.65 11.02 251 -50 251
-25 1 35.21 12.30 280 -25 280 }
O 24 38 89 14.14 322 0 322 25 49 44.18 16.79 382 25 382 50 74 51.78 20.59 489 50 469 70 W 6020 24.79 565 70 565 100 124 7841 33 90 772 100 772 105 129 82.29 35.84 817 105 817 110 134 86 46 37.93 864 110 864 115 139 90.95 40.17 915 115 915 120 144 95.78 42.58 970 120 970 125 149 100.96 45 18 1029 125 1029 ,
130 154 106.54 47.97 1093 130 1093 135 159 112.54 50.97 1161 135 1161 140 164 118.99 54.19 1235 140 1235 145 169 125 92 57.86 1314 145 1314 150- 174 133.38 61.38 1398 150 1398 155 179 141.39 65.39 1490 155 1490 160 1 84 150.01 69 70 1588 180 1588 165 189 159.28 74.33 1893 165 1693 170 194 169.24 79.31 1807 170 1807 175 199 178.95 64.6' 1829 175 iS29 180 204 191 47 90 43 2060 180 2060 200 224 246.88 118.13 2691 200 2691
- nyt tw: - N 31/G/5
?_DD 'th/W
^
. . . YY f;y;; ___ l , , .
. --.) 2, _ : :. ,_,,2_3_,,,,__
- a. 4 - c.r .r c e m. ,,a. , ,,,,,,,, ,, , , , , , ,,
1QF V s)
PT,NON XLS. Calculation (3)
c- ,
~
suuennsonneemy Assecteses, me.
n MkG b kC.CflC.lu td .
Presswe-Temperature curve calculation 1 por Non-Ctfucal Core Operakon) f M PWM e Odeftlleelle j Componem o Demone 3
R7.o, e . 27 *F (@ 0 EFPY)
Temperature ensrumem Error a 0- *F l
Pressure pwoument Ener = 0 peg I Cooe Myerolest Pressure e its16 peg Bettup Temperature e 70- *F Seesty Factor e ' 2.0 64srunum Vessel Wall Thsknees e 6.9826 . een Masunum Vessel eneuse Rechus e 10L1878 och j Fluhil4TTemp. Adj e 20.4000 p '*F -
Thermal Stress inten. Facter a 7.1818 - ks'eCh 8 Mme . ' . 2.3367 ,
Adjusted Caisuhmed Adjusted Adjusted Temperature Temperature Proesure Temperature Preneurs for 7 et 1a4 7 pr. pr. P ler P.7 Curve P.7 Curve f"F) f*P) fksPeneb") fksPeneh"I feet) f*F) feel) 150 12fr 6 28 06 10 45 220 150 220 140 119.6 28.27 10.55 222 140 2ll2 130 100.6 28 50 10 67 224 -130 224 125 +104.6 28.63 1C.73 l25 125 225 100 79.6 29 43 11.14 234 100 234
.75 54.6 30.59 11,72 246 75 246 50 29.6 32.26 12.55 264 50 264 25 46 34.65 13 74 2e9 25 200 0 20 4 34.09 15 46 325 0 325 25 45.4 43.c3 17.93 37f 25 377 50 70 4 50.13 21 48 451 50 451 70 90 4 67.99 25.41 634 70 634 100 120 4 74.99 3332 713 100 713 105 125 4 - 74.62 35.73 751 105 751 110 130 4 82.51 37.86 732 110 792 115 _ . _ 135 4 D6.71 39.77 836 115 536
~120 140 4 91.21 42.03 583 120 853 125 145 4 96.06 44 45 934 125 SM 130 150 4 101.27 47.05 set 130 Sep 135 155 4 106.87 49.65 1047 135 1047 140 150 4 11188 6146 1111 140 1111 145 165 4 119.36 56.10 1179 145 1179 150 170 4 126.32 56.58 1252 150 1252 155 1754 133.81 83.32 ,1330 155 1330 150 150 4 141.86 67.35 1415 160 1415 165 185 4 150 51 71.67 1506 165 1506
, 170 190 4 15e81 76.33 1804 170 1504 170.54 190.0 160.86 76.55 1615 170.54 1814 6 175 195 4 its 22 81.33 1709 175 1709 180 200 4 180.57 86.71 1822 180 18%i e
7 --
O Sikiqg
-se.,.,,.
':w::: .W: t y: $ Yl6(TS
}
.: . Mf-blQ 404 pm.Q
, .-~~~3~._c
.J _ 23 f__u._ ,
l 1391 PT,NDN KLS. Calcunsten (2)
StructurtlIntegrrty Associtt:s,Inc.
.. 'To. b l c., 3 Pressure-Temperature Curve Calculation (for Cntical Core Operation)
Inputs, Plant = Monticello Component e F.W. Nor.zie RTem= 40. 'F (0 0 EFPY)
Temperature instrument Error = 0 'F Pressure instrument Error = 0 psis Code Hydro Test Pressure = 16625 psis Bottup Temperature = 70- *F Safety Factor = 2.0 Thermal Stress intensny Factor Kit = 6 A00 :. - (ks!" inch")
Fluid-to.1/4T Temp. Adj. = - 20A00.; *F Rx Water Adjusted Calculated Adjusted Adjusted Temperature Temperature Pressure Pressure for Temp. for T for P T Curve K. K. P P-T Curve Critical Op.
(*F) (*F) (kshnch") (ksi" inch") (psi) (psi) (*F) 70 90 52.62 23.11 498 0 110 70 90 52.62 23.11 498 312.5 110 100 120 66.71 30.15 649 312.5 140 100 120 66.71 30.15 649 649 140 100 120 66.71 30.15 649 649 140 105 125 69.71 31.66 682 682 145 110 130 72.94 33.27 716 716 150 115 135 76.41 35.01 754 754 155 120 140 80.14 36.87 794 794 160 125 145 84.15 38.88 837 837 165 130 150 88A7 41.03 883 883 170 135 155 93.11 43.35 933 933 175 140 160 98.10 45.85 987 987 180 145 165 103A6 48.53 1045 1045 185 i 150 170 109.22 51A1 1107 1107 190 {
155 175 115.42 54.51 1174 1174 195 l 160 180 122.09 57.84 1245 1245 200 1 165 185 129.25 61.43 1323 1323 205 170 190 136.96 65.28 1405 1405 210 170.54 191 137.83 65.71 1415 1414.8 211 175 195 145.24 69.42 1495 1495 215 180 200 154.15 73.88 1591 1591 220 185 205 163.73 78.66 1694 1894 225 190 210 174.03 83.81 1804 1804 230 195 215 185.10 89.35 1924 1924 235 200 220 197.00 95.30 2052 2052 240 205 225 209.80 101'.70 2190 2190 245 210 120 223.56 108.58 2338 2338 250 215 235 238.36 115.98 2497 2497 255 220 240 25427 123.94 2668 2668 260 I
r e a me.= w _
.. -< by. : M 3/4/9g
~
~~
.: :e:N} 4/[fW -
Ase-2m- w g.1.g ~
- u. o u I4_ . . _ . . _B_ _
c'_ r 1392 PT,CRI.XLS, Calculation
r...
StruerurriMr pnry Assessaras.Mc,
. I a b lC., 3 c.ordh%a Pressure-Temperature Curve Calculation (for Crmcal Core Operation) l'IPyrg Piant s Monticenne Component s bottom had RT.c.= 36 4 (= 0 EFPY)
Temperature instrument Enor e O 7 Pressure instrument Error e a pra; Code Hydro Test Pressure s 1562.5 psig bottup Temperature s 70 V Safety Factor s 2.0 Minimum VasselWallThicimess s 8.8375 met:
Maximum Vessel insios Radius s 103.1575 men l Fluio to 114T Temp. Adj s - 24.121 Y I Thermal Stress intert Factor a Mme .
18.410' 2.526 -
ul [eA Adjusted Calculated Adjusted Adjusted Temptruture Temperature Pressure Temperature Pressure for T st 1J4 7 K. K. P for P.T Curve P.T Curve
(*F) ' f*F) (ksP6nch") (ksPmch ia, g,,g9 g.py g ,,gy 150 126 26 16 6.77 200 150 200 -
125 101 28.76 9 07 207 125 207 100 76 29.62 9.51 217 100 217 75 51 30.86 10 13 231 75 231 50 26 3165 11.02 251 50 251
-25 1 35.21 12.30 280 25 280 0 24 38 89 14.14 322 0 322 25 49 44.18 16 79 382 25 382 50 74 51.78 20.59 489 50 469 70 94 60.20 24.79 565 70 565 100 124 7841 33 90 772 100 772 105 129 8129 35 84 817 105 817 110 134 86 46 37.93 864 110 864 115 139 90.95 40.17 915 115 915 120 144 95.78 42.58 970 120 970 125 149 100.96 45.18 1029 125 1029 I 130 154 106.54 47.97 10B3 130 1093 135 159 11154 50.97 titt 135 1161 140 164 118.99 54 19 1:35 140 1235 145 169 125.92 57.66 1314 145 1314 150 174 133.38 61.38 1398 150 1398 155 179 141.39 65.39 1490 155 1490 160 184 150.01 69.70 1588 160 1588 165 189 159.28 74.33 1893 165 1693 170 1 94 169.24 79.31 1807 170 1807 175 199 179.95 64.67 1929 175 1929 180 204 191.47 90 43 2060 180 2060 e
O m .- ~, , . ,
- m: ev: M ' Sh6/99 ~
I
. . ,.... . _fLfb y/(o 79,p
, NSP-2tQ. Soy gey; _ ;
- .u
_ 15 e._;ts 4 -u. s 4 w r .. u.~ . ~ %,.,.,
g 1393 PT.CRI.XLS. Calculabon (3)
e svuewrer mwomy auuews. me.
4 TQ,.h t.
3 (co.ic.li4 del)
Pressure-TemDerature Curve Calculation (for Crfical Core Operatron) m pierir e eneniseene Componefil e Softline -
g RTecn " 27 4 (@ 0 EFPY) g Temperature instrument Enor e ; O *lt PressureinstrumeritErrore : O pea 9 Cooe Myero Test Pmesure e p .'19818 peg Beltuplempomasre s . - 70 - *F 6elety Facaw e . ' 2.0 kmanum Vessel Wat!Thenness * - ' $.0825 mch kasamum Vessel insee Rathus e 4.10L1876 Men Fauht/4TTemp Ad; * .. 'StL4000 'F Thermal strous imen. Facter e . 7.1816 - (asFmch"J htme t 2.336 Adjusted Calculated Adjusted Adjusted Tempermure Temperatus Preseues Temperature Ptoueure ter T st 1M T Kei K. P 1er P.T Curve P.T Curve tv) fv) taePineth") fkePench") feet) f*FI tosII 160 -12k.6 24.06 10 46 220 160 220
-140 119.6 28.27 10.55 222 140 222 130 109.6 26.50 10.67 224 130 224
-125 104.6 28 63 10.73 225 .125 225 100 79 6 29 43 11,14 234 100 234 75 54.6 30.59 11.72 246 75 246 50 29.6 32.26 12.55 2e4 50 264 25 4.6 34 85 13.74 280 25 280 0 20.4 38.00 15 46 325 0 225 25 45 4 43.03 17.93 377 25 377 50 70 4 50.13 21 48 451 50 451 70 90.4 57.99 25 41 $34 70 534
%D0 120 4 74.00 33.92 713 100 713 105 125 4 78 62 35.73 751 105 751 110 130.4 82.51 37.f.0 792 110 782 115 135 4 e6.71 39.77 836 115 836 120 15tF4 91.21 42.03 883 120 883 125 145 4 e6.06 44 45 334 125 934 130 150 4 101.27 47.05 909 130 989 135 155 4 106.87 49.85 1047 135 1047 140 160 4 112.89 52.06 1111 140 1111 145 1654 119.36 56 10 1179 145 1179 150 170 4 126.32 59.58 1252 150 1252 155 175 4 133.81 63.32 1330 155 1330 160 180.4 141.86 67.35 1415 160 1415 165 185 4 150.51 71.67 1506 165 1506 170 190.4 159.81 76.33 1804 170 1604 175 195.4 160 82 81.33 1700 175 1709 180 200 4 180 57 BC.71 1822 180 1C r wanaru mean,aase:=.-
_- : :m AM 3/4 /eg
_$ 'll(o/W
~'
NW21G-304/ ,=, e t...I
- f. _ .. ... ., ,. ., . . . _ _c_e* f
. - M --
- -- -m.w r *wm. .a, .
1394 P7,CRIAS, Comuisten (2) u_
4
.- l Structuralinsegnty Atsociates,Inc. l
'. To.bic 4 Pressure-Temperature curve Calculation
, =r Hydre Test Conditan) jagggt Plant e emetseene - j Component e mennee ..
RT,ana 150 ' .1 (gpsp3ty) j Temperature outrument Enor e - e T l Pressure instrunent Ener s : e . pas i Code Hyero Test Pressure e : .1862.6- : paq I Boltup Temperature a 7e ; -7 seesty Factor a 1 A '; .
Mwwmum VesselWell Trucimens e :. SASIS .:. ench Mammum VesselInssee Radius = l 103.15F5 x ench Mme, . 2.336 l,,
Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for i T K. K. P for P-T Curve P T Curve ]
(V) (leshech") (linfisch*) (pol) (T) (psi) l
-150 26.N 17.96 377 150 3Tl 125 27.01 18 01 378 .125 378
-100 27.11 18.07 380 100 380
-75 27.26 18.17 382 75 362 50 27.46 18.31 385 50 385
-25 27.76 18 51 3a0 25 389 0 28.19 18.80 395 0 395 I
25 28.81 19.21 404 25 404 50 29.70 19.80 416 50 416 70 30.08 20 45 430 70 430 100 32.81 21.87 400 100 400 105 33.26 22.17 aos 105 486 110 33.75 22.50 473 110 473 115 34.27 22.85 480 115 480 120 34.84 23.22 408 120 488 125 35 M 23.63 496 125 496 130 36 09 24.06 506 130 506 135 36.79 24.53 515 135 515 1.40 37.55 25.03 526 140 526 145 38.35 25.57 537 145 537 150 39.22 26.15 549 150 549 155 40.16 26.77 50 155 563 160 41.17 27 44 577 160 577 ,
165 42.25 *6.17
-
- 502 165 592 170 43 41 28.N 008 1"d 808 :
175 44 e6 29.77 626 ,75 626 j 100 46.01 30.87 844 180 644 ;
2x 52 a um m 2x m .
225- s3x 42 a 892 - m 892 l 250 79.83 53 22 1118 250 1118 275 103 01 86.08 1443 275 1443 300 136.32 90.88 1900 300 1909 -
I I
p-._- _
i IC: ,
s'
~~ e :- :: by: & 3lg jpg
. v: NJ y/6/n "
b f-2IQ -30s{
.A gg.,; _ y
.a .~m: .o
& -=-.
, _.n, _ ,,, ,j 1395 PT,PRC2.XLS. Calcuation (4)
' , l
~
i n_ Y L,
y g7 g -
jhj/ n l
Y y
}g{p$
~
' . 0 0
. 0 f 2 2 P
ry5 u b N.
- _ 0 0
8 1 ad c e o
_ r 4
=-
e w. h.m0 in
=h c t
s
_. it -- 0 '
E' T
e -
t s
e 0 6
1 h f ;\'l
(~ I' e
r -
u s -
s - -
0 0
e r - 4 1
P i
F evu r
o e
r
/[y _ 0 0
2 -
r -
d 1
t C --
a e i) s p
H F's T-i
(
P -
- n 0 0 e r
o o 0 u l - t 1 s l t s e o e i
c -
B P r
t n -
o 0 0
M -
8
- 0 0
- 6 l
0 0
_ i. 4 0
0 2
0 0 0 0 0 0 0 0 0 0 0
3 5
2 5
1 0
1 5 5 0 1
5 1
20 E . _
, ' ',h'1,. _
8 _1 .
- bZe lJ R v: _
)] / n _ _
35 / l h.,_
_Y
'9 3- f a
f O_ -
l 0
0 0
_2-2 : : /- _
g:.
7 y!
i i
r e N.
0 c .
0 o -
n -
8
- n. w. n 7 - -
o - -
1
_ T :c
/
i I t a I -
a r d -
I-e a - -
. Y i -
p l e - - 0 fl! ' - .
0 O
2 6 _
1 e -
N m _
o o/
r o -
- .- t t
C - o _
l -
W.
F
. B 0 a . 0 i
c 4 1
t i
r C- _
2 Nr n
o /W -
0 0
2 1
cF r
. o A i) s p
4
- e (
3r v 0 er 0
'i u 0 u _
s F C 1 s .
'/
e r
T- P _
P _
l o 0 0
l e 8 c
i M
t n
o
/ 0 0
6
- ~
- - 0 0
- - 4 I
I 0
0 2
. - - - -0 0 0 0 0 0 0 0 0 0 5 0 5 0 5 5 0 5 2 2 1 1 1 1 ES 2flc E
O
~ Cw)%
h 3 A
m.r,_ n m_
=
0 0
0 1 1
1 mO,_
2 1
=
c
.. L_
'M""b u
' m, p'.
e .
e i
e -
m - 00 8
1
' oI.T n d - il i
t o
a r
e y#/ H a e
1 0 0
r p o 6 1
O t t
o C
e r
o z#/gB z
o N
e m
- 0 0
l 4 a 1 c .
i F
Ws/
t i
r 3C r 0 co r F .
0 2
1 pev i u r
i)
(
s p
0 FC p 0
0 e
r u
T-a 1 s s
P e r
P lo le 0 i
c .
0 8
t n
o _ w m,
M -
/ w m
m..
0 0
6 m '
e,
- J l N
_ - A u
- 0 0
- 2
- 0 0 0 0 0 e 0 0 0 0
3 5 0 0 s 5 5 2 2 1 - 1 3 ee m
1 l li}:: 'ld
- _f
. S.
l z
1/8 6 1 w
z _ l
.f/ e o
N 3 4
/
n Y 5_
W.. l a_
F -
3
'0 d 0 -
a ;
0 r e 0 G n
_ H 2 i 2-tm p# =
p t o
~ 0 y :P Y. 5 L..
a b b#
0 8
1 d d A. .
- re e o
- t n:
B##/
- ) -
n o padl r-t s
e
- it a
0 0 .. er ime i
~ -
T i
d a
6 1 . P< n "-
/
l~ - ,
e r
r yl u
s s
e r
- (
in o
n o
0 0
4 1
P i lt 4r Fo e ee r v ur u j W "fB 0 0
2 1
gC f
t) i s F- PT )
- 0 0
(
p e
r o u l
0 l
l
'0 1 s s
e 5 e i
c 1 P
r t =
n T o F 0
0 M
8 A(
e i
i n -
tt -
e -
r 0 0
B - 6
- 0 0
,4 I
_ - - 0 0
- 2 -
- - 0 0
0 3
3 0
0 2
0 5
1 0
5 0 0 5
0 0
1 0
5 1
aE E0 o , _
t'c .
6.0 CONCLUSION
S Based on the results of Section 5.0, it is seen that the initial bottom head P-T curves test are bounding at beginning oflife (BOL) of the plant. When the RPV receives more irradiation, the beltline materials become more limiting as can be seen in Figure 4.
7.0 REFERENCES
[1] SIA Calculation NSP-21Q-303, Rev. O, " Determination of the Initial RThTT and ART Values for the Monticello RPV Materials", July 1997.
[2] ASME B&PV Code,Section XI, Rules for Inservice Inspection of Nuclear Power Plant Comnonents, Nonmandatory Appendix G, Fracture Toughness Requirements,"
1989 Edition.
[3] U.S. Code of Federal Regulations, Title 10, Part 50, Appendix G," Fracture Toughness Requirements," 1-1-96 Edition.
[4] Chicago Bridge and Iron Co. Drawing No.1, Revision 8, Contract No. 9-5624,
" General Plan,17'2" ID x 63'2" Ins. Heads Nuclear Reactor for General Electric Co.
For Northem States Power Co., Monticello, Mmnesota," 2/1/68, SI File No. NSP-21Q-210. ,
[5] Chicago Bridge and Iron Co. Drawing No. 9, Revision 7, Contract No. 9-5624,
" Details of 10"4 Stub Mk # N4A/D for 17'2" ID x 63'2" Ins. Heads Nuclear Reactor for General Electric Co. For Northern States Power Co., Monticello, Minnesota,"
12/12/66, SI File No. NSP-21Q-235.
[6] Chicago Bridge and Iron Co. Stress Repon, " Section T3, Thermal Analysis, Shroud Support, Monticello Reactor Vessel, CB&I Contract 9-5624," SI File No. NSP-21 Q-223.
[7] Chicago Bridge and Iron Co. " Summary Report, Monticello-NSP Reactor Vessel",
CB&I Contract 9-5624,"8/10/70, SI File No. NSP-21Q-217.
Revision 1 Preparer /Date $ 3/4fg Checker /Date /h 4MP File No. NSP-21Q-304 Page No. 22. of .2_3_.
1400
[8] PIPE-TS2, Program to Compute the Transient Thermal and Stress Response of an l Axisymmetric Two-Material Cylinder. Version 1.01. Structural Integrity Associates, SI File No. QA-1260.
[9] GE Report No. SASR 88-99, Revision 1. ' Implementation of Regulatory Guide 1.99, Rev. 2 for the Monticello Nuclear Generating Plant," January 1989, SI File No. NSP-21Q-202.
[10] WRC Bulletin 175,"PVRC Recommendations on Toughness Requirements for Ferritic Materials," PVRC Ad Hoc Group on Toughness Requirements, Welding Research Council, August 1972.
[11] AShE Boiler and Pressure Vessel Code,Section III, Rules for Construction of Nuclear Power Plant Components, Division I - Appendix I, " Design Stress Intensity Values, Allowable Stresses, Material Properties, and Design Fatigue Curves," 1989 Edition.
[12] Structural Integrity Associates Report, SIR 95-035, Rev. 0, " Evaluation of Pressure-Temperature Curve", April 1995.
[13] SIA Calculation NSP-21Q-306, Rev. O, " Calculation of the Initial RTm Values for Monticello Plate C2220-2."
n a d cit 20-l 7pist 4 /99 i
Revision 1 Preparer /Date M 3lJG/$
Checker /Date h yhf File No. NSP-21Q-304 Page No. Ab of J3 1401
- l APPENDIX A l
PIPE-TS2 Heat Transfer Analysis for Beltline Input File = "100F-CD.IN" [2 pages)
Results = "TIMESTEP.XLS" [1 pages]
i l
i l
i i
1 Revision 1 Preparer /Date M 3/4/g Checker /Date k 'f[(,[77 .
File No. NSP-21Q-304 Page No. Ao-Ah of A3 1402
' f:
100F CO.lN Mon Mir 16 11:59:34 1998 prez 1 N **"** PIPE TS2 INPUT FILE => 100f-cd.lN (TOP OF FILE) """
" Note that a blank line sust preceed each line with ==> at start" "s=> Next 3 lines are CASE DESCRIPTIONS (or blanks) in parentheses" "Cooldown Transient" "100@F/hr, 550F to 50F" "MONTICELLO Vessel Shett Location"
"==> Next information is ths pipe geometry"
" First line is nuiber of pipe nodes - 40 maxa a
Next line is inside radius (in.) and outside radius (in.)"
Next line is interface red. (in.) / nodes in first material" 21 103.0 108.25 103.1875 1
- ==> Next line is initial pipe wat t temperature" 550
"==> Next series of lines is inside Tamperature history"
" First entry is runber of input data pairs 40 Max" Data. pairs follow as Time (sec) Tamperature(F)"
3 0 550 18000 50 25000 50 "s=> Next series of lines is Inside Mt. Tx. Coefficient history" First entry is number of input data pairs - 40 max"
" Data pairst Time (sec) Ht. Tx. Coefficient (Bru/hr ft2 F)"
2 0 431.7 25000 431.7 "s=> Next series of lines is outside Tamperature history" First entry is number of input data pairs
- 40 Max" Data pairs follow as Time (sec) Tamperature(F)"
2 -
0 100 25000 100
"==> Next series of lines is Outside Mt. Tx. Coefficient history" First entry is number of input data pairs - 40 max"
" Data pairs Time (sec) Ht. Tx. Coefficient (Btu /hr ft2 F)"
2 0 0.2 25000 0.2 "s=> Follt. wing are inner materiet properties 2350F (304 SS Clad)"
Thermal conductivity (8tu/Hr-Ft F)"
10.1
" Density
- Specific Heat (Btu /Ft3)"
62.34567901
." Modulus of Elasticity (ksi)"
26.15e3 4 MEAN Coefficient of Thermal Expansion (per F)" l 9.10e-6 Poissons Ratio"
.3
- ==> Following are outer materlat properties 2350F (LAS Base Metal)" '
Thermal conductivity (Btu /Hr*Ft F)"
23.4
" Density
- Specific Heat (Stu/Ft3)"
59.69387755 Modulus of Elasticity (ksi)" 4 27.70e3 i
" MEAN Coefficient of Thermet Expansion (per F)"
7.50e 6
- Poissons Ratic"
.3 1403 Al
- \
t s, 100F :L.!k Mon Mir 16.11:59:34 1998 Fe93 2 I
-J I 'a sse v' alue of uniform temperature which is stress f ree in cylindera a Stress free temperature (F) may be any value" 70 a ss> Timestep and time control information (seconds)a a Timestep Max <= 0.5'(!(Re RI)/ nodes)*2/[k/ Rho p3)*3600" 3 a
hext line is numoer of time control intervals " l 1
" end of interval time step print interval" 21600 10.0 3600
........ *******"*** END DF FILE " * * * " * " * * " " * * *
- CREATED DATE: 12 18 1996 TIME: 09:30:00 l
l I
2 l
I 1
1 1
i
.i l
l i
l l
1 e
i
- l l
I i
I l
1404 i l
4
~.
PIPE-TS2 results fer time, ; = 18000 seconds (File = *18000.stp")
1 Grid Radius Actud St: cases Linear Stresses Tamparatures l Hoop Axial Radial Ecop Axial Actual Linear I
'1 103 6.12 6.12 0 3.75 3.78 56.2 62.5 2 103.187 4.73 4.74 0.01 3.48 3.51 60.2 63.4 {
2 103.189 4.39 4.4 0.01 3.48 3.51 60.2 63.4 I 3 103.441 3.71 3.73 0.02 3.12 3.15 62.5 64.6 4 103.694 3.07 3.09 0.03 2.76 2.79 64.6 65.8 5 103.947 2.46 2.49 0.03 2.4 2.43 66.7 67 6 104.2 1.89 1.93 0.04 2.04 2.07 68.6 68.2 7 104.453 1.35 1.39 0.04 1,68 1.71 70.4 69.4 8 104.706 0.85 0.9 0.05 1.32 1.34 72 70.6 9 104.959 0.39 0.44 0.05 0.95 0.98 73.6 71.8 10 105.213 -0.04 0.01 0.05 0.59 0.62 75 73 11 105.466 -0.43 -0.38 0.05 0.23 0.26 76.3 74.2-12 105.719 -0.79 -0.74 0.05 -0.13 -0.1 77.5 75.4 13 105.972 -1.11 -1.06 0.04 -0.49 -0.46 78.6 76.6 14 106.225 -1.39 -1.35 0.04 -0.85 -0.82 79.6 77.8 15 106.478 -1.64 -1.61 0.04 -1.21 -1.18 80.5 79 16 106.731 -1.86 -1.83 0.03 -1.57 -1.54 81.2 80.3 17 106.984 -2.04 -2.02 0.03 -1.94 -1.9 81.8 81.5 18 107.238 -2,19' -2.17 0.02 -2,3 -2,26 82.4 82.7 19 107.491 -2,3 -2,29 0.02 -2.66 -2.62 82.8 83.9 20 107.744 -2.38 -2.37 0.01 -3.02 -2.98 83 85.1 21 107.997 -2.43 -2.42 0.01 -3.38 -3.35 83.2 86.3 22 108.25 -2.44 -2.44 0 -3.74 -3.71 83.3 87.5 9
. 1405 TIMESTEP XLS 3/16/98 A3
,f . '
APPENDIX B PIPE-TS2 Heat Transfer Analysis for Bottom Head input File = "100F-CD2.IN" [2 pages]
Results = ' i8000-2.STP" [1 page]
Revision 1 Preparer /Date g 3/k/fg Checker /Date fM (([f[g File No. NSP-21Q-304 Page No.80-65 of _D.
1106
e.
100F CD2.!N Min M:r 16 11:59:34 1998 past i s
PIPE TS2 ]NPUT F]LE => 100f ed.!N (TOP cf , ll E) ****"
" Note that a blank line must preceed each line with *** st start"
"==> Next 3 lines are CASE DESCRIPTIONS (or blanks) in parentheses" "Cooldown transient" "100$F/hr, 550F to SOF" "MONTICELLO Vessel Shell Location" i "m=> Wext information is the pipe geometry"
" First line is runber of pipe nodes - 40 max" Next line is inside radius ({n.) and outside radius (in.)"
Next line is interf ace red. (in.) / nodes in first material" 21 103.0 109.125 103.1875 1
"==> Next line is initial pipe wall tenperature" 550
"==> hext series of lines is Inside Temperature history" First entry is runber of input data pairs - 40 Max" Data pairs follow as Time (sec) Teraperature(F)"
3 0 550 18000 50 25000 50
"==> Wext series of lines is inside Mt. Tx. Coefficient history" First entry is number of input data pairs - 40 maxa
" Data pairs: Time (sec) Ht. Tx. Coefficient (Btu /hr-ft2-F)"
2 0 447.6 25000 447.6
"==> Next series of lines is outside Tamperature history"
" First entry is runber of input data pairs - 40 Max" Data pairs follow as Time (sec) Tenperature(F)"
2 -
0 100 25000 100
"==> Next series of lines is C.ittide Mt. Tx. Coefficient history"
" First entry is runber of input data pairs 40 :wx"
" Data pairs: Time (',ec) Ht. Tx. Coefficient (Btuihr-ft2 F)"
2 0 0.2 25000 0.2
"==> Following are inwr material properties 2350F (304 SS Clad)"
" Thermal conductirity (Btu /Hr*Ft-F)"
10.1
" Density " Specific Heat (Btu /Ft3)"
62.34567901
- Modulus of Elasticity (ksi)"
26.15e3 MEAN Coefficient of Thermal Expansion (per F)"
9.10e-6
" Poissons Ratio"
.3
"==> Following are outer material properties E350F (LAS Base Metal)"
" Thermal conductivity (Stu/Hr Ft-F)"
23.4
" Density
- Specific Heat (Bru/Ft3)"
59.69387755 Modulus of Elasticity (ksi)"
27.70e3
" MEAN Coefficient of Thermal Expansion (per F)"
7.50e-6 j
" Poissons Ratio" l
.3 l 1407 i
b\ i
r 0
100F :D2.!N Mon Mar 16 11:59:34 1998 page 2 e
"==> Value of uniform temperature which is stress free in cylinder"
" Stress free temperature (F) may be any value" 70
"==> Timestep and time control information (seconds)"
" Timestep Max <= 0.5*(ICRo-Ri)/ nodes)*2/Ek/Rhotpn*3600" Next line is number of time control intervals a 1
a end of interval - time step - print interval" 21600 10.0 3600
- "****""**** END OF FILE ****"*"**"*"**"
CREATED DATE: 12-18 1996 TIME: 09:30:00 l
l l
e 9
9 I
.1408 BL
i 18000 2.5TP Mon Mar 16 11:59:34 1998 pagi 1 4
f 1 103.0000 +7.89 +7.89 +0.00 +5.D6 +5.D9 56.9 65.3 2 103.1866 +6.26 +6.27 +0.01 +4.75 +4.79 61.7 66.3 2 103.1890 +6.11 +6.12 +0.01 +4.75 +4.79 61.7 66.3 3 103.4844 +5.16 +5.19 +0.03 +4.26 +4.30 64.8 67.9 4 103.7813 +4.27 +4.32 +0.04 +3.77 +3.81 67.8 69.6 5 104.0781 +3.43 +3.49 +0.05 +3.28 +3.32 70.6 71.2 6 1D4.3750 +2.65 +2.71 +0.D6 +2.79 +2.83 73.2 72.9 7 104.6719 +1.91 +1.98 +0.07 +2.30 +2.34 75.7 74.5 8 104.9688 +1.22 +1.29 +0.07 +1.81 +1.85 78.0 76.1 9 105.2656 +0.58 +0.66 +0.07 +1.32 +1.37 80.1 77.8 10 105.5625 -0.01 +0.07 +0.08 +0.83 +0.88 82.1 79.4 11 105.8594 -0.55 0.47 +0.07 +0.34 +0.39 83.9 81.1 12 106.1563 -1.03 0.96 +0.07 0.15 -0.10 85.6 82.7 13 106.4531 -1.48 -1.41 +0.07 -0.64 -0.59 87.1 84.3 14 1D6.7500 -1.87 -1.80 +0.D6 -1.13 -1.08 88.4 86.0 15 107.D669 -2.21 2.15 +0.D6 1.62 -1.57 89.6 87.6 16 107.3438 2.51 -2.46 +0.05 -2.11 -2.05 90.6 89.2 2.76 2.60 -2.54 91.5 90.9 17 107.64D6 18 107.9375 -2.96
-2.71
-2.92
+0.04
+0.04 -3.09 3.03 92.2 92.5 )
- 19 108.2344 -3.11 3.09 +0.03 3.57 3.52 92.7 94.2 l 20 108.5313 -3.22 3.20 +0.02 -4.06 -4.01 93.1 95.8 21 108.8281 -3.28 -3.27 +0.01 -4.55 -4.50 93.3 97.4 22 109.1250 -3.29 -3.29 +0.00 -5.04 -4.99 93.4 99.1 18000 ,
J 0
s 1405
.