ML20196J434

From kanterella
Jump to navigation Jump to search

Boric Acid Concentration Reduction Effort,Technical Bases & Operational Analysis
ML20196J434
Person / Time
Site: Millstone Dominion icon.png
Issue date: 11/30/1986
From:
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY
To:
Shared Package
ML20196J430 List:
References
CEN-342(N), TAC-68212, NUDOCS 8807060388
Download: ML20196J434 (140)


Text

,

BORIC ACID CONCENTRATION REDUCTION EFFORT CEN 342(N)

TECHNICAL BASES AND OPERATIONAL ANALYSIS MILLSTONE NUCLEAR P0HER PLANT UNIT 2 Prepared for Northeast Utilities November, 1986 l

l 8807060388 880624 PDR. ADOCK 05000336

.P PDC

.{

Table of Contents Section Title Page 1.0 Introduction 1-1

1.1 Purpose and Scope

1-1 1.2 Report Organization 1-2 1.3 Past vs. Present Methodology for 1-2 Setting BAMT Concentration 2.0 Technical Bases for Reducing BAMT 2-1 Concentration 2.1 Boric Acid Solubility 2-1 2.2 Method of Analysis and Assumptions 2-1 2.2.1 RCS Boron Concentration vs. Temperature 2-1 2.2.2 Impact of Various Cooldown Rates 2-5 l

l 2.2.3 Applicability to Future Reload Cycles 2-6 2.2.4 Boron Mixing in the RCS and in the 2-6 Pressurizer a

2.3 Borated Water Sources - Shutdown 2-7

f. (Hodes 5 and 6)
l. 2.3.1 Boration Requirenents for Modes 2-7 .

I 5 and 6

( 2.3.2 Assumptions Used in the Modes 2-7 5 and 6 f.nalysis I

2.3.3 Modes 5 and 6 Analysis Results 2-8 i

t

(

Table of Contents (cont.)

Page Section Title 2.4 Borated Water Source - Operating 2-13 (Modes 1,2,3,and4) 2.4.1 Boration Requirements for Modes 2-13 1, 2, 3, and 4 2.4.2 Assumptions used in the Modes 2-14 1, 2, 3, and 4 Analysis 2.4.3 Modes 1, 2, 3, and 4 Analysis 2-15 Results 2.4.4 Simplification Used Following 2-18 Shutdown Cooling Initiation 2.5 Boration Systems - Bases 2-19 4.6 Response to Typical Review Questions 2-22 3.0 Operational Analysis 3-1 3.1 Introduction to the Operational 3-1 Analysis 3.2 Response to Emergency Situations 3-1 3.3 Feed-and Bleed Operations 3-2 3.4 Plended Makeup Operations 3-4 .

3.5 Shutdown to Refueling - Mode 6 3-5 3.6 Shutdown to Cold Shutdown - Mode 5 3-9 4.0 References 4-1  ;

11 l__ __ ___ _ - _ . _ _ _ _ _ _ _ _ _ _ ____ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ - ____ -

'(

Table of Contents (cont.)

Section Title Page-Appendix 1 Derivation of the Reactor Coolant ---

System Feed-and-Bleed Equation Appendix 2 A Proof that Final System Concentration ---

is Independent of System, Volume Appendix 3 Methodology for Calculating Dissolved ---

Boric Acid per Gallon of Water Appendix 4 Methodology for Calculating the ---

Conversion Factor Between Weight Percent Boric Acid and ppm Boron Appendix 5 Boric Acid Solubility Data - US ---

Borax & Chemical Corporation Appendix 6 Required Boron Concentration ---

for a Cooldown from 557'F to 200*F Appendix 7 Recommended Technical ---

Specification Changes Appendix 8 Bounding Physics Data Inputs ---

Appendix 9 Long Term Cooling and Containment ---

Sump pH Considerations i

i t.

iii

.{ -

Boric Acid Concentration Reduction Effort Technical Bases and Operational Analysis CEN-342(N)

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE This report defines the msthodology and outlines the technical bases which allows a reduction in the boric acid storage tank (BAST) concentration to the point where heat tracing of the boric acid makeup system is no longer required in order to preve,e boric acid precipitation. The basic methodology or procedure used to set the minimum BAST concentration and level for Modes 1, 2, 3, and 4 is derived from the safe shutdown requirements of NUREG 0800 Branch Technical Position RSB 5-1, "Design Requirements for the Residual Heat Removal System". Specifically, sufficient dissolved boric acid is maintained in these tanks in order to provide the required shutdown margin of Technical Specification 3.1.1.1 for a cooldown from hot standby to cold shutdown conditions. In addition, the minimum BAST concentration and level for Modes 5 and 6 are based upon the ability to maintain the required shutdown margin in Technical Specification 3.1.1.2 following xenon decay and cooldown from 200 degrees to 130 degrees.

The work detailed in the report was performed specifically for the i

Millstone 2 plant. The calculation performed herein and the values obtained should be applicable to future cycles. (See Section 2.2.3 below). The curves in Figure 3.1-1 of Technical Specification 3.1.2.8 and the values in 3.1.2.7 may change slightly; however, there should not ,

be a need to heat trace the boric acid systen N r the remainder of plant l

life.

i 1-1

t J

1.2 REPORT ORGANIZATION This report has been organized into tf e yieral sections: m introduction, Technical Bases, and Operational Analysis. The Technical Bases Section 2.0, outlines the methodology which allows a significant reduction in boric acid storage tank concentration and presents the results of the detailed calculations perfo:,ned in support of the Technical Specifications. Separate calculations were performed for Specificationc,.1.2.7(BoratedWaterSource-Shutdown), Specification 3.1.2.8 (Borated Water Source - Operating), and Specification 3/4.1.2 (BorationSystemsBases). Also included in Section 2.0 are the technical responses to typical questions asked during review of the Technical Specification changes. The Operational Analysis Section, Section 3.0, outlines the impact on normal operations of a reduced boric Ocid storage tank concentration. The types of operations evaluated in Section 3.0 include feed-and-bleed, blended makeup, shutdown to refueling, and shutdown to cold shutdown. All tables and figures are contained at the end of each section for easy reference.

1.3 PAST vs. PRESENT METHODOLOGY OF SETTING BAST CONCENTRATION Prior to the development of the new methodology for setting BAST l concentration and level described in this report, the level and concentration specified in the plant Technical Specifications for Modes 1, 2, 3, and 4 were based upon the ability to perform a cooldown to cold shutdown in the absence of letdown. (Safe Shutdown requirements of NUREG

, 0800 BTP 5-1 event). The RCS was borated to the boric acid concentration required to provide a shutdown margin of 2.9% delta k/k at 200 degrees l prior to comencing plant cooldown. In the limiting situation where letdown was not available, this boration was accomplished by charging to the RCS ,

while simultaneously filling the pressurizer. Since boron concentration typically had to be increased by 800 ppm or more prior to comencing cooldown, highly concentrated boric acid solutions were required due to the limited space that was available in the pressurizer.

I 1-2

I Relatively recent advances have made it possible to develop new methodolo .es for setting BAST concentration and levels. The methodology for setting concentration and level of Modes 1, 2, 3, and 4 described in this report differs from previous methodologies in that boration of the reactor coolant system is performed concurrently with plant cooldown, i.e., concentrated boric acid is added concurrently with cooldown as part of normal inventory makeup due to coolant contraction. By knowing the exact boron concentration required to maintain proper shutdown margin at each temperature during a plant cooldown, BAST concentratinn can be decoupled from pressurizer volume. As a result, the concentration of boric acid required to be maintained in the boric acid storage tanks in order to perform a cooldown to cold shutdown conditions can be lowered to the point where heat tracing of the boric acid storage system is no longer required, i.e., the ambient temperatures that normally exist in the plant's auxiliary building are sufficient to prevent boric acid precipitation.

Similarly, a new methodology was developed for setting the minimum concentration and level of the boration source required to be operational j in Modes 5 and 6. The new methodology is similar to the new Mode 1 through Mode 4 methodology in that boron is added concurrently with i cooldown as part of normal system makeup. By insuring that the boron concentrationismaintainedgreaterthafthatrequiredforproper shutdown margin at each temperature, the boric acid storage tank concentration for Modes 5 and 6 can be lowered to 2.50 weight percent.

i i

e L

1-3

(,

2.0 TECHNICAL BASES FOR REDUCING BAST CONCENTRATION 2.1 BORIC ACID SOLUBILITY Figure 2-1 is a plot showing the solubility of boric acid in water for temperatures ranging from 32 to 160 degre b . (Data for figure 2-1 was obtained from Reference 4.1 and is reprinted in Appendix 5.) Note that the solubility of boric acid at 32 degrees is 2.52 weight percent and at 50 degrees is 3.49 weight percent. At or below a concentration of 3.5 weight percent boric acid, the ambient temperatures that normally exist in the auxiliary building at Northeast Utilities Millstone Unit 2 will be sufficient to prevent precipitation within the boric acid makeup system.

2.2 METHOD OF ANALYSIS AND ASSUMPTIONS 2.2.1 RCS Boron Concentration vs. Temperature 2.2.1.1 Operating Modes 1, 2, 3 and 4 As stated in Section 1.3 above, the methodology developed to allow a l

l significant reduction in the boric acid concentration required to be i

maintained in the BASTS in Modes 1, 2, 3, and 4 differs from the previous L methodo'.ogy in that boration of the reactor coolant system is performed concurrently with cooldown ia order to insure proper shutdown margin, i.e., concentrated boron is added as part of normal system makeup during the cooldown process. To employ a methodology allowing boration concurrent with cooldown, the exact boron concentration required to be present in the reactor coolant system must be known at any temperature L during the cooldown process. 'In addition, in order to insure applicability for an entire cycle, a cooldown scenario must be developed which is conservative in that it places the greatest burden on an operator's ability to control reactivity, i.e., this scenario must define l

2-1

9 I.

the boration requirements for the most limiting time in core cycle. Such a limiting scenario is as follows:

1. Conservative core physics parameters were used to determine the required boron concentration and the required Boric Acid Storage Tank volumes to be added during plant cooldown. End-of-cycle initial boron concentration is assumed to be zero. End-of-cycle moderator cooldown effects are used to maximize the reactivity change during the plant cooldown. Beginning-of-cycle boron reactivity worths (which are smallest at the begining of cycle) are used to maximize the amount of boron that must be added to provide the required reactivity change. These assumptions assure that the required boron concentration and the Boric Acid Storage Tank minimum volume requirements conservatively bound all plant cooldowns during core life.
2. The most reactive rod is stuck in the full out position.
3. Prior to time zero, the plant is operating at 100% power with 100%

equilibrium xenon. Zero RCS leakage.

4. At time zero, the plant is shutdown and held at hot zero power conditions for 25.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. (The xenon peak after shutdown will have decayed back to the 100% power equilibrium xenon level. Further xenon decay will add positive reactivity to the core during the plantcooldown.) No credit was taken for the negative reactivity effects of the xenon concentration peak following the reactor shutdown, i 5. At 25.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />, offsite power is lost and the plant goes into natural circulation. All non-safety grade plant equipment and components are lost. During the natural circulation the RCS average l

j temperature rises 25'F due to decay heat in the core. The initial

[

temperature at the start of the cooldown is 557*F.

2-2 1

=-- ,

s A.

6. Approximately 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> later, at 26 hours3.009259e-4 days <br />0.00722 hours <br />4.298942e-5 weeks <br />9.893e-6 months <br />, the operatnrs commence a cooldown to cold shutdown.

4 The acenario outlined above was used to generate the boration requirements for both Modes 1, 2, 3, and 4 (Specification 3.1.2.8). It produces a situation where positive reactivity will be added to the reactor coolant system simultaneously from two sources at the time that a plant cooldown from hot shutdown is commenced. These two reactivity sources result from a temperature effect due to an overall negative isothermal temperature coefficient of reactivity, and a poison effect as the xenon-135 level in the' core starts to decay below its equilibrium value at 100% power. This scenario, therefore, represents the greatest challenge to an operators ability to borate the-reactor coolant system and maintain the required Technical Specification shutdown trargin while cooling the plant from hot standby to cold shutdown conditions.

l- 2.2.1.2 Operating Modes 5 and 6 1

The methodology developed for Modes 5 and 6 differs from the method used in previous refueling cycles to determine boration requirements. In this new methodology boration of the reactor coolant sy' stem is performed concurrently with cooldown. Concentrated boric acid is added as part of normal system makeup during the cooldown process. Toemployamethodogy allowing boration concurrent with cooldown, the exact boron concentration requ"ed to be present in the reactor coolant system must be known at any temperature during the cooldown process. The following scenario was developed to identify the most limiting cooldown transient for Modes 5 and 6.

2-3 l

l1

(

1. End-of-cycle conditions with the initial RCS boron concentration necessary to provide a 2.0% delta k/k shutdown margin at 200 degrees and xenon free core. E0C moderator cooldown effects are used to maximize the reactivity change during the plant cooldown.BOC boron worths are used since they are the smallest over core life, therefore, requiring the greatest overali increase in boron concentration in order to maintain proper shutdown margin.
2. Most reactive rod is stuck in the full out position.
3. Zero RCS leakage.
4. RCS feed-and-bleed can be used to increase boron concentration.

(This is not a safe shutdown scenario as required by safe shutdown considerations of Reference 5.

5. RCS makeup is supplied either from the RWST alone or a combination of makeup from the EAST and RWST.

The scenario outlined above was used to determine the boration requirements for Modes 5 and 6 (Specification 3.1.2.7). It produces a l situation where positive reactivity will be added to the reactor coolant system due to the overall negative isothermal temperature coefficient of l

reactivity. Since the core is already assumed to be xenon free there is no contribution to core reactivity due to xenon decay.

I i

l

j. 2-4

(.

2.2.2 Impact of Various Cooldown Rates As discussed in the previous Section, a conservative cooldown scenario was selected for use in determining RCS boron concentration leveis.

These concentration results were then used to define tha minimum Technical Specification boric acid storage tank inventory requirements.

In the scenario for modes 1, 2, 3, and 4, positive reactivity was added simultaneously from two sources at the time that the plant cooldown from hot standby was connenced. The component resulting from an overall negative isothermal temperature coefficient of reactivity is independent of time, but it is directly dependent upon the amount that the system has been cooled. In contrast, the component that results from the decay of xenon-135 below its equilibrium value at 100% power is independent of temperature, but directly dependent upon time. As a result, a slow cooldown rate will require more boron to be added to the reactor coolant system than a fast cooldown rate for a given temperature decrease since more positive reactivity must be accounted for due to xenon decay. This effect is illustrated in Figure 2-2 and is applicable to the Modes 1, 2, 3, and 4 analysis. Note that the bases for Technical Specification 3.1.2.7 require a cooldown following xenon decay. As a result, boration requirements are independent of cooldown rate for the Modes 5 and 6 analysis.

For the purpose of setting the minimum Technical Specification boric acid storage tank inventory requirements in Modes 1, 2, 3, and a, reactor coolant system boron concentration data was used that was based upon an overall cooldown rate of 12.5 degree per hour. This slow cooldown rate was chosen in order to be consistent with the time frames specified in Section 6.2 of Reference 4.3 (natural circulation cooldown in CE NSSS) for reactor vessel upper head cooldown. Specifically, 26 hours3.009259e-4 days <br />0.00722 hours <br />4.298942e-5 weeks <br />9.893e-6 months <br /> was ,

required in order to take the plant from hot standby conditions to cold shutdown as shown in Table 2-1. For additional conservatism, 2.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2-5

(.

was added to this number to arrive at a final total of 28.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. An overall cooldown rate, therefore, of 12.5 degrees per hour was required to cool the plant from an average coolant temperature of 557 degrees to an average coolant temperature of 200 degrees in 28.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. This cooldown scenario will conservatively bound cooldowns that occur sooner and/or at a higher cooldown rate.

2.2.3 Applicability to Future Reload Cycles To ensure that the current analysis would be valid for future cycles, data from Millstone 2 Cycle 8 was conservatively bounded. The physics data used in this analysis should bound future fuel cycles of sirrilar reload cores. Appendix 8 contains bounding physics assumptions that were used to pr, duce the required boron concentration values. As long as these inputs are more conservative than the reload cycle physics parameters, the values produced in this analysis will bound the boron concentration values for the future reload cycles.

2.2.4 Boron Mixing in the RCS and in the Pressurizer Throughout the plant cooldowns performed in Section 2.3 and Section 2.4 below, a constant pressurizer level was always assumed, i.e., plant operators charged to the RCS only as necessary to makeup for coolant l contraction. The driving force is small, in this situation, for the mixing of fluid between the reactor coolant system and the pressurizer, i

l As a conservatism, however, complete and instantaneous mixing was assumed between all makeup fluid added to the reactor coolant system through the loop charging nozzles and the pressurizer. Further, various pressure reductions were performed during the plant cooldown process as indicated in Section 2.4. These pressure reductions are necessary since the shutdown cooling system is a low pressure system and is normally aligned l

l l

2-6

/

1

at or below an RCS pressure of 265 psia. Typically, such depressurizations are performed using the auxiliary pressurizer spray system under conditions where the reactor coolant pumps are not running.

As an added conservatism in the Modes 1, 2, 3, and 4 analysis, any boron added to the pressurizer via the spray system was assumed to stay in the pressurizer and not be available for mixing with the fluid in the remainder of the RCS. System depressurization was performed after the s charging pump suction is shifted to the RWST.

2.3 B0 RATED WATER SOURCES - SHUTDOWN (MODES 5 AND 6) 2.3.1 Boration Requirements for Modes 5 and 6 As stated in the plant Technical Specifications, the boration capacity required below a reactor coolant system average temperature of 200 degrees i is based upon providing a 2% delta k / k shutdown margin following xenon decay and a plant cooldown from 200 degrees to 130 degrees. From this basis the required RCS boron concentration was determined using conservative core physics data. The results of this calculation are contained in Table 2-2. The results contained in Table 2-2 are plotted as the 2.0% shutdown curve in Figure 2-3. Note that a total boron concentration increase of 32.5 ppm was required for the tooldown.

2.3.2 Assumptions Used in the Modes 5 and 6 Analysis A complete list of assumptions and initial conditions used in calculating the minimum boric acid storage tank inventory requirements for Modes 5 and 6 is contained in Table 2-3. In the process of taking the plant f

from hot standby to cold shutdown, the shutdown cooling system (SOCS) l will normally be aligned when the RCS temperature and pressure have been ,

lowered to approximately 300 degrees and 265 psia. As shown in the next Section, the total system volume, i.e., RCS volume plus PZR volume plus l

l SDCS volume, is required to be known for the Modes 5 and 6 analysis. The 2-7

.(1 exact volumes of the reactor coolant system and the pressurize.r are known. The exact volume of the shutdown cooling system, however, is not known. (Best estimate calculations for this volume have yielded values from approximately 2500 ft3 to approximately 3000 ft3 ). For the purpose f of the aralysis in the followina Section, the volume of the shutdown cooling system will be chosen conservatively large, equal to the RCS volume, so as to yield conservative results with respect to minimum boric acid storage tank inventory requirements.

The exact system volume used in the Modes 5 and 6 calculation is as follows:

2 x (RCS volume) + (PZR volume at 0% power),

or 2(9,260 ft3 ) + (460 ft 3) = 18,980 ft3, 2.3.3 Modes 5 and 6 Analysis Results As stated in Section 2.3.1, the boration capacity required below a reactor coolant system average temperature of 200 degrees is based upon providing a 2.0% delta k / k shutdown margin following xenon decay and a plant I

cooldown from 200 degrees to 130 degrees. The operating scenario that l

will be employed for the purpose of determining reactor coolant system I boron concentration and ensuring that proper shutdown margin will be l maintained is as follows:

l l

l l

l l 2-8

Option 1: Provide RCS Makeup From BAST

.A. The system is initially at 200 degrees and 265 psia. Initial concentration in the reactor coolant system, pressurizer, and in the shutdown cooling system is 632.8 ppm boron. (See Table 2-3 for a complete list of assumptions).

B. Perform.a plant cooldown from an average temperature of 200 degrees to an average temperature of 130 degrees using makeup water from the BAST (2.5 weight % boric acid solution at 70 degrees). Charge only as necessary to makeup for coolant contraction.

From Equation 2.0 of. Appendix 3 and the conversion factor that is derived in Appendix 4, the initial boric acid mass in the system can be calculated as follows:

632.8 ppm 18,520 ft 3

+ 460 ft 3 3 3 m = 1748.34 ppm /wt. % 0.01662 ft /lbm 0.018725 ft /lbm ba 100 - (632.8 ppm)/(1748.34 ppm /wt. %)

or m = 4137.1 lbm boric acid ba Knowing the initial mass of boron in the system, the exact concentration and makeup requirements can be calculated for each 10 degrees of a cooldown from 200 degrees to 130 degrees. These values are contained in Table 2-4. Equations used to obtain the values shown in Ttble 2-4 are as

! follows:

Shrinkage Mass =

18,520 (1/vf - 1/v4 )

Water Vol. = (ShrinkageMass)/(8.329lbm/ gallon)I2)

Boric Acid Added = (Water Vol.) x (0.21356 lbm/ gallon) (3)

(2) Water density at 70 degrees.

(3) See Appendix 3 for values of dissolved boric acid in water.

2-9

Total Boric Acid = -(Initial Boric Acid) + (Boric Acid Added)

Total System Mass = (Total Initial Mass) + (Shrinkage Mass) +

(Boric Acid Added)

Final Conc. = (Total Boric Acid)(100)(1748.34)I4) .

(Total System Mass)

Note that the initial total system mass of 1,142,514.0 lbm in Table 2-4 was obtained as follows:

(Initial Boric Acid) + (Initial System Water Mass) +

(PressurizerWaterMass)

= 4137.1 lbm + (18,520 ft 3

/ 0.01662 ft 3/lbm) +

3 3 (460 ft / 0.08725 ft /lbm)

= 1,143,023.3 lbm The boration results from the system cooldown from 200 to 130 degrees are plotted as the actual concentration curve in Figure 2-3. As can be seen from this figure, a shutdown margin of greater than the required 2.0%

delta k / k was maintained throughout the evaluation. A concentration of 2.50 weight % boron was therefore specified in Technical Specification 3.1.2.7. The minimum volume that should be specified in this Technical l Specification is 3750 gallons. This volume was determined as follows:

l Makeup volume (5) 3,214.9 gallons Arbitrary amount 500 gallons for conservatism Total 3714.9 gallons l' Round up to nearest 3750 gallons .

i 50 gallons l

l l

(4) See Appendix 4 for the conversion factor between wt. % and ppm.

(5) Total of values in Water Vol, column of Table 2-4.

2-10 l

E ,

I h

OPTI'ON 2: Feed and Bleed then Cooldown from RWST The RWST will not provide enough boric acid to compensate for the reactivity inserted during the cooldown if charging is restricted to makeup for coolant contraction only. A feed- and -bleed must be performed to raise the RCS concentration before the cooldown is commenced.

In order to calculate the initial increase in boron concentration during the 1,600 gallon system feed-and-bleed, Equation 9.0 of Appendix 1 will be used with values as follows:

C,= 632.8 ppm Cin = 1720 ppm (18,520 ft3 / 0.01662 ft3/lbm)(6) + (460 ft3 / 0.018725 fl/lbmh7)

T=

40 gallons 8.343 (8) lbm

  • gallon min T = 3412.7 min.

(6) Specific volume of compressed water at 200 F and 265 psia (7) Specific volume of saturated water at 265 psia (8) Density of water at 50*F If one charging pump at 40 gpm (as assumed in calculating the value of i above) is used to conduct the 1,600 gallon system feed-and-bleed, 40 minutes will be required (40 gpm x 40 min = 1,600 gallon). Concentration vs time for a 40 minute feed-and-bleed from equation 9.0 of Appendix D is therefore:

Time Conc 0 632.8 10 636.0 20 639.2 30 642.3 40 645.5 2-11

k The feed-and-bleed portion of the cooldown process is indicated on Figure 2-4 as the vertical line. As shown, concentration was increased from 632.8 ppm to 645.5 ppm following the 1600 gallon feed-and-bleed.

From Equation 2.0 of Appendix 3 and the conversion factor derived in Appendix 4, the mass of boric acid in the system corresponding to a concentration of 645.5 ppm can be calculated as follows:

CH, M =

ba 100 - C

, [(645.5 ppm)/(1748.34 ppm /wt.%)] (18,520f$/0.01662f2/lbm+460f$/0.018725f t/l 100 - (645.5 ppm)/(1748.34 ppm /wt.%)

= 4220.4 lbm boric acid Knowing the mass of boric acid in the system following the feed-and-bleed, the exact concentration and makeup requirements can be calculated for each 10 degrees of a cooldown from 200*F to 130*F. These values are contained 3in Table 2-5. The cooldown assumes a constant pressurizer level of 460 ft and a constant pressure of 265 psia. In addition, complete mixing between the RCS and the PZR is assumed as discussed in Section 2.2.4 above. Equations used to obtain the values contained in Table 2-5 are as follows:

Shrinkage mass = 18,520 (1/vf - 1/v$)

Water Vol. = (Shrinkage mass) / (8.343 lbm/ gallon)

Boric acid added = (water vol.) (0.08289 lbm/ gallon)

Total boric acid = initial boric acid + boric acid added Total System mass = Total initial mass + shrinkage mass + boric acid added Final concentration = -(Total Boric Total System Acid) (100) (1748.34)

Mass

~

2-12 f

\

The'results of the initial system feed-and-bleed plus the plant cooldown are plotted as Curve II in Figure 2-4. Note that throughout the evaluation, a shutdown margin greater than 2.0% delta k/k was maintained as required.

The initial total system mass in Table 2-5 of 1,143,106.6 lbm was obtained as follows:

Initial boric acid raass + initial system water mass + initial PZR water mass =

3 3 4220.4 lbm + (18,520 f3 t ) / (0.01662 f 3t /lbm) + (460 ft ) / (0.018725 ft /lbm)

= 1,143,106.6 lbm A RWST concentration of 1720 ppm will therefore be specified in Technical Specification 3.1.2.7 since the proper shutdown margin could be maintained.

The minimum volume will be specified as follows for the RWST cooldown:

Feed-and-Bleed Volume - 1,600 gallons Makeup Volume - 3209.5 gallons l

l Total - 4809.5 l Round up to nearest - 5350 gallons 50 + 500 gallons l

With 51,950 gallons of the RWST unusable, the actual required volume in the l

RWST at 1720 ppm is 57,300 gallons, l

2.4 B0 RATED WATER SOURCES - OPERATING (MODES 1, 2, 3, and 4) l l

i i 2.4.1 Boration Requirements for Modes 1, 2, 3, and 4 4

As stated in the plant Technical Specification Bases 3/4.1.2, the boration capacity is sufficient to provide a shutdown margin from all operating conditions of 1.0% delta k/k after xenon decay and cooldown to 200 degrees F.

2-13 1

L For this analysis a shutdown margin of 2.9% delta k / k is provided at all temperatures above a reactor coolant system average temperature of 200 degrees. For temperatures at or below 200 degrees, a shutdown margin of 2.0% delta k/k is provided P.fter xenon decay and cooldown to 200 degrees. From this basis, the required RCS boron concentration was determined using conservative core physics parameters and the limiting cooldown scenario outlined in Section 2.2.1 above. The results are plotted as the 2.9% shutdown curve in Figure 2-5.

2.4.2 Assumptions Used in the Modes 1, 2, 3, and 4 Analysis A complete list of assumptions and initial conditions used in calculating the minimum boric acid storage tank inventory requirements for Modes 1, 2, 3, and 4 are contained in Table 2-6. Note that complete and instantaneous mixing between the reactor coolant system and the pressurizer was assumed as stated in Section 2.2.4 for all fluid added to the reactor coolant system via the loop charging nozzles. The mechanism used to implement this assumption in the analysis was to include the pressurizer water mass as part of the total system mass for the purpose of calculating boron concentration. Specifically, boron concentration in terms of weight fraction is defined as follows:

(boron conc.) = (mass of boron in system)

(total system mass) where, if complete mixing is assumed between the RCS and the pressurizer, the total system mass is the sum of the boron mass in the system, the reactor coolant system water mass, and the pressurizer water mass.

I =

2-14 i

t Therefore, the initial total system mass of 451,774.24 lbm in Table 2-7 through Table'2-41 was calculated as follows:

Initial boron mass + Initial RCS water mass + Initial PZR water mass, or 0 + 9,260 ft 3

+ 600 ft 3 0.021552 ft /lbm I9) 3 3 0.02713 ft /lbm(10) 2.4.3 Modes 1, 2, 3, and 4 Analysis Results As ' stated in Section 2.4.1, the boration capacity required below a reactor coolant system average temperature of 200 degrees is based upon providing a 2.0% delta k / k shutdown margin after xenon decay and a plant cooldown to 200 degrees from expected operating conditions. In addition, a shutdown margin of 2.9% delta k / k is provided at all temperatures above a reactor coolant system average temperature of 200 degrees. In order to' perform a plant cooldown from hot standby conditions to cold shutdown and maintain a shutdown margin of 2.9% delta k / k at each temperature above 200 degrees, the following operating scenario will be employed:

A. Assuming the initial conditions outlined in Table 2-6, perform a plant cooldown starting from an initial RCS average temperature of 557 degrees to a final average system temperature of 200 degrees.

8. Charge to the RCS only as necessary to makeup for coolant contraction. Charge from the BAST initially until BAST is drained, then switch to the RWST for the remainder of the cooldown.

l (9) Specific volume of compressed water at 557 degrees and 2250 psia.

! (10) specific volume of saturated water at 2250 psia.

l 2-15

9 I(

The exact reactor coolant system boron concentration versus temperature for a plant cooldown and depressurization from 557 degrees and 2250 psia to 200 degrees 265 psia with a boric acid storage tank concentration of 3.50 weight percent and a refueling water storage tank concentration of 1720 ppm boron is contained in Table 2-7. These results are plotted as the actual concentration curve in Figure 2-5. (The exact temperature at which charging pump suction was switched from the BASTS to the refueling water storage tank (480 degrees in Table 2-7) was determined via an iterative process. In this process, the smallest boric acid storage tank volume necessary to maintain the required shutdown margin was calculated for the given set of tank concentrations). Note that at each temperature during the cooldown process, RCS boron concentration is greater than that required for a 2.9% delta k / h shutdown margin. Also note in Figure 2-5 that the shutdown margin drops from 2.9% delta k / k to 2.0% delta k / k at an average coolant temperature of 200 degrees. The final i concentration required to be present in the system at the most limiting time in core cycle is 632.8 ppm boron following xenon decay. Using the scenario outlined on the previous page, the final system concentration will. always be at least 26.9 ppm greater than this amount.

A detailed parametric analysis was perfonned for the modes 1, 2, 3, and 4 Technical Specification (Specification 3.1.2.8). In this study, BAST concentration was varied'from 3.5 weight percent boric acid to 2.5 weight percent boric acid and RWST concentration was varied from 1720 ppm boron to 2300 ppm boron. The results are contained in Table 2-8 through Table 2-41. Equations used to obtain tne values in these tables as well as Table 2-7 are as follows:

Shrinkage flass =

9,260 (1/vf - 1/v$)

BAST Vol. = (Shrinkage Mass) / (8.3290 lbm/ gallon)(11) ,

(11) Density of water at assumed tank temperature, f

2-16

l ',

RWST Vol. = (ShrinkageMass)/(8.343lbm/ gallon)(12)

Boric Acid Added = (BAST Vol.) x (mass of boric acid / gallon)(13) or

= (RWST Vol.) x (mass of boric acid /ga11on)(13)

Total Boric Acid =

(Initial Boric Acid) + (Boric Acid Added)

Total System Mass = (RCS water mass) + (PZR water mass) II4) +

(Tetal boric acid)

Final Conc. = (Total _ Boric Acid)(100)(1748.34)(15)

(Total System Mass)

Note that the value of the total system mass at any temperature and pressure in Table 2-7 through Table 2-41 can be obtained as follows:

RCS water mass + PZR water mass + total boric acid = total system mass.

As an' example, the value of the total system mass at 200 degrees and 265 psia in Table 2-7 was obtained as follows:

9,260 ft 3 + 600 ft 3 + 2336.8 lbm 3

0.01662 ft /1bm I16) 0.018725 ft /1bm(17) 3

= 591,539.5 lbm l

l (12) Density of water at assumed tank temperature.

(13) See Appendix 3 for values of dissolved boric acid in water.

(14) PZR water mass = (600 ft ) / (specific volume at indicated Psat)*

(15) See Appendix 4 for the conversion factor between wt. % and ppm.

(16) Specific volume of compressed water at 200 degrees and 265 psia.

(17) Specific volume of saturated water as 265 psia.

r 2-17

e

'i In a similar manner as in the results of Table 2-7, the concentration results of Table 2-8 through Table 2-41 were compared to the required concentration at each temperature for a plant cooldown from 557 degrees to 200 degrees. In each case, the actual system boron concentration was greater than that necessary for the required shutdown margin as indicated in Figure 2-5. To set the minimum Technical Specification boric acid storage tank volume correspondina to the various BAST and RWST concentrations, the makeup tank volume from Table 2-7 through Table 2-41 were compiled into Table 2-42. The volume requirements were rounded up to the nearest 50 gallons and graphically represented in Figure 2-6. The curves in Figure 2-6 represent the minimum volume that should be incorporated into the Millstone Unit 2 Cycle 8 Technical Specifications as Figure 3.1-1.

2.4.4 Simplification Used Following Shutdown Cooling Initiation In the cooldown and depressurization process assumed in Table 2-7 through Tcble 2-41, the plant operators must physically align the shutdown cooling system at an RCS temperature and pressure'of approximately 300 degrees and 265 psia. Following this alignment, the volume and mass of the system that the operators must contend with during any subsequent cooldowns will obviously increase by the volume and mass associated with the shutdown cooling system. Further, the total boron mass in the system that the operators are now dealing with will also have increased by the amount of boron in the SDCS prior to alignment. In Table 2-7 through 2-41, as a simplification, no attempt was made to factor into the equations the higher total volume and total boron mass that would result when the shutdown cooling system is placed in service. The use of this simplification in the Modes 1, 2, 3, and 4 calculation can be justified as follows:

1 2-18

' k_

1. At the time that the shutdown cooling system is aligned, makeup is being supplied from the refueling water storage tank.

Therefore, additional makeup that would be requircd during the cooldown from 300 degrees to 200 degrees due to a larger system volume will not affect the total BAST volume requirements.

This assumption would affect the minimum volume requirement of the RWST in Modes 1, 2, 3, and 4. Since the RWST requirements for emergency core cooling are much greater than the requirements for this cooldown scenario, this simplification does not impact RWST sizing requirements.

2. In a cooldown process where an operator is charging only as necessary to makeup for coolant contraction, the change in baron concentration within the system is independent of the total system volume, i.e., the final system boron concentration is not a function of total system volume. (A proof of this statement is contained in Appendix 2).
3. As stated in Table 2-6 boron concentration in the SOCS is assumed to be equal to reactor coolant system concentration at the time of shutdown cooling initiation. This assumption is in fact a conservatism since the concentration in that system in most situations will be closer to refueling water storage tank concentration at the time of initiation.

2.5 B0 RATION SYSTEMS - BASES The BASES section of the technical specifications was developed to demonstrate the boration system capability to maintain adequate shutdown margin from all operating conditions. Section 3/4.1.2 of the plant ,

Technical Specifications states the following:

l I

2-19 l

l

s

(

"The boration capability of either system 's sufficient to provide a SHUTDOWN MARGIN from all operating conditions of 1% delte k/k after xenon decay and cooldown to 200*F. The maximum boration capability requirement occurs at EOL from full power equilibrium xenon conditions and requires approximately 4900 gallons of 3.C weight %

boric acid solution from the boric acid storage tanks and approximately 15,000 gallons of 1720 ppm borated water from the refueling water storage tank or approximately 47,000 gallons of 1720 ppm borated water from the refueling water storage tank alone."

The s'cenario used to determine these minimum RWST and BAST levels is outlined below. Since the bases section does not consider a safe shutdown scenario, letdown is available during the cooldown. System feed- and -bleed is available to raise RCS boron concentration.

The 47,000 gallon RWST volume in section 3/4.1.2 of the plant Technical Specifications was obtained in five parts as shown below. All RCS makeup l is assumed to be from the RWST. The final results from each of these parts is contained in Table 2-43. This cooldown assumes all RCS makup is t

from the RWST.

A. Perform a plant cooldown from 557 degrees and 2250 psia to 300 degrees and 265 psia using the RWST at 1720 ppm boron and 50 degrees. C.harge only as necessary to makeup for coolant contraction. (See Table 2-6 for complete list of assumptions and initial conditions).

l B. At 300 degrees and 265 psia, align shutdown cooling system. Assume I

that the volume of the shJtdown cooling system is 9,260 f t3 ,3 1

l ai. cussed in Section 2.3.2 above. Assume that the concentration of ,

the shutdown cooling system is equal to that of tne reactor coolant system at the time of shutdown cooling initiation.

2-20 l

k.

C. Continue system cooldown from 300 degrees and 265 psia to 200 degrees and 265 psia using the.RWST. Charge only as necessary to makeup for coolant contraction.

D. At 200 degrees, perform a system feed-and-bleed using the refueling water storage tank until total boron content is greater than 632.8 ppm. (This will ensure the proper shutdown margin per Figure 2-5 at 200 degrees).

E. Add volumes from Parts A, B, C, and D and round results up to the nearest 1000 gallons.

The 15,000 gallon RWST volume in Section 3/4.1.2 of the plant Technical Specifications was obtained by assuming RCS makeup was provided from the i BAST and the RWST. Total RCS makeup due to the coolant contraction

! during cooldown is calculated as described in A, B and C above. This yielded a contraction volume of 19,334.9 gallons. From this volume the minimum BAST volume for the RWST at 1720 ppm boron from Table 2-42, 4878.3 gallons, is subtracted yielding 14,456.6 gallons which is rounded up to 15,000 gallons. As a result of the addition of 3.5 weight % boric acid from the BAST, e feed and bleed is not required to maintain a 2.0%

delta k/k shutdown margin for this case. Table 2-44 shows how this 15,000 gallon RWST volume is calculated.

l .

l l

l 2-21 l

l C

(.

2.6 RESPONSE TO REVIEW QUESTIONS This Section of the ' report details the responses to the typical questions asked during the review of the Technical Specifications.

Question 1: What are the uncertainties and conservatisms associated with the tro curves shown in Figure 2-5 of CEN-342(N)?

Response to Question 1:

The lower curve in figure 2-5 of CEN-341(C) represents an upper bound on the concentration required to be present in the reactor coolant system for a 2.9% shutdown margin at the indicated temperatures. In the computer analysis that was performed to generate this curve, appropriate analytical and measurement uncertainties as well as appropriate conservatisms were included to ensure that an upper bounding curve was obtained. The major uncertainties and conservatisms that were factored into the 2.9% shutdown curve of figure 2-5 are as follows:

l

1. Initial scram is assumed to take place from the hot full power PDIL (power dependent insertion limit) to all rods in, with the worst .

case rod stuck in the full out position.

2. Scram worth: -4% bias, i 9% uncertainty, l 3. The time constant for xenon decay at 26 hours3.009259e-4 days <br />0.00722 hours <br />4.298942e-5 weeks <br />9.893e-6 months <br /> is chosen to be conservatively large.
4. A combined moderator, Doppler and Xenon uncertainty of 8% was applied. .

2-22 l

Since appropriate analytical and measurement uncertainties as well as appropriate conservatisms associated with the analysis were factored into the lower curve in Figure 2-5, it is not necessary to factor any additional uncertainties or conservatisms directly into the upper curve shown in that figure. Although no additional uncertainties were included in the upper curve, the cooldown scenario followed by the operators was specifically chosen to be conservative such that the actual concentratic .

curve in Figure 2-5 in effect represents a lower bound on the boron concentration that can be achieved by an operator given a certain boric acid storage tank (BAST) level and boron content. Specifically,

- conservatisms in the cooldown scenario were insured in two ways. First, the cooldown was condu ted assuming a constant pressurizer level, i.e.,

plant operators charged to the reactor coolant system orly as necessary to makeup for coolant contraction. As a result, be,on concentration in the reactor coolant system can be increased above the upper curve in Figure 2-5 by over-charging during the cooldown process, i.e., charge in excess of the makeup required.for coolant contraction by allowing pressuriier level to increase. Second, the BAST volumes obtained in Table 2-7 through Table 2-41 of CEN-342(N) were rounded up to the nearest 50 gallons in order to give the final results that appear in Figure 2-6.

Boron concentrat'on in the reactor coolant system, therefore, can be increased furtner since more inventory is available in the BAMTs than that used to generate the actual concentration curve in Figure 2-5.

Question 2: What are the implications of a reduction in boric acid storage tank concentration with respect to plant emergency procedures and Combustion Engineering's Emergency Procedure Guidelines?

2-23

~

7 I^

Response to Question 2:

As stated in Section 3.2 of CEN-342(N) credit is not taken for boron addition to the reactor coolant system from the boric acid storage tanks for the purpose of reactivity control in the accidents analyzed in Chapter 15 of the plant's Final Safety Analysis Report. The response of an operator, therefore, to such events as steam line break, overcooling, boron dilution, etc., will not be affected by a reduction in BAST concentration. In particular, the action statements associated with Technical Specification 3.1.1.2 require that boration be commenced at greater than 40 gallons per minute using a solution of at least 1720 ppm boron in the event that shutdown margin is lost. Such statements are conservatively based upon the refueling water storage tank concentration and are therefore independent of the amount of boron in the BASTS.

Similar to the Technical Specification action steps in the event of a loss of shutdown margin, the operator guidance in Combustion Engineering's Emergency Procedure Guidelines (EPGs), CEN-152, Rev. 2, are also independent of specific boron concentrations within the boric acid '

storage tanks. Specifically, the acceptance criteria developed for the reactivity control section of the Functional Recovery Guidelines of CEN-152 are based upon a boron addition rate from the chemical and volume control syston of 40 gallons per minute without reference to a particular boration concentration. The reduction in boron concentration within the boric acid storage tanks therefore has no impact on, and does not change, the guidance contained in the EPGs.

Question 3: Under natural circulation conditions, show that boron mixing in the rbactor coolant system is rapid enough to ensure that proper shutdown margin is maintained during a safe shutdown. What is the effect of various cooldown rates on the mixing process? If an operator charges only as necessary to makeup for coolant contraction, what is the impact of pressurizer level instrument errors on boron concentration?

2-24

l ' -

(~

Response to Question 3: -

As discussed in Section 1.1 of CEN-342(N) the basic methodology or procedure used to set the minimum boric acid storage tank (BAST) level and concentration for Modes 1, 2, 3, and 4 is derived from the_ safe shutdown requirements of Branch Technical Position (RSB) 5-1.

Specifically, sufficient dissolved boric acid is maintained in these tanks in order to provide the required shutdown margin of Technical Specification 3.1.1.1 for a cooldown from hot standby to cold shutdown conditions. Further, the meth',dology outlined in Section 2.0 of the report for Modes 1, 2, 3, and 4 was developed by incorporating appropriate conservatisms to insure that the shutdown margin of 2.9%

would indeed be satisfied at each temperature during the cooldown process.

These conservatisms include a cooldown scenario that maximized the boration requirements due to xenon decay. In Section 2.0 the cooldown was not commenced until twenty-six hours after the reactor trip. This time interval allowed the post trip xenon to peak and decay back to the ,

pre-trip steady state value. Selecting the low cooldown rate of 12.5 degrees per hour maximized the xenon contribution to the boration requirement by allowing more xenon decay during the cooldown than.would l

have occured if a more rapid cooldown had been conducted, i

l Boron mixing effects were evaluated for natural circulation cooldown l conditions specified in the safe shutdown requirements of Reference 4.5.

Just prior to event initiation, the plant is operating at 100% of rated thermal power. Previous operating history is such as to develop the maximum core decay heat load, At time zero, event initiation occurs and offsite power is lost. The retctor coolant pumps deenergize causing a

- reactor trip, and the plant goes into natural circulation. All non-safety grade equipment is 1st, including letdown, and one diesel generator fails to stert. The plant is held at these conditions in hot l

t 2-25 l

l l

( s standby for four hours, at which time a cooldown to cold shutdown is connenced. (Section 5.4 of CEN-201(S), Supplement No. 1, contains a computer simulation of the safe shutdown scenario of Reference 4.5 and showstheseevents).

The exact boration requirements that give a 2.9% shutdown margin for the

.this scenario are shown in Figure 2-7. (This curve was obtained using conservative core physics parameters for cycle 8. Note that the 2.9%

shutdown curve in tnis figure is based upon a 80 degree per hour cooldown rate. A cooldown rate of 80 degrees per hour was selected for the following reasons: First, a fast cooldown rate is more limiting than a slow cooldown with respect to boron nixing s4.nce the slope of the required boration curve is greater. The effect of the assumed mixing time (less than thirty minutes) would be more adverse then than a cooldown at a slower cooldown rate (see Figure 2-7). Second, an eighty degrees per hour cooldown rate is the maximum allowable. For an added conservatism the actual JS boron concentration was derived by using a BAST concentration of 2.5 weight percent. (A BAST concentration of 2.5 wt. % was selected since it is the lowest value that will be allowed by '

Technical Specification 3.1.2.8 cnd since it yields the slowest increase in reactor coolant system concentrition during the cooldown process).

The actual concentration curve was abtained using the methodology

! outlined in Section 2.4 of CEN-342(h) and includes the following assumptions and conservatisms:

1. No boron addition is credited prior to commencing plant cooldown.

(Note that one charging pum) will operate immediately following plant trip in response to pressurizer level shrink as indicated in l

Section 5.4 of CEN-210(S), Supplemeat No. 1. Credit for boron j

addition.hcuever, during this period will not be taken).

l

2. Pressurizer level at the start of plant cooldown equals 45%.

2-26 l

k.

3. Charging will be secured at the start of the plant cooldown and will remain secured until pressurizer level has decreased by 10%. (In themethodologyoutlinedinCEN-342(N)operatorswereassumedto charge as necessary t' maintain a constant pressurizer level. Note that the error associated with pressurizer level is typically + 2 percent, therefore allowing a 10 percent decrease in level before initiating charging is conservative).
4. Following the initial 10% decrease in pressurizer level, charging will be initiated and maintained as necessary to keep a 35%

' pressurizer level for the remainder of the plant cooldown.

5. Complete and instantaneous mixing with all fluid added via the charging nozzles with the contents of the RCS and the pressurizer is assumed. (Note that this assumption in relation to a delay in boron mixing will be discussed below).

The concentration curve that was obtained using these assumptions is shown in Figure 2-7. In order to account for the effects of a delay in the boron mixing process under natural circulation conditions, the actual concentration curve in Figure 2-7 will be shifted to +.he right by 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. (Note that 30 minutes is consistent with the boron mixing time that was detennined in CEN-259 and, in addition, is conservative since CEN-259 alsu indicates that significant mixing of added boron does occur prior to 30 minutes). This shift is shown i in the expanded graph shown in Figure 2-8. As can be seen, the concentration within the reactor coolant system for the 0.5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> shif t curve in Figure 2-8 is above the 2.9% shutdown curve at each temperature during the cooldown.

' 2-27 l

=

I Table 2-1 Time Frames for Determining an Overall RCS Cooldown Rate Initial Hot Standby hold 4.0 hours period (*)

Plant cooldown from 557 to 3.2 hours 300 degrees (f)

Hold period for cooling the 15.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> reactor vessel upper head Plant cooldown from 300 3.3 hours to200 degrees (#)

Additional conservatism 2.8 hours Total 28.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />

(*) Per the requirements of Branch Technical Posit!on (RSB) 5-1 (Reference l 4.5). .

l (f) Assume an average cooldown rate of 80 degrees per hour when > 300*F and 30 degree per hour when between 200*F and 300*F.

i l 2-28 1

t-

^-

!I c .x o.

Table 2-2

- Required Boron Concentration for a Cooldown

.from 200 Degrees to 130 Degrees Temperature Concentration I8)

(Degrees F)- (ppmboron) 200 632.8 190 637.4 180 642.1 170 646.7 160 651.3 150 655.9 140 660.6 130 665.2 (0) Based upon a 2.0% delta k / k shutdown margin after xenon decay.

I 9

l' 2-29 l..

Table 2-3 Initial Conditions and Assumptions Used in the Modes 5 and 6 Calculation

a. Reactor coolant system volume = 9,260 ft3 ,
b. Reactor coolant system pressure = 265 psia,
c. Pressurizer level =460 ft 3,
d. Pressurizer is saturated.
e. 7ero reactor coolant system leakage.
f. Boration source concentration = 2.50 weight % boron.
g. Boration source temperature = 70 degrees.

i F. Initial reactor coolant system concentration = 632.8 ppm boron.

i. Initial prasurizer concentration = 632.8 ppm boron.

j j. Complete and instantaneous mixing between the pressurizer and the reactor coolant system. (RefertodiscussiononSection2.2.4above).

k. Constant pressurizer level maintained di~ing the plant cooldown, i.e.,

charge only as necessary to makeup for coolant contraction.

I 3 -

1. Total system volume (RCS + SDCS + PZR) = 18,980 ft . (See discussion in Section 2.3.2).

2-30

l l TABLE 2-4 l l PLANT COOLDOWN FROM 200 F TO 130 F; BAST AT 2.50 wtX BORIC ACID I 1 I lAWG.5TS. TEMP PZR PRESS SPECIFIC VOLUME SNRINKAGE BAST WOL a RUST WOL a S/A A00E0 TOTAL S/A TOTAL SYS. MASS FINAt. CONC.l l (F) (psis) (cu.f t./ttun) MASS (Ltun) 70 F (get) 50 F (get) (ttsm) (Ltun) (ttum) (ppe boren)l .

l Ti Tf vi vf j g.....................................................................................................................................l ,

l 200 200 265 1.00000 1.00000 0.0 C.0 0.0 0.0 4,137.1 1,143,023.3 632.8l l 200 190 265 0.01662 0.01655 4,713.1 565.9 0.0 120.8 4,257.9 1,147,857.3 668.5 l l 190 180 265 0.01(,55 0.01649 4,071.7 488.9 0.0 106.4 4,362.3 1,152,033.3 662.0 l l 180 170 265 0.01649 0.01643 4,101.4 492.4 0.0 105.2 4,467.5 1,156,239.9 675.5 l l 170 160 255 0.01643 0.01638 3,440.8 413.1 0.0 88.2 4,555.7 1,159,768.9 686.8 l l 160 150 265 0.01638 0.01632 4,156.8 499.1 0.0 106.6 4,662.3 1,166,032.3 700.3l l 150 140 265 0.01632 0.01628 2,788.2 334.8 0.0 71.5 4.733.8 1,166,892.0 799.3 l l 140 130 265 0.01628 0.01623 3,504.6 420.8 0.0 89.9 4,823.7 1,170,486.5 720.5 l l l 9 l TOTAL BA$T VOLUME 3214.868 goILons l

d. I I i I ,

I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I

~~

.,n E

l TABLE 25 'l ,

l PLANT CooLDobal FRoM 200 F To 130 F; RUST AT 1720 p;mm SoRoM l l 1 l AVG.SYS. TEMP. P2R PRESS SPECIFIC VoltsEE SieltIIIKAGE SAST Vol 3 RUST Vol 3 S/A ADOED TOTAL 5/A TOTAL SYS. NASS FIIIAL CONC.l l (F) (psis) (cu.f t./ttum) peASS(Itum) 70 F (gel) 50 F (get) (Ltm) (Ltum) (ttum) (pgumboren)l l Ti Tf vi Vf l j.....................................................................................................................................l I 200 200 265 1.00000 1.00000 0.o o.o o.o c.o 4,220.4 1,143,vi6.6 as.5I l 200 190 26s o.oi662 o.oi6ss 4.713.1 o.o sa.9 46.s 4,267.2 1,i47,a66.5 6so.o l l 190 iso 265 0.016ss 0.01649 4,o71.7 o.o ses.o 40.5 4,307.7 t,isi,97s.7 653.s l ,

l iso 170 265 0.01649 0.01643 4,101.4 o.o 491.6 40.7 4,34a.4 1,ts6,120.a 657.6 l l iro ico 26s o.otu3 0.0163s 3,440.s o.o 412.4 34.2 4,3a2.6_ 1,ts9,595.s 66o.sl l i60 iso 265 o.oi63a o.01632 4,is6.s o.o 49s.2 4i.3 4,423.9 i,163,793.9 664.6 l l 150 iso 26s o.01632 o.ot62s 2,7es.2 o.o 334.2 27.7 4,451.6 1,166,6o9.a 667.1 l l iso 13o 265 0.0162s 0.01623 3,504.6 o.o 420.1 34.s 4,4e6.4 1 iro,149.3 670.3 I I I u l TOTAL RWST VOLUME 3209.473 gettons l ia I i i I I i i i i l I I I I a l i I I I I I I I I I I I I I I I i l l I I I

.I Table 2-6 Initial Conditions and Assumptions Used in the Modes 1, 2, 3, and 4 Calculation 3

a. Reactor coolant system volume = 9,260 ft ,
b. Initial reactor coolant system pressure = 2250 psia,
c. Pressurizer level = 600 ft3(40% level).
d. Pressurizer is saturated.
e. Reactor coolant system depressurization performed as shown in Table 2-7 through Table 2-41.
f. Zero reactor coolant system Technical Specification leakage.
g. Initial reactor coolant system concentration = 0 ppm.
h. Initial pressurizer concentration = 0 ppm boron.
1. Complete and instantaneous mixing between the pressurizer and the reactor coolant system. (RefertodiscussiononSection2.2.4above).
j. Constant pressurizer level maintained during the plant cooldown, i.e.,

j charge only as necessary to makeup for coolant contraction,

k. Boron concentration in the SDCS is equal to the boron concentration in l the reactor coolant system at the time of shutdown cooling initiation.
1. Letdown is not available,
m. RWST temperature = 50 degrees.
n. BAST temperature = 70 degrees.

2-33

n l TA8tE 2-7 l ,

l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 3.50 wt% 90RIC ACID; RWST AT 1720 ppm 30RON l 1 I .

l AVG.STS. TEMP. PZR PRESS SPECIFIC VOLLME $NRINEAGE BAST VOL 3 RWST WOL 3 S/A ADOED TOTAL 5/A TOTAL STS. MASS FImAL CGIC.l l (F) (psla) (cu.ft./ttsoi MASS (the) 70 F (get) 50 F (get) ( ttss) (Ltum) (ttus) (ppm boren)l l Ti Tf vi vf l g.................................... ................................................................................................l , .

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 953.0 953.0 479,001.7 347.8l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 349.2 1,302.2 488,978.4 465.6l l 490 480 2250 0.01989 0.01 % 9 4,728.9 567.8 0.0 171.5 1,4 73. 7 493,878.9 521.7l l 480 470 2250 0.01 % 9 0.01951 4,460.6 0.0 534.6 44.3 1,518.0 498,383.8 532.5l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 43.9 1,561.9 502,849.7 543.1l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 42.3 1,604.2 507,144.6 553.0 l l 450 440 2250 0.01916 0.01900 4,072.0 0.0 488.1 40.5 1,644.6 511,257.0 562.4 l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 39.8 1,684.5 515,307.6 571.5 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 39.2 1,723.7 519,291.5 580.3 l g l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 38.5 1,762.2 523,203.8 588.8l b

l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 35.0 1,797.2 526,763.8 596.5 l l 400 390 2250 0.01542 0.01828 3,852.2 0.0 461.7 38.3 1,835.5 530,654.3 604.7 l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 33.3 1,868.7 534,036.8 611.8 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 33.7 1,902.4 537,464.2 618.9l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 34.2 1,936.6 540,937.6 625.9 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 31.7 1,968.3 544,162.7 632.4 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 32.1 2,000.5 547,427.8 638.9 l l 340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 32.5 2,033.0 550,733.8 645.4 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 29.9 2,062.9 553,775.4 651.3l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 30.3 2,093.2 556,852.0 657.2 l l 310 300 2250 0.01739 0.01730 2. 771.8 0.0 332.2 27.5 2,120.7 559,651.3 662.5 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 70.1 2,190.8 576,705.7 664.2 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 63.9 2,204.7 583,200.8 675.9 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 58.8 2,313.5 589,179.5 686.5 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 23.2 2,336.8 591,539.5 690.6l l l l101AL BAST JottME 4878.255 galtons l l l

r

~..

l TABLE 2-8 l l PLANT COOLDOWN FROM 557 F TO 200 F; SAST AT 3.25 wt% 30atC Acto; nWST AT 1720 syn eon 0s l .

I I lAVO.SYS. TEMP. PZR PRESS SPECIFIC VOLUME SNRINKAGE BAST VOL a RWST VOL a S/A ADOED TOTAL 3/A TOTAL SYS. MASS FINAL CONC.l (F) (psla) (cu.f t./ttun) MASS (tbm) 70 F (get) 50 F (get) (thm) (thn) (the) (ppa boran)l l

l Ti Tf Vi Vf l

, l.....................................................................................................................................l ,

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 882.6 882.6 478,931.4 322.2 l l

510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 323.4 1,206.0 488,882.3 431.3 l l

490 480 2250 9.01989 0.01 % 9 4,728.9 567.8 0.0 158.9 1,364.9 493,770.1 483.3 l l

480 470 2250 0.01 % 9 0.01951 4,460.6 535.5 0.0 149.8 1,514.7 498,380.5 531.4 l l

470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 43.9 1,558.7 502,846.4 541.9 l l

l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 42.3 1,600.9 507.141.3 551.9l 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 40.5 1,641.4 511,253.8 561.3 l l

440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 39.8 1,681.2 515,304.3 570.4 l l

430 420 2250 0.01884 0.01869 3,944.7 0.0 4 72.8 39.2 1,720.4 519,288.2 579.2 l l

Y 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 38.5 1,758.9 523,200.6 58t.8 l l

$ l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 35.0 1,793.9 526,760.6 595.4 l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 38.3- 1,832.2 530,651.0 603.7l l

390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 33.3 1,865.5 534,033.5 610.7 l l

380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 33.7 1,899.2 537,461.0 617.8l l

370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 34.2 1,933.4 540,934.3 624.9l l

360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 31.7 1,% 5.1 544,159.4 631.4 l l

350 340 2Z50 0.01781 0.01770 3,233.0 0.0 387.5 32.1 1,997.2 547,424.6 637.9l l

340 330 2250 0.01770 0.01759 3,2 73 .5 0.0 392.4 32.5 2,029.7 550,730.6 644.4 l l

l 330 320 2250 0.01759 0.01749 3,011.6 0.0 M1.0 29.9 2,059.6' 553,772.1 650.3 l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 30.3 2,089.9 556,848.7 656.2l l

310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 27.5 2,117.4 559,648.0 661.5 l l

300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 70.1 2,187.6 576,702.4 663.2 l l

260 235 265 0.01707 0.01687, 6,431.2 0.0 770.9 63.9 2,251.5 583,197.5 675.0l l

235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 58.8 2,310.3 589,176.2 685.6 l l

l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 23.2 2.333.5 591,536.2 689.7l l l l total SAST VOLUME 5413.802 gations l l l

r-l TABLE 29 l PLANT C00LDOWN FROM 557 F TO 200 F; BAST AT 3.00 ut% SORIC ACID; RWST AT 1720 ppm BORON l .

l I

1 l AVG.STS. TEMP. PZR PRESS SPECIFIC V08UME SHRINKAGE BAST VOL 3 RWST WOL 3 8/A ADDED TOTAL 8/A TOTAL STS. MASS FINALCONC.l (F) (pste) (cu.f t./tta) MASS (ttm) 70 F (get) 50 F (get) (lbm> (Itm) (lbm) (g m boresi)l l

Tf VI Vf l l Ti

[.....................................................................................................................................l-0.0 0.0 451,774.2 0.0l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 812.6 812.6 478,861.4 296.Tl 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 297.8 1,110.4 488,786.7 397s. l l

490 480 2250 0.01989 0.01 % 9 4,728.9 567.8 0.0 146.3 1,256.6 493,661.8 445.0 l l

j 480 470 2250 0.01 % 9 0.01951 4,460.6 535.5 0.0 138.0 1,394.6 498,260.4 489.3 l 470 460 2250 0.01951 0.01933 4,422.0 530.9 0.0 136.8 1,531.4 502,819.1 532.5 l l

460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 42.3 1.5 73.6 507,114.0 542.5 l l

450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 40.5 1,614.1 511,226.5 552.0 l l

440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 39.8 1,653.9 515,277.0 561.2 l l

450 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 39.2 1,693.1 519,260.9 570.1 l l

2250 0.01869 0.01855 3,873.9 464.3 38.5 1,731.6 523,173.3 578.7 l 7 l 420 410 0.0 35.0 1,766.6 526,733.3 586.4 l y l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 38.3 1,804.9 530,623.7 594.7l l

390 380 2250 0.01828 0.01816 3.349.2 0.0 401.4 33.3 1,838.2 534,006.2 601.8 l l

380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 33.7 1,871.9 537,433.7 608.9 l l

370 360 2250 0.01804 0.01772 3.439.2 0.0 412.2 34.2 1,906.1 540,907.0 616.1 l l

l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 31.7 1.937.8 544,132.1 622.6l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 32.1 1,%9.9 547,397.3 629.2 l l

l 340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 32.5 2,002.4 550,703.3 635.7l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 29.9 2.032.3 553.744.8 641.7l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 30.3 2,062.6 556.821.4 647.6 l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 27.5 2,090.1 559,620.7 653.0 l l

300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 70.1 2,160.3 576,675.1 654.9 l l

260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 63.9 2,224.2 583,170.2 666.8 l l

235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 58.8 2.283.0 589,148.9 677.5 l l

210 200 265 0.01669 0.01662 2,336.8 0.0 63.2 5.2 2,288.2 591,491.0 676.4 l l

1 l

l TOTAL 8AST VOLUME 5944.718 gations l l

l

p l TABLE 2-10 l ,

l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 2.75 wtX BORIC ACID; RWST AT 1720 ppe a0R0u l l 1 l avg.SYS. TEMP. PZR PRESS SPECIFIC VOLUME $NRINKAGE BAST WOL 3 RUST WOL 3 B/A ADDED TOTAL B/A TOTAL SYS. MMS FINALCONC.l l (F) (psia) (cu.f t./ttum) MASS (tbe) 7G F (get) 50 F (go() (ltun) (Ltan) (ltan) (pgE boren)l l Ti Tf Vi Vf l l....................................................................................................................................l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 743.0 743.0 478,791.7 271.3 l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 2 72.2 1,015.2 488,691.5 363.2 l l 490 480 2250 0.01989 0.01969 4,728.9 567.8 0.0 133.7 1,148.9 493,554.2 407.0l l 480 470 2250 0.01969 0.01951 4,460.6 535.5 0.0 126.1 1,275.1 498,140.9 447.5 l l 470 460 2250 0.01951 0.01933 4,422.0 530.9 0.0 125.0 1,400.1 502,687.9 487.0 l l 460 450 2250 0.01933 0.01916 4,252.6 510.6 0.0 120.3 1,520.4 507,060.8 524.2 !

l 450 442 2250 0.01916 0.01903 3,252.1 390.5 0.0 92.0 1,612.3 510,404.9 552.3 l l 442 430 2250 0.01903 0.01884 4,830.6 0.0 579.0 48.0 1,660.3 515,283.5 563.3 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 4 72.8 39.2 1,699.5 519,267.4 572.2 l l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 38.5 1,738.0 523,179.7 580.8l l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 35.0 1, 773.0 526,739.7 588.5l Y l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 38.3 1,811.3 530,630.2 596.8l U l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 33.3 1,rJ4.6 534,012.6 603.9 l l 380 370 2250 0.01816 0.01804 3.393.7 0.0 406.8 33.7 1,878.3 537,440.1 611.0l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 34.2 1,912.4 540,913.5 618.1l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 31.7 1,944.2 544,138.5 624.7l

] 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 32.1 1,976.3 547,403.7 631.2 l l 340 330 2250 0.01770 0.01759 3,273.5 0.0 392.4 32.5 2,006.8 550,709.7 637.7l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 29.9 2,038.7 553,751.3 643.7l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 30.3 2,069.0 556,827.8 649.6 l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 27.5 2,096.5 559,627.1 655.0l 300 260 265 0.01730 0.01707 7.057.3 0.0 845.9 70.1 2,166.7 576,681.6 656.9 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 63.9 2,230.6 583,176.7 668.7l l 2.15 210 265 0.01687 0.01669 5,919.9 0.0 709.6 58.8 2,289.4 589,155.3 679.4 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 23.2 2,312.6 591,515.4 683.5l 1 l l TOTAL BAST VOLUME 6845.759 gallors l l l

e l TABLE 2-11 l ,

l PLANT C00LOOWN FROM 557 F TO 200 F; BAST AT 2.50 ut% BORIC ACIO; RUST AT 1720 ppm 80RON l 1 l l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOLUME SNRINKAGE BAST VOL 3 RWST WOL 3 B/A ADDED TOTAL 9/A TOTAL SYS. NASS FINAL CONC.l l (F) (psia) (cu.f t./1tm) MASS (tbe) 70 F (sal) 50 F (ga() (ttm) (ttm) (lbe) (ppmboron>l l Ti if vi vf l l....................................................................................................................................l -

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 6 73. 7 673.7 478,722.5 246.0 l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 246.9 920.5 488,5 % .9 329.4l l 490 450 2250 0.01989 0.01969 4,728.9 567.8 0.0 121.3 1,041.8 493,447.0 369.1 l l 480 470 2250 0.01 % 9 0.01951 4,460.6 535.5 0.0 114.4 1,156.2 498,C22.0 405.9 l l 470 460 2250 0.01951 0.01933 4,422.0 530.9 0.0 113.4 1,269.6 502,557.3 441.7l l 460 450 2250 0.01933 0.01916 4,252.6 510.6 0.0 109.0 1,378.6 506,919.0 475.5 l l 450 440 2250 0.01716 0.01900 4,072.0 488.9 0.0 104.4 1,483.0 511.095.5 507.3 l l 440 430 2250 0.01900 0.01884 4,010.7 481.5 0.0 102.8 1,585.8 515,209.0 538.1 l l 430 420 2250 0.01884 0.01869 3,944.7 4 73.6 0.0 101.1 1,687.0 519,254.8 568.0 l u l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 38.5 1,725.5 523,167.2 576.6l b

l 410 400 2250 0.01855 0.C1842 3,525.0 0.0 422.5 35.0 1,760.5 526,727.2 584.4 l l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 38.3 1,798.8 530,617.7 592.7l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 33.3 1,832.0 534,000.1 599.8 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 33.7 1,865.8 537,427.6 607.0 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 34.2 1,899.9 540,901.0 614.1 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 31.7 1,931.7 544,126.0 620.7 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 32.1 1,% 3.8 547,391.2 627.2l l 340 330 2250 0.01770 0.01759 3,2 73.5 ~0.0 392.4 32.5 1,996.3 550,697.2 633.8l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 29.9 2,026.2 553,738.8 639.Tl l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 30.3 2,056.5 556,815.3 645.7 l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 27.5 2,084.0 559,614.6 651.1 l l 300 260 265 0.01730 0.01707 7.057.3 0.0 845.9 70.1 2,154.1 576,669.0 653.1 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 63.9 2,218.0 583,164.1 665.0l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 58.8 2,276.9 589,142.8 675.7 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 23.2 2,300.1 591,502.8 679.8 l l I liOTAL SAST VOLUME 7899.341 gettons l 1 I

e

_F.

TABLE 2 12 l l

  • PLANT CootDoWN FRoM 557 F To 200 F; SAST AT 3.5o wt% BORIC AClo; RWST AT 1800 pm toRoM l l

I i

l AVG.SYS TEMP. PZR PRESS SPECIFIC VoltmE SnRientAGE BAST Wot a RWST wol a B/A ADoEd TOTAL S/A TOTAL SYS. MASS FINALCoNC.l (F) (psia) (cu.ft./thm) MASS (ttm) 70 F (gal) So F (get) (Ltm) (Itm) (Ltm) (ppeboron)l l

Ti Tf vi vf l l

g.....................................................................................................................................; ,,

l 557 557 2250 1.00000 i.ooooo o.o o.o o.o 0.0 0.0 451,774.2 o.ol 557 Sto 2250 0.02155 0.02o31 26,274.5 3,154.6 o.o 953.o 953.0 479,001.7 347.8l l

51o 490 2250 0.02031 o.01989 9,627.5 1,155.9 o.o 349.2 1,302.2 488,978.4 465.6[

l 490 485 2250 0.01989 0.01979 2,352.5 282.4 c.o 85.3 1.387.5 491,416.3 493.6 l l

485 470 2250 0.01979 o.01951 6.837.o 0.0 819.5 71.1 1,458.6 498,324.4 511.7 [

l 470 46o 2250 0.01951 o.01933 4,422.0 o.o 530.0 46.o 1,504.6 502,792.4 523.2l l

46o 45o 2250 0.01933 o.01916 4,252.6 o.o 509.7 44.2 1,548.8 507,o89.2 534.ol l

45o 44o 2250 0.01916 0.01900 4,072.o o.o 488.1 42.4 1,591.2 511,203.6 544.2l l

44o 43o 2250 0.01900 0.01884 4,o10.7 o.o 480.7 41.7 1,632.9 515,256.1 554.1 l l

430 42o 2250 0.01884 0.01869 3,944.7 0.0 472.8 41.0 1,674.0 519,241.8 563.6 l l

420 41o 2250 0.01869 c.01855 3,8 73.9 o.o 464.3 40.3 1,714.3 523,155.9 572.9 l l

2250 0.01855 o.01842 3,525.0 c.o 422.5 36.7 1,750.9 526,717.6 581.2 l

't l 410 400 1,791.o 530,609.8 g l 400 390 2250 0.01842 o.01828 3,852.2 0.0 461.7 40.1 533,993.9 590.1 l l 390 380 2250 c.01828 0.01816 3,349.2 o.o 401.4 34.8 1,825.8 597.8l 380 370 2250 0.01816 o.01804 3,393.7 0.0 406.8 35.3 1,861.1 537,422.9 6o5.5 l l

370 36o 2250 0.01804 0.01792 3,439.2 o.o 412.2 35.8 1,896.9 540,897.9 613.1 l l

360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 33.2 1,930.1 544,124.5 620.2 l l

350 34o 2250 0.01781 c.01770 3.233.0 0.0 387.5 33.6 1,963.8 547,391.1 627.2l l

340 330 2250 0.01770 0.01759 3,273.5 o.o 392.4 34.1 1,997.8 550,698.7 634.3 l l

350 320 2250 c.01759 o.01749 3.o11.6 o.o 361.0 31.3 2,029.2 553,741.7 640.7l t

320 sio 2250 0.01749 0.01739 3,o46.3 o.o 365.1 31.7 2 o60.a 556,819.6 647.i l 1

sto soo 2250 o.01739 o.0i730 2,771.8 o.o 332.2 28.8 2,089.7 559,62o.2 652.8 l l

300 26o 265 0.01750 0.01707 7,o57.3 o.o 845.9 73.4 2,163.1 576,678.o 655.8 l 1

26o 235 265 0.01707 o.01687 6,431.2 0.0 770.9 66.9 2,230.0 583,176.1 668.5 l l

265 o.01687 o.01669 o.o 709.6 61.6 2,291.6 589,157.5 680.0 l l 235 210 5.919.9 200 265 0.01569 0.01662 2,336.8 o.o 280.1 24.3 2,315.9 591,518.6 684.5 l l 210 1

l l

lrorAt sASr votumE 4592.938 9.tions 1

I

l TABLE 2-13 l

  • l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 3.25 ut% BORIC ACID; RWST AT 1800 ppm 90 ROM l I I l AVG.STS. TEMP. P2R PRESS SPECIFIC VOLUME SNRINKAGE BAST WOL 3 RWST WOL 3 S/A ADDED TOTAL 8/A TrviAL STS. PASS FINAL CONC.l l (F) (psia) (cu.f t./ttsm) MASS (ttum) 70 F (gal) 50 F (gat) (ttsm) (itsu) ( Ltus) (ppmboren)l l Ti Tf Vi Vf l '

g.....................................................................................................................................l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 882.6 882.6 478,931.4 322.2l l 510 490 2750 ,0.02031 0.01989 9,627.5 1,155.9 0.0 323.4 1,206.0 488,882.3 431.3 l l 490 480 22i0 0.01989 0.01969 4,728.9 567.8 0.0 158.9 1,364.9 493,770.1 483.3 l l 480 470 2250 0.01969 0.01951 4,460.6 0.0 534.6 46.4 1,411.3 498,277.1 495.2 l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 46.0 1,457.3 502,745.0 506.8l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 44.2 1,501.5 507,041.9 517.7l l 450 440 2250 0.01916 0.01900 4,072.3 0.0 488.1 42.4 1,543.9 511,156.3 528.1 l l 440 430 2253 0.01900 0.01884 4,010.7 0.0 ~480.7 41.7 1,585.6 515,208.7 538.1 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 4 72.8 41.0 1,626.6 519,194.5 547.8 l co l 420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 40.3 1,666.9 523,106.6 557.1 l 1 l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 36.7 1,703.6 526,670.3 565.5 l l 400 390 2250 0.01842 0.01328 3,852.2 0.0 461.7 40.1 1,743.7 530,562.5 574.6 l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 34.8 1,778.5 533,946.6 582.4 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 35.3 1,813.8 537,375.6 590.1 l l 370 360 2250 0.01804 0.C1792 3,439.2 0.0 412.2 35.8 1,849.6 540,850.6 597.9 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 33.2 1,882.8 544,077.2 605.0 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 33.6 1,916.5 547,343.8 612.2l l 340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 34.1 1,950.5 550,651.4 619.3 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 31.3 1,981.8 553,694.3 625.8l l 320 310 2250 0.01749 0.01T39 3,046.3 0.0 365.1 31.7 2,013.5 556,772.3 632.3 l l 310 300 2250 0.01739 0.01730 2, 771.8 0.0 332.2 28.8 2,042.4 559,572.9 638.1l l 300 260 265 0.c1730 0.01707 7,057.3 0.0 845.9 73.4 2,115.8 576,630.7 641.5l l 260 235 265 0.01707 0.01687 6,431.2 0.4 ,70.9 6r 9 2,182.7 583,i28.a 654.4 g l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 61.6 2,244.3 589,110.2 666.0 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 24.3 2,268.6 591,471.3 670.6 l l l '

l TOTAL BAST VOLUME 4878.255 gattons l I I

_ _ _ _ _ W

6 .

r l TAetE 2-14 l

~

l PLANT COOLDOWN FROM 557 F To 200 F; BAST AT 3.00 wtX 80RIC ACID; RWST AT 1800 ppe 90 ROM l l l l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOLUME $NRINKAGE BAST WOL 3 RWST WOL 3 5/A ADDED TOTAL 5/A TOTAL SYS. MASS FINALCONC.l l (f) (psia) (cu.f t./tta) MASS (Itm) 70 F (get) 50 F (get) (the) (Ltm) (Ltm) (ppm boren)l l Ti Tf Vi Vf l l.....................................................................................................................................l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 812.6 812.6 478,861.4 296.7l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 297.8 1,110.4 488,786.7 397.2 l l 490 480 2250 0.01989 0.01 % 9 4, 728.9 567.8 0.0 146.3 1,256.6 493,661.8 445.0l l 480 470 2250 0.01%9 0.01951 4,460.6 535.5 0.0 138.0 1,394.6 498,260.4 489.3 l l 470 465 2250 0.01951 0.01942 2,077.9 249.5 0.0 64.3 1,458.9 500,402.6 509.7 l l 465 450 2250 0.01942 0.01916 6,5%.7 0.0 790.7 68.6 1,527.5 507,067.9 526.7 l l 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 42.4 1,569.8 511,182.3 536.9l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 41.7 1,611.6 515,234.7 546.9l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 4 72.8 41.0 1,652.6 519,220.4 556.5 l l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 40.3 1,692.9 523,134.6 565.8 l g l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 36.7 1, 729.6 526,696.2 574.1 l

[ l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 40.1 1,769.6 530,588.5 583.1 l

" 2250 0.01828 0.01816 3,349.2 401.4 34.8 1,804.5 533,972.5 l 390 380 0.0 590.8 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 35.3 1,839.8 537,401.6 598.5 [

l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 35.8 1,875.6 540,876.6 606.3 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 33.2 1,908.8 544,103.1 613.3 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 33.6 1,942.4 547,369.8 620.4l l 340 330 2250 0.0177o 0.01759 3,2 73.5 0.0 392.4 34.1 1,976.5 550,677.3 627.5 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 31.3 2,007.8 553,720.3 634.0 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 31.7 2,039.5 556,798.3 640.4 l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 28.8 2,068.3 559,598.9 646.2 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 73.4 2,141.7 576,656.6 649.3 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 710.9 66.9 2,208.6 583,154.7 662.2 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 61.6 2,270.2 589,136.2 6;3.7 l l 210 200 265 ,0.01669 0.01662 2,336.8 0.0 280.1 24.3 2,294.5 591.497.3 678.2 l l 1 l TOTAL BAST WOLUME 5663.286 gations l l l O

~

, P .

j TABLE 2-15 l ,

l PLANT C00LD0has FRot 557 F TO 200 F; BAST AT 2.75 wt% 30RIC ACID; RWST AT 1800 ppe SOROM l l 1 l AVG.STS. TEMP. PZR PRESS SPECIFIC VOLUME SMRINKAGE BAST WOL 3 RWST WOL 3 S/A ADDED TOTAL 5/A TOTAL SYS. IIASS FluAL CX3NC.l l (F) (psia) (cu.f t./ttsm) seASS(ttum) 70 F (get) 50 F (pel) (ttus) (ttum) (ttum) (ppm heren)l '

l Ti Tf vi vf l l....................................................................................................................................l ~

l 557 557 225C 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 -451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 743.0 743.0 478,791.7 271.3 l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 272.2 1,015.2 488,691.5 363.2l l 490 480 2250 0.01989 C.01969 4,728.9 567.8 0.0 133.7 1,148.9 493,554.2 407.0 l l 480 470 2250 0.01969 0.01951 4,460.6 535.5 0.0 126.1 1,275.1 498,140.9 447.5 l l 470 460 22%0 0.01951 0.01933 4,422.0 530.9 0.0 125.0 1,400.1 502,687.9 487.0 l l 460 450 2250 0.01933 0.01916 4,252.6 510.6 0.0 120.3 1,520.4 507,060.8 524.2 l l 450 440 225u 0.01916 0.01900 4,0 72.0 0.0 488.1 42.4 1,562.7 511,175.2 534.5 l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 41.7 1,604.4 515,227.6 544.4 l l 430 420 2250 0.01884 0.91869 3,944.7 0.0 472.8 41.0 1,645.5 519,273.3 554.1 l l 420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 40.3 1,685.8 523,127.5 563.4 l w l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 36.7 1,722.4 526,689.1 571.8 l E l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 40.1 1,762.5 530,581.4 580.8 l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 34.8 1,197.4 533, % 5.4 588.5 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 35.3 1,832.7 537,394.5 596.2 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 35.8 1,868.4 540,869.5 604.0 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 33.2 1,901.7 544,096.0 611.1 l J l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 33.6 1,935.3 547,362.7 618.2l l 340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 34.1 1,969.3 550,670.2 625.3 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 31.3 2,000.7 553,713.2 631.7 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 31.7 2,032.4 556,791.2 638.2 l l 310 300 2250 0.01739 0.01730 2, 771.8 0.0 332.2 28.8 2,061.2 559,591.8 644.0 l l 300 260 265 0.01750 0.01707 7,057.3 0.0 845.9 73.4 2,134.6 576,649.5 647.2 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 66.9 2,201.5 583,147.6 660.0 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 61.6 2,263.1 589,129.1 671.6 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 24.3 2,287.4 591,490.2 676.1 l l 1 l TOTAL BAST VOLUME 6455.299 gattons l l 1

t l TABLE 2-16 l l PLANT COOLDOWN FROM 557 F 10 200 F; SAST AT 2.50 wt% sontC ACID; RUST AT 1800 ppm eon 0N l .

I l l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOLUME SoutINEAGE BAST WOL a tv5T WOL 3 8/A ADDED TOTAL 5/A TOTAL SYS. NASS FINAL CONC.l l (F) (psia) (cu.f t./ttun) MAS $(lba) 70 F (get) 50 F (get) (ttum) (ttan) ( ttan) (ppmboren)]

l Ti Tf vi vf l

l......... .........................................................................................................................g l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 6 73.7 673.7 478,722.5 246.0 l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 246.9 920.5 488,596.9 329.4 l l 490 480 2250 0.01989 0.01969 4,728.9 567.8 0.0 121.3 1,041.8 493,447.0 369.1 l l 480 470 2250 0.01 % 9 0.01951 4,460.6 535.5 0.0 114.4 1,156.2 498,022.0 405.9 l l 470 460 2250 0.01951 0.01933 4,422.0 530.9 0.0 113.4 1,269.6 502,557.3 441.7 l l 460 450 2250 0.01933 0.01916 4,252.6 510.6 0.0 109.0 1,378.6 506,919.0 475.5 l l 450 440 2250 0.01916 0.01900 4,072.0 488.9 0.0 104.4 1,483.0 511,095.5 507.3l l 440 430 2250 0.01900 0.01884 4,010.7 481.5 0.0 102.8 1,585.9 515,209.0 538.1 l l 430 425 2250 0.01884 0.61877 1,964.5 235.9 0.0 50.4 1,636.2 517,223.8 553.1l l 425 410 2250 0.01877 0.01855 5,854.1 0.0 701.7 60.9 1,697.1 523,138.t- 567.2 l 7 l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 36.7 1,733.8 526,700.5 575.5 l C l 400 390 2250 0.018c2 0.01828 3,852.2 0.0 461.7 40.1 1, 7 73.9 530,592.7 584.5 l l 390 3s0 2250 0.01828 0.01816 3,349.2 0.0 401.4 34.8 1,808.7 533,976.8 592.2 l l 380 370 2250 0.01816 0. 1804 3,393.7 0.0 406.8 35.3 1,844.0 537,405.8 599.9 l l 370 360 2250 0.01 m4 0.01792 3,439.2 0.0 412.2 35.8 1,879.8 540,880.8 607.6l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 33.2 1,913.0 544,107.4 614.7l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 33.6 1,946.6 547,374.0 621.8 l l 340 330 2250 0.0i 770 0.01759 3,2 73.5 . 0.0 392.4 34.1 1,980.7 550,681.6 628.8 l l 330 320 2250 e.01759 0.01749 3,011.6 0.0 361.0 31.3 2,012.0 553,724.5 635.3 l l 320 sto 2250 0.01749 0.01739 3,046.3 0.0 365.1 31.7 2,043.7 556,802.5 641.7l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 28.8 2,0 72.5 559,603.1 647.5 l l 300 260 265 0.01730 0.01707 7.057.3 0.0 845.9 73.4 2,145.9 576,660.8 650.6l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 66.9 2,212.8 583,159.0 663.4 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 61.6 2,274.4 589,140.4 675.0l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 24.3 2,298.7 591,501.5 679.5 l l l l TOTAL BAST VOLUME 7661.590 gallons l

1 l

~

t l taste 2-17 l l PLANT CooLDohAI FRom 557 F To 200 F4 BAST AT 3.so wt1 TORIC Acto; RWST AT 1900 ppa soRom l 1

l .

l AVG.SYS. TEMP, Pzt PRESS SPECIFIC Volt 3EE SNRINEAGE BAST vol a RUST WoL 3 B/A A00ED TOTAL 5/A TOTAL STS. NASS FINALCoNC.l (F) (psla) (cu.f t./ttum) MASS (ttsm) 70 F (set) so F (get) (ttin) (itsu) (ttus) (ppa tieron)l l

l Ti Tf Vi Vf I l.....................................................................................................................................; ,

I 557 557 225o 1.00000 1.0000o o.o a.o o.o o.o o.o 45i,774.2 o.ol ssi sto 2250 o.02i55 o.c2031 26,z74.s 3,1s4.6 o.o ess.o 953.o 479,001.7 347.sl I

sto 490 2250 0.02031 o.019e9 9.627.5 1.tss.9 0.0 349.2 1,302.2 4es,97s.4 46s.6l l

490 aso 2250 0.019e9 o.01969 4,72s.9 o.o 566.s sz.o 1,3s4.i 493,759.3 479.5l l

tso 47o 2250 0.01969 o.01951 4,460.6 o.o 534.6 49.o i,403.1 49s,26s.e 492.3l l

47o 460 2250 0.01951 0.01933 4,422.0 o.o 530.0 4s.6 1,4si.7 502,739.5 so4.s l l

46o 450 2250 0.01933 o.01916 4,252.6 o.0 509.7 f.6.7 1,49s.4 So7,o3s.s 516.7l l

l Aso 44o 2250 0.o1916 o.01900 4.072.o 0.o 4as.1 44.7 t,s43.2 sti,iss.6 szr.s l I 44o 450 2250 0.01900 o.oiss' 4,010.7 o.o 4a0.7 44.1 i,ss7.2 515.210.4 53s.6 l 45o 42o 2250 o.01ss4 o.ota69 3,944.7 o.o 4 72.s 43.3 1,630.6 519,19s.4 549.1l l

y 420 4to 2250 0.01869 o.oisss 3,s73.9 o.o 464.3 42.6 i,673.i sz3, sis.s 559.2 l l

g l 4to 400 zzso o.otess o.ots42 3,52s.o o.o 422.5 3a.7 i. m .s 526,67s.s 56s.3 l l 400 390 2250 0.01a42 o.oisza 3,s52.2 0.0 461.7 42.3 1,ns.2 530,573.0 57s.ol l 390 3so 2250 o.ola2s o.ots16 3,349.2 o.o 401.4 36.s 1,791.o 533,959.o 586.4 j 380 370 zzso 0.01816 0.01a04 3,393.7 o.o 406.s 37.3 1,sza.z 537,390.0 594.sl l

370 360 2250 o.01a04 p.01792 3,439.2 0.0 412.2 37.s 1,s66.o 540,a67.o 603.2 l l

360 3so 2250 0.01792 o.017s1 3,193.3 o.o 3s2.s 35.1 1,901.i 544,o95.4 610.9 l l

350 34o 2250 o.oirat o.01770 3,z33.o o.o 387.5 35.5 i,936.6 547,364.o 61s.6 l l

340 330 2250 0.01770 0.01759 3,273.5 0.0 392.4 36.0 1,9 72.6 550,673.s 626.3 l l

350 320 2z50 0.01759 c.01749 3,011.6 0.0 361.0 33.1 z.oos.7 553,71s.2 633.3l l

320 sio 22so o.01749 0.01739 3,046.3 c.o 36s.1 33.s 2,o39.2 5s6,797.9 640.3 I l

sto 300 zzso 0.01739 0.01730 2,771.s o.o 33z.2 30.5 2,069.6 559,600.z 646.6l l

l soo 26o 26s o.oirso o.01707 7,os7.3 o.o a45.9 77.5 2,147.1 576,662.0 6st.ol 260' 23s 26s o.01707 0.016sr 6,431.2 o.o 770.9 70.7 2,zir.s ss3,163.9 664.9 l l

235 zio 265 o.016s7 o.oi669 s,919.9 c.o 709.6 6s.o 2,zaz.s ss9,14a.s 677.4 1 I

zio zoo 26s o.01669 o.0166z 2,336.s o.o 280.1 25.7 2,30s.s 591,511.3 6sz.3 l l

1 l

l TOTAL BAST WollmeE 4310.491 gattens l l l

J _

r ..

t l 1A8tE 2-18 l .

l PLAsef CootooWie Frost 557 F 10 200 F; BAST AT 3.25 wt1 soRIC ACID: RWST AT 1900 ppe soR(se I l_ _. _I l AVG.STS. TEMP. P2R PRESS SPECIFIC VattpIE SleRIIIKAGE SAST wot a RWST wol a B/A ADoEo TOTAL 5/A total STS. 8 TASS FleALCGIC.l l (F) (psia) (cu.f t./ttsm) stASS(Itsu) To F (gat) So F (get) (itsm) (ttum) (itsm) (ppa teoren)l l 15 Tf vi vf l

g.....................................................................................................................................l l 537 ss7 225o 1.00000 1.00000 o.o o.o o.o 0.o o.o 451,774.2 o.ol l 557 Sto 2250 0.02155 0.o703 26,274.5 3,154.6 0.o 882.6 862.6 478,931.4 322.2l l sto 490 2250 0.02031 o.o:989 9.627.5 i.iss.9 o.o 323.4 i,206.o 4as.as2.3 431.3 I I 490 4as 2250 0.019e9 0.01979 2,352.5 2s2.4 o.o 79.o 1,2ss.1 491,313.s 457.3 l 1 '85 470 2250 0.0'979 0.01951 6.s37.o o.o s19.s 7s.1 's,360.2 49e 225.9 477.3 l l 470 460 2250 0.01951 0.01933 4,422.o o.o 530.o 48.6 i,40s.s 502.696.5 490.0 l l 460 450 2250 0.01933 0.01916 4,252.6 c.o 509.7 46.7 506,995.9 1.455.s 501.9I l 450 44o 2250 0.01916 0.01900 4,o72.o o.c 4as.1 44.7 1,500.2 511,112.6 513.2 l 1 44o 43o 2250 0.01000 o.oisas 4,oio.7 o.o 4ao.7 44.1 1,544.5 515,167.4 524.1 1 I 430 42o 22so o.oiss4 o.01869 3.944.7 o.o 472.s 43.3 1,ss7.6 519,155.4 534.7I m l 420 410 2250 c.oia69 o.oisss 3,s73.9 o.o 464.3 42.6 1,650.2 523,o71.s 544.9 l 1

l 410 400 225o o.018ss o.01842 3,525.o 0.0 422.5 38.7 1,668.9 526,635.5 5s4.o l l 40i) 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 42.3 1,711.2 530,530.1 563.9 l l 390 380 2250 o.ois2s o.otst6 3,349.2 o.o 4o1.4 36.s 1,74a.o 533,916.o 572.4 I l 380 370 2250 0.01816 0.01s04 3,393.7 0.0 406.s 37.3 1,7ss.3 537,347.1 sao.9 l l 370 360 2250 0.01s04 o.01792 3,439.2 0.0 412.2 37.a i,s23.1 540,a24.1 ss9.4 l l 360 3so 2250 0.01792 o.oirat 3,193.3 o.o 3a2.s 35.1 3.asa.2 544,o52.5 597.1 l l 3so 340 2250 o.01781 o.0177o 3,233.o o.o 387.5 35.5 1,893.7 547,321.1 606.9l l 340 33o 2250 o.01770 0.01759 3,2 73.5 o.o 392.4 36.o 1,929.7 550,630.5 612.7 l l 33o 32o 2250 o.ot r>9 o.01749 3,oti.6 o.o 36i.o 33.i i,962.7 553,675.2 6i9.sl l 320 sto 22s0 0.01749 0.01739 3,046.3 o.o 365.i 33.5 t,996.2 ss6,75s.o 626.9 l l sto soo 2250 0.01739 o.01730 2,771.s o.o 332.2 30.5 2,026.7 559,557.2 633.2l l soo 26o 26s o.otr30 o.oi7ar 7.057.3 a.o sas., 77.5 2,104.2 576,619.1 63a.o l l 26o 23s 265 o.01707 0.o1687 6,431.2 0.o 77o.9 7o.7 2,174.9 583,120.9 652.1 l l 235 210 26s o.016s7 0.o1669 s 919.9 o.o 709.6 6s.o 2,239.9 see,ios.s 664.sl l 21o 200 265 o.01669 o.01662 2,336.8 o.o 280.1 25.7 2,265.6 591,468.3 669.7[

l l lrotAt sAsi votunt 4s92.938 se,tton. I I I a

W _.

e o-l TABLE 2-19 l '

l PLANT C00LD0bal FROM 557 F TO 200 F; BAST AT 3.00 wt% BORIC ACID: swST AT 1900 ppm 30e(1s l I I l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOLUME $8MtIIsKAGE BAST WOL a RWST VOL a B/A ADDED TOTAt. 3/A TOTAL SYS. MASS FIIIAL Conc.l l (F) (psia) (cu.ft./tbe) MASS (tta) 70 F (gel) 50 F (get) (ttm) (ttm) (ttm) (ppetsoron)j l fi Tf vi vf l l.....................................................................................................................................g l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 812.6 812.6 475,861.4 296.7l l 510 490 230 0.02031 0.01989 9,627.5 1,155.9 0.0 297.8 1,110.4 488,786.7 397.2 l l 490 480 2250 0.01989 0.01 % 9 4,728.9 567.8 0.0 146.3 1,256.6 493,661.8 445.0 l

l 480 470 2250 0.01969 0.01951 4,460.6 535.5 0.0 138.0 1,394.6 498,260.4 489.3 l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 48.6 1,443.2 502,730.9 501.9 l l 460 450 2230 0.01933 0.01916 4,252.6 0.0 509.7 46.7 1,489.9 507,010.3 513.7l l 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 44.7 1,534.6 511,147.0 524.9 l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 44.1 1.578.7 515,201.8 535.7l w l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 43.3 1,622.0 519,189.9 546.2l l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 42.6 1,664.6 523,106.3 356.3l l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 38.7 1,703.3 526,670.0 565.4 [

i 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 42.3 1,745.6 530,564.5 575.2l l 390 380 2250 0.01828 0.01816 3,347.2 0.0 401.4 36.8 1,782.4 533,950.5 583.6l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 37.3 1,819.7 537,381.5 592.0 l l 370 360 2250 0.01804 0.01792 3.439.2 0.0 412.2 37.8 1,857.5 540,858.5 600.4 l l 360 350 2250 0.01792 0.01781 3,i93.3 0.0 382.8 35.1 i,892.6 544,086.9 608.2l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 35.5 1,928.1 547,355.5 615.9 l l 340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 36.0 1,964.1 550,664.9 623.6 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.9 33.1 1,997.2 553,709.7 630.6 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 33.5 2,030.6 556,789.4 637.6l l 310 300 2250 0.01739 0.01730 2, 771.8 0.0 332.2 30.5 2,061.1 559.591.6 643.9 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 77.5 2,138.6 576,653.5 648.4 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 70.7 2,209.3 583,155.4 662.4 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 65.0 2,2 74.3 589,140.3 674.9 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 25.7 2,300.0 591,502.7 679.8 l 1 I l TOTAL BAST VOLUME 5413.802 gattons l l l

a f'

(, .

t r

I 148tE 2-20 l ,

Plani COOL 00ial FacM 557 F TO 200 F: EAST AT 2.75 wt1 acelC ACIO; WUST AT 1900 ppm SORON l l i l 1 -L lAvC.SYS. TEMP. P2R PRESS SPECIFIC WOLUME SWR:NKAGE SAST wot 8 IMST WOL a B/4 ADDED TOTAL S/A TOTAL SYS. IthSS FIIIAL CENIC.l  !

l (F) (psie) (cu.f t./ttm) ntSS(Lim) 70 F (get) 59 F (9st) (Itm) ( Ltm) (ttm) (ppetuoren)l -

(

l Ti Tf Vi Vf l l.....................................................................................................................................g l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l

  • l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 743.C 743.0 475,791.7 271.3 l l $10 490 2250 0.02031 0.019e9 9,627.5 1,155.9 0.0 272.2 1,015.2 488.691.5 363.2l l 490 480 2250 0.01989 0.01939 4, 728.9 567.8 0.0 133.7 1,148.9 493,554.2 407.0l l 480 470 2250 0.01969 0.01951 4,460.6 535.5 0.0 126.1 1,275.1 498,140.9 447.5 l l 4 70 460 2250 0.01951 0.01933 4,422.0 530.9 0.0 125.0 1.400.1 502,687.9 487.0l l 460 455 2250 0.01933 0.01925 1,991.9 239.2 0.0 56.3 1,456.4 504,736.1 504.5 l t l 455 440 2250 0.01925 0.01900 6,332.8 0.0 759.1 69.6 1,526.0 511,138.4 522.0l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 44.1 1,570.1 515,193.2 532.8 l

' 3,944.7 0.0 43.3 1,613.4 519,181.3 l 430 420 2250 0.01884 0.01869 4 72.8 543.3 l l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 42.6 1,656.0 523.097.7 553.5 l 4

u l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 38.7 1,694.7 526,661.4 562.6 l b

l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 42.3 1, 73 7.0 530,555.9 572.4 l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 36.8 1,773.8 533,961.9 500.8 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 37.3 1,811.1 537,372.9 589.2 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 37.8 1,848.9 540,849.9 597.7l l 36J 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 35.1 1,884.0 544,078.3 605.4 l j l 350 340 2250 0.01781 C.01770 3,233.0 0.0 387.5 35.5 1,919.5 547,346.9 613.1 l l 340 330 2250 0.01770 0.01759 3.273.5 0.0 392.4 36.0 1,955.4 550,656.3 620.9 l l 33n 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 33.1 1,988.5 553,701.1 627.9 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 33.5 2,022.0 556,780.8 634.9 l l 310 3M 2250 0.01739 0.01730 2, 771.8 0.0 332,2 30.5 2,052.4 559,583.0 641.3 l l 300 260 265 0.01730 0.01707 7.057.3 0.0 845.9 77.5 2,130.0 576,644.9 645.8 l l 260 235 263 0.01707 0.01687 6,431.2 0.0 770.9 70.7 2,200.6 583,146.7 659.8 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 65.0 2,265.7 589,131.7 672.4 l l 210 200 265 0.01660 0.01662 2,336.8 0.0 280.1 25.7 2,291.4 591,494.1 677.3 l I I lf0TA8 BAST WOLLME 6183.868 gattons l I 1

.o I

{ TABLE 2 21 l l PLANT C00LOOWN FROM 557 F TO 200 F- BAST AT 2.50 wtX BORIC ACID; RWST AT 1900 ppe BORON l I _

l-lcvG.SYS. TEMP. PZR PRESS SPECIFIC VOLUME SNRINKAGE f ST WOL 3 RWST VOL 3 B/A ADDED TOTAL B/A TOTAL SYS. MASS FliAAL CONC.l l (F) (psia) (cu.ft./lba) MASS (tbm) 70 F (gal) 50 F (get) (tthe (ltun) (ttum) (ppe boron)l l Ti Tf Vi Vf l g......... ........................................................................................................................g _

l 557 557 2250 1.0000' 1.00000 0.0 - 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.4 0.0 673.7 673.7 478,722.5 246.0l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9- 0.0 246.9 920.5 488,5 % .9 329.4l l 490 480 2250 0.01989 0.01969 4,728.9 567.8 0.0 C1.3 1,041.8 493,447.0 369.1 l l 480 470 2250 0.01 % 9 0.01951 4,460.6 535.5 0.0 114.4 1,156.2 498,022.0 405.9 l l 470 460 22 0 0.01951 0.01933- 4,422.0 530.9 0.0 113.4 1,269.6 502,557.3 441.7l l 460 450 250 0.01933 0.01916 4,252.6 510.6 0.0 109.0 1,378.6 506,919.0 4M.5 l l 450 440 2250 0.01916 0.01900 4,0 72.0 488.9 0.0 104.4 1,483.0 511,095.5 507.3 l l 440 430 2250 0.01900 0.01884 4,010.7 481.5 0.0 102.8 1,585.8 515,200.0 _538.1 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 43.3 1,629.2 519,W 7.0 548.6 l g l 420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 42.6 1,671.7 523,113.4 558.7 l 1 l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 38.7 1,710.5 526,677.1 567.8 l OS l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 42.3 I,752.8 530,571.7 577.6 l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 36.8- 1,49.6 533,957.6 586.0 l l 3SJ 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 37.3 1,826.9 537,388.7 594.4 l l 370 360 2250 0.0;804 0.01792 3,439.2 0.0 412.2 37.8 1,864.7 540,865.7 602.7l l 360 350 2250 (,.01792 0.01781 3,193.3 0.0 382.8 35.1 1,899.7 544,094.1 610.4 l l 330 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 35.5 1,935.3 547,362.7 618.1 l l 340 330 2250 0.01770 0.01759 3,2 73.5 '0.0 392.4 36.0 1,971.2 550,672.1 625.8 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 33.1 2,004.3 553,716.8 632.9 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 33.5 2,037.8 556,796.6 639.9 l l 310 300 2250 0.01739 0.01730 2, 771.8 0.0 332.2 30.5 2,068.2 559,598.8 646.2 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 77.5 2,145.8 576,660.7 650.6l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 70.< 2,216.4 523,162 5 664.5 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 65.0 2,281.5 589,147.4 677.0 l l 210 200 265 0.01669 0.01662  ?,336.8 0.0 280.1 25.7 2,307.1 591,500.9 681.9 l 1

l total BAST VOLUME 7425.733 gations e 4

i

%m.

m l TABLE 2-72 l "

l PLANT CS)LDOWN FROM $57 F To 200 F; BAST AT 3.50 wt% 80RIC ACIO; RWST AT 2000 ppm BORON l 1 I l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOLUME SNRIKAGE BAST VOL 3 RWST M 3 8/A ADDED TOTAL B/A TOTAL STS. NASS FINALCONC.l l (F) (psie) (cu.ft./lba) MASS (ttni) 70 F (get) 50 F (gal) (tbm) (lba) (tbs) (ppaboron)l l Ti Tf vi vf l l....................................................................................................................................;

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 953.0 953.0 479,001.7 347.8 l l 510 495 2250 0.02031 0.02000 7,182.7 862.4 0.0 260.5 1,213.5 486,445.0 436.1 l l t,95 480 2250 0.02000 0.01 % 9 7,1 73.7 0.0 859.8 83.0 1,296.5 493,701.7 459.1 l l 480 470 2250 0.01%9 0.01951 4,460.6 0.0 534.6 51.6 1,348.1 498,213.9 473.1 l

! 4M 460 2250 3.01951 0.01933 4,422.0 0.0 530.0 51.2 1,399.3 502,687.0 486.7l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 49.2 1,448.5 506,988.9 499.5 l

[ 450 440 2250 0.01916 0.01900 4,072.0 0.0 406.1 47.1 1,495.6 511,108.0 511.6 l l 440 430 2250 0.01900 0.01834 4,010.7 0.0 480.7 46.4 1,542.0 515,165.1 523.3 l l 430 420 2250 3.01884 0.01869 3,944.7 0.0 4/2.8 45.6 1,587.7 519,155.5 534.7l Y l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 44.8 1,632.5 523,074.1 545.6 l

$ l 410 400 2250 0.01855 0.01N2 3,525.0 0.0 422.5 40.8 1,6 73.3 526,639.9 555.5 l

[ 400 390 2250 0.01842 0.01828 3,852.2 0.0 161.7 44.6 1,717.8 530,536.7 566.1 l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 38.8 1,756.6 533,924.6 575.2 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 39.3 1,795." 537,357.7 584.3 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 39.8 1,835.7 540,836.7 593.4 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 37.0 1,8 72.4 544,067.0 601.8 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 37.4 1,910.0 547,337.4 610.1 l l 340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 37.9 1,947.9 550,648.8 618.5 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 34.8 1,982.8 553,695.3 626.1 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 35.2 2,018.0 556,776.8 633.7l l 310 300 2250 0.01739 0.01730 2, 771.8 0.0 332.2 32.1 7,05J.1 559,580.6 640.5 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 81.7 2,131.7 576,646.6 644.3 l l 260 235 265 0.01707 0.01687 6,431.2 0a 770.9 74.4 2,206.2 583,152.2 661.4l l 235 210 265 0.'11687 0.01669 5,919.9 0.0 709.6 68.5 2,274.7 589,140.6 675.0 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 27.0 2,301.7 591,504.5 680.3 l l 1 liOTAL BAST VOLUME 4016.962 gattons l l 1

l TABLE 2-23 l l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 3.25 wt% BORIC AC10; RWST AT 2000 ppm 80RON l I I l AVG.SYS. TEMP. PZR PRESS 3PECIFIC VOLUME SMRINKAGE BAST WOL a RWST VOL 3 8/A ACCED TOTAL 8/A TOT 4L SYS. MASS FINALCONC.l l (F) (psia) (cu.ft./lba) MASS (Lba) 70 F (gat) 50 F (gat) utan) (Ltun) (Ltzn) (ppmboron)l l Ti if vi Vf l l..................................................................................................... ...............................l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l

[ 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 882.6 882.6 478,931.4 322.2l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 323.4 1,206.0 488,882.3 431.3 l l 490 480 2250 0.01989 0.01 % 9 4,728.9 0.0 566.8 54.7 1,260.8 493,665.9 446.5 l l 480 470 2250 0.01 % 9 0.01951 4,4d.0.6 0.0 534.6 51.6 1,312.4 498,178.1 460.6 l l 470 460 2250 3.01951 0.01933 4,422.0 0.0 530.0 51.2 1,363.5 502,651.3 474.3 l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 49.2 1,412.7 506,953.1 487.2 l l 450 440 2250 0.01916 0.019)0 4,0 72.0 0.0 488.1 8.7.1 1,459.9 511,072.3 499.4 l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 46.4 1,506.3 515,129.4 511.2 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 4 72.8 45.6 1,551.9 519,119.7 522.7l Pj) l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 44.8 1,5%.7 523,038.4 533.7 l g l 410 400 2250 0.01855 0.01842 3,5 6.0 0.0 422.5 40.8 1,637.5 526,604.2 543.7l l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 44.6 1 / 32.1 530,501.0 ',54.4 l l 390 38u 2250 0.01828 0.01816 3,349.2 0.0 401.4 38.8 1,720.9 533,888.9 563.5 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 3?.3 1,760.1 537,321.9 572.7 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 39.8 1,799.9 540,800.9 581.9 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 37.0 1,836.9 544,031.2 590.3 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 37.4 1,874.3 547,301.7 598.7l l 340 330 2250 0.01770 0.01759 3 ,2 73 .5 0.0 392.4 37.9 1,912.2 550,613.0 607.2 l l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 34.8 1,947.0 553,659.5 614.8l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 35.2 1,982.3 556,741.1 622.5 l 310 300 2250 0 01739 0.01730 2,771.8 0.0 332.2- 32.1 2,014.3 559,544.9 629.4 l l 300 260 265 0.01730 0.01707 7.057.3 0.0 845.9 81.7 2,096.0 576,610.9 635.5 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 74.4 2,170.4 SP3,116.5 650.8l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 68.5 2,238.9 589,104.9 664.5l l 210 200 265 0.01669 0.01662 2,336.R 0.0 280.1 27.0 2,266.0 591,468.7 669.8 l l l l TOTAL BAST VOLUME 4310.491 gattons l I 1 i

t l TABLE 2-24 l l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 3.00 wt% BORIC ACID; RvST AT 2000 ppe n0Ross l I .-

I l avg.STS. TEMP. PZR PRESS SPECIFIC VOLUME Smit 1 KAGE BAST VOL 3 Rv5T VOL 3 8/A ADOEJ TOTAL B/A TOTAL SYS. MASS FINAL CONC.l l (F) (psia) (cu.f t./ttsu) MAS $(Itzn) 70 F (gal) 50 F (gat) (tbm) t ttzn) ( Ltan) (ppeboren)l l Ti Tf Vi Vf l g...................... .......................................................

......................................................l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 812.6 812.6 478,861.4 296.7l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 297.8 1,110.4 488,786.7 397.2l l l 490 475 2250 0.01989 u.01960 6,888.4 827.0 0.0 213.0 1,323.4 495,888.1 466.6 l l 475 470 2250 0.01960 0.01951 2,301.1 0.0 275.8 26.6 1,350.1 498,215.8 473.8 l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 51.2 1,401.2 502,689.0 487.3 l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 49.2 1,450.4 506,990.8- 500.2l l 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 47.1 1,497.6 511,110.0 512.3 l l 440 430 2250 0.01900 0.01884 4.010.7 0.0 480J 46.4 1,544.0 515,167.1 524.0 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 45.6 1,589.6 519,157.4 535.3 l l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 44.8 1,634.4 523,076.1 546.3 l l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 40.8 1,675.2 526,641.9 556.1 l 7 l 400 390 2EJ 0.01842 0.01828 3,552.2 0.0 461.7 44.6 1,719.8 530,538.6 566.7l

$ l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 38.8 1,758.5 533,926.6 575.8 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 39.3 1,797.8 537,359.6 584.9 l l 370 360 2250 0.01804 0.01792 3,(39.2 0.0 412.2 39.8 1,837.6 540,838.6 594.0l l 360 350 2250 0.01792 b.01781 3,193.3 0.0 382.8 37.0 1,874.6 544,063.9 602.4 l l 350 34 2250 0.01781 0.01770 3,233.0 0.0 387.5 37.4 1,912.0 547,339.3 610.7 l l 340 330 2250 0.01770 0.01759 3,273.5 0.0 392.4 37.9 1,949.9 550,650.7 619.1 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 51.0 34.8 1,984.7 553,697.2 626.7l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 35.2 2,020.0 556,778.7 634.3 l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 32.1 2,052.0 559,582.6 641.1l l 200 260 265 0.01730 0.01707 7,057.3 0.0 845.9 81.7 2,133.7 576,648.6 646.9l l 260 235 265 0.01707 c.01687 6,431.2 0.0 770.9 74.4 2,208.1 583,154.2 662.0 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 68.5 2,276 6 589,142.6 675.6l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 27.0 2,303.7 591,506.4 680.9 l l 1 l TOTAL BAST VOLUME 5137.529 gattons l l l

s l TABLE 2-25 l ,

l PLANT COOLDOWN ! ROM 557 F TO 200 F; BAST AT 2.75 wtX BORIC ACID; RWST AT 2000 ppm SORON l l I l AVG.SYS. TEMP. P2R PRESS SPECIFIC VOLLseE SMRINEAGE BAST V08. 3 Rk'3T VOL 3 8/A ADDED TOTAL B/A TOTAL SYS. MASS FINAL.CortC.l l (F) (psia) (cu.ft./ttu) MASS (Itm) 7D F (get) 50 F (get) (Iba) (lba) (the) (ppm boron)l l Ti Tf Vi Vf l l.................... ........................................................................................l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.07031 26,274.5 3,154.6 0.0 743.0 74 .0 478,791.7 271.3 l '

l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 272.2 1,015.2 488,691.5 363.2 l l 490 480 2250 0.01989 0.01 % 9 4,728.9 567.8 0.0 133.7 1,148.9 493,554.2 407.0 l l 480 470 2250 0.01 % 9 0.01951 4.460.6 535.5 0.0 126.1 1,275.1 498,140.9 447.5 l l 470 460 2250 0.01951 0.01933 4,422.0 530.9 0.0 125.0 1,400.1 502,687.9 487.0 l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 49.2 1,449.3 506,989.7 499.8l l 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 47.1 1,4%.4 511,108.9 511.9 l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 46.4 1,542.8 515,166.0 523.6 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 45.6 1,588.5 519,156.3 534.9 l l 420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 44.8 1,633.3 52? 75.0 545.9 l l 410 400 2250 0.01855 0.01642 3,525.0 0.0 422.5 40.8 1,674.1 526,640.8 555.8 l 7 l 400 390 2250 0.01342 0.01828 3,852.2 0.0 461.7 44.6 1,718.7 530,537.6 566.4 l

$ l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 38.8 1,757.4 533,925.5 575.5 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 39.3 1,796.7 537,358.5 584.6 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 39.8 1,836.5 540,8I7.5 593.7 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 37.0 1,873.4 544,067.8 602.0l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 37.4 1,910.9 547,338.3 610.4 l l 340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 37.9 1,948.7 550,649.6 618.7 l l 330 320 22W 0.01759 0.01749 3,011.6 0.0 361.0 34.8 1,983.6 553,696.1 626.3 l l 320 310 2250 0.01749 0.01739 3.046.3 0.0 365.1 35.2 2,018.8 556,777.7 633.9l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 32.1 2,050.9 559,581.5 640.8 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 81.7 2,132.6 576,647.5 646.6 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 74.4 2,207.0 583,153.1 661.7l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 68.5 2,275.5 589,141.5 675.3 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 27.0 2,302.5 591,535.3 680.6 l l I liOTAL BAST VOLLME 5944.718 gattons l I I

e-f.

s l TA8tE 2-26 l l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 2.5 wt% BORIC ACID; RUST AT 2000 ,ine BORON l l I l AVG.S E TEMP. P2R PRESS SPECIFIC VOLUME SHRINKAGE BA*,T VOL 3 RWST VOL 3 B/A AD0ED TOTAL 8/A TOTAL SYS. MASS FINALCONC.]

l (F) (psia) (cu.f t./ttum) MASS (ltzn) 70 F (gal) 50 F (gal) ( ttun) (ttun) (thm) (ppm boron)l l Ti Tf Vi Vf l j.....................................................................................................................................l l 557 557 2250 1.00000 1.00C00 0.0 0.0 0.0 0.0 0.0 451 T74.2 0.0l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 6 73.7 67.7 478,722.5 246.0 l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.0 0.0 246.9 920.5 488,5 % .9 329.4 l.

l 490 480 2250 0.01989 0.01 % 9 4,728.9 567.8 0.0 121.3 1,041.8 493,447.0 369.1 l l 480 470 2250 0.01 % 9 0.01951 4.460.6 535.5 0.0 114.4 1,156.2 498,022.0 405.9 l l 470 460 2250 0.01951 0.01933 4,422.0 $30.9 0.0 113.4 1,269.6 502,557.3 441.7l l 460 450 2250 0.01933 0.01916 4,252.6 510.6 0.0 109.0 1,378.6 506,919.0 475.5 l l 450 440 2250 0.01916 0.01900 4,0 72.0 33.9 0.0 104.4 1,483.0 511,095.5 507.3 l l 440 435 2250 0.01900 0.01892 2,061.8 0.0 247.1 23.9 1,506.9 513,1f1.2 513.4 l l 435 420 2250 0.01892 0.01869 5,893.6 0.0 706.4 68.2 1,575.1 519,142.9 530.4

  • l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 44.8 1,619.9 523,061.6 541.4 l g l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 40.8 1,660.7 526,627.3 551.3 l l 400 390 2250 0.013 2 0.01828 3,852.2 0.0 461.7 44.6 1,705.2 530,524.1 562.0 l l 390 380 2250 0.01828 0.0181c, 3,349.2 0.0 401.4 38.8 1,744.0 537,912.1 571.1 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 39.3 1,783.3 537,345.1 580.2 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 39.8 1,823.1 540,824.1 589.3 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 37.0 1,860.0 544,054.4 597.7l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 367.5 37.4 1,897.4 547,324 8 606.1 l l 340 330 2250 0.01770 0.01759 3,2 73.5 ' O.0 392.4 37.9 1,935.3 550,636.I 614.5 l l 330- 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 34.8 1,970.2 553,682.7 622.1 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 35.2 2,005.4 556,764.2 629.7 l

. l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 32.1 2,037.5 559,568.1 636.6 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 81.7 2,119.1 576,634.0 642.5 l 0 l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 74.4 2,193.6 583.139.7 657,7l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 68.5 2,262.1 589,128.0 671.3 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 27.0 2,289.1 591,491.9 676.6 l l I l TOTAL BAST VOLUME 6944.196 gallons l l 1

6 -

TABLE 2-27 l l .-

PLANT COOLDOWN FROM 557 F TO 200 F; SAST AT 3.50 wtX BORIC ACIO; RWST AT 2100 ppm BORON l l

I 1

l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOL W. SHRINKAGE BAST VOL 3 RUST VOL 2 8/A A00ED' TOTAL B/A TOTAL SYS. MASS FINALCONC.l (cu.f t./ttsr; MASS (tba) 70 F (gal) 50 F (gal) (tbe) (Itze) (tba) (ppe boron)l l (F) (psia)

Tf Vi '/ f l l Ti

.................................................l g.......................... ...................................................

557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l

557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 953.0 953.0 479,"* 7 347.8l l

510 500 2250 0.02031 0.02010 4,763.5 571.9 0.0 172.8 1,125.7 483,938.0 406.7l l

9,593.0 1,149.8 116.6 1,242.4 493,647.6 440.0 l l 500 480 2250 0.02010 0.01 % 9 0.0 4,460.6 0.0 534.6 54.2 1,296.6 498,162.4 455.0 l l 480 470 2250 0.01 % 9 0.01951 470 460 2250 9.01951 0.01933 4,422.0 0.0 530.0 53.8 1,350.4 502,638.1 469.7l l

4,252.6 0.0 509.7 51.7 1,402.1 506,942.4 483.5 l l 460 450 2250 0.01933 0.01916 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 49.5 1,451.6 511,064.0 4%.6 l l

440 430 2250 0.01900 0.01884 4.010.7 0.0 480.7 48.8 1,500.3 515,123.5 509.2l l

3,944.7 0.0 472.8 48.0 1,548.3 519,116.1 521.4 l l 430 420 2250 0.01884 0.01869 3,87'. 9 0.0 464.3 47.1 1,595.4 523,037.0 533.3 l l 420 410 2250 0.01869 0.01855 3,525.0 0.0 422.5 *?.9 1,638.2 526,604.9 543.9 l u l 410 400 2250 0.01855 0.01842 3,852.2 0.0 461.7 'O.8 1,685.1 530,503.9 555.3 l E. l 400 390 2250 0.01842 0.01828

" 3,349.2 0.0 401.4 40.7 1,725.8 C 3,893.8 565.1 l l 390 380 2250 0.01828 0.01816 3,393.7 0.0 406.8 41.3 1,744 .3 537,328.8 575.0 l l 380 370 2250 0.01816 0.01804 3,439.2 0.0 412.7 41.8 1,808.9 540,809.8 584.8 l l 370 360 2250 0.01804 0.01792 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 38.8 1,847.7 544,042.0 593.8l l

350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 39.3 1,887.0 547,314.4 602.8l l

3,2 73.5 0.0 392.4 39.8 1,926.8 550,627.6 611.8 l l 340 330 2250 0.01770 0.01759 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 36.6 1,963.4 553,675.9 620.0l l

3,046.3 0.0 365.1 37.0 2,000.4 556,759.2 628.2 l l 320 310 2250 0.01747 0.01739 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 33.7 2,034.1 559,564.7 635.6l l 310 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 85.8 2,119.9 576,634.8 642.8l l

6,431.2 0.0 770.9 78.2 2,198.1 583,144.2 659.0 l l 260 235 265 0.01707 0.01687 210 265 0.01687 0.01669 5,919.9 0.0 709.6 72.0 2,270.1 589,136.0 673.7 l l 235 2,336.8 0.9 280.1 28.4 2,298.5 591,501.2 679.4 l l 210 200 265 0.01669 0.01662 l

1 l

l TOTAL BAST V0ttJME 3726.499 gations I

l

.t l TABLE 2-28 l .

l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 3.25 wt1 boric AClo; RWST AT 2100 ppm BORON l 1 l l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOLLME SNRINKAGE BAST WOL 3 RWST WOL 3 B/A A00rD TOTAL B/A TOTAL SYS, MASS FINAL CONC.l l (F) (psia) (cu.f t./ttu) MASS (Itm) 70 F (gal) 50 F (get) ( Ltm) (Itm) ( Ltm) (ppe boren)l j Ti Tf vi vf l ~~

l.....................................................................................................................................l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0.02155 0.0203 26,274.5 3,154.6 0.0 882.6 882.6 478,931.4 322.2 l l 510 495 2250 0.02031 0.02000 7,182.7 862.4 0.0 241.3 1,123.9 486,355.4 404.0l l 495 480 2250 0.02000 0.01%9 7,173.7 0.0 859.8 87.2 1,211.1 493,616.3 429.0 l l 480 470 2250 0.01 % 9 0.01951 4,460.6 0.0 534.6 54.2 1,265.3 498,131.1 444.1 l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 53.8 1,319.1 502,606.9 458.9 l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 51.7 1,370.8 506,911.2 472.8 l l 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 49.5 1,420.3 511,032.7 485.9 l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 48.8 1,469.1 515,092.2 498.6l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 .'.72.8 48.0 1,517.0 519,084.6 511.0 l l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 47.1 1,564.1 523,005.8 522.9 l g l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 42.9 1,607.0 526,573.6 533.6l

& l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 46.8 1.653.8 530,472.7 545.1 l

  • 390 380 2250 0.01828 0.01816 3,349.2 1,694.5 533,862.6 l 0.0 401.4 40.7 554.9 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 41.3 1,735.8 537,297.6 564.8 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 41.8 1, 777.6 540,77E.6 574.7l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 38.8 1,816.4 544,010.8 583.8 l l 350 340 2250 0.01781 0.01770 . 233.0 0.0 387.5 39.3 1,855.7 547,283.1 592.8 l l 340 330 2250 0.01770 0.01759 3,2 73 .5 0.0 392.4 39.8 1,895.5 550,5 % .4 601.9l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 36.6 1,932.1 553,644.6 610.i l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 37.0 1,% 9.2 556,728.0 618.4 l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 33.7 2,002.9 559,533.4 625.8 l l 300 260 265 0.01730 0.01707 7.057.3 0.0 845.9 85.8 2,088.7 576,603.6 633.3 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 78.2 2,166.9 583,112.9 649.7 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 72.0 2,238.8 589,104.8 664.4,l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 28.4 2,267.2 591,470.0 670.2 l 1 l l TOTAL BAST VOLUME 4016.962 gations l 1 i

5 r U

l TABLE 2 29 l l PLANT (.00LDOWN F.t0M 557 F TO 200 F; BAST AT 3.00 ut% BORIC ACIO; RUST AT 2100 ppm BORON l I I l AVG.S!S. TEMP. PZR PRESS

  • PECIFIC V0ttME SHRINKAGE BAST VOL 3 RUST VOL 3 8/A ADDED TOTAL 8/A TOTAL SYS. MASS FINAL CONC.l l (F) (psib) (cu.ft./lba) MASS (tbs) 70 F (gat) 50 F (gel) (Itn) (tbs) (Itm) (ppmboron)l l Ti - if Vi Vf l g.....................................................................................................................................l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 812.6 812.6 478,861.4 296.7l l 510 490 2250 0.02031 0.01980 9,627.5 1,155.9 0.0 297.8 1,110.4 488,786.7 397.2 l l 490 484 2250 0.01989 0.01977 2,825.9 339.3 0.0 87.4 1,197.8 491,699.9 425.9 l l 484 470 2250 0.01977 0.01951 6,363.6 0.0 762.7 77.4 1,275.1 498,140.9 447.5 l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 53.8 1,328.9 502,616.7 462.3 l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 51.7 1,380.6 506,921.0 476.2 l l 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 49.5 1,430.1 511,042.5 489.3 l l 440 430 2250 0.01900 0<01884 4,010.7 0.0 480.7 48.8 1,478.9 515,102.0 502.0 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 48.0 1,526.8 519.094.6 514.2 l l 420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 47.1 1,5 73.9 523,015.6 526.1 ',

y l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 42.9 1.616.8 526,583.4 536.F l l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 46.8 1,663.6 530,482.5 54P,,3 l l 390 380 2250 0.01828 0.01816 3,3',9.2 0.0 401.4 40.7 1,704.3 ' 533,872.4 ' , 58.1 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 41.3 1,745.6 $??,307.4 568.0 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 41.8 1,787.4 540,788.3 577.9 l l 360 350 2250 0.01792 0.C,1781 3,193.3 0.0 382.8 38.8 1,826.2 544,020.A 586.9 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 39.3 1,865.5 547,292.9 595.9l l 340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 39.8 1,905.3 550,606.2 605.0 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 36.6 1,941.9 553,654.4 613.2 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 345.1 37.0 1,979.0 556,737.8 621.5l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 33.7 2,012.7 559,543.2 628.9l l 300 260 265 0.01730 0.01,'07 7,057.3 0.0 845.9 85.8 2,098.5 576,613.4 636.3 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 78.2 2,176.7 583,122.7 652.6 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 72.0 2,248.6 589,114.6 667.3 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 28.4 2,277.0 591,479.8 673.1 l l l l TOTAL BAST VOLUME 4649.771 gallons l l 1

~

p F

l TA8tE 2 30 l '

l PLANT C00LDouN FROM 557 F TO 200 F; BAST AT 2.75 ut% BORIC ACID; RWST AT 2100 ppe BORON l l I l AVG.STS. TEMP. PZR PRESS SPECIFIC VOLUME SHRINKAGE BAST VOL 3 RWST VOL 3 8/A A00Et' TOTAL S/A TOTAL SYS. MASS FINALCONC.l l (F) (psis) (cu.f t./ttun) MASS (tba) 70 F (get) 50 F (gal) (ttze) (Itze) (Itze) (ppm boron)l l Ti Tf Vi Vf l l....................................................................................................................................l - .

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 743.0 743.0 478,791.7 '271.3 l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 2 72.2 1,015.2 488,691.5 363.2 l l 490 480 2250 0.01989 0.01 % 9 4, 728.9 567.8 0.0 133.7 1,148.9 493,554.2 407.0 l l 480 470 2250 0.01 % 9 0.01951 4,460.6 535.5 0.0 126.1 1,275.1 498,140.9 447.5 l l 470 467 2250 0.01951 0.01946 1,195.7 143.6 0.0 33.8 1,308.9 499,370.3 458.2 l l 467 450 2250 0.01946 0.01916 7,479.0 0.0 896.4 90.9 1,399.8 506,940.2 482.8 l l 450 442 2250 0.01916 0.01903 3,252.1 0.0 389.8 39.5- 1,439.3 510,231.9 493.2 l l 442 430 2250 0.01903 0.01884 4,830.6 0.0 579.0 58.7 1,498.1 515,121.2 . 508.4 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 48.0 1,546.0 519,113.9 520.7 l l 420 410 2250 C.01869 0.01855 3,873.9 0.0 464.3 47.1 1,593.1 523,034.8 532.5 l Y l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 42.9 1,636.0 526,602.6 543.1 l w

w l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 46.8 1,682.8 530,501.7 554.6 l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 40.7 1,723.5 533,891.6 564.4l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 41.3 1,764.8 537,326.6 574.2 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 41.8 1,806.6 540,807.6 584.0 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 38.8- 1,845.4 544,039.8 593.0l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 39.3 1,884.7 547,312.1 602.1 l l 340 330 2250 0.01770 0.01759 3,273.5 0.0 392.4 39.8 1,924.5 550,625.4 611.1 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 36.6 1,%1.1 553,673.7 619.3l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 37.0 1,998.2 556,757.0 627.5 l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 33.7 2,031.9 559,562.5 634.9 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 85.8 2.117.7 576,632.6 642.1 l l - 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 78.2 2,195.9 583,142.0 658.3 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 72.0 2,267.8 589,133.8 673.0 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 28.4 2,296.2 591,499.0 678.7 l l l l TOTAL BAST VOLLME 5557.356 gations l l l

E

'n 8

TABLE 2-31 l l

PLANT C00LOOWN FROM 557 F TO 200 F- BAST AT 2.5 ut% 80RIC AClo- RWST AT 2100 ppui 80RON l ,

l I

I l AVG.STS. TEMP. PZR PRESS SPECIFIC VOLUME SMRINKAGE BAST VOL 3 RWST V(k. 3 B/A ADDED TOTAL 8/A TOTAL SYS. MASS FINALCONC.l (tbs) (Lbm) (ttna) (ppmbaron)l l (F) (psia) (cu.f t./ttni) MASS (ttun) 70 F (gal) 50 F (gal)

Tf vi vf ~l l T,i l.....................................................................................................................................l 0.0 0.0 0.0 451,774.2 0.0 l l 557 557 2250 1.00000 1.00000 0.0 0.0 2250 0.0215 ").02031. 26,274.5 3,154 6 0.0 673.7 673.7 478,722.5 246.0 l l 557 510

,9,627.5 1,155.9 0.0 246.9 920.5 488,5 % .9 329.4 l l 510 490 2250 0.02031 0.01989 4, 728.9 567.8 0.0 121.3 1,041.8 493,447.0 369.1 l l 490 480 2250 0.01989 0.01 % 9 4 70 2250 0.01969 0.01951 4,460.6 535.5 0.0 114.4 1,156.2 498,022.0 405.9 l l 480 4,422.0 530.9 0.0 113.4 1,269.6 502,557.3 441.7 l l 4e' 460 2250 0.01951 0.01933 4,252.6 510.6 0.0 109.0 1,378.6 506,919.0 475.5 l l 463 450 2250 0.01933 0.01916 444 2250 0.01916 0.01906 2,409.5 289.3 0.0 61.8 1,440.4 509,390.3 494.4 l l 450 2250 0.01906 0.01884 5,673.2 0.0 680.0 69.0 1,509.3 515,132.5 512.3 l l 444 430 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 48.0 1,557.3 519.125.2 524.5 l l

420 410 2250 0.01869 0.01855 3 , 8 73 .9 0.0 464.3 47.1 1,604.4 523.046.1 536.3 l l

0.0 422.5 42.9 1,647.3 526,613.9 546.9 l Y l 410 400 2250 0.01855 0.01842 3,525.0 46.8 1,694.1 530,513.0 558.3 l

$ l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 40.7 1,734.8 533.902.9 568.1 l l

2250 0.01816 0.01804 3,393.7 0.0 406.8 41.3 1,776.1 537,337.9 577.9 l l 380 370 3,439.2 0.0 412.2 41.8 1,817.9 540,818.9 587.7 l l 370 360 2250 0.01804 0.01792 2250 0.01792 0.01781 3,193.3 0.0 382.8 38.8 1,856.7 544,051.1 5%.7 ,

l 360 350 2250 0.01781 0.01770 3,233.0 0.0 387.5 39.3 1,896.0 547,323.4 605.7 l l 350 340 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 39.8 1,935.8 550,636.7 614.6 l l 340 330 2250 0.01759 0.01749 3,011.6 0.0 361.0 36.6 1,9 72.4 553,685.0 622.8l l 330 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 37.0 2,009.5 556,768.3 631.0 l l

l 320 2250 0.01739 0.01730 2,771.8 0.0 332.2 33.7 2,043.2 559,573.8 638.4 l l 310 300 7,057.3 0.0 845.9 85.8 2,129.0 576,643.8 645.5 l l 300 260 265 0.01730 0.01707 265 0.01707 0.01687 6,431.2 0.0 770.0 78.2 2,207.1 583,153.2 661.7 l l 260 235 265 0.01687 a.01669 5,919.9 0.0 709.6 72.0 2,279.1 589,145.1 676.3 l l 235 210 265 0.01669 0.01662 2,336.8 0.0 280.1 28.4 2,307.5 591,510.3 682.0 l l 210 oo I

1 l TOTAL BAST VOLUME 6744.592 gattons l 1

l l

.~

R TABLE 2 32 l l -

PLANT COOLDOWN TROM 557 F TO 200 :, BAST AT 3.50 wtX BORIC ACIO- RWST AT 2200 ppe BORON l l

l l

l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOLUME SHRINKAGE BAST VOL 3 RWST VOL 3 8/A ADOED TOTAL B/A TOTAL SYS. MASS FINALCONC.l (F) (psia) (cu.f t./tta) MASS (lba) 70 F (gal) 50 F (gal) (thm) (thm) (tba) (ppmboren)l l

Tf Vi Vf l l Ti g.....................................................................................................................................g ,

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l 506 2250 0.02155 0.02023 28,168.1 3,381.9 0.0 1,021.6 1,021.6 ;80,963.9

. 371.4 l l - 557 2250 0.02023 0.01989 7,734.0 0.0 927.0 98.6 1,120.2 488,796.5 400.7 l l- 506 490 j 490 480 2250 0.01989 0.01 % 9 4,728.9 0.0 566.8 60.3 1,180.5 493,585.7 418.1 l 480 470 2250 0.01 % 9 0.01951 4.460.6 0.0 534.6 56.8 1,237.3 498,103.1 434.3 l l

470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 56.4 1,293.7 502,581.4 450.0l l

460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 54.2 1,347.9 506,888.3 464.9 l l

450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 51.9 1,399.8 511,012.2 478.9 l l

440 430 2250 0.01900 0.0180 4,010.7 0.0 480.7 51.1 1,450.J 515,074.0 492.5 l l

430 420 2250 0.01884 0.01869 3,944.7 0.0 4 72.8 50.3 1,501.1 519,068.9 505.6 l l

420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 49.4 1,550.5 522,992.2 518.3 l l

7 l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 44.9 1,595.4 526,562.1 529.7l 2250 0.01842 0.01828 3,852.2 0.0 461.7 49.1 1,644.5 530,463.4 542.0 l

$ ] 400 390 401.4 42.7 1,687.2 533,855.2 552.5 l l 390 380 225L 0.01828 0.01816 3,349.2 0.0 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 43.2 1,730.4 537,292.2 563.1 l l

370 360 2250 0.01804 0.01792 3.439.2 0.0 412.2 43.8 1, 774.3 540,775.3 573.6 l l

360 3*0 2250 0.01792 0.01781 h,193.3 0.0 382.8 40.7 1,815.0 544,009.3 583.3l l

350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 41.2 1,856.2 547,283.5 593.0 l l

340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 41.7 1,897.9 550,598.7 602.6 l l

330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 38.4 1,936.3 553,648.8 611.4 l l

310 2250 0.01749 0.01739 3,046.3 0.0 365.1 38.8 1,975.1 556,733.9 620.2 l l 320 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 35.3 2,010.4 559,541.0 628.2 l l

260 265 0.01730 0.01707 7,057.3 0.0 845.9 89.9 2,100.3 576,615.2 636.8 l l 300 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 82.0 2,182.3 583,128.4 654.3 l l

210 265 0.01687 S.91669 5,919.9 0.0 709.6 75.4 2,257.7 589,123.7 670.0 l l 235 200 265 0.01669 'O.01662 2,336.8 0.0 280.1 29.8 2,287.5 591,490.3 676.1 l l 215 I

I

[ TOTAL 8AST VOLUME 3381.925 gations l l

l

e t

1ABLE 2-33 l l -

PLANT COOLDOWN FROM 557 5 TO 200 F; BAST AT 3.25 wt% BORIC ACID; RWST AT 2200 ppe 80RON l l

I 1

l AVG.SYS. TEMP. P2R PRESS SPECIFIC VOLUME SHRINKAGE BAST VOL 3 RWST VOL 'SS/A ADDED TOTAL 8/A TOTAL SYS. NASS FINALCONC.l (cu.f t./ttun) MASS (tbs) 70 F (gat) 50 F (gal) (Itm) (ttsm) (ppeboron)l l (F) (psia) (itn)

Ti Tf Vi Vf l l

..............................................................................................................l l.....................

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 882.6 882.6 478,931.4 322.2 l l 557 510 500 2250 0.02031 0.02010 4,763.5 571.9 0.0 160.0 1,042.6 483,854.9 376.7 l l

480 2250 0.02010 0.01 % 9 9,593.0 0.0 1,149.8 122.2 1,164.9 493,570.1 412.6 l l 500 480 470 2250 0.01969 0.019',1 4,460.6 0.0 534.6 56.8 1,221.7 498,087.5 428.8 l l

470 460 2250 0.01951 0.01933 4.422.0 0.0 530.0 56.4 1,278.1 502,565.8 444.6 l l

l (60 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 54.2 1,332.3 506.872.7 459.5 l 450 440 2250 0.01916 0.01900 4,072.0 0.0 488.1 51.9 1,384.2 510,996.6 473.6 l l

440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 51.1 1,435.3 515,058.4 487.2 l l

430 420 2250 0.01s84 0.01869 3,944.7 0.0 472.8 50.3 1,485.5 519.053.4 500.4 l l

420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 49.4 1,534.9 522,976.6 513.1 l w l 3,525.0 422.5 44.9 t,579.8 526,546.5 524.6 l

& l 4to 400 2250 0.01855 0.01842 0.0 400 390 2250 0.01842 0.01828 3,832.2 0.0 461.7 49.1 1,628.9 530,447.8 536.9l l

390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 42.7 1,671.6 533,839.6 547.5 l l

380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 43.. 1,714.9 537,276.6 558.0 l l

360 2250 0.01804 0.01792 3,439.2 0.0 412.2 43.8 1,758.7 540,750.7 568.6 l l 370 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 40.7 1,799.4 543,993.7 578.3 l l 360 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 41.2 1,840.6 547,268.0 588.0 l l 350 340 330 2250 0.01770 0.01759 3,273.5 0.0 392.4 41.7 1,882.3 550,583.2 597.7 l l

330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 38.4 1,920.7 553,633.2 606.5 l l

320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 38.8 1,959.5 556,718.3 615.4 l l

310 300 2250 0.01739 0.01750 2,771.8 0.0 332.2 35.3 1,994.8 559.525.4 623.3 l l

300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 89.9 2,084.8 576,599.6 632.1 l l

l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 82.0 2,166.7 583.112.8 649.6l 235 210 265 0.01687 0.01669 5.919.9 0.0 709.6 75.4 2,242.2 589,108.1 665.4 l l

210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 29.8 2,271.9 591,474.7 671.6 l l

1 l

l TOTAL BAST VOLUME 3726.499 gations l I

l

W .~

t

'l T48tE 2-34 l l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 3.00 ut% BORIC ACIO; RUST AT 2200 ppm BORON l 1 I l AVG.STS. TEMP. PZR PRESS SPECIFIC VOLUME SMRINKAGE BAST VOL 2 RWST VOL 2 B/A ADOED TOTAL 8/A TOTAL STS. MASS FINALCONC.l l (F) (psia) (cu.ft./lba) MASS ( tta) 70 F (gal) 50 F (gal) (Itm) (tta) (tbm) (ppm boron)l l Ti if Vi Vf [

j.....................................................................................................................................l ,

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 J.0 812.6 81).6 478,861.4 296.7 l l 510 492 2250 0.02031 0.01993 8,646.5 1,038.1 0.0 267.4 1,080.0 487,775.3 387.1 l l 492 480 2250 0.01993 0.01 % 9 5,709.9 0.0 684.4 72.8 1,152.8 493,558.0 408.4 l l 480 470 2250 0.01 % 9 0.01951 4,460.6 0.0 534.6 56.8 1,209.7 498,075.4 424.6 l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 56.4 1,266.0 502,553.8 440.4 l l 460 450 2250 0.0i933 0.01916 4,252.6 0.0 509.7 54.2 i,320.2 506,860.6 455.4 l l 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 51.9 1,3 72.1 510,984.5 469.5 l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 51.1 1,423.2 515,046.3 483.1 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 4 72.8 50.3 1,473.5 519,041.3 496.3 l ry l 420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 49.4 1,322.8 522.964.5 509.1 !

410 400 2250 0.01855 0.01842 3,525.0 422.5 44.9 1,567.8 526,534.4 520.6 l 3 l 3,852.2 0.0 0.0 49.1 1,616.8 530,435.7 l 400 390 2250 0.01842 0.01828 461.7 532.9l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 42.7 1,659.5 533,827.6 543.5 l l 380 3ZO 2250 0.01816 0.01804 3,393.7 0.0 406.8 43.2 1,702.8 537,264.6 554.1 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0  !.2 43.8 1,746.6 540,747.6 564.7 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 ' e.8

. 40.7 1,787.3 543,981.6 5M.4 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 87.5 41.2 1,828.5 547,255.9 584.2 l l 340 330 2250 0.01770 0.01759 3,2 73.5 0.0 392.4 41.7 1,870.2 550,571.1 593.9 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 38.4 1,908.6 553,621.1 602.7l l 320 310 2250 0.01749 0.01739 3.046.3 0.0 365.1 38.8 1,947.4 556,706.2 611.6 l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 35.3 1,982.7 559,513.3 619.6 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 89.9 2,072.7 576,587.5 628.5 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 82.0 2,154.6 583,100.7 646.0 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 75.4 2,230.1 589,096.0 66".8 l l 210 200 265 0.01669 0.01662 2,336.8 o.0 280.1 29.8 2,259.9 591,462.6 n .0 l I I l TOTAL BAST V0ttME 4192.708 gations l l 1

e E

l TABLE 2-35 l l PLANT COOLDOWN (RCDt 557 F TO 200 F; BAST AT 2.75 wt% 80Ric ACID; RWST AT 2200 ppm 80RON l .

l l lAVC.SYS. TFMP. PZR PRESS SPECIFIC VOLUME SHRINKAGE BAST VOL 3 RWST Vnl 3 8/A ADOED TOTAL 8/A TOTAL SYS. NASS FINALCONC.l l (F) (pnia) (cu.f t./ttss) MASS (tbs) 70 F (gal) 50 F (gat) (Itm) ( Ltzn) (tbs) (ppeboren)l -

l Ti Tf Vi Vf l l....................................................................................................................................; _

l 557 557 2250 1.00000 1.00000 0.0 - 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 743.0 743.0 478,791.7 271.3 l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 2 72.2 1,015.2 488,691.5 363.2l l 490 474 2250 0.01989 0.01958 7,322.7 879.2 0. 0 207.1 1,222.3 4 % ,221.3 430.6 l l 474 470 2250 0.01958 0.01951 1,745.1 0.0 209.2 22.2 1,244.5 497,988.6 436.9 l l 470 460 2250 0.01951 0.01933 4,543.7 0.0 544.6 57.9 1,302.4 502,590.2 453.1 l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 54.2 1,356.6 506,397.0 467.9 l l 450 442 2250 0.01916 0.01903 3,252.1 0.0 389.8 41.4 1,398.1 510,190.6 479.1 l.

l 442 430 2250 0.01903 0.01884 4,830.6 0.0 579.0 61.6 1,459.6 515,082.8 495.4l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 50.3 1,509.9 519,077.7 508.6l l 420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 49.4 1,559.2 523,000.9 521.2 l l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 44.9 1,604.2 526,570.8 532.6 l

'[ l *00 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 49.1 1,653.3 530,472.1 544.9 l

$ l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 42.7 1,695.9 533,864.0 555.4 l l 380 370 2250 0.01816 C.01804 3,393.7 0.0 406.8 43.2 1, 73 9.2 537,301.0 565.9l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 43.8 1,783.0 540,784.0 576.4 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 40.7 1,823.7 544,018.1 586.1 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 41.2 1,864.9 547,292.3 595.8l l 340 330 2250 0.01770 0.01759 3, 2 73 .5 0.0 392.4 41.7 1,906.6 550,607.5 605.4 l l 330 320 2250 0.01759 0.01749 3.011.6 0.0 361.0 38.4 1,945.0 553,657.5 614.2 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 38.8 1,983.8 556,742.6 623.0 l l 310 300 2250 0.01739 0.01730 2,771.8 0.0 332.2 35.3 2,019.1 559,549.7 630.9l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 89.9 2,109.1 576,624.0 639.5 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 82.0 2,191.0 583,137.1 656.9 l l 235 210 265 0.0168.' O.01669 5,919.9 0.0 709.6 75.4 2,266.5 589,132.5 672.6 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 29.8 2,296.3 591,499.0 678.7 l I I l TOTAL 8AST VOLUME 5189.669 gations l l l

/

~ i

W m .

2 l TABLE 2-36 l l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 2.50 ut% BORIC AC!D; RWST AT 2200 ppm BORON -l -

1 I l AVG.STS. TEMP. PZR PRESS SPECIFIC V0ttJME SHRINKAGE BAST WOL a RWST VOL 3 B/A ADDED TC'AL B/A TOTAL SYS. NASS FINALCONC.l l (F) (psia) (cu.ft./ tbs) MASS (lta) 70 F (gat) 50 F (gal) (tbs) (ite) ( Ltm) (ppeboron)l l Ti Tf vi vf l

[.....................................................................................................................................] ._

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 6 73.7 673.7 478,722.5 246.0 l l 510 490 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 246.9 920.5 488,5 % .9 329.4 l l 490 480 2250 0.01989 0.01 % 9 4,728.9 567.8 0.0 121.3 1,041.8 493,447.0 369.1 l l 480 470 2250 0.01 % 9 0.01951 4,460.6 535.5 0.0 114.4 1,156.2 498,022.0 405.9 l l 470 452 2250 0.01951 0.01919 7,692.4 923.6 0.0 197.2 1,353.4 505,911.6 467.7l l 452 450 2250 0.01919 0.01916 982.3 0.0 117.7 12.5 1,365.9 506,906.4 471.1 l l 450 442 2250 0.01916 0.01903 3,252.1 0.0 389.8 41.4 1,407.4 510,199.9 482.3 l l 442 430 2250 0.01903 0.01884 4,830.6 0.0 579.0 01.6 1,468.9 515,092.1 498.6 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 50.3 1,519.2 519,087.1 511.7l

. l 420 410 2250 0.01869 0.01855 3,8 73.9 0.0 464.3 49.4 1,568.6 523,010.3 524.3l g l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 44.9 1,613.5 526,580.2 535.7 l g l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 49.1 1,662.6 530,481.5 547.9 l W l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 42.7 1,705.3 533,873.3 558.4 l l 380 370 2250 0.01816 0.01804 3,3H.7 0.0 406.8 43.2 1,748.5 537,310.3 568.9 l l 370 360 2250 0.01804 0.01792 3.439.2 0.0 412.2 43.8 1,792.3 540,793.4 579.4 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 40.7 1,833.0 544,027.4 589.1 l l 350 340 2250 0.01781 0.01770 3.233.0 0.0 387.5 41.2 1,874.2 547,301.6 598.7l l 340 330 2250 0.01770 0.01759 3,273.5 '0.0 392.4 41.7 1,915.9 550,616.8 608.4 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 38.4 1,954.3 553,666.9 617.1 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 38.8 1,993.1 556,752.0 625.9l l 310 300 2250 0.01739 0.01730  ?,771.8 0.0 332.2 35.3 2,028.5 559,559.1 633.8 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 89.9 2,118.4 576,633.3 642.3 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 82.0 2,200.4 583,146.5 659.7 l l 235 21G 265 0.01687 0.01669 5,919.9 0.0 709.6 15.4 2,275.8 589,141.8 675.4 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 29.8 2,305.6 591,508.4 - .681.5 l l I liOTAL BAST VOLUME 6337.366 gattens l 1 I

y 2

l TABLE 2-37 l l PLANT COOLDOWN FROM 557 F TO 200 F; RAST AT 3.50 wt% BORIC ACID; RUST t.T 2300 ppe aan0N l l 1 l AVG.SYS. TEMP. P2R PRESS SPECIFIC VOLUME SHRINKAGE BAST VOL 3 RWST VOL 3 8/A ADDED TOTAL B/A TOTAL SYS. MASS FINAL CONC.l l (F) (psia) (cu.ft./lba) MASS (thm) 70 F (gal) 50 F (gat) (Lin) (tbs) (ttum) (ppeboren)l

, l Ti Tf Vi Vf l l.....................................................................................................................................l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0.02155 0.0?931 26,274.5 3,154.6 0.0 953.0 953.0 479,001.7 347.8 l l 510 490 2250 0.02031 0.01989 9,627.5 0.0 1,154.0 128.3 1,081.3 488,757.6 386.8l l 490 480 2250 0.01989 0.01 % 9 4,728.9 0.0 566.8 63.0 1,144.3 493,549.5 405.4 l l 480 470 2250 0.01 % 9 0.01951 4,460.6 0.0 534.6 59.5 1,203.8 498,069.6 422.6 l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 58.9 1,262.7 502,550.5 439.3 l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 500.7 56.7 1,319.4 506,859.8 455.1 l l 450 440 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 54.3 1,3 73.7 510,S86.1 470.0l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 53.5 1,427.2 515,C50.3 484.5 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 52.6 1,479.7 519,047.6 498.4 l l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 51.6 1,531.4 522,973.0 512.C l l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 47.0 1,578.4 526,545.0 524.1 l 1,629.7 530,448.6 7 l 400 390 2250 0.01842 0.01828 3,85?.2 0.0 461.7 51.3 537.2 l 533,842.4

$ l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 44.6 1,674.4 548.4 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 45.2 1,719.6 537,281.4 559.6 l l 370 360 260 0.01804 0.01792 3,439.2 0.0 412.2 45.8 1,765.4 540,766.4 570.8 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 42.6 1,808.0 544,002.3 581.1 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 43.1 1,851.1 547,278.5 591.4 l l 340 330 2250 0.01770 0.01759 3,273.5 0.0 392.4 43.6 1,894.7 550,595.6 601.6l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 40.1 1,934.9 553,647.4 611.0 l l 320 310 2250 0.01749 0.01739 3.046.3 0.0 365.1 40.6 1,975.5 556,734.3 620.4 l l 310 300 2250 0.01739 0.01730 2.771.8 0.0 332.2 36.9 2,012.4 559,543.0 628.8 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 94.1 2,1%.5 576,621.4 638.7l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 85.7 2,192.2 583,138.3 (57.3 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 78.9 2,271.1 589,137.1 674.0 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 31.1 2,302.3 591,505.0 680.5 l l 1 l TOTAL BAST VOLUME 3154.584 gations l l I

e l TABLE 2-38 l l PLANT C00LDOWh FROM 557 F TO 200 F; BAST AT 3.25 wtX BORIC ACID; RWST AT 2300 ppe 80RON l l . l l AVG.STS. TEMP. PZR PRESS SPECIFIC VOLUME $NRINKAGE BAST WOL 2 RWST WOL a 8/A ADDED TOTAL B/A TOTAL SYS. MASS FINAL CONC.l ~

l (F) (psia) (cu.f t./ltam) MASS (ltum) 70 F (gat) 50 F (gat) (lbm) (tbe) (ttun) (ppm boren)l '

l Ti Tf Vi vf l l.....................................................................................................................................l ._

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 882.6 882.6 478,931.4 322.2l l 510 505 2250 0.02031 0.02021 2.369.4 284.5 0.0 79.6 962.2 481,380.3 , 349.5 l l 505 480 2250 0.02021 0.01969 11,987.1 0.0 1,436.8 159.8 1,122.0 493,527.2 397.5 l l 480 470 2250 0.01

  • 9 0.0i95i 4,,,60.6 0.0 534.6 59.5 1,18i.5 498,047.2 414.7 l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 58.9 1,240.4 502,528.2 431.5 l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 56.7 1,297.1 506,837.5 447.4 l l 450 440 2250 0.01916 0.01900 4.0 72.0 0.0 488.i 54.3 1,351.4 510,963.8 462.4 1 i 440 430 2250 0.01900 0.01884 4,010.7 0.0 480.7 53.5 1,404.8 515,028.0 476.9 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 4 72.8 52.6 1,457.4 519,025.2 490.9 l l 420 410 2250 0.01869 0.01855 3.8 73.9 0.0 464.3 51.6 1,509.0 522,950.7 504.5 l y l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 47.0 1,556.0 526,522.7 516.7 l 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 51.3 1,607.4 530,426.2 529.8l 3 l 400 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 44.6 1,652.0 533,820.1 541.1 l l

l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 45.2 1,697.3 537,259.0 552.3 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 45.8 1,743.1 540,744.1 563.6l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 42.6 1,785.7 543,900.0 573.9 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 43.1 1,828.8 547,256.1 584.2 l l 340 330 2250 0.01770 0.01759 3,273.5 0.0 392.4 43.6 1,8 72.4 550,573.3 594.6 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 40.1 1,912.5 553,625.0 604.0 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 40.6 1,953.2 556,711.9 613.4 l l 310 300 2250 0.01739 0.01730 2,771.8 0.. 332.2 36.9 1,990.1 559,520.7 621.8 l l 300 260 265 0.01730 0.01707 7.057.3 0.0 845.9 94.1 2,084.2 576,599.0 632.0l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 85.7 2,169.9 583,116.0 650.6 l l 235 210 265 0.01687 0.01669' 5,919.9 0.0 709.6 78.9 2,248.8 589,114.8 667.4 l l 210 200 265 0.01669 0.01662 2.336.8 0.0 280.1 31.1 2,280.0 591,482.7 673.9 l 1 I l TOTAL BAST VOLUME 3439.056 gattons l l l

2 l TABLE 2-39 l l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 3.00 wt% 80RIC ACIO; Rv5T AT 2300 ppm 80 ROM l .

1 I l AVG.SYS. TEMP. P2R PRESS SPECIFIC VOLUME SHRINKAGE 8AST VOL 3 Rv5T WOL 3 8/A ADDE 6 TOTAL 8/A TOTAL SYS. MASS FINAt. CONC.l l (F) (psie) (cu.ft./tbe) MASS (tbs) 70 F (gal) 50 F (get) (thm) (ttze) (llan) (ppmboren)]

I l Ti Ti Vi Vf l l.....................................................................................................................................g ,,

l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 812.6 812.6 478,861.4 296.7l l 510 500 2250 0.02031 0.02010 4,763.5 571.9 0.0 147.3 959.9 483,772.2 346.9 l l 500 480 2250 0.02010 0.01969 9,593.0 0.0 1,149.8 127.9 1,087.8 493,493.0 385.4 l l 480 470 2250 0.01 % 9 0.01951 4,460.6 0.0 534.6 59.5 1,147.3 498,013.0 402.8 l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 58,9 1,206.2 502,494.0 419.7l ,

l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 56.7 1,262.9 506,803.3 435.7 l l 450 44C 2250 0.01916 0.01900 4,0 72.0 0.0 488.1 54.3 1,317.2 510,929.6 450.7l l 440 430 2250 0.01900 0.01884 4,010.7 0.0 450.7 53.5 1,370.6 514,993.8 465.3 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 52.6 1,423.2 518,991.0 479.4 l l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 51.6 1,474.9 522,916.5 493.1 l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 47.0 1,521.9 526,488.5 4 l 3,852.2 0.0 505.4 l cn l 400 390 2250 0.01842 0.61828 461.7 51.3 1,5 73.2 530,392.0 518.6 l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 44.6 1,617.8 533,785.9 529.9 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 45.2 1,663.1 537,224.9 541.2 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 45.8 1;708.9 540,709.9 552.6 l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 42.6 1,751.5 543.945.8 563.0 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 43.1 1,794.6 547,222.0 573A l l 340 330 2250 0.01770 0.01759 3,273.5 0.0 392.4 43.6 1,838.2 550,539.1 583.8 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 40.1 1,878.4 553,590.9 593.2 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 355.1 40.6 1,919.0 556,677.8 602.7 l

, l 310 300 2250 0.01739 0.01730 2, 771.8 0.0 332.2 36.9 1,955.9 559,486.5 611.2 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 94.1 2,050.0 576,564.9 621.6 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 85.7 2,135.7 583,081.8 640.4 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 78.9 2,214.6 589,000.6 657.3 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 31.1 2,245.8 591,448.5 663.9 l l I l TOTAL BAST V0tuME 3726.499 gations l l l

t l IABLE 2-40 l l PLANT COOLDOWN TROM $57 F TO 200 F; SAST AT 2.75 wt% BORIC ACID: RUST AT 2300 ppm 80 ROM l 1 I l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOLUME SMRINEAGE BAST VOL 3 RWST VOL 3 8/A ADDED TOTAL B/A TOTAL SYS. NASS FINAL (XNIC.l l (F) (psla) (cu.f t./ttun) MAS $(lise) 70 F (gal) 50 F (gal) (ttsm) (Ltse) (ttan) (ggun boron)l l Ti Tf Vi Vf l l....................................................... ............l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0l l 557 510 2250 0 "155 0.02031 26,274.5 3,154.6 0.0 743.0 743.0 478,791.7 271.3 l l 510 490 2250 0.02031 0.019e9 9,627.5 1,155.9 0.0 272.2 1,015.2 488,691.5 363.2 l l 490 430 2250 0.01989 0.01 % 9 4,728.9 567.8 0.0 133.7 1,148.9 493,554.2 407.0 l l 480 470 2250 0.01 % 9 0.01951 4.460.6 0.0 534.6 59.5 1,208.4 498,074.2 424.2l l 470 460 2250 0.01951 0.01933 4,422.0 0.0 530.0 58.9 1,267.3 502,555.1 440.9l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 56.7 1,324.0 506,864.4 456.7 l l 450 442 2250 0.01916 0.01903 3,252.1 0.0 389.5 43.4 1,367.4 510,159.9 468.6 l l 442 450 2250 0.e1903 0.01884 4,830.6 0.0 579.0 64.4 1,431.8 515.054.9 486.0 l l 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 52.6 1,484.3 519,052.2- 500.0 l m l 420 410 2250 0.01869 c.a1855 5. 8 73 .9 0.0 464.3 51.6 1,536.0 522,977.7 513.5 l 5

l 410 400 2250 0.01855 0.01842  ;,525.0 0.0 422.5 47.0 1,583.0 526,549.6 525.6 l l 400 390 2250 0.01842 0.01828 3,852.2 0.0 461.7 51.3 1,634.3 530,453.2 538.7l l 390 380 2250 0.01828, 0.01816 ),349.2 0.0 401.4 44.6 1,479.0 533,847.0 549.9 l l 380 370 2250 0.01816 0.01804 3:393.7 0.0 406.8 45.2 1,724.2 537,286.0 561.1 l l 370 360 2250 0.01804 0.01792 3, 3*.2 0.0 412.2 45.8 1,770.0 540,771.1 572.'i, l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 42.6 1,812.6 544,007.0 582.5 l l 350 340 2250 0.01781 0.01770 3,233.G 0.0 387.5 43.1 1,855.7 547,283.1 592.8l l 340 330 2250 0.01770 0.01759 3,2 73 .5 0.0 392.4 43.6 1,899.3 550,600.2 603.1 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 40.1 1,939.5 553,652.0 612.5 l l 320 310 2250 0.01749 0.01739 3,046.3 00 365.1 40.6 1,980.1 556,738.9 621.8l

. l 310 300 2250 0.01739 0.01730 2.771.8 0.0 332.2 36.9 2,017.0 559,547.6 630.2 l l 300 260 265 0.01730 0.01707 7.057.3 0.0 845.9 94.1 2,111.1 576,626.0 640.1 l

. I 260 235 265 0.01707 0.01687 6,431.2 0.0 770.9 85.7 2,196.8 583.142.9 658.6 l l 235 210 265 0.01687 0.01669 5,915.9 0.0 709.6 78.9 2,275.7 589,141.7 675.3 l l 210 200 265 0.01669 0.01662 2,336.8 0.0 280.1 31.1 2,306.9 591,509.7 681.9 l l l l TOTAL BAST VOLUME 4873.255 gallons l l 1

e o

4 r-l 1A8tE 2-41 l l PLANT COOLDOWN FROM 557 F TO 200 F; BAST AT 2.50 wt% 90RIC ACID; RWST AT 2300 ppe 80RON l .

l l l AVG.SYS. TEMP. PZR PRESS SPECIFIC VOLtJME SNRINEACE BAST VOL 3 RWST VR 3 8/A ADOED TOTAL S/A TOTAL SYS. MASS FINALCONC.l 1 (F) (psia) (cu.f t./ttan) MASS (tbs) 70 F (gal) 50 F (gel) (Ltm) (itzn) (Ltun) (ppa boren)l l 16 Tf vi vf l l................ ....................................................................................................................l l 557 557 2250 1.00000 1.00000 0.0 0.0 0.0 0.0 0.0 451,774.2 0.0 l l 557 510 2250 0.02155 0.02031 26,274.5 3,154.6 0.0 673.7 673.7 478,722.5 246.0 l l 510 4 70 2250 0.02031 0.01989 9,627.5 1,155.9 0.0 246.9 920.5 488,596.9 329.4 l l 490 480 2250 0.01989 0.01 % 9 4, 728.9 567.8 0.0 121.3 1,041.8 493,447.0 369.1 l l 480 470 2250 0.01969 0.01951 4,460.6 535.5 0.0 114.4 1,156.2 498,022.0 405.9l l 470 460 2250 0.01951 0.01933 4,422.0 530.9 0.0 113.4 1,269.6 502,557.3 441.7 l l 460 450 2250 0.01933 0.01916 4,252.6 0.0 509.7 56.7 1,326.2 506,866.7 457.5 l l 450 442 2250 0.01916 0.01903 3,252.1 0.0 389.8 43.4 1,369.6 510,162.2 469.4 l 7 l 442 430 2250 0.01903 0.01884 4,830.6 0.0 579.0 64.4 1,434.0 515,057.2 486.8 l

@ g 430 420 2250 0.01884 0.01869 3,944.7 0.0 472.8 52.6 1,486.6 519,054.4 500.7l l 420 410 2250 0.01869 0.01855 3,873.9 0.0 464.3 51.6 1,538.2 522,979.9 514.2 l l 410 400 2250 0.01855 0.01842 3,525.0 0.0 422.5 47.0 1,585.2 526,551.9 526.3 l l 400 390 2250 0.01842 0.01828 3,252.2 0.0 461.7 51.3 1,636.5 530,455.4 539.4 l l 390 380 2250 0.01828 0.01816 3,349.2 0.0 401.4 44.6 1,681.2 533,849.2 550.6 l l 380 370 2250 0.01816 0.01804 3,393.7 0.0 406.8 45.2 1,726.4 537,288.2 561 8 l l 370 360 2250 0.01804 0.01792 3,439.2 0.0 412.2 45.8 1,772.3 540,773.3 573.o l l 360 350 2250 0.01792 0.01781 3,193.3 0.0 382.8 42.6 1,814.8 544,009.2 583.3 l l 350 340 2250 0.01781 0.01770 3,233.0 0.0 387.5 43.1 1,857.9 547,285.3 593.5 l l 340 330 2250 0.01770 0.01759 3,273.5

  • 0.0 392.4 43.6 1,901.6 550,602.5 603.8 l l 330 320 2250 0.01759 0.01749 3,011.6 0.0 361.0 40.1 1,941.7 553,654.2 613.2 l l 320 310 2250 0.01749 0.01739 3,046.3 0.0 365.1 40.6 1,982.3 556,741.1 622.5 l l 310 303 2250 0.01739 0.01730 2,771.8 0.0 332.2 36.9 2,019.3 559,549.9 630.9 l l 300 260 265 0.01730 0.01707 7,057.3 0.0 845.9 94.1 2,113.3 576,628.2 640.8 l l 260 235 265 0.01707 0.01687 6,431.2 0.0 /70.9 85.7 2,199.1 583,i45.2 659.3 l l 235 210 265 0.01687 0.01669 5,919.9 0.0 709.6 78.9 2,278.0 589,143.9 676.0 l l 210 200 265 c.01669 0.01662 2,336.8 0.0 280.1 31.1 2,309.1 591,511.9 682.5 l 1 I lIOTAL BAST VOLUME $944.718 gations l l l

m t

Table 2-42 Minimum Boric Acid Storage Tank Volume Vs Stored I

Boric Acid Concentration for Modes 1, 2, 3, and 4 Minimum Volume (Gallons) q) BAST RWST RWST RWST RWST RWST RWST RWST 0S at at at at at at at Concentration 1720 ppmm 1800 ppm 1900 ppm 2000 ppm 2100 ppm 2200 ppm 2300 ppm t

2.5 7899.4 7661.6 7425.8 6944.2 6744.6 6337.4 5944.8 2.75 6845.8 6455.3 6183.9 5944.8 5557.4 5189.7 4878.3 j 3.0 5944.8 5663.3 5413.9 5137.6 4649.8 4192.8 3726.5 l 3.25 5413.9 4878.3 4592.9 4310.5 4017.0 3726.5 3439.1 3.5 4878.3 4593.0 4310.5 4017.0 3726.5 3382.0 3154.6

. . . . _ _ ~ . _ = . . . _ -. - , - - . . . - . - - - . . ..

5

- . - ~ . ,_

4 d

Table 2-43 Calculation of the 47,000 Gallon Volume In~ Specification 3/4.1.2 13,055.0 Cooldown .to 300 degrees and 265 psia (PartA)

+

Cooldown to 200 degrees on shutdown 6279.9 cooling (Parts B & C) 26,880.0 System feed-and-bleed (Part D) 46,214.9 gallons Total 47,000 gallons Final volume (Part E)

L l

1 i'

2-70

. - . . - . - . - _ , _ - , - . _ . .~

. . :~ .

~('-

Table 2-44 Calculation of the 15,000 Gallon Volume In Specification 3/4.1.2

- 13,055.0 gallons Cooldown to 300 degrees and 265 psia (PartA)

+ 6,279.9 Cooldown to 200 degrees on shutdown cooling (Parts B & C)

- 4,878.3 Smallest BAST inventory value for 1720 ppm Boron in the RWST from Table 2-42 14,456.6 gallons Total 15,000 gallons Total rounded up to the nearest 1000 gallons i

! 4 2-71 l

0 6

j 1 Y /

T 9

/. 0 I

L ' 4 I

B / (g 1 U /

L / 0 2

. O 1 )

F S c s e

e D /# 0 0

r g

e I

CET R g 1 d

(

r AAW ~-

g E

R

, o U CIN s TA R

I R # E P

M O E B Ao 0

6 T

1 2 M" 0 4

E V R

U 1 G

I 8 76 5 4 3 2 11 10 1 1 1 1 1 1 8 7 6 5 4 3 2 1 0 F

2 y2e2, (3ED$"

$~

Fe

~

FIGURE 2-2 EFFECT OF COOLDOWN RATE ,

ON BORAT10N REQUIREMENTS .

700 ,

I' 600 - - A Z

o m

500 -

E g 400 -

7 2! Z y 300 -

s- ,

6 O

200 -

8 0 100 _

a:

i i

-100 i i i 550.!

i 250 350 450 150 TEMPERATURE ro - (F)50 F/hr A 100 F/hr D 12.5 F/hr + 25 F/hr o

FIGURE 2-3 RCS BORON CONCENTRATION .

vs TEMPERATURE FOR WAKEUP FROM BAST 730 720 -

i ^ 710 - ,

! o l $ 700 -

'N t 6,0 -

, 3

% z y 680 -

i Z 670 -

E g 660 -

0 E 650 -

640 -

.,0 . . . . . . .

140 160 180 200 220 120 TEMPERATURE (F)

O CURVE 1.REQUIREDppm + CURVE 2.ACTUAlppm m-

i FIGURE 2-4 RCS BORON CONCENTRATION ,

vs TEMPERATURE FOR MAKEUP FROM RWST 680 .

l p 670 -

O i E ~

a \

E 4

7 j ss0 -

g z o

P 2

z 550 -

U \

'N.

u ..

- E 640 - ,,

l I

630 , i e i i i i i 120 140 160 180 200 220 TEMPERATURE (F)

D CURVE 1 REQUIREDppm + CURVE 2,ACTUAlppm 8

GURE 2-5 RCS BORON CONCENTRATION vs TEMPEitATURE fer 12.5 F/hr COOUWWN

.s . , .

P I

700 - ' '

Z U 600 - -

ac O '

e

  • ~ z E

o.

$ @~ / <

  • O P

I 300 -

E ia o

z 200 - /

O U

n '

g 100 -

O .

i i i i

-100  ; i i i

-400 -300 -200:

-600 -500 TEMPERATURE (F)

CURVF'. EQUIREDppm + CURVE 2.ACTUALppm D -

E e

a

FIGURE 2-6 MINIMUM BAST VOLUME vs '

STORED BAST CONCENTRATION (wt 5) '

9 l

i 8H . - -

E

\\

ru

$3

>c N

~

N \s *

$i C s

<v B

N N 2 '5 -

N N s

4-'

N W

3 i - i i i i i i i i i 2.4 2.6 2.8 3 3.2 3.4 3.6 STORED BAST CONCENTRATION (wt 5)

D 1720 + 1900 0 2000 A 2100 X 2200 V 2300 PIN IN PPM IN PPM IN PPM IN PPM IN PPM IN RWST RWST RWST RWST RWST RWST I

' ~

FIGURE 2-7 REQUIRED vs ACTUAL .

CONCENTRATION FOR BTP 5-1 COOLDOWN -

400 - .

300 - - . -

z O

E o 200 -

i a

E o.

I O 100 -

'," z

, y O

)

P

' ks 0  :  :  :  :  :  :  :  : .

z w

o z

O o -100 AQ O

E

~200 -

o

~

l I I I E O 2 4 1 6 TlWE (hours)

D 2.995 SHUTDOWN CURVE + RCS CONCENTRATION

FIGURE 2-8 REQUIRED vs ACTUAL -

I CONCD4TRAT10H (EXPANDED ORAPH) '

400 I

l

! 3o0 - ~~

p )

E o 200 '

a '

t /

m O 100 -

4, z e o 0

^

0 -

0 0 -

E

/

o  !

z 8 -100 -

M o

E

-200 - U C -

i i i i i i s.

-300 - i i i i i i i 3.2 3.6 4 4.4 4.8 5.2 . 5.5 2.4 2.8 TIME (hours)

D 2.95 SHUTDOWN + ACTUAL ' o 0.5 HOUP SHtfT

~~

.. . .= ,

4

-[

3.0 OPERATIONAL ANALYSIS

3.1 INTRODUCTION

TO THE OPERATIONAL ANALYSIS The remainins, Sections of this report present the results of an evaluation perfonned in order to demonstrate the general impact on plant operations of a reduction in boric acid storage tank concentration. The specific areas that will be discussed include operator response to emergency situations, typical plant feed-and-bleed operations, typical plant blended makeup operations, plant shutdown to *efueling, and plant shutdown to cold shutdown. Because it is obviously an impossible task to evaluate each of these five areas and consider all possible combinations of plant conditions, initial plant parameters and analysis assumptiens that were used in the evaluation were selected, where possible, in a conservative nanner in order to give worst case type answers. As a consequence, the results, i.e., the volumes and final concentrations that were obtained, should in general be bounding for any event or any set of initial plant conditions.

3.2 RESPONSE TO EMERGENCY SITUATIONS In general, credit is not taken for boron addition to the reactor coolant

! system from the boric acid storage tanks for the purpose of reactivity control in the accidents analyzed in Chapter 15 of the plant's Final l

Safety Analysis Report. The response of an operator, therefore, to such events as steam line break, overcooling, boron dilution, etc., will not be affected by a reduction in boric acid storage tank concentration. In

, articular, the action statements associated with Technical Specification S.1.1.1 and Technical Specification 3.1.1.2 require that boration be f comenced at areater than 40 gallons per miriute using a solution of at least 1720 nom boron in the event that shutdown margin is lost. Such sta:ements are cor.servatively based upon the refueling water storage tank iI 3-1 u,

'l concentration and are therefore independent of the amount of boron in the BASTS. In addition, the acceptance criteria developed for the Reactivity Control Section of the Functional Recovery Guidelines of Reference 4.4 are based upon a boron addition rate of 40 gallons per minute and are also independent of tne exact bordtfon source concentration.

3.3 FEED-AND-BLEED OPERATIONS During a feed-and-bleed operation to increase system boron content, the charging pumps are used to inject concentrated boric acid into the RCS with the excess inventory nomally being diverted to the liquid waste system via letdown. The rate of increase in boron concentration is proportinnal to the difference between the system concentration at any given time and the concentration of the charging fluid. From this basic relationship, an equation describing feed-and-bleed can be derived.

(Appendix 1 contains the derivation of the reactor coolant system feed-and-bleed equation). In general, if the concentration within the boric acid storage tanks is reduced to the point where heat tracing is no longer required, the maximum rate of change of RCS boron cuncentration that an operator can expect to see during feed-and-bleed will be less than currently achievable.

The purpose of the evaluation performed in this section of the report was to show the exact feed-and-bleed rates that can be expected using l

boric acid makeup tanks having a reduced concentration. The analysis was

! done assuming hot zero power conditions with other key parameters and j conditions shown in Table 3-1. Both a one charging pump and a two charging pump feed-and-bleed weia e.a!.ited from two initial system concentrations: zero ppm and 800 ppm. The results are presented in l

?

3-2

m

(

Table 3-2 to Table 3-5. Equation 9.0 of Appendix 1 was used to generate the results in these tables. The value of.the system mass used to obtain the time constant in Equation 9.0 was calculated as follows:

("w)RCS 'IN) loops +(%)PZR or 3 3 9,260 ft , 460 ft (m) =

  • 3 0.020843 fl./lbMI 0.02713 ft /lbm(2)

From this system mass (461,229.3 lbm), the value of the feed-and-bleed time constant for one charging pump is 461,229.3 lbm T40 " -

40 gpm x 8.329 lbm/ gallon (3) or 1,384.4 min, T40 =

and the value of the feed-and-bleed time constant for two charging pumps is T g4 = 461,229.3 lbm 84 gpm x 8.329 lbm/ gallon I3I or T g4 = 659.2 min.

(1) Specific volume of compressed water at 532 degrees and 2250 psia.

(2) Specific volume of saturated water at 2250 psia.

(3) Water density et 70 degrees.

9 6

3-3

I Table 3-1 Key Plant Parameters and Conditions Assumed in Generating the Feed-and-Bleed Curves 3

a. Reactor Coolant system volume '= 9,260 ft ,
b. Reactor Coolant system pressure = 2250 psia.
c. Reactor coolant s'ystem average temperature = 532 degrees, 3
d. Pressurizer level = 460 ft .
e. Pressurizer is saturated.
f. Zero reactor coolant system Technical Specification 'aakage,
g. Boric acid storage tank temperature = 70 degrees.
h. Complete and instantaneous mixing between the pressurizer and the reactor coolant system.
i. Constant pressurizer level maintained during the feed-and-bleed process.

l

j. Letdown flowrate from one charging pump = 40 gpm.
k. Letdown flowrate from two charging pumps = 84 gpm.

I i

r I

3-4

e- .

(

Several of the concentration results shown in Table 3-2 through Table 3-5 are plotted in Figure 3-1 and Figure 3-2 for comparison. Note that significant feed-and-bleed rates will be achievable following the

. reduction in boric acid storage tank concentration levels.

3.4 BLENDE0 MAKEUP OPERATIONS Ouring typical plant blending operations, concentrated boric acid via CH-0210Y is mixed with demineralized water via CH-0210X at the blending tee and then added to the volume control tank. Since the ability to blend and add makeup to the reactor coolant system and to other systems is important to plant operations, three different parametric studies were performed in order to demonstrate the effect of a reduction in boric acid storage tank concentration. The studies performed were as follows:

1. Flow through CH-0210Y is varied between 0.5 gpm and 15.0 gpm while the flow through CH-0210X is varied to give a total flow out of the blending tee of 44 gallons per minute.
2. Flow through CH-0210Y is varied between 0.5 gpm and 15.0 gpm while the flow through CH-0210X is varied to give a total flow out of the blending tee of 88 gallons per minute.
3. Flow through CH-0210Y is varied between 0.5 gpm and 15.0 gpm while the flow through CH-0210X is varied to give a total flow out of the blending tee of 132 gallons per minute.

3-4

(

In each of the three studies, the temperature of the boric acid storage tank and the temperature of the demineralized water supply was assumed to be 70 degrees. The results are shown in Table 3-6 through Table 3-8.

The final concentration out of the blending tee in each of these tables was obtained using the following equation:

out = Y' 7) (100) (1748.34).

(Fy . C ) + (Fout

  • O w I In this equation, C out is the concentration coming out of the blending tee in ppm boron, F is the flowrate coming out of CH-0210Y in gallons per minute, C y is t e concentration of the boric acid storage tanks in ibm per gallon, F out is the total flow coming out of the blending tee in gallons per minute, D,is the density of water at 70 degrees in ibm per gallon, and 1748.34 is the conversion factor between concentration expressed in terms of weight percent boric acid and concentration expressed in te!ms of ppm boron. (See Appendix 4 for a derivation of this conversion factor). The data contained in Tables 3-6, 3-7, and 3-8 is plotted in Figure 3-3, through Hgure 3-5. Note that following the reduction in BAST concentration, a full range of flewrates and boron concentrations are available for blended makeup operations.

3.5 SHUTOOWN TO REFUELING - MODES 6 The plant shutdom to the refueling is typically the most limiting evolution that an operator must perform with respect to system boration, i.e., this evolution normally requires the maximum amount of boron to be added to the reactor coolant system. A shutdown to refueling normally occurs at,the end of core cycle when the critical baron concentration is low and requires an increase to the refueling boron concentration. In '

the most lin.iting case, boron concentration must be raised from zero ppm to the present refueling concentration of 1720 ppm.

i 3-5 m

1 This section presents the evaluation results of a plant shutdown to

. refueling. The evaluation was perfonned specifically to demonstrate the effect on makeup inventory requirements of a reduction in boric acid storage tank concentration. A list of key parameters and conditions assumed in the analysis is contained in Tab'e 3-9. The evaluation was performed for end-of-cycle conditions in order to maximize the amount of boron that must be added to the reactor coolant system. As a result, the boron concentration within the RCS was required to be increased from zero ppm to the present refueling concentration of 1720 ppm. The shutdown for refueling was assumed to take place as follows:

1. The reactor is shutdown via rod insertion to hot zero power conditions.
2. Following shutdown, at time zero, operators commence a system feed-and-oleed using three charging pumps and the boric acid storage tanks. (BAST concentration is assumed to be 3.0 weight percent boric acid).
3. The feed-and-bleed is conducted for seventy-five (75) minutes, after which time it is secured.
4. A plant cooldown and depressurization is comenced at seventy-five minutes from an average coolant temperature and system pressure of 532 degrees and 2250 psia to an average coolant temperature and system pressure of 300 degrees and 265 psia. An overall cooldown rate of approximately 80 degrees per hour is assumed when greater than 300'F. Makeup inventory is supplied from the boric acid storage tanks.
5. The shutdown cooling system is placed in operation at 300 degrees and 265 psia. (Priot to initiation, the concentration within the SDCS is assumed to be equal to the concentration in the reactor coolant system).

3-6 w

F .

(

6. The plant cooldown is continued following shutdown cooling initiation from 300 degrees to 130 degrees at 265 psia. An overall plant cooldown rate of approximately 30 degrees per hour is assumed between 300*F and 200'F. A cooldown rate of 20 degrees per hour is assumed below 200*F. Makeup inventory is supplied from the boric acid storage tanks.

Evaluation results stowing the system concentration as a function of time and total boric acid storage tank inventory requirements are contained in Table 3-10. Loop average temperature and system boron concentration data from this table is plotted in Figure 3-6. Concentration during the initial seventy-five minute feed-and-bleed operation was calculated using the methodology discussed in Section 3.3 above. Concentration during the subsequent plant cooldown was calculated in the same manner as the concentrations for the plant cooldowns in Sectien 2.4. Note that the boron content of the RCS was raised from zero ppm at the start of the evaluation to 1780 ppm by the time the plant had been cooled and depressurized to 130 degrees and 265 psia. A total volume of 27,214.4 gallons of a 3.0 W ight percent boric acid sclution was required. Of this volume, 9,600 gallons were used during the initial seventy-five minute plant feed-and-bleed operation, and 17,614.4 gallons were charged into the systen to compensate for shrinkage during the cooldown process.

As can be seen from the results in Table 3-10, the volume of a 3.0 weight percent boric acid solution that is required in order to perfonn the shutdown to refueling is approximately 5.2 times +he capacity of one boric acid storage tank. Note that this result is conservative or bounding, and therefore, represents the maximum volume that would be required to be available assuming a refueling concentration of 1720 ppm bor.n and a boric acid storage tank concentration of 3.0 weight percent boric acid. Since there are only two boric acid storage tanks in the 3-7 m,

v

= .

.(

plant, with a ccmbined capacity of approximately 10,520 gallons, additional provisions or operator actions are required in order to place the plant in Mode 6. These provisions could include some combination of the following:

1. The initial plant feed-and-bleed and some portion of the plant cooldown could be performed using the refueling water storage tank.

This would decrease the amount of inventory needed from the boric acid storage tanks.

2. Prior to conducting the evolution, both boric acid storage tanks are full and available for use.
3. Increase boric acid storage tank concentration up to a maximum of 3.5 weight percent boric acid.
4. During the initial part of the evolution, charge f/om one boric acid storage tank until depleted, then transfer to the second BAST.

Concurrent with continued cooldown, replenish inventory in the first tank.

These provisions, er operator actions, would need to be considered only once during core cycle, just prior to conducting a shutdown for refueling. Note that they are relatively simple actions that should be well within the current plant operating precedures. In addition, they can be planned for in advance so as to hive no impact on maintenance activities or the plant refueling schedule.

3-8 fl

7- .

(

3.6 SHUTOOWN TO COLD SHUTDOWN - MODE 5 As discussed in the previous Section, the shutdown to reft eling is the most limiting evolution that an operator must perform witi respect to system boration. This evolution is normally performed onie during a fuel cycle just prior to refueling. Situations (such as unscheduled plant maintenance, etc.) can occur during a fuel cycle, however, and require that an operator perform a plant shutdown to cold shutdown conditions.

Although not limiting with respect to boration requirements, it is important for an operator to be able to perform such a shutdown quickly and efficicntly.

This section presents the evaluation results of a plant shute:', to cold shutdown. The analysis was performed specifically to demotstrate the effect on makeup inventory requirements of a reduction in boric acid storage tank concentration. A list of key parameters and conditions assumed in the analysis is contained in Table 3-11. In addition to the parameters in Table 3-11, the evaluation was performed for end-of-cycle l

conditions assuming a cold shutdown concentration of 800 ppm boron. As a result, boron concentration had to be increased from zero ppm to 800 ppm boren. The operator scenario employed in the shutdown to cold shutdown is as follows:

i

1. The reactor is shutdown to hot zero power conditions via roo insertion.
2. A plant cooldown and depressurization is immediately commenced from an average coolant tempe-ature and system pressure of 532 degrees and 2250 psia to an average coolant temperature and system pressure of 300 degrees and 265 psia. An overall cooldown rate of approximately 80 degrees per hour is assumed. Makeup inventory is supplied from the boric acid storage tanks.

1 I

3-9 i 5 .

b

.3. The shutdown cooling system is placed in operation at 300 degrees and 265 psia.

4. The plant cooldewn is continued following shutdown cooling initiation from 300 degrees t',, 130 degrees at 265 psia. An overall plant cooldown rate of ap9roximately 20 degrees per hour is assumed.

Makeup inventory is supplied from the boric acid storage tanks.

Evaluation results showing the system concentration as a function of time and total boric acid storage tank inventory requirements are contained in o

Table 3-12andinTable3-13. Note that two cases w ee analyzed for comparison. In Case I the concentration within the shutdown cooling system was assumed to be equal to the concentration of the reactor coolant system at the time of shutdown cooling initiation. In Case II the conceatration within the shutdown cooling system was assumed to be equal to the concentration of the refueling water storage tank at the ,

time of shutdown cooling initiation. System boron concentration data from these two tables are plotted in Figure 3-7 and in Figure 3-8.

Concentration during the plant cooldown was calculated using the F.ethodology discussed in Section 2.4. During those portions of the plant cooldown in which blended makeup was used, data was calculated using the methodology contained in Section 3.4.

A total volume of 11,763.6 gal' ions of a 3.0 weight percent boric acid solution was required in order t, perform the shutdown to cold shutdown for the case in which the corcentration of the fluid within the shutdown cooling system was assumed to be equal to that of the reactor coolant system at the time of shutdown cooling initiation. In the case where the concentration within the shutdown cooling system was assumed to equal that of the refueling water storage tank at the time of shutdown cooling initiation, a total volume of 8198.2 gallons was required. Note that ,

approximately 3565.4 gallons less boric acid storage tank inventory was t

3-10 m .-

e

(

required to be used in Case II. Since the plant operating procedures require that the shutdown cooling system be operated via recirculation

. with the refueling water storage pool prior to initiation, the concentration within that system will normally be very near that of the RWST any time that the shutdown cooling system is placed in operation.

Provisions or action that could be performed, if desired, in ord'.r to reduce the inventory required to be taken from the boric acid storage tanks during a shutdown to cold shutdown could include some conbination of the following: s

1. Prior to commencing the cooldown and depressurization to cold shutdown, increase system concentration via a feed-and-bleed using the refueling water storage tank as the boration source.
2. Maintai: 1ormal boric acid storage tank concentration levels at greater than 3.0 weight percent boric acid, up to a maximum of 3.5 weight percent bori'c acid.

3-11

C

(

Table 3-1 Key Plant Parameters and Conditions Assumed in Generating the Feed-and-Bleed Curves

a. Reactor Coolant system volume = 9,260 ft .
b. Reactor Coolant system pressure = 2250 psia.
c. Reactor coolant system average temperature = SR degrees.

3

d. Pressurizer level = 460 ft ,
e. Pressurizer is saturated.
f. Zero reactor coolant system Technical Specification leakage.
g. Boric acid storage tank temperature = 70 degrees,
h. Complete and instantaneous mixing'between the pressurizer and the reactor coolant system.
1. Constant pressurizer level maintained during the feed-and-bleed process.
j. Flowrate from one charging pump = 'O gpm.
k. Flowrate from two charging pumps = 84 gpm.

3-12

_O

Table 3-2 Feed-and-Bleed Using One Charging Pump from an Initial RCS Concentration _of 0 ppm Boron RCS Boron Concentration (ppm baron) ,

BAST at BAST at BAST at BAST at BAST at BAST at Time (ain) 0.98 wt % 2.50 wt % 2.75 wt % 3.00 wt % 3.25 wt % 3.50 wt %

10 12.4 31.5 34.6 37.7 40.9 44.0 20 24.7 62.7 69.0 75.2 81.5 87.8 Y 30 36.9 93.7 103.1 112.4 121.8 131.2 C

40 49.0 124.5 136.9 149.4 161.8 174.3 50 61.0 155.0 170.6 186.1 201.6 217.1-60 73.0 185.4 204.0 222.5 241.0 259.5 70 84.8 215.5 237.1 25o.6 280.2 301.7 80 96.6 245.4 270.0 294.5 319.0 343.6 90 108.3 275.1 302.6 330.1 357.6 385.1 100 119.9 304.6 335.1 365.5 3%.0 426.4 110 131.4 333.9 367.2 400.6 434.0 467.4 120 142.8 362.9 399.2 435.5 471.8 508.1

.1 M .

i Table 3-3 Feed-and-Bleed Using Two Charging Pumps from an Initial RCS Concentration of 0 ppm Boron, RCS Boron Concentration (ppm boron)

BAST at BAST at BAST at BAST at BAST at BAST at Time (min) 0.98 wt % 2.50 wt % 2.75 wt i 3.00 wt % 3.25 wt % 3.50 wt %

10 25.9 65.8 72.4 79.0 85.5 92.1 20 51.4 130.6 143.7 156.7 169.8 182.8 w 30 76.5 194.5 213.9 233.3 252.8 272.2 l-.

40 101.3 257.3 283.1 308.8 334.5 360.2 50 125.6 319.3 351.2 383.1 415.0 446.9 60 149.6 380.3 418.3 456.3 494.3 532.3 70 173.3 440.3 484.4 528.4 572.4 616.4 80 1 96.6 499.5 549.4 599.4 649.3 699.3 90 219.5 557.8 613.6 699.3 725.1 780.9 100 242.1 615.2 676.7 738.2 799.7 861.2 110 264.3 671.7 738.9 806.1 873.2 940.4 120 286.2 727.4 800.1 872.9 945.6 1018.3

Table 3-4 Feed-and-Bleed Using One Charging Pump from an Initial RCS Concentration of 800 ppm Boron RCS Boron Concentration (ppm boron) .

BAST at BAST at BAST at BAST at BAST at BAST.at Time (min) 0.98 wt % 2.50 wt % 2.75 wt % 3.00 wt % 3.25 wt % 3.50 wt %

10 806.6 825.7 828.8 831.9 835.1 838.2 20 813.2 851.2 857.5 863.7 870.0 876.3 30 819.7 876.5 885.9 895.2 904.6 914.0 9,

40 826.2 901.7 914.1 926.6 939.0 951.5 50 832.6 926.6 942.2 957.7 973.2 988.7 60 839.1 951.5 970.1 988.6 1007.1 1025.6 70 845.3 976.0 997.6 1019.1 1040.7 1062.2 80 851.7 1000.5 1025.1 1049.6 1074.1 1098.7 90 857.9 1024.7 1052.2 1079.7 1107.2 1134.7 100 864.1 1048.8 1079.3 1109.7 1140.2 1170.6 110 870.3 1072.8 1106.1 1139.5 1172.9 1241.7 120 876.4 1096.5 1132.8 1169.1 1205.4 1241.9

.l

5^ c..

Table 3-5 Feed-and-Bleed Using Two Charging Pumps from an Initial RCS Concentration of 800 ppm Boron RCS Boron Concentration -(ppn boron) _

BAST at BAST at BAST at BAST at BAST at BAST at Time (min) 0.98 wt % 2.50 wt % 2.75 wt % 3.00 wt % 3.25 wt % 3.50 wt %

10 813.8 853.7 860.3 866.9 873.4 880.0 20 827.5 906.7 919.8 932.8 945.9 953.9 30 840.9 958.9 978.3 997.7 1017.2 1036.6 u, 40 854.2 1010.2 1036.0 1061.7 1087.4 1113.1 50 867.2 1060.9 1092.8 1124.7 1156.6 1188.5 60 880.0 1110.7 1148.7 1186.7 1224.7 1262.7 70 892.7 1159.7 1203.8 1247.8 1291.8 1335.8 80 905.2 1208.1 1258.0 1308.0 1357.9 1407.9 90 917.4 1255.7 1311.5 1367.2 1423.0 1478.8 100 929.5 1302.6 1364.1 1425.6 1487.1 1548.6 110 941.4 1348.8 1416.0 1483.2 1550.3 1617.5 120 953.1 1394.3 1467.0 1539.8 1612.5 1685.2

, .c Table 3-6 Typical Blended Makeup Operations at 44 gpm out of Blending Tee Concentration Out of Tee (ppm boron)

Flow (gpm) BAMT at BAMT at BAMT at BAMT at BAMT at CH-0210Y CH-0210X 2.50 wt % 2.75 wt % 3.00 wt % 3.25 wt % 3.50 wt %

0.5 43.5 50.9 56.2 61.4 66.7 72.0 1.0 43.0 101.8 112.3 122.8 133.4 144.0 1.5 42.5 152.7 168.4 184.1 200.0 215.9 2.0 42.0 203.5 224.4 245.4 266.6, 287.8 w 3.0 41.0 305.1 336.4 367.9 399.5 431.3 4.0 40.0 406.6 448.3 490.2 532.3 574.6 5.0 39.0 507.9 560.0 612.3 664.9 717.6 6.0 38.0 609.2 671.6 734.3 797.2 860.4 7.0 37.0 710.3 783.0 856.0 929.4 1003.0 8.0 36.0 811.3 894.3 977.6 1061.3 1145.4 9.0 35.0 912.2 1005.4 1099.1 1193.1 1287.5 10.0 34.0 1012.9 1116.4 1220.3 1324.7 1429.4 15.0 29.0 1515.0 1669.3 1824.2 1979.5 2135.4

3.

Table 3-7 Typical Blended Makeup Operations at 88 gpm out of Blending Tee Concentration Out of Tee (ppm boron)

BAMT at BAMT at BAMT at BAMT at 8AMT at .

Flow (gpm) 2.75 wt % 3.00 wt % 3.25 wt % 3.50 wt %

CH-0210Y CH-0210X 2.59 wt %

87.5 25.5 28.1 30.7 33.4 36.0 0.5 50.9 56.2 61.4 66.7 72.0 1.0 87.0 76.4 84.2 92.1 100.1 108.0 1.5 86.5 101.8 112.3 122.8 133.4 144.0 2.0 86.0 152.7 168.4 184.1 200.0 215.9 y 3.0 85.0 5; 245.4 266.6 287.8 4.0 84.0 203.5 224.4 254.3 280.4 306.7 333.1 359.6 5.0 83.0 305.1 336.4 367.9 399.5 431.3 6.0 82.0 355.9 392.4 429.1 465.9 503.0 7.0 81.0 406.6 448.3 490.2 532.3 574.6 8.0 80.0 457.3 504.2 551.3 598.6 646.1 9.0 79.0 507.9 560.0 612.3 664.9 717.6 10.0 78.0 760.8 838.7 916.9 995.4 1074.2 15.0 73.0

~

m Table 3-8 Typical Blended Makeup Operations at

-132 gpm out of Blending Tee Concentration Out of Tee (ppm boron)

Flow (gpm) BAMT at BAMT at BAMT at BAMT at BAMT at CH-0210Y CH-0210X 2.50 wt % 2.75 wt % 3.00 wt % 3.25 wt % 3.50 wt %

0.5 131.5 17.0 18.7 20.5 22.2 24.0 1.0 131.0 34.0 37.4 41.0 44.5 48.0 2.0 130.0 67.9 74.9 81.9 88.9 96.0 3.0 129.0 101.8 112.3 122.8 133.4 144.0 4.0 128.0 135.7 149.7 163.7 177.8 191.9 U 5.0 127.0 169.6 187.1 204.6 222.2 239.9 6.0 126.0 203.5 224.4 245.4 266.6 287.8 7.0 125.0 237.4 261.8 286.3 310.9 335.6 8.0 124.0 271.3 299.1 327.1 355.2 383.5 9.0 123.0 305.1 336.4 367.9 399.5 431.3 10.0 122.0 339.0 373.7 408.6 443.8 479.1 15.0 117.0 507.9 560.0 612.3 664.9 717.6

5 3- .

[. .- ..

.892(82J10)EM/91 l!'

~(

Table 3-9 Key Plant Parameters and Conditions Assumed in the Shutdown to Refueling Evaluation

a. Reactor coolant systen volume = 9,260 ft3 ,
b. Initial RCS average loop temperature = 532 degrees,
c. Pressurizer level = 460 ft 3,

. d., Pressurizer is-saturated.

e. Zero reactor coolant system leakage.
f. Boric acid storage tank tenperature = 70 degrees.
g. Complete and instantaneous mixing between the pressurizer and the reactor coolant system,
h. Constant pressurizer level maintained during the feed-and-bleed

. process and during the plant cooldown.

i. Initial RCS concen.tration = 0 ppm boron.
j. BAST concentration = 3.00 weight percent boric acid.
k. RWST conceedration = 1720 ppm boron.

3

1. Shutdown cooling system volume = 3000 ft ,
m. Boron concentration in the shutdown cooling system is equal to the boron concentration in the RCS at the time of shutdown cooling initiation,
n. Refueling concentration, Mode 6 = 1720 ppm.

3-20 u

(

T5ble3-10 Evaluation Results for Plant Shutdown to Refueling Time II) Temp Pressure Concentration Total BAST (degrees) (psia) (ppm boron) Volume (gal)

(br) 532 2250 178.7 1,920 0.25 2250 351.4 3,840 0.50 532 532 2250 518.1 5,760 0.75 532 2250 679.2 7,680 1.00 1.25 I*) 2250 834.8 9,600 532 500 2250 992.3 11,599.3 1.65 450 2250 1188.1 14,300.6 2.275 400 2250 1343.2 16,633.0 2.9 350 2250 1471.2 18,701.4 3.525 300 265 1526.8 20,922.0 4.15 (#)

300 265 1526.8 20,922.0 5.15 265 1620.2 23,157.5 6.82 250 265 1698.2 25,086.2 8.48 200 265 1759.3 26,659.0 10.98 150 11.98 130 265 1780.4 27.214.4

  • Initial 75 minute feed-and-bleed complete.
  1. Cooldown stopped for one hour for shJtdown cooling system alignment. .

II) Assumes 80 degree per hour cooldown rate above 300*F, 30 degrees per hour when betweeng200'F and 20 degrees per hour when below 200*F.

j wN O 3-21

( ,

i

(

Table 3-11 Key Plant Parameters and Conditions Assumed in the Shutdown to Cold shutdown Evaluation 3

a. Reactor coolant system volume = 9,260 ft ,
b. Initial RCS average loop temperature = 532 degrees.
c. Pressurizer level = 460 ft3 (0% power level).
d. Pressurizer is saturated.
e. Zero reactor coolant systen leakage,
f. Boric acid storage tank temperature = 70 degrees.
g. Demineralized water supply temperature = 70 degrees.
h. Complete and instantaneous mixing between the pressurizer and the reactor coolant system.
i. Constant pressurizer level maintained during the plant ccaldown.

J. Initial RCS concentration = 0 ppm boron.

k. BAST concentration = 3.00 weight percent boric acid.
1. RWSP concentration = 1720 ppm boron, m Shutdown cooling system volume = 3000 ft . '
n. Boron concentration in the shutdown cooling system is equal to the boron concentration in the RCS at the time of shutdown cooling initiation for Case I.
o. Boron concentration in the shutdown cooling system is equal to the boron concentration in the RWST at the time of shutdown cooling initiation for Case II.

3-22

a f_

. h.

Table 3-12 Case !

Evaluation Results.for Plant Shutdown to Cold Shutdown I

with SDCS Concentration Equal to RCS Concentration at the Time of Shutdown Cooling Initiation Time Temp Blending Pressure Concentration Total BAST (hr) (denrees F) Ratio (*) (psia) (ppm boron) Volume (gal) 0 532 -- 2250 0 0 0.4 500 -- 2250 188.2 1,999.3 1.025 450 -- 2250 422.1 4,700.6 1.65 400 -- 2250 607.2 7,033.0 2.275 350 -- 2250 759.9 9,101.4 2.9 ~I#) 300 0.61:1 265 800.0 10,827.2 3.9 300 -- 265 800.0 10,827.2 5.57 250 5.72:1 265 800.0 11,159.9 7.24 200 5.72:1 265 800.0 11,446.9 9.74 150 5.72:1 265 800.0 11,681.0 10.74 130 5.55:1 350 800.0 11,763.6

  • Ratio of pure water to BAST water at blending tee.

f Cooldown stopped for one hour for shutdown cooling system alignment.

3-23 13.

(

. Table 3-13 Case II

~

Evaluation Results for Plant Shutdown to Cold Shutdown with SOCS Concentration Equal to RWST Concentration

-at the Time of Shutdown Cooling Initiation Time Temp Blending Pressure Concentration Total BAST (hr) (degrees F) Ratio (*) (psia) (ppm boron) Volume (gal) 0.0 532 -- 2250 0 0 0.4 500 -- 2250 188.2 1,999.3 1.025 450 -- 2250 422.1 4,700.6 1.65 400 1.04:1 2250 505.0 5,845.8 2.275 350 5.72:1 2250 514.6 6,153.6 2.9(#) 300 5.72:1 265 513.1 7,261.8 3.9 300 -- 265 800(1) 7,621.8 5.57 250 5.72:1 265 800 7,594.5 6-7.24 200 5.72:1 265 800 7,881.5 9.74 150 5.72:1 265 800 8,115.6 10.74 130 5.72:1 265 800 8,198.2

  • Ratio of pure water to BAST water at blending tee.
  1. Cooldown stopped for one hour for shutdown cooling system alignment.

1.After shutdown cooling system is aligned and circulated.

l 3-24

FIGURE 3-1 FEED-AND-BLEED FROM HOT ZERO POWER F'.<0W 0 PPW BORON 1.1 ,

1- ,

0.9 -

m a

0.8 -

f 0.7 -

[

<a s =,

L zc 0.6 -

  • O8 b

. 0.5 -

g5 -

Zv U 0.4 -

Z X O x 0.3 -

  • 0.2 - ,/ 2

./

0.1 -

0, 0

/, .

to 20 W.~30 40 50 60 70 80 90 100 116 120 TlWE (minutes) A 84-3.5

+ 40-4.0 0 84-3.0 D 40-1720 GPM WEIGHT % GPM . WEIGHT %

PPM GIN WEIGHT %

GIN l

~

.o .

FIGURE 3-2 FEED-AND-BLEED FROM HOT .

IERO POWER FROM 800 PPM BORON --

1.7 g

', t 1.5 -

z 1.5 -

1.4 -

,8 E /

S zE b

~

/

l /

b h$

Zv

'- ~

/ / ~

z 1.1 - .. #

o u

g 1-0.9 - p. _

~

~

C U g c C 0.8 .. i i i i i i i 1 i i 30 40 50 50 70 80 90 100 110 120 0 10 20 TIME (minutes) a 84-3.5 D 40-1720 + 40-4.0 0 84-3.0 GPM PPM GPM WEIGHT % GPM WEIGHT % GPM WEIGHT %

FIGURE 3 3 BLENDED MAKEUP OPERATIONS -

AT 44 GPM OUT OF BLENDING TEE

  • 5 1.4 -

l 1.3 -

1.2 -

n E 1.1 -

n.

O 1-

$^ O.9 -

ot 5 z@ 0.8 -

" oa p3 0.7 -

<2

%!, 0.6 -

z y O.5 -

z o 0.4 -

U O.3 -

O.2 -

0.1 - ,

O: . , , , , , , , , , ,

O 2 4 6 8 1d FLOW AT CH-0210Y(gpm) o BAST AT 2.5 + BAST AT 3.0 o BAST AT 3.5 WEIGHT % WEIGHT % WEIGHT %

c FIGURE 3 4 BLENDED MAKEUP OPERATIONS .

AT 88 GPM OUT OF BLENDING TEE 800 - -

f 700 -

l

) y 600 - l 4 a l v

) s 500 -

-)

w 0 4

z o 400 -

P et ~

z 300 -

w a

Z O 200 -

100 -

O: . , , , , , , i O 2 4 6 8 1 0' .

l FLOW AT CH-0210Y(gpm)

O BAST AT 2.5 + BAST AT 3.0 o BAST AT 3.5 ~

WEIGHT % WEIGi!T %

WEIGHT %

i

FIGURE 3 5 BLENDED MAKEUP OPERATIONS .

AT 132 GPM OUT OF BLENDING TEE 500 i,*

'~

400 -

n E

v I

$ 300 -

y

= z 9

E -

f 200 -

5 o

z O

U 100 -

O :. , , , , , , , , , i O 2 4 6 8 1 0' FLOW AT CH-0210Y(gpm)

D BAST AT 2.5 + BAST AT 3.0 o BAST AT 3.5 WEIGHT % WEIGHT % WEIGHT %

s

r FIGURE 3-6 RCS BORON CONCENTRATION .

vs TEMPERATURE FOR REFUEUNG SHUTDOWN 1.s p 1.7 h

  • 1.6 -1 ,, '. Y z

1'5 -

1.4 - /

7' 1.3 - ,

1.2 -'

1.1 - ,

[

y "3 g_. [

0.9 -j

[

I* 0.s -i ,

H6 3 l

6" u 0.7 -l tj l

z 0.s -  ;

O o 0.5 - U O O.4 -- .

E II 0.3 --

0.2 - g3 .

0.1 -

0 S i i i i i i i 8 -

450 350 2M IN ,

550 TEMPERATURE (F)

(

e

FIGURE 3-7 RCS CONCENTRATION vs TEMP FOR COLD SHUTDOWN (CASE 1) -

i 900 -

i

-B - ~-- - M g/, M- -C --

800 - s. .

j

/

^ /

z 700 - /

O a: ,

O ,/

{ 600 - @

E /

k /

[ 500 - ,

e O /

P fz 400 -

/

U [

z 300 - /

o /

o /

M o 200 -

a:

100 -

0 i i i i

- i i i i 550 450 350 250 150' TEMPERATURE (F)

)

FIGURE 3-8 RCS . CONCENTRATION vs TEMP roR COLD SHUTDOWN (CASE 2) no I .

800 - f C U -

U U O

E O

i E

600 -

4 E

. n

-= u j g

,,o _ ,m

~

g /

sp .- F

/

6 /

! U /

z 300 - .-

O /

U i M /

U 200 - d i E

/

soo- '

O -

i i i i i i i 550 450 350 250 150 '

TEMPERATURE (F)

--- -.__.,______-______.-____w

h'

(

-1

4.0 REFERENCES

4.1 Technical Data Sheet 10-11, US Borax & Chemical Corporation, 3-83-J.W.

4.2 Combustion Engineering's Emergency Procedure Guidelines, CEN-152, Revision 2. May, 1984.

4.3 An Evaluation on the Natural Circulation Cooldown Tert Performed at the San Onofre Nuclear Generating Station, compliance with the Testing Requirements of Branch Technical Position RSB 5-1, CEN-259, Combustion Engineering, January 1984.

4.4 Combustion Engineering letter MP2-CE-3366 dated June 23, 1975.

4.5 U.S. Nuclear Regulatory Commission Standard Review Plan NUREG-0800 Section 5.4.7. "Residual Heat Removal (RHR) System" and Branch Technical Position (RSB) 5-1 "Design Requirements of the Residual Heat Removal System".

I I

4 4-1

t Appendix 1 Derivation of the Reactor Coolant System Feed-and-Bleed Equation Purpose of Definitions This appendix presents the detailed derivation of an equation which can be used to compute the reactor coolant system (RCS) boron concentration change during a feed-and-bleed operation. For this derivation, the following definitions were used:

m = mass flowrate into the RCS in m = mass flowrate out of the RCS out m = boron mass flowrate b

"w = water mass flowrate mg = boren mass my = water mass C = boron concentration going into RCS in C = boron concentration going out of RCS out C, = initial boron concentration C(t) = boron concentration as a function of time C = RCS boron concentration RCS Simplifying Assumptions During a feed-and-bleed operation, the reactor coolant system can be pictured as shown in the figure '

= as a closed container having a certain volume, a c

"in o

"" certain mass, and an initial boron concentration.

~ Coolant is added at one end via the charging pumps.

3 RCS The rate of addition is dependent on the number of charging pumps that are running with the 1 of 5

^

.. c

(

concentration being detemined by the operator. Coolant is removed at the other end via letdown at a rate that is approximately eoual.to the charging rate and at a concentration detemined by fluid mixing within the reactor coolant system. The mass flowrate into the reactor coolant system is given by the folicwing equation:

M in

  • I*b + b ) in' i

For typical boron concentrations within the chemical and volume control I system, m y is very much greater than mb . (For example, a 3.5 weight percent boric acid solution contains only 0.04 lbm of boric acid per Ibn ofwater). Therefore the above equation can be simplified to the following:

(1.0)

, (m w) in g in In a similar manner, the mass flowrate coming cut of the reactor coolant system, given by

  • out = I b + # w}out' can be simplified by again realizing that m, is very much greater thar mb or (2.0) 6 out = I* w) out.

For a feed-and-bleed operation with a constant pressurizer level and a constant system temperature, the mass flowrate into the RCS will be equal to the mass flowrate out of the 3CS, or

.0)

  • in = bout = I* w)in = I* w) out. ,

2 of 5 1 ..

m .

.- . ):

o

(-

Finally, if it is assumed that the boron which is added to the reactor coolant system mixes completely and instantly with the entire RCS mass.

the concentration of the fluid comin'g out of the system will be equal to the system concentration, or (4.0)

Cout = CRCS.

Derivation The rate of change of boron mass within the reactor coolant system is equal to the mass of boron being charged into the system minus the mass of boron leaving via letdown. In equation form, this becomes d(mb ) RCS = i# 0n in' *out out' C

dt From Equation 3.0, d(mb )RCS = *in (C9 g Couk"I*w)in(Cin' Cout). (5.0) dt The concentration of boron in the reactor coolant system, i.e.. the weight fraction of boron, is defined as follows:

C b RCS =

  • b + "w RCS Since m, m' b

l C b RCS =

"w RCS 3 of 5

n "..

4

-(

Where (m ,) RCS is a constant for a constant system temperature. The rate of change of the RCS concentration is therefore d(m)RCS b

dC dt RCS = . (6.0) dt (mwdCS Substituting Equation 5.0 into Equation 6.0 yields the following:'

dcR CS = (*w)in (Cin - Cout) ,

dt (m,)RCS and from Equation 4.0, dCRCS = (*w)in (Cin - CRCS) . (7.0) dt (m ,) RCS Solving Equation 7.0 for concentration yields:

dC RCS , (*w)in dt' Cin - CRCS (*w IRCS or C(t) t

^ dC RCS I w)in dt .

) C in' RCS (*wI RCS 8

o C,

Integrating from some initial concentration C, to some final concentration C(t) and multiplying through by a minus one gives the following: ,

C(t) in(CRCS - CIN) = - (*w)in t.

I RCS C,

or 4 of 5

r.

.. g ..

4

- {.

In C(t) -C in = I*d in t.

C, - C in (*wI RCS Continuing to solve for C(t), this equation becomes:

C(t) - Cin = e "I*w)in tl I*w)RCS ,

C, - Cin or C(t) = C in + (C,- Cin) *

  • (*

If we define the time constant t to be as follows:

T = (*w) RCS ,

($,)in then Equation 8.0 becomes C(t) = C, e- t/T + C g (1 - e -t/T) . (9.0) i l

1 l

. 5 of 5

i Appendix 2 A Proof that Final System Concentration is Independent of System Volume Purpose of Definitions This appendix presents a detailed proof that during a plant cooldown where an operator is charging only as necessary to makeup for coolant contraction, the final system concentration that results using a given boration source concentration will be independent of the total system volume. For this proof, the following definitions were used:

C 4

= initial boron concentration Plant 1 m

bi = initial boron mass Plant 1 mg = initial water mass Plant I c

f

= final boron concentration Plant 1 ,

c, = boren concentration of makeup solution Plant 1 n = mass of boren added Plant 1 ba m

wa

= mass of water added Plant 1 m

bf = final boron mass Plant 1 C, = initial boron concentration Plant 2 Mbi = initial boron mass Plant 2 Mg = initial water mass Plant 2 C

f

= final boron concentration Plant 2 C,

= boron concentration of makeup solution Plant 2 M = mass of boron added Plant 2 ba Mg = mass of water added Plant 2 Proof For this proof, consider two plants at the same initial temperature, the

same initial pressure, and the same initial boron concentration. One plant, Plant 2, has exactly twice the system volume as the other plant, 1 of 4
  1. 4

(

Plant 1. Initially, boron concentration Plant 1 = boron concentration Plant 2, or M

c4 = C4=

  • bi = bi . (1.0)

M

  • bi*
  • wi Mbi + wi Since the volume of Plant 2 is twice that of Plant 1. M,4 = 2m,g.

Substituting this relationship into Equation 1.0 and solving yields the following:

"bi bi '

  • bi * *wi "bi
  • A*w i
  • bi bi
  • 2*bi"wi " *bi bi * "wi"bi '

and Mbi

  • 2*bi . (2.0)

Therefore, the initial boron mass in Plant 2 is exactly twice the initial boron mass in Plant 1.

During the cooldown process for Plant 1, the final boron mass in the system will equal the initial boron mass plus the added boron mass, or m

bf * *bi *

  • ba . (3.0)

If, during this cooldown process, operators charge only as necessary to makeup for coolant contraction, water and boron will be added only as space is made available in the system due to coolant shrinkage. The final boron concentration from Equation 3.0 can therefore be expressed as follows:

,,,.m,,.m,.mj 2 of 4 e

W ,

i If concentration is expressed in terms of weight percent, this last equation becomes (4.0)

"bf " *bi * *ba + Nwi + "wa c. f Similarly, the remaining two components of Equation 3.0 become C (5.0)

Mbi " *bi * "wi i and _ ,

(6.0) m ba ' L*ba * *wac, Substituting Equations 4.0, 5.0, and 6.0 into Equation 3.0 and solving for the final concentration yields the following:

c C

f= *bi + "wi Ci+ "ba * "wa a (7.0)

  • bi * *ba *
  • wi+ "wa For Plant 2. Equation 7.0 becomes f= _ bi + wi. i* ba + Mwa C

a (8.0)

Mbi

  • Mba
  • Mwi
  • Mwa During a cooldown, the shrinkage mass, i.e., the mass of fluid that must be added to the system in order to keep pressurizer level constant, is calculated by dividing the system volume by the char.ge in specific volume, or m,, , System Volume Plant 1 (9.0)

W 5pecific volume

/ and '

M,, , System Volume Plant 2 , (10.0)

W 5pecific volume where System Volume Plant 1 = (1/2) System Volume Plant 2.

3 of 4

~

(

For a given cooldown, dividing Equation 9.0 by Equation 10.0 givss the following: -

M = 2m,, (11.0) wa In addition, if the charging source for both plants is at the same concentration and temperature, C, = c, , (12.0) and (13.0)

Mba " 2*ba .

Substituting Equations 2.0, 11.0, 12,0, and 13.0 into Equation 8.0 yields the following:

C f, ,2mbi + Mwi, C, + _2mba +2m,]c, y

Zm bi

  • 2*ba
  • Hwi + 2mwa since the initial concentrations are the same, C 4 = ej , and since Plant 2 is twice as large as Plant 1, M,4 = 2m,g, C

f, 3m

,,, bi

  • 201 i Ea

+

Ca $=Cf,

+ 2m ba + 2gj + 2g, bi r

(14.0)

Cf=cf.

Therefore, for a cooldown where pressurizer level is maintained constant, the final boron concentration for Plant 2 is equal to the final boron concentration for Plant 1, i.e., the change in boron concentration is independent of the exact system volume.

4 of 4

I *

(

Appendix 3 Methodology for Calculating Dissolved Boric Acid per Gallon of Water Purpose The purpose of this appendix is to show the methodology used to calculate the mass of boric acid dissolved in each gallon of water for solutions of various boric acid concentrations. Two solution temperatures were used corresponding to the minimum allowable refueling water storage tank temperature of 50 degrees and a boric acid makeup temperature of 70 degrees in the absence of tank heaters.

Methodolooy and Results Boric acid concentration expressed in terms of weight percent is defined as follows:

C = mass of boric acid x 100, total solution mass or C =

mass of boric acid x 100. (1.0)

(mass of boric acid) + (mass of water)

If we define m ba to be the mass of coric acid and m, to be the mass of water, and if we substitute these defined terms into Ecuation 1.0 and solve for the mass of boric acid we have the following:

ba C = x 100 ,

"ba * "w or Cxm "

(2.0) m = .

l ba 100 - C 1 of 2

. Appendix 3

(

rrom Appendix A of the Crane Company Manual (Flow of Fluids Through Valves, Fittings, and Pipe, Crane Co., 1981, Technical Paper'No. 410),

the density of water at 70 degrees is 8.3290 lbm / gallon and at 50 degrees is 8.343 lbe / gallon. Using these water masses and Equation 2.0 above, the mass of boric acid per gallon of solution is as follows:

Mass of acid per gallon Concentration of solution at source - wt. % boric acid ppm boron 50 degrees 70 degrees RWST 0.98379 1720 0.38289 lbm --

RWST 1.02955 1800 0.08679 lbm --

RWST 1.08675 1900 0.09166 lbm --

RWST 1.14394 2000 0.09654 lbm --

RWST 1.20114 2100 0.10143 lbm --

RWST 1.25834 2200 0.10632 lbm --

RWST 1.31553 2300 0.11121 lbm --

BAST 2.50 4371 -- 0.21356 lbm BAST 2.75 4808 -- 0.23552 lbm BAST 3.00 5245 -- 0.25760 lbm BAST 3.25 5682 -- 0.27979 lbm BAST 3.50 6119 -- 0.30209 lbm 2 of 2

Appendix 4 Methodology for Calculating the Conversion Factor Between Weigh; N rcent Boric Acid and ppm Boron Purpose The purpose of this appendix is to show the methodology used to derive the conversion factor between concentration in terms of weight percent boric acid and concentration in tems of parts per million (ppm) of naturally occurring boron.

Results For any species (solute) dissolved in sone solvent, a solution having a concentration of exactly 1 ppm can be obtained by dissolving 1 lbm of solute in 999.999 lbm of solvent. An aqueous solution having a concentration of 1 ppm boric acid, therefore, can be obtained by dissolving 1 lbm of boric acid in 999,999 lbm of water, or 1 ppm , 1 lbm boric acid , 1 lbm boric acid ,

1 lbm boric acid + 999,999 lbm water 106 lbm solution For any species (solute) dissolved in some solvent, a solution having a concentration of I weight percent (wt. %) can be obtained by dissolving 1 lbm of solute in 99 lbm of solvent. An aqueous solution having a concentration of 1 wt. % boric acid, therefore, can be obtained by dissolving 1 lbm of boric acid in 99 lbm of water, or 1 wt. % , 1 lbm boric acid ,1 lbm boric acid * '

100 1 lbm boric acid + 99 lbm water 100 lbm solution 4

Dividing these last two equations yields a ratio of 10 , or 1 wt. % boric acid = 10,000 ppm boric acid. (1,0) 1 of 2

Toconvertfromppmboricacid(weightfraction)toppmboron(weight fraction), multiply Equation 1.0 by the ratio of the molecular weight of ,

boric acid (naturally occurring H3803 ) to the atomic weight of naturally occurring boron. From the Handbook of Chemistry and Physics, CRC Press, 10.81 I wt. % boric acid = (10,000) G ppm boron , ,

or 1 wt. % boric acid = 17/8.34 ppm boron.

P I

1 h

3 i

a e

i 2 of 2

~

-( ,

Appendix 5 BoricAcidSolubilityinWater(1)

Temperature (Degrees F) Wt. % H3803 32.0 2.52 41.0 2.98 50.0 3.49 59.0 4.08 68.0 4.72  ;

77.0 5.46 [

86.0 6.23 ,

95.0 7.12 104.0 8.08 113.0 9.12 122.0 10.27 ,

131.0 11.55 140.0 12.97 149.0 14.42 >

158.0 15.75 167.0 17491 176.0 19.10 ,

r I

(1) Solubility from Technical Data Sheet IC-11, US Borax & Chemical f Corporation, 3-83-J.W.

t I

1 of 1

"~

_ , , 1

? ...

t ';

l

. i:

i Appendix 6 - Required Boron' Concentration for a cooldown from 557 degrees to 200 degrees.

Temperature Concentration (Degrees F) (ppm Boron) 557 -97.4 510 128.9 490 210.3 480 246.6 470 275.0 l-460 302.7 450 334.0 440 365.6 430 394.9 420- 416.2 410 438.5 400 457.7 390 475.2

-380 492.2 370 507.2 360 522.1 350 535.1 340 547.2 330 558.1 320 567.1 310 575.7 285 598.9 260 623.1 235 640.4 .

210 655.9 200 659.7 199.9* 587.2

  • Note: After Shutdown Margin Change from 2.9% delta k/k to 2.0% delta k/k 1 of 1

l '. t Appendix 8 Bounding Physics Data Inputs The following Physics Data Inputs are provided to facilitate review of this effort. During future cycles the new core parameters must be compared with these inputs to ensure that they are still bounding.

1. Assumed minimum Scram Worth with all rods in minus one stuck rod with greatest worth = 2.9 % ak/k.
2. Inverse Boron Worths are contained in Table 1.
3. End-of-Cycle Xenon Poisoning Transient after shutdown is contained in Table 2.
4. Assumed Generic Moderator Cooldown Curves are in Figure II-B-1.

i 1 of 4 m

e

9 e f TABLE 1 INVERSE BORON WORTHS ASSUMED IN BAST ANALYSIS INVERSE BORON WOR'TH ( opm/% Ap)

TEMP (OF) 507 95.47 482 92.8 457 90.17 432 88.05 407 85.93 382 83.88 357 82.52 332 81.66 307 79.8 282 78.46 257 77.28 232 76.26 207 75.1 200 74.8 182 74.3 157 73.3 132 72.8 130 72.7 2 0f 4

._ __ ____ ____n

r r f 1

(

l i

TABLE 2 i E0C Xenon Poisoning Transient After Shutdown from Equilibrium Established at Indicated Power Versus Time After Shutdown Xenon Worth (pcm)

Time After Shutdown (hours) 50s Power 751 Power 1001 Power 0 2284 2609 2809 1 2503 2997 3376 2 2668 3300 3824 3 2786 3528 4170 4 2864 3693 4429 5 2909 3803 4612 6 2925 3868 4732 7 2917 3894 4797 8 2889 3887 4817 9 2845 3853 4799 10 2787 3797 4748 12 2642 3633 4574 14 2470 3422 4330 16 2285 3184 4045 18 2095 2933 3739 20 1907 2680 3426 ,

25 1470 2082 2675 30 1104 1572 2027 35 814 1163 1503 40 591 847 1097 45 425 611 792 50 303 436 566 55 215 309 402 60 151 218 284 65 106 153 199 70 74 107 139 75 - 52 75 97 80 36 52 68 85 25 36 47 90 17 25 32

  • Table 8.21 contains the data used to generate Figure 8.18.

3 of 4

,, , ,-..-.._,_.-...,_-~,-.__..-,--,-v_.._ .

. . , , . - - . - _ _ . - . _ _ _ _ - , , . . _ _ . _ _ . . _ . . . , - - - , _ _ _ - , . ~ , . . . - . . - - - - - -

l e

f

  • l

. I

.. e e e

..u.. .

  • .9..

..p.... . ...

.. ,. ; . e. .

I i

.t .-- ..... s.. . . ...... .83 ... ... .

. .. f. .. . . . ...... .... .. ......d... .... ..,

i....3..

. I _. , . .... . l..

..e .. .. ..

, . a4.4 , . . . . . . . ...g..... ,. ,

. . . . ..J.

. g . . . .. "'t. .

....e..,,..

.. . .. f-..... . . . .

. g .. ..... . . .

. . , . . . .............l. . ,..s.

. ... .. ... . ...e H..... . . ....'.~.]..,. ........ .......e

... .. . l g'....... .

.l_.........l ....

..)

...6..... .. A. . . .... . . .

...g .e .

...... ...6..

... g .. - . -.... .

....,...ie.

-. . ... 4 .. .

. ..... . . . . ... .. .. .3

.... . g I. .

.... ...g.

e .1 f.5.. ,

.e. . . ..- .T .. 9.*. . ..q., . . .. . . . . . . **...l. ...l...e e. _. .,>. .J..

l.

. .......e..

g

, . . O . ..I ,

!.l.

J....... ...

. . . ...g..

....t... . . ..

.....e. .-

. ...  ; . . . .g l

i

. ... .]. ,.e. .. .e. . . . ..g... .= . ~

F...

  • O L....

. . i. . 0

-r . . .

. . . . . . . - . 4..<

~...~ .........

m

, ~... ... . . . . . . . ...... ........... . ..... . - ....4.. .

t .

. e.

. ... ..s.. .. ...e.... . ...... ....e......

K 3 .

.g l.e.. ..9..=..e... ... .

...I....).........!..,.

-p.. .... . .

p

..6.. y...

. . . ..e.-].....

. .. .-.....s...

s g

...).

.. ..s. . ....

. .- g . . ..... . !..... . .. . .

....... . ... ...e. . . ... . , . ==....s. . . ._. ........

6 6.

.(.I

. .. . g..8 . .. ~...t 1_. .. ,....,.

= = ...{. g

.3 . . . 4........e.. * .

..\. l.._ .

f... *"" .

4..._... . .. . . . . . . . . . , . . . .

. .,_.. .s ... - 2

..I....

e.

. .. g ..

. . ....6.... ...d. 3, . .

a.. .

- . . .. ...m

. ... = .~ e.'.

,..-.... . .e.,

..ee-... . .. .. . . . . .. 6 ..

.3..4...

....i. ..

6... .

..-.5.. - .... .

.a.....L........

..... . . . . . . .,l......==.-..$..,......*..*. l

.. e

.. . . .. .y

....a....

. o ... .p.. ,........ ..

. ,g..e.

... .. . . . .s .

. ... 4..... .

.... f.

.. . . . . .. ..be .

..... . .m.. . .. .. . .....

7(. ..... . . . .

. . . ... .. . .-. q

..4...... .e.. t.

q...

...i....

........ . . . .. ......b...,

. .... 1 .

. .e..........e

..e.... ..

p ..

. ,s.

. . . . . 4.... .

i ..4.e e.. .. ..w .

, . . . . b e..6,*.w. .

.....g.

. . . . . . . . . .. 3 ..

. . . ... . . . = ~..g.......9

.. . .4...w. .e..... 6 . .g....-_

g.

m.9.+......l........., . . .3 = .

.-.d.

... ...f . . . .

.e... ..

.1 ... . . . . -.

. . . ..... ... .. . .. . ..,.i

.e .. . . ... .

.,.. .y.....e......&.*..e .. . ... .

f* ..

(. e

.... 1 . . . . .

....4....

=..-

. ,.. .. .. .e.. . .

.g.

....e,.I.....g.g.....g

=. . . . .

p

... .....o

.e.=. e.... . . ... . . .. . . . , . ..e.

.g . g. .. . . . . .

..A.. *.. g

.-.... .I. ... ... . . . . .

.....e... ,..,, ......4._...

6

. . . . 4.

.J .. e. b.

. . . -g.. - . . > . .4..

..4 b.... .....

. .=

..e.t.e.. 4 e. . .

.eI....... ..

. . . , . .. . . . .........e.......

. . . . . ....a..l....

.s... t..f.... ... . .

..g. ..g.. 4 . . . . . . . . .. . . . . . ..

.m.,y.......e

.. = .

.. .- . 4 . . . .

.s ..

...l...i . .. .. .. . .a w

... upa.. . . .. 1-

.......&..T g.

.As....... e.

% e. .-.

6 .

g I.. . .

. . .-.. ........I... . . ,.

.a... .. e.... 4 . . . .. .. .. .

w .. .. ... 4.

.... .. . . .l...... ..

6. ,...I'.....

b .

.. ! . .. l g.. 1. .

cry ..

..J..~ -...... . .w.. _ . . . . . . .

.-...6 . . . . ... . .. .. . \. . . I. . . . .

. , . . . ._I'" t.. .. .. . . . .....l.. ... .... . j .....

.. . 5 e.4 ... -

. g .. u. . . . . . . . . .

. e...

6.

. . . _ .. . ... .~--

. p 4

.. ....>...e...._...;... . .,.._.

,. ) . .. . .*,. . . . . .

g . . . . .

w- . . . . . . . . . . . . ,

..e.......... . . .... m. b.

. . . ...... e. .... . .. .

................c..

== _

... ....L .

gy... ..

.==g.......

t ,

.g..

. . . ..=.4 .. . . , , .

. g .

4. ...

J. . . . .. . . . . .. .. . .. .-_. . .

p . . . 3 . . . . . . . e... ....e,.,.A.

...4. _

.... .= .. g. . . . . . . . . .- .&. . . . .. . e.. . . . ...p.......

l ..4

.if........1..I... . . .

g...

.p 4

g .

1 ..4.b..

..p......

. . . . . A

) ...

.. . w.. . . . . . . i.... . ... - .... . .

9..= ... .. ....g.....

... . j..g...

.. e...... ..m

.e m 9.$ . . .

.m p .a

. ....e.

. ..~ .. me. , . ..

.g ......,..,p.. . .. . , .,,. g 3 .

...... . . . .. .I....

. . . . . . . . . ,. i.

.q h ...

- . . ....p

. . . 4

....... .$ l 14.. )e. . . . .

I,. .. .+ , . . . .. 6.. .... ..I,..i........ . . .... )...4B.$....,.....,4...

. l. e. .

L . .

.I...

-. .. .-...... . . . . ...O.e .. . . ., .. .... . .~. l.,.. .. ... ..... .-.

e....

  • = ..* . . ...j.....* .* ......8..

.f*'.*1..*.... "'.'- .

... ..9. *k.**3**

. . . . . . *..g...

L.... 0.*. 4. *

..e.....og~.. . .,....... ... a.

. . .g.. .. .. . .. .. ... .. -.. .,g.. . . . . . ..... .. .

~. .

e e

- . . . . .. . ...6. . . . . . .. .

..+- q. . 4 g

. ... ...i. .. .. . .

) .. . . . . 6

., S.$ .

4 .

. .. ..n e.... ....\ ... e 6 e . . . . ..,..

.....6... . ... . . t, . . g. . . . l. .

e 1...

.(

. . I ..,

\ .' .. , . .

l , .

y . .=. ....t..

4, ..

.l . . .-6

.. . . . . 7 I I. .! .

t.

g

.l g

g

. 8, %

i. g .. ..

. . . .. . .....g

....l.

g.

.g. ,...

n.. .

. . .e..

( .

.. .- lp .

l.

. l... .g. s .

. . . ... .g.

.s....'... . .... . . . .. .. r RC y . .. . . .( . .e..

e*.

....m.. ......g.. .

g...e 4i

. . . . .b . .

6

..5 . . . .h .... ... ._.. . _$.,.. ....... . . . 1 ...

g e.. 4 . .. -. . . .g,

....I. .....

..t...- . . .. . . .. \. . f . . . ,. . .- . .

.e. . . .. ;

3 ...... .

.l

..g .

.,.. .a.. . gq .. .. . , . .,

y p J

1. . . . .. ..
f. ,

T.. .. . . .

....... . .. . .., - . ,(p. ...

. . .e

.g...

m .

..l...

l .

..,.-.i..

4 j

9g .. . . a g..

... .. ... g6. .. 5 .

..r...- .

......a... . ..

)

f...

...i e ... - . .

...<.e.

, . . . .4 . .. ,. . . . =. . = . . 6. ..

.. . l

.....F..... .I

e. .

p...- ,..- g

. 4 4 i

. . ..e . . .. .. . . ,

. # . . . 1. -

... .4,. . . . .... ._ A .

.. , ..... .,.. A . . .... . . . . .L.l. w _ . . . e g 3, W 6 ... .- .. , () .

e.

. . . . .. .. ... . . . . I. . ..

. .l. .

. . . . .<.. . . . . . . . . . .__ .... . . . .. . _ . .. ..,..I.

.... .a

.E .A .. .

.6..

M ,e... ,

4. . -

.6..I......

r. A

. .....+

.l l..

... . ... . . . _a.. g . ....l.,. ...

. i

. 1..

.... ........ .I

,J d ...

f e. ,. .i .. .. ... ..

s5

. g ..-.. . _ . . _ . . .

. 6 . .

c..._ .. ,.. . ........ . ..

e.

. o, I...

. . .. . ~ .

.~.

~ ....

f.. .

.. .g .a. .

I...

1-. . . . f..... . . . . ,t.. .... .. . ... ....i .. ..

p;J gwg .... ...

.i .

....i....

.. . ., . .... . . .. l. .

.. , l... .

a  ! .g

. . , ..l.

.g. .( ..

= . * . . .. . .

=.!.'=.=.d

.-.. -...= . **. = . = * * .

  1. pJ n

6 . . . .g .q.. . . ' . .., . . . . .

.O

...*=.3 -- =

- g . ..=.= b ., . .

.. I. -

. q

...o.== * * .

' 'l 1

. (.l

.mie .a. . j

. . . }..

a

....l-

.. i.... .... . . .

. .J * . . . ' . . .

w

....l,

.....l _..s.. . . . . . . . . ...4......s..-..

g.

g l. .

..e ... ... - ..., _... ... ..

e .

. i. .

l .,...

. i

.(ao

. .. .t..

, 1. . . .

t. .. . ....

.t. .

. . .. . . . .._ . . ..s.. ..

. i. . .

.. . . . . I. .. . - _ . _ . . .

(. .

,.. . ..., ~ o .

400 l

5 00. ;. . *

'g* .. ..

.\.;  : .. .-

..~ b9 ... . . . . ,. .?. 4 00. . '. . .

1.
  • lDO...

. t.

..4,._..t,_._. .. . _ . _ -_ .. .._ i.

It..... .. . ... . _ . .. . . . _ . . . . _ _ . . . ,

i _ ..,.. .,

r._ _ _; .3 _ C OAVERAGE MooERATo R Tenpaurup.E3 'F ,,

l E.:. E. 1. RE .

. . .! . . . l. _ . .

. . L.....,. . . ... .. . .i i

. . . . . . .i . . . .

...t. , i

. I i

. . . . . . _ .. .,. . .i . ._... . _ . . . ..... . .i

.p e i. . . . i. $

( , . )

. .g 1 . .

9 .

g. ,

...L....,. .......i-.-..

e. . .., . .. .

.~ . . . . _ . . .

4 of 4 ^

i )

I

/ f <

892(82J10) EM/120 )

3.

('

1 Appendix 9 Long Term Cooling and Containment Sump pH Considerations The impact of the Boric Acid Reduction Effort on post LOCA long term cooling and contairment sump pH control was reviewr;d. Each Analysis is discussed qualitatively below.

Performance of the Emergency Core Cooling System (ECCS) during extended periods of time following a loss-of-coolant accident (LOCA) was analyzed in Reference 4.4. Long term residual heat removal is accomplished by continuous boil-off of fluid in the reactor vessel. As borated water is delivered to the core region via safety injection and virtually pure water escapes is steam, j high levels of boric acid may accumulate in the reactor vessel. As an input to this analysis, boric acid storage tank (BAST) boron concentration was assumed to be 12 wt percent. This calculation conservatively bounds the maximum boric acid storage tank boron concentration of 3.5 wt %.

L When the Millstone Unit 2 plant was designed CE contributed an input for the containment sump pH based on the maximum Boric Acid Storage Tank boric acid concentration of 12 wt percent. Since we are now reducing that maximum concentration to 3.5 wt percent, the original inputs that we supplied are conservative with comparison to the inputs that we would supply now. The effect of the BAST boric acid contribution to the overall containment sump pH would be reduced. In view of the fact that the original inputs are more conservative, the original sump pH analysis will conservatively bound the maximum BAST boric acid concentration of 3.5 wt percent.

1 of 1 E _ __ . ~ . _._

__