ML20080T836

From kanterella
Jump to navigation Jump to search
Physics Methodology for PWR Reload Design, Addendum 4
ML20080T836
Person / Time
Site: Millstone Dominion icon.png
Issue date: 01/03/1995
From:
NORTHEAST UTILITIES SERVICE CO.
To:
Shared Package
ML20080T819 List:
References
NUSCO-152-ADD, NUSCO-152-ADD-04, NUSCO-152-ADD-4, NUDOCS 9503140136
Download: ML20080T836 (89)


Text

{{#Wiki_filter:- NUSCO TOPICAL REPORT Physics Methodology for PWR Reload Design January 3,1995 Northeast Utilities Service Company Nuclear Ana?ysis Section , Berlin, CT g Northeast Nusco - 152 i i Utilities System . AconNova 4

 $BA3218$3eoE838!2s                                       -

I p PDR

                                ^~

DISCLAIMER The informatxm contained in this topical repost was prepared for the specific requirements of. Northeast Utdaties Service Company (NUSCO) and its affiliated companies, and may contain - malenals subject to privately owned rights. Any use of all or any portion of the information, analyses, methodology. or data contained in this topical report by third parties shall be - undertaken at such party's sole risk. NUSCO AND ITS AFFILIATED COMPANIES HEREBY DISCLAIM ANY LIABILITY (INCLUDING BUT NOT_ LIMITED TO TORT, CONTRACT, STATUTE, OR COURSE OF DEALING) OR WARRANTY (WHETHER EXPRESSED OR IMPLIED) FOR THE ACCURACY, COMPLETENESS, OR SUITABILITY FOR A PARTICULAR PURPOSE OR MERCHANTABILITY OF THE INFORMATION. i i

c i ABSTRACT  ! In an effort to remain technically current, Northeast Utilities Service Company (NUSCO) has , upgraded to the PHOENIX-P/ANC Westinghouse core reload design software package and plans to apply this new software package to Northeast Utilities' PWRs. The physics } methodology (software) for the design and the analysis of PWR reload cores has been

 . licensed by NUSCO from the Westinghouse Nuclear Manufacturing Division. NUSCO has used the PHOENIX-P/ANC methodology to model the Millstone Unit 3 (MP3) reactor core and has compared the results to actual measurements. The quality of the comparisons demonstrates NUSCO's ability to perform PWR reload design with the PHOENIX-P/ANC software package. A similar topical report has already been submitted by NUSCO to the NRC    <

for the Haddam Neck Plant [14], using the PHOENIX-P/ANC methodology. [ P f 1 1 ii i i

s e  ! 4

                                                                                                     .                                                                                                                                 i

) L T \ \ r TABLE OF CONTENTS , a Sechon Eage DISCLAIMER....................................................................................................................i ABSTRACT......................................................................................................................li TA BLE OF CONTENTS . ...... ............................... ... .. . ..... ....... . ... .. .. .. .... ... . .. . . ... ... . ..... . . . .. . .... iil i LIST O F TA B LES ... . .. . . . . .. . . . .. . .. . . . . . . . . . .. .. .... . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . v LIST O F FIG U R ES . ... .. . .. . .. .. . . . . . . . . . . ... ... .... . .. . . . . . . . . . .. . .. . . . . .. .. . . . . . . . . .. . . .. . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . Vi 1.0 I NTR O DU CTION . .. . . . . . .. . . . . . . .. . . . . . . . . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 1 1.1 OBJECTIVE.........................................................................................................1 1.2 SCOPE................................................................................................................1 2.0 PHYS IC S C O DE S .. . . . . . .... . . . . . ... . . . . . . .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 FIGHT-H.............................................................................................................2 2.2 PHOENIX-P.......................................................................................................2 l' 2.3 ANC....................................................................................................................3 2.4 APOLLO............................................................................................................4 3.0 PHYS ICS M ETHO DO LOGY . .. . .. ........ ..... .. ... .. ..... . .... . . .. . ... .. .. . .. . .. . . ..... . . .... . . ... . .. . . . . 5 3.1 CR O SS S ECTIO N LI B RARY ...... ....... ... . .... .... .... .. ... . . . .. . . .. . . .. .. .. . . .. . . .. ... .... . . .. . . . .. . .. 5 3.2 PHOENIX-P LATTICE MODELING ....... ........... ...... .............. . ..... . ...... ................ 5 . t 3.2.1 Fuel Cell Model .. ..... .......... . .. ... ..... .. . ... ... .. .. . . . . . . ... . . . .. .. . . . .. . . ... . . .. ... .. . . . .. . .... . 6 l 3.2.2 Discrete Burnable Absorber Models.......................................... ................ 6 '; 3.2.3 Control Rod Cell Model ........................... .. .. . . ... ..... ................. ............... . 7 j 3.2.4 Structu ral Cell Models ... ..... ....... .... .. ... . .. ... .. . . ... . .. . ... . . . .... . .. . .. . . .. . . . . . .. . . . . . . . . . .. . 7 i 3.3 BAFFLE-R EFLECTOR MODELING .......................... ....... ................. .................. 7  : 3.4 TH REE-DIMEN SIONAL NODAL MODEL.................. ..... .................................... 7 3.5 ONE-DIMENSIONAL DIFFUSION THEORY MODEL............................ .............. 8 . 3.6 IN-CORE IN STRUMENTATION ANALYSIS.............. ........................................... 8 4 I 4.0 PHYSICS MODEL APPLICATION S ................................................ ... ... .... .... . .. .. 9  : 4.1 CORE POWER DISTRIBUTIONS AT STEADY , STATE CO N DITl O N S . .... ..... .... ..... . .. .. . ....... .. ... . .. ...... . .. .... .... . . . . . . .... ..... . . . . .. . . .. . .. 9 4.1.1 Powe r Distribution s . ........ .... ........ . . . . ... . .. . ... . .... . . . .. .... ... . .. .... . .. .. . . ... .. .. . .. . . . . .. . 9  ; 4.1.2 Powe r Pe a kin g ..... .. .... ..... . ..... . ... .. .. ... . . .. . . . . .. ... .. .. . . .. .. . . . .. . . . ... . . .. . . . . . . .. . . .. . ... 9 4.1.3 Fuel Depletion . ... ....... ...... . .. ....... .. . .... ....... .. .. . . . . . . ....... . . . .. .... .. . . . .. ..... .. . ... ... 10 4.2 AXIAL POWER DISTRIBUTION CONTROL ..................... .. ............................... 10 4.3 COR E REACTIVITY PARAM ETERS ....................... ......................... ................. 11 4.3.1 Moderator Ternperature Coefficient ................ .. ................... . ................. 11 4.3.2 Doppler Ternperature Coefficient ....... .. .... . ..... . .......... ......................... 11  ! P o lii 5

                                                                                                                                                                                                            +

i TABLE OF CONTENTS (Continued) t i I (r ,i. i 4.3.3 Total Power Coefficient. . ...... ...... . ............ ... ..... . ........... . . ... ..... . . .. .. .. .. ...... . .. .. 12 4.3.4 Isothennal Temperature Coefficient ...........................................................12 l 4.3.5 Boron Reactivity Coefficient ...................................................................... 12 . 4.3.6 Xenon and Samarium Worth .................. ......................................... ......... 13 4.3.7 Control R od Worth . .... .... .. ..... .... .......... .. ......... . .. ... . . .. .... . . ... .. ... . . . . . .. .... .. . . . . . . . 13 4.3.8 Neutron Kinetics Parameters ..................................................................... 13  ; 5.0 PHYSICS MODEL VERIFICATION ...................................... ............... ............... 15 ' 5.1 CYC LE H I STORY . . . . . . ... . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 ZERO POWER PHYSICS TESTS ........................................... ........ ................ ... 15

                                                                                                                                                                                                          .i 5.2.1 Critical Boron Concentration .......................... ........................................... 16 5.2.2 Moderator Temperature Coefficient ........................................................... 16                                                                                                1 5.2.3 Control R od Worth . .......... .. .... .. . . . . ..... . . .. . .... .... .. . . . . ..... . .. . .. . . . . . .. .... .. . ... .. .. .. . 16                                               .j
                                                                                                                                                                                                             \

5.3 POWE R O PERATIO N . ........ . .. ... .... .. . . .. . .. . . .... .. . . .. . ... . . . . .. . . .. .. . . ..... . ... . .. . .. ..... . .. .. .. . . 16 a 1 5.3.1 Radial Power Distributions ............... ................ ........................................ 17  ! 5.3.2 Axial Power Distributions .......... ..................... ........ .... ........ ................. ....... - 18 j

5. 3.3 Pe aking Factors . .. .... . .. .... .. .. . . . . . . .. .. . . .. ....... . .. . . . . . ... . . . . . . . . .. . . .. . . . . . . . . . . . . . .. ... . .. . . 19 5.3.4 Boron Rundown Curves .... ......... ............... ....... ...... ......... .. . ................ . 19 5.4

SUMMARY

......................................................................................................19 I l 6.0 R EF E R E N C ES . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ! I i 1 iv

1

                                                                                                                                                                                             }

e LIST OF TABLES i I 5.1 Millstone Unit 3 Cycle 3 Batch Loading................................................................ 21 i t 5.2 Millstone Unit 3 Cycle 4 Batch Loading ................................................................ 22 r  ; 5.3 Millstone Unit 3 Cycle 5 Batch Loading................................................................ 23 l I 5.4 Millstone Unit 3 Zero Power Physics Tests  ! Acceptance Criteria .. ....... .... . . . . . .... . . . . . . .. ....... . . ...... . ... .. . ..... .... ........ .... .......... .. . .. 24 l 5.5 Millstone Unit 3 Cycles 3,4 and 5 l HZP Critical Boron Comparison ..................................................................... 25 5.6 Millstone Unit 3 Cycles 3,4 and 5 , Isothermal Temperature Coefficient............................................................... 26 i 5.7 Millstone Unit 3 Cycle 3 Rod Worth Comparison ................................ ................ 27 5.8 Millstone Unit 3 Cycle 4 Rod Worth Comparison ..................................... ........... 28 5.9 Millstone Unit 3 Cycle 5 Rod Worth Comparison ................................................. 29 5.10 Millstone Unit 3 Cycle 3 Axial Offset Comparison ................................................ 30 . 5.11 Millstone Unit 3 Cycle 4 Axial Offset Comparison ................................................ 31 - .i 5.12 Millstone Unit 3 Cycle 5 Axial Offset Comparison ................................................ 32 5.13 Millstone Unit 3 Cycle 3 Power Peaking Factor Comparison . . ... ..... ... .. . . . .... ..... ....... .. . ... .. .. .. . . ... . . .. . .. ..... .. . . .. ... . ... . .. .... .. .. 3 3  ! 5.14 Millstone Unit 3 Cycle 4 Power Peaking i Fa ctor Comparison . .. . . .. .... . ....... .. .. .. .. . .. . .. ... .... . .. . . . . . . . . . . ... .... . .. . ... .. . . . . .. . .. . . .... .. . . 34 , 5.15 Millstone Unit 3 Cycle 5 Power Peaking Factor Comp a rison . . . ... ...... . .. . ..... .. . . . . . .. . ... . . . . . . . .. .. . . .. .. . . .. .. . . . .. . . . ... . . . . .. .. . .. . .. .. ... . 3 5 i I e t h n I V  ! 1 l l I

  ~.
        .           .              .    .           .     . ~ . -                     ..                  -                                                                                                       ,              .
                                                                                                                                                                                                                                              .1
s. ,~, '
                  ,   .m                                                                                                                                                                                                                      y; u
                                                                                                           ~

y i. .' LIST OF FIGURES  ;

                                                                                                                                                                                                                                              .l
                                                                                                                           ..~                       .
                           - 5.1     . Millstone Unit 3 Cycle 3 Region and Burnable Absorber Locations'..................... 36                                                                                                                   {
~ '

5.2 - Millstone Unit 3 Cycle 4 Region and Burnable Absorber Locations'..................... 37. i 5.3 Millstone Unit 3 Cycle 5 Region and Bumable Absorber Locations ..................... 38

                                                                                                                                                                                                                                                ]
.                           5.4        Millstone Unit 3 Cycle 3 Radial Power Distnbubon                                                                                                                                                           ;

at 334 MWDMTU . . .. . . .. . . . . ... . . .. .. . . ... . . . . . . . ... . . . . . . .. . . . . . . . . . . . . . .... .. . . . . . . . . .. . . .. . . . . . . . . . . . . 39 1 1!

                         . 5.5         Millstone Unit 3 Cycle 3 Radial Power Distribution                                                                                                                              .

j at 2264 MWDMTU . . . . . . . . . . . . . .. . . . . . . . . .. . .. . .. . . . . . .. . .. . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . 40 . 5.6 Millstone Unit 3 Cycle 3 Radial Power Distribution' , at 4 54 9 MWDMTU . . . . . . . . . . . . .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 41 i 5.7 Millstone Unit 3 Cycle 3 Radial Power Distribution at 1 1400 MWDMTU ...... .... ... ... . . ......... .. .. . . . . . ..... . .. . . .... ... .. . . .. ... . . .. ... . ... . ... . . . . . . . 42 , 5.8 - Millstone Unit 3 Cycle 3 Radial Power Distribution at 16908 MWDMTU .. ... . ...... ... .. .. .. . ... .. . ..... .... .... .. . .. ... .. . . . ..... ... . . ... .. . .. ...... . . . . .... 43 , e 5.9 Millstone Unit 3 Cycle 4 Radial Power Distribution 1 at 54 7 MWDMTU . . . . . . .. . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1 t 5.10 Millstone Unit 3 Cycle 4 Radial Power Distribution - l

                                          . at 2 008 MWDMTU . . . . . . . . . . .. . . . . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 7

5.11 Millstone Unit 3 Cycle 4 Radial Power Distribution l at 5917 MWDMT U . . . . . . . . . . .. . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 46 5.12 Millstone Unit 3 Cycle 4 Radial Power Distribution at 13 535 MWDMTU . .. . ..... ... ... . ... . ... ....... ...... . ...... . ... .. . . . . ..... . . . . .. . . . . . . . . . ... . . ... . ... . 47. 1 l 5.13 Millstone Unit 3 Cycle 4 Radial Power Distribution ) at 19273 MWDMT U .... . ....... ... ...... ..... .. .. .. . .. .. . . . . .. . ... .. . . ... . .. . . .. . .. . . . . . ... . .. .. . . .... . 48 - 5.14 Millstone Unit 3 Cycle 5 Radial Power Distribution 3 at 590 MWDMTU . . . . . . . . .. . .. . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 4 9 i 5.15 Millstone Unit 3 Cycle 5 Radial Power Distribution at 412 9 M WDMTU . . . . .. .. ... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 vi

                                                                                                                                                                                                                                               'l
                                                                                                                                                                                                                            -                      l

LIST OF FIGURES (Continued)  ; 5.16 Millstone Unit 3 Cyde 5 Radial Power Distribution -

                     ~ at 71 5 3 MWDMTU . . . . . .. . .. . . . . . . . .. . ... ... .. . . . . .. . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . .

5.17 Millstone Unit 3 Cyde 5 Radial Power Distribution at 9 3 3 3 MWDMTU . . .. . . . . . . . . .. . . . . . ... . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .

         '5.18    Millstone Unit 3 Cyde 3 Axial Power Distribution at 3 34 MWDMTU '. . . .. . . .. . .. . . .. . ... . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3!

5.19 Millstone Unit 3 Cycle 3 Axial Power Distribution l at 4 54 9 MWDMTU . .. .. .. . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . c 5.20 . Millstone Unit 3 Cycle 3 Axial Power Distribution at 1 1400 MWDMTU . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 -

  • 5.21 Millstone Unit 3 Cycle 3 Axial Power Distribution at 16 908 M WDMTU .. . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .

I 5.22 Millstone Unit 3 Cycle 4 Axial Power Distribution at 547 M WDMTU . . . . ...... . . . .. . . . ... . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.23 Millstone Unit 3 Cycle 4 Axial Power Distribution at 5 917 M WDMTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.24 Millstone Unit 3 Cycle 4 Axial Power Distribution at 1353 5 MWDMTU ...... ... . . .. ... . ... ... ......... .. .. . . . . . . .. ... .. . . . .. . . . . .. . . .. .. . . . . . . . . . . . . . .. . .. . . 59 5.25 Millstone Unit 3 Cycle 4 Axial Power Distribution at 192 73 MWDMTU ..... .. ... . .. ......... . . . . ... . . . . . . ..... . . . .. .. . ... . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 60 5.26 Millstone Unit 3 Cycle 4 Revised ANC AO Model a t 5 917 M WDMTU . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.27 Millstone Unit 3 Cycle 4 Revised ANC AO Model at 1 3 5 3 5 M W DMT U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.28 Millstone Unit 3 Cycle 4 Revised ANC AO Model at 19273 MWDMTU .. .. .... .. . . ... . .. ... ... .. . . . .. . .. . ... . .. . . .... . . . . . . . ... . . . . .... . . . .. . . . . . . . . .. . . . . .. 63 5.29 Millstone Unit 3 Cycle 5 Axial Power Distribution at 5 90 MWDMTU . . . . . . . . . . . . . . . . . . . .. . .. .. .. . ... . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 vil

4 UST OF FIGURES - (Continued) 5.30 Minstone Unit 3 Cyde 5' Axial Power Distribution at 4129 MWD /MTU . .. . . . . . . . . .. . . . . . .. . . .. .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . 5.31 . Millstone Unit 3 Cyde 5 Axial Power Distribution at 7153 MWD /MTU . . . . . .. . . . . . ... . . . . ... . . .... . . . . . . . . . . . . . .. . .. . .. . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . .. . . . . 5.32 MiNstone Unit 3 Cyde 3 Axial Offset Vs. Bumup.................................................. 67

                 ~ 5.33     Millstone Unit 3 Cyde 4 Axial Offset Vs. Bumup.................................................. 68 5.34     Millstone Unit 3 Cyde 4 Revised Axial Offset Vs. Bumup.................................... 69 5.35'    Millstone Unit 3 Cycle 5 Axial Offset Vs. Bumup......... ........................................ 70
                 - 5.36 , Millstone Unit 3 Cycle 3 Fm Vs. Bumup....................... ....................................... 71 5.37 Millstone Unit 3 Cyde 4 Fm Vs. Bumup...............................................................                                                     72 -

5.38 Millstone Unit 3 Cycle 5 Fm Vs. Bumup............................................................... 73 5.39 Millstone Unit 3 Cycle 3 Fo Vs. Bumup ................................................................ 74 5.40 Miustone Unit 3 ' Cycle 4 Fo Vs. Bumup ................................................................ 75 5.41 Millstone Unit 3 Cycle 5 Fo Vs. Bumup ................................................................ 76 5.42 Millstone Unit 3 Cycle 3 Critical Boron Concentration Vs. Bumup . .. . ..... .. .. . . .. . ...... ..... . .. ... . . . . ... .... ... . . ... . . . .... . . . . . . . . . . . . . . . . 77 5.43 Millstone Unit 3 Cycle 4 Critical Boron Concentration Vs. Bumup . ... . . . ... .. . ........... .... . . .. . . . . .. . .. . . . . . . .. . . . ... .. .. .. .. ..... . .. ... . 78 5.44 Millstone Unit 3 Cycle 5 Critical Boron Concentration Vs. Bumup .... .. . .... . .. .. .. . . . .... . .. ... . . .... . . . . ...... . . .. .. ..... . .. .. . . . . . ..... ... . 79 - viii 1

4t

         ~
                                   "1.0L = INTRODUCTION t,                                          =This Addendum 4 to topical report NUSCO-152-[1] documents NUSCO's ability to perform reload core .' design using' the: current PHOENIX-P/ANC Westinghouse methodology for Northeast Utilities' PWRs. Millstone Unit 3 measured data will be used
                                           -to benchmark the new software package, and comparisons will also be made with_
                                          ' Westinghouse predicted results. A similar topical report has already been submitted by1 NUSCO to the NRC for the Haddam Neck Plant [14), using the PHOENIX-P/ANC methodology.

1.1 ' OBJECTIVE The objecdve'of this report is to demonstrate NUSCO's ability to perform PWR core reload analyses for the Millstone Unit 3 Plant using the PHOENIX-P/ANC methodology supplied by the Westinghouse Nuclear Manufacturing Division. 1.2 SCOPE Westinghouse currently performs reload core design for the Millstone Unit 3 plant using the PHOENIX-P/ANC software package. The NRC approved NUSCO use of the ARK /TORTISE methodology for Millstone Unit 3 in reference 1. ' Although used extensively for Haddam Neck reload designs, NUSCO has used the ARK /TORTISE methodology to date only for core follow activities, not licensing activities on Millstone' Unit 3. In-an effort to remain technically current, NUSCO has upgraded to the l Westinghouse PHOENIX-P/ANC software package. Descriptions of the computer  ! codes and the physics models in this package are presented in Sections 2 and 3. NUSCO intends to use the PHOENIX-P/ANC methodology for MP3 Cycle 6 core follow and plant support activities, and eventually for licensing activities in MP3 Cycle 7. Core follow results from operation of Millstone Unit 3 cycles 3,4, and 5 provide a large _ , database with which to benchmark power distributions, boron rundown curves,'and fuel depletion calculations. In addition, physics data collected during startup testing of 1 Millstone Unit 3 cycles 3,4, and 5 provide reliable benchmarks for evaluating the model predictions of control rod worths and temperature coefficients. Since the reload i designs for cycles 3,4, and 5 'were performed by Westinghouse, their results can also-  ! be compared to PHOENIX-P/ANC, where applicable. Complete core follow data from ) Cycle 5 will not be presented since, at the time of this report, only the operating data for the first half of the cycle was available. All methods employed (model development, computer codes, etc.) to generate the results appearing in this report are the standard licensed methods used by the Westinghouse Nuclear Manufacturing Division. Therefore, requantification of the calculational uncertainties associated with the methods is unnecessary [2]. In addition, the methods used in the INCORE 3D code [3] to process measured data are also standard to Westinghouse such that the measurement uncertainties associated with this process do not require redetermination. 1

e >

        ' 74 g
                     '2.0 - ' PHYSICS CODES f This section describes the major Westinghouse codes used by NUSCO as part of thel reload design. The codes are used in the same fashion as desenbod in Section 3 of
                                             - Westinghouse's licensed reload methodology topical report [4].J Although the codes described .in this< section - are not named in the' Westinghouse , licensed reload methodology topical, the FIGHT-H and APOLLO codes.contain the same methodology as the licensed versions. These," updated versions" contain engineering enhancements such as larpor problem size and editing improvements relative to the original code versions. The updated code versions were described at a meeting between the Westinghouse Nuclear Fuel Division and the' NRC Core Performance Branch in:

October 1984. During this meeting, the differences between the original and updated : code versions were discussed. The NRC Core Performance branch agreed that the

                                             ' updated code versions were - fundamentally ' the --same as the original versions, employing the same fundamental solution algorithms as the original versions.     ,

The two remaining codes, PHOENIX-P and ANC, contain significant impmvements to the methodologies discussed in the 1984 meeting between Westinghouse and the. , NRC. PHOENIX-P is a two-dimensional multigroup lattice physics code. which does . not rely on 'the1 spatial / spectral interaction assumptions inherent in previous methodology. ANC, a three-dimensional r, ode , utilizes the non-linear nodal expansion method, the equivalence theory for cross section homogenization,'and a rod power recovery model. Topical reports qualifying PHOENIX-P and ANC for reload design ' have been approved by the NRC [5,6]. i 2.1 FIGHT-H FIGHT-H performs a calculation of effective temperatures in a low enriched, sintered, , PWR UO2 fuel rod for use in PHOENIX-P calculations. The FIGHT-H model accounts  : for the following effects: radial variation of pellet. thermal conductivity and heat , generation rate, pellet thermal expansion, elastic deflection of the clad, gas gap ' !' conductance as a function of initial fill gas, variation of the hot open gap dimension,. l and the fraction of the pellet circumference over which the gap is closed due to pellet. ' cracking. References 7 and 8 provide a description of the basis of the FIGHT-H code. i 2.2 PHOENIX-P PHOENIX-P is a two dimensional multigroup transport theory code used to develop lattice physics constants for PWR core modeling. The flux distribution is solved using a two step process. First, a 42 energy group nodal calculation coup'es individual subcell regions (pellet, clad , and moderator) as well as surrounding pins by using a method based on collision probabilities and heterogeneous response fluxes. The nodal' ,. solution generates a detailed local flux distribution which is later used to homogenize

i. the assembly geometry.

I I 2

s m  ;

                      . The next'stop solves for the assembly angular' flux distnbution by using an S discrete                                                             i ordinator transport calculation. .For this calculation, the assembly geometry is                                                                   -

homogeihed using the flux distribution from the nodal calculation, and the energy i dependence is reduced to 6 energy groups. The discrete ordinates solution is then  ! used to normelua the fluxes calculated in the nodal solution. These normalized fluxes  ! are used to determine reacten rates and to deplete the fuel and bumable absorbers. A' standard B1 calculation is employed to correct cross sechons for the cribcal spectrum li and to provide accurate fast group diffusion constants.  ; a . . PHOENIX-P accesses a 42 group cross sechon library which has been developed from - - ENDF/B-V fRes. The group structure was exphcitly designed to' retain important l resonance parameters during group collapse from the fine group data. The PHOENIX-P library has.the neutronic data necessary to model fuel,. fission products, coolant,- cladding, structural materials, and absorber materials found within a PWR core. l A detailed discussion of the methodology and models incorporated in PHOENIX-P is i contained in Reference 9. i 2.3 ANC - , The Advanced Nodal Code (ANC) employs a nodal expansion method to solve the 2-  ! [ group dWusion equations in 3 dimensions. This method determines partial currents

                               .                                                                                                                                           j
                     - and average neutron fluxes for a node by utilizing continuous homogeneous neutron

[ flux profiles described by fourth order polynomial expansions in the x, y, and z directions across the node. Discontinuity factors are used to modify the homogeneous i cross secbons to preserve the node surface fluxes and currents that would be obtained ) i from an equivalent heterogeneous model. A pin power recovery model couples an L analytic solubon to the two group diffusion equations with the pin power information from PHOENIX-P. Using this method,- ANC accurately reconstructs the results of fine e mesh models. A detailed descripton of the ANC methodology is provided in Reference 10. ! i , ANC can be used to perform two or three dimensional calculations with'several options. l . Full core to eighth core geometry configurations are available in addition to various symmetry options. Changes in fuel temperature and moderator density are modeled by . L providing feedback adjustments for macroscopic cross sechons. Fuel and bumable absorber deplebon and xenon and samarium buildup and decay are modeled. ANC is i primarily used for the following applications: l , . I

                      -          Axial and radial power distributions.                                                                                                     )

i Differential and integral control rod worths. I Core reactivity coefficients. [

                      =

Cribcal core configurations and shutdown margins. 4 3 E I

     ,T     --     .        ,       ,    w. m. ~ _ , . . -             - . , _ . . . . . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _

l l

 ~                                                                                                   ,

Fuel and bumable absorber loading pattoms. i 1 I 2.4 APOLLO , i The APOLLO code calculates flux distributions and reaction rate distributions in a 'one-dmonsional slab as a function of bumup. APOLLO models are produced through radally catapsing a three-dimensional ANC model. A bumup and elevation dependent radial budding search is then performed to normalize the APOLLO model to the ANC' a raodel.  ; The algorthms of APOLLO are based on two-group diffusion theory with a~ finitei mlerence solution method. Although APOLLO considers slab geometry, a' relatively1 .j high number of mesh points is available. Variations in thermal-hydraulic parameters ' j occurring in the. lathce are reproduced through feedback adjustments. to fuel { temperskares and rnoderator densities. J I The purpose of the axial APOLLO modelis to provide: ) 1 - - DINorential and integral control rod worths. Axial power distribubons for Fo synthesis. I

                                                                                                   .j
         -         Trip reactivity curves.                                                           .
           --      Load follow capability evaluations.                                              )
         -         Control rod insertion limit ver;1ication.
                                                                                                    +
                                                                                                    \

APOLLO uses microscopic and macroscopic cross sections for the compositions - { present in each mesh interval. These cross sections result from least-square fits of- i radially averaged cross sections as a function of bumup.  : 1 Referenos 11 provides a description of the basis for the APOLLO code. ) i l t i l

                                                                                                  -i
                                                                                                     )

4 l l

k V 4

                                                                                                                              'I 3.0 -       PHYSICS METHODOLOGY.

Westinghouse cunently performs reload core design for the Millstone Unit 3 plant using the PHOENIX-P/ANC software package. The NRC approved NUSCO use of the ARK /TORTISE methodology for Millstone Unit 3 in reference 1. To date, NUSCO has used the ARK /TORTISE methodology on Millstone Unit 3 only for core follow activities, not licensing activities. In an effort to remain technically cunent, NUSCO has upgraded 1 to the Westinghouse PHOENIX-P/ANC software packdge. 1 i lhis section briefly describes the Westinghouse methodology to be used by NUSCO to j perform reload core design calculabons, or core follow activities. The major features * -  ! associated with each model are discussed as well as the interaction between models.  ; This methodology ? was used to generate the ' results presented - in Sechon 5. l Descriptions of the individual computer codes are given in Section 2. j l Lattice physics parameters for unit assemblies and baffle-reflector cross sechons are j calculated with the two-dimensional multigroup transport theory . code,. PHOENIX-P. 'l Fuel and clad temperatures are generated with the FIGHT-H code. The core is--  : modeled in three dimensions with the advanced nodal code. ANC, which is used to - 1 predict reactivity, power distributions, and other. relevant core characteristics. In l addition, the one-dimensional diffusion theory code, APOLLO, is used to calculate  ! differential control rod worths and axial power distributions for the heat flux hot channel  ! factor (Fa) synthesis to establish opershonal limits. The cross sechon library as well as -  ! several major code models are discussed in the following sechons. All models are. l representative of current Westinghouse prachoes.  ; 4 i 3.1 CROSS SECTION LIBRARY j

                                                                                                                         .      I PHOENIX-P uses a 42 energy group microscopic cross section library which has been                  'l collapsed from the ENDFBN fine group library. The library was designed to capture                   l integral properties of the multigroup data during group collapse, enabling proper j

modeling of important resonance' parameters and to provide the overall accuracy needed in design calculations. In addition, the library has been developed in a manner-consistent with existing Westinghouse methodologies and accumulated experience in-core design. The generation and benchmarking of the PHOENIX-P library are de-  ! scribed in detailin Reference 9. j 3.2 PHOENIX-P LATTICE MODEUNG In PHOENIX-P, the fuel, discrete absorbers, and structural compork ,ts within a single j fuel assembly are represented in their exact lattice configuration. . Ho;nogenized two- l group microscopic cross sections discontinuity factors, r:d pin factors are generated as  ; a funchon of bumup for input to ANC. Micrompic cross sechons are generated for - 1 isotopes and materials represented explicitly in ANC. These include xenon, samarium,  ! soluble boron, water, and bumable absorbers Branch calculations are performed at selected bumups to obtain constants for rodded assemblies.

s a ;l l 1

                                                                                                                   -l
                                                              ,                                                    .i PHOENIX-P allows a three region cyhndrical cell description for each cell within the lattice. ~ Since most lattice cells consist of more than three . subregions, material      ,j preservation principles are employed to construct a three region cell representabon.       -l'
                      ' The third or outer region of each cell, defined by the fuel pin pitch, has a common composition in all cells in a given lattice problem. The grids are modeled by smearing
  • the grid material uniformly over this common outer region. Only grids in the active fuel i are smeared. The following sections describe the different types of cell models. l 11 3.2.1 Fuel Cell Model l The innermost region of a fuel rod cell is defined by the fuel pellet outer radius. The: j second region is defined by the clad outer radius and includes the gap. For fresh fuel,  !

the appropriate number densities are specified for the uranium isotopes and oxygen. l For bumed fuel, isotopic information for the depletion and decay chains modeled in i PHOENIX-P is obtained from previous depletion calculations. Fuel pellets with integral  ! fuel bumable absorber (IFBA) are not explicitly modeled with a coating on the pellet; j instead, the B" material is smeared into the clad region. PHOENIX-P corrects for. 1 reactivity differences due to modeling the absorber in the clad instead of on the pellet. i 3.2.2 Discrete Bumable Absorber Cell Models  ! Two types of discrete 'bumable absorber (BA) cells'are encountered in typical design ( applications: Pyrex glass and wet annular bumable absorber (WABA). Due to the  : innermost region, the cell representation of these bas is significantly different. The Pyrex BA is voided in the central region while the WABA contains moderator material. :l In addition the amount of material as well as the surface area of the absorber must be .

                                                                                                                     ~

preserved. l

                                                                        ~

For a Pyrex BA, the void, inner clad, and BA pellet material' are smeared into the first ' region with a radius equal to the BA pellet outer radius. Region 2 represents the BA l outer clad, gap, guide tube, and materials. Note that the small volume of _ moderator j between the BA outer clad and the guide tube is modeled as if it is outside the guide  : tube. Since the zircaloy guide tube material is nearly transparent to neutrons, this is a , minor approximation. l l In the case of WABAs, both the inner and outer surfaces of the absorber are important j since a fast neutron can pass through the absorber, become thermalized in the inner 1 water region, and be absorbed. Region 1 of the cell is defined as moderator material  ! with an outer radius equivalent to the BA pellet inner radius, and region 2 is defined as l pure pellet material with an outer radius equivalent to the BA pellet outer radius. The 1 inner clad, inner gap, outer clad, guide tube materials are smeared into the moderator region to preserve materials. i 6 . I I l l>

_ . - _ ~ _. . _ i

                                                                                                                                      ?
  • 3.2.3 ' Control Rod Cell Model l

Control rod cells are modeled the same as Pyrex BA cells. The only distinction is the  ; dimension and material in the pellet region. Control rods are modeled in PHOENIX-P  ! U . by specifying a trace amount of U-238 in with the control rod absorber material. This'- j

                      ' action triggers a resonance calculation in the Hafnium or Ag-In-Cd by PHOENIX-P..                             j 3.2.4 Structural Cell Models                                                                                          lr Strudural cells are cells that contain nesther a ' strong absorber nor material that is:          .l depletable. These include guide tubes, instrumentation tubes, water displacer rods,                 !

and stainless steel and zircaloy rods. Typically, these cells can be represented with' -l three or fewer regions and do not require any special neutronic considerations. Sleeves l are accounted for by calculating an effective guide tube thickness that preserves the  ; sleeve volume. i j 3.3 BAFFLE-REFLECTOR MODELING l A one-dimensional slab calculation is performed with PHOENIX-P to generate baffle- i reflector cross sections for ANC. The model consists of a series of fuel cells 1 approximating two fuel assemblies, assembly / baffle gap, baffle, reflector, core barrel, j , thermal pad, and moderator. A set of homogenized cross sections for ANC is obtained . which reflect the complex spectrum variabon which exists between the fuel assemblies, i

-                                  baffle, and reflector.
i 3.4 THREE-DIMENSIONAL NODAL MODEL l

. The homogenized cross sections, discontinuity factors, and pin factors generated on a j cycle specific basis with PHOENIX-P. depletion calculations are used to model the  ! three-dimensional core'in ANC. Each fuel assembly is represented by four radial  ! ! nodes. To obtain an accurate pin power recovery solution, the bumup gradient within

each node is represented in ANC. A bumup gradient algorithm matches node comer .  ;

and surface average bumups.

     ~

Axially heterogeneous fontures such as axial blankets and part length bumable absorbers are explicitly represented using the variable axial mesh capability in ANC. l' Generally,20 to 24 axial mesh intervals produce accurate axial powar distributions. .l Axial zoning of bumup dependent fuel cross sections is used to account for spectrum 1

offects induced by axial bumable absorber.and fuel bumup gradients. Previous cycle burnable absorber history effects are also accounted for by using different sets of fuel cross secbons.

Three-dimensional ANC calculations are used to predict core power distributions,

peaking factors, critical boron concentrations, control rod worths, and reactivity i

4 7 4.-. - . . . , _ . . . , _ _ . . , . . - , - , , _ , , . . . . . .

     ,    ,           m                                                          -                    __            _           _

a.+  ; y' , coefficients.' .The three-dimensional model cari also be collapsed to two emensions for ' ] certain calculations (e.g., selechon of the highest worth stuck rod) where a three-

                                                                                                                                  -l
  ',                             dimensional representaten is not necessary.                                                      j
                                                                                    '                                               k l

3.5 ONE-DIMENSIONAL DIFFUSION THEORY MODEL i The three-dimensional ANC model is' radially . homogenized to generate a one- } dimensional APOLLO model. Cross sechons are flux and volume weighted, and a 1 burnup and elevation dependent radial buckling search is performed to normahze the  ! APOLLO model to' ANC. The axial mesh is redefined to comprise 40 or more axial i intervals. The one-dimensional diffusion theory model is used for calculations where additional detail is desirable in the axial dirochon. These include generation of i differential and integral control rod worth curves, determination of control rod inserbon limits, and analysis of axial power distributions to establish limits on axial offset during ' l power operation. 1 l 3.6 IN-COREINSTRUMENTATION ANALYSIS  ! i The INCORE 3D code [3]is used in the design process to analyze flux measurements taken during typical periods of plant operation. Comparisons of these measurements - jl with analytic power distributions gives insight into the plant operation and helps to venfy~ ;j design procedures and methods.

                                                                                                                                   ]

input to INCORE 3D consists of neutron flux measurements from movable in-core detectors, and plant conditions at the time of the measurements.' Analytic power i ' distributions are also input and enter into the data reduction process as well as serving , as a basis for comparison with measurements. The flux measurements are used in j conjunchon with analytic power to flux ratios to obtain the core power distnbution. The  ! inferred power distribution is then used to determine local rate of bumup, Fm, Fa, axial  ; offset, radial power distributions and axial power distributions. l l l l

                                                                                                                                  .i e

8

L-4.0 PilYSICS MCSEL APPLICATIONS  ! The physics methodology discussed in Section 3 was developed in order to provide  : reliable analytical predictions in the following four major areas: 1

        -        Core power distributions at steady state conditions.                                                                      ,
  • Axial power distribution control limits
  • Core reactivity parameters. l
  • Core physics parameters for transient analysis.  !

Often more than one model may be used to perform a specific analysis. Selection of .  ; the appropriate model depends upon the degree of accuracy and range of application , required for a given analysis. l 4.1 CORE POWER DISTRIBUTIONS AT STEADY STATE CONDITIONS  : The app'ication of physics models during steady state operation is directed at the l prediction of power distributions, power peaking, and fuel depletion. These calculations are performed for various points during the projected cycle and for various control rod j bank configurations. 4.1.1 Power Distributions  : Global core power distributions are obtained as a function of bumup from three-  ; dimensional ANC depletion calculations. Calculations are also performed et selected bumups for various power levels and control rod configurations. Peak rod powers and . hot channel factors are generated by pin power reconstruction within ANC using rod- j j by-rod power distributions from single assembly, two-dimensional PHOENIX-P fine ' mesh calculations. The ANC model also provides input data to the incore j instrumentation surveillance program INCORE 3D.  ; 4.1.2 Power Peaking , Local power peaking is continuously under review because of the limits imposed by Technical Specifications and/or by fuel design limits. The factors used to measure local power peaking include:

  • the heat flux hot channel factor Fo, defined as the maximum local heat flux on the surface of a fuel rod divided by the average fuel rod heat flux.

l 9 1

c . ,

                   =~     [the ' nuclear enthalpy. rise hot channel factor, Fm, defined as the ratio of the:
          ,                 integral of linear power along the rod with the highest integrated power to tho' u                            average rod power.
                   -        the planar radial power peaking factor, Fxv(Z), defined ac the ratio of the peak .

pin. power density to the average pin power density in the horizontal plane.at , elevation z. For steady' state conditions, these factors are obtained from three-dimensional ANC calculations using pin power reconstruction. Peaking factors are analyzed under .,

                  ~ various control rod configurations and at several bumup values and power levels.-                 .)

Additionally, non-equilibrium xenon distributions are taken into consideration as part of . H

                  - the power shape analysis.

4.1.3 Fuel Depletion Three-dimensional fuel depletion calculations are performed with ANC. ' Rod-by-rod ~ , bumup distributions are obtained from the ANC depletions, and specific fuel nuclide j inventories are obtained from two-dimensional single assembly PHOENIX-P depletion l calculations. l j 4.2 AXIAL POWER DISTRIBUTION CONTROL ] Axial power distribution control limits are determined based on Westinghouse's Relaxed Axial Offset Control (RAOC) calculation procedure [12]. These limits are represented . by a curve of allowed axial offset (AO), or axial flux difference (AFD) as a function of core power. Axial offset is defined as the difference between the upper and lower excore detector signals, divided by the sum of the signals. Axial flux difference is , defined as the difference between the upper and lower excore detector signals. The j RAOC procedure begins by performing xenon transient simulations to setup the xenon -) reconstruction model. The one-dimensional APOLLO code is used for the xenon l transient simulations based upon. chosen AO or AFD limits. Xenon transient simulations are performed at various points in life and at different core power levels. Axial xenon shapes are reconstructed by APOLLO and are used to generate axial power shapes. These axial shapes are synthesized with height dependent planar radial power distributions from three-dimensional ANC calculations. Next, the axial power shapes are used to verify the adequacy of the chosen AO or AFD limits. When verified, these AO or AFD limits would then be used as the axial power distribution Technical Specification limits during plant operation. While constrained by the chosen AO or AFD limits and the power dependent rod insertion limits, APOLLO is used to generate a large number of axial power shapes based on reconstructed axial xenon shapes. These axial power shapes are used to check the kw/ft limits for normal operation conditions, the thermal hydraulic constraints 10 I l

m E l h1 j

 ^

for loss of flow accident simulations, and the peak power and DNB limits for accident - conditions. ' ) 1 For normal operations, more restrictive AO or AFD limits are chosen if kw/ft limits or.- thermal hydraulic constraints'are exceeded. -For accident conditions, analyses are performed to verify that all design limits are met. _Therefore, the RAOC procedure will provide axial power shape information which is used to vertfy that all design limits are met. 4.3 CORE REACTIVITY PARAMETERS i l The core reactivity is affected by changes occuning in the reactor, such as 1 temperature and composition variations. Most of there effects are important in safety j analyses, and therefore, the. physics models provide the reactivity coefficients, the l reactivity worths, and the kinetics parameters as a function of bumup, temperature,' and i power level. Reactivity coefficients quantify the~ rate of reactivity . change subsequent to a unit .l change of an independent variable, such as, moderator density, fuel temperature, or . boron concentration. All reactivity coafficients are defined as the change in reactivity . per unit change in the parameter of interest. ' For most reactivity coefficients, the - j reactivity is expressed in units of per cent mille (pcm). One pcm is equal to 10%k/k. j i i 4.3.1 Moderator Temperature Coefficient l i The moderator temperature coefficient (MTC) is defined as the change in reactivity per. 'I degree change in moderator temperature. The MTC is sensitive to the values of the i moderator density, moderator temperature, soluble boron concentration, fuel bumup, j and the presence of control rods and/or bumable absort>ers which reduce the required  : soluble boron concentration and increase the leakage 'of the core. The MTC may be l positive or negative depending on the magnitude of change of the individual compo-

                                                                                                                ~

1! nonts of this coefficient. I The MTC is calculated using the ANC core model described in Section 3.4 by varying the moderator temperature around a reference _ temperature. The moderator q temperature coefficient is analyzed for various reactor conditions, from hot zero power .: (HZP) to hot full power (HFP), for various boron concentrations and control rod l positions, and at various cycle bumups. The moderator temperature defect is also l obtained using the ANC core model. l I 4.3.2 Doppler Temperature Coefficient  ! The Doppler temperature- coefficient is primarily a consequence of the Doppler j broadening of U-238 and Pu-240 resonance absorption peaks. This coeffelent j i l 11 l

i!

  .'   ')..

I 4

              ~

F represents the change in reactivity por degree change in the effective fuel temperature. i The Doppler temperature coefficient is calculated with ANC by varying tho' reactor )

                   -                power, which in tum varies. the fuel temperature, while holdmg the moderator o                                 temperature constant. Effective fuel temperatures. as a function of power level and bumup are provided by FIGHT-H. The coemcient is analyzed at different power levels .

and for various cycle bumups. A Doppler reactivity defect is also obtained from the. three dimensional ANC model by varying reactor power.at specific times during the ' L.. cycle. j t- c 4.3.3 - Total Power Coefficient The total power coefficient represents the combined 'effect of moderator temperature y and fuel temperature changes for an associated change in core power level. The total power coemcient is calculated using ANC by varying the' core power level' il around a reference value while allowing the inlet temperature to change in accordance with the. inlet program for the plant. The power coemcient is analyzed at different power levels and at.various times in core life. The power defect is also obtained using the ANC model by varying the reactor power. 4.3.4 isothermal Temperature Coefficient The isothermal temperature coefficient (lTC) represents the change of- reactivity corresponding to a uniform change in the core temperature. The ITC is also defined as the sum of the moderator and Doppler temperature coefficients. ITCs are obtained from three-dimensional ANC calculations usually performed for HZP conditions. Using the ANC core model, ITCs are calculated explicitly by varying both the moderator temperature and the fuel temperature about a uniform reference temperature. Additionally,' the ITC is' directly measured during the startup physics testing program at BOC. The isothermal temperature defect (ITD) refers to the change in reactivity between hot zero power temperatures and temperatures below hot zero power. ITDs are needed as a function of temperature and bumup for various rod pattoms to establish shutdown ' boron concentration requirements. They are calculated with the ANC model using cross sections generated with PHOENIX-P at specific temperatures between hot zero power and 68'F. 4.3.5 Boron Reactivity Coefficient The boron reactivity coefficient, often referred to as the differential boron worth, represents the change in reactivity due to a unit change in the soluble boron 12

              ? i,')                                                                                                                                                               .

y concentrabon. The inverse of the boron reactivity coefficient is the inverse boron worth.  ! The coefficient'provides a means of determining the change in soluble boron  ! concentration necessary to compensate for a given reactivity change. The boron reactivity coefficient is calculated using the ANC core model by varying the a bo on concentration about a reference value and computing the reactivity change. l Boron worths - are calculated as' a funchon of. boron concentration, power . level, i temperature, bumup, and control rod configuration. i l

                                                                                                                                                                                 ;)

4.3.6 Xenon and Samarium Worth  ! The fission products Xe-135 and Sm-149 are dominant neutron absorbers 'due to their [ large thermal absorption cross sechons. Sece Xe-135 is produced directly from fission and through iodine decay, it initially builds up and then decays following a reduction in i power or shutdown. Sm-149 is.a stable isotope produced by promethium decay. j

                                                                  ' Following a reactor shutdown, its concentration increases, and upon restart it gradually                     -l 1

retums to its equilibrium value. Equilibrium xenon and samarium worths are calculated by ANC at various power levels'- ' l and core bumups. Changes in their worth and. axial fluctuations in . isotopic 'li concentrations during transient operabon are obtained using the ANC and/or APOLI.O. models. ~ 4.3.7 Control Rod Worth l Control rod worths are analyzed using' many rod - configurations under .various . .l conditions as required by startup physics testing and operabons. The reactivity worth is  :' derived from the reactivity change corresponding to the difference between two rod positions, integral rod worths of either single rods and/or rod banks are calculated i using the ANC model. Differential rod worths are obtained with the ANC and/or l APOLLO models. j 4.3.8 Neutron Kinetics Parameters j Neutron kinetics parameters, which include delayed neutron fractions, decay constants, and the prompt neutron lifetime, are required as input to the plant reactivity computer l and to various safety analyses.  ! All kinetics parameters are derived from basic cross sechon libraries, using PHOENIX-P -; for composition dependency and ANC for the fission distribution in the reactor._ The kinetics parameters are kvaluated at hot full power and het zero power conditions for various cycle bumups and control rod configurabons. l b 1 I 13 1 1

V l 1 Celayed neutron fractions and dos,ay constants for fissionable and fissile nuclides are , o-stored in the databank for fast and thermal fissions and for each of the six delayed l neutron energy groups. The core averaged folayed neutron fractions are obtained by  ; weightmg the delayed neutron fractions by the core power distribution. The core j average decay constants are calculated in a similar manner. A delayed neutron  ; importance factor is used to determine an effective core average delayed neutron  ! frachon. l The prompt neutron lifetime also depends upon the core composition (fuel enrichment, i o bumup, absorbers, etc.). Single assembly PHOENIX-P calculations provide the  : neutron lifetime for the fuel in each core region. The core average value is determined l through a power and volume weighting process. , 1 t h h a t - , I

,                                               14                                             t i

i i

I

1 5.0 PHYSICS MODELVERIFICATION The Millstone Unit 3 reactor is presently operating in' Cycle 5. Verification of the physics models described in Section 4 was performed by directly comparing ANC model predictions to measured plant data. Operstmg data and startup testing data from cycles 3,4 and 5 were used as the basis for the comparisons. Previous cycle design calculatens by Westinghouse with PHOENIX-P/ANC are provided as an . I additional comparison with which to verify the NUSCO PHOENIX-P/ANC reload design <

models. Since only the first half of MP3 Cycle 5 operation has occurred at the time of this report,_ J a limited amount of cycle 5 operating data has been presented. A summary of each ) cycle's historyis provided below.

                                                                                                                   )

5.1 CYCLE HISTORY.

                                                                                                                 .]

Cycle 3 of the Millstone Unit 3 reactor began operation in July of 1989, and shut down

               ' in February of 1991 after 475 effective full power days (EFPD) of operation. The cycle            j 3 core loading pattom is shown in Figure 5.1, and the cycle batch loading is listed in            :

Table 5.1. Cycle 3 contained Region 5 feed fuel with 108" IFBA pins and natural i uranium axial blankets. d Cycle 4 of the Millstone Unit 3 reactor began operation in April of 1991, and thut down  ! in July of 1993 after 534 EFPD of operation. The cycle 4 core loading pattom is st. ;n in Figure 5.2, and.the cycle batch loading is listed in Table 5.2. Cycle 4 contained  ; Region 6 feed fuel with VANTAGE-5H design,120" IFBA pins and natural uranium axial' 1 blankets.  ;.  ;

                                                                                                       ..         \

Operation of Cycle 5 of the Millstone Unit 3 r9 actor began in November of 1993, and is . l expected to continue until April of 1995. The cycle 5 core loading pattem is shown in  : Figure 5.3, and the cycle batch loading is listed in Table 5.3. Cycle 5 contains Region 7  ; feed fuel with VANTAGE-5H design,120" IFBA pins and natural uranium axial blankets. l 1 5.2 ZERO POWER PHYSICS TESTS l At the beginning of each Millstone Unit 3 cycle, while the reactor is maintained at HZP -  ! [ conditions, the following physics tests are performed. l Measurement of critical boron concentrations. Measurement of control rod bank worths. Measurement of isothermal temperature coefficients.

                                                                                                                   )

4 i 15

       .I t

Se Table 5.4 contains the Zero Power Physics Test acceptance criteria which represent _ the maximum acceptable deviations between measurement and prediction for each parameter of interest. The basis of the cnteria is described in Reference 13.

          - 5.2.1 Cr#ical Boron Concentration Critical boron concentration measurements for cycles 3,4 and 5 were taken with'all-rods out and with banks D, C, B and A fully inserted. ANC model predictions were made at the same core conditions present during measurements. Measured cribcal boron concentrations are compared to NUSCO ANC predictions in Table ~ 5.5.                                       '

Westinghouse ANC predictions are also included in Table 5.5 for comparison._ All , differences between NUSCO ANC predicbons and measured data fall within the review i

                . and acceptance criteria listed in Table 5.4.                                                                       ;

5.2.2 Moderator Temperature Coefficient The ITC is directly measured in startup physics testing. ITCs were derived for all rods j out and with Banks D, C, B and A fully inserted into the core. Table 5.6 compares the . measured ITC for both rodded and unrodded conditions to NUSCO ANC model predictions and Westinghouse ANC predichons. All differences between NUSCO ANC predictions and measured data fall within the review and acceptance criteria listed in Table 5.4.- 5.2.3 Control Rod Worth Control rod worth measurements for cycles 3,4 and 5 were obtained using the boron dilution technique. ANC predictions for rod worth were performed at the.same core conditions present during measurement. Tables 5.7, 5.8, and 5.9 show the comparisons between measured worth. NUSCO ANC. predicted worth, and Westinghouse ANC predicted worth for cycles 3,4 and 5 respectively. All differences between NUSCO ANC predictions and measured bank worths are within the criteria set forth in Table 5.4. Control rod worth measurements are taken through the plant's reactivity computer. For cycles 3,4 and 5 the reactivity computer utilized delayed neutron data derived from Westinghouse predictions, incorporating NUSCO PHOENIX-P/ANC predicted delayed neutron data into the reactivity computer would result in a small percentage change (-1% ) in the overall measured bank worths. The effect of using NUSCO derived PHOENIX-P/ANC delayed neutron data is not included in the presented control rod worth data. 5.3 POWER OPERATION l 16

ij j During the operation of each Millstone Unit 3 cycle, the core' power distnbution is . j measured every 31 effective full power days with the incore instrumentation system. H

                   ' The measurements are conducted in support of Technical Specification surveillance                          .j requirements.

J 3 The measured signal traces generated by the movable incore fission chambers are  ! analyzed with the INCORE 3D computer code [3]. The INCORE 3D code performs .! signal-to-power conversion and infers the core three-dimensional power distribution and , J the axial offset. Two-group fission cross sectens for the U-235 lining of the fission' r chambers _ are generated by PHOENIX-P. . Flux ratios in each thimble and the power to  ! reaction rate ratios between instrumented and uninstrumented ' assemblies are J generated by ANC. INCORE 3D is provided with unrodded and rodded (Bank D) ANC - l 1 data such that rodded flux maps are processed with the appropriate constants. j i This section presents comparisons between ANC predictions and INCOREl 30 j measurements for the following parameters:  ! radial power distribution as a function of bumup. )

                                                                                                                                   )
                     .       axial power distribution as a function of bumup.                                                      l
                     .       peaking factors, Foand Fm.
                     .       axial offset.                                                                                      -j l

In addition, boron rundown measurements are compared to ANC predictions. '; l Normally, bumup steps selected in the ANC calculations are standard values consistent  ! with the automated depletion sequence. Consequently, bumup values between  ! measurements and predictions do not always agree. However, the differences between the presented measured and predicted bumups.are small and do not impair the ] comparisons. ) l, 5.3.1 Radial Power Distributions All ANC model predictions were performed with Bank D positions similar to those at the - time of the INCORE measurements. Comparisons between NUSCO ANC predicted radial power distributions and measured radial power distributons ese shown in Figures , 5.4 through 5.17 for cycles 3,4 and 5. Power distributions are shown at several bumup . Intervals during the life of the cycle with the exception of cycle 5 (BOL and MOL only). 1 Results are presented in a quarter core format since the core loading for each cycle is symmetric. Cycles 3,4 and 5 employ cyclic symmetry in their designs. In all cases the average difference for the comparisons is less than 1.67 percent. The standard deviation for these cases is less than 1.25 percent. 17 i

e_ . ,

                                    +

p -

                                  ,                                                                                                      }

m .

                                                                                                                                        .i I'                                                                                                                                           i
                            ,5.,3.2 . Axial Power Distributions Measured axial' power distribubons corresponding to the radial power districubons'
                                                                             ~

presented in the previous section are compared to NUSCO ANC model predictions. Figures 5.18 through 5.31 show the predicted and measured axial power shapes for : cycles 3,4 and 5. Again, the bumup intervals are identical. to those presented in the radial power distributions. As shown in the figures, flux depresskms in the measured [ , data occur due to the presence of spacer grids along the length of the core. ANC does

' not model these grids exphcitly and does not include these local effects in the predicted .
                    ;                 axial power distribution.

The axial power distributions for Cycle 3 (Figures 5.18-5.21), Cycle 4 BOL (Figure 5.22) ; I and Cycle 5 (Figure 5.29-5.31) all show good agreement between measured and - predicted axial power snapes. The axial power distributions at MOL and EOL for' Cycle 4 require special discussion. 3 The axial power distributions for Cycle 4 shown in Figures 5.23-5.25 show that the i measured and predicted axial shapes show more disagreement than would be .  ! expected. - Axial offset comparisons shown in Table 5.11 and Figure 5.33 also show j that the measured and predicted axial offset (AO) show more disagreement than would j be ' expected for Cycle 4. At the time of occurrence, this axial power shape  ! disagreement was termed the " axial offset anomaly", or for short, "AO anomaly". ~ This . 1 phenomenon occurred only in Cycle 4. It is believed to have been predominately  ! driven by soluble boron plating out selectively in certain areas of the core due to RCS j chemistry and temperature considerations. This phenomenon is still under investigation j by a joint EPRl/ utility project, to determine the cause of the anomaly and how to assure .l that it does not recur. To ensure that the most accurate axial bumup history of the - 1 Cycle 4 core was correctly passed on to Cycle 5, a special Cycle 4 ANC model was - -! developed. The revised axial power shapes from this Cycle 4 "AO anomaly" model are- .j provided in Figures 5.26 to 5.28. Axial offset comparisons shown in Table 5.11'and .i Figure 5.34 also show the Cycle 4 "AO anomaly" model results. Axial offset is the difference in the integrated power in the top half of the core minus the ~ integrated power in the bottom half of the core, divided by the total core power and' expressed in percent. The final value of the axial offset indicates whether power is j tilted to the top half or bottom half of the core. Tables 5.10 through 5.12 tabulate the -  ! measured and predicted axial offset for cycles 3,4 and 5. The data in these tables is ) also plotted in Figures 5.32 through 5.35 for further comparison. Again, data is .! provided in Cycle 4 for both the original NUSCO ANC model (Figure 5.33) and revised > NUSCO ANC AO model(Figure 5.34). As can be seen, the agreement shown in Figure '! 5.34 is better than in Figure 5.33. j The overall agreement between measured and predicted values of av.ial power distribution and axial offset are good. The only exception is during the latter part of Cycle 4. The larger than expected disagreement in Cycle 4 nial power shapes wasi due to an unusual physical phenomenon specific to Cycle 4 only. This discrepancy was identified in real time during Cycle 4, demonstrating that the axial power distribution predictions are accurate enough to identify unusual conditions as they 18

g,> ,

            . u         <

r o

                                                       = .          _.                     .                       ..

i occur. It is noteworthy to point out that the Westinghouse predicted axial power shapes ' (not shown in this report) are essentially identical to the NUSCO predicted axial power j shapes. This demonstrates that the Cycle 4 axial power shape disagreements are due . 1

                          - to tho' measurements. To ensure that the most accurate bumup distributions. are               :

carried through to Cycle 5, the NUSCO ANC "AO Model" for Cycle 4 was developed j and used as input to Cycle 5.  ; 5.3.3 - Peaking Factors  ! l Tables 5.13 through'5.15. list the comparisons between measured and NUSCO ANC .i predicted Fo and Fm for cycles 3,4 and 5. Peaking factor data listed in these tables is  ; also plotted in Figures 5.36 through 5.41 for additional comparison. - Cycle exposures- 'i are those at the time of the INCORE measurements. All NUSCO ANC predictions -  ! shown' are at cycle exposures comparable to the measured exposure values. The-  : largest absolute differences between measured and predicted Fo and Fm are I approximately 7.1% and 2.8%, respectively. The largest Fo differsnce occurs in cycle 4 = l due to the axial anomaly and associated skewed axial power shapes. In the case of Fa 'l comparisons, grid spacer effects are inherent in the INCORE 3D values but not .j explicitly' represented in ANC. As a result, predicted Fo values are expected to be  ; lower than corresponding measured values by approximately one percent. This effect -  ; can be seen in the tables. Spacer grid effects are always included in safety j calculations and setpoint verification. .i i 5.3.4 Boron Rundown Curves j

                                                                                                                        .j During the course of a cycle, boron measurements are 'taken daily,' regardless of rod l

position. Measured critical boron concentrations are plotted against NUSCO ANC all .; rods out predictions in Figures 5.42 through 5.44 for cycles 3,4 and 5. All boron data .j presented in the figures has been taken from equilibrium, full power core conditions. j Reported measured values are selected near the all rods out condition, and no  ; corrections are made for partially inserted banks. Westinghouse ANC predictions are  ! also provided for comparisons. Both the NUSCO and Westinghouse ANC critical boron i predictions assume a constant natural isotopic abundance of B-10 (19.9%) relative to

i. total boron. ] ,

l l 4 5.4

SUMMARY

l 4 i

.                          NUSCO predictions using Westinghouse's PHOENIX-P/ANC methodology were -                       i compared to measurements taken during startup testing and during power operation of           !

Millstone Unit 3 cycles 3,4 and 5. NUSCO startup predictions were also compared to i Westinghouse predictions with the PHOENIX-P/ANC methodology. Overall, the . j n NUSCO ANC predictions agreed well with measurements. All NUSCO ANC startup i

testing predictions fell within the required review and acceptance criteria listed in Table 5.4. Comparisons between power operation measurements and NUSCO ANC
l. 19 l c 1

n_. . L 4 predictions for boron rundown, peaking factors, and power distributions show good ayooment. . The agreement between measurements and predictions demonstrate NUSCO's ability to perform.PWR core reload ~ design with the' PHOENIX-P/ANC .: R. Westinghouse methodology for the Millstone Unit 3 Plant.  ! e

                                                                                                           'i L

l 4 I i s 6 i i i t i l i i 20 , i c , I. . . . m . . , . . . . - , . . . ,, _-,

Table 5.1 Millstone Unit 3 Cycle 3 Batch Loading - I IFBA Pins Number of BOC Exposure initial Enrichment 3 Batch No. PerAssembiv j 4semblies (MWDIMTU) (wt% U-235) i 2"I - 9 21230 2.90 3 - 24 23700 3.40 1 4A - 56 18580 3.50 ' 4B - 28 14690 3.80 , 5A 32,80,100 32 0 4.10  ! SB 0,32,100 44 0 4.50  ; " Discharged at EOC1 and reinserted for Cycle 3. Notes: ,

        - All Region 5 fuel contains axial blankets of.728 w/o U-235 replacing the top and bottom 6" of the enriched fuel.                                                          ;
        -The Region 5 IFBA coating is 108", centered axially.                                      !

l l

                                                                                                   ?

[ i s l 21

                                                                                                   ?

6

  -e-  ,                             -                 --         , - - , ,           - , . - , ,

o , l;  ; Table 5.2 -l Millstone Unit 3 Cycle 4 Batch Loading .

                                                                                                        \

i IFBA Pins Number of BOC Exposure initial Enrichment Batch No, Per Assembly Assemblies (MWD /MTU) (wt% U-235)  ; 4A. - :9 28580~ 3.50 4B - 20 - 26810 3.80 - l 5A 32,80,100 32 22770 .4.10 i 58 0,32,100 44 20200 4.50-  ; SA"3 128 32 0 4.20 6B"3 0,80,128 56 0 4.50  :

                                                                                                      .i
      " VANTAGE-5H Fuel Design with IFM grids.                                                         l i

Notes:

             - Region 5 and 6 fuel contains natural uranium axial blankets replacing the top and bottom 6" of the enriched fuel.
             - The Region 5 IFBA coating is 108", centered axially.
             - The Region 6 IFBA coating is 120", centered axially.                                    !

r k i i f i 1 f. 22 f i 1

                                 -.                 _    .        ..- -.      -                 . _w

1l i i Table 5.3 l Millstone Unit 3 Cycle 5 Batch Loading  ! IFBA Pins Number of BOC Exposure initial Enrichment .  ; Batch No. Per Assembly Assemblies (MWD /MTU) (wt% U-235) l t L SB 0,100 21 35550 4.50 .{ 6A") 128 32 25940 4.20 f I SB"3 0,80,128- 56 21990 4.50 l i 7") 0,48,64,80 84 0 4.40 t i "YANTAGE-5H Fuel Design with IFM grids. i Notes.  ;

        - Region 5,6 and 7 fuel contains natural uranium axial blankets replacing the top       'i and bottom 6" of the enriched fuel.                                                     l
        - The Region 5 IFBA coating is 108", centered axially.
        - The Region 6 and 7 IFBA coating is 120", centered axially.

I h h i I t l t i f 23 [ l

1 Table 5.4 Millstone Unit 3 Zero Power Physics Tests Acceptance Criteria j h Physics Parameter Acceptance Criteria  ! Critical Boron Concentration t'50 ppm Temperature Coefficients i 2 pcmI*F -! Individual Bank Worth - i15 % or 100 pcm, . whicheveris greater .:, Total Bank Worth i 10 % l I i I

                                                                              -i
                                                                               +

r i i i 24

1

                                             . Table 5.5 ,

Millstone Unit 3 Cycles 3,4 and 5-HZP Critical Boron Comparison Predicted Predicted ( NUSCO ANC-Measurement West. ANC NUSCO ANC Measured) .

              .G911   .QEElf         IRRIBl          (RRIB)        ISBIB)           1921B1 All rods       3             2013            2031          2041              28 out           4             2208           2250'          2255              47 5            2254            2267          2270               16 Banks          3             1551           1545          1564               13 D,C,B,A in      4             1718           1739          1744               26' 5             1721           1733          1739              ~18 The value presented differs from the reported value in the Cycle 4 Startup Report. The Westinghouse predicted boron concentration presented here is based on a revised Cycle 4 ANC model.                                                                         .

f I 25

       . ._           .             .              _         -        _ _  .~         . . _ .           . . _

I

                                                                                                                .1 l

Table 5.6 -; Millstone Unit 3 Cycles 3,4 and 5 isothermal Temperature Coefficient . l J Predicted Predicted - (NUSCO ANC- -  ; Measurement West. ANC NUSCO ANC Measured) -  ;

                 . Gang.        Qtg.lt    focmI*F)         (ocent*F)      (com/*F)             (comI*F) o AR rods           3         +0.74*            +0.16          +0.49               4.25 out            4         +0.56             +0.61          +0.50               -0.06 5         +1.29             +1.05          +1.13               -0.16           l Banks            3          -7.65             -7.89          -7.45              +0.40           .

D,C,B,A in 4 -7.40 -7.05 -6.66 +0.54 5 NIA -6.43 -6.33 N/A

  • The MTC measurement is given in the Cycle 3 Startup Report. The ITC is obtained by ,

the equation: ITC = MTC + DTC, where the DTC is obtained from Westinghouse predictions. l 1 i l 26 l 1

Table 5.7 Millstone Unit 3 Cycle 3 -* Rod Worth Comparison -

      ~
                                                              - Predicted                Predicted Measured               West. ANC               NUSCO ANC .                         3 ERDh               M                             IREB)               (ggg}   % Difference *         .

Bank D 475- 512 505 '. 6.3% Bank C 970 999 971. 0.1% Bank B 967 965 931 -3.7% Bank A- 979' 1067 1069 9.2% , Banks 3391 3543 3476' 2.5% D,C,B,A in Delta Boron for Banks - 462 ppm 486 ppm - 477 ppm 3.2% D,C,B,A in

                   % Difference = .100% x (NUSCO ANC - Measured) / Measured                                               ,

5 27

          +p.r.a        .w.   .y  .
                                                 -me-,-..-      -N-.,~w

s Table 5.8

                                   . Millstone Unit 3 Cycle 4 Rod Worth Comparison r

Predicted Predicted i Measured West. ANC NUSCO ANC ERO.h legg) {ggnl (aggd % Differencei Bank D 485 489 502 3.5% Bank C 845- 905' 910 7.7%' Bank B - 1091 1123 .1114 2.1% Bank A 767 847 864 12.6% Banks 3188 3364 3390 6.3% D,C,B,A in Delta Boron for Banks 490 ppm 511 ppm 511 ppm 4.3% D,C,B,A in .

     * % Difference = 100% x (NUSCO ANC - Measured) / Measured 1

j i 28 4

           -w-                  ~   --                    _ - - _

l: l

     ,                                                          Table 5.9 Millstone Unit 3 Cycle 5                                 ,

Rod Worth Comparison Predicted Predicted Measured West. ANC- NUSCO ANC BacA insml fasml fasnl  % DNorence' l- , Bank D 552 553 550' '- 0.4% .- L

                            . Bank'C            870             854                   .855        -1.7%

Bank B . 710 731 729 2.7% ' (. Bank A 1418 1368 1378 -2.8% Banks 3550 3506 3512 -1.1%- D,C,B,A in Delta Boron for Banks 533 ppm 534 ppm 531 ppm -0.4% D,C,B,A in

                      * % Difference = 100% x (NUSCO ANC - Measured) / Measured .                              ,

1 l 29 l

i

                                            - Table 5.10 Millstone UnM 3 Cycle 3                                   j Axial Offset Comparison                                    i I

Cycle Exposure INCORE * ' NUSCO ANC* - (NUSCO ANC - (MWD /MTU) (Measured) (Predicted) - INCORE) 334 -0.46 0.15 0.61' 1 1160 -0.78 -1.13 -0.35 I 2264 -1.22 -1.70 -0.48 . 4549 -2.35 -2.83 -0.48 ) 7441 -2.85 -3.01 -0.16 i 9275 -3.04 -3.24 -0.20 11400 -3.21 -3.07 0.14-13713 -2.17 -2.99 -0.82 15880 -3.25 -3.04 0.21 16908 -3.38 -3.11 0.27

  • Axial offset in percent (%).  ;

1 i I

                                                                                               )

l

                                                                                             'I l

30

  . it                                                                                                <

l

                                                                                                   .]

Table 5.11 j Millstone Unit 3 Cycle 4  ; Axial Offset Comparison >

                                                                                                     )

i

               . Cycle                                             NUSCO ANC         ( NUSCO ANC     !

Exposure INCORE* NUSCO ANC* AC Model" AO Model  ! (MWD /MTUI (Measured) (Predicted) (Prodicted) -INCORE) l 547 4.83 -0.97 0.97 -0.14  ! t 2008 '- 0.29 -1.45 -1.45 -1.16 l 3920 -1.63 -2.21 -1.91 0.28.  ! 5917 -4.58 -2.77 -4.66 -0.08 l 8059 -6.00 -3.07 4.64 -0.64 10726 -5.17 -2.58 -4.53 0.64 ) 13535 -7.99 -2.41 -7.05 0.94 l 14859 -7.41 -2.57 -7.08 0.33 i 17443 -2.94 -3.13 -2.13 0.81 19273 2.66 -3.06 1.47 -1.19  ! t i  ; i.

  • Axial offset in percent (%). [
         " See section 5.3.2 for explanetion of NUSCO ANC AO model.                                  i i

6 k f 4 r 31 i

s I

   ,.  -i'    c d
1 Table 5.12 l Millstone Unit 3 Cycle 5. ,

Axial Offset Comparison ( i Cycle Exposure

  • INCORE
  • NUSCO ANC (NUSCO ANC-  !

(MWD /MTU) LMg.gggg) LPedl_et_ed) INCORE) l 590 4.84 3.12 -1.72 l 2061 2.92 1.82 -1.10  ! 4129 -0.62 -0.97 -0.35  ; E 7153 -3.63 -2.92 0.71 , 9333 -4.35 -3.29 1.06  ! s

  • 1 Axial offset in percent (%).

h

                                                                                                                                                                  'i t

f i i I r 32  ! I

i i

                                                                                    )

Table 5.13 j Millstone Unit 3 Cycle 3 Power Peaking Factor Comparison 1 i j Fu,(Max) Fa (Max) . 1 Cycle Exposure (P-M)% - (P-M)% (MWD /MTU) M'*8 P)S ,JL, M"I PS3 M. , 334 1.385 1.379 -0.43 1.676 1.635 -2.47 1160 1.381 1.391 0.69 1.680 1.653 -1.62 0.75 1.711 1.709 -0.11 j 2264 1.396 1.406 4549 1.405 1.418 0.95 1.733 1.727 -0.34 7441 1.406 1.404 -0.16 1.718 1.687 -1.80 - 9275 1.397 1.394 -0.21 1.705 1.674 -1.80 . 11400 1.386 1.379 -0.48 1.680 1.643 -2.21 s 13713 1.369 1.361 -0.59 1.624 1.615 -0.53 i 15880 1.351 1.344 -0.54 1.645 1.586 -3.59 16908 1.343 1.335 -0.62 1.651 1.576 -4.54 l (a) Measured INCORE values. i (b) Predicted NUSCO ANC values. 4 1 33 l i

                     -                                .  .    .~       .                  .

i ) Table 5.14-Millstone Unit 3 Cycle 4 l

                               ~ Power Peaking Factor Comparison                             j l

l. FufMax) Fa (Max) L . Cycle -{ l Exposure (E-M)% (P-M)% i l W') PSI .jL, W'8 P'*3 .jL l [ MWD /MTU) 3 M7 1.480 1.456 -1.64 1.986 1.888 -4.92  ! 2008 1.459 1.459 0.00 1.903 1.907 0.21  :

                                                                                   -1.24      l 1           3920         1.447      1.446        -0.07            1.849     1.826 5917         1.455      1.449        -0.40            1.850     1.769'  -4.40 l                                                                                              l 8059         1.423      1.433         0.69            1.830     1.735   -5.18      ;

l. 10726 1.389 1.400 0.81 1.748 1.686 -3.55 1 13535 1.367 1.369 0.12 1.773 1.648 -7.05 14859 1.349 1.358 0.64 1.704 1.636 -3.99 [ 17443 1.330 1.337 0.56 1.598 1.617 1.21 i l 19273 1.335 1.324 -0.79 1.501 1.596 6.36 l l (a) Measured INCORE values.  ; (b) Predicted NUSCO ANC values. I i

                                                                                               ?

h l l t 34 i l. I

k P l Table 5.15 j Millstone Unit 3 Cycle 5  : Power Peaking Factor Compt.rison  : FWMax) Fo (Max)- Cycle , Exposure (P-M)% (P-Mi% (MWDIMTU) M3 P*3 1 M(*3 P'8 .JL 590 1.484 1.443 -2.76 1.863 1.811 -2.79 j 2061 1.496 1.478 -1.22 1.876 1.859 -0.91 4129 1.492 1.484 -0.54 1.889 1.812 -4.07 ) 7153 1.464 1.461 -0.23 1.862 1.773 -4.78 9333 1.453 1.444 -0.61 1.838 1.755 -4.51 f 1 (a) Measured NCORE values. - (b) Predicted NUSCO ANC values. I i l l l l 35 l

4 4 FIGURE 5.1 MILLSTONE UNIT 3, CYCLE 3 REGION AND BURNABLE ABSORBER LOCATIONS- i R P N N L K J .R G F E D C B A l

        .                   4A   53   dB     58     43 53 4A 1  j dB   4A    53   4A   5B     4A     58 4A 53  4A  45 32       100           100    32                        l 43    5A    55    4A   5A    3     4B      3 5A 4A  53  5A  43       -    *
                                                                         ~

32 100 to 80 100 32 4A 5B 3 5A 2 58 4A 5B 2 5A 3 5B 4A 100 80 100 100 80 100 4A 5B 4A 5A 4A 45 4A 3 4A 43 4A 5A 4A 5B 4A

                                                                             ~

32 80 80 32 53 4A SA 2 dB 4A SA 3 5A 4A dB 2 5A 4A 5B 80 '00 80 00 dB 5B 3 5B 4A 5A 3 5A 3 5A 4A 5B a 5B 43 100 100 80 100 80 100 100 5B 4A dB 4A 3 3 5A 2 SA 3 3 4A 4B 4A 5B 900 - e 100 100 , 43 55 3 5B 4A 5A 3 5A 3 5A 4A 5B 3 5B dB 9 100 100 80 100 80 100 100 5B 4A 5A 2 4B 4A 5A 3 5A 4A dB 2 5A 4A 5B

                                                                             ~

SO SO 80 00 (A 5B 4A 5A 4A 4B 4A 3 4A 4B 4A 5A 4A .5B 4A l 11 32 80 80 32 , 1 4A 5B 3 5A 2 5B 4A SB 2 5A 3 5B 4A l 100 to 100 100 80 100 dB 5A 5B 4A SA 3 dB 3 5A 4A 53 5A dB 32 100 80 to 100 32 { 4B 4A 5B 4A 5B 4A 5B 4A SB 4A 4B 1 32 100 100 32 l 4A 5B dB SB dB 5B 4A 15 00 LEGEND R REGION IDENTIFIER N NUMBER OF IFBA RODS 36

1 l FIGURE 5.2  ! i MILLSTONE UNIT 3, CYCLE 4 ' REGION AND BURNABLE ABSORBER LOCATIONS R' P N M L K J B G F B D C B A' l i 4B 6B 5B 63 5B 6B 43 1 1 1005 1005 1 1 45 58 6B 5B 63 5B 6B 53 63 5B dB i 2 100B 80 80 1003 80 80 100B 45 63 63 5A 6B 5A 5B 5A 6B 5A 63 65 dB l 80 SOB 128 80B BOB 128 SOB 80 $ 5B 6B 5A 6B 5B 6A 48 6A 5B 63 5A 6B 5B 4 1003 80 100B 128 32B 128 128 32B 128 1005 80 100B 43 6B EA 8 6B 4A 6A 5A 6A 5A 6A 4A 63 5A 6B dB 5  ; 80 SOB 128 128 808 128 80B 128 128 80B 80  ; 63 5B 6B 5B 6A 5A 6A 5B 6A 5A 6A 5B 6B SB 6B 6  ; 128 32B 128 32B 128 100B 128 32B 128 32B 128 5B 6B 5A 6A 5A 6A 4A 6A 4A 6A SA 6A SA 6B SB 7 100B 80 SOB 128 80B 128 128 128 80B 128 SOB 80 100B 68 5B 5B dB 6A 5B 6A 4A 6A 5B 6A 4B SB SB 6B i 900 - 8 < 100B 128 100B 128 128 1008 128 100B ' 53 6B 5A 6A 5A 6A 4A 6A 4A 6A SA 6A 5A 6B 5B

                                                                                                    ~

1005 80 80B 128 SOB 128 128 128 SOB 128 SOB SO 1005 63 5B 6B 53 6A 5A 6A 5B 6A 5A 6A 58 6B 5B 6B I

                                                                                                    ~

128 32B 128 32B 128 1008 128 32B 128 32B 128 l dB 6B SA 6B 4A 6A 5A 6A 5A 6A 4A 6B 5A 6B dB ' 80 128

                                                                                                    - 11 SOB              128    80B    128  SOB  128            128  SOB         80                      l SB      6B    5A   68    5B     6A     AB   CA  5B   6B         5A   6B         5B                       !

12 l 100B 80 100B 128 32B 128 128 32B 128 100B 80 100B 4B 6B 6B 5A 6B 5A 5B SA 68 5A 6B 6B dB 13 80 SOB 128 80B 80B 128 80B 80 dB 5B 6B 5B 6B 5B 6B SB 6B 5B dB 14 100B 80 80 100B 80 80 100B dB 6B SB 6B SB 6B 4B 15 100B 100B OD LEGEND R REGION IDENTIFIER N NUMBER OF IFBA RODS (B indicates burnt IFBA) l 1 37 l

                                                                   .___ _          ____ _                 ________J

F

                                                         -FIGURE'5.3 J                                    NILLSTOME UNIT 3, CYCLE.:5 REGION AND BURNABLE.ABSORSER LOCATIONS R       P      N     N            K                      G'    F      B     -.D  .C                  3    A'-

L. .. J. E. e e e i 53 7 7. 53 7 7 53 1 1003 1003 55 7 7 7 63 6A 53 7 7 7 53-2

  "                         1005   de    '54    64    803    1203      803   64. 64      48 1003                                            l 53      7     63    63     7'    6A     GB        6A    7     6B      63    7               53                       -!

3  ; 1003 803 1283 80 1283 1203 80 120B 603 1003 j 7 63 65 7 EA 7 63 7 6A 7 63 65 7 1 4 1 48 803 to 1283 90 120s to 1283 to 803 de l 53 7- 65 7 6A 7 63 7 63 7 6A 7 65 7 53 I

                                                                                                                             -5 1003     64    1283    80   1283   80    803     SO       SOB   60   1283      to 1203               64   1005                    ,

7 7 7 6A 7 63 63 6A 6B 63 7 6A 7 7 7 '! 6 l 64 80 1285 to 1203 1283 1283 to 128B 80 64  ; 7 63 6A 7- 63 6B 6A 7 6A 63 63 7 6A 63 '7 .1

                                                                                                                             -7                :

803 1283 to 803 1203 to 1285 SOB to 1283 805 55 6A 53 65 7 6A 7 5B 7 6A 7 63 63 6A 55  ! 900 -8 i 1283 1283 to 1283 80 to 1203 80 1203 1283 e 7 63 6A 7 65 65 6A 7 6A 63 65 7 6A 63 7 9 s 805 128B 80 903 1283 SO 1203 803 80 1283 803 l 7 7 7 6A 7 68 63 6A 63 63 7 6A 7 7 7  ! 10 i 64 to 1283 80 1203 1203 1283 80 1283 to 64  : 53 7 65 7 6A 7 63 7 6B 7 6A 7 63 7 53 I 11 i 1003 -64 1283 to 1283 80 803 80 805 -80 1203 to 1283 64 1005 ) 7 63 6B 7 6A 7 63 7 6A 7 65 63 7

                     '40     803           to  1203    to    1285       80 1293     to          803               de                           j 55      7    63     6B    7     6A     65        6A   7      63      6B    7               5B                           e 13             l 1003          803   1283   80   1295             1285   to   120B     605                 1005                            l 53     7     7     7     65     6A        63   7      7        7  53 2005    48     64   64    803    1298      80B   64     64      48 1005 53    7     7      5B        7    7     5B                                                          i 1005                                     1003                                                         >

I 00 i LEGEND - R REGION IDENTIFIBR J N NUMBER OF IFBA RODS (3 indicates burnt IFBA) l 38 l

  -s Figure 5.4 Millstone Unit 3, Cycle 3 Radial Power Distribution
l. INCORE 334 MND/MTU Bank D at 220

! NUSCO ANC . 334 MND/NTU Bank D at 225 l . .952 . 1.212 . 1.023 . .971 . 1.046 . 1.139 . 1.023 . .933 .

        .     .974 . 1.225 . 1.036 .        .982 . 1.048 . 1.134 . 1.002 .               .905 .
        . 2.32 . 1.08 . 1.28 . 1.14 .      .20 .   .43 . -2.05 . -3.00 .
l. . . . . . . . . . . . ......................
        . 1.212 .     .991 . 1.254 . 1.033 . 1.267 .        .951 . 1.239 . .786 .
        . 1.225 . 1.008 . 1.265 . 1.049 . 1.26? .           .951 . 1.205 .             .761 . *
        . 1.08   . 1.72 .    .88 . 1.55 .     . 01 .   .01 . -2.74 . -3.18 .
        . 1.023 . 1.257 . 1.063 . 1.002 .          .956 . 1.250 . 1.038 .              .850 .
       . 1.0*6 . 1.265 . 1.083 . 1.105 .          .975 . 1.257 . 1.015 .              .818 .
       . 1.28 .      .64 . 1.89 . 2.13 . 1.99 .    .57 . -2.21 . -3.76 .
             .971 . 1.041 . 1.084 . 1.043 . 1.258 . 1.063 . 1.129 .                      .446 .
             .982 . 1.050 . 1.105 . 1.068 . 1.275 . 1.072 . 1.105 .                      .432 .
       . 1.14 .      .87 . 1.94 . 2.40 . 1.36 .    .85 . -2.12 . -3.13 .
      . 1.046 . 1.277 .      .959 . 1.254 .      .984 . 1.179 .           .620 .
      . 1.048 . 1.267 .      .975 . 1.275 . 1.005 . 1.187 .               .620 .
      .        .20 .     .78 . 1.67 . 1.68 . 2.14 .    .68.             .01 .
     .      1.139 .     .958 . 1.271 . 1.073 . 1.184 .       .978 .           .400 .
     .      1.134 .     .952 . 1.257 . 1.074 . 1.187 .       .980 .           .402 .
     .         .43 .     .62 . -1.10 .       .10 .    .26 .    .21 .            .51 .
     .      1.023  . 1.232  . 1.029. 1.116 .    .621 .  .399 .

l

     .      1.002  . 1.205  . 1.016 . 1.106 . .620 .        .403 .
                                                                                                      'l
     .      -2.05  .  -2.19  . -1.26 .       . 89 .   .16 . 1.01 .                                   '
     .       .933  .   .778 .    .836 .    .437 .
     .       .905 .    .761 .    .818 .    .432 .
     .     -3.00 . -2.18 . -2.15 . -1.14 .

l

                                                                                                  .. I KEY :                 i
                                                                           . MEASURED      .
                                                                           . PREDICTED .
                                                                           .  (P-M)/M % .

E AVERAGE % DIFFERENCE = 1.38 % STANDARD DEVIATION = .94 % I 39

M I Figure 5.5, Millstone Unit 3, Cycle 3 Radial Power Distribution  ! l INCORE 2264 MND/MTU Bank D at 223 ' NUSCO ANC 2264 MND/MTU Bank D at 225 l 4

       - . . . . . . . . . ........ ................                                                                                                                                             l
              .                              .987 . 1.282 . 1.027 .                                      .956 . 1.019 . 1.100 .                                      .985 .        .894 .       !
              . 1.006 . 1.292 . 1.037 .                                                                  .966 . 1.027 . 1.103 .                                      .973 .        .872 .        l
              .- 1.93 .                                                             .78 .   .98 .        1.05 .                   .79 .                    .28 . -1.22 . -2.46 .

l

              . . . . . . . . . .... . . . . ................                                                                                                                                   j
              .                  1.282 . 1.010 . 1.283 . 1.021 . 1.277 .                                                                                  .933 . 1.230 . ~.756 .               -l
              . 1.292 . 1.023 . 1.292 . 1.032 . 1.281 .                                                                                                   .938 . 1.208 .          .737 .         l
              .                                        .78 .                       1.29 .   .70 .        1.08 .                   .32 .                    .54 . -1.79 . -2.51 .                 j
              . . . . . . ... .... .. . . ................                                                                                                                                       l
              . 1.027 . 1.285 . 1.048 . 1.064 .                                                                                  .952 . 1.271 . 1.011 .                           .821 .        i
              . 1.037 . 1.292 . 1.065 . 1.080 .                                                                                  .966 . 1.278 .- .994 .                           .794 .
              .                                        .98 .                        .55. 1.62 .        1.51 .                  1.47 .                    .55 . -l.68 . -3.29 .
              .                             .956 . 1.024 . 1.063 . 1.037 . 1.294 . 1.063 . 1.117 . .438 .
              .                             .966 . 1.033 . 1.001 . 1.053 . 1.306 . 1.070 . 1.098 . .426 .                                                                                        l
             .                             1.05 .                                   .88 . 1.70 .        1.55 .                   .93 .                    .66 . -1.70 . -2.74 .                j
             .                  1.019 . 1.282 .                                            .953 . 1.290 . .999 . 1.234 .                                             .634 .
             .                  1.027 . 1.281 .                                            .966 . 1.306 . 1.016 . 1.233..                                            .628 .
             .                                       .79 .                          .08 . 1.37 .        1.24 .. 1.70 .                                    .08.       .94 .                     J
             .                  1.100 .                                            .939 . 1.288 . 1.072 . 1.235 . 1.019 .                                            .418 .
             .                  1.103 .                                            .938 . 1.278 . 1.072 . 1.234 . 1.011 .                                            .415 .
             .                                       .28 .                          .10 .   .77 .                        .00 .    .08 .                    .78 .      .72 .
             .                             .985 . 1.226 . 1.005 . 1.109 .                                                        .632 .                   .418 .
             .                             .973 . 1.208 .                                  .995 . 1.099 .                        .629 .- .415 .
             .                  -1.22 . -1.47 .                                             .99 .                        .90 .    .47 .                    .72 .
             .                             .894 .                                  .750 .  .810 .        .430 .
             .                             .872 .                                  .737 .  .794 .        .426 .
             .                 -2.46 . -1.73 . -1.97 .                                                                   .93 .

KEY : I

                                                                                                                                                                 . MEASURED                  .
                                                                                                                                                                 . PREDICTED .
                                                                                                                                                                 .   (P-M)/M % .

AVERAGE % DIFFERENCE = 1.12 % STANDARD DEVIATION = .72 % j 40

c Figure 5.6  ! Millstone Unit 3,- Cycle 3  ! Radial Power Distribution . INCORE 4549 MND/MTU Bank D at 220 NUSCO ANC 4549 MND/MTU Bank D at 225 l

 . 1.010 . 1.322 . 1.048 .                         .950 . 1.009 . 1.000 .       .971 .     .878  .
 . 1.023 .'1.327 . 1.034 .                         .958 . 1.017 . 1.088 .       .963 .     .859 . l
 . 1.28 .           .37 .          .58 .          .84 .    .79 .    .74 .      .83 . -2.17 . l
 . 1.322 . 1.020 . 1.296.                        1.012 . 1.285 .      .926 . 1.231 .       .743 .
 . 1.327 . 1.031 . 1.300 , 1.021 . 1.288 .                            .934 . 1.216 .       .730 .   .
 .      .37 .        1.07 .           .30 .          .88 .    .23 .    .86 . -1.22 . -1.75 .        >
 . 1.028 . 1.300 . 1.034 . 1.047 .                          .947 . 1.277 .     .997 .     .809 .   !
 . 1.034 . 1.300 . 1.050 . 1.062 .                          .961 . 1.285 .     .984 .     .786-.
 .      .58 .          .00 .        1.54 .         1.43 . 1.47 .    .62 . -1.31 . -2.85 .        !
 .    .950 . 1.016 . 1.046 . 1.025 . 1.301 . 1.056 . 1.107 .                               .438 .
 .     .958 . 1.022 . 1.063 . 1.040 . 1.313 . 1.064 . 1.093 .                              .427 . 5
 .      .84~.           .59 .       1.62 .         1.46 .     .92 .    .75'. -1.27 . -2.52 .
 . 1.009 . 1.290 .                   .948 . 1.299 . 1.003 . 1.265 .             .646 .
 . 1.017 . 1.289 .                  .961 . 1.313 . 1.020 . 1.259 .               .638 .             s
 .       .79 .          .00 .       1.37 .         1.07 . 1.69 .    .48 . -1.24 .
 . 1.000 .            .930 . 1.291 . 1.063 . 1.262 . 1.044 .                    .434 .               l
 . 1.000 .           .934 . 1.285 . 1.065 .'1.259 . 1.030 .                    .427 .             j
 .       .74    .       .43 .         .47 .          .18 .    .24 . -1.35 . -1.62 .
 .     .971 . 1.229 .                .992 . 1.102 .          .643 .   .435 .                           .

i

 .     .963 . 1.216 .                .984 . 1.093 .          .638 .   .427 .                          !
 .       .83 . -1.06 .                 . 81 .        .82 .    .78 . -1.84 .                           !
 .     .878     .     .740 .         .800 .         .431 .                                             ,
 .     .859 .         .730 .         .786 .         .427 .                                           j
 .   -2.17'. -1.36 . -1.75 .                         .93 .                                           i
 . . . . . . . . . . . . . . . . .                                                                   l i

KEY : )

                                                                             . MEASURED       .
                                                                             . PREDICTED .           j
                                                                             .   (P-M)/M % .          ;

1 1 1 AVERAGE % DIFFERENCE = 1.05 % STANDARD DEVIATION = .61 % 41 I i

                                                                                                       )

l

i Figure 5.7 Millstone Unit 3, Cycle 3  : Radial Power Distribution I

     .INCORE              11400 MND/MTU Bank D at 223                                           '

NUSCO ANC 11400 MWD /NTU Bank D at 225  :

     .'1.009 . 1.314 . 1.019 .- .958 . 1.008 . 1.000 .                       .975 .     .876 .
     . 1.009 . 1.309 . 1.020 .                 .964 . 1.017 . 1.091'.        .974 .     .868 .
     .        .00 ..     .38 .        .10 .     .63 .     .89 . 1.02 .       .10 .     .91 .
     . 1.314 . 1.014 . 1.276 . 1.005 . 1.285 .                  .936 . 1.240 .        .756 .
     . 1.309 . 1.015 . 1.274 . 1.012 . 1.291 .                  .945 . 1.234 .        .751 .

I

     .        .38.       .10 .        .15 .     .70 .     .47 .     .96.       .48 .     .66.
     . 1.019 . 1.279 . 1.018 . 1.035 .                 .948 . 1.267 .       .991 .    .817 .
     . 1.020 . 1.274 . 1.026 . 1.044 .                 .958 . 1.273 .      .983 .     .800 .  ,
     .        .10 .      .39 .        .79 .     .87 . 1.06 .     .48 .      .81 . -2.01      !
     . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .                            i
     .     .958 . 1.007 . 1.034 . 1.010 . 1.278 . 1.038 . 1.100 .                       .463 .
     .     .964 . 1.012 . 1.045 . 1.020 . 1.286 . 1.044 . 1.089 . .454 .
     .        .63 ..     .50 .      1.07 .      .99 .     .63 .     .58 . -1.00 . -1.94 .

1.008 . 1.287 . .947 . 1.277 . .996 . 1.266 . .673 .  !

     . 1.017 . 1.291 .             .958 . 1.286 . 1.009 . 1.259 .           .665 .            3
     .        .89.       .31 .      1.16 .      .71 . 1.31 .     .55 . -1.19 .

A

     . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   r
     . 1.080     .    .937 . 1.273 . 1.043 . 1.268 . 1.054 . .466 .                           !
     . 1.091     .    .945 . 1.273 . 1.045 . 1.259 . 1.038 .                .459 .              !
     . 1.02    .     .86.         .00 .     .19 .     .71 . -1.52 . -1.50 .                .!
     .      .975   . 1.238 .         .986 . 1.097 .      .673 .   .468 .                          ,
     .-     .974   . 1.234 .         .983 . 1.090 .      .665 .   .459 .                          t
     .        .10 .      .32 .        .30 .     .64 . -1.19 . -1.92 .
     . . . . . . . . . . .. . . . . . . . . . . . . .                                             t
     .       .876 .     .753 .       .809 .    .458 .
     .      .868 .      .750 .       .800 .    .454 .
     .        . 91 .     .40 . -1.11 .          .87 .
      . . . . . . . . . . . . . . . . .                                                         I KEY :
                                                                          . MEASURED      .

I

                                                                          . PREDICTED .
                                                                          .   (P-M)/M % .

l 1 l AVERAGE % DIFFERFLCE = .78 % STANDARD DEVIATION = .48 % f 42 1 1

l Figure 5.8  ! Millstone Unit 3, Cycle 3 Radial Power Distribution  : i INCORE 16908 MND/MTU Bank D at 222 NUSCO ANC 16908 MND/MTU Bank D at 225 t

   .  . 993 . 1.274 . 1.012 .            .968 . 1.009 . 1.083 .        . 98 5, .  .891 . .j
   .   .987 . 1.264 . 1.010 .            .974 . 1.021 . 1.099 .        .988 .     .884 .
   .     .61 .       .79 .       .20 .    .62 . 1.19 .- 1.48 .         .30 .     .79 . f
   . 1.274 . 1.001 . 1.249 . 1.006 . 1.270 .                .944 . 1.237 .       .700 .
   . 1.264 .        .998 . 1.242 . 1.011 . 1.277 .           .957 . 1.234 .       .775 .
   .     .79 .       .30 .       .56 .    .50.     .55 . 1.38 .      .24 .     .64 .
   . 1.012 . 1.251 . 1.011 . 1.037 .             .949 . 1.242 . 1.000 .          .844 .
   . 1.010 . 1.243 . 1.019 . 1.047 .              .960 . 1.252 . .991 .           .823 .
   .     .20 .       .64 .       .79 .    .96 . 1.16 .      .80 .      .90 . -2.49 . l
   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                       l
   .   .968 . 1.006 . 1.036 . 1.005 . 1.245 . 1.024 . 1.106 .                     .497 .
   .    .974 . 1.011 . 1.047 . 1.014 . 1.254 . 1.032 . 1.093 .                    .484 .
   .     .62 .       .50 .      1.06 .    .89.-    .72 .      .78 . -1.18 . -2.62 .        l
   . 1.009 . 1.269 .            .947 . 1.243 .    .983 . 1.248 .       .701 .              f
   . 1.021 . 1.277 .            .961 . 1.254 .    .999 . 1.238 .       .690 .              !
   . 1.19 .        .63 .      1.48 .    .88 . 1.63 .      .80 . -1.57 .                ;
   . 1.003 .        .945 . 1.244 . 1.029 . 1.248 . 1.058 .             .497 .              5
   . 1.099 .        .957 . 1.252 . 1.033 . 1.238 . 1.037 . .487 .
   . 1.48 . '1.27 .            .64 .    .39 .    .80 . -1.99 . -2.01 .                   I
  • l
   .   .985 . 1.235'.           .991 . 1.102 .    .702 .     .500 .
   .    .988 . 1.234 .          .991 . 1.093 . .690 .        .487 .
   .     .30 .       .08   .     .00 .    .82 . -1.71 . -2.60 .
   .    .891 .      .776 .      .833 .   .489 .                                            ;
   .   .884 .       .775 .      .823 .   .484 .
   .     .79 .       .13 . -1.20 . -1.02 .                                                 i KEY
                                                                    . MEASURED .
                                                                    . PREDICTED .
                                                                    .  (P-M)/M % .

AVERAGE % DIFFERENCE = .97 % STANDARD DEVIATION = .62 % 43

Figure 5.9 Millstone Unit 3, Cycle 4 Radial Power Distribution }: 1 l INCORE 547 MND/MTU Bank D at 214  ! NUSCO ANC 547 MND/M'tU Bank D at 222 i 1 I

                                    .                             .774 . 1.007 . 1.002 . 1.129 .                                  .878 . 1.112 . 1.037 .                          .849 ..

l . .790 . 1.019. 1.013 . 1.132 . .887 . 1.120 . 1.038 . .844 . -i

                                    .                           2.06 . 1.24 . 1.12 .                                      .31 . 1.02 .                      .69 .      .12 .      .53 .     !

1 l

                                    . 1.007 .                                     .833 . 1.113 . 1.013 . 1.182 . 1.059 . 1.240 . .694 .                                                       <
                                    . 1.019 .                                     .844 . 1.123 . 1.021 . 1.191 . 1.066 . 1.235 . .685 .
                                    .                           1.24 .            1.38 .         .92 .                    . 81 .   .74 .                      .68 .      .43 . -1.27 .
                                   .                  1.002 . 1.116 . 1.053 . 1.186 . 1.180 . 1.321 . 1.172 .                                                                     . 819 .'
                                   . 1.013 . 1.124 . 1.063 . 1.194 . 1.187 . 1.317 . 1.156 . .801 .
                                   .                            1.12 .             .69 .         .97 .                    .67 .    . 61 .                     .33 . -1.39 . -2.17 .
                                   . 1.129 . 1.019 . 1.189 .                                                      .907 . 1.274 . 1.065 . 1.043 .                                  .406 .      l
                                   .~1.132 . 1.020 . 1.192 .                                                      .919 . 1.280 . 1.068 . 1.030 .                                  .398 .
                                   .                                      .31 .    .14 .         .25 .           1.29 .            .51 .                      .28 . -1.25 . -1.91 .
                                  .                             .878 . 1.183 . 1.182 . 1.268 . 1.085 . 1.240 . .655 .                                                                         i
                                  .                             .887 . 1.190 . 1.185 . 1.277 . 1.094 . 1.230 . .648 .
                                  .                            1.02 .              .59 .         .27 .                  . 71 .     .87 .                      .79 . -1.11 .
                                  .                  1.112 . 1.060 . 1.329 . 1.070 . 1.244 . 1.107 . .375 .
                                  .                 1.120 . 1.065 . 1.315 . 1.067 . 1.230 . 1.094 .                                                                    .370 .
                                  .                                       .69 .    .49 . -1.06 .                       .24 . -1.15 . -1.20 . -1.34 .
                                  .                 1.037 . 1.236 . 1.163 . 1.040 .                                               .657 .              .375 .
                                  . 1.038 . 1.235 . 1.156 . 1.030 .                                                               .647 .              .370 .
                                  .                                      .12 .     .08 .         .56 .                .94 . -1.49 . -1.40 .
                                 .                              .849 .            .689 .        .805 .           .401 .
                                 .                             .844 .             .685 .        .801 .           .398 .
                                 .                                       .53    .  .62 .         .47 .                .63 .

KEY :

                                                                                                                                                                    . MEASURED       .
                                                                                                                                                                    . PREDICTED .
                                                                                                                                                                    .  (P-M)/M % .

AVERAGE % DIFFERENCE = 1.13 % STANDARD DEVIATION = .74 % 44

                                                                                      -i Figure 5.10                                      i Millstone Unit 3, Cycle 4                               ,

g Radial Power Distribution i t INCORE 2000 MWD /MTU Bank D at 217 I NUSCO ANC 2004 MWD /MTU Bank D at 222 l

  .   .840'. 1.113 . 1.068          . 1.204  .    .882 . 1.060 .    .966 .     .785 .

I

  .   .859 . 1.131 . 1.085          . 1.218  . .896 . 1.073 . . 968'.          .774 .
  .- 2.27 . 1.62 . 1.60             . 1.17  . 1.59 . 1.23 .      .21 . -1.40 .
  . 1.113 .      .896 . 1.210 . 1.056 . 1.226 . 1.026 . 1.188 . .644 .                 ;
  . 1.131 .      .912 . 1.228 . 1.070 . 1.238 . 1.035 . 1.180 .               .631 . i
  . 1.62 .      1.79 .      1.49 . 1.33 .      .98 .   .88 .      .67 . -2.01 . f
  . 1.068 . 1.214 . 1.109 . 1.263 . 1.191 . 1.325 . 1.108 .                   .758 .   !
  . 1.085 . 1.229 . 1.123 . 1.274 . 1.199 , 1.321'. 1.092 .                   .741 .
  . 1.60 .      1.24 .      1.27 .     .88  .    .68 .   .30 . -1.44 . -2.24 .        I i
  . 1.204 . 1.057 . 1.263 .           .934 . 1.311 . 1.046 . 1.012 .          .380 .
  . 1.218 . 1.069 . 1.271..           .944 . 1.313 . 1.043 .       .997 .     .374 . l
  . 1.17 . 1.14 .             .64 . 1.08 .      .16 .   .28 . -1.48 . -1.57 .        !
  .   .882 . 1.223 . 1.187 . 1.299 . 1.068 . 1.223 .                .630 .              !
  .   .896 . 1.237 . 1.197 . 1.311 . 1.074 . 1.203 . .618 .                              '
  . 1.59 .      1.15 .        .85 .    .93 .     .57 . -1.63 . -1.90 .

f

  . 1.060 . 1.025 . 1.323 . 1.046 . 1.233 . 1.072 .                .364 .
  . 1.073 . 1.035 . 1.320 . 1.042 . 1.202 . 1.035 .                .349 .               L
  . 1.23 .        .98 .       .22 .    .38 . -2.51 . -3.45 . -4.12 .                ~j
  .   .966 . 1.181 . 1.095 . 1.006 .              .639 .  .368 .
  .   .968 . 1.180 . 1.092 .            .997 .    .618 . .349 .
  .     .21 .       .08 .       .27 .    .89 . -3.28 . -5.16 .
  .   .785 .       .639 .      .747 .   .377 .
  .   .774 .       .631 .      .741 .   .373 .                                            ,
  .  -1.40 . -1.25 .            .80 . -1.06 .                                             !

KEY :

                                                                 . MEASURED      .
                                                                 . PREDICTED .
                                                                 .  (P-M)/M % .

AVERAGE % DIFFERENCE = 1.33 % STANDARD DEVIATION = 1.00 % \ 45 l l l t 1. l

7, Figure 5.11 Millstone Unit 3, Cycle 4 Radial Power Distribution INCORE '5917 MND/MTU' Bank D at 222 NUSCO ANC 5917 MND/MTU Bank D at 222

  .    .961 . 1.281 . 1.151 . 1.306 .             .895 . 1.017 .     .902 .     .722 .
  .    .970 . 1.289 . 1.161 . 1.314 .             .905 . 1.024 .     .902 .     . 717 . '
  .     .94 .       .61 .       .83 .     .63 . 1.15 .   .66 .       .00'.      .69.
  . 1.281 .       .991 . 1.339 . 1.100 . 1.270 . . 992 . 1.128 . .599 .
  . 1.289 . 1.004 . 1.348". 1.113 . 1.281'. 1.000 .-1.124 .                     .591 .
  .     .51 . 1.31 .        .64 . 1.18 .    .87 .   . 81 .      .38 . -1.29 .
  . 1.151 . 1.341 . 1.164 . 1.333 . 1.182 . 1.310 . 1.040 .' .712 .
  . 1.161 . 1.349 . 1.174 . 1.345 . 1.190 . 1.310 , 1.025 . .593 .
  .     .83 .       .60 .       .88 .     .90 .    .68 .   .04 . -1.47 . -2.67 .
  . 1.306 . 1.104 . 1.337 . .950 . 1.322 . 1.006 .                 .995 .     .371 .
  . 1.314 . 1.113 . 1.343 . .964 . 1.328 . 1.008 .                 .973 . .362 .
  .     .63 .       .77 .       .47 . 1.50 .    .44 .   .15 . -2.24 . -2.56 .
  .    .895 . 1.269 . 1.181 . 1.313 . 1.032 . 1.174 . .607 .
  .    .905 . 1.280 . 1.188 . 1.325 . 1.038 . 1.159 . .596 .
  . 1.15 .       .87 .       .55 .     .91 ..   .61 . -1.28 . -1.85 .
  . 1.017 .      .995 . 1.319 . 1.009 . 1.177 .         .977 .     .341 .
  . 1.024 . 1.000 . 1.309 . 1.007 . 1.159 .             .962 .     .336 .
  .     .66 .       .50 .       .80 .     .25 . -1.53 . -1.51 . -1.54 .
  .    .902 . 1.126 . 1.032 .            .985 .   .606 .  .341 .
  .    .902 . 1.124 . 1.024 .            .973 .   .596 .  .336 .
  .     .00 .       .22 .       .75 . -1.22 . -1.61 . -1.61 .
  .    .722 .      .596 .      .700 .    .366 .
  .    .717 .      .591 .      .693 .    .362 .
  .     .69 .       .80 . -1.00 . -1.02 .

KEY :

                                                                  . MEASURED       .
                                                                  . PREDICTED .
                                                                  .  (P-M)/M % .

AVERAGE % DIFFERENCE = 1.17 % STANDARD DEVIATION = .83 % 46

Figure 5.12 - . 1 Millstone Unit 3, Cycle 4-Radial Power Distribution P INCORE 13535 ISfD/MTU Bank D at 226 NUSCO ANC 13535 3SID/MTU Bank D at.226 i

 . ~ . . . . . .. . .. . . .. . . . . .. .. . . . . ~ .
                                                                         . .      ~.              . .                !
 .   .975 . 1.261 . 1.092 . 1.254 .           .889 . 1.023 .     .932 .      .772 .
 .   .979 . 1.269 . 1.102 . 1.270 .           .903 . 1.031 . .926 .          .760 .
 .    .41 .        .60 .     .94 . 1.28 . 1.52 .    .73 .,     .67 . -1.62 .
 . 1.261 .      .978 . 1.279 . 1.049 . 1.238 . .988 . 1.159 . .649 .
 . 1.269 .      .993 . 1.293 . 1.069 . 1.256 . 1.000 . 1.148 .              .634 .                                  i
 .    .60 . 1.48 .      1.06 . 1.06 . 1.41 . 1.22 .       .95 . -2.39 .
 . 1.092 . 1.281 . 1.103 . 1.275 . 1.129 . 1.276 . 1.059 . .765 .
 . 1.102 . 1.294 . 1.117 . 1.293 . 1.147 . 1.295 . 1.038 .                  .736 .
 .     .94 .      .98 . 1.22 . 1.43 . 1.55 . 1.49 . -2.03 . -3.82 .
 . 1.254 . 1.052 . 1.277 . .934 . 1.287 . .999 . 1.051 . .424 .
 . 1.270 . 1.069 . 1.292 . .952 . 1.301 . 1.011 . 1.023 .                   .407 .                                  !
 . 1.28 . 1.62 .          1.16 . 1.87 . 1.11 . 1.20 . -2.64 . -4.06 .                                         ;
 .   .889 . 1.240 . 1.132 . 1.286 . 1.021 . 1.194'.              .660 .                                              I
 .   .903 . 1.255 . 1.146 . 1.300 . 1.029 . 1.169 .              .543 .                                              !
 . 1.52 . 1.17 .      1.22 . '1.11 .     .76 . -2.13 . -2.57 .                                               J
 . 1.023 .      .995 . 1.298 . 1.007 . 1.199 . 1.003 . .390             .                                           l
 . 1.031 . 1.000 . 1.294 . 1.011 . 1.169 . .974 . .378                  .                                           l
 .     .73 .       .53 .     .31 .    .35 . -2.48 . -2.94 . -3.20        .                                           l
                                                                                                                   't
 .   .932 . 1.156 . 1.047 . 1.037 . .664 .            .393 .                                                         !
 .   .926 . 1.148 . 1.038 . 1.023 .           .643 .  .378 .
 .     .67 .       .71 .     .91 . -1.35 . -3.23 . -3.75 .-                                                          ,

I

 .   .772 .      .643 .     .744 .   .412 .

I

 .   .760 .      .635 .     .736 .   .407 .
 .  -1.62 . -1.20 . -1.14 . -1.21 .                                                                                  1 l

KEY : f

                                                              . MEASURED                  .
                                                              . PREDICTED .
                                                              .  (P-M)/M % .

AVERAGE % DIFFERENCE = 1.67 % STANDARD DEVIATION = 1.25 % i 47 l

Y . h Figure 5.13 [ Millstone Unit 3, Cycle 4 l Radial Power Distribution  ; i INCORE 19273 MND/MTU Bank D at 228 i NUSCO ANC 19273 MND/MTU Bank D at 228- [

   .    .979 . 1.238 . 1.070 . 1.229 .                      .90~    1.032 .     .946 .     .801 . l
   .    .972 . 1.232 . 1.068 . 1.231 .                      .914 . 1.046 .      .953 .     .001 .
   .      .72 .        . 51 ' .     .21 .        .20 .      1.05 . 1.33 .       .74 .     .03 . .;
   . 1.238 .        .975 . 1.244 . 1.031 . 1.216 . .988 . 1.161 .                         .600 .
   . 1.232 .        .980 . 1.244 . 1.040 . 1.228 . 1.004 . 1.164 .                        .674 .
   .      .51 .       .48 .         .00 .        .82 .      1.03 . 1.57 .-      .26 .     .88 .   ,
   . 1.070 . 1.248 . 1.081 . 1.241 . 1.108 . 1.258 . 1.067 . .798 .
   . 1.068 . 1.245 . 1.080 . 1.247 . 1.117 . 1.272 . 1.054 . .777 .                                l
   .      .21 .        .20 .        .07 .        .46 .        .79 . 1.07 . -1.27 . -2.69 .
   . 1.229 . 1.038 . 1.249 .                   .938 . 1.259 . 1.001 . 1.074 . .461 .
   . 1.231 . 1.040 . 1.246 .                    .946 . 1.269 . 1.011 . 1.053 . .446 .               ,
   .      .20 .        .19 .        .24   .      .82 .        .81 . 1.02 . -1.91 . -3.15 .
   . .. . . . . . . . . . . . . . . . . . . . . . . . . . ' .....                                  ]
   .    .905 . 1.217 . 1.115 . 1.265 . 1.018 . 1.190 .                          .695 .
   .    .914 . 1.228 . 1.116 . 1.268 . 1.022 . 1.172 .                          .681 .
   . 1.05 .         .90 .        .11 .        .24 .        .42 . -1.51 . -2.02 .                 .
   . 1.032 .        .990 . 1.259 . 1.002 . 1.194 . 1.021 . .429 .
   . 1.046 . 1.004 . 1.272 . 1.011 . 1.172 .                        .997 .     .417 .             !
   . 1.33 . 1.46 .             1.07 .         .95 . -1.89 . -2.35 . -2.86 .
   .    .946 . 1.154 . 1.047 . 1.053 .                      .699 .- .431 .
   .    .953 . 1.164 . 1.054 . 1.053 .                      .681 .   .417 .
   .      .74 .        .84 .        .69 .        .05 . -2.51 . -3.31'.                               i i
   .    .801 .       .672 .       .773 .        .445 .
   .    .801 .       .674 .       .777 .        .446    .

{'

    .     .03 .        .33 .        .52 .        .17 .

KEY :

                                                                             . MEASURED      .
                                                                             . PREDICTED .
                                                                             .   (P-M)/M % .

l . . . . ... l  ! l AVERAGE % DIFFERENCE = 1.31 % l l STANDARD DEVIATION = 1.05 % i l 48 , l I l i

Figure 5.14 Millstone Unit 3, Cycle 5 Radial Power Distribution INCORE 590 MND/MTU- Bank D at 209 NUSCO AMC 590 MND/MTU Bank D at 222- , . 1.038 . 1.331 . 1.165 . 1.379 . 1.107 . .967 .. .716 . .416 . , . 1.033 . 1.320 . 1.152 . 1.362 . 1.101 . .968 . .723 . .423'.

   .     .48 .       .84,. -1.11 . -1.21 .            .58.        .13 .      .95..    -1.56 .
   . 1.331 . 1.153 . 1.312 . 1.226 . 1.289 .                    .955 .     .865 .      .707 .
   . 1.320 . 1.141 . 1.295 . 1.218 . 1.285 .                    .957 .     .868 . .711'.
   .     .84 . -1.02 . -1.27 .              .69 .     .31 .       .24 .      .38.' .53 .
   . 1.165 . 1.309 . 1.196 . 1.367 . 1.110 . 1.232 . 1.131 .                           .767 .
   . 1.152 . 1.294 . 1.108 . 1.363 . 1.112 . 1.233 . 1.130 .                           .763 .
   . -1.11 . -1.18 .              .71 .     .33 .     .16 .       .04 .      .13 .      .55 .
   . 1.379 . 1.229 . 1.372 . 1.162 . 1.303 . 1.030 .                       .966 .      .366 .
   . 1.362 . 1.217 . 1.362 . 1.160 . 1.306 . 1.033 .                       .972 .      .367 .
   .  -1.21 .        .95 .        .76 .     .19 .     . 21 .      .29 .      .60 .      .28 .
   . 1.107-. 1.287 . 1.109 . 1.313 . 1.207 .                    .980 .     .709 .
   . 1.101 . 1.283 . 1.114 . 1.313 . 1.209 .                    .986 .     .716 .
   .     .58 .       .29 .       .45 .      .02 .     .17 .       .64 .      .92 .
   .   .967 .       .950 . 1.231 . 1.035 .           .984 .     .934 .     .326'.
   .   .968 .       .952 . 1.234 . 1.039 .. .993 .              .941 .     .330 .
   .     .13 .       .16 .        .27 .     .39 .     .97 .       .78 . 1.31 .
   .   .716 .       .854 . 1.125 .         .968 .    .710 .     .326 .
   .    .723 .      .865 . 1.130 .         .974 .    .719 .     .331 .
   .     .95 .      1.23 .        .45 .     .65 . 1.20 . 1.54'.
   .    .416 .      .695 .      .749 .     .365 .
   .    .423 .      .709 .      .762 .     .367 .
   . 1.56 .       1.98 .      1.74 .      . 41 .

KEY :

                                                                        . MEASURED       .
                                                                        . PREDICTED .
                                                                        .  (P-M)/M % .

AVERAGE % DIFFERENCE = 1.13 % STANDARD DEVIATION = .92 % 49

   ~.,
                                                                                                                 ?

i i Figure 5.15 i Millstone. Unit 3, Cycle 5  ! Radial Power Distribution i

       . v i
                                                                                                               .f INCORE           4129 MND/MTU Bank D at 223 MUSCO ANC        4129 MND/MTU Bank D at 223-i
                 . . .. . .. . . . . . .. .. . ................                                                  l
                 .   .976 . 1.292 . 1.069 . 1.370 . 1.002 .                  .944 . . 703 .            .411 .

r

                 .   .974 .'1.207 . 1.066 . 1.368 . 1.084 .                  .947 .. .707 . .          .414-.     ,

i

                 .     . 21 .      .35 .       .20 .      .13 .     .21 .      .32 .        .64 .        .73 . j l
                 . 1.292 . 1.053 . 1.189 . 1.167 . 1.335 .
                                                                             . 957 .' .861 . . 697 .             >
                 . 1.287 . 1.048 .--1.184 . 1.169 . 1.338 .                 .960 .       .062 .' .698 .          !

I

                 .     .35 .       .45 .       .40 .      .15 .     .26 .      .34 .        .12 .        .14 .

i

                 . 1.069 . 1.187 . 1.119 . 1.397 . 1.116 . 1.317 . 1.208 . .777 .                                e
                 . 1.066 . 1.183 . 1.119 . 1.400 . 1.122 . 1.322 . 1.198 .                            .767 .  'I
                 .     .28 .       .36 .       .00.       .23 .     .51 .      .38 .        .81 . -1.29 .         I
                 . . .. . . . . . . . . . . . . . ................                                               i
                 . 1.370 . 1.169 . 1.399 . 1.153 . 1.369 . 1.044 . 1.045 .                            .387 . j
                 . 1.368 . 1.169 . 1.400 . 1.157 . 1.370 . 1.044 . 1.038 . -.302 .                              !
                 .     .13 .       .04 .       .11 .      .32 .     .09 .      .02 .        .62 . -1.29 .        ,
                 . 1.002 . 1.332 . 1.114 . 1.372 . 1.172 .                  .960 .- .743 .                       '

i

                 . 1.004 . 1.337 . 1.123 . 1.376 . 1.172 .                   .9S3 .- .737 .                      k
                 .     .21 .       .41 .       .78 .      .29 .     .00 .      .70 .        . 01 .               ;
                 .. . . .   . . . . . . . . . . . . ............                                                  l
                 .   .944   .    .954 . 1.319 .'1.047 .            .965 .     .996 .      .324 .                 l
                 .   .947   .    .956 . 1.323 . 1.049 .            .959 .     .890 .      .322 .                 {
                 .     .32  .      .26 .       .32 .      .19 . . .57   .      .70 .        .62 .                 l
                 . .. . .   . . . . . . . . . .. . ............                                                1
                 .   .703   .    .853 . 1.197.        1.041 .      .742 .     .323 .                                .

i

                 .   .707   .    .859 . 1.190 . 1.040 .            .740 .     .323 .                              '
                 .     .64  .      .67 .       .06 .      .07 .     .20 .      .08 .
                 .   .411 .      .690 .       .766 .     .383 .
                 .   .414 .      .696 .       .766 .     .383 .
                 .     .73 .       .91 .       .03 .      .00.                                                    i KEY :                 !
                                                                                       . MEASURED         .
                                                                                      . PREDICTED .
                                                                                       .   (P-M)/M 4'.            !

l . .. . . . . . l AVERAGE % DIFFERENCE = .65 %  : STANDARD DEVIATION = .52 % 1 50

a i i t a Figure 5.16 -  ; Millstone Unit 3, Cycle 5 Radial Power Distribution I i INCORE 7153 MND/NTU Bank D at 224 NUSCO ANC 7153 MND/MTU Bank D at 224 , i

   .   .948 . 1.264 . 1.030 . 1.344 . 1.065 .     .949 .      .721 .     .427 .
   .   .951 . 1.264 . 1.030 . 1.344 . 1.068 .     .950 .      .726 .     .432 .  !
   .    .32 .    .02 .     .03 .    .04 .   .24'.  .11 ' .      .63 . 1.05 .
   . 1.264 . 1.013 . 1.138 . 1.132 . 1.332 .     .963 .      .876 .     .712 .
   . 1.264 . 1.013 . 1.137 . 1.134 . 1.335 . .965 .          .877 .     .714 .
   .    .02 .    .02 .     .09 .    .20 .   .23 .  .16 .        .14 .      .28 .
   . 1.030 . 1.238     1.078 . 1.374 . 1.102 . 1.342 . 1.234 .          .791 . l
   . 1.030 . 1.137 . 1.001 . 1.379 . 1.107 . 1.341 . 1.226 .            .782 .  'r
   .    .03 .    .11 .     .26 .    .33 .   .48 .  .07 .        .69 . -1.14 .
   . 1.344 . 1.133 . 1.376 . 1.127 . 1.367 . 1.050 . 1.081 .            .404 .  !
   . 1.344 . 1.134 . 1.379 . 1.132 . 1.369 . 1.049 . 1.076 .            .401 . i
   .    .04 .    .11 .     .20 .    .40 .   .15 .  .07 .        ,48 .      .86 .
   . 1.065 . 1.330 . 1.101 . 1.369 . 1.154 . .962 .          .775 .
   . 1.068 . 1.334 . 1.108 . 1.373 . 1.155 . .957 .          .771 .             {
   .    .24 .    .26 .    .59 .     .28.    .04 .  .49 .        .55 .            !

r

   .   .949 .   .960 . 1.344 . 1.056 .     .971 . .901 .      .336 .             ;
   .   .950 .   .961 . 1.342 . 1.053 .     .962 . .894 .      .336 .
   .    .11 .    .05 .    .13 .     .31 .   .90 .  .78 .        .15 .
       .721 .   .869 , 1.227 . 1.082 .

f

   .                                       .775 . .336 .
   .   .726 .   .875 . 1.226 . 1.078 .     .773 . .337 .
   .    .63 .    .66 .    .10 .     .41 .   .32 .  .15 .

f

   . . . .  ... . . . . . . . . . .........                                      i
   .   .427 .   .706 .   .783 .    .404 .
   .   .432 .   .712 .   .782 .    .401 .                                        i
   . 1.05 .    .82 .    .19 .     .68.

t KEY : l

                                                           . MEASURED       .
                                                           . PREDICTED .
                                                           .  (P-M)/M % .

AVERAGE % DIFFERENCE = .58 % STANDARD DEVIATION = .58 % 51

- , -. . ., . . . ~ c =.. = ,a , l

    . - -:                                                                                                      1 j

i

Figure 5.17 j Millstone Unit 3, Cycle 5 {

L Radial Power Distribution - l t i i INCORE 9333 RefD/MTU Bank D at 224 . NUSCO ANC. 9333 3RfD/MTU Bank D at 224 i i r j .' . . ... . . . . . .......-.......,......... . l' . .934 . 1.249. 1.012 . 1.325 . 1.057 . .954 ' . .741 . .445 .

            .      ^943 . 1.256
                   .                    .-1.016'. 1.328 . 1.060 .          .956  .     .744 .- .447 .             ,

! . .96 . .54 .- .42 . .23 . .33 . .26 . .47 . .56 . - l l' . 1.249 . .996 . 1.115 . 1.109 . 1.324 . -.967

                                                                                 .     .891 .     .728 .      -
            . '1.256 .         1.001 . 1.119 . 1.115 . 1.327 . .968              .     .889 .     .727-.         j
            .        .54 .       .48 .       .40 .        .52 .    .26 .    .13  .       .17 .       .07 .       !

r

            . 1.012 . 1.116 . 1.056 . 1.351 . 1.089 . 1.343 . 1.252 .- .806 .
            . 1.016 . 1.118 . 1.063 . 1.361 . 1.096 . 1.342 . 1.235 . .791 .

j . .42 . .22 . .66 . .74 . .62 . .06 . -7.32 . -1.83 . i

            . 1.325 . 1.113 . 1.355 . 1.107 . 1.356 . 1.050 . 1.106 . .420 .

l: . 1.328 . 1.115 . 1.360 . 1.115 . 1.359 . 1.050 . 1.093 . .413 .' -

            .        .23 .       .16 .       .37 .        .70 .    .20 .    .00 . -1.13 ..-1.61 .                 l
           -.....-............,......... . .. . . . _ .                                                          j
            . 1.057 . 1.324 . 1.089 . 1.357 . 1.143 .                  .970 .      .000 .                     ;
            . 1.060 . 1.326 . 1.096 . 1.363 . 1.146 .- .963 .                      .792 .                    {
            .        .33 .       .17 .       .62 .        .48 .    .24 .    .70 .        .97 .                   l
            . . . . . . . . . . . ... . . . . . . . . . . . . . . . . .                                           j
            .      .954 .- .964 . 1.344 . 1.054 . . 977 .                  .911 .. .351 .                         !
            .      .956 .       .964'. 1.342 . 1.053 .            .967 .   .902 .      .348 .,                  .i
            .        .26 . .     .05 .       .11 .        .12 .    .97 .    .99 . .      . 71 .                   j
            . . . . . . .. . . . . . . . .. . . . . . . . . .-. . .                                             -I
            .      .741 .       .883 . 1.239 . 1.101 .            .802 . .351 .                                   l
            .      .744      .  .887 . 1.234 . 1.094 .            .794 .   .348 .                                 I i
            .        .47 .       .45 .       .40.         .61 .    .94 .    .78 .                                 i t
            .      .445      .  .720 .      .794 .       .416 .                                                   !
            .      .447 .       .725 .      .791 .       .413 .
            .        .56 .       .69 .       .38 .        .72 .
                                                                                                                  ?

l KEY :  ! 1

                                     ,,                                             . MEASURED        .
                                                                                    . PREDICTED .
                                                                                    .  (P-M)/M % .                l AVERAGE % DIFFERENCE =                 .74 %

STANDARD DEVIATION = .54 % l 1 52 l l t

WILLSTON T3 CYCLE 3 AXIAL POWER DISTRIBUTION AT HFP  : 1.400 1.200 j + < +

                                                   ..         ., "o -g
                                     ..o sp7 o               a              (

Oo

  • O k ,

1.000 ,, j'

                             /                                                     \
    -                       I                                                        \

t ( o 0.800 l l i I --- ..f u T i 0 N I' 3 0.600

    <                                                                                        l        ;

g , E  ! i l O.400  :

                                                                                                      +

a l n .5 0.200 " 0 INCORE 334 WWD/WTU BANK D e 220 STEPS  !

                              - NUSCO ANC 334 WWD/WTU           -BANK D e 225-STEPS
                    ""*'                                                                   18' 0.000                                                                                        !

0 12 24 36 48 60 72 84 96 108 120 132 144  ! CORE HEIGHT (IN) . [ f l ' 53 i I

           '                                            ,      F I GUR E' 5'.19.                                             i WILLSTONE UNIT 3, CYCLE                                                                                                                               i AXIAL. POWER DISTRIBUTION ATLHFP 1.400                                                                                               .l 1                                                                                                                             .

Y L. 1.200 ,,,,m l l' _ wr -tata _ . [ ,o-7 M4,;  ; ,' r -o 3 -j l' _o -_ 40_ - o e ' 1.000 o y

                                      "/                                                                                     i
               -                      1                                                              I                       i o                    7                                                                 \                     !'
               *-                   j                                                                  di

_, 0.800 3 3

  • d .

G l  :' w

                                                                                                          \1 1

N , 3 0.600 l  ! l 3 - - +- t ne ,

               -o                                                                                                             ,

a l ._- I O.400 l l \ i Ib l l o 0.200 BANK 0 a 220 STEPS 0 INCORE 4549 MWD /MTU j

                                       - NUSCO ANC 4549 WWD/WTU                       BANK D e 225 STEPS l                                                                                                                         .

0.000 """ L ! 0 12 24 36 48 60 72 84 96 108 120 132 144 - I '- CORE HEIGHT (lN)  ! 1 i I l 54 l l i l l

h / , ,. ( 1 !: t. , .

 -                                                                                                                                     ..1
                                                                                                                                      -i FIGURE 5 20J                                                          ;

j i

                                                      .W I L L S T O N EL U N I T E 3 ', CYCLE.3.

u LAXIALLPOWER' DISTRIBUTION ATnHFPL

       't 1.400 n                                                                                                                                              \

{~  ! 1.200

                                                        <P%

o

                                                ' e'Y r

W%~ m o l ,} u . m. 1.000 " I I . VL - 1 L t ne w ki . l g l 8 o - g .] 0.800 b

                       <                                                                                                \, ,               l
                                                                                                                                       ~1 I

a 4 < W i N ' C 0.600 , j ! 3  ? I ac \ o i E. 1 l J 0.400 3 1

                                                                                                                                             \

s 1 0.200 1 0 INCORE 11400 WWD/WTU BANK D e 223 STEPS i a

                                              - NUSCO ANC 11400 WWD/MTU                BANK D e 225 STEPS                                  l 0.000 O          12      24   36      48     60    72  84      96           108 120 132 144               . ,

i ! CORE HEIGHT (lN) l L , 55 , l 1 1 l

a m I , k I;

                                                                                                   ~

F I G'U'R E: 5. 21  !

             ~

WlLLSTONE UNIT-3',~ CYCLE'31 1 AXIAL POWER DISTRIBUT10N AT HFP

          ~

i 1.400 q i 1 1.200

  ,t..                                               ,,

7 R ,,

                                                                       .                                                                /
                                                   /           X             '__<  ,-  ._        .           ...

r o . - o ,, 1.000 ( . .. \ 8 4 ac o '

                                                                                                                                        ,l
                            ;o                                                                                          .

g

                               , 0.800                                                                                      )'

5 O j 0 N 3 0.600  : 2 5 I , i b 0.400 o i l 0.200 0 INCORE 18908 WWD/WTU BANK'D e 222 STEPS

                                                   - NUSCO'ANC 16908 WWD/WTU              BANK D e 225 STEPS 0.000     ""' '                                                                               ' 

O 12 24 36 48 60 72 84 96 108 120 132 144 ') i CORE HEIGHT (IN) 1 l 56 I l

FIGURE 5.22-WILLSTONE UNIT _3, CYCLE 4- - AX1AL POWER DISTRIBUTION AT HFP 1'400

     .                                                                                         I ff       ~
                                                      ~m% q                                   l 1.200                              -

7 ' 4

                                 /       -
                                                                   \
                               /

1.000  ! 7 - N . m f N +

  • 7 \,

E a 0.800 7 i 2 Y k 1 L - t 1 e J .

  ~

3 0.600 l \ s  : I"  : 5 0.400 , o 0.200

              ;>        0 INCORE          547 WWD/WTU     BANK D e 214 STEPS            d BANK D e 222 STEPS o           - NUSCD ANC 547 WWD/WTU o ;

0.000 i 0 12 24 36 48 60 72 84 96 108 120 132 144 l CORE HEICHT (lN)  ! 57 , l i l

            '.r
              ' ~ 2 c              :

s  !

                                                                                                                                       'l
                      ,   J                                                   FIGURE 5.23                                                 ,
                                                              -WILLSTONE UNI-T 3,. CYCLE 4                                             -i
         +'

AXIAL POWER' DISTRIBUTION'AT HFP E 1.400 .

                                                                   .s S .      ,

1.200 "

                                                                      -        m    ,g    ,
                                                                /                   "*
                                                                                            ~

i s

                                                           , f            .                          'd,N l'
                                                          'I -
                                                                                                 .            i
                                                                                                           .e" ,                          ,

1.000 g o- < ( ' w

                                                     /                                                              A, i                                                               '                 .,

E , 1 (' i-o. 7 g a 0.800

                                                                                                                       ,\

s y  ; I +  ; o w N e f  ! 3 0.600 ,  ! X E  : O , X i l a 0.400 1 l

                                                                                                                                       - .i 0.200                                                                                                     !

0 INCORE 5917 WWD/WTU BANK D e 222 STEPS 6 a-

                                                      - NUSCO ANC 5917 MWD /WTU                BANK D s.222 STEPS                    o o

0.000 ""' ' '*' 0 12 24 36 48 60 72 84 96 108 120 132 144 l CORE HEIGHT (IN) j 58 l 1 1

7 v. l e flGURE 5.24 WILLSTONE-UNIT 3, CYCLE 4 AXlAL POWER. DISTRIBUTION AT HFP 1.400

                                                                            ,;    v'
                                                                          "    "        n,*"

i- 1.230

  • l
  • f% g W.

! r o " [ */

  • N . e.
                                                                                                                                                                 'g
i. of ,

N ,, # a

  • l 1.000
                                                                   . /                                                                                      2 .,
                                                                                                                                                                        \

l

                                                                                                                                                                          \

l g _.. o \ 5 i i _., D.800 f 1 < . 1

  • _ 'L-_

8

            ~                                                    <

3 0.600 5 0.400 o i L. 0 INCORE 13535 WWD/WTU 8ANK D e 228 STEPS

                                                                     - NUSCO ANC 13535 WWD/WTU                                         BANK D e 226 STEPS o

l 0.000 JU ** L 0 12 24 36 48 60 72 84 96 108 120 13T . 4 CORE HEIGHT (IN) 1 1 59 I l _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ . _ _ _ _ .__. _. _ _____ ____ n

   /

FIGURE 5.25 WILLSTONE UNIT 3, CYCLE 4 AXIAL POWER DISTRIBUTION AT HFP 1.400

 !                        1.200 A                                                                        .< .    . -

N * 'o , _,.. N .* '.ed * . ..

                                                                    *m' eL ',
                                                                                                                     ,    /7
  • 1.000
                                                  *                                                                         "               I                '

L - .. . 1

                                                                                                                                              '              1 w

E, .L 2 - h, _, 0.800 by j 5 I

           =                                                                                                                                                 !

o i 3 0.600 5  !

           =,                   i. . ' - -

0,400 '- i lo 0.200 0 INCORE 19273 WWD/WTU BANK D e 228 STEPS

                                                 - NUSCO ANC 19273 WWD/WTU                                     BANK D e 228 STEPS s

n

                                     ""*'                                                                                                              a' 0.000                                                                                                                      1 0            12              24             36              48    60     72  84     96     108 120 132 144 CORE HEIG'iT    (IN) 60

FIGURE 5.26 WILLSTONE UNIT 3, CYCLE 4 L REVISED ANC A0 WODEL 1.400 1.200 " " - h

                                                                         /

m ' C4

                                                                      /          .                                                    ,

f . . e g' 1.000 o li

                                                                  /
                                   -                            1                                                                               )
                                   =                            /                                                                                v                 i E                           1 a    0.800                                                                                                                  -   l 5                        h                                                                                      1
I 4 i S
                                   ~

i (* 3 0.600 \, l 5, _ ._ 0.400 t o l i j 0 INCORE 5917 WWD/WTU BANK D e 222 STEPS 6

                                                                 - NUSCO ANC 8000 WWD/WTU                                    BANK D e 228 STEPS                  n o

0.000 ""' ' ' " 0 It 24 36 48 60 72 84 96 108 120 132 144 [. CORE HEIGHT (lN) ) 61 l

                            - - ~

u

                                                                   . FIGURE 5.27 j                                                        WILLSTONE UNIT 3, CYCLE 4

! REVISED ANC A0 WODEL 1.400

                                                   ,e   s'%,*                                                           I 1.200                      " ^     ,

__ */ \f ** W  !

                                                /
  • NI* eg of
                                                                         ^

9 , w%c m

                                            ,  (

1.000 .  ; ,, J

  • a >\

_j

                   =                                                                                       .,\
                   =                                                                                          \

m .1 , _, 0.800 , 4 D S 0.600 5 o I 0.400 o I i I 3 1

                        ~

0 INCORE 13535 WWD/WTU BANK D e 228 STEPS

                                               - NUSCO ANC 13000 WWD/WTU            BANK D e 228 STEPS m

0.000 ""' ' ' " 0 12 24 36 48 60 72 84 96 108 120 132 144 CORE HEIGHT (lN) 62

s FIGURE 5.28 WILLSTONE UNIT 3, CYCLE 4 REVISED ANC A0 WODEL  : 1 l 1.400 j i I i 1.200 de- ,_

                                                                                                                                                                           .no*
                                                                                                                                  / r%
                                                                                                                                         .\                            a8'8      ep%n o'                        bT ",/                   \

o __ 2

b. _ - ..__
                                                                                                                                                            .  . v           u          ,y,,

1.000

                                                                                                                             /
                                                                                                                                       .                     _       .                     3 E

g i I a. a 0.800 I O 5

                       ~                                                                                                 o                                                                        ,

3 0.600 5 x 0.400 ' J

                                                                                                                   .                                                                                  l 0.200 0 INCORE      19273 WWD/WTU        BANK D e 228 STEPS
                                                                                                                                - NUSCO ANC 19000 WWD/WTU          BANK D e 228 STEPS o

0.000 l J N-0 12 24 36 48 60 72 84 96 108 120 132 144 CORE HEIGHT (IN) 63

p FIGURE 5.29 WILLSTONE UNIT ~3, CYCLE 5 AXIAL POWER DISTRIBUTION AT-HFP 1.400

                                                                                             -            M**      %=.
                                                                                                                   * \

t 1*200 " (" j / o.

  • pI >
                                                                      /       .                                               V.

1.000 / \* , j

                                                                 !                                                               N
  =                                                            [  .                                                                 l               l Y                                                           ?                                                                       \

0.800 f t , a

   <                                                     r                                                                              1.

f ( O a l N 3 0.600 l 1 l 5

  =                                                ,,

x 0.400 o 4 6 0.200 , 0 INCORE 590 WWD/WTU BANK D e 209 STEPS

                                                                                                                                                 +

j - NUSCO ANC 590 WWD/WTU BANK D e 222 STEPS 1

                                                                                                                                                   )

i 0.000 """  :

  • 0 12 24 36 48 60 72 84 96 108 120 132 144 CORE HEICHT (IN) 64 l

_ _ - _ _ - _ - - - - _ - _ _ _ - i

e . l

FIGURE 5.30 WILLSTONE UNIT 3, CYCLE 5 AXIAL POWER DISTRIBUTION AT HFP 1.400
                                                                                                                                                     -3 1'200                                  **'#"       '-     -                                        '
P" -

m% 7 . . N ' l<

                                                                                 /                                       ,,

t 1.000 f

  • s ,*

1 \* T 3 E f g a 0.800 , 5

                                                                         ' 7 I
J  ?

g _J \ 3 0.600 , 5 E

             =

l 0.400 ' 0.200 ' j 0 INCORE 4129 WWD/WTU BANK D e 223 STEPS p 8 BANK 0 e 223 STEPS

                                                                            - NUSCO ANC 4129 WWD/WTU                                              ,,

i 0.000 ""' '  : 0 12 24 36 48 60 72 84 96 108 120 132 144 + CORE HEIGHT (IN) 65

FIGURE 5.31 WILLSTONE UNIT 3, CYCLE-5  ; AXIAL POWER DISTRIBUTION AT HFP I r 1.400

                                            ~  ~~

1.200 r J . C** x . m

                                                                                                                     +

f* o ,, u- o , ,pg , J , 1.000 __ f A i

 -                            t                                                                   1                  4 g                          d                                                                      g o                          .
                         )                                                                          b, 0.800                                                                                           ',.

i a

 <                        f
 <                                                                                                         __        i i

o , U , 3 0.600  ; E o x 4 ,- l 0.400 , i 0.200 , 8ANK D e 224 STEPS P  ; o 0 INCORE 7153 WWD/WTU

                               - NUSCO ANC 7153               WWD/WTU         BANK D e 224 STEPS 0.000                                                         :

0 12 24 36 48 60 72 84 96 108 120 132'144 CORE HEICHT (IN) 66 l i

             ^

FIGURE 5.32 WILLSTONE UNIT.3, CYCLE 3 AXIAL 0FFSET VS. BURNUP e HFP 2

                                                                                                                          + WEASURED O' WEST.'ANC
                                                                                                                         - NUSCO ANC 1

0 b h

                            ,1 O              +

E s o 5 -> \3 1 + g,

                                                  +

s ~ <

                                                              +

_3 K s" ~~--

                                                                ~

t ,

                                                                                               ,,                                               ~~

b#,, ,

                                                                                        +                                             'l 4
                            -4
                            -5 0  1    2   3    4   5  6   7              8    9 10 11 12 13 14 15 14.17 1B BURNUP (CWD/WTU) 67

p r f FIGURE 5.33 WILLSTONE UNIT 3, CYCLE-4 AXIAL OFFSET VS. BURNUP e HFP s l l 5 I

                                                                                                                                                   + WEASURED-4 NUSCO ANC    _

l-

                                                                                                                                                                 +

2

l. l I- 1 0

L t; C

                                                                       -1   %N e                     N        +

a -2 N

                                                                                                 ,                                         7      %
                                                                                                                                         ~

N 3 m

                                                                                                                                      ,/                %

m

                                                                                                                                                            .L
                                                                       -4                                                                                            4 H
                                                                       -5
                                                                      -8                                                             '

f

                                                                      -7 a                 4
                                                                      -8                                                                        l
                                                                      -t 0 1   2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 II 19 20 BURNUP (CWD/WTU) 68 i
a
                                                                                                                                                                                                                       'i 1

FIGURE 5.'34- 1 WILLSTONE UNIT 3.. CYCLE 4  ! ANC A0 WODEL AXIAL OFFSET VS. BURNUP l

                                                                                                                                                                                                                       -I 7                                                                                                                                                                    j 0                                                                                                                                                                    !
                                                                                                                                                   .+ WEASURED                               -- -

l 5 ~ ~

                                                                                                                                                     - NUSCO ANC                                                         l 4                                                                                                                                                                    !

3  ! 4 - i 2 i l 1  ; o .:1 0 _i '

                                                             ~
                                                                                                                                                                                             \                         l -

N /

5. _,
                                                                          %d                                                                                                           /                                 !
                                  #                                             N                                                                                                    /                                   i 3                                                        (                                                                                       L                                  ~

_3 f j : _4 _3 7 ( /\

                                                                                                                                                                                                                     ~
                                                                                                              \                / + \                                                                                     !

_. \ , / \ n  !

                                                                                                                \/                           \   / \                                                                   :j
                                                                                                                                                       \

1/ l _7

                                                                                                                                                           \ A\                                                        j
                                                                                                                                                                                                                       ^

_a Al \

                                                                                                                                                                    \

_s \  ! Y l

                                                                                                                                                                                                                       ~!
                                             -10                                                                                                                                                                         t 0 1                 2 3 4 5 4 7 8 9 10 11 12 13 14 15 18 17 18 II 20                                                                                             .j BUHUP (CWD/WTU)                                                                                         .l
                                                                                                                                                                                                                         }

69 ,

                                                                                                                                                                                                                       .i*
                   ~

FIGURE 5.35 l WILLSTONE UNIT'3,- CYCLE 5 i 1 AXIAL OFFSET VS. .BURNUP e HFP l l i o .; , .3  ! L + l  ! l

                                                                                                              +.WEASURED        -

l 4 1 0 WEST. ANC. . 'l

                                                                                                              - NUSCO-ANC.
                                        \-

3

                                           \         ,

r -i

                                               \                                                                                              !
                                                   \,                                                                                     ;

k 1

                                                        ,\                                                                                    l
                           -                                                                                                                 4 l

W t o ( .I a \ r

                                                                                                                                              .r

_i ' '

                             -2
1. i L _3 N< / N i

f , i < , w t i < b i

                             ~4                  -
                                                                                         +                                                     !
                             -5 0 1               2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 ft to                                       i i

BURNUP (CWD/WTU) l l f l 70  : i l l l l.

2 FIGURE 5.36 WILLSTONE UNIT 3, CYCLE 3 F-DELTA-H(WAX) VS. BURNUP 1.55

                                                                                                         + WEASURED
                                                                                                         - NUSCO ANC  -

1.50 1.45 m e-  % . [ .h  %. A 1.40 / , 1

                /r
                +        ,                                                                    N   +

Ng j s + l N i 1.35 \ s

               ----                                                                                                      )

i 1.30 1.25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 15 BURNUP (CWD/WTU) j 4 l 71

      --   --        - - - - - - - - - - - - -              --        -            - - - -          -                   )

FIGURE 5.37 WILLSTONE_ UNIT'3, CYCLE 4 F-DELTA-H(WAX) VS. BURNUP 1.55 -

                                                         + WEASURED-     l NUSCO.ANC - -

1.50

         +                                                               !
      --       N          q.

1.45 ,q , -_ N <

                                 \                                       !

N

                                * \                                      l z                                     \                                   ,

4 \ C 1.40 \ 4-

                                              \

w 3

                                                  \'N"h

__ g 1.35 4 N' '

                                                                \(

[ N\  : 1.30 i 1.25 , i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 BURNUP (CWD/WTU) 72 i l

v . i- j FIGURE 5.38  : WILLSTONE UNIT 3, CYCLE 5 i-F-DELTA-H(WAX).VS. BURNUP  : 1.55

                                                        + WEASURED    >
                                                        - NUSCO ANC -

1.50 F >

                     ~
                  /     \                                             :

w

                /               4 1.45
               /                \
                                    \  +
            >                          N N-z                                          \                     L E

5 1.40 --

                                                   \ '-

3 E \ 1 \A , T ,

                                                                  \   '

i f 1.35 I 1.30 i t 1.25 i 0 1 2 3 4 5 6 7 8 9 t o 11 12 13 14 15 16 17 18 II 20 BURNUP (CWD/WTU) i 73 . i

M>r r i FIGURE'5.39 WILLSTONE UNIT 3,. CYCLE 3 l F-Q(WAX) VS. BURNUP e-HFP i 2.00 i X INCORE -

                                                                                                 - NUSCO ANC 1.50 1.80 l
                                                             -   4 s      x i

1.70 y N M e g .. K/ \ m w x f r cr -

                                                                                        \                  w I

d 7 N 7 ' 1.40 N  ! N x I l 1.50  ; s 1.40 [ l 1.30 . i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 it 17 18 j i BURNUP (CWD/WTU) I i I 74 l I I i

>. FIGURE'5.40 WILLSTONE' UNIT 3, CYCLE'4 i F-Q(WAX)LVS. BURNUP e HFP . 2.00 X X INCORE  ; 4 1.90 \' ', NUSCO-ANC .!'

                                          \,                                                                        .f 6i    _. s >
r j 1.00 \,
                                                       \'                                 ..
                                                                                          ^
                                                            \                ..
                                                                             ^

N j N 1.70 \  % l

                                                                           \      +

i S o N ,

                                                                                               %   %                  f 1.80                                                                             A a    -
                                                                                                                    .i I

1

                                                                                                                    .l l

1.50 y 1 1.40 1.30 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 BURNUP (CWD/WTU) 75 1

 <>                                                                                                               .t
                                                         ~

FIGURE 5.41 o

                                 -WILLSTONE UNIT'3, CYCLE 5 F-Q(WAX)'VS. BURNUP-e HFP 3
                                                                                                                  -t 2.00                                                                                                    ;
                                                                                                                  .i t
                                                               .X INCORE:                                            l
                                                                  - NUSCO ANC                                        t
            -1.90                                                                                                    i

( t V l ( i X a. <, j i [ \, X v - Y 1.00 N  % t i

                                             %  A                                                                    .
                                                        %  A 1.70
                                                             \ -

w 5 m l 3 e \  ! d .! 4 1.80 l l l 4 1.50 .) i 1.40  ; l l i 1,30 0 1 2 3 4 5 6 7 8 9 18 11 12 13 14 15 18 17 18 10 20 BURNUP (CWD/W1U) 76 l

iz FIGURE 5.42 WILLSTONE UNIT 3, CYCLE 3 CRITICAL BORON CONCENTRATION VS. BURNUP (HFP, ARO) 1500 l

                                                                               + WEASURED 0 WEST. ANC
                                                                               - NUSCO ANC e
                                   .9     "

1400 Y T E $ t 5 1200 9'.- 5 $!

      ;-                                                   _g   __

E 1000 k, - U \-

      =

u __ g 800 j g m __ __  ?{+- i o 600 , i E 5 -_ ig l 400 , l4

                                                                                          \u                N .

200 l N N-

                                                                                                                   \p __

0 l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 f BURNUP (GWD/WTU) I 77

h FIGURE 5.43 WILLSTONE UNIT 3, CYCLE 4 CRITICAL BORON CONCENTRATION VS. BURNUP (HFP, ARO). 1800 g g  ;

                                                                                  +      WEASURED 1600   '

Nt - NUSCO ANC A.

                                              %'T                                                                        ._

1400 t' N

       =                                              \

I ~b,

  • A 1200 j I

E b,b C ac ,i,g p E 1000 , w .__.

                                                                                                                               ]

E ,\ u g 800 Li

       =                                                                            _
                                                                                                \

600 I C --T E +\ , 400 A  ! l A  ! ! h 200

                                                                                                                  \   __
                                                                                                                    \  ,
0 l 0 2 4 6 8 10 12 14 16 18 20 t

BURNUP (CWD/WTU) ) 78

           . I.

t - . s

                                                                  ~

ElGURE.5.44 WILLSTONE UNIT 3, CYCLE 5  ! CRITICAL BORON CONCENTRAT10N VS. BURNUP (HFP, AR0)-  ! i i 1800- .! l .

                                                                    + WEASUREo                                I 0 WEST. ANC
           - 1400              -

H-; ( m-NUSCO ANC . 3  ; R'

  • 14o0  %  !

t .

         "                                        k
                                                 %.                                                       -i O                                          SF 1200                                                                                           !
         =                                           \t                                                       !

S TF ' O \ ' 5 1000 \4 ' m \ . E b l 3 N

         =           soo                                                                                      !
         =                                                       \l                                            '
                                                                      \ -

a \  ! 4 o soo 4 i z.' 3 U

                                                                                \;                  __         l N                             I 400                                                           \g
                                                                                     \                         '

1  ! 200 \ N : i ( , r o e o 2 4 6 8 to 12 14 16 18 20 i BURNUP (GWD/WTU) ', P 79 ' i i i I

1

                                                                                                              'I S.0       

REFERENCES:

I

1. mqlp.glQggign, Northeast Utilities Service l
  .                 Company, NUSCO 152, Addendum 2, November 13,1987.                                            l 1
7. 2. Largford, F. L and Nath, R. J., " Evaluation of Nuclear Hot Channel Factor  ;

F Uncertainties," WCAP-7306-L, April 1969, and Spier, E. M. and Nguyen, T. G.,  ! I

                    " Update to WCAP-7308-L, Evaluation of Nuclear Hot Channel Factor Uncertainties," March 1984.~                                                                ;
          ' 3.      Mayer, C. E. and Stover, R. L, "INCORE Power Distribution Determination in                j Westinghouse Pressurized Water Reactors," WCAP-8496, July 1975.                           --l
4. Bordelon, F. M., et al, " Westinghouse Reload Safety Evaluation Mer-c-sc'-:-;iy,"  !

i WCAP-9272 (Propnetary), March 1978.

5. A. C. Thadani letter to W. J. Johnson, " Acceptance for Referencing of the Westinghouse Topical Report WCAP-11596, Qualification of the PHOENIX-P/ANC ' '{

Nuclear Design System for Pressurized Water Reactor Cores," May 17,1988.

                                                                                                              ]  l
6. C. Berlinger letter to E. P. Rabe, Acceptance for Referencing of Licensing Topical ,

Report WCAP 10965-P and WCAP 10966-NP," June 23,1986.  !

7. Poncelet, C. G., " LASER- A Depletion Program for Lattice Calculations Based on l MUFT and THERMOS," WCAP.6073, April 1966. l
8. Olhoeft, J. E., "The Doppler Effect for a Non-Uniform Temperature Distribution in ,

Reactor Fuel Elements," WCAP-2048, July 1962.

9. Nguyen, T. Q., et al, " Qualification of.the PHOENIX-P/ANC Nuclear Design j System for Pressurized Water Reactor Cores," WCAP-11596-P-A (Proprietary), j November 1987.

l

10. Liu, Y. S., et al, "ANC: A Westinghouse Advanced Nodal Computer Code," WCAP- l 10965 P-A(Propnetary), December 1985.  ;
11. Barry, R. F., et al, "The PANDA Code," WCAP-7048-P-A(Propnetary) and WCAP-7757-A, January 1975. l
12. Miller, R. W., et al, " Relaxation of Constant Axial Offset Control," WCAP-10216-P-A, June 1983.
13. ANSI /ANS - 19.6.1 (1985) Reload Startup Physics Tests for Pressurized Water  :

Reactors. l

14. Physics Methodoloov for PWR Reload Desion. Northeast Utilities Service Company, NUSCO 152, Addendum 3, January 3,1994. l l

80  ; i f

                                                                                              - -}}