ML20138Q745

From kanterella
Jump to navigation Jump to search
Exam Rept 50-325/OL-85-03 for Units 1 & 2 on 851007-10.Exam Results:Five Candidates Passed
ML20138Q745
Person / Time
Site: Brunswick  Duke Energy icon.png
Issue date: 12/12/1985
From: Munro J, Wilson B
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II)
To:
Shared Package
ML20138Q741 List:
References
50-325-OL-85-03, 50-325-OL-85-3, NUDOCS 8512270452
Download: ML20138Q745 (73)


Text

'

[p KrTug*o UNITED STATES NUCLEAR REGULATORY COMMISSION

[

REGION 11 o

g j

101 MARIETTA STREET,N.W.

ATLANTA, GEORGI A 30323

%,***** p ENCLOSURE 1 EXAMINATION REPORT 325/0L-85-03 Facility Licensee:

Carolina Power and Light Company P. O. Box 1551 Raleigh, NC 27602 Facility Name:

Brunswick Steam Electric Plant Facility Docket Nos.:

50-325'and 50-324 Written, oral, and simulator examinations were administered at the Brunswick

-Steam Electric Plant near Southport, North Carolina.

Chief Examiner:

/

/

/2//z/J3' John F. Munr R Date Signed dd

/%/n/as' Approved by:

'f g*BruceApiJson,SectionChief Date Signed

' Summary:

Examinations on October 7-10, 1985 Written and operating examinations were administered to seven candidates; five of whom passed.

8512270452 851219 gDR ADOCK0500g4

eng p~

O REPORT DETAILS

~1.

Facility Employees Contacted:

G. Barnes, Senior Specialist - Operator Training

  • S. Morgan, Senior Specialist - Operator Training
  • N.. Stuart,-Senior Specialist - Operator Training W.- Culver, Senior Specialist - Operator Training L. Dunlap, Instructor (RTS)

~*E.-Bishop, Operations Manager

  • A. ;Hegler, Operations Superintendent

'*E.' Enzor, Regulatory Compliance

  • Attended Exit Meeting 2.-

Examiners:

  • J. Munro D. Stadler B. Wilson G.; Sly (PNL)
  • Chief Examiner 3.

Examination Review Meeting At the conclusion of the written examinations, the examiners provided

-N. Stuart with a copy of the written examination and answer key for review.

No comments were made~ by the facility reviewers.

4.

Exit Meeting At the conclusion of the site visit the examiners met with representatives Lof the plant staff to discuss the results of the examination. Those individuals who clearly passed the oral examination were identified.

- There were no generic weaknesses (greater than 75 percent of candidates giving incorrect answers to one examination topic) noted during the oral

. examination.

The cooperation given to the examiners and the effort to ensure an atmos-phere in the control room conducive to oral examinations was also noted and appreciated.

The licensee did not identify as proprietary any of the material provided to or reviewed by the examiners.

1

.. - - _.. ~

.hf'h~

...--- mams s

H LUFY ENCLOSURE 3 U.

S.

NUCLEAR REGULATORY COMMISSION REACTOR OPERATOR LICENSE EXAMINATION FACILITY:

_BRUNSW1CK_1&E-=-

l REACTOR TYPE:

_EWR-GEi_____

DATE ADMINISTERED:_&illaLaa__ -_

EXAMINER:

_KINQm_M.

APPLICANT:

INSTERCI1QNE_IQ_AEEL1CANI1 Use separate paper for the answers.

Write answers on one side only.

Staple question sheet on top of the answer sheets.

Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at loost 8C%.

Examination papers will be picked up six C6) hours after the examination starts.

% OF CATEGORY

% OF APPLICANT'S CATEGORY

__MALUE_ _IDIAL

___199BE

_YALUE__ __=__--

__9 ATE 99BI 25:su

_13_30__ _21.24-1.

PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW 2 3 '76 23.*2f

_il.11__ _;1.11 2.

PLANT DESIGN INCLUDING SAFETY AND EMERCENCY SYSTEMS 2$. 9F

_al.ia__ _al.is ___ -

3.

INSTRUMENTS AND CONTROLS 34I.3 s

_Z1.11__ _21.11 4.

PROCEDURES - NORMAL. ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL

/se. c o 111.11__ laa.QQ

= TOTALS FINAL GRADE All work done on this examination is my own. I have neither given nor received aid.

APPLibANT'S SIGNATURE

dbw

'. __ER1NCIELES_QE_ NUCLEAR _EQWER_ELAMI_QEERAllONm PAGE 2

-IHERMQQIUAMICS _HEAI_IRANSEER_ANQ_Eku1Q_ELOW QUESTION 1.01

(.50)

Why is it necessary to remove noncondensable gases from the main condenser ?

(0.S)

QUESTION 1.02 (2.00)

The reactor is operating at 7S% power.

Recirculation flow is subsequently increased to provide 100% power. Briefly explain the reactivity transient caused by the flow / power increase with emphasis on the following:

Frew;M. Ots44 8 A & b e gen.+ Ta,ma. n a,

c.

Core void content (1.0) b.

Core reactivity (1.0)

-QUESTION 1.03 (2.00)

The reactor has been operating at high power for several weeks.

a.

How much thermal power, in MEGAWATTS, is being produced approxtmately 1 SECOND following a scram?

After 1 MINUTE?

(1.0) b.

Why does this power NOT INDICATE on the nuclear instrumentation?

(1.0)

QUESTION 1.04 (2.00) c.

How does the percentage of delayed neutrons produced in the CORE vary over core life and WHY?

(1.0) b.

How do delayed neutrons contribute to the control capability of a commercial BWR reactor?

(1.0)

(***** CATECORY 01 CONTINUED ON NEXT PAGE

          • )

T-t 1.__ER1NCIELES_QE_NECLEAR_EQWER_ELANI_QEER&I1ON.

PAGE 3

IHERMQQ1 NAM 101 _HEAI_IRANEEER_ANQ_ELula_ELOW QUESTION 1.05 (1.00)

Concerning control rod worths during a reactor startup from 100% PEAK XENON versus a startup under' XENON-FREE conditions, which statement is ccrrect?

  • 1.0) 0.

PERIPHERAL control rod worth will be LOWER during the PEAK XENON startup than during the XENON-TREE startup.

b.

CENTRAL control rod worth will be HIGHER during the PEAK XENON startup than during the XENON-TREE startup.

c.

BOTH control rod worths will oe the SAME regardless of core Xenon conditions.

d.

PERIPHERAL control rod worth will be HIGHER during the PEAK XENON startup than during the XENON-FREE startup.

QUESTION 1.06 (2.00)

Explain why installed neutron sources are no longer required at BSEP during reactor startups (Your answer should include THREE sources of source neutrons currently present at BSEP)?

-( 2. 0 )

QUESTION 1.07 (2.00)

The reactor has been operating at 95% power for several dcys. An operator RAPIDLY reduces reactor power to 60% by reducing the speed of the rectreulation pumps. During the next FEW MINUTES (2-3 minutes) the operator nottces that reactor power slowly increases approximately 3% EXPLAIN the cause of this effect.

(***** CATEGORY 01 CONTINUED ON NEXT PAGE

          • )

e.

y 1.__ER1NCIELEE_QE_ NUCLEAR _EQWER_ELAMI_QEERAI1QN.

PAGE 4

IHERMQQ1NAMICE _HEAI_IRANEEER_ANQ_ELu1R_ELOW s.

~_

~

QUESTION 1.08 (2.50) s Till in'the blanks with one of the given choices in the paragraph b'elow doscribing the INVERSE POWER RESPONSE to rod movements.

~

"As a shallow rod is inserted during power operation, the

[a]

(INCREASED, DECREASED) void formation propagates all the way up to the top of the core, causing a reactivity

[bl-(INCREASE, DECREASE) which more than offsets the reactivity (c)

(ADDITION, SUBTRACTION) due to the insertion of the control rod.

The net effect is a small reactivity (d)

(INCREASE, DECREASE), resulting in a small (el____

(INCREASE, DECREASE) in reactor power."

(2.S)

QUESTION 1.09 (1.S0)

The reactor has been operating at 75% power for several days when power is increased to 100% power by rectreulation flow.

With no further operator action, Explain HOW and WHY reactor power will vary over the next several HOURS.

(Take your discussion to when reactivities have stabilized.)

(***** CATEGORY 01 CONTINUED ON NEXT PAGE

          • )

i

1 p.

5.l__ER1NCIELE1_QE_NHCLEAR_EQWER_ELANI_QEERATION PAGE 5

IEERMQQ1NAMICE _HEAI_IRANSEER..ANQ_EkulR_ELOW QUESTION 1.10 (2.50)

Given;the following plant (Unit 1) conditions:

.Roactor power:

~100%

Roactor pressure:

~1010 psig Throttle pressure:

~949 psig M3ximum combined flow limit:

normal setting Lead limit:

normal setting Load set:

norma 1 setting Bypass valve capacity:

25%

.Rocire flow control:

master manual Bypass valve Jack:

0% (closed) x Assume the EHC "A"

pressure regulator fails low.

Using the enclosed EHC figures, explain the effects of the failure on each of the following:

c,j T h e bypass valves b.

The control valves

.c.

Reactor vessel pressure d.

Throttle pressure g e.

Reactor power s -

(5 9 0.5 ea.)

.s y,

QUESTION 1.11 (1.00)

'Which of the following. correctly describes the Maxtmum Fraction of Limiting Power Density (MPLPD)?

a.

LHGR-actual / LHGR-limit i must be maintained < 1 b.

LHCR-limit / LHGR-actual must be maintained > 1 c,

LilGR-1 ims t / LHGR-actua1 must be maintained < 1

.,t d.

LHOR-actual / LHGR-limit must be maintained > 1

(***** CATEGORY 01 CONTINUED ON NEXT PAGE

          • )

c

.r.

p 11.__ER1NCIELEE_QE_NuQLEAR_EQWER_ELAMI_QEER&ZiQH.

PAGE 6

IHERMQQ1NAMICE _HEAI_IRANEEER_ANQ_ELu1R_ELOW

. QUESTION' 1.12 (1.00)

When does a constant-speed centrifugal pump motor draw the LEAST current?

o.

at " runout" conditions b.

at its " operating potnt"

~

c. while "cavitatang" d.

at " shutoff head" conditions OUESTION 1.13 (1.50)

Consider'the following two cases ti and 11) during a reactor startup:

1.

The reactor is slightly subcritical (keff 0.995) 11

.The reactor is greatly suberitical (Keff = 0.950)

Control rods are withdrawn adding a specific and equal amount of reactivity in each case.

Select the best answer from those provided to complete the

.following statements.

c'.'The change in t h'e count rate in the slightly subcritcal reactor (t) would be (greater than, less than, equal to) the change in count rate of the greatly subcritical reactor (11).

b.

The rise in the count rate in the slightly suberitical reactor (i) would be (faster, slower, the same) as the rise in count rete of the greatly suberitical reactor (11).

Ib*

c.

The time required to reach the equilibrium count rate in the slightly subcritical reactor (i) would be

____ (shorter, longer (

b

->S in the greatly subcrItcal reactor (ii) e,..ss +x.

ns

<u-

+;ms

(***** CATEGORY 01 CONTINUED ON NEXT PAGE

          • )

i

A

- r i

1.__ER1NCIELEE_QE_MMCLEAR_EQWER_ELAMI_QEERAI1QM.

PAGE 7

IHERMQQ1NEW1QE _HEAI_IRAM1EER_ANQ_ ELM 1Q_ELQW s

. QUESTION 1.14 (1.00)

Which of the following actions will INCREASE BSEP's thermodynamtc cycle efficiency?

c. DECREASING power from 100% to 25%.

b.

LOWERING condenser vacuum from 29" to 25".

c.

REMOVING a high pressure FW heater from service.

d.

DECREASING the amount of condensate depression.

-QUESTION 1.1S (1.00)

CALCULI."E~the QUALITY of a 540 degree F vapor-liquid mixture whose specific enthalpy is 1175 BTU /lbm.

QUESTION 1.16 (2.00) a.

DEFINE " Critical Power".

b. Which one of the following conditions would tend to INCREASE the Critical Power level assuming all other variables remain unchanged?

1.

Inlet subcooling is DECREASED 2.

Reactor pressure is DECREASED 3.

The axial power peak is RAISED 4.

Coolant flow rate is DECREASED

(*****

END OF CATEGORY 01

          • )

s

'o

' li__ELANI_DESLQN_LNCLUQLNG_SAEEII_ ANQ_EMERGENC1_ SYSTEMS PAGE 8

QUESTION 2.01 (1.00)

During high power operation, a SLOW decrease in main condenser vacuum occurs. LIST FOUR (4) items (reasons) which could be causing

~

this decrease.

(1.0)

OUESTION 2.02 (2.00)

Give TWO (2) design features that prevent the posstbility of

' draining 1the water from the spent fuel storage pool below the top of the fuel stored there.

(2.0)

OUESTION 2.03 (3.00)

An automatic RCIC initiation has occurred. Subsequently, RCIC injection was' automatically terminated due to'high reactor water level.

.c.

What component in the RCIC system functioned to terminate the injection?

(0.5) b.

Assuming no operator action, how will RCIC respond to a subsequent' decreasing water level?

(1.0) c.

If a RCIC " Turbine Test" had been in progress when the initial automatic initiation signal had been received, how would the system have responded?

(1.0) d.

If, following the initiation, the RCIC turbine had tripped on overspeed, could it be reset from the Control Room?

(0.5)

OUESTION 2.04 (3.00)

When a scram signal occurs at power, describe IN DETAIL how the Control Rod Drive and its associated Hydraulic Control Unit function to insert the control rod.

As a MINIMUM in your answer include which components open, close, energize, deenergize, and what supplies _ the motive force.for the ENTIRE rod travel (3.0) e

(***** CATECORY 02 CONTINUED ON NEXT PAGE *****)

p i.__ELANI_QEELGN_LNGLEQING_EAEEII_ANQ_EMERGENC1_E1EIEME PACE 9

^

-QUESTION 2.05 (2.00)

Briefly, EXPLAIN HOW the HPCI System will respond to a valid auto initiation signal if the HPCI DC condensate pump (gland seal)_ trips on overload.one minute after the initiation signal is received?

Discuss what specifically happens in the HPCI System assuming NO OPERATOR ACTION and state whether the system will perform its intended function.

(2.0)

QUESTION 2.06 C.S0)

Indicate whether the following statement is TRUE or FALSE.

Cooling water flow enters the CRD exhaust port and will leak past-seals into the reactor vessel.

(0.5)

QUESTION 2.07 (1.00)

Which of the following is the only normally CLOSED valve in the RCIC steam supply flow path in the at power Standby lineup?

a.

Steam Supply Valve (FO45) b.

Outboard Steam isolation Valve CFOO8) c.

Turbine Trip Throttle Valve d.

Turbine Governor Valve QUESTION 2.08 (1.00)

'Which of the following sequences of components correctly reflects the normal RCIC water flow path for injection into the Reactor for unit II ?

a.

CST - Pump -

"B" FW Line, upstream of FW Flow detector b.

CST - Pump -

"B" FW Line, downstream of FW Flow detector c.

CST - Pump -

"A" FW Line, upstream of FW Flow detector d.

CST - Pump -

"A" FW Line, downstream of FW Flow detector

(***** CATEGORY 02 CONTINUED ON NEXT PAGE

          • )

9 7

1.__ELAMI_QESIGN_LNChuQ1NG_EAEEII_ANQ_EMERGENC1_ELEIEMS PAGE 10

. QUESTION 2,09 (1.00)

Hcw would a loss of instrument air affect the operation of the Standby Liquid Control System (SBLC)?

o. The SBLC tank level indication would be inoperable.

b.

The SBLC tank air sparger would be inoperable.

c -The SBLC tank level inhication and air sparger would be inoperable.

d.

It would have NO impact since the service air system supplies all-SBLC needs.

QUESTION 2.10 C.50)

'Roactor pressure is 900 psig and RHR-LPCI is running in response to a vclid initiation signal. What is the approximate expected flow indication on the pump discharge flow meter on the 601 panel?

QUESTION 2.11 (1.00)

Reactor feed Pump (RTP) turbine speed is controlled by either e Motor. Speed Changer (MSC) or an Motor Gear Unit (MGU)

The MGU... (CHOOS E O!4E )

c.

will control the RTP turbine's speed only if its speed signal is greater than that from the MSC.

b.

...is normally used to control feed flow rate over a turbine speed of 0 -- S500 rpm.

c.

unlike the MSC, does NOT afford the capability of manual speed control by use of a local handwheel d '.

...will lock in place to prevent a ramp response to a false signal, if-it loses its~ signal from the flow controller

(***** CATECORY 02 CONTINUED ON NEXT PAGE *****)

e 1.__ EL AMI_Q E E LG M _1MC LUQ LNG _ S A EEII_ &M Q _EM ERG ENC 1_ SY SIEM S PAGE 11 QUESTION 2.12 (1.00)

The Reactor Recirculation Pump seal cartridge assemblies consist of two sets of sealing surfaces and breakdown bushing assemblies.

Failure of the #2 seal assembly at rated conditions would result

}

in.......(CHOOSE ONE) a.

...an increase in #2 seal cavity pressure from approximately 500 psig to approximately 1000 psig.

b.

.a decrease in #2 seal cavity pressure from approximately 500 psig to approximately 0 psig.

c.

..an increase in #1 seal cavity pressure from approximately 500 psig to approximately 1000 psig.

d.

...a decrese in #1 seal cavity prerssure from aproximately 500 psig to approximately 0 psig.

3 QUESTION 2.13 (2.25) a.

The LPCS system design has features to protect piping from over pressure. To manually open the LPCS inboard and outboard isolation valves the correct sequence is.

.(CHOOSE ONE)

(1.0)

(ASSUME CS pumps are OFF and both valves are closed.)

1.

reactor pressure (410 pstg, outboard then inboard 2.

reactor pressure (410 psig, inboard then outboard 3.

reactor pressure >410 pstg. outboard then inboard 4.

reactor pressure >410 psig, inboard then outboard b.

Describe the operetton of the core spray sparger break detection system.

Include in your answer WHERE pressure is physically sensed, WHA *i delta pressures are sensed, the normal berton gauge (meter) reading (100% power) and the alarm barton gauge (meter) reading.

(1.25)

(***** CATEGORY 02 CONTINUED ON NEXT PAGE

          • )

w 11 __ELAMI_DEElGM_1MCLUQ1MQ_EAEEII_ANQ_EMERQENC1_111IEME PAGE 12 OUESTION 2.14 (1.00)

Attached Tigure 2 depicts the UPS power supply line-up and switch contact alignment for Unit 2 UPS with Inverter 2A suppling.

Utilizing Tigure 2 as a reference, describe what cill AUTOMATICALLY occur if inverter output 2A is lost, ie, what is the new source of UPS power AND what switch contacts change positions?

(1.0)

QUESTION 2.15 (1.00)

Which of the following logic signal combinations most correctly detail the COMPLETE logic sequence for the automatic initiation of the RHR System in the LPCI Mode?

(1.0) a.

Reactor vessel low level (LL #3)

-- or --

Drywell high pressure b.

Reactor vessel low level (LL #3) with Reactor vessel low pressure

-- or --

Drywell high pressure with Reactor vessel low pressure c.

Reactor vessel low level (LL #3) with Reactor vessel low pressure or --

Drywell high pressure

-d.

Reactor vessel low level (LL #3)

-- or --

Drywell high pressure with reactor vessel low pressure QUESTION 2.16 (1.00)

There is a Check Valve and a Check Valve Bypass located in the discharge line immediately downr team of each Core Spray Pump.

STATE the purpose of this Check valve -AND-the Check Valve Bypass.

. QUESTION 2.17

'2.00:

LXPLAIN how corros on and fouling are MINIM 12ED in the Vital Service Water header.

(0.S)

(***** CATEGORY G2 CONTINUED ON NEXT PAGE

          • )

I

,e 2

' a.__ELAMI_DEElGM_1MCLHQLEG_EAEEII_&MQ_EMERGENC1_E1ETEME -

PAGE 13 i

QUESTION 2.18 (1.00)

The: recirculation Motor-generator (MG) oil system is in its normal lineup for power operations then the running AC oil pump (s) trip (s).

The DC oil pump auto starts when the standby (S/B) AC oil pump (s) fail (s) to restore oil pressure above 20 psig. Which of the following statements is correct ?

a.

The AC'S/B oil pump (s? AND the MG set drive motor have tripped b.

The AC S/B oil pump (s) continue to run AND the MG set drive motor trips.

c.

The AC S/B oil pump (s) have tripped AND the MG set drive motor continues to run.

d.-The AC S/B oil pump (s) AND the MG set drive motor continue to run.

t

(*****

END OF CATEGORY 02

          • )

L

..m

e i

1.__lMEIRUMENIS_ANQ_ CONTROLS PAGE 14 QUESTION 3.01 (2.00)

The plant is operating at 100% power. APRM channels A and C have failed high. You call the I&C Technician to investigate while the SS researches Tech. Specs. A Plant Auxiliary Operator wants to shift RPS B power supply to its alternate power source for training.

WOULD you let:him? EXPLAIN why or why not. Direct your answer toward system (s). response (s) quirements.

instead of administrative re-(2.0)

QUESTION 3.02 (3.00)

For each of the IRM (Intermediate Range Monitoring) range changes bolow, provide the following: (Mode switch is in STARTUP) 1.

The indicated level on the NEW RANGE.

.2.

All automatte actions initiated as a result of the indicated level on the NEW RANGE.

c.

Switching from range S,

reading 25, up to range 7.

(1.5) b.

Switching from range 6,

reading 39, down to range S.

(1.5)

A copy of IRM scale readings is provided.

QUESTION 3.03 (2.00) for each of the following, state whether a ROD BLOCK, HALF-SCRAM, FULL SCli AM, or NO PROTECTIVE ACTION is generated for that condition.

NOTE:

If two or more actions are generated, i.e.

rod block and a half-scram, state the most severe, i.e.

half-scram.

Assume No oper-ator actions.

c.

APRM A Downscale, Mode Switch in RUN (0.5) b.

(11 LPRM inputs to APRM B.

Mode Switch in STARTUP C0.5) c.

Both Flow Conv. Units Upscale (>110% flow), Mode Switch in RUN (0.S) d.

APRM C and D >20%, Mode Switch in STARTUP (0.5)

(***** CATECORY 03 CONTINUED ON NEXT PAGE

          • )

L__1MEIRUMENIE_ANQ_CONIRQLE PAGE IS QUESTION 3.04 (2.50)

Answer the following questions about the Rod Worth Minimiser's control of rod movement, when the rod selected results in a select ortor.

c. WHAT happens when the rod is withdrawn one notch?

(0.5) b.. Assuming the red has been withdrawn one notch in "a"

above.

HOW much further can the rod be withdrawn and WHY?

C0.5)

.c.

WHAT happens when the rod is inserted and HOW far can it be inserted?

(1.5)

QUESTION 3.05 (1.00)

WHAT are TWO automatic actions which should occur, OTHER THAN a Group 1 isolation, if Main Steam Line Radiation Monitors

'.' A " and "B"

reach their High-High trip setpoint?

(2 9 0.5)

QUESTION 3.06 (1.50)

Unit 2 is operating at 90% rated load with recirculation flow control in Master Manual, when RTP 2A trips.

WHAT will be the response of the recirculation and flow control system cath no operator action?

INCLUDE final aectreulation pump speeds AND any setpoints associated with your response.

(1.S) e I

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

l l

e-

,o 3.

INSTRUMENTS AND CONTROLS PAGE 16 QUESTION 3.07 (2.00)

Given the following data for APRM Channel C:

LPRM Level:

A B

C D

l

. Number of LPRM's assigned:

S 4

4 4

Number of LPRM's bypassed:

2 3

1 0

c.

If APRM Channel C selector switch on the local (back) panel was placed to the COUNT position, what would be the expected meter reading? (Show calculation)

(1.0) b.

Based on the above data, is APRM Channel C operable?

Answer YES or NO and explain why.

(1.0)

OUESTION 3.08 (1.00)

For the following situation, select the correct Feedwater Control System / plant response from the list (a through d) which follows. NO operator actions are taken.

The plant is operating at 100% power in three element control, when one of the steam flow detectors fatis downscale.

(1.0) a.

Reactor water level decreases and stabilizes at a lower level'.

b.

Reactor water level decreases and initiates a reactor scram.

c.

Reactor water level increases and stabilizes at a higher level.

d.

Reactor water level increases and initiates a turbine trip and Reactor Scram.

QUESTION 3.09 (2.00)

A LPCI initiation of RHR will open various valves. Two of the valves in each division have timers associated wth them. WHAT valves are these end what is the purpose of the timers.(setpoint not required).

(2 0 1.0)

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

1.__1NEIREMENIE_ANQ_CONIRQkE.

PAGE 17 OUESTION 3.10 (3.00)

For each of the three normally closed valves in the HPCI steam supply:

~

a.

Identify the valve.

b.

Identify the specific signal that opens the valve.

(if no specific signal exist state so) c.

Identify the motive (power) source for the valve.

(3 9 1.0)

-QUESTION 3.11

.(1.00)

After completing a diesel generator (D.C.)

test the operator inadvertantly presses the EMERGENCY STOP button. Which ONE of the following statements is correct?....

c. The D.G.

lockout relay will prevent the diesel from restarting until reset.

b.

The D.G.

can be started by depressing the local start button, c.

A D.G.

auto-start signal will attempt to start the D.G.

one time

-d.

The D.G.

can be started by depressing the control room start button.

QUESTION 3.12 (1.00)

Each core spray pump has indicating lamps associated with it.

The white light, when illumicated indicates..

.(choose one) a.

loss of control power b.

pump auto-start signal is over-ridden c.

core spray pump 416 0 */ b r e a k e r is closed d.

indicates pump-runout (1.0)

(***** CATEGORY u3 CONTINUED ON NEXT PAGE *****)

-a 1.__1MEIRUMENIE_ANQ_CQMIRQLE' PAGE 18 OUESTION 3.13 (1.00)

Select which ONE of the following an operator does to increase VARS c.

INCREASE generator speed b.

INCREASE' capacity factor c.

INCREASE _ generator voltage d.

INCREASE generator stator cooling (1.0)

QUESTION 3.14 (2.50)

Both the SRM & 1RM compensate their detector signals with a unique-type _of discrimination process.

a.

WHAT type of radiation does the discriminator eliminate?

(0.S:

b.

BRIEFLY DESCRIBE HOW each system, SRM & IRM, accomplish this task?

(1.0)

c. WHY is there a difference between the two (2) discrimination processes?

(i.0)

(*****

END OF CATEGORY 03

          • a

s 1.__ERQCEQUREE - NQRMak&_ARNQRMak _EMERQENCI_ANQ PAGE 19 RAQLQLQQLCAL_CQEIROL QUESTION 4.01 (3.75) c.

A fire of unknown sources breaks out in the Control Room resulting in heavy smoke. The Shift Foreman makes the decision to. evacuate the Control Room. As the Unit Control Operator what are 8 actions you should take prior to leaving the Control Room (per AOP-32) ?

(2.5) b.

If you could teke NO actions prior to leaving the Control Room, what actions should you take outside the Control Room and WHERE would you take them (per AOP-32)?

(1.25)

QUESTION 4.02 (3.00)

c. What are the two entry c o nd i t t o r. s for procedure EOP-01-LEP-03, Alternate Boron Injection ?

(2 0 0.5 ea.)

b.

List four systems that may be used per procedure LEP-03 to inject boron.

(4 9 0.5 ea.)

QUESTION 4.03 (1.00)

The Multiple Clearances, as described in Al-58 (Equipment Clearance Procedure)..

.(choose one)

c. CAN only be issued after a Master Clearance as been issued.

b.

CAN tag out several pieces of equipment for work by one individual.

c.

CANNOT be used on radwaste systems.

d.

CAN tag out equipment for two individuals.

QUESTION 4.04 (2.00) 0G-4 Engineered Safety Teature Operability, lists reasons Chen the EST status board would have a green light lit for an ESF system. What are two reasons ?

(2 9 1.0 ea.)

j

(***** CATEGORY 04 CONTINUED ON NEXT PAGE

          • )

i i

l

a 1.__REQCEQUREE_ _NQRMAL _AHNQEMAL _EMERGENCl_LNQ PAGE 20 R&Q10LQQ1 CAL _CONIRQL QUESTION 4.05 (1.50) 01-1. Operating Principles and Philosophy, defines the terms "shall", "should", and "may" as they apply to BSEP procedures.

Briefly define these three terms per 01-1 (3 0 0.50 ea.)

QUESTION 4.06 (1.00)

You may install an " operator aid" when professlinally constructed and approved by.

.(choose one) a.

NRC licenced operator b.

SF/ SOS c.

2 SRO's d.

Manager-Operations QUESTION 4.07 (2.00)

A unit startup is in progress with the reactor at 9% power APRM E tc in bypass. IRM A becomes erratic and is placed into byp:3s by the operator Explain if the unit startup can or cannot continue by procedure.

i.e.

place mode switch to run, turbine roll up and sync.

(see supplemental matertal provided)

(***** CATEGORY 04 CONTINUED ON NEXT PAGE

          • )

o i___ERQQEQuRES - HQEMahm_ARNQRMAL _EMERGENQ1_ANQ PAGE 21 R&QLQLQG1 CAL _QQNIEQL

-QUESTION 4.08 (3.50)

c. The main turbine is on a roll up (increasing speed) to 1800 RPM.

List FOUR conditions that c o u'I d occur where the operator should " Trip the turbine" in accordance with GP-03 " Unit Startup and Syncronization".(Setpoints n o't required)

(4 0 0.5) b.

After depressing the 100 rpm speed select push button for a turbine start-up, you should verify valve motion and light indication. Put the following in the order that you would see them per GP-03, Unit Startup and Sychronization.

(6 9 0.2S) 1.

Intercept valves el and 3 - open slowly 2.

Main stop valves #1,3.

and 4 - open slowly 3.

Increasing speed light comes on 4.

Main stop valve #2 - begins to open 5.

Control valves - throttle open 6.

Intercept valves #2 & 4 - start to open QUESTION 4.09 (1.00)

When placing RCIC in standby, the sequential steps are as follows:

1.

Verify the steam supply outboard isolation valve, E51-F008 is closed.

2.

Verify the steam supply inboard isolation valve, E51-F007 is closed.

3.

Open the supply drain pot drain bypass valve, E51-F054, 4.

Open the steam supply outboard isolation valve. ESt-F008.

S.

Slowly throttle open the steam supply inboard isolation valve E51-F007.

Why are you performing these steps. AND what are the consequences of opening F007 quickly ?

't.0) i l

i

(***** CATEGORY 04 CONTINUED ON NEXT PAGE

          • )

a.

i___EL2CEQuREE_ _NQRMAL._ARNQRMAL._EMERGENC1_ANQ PAGE 22 RAQiQLQQ1 CAL _CONIRQL QUESTION 4.10 (1.00)

Level Detectors NO36/NO37 are not included in the EOP-01/UG caution (CAUTION #6) concerning high temperatures near the reference leg vertical runs.

EXPLAIN WHY these instruments are EXCEPTED from this caution and WHEN, if ever, these instruments could' develop excessive inaccuracies.

(See EOP-01-UG caution #6 attached)

QUESTION 4.11 (1.00)

Per the BSEP Radiological Emergenzy Plan:

a.

STATE the NORMAL OSC location.

(0.5) b.

STATE.the NORMAL EOF location.

(0.5)

QUESTION 4.12 (1.00)

EOP-01-UG states in caution #15 to open the SRV's in the following sequence:

A, E,

J.

B.

F.

D, G.

C.

H.

Explain WHY this sequence and Wily 3RV's K and L are not on the list.

QUESTION 4.13 (1.50)

BSEP AOP-04.4, Jet Pump Failure, l i s t$ 6 symtoms of a jet pump fatture. Three of the symtoms are:

a.

Decrease in generator megawatt output b.

Increase in total core flow c.

Recirculation loop flow increase in the loop with the failed jet pump.

Explain how a failed jet pump would cause each of the above (3) symtoms to occur.

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

r-

-a

-i.__ERQCEQuREE_:_MQEMAL&_&RNQRM&k&_EMERGEMQL_ANQ PAGE 23 R&Q1QLQQ10&L_QQNIRQL QUESTION 4.14 (1.00)

An improper - RBCCW system lineup could result in possible damage to'the pumps and/or heat excnangers as stated in the " cautions" of the system operating procedure (OP-21). Which of the following lineups would minimize the likelihood of component damage over an

.oxtended operating period?

a.

Running one RBCCW pump'with two RBCCW heat exchangers.

b.

Running two RBCCW pumps with two RBCCW heat exchangers.

c.

Running two RBCCW pumps with one RBCCW heat exchanger, d.

Running two RBCCW pumps with three RBCCW heat exchangers.

QUESTION 4.15 (1.00) u, vek Oam System Operating Procedure)

BSEP procedure OP-25 (Unit !! Main St requires control rods to be withdrawn'to oper the first bypass valve to 20% when reactor pressure reaches 250 psig. Briefly EXPLAIN why this step is done.

u

(*****

END OF CATEGORY 04

          • )

(************* END OF EXAMINATION

                              • )

w g>E I-ff!)

si 5.2 ljj 3 3

M a

a 8

==

E

,)

l H:

3 1

i L%

5 7

S 7

S 78 N

Ig5, 8,5 Ig1,5 l

2 6

1 1.

5 s.

!=

j' 53 u

E 2

r.>.C. ile(p

,i i

li le i

s. -

BSEP/Vol. II/50-26.2 38 Rev. O

lfi) llIl Ijl lIl

!l

\\l filf lll

(

l L

U O D REN TVA NLM OAE CVD S

t in D

U E

l PP o

r IR t

T n

o o

E C

N

^D h

I E

e B

S r

R O

u U

S T

DT S

(

G A

I e

M r

V OI 0

P LL 3

2 N

O 6

EI 2

T R A e

SS g

WU L S

r E

WSU u

R EG g

F P

RE i

%PR F

'v y

S S

1A A

I 8

B C

t-l

)

A Af

+

T B

1 O

R R

M O

O T

g3 T

A A

L b

L l

U U

G G

E E

C R

N R

E EE E

E E

R L

E L

R R

R U

T R

T U

U S

AOS U

T U S

MT S

S S

O S S S E ERE S

RE ER THR ET HR R P

STP RE P

P f

(

(

PS c*

t ~

aq3a..C3?Db a

il l!

1\\l,l

,l

25 Eh

-I

  • E G]gT 1

i.

g i

l i

,ECTiri.E. 2. s4 i

i a

8 s

i

~ ~ ~ '

8 l

bg3

)

BATT 2B1/2 lg wr'4T ---iN 3'b r'- ~ ~I MATT. 2At/2 I

- T " ~j 3no un 2 Ha 4 e

!l l A >l-d l = 2 a =C l

l l

._a L_.:..:.

\\

INVERTER 2C p THis BREAEER IS OPEN IF CONVERTER 23 offrPUT

]

g BREAEER IS CIASED THIS BREAEER OPEN IF CONVERTER 2A OUTPUT l

{

a m u m is CioSEn

)

Urp DIsfalauttoit pus i

1 FIGURE 2 UNIT 2 UPS SYSTIN i

i e

t

FIGURE 8 IRM RANGE AND SCALE RELATIONSHIPS e

a es 7s los ta CD CD e

o W

m a

e I

l,,

e,,, ],,,, $,,,,l,

,,, l RECORDER SCALE 15

[

"' 3h M

e Le = =

g 4A = =

E 5a 8

3.0

-=

8 c

I

$u-i 1m - =

l i

r 1.0 - =

-=

gyl de og 13 40 _ M Mhod 1

2 3

4 5

6 7

8 9

W RANGE i

FIGURE 9 IRM ROD BLOCKS b

G IRM INOP eu CtOSEo IN BrPASs -

Run MODE

,go, BLOCK LOGC

-/ BM DETECTOR 7

PCsm0N CLOSED

~ WHEN BM jb eM DOWNSCALE RANGE 1 4

' ' - - - - - - + -.. -, _ _ _ _ _ _. _,, _ _, _, _, _ _,,, _ _, _ _ _ _ _ _ _ _ _

FIGL7E 10 IRM/APRM SCRAMS i

Gb fgg jb IRM UPSCALE I

"* IRM BYPASS CLOSED WHEN

}g APRM NOT DOWNSCALE jb IRM INOP RPS POWER r

jb APRM UPSCALE

APRM BYPASS jb APRMINOP 4

3/4.3 INSTRUMENTATION REACTOR PROTECTION SYSTEM INSTRUMENTATION l

3/4.3.1 LIMITING CONDITION FOR OPERATION As a minimum, the reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE with REACTOR PROTECTION 3.3.1 Set points and interlocks are given RESPONSE TIME as shown in Table 3.3.1-2.

1 in Table 2.2.1-1.

APPLICABILITY:

As shown in Table 3.3.1-1.

ACTION:

With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, place the inoperable channel (s) and/or trip a.

system in the tripped condition

  • within one hour.

With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, place at least one trip system ** in b.

the tripped condition within one hour and take the ACTION required by Table 3.3.1-1.

The provisions of Specification 3.0.3 are not applicable in OPERATIONAL c.

CONDITION 5.

SURVEILLANCE REQUIREMENTS Each reactor protection system instrumentation channel shall be 4.3.1.1 demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations during the OPERATIONAL e

CONDITIONS and at the frequencies shown in Table 4.3.1-1.

LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months and shall include 4.3.1.2 calibration of time delay relays and timers necessary for proper functioning of the trip system.

The REACTOR PROTECTION SYSTEM RESTONSE TIME of each reactor trip 4.3.1.3 function of Table 3.3.1-2 shall be demonstrated to be wie.hin its limit at Each test shall include at least one logic train least once per 18 months.

such that both logic trains are tested at least once per 36 months and one channel per function such that all channels are tested at least once every N times la months where N is the total number of redundant channels in a specific reactor trip function.

  • An inoperable channel need not be placed in the tripped condition where s

f In these cases, the this would cause the Trip Function to occur.

inoperable channel shall be restored to OPERABLE status within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or the ACTION required by Table 3.3.1-1 for that Trip Function shall be I

    • If more channels are inoperable in one trip system than in the other, taken.

gggggtghetrips{stemwithmoreinoperablechannelsinthetripped l

when this would cause the Trip Function to occur.

on, excep i

BRUNSWICK - UNIT 2 3/4 3-1 Amendment No. 105 l

1 TA Bl.E 3.1.1-1 REACTOR PROTECTION SYSTEM INSTullHENTATION vn 5

APPLICAul.E MINIMUM NUMBER Q

OPERATIONAL OPERABLE CHANNELS ACTION CONDITIONS PER TRIP SYSTEN (a)_

FUNCTIONAL.IINIT AND INSTRUMENT NUNSER 1.

Intermediate Range Honitors:

(C51-IRM-K601 A,B,C,D.E F.C,H) 2, 5(b) 3 g

N Neutron Flux - liigh 2

2 a.

3, 4 3

1 2, 5 b.

Inoperative 2

2 3, 4 2.

Average Power Range Monitor (C51-APRM-Cll.A.B C.D E.F) 2 3

2, 5(b)

Neutron Flux - Iligh, 15%

a.

m 2

4 1

I b.

Flow Blased Neutron Flux - High 2

4 Fixed Neutron Flux - lligh, 120%

1 c.

2 5

1, 2, 5 d.

Inoperative 2

4 1

c.

Downscale 1, 2, 5 (c)

NA f.

LPMM Id) 2 6

3.

Reactor vessel Steam Dome Pressure - liigh 1, 2 (B21-PT-NO23A,B,C,D)

( B 21-PTM-N02 3 A-1. B-1,C-1, D-1) 2 6

1, 2 4.

Reactor Vessel Water Level -

jf Low, Level 1

( B21-LT-N017 A-1.B-1,C-1, D-1 )

( 521-1.TM-N017 A-1, B-1,C-1, D-1)

"8.9 4

4 1

5.

Main Steam Isolation Valve - Closure N

(B21-F022A,B,C,D and h

821-F028A,B,C,D) 2 7

1, 2(d) 6.

Main Steam Line Radiation - High

{y

( D t 2-RM-K603A, B,C, D) 8.R

.co rwm

~.

,..s

.. ~.

s su.s n

i.

h..

f.

f i.

in TAulf. l.l.l-l (C. inst iinue.l) f1 p

,'f W

,_RE.ACTutt PRO.T_E_CT..i_u.N. S_ Y S.TEH.... I_N_S_T.ul.lHE_N_T.AT. I O..N.

Al'l'l. l C Alli.E HINIHUN NtlHSEK

,9 01'I'.it AT i nH Al.

OPERA 8tE CilANNEl.S t

a PER Title SYSTEN (a)

ACTION l,l g

COHi.llT_ i nHS.

_ FUN _CT _luN.A.l I.IN.I.T.A_N.is INST _R_ilH_Eff.f_ N_ilHBEK H

,g 2 I 2

6

,{

I

7. l>iywell Pi ensis s e - lit gt. '

l.

(C/2 Pr HiH12A,u,C,il)

,,t (C / 2 - P itt-Nois! A - 1,5-1,C-l. ll-1 )

lf-

8. Scr.sm lil e. li.si g.-

Vitume Wint er laswel -

I'I 2

5 I,

2, S

lii gli J.

(Cl 2-1. Sit-NOl lA,B,C,ls)

L3 (Cl 2-I. Sit -4$lia.it C.It) 1 lh

\\

4 8

IE)

I Y

9. Tua litaie St aip V.il ve - Clo:sut e i

( EllC-SVOS-l X..' X,3 X. 4 X )

eIl se a

If

10. Tua liline C uit rol V.sive F.sie Cl u sie re.

IE) 4 8

Cout ul Oli a s essum e I..w I

l!

'I

( EllC -l'St.- l I Ss.,1/ S I, t / Sil, i l'i9) i i 1. Re.ar iun-H...l e N I e oli iin Sli.it lowan Posit lois I,

2, 1, 4, 5

1 9

!{-

(C/2A SI)

. {

I, 2, 5, 4, S

i 10

12. H.auis.it Sc i.im 4

(Cl2 A-S lA,ll)

N.

{5I ti 8

8" y, '

to

?

'h.

e

/,.

M

[

TABI.E 3 3.1-1 (Continued)_

IEACTOR PROTECTION SYSTEM INaimTnr..WATION ACTION least MOT SRITrDOWN within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

In CONDITION 2, be in at ACTION 1 In CONDITION 5, suspend all operations involving CORE ALTERATIONS or positive reactivity changes and fully insert all insertable control rods within one hour.

-L

-j Lock the reactor ande switch in the Shutdown position within ACTION 2 one hour.

In OPERATIONAL CONDITION 2, be in at least MOT SHUTDOWN within ACTION 3 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

In OPERATIONAL CONDITION 5, suspend all operations involving CORE ALTERATIONS or positive reactivity changes and fully all insertable control rods within one hour.

insert s

Se in at least START-UP within : hours.

AC*!ON i In OPERAT!0NAL CONDIT!0N or 2, he in at least 90T 3HL""00k7 AC*!0N 5 sithin 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

In OPERATIONAL CONDITION 5, susoend all operations involving reactiit:y changes and fully CORE ALTERATIONS or oositive all insertable control rods vi:hin one hour.

insert ROT SHL""0CbH within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

3e in at least ACT!ON 6 3e in START-(.*P vi:h :he sin stea:n line isolation valves clo within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or in at least ROT SHUT"OkW vi:hin 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

AC* ION Initiate a reduction in 'HER.W.AL PCkT.R within 15 linutes less than 30% of RATED "HERMAL POkTR within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

AC* ION 3 at least 907 SHU*00kN In iPERATIONAL CONDITION 1 or 2, be in at

C'!
4 2 dithin 6 ho'Ars.

i"l":dd '. it t i

  • 1" 1: '. " ' '

'.*?

!?

'8 EM7!0 N A'.

W O'.T!1N 3r..

er '. ;.ours rer.fv tha: 11; :-:::. - ds 1-=

u ?

M.

d soers: n.s involiing In JPERAT!0NAL CONDITION 5. susoene ali

-esc:i**:r t-3 34 s..: '..".v

'722

.-sar:

4...aser:2:.s.:.:r. -

3/4 3-4 SRUNSWICK - UNIT 2 RZTTPED TECH. SPECS.

Updated Thru. heend.'78

I TABLE 3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION _

In OPERATIONAL CONDITION 1 or 2, he in at least MOT SMUTDOWN

' ACTION 10 -

within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> In OPERATIONAL CONDITION 3 or 4, lock the reactor mode switch in the Shutdown position within one hour.

In OPERATIONAL CONDITION 5, suspend all operations involving CORE ALTERATIONS or positive reactivity changes and fully all insertable control rods within one hour.

insert TABLE NOTATIONS A channel may be placed in an inoperable status for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance without placing the trip system in the tripped a.

condition, provided at least one OPERABLE channel in the same trip system is monitoring that parameter.

The " shorting links" shall be removed from the RPS circuitry prior to and during the time any control rod is withdrawn

demonstrations.

required to be OPERABLE when the reactor pressure d.

These functions are not vessel head is unbolted or removed.

required to be OPERABLE when URI'dARY CONTAINMENT This function is not e.

INTEGRITY is not required.

~ hot apolicable to control rods removed f.

With any control rod withdrawn.

per Specification 3.9.10.1 or 3.9.10. 2.

These functions are bypassed when THERMAL POWER is less than 30% of RATED 4

THERMAL POWER.

1.9.10.1 or 3. 9.10. 2.

required for control rods removed oer Specification

  • Not BRUNSWICK - UNIT 2 1/4 3-5 RETTPED TECH. SPECS.

Updated Thru. Amend. 78 I

z a a a a a a a a a a a a a a a. :. :. a a a a a ;.

. a a a a n..
. a ;.
. a a a :. :. a a a a ;.

f> M1

\\>

CAUTION #6 Whenever temperature near the level instrument reference leg vertical runs l

exceeds the temperature in the table and the instrument reads below the indicated level in the table, the actual RPV water level may be anywhere below the elevation of the lower instrument tap.

(See detailed discussion in Section 9.1.)

Indicated Temperature Level Instrument 255" N027 (Shutdown Range Level) any 150-550 Inches Cold Reference Leg (Uncompensated) 304*F 170" N004 (Narrow Range Level) 150-210 Inches Cold Reference Leg Ob}ective:

Specify conditions under which RPV level instrument may provide misleading trend information.

n L

BSEP/VOL. VI/EOP-01/UG Page 36 of 93 Rev. I w

..~-.

m

-..~~.-. -

.o uu-w.... --.:.....

8 I

CAUTION 413 Cooldown rates above 100'F/hr (RPV cooldown rate LCO) =ay be required to accomplish this step.

Objective:

Infors the operator that rapid cocidown rates

=ay result frem the prescribed actiens.

CAUTION al?

Do not depressurize the RPV below 120 psig (HPCI low pressure isolation setpoint) unless =otor driven pumps suf ficient to =aintain RPV water level are running and available for injection.

v Objective:

Ensure a source of RPV makeup water is available follcuing RPV depressurization.

CAUTION //15 Open SRV's in the follcwing sequence if possible:

A.E J,3,F D,G,r.H.

ll BSEP/VOL VI/EOP-01/UG Page 40 of 93 RIV 00

?

I

r.

UNIT 0 GP 03 N

N, 5. 0 PROCEDURAI, STEPS 3

5.1 Transferring The Reactor Mode Switch To RUN 5.1.1 Verify the following low steam line pressure relays are energized by observing they are pulled in from their stop screws.

On Panel H12-P609 5.1.1.1 A71-K4A 5.1.1.2 A71-K4C Ib On Panel H12-P611 h}*

5.1.1.3 A71-K4B

.1.1.4 A71-K4D h #

5.1.2 Verify the following MSIV limit switch relays are energized by observing they are pulled in from their 8

top screws:

On Pan H12-P609 5.1.2.1 C71(72)-K3A 5.1.2.2 C71(72)-K3C 5.1.2.3 C71(72)-K3E 5.1.2.4 C7 (72)-K3G On Panel H12-P611 l('/

5.1.2.5 C71(72)-K3B 5.1.2.6 C71(71)-K3D 5.1.2.7 C71(72)-K3F 5.1.2.8 C71(72)-K3H 5.1.3 Increase power to 6-10% by withdrawing control rods in accordance with OP-07 in the sequence designated by GP-10, Rod Sequence Checkoff Sheets.

,
, ;, :. :. :... :, :,***** i.,- :. ;.....

. ;. ;, ;. :. ;. ;. :.;. ;, a :. :. ; ;. :. :, :. :. :.

CAUTION At least two.APRM downscale and companion IRM upscale scram channels per RPS Trip System are required operable. Companion APRMs/IRMs are as follows:

\\

Trip System A TripWKstemB APRM A AND IRM A APRM B Ai IRM B APRM C AND IRM C APRM D AN IRM D APRM E AND IRM E APRM F AND RM F APRM E AND IRM G APRM F AND MH

  • :. :. :. ;. :. :, ;, ;. :. :. ;. ;, :. :. ;, ;, ;, ;. ;. ;, :. ; ***.ve****** :. :. :. :. :. :. **** ;, :... ;. :. :+ :. :. **** :.

5.1.4 Momentarily select each APRM chann on the 1RM/APRM recorders and verify that a 1 operable APRMs indicate between 3% and 10%.

nO O GP-03 Rev. 3 Page 5 of 24 m-

~ _

UNIT 0 GP 03 t

i

'5.0 PROCEDURAI. STEPS h

n' '

5.1 Transferring The Reactor Mode Switch To RUN Verify the following icw steam line pressure relays h

5.1.1 are energized by observing they are pulled in frem their stop screws.

On Panel H12-P609 5.1.1.1 A71-K4A 5.1.1.2 A71-K4C On Panel H12-P611 5.1.1.3 A71-K4B

'5.1.1.4 A71-K4D l

5.1.2 Verify the following MSIV limit switch relays are energized by observing they are pulled in fre= their L

stop screws:

On Panel H12-P609 l

5.1.2.1 C71(72)-K3A 5.1. 2. 2 '

C71(72)-K3C 5.1.2.3 C71(72)-K3E 5.1.2.4 C71(72)-K3G On P,el H12-P611 ll.,

5.1.2.6 C71(721-K3D 5.1.2.5 C71(72)-K3B 5.1.2.7 C71(72)-K3F 5.1.2.8 C.'1 ( 72 ) -K3H 5.1.3 Increase power to 6-10?. by withdrawing control rods in accordance with OP-07 in the sequence I

designated by GF-10, Rod Soquence Checkoff Sheets.

L

                                    • w********vn.......;.*********www*************u**mrwr************

CAUTION At least two APRM downscale and companion I'EM upscalo scram channels per RPS Trip System are required operable.

                                            • wwww********************,,ww***nt.-
, c. c. **
  • ww** *** ****** **

5.1.4 Momentarily select each APRM e.hannel on the 1HM/APRM tucorders and vurify that all operable APRMs indicate betwe n 3* and 10*..

l k.

I O GP 03 Rev. 3 Page 5 of 24 l

l l

- i EQUATION SHEET l

f=:na v = s/t Cycle efficiency = (. et 'nork 1

cut)/(Energy in) 2 w = ag s = V,t + 1/2 ac g = x-KE = 1/2 mv a = (Vf - 1 )/t A = an A = A e'**

3 3

PE = mgn Vf=V + at w = e/t i = tn2/tjfg = 0.693/t1/2 a

1/2*"

  • U*U?

2 y,,j n0 A=

((g/2I*(*b)3 1

i ai = 931 am m = V,yAo

-Ex o

Q = mCpat I = I e'"*

Q = UAa T g

Pwr = W ah I = I, 10~* N f

TVL = 1.3/u sur(t)

HVL = -0.693/u P = P 10 P = P e*/I o

SUR = 25.06/T SCR = 5/(1 - K,ff)

CR = 5/(1 - K,ffx) x CR (1 - K,ffj) = CR (I ~ "eff2I SUR = 25a/t* + (s - o)T j

2 T = ( t*/s ) + ((a - o )/ To]

M = 1/(1 - K,ff) = CR /CR, j

T = 1/(s - 4)

M = (1 - K,ffa)/(1 - K,ffj)

T = (a - a)/(To)

SCM = (

- K,ff)/K,ff a = (X,ff-1)/K,ff = aX,ff/K,ff t' = 10 seconos I = 0.1 seconds ~I o

C(**/(r X,ff)] + CT,ff (1 -IT)]

/

I;dj = I d 2 =2 2 P = (taV)/(3 x 1010)

Id 1d j

22 2

2=N R/hr = (0.5 CE)/d (meters)

R/hr = 6 CE/d2 (f,,g)

Water Par meters Miscellaneous C nversions 1 gal. = 8.345 tom.

I curie = 3.7 x 1010dos I ga. = 3.78 liters Ikg=2.21lem}Stu/nr 1f

= 7.48 gal.

1 no = 2.54 x 10 Oensity = 62.41 /ft3 1 mw = 3.41 x 100 5tu/hr Oensity = 1 gm/

11n = 2.54 cm Heat of vaporization = 970 Stu/lem

  • F = 9/5'C + 32 Heat of fusion = 144 Stu/lbm

'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg.

1 BTU = 778 ft-lbf 1 ft. H O = 0.4335 luf/in.

2

EQUATION 3HEET f =.na v = s/t

~ Cycle afficiency = (Net work cut)/(Energy in) 2 w = ng s = V,t

  • 1/2 ac

[=g 4, 4,,a t 2

KE = 1/2 mv

,,(y,,7 )jg 4,g g

PE = agn v = V, + at w = e/t 1 = :n2/t1/2 = 0.693/t1/2 f

1/2*ff = [(tu >)(ts)3 2

t y,y j n0 A=

((t1/2I * (*bIl aE = 931 ma m = V,yAs

-1:x Q = mCoat Q

  • UAaT I = I,e~"*

I = I, 10"*/U L Pwr = W ah f

TVL = 1.3/u sur(t)

HVL = -0.693/u P = P*10 p, p,t/7 SUR = Zi.06/T SCR = S/(1 - K,ff)

CR = S/(1 - K,ffx) x SUR = 25a/ F + (a - o)T CR;(1 - K,ffj) = CR (I ~ "eff2I 2

T = ( t*/s ) + ((4 - o V ia ]

M = 1/(1 - K,ff) = CR)/CR3 7 = t/(s - a)

M = (1 - K,ffa)/(1 - K,ffj)

T = (4 - a)/(Is)

SCM = ( -K,ff)/K,ff a = (K,ff-1)/K,ff = M,ff/K,ff e = 10 seconos I = 0.1 seconds *I a

C(v/(T K,ff)] + CT,ff (1 + It)]

/

Ijj=Id2,2 2 d

P = (taV)/(3 x 1010)

Id gd j

22 2

2=N R/hr = (0.5 CE)/d (meters)

R/hr = 6 CE/d2 (feet)

Water Partneters Miscellaneous Conversions 1 gal. = 8.345 lem.

I curie = 3.7 x 10103g3 1 ga. = 3.78 litars 1kg=2.21lem}Stu/nr 1 ft* = 7.48 gal.

I no a 2.54 x 10 Density = 62.4 lem/ft3 1 mw = 3.41 x 100 Stu/hr Oensity = 1 gm/enr3 lin = 2.54 cm Heat of vaporization = 970 Stu/lem

  • F = 9/5'C + 32 Heat of fusion = 144 Stu/lem

'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg.

1 STU = 773 f t-lbf 1 ft. H O = 0.4335 lbf/in.

2

.N N

w t)/(Energy 'ns 2

o a mg s a 1,t

  • 1/2 at 7

[ = mc"

<E = 1/2 mv a=(/f - / )/:

A = an A=Ae't

~

3 3

PE = m9n

  • = e/t a = In2/t1/2 = 0.693/ti/2 vf = V, + a t 2

1/2'N ' U *1" M g,,.p

10 A=

[(*1/2)

  • IId 3 4

t.E = 931 sn m=V Ao g. g, -n av Q.=ph 0

Q = mCoat Q = UA4T I = I e~"*

g I = I, 10~*/D '

Pwr = W ah f

TVL = 1.3/u sur(t)

P = P,10 HVL = -0.693/u P = P e*/

a SUR = 26.06/T SCR = S/(1 - K,ff)

CR, = S/(1 - K,ffx)

SUR = 26e/t= + (a - o)T CR (1 - K,ff3) = CR II ~

  • ff2) j 2

s T = (i=/s) & ((8 - o VIo]

M = 1/(1 - K,ff) = CR /CR, j

T = s/(s - s)

M = (1 - K,ff,)/(1 - K,ff))

T = (8 - s)/(Is)

SDM = (

- K,ff)/K,ff a = (X,ff-1)/K,ff = AK,f f/K,ff t= = 10 seconas

-I I = 0.1 seconds o = ((t=/(T K,ff)] + [a,ff (1 + IT)]

/

ljj=Id d

2,2 2 P = (rev)/(3 x 1010)

Id gd j

22 2

= oN R/hr = (0.5 CE)/d (meters)

R/hr = 6 CE/d2 (f,,g)

Water Parameters Miscellaneous Conversions 1 gal. = 8.345 lbm.

1 curie = 3.7 x 1010eps 1 ga;. = 3.78 liters Ikg=2.21lem]8tu/nr 7.48 gal.

I np = 2.54 x 10 I f t-

=

Density = 62.4 lbT/ft3 1 m = 3.41 x 100 Stu/hr Density = 1 gm/cv lin = 2.54 cm Heat of vaporization = 970 Stu/lem

'F = 9/5'C + 32 Heat of fusion = 144 Stu/lbm

'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg.

1 BTU = 778 ft-Ibf I ft. H 0 = 0.4335 lbf/in.

i 2

e = 2.710 l

l v

~

Wume, it'/lb Enthalpy, Stu/lb Entrcpy. Sty /t) a F P

Water Evap Steam Water Evap Steam Wster Evep Steem

  • t he
  • e hg h,,

h sg spy s,

y 22 0.08859 0.01602 3305 3305

-0.02 1075.5 1075.5 0.0000 2.1873 2.1873 32 35 0.09991 0.01602 2948 2948 3.00 1073.8 1076.8 0.0061 2.1706 2.1767 35 A0 0.12163 0 01602 2446 2446 8 03 1071.0 1079.0 0.0162 2.1432 2.1594 40 l

45 0.14744 0.01602 2037.7 2037.8 13.04 1068.1 1081.2 0 0262 2.1164 2.1426 45 50 0.17795 0.01602 1704.8 1704.8 18.05 1065.3 1083.4 0.0361 2.0901 2.1262 50 60 0.2561 0.01603 1207.6 1207.6 28.06 1059.7 1067.7 0.0535 2.0391 2.0946 60 70 0.3629 0.01005 868 3 868 4 38.05 10540 1092.1 0.0745 1.9900 2.0645 70 80 0.5068 0.01607 633.3 633.3 48.04 1048.4 1096.4 0.0932 1.9426 2.0359 to i

90 0.6981 E01610 468.1 468.1 58.02 1042.7 1100.8 01115 1.8970 2.0086 90 100 0.9492 0 01613 350.4 350.4 68 00 1037.1 1105.1 0.1295 1.8530 1.9825 100 310 1.2750 0.01617 265.4 265.4 77.98 1031.4 1109.3 0.1472 1.8105 1.9577 110 las 1.6927 0.01620 203.25 203.26 87.97 1025.6 1113.6 0.1646 1.7693 1.9339 120 330 2.2230 0.01625 157.32 157.33 97.96 1019.8 1117.8 0.1817 1.7295 1.9112 130 140 2 8892 0.01629 122.98 123.00 107.95 1014.0 1122.0 0.1985 1.6910 1.8895 140 150 3.718 0.01634 97.05 97.07 117.95 1006.2 1126.1 0.2150 1.6536 1.8686 150 360 4.741 0.01640 77.27 77.29 127.96 1002.2 1130.2 0.2313 1.6174 1.8487 160 170 5.993 0.01645 62.04 62.06 137.97 996.2 1134.2 0.2473 1.5822 1.8295 170' 180 7.511 0.01651 50.21 50.22 148.00 990.2 1138.2 0.2631 1.5480 1.8111 180 l

190 9.340 0.01657 40.94 40.96 158.04 984.1 1142.1 0.2787 1.514S 1.7934 ISO 200 11.526 0.01664 33.62 33.64 168.09 977.9 1146.0 0.2940 1.4824 1.7764 200 210 14.123 0.01671 27.80 27.82 178.15 971.6 1149.7 0.3091 1.4509 1.7600 210 f

212 14.696 0.01672 26.78 26.80 180.17 970.3 1150.5 0.3121 1.4447 1.7568 212

  1. 20 17.186 0.01678 23.13 23.15 188.23 965.2 1153.4 0.3241 1.4201 1.7442 220 230 20.779 0.01685 19.364 19.381 198.33 958.7 1157.1 0.3388 1.3902 1.7290 230 240 24.968 0.01693 16.304 16.321 208.45 952.1 1160.6 0.3533 1.3609 1.7142 240 250 29.825 0.01701 13.802 13.619 218.59 945.4 1164.0 0.3677 1.3323 1.7000 250 260 35.427 0.01709 11.745 11.762 228.76 938 6 1167.4 0.3819 1.3043 1.6862 260 270 41.856 0 01718 10.042 10.060 238.95 931.7 1170.6 0.3960 1.2769 1.6729 270 200 49.200 0 01726 8.627 8.644 249.17 924 6 1173.8 0.4098 1.2501 1.6599 280 290 57.550 0.01736 7.443 7.460 259.4 917.4 1176.8 0.4236 1 2238 1.6473 290 200 67.005 0.01745 6.448 6.466 269.7 910.0 1179.7 0.4372 1.1979 1.6351 300 j

310 77.67 0 01755 5.609 5.626 280.0 902.5 1182.5 0.4506 1.1726 1.6232 310 320 89.64 0 01766 4 896 4.914 290.4 894 8 1185.2 0.4640 1.1477 1.6116 320 340 117.99 0.01787 3.770 3.788 211.3 878.8 1190.1 0.4902 1.0990 1.5892 340 360 153 01 0.01811 2.939 2.957 3.s2.3 862.1 1194.4 0.5161 1.0517 1.5678 360 340 195.73 0.01836 2.317 2.335 353.6 844.5 1198.0 0.5416 1.0057 1.5473 380 400 247 26 0.01864 1.8444 1.8630 575.1 825.9 1201.0 0.5667 0.9607 1.5274 400 420 30578 0 01694 1.4808 1.4997 396.9 806.2 1203.1 0.5915 0.9165 1.5080 420 440 381.54 0.01976 1.1976 1.2169 419.0 785.4 1204.4 0.6161 0.8729 1.4890 440 460 466.9 0.0196 0.9746 0.9942 441.5 763.2 1204 8 0.6405 0.8299 1.4704 460 450 5%2 0.0200 0.7972 0.8172 464.5 739.6 1204.1 0 6648 0.7871 1.4516 480 500 680 9 0 0204 0.6545 0.6749 487.9 714.3 1202.2 0.6890 0.7443 14J33 500 520 812.5 0 0209 0.5386 0 5596 512.0 687.0 1199.0 0.7133 0.7013 1.4146 520 540 962 8 0.0215 0 4437 0 4651 536 8 657.5 1194.3 0.7378 06577 1.3954 540 SE0 1133.4 0 0221 0.3651 0.3871 562.4 625.3 1187.7 0.7625 0.6132 1.3757 560 580 1326.2 0 0228 0.2994 0.3222 589.1 589.9 1179.0 0.7876 0.5673 1.3550 580 Goo 154'I.2 0 0236 0 2438 0.2675 617.1 550 6 1167.7 0 8134 0.5196 1.0 M 3 Goo 620 1786.9 C0247 0.1962 0 2208 646 9 506.3 1153.2 08403 0 46S9 1.3092 620 640 2051 9 0 0260 0.1543 0.1802 679.1 454.6 1133.7 0.8666 0.4134 1.2821 640 640 2365 7 0 0277 0.1166 01443 714.9 3971 1107.0 0.8995 0.3502 1.2498 660 40 2708 6 0 0304 0 0808 01112 758 5 310.1 1068.5 0.9365 0 2720 1.2086 680 700 3094.3 0 0366 0 0386 0 0752 822.4 172.7 995 2 0.9001 0.1490 1.3390 700 705.5 3203 2 0.0508 0

0 0508 936 0 0

9060 1.0612 0

1.0612 705.5

)

l TABLE A.2 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (TEMPERATURE)

I A.3

_ -. _. _ _ _ _. = _

s Wolv.

It*/3 Lithalpy. St: /Its tpy. Stu/2 a F Ene'Cy. Stv/G P'ess.

Temp water Evap Steam Cat r Evep Steam Water Exop Steam Cater Steam P'"8-pe6e pole F

s, s,

e, y,

h h

h, so Ve

  • q
  • s o

e g

e.0486 32.018 0 41602 3302.4 3302.4 0 00 1076.5 1075 5 0

2.1872 2.1872 0

1021.3 0.0006 0.10 35.023 0.01602 2945.5 2945.5 3 03 10738 10768 0 0061 2.1705 2.1766 333 1022.3 e.10 S.15 45.453 0 01602 2004.7 2004 7 13.50 1067.9 1081.4 0 0271 2.1140 2 1411 13.50 1025.7 0.15 e.30 53.140 0 01603 15M.3 1526 3 21.22 1063.5 1084 7 0 0422 2 0778 2.1160 21.22 1028 3 0.20 0.30 64 484 0 01604 3039.7 1039.7 32.54 1057.1 1089 7 0 0641 2.0165 2.0809 32.54 1032 0 0.30 0.40 72.869 0.01606 792.0 792.1 40.92 1052.4 1093.3 0.0799 1.9762 2.0M2 40.92 1034.7 0.40 e.5 79.586 0.01607 641.5 641.5 47.62 1048 6 1096 3 0.0925 1.9446 2.0370 4742 1036 9 c.5 l

8.4 85.218 0 01609 540.0 640.1 53 25 1045 5 1098.7 0.1028 1.9186 2.C215 53.24 1038.7 0.6 G.7 90 09 0.01610 466.93 466 94 58 10 1042 7 11008 0.3 18966 2.0083 58.10 1040.3 0.7 GA 94.38 0.01611 411.67 41149 62.39 1040.3 1102.6 0.1117 1.8775 1.9970 6229 1041.7 0.8 S.9 98.24 0 01612 MS 41 348.43 66 24 1038.1 1104.3 0.1264 1.8606 1.9870 6624 1042.9 e.9 1.0 101.74 0.01614 333.59 333 60 69.73 10M.1 11058 0.1326 1A455 1.9781 49.73 1044,1 3.s i,

2.0 176 07 0.01423 173.74 173.76 94.03 1022.1 1116.2 0.1750 1.7450 1.9200 94A3 10512 2A

{

S.0 141 47 0.01430 118 71 118.73 109.42 1013.2 11226 0.2009 14854 1.8864 109 41 1056.7 S.0 4.0 152.96 0.01636 9063 90 64 120.92 1006.4 1127.3 0.2199 1.6428 1.8626 120.90 1060.2 4.0 S.0 162 24 0.01641 73.515 73.53 130 20 1000.9 1131.1 0.2349 1.6094 1A443 130.18 1063.1 S.O 6.0 170.05 0.01645 61.967 61.98 13803 996.2 1134.2 0.2474 1.5420 12294 138.01 1065.4' 6.0 FA 174 84 0.01649 S3 634 53 65 144 83 992.1 IIN 9 0 2581 1.5587 13168 144A1 1067.4 7.0 S.0 182 86 0.01653 47.328 47.35 150.87 988.5 1139.3 0 2676 1.5384 1A060 15034 1089.2 S.0

  • j 9.0 188 27 0 01654 42.385 42.40 156.30 985.1 1141.4 0.2760 1.5204 1.7964 15628 1070.8 9.G 20 193.21 0.01459 38.404 38 42 161.26 982.1 1143.3 0.2836 1.5043 1.7879 161A3 1072.3 le I

14.696 212.00 0.01472 26.782 26 80 180.17 970.3 1150.5 0.3121 1.4447 1.7568 180.12 1077.4 14.896 l

15 213.03 0.01673 26.274 24.29 181.21 969.7 1150.9 0 3137 1.4415 1.7552 101.16 1077.9 15 30 227.96 0.01683 20 070 20 087 196 27 9601 1156.3 0.3358 1.3962 1.7320 196A1 1082A 30 30 250.34 0 01701 13.7266 13 744 218.9 945.2 1164.1 0 3652 1.3313 1.8995 218 3 1087.9 30 J

40 267.25 0 01715 10 4794 10 497 236.1 933 6 11698 0.3921 1.2844 1.6765 236 0 1092.1 40 80 281.02 0.01727 8.4967 8.514 250.2 923.9 1174.1 0.4112 1.2474 JA586 250.1 10953 50 l

80 292.71 0.01738 7.1562 7.174 262.2 915 4 1177.6 0.4273 1.2147 14440 242.0 1098.0 80 70 302.93 0.01748 6.1875 6 205 272.7 907A 1180 6 0 4411 1.1905 1A316 272.5 1100.2 70 80 312 04 0.01757

$4536 5 471 232.1 900.9 1183.1 0.4534 1.1675 14208 281.9 1102.1 80 4

90 320 28 0 01766 4.8777 4 895 290 7 894 6 1185.3 0 4643 1.1470 14113 290.4 1103.7 to 100 327.82 0 01774 4.4133 4.431 298.5 888.6 1187.2 0 4743 1.1284 1.8027 298 2 1105.2 300 J

120 34L27 0.01789 3 7097 3 728 312 6 877A 1193 4 0 4919 1.0960 1.5879 312.2 1107.6 120 140 353 04 0 01803 3 2010 3 219 325.0 868 0 1193 0 0.5071 1.0681 1.5752 324 5 1109.6 140 4

160 363 55 0 0;815 2 5155 2 834 336 1 859 0 11951 0.5205 1.0435 1.5641 335.5 1111.2 160 i

ISO 373 08 0 01827 2 5129 2.531 346 2 850 7 1196.9 0 5328 1 0715 1.5543 345.6 1112.5 180 1

200 351 80 0 01839 2.2689 2.287 355.5 842.8 1198.3 0 5438 10016 1.5454 354A 1113.7 300 250 400 97 0 01865 1.8245 1.8432 3761 825 0 12011 0 5679 0 9585 1.5264 375.3 1115.8 ISO 1

300 417 35 0 01889 1.5233 1.5427 394 0 808 9 1202 9 05682 0 9223 1.5105 392.9 1117.2 300 350 di1,73 001913 1.3064 1.3255 409 8 7942 1204 0 0 60 % 08939 1.4968 406 6 Ii181 350 1

400 444 60 0 0193 I.14162 1.1610 424 2 780 4 1204 6 OE217 0 8630 1.4847 422.7 111E 7 400 4

450 41.6 28 0 0195 1.01224

.l.0318 437.3 767.5 12048 06360 0 8378 1.4738 435.7 IIIS 9 450 520 467 01 0 0199 0 90787 0 9276 449 5 755.1 1204 7 0 6490 0 814S 1.4639 447.7 11188 500 553 476 94 0 0199 0 82183 0 8418 460 9 743.3 1204 3 0 6611 0 7936 1.4547 458.9 1118 6 550 4

j 4C3 48510 0 0201 0 74962 0.7698 471.7 732 0 12037 0 6723 0 7738 1.4461 4695 111E 2 600 l

703 503 08 0 0205 0 63505 0 6556 491.6 710 2 12018 06928 07377 1.4304 4889 1816 9 700 830 bla 21 0 0209 0.54809 0 5690 5098 689 6 11994 0 711I O7051 1.4163 506 7 al15.2 800 1

900

!)! 93 0 02i2 0 41968 0 5009

$26 7 669 7 1196 4 0 7279 0 6753 14032 5232 1113 0 900 l

1000

$44.Sh 00216 042435 0 4460 542 6 f 50 4 1192 9 0 7434 0 6476 1.3910

$3?,6 1110 4 1000 i

1100 St! 2e 00220 0 376f 3 0 4005 557.b 631 5 1189I 01578 06216 1.3794

$!3 i 1I07.5

!!00 267.19 0 0223 0 34013 0 3625 571 9 613 0 11646 0 7714 0$969 1.3633 L55 9 1104 3 1200 J

1200 j

llCO 17742 0 0227 0 30722 0 3299 585 6

$44 6 1180 2 0.7843 0$133 1.3577 580 ! 1100 9 1300 idC0

$17 07 0 0731 0 77811 0 3018 599 4 576 5 1875 3 0 7966 0 5507 1.3474 597 9 1071.1 1400 f

It00 5 % 10 0 0235 025372 0 2112 ElI.7 550 4 1170 1 0 8055 0f233 1.3373 605 7 10931 1500 2000 011 60 0 0257 0 167 %

01883 672 1 465 2 1133 3 0 862t 04256 1.7b81 662 6 10GS6 2000 1

2500 46d 11 0 02tf 01020's 01307 731 7 3616 1093 3 0 9139 0 3206 12345 118 5 1012 9 2500 3000 695 13 0 0343 0 050/3 0 0850 801 8 218 4 1070 3 09??3 01891 1.1619 7828 9731 3000

}

32982 101 47 0 0$0S 0

0Otod 906 0 0

906 0 l0512 0

10612 875 9 875 9 3708A j

I TABLE A.3 PROPERTIES OF SATURATED STEAM AND SATURATED i

WATER (PRESSURE)

)

A.4 i

..v-.,--.,v.,. - - - - - - -

.-.,------.,,---mm.

,-,.-,--..----.--..-----m.,--i

_ _ _ _ _ =

l i

e Tempeestwo. F Abe prose.

g gomp) 100 200 300 400 900 000 700 000 900 1000 1100 1200 1300 1400 3500 v 00161 3925 452.3 S11.9 571.5 631.1 690 7 3

e as 00 1350 2 1195.7 1241 8 1288 6 13M i 1984 5 (101.74) s 0.1295 2 0609 2.11'2 2.1722 2.2237 2.2708 2J144 s

e 0.0161 7814 90.24 102.24 114.21 12615 198 08 150 01 161.94 173 86 185 78 197.70 200 62 221.53 233 45 s

t 68 01 1844 6 1144 8 1243.3 1288 2 1335.9 1364 3 1433 6 1483 7 1534.7 1586 7 1639 6 1693 3 1748 0 1803 5 (162 24) s 0.1795 1 8716 1.9369 1.9943 2.0460 2 0932 2 136') 2.1776 2 2159 2 2521 2.28M 2.31M 2JSO) 2.3811 2A101 e 00141 30 84 44 93 SI03 57.04 63 03 69 00 74 98 30 94 86 91 92 87 98 54 10430 110.76 116.72 f

30 4

68 02 1146 6 11937 1240 6 1287A 1335.5 1384 0 1433 4 14835 1534 6 15866 16395 1893.3 1747.9 1303 4 (192.21) s 0.1295 1.7928 1AS93 1.9173 1.9692 2.OlM 2.0603 2.1011 2.1394 2.1757 2.2101 2.2430 2.2744 2.3646 2.3337 e

0 0141 0 0146 29 899 33 M3 37.905 41.986 45.978 49 M4 S3 M6 57.926 61.905 65 882 69458 73 833 77.307 SS 6

44 04 16809 1192.5 1239.9 1287.3 1335 2 1383 8 1433 2 1483 4 15345 1546 S 1639 4 1993.2 1747A 1303 4 i

(213.03)s 0.1295 0.2940 1.8134 1 8720 1.9242 1.9717 2.0155 2.0563 2.0D46 2.1309 2.1653 2.1982 2 2297 2.2S99 2.2090 e

00161 00144 22JM 25 428 28 457 31 466 34 465 37.458 40 447 43 435 44 420 49 405 St.308 55.370 SS.3S2 se 4

48.05 168 11 1191.4 1239.2 1286 9 13M.9 1383 5 1432 9 1443 2 1934.3 1986.3 1639 3 1893.1 17473 1e03.3 (227.M) s 0.1295 0.2940 1.730S 1A397 1A921 1.9397 1.9836 2 0244 2.0628 2.0991 2.13M 2.1665 2.1979 2.2282 22572 v

0 0161 0 0166 11 035 12.624 14.165 15 685 17.195 18.499 20 190 21 497 23.lM 24 889 M.lS3 27A76 29.168 l

de A

G8.10 148 15 1106 6 12M 4 1285.0 1333 6 1382 5 1432.1 1482.5 1533.7 1585 8 1630 8 1992 7 1747.5 1803.0 i

( M 7JS) s 0.1295 0 2940 1.0092 1.7605 18143 1 9624 1.9065 1.9476 1.9000 2.0224 2.0669 2.0899 2.1224 2.1516 2.180 e

0.0141 0 0154 7.2S7 5 3$4 9.400 10 425 11 438 12 444 13450 14 452 15.452 14A90 to A

GS.ll 16820 1181 6 1233.S 1283 2 1332.3 3381.5 1431.3 1481 8 1533 2 1985.3 16384 18e2.4 1747.1 1802 3 (292.71) s 0.1295 0.2939.1 4492 1.7134 1.7681 1 AIM 13412 1.9024 1.9410 1.9774 2.0120 2.04S0 2 4765 2.1080 2.1350 0.01'41 0 0166 0 0175 6.218 7.018 7.794 S S40 9 319 10.075 10 829 11 S41 12.331 13mst 13.329 14.S77 30 6

48 21 148 24 269.74 1230.5 1281 3 1330.9 1300.5 1430.5 1481.1 1532 6 1544.9 1638 0 1992.0 17464 1902.5 e

(312.04) s 0.1295 0 2939 0.4371 1.6790 1.7349 1.7842 12209 1 8702 1.9089 1.MS4 1.9000 2 4131 2 0046 2.0750 2.1041 e

0 0161 0.0166 0 017S 4 935 5 548 6 216 6 833 7.443 0 050 8 6SS 92SS 9 880 18440 11 A80 11.459

[

See t 48 26 168 29 M9 77 1227.4 1279.3 1329 6 13795 1429 7 1480 4 1532.0 1584 4 1437.6 1991.6 1746.S 3002.2 I

(327A2) s 0.1296 0.2939 0.4371 14516 1.7008 IJSa6 13036 14451 1.0839 1.9205 1.9552 1.9003 2 4199 2.0002 2.0794 e

0 0161 0 01 % 0 017S 4 0786 4.4M1 51637 56831 41929 67006 7.2000 7.7006 S.2119 8.7130 9.2134 9.7130 120 4 64.31 168 33 26951 1224.1 1277.4 1328 1 1374 4 1428 8 14798 1531.4 1983 9 1637.1 10DlJ 17462 1802A (34127)s 0.1295 0 2939 0 4371 1.6266 1.M72 1.7376 1.7829 1A246 1 8635 19001 1.9349 1.9600 1.9996 2.0300 2.0592 l

e 0 0161 0 01 % 0 017S 3 46S1 3 9526 4 4119 4 8S85 S.2995 S.7364 61709 6 8034 7 4349 7AS$2 7.8946 4 3233 140 4 68 37 168 38 26985 1220 8 127S 3 13268 1377.4 1428 0 1479.1 15308 1583 4 1634 7 1930 9 1745.9 1301.7 (353 04) s 0 1295 0 2939 0 4370 16095 1.6686 1.71 % 1.7652 1.8071 1A461 1.8428 1.9176 1.950s 1.9825 2.0129 2.042 e

0 0161 0 0166 0 0175 3 0060 3 4413 3 8480 4 2420 4 6295 50132 53945 57741 4 1522 45293 690$$ ?.2811 See n 68 42 168 42 269 89 1217.4 1273 3 132S 4 1376 4 1427.2 1478 4 IS30.3 1682.9 1636.3 1990.5 1745 6 1801 (M3 $$) s 0 1274 0 2938 0 4370 15906 16522 1.7039 1.7499 1.7919 18310 18478 1.9027 1.93S9 1.9676 1.9900 2 0273 e

0 0161 00166 00174 26474 3 0433 3 4093 3.7621 4.1064 4 4505 4.7907 S.1289 5 4457 S A014 4.I363 6 47 100 6 68 47 16447 26e 9/

1713 8 1278.2 1324 0 1315 3 1426 3 1477 7 1529 7 1582 4 1435 9 lee 0 2 1745.3 18 1 8'45 1.8894 1.9227 1 9645 1.9849 2.0142 l

(373.C81 s C 1294 02538 04370 1 5743 16376 16900 17M2 1.7754 1.8176 s

0 0181 0 0166 0 0174 2 3598 2.7247 3.0$43 3 3783 3 6915 4 0006 4 3077 4 6128 4.916S S219) S.5209 5 200 a 68 12 IL8 51 269 94 12101 1269 0 1322 6 1374 3 14255 1477.0 15291 1581.9 1435 4 1409 8 1745 0 180 (151 60) s 01294 0 293S 0 43S9 1.S593 14242 1.677G 1.7239 1.7663 1.8057 I8426 1.8776 1.9109 1.9427 1.9732 2 e

O C161 0 0166 0 0174 00186 2.1504 2eM2 2 6872 2 9410 3 1909 3 4382 3 6837 8 9278 4.1709 4 4331 4 6S4 250 h 68 56 l(8 63 270 05 3/S.10 12635 1319 0 13716 1423 4 1475 3 1527 6 1580 6 1634 4 leas t 1744 2 1800.2 (400 97) e C 1294 02537 0 4368 0 % 67 1.S951 1 6502 1 6976 1.7405 17601 1 8113 1.8524 13158 1.9177 1.9402 1.

e 0 0161 0 0165 0 3114 00186 l.7655 2 0044 2 2263 2 4407 2 6509 2 658S 3 0643 3 2688 3 4721 3 4746 3 300 e 64 74 1 % 74 27ula 37515 12377 1315 2 1368 9 1421 3 1473 E 1526 2 1579 4 1633 3 1688 0 1743 4 17 (417 35) 01294 0 2937 0 4737 CMM 1.S703 1.6214 1 6/58 1.7192 1.7591 1.7964 1.8317 1.8652 80972 1.9278 1 e

0 C161 0 0166 0 0174 0 0186 14913 17028 1 9970 2 0332 2 2652 2 4445 2 6219 2.7980 2 9130 3.1471 3 350 A 68 92 ILS 8S 270 24 3?S 21 1251 5 13114 13662 1419 2 1471 8 1124 7 1578 2 1632 3 1647.1 1742 6 17 l

(431.73).

01293 029M 0 4357 0 5664 15483 1 6077 16571 1.7009 1 7411 1.7787 1 8141 1.8417 12791 1 0:05 1.940 e

00161 00106 00174 0 0162 l2841 14763 16491 18151 19759 21339 2 2901 24450 2$987 2 7S15 2 90 l

400 a 69 05 168 97 270 31 375 27 1246 1 1307 4 13634 1417 0 1470 1 1523 3 1576 9 1631.2 1686 2 1741 9 (444 60) e 51293 0 253h 0 43M 0%G3 1.5282 15901 1 6406 1 6850 172 n 17632 1.7988 1.8325 1364' l.8955 1.92 e

0 0161 0 0166 0 0174 0 0186 0 9919 11684 1 3017 14397 IS708 1 6092 1 8256 1.9501 2 0746 2 1977 2.

4 I

S00 h 69 32 1% Ie 270$l 3'5 38 12312 12991 1357./ 14 t ? 7 1466 6 1520 3 1574 4 1629 1 1664 4 1740 3 1 (457 01) s 0 1792 0 2934 04364 0 M60 14978 i%% l6'23 16S/8 l6990 17371 1.7730 18069 iA393 18702 18904 i

TABLE A 4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED i

j WATER (TEMPERATURE AND PRESSURE) l A.5 i

l

9 m per:Im, F go p g

100 200 300 400 SCO 600 700 800 900 1000 1100 3200 1300 tr.00 1500 v

0.0161 0 0166 0 0174 00l86 0 7944 094M 107M l.1892 1300s 14093 15160 1 6711 17252 1 8284 1.9309 get 4 69 58 349 42 270 70 376 49 123S 9 1290 3 13$1 a 1408 3 1463 0 1517 4 1578 9 IM1.0 IM?6 1738 8 179$ 6 ggS6.20) s 0.1292 OJ933 043u 9.MS7 14590 1.S329 iSede 163$1 16769 1.71 % 1FSl1 l.7859 1.8164 18494 1.8792 1

0 0161 0 0l M 00174 00:06 0020e 0 79M 09072 1.0102 1.107s 12023 1 2948 1.3858 1.47*,0 I M47 1.4530 yte 4 44 84 140 66 270 09 3 M 61 447 93 1781 0 1345 6 1403.7 lebt e 1614 4 IM94 IM48 1407.-17372 1794 3 0032)e 0 1291 0.2932 0 4360 0 % % 06089 1.5090 3.M73 16154 14580 36970 17335 3.7679 33003 33318 13617 e

00161 00lM 00174 0 0186 0 0704 0 6774 0 7423 0.8759 O M31 1 0470 1.1289 1.2093 1.282S 13M9 1.4446 Ogg 6 70.11 169 88 271.07 3M 73 487Ad 1273.1 1339 2 1399.1 14% A 1511 4 IM69 1U27 167E 9 IMSO 1792.9

($182.)*

R1290 0293C 04358 0.M62 0488$

1.4869 154s4 1.Ms0 1 6413 16607 1.7 t M I M22 1.7851 1 8164 1.4464 e a0161 n0lu 00174 0086 002u4 0$s49 0 6sSe O nt3 D eSO4 09n2 0999s 10no 1.100 1.2131 1.M2S get 6 70.37 170.10 271.26 375.84 487.83 1260 6 1332 7 1394 4 1452 2 M00 5 1564 4 1620 6 16D I 17341 1791.6

$31.96) s 0.1290 R2929 0.43S7 c.M49 0.6881 1.46S9 1.5311 1.SS22 16M3 I M67 1 7033 1.7382 3.7783 16026 18329 e

00161 0 0l u 0.0174 00lM 00204 0 5137 06000 0487S 0 7603 0 8295 08966 OM22 1.ON6 1.0901 1.1629 gage 6 70.63 170 33 271.44 37596 487.79 1249.3 1325.9 1309 6 14485 1504.4 1561.9 1618 4 1675.3 1732.5 1790 3 ge4.50) a 0.1300 0.2928 0.4355 0.5647 04876 1.44S7 1.5149 1.5677 1.6126 16S30 14905 1.72M 1.7589 1.7906 3.8207 e

00161 00166 00174 0.01SS 0 0203 0 4631 0 S440 0 6108 06045 07535 0 8123 0 8723 0 9313 0 98M 1.0844 lies e 70 90 170.M 21143 37o08 447.M 1237.3 1318 8 1384 7 1444 7 1502 4 1569.4 1616 3 1673.5 1731.0 1789.0

$5628)s 0.1389 02927 a4353 0.SM4 04472 1.42S9 1.4996 1.5542 34000 1.M10 1.6787 1.7141 1.7475 1.7793 1A097 e

00161 a0lM a0174 a018S 00203 04016 0 4906 0 5616 06MO 04su 0 74:s c.M74 Omit 0.90$$ 09584 lagt 4 71.16 170.7R 271.82 376.20 487.72 1224 2 1311.S 1379.7 1440 9 1449 4 1556 9 1614.2 1671 4 1729 4 1787.4 SS7,89) e 0.12 5 0.2926 0.4351 0.5642 0 4868 1.4061 1.4851 1.Mll 1.5083 142M 1 M79 1.7035 8.7371 l.7691 1.7906 e

0 0ldt 00lM 00174 0 0185 0 0203 0.1176 0 4059 0 4712 0 5282 0 5409 0 6311 067M 0 7272 0.n37 08195 1400 4 71.48 171 24 272.19 376 44 487 45 llM.1 12M I IN9J 14332 1493 2 ISSI S 1409 9 1444 0 !?M 3 ' 1706.0 OSFA7) a 0$1287 0.2923 0.4348 0 M36 04859 1.3662 1.4S75 1.5182 1.5470 1.4096 1.6484 1.8845 1.718S 1.750B 1.7815 e

0.0161 00lM 00173 0 0185 0 0202 0 0236 0.3415 0 4032 0 4SSS 0.5031 0 5482 0591$ 06336 06748 0.7153 lege &

72.21 171 40 272.57 316 69 487.60 616.77 1279.4 1358 5 1425.2 1484.9 1644 6 16056 IM43 1723.2 1782J 1804.87)s 01206 02921 0.4344 0.M31 0.GM1 0.4129 1.4312 1.4M8 1.5478 1.5916 1Galt 1.4678 1.7022 1.7344 1.MS7 e

00160 a0165 00173 0.0185 00202 002M 0 2906 0 3900 0.3908 0 44M 0.4SM 0.S229 0 5400 0.S900 0 6743 lege a 72.73 172.1S 272.95 376 93 487.M 61S SS I M I.1 I M 72 1417.1 1480 6 1541.1 1401.2 1860 7 1720.1 1779.7 Wil.W) s 0.12M 0.2918 0.4M1 O S424 048*3 08109 1.4054 1.4708 1.5302 1.57S3 1.6tM 16628 1.GSM 1.7204 1.7S14 00le0 a0165 a0ln 001s4 0 0201 0 0233 O Nes 0 3072 03S34 a3942 0 4320 0 4e80 0.50er 0 $wl 0 5695 3000 4 73 26 172 40 273 32 377.19 407.53 414 48 1240 9 1353 4 1408 7 1447.1 IS36 2 1596 9 1657.0 1717.0 1777.1 (G5 00) s 0.1263 0.2914 0 4337 0 H21 O GSM 0 8091 1.37M 1.4678 1.$138 1.56C3 1.6014 1.4391 1.6743 1.7075 1.7389 e

0 0160 0.0165 0 0173 0 0lp 0 0200 0 0230 0 1681 0 2293 0 2712 0.3048 0 3390 0 3492 O M00 0 4259 0 4S29 StGB 6 7457 173 74 274 27 377 32 487.50 612 00 1176.7 1303 4 1386.7 1457.5 1522 9 1686 9 1647.4 1709 2 In04 (408.18) e 0.1200 0 2910 0 4329 0 5609 0 4815 0 8044 1.3076 1.4129 1.47M 1.S269 1.5703 1.80H 144M 147M 1.7136 r

0 Otto 00165 0 0372 0 0183 0 0200 0.0220 0 0982 0 1795 0 2161 0 2484 0 2770 03033 0 3282 0.3S22 e.37$3 3000 4 75 83 17tst 275.22 37847 447.52 410 08 1060 5 1267 0 1363.2 1440.2 1503.4 15748 1638 5 1701.4 I M 1.5 (995.H)s 0.1277 0 29e4 0 4320 0 5597 0 67M 0 8009 1.1966 1.3692 1.4429 1.4976 1.5434 1.S641 IA21A 1.C161 16480 v

0 0160 0 0165 0 0172 0 0183 0 0199 00227 003M O lMS 0 1987 0 2301 0 2576 0 2827 0.3069 0 3291 0 3510 3200 4 76 4 1M3 2M6 3787 487.S 603 4 800 0 1260 9 1363 4 1433.1 15038 IS70 3 16MA 1698 3 1761J 00508)s 0 1276 0 2902 0 4317 0 5S92 0 6?M 0.7994 0 9708 1.3515 1 4300 1.46 % l.S3M 1.$/49 14tM 16477 8.4806 e

0 0160 0 0164 0 Ol n 0 0183 0 0199 0 022S 0 0307 0 1364 0 1764 0 2066 0 2326 0 PM3 0 2784 0 2995 0 319P 3500 4 77.2

!?6 0 276.2 3791 487 6 608 4 779 4 1224 6 1338 2 1422 2 1495 5 1M3.3 1629 2 1693 6 IM7.2 s

0.1274 0 2899 0 4312 0M85 06DF 0 7973 0 9508 1.3242 1.4112 14109 1.5194 1.5418 l.e002 leMS 1.M91 e

0 0lM 0 0164 0 0172 0.0182 0 0198 0 0223 0 0287 0 1052 01463 0.1712 0 1994 0 2210 0 2411 0 2601 0 27s3 4000 4 76 S In.2 2 U.1 379 8 487.7 606 5 763 0 1874 3 1311 6 1433 G 1431.3 IH22 1619 8 1685 7 IM06 o

3 1278 0 2891 0.4304 O M73 06760 0 7940 09H3 1.2154 1.3807 3.4461 1497G 1.S437 1.5812 16177 1.6514 e

0 0169 0 0164 0 0171 0 0181 0 01 % 0 0219 0 0268 0 0691 0 1038 0 1312 01529 01718 016*3 0 20$0 0 2203 S000 a 31 1 179 $ 279 3 381 2 4841 604 6 146 0 1042 9 1252?> 13(4 6 14S2 I 15291 160J 9 14 70 0 1N 7.4 e

0.1765 0 2861 0 4267 O SHO 0 6N6 01MO 0 9153 1.1593 1.3207 1.4001 14662 1.5061 1.!,881 1 St(J I4416 00159 00163 00170 C 0160 0 01% 0 0216 0 0266 0 0397 0 0757 0.1020 0 1221 0.1391 0 1544 01684 01817 6000 6 33 7 133,7 pel 0 362 7 dra 6 602 9 7361 945 1 IIM 8 1323 6 1422 3 1505 9 IM20 1664 2 Ind ?

e 0 1258 0 2670 0 4271 0 M2s O M93 0 78M 0 9026 1 OnM i2615 1.M ? 4 1.4229 1.474S 1.$194 1$593 IS9e 2 e

0 0154 0.0161 0 0110 0 0180 0 0193 0 0713 0 0248 003H 00573 003tA 0 1004 0 1160 0 1296 0 1424 0.1542 PM0 4 M2 194 4 283 0 3e4 2 449 3 601 7 729 3 901 8 1124 9 1281 7 IM22 1482 6 15631 1639 6 17ti l e

o132 07059 04256 0 % 07 06543 0 7/n 089M lOMO 120S$ 12 nil 11904 144u6 14930 1 53 5 iS7JS TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE) (CONTINUED)

A.6

7 O

II 12 13 14 15 3

la 19 to il 3p 33 N5l hU[I*~

\\

I"

,o j'k l N/

f%

i 1

W 1 11001 I /M7N / N // N t

8" dI/DbhA / N/ /rk4

[/

7N !

/

Fi /

l

/// M

/

7s /

/ /5L I.

I sao ;

  1. //f/

x/ N ///3V Mf 7s / / Ti !

I anb'

/llmNf l N //[ ^%J i

7% }

l14/

I I%

$ibW'Ni N //f%,,c=,>

1 x

i r n

/}h,0/0$7 N //>%

/

IM f

'/

r I

i w wm l

HIM NY

/

}

~

.g Q I

$ff)

"ff $d7I / 7 "1

  • 79y//M VNj 79 l

fMMXQ l

~

7%

/4

/

h BW M10NY%&

7

~

/

~

MNW7)W7

/y

~

~

MLWD DV //

~

  1. bVXM )kM

~

.MXM 7x'/7Y

~

JDlX/

7>(DY

~

RM(M 10 1.8 12 33 14 16 16 iF 18 19 20 21 2.2 2.

.Intropy, StvIrt, F FIGURE A.5 MOLLIER ENTHALPY-ENTROPY DIAGRAM A.7 i

-n-,-n-w--e-a,-,.

a,-g,-,r-wm.

m,w,~m,-,w-,,-wm,m-.

.,e,,,,,,..,w,,m--,a,------,-wo.

PROPEL 4 TIES OF WATER Denolly e I

$sitt*)

PSIA f

Teenp Salutated

(*F)

Liquid 1000 2000 2100 2200 2300 2400 2500 8000 i

32 42.414 82.837 82.846 62.867 42.888 62.909 42.93 82.951 63.056 50 62.38 42.55 82.75 62.774 62.798 62.822 42.846 S2.47 42.99 100 81.989 82.185 62.371 42.390 42.409 82.427 82.446 S2.485 62.559 200 80.118 80.314 60.611 40.53 80.549 80.568 80.687 40.808 80.702 300 57.310 87.537 67.767 57.79 67.813 57.836 57.859 57.882 67.888

~

400 53.851 53.903 54.218 54.249 54.28 54.311 64.342 64.373 64.629

]

410 53.248 63.475 63.79 63.825 53.86 63.49 53.925 63.95 64.11 420 52.798 63.025 63.36 63.40 53.425 63.46 63.50 S3.53 63.80 430 62.356 62.575 62.925 62.95 62.99 63.02 63.065 83.09 53.265 440 St.921 62.125 62.42 52.45 52.475 62.51 52.64 62.88 S2.275 f

450 St.546 St.86 62.025 52.085 52.10 52.14 S2.175 82.21 52.41 460 61.020 St.175 51.56 81.61 51.64 61.68 61.725 St.78 61.86 470 S0.505 S0.70 51.1 51.14 51.175 61.22 61.25 61.30 61.50 480 60.00 50.20 50.42 S0.66 50.7 80.74 80.78 50.825 51.035 400 49.505 49.685 80.13 80.175 60.22 80.265 80.31 80.35 80 575 500 48.943 49.097 49.618 49.686 49.714 49.782 49.81 49.804 80.088 610 48.31 48.51 49.05 49.101 49.152 49.203 48.254 49.306 49.54 620 47.85 47.91 48.46 48.515 48.57 48.625 48.68 48.736 49.01 830 47.17 47.29 47.86 47.919 47.978 48.037 48.096 48.156 48.45 540 46.51 47.23 47.296 47.362 47.428 47.494 47.56 47.49 550 45.87 46.59 46 658 46.726 46.794 46 862 46.93 47.27 560 45.25 45.92 45.994 46.068 46.142 46.216 46.29 46.86 570 44.64 45.22 45.30 45.38 45.46 45.54 45.62 46.02 680 43E M.50 44.586 44.672 44.758 44.844 44.93 45.36 590 43.10 43.73 43.825 43.92 44.015 44.11 44.205 44.68 600 42.321 42.913 43.017 43.122 43.226 43.33 43.434 43 956 610 41.49 41.96 42.08 42.196 42.314 42.432 42.55 43.14 820 40.552 40.950 41.083 41.217 41.35 41.483 41.816 42.283 41.44 l

630 39.53 40.388 840 38 491 39.26 850 37.31 38.008 660 36.01 38.52 4

670 34 48 34.638 633 32.744 32.144 690 30.516 TABLE A.6 PROPERTIES OF WATER, DENSITY A.8

UNIT 0 GP C3 N.

5.0 PROCEDURAL STEPS

/7 L ')

Transferring The Reactor Mode Switch To RUN 5.1 5.1.1 Verify the following low steam line pressure relays are energized by observing they are pulled in frem their stop screws.

On Panel H12-P609 5.1.1.1 A71-K4A 5.1.1.2 A71-K4C On Panel H12-P611 5.1.1.3 A71-K4B 5.1.1.4 A71-K4D 5.1.2 Verify the following MSIV limit switch relays are energized by observing they are pulled in from their stop screws:

On Panel H12-P609 5.1.2.1 C71(72)-K3A 5.1.2.2 C71(72)-K3C 5.1.2.3 C71(72)-K3E 5.1.2.4 C71(72)-K3G On Panel H12-P611

())

5.1.2.5 C71(72)-K3B 5.1.2.6 C71(72)-K3D 5.1.2.7 C71(72)-K3F 5.1.2.8 C71(72)-K3H 5.1.3 Increase power to 6-10% by withdrawing control rods in accordance with OP-07 in the sequence designated by GP-10 Rod Sequence Checkoff Sheets.

CAUTION At least two APRM downscale and companion IRM upscale scram channels per RPS s

Trip System are required operable. Companion APRMs/IRMs are as follows:

Trio Systes B Trio System A APRM A _Ag IRM A APRM B @ IRM B APRM C AND IRM C APRM D AND IRM D APRM E AND IRM E APRM F E_iD IRM F APRM E AND IRM G APRM F AND IRM H

  • + - - - - - - ;. -., ;. :. ;. :. ; :. ;, ;. - ;, ;. :. :. :. ;. ;. :. :. :.
  • newwwwwe;. :... - ;. ;, ;. :. :... :. ;. :. :. ;. - : :. ;.

5.1.4 Momentarily select each APRM channel on the IRM/APRM recorders and verify that all operable APRMs indicate between 3% and 10%.

)

O GP 03 Rev. 3 Page 5 of 24 i

I i

(

1.__ER1NCLELEE_QE_ NUCLEAR _EQWER_ELANI_QEER&ILQNm PAGE 24 IHERMQQ1NAMLCE _UEAI_IRANEEER_ANQ_ ELE 1Q_ELQW ANSWERS -- BRUNSWICK 1&2

-85/10/08-KING, M.

MERCOPY ANSWER 1.01

(.50)

Prevents loss or decrease of condenser vacuum.

(0,5)

REFERENCE SSM BOOK 8.

CH 16-C REV 0.

SEC 2.1, PG 3 ANSWER 1.02 (2.00) a.

Volds inattally decrease (0.25) as increased flow moves the bolling boundary higher into the core (0.25).

As power increases, the rate of bon!!ng increases (0.25), and the boiling boundary is returned to near its original level (0.25)

(1.0) b.

Core reactivity initially becomes positive as vold content decreases (0.251. Power increases & void content increases back to near its orignal value(0.251. The Power increase will also cause doppler to add neg. reactivity (0.251. The not core reactivity returns to zero (with core at a higher power level)(0.251.

(1.0)

REFERENCE SSM BOOK

?,

CH 6-C REV 0.

SEC 2.0, PG 10,11 ANSWER 1.03 (2.00) o.

I second:

6% X 2436 MWT 146.16 MWT(Accept 6% +1% fp y,

(0.5) 1 minute:

4.0% X 2436 MWT 97.4 MWT(Accept 4.0%

+or-.

)

(0.5) b.

The nuclear instrumentation indicate neutrons, while t e decay heat power is from beta decay of fLaston fragments and decay gammas.

(1,0)

REFERENCE SSM SOOK 2.

Cil 2-A, SEC 14.4. PG 179 & FIO. 70 cme g a la t, Pee NGB8 040l*O i NS I. ) * *4 bN w

o 1.__ERINQ1 ELE 1_QE_NMQLE&E_EQWER_ELANI_QEER&I1QNm PAGE 2S IHERMQQ1N AM101 _HE&I_IR ANE EER_&NQ_Eku1Q_EkQW ANSWERS -- BRUNSWICK 1&2

-85/10/08-KING, M.

f ANSWER 1.04 (2.00) a.

Decreases due to the production of Plutonium (0.5) which has a lower delayed neutron fraction than U-235(0.5).

(1.0) b.

Delayed neutrons increase the average neutron generation time (0,5),

increasing the control time of the reactor by a very large--(7000 to 9000)--factor (0.5).

(1.0)

REFERENCE SSM BOOK 2. CH 2-A, SEC 12.3 PG 120, 124, 121 ANSWER 1.05 (1.00) d (1.0)

REFERENCE SSM BOOK 2, CH 2-A, SEC 13.7, PG 161 ANSWER 1.06 (2.00)

After power operatton, the gamma and deutettum(0.67) concentrations are high enough to produce signtitcant numbers of source neutrons, Olong wtth the alpha-oxygen reaction (0.67) and spontaneous itssion Of U-238(0.66).

ALTERNATE ANSWER:

Spontaneous itsston of Cm-242 and Cm-244, for low and high exposure fuel respectively, provide suffectent numbers of source neutrons, (2.0)

REFERENCE SSM BOOK 2. CH 2-A.

SEC 12.1, PO 111. 112 SEC 6.4.

PO 49, 47

~

a 1.__ER1NCIELEE_QE_NECLEAR_EQWER_ELAMI_QEER&ILQN.

PAGE 26 THERMQQ1NAMICE _uC&I_IRANEEER_ANQ_ ELM 1Q_ELQW ANSWERS -- BRUNSWICK 1&2

-8S/10/08-KING.

M.

ANSWER 1.07 (2.00)

The reactor is now producing less steam to go to the turbine.'^

, 9%

There will be less extractfon steam and reheater drain steam going to the feedwater heater.6he44#Yherefore less feedwater heating will occur rosulting in colder feedwater entering the vessel &-9Y"which will cause roactor power to incregse about 3% from the posative reactivity odditton (alpha m) W ( g..)

(2.0)

REFERENCE SSM BOOK 9,

CH 18-A, SEC 2.2.4, PG 39 AN.

sw 4s 4J 444 fm g, % t wl4.estle=*,

ging ANSWER 1.08 (2.50) c.

Decreased.

(0.5) b.

Increase.

(0.5) c.

Subtraction.

(0.5) d.

Increase.

(0.5) o.

Increase.

(0.5)

REFERENCE SSM BOOK 7.

Cil 6-C, SEC 1.2.1, PG 4,5 ANSWER 1.09 (1.50)

Roactor power would increase above 100% because of the removal rate (by burnout) exceeds the production rate of xenon (0.51 (These rates are different because lodine production increase immediately, while xonon production increases only after todtne starts to decay).

When todine starts decaying and the production of xenon is increased roactor power will decrease and continue to decrease until oquilibrtum xenon is reached 10.51. Power will be less than 100%

chen stabill ed (0.51.

REFERENCE SSM BOOK 7. Cil 6-C, SEC 3.1.4, PC 28,29 SSM BOOK 2.

Cil 2-A, SEC 14.2.1.3, PO 175,176

r

- a, 1

1.__ER1NCIEkER_QE_MECLE&E_EQWER_Ek&MI_QEER&I1QNm PAGE 27 IEEEMQQ1HAMICE _HE&I_IRANSEER_ANQ_ ELM 1Q_ELOW BRUNSWICK 1&2

-85/10/08-KING, M.

' ANSWERS F'

ANSWER 1.10 (2.50) a.

No bypass valve action b.

TCV throttle close due to indicated low pressure then open as backup regulator responds c.

Reactor pressure will increase 10 pstg to ~1020 (unit one) l d.

Throttle pressure will increase 10 pstg t0 ~959

o. Reactor power will increase ~1.0%

REFERENCE SD 26.2, Sec 1.2.2.2, pg 5 & EHC figures pg 38, 39, 41, & 44 Sim Malfunction Book 2, malfunction # 163, pg 147 ANSWER 1.11 (1.00) a REFERENCE DSEP T.S.

3/4.2.4 LHOR LCO, pg 3/4 2-15 SSM Book 7,

Sec 3.2, pg 9,11 ANSWER 1.12 (1.00) d REFERENCE SSM Dook 13. Ch 7.

Pg 7-110 ANSWER 1.13 (1.50) c.

less than b.

slower c.

longer REFERENCE SSM Book 2.

Ch 2-A, Sec 12.2, pg 113

L 1.__ERIMCLELE1_QE_ERCLEAR_EQWER_EL&EI_QEER&ILQM.

PAGE 28 IEEbuQQ1NEWLCE _BE&I_IRAMEEER_ANQ_ELELQ_ELQW

. ANSWERS -- BRUNSWICK 1&2

-85/10/08-KING. M.

ANSWER 1.14 (1.00) d REFERENCE-BFNP RANKINE CYCLE LP.P.5,7-8 BSEP SSM Book 13. Ch 6 ANSWER 1.15 (1.00)

(1175 536.8) / 657.5 = 0.971 REFERENCE

.GGNS OP-HF-503',P.5 BSEP SSM Book 13, Ch 4, pg 17 ANSWER 1.16 (2.00)

O.

The assembly power which would cause the onset of transttion boiling at some point in the assembly.

(1.0) b.

2 REFERENCE BFNP TRANSITION BOILING & ATLAS TESTING LP.P.5-6 GEXL CORRELATION & CRITICAL POWER LP P.3 GGNS MCD, THERMAL LIMITS. P.26,32-33 DGEP SSM Book 7,

Ch 6-A, Sec 3.9, 3.10, 3.11, pg 17-19 l

c E __EL&HI_QE1LQM_1MChuQLNG_S&EEII_ANQ_EMERGENC1_E11IEME PAGE 29 BRUNSWICK 1&2

-85/10/08-KING, M.

ANSWERS ANSWER 2.01 (1.00) 1.

Decreased cooling water (Iow 2.

Increased cooling water temperature 3.

Touling of condenser tubes 4.

Air leakage / buildup in the condenser S.

Att in the water box 6.

Flooded hotwell (4 required at

.25 each)

(1.0)

REFERENCE APP UA-23, PG S.23 ANSWER 2.02 (2.00) c.

1..

There are no connections to spent fuel pool which would allow the pool to be drained below the pool gate between the fuel and reactor well.

(1,0) 2.

Each spent fuel pool difluser line is fitted with a vacuum breaker valve. This prevents draining through siphoning action.

(1.0)

OAar

  1. 8as....i.

d,,,,

G A,3 Se W. Sys %

.., uh 4 P4e 50 4 A % 4. G e the,,,g.,

r REFERENCE SD-13. SEC 1.3.1, PO 3 & 4 ANSWER 2.03 (3.00) a.

The Steam Supply Valve (T045)

(0.5) b.

When level decreases to the inttnation level, the F045 valve will reopen.

(1.0) c.

The turbine test circuitry would be automatically bypassed and the flow controller would control normally.

(1.0) d.

No (0,5)

REFERENCE SD-16, PO 9,13.15

t 1

1.__ELAMI_QEELGM_lMCLMQlMG_EAEEII_ANQ_OWERGENC1_ELEIOWS PAGE 30 ANSWERS -- BRUNSWICK 1&2

-85/10/08-KING, M.

ANSWER 2.04 (3.00)

A scram signal deenergizes the scram pilot valves (0.5), venting air.from the scram inlet and outlet valves, allowing them to open(0.5).

This vents water from the ovarpiston area of the CRD to the SDV(0,5) and applies HCU accumulator water to the underpiston area of the CRD(0.S).

This dp provides the initial cotive force for the rod (0.S).

As accumulator pressure drops bolow reactor pressure, a ball check valve in the CRD opens to apply reactor pressure to the CRD to complete the scram stroke (0.5)

REFERENCE SSM BOOK 4.

CH 9-A & 9-B SSM BOOK 6,

CH 28-A, PG 7-13 ANSWER 2.05 (2.00)

The gland seal condenser will gradually fill with condensate [0.51 docreasing its ability to condense gland seal steam [0.S1.

Eventually turbine gland seal will be lost and steam will leak from the turbine through the seals (0.51.

The system will, however, perform its intended function (0.S1.

REFERENCE SSM Dook 10, Ch 14-B, Sec 2.2.3 ANSWER 2.06

(.50)

F (Cooling water flow enters the.nsert port and leaks past seals into the Reactor Vess'l )

(0.5)

REFERENCE SSM Book 4.

Sec 4.1.5, pg 19 SD-3, Sec 1.2.2.1, pg 2 r

ANSWER 2.07 (1.00) l l

L 1.__ELANI_QEElGN_1NCLVQ1NQ_1&EEII_ANg_EMERGENC1_11EIEMS PAGE 31 rANSWERS -- BRUNSWICK 1&2

-85/10/08-KING, M.

REFERENCE SSM Book 11, Ch 14-C, Sec 2.2.6 thru 2.2.9.

pg 17-18, & fig 8 ANSWER 2.08 (1.00) b REFERENCE SD-17, fig 15-S, pg SS SSM Book 10. Ch 14-D, Sec 4.2.6, pg 46 ANSWER 2.09 (1.00) o REFERENCE SSM Book 11. Ch 14-H, Sec 4.2, pg 14,15

' ANSWER 2.10

(.50) zero gpm REFERENCE SSM Book 10. Ch-14-D, Sec 4.2.4, pg 4S

-ANSWER 2.11 (1.00) d REFERENCE SD-32.2. Sec 2.3.2, pg 16 Sec 2.3.2.3, pg 18 ANSWER 2.12 (1.00) b REFERENCE.

SSM Book S.

Ch 10-A, Fig 5, pg 79 9-

i

=

1.__ELANI_DESLQN_1NCLEQLNQ_SAEEIl_ANQ_EMERGENC1_SISTEMS PAGE 32 ANSWERS -- BRUNSWICK 1&2

-8S/10/08-KING, M.

-ANSWER 2.13 (2.25)

O.

"1" (1.0) b.

Differential pressure is sensed between the core spray injection line (0.251 and the instrumentation pressure tap which measures above core plate pressure (0.251.

A break in the CS piping outside the shroud would cause the dp to increase from a normal neg. r e a d i n g, * "* Joe

N,0 t o a positive reading Calarm at Spsig > than normal) (0.751 j(Outer pipe of SBLC injection line acceptable for ref. side)

(1.25)

(CAF normal 100% power reading and alarm reading)

-Jee A4e Og #4 eve 6%, 6,1 4, Bewes, stee ya J,

,.g.

.A.

REFERENCE SSM Book 10. Ch 14-E, Sec 3.2.2.2, pg 12 Sec 3.1.1, pg 8,9 ANSWER 2.14 (1.00)

Alternate power source (480/120 VAC Transformer)

(0.5)

SS1 shuts 10.25) and SS2 opens (0.251 (0.5)

REFERENCE SSM Book 6.

Ch 20-F, Sec 3.3.1, pg 9 & 10 Fig 2 ANSWER 2.15 (1.00) d.

(1.0)

REFERENCE SSM Book 10 Ch 14-D, Sec 2.1.3.1, pg 6 ANSWER 2.16 (1.00)

CHECK VALVE - (The check valve is located below the level of the Suppression Pool and) keeps the Core Spray line downsteam of it full of water (prevents draining to the Suppression Pool)

(0.5)

CHECK VALVE BYPASS (This allows bypassing the discharge check valve) to drain the discharge line for maintenance.

(0,5)

. r.

1.__ELAMI_QE11GM_1MGLuQLNG_E&EEII_ANQ_EMERGENGl_EIEIEME PAGE 33 ANSWERS -- BRUNSWICK 1&2-

-85/10/08-KING, M.

REFERENCE BSEP: HO 14-2/3-E, Section 2.2.2 CObj. e)

ANSWER 2.17

-;.ev; d%g Bypass Valves provide continuous flow thru the system (0.5)

REFERENCE 3SEP: SD-43, p 3

-ANSWER 2.18 (1.00)

G REFERENCE Recirculation system requal lesson plan.

i l

~

.1

5 1.__LNEIEMMENIE_ANQ_CQMIRQLE PAGE 34 ANSWERS -- BRUNSWICK 1&2

-85/10/08-KING.

M.

i ANSWER 3.01 (2.00)

No (.5) When transferring RPS power supplies, the RPS is comentarily deenergized because the transfer is break before make. This would result in a scram due to the 1/2 scram already present.(1.5)

(2.0)

REFERENCE SSM-BOOK 6.

CH 28-A, SEC 2.2.1, PG 6 ANSWER 3.02 (3.00)

A.

New reading on range 7 is 2.S C.5) no auto actions (1.0)

B.

New reading on range S is 39 C.5)

IRM high rod block and Hi-HI half scram will be in.

(1.0)

REFERENCE SSM BOOK 6 CH 25-B, PG 12,14 ANSWER 3.03 (2.00) half-scram (if concurrent hi IRM assumed)Oh W4 Pee 4=es, e.

rod block or b.

half-scram c.

rod block d.

full scram (4 @ 0.5 eal (2.0)

REFERENCE SSM BOOK 6.

CH 25-D. PG 14,1S ANSWER 3.04 (2.50) c.

A withdrawal error and withdrawal block occur.

(0.S) b.

Zero notches because of the withdrawal block that is imposed.

(0.S) c.

The first notch in clears the withdrawal e r r or and block (0,5).

The next notch causes an insert error (0.51.

The rod can be driven in to the 00 position (0.S).

(1.5)

1-- lNEIRUMENIE_ANQ CQMIRQLE PACE 3S LANSWERS -- BRUNSWICK 1&2

-8S/10/08-KING, M.

REFERENCE SSM BOOK C,

CH 27-B. PG 10-11 ANSWER 3.0S (1.00) o Reactor Scram.

(0.S) o Mechanical. vacuum pump trip ang/ associated valvesy OCr Mer-F7 (0.5) te REFERENCE SD-11. Sec 1.2.1.1, pg 2 36mKs ANSWER 3.06

-(1.S0)

When RTP 2A' flow decreases to (20%t0.S1 and level decreases to (182"[0.51, the recirculation pumps will run back to 45% speed [0.S1 (due to the

  • ? 3 speed limiter).

REFERENCE SD-1, SD-2 SSM Book S, Ch 10-A, Fig " Recirculation System Flow Control Network", pg 89 4

ANSWER 3.07 (2.00) c.

SS% (volts)t0.SI.

S% (volts) for each LPRM input not bypassed [0.S).

b.

Noto.51.

There are fewer than 2 operable inputs on the B

.leve1[0.S).

(2 @ 1.0)

-REFERENCE SD-9. Sec 1.2.3.3, pg 10 SSM Book 6,

Ch 2S-D BSEP T.S.

table 3.3.1-1, pg 3/4 3.S, note c ANSWER 3.08 (1.00) i a

(1.0)

-~

o

'1.__lMEIREMENIE_ANQ_CONIRQL1 PAGE 36 ANSWERS -- BRUNSWICF. 1&2

-85/10/08-KING, M.

REFERENCE

-SSM Book 8,

Ch 17-B, Sec 3.2.17, pg 23, & fig 2 ANSWER 3.09 (2.00)

The valves are FO48A/B (RHR heat exchanger bypass) and FO17A/B (LPCI admission valves).

(2 9 0.5) r The pupose of the timer is to prevent the valves from being

' throttled before the timer times out ( 3 min and S min).

(2 9 0.5)

REFERENCE SSM Book 10. Ch 14-D, sec 3.2.1.D &

E, pg 23 ANSWER 3.10 (3.00) 1.

F001. signal from HPCI initiation signal, DC motor driven 2.

V8, no init signal, opened by hydraulic control oil from aux lube oil pump 3.

V9, signal from flow control sys, opened by hydraulic control oil from aux lube oil pump.

(3 9 1.0)

(CAF: F001, V8 & V9 valve names for alt, acceptable answer)

REFERENCE SSM Book 10. Ch 14-B, Sec 3.2.1, pg 15,16 ANSWER 3.11 (1.00) c REFERENCE SSM Book 10. Ch 20-D, Sec 3.2.4, pg 24 ANSWER 3.12 (1.00) b

?

REFERENCE SSM Book 10, Ch 14 - E '. Sec 3.2.1, pg 9

1.__1NSIEUMENTE_ANQ_CQMIRQLE PAGE 37 ANSWERS -- BRUNSWICK 1&2

-8S/10/08-KING, M.

ANSWER 3.13 (1.00)

C REFERENCE BSEP GP-03 rev 3,

Sec 5.0, pg 18 ANSWER 3.'14 (2.50)

c. Gama (0.5)

'b.

Pulse height, Cambelling OR mean square voltage (1.0) c.

Due to the low number of events and greater sensitivity (0.25), the SRM deals with individual counts (pulses) (0.25) where the IRM pulse signal overlap (0.S)

(1.0)

REFERENCE SSM Book 6 Ch 1S-A, Sec.

6.2.1.E.

Pg. 11 CH 25-B, Sec.

2.2.1.

Pg. 3

i.__ERQCEQMREE_ _NQEMAL._ARNQRMAL EMERQEMCI ANQ PAGE 38 RAQLQLQQLCAL_COMIRQL ANSWERS -- BRUNSWICK 1&2

-85/10/08-KING, M.

ANSWER 4.01 (3.75)

A.

1 OBTAIN SHUTDOWN PANEL KEYS 2.

MANUALLY SCRAM THE REACTOR 3.

TRIP THE MAIN TURBINE 4.

VERITY OR XFER POWER TO SAT.

S.

Wi!EN STEAM FLOW IS < 3.0E6 LB/HR, PLACE MODE SWITCH IN S/D.

6.

TRIP BOTH RECIRC. PUMPS 7.

REDUCE REACTOR PRESSURE TO 700 PSIG WITH BYPASS JACK 8.

CLOSE MSIV AT 700 PSIG 9.

PLACE BOOSTER PUMPS IN MAN.

10. ENTER EOP-01 (8 e 0.30 EA.)

B.

1.

Go to the cable spreading room C.25)

.2.

Open RPS MC output breakers.(.5) 3.

Place RPS alternate feed switch (LG3) to the mid position.C.S) (1.25)

REFERENCE AOP-32, Plant S/D Outside The Control Room, Rev 5,

pg S

. ANSWER 4.02 (3.00) 0.1.

Boron injection is required and the SLC system is not (0.5) available.

2.

The SLC tank is empty [and cannot be refilled AND futher boron injection is re quired.

(0.5) j b.1.

RWCU via SLC)

N a, As, Ars 485-M 2.

RWCU sth borax) 3.

condenrate system 4.

HPCI 5.

RCIC 6.

CRD (4 req. e 0.5 ea.)

(2.0)

REFERENCE EOP-LEP-03 rev 00, pg 3 ANSWER 4.03 (1.00) d.

s-i.__ERQQEQuREE_ _NQRMaki_&RNQRMakt_EMERGENQI_ANQ PAGE 39 RAQLQLQQ1 CAL _COMIRQL BRUNSWICK 1&2

-85/10/08-KING, M.

ANSWERS

-REFERENCE-Al-41," Equip. Clearance Proc, pg 2 ANSWER 4.04 (2.00) 1.

When a system is found inoperable

2. When a system is. made inoperab e 3.

when a system is not in stand by readiness mode (2 req. 9 1.0 ea.)

REFERENCE OG-4.. ESP Operability, Sec 5.1, pg 1 ANSWER.

4.05 (1.50) c.

SHALL: denotes a requirement b.

SHOULD: denotes a recomendation

,(

c.

MAY: denotes permission (3 e

)

REFERENCE l

01-1, Sec 2.0, pg 1 ANSWER 4.06 (1.00) d REFERENCE OI-1. Operating Principles and Philosophy, see 13, pg 9 ANSWER 4.07 (2.00)

The startup cannot continue.

(1.0)

The APRM.IRM andtvidually do not affect the s t a r t tip. However the combination of APRM E and IRM A in bypass together reduces the number of APRM downscale/IRM upscale trips to less than 2 and the startup may not continue.

(1.0)

.i___REQCEQuREE_ _HQWWAL._AENOWWAL _CWERGENC1_ANQ PACE 40 RAQlOLQGLCAL_CQHIRQL BRUNSWICK 1&2

-8S/10/08-KING, M.

ANSWERS REFERENCE OP-03 rev 3, sec 5.1.3, pg 5 ANSWER 4.08 (3.50) 0.1.

Turbine shell to rotor diff. expansion indicating in the red band.

2.

Turbine journal bearing high vibration near the critical speeds or any other speeds 3.

High journal bearing metal temp.

4.

lii g h thrust bearing metal temp.

S.

High diff. temp. between inlet oil and bearing drain oil temp.

6.

Loss of turbine speed control.

(4 @ 0.S) b.

4, 2,

1, 6,

S, 3

(6 0 0.25)

REFERENCE BSEP OP-03 rev 2,

pg 14, pg 15 OP-26 rev 25, pg 17 ANSWER 4.09 (1.00)

Warming and pressurizing steamlines.

(0.5)

Water hammer in the steam lines.

(0.5)

REFERENCE BSEP OP-16 ANSWER 4.10 (1.00)

These instruments have a cold reference le

0 t'
nf (uncompensated)6444 ( d.D QM fie S W ' %gl%

They are not affected untt! D/W temperature exceeds the RPV saturation temperature (0.5)

REFERENCE BSEP: EOP-01/UG, CAUTION #

6, p 36

r i

r

+.

i i __ERQQEQUEE1_ _NQEMAL&_ARNQRM&km_EMERGENQ1_ANQ PAGE 41 i

RAQ10LQQ1 CAL _CONIRQL BRUNSWICK 1&2

-85/10/08-KING, M.

ANSWERS ANSWER 4.11 (1.00) c.

Service Building (0.5) h.

. Training Building (0.5)

RETERENCE EIH:

63EP-EIP-061-0 BSEP:

R.E.P.

Sections 5.3, 5.4 ANSWER 4.12' (1.00)

To distribute heat evenly in the suppression pool.

(0.5)

K& L are not on the list because they discharge near the exhaust of IIPCI and RCIC (0.5)

REFERENCE EOP Vol 6,

EOP-01-UG, caution #15, pg 40

{

ANSWER 4.13 (1.50)

The failed jet pump allows rectre flow to bypass jet pump.

The bypass flow is LESS RESTRICTIVE than flow thru the jet pump.

This is."seen" by the rectre pump and rectre flow will increase (in

f ailed jet pump loop)t0.S). Depending on the severity of the failure flow thru the jet pump may reverse. This would cause an increse in the INDICATED total core flowi0.S). ACTUAL core flow will decrease, causing increased voiding which will lower core power and result in LOWER GEN. MW. output [0.S)

REFERENCE BSEP AOP-04.4 rev 00, pg 3 BSEP Sim. Malfunction list, Customer Malfunction #125 ANSWER 4.14 (1.00) b

o l

i.- ERQCEDMRE1_ _MQEMAL&_ARNQEMAL _OWERGENGX_ANQ PAGE 42 RAQLQLCGLCAL_CONIRQL BRUNSWICK 1&2

-85/10/08-KING, M.

ANSWERS l

REFERENCE BSEP.OP-21 rev 21, Sec 4.0, pg 5 ANSWER 4.15 (1.00)

Prenewe/

Opening the bypass valve to 20% to prevent:

a.* power osc, due to variation in RTP s t e am dema nde e. S i ^ And/.e Oh b.

prevent sudden oscillation in ~ reactor pressuret"."'

Q e')

f A=e, REFERENCE BSEP OP-25 rev 19. Main Steam OP. Proc, pg 12

<