ML20132G888

From kanterella
Jump to navigation Jump to search
Probabilistic Safety Assessment Update 1996,Summary Document
ML20132G888
Person / Time
Site: Quad Cities  Constellation icon.png
Issue date: 12/31/1996
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20132G894 List:
References
NUDOCS 9612270071
Download: ML20132G888 (143)


Text

)

)

Quad Cities Nuclear Power Station Probabilistic Safety Assessment Update

)

1996 Summary Document

)

)

)

Abstract I

4 The purpose of this document is to provide an oveniew of the changes incorporated into, and to summanze,the results of, the Quad Cities Nuclear Power Station PSA Update. The report addresses the level one (core damage end state) and level two (large early release) portions of the Quad Cities PSA Update which was based on the

)

configuration of Unit I as of July 1,1996.

i

)

December 1996

)

PSA Group Nuclear Fuel Senices/Probabilistic Safety Assessment Nuclear Engineering Senices

)

Quad Cities-1

)

9612270071 961217 PDR ADOCK 05000254 p

PDR

1

)

i Table of Contents 1.

Background....................

......... Quad Cities-3

)

II.

Changes...........

- Quad Cities 4 l

111.

Model Structure.......

............................,. Quad Cities-8 IV.

Data....

..... Quad Cities-10

- Quad Cities-19 V.

Model Documentation-,

VI.

Quantification and Results............

- Quad Cities-21 VII.

OSPRE/EOOS............

..... Quad Cities-47

)

Vill.

Applications

...... Quad Cities-49

'l IX.

Conclusions.........

.. Quad Cities-50 f

1 List of Tables

).

Table 1-1 Quad Cities Initiating Events....

- Quad Cities-4 Table 1-2 List of Systems Modeled in Quad Cities PSA..

Quad Cities-5 Table 3-1 Support System Model Crosstic to Initiating Events..

Quad Cities-8 Table 4-1 Quad Cities Initiating Events and Frequencies..

Quad Cities 11 Table 4-2 Plant-Specific Faili.re Data...

. Quad Cities-14 Table 4-3 Quad Cities Human Reliability Analysis Changes from the Modified IPE.....

.. Quad Cities-18

)-

Table 5-1 Code Versions used for PSA Update.......

- Quad Cities-19

]

Table 5-2 Notebooks and Reports Documenting PSA Update......

.. Quad Cities-20 Table 6-1 System Fussell-Vesely importance

- Quad Cities-28

]

Table 6-2 System RAW.,

Quad Cities-29 Table 6-3 Operator Action Importances

- Quad Cities-30 Table 6-4 Application of Criteria to Assignment of PDSs...

Quad Cities-32

)

Table 6-5 PDS Contribution to LERF......

xQuad Cities-39 Table 64 PDSs Contributing > 1% to LERF.......

Quad Cities-43 List of Figures

)

Figure ! Quad Cities Station PSA Data Collection and Analysis: Information Flow..... Quad Cities-13 Figure 2 CDF Contributions by Initiating Event..

. Quad Cities 27 Appendices

)-

Appendix A Support System Event Tree Exampic..

.. A-1 Appendix B.LOCA Event Tree Model.

... B-1 Appendix C Fault Tree Example (TBCCW)...

_ C-1 Appendix D Core Damage Sequences:

_D 1

)

l D

l Quad Cities-2 i

)

)

Quad Cities Nuclear Power Station Probabilistic Safety Assessment Update 1996 Summary Document

?

I. Background i

i A probabilistic safety assessment (PSA) is a useful tool for quantitative and qualitative evaluations 1

of the likelihood and consequences of core damage that could conceivably result from events l

occurring during power plant operation. There are three levels of PSA, each corresponding to a different end state, and each utilizing a different set of plant models. A Level 1 PSA analysis is performed to determine the frequency of core damage. Core damage for this PSA is defined as any part of the core exceeding 4040*F for a significant period of time. It consists of models of the i

)

systems needed for reactor shutdown and core cooling, as well as necessary support systems. A l

Level 2 PSA analysis has an end state of radioactive release following core damage. It begins l

with damage states from the Level 1 model and combines them with a containment failure model

. and radionuclide source term estimates. A Level 3 PSA analysis has an end state that quantifies the impact of a radioactive release upon public health and safety, and accounts for site specific

)

topography, meteorology, demographics and emergency planning actions. The Quad Cities PSA is a Level 2 PSA, for power operation.

The following equations represent the concept of PSA analyses:

)

Level 1:

I(Initiating Event Frequency x Mitigating Systems Failure Probability) = Core Damage Frequency

}

Level 2:

' I(Core Damage Frequency x Containment Failure Probability) = Radioactive Release Frequency and Source Term Magnitude

)

Lev'el3:

I(Radioactive Release Frequency x Site Characteristics) = Public HealthImpact In a very simplistic manner, these equations are the basis for the calculations performed for each J

of the three levels of a PSA.

i Quad Cities-3 4

n--

i

)

I l

An initiating event is the staning point of a Level 1 PSA analysis. An initiating event is defined as an event which causes a reactor trip (either directly or indirectly) or which requires an immediate

)

plant shutdown due to technical specification or operational limits. A list of the initiating events used in the Quad Cities PSA is provided in Table 1-1.

The Quad Cities Level 1 PSA addresses internal events, including internal flooding, and loss of offsite power. It does not address external events such as fires, earthquakes, tornadoes and y

external flooding, which are being analyzed separately in msponse to Generic Letter 88-20, Supplement 5.

Table 1-1 Quad Cities Initiating Events DESCRIPTION

)

Transients Anticipated General Transient (GTR)

Inadvertent Open Relief Valve (IORV)

Single Unit Loss of Offsite Pour (LOSP)'#

)

Dual Unit loss of Offsite Power (DLOSP)'3 Anticipated Transient Without Scram (ATWS) (consequential)

SpecialInitiators Loss of125V DC Bus IB-1 (LIBI)

Loss of Bus 1I (LB11)

)

Loss of Bus 12 (LB12)

Loss of Bus 13 (LB13)

Loss of Bus 14 (LB14)

Loss of Bus 18 (LB18)

Loss of MCC 18-2 (L182)

)

Loss of Service Water (LOSW)

Loss ofInstrument Air (LOIA)

LOCA's Large Break LOCA (LLOCA)

Medium Break LOCA (MLOCA)

Small Break LOCA (SLOCA)

Interfacing Systems LOCA(ISLOCA)

Note 1: Station Blackout (SBO) may be a consequence of these transient initiators.

Note 2: Various references interchangeably use "LOSP" and " LOOP" for " Loss of offsite Power".

)

The mitigating systems referred to in the Level 1 equation are those which shut down the reactor or provide core cooling to prevent overheating or, ultimately, melting of the fuel. Any support systems that are necessary for the front-line systems are also included within the Level I scope. A j

list of the systems modeled in the Level 1 analysis is provided in Table 1-2.

)

The Level 1 equation uses the initiating event frequencies and the failure probabilities of the systems required to mitigate these initiating events to estimate the overall core damage frequency.

Quad Cities-4

-.m

..~.y y

r n

- - 1

?

The basic concept of a Level 1 PSA is simple. However, the large number ofinitiating events, systems, components, and human interactions associated with a nuclear plant operation and j

maintenance, make the performance of a PSA analysis complex.

The Quad Cities PSA model will be updated periodically to reflect plant modifications, procedure cha:1ges, and the plant-specific failure data for major plant components. The model described in this report is the most current and represents the core damage frequency for Quad Cities Nuclear i

Power Station with respect to the plant configuration f,r Unit 1, and its dependencies on Unit 2, as ofJuly 1,1996. The model has equal applicability to Unit I and Unit 2.

The electronic copy of this report, QCPSAUPD. doc, is stored on the Downers Grove LAN.

Table 1-2

)

List of Systems Modeled in Quad Cities PSA (note 1)

DESCRIPTION SYSTEM ID (note 2)

Fire Protection System FP

)

Turbine Building Closed Cooling Water System TBCCW (SS).

Electric Power System (note 3)

EP(SS)

Service Water System SW(SS)

High Pressure Coolant Injection System HPCI

)

Standby Liquid Control System SBLC Reactor Vessel Pressure Control and Depressurization System ADS Residual Heat Removal System RHR Core Spray System CS

)

Reactor Core Isolation Cooling System RCIC Safe Shutdown Makeup Pump System SSMP Control Rod Drive Hydraulic System CRDH Feedwater and Condensate System FWC

)

Anticipated Transient Without Scram System ATWS Conunon Actuation System CAS (SS)

Torus /Drywell Vent System TDV Instrument / Service Air System AIR (SS)

)

Note 1: This table corresponds to Table 4.2.12 of the IPL Support Systems are idenufied in Sectson 4.1.2.3 of the IPE Note 2: (SS) Designates that this system is in the support system model.

Note 3: SBO Diesels were included in the Electric Power System as part of this update.

j

)

Quad Cities-5

)

)

II. Changes

)

Since the original Quad Cities IPE submittal to the NRC (December 1993), a modified IPE was submitted (August 1996) followed by this update. The modified IPE was aimed at resolving issues the NRC raised on the original IPE while the updated IPE (hereafter referred to as " Updated i

PSA") is directed at more current equipment availability and reliability data as well as any subsequent plant configuration changes (SBO Diesel Generator etc.) whic a impact the risk

)

profile. A summary of those changes from the original IPE follows.

Modified IPE -

1.

Incorporated updated failure data for five key systems for the three year period of 1993

)

through 1995.

2.

Incorporated maintenance unavailability data for the same five key systems for the two yearinterval 1994 through 1995.

3.

Included nine special initiators (loss of service water, loss of 4kV buses (4 cases), loss of

)

DC bus, loss ofinstrument air, and loss of HVAC due to the loss of bus 18 or MCC 18-2).

4.

Modified the common cause failure (CCF) factors.

5.

Revised the modeling of ATWS sequences to include operator action to inhibit ADS in the

)

ATWS event tree.

6.

Modified the human error probabilities (HEPs) for significant operator actions using the EPRI cause based decision tree methodology (CBDTM). Revised the HRA for important operator actions based upon operating procedures in place as of December 1995.

)

7.

Changed mission times for standby instruments to reflect a plant specific assessment of pre-initiator concerns involving instmment calibration.

Updated PSA

)

1.

Included the following system modifications:

Addition of SBO Diesel Generators and associated buses.

Change of compressors in plant air systems.

)

e Addition of the cross-tie between buses 23-1 and 13-1.

i Bypass on an ECCS signal of the HPCI low suction pressure trip and e

high exhaust backpressure trips.

)

Quad Cities-6

)

)

2.

Included failure of the HPCI room cooler as a HPCI system failure mode. This includes operator action to start the Unit 1 DG Cooling Water Pump when the Unit I diesel does pot start or is not demanded.

)

3.

Included failure of the recirc pump discharge valve in the unbroken loop.to close as a failure mode for LPCI injection during large and medium LOCAs.

4.

Corrected an error previously identified for CAS tree used in large LOCA events. The top

)

gates in these trees were changed from "OR" gates to "AND" gates.

5.

Added operator action to take manual control of RCIC on depletion of station batteries to the station blackout event tree.

)_

6.

Resolved SAM sequences. Event trees sequences with SAM end-states were modeled to success or failure states.

7.

Gathered component failure data and developed new failure rates for key components.

i 8.

Included failure of the SSMP room cooler as a failure mode for the SSMP.

)

9.

Evaluated the impact of ECCS suction strainer clogging due to insulation blowdown as a sensitivity study on the updated model.

10.

Evaluated the HPCI suction temperature limit reduction from 170 to 140 degrees F.

-l

)

11.

Updated initiating event frequencies. Transient, LOSP, and DLOSP events considered l

plant operating experience since the base model was developed. LOCA frequencies were recalculated using a newer methodology (discussed in Section IV). Special initiator frequencies were requantified using updated component failure data.

)

12.

LERF (Large Early Release Frequency) was calculated using more conservative assumptions. The modified IPE value is significantly smaller than the updated PSA LERF.

However that calculation did not include contributions from liner melt-through. The earlier calculation also took credit for scrubbing in the ATWS (with early core damage (0-2 hours) and failure to trip recire pumps or failure to inject SLC) event. The PSA Update

)

conservatively assumes that liner melt through occurs for all sequences with low-pressure vessel failure and absence of water on the drywell floor, and does not take credit for sembbing during the ATWS scenario.

)

)

Quad Cities-7

)

i

)

i III. Model Structure

)

b The Quad Cities Updated PSA Level 1 model consists of four basic components: support-system event trees, front-line event trees, t'ault trees, and failure data (Section IV).

Support-System Event Trees

)

The Support-System Event Trees (SSET) are simply a series of event trees describing the possible support system configurations in which the plant may be. The support systems modeled in the Quad Cities PSA are identified in Table 1-2, above.

Because support system requirements are similar for many initiating events, only three support

)

system event tree models were required. Table 3-1 lists the support sytem event trees and the initiating events they support. Principal differences between the general transient (GTR) and the loss of offsite power (LOSP and DLOSP) support system models involve inclusion of diesel-generators, unit-to-unit electrical bus cross-ties, Unit 2 buses and Unit 2 diesel generators. The principal differences between the single unit loss of offsite power (LOSP) and the dual unit loss of

)

offsite power (DLOSP) support-system models involve inclusion of Unit 2 buses and diesel generators. Support-system event trees are described in detail in the Support System Notebook.

Table 3-1 Support System Model Crosstic to Initiating Events

)

Support System Model Initiating Event (From Table 1-1)

LS (LOSP SSET)

LOSP DS (DLOSP SSET)

DLOSP TS (GTR SSET)

GTR

)

IORV ATWS L1B1 LB11 LB12

)

LB13 LB14 LB18 L182

)

i LOSW LOIA LLOCA 4

MLOCA

)

SLOCA ISLOCA Quad Cities-8

)'

)

Front-Line Event Trees

)-

The front-line event trees, henceforth called event trees or Plant Response Trees (PRTs), are used to model the sequence of events, for each initiating event, which must occur to result in a core damage end state. The event tree is stmetured to describe all of the critical safety functions which j

must be satisfied to protect the core and containment. The safety functions for Quad Cities are:

1.

Reactivity Control 2.

Inventory Control (Short and Long Term) 3.

Core Heat Removal 4.

Containment Heat Removal

.l 5.

Containment Integrity

)

" Success criteria" for each PRT node were determined from past safety analyses or from the results of specific analyses performed to suppon the PSA. Timing studies using thermal-hydraulic l

computer models were performed to determine estimated accident response times and to confirm success criteria. In addition, discussions were held with operations personnel to verify the validity

)

of the proposed events. The end point for each possible event tree sequence was defined as a core-damage, or non-core-damage plant state. A sample event tree for a large LOCA is provided in Appendix B.

Fault Trees j

)-

Fault trees are used to model systems and the associated success criteria specified in the PRTs, and typically represent the logic associated with failure of a system or combinations of systems.

An' example of a fault tree associated with Turbine Building Closed Cooling Water is provided in 3

Appendix C.

Fault trees are made up oflogic gates and basic events. A gate represents the logical combination of component,and operator failures that will prevent successful operation of the system. The most common gate types used for the Quad Cities PSA model are the "OR" and the "AND"

)

gates: 1) OR gates, which are used when any of the inputs to the gate cause the defined failure; and 2)' AND gates, which are used when all the inputs to the gate are required to cause the defined failure. As shown in Appendix C, gates are linked together to form the logic that defines the failure combinations that will result in occurrence of the " top event". A basic event is the lowest level of input information to the fault tree and can be a component random failure 3

probability, a component test and maintenance unavailability, common cause failure, or a human error probability. Once the fault tree i:; developed down to the level of a basic event, probability data must be input to the model.

)

l Quad Cities-9 D

i

)

IV. Data

)

There are four basic data types used in the Quad Cities Station PSA model:

Initiating event data, Component failure data, e

Component test and maintenance unavailability data, and

)

Human reliability data.

e These data can be acquired from plant-specific information, or from generic industry data.

Generic data can be obtained from various industry publications, such as other PSAs, NUREGs and IEEE-500, or from a combination of the sources. Generic data may be based on expert

)

opinion for rare events, such as large LOCAs. While generic data may give a close approximation of equipment reliability, plant-specific data reflects the plant's current design and its operating and maintenance history. The objective of this analysis was to use failure rates and maintenance unavailabilities that were realistic and representative of the current performance of Quad Cities specific components.

Initiating Event Data The frequencies ofinitiating events which are relatively common, such as unplanned reactor trips, or losses of main feedwater, can be readily calculated for Quad Cities based on the plant's

)

operating history. For less frequent events, such as loss of offsite power, generic industry data can be used and supplemented with plant-specific information if available. Frequencies for small, medium, and large LOCAs were calculated using the method outlined in " Pipe Failure Study Update" (EPRI TR-102266 Revision ~4) as adapted by the BWR Owners Group Integrated Risk Based Regulation (IRBR) Committee in September 1996. For those initiating events which are

)

dependent upon plant component configurations and failure data, such as loss of service water, fault tree analysis techniques are used to evaluate the likelihood of the event using available plant-specific data and generic component data, when required.

i Table 4-1 compares the changes in initiating event frequencies between the base IPE and the PSA

)

update. These changes are due to changes in methods for determining the frequencies as well as changes in plant data used in calculating the frequencies.

l 1

)

Quad Cities-10

)

1 Table 4-1 Quat' Cities Initiating Events and Frequencies

)'

DESCRIITION _

FREQUENCY FREQUENCY (per reactor-year)

(per reactor-year)

Base IPE-Updated PSA Transients

)

General Transient (GTR) 3.87 3.40 Single Unit Loss of Offsite Power (SLOOP) 3.20E-02 2.40E-02 Dual Unit Loss of Offsite Power (DLOOP) 1.61E-02 1.60E 02 ATWS (consequential) 1.16E-04 1.10E-04 Inadvertently Open Relief Valve (IORV) 1.06E-01 1.%E-01

)

SpecialInitiators Loss of 125V DC Bus IB-1 (LIBI)

(Note 1) 1.01E-03 Loss of Bus 11 (LB11)

(Note 1) 2.75E-04 Loss of Bus 12 (LB12)

(Note 1)-

2.05E-04 Loss of Bus 13 (LB13)

(Note 1) 4.65E-03

)

Loss of Bus 14 (LB14)

(Note 1) 5.88E-04 Loss of Bus 18 (LB18)

(Note 1) 4.18E 04 Loss of MCC 18-2 (L182)

(Note 1) 1.34E-03 Loss of Service Water (LOSW)

(Note 1) 8.24E-03 Loss ofInstrument Air (LOIA)

(Note 1) 7.39E-03

)

LOCAs Interfacing System LOCA (ISLOCA) 1.2E-07 1.2E 07 Large Break LOCA (LLOCA) 3.0E 04 3.9E-05 Medium Break LOCA (Mi.OCA) 8.0E-04 3.5E 05 Small Break LOCA (SLOCA) 3.0E-03 1.5E-04 NOTE 1: 7hese Special Initiators wwe not separately evaluated as initiating events in the Base IPE.

)

)

)

Qaad Cities-11

)

1 i

e Component Failure / Unavailability Data f

)'

Component performance is modeled in the fault trees as a total failure probability. This total j

failure probability is computed using the following equations:

i Failure to Stan = (Failures / Demands) e Failure to Run = (Failures / Run Time) l e

)

Unavailabilities = (Unavailable Time / Time Required to be Operational) -

e Figure 1 provides a diagram showing data sources and indicates how the data has been used to

?

' give the failure and unavailability data, i

)

Table 4-2 shows changes in equipment performance due to the PSA Update. Comed did not revise all plant-specific data. Plant-specific data oflow-risk-significance components was not changed. Important/ key equipment and components (components significant to risk) and ' bad actors"(components identified in the Maintenance Rule a(1) list) were evaluated. 'n general, maintenance unavailability data was collected for 1994 and 1995 (except the EDG breakers which j

were 1993 through 1995) while demand data was for 1993,1994, and 1995. Common cause

)

faihires, failures of multiple similar components due to a single fault, were also evaluated. An -

example of common cause failure would be the failure of both RHR pumps to stan due to a faulty -

maintenance activity that was performed on each pump. Although such failures are much less

'l likely, they are very important because of their ability to disable redundant trains of mitigating or i

support systems. To determine the probability of multiple failures due to a common cause, terms called Beta Factors, Gamma Factors, and Delta Factors are calculated based on the plant-specific l

review of applicability ofindustry common-cause data bases, and then multiplied by the single component failure probability to arrive at the desired result.

Common-cause failure probabilities are changed during this update. Some of these were changed

-j

)

because the corresponding random failure probabilities had been updated. Other common-cause l

terms were previously changed in the Modified IPE because a decision was made to increase

-factors to a value of 0.01 if they had previously been smaller.

Plant-specific data did change from that used in the base IPE, but the new values appear to be

)

well within the normal fluctuations in equipment performance. No specific advase trends in equipment performance could be discerned. However, Comed did identify that RHR Motor Operated Valves, which had experien:ed multiple failures during the IPE data collection period, no longer exhibit a poor reliability. This along with the fact that no MOV failures were identified for the period in review indicates that the MOV Testing Program is successful.

7 Quad Cities-12 '

l 1

i' 5

i

)

Plant Records Raw Data Parameter Estimates i

EDG Program Demands

- Failure to Start I

I PlFs,DVRs.LERs Failures l

i System En ineer Run Times

. Failure to Run Recor j

)

SSPI Records Unavailability Duration i

SER Response Maintenance Maintenance Maintenance Procedures Frequency

- Unavailability

)

Maintenance Rule Records 00S Records

)

Monthly Transient initiating Event Operating Report Initiators Frequency

)

Figure 1 Quad Cities Station PSA Data Collection and Analysis:

Informatio6 Flow

)

I 2

Quad Cities-13 4

)

)

Tcble 4-2 Plant Specific Failure Data Component Type Grouping and Failure Mode OriginalIPE Failure Updated PSA Failure Data

)

)

Data (D*) or (H*)

(D*) or (H*) and/or (G*)

U-1, U-2, U 1/2 Diesel Generator Failure to Start NA' l.44E-02 (D)

U-l Diesel Generator Failure to Start 1.60E-02 (D) 9.62E-03 (D)'

U-2 Diesel Generator Failure to Start 1.38E-02 (D) 2.47E-02 (D)'

)

U-1/2 Diesel Generator Failure to Start 9.94E-03 (D) 1.32E-02 (D)'

U-1, U-2, U 1/2 Diesel Generator Failure to Run NA' l.02E-03 (H)

U-l Diesel Generator Failure to Run 4.27E-03 (H) 3.83E-03 (H)'

U-2 Diesel Generator Failure to Run 1.83E-02 (H) 2.81E-03 (H)'

U-1/2 Diesel Generator Failure to Run 3.19E-03 (H) 2.76E-03 (H)*

U-1, U-2, U 1/2 Diesel Generator Maintenance NA' l.59E-02 (D)

Unavail.

U-l Diesel Generator Maintenance Unavailability 8.69E-03 (D) 1.21E-02 (D)*

)

U-2 Diesel Generator Maintenance Unavailability 1.28E-02 (D) 1.52E-02 (D)'

U-1/2 Diesel Generator Maintenance Unavailability 1.38E-02 (D) 3.00E-02 (D)'

Diesel Generator Output Breaker Fails to Function 5.49E-03 (H) 4.90E-03 (H)

U-1, U-2, U 1/2 Diesel Generator Output Breakers 2.26E-03 (D) 1.02E-03 (D)

)

Maintenance Unavailability U-1, U-2 and Ul/2 Diesel Generator Cooling Water 4.29E-03 (D) 1.40E-02 (D)

Pump Failure to Start U-l Diesel Generator Cooling Water Pump Failure to NA' 5.56E-03 (D)

Start

)

U-2 Diesel Generator Cooling Water Pump Failure to NA' 4.17E-03 (D)

Start U-1/2 Diesel Generator Cooling Water Pump Failure NA' 4.55E-02 (D) to Start U-1, U-2, U-l/2 Diesel Generator Cooling Water 1.10E-03 (H) 1.85E-03 (H)

Pump Failure to Run

)

U-l Diesel Generator Cooling Water Pump Failure to NA' 3.22E-03 (H)

Run U-2 Diesel Generator Cooling Water Pump Failure to NA' 4.91E 03 (H)

Run U-1/2 Diesel Generatr Cooling Water Pump Failure NA' 2.59E-03 (H) to Run

)

U-1, U-2 and U-1/2 Diesel Generator Cooling Water 5.45E-03 (D) 2.14E-03 (D)

Pump Maintenance Unavailability SBO Diesel Generators Failure to Start NA' l.44E-02 (D)'

SBO Diesel Generator Failure to Run NA' l.02E-03 (H)'

SBO Diesel Generators Maintemmce Unavailability NA' l.59E 02 (D)'

)

SBO Diesel Generator Output Breaker Failure to NA' l.60E-03 (D)*

Close Quad Cities-14

)

Tcble 4-2 Plant Specific Failure Data (Cont.)

Component Type Grouping and Failure Mode OrigiralIPE Failure Updated PSA Failure Data Data (D*) or Gi*)

(D*) or Ol') and/or (G*)

)

SBO Diesel Generator Output Breaker Spurious NA; 1.00E-06 (H)*

Opening SBO Diesel Generator Output Breaker Maintenance NA; 6.72E-05 (D)*

Unavailability HPCI Turbine-Failure to Start 1.38E-02 (D) 3.77E-02 (D)

)

HPCI Turbine-Failure to Run 2.20E-04 (H) 5.00E-03 OI)(G)

IIPCI Turbine Maintenance Unavailability 1.45E-02 (D) 1.80E-02 (D)

RHR Pumps Failure to Stan 4.05E-04 (D) 4.00E-04 (D)(G)

R}{R Pumps Failure to Run 7.24E-04 (H) 3.00E-05 (H)(G)

)

RHR Pumps Maintenance Unavailability 6.51E-03 (D) 4.28E-03 (D)

RHRSW Pumps Failure to Start 5.18E-04 (D) 5.74E-04 (D)

RHRSW Pumps Failure to Run 2.70E-05 (H) 6.94E-05 01)

)

RHRSW Pumps Maintenance Unavailability 7.77E-03 (D) 2.32E-02 (D)

RCIC Turbine Failure to Start 1.74E-02 (D) 1.08E-02 (D)

RCIC Turbine Failure to Run 2.20E-04 (H) 5.00E-03 (H)(G)

RCIC Turbine Maintenance Unavailability 9.40E-03 (D) 1.25E-02 (D)

)

SSMP Failure to Start 6.33E-03 (D) 4.00E-04 (D)(G)

SSMP Failure to Run 1.06E-04 01) 3.00E-05 (H)(G)

SSMP Maintenance Unavailability 9.37E-03 (D) 6.76E-03 (D)

Electromatic Relief Valve Fails to Open 3.57E-02 (D)'

3.57E-02 (D)2

)

All Air Operated Valves Failure to Open/Close 1.98E-03 (D) 1.98E-03 (D)'

Condensate / Condensate Booster Pump Maintenance 1.67E-02 (D) 1.67E 02 (D)*

Unavailability Condensate / Condensate Booster Pumps Failure to 5.77E-04 (D) 5.77E-04 (D)'

Stan

)

Condensate / Condensate Booster Pumps Failure to 8.44E-07 (H) 8.44E-07 01)'

Run Control Rod Drive Pump Maintenance Unavailability 1.34E-02 (D) 1.34E-02 (D)*

Core Spray Pump Maintenance Unavailability 6.06E-04 (D) 6.06E-04 (D)*

)

Core Spray Pumps Failure to Start 3.45E-03 (D) 3.45E-03 (D)*

Core Spray Pumps Failure to Run 1.84E-03 (H) 1.84E-03 01)5 l

(

Core Spray Room Coolers Failure to Function 1.47E-03 (H) 1.47E-03 (H)*

CRD Pumps Failure to Start 4.80E-03 (D) 4.80E-03 (D)*

CRD Pumps Failure to Run 4.88E-06 (H) 4.88E-06 (H)*

Qaad Cities 15

)

1

)

Table 4-2 Plant Specific Failure Data (Cont.)

Component T pe Grouping and Failure Mode OriginalIPE Failure Updated PSA Failure Data l

Data (D*) or (H*)

(D*) or (H*) and/or (G')

)

Diesel Fire Pump Fails to Start 4.05E-03 (D) 4.05E-03 (D)'

Diesel Fire Pump Fails to Run 1.36E-03 (H) 1.36E-03 (H)'

Diesel Fire Pump Maintenance Unavailability 3.02E-02 (D) 3.02E-02 (D)'

Motor Operated Valve Failure to Opan/Close 1.45E-03 (D) 1.45E-03 (D)*

Motor Operated Valves Maintenance Unavailability 1.36E 03 (D) 1.36E-03 (D)*

Reactor Feed Pump Failure to Start 2.05E-03 (D) 2.05E-03 (D)'

Reactor Feed Pump Failure to Run 2.59E-06 (H) 2.59E-06 (H)*

)

Reactor Feed Pump Maintenance Unavailability 2.88E-02 (D) 2.88E-02 (D)*

Senice Water Pump Maintenance Unavailability 1.27E-02 (D) 1.27E-02 (D)

  • Senice Water Pumps Failure to Start 2.78E-03 (D) 2.78E-03 (D)*

Service Water Pumps Failure to Run 6.52E-06 (H) 6.52E-06 (H)'

)

Senice Water Strainer Failure to Switch 8.48E-04 (D) 8.48E-04 (D)*

Service Water Strainer Maintenance Unavailability 2.83E-03 (D) 2.83E-03 (D)*

SLC Pumps Failure to Run 1.18E-05 (H) 1.18 E-05 (H)'

SLC Pumps Failure to Start 1.23E-03 (D) 1.23E-03 (D)*

SLC Pumps Maintenance Unavailability 1.16E-03 (D) 1.16E-03 (D)'

TBCCW Pump Maintenance Unavailability 1.69E 03 (D) 1.69E-03 (D)*

TBCCW Pumps Failure to Run 4.07E-06 (H) 4.07E-06 (H)*

)

Notes:

(D)* = per demand (H)* = per hour (G)* = Generic value from NUREG/CR-4550 due to zero failures

1. Original value of 3.00E-04 revised per 1994 RAI on the Quad Cities IPE (question 15b).
2. The Unit i ERVs have been replaced with Target Rock SV/RVs.

)

3. SBO Diesel Generator Failure / Maintenance Unavailability data utilized the Unit Diesel Generator Failure / Maintenance Unavailability data due to insufficient SBO Diesel Generator operating time.
4. SBO Diesel Generator Output Breaker Failure / Maintenance Unavailability data utilized the 4KV Circuit Breaker Failure / Maintenance Unavailability data due to the manual operation of the SBO DG breaker.

5 Component did not meet update screening criteria: Maintenance Rule a(1) classification, Fussell-Vesely importance measure >l.005 or RAW >2.0.

)

6. Values in the Updated PSA Failure Data column are listed for comparison purposes for the indisidual Diesel Generators (DG) and were not used to update the Quad Cities PSA. The DG failure rates have been computed by combining all DG's together,
7. NA = Failure rate was not determined in original IPE.

)

Quad Cities-16

?

)

Human Reliability Data Human error probabilities are the least certain of all PSA data. Quantification of human error is t

accomplished by performing a human reliability analysis (HRA) for each operator action identified in the event trees and fault trees. For each action, the HRA analyst documents the conditions under which the action may have to be performed, including the operator stress at the time of the action, the environment in which the action is performed (for local actions only), the complexity I

of the action, the procedural guidance available, the cues which inform the operator that the i

action is required, whether there is conflict experienced in performing the action and the time i

available to perform the action. This infonnation is factored into the methodology for calculating a failure probability. Interviews and simulator observations are conducted, when possible, to i

verify the results of this analysis.

For the Modified IPE, Comed re-analyzed selected operator actions using the EPRI'CBDTM (Caused Based Decision Tree Methodology). For the PSA update additional operator actions were identified which required evaluation. These added operator actions were analyzed using the same technique employed during the Modified IPE effort. The changes in operator actions are

)

shown in Table 4-3.

[

i In addition to operator actions, the probabilities of maintenance, calibration, and restoration errors, occurring prior to the event, are normally estimated. Comed carefully reviewed the l

potential for such errors at Quad Cities and concluded that, given Quad Cities' procedures and

)

operational experience, the contribution from such errors is negligible.

i

)

)

1

)

)

I Quad Cities-17

)

m m

v m

Table 4-3 Quad Cities Iluman Reliability Analysis Changes from the Modified IPE Identifier Description Change I ACBS13-123-lH-Energize Bus 13-1 from Division I Cross Tie Bus Added to reflect modification to install Div 1 cross-tic capability IHISYDGCLGWTRH-Human Error Failure to Start DG CIg Water Pump Added :o reflect HPCI room cooling requirements IT'3PMl-3801 ABH-Start TBCCW Pump after LOOP or SBO Added to TBCCW fault trees during SBO and LOOP conditions DGIFL-SHIFT-H-Switch Filters on the SBO DG 1 Day Tank Make-up Added to model the installation of SBO DGs DG2FL-SHIFT-H-Switch Filters on the SBO DG 1 Day Tank Make-up Added to model the installation of SBO DGs O2313 Operator Action to Tie Bus 23-1 to Bus 13-1(with SBO DG)

Added to model the installation of SBO DGs 02414 Operator Action to Tie Bus 24-1 to Bus 14-1 (with SBO DG)

Added to model the installation of SBO DGs OCST Align Low Pressure Pump Suction to the CCST & Refill CCST Added for SAM elimination - added action to refill the CCST OMI Individually Drive in Control Rods during an ATWS Added for SAM elimination - added method to shutdown reactor ORDG Operator Realigns DGI/2 to SBO Jnit Added to model the installation of SBO DGs OSB13 Operator Action to Tie SBODGI to Bus 13-1 Added to model the installation of SBO DGs OSB14 Operator Action to Tie SBODGI to Bus 14-1 Added to model the installation of SBO DGs OSB23 Operator Action to Tie SBODGI to Bus 23 1 Added to model the installation of SBO DGs OSB24 Operator Action to Tie SBODG1 to Bus 24-1 Added to model the installa' ion of SBO DGs OSBD1 Operator Starts SBODGI Added to model the instaliation of SBO DGs OSBD2 Operator Starts SBODG2 Added to model the installation of SBO DGs OSBDX Operator Recognizes need to X-tie SBDG2 to Unit I Added to model the installation of SBO DGs OSMP4 init SSMP - Suct Aligned to the CCST or with HPCI Inj Sig (incl Added for SAM elimination - added action to refill the Refilling CCST & Draining Torus)

CCST & drain the torus to the OSMP3 OSS Rest Supp Systems (SW ATBCCW)(SBO)

Deleted and replaced by ITBPMI-3801 ABH-Quad Cities-18 r

t V. Model Documentation

)

The Quad Cities PSA model is maintained on desktop computers and the Downers Grove LAN.

This model is quantified using a software suite developed by Westinghouse (see Table 5-1). Fault trees are individually quantified. Those results, plus initiating event frequencies, HRA values, and hand calculations, are transferred to the event-tree master data file for event-tree quantification.

Table 5-2 provides a listing of notebooks and reports that document the Quad Cities PSA Update.

3 Event tree files are stored electronically on k:\\et_ quant \\quadcities\\ update. Fault tree files are stored electronically on k:\\ft_ quant \\quadcity\\ update.

)

Table 5-1 Code Versions Used for The Quad Cities Updated PSA Code Version Configuration Date SIMONS 1.60 11/21/89

)

FTA11 (GRAFTER) 1.6 11/16/89 WESLGE 1.61 9/13/90 WESCUT 1.61 9/13/90 CUTDES 1.70 11/21/89

]

WESQT 1.1 7/16/93

)

)

)

)

Quad Cities-19

)

Table 5-2 Notebooks and Reports That Document the Quad Cities Updated PSA

)

Notebook Rev.

Date Air Systems O'

10/93 Anticipated Transient Without Scram Systems O'

10/93 Common Actuation System O'

10/93 Control Rod Drive flydraulic System 0*

10/93 Core S ray System 0*

10/93 t

)

Electric Power System O'

10/93 Feedwater and Condensate System O'

10/93 Fire Protection Water System O'

10/93 High Pressure Coolant Injection System 0*

10/93 Main Steam System 0*

10/93

)

Primary Containment Isolation System O'

10/93 Reactor Core Isolation Cooling System 0*

10/93 Reactor Protection System 0*

10/93 Reactor Vessel Pressure Control and Depressurization O'

10/93 Residual Heat Removal System and Residual Heat Removal Service Water Systems O'

10/93 I

Safe Shutdown Makeup Pump System 0*

10/93

)

Service Water System O'

10/93 Standby Liquid Control System 0*

10/93 Torus /Drywell Vent System O'

10/93 Turbine Building Closed Cooling Water System O'

10/93 Contaminated Condensate Storage Tank Inventory Maintenance Function O'

10/93 System Walkdown O'

10/93

)

less of Offsite Power Plant Response Tree and Success Criteria O'

10/93 Inadvertent Open/ Stuck Open Relief Valve Plant Response Tree and Success Criteria C*

10/93 Human Reliability Analysis 0*

10/93 Large LOCA Plant Response Tree and Success Criteria 0*

10/93 Medium LOCA Plant Response Tree and Success Critena 0+

10M3 Small LOCA Plant Response Tree and Success Criteria 0*

10/93

)

Interfacing System LOCA Plant Response Tree and Success Criteria O'

10/93 Data Collection and Analysis O'

10/93 IPE/AM insights 0*

10/93 Support System Model O'

10/93 Dependency 0*

10/93 Accident Sequence Quantification O'

10/93

)

Equipment Sunivability O'

10/93 Internal Flooding Analysis 0*

10/93 Calculation Notes 2/94 Source Term 3/94 f.ccident Sequence O'

10/93 Anticipated Transient Without Scram Plant Response Tree and Success Critena O'

10/93

)

SBO Event Plant Response Tree and Success Criteria 0*

10/93 Report on Quantification Sensitivity Analysis 0*

10/93 Plant Response Tree and Success Criteria Notebooks for Transient Events O'

10/93 IPE Submittal Report 0

12/93 Response to RAI on Quad Cities IPE 8/94

)

Response to NRC Staff Evaluation Report and Modified Quad Cities IPE 8/96

  • . Revnion Pendmg, Quad Cities-20

)

)

VI. Quantification and Results

)

Quantification is the process of evaluating the event trees and fault trees using the component and human reliability data to determine the various sequences of events which can lead to core damage, and to calculate the frequency at which the sequences are expected to occur. The analysts insert revised failure and unavailability data in the fault tree master data base (SIMON.DAT). The fault trees are then quantified using the Westinghouse code WESLGE, and

)

placed in the event tree master data file (MDATAQC.UP). HRA values and conditional failure probabilities are calculated and inserted in the event tree master data file which is then used to quantify all event trees using the Westinghouse code WESQT.

The output of the quantification process consists of the combinations of all sets of event tree node

)

failures that result in core damage, and these combinations are called core damage sequences. The numerical value of a sequence consists of the product of an initiating event frequency, the failure probabilities of all nodes which have failed, and the success probabilities of all nodes which have succeeded. Each sequence is denoted, however, by the initiator and the nodes which have failed.

To limit the calculation to tiu sequences that are numerically important, a sequence cutoff value

}

of 1.0E-13/yr. is employed.

Any operator action which is considered to be part of the planned response to emergency conditions is incorporated into the model. Credit is taken only if an action is addressed in appropriate abnormal or emergency operating procedures.

Core Damage Frequency The total core damage frequency (CDF) at Quad Cities is calculated to be 2.21E-6/yr. This is well below the NRC's published safety goal of 1.0E-4/yr. The CDF for Quad Cities is exceptionally

)

low. This is, in part, due to the Comed PSA approach of taking appropriate credit for all plant systems to deal with an event, and appropriate, detailed credit for the plant emergency procedures (EOPs). It is also due to the design of Quad Cities Station. New Station Blackout Diesel Generators (SBODGs) and the station's Safe Shutdown Makeup Pump contribute significantly to the low CDF.

)

Large Early Release Frequency (LERF)

The definition of LERF is provided in the PSA Applications Guide (EPRI TR-105396, dated August 1995). The overall LERF for Quad Cities is 3.42E-7/yr or about 15% of the CDF for this

)

updated PSA model. Roughly 74% of the LERF or about 12% of the CDF is considered to be attributable to Liner Melt-Through (LMT) events which occur shortly after reactor vessel failure.

Sequences in which the core melts following a rapid over-pressure failure of the containment due to an unmitigated ATWS account for 25% of the LERF while representing only 4% of the CDF.

I l

l Quad Cities-21 a

l i

)

Assessment of Changes Against NEI/EPRI PSA Applications Guide h

The PSA Applications Guide provides a framework and decision criteria for evaluating PSA applications. This guide identifies core damage frequency and large early release frequency as the appropriate values for comparison and recommends spemfic quantitative decision criteria. A sliding scale is used to evaluate acceptable change in these risk parameters. A plant with a low level of risk is allowed somewhat larger changes in relative risk than a plant which has a much

)

higher baseline risk. Permanent increases in risk are considered to have low safety significance if they are less than the following screening criteria:

CDF -If the Baseline CDF s 10 /yr then ACDF% = 10 K45 ' W"bmifi d

)

4

- If the Baseline CDF s 10 /yr then ACDF% = 100 4

LERF -If the Baseline LERF s 10 /yr then ALERF% = 10 K43

  • WIIRFbaseline 4

)

-If the Baseline LERF s 10 /yr then ALERF% = 100 Even though the PSA Applications Guide was intended, as the title indicates, to be a guideline for applications, the threshold concept is applicable to updates and enhancements of IPE models.

Using the baseline Quad Cities IPE frequencies, the CDF equations identify a threshold frequency

)

change of 93% or 1.12E-6/ year. Following incorporation of changes to address NRC comments, inclusion of the SBO diesels, and other model changes, CDF changed from 1.20E-6/yr to 2.21E-6/yr (i.e., an 84% increase). The cumulative impact on CDF of the changes made since the base IPE is within the range considered in the guideline to have a low safety significance. Using the CDF of 2.21E-6/ year calculated in the PSA update, any future permanent plant changes would

)

be deemed to have a low safety significance if the resultant change in CDF were expected to be less than 67% or 1.49E-6/ year.

Because a LERF was not calculated for the baseline IPE a direct comparison is not possible.

LERF was calculated for the modified IPE, and had a value of 3.74E-08. The modified IPE value is significantly smaller than the updated PSA LERF. However that modified IPE calculation did

)

not include contributions from liner melt-through.

The earlier calculation only considered unscrubbed releases as LERF and, therefore, did not include a sequence as LERF if the containment failure location was in the wetwell. Conservatively assunung that liner melt through occurs for all sequences with low-pressure vessel failure and absence of water on the drywell

)

floor, and not taking credit for scrubbing during wetwell failure scenario resulted in the larger updated LERF value. Using the equations above in conjunction with the LERF calculated for the PSA update, a threshold LERF change of 54% (1.85E-7) was calculated for future applications.

Plant changes that result in a permanent (or indeterminate duration) increase in risk are considered acceptable, if the increase in risk is less than these threshold values. The PDSs contributing more than one percent to the LERF represent about 96% of the total LERF and about 15% of the CDF.

)

Quad Cities-22

)

l

)

Core Damage Sequences:

)-

t A list of the 100 top core damage sequences is provided in Appendix D. These sequences are l

presented in order of descending frequency. The table also shows each sequence's percent contribution to the overall core damage frequency.

)

The top nine accident sequences are similar in the failures that result in core damage. Each of these top sequences results in core damage due to failures of high pressure injection sources and failure of operator action to depressurize and allow low pressure systems to provide RPV i

injection. These nine sequences have a combined frequency of 9.06E-7 per year.

The sequence with the greatest contribution to overall core damage frequency (CDF) is a loss of

)

offsite power (LOOP) event with a frequency of 1.79E-7 per year. For LOOP events, feedwater injection is not available because of the loss of power to the non-safety 4kV buses. In this l

sequence, HPCI and RCIC injection fail due to random events and operator action to initiate injection using the SSMP is not successful. The loss of all high pressure injection requires operator action to depressurize the RPV so that the low pressure systems can provide makeup, l

)

however, in this sequence, the operator action to depressurize fails and core damage occurs. The third of the top 100 sequences has an expected frequency of 1.25E-7 per year and is the same as the top sequence except that HPCI failure is a consequence of failure of diesel generator cooling I

water to the HPCI toom cooler.

)

Sequence number two of the top 100 sequences is a general transient initiating event with a j

frequency of L38E-7 per year. This sequence is similar to the top sequence described above except that power is available to the FW pumps and with the additional failure of operator action to provide RPV injection with a feedwater pump. The fifth sequence of the top 100 sequences has an expected frequency of 9.16E-8 per year and is the same as the second sequence except that

)

HPCI failure is a consequence of failure of diesel generator cooling water to the HPCI room cooler. The eighth sequence (6.90E-8 per year) differs from the second sequence due to the unavailability of the Power Conversion System (PCS) in the eighth sequence. The eleventh j

sequence (4.57E-8 per year) is identical to the fifth sequence with the additional unavailability of j

the Power Conversion System at the initiation of the sequence. Sequence 13 (4.50E-8 per year)

?

is identical to sequence two except the loss of feedwater is due to failure of hardware instead of failure ofoperator actions.

The fourth and seventh sequences are similar to the first and third sequences described above except that the initiating event for the fourth and seven*h sequences is a dual unit LOOP

)

(DLOOP). These sequences have expected frequencies of 1.10E-7 per year and 7.05E-8 per year respectively.

)

' The availability of the PCS affects systems needed subsequently for successful containment heat removal, given that core damage is prevented. Core damage sequences exist on both the success and failure paths of the PCSA node, e.g., sequences 2 and 8 could be identical.

Quad Cities-23

)

The sixth and ninth sequences involve loss of service water initiating events. These sequences have expected frequencies of 7.85E-8 per year and 5.20E-8 per year respectively and are similar

{

to sequereces one and three.

The tenth and 15th sequences have DLOOP initiating events with failure of all station emergency diesels and both station blackout diesels. The tenth sequence has a frequency of 5.06E-8 and Unit 1 EDG failure is caused by faults related to the engine and output breaker. In the 15th sequence, Unit 1 EDG failure is due to failure of the diesel cooling water sub-system. This sequence has a frequency of 4.31E-8 per year. Failure of all emergency and alterm.te AC power sources results in a total loss of AC power to both units. - Because of the dependency of HPCI on room cooling, the loss of AC power results in the consequentialloss of HPCI With no AC power to the station, the only injection source is RCIC which fails randomly in these two sequences.

Sequence 12, with a frequency of 4.53E-8, is a loss of 125 VDC bus IB-1 initiating event followed by a random loss of 125 VDC main bus I A. The loss of all DC power to the unit causes a loss of all injection systems due to a loss of all control power.

Sequences 14 and 16 are similar and initiated by a DLOOP. Sequence 14 has a frequency of 4.41E-8 per year and sequence 16 has a frequency of 4.09E-8 per year. In these sequences, both emergency AC power supplies as well as the alternate AC power supply to Unit I are lost. In sequence 14, the Unit 1 EDG is lost due to failure of the cooling water subsystem. In sequence 16, the Unit 1 EDG is lost due to failures affecting the engine or output breaker. In these sequences, the Unit 2 EDG is providing AC power to that unit. Operation of the Unit 2 SBO DG f

is not modeled. In addition to failure of the AC power sources to Unit 1, HPCI, RCIC, and the SSMP fail to provide injection. HPCI fails as a consequence of the loss of AC power needed for operation ofits room cooler. RCIC and the SSMP fail due to random causes. The low pressure injection systems are not available because of the loss of all AC power to Unit 1.

I Initiating Event Importance:

Figure 2 shows the relative contributions of the individual initiating events to Quad Cities core damage frequency. Dual unit loss of offsite power (DLOOP) is the largest initiating event -

category, contributing 33% of the CDF. These sequences principally involve failure of one or

)

more of the Unit diesel-generators, with the subsequent failure of high pressure injection systems (HPCI, RCIC or SSMP) and may lead to " station blackout" behavior.

SBOs contribute approximately 17% of the CDF. The CDF due to these sequences is reduced (from their contribution to CDF in the Base IPE) by the Station Blackout Diesels which provide additional AC power sources in each unit.

7 General transient (GTR) events are the second highest contributor to CDF (27%). These sequences are dominated by failure of high pressure injection systems (HPCI, RCIC, FW, SSMP) and operator failure to depressurize the plant to enable low pressure systems to function.

?

Single unit loss of offsite power (LOOP) is the third highest contributor to CDF. LOOP sequences contribute 22%. Single unit loss of offsite power (LOOP) is somewhat less important Quad Citics-24

)

)-

than DLOOP, because of the ability to cross-tie a unit's ESF buses to the opposite unit. These sequences are dominated by failures of high pressure injection systems and by failure of the y

operators to depressurize the plant to allow low pressure systems to inject.

The fourth highest contributor to CDF is another special initiator, Loss of Service Water. This l

event contributes 9% to the total CDF. This event causes the unavailability of all those systems cooled by both service water and by turbine building closed cooling water (cooled by service water). Systems cooled by TBCCW include instrument air, feedwater, and control rod drive.

)

Anticipated transients without scram (ATWS) events are the fifth highest contributor to CDF, contributing 4% to the total. These events are dominated primarily by operators failing to inhibit ADS and failing to initiate the standby liquid control system.

)

The sixth highest contributor to CDF is a special initiator, Loss of 125VDC Bus IB-1. This event causes a loss of control power for one train of ECCS equipment and contributes 4% to the total CDF. These sequences are dominated by random failure of the other 125VDC bus for the unit, i

i

. leading to total loss of control power for all ECCS equipment.

)

The sum of the contributions to core damage frequency of all the other initiators combined contributes only 2% to the total CDF.

System Importance:

j 8

Based 'on Fussell-Vesely importance', the most important system based on Unit 1 CDF is RCIC.

RCIC failure is involved in 78% of the CDF. The HPCI system is the next most important at 37%. The cooling water system for the Unit 1 DG, which also provides cooling to the HPCI

- system, is the next most important system and its failures contribute to 33% of the total CDF.

Another high pressure makeup source, the safe shutdown makeup pump (SSMP) contributes to

}

22% of the CDF. The swing diesel generator (DGl/2)is next, contributing 19%. The importance of the station blackout diesel (SBODG 1) is next at 14%. Table 6-1 contains the list of plant systems as modeled in the PSA Update, ranked by their respective Fussell-Vesely importances.

Table 6-2 contains the same list of plant system but ranked by their respective Risk Achievement Worth (RAW).d

)

)

The Fussell-Vesely importance measure for a system is defined as the ratio of the sum of the sequences in which 2

that system has failed to the total of all sequences. This measure can be expressed as a decimal or as a percentage.

Based upon the top 361 sequences. This is a calculated importance value which removes from the calculation 3

contributions from sequences in which the system is unavailable due to the initiating event or due to support system unavailability. The WESQT code includes these contributions which can cause the top event importance values tobe artificially high.

The Risk Achievement Worth of a system is an imponance measure that is defined as the ratio of the core

)

d damage frequency with ther system failed to the core damage frequency with all systems at their normal unavailabilties.

Quad Cities-25

)

)

Important Operator Actions:

)

Table 6-3 lists the operator actions with Fussell-Vesely importance greater than the PSA Applications Guide Criterion of 0.005. Three operator actions are significantly more important than the rest: the action to depressurize the plant, the action to initiate the SSMP and the action to restart feedwater pumps.

l

)

1 Contributors to LERF The definition of LERF, given in the PSA Applications Guide, is an unscrubbed containment bypass pathway occurring with core damage or an unscrubbed containment failure of sufficient size to release the contents of containment within one hour and this release occuring within four

)

hours of vessel breach. These-definitions include events that result in liner melt-through, containment bypass (ISLOCA), and rapid overpressurization of containment, e.g., ATWS.

)

i

)

)_

)-

)

)

Quad Cities-26

)

.. -....~.. -.._ -. _..._ - - -....- _...-

)

)

QUAD CITIES UPDATED PSA RESULTS

SUMMARY

i i

LOSW 9%

ATWS 4%

)

~ ' ' '-

L181

.s

., n.

Its 4%

OTHER

, h?

.'3h, ;~t >

2%

.<:- 'ss$jif

,s gr toop 22%

J I

DLOOP h

33%

i i

GTR i

27%

l FIGURE 2

)

Quad Cides-27

)

)

Table 6-1 System Fussell-Vesely Importance

)

SYSTEM ID FUSSELL DESCRIPTION VESELY RCIC 78.3 %

REACTOR CORE ISOLATION COOLING HPl 36.7 %

HIGH PRESSURE COOLANT INJECTION (SINGLE START)

DG1CW 33.3 %

COOLING WATER FOR DG 1

)

SSMPI 21.8 %

SAFE SHUTDOWN MAKEUP PUMP - SUCTION ALIGNED TO CCST DGB 18.7 %

DG 1/2 STARTS AND RUNS SBD1 13.5 %

SBODG1 STARTS AND RUNS PCSA 10.0 %

POWER CONVERSION SYSTEM AVAILABILITY DG1 9.3%

DG 1 STARTS AND RUNS

)

DG2 6.9%

DG 2 STARTS AND RUNS FW 5.7%

FEEDWATER/ CONDENSATE SBD2 5.4%

SBODG2 STARTS AND RUNS IM1 5.0%

UNIT I MAIN 125VDC BUS HP2 4.0%

HIGH PRESSURE COOLANT INJECTION (MULTIPLE STARTS)

RCIC2 3.9%

REACTOR CORE ISOLATION COOLING (LATE)

)

MC 3.6%

MAIN CONDENSER AFTER ATWS 141 2.7%

UNIT I BUS 14-1 SW 2.6%

SERVICE WATER (SHARED BY BOTH UNITS) 131 2.4%

UNIT I BUS 13-1 CS 2.4%

CORE SPRAY SYSTEM

)

l'IB 1.9%

UNIT 1 TBCCW 19 1.5%

UNIT I BUS 19 1R1 1.3%

UNIT 1 RESERVE 125VDC BUS FWA 1.3%

FEED /COND FOLLOWING ATWS (% OF IEs THAT ARE LOFW) 18 1.0%

UNIT 1 BUS 18 RHRHX 0.8%

RHR HEAT EXCHANGER

)

14 0.7%

UNIT I BUS 14 LPA 0.6%

RHR PUMP -TRAIN A LPB 0.5%

RHR PUMP -TRAIN B CST 0.4%

CCST SUCTION VALVES LV 0.3%

RHRINJECTION VALVES

)

13 0.2%

UNIT I BUS 13 IIA 0.2%

UNIT I INSTRUMENT AIR SLC 0.2%

SLC SYSTEM ATI 0.1%

AUTOMATIC ATWS SYSTEM INITIATION - DIVISION 1 RPTl 0.1%

AUTOMATIC RECIRC PUMP TRIP AT2 0.1%

ALTTOMATIC ATWS SYSTEM INITIATION - DIVISION 2 CRD 0.1%

CONTROL ROD DRIVE INJECTION ICA 0.1%

UNIT 1 COMMON ACTUATION BRH 0.1%

PIPE RUFTURE DUE TO HIGH PRESSURE

)

Quad Cities-28

)

i

)

i Table 6-2 i

System RAW (Risk Achievement Worth) Importance

)

SYSTEM ID RAW DESCRIPTION 18 2.53E+03 UNIT I BUS 18 19 7.1 IE+02 UNIT I BUS 19 IMI 6.82E+02 UNIT I MAIN 125VDC BUS IRI 1.53E+02 UNIT 1 RESERVE 125VDC BUS

)

131 1.28E+02 UNIT I BUS 13-1 ADS 3.45E+01 AUTOMATIC DEPRESSURIZATION SYSTEM i

SW 2.99E+01 SERVICE WATER (SHARED BY BOTH UNITS)

FW 2.83E+01 FEEDWATER/ CONDENSATE j

llA 2.59E+01 UNIT 1 INSTRUMENT AIR I

141 1.77E+01 UNIT I BUS 141 i

)

ITB 1.13E+01 UNIT 1 TBCCW IES 1.10E+01 UNIT 1120VAC ESSENTIAL SERVICES BUS RHRHX 1.01E+01 RHR HEAT EXCHANGER

]

SLC 7.63E+00 SLC SYS7EM i

RPTl 7.10E+00 AUTOMATIC RECIRC PUMP TRIP

)

2M1 6.93E+00 UNIT 2 MAIN 125VDC BUS SSMPI 6.34E+00 SAFE SHUTDOWN MAKEUP PUMP - SUCTION ALIGNED TO CCST DGICW 6.14E+00 COOLING WAIEK FOR DG 1 RVO 5.92E+00 RELIEF VALVE FAILS TO OPEN ON DEMAND RCIC 5.40E+00 REACTOR CORE ISOLATION COOLING 13 5.24E+00 UNIT I BUS 13 HP1 4.45E+00 HIGH PRESSURE COOLANT INJECTION (SINGLE START) 14 3.72E+00 UNIT 1 BUS 14 LPA 2.90E+00 RHR PUMP - TRAIN A SPC 2.72E+00 SUPPRESSION POOL COOLING DGB 2.67E+00 DG 1/2 STARTS AND RUNS

)

LPB 2.63E400 RHR PUMP - TRAIN B DG1 2.44E+00 DG 1 STARTS AND RUNS CS 2.06E400 CORE SPRAY SYSTEM

)

)

)

)

Quad Cities-29

)'

l

)

Table 6-3 Operator Action Importances' SYSTEM ID FUSSELL DESCRIPTION VESELY OADI 65.4 %

INITIATE ADS OSMP3 58.8 %

INITIATE SSMP, ALIGN TO CCST (ECCS SIG OVERRIDE REQ)

OFW1 16.5 %

RESTART A FW PUMP

)

)

OIADS 2.0%

INHIBIT ADS OSL1 1.5%

INITIATE SLC (1/2 PUMP REQ)

OSL2 1.5%

INITIATE SLC (2/2 PUMPS REQ)

OSB13 0.9%

TIE SBODG1 TO BUS 13-1 i

OCST 0.9%

ALIGN LOW PRESSURE ECCS TO CCST SOURCE l

~

OHX 0.8%

ALIGN COOLING TO RHR

)

OVNT 0.7%

VENT CONTAINMENT

)

)

)

i i

)

)

5 Based upon the top 361 sequences. This is a calculated importance value which removes from the calculation

)

contributions from sequences in which the system is unavailable due to the initiating event or due to support system unavailability. The WESQT code includes these contributions which can cause he top event importance values to be artificially high.

Quad Cities-30

)

T The following sequence characteristics were considered for determining whether a panicular Plant Damage State (PDS) should be assigned as a contributor to the Large Early Release Frequency

)

)

(LERF):

l.

Does vessel failure occur early? For the purposes of this effort, early was taken to mean occurring within four hours of the declaration of an Alert per the GSEP. Although a number of plant conditions may trigger the Alert declaration, this effort only considers i

y the low reactor water level condition.

2.

Is reactor vessel pressure low at the time of vessel failure? For the purposes of this

)

evaluation, " low" is taken to mean less than or equal to 200 psig.

3.

Are the pedestal and drywell floors dry at the time of vessel failure? For this effort, the

)-

floors are assumed to be dry if the initiating event is not a LOCA inside containment and containment sprays are not operated prior to vessel failure.

' 4.

Are vessel injection systems operating prior to vessel failure? This question addresses the i

possibilities that insufficient flow into the vessel (e.g., CRD) may exist prior to core i

}

relocation to the lower head and subsequent vessel failure, or that low pressure injection pumps may be operating but unable to inject due to the vessel pressure prior to vessel l

failure.

i 5.

Are containment sprays operating before or at vessel failure? Containment spray

)

operation at these times is assumed to mitigate the pressure transient due to reactor vessel failure and to preclude liner melt-through.

6.

Is liner melt-through likely, given the amount of water in containment prior to core debris '

i entry and the degree of dispersal likely given the reactor pressure at failure?

7.

Is the toms bottom pressure likely to reach the EOP vent-opening pressure value within four hours of the Alert declaration? Containment pressure is assumed likely to reach the EOP venting pressure shortly after reactor vessel failure at high pressure.

j

)

8.

Which vent, if any, was opened when the EOPs directed the operators to open the containment vent? The vent indicated by the PDS designator is assumed to be operated.

i All LERF sequences require an affirmative response to Question 1. Liner-melt-through sequences are expected (i.e., Question 6 is answered Yes), if Questions 2 through 5 are answered negatively.

)

If the answer to Question 7 is Yes, then the sequence is a LERF. Finally, use of the wetwell vent precludes a LERF because the release would be scrubbed through the suppression pool.

Table 6-4 shows the application of the foregoing criteria in the assignment of PDSs that contribute to the Quad Cities value for LERF. Table 6-5 lists all of the PDSs, indicates whether or

)

not each PDS contributes to the LERF, and sums the contributions to obtain the overall LERF result. The PDSs contributing more than one percent to the LERF are shown in Table 6-6.

Quad Cities-31

)

U v-U v

u v

v

,s v

v v

Tcble 6-4.

Application of Criteria to Assignment of PDSs 1st 2nd 3rd 4th VF witNn Low Dry injection Containment Liner Vent WNch include Comment Designator Designeter Designator Designator 4 hr of Pressure pedestal irto Sprays Melt.

pressure vent in Alert?

VF7

/drywus RPV operating at Through reached operated?

LERF7 floor?

before/st VF7 Ikely?

won 4 hr VF7 of Alert?

KEY a

W = Wetwell, D = Drywee, NA = Not Asked, Ni = Not important, N= Norse A

E G

E.F Y

Y N

Y N

N N

NI N

Ped /DW pools and RPVinfechon prevents LMT; vent not operated shortty after VF A

E G

G Y

Y N

N Y

N N

NA N

Ctmt Spray prevents LMT; vent not operated shortly after VF A

E G

S,T Y

Y N

N N

N N

N N

Ped /DW water pools prevent LMT; vent not cperated shortly after VF A

E G

U,V Y

Y N

Y N

N N

N N

Ped /DW pools and RPV infechon prevents LMT; vert not operated shortty after VF A

L C

E,F Y

Y N

Y N

N N

NI N

Ped /DW pools and RPVinfechon prevents LMT; vert not operated shortly after VF A

L C

5,T Y

Y N

Y N

N N

N N

PeWDW pools and RPV triection prevents LMT; vent not operated shorth after VF B

E A

X,Y Y

N Y

N N

N Y

N N

High press VF prevents coherent debris recesse; vent not operated shortly eRer VF B

L A

B Y

N Y

Y N

N Y

N N

He P VF prevents coherent debns reinese; RPV insection at VF prevents LMT; vent not operated shortty ener VF B

L A

C Y

N Y

Y N

N Y

W N

High press VF prevents coherent detwis release; RPVinjection at VF prevents LMT;WW vent scrubs serosois a vent operated shortiy aner 6

VF B

L A

S.T,X,Y Y

N Y

M N

N Y

N N

High press VF prevents coherent debris release; vent not operated shortly aner VF B

L B

G Y

Y Y

N Y

N N

N N

Ctmt Spray prevents LMT; vent not operated shorth aRer VF B

L B

O.S.T Y

Y Y

N N

Y N

N1 Y

Possible LMT i

B L

C O

Y Y

Y N

N Y

N NI Y

Possible LMT B

L C

S,T Y

M Y

N N

M N

N1 Y

Posstle LMT B

L C

X Y

N Y

N N

N Y

N N

High press VF preverWs coherent debris relesse; vent not operated shortly after VF Quad Cities-32

U U

U U

U V

U v

v v

v 1

Tcble 6-4 Application of Criteria to Assignment of PDSs (Cont.)

1st 2nd 3rd 4th VF within Low Dry injection Containment Liner Vent Which include Comment Designator Designator Designator Designator 4 hr of Pressure pedestal into Sprays Met-pressure vent in Alert?

VF7

/dryweE RPV operahng at Through reached operated?

LERF7 floor 7 before/at VF7 likely?

w/in 4 hr VF7 of Alert?

I E

B G

Y Y

Y N

Y N

N NA N

Ctmt Spray prevents LMT; vent not operated shortty after VF I

E B

OP Y

Y Y

N N

Y N

N1 Y

PossitWe LMT I

I B

G Y

Y Y

N Y

N N

NI N

Ctml Spray prevents LMT; vent not operated shortty after VF i

1 B

O.P Y

Y Y

N N

N NI Y

Possitde LMT I

L C

O.P,S,T Y

Y Y

N N

Y N

N1 Y

PossitWe LMT V

E,L G

N Y

Y Y

N N

Y N

NI Y

Containment bypass causes large aerosol release prior to LMT challence L

E.L A

BH Y

N Y

Y N

N Y

N N

H6 P VF prevents coherent debns release; RPV W st VF prevents LMT; vent not operated shortty after VF L

E,L A

C Y

N

,Y Y

N N

Y W

N High press VF prevents coherent debris release; RPVinfection at VF prevents LMT;WW vent scrubs aerosol N vent operated shortty after VF L

E,L A

D Y

N Y

Y N

N Y

D Y

High press VF prevents coherent debris release; RPV inrection at VF prevents LMT; DW vent allows aerosol release K operated shortly after VF L

E.L A

G Y

N Y

N Y

N N

NA N

Ctmt Sprey prevents LMT; vent not ope 9 shorth ofter VF L

E,L A

ST Y

N Y

N N

N Y

N N

Lan press VF prevents cohe ent debris release; vent not operated shortty after VF L

E.L A,C X

Y N

Y N

N N

Y W

N High press VF prevents coherent debris release; RPV tryction at VF prevents LMT; ww vent scrubs aerosolif operated shortty after VF L

E,L A,C Y

Y N

Y N

N N

Y D

Y High press VF prevents coherent debris release; RPViriection at VF prevents '_M1, DW vent allows aerosu release if vent operated shortfy after VF L

E,L B

G Y

Y Y

N Y

N N

NA N

Ctmt Spray prevents LMT; vent not operated shortty after VF L

E,L 8

O,P Y

Y Y

N N

Y N

NI Y

Possible LMT L

L B

ST Y

Y Y

N N

Y N

NI Y

Possbie LMT Quad Citics-33

v v

v v

v v

v v

v v

v Tchle 6-4 Application of Criteria to Assignanent of PDSs (Cont.)

tat 2nd 3rd 4th VF within Low Dry infecten Containment Uner Vent Which include Comment Designator Designator Designator Designator 4 hr of Pressure pedestal into Spreys Met-pressure vent in Alert?

VF7

/drywet RPV operating at Through reached operated?

LERF7 floor?

before/st VF7 likely?

won 4 hr VF7 of Alert?

L L

C 0,P.S T Y

Y Y

N N

Y N

NI Y

Posesbie LMT M

E F

B,H Y

N N

Y N

N Y

NA N

Hi P VF prevents coherent debris relemoe; RPVinfechen at VF prevents LMT; vent not operated shortly after VF M

E F

C E.1 Y

N N

Y N

N Y

W N

High press VF prevents coherent debris release; RPVinjechen at VF prevents LMT; WW vent scrubs aerosol r vent operated shortir ener VF M

E F

D,F Y

N N

Y N

N Y

D Y

High press VF prevents coherent debris release; RPVirjechen at VF prevents LMT; DW vent snows serosos recesse r vent operated shorth ener VF M

E F

G Y

N N

N Y

N Y

NA N

Ctmt Spray prevents LMT; vent not operated shorth mRer VF M

E F

S,T Y

N N

N N

N Y

N N

High press VF prevents coherent debris release; vent not operused shorth ener VF -

M E

G E F,L Y

Y N

Y N

N N

NI N

Ped /DW pools and RPV injechon prevents LMT; vent not operated shorte ener VF M

E G

G Y

Y N

N Y

N N

NA N

Ctmt Spray prevents LMT; vent not operated shorth eRer VF M

E G

H Y

Y N

Y N

N N

NA N

Hi P VF prevents coherent debrts release; RPV injection at VF prevents LMT; vent not operated shortly after VF M

E G

S,T Y

Y N

Y N

N N

N N

Ped /DW pools and RPVinfechon a

prevents LMT; vent not operated shorth after VF M

L C

E.F Y

Y N

Y N

N N

D N

Ped /DW pools and RPV injechon preverts LMT; vent not operated wjortly ener VF M

L C

S,T Y

Y N

N N

Y N

N Y

PedDW pools, by themselves, esouned to be insufficient to prevent LM' S

E.L F

B Y

N N

Y N

N Y

NA N

tie P VF prevents coherent debris r*ese; RPVinjection at VF prevents LMT; vent not operated shortty ener VF Quad Citics-34

U U

U U

U U

v v

v v

v Tcble 6-4 Application of C-iteria to Assignment of PDSs (Cont.)

5 tot 2nd 3rd 4th -

VF wilNn Low Dry Irgection Contamment ther Vent WNeh include Comment i

Desgnator Desgnator Designator Designator 4 hr of Pressure pedestal into Sprays Melt-pnresure vert in i

Alert?

VF7

/drywet RPV operating at Through reached operated?

LERF7 floor? before/st VF7 Esely?

wAn 4 hr l

VF7 of Alert?

S E.L F

E Y

N N

Y N

N Y

W N

High press VF pe...;. coherent

{

debris release; RPVinfechon at VF l

prevents LMT;WW vent scrubs serosos r vent operated shortly ener VF S

E.L F

F Y

N N

Y N

N Y

D Y

High press VF

. coherent l

debris rolesee; RPVinfection at VF prevents LMT; DW vent snows aerosos recese r vent operated shortly eRer VF S

E.L F

G Y

N

~ N N

Y N

Y NA N

Ctmt Spray prevents LMT; vent not operaled shorny aRer VF

{

S E,L F

H Y

N N

Y N

N

.Y NA N

Hi P VF,....;. coherent debrts release; RPV triechen at VFprevents

[

LMT; vent not operated shortly ener i

VF l

S E

F L

Y N

N Y

N N

Y W

N High press VF pe

a. coherent debris roleese; RPVinfechon at VF prevents LMT;WW vent scrubs l

aerosolif vert operated shorgy aRet VF S

E,1,L F

ST Y

N N

Y N

N Y

N N

Ni P VF i,.e

. coherent debns rolesee; RPV injection at VF prevents LMT; vent not operated shorgy ener l

VF i

S EL G

E.L Y

Y N

Y N

N N

W N

Ped /DW pacis and RPVirjection prevents LMT; vent not operated shortly mRer VF S

E.L G

G Y

Y N

N Y

N N

NA N

Ctmt Spray prevents LMT; vent not operated shortly after VF

}

S E

G M

Y Y

N Y

N N

N D

N Ped /DW pools and RPV triection proveres LMT; vent not operated shortly after VF S

E.L G

S,T Y

Y N

Y N

N N

NA N

Ped /DW pools and RPVinfechen preverts LMT; vert not operated l

shorny sRer VF S

I F

E Y

N N

Y N

N Y

W N

Hi P VF prevents coherent debns release; RPVinjechon at VF prevents LMT; vent not operated shortty ener VF Quad Citics-35 w

U u

v v'

u v

v v

v v

v Tcble 6-4 Application of Criteria to Assignment of PDSs (Cont.)

tet 2nd 3rd 4th VF witNn Low Dry tryection Contamment Liner Vent WNeh include Comment Designator Designator Designator Designator 4 hr of Pressure pedestal into Spreys Melt-pressure went in Alert?

VF7

/drynet RPV operahng at Through reached operated?

LERF7 floor?

before/st VF7 likelft wAn 4 hr VF7 of Alert?

S I

F F

Y N

N Y

N N

Y D

N High press VF prevents coherent debris release; RPVinjechon at VF preverts LMT;WW vert scrubs aerosol K vent operated shortly after VF S

L B

G Y

Y N

N Y

N N

NA N

Ctmt Spray prevents LMT; vent not operated shortly after VF S

L B

L Y

Y N

Y N

N N

D N

PedfDW pools and RPV injechen prevents LMT; vent not operated shortly after VF S

L B,C S.T Y

Y N

N N

Y N

N Y

Ped /DW pools, by themselves, assumed to be insumcient to prevert LMT S

L C

E Y

N N

Y N

N Y

W N

High press VF prevents coherent debris release; RPVinjeebon at VF prevents LMT;WW vent scrubs seroso W vent operated shortty after VF S

L C

F N

N Y

N N

Y D

Y High press VF prevents coherent debris release; RPVinjection at VF prevents LMT; DW vert anows aerosos reisese r vent operated shortly after VF i

S L

G F

Y Y

N Y

N N

N W

N Ped /DW pools and RPV injechon t

prevents LMT; vent not operated shortly after VF T

E,L A

B,H Y

N Y

Y N

N Y

N N

Hi P VF prevents coherent debris release; RPVinjechon at VF prevents LMT; vent not operated shortly after VF F

T E.L A

C Y

N Y

Y N

N Y

W N

Hi P VF prevents coherent debns release; RPV injechon at VF prevents LMT; WWV scrubs seroscis after VF T

E.L A

D Y

N Y

Y N

N Y

D Y

High press VF preverts coherent debris release; RPVinjechon at VF prevents LMT; DW vent snows t

aerosol release Kvent operated shortly after VF T

E,L A

G Y

N Y

N Y

N N

NA N

Ctmt Sprey prevents LMT; vent not operswd shortly ener VF T

E,L A

S,T Y

N Y

N N

N Y

N N

High press VF prevents coherent debris reisese; vent not operated shortty ener VF i

Quad Cities-36

U u

U U

U v

v v

v v

v Tchte 6-4 Application of Criteria to Assignment of PDSs (Cont.)

ist 2nd 3rd 4th VF within Low Dry Inketen Cordswwnent Uner Vent Which include Comment Designator Designator Designator Designator 4 hr of Pressure pedestal into Sprays Melt.

pressure vent in Alert?

VF7

/drywell RPV operating at Through reached operated?

LERF7 floor 7 before/st VF7 likely?

w/in 4 hr VF7 of Alert?

T E,L A

X Y

N Y

N N

N Y

W N

Hi P VF i, e...a. coherent debns release; RPVinfechen at VF prevents LMT; WWV scrubs aerosols after VF T

L C

X Y

N Y

N N

N Y

W N

Hi P VF ixe, ;. coherent debrts release; RPVinjechon at VF prevents LMT; WWV scrubs aerosols after VF T

E A

Y Y

N Y

N N

N Y

D Y

High press VF ge.e-as Aere debris release; RPVinlechon at VF prevents LMT; DW vent allows aerosos reisese r vent operated shortty after VF T

E.L B

G Y

Y Y

N Y

N N

NA N

Ctmt Spray prevents LMT; vent not operated shortly after VF T

L B,C 1

Y Y

Y Y

N Y

N W

Y Possible LMT-RPV 6W source assumed too smet to prevent LMT T

L B

J Y

Y Y

Y N

Y N

D Y

Possible LMT - RPV L W. source assumed too smallto prevent LMT T

E,L B

0,P Y

Y Y

N N

Y N

NI Y

Possde LMT T

L B

S,T Y

Y Y

N N

Y N

N Y

Possible LMT T

L C

O.P.S.T Y

Y Y

N N

Y N

NI Y

Possible LMT T

E E

Q Y

N N

N N

N Y

NI Y

WW failure w..J, scrubs aerosols but is overwhelrned tw ATWS T

E E

R Y

N N

N N

Y Y

NI Y

DW failure occurs before VF due to ATWS T

E F

B Y

N Y

Y N

N Y

NA N

Hi P VF ge.a coherent debris release; RPVingecbon at VF prevents LMT; vent not operated shortty after VF T

E F

C Y

N Y

Y N

N Y

W N

Hi P VF i, e.

4. coherent detms release; RPV injection at VF prevents LMT; WWV scrubs aerosols after VF T

E F

E.F Y

Y Y

Y N

Y N

NI Y

CRD L W.v. flow assumed to be too little to prevent LMT T

E F

G Y

N Y

N Y

N Y

NA N

Ctmt Spray prevents LMT; vent not operated shortly after VF T

E F

H Y

N Y

Y N

N Y

NA N

Hi P VF prevents coherent debris release; RPV injection at VF prevents LMT; vent not openNd shortly after VF Quad Cities-37

Tcble 6-4 Application of Criteria to Assignment of PDSs (Cont.)

1st 2nd 3rd 4th VF wMn Low Dry injechon Containment Uner Vent Which include Comment Designator Designator Designator Designator 4 hr of Pressure pedestal into Sprays Melt-pressure vent in Alert?

VF7

/drywet RPV operating at Through reached operated?

LERF7 f!oor?

before/st VF7 likely?

w/in 4 hr VF7 of Alert?

T E

F L

Y N

Y Y

N N

Y W

N High press VF prevents coherent debris rWeese; RPVinfechon at VF prevents LMT;WW vent scrubs aerosol if verd operated shortly after VF T

E F

S,T Y

N Y

Y N

N Y

N N

Hi P VF prevents coherent debris release; RPV injechon at VF prevents LMT; vent not operated shortly after VF T

E,1 G

E.L Y

Y Y

Y N

Y N

NI Y

CRD iriecbon flow assumed to be too little to prevent LMT T

E,I G

G Y

Y Y

N Y

N Y

NA N

Ctmt Spray prevents LMT; vent not operated shortly after VF T

E,1 G

S,T Y

Y Y

Y N

Y N

NA Y

CRD injechon flow assumed to be too little to prevent LMT T

I G

F.M Y

Y Y

Y N

Y N

NI Y

CRD injechon flow assumed to be too little to prevent LMT

?

i k

e Quad Citics-38 i

i

v v

v v

v v

v e

v l

Tcble 6-5 PDS Contribution to LERF PDS DESCRIPTION CORE DAMAGE LERF7 PDS CONTRIB.

LERF PCT LMT7 PDS CONTRIB.

LMT PCT FREQ 1 = YES TO LERF 1 = YES TO LMT 0=NO 0=NO LEAB LOOP, <2, QUX,HP, INJ, SPC,, CONT INTACT 6.90E-07 0

0 TEFB TRANS, <2, QUX HP, INJ, SPC,, CONT INTACT 4.89E-07 0

0 BEAY SBO, <2, QUX,HP, NONE,Y/N, LDW, CONT Hi-TEMP 3.14E-07 0

0 TEAB TRANS, <2, QUX,HP, INJ, SPC,, CONT INTACT 1.55E-07 0

0 TEFE TRANS, <2, QUX,H/L, CRD.NOSPC, LWW, 9.02E-08 1

9.02E-08 26.36 %

1 9.02E-08 35.43 %

TEEQ ATWS, <2, ATWS,,

,WW RAPID O-PSR 6.62E-08 1

6.62E-08 19.36 %

0 LLAB LOOP, >6, QUX HP, INJ, SPC,, CONT INTACT 6.28E-08 0

0 TIGS TRANS,2-6, QUN,LP, CRD NOSPC,, WW 0-PSR 4.93E-08 1

4.93E-08 14.41 %

1 4.93E-08 19.38%

TLAB TRANS, >6, QUX,HP, INJ, SPC,, CONT INTACT 2.58E-08 0

0 LLCO LOOP, >6, W

,H/L, NONE NOSPO, LWW, CONT Hi-TEMP 2.47E-08 1

2.47E-08 7.23 %

1 2.47E-08 9.71 %

TEER ATWS, <2, ATWS,,

, DW RAPID O-PSR 1.9BE-08 1

1.98E-08 5.78%

0 BLAS SBO, >6, QUX,HP, NONE NOSPC,, WW O-PSR 1.61 E-08 0

0 LLBS LOOP, >6, QUN LP, NONE, YIN,,WW 0-PSR 1.50E-08 1

1.50E-08 4.39%

1 1.50E-08 5.90%

TIGT TRANS,2-6, QUN,LP, CRD,NOSPC,, DW O-PSR 1.47E-08 1

1.47E-08 4.30%

1 1.47E-08 5.78 %

LEBG LOOP, <2, QUN,LP, SPRAY, SPC,, CONT INTACT 1.42E-08 0

0 BLAY SBO, >6, QUX,HP, NONE,Y/N, LDW, CONT Hi-TEMP 1.40E-08 0

0 LLBO LOOP, >6, QUN,LP, NONE,Y/N, LWW, CONT Hi-TEMP 1.26E-08 1

1.26E-08 3.69 %

1 1.26E-08 4.96%

LEAM LOOP, <2, QUX,HP, INJ, SPC,, CTM INTACT-24 HRS 1.13E-08 0

0 TIGG TRANS,2-6, QUX,LP, SPRAY, SPC,, CONT INTACT 1.10E-08 0

0 TLBS TRANS, >6, QUN,LP, NONE NOSPC,, WW O-PSR 1.02E-08 1

1.02E-08 2.98%

1 1.02E48 4.01 %

LLCS LOOP, >6, W.H/L, NONE.NOSPC,, WW O-PSR 9.77E-09 1

9.77E-09 2.86 %

1 9.77E-09 3 84 %

MEFG MLOCA, <2, QUX,HP, SPRAY, SPC,, CONT INTACT 8.36E-09 0

0 TIGE TRANS,2-6, CUN,LP, CRD NOSPC. LWW, 7.27E-09 1

7.27E-09 2.12%

1 7.27E-09 2.85 %

LEAS LOOP, <2, QUX,HP, INJ.NOSPC,, WW O-PSR 5.69E-09 0

0 RESID. STATE RESERVED FOR CUTOFF ELEMENTS 5.39E-09 0

TEFS TRANS, <2, QUX.HP, CRD.NOSPC,, WW O-PSR 4.85E-09 0

0 BLAT SBO, >6, QUX,HP, NONE.NOSPC,, DW O-PSR 4.81E-09 0

0 LEAC LOOP, <2, QUX,HP, INJ.NOSPC. LWW, 4.63E-09 0

0 LLBT LOOP, >6, QUN.LP, NONE,YlN,, DW 0-PSR 4.46E-09 1

4.46E-09 1.30%

1 4.46E-09 1.75 %

LLBG LOOP, >6, QUN,LP, SPRAY, SPC,, CONT INTACT 3.89E-09 0

0 TEFG TRANS, <2, QUX HP, SPRAY, SPC,, CCNT INTACT 3.73E-09 0

0 IEBP IORV, <2, QUN,LP, NONE, YIN, LDW, CONT Hi-TEMP 3.46E-09 1

3.46E-09 1.01 %

1 3.46E-09 1.36 %

TEFH TRANS, <2, QUX.HP, INJ, SPC,, CTM INTACT-24 HRS 3.37E-09 0

0 TLBT TRANS, >6, QUN LP, NONE NOSPC,, DW O-PSR 3.04E-09 1

3.04E-09 0.89 %

1 3.04E-C9 1.19%

Quad Cities-39

U u

v v

v v

v v

v v

v Tcble 6-5 PDS Contribution to LERF (Cont.)

PDS DESCRIPTION CORE DAMAGE LERF?

PDS CONTRIB.

LERF PCT LMT?

PDS CONTRIB.

LMT PCT FREQ 1 = YES TO LERF 1 = YES TO LMT 0=NO 0=NO LLCT LOOP, >6, W

.H/L, NONE NOSPC,, DW MSR 2.87E-09 1

2.87E-09 0.84 %

1 2 87E-09 1.13%

TEBP TRANS, <2, QUN,LP, NONE,Y/N, LDW, CONT Hi-TEMP 1.74E-09 1

1.74E-09 0.51 %

1 1.74E-09 0.69%

LEAT LOOP, <2, QUX,HP, INJ,NOSPC,, DW 0-PSR 1.69E-09 0

0 LLAC LOOP, >6, QUX HP, INJ.NOSPC, LWW, 1.67E-09 0

0 lEBO IORV, <2, QUN.LP, NONE,Y/N, LWW, CONT Hi-TEMP 1.45E-09 1

1.45E-09 0.42%

1 1.45E-09 0.57 %

TEFT TRANS, <2, QUX,HP, CRD NOSPC,, DW O-PSR 1.44E-09 0

0 ALCE LLOCA, >6, W,LP,CRD/SS NOSPC, LWW, 1.40E-09 0

0 AEGG LLOCA, <2, QUN,LP, SPRAY, SPC,, CONT INTACT 1.38E-09 0

0 MLCE MLOCA, >6, W

.H/L, INJ.NOSPC, LWW, 1.25E-09 0

0 VEGN ISLOC, <2, QUN,,

, CONT BYPASSED 122E@

1 1.22E-09 0.36 %

0 TEBG TRANS, <2, QUN,LP, SPRAY, SPC,, CONT INTACT 1.12E-09 0

0 TEAS TRANS, <2, QUX.H/L, NONE.NOSPC,, WW 0-PSR 1.07E-09 0

0 TLBG TRANS, >6, QUN,LP, SPRAY, SPC,, CONT INTACT 1.04E-09 0

0 LLAS LOOP, >6, QUX,HP, NONE.NOSPC,, WW O-PSR 9.17E-10 0

0 TLCS TRANS, >6, W

,H/L, NONE,NOSPC,, WW O-PSR 8.75E-10 1

8.75E-10 0 26 %

1 8.75E-10 0.34%

LLAH LOOP, >6, QUX HP, INJ, SPC,, CTM INTACT-24 HRS 6.73E-10 0

0 LEBP LOOP, <2, QUN,LP, NONE,Y/N, LDW, CONT Hi-TEMP 6.35E-10 1

6.35E-10 0.19%

1 6.35E-10 025%

TLBI TRANS, >6, QUN.LP, INJ.NOSPC LWW, 625E-10 1

625E-10 0.18 %

1 625E-10 0.25 %

TLAS TRANS, >6, QUX.HP, NONE,NOSPC,, WW MSR 520E-10 0

0 TEAC TRANS, <2, QUX.HP, INJ,NOSPC, LWW, 4.89E-10 0

0 TEBO TRANS, <2, QUN,LP, NONE,Y/N, LWW, CONT Hi-TEMP 3.68E-10 1

3.68E-10 0 11 %

1 3.68E-10 0.14%

IEBG IORV, <2, QUN LP, SPRAY, SPC,, CONT INTACT 3.48E-10 0

0 TEAT TRANS, <2, QUX,H/L, NONE,NOSPC,, DW O-PSR 3.13E-10 0

0 LLAX LOOP, >6, QUX,HP, NONE,Y/N, LWW, CONT Hi-TEMP 3.06E-10 0

0 VLGN ISLOC, >6, QU,,

, CONT BYPASSED 2.98E-10 1

2.98E-10 0.09 %

0 LLAT LOOP, >6, QUX,HP, NONE.NOSPC,, DW O-PSR 2.65E-10 0

0 TLCT TRANS, >6, W

,H/L, NONE,NOSPC,, DW O-PSR 2.52E-10 1

2.52E-10 0.07%

1 2.52E-10 0.10%

TEAX TRANS, <2, QUX.HP, NONE,Y/N, LWW, CONT Hi-TEMP 2.15E-10 0

0 LEAG LOOP, <2, QUX,HP, SPRAY, SPC,, CONT INTACT 2.06E-10 0

0 TI.AH TRANS, >6, QUX,HP, INJ, SPC,, CTM INTACT-24 HRS 1.76E-10 0

0 TEFF TRANS, <2, QUX.H/L, CRD.NOSPC, LDW, 1.73E-10 1

1.73E-10 0.05 %

1 1.73E>to 0.07 %

TEAH TRANS, <2, QUX,HP, INJ, SPC,, CTM INTACT-24 HRS 1.55E-10 0

0 LEBO LOOP, <2, QUN,LP, NONE,Y/N, LWW, CONT Hi-TEMP 1.51 E-10 1

1.51 E-10 0.04%

1 1.51E 10 0.06%

TLAT TRANS, >6, QUX,HP, NONE,NOSPC,, DW O-PSR 1.49E-10 0

0 TLCO TRANS, >6, W

,H/L, NONE, YIN, LWW, CONT Hi-TEMP 1.47E-10 1

1.47E-10 0.04%

1 1.47E-10 0 06 %

Quad Cities-40

U v

v v

v v

v

-v v-m m

Tc ble 6-5 PDS Contribution to LERF (Cont.)

PDS DESCRIPTION CORE DAMAGE LERF7 PDS CONTRIB.

LERF PCT LMT7 PDS CONTRIB.

LMT PCT FREQ 1 = YES TO LERF 1=YES TO LMT 0=NO 0=NO MEFB MLOCA, <2, QUX.HP, INJ, SPC,, CONT INTACT 24HR 9.72E-11 0

0 AEGU LLOCA, <2, QUN,LP, SBCS, Y/N,, WW 0-PSR 9.2SE-11 0

0 TEGG TRANS, <2, QUN,LP, SPRAY, SPC,, CONT INTACT 9.25E-11 0

0 ALCS LLOCA, >6, W,LP CRD/SS NOSPC,,WW O-PSR 8.88E-11 0

0 TLBO TRANS, >6, QUN LP, NONE,Y/N, LWW, CONT Hi-TEMP 8.51 E-11 1

8.51 E-11 0.02%

1 8.51 E-11 0.03%

MEGS MLOCA, <2, QUN,LP.CRDISS,NOSPC,, WW O-PSR 8.16E-11 0

0 SLFG SLOCA, >6, QUX,HP, SPRAY, SPC,, CONT INTACT 7.84E-11 0

0 7.34E-11 1

7.34E-11 0.02 %

1 7.34E-11 0.03 %

MLCS MLOCA, >6, W

,H/L, NONE,NOSPC,, WW O-PSR TIGL TRANS,2-6, QU,LP, CRD.NOSPC, LWW, 6.61 E-11 1

6.61 E-11 0.02%

1 C.61 E-11 0.03%

TEAY TRANS, <2, QUX,HP, NONE,Y/N, LDW, CONT Hi-TEMP 5.87E-11 1

5.87E-11 0.02 %

0 IIBP IORV,2-6, QUN,LP, NONE,Y/N, LDW, CONT Hi-TEMP 5.78E-11 1

5.78E-11 0.02%

1 5.78E-11 0.02%

SEGS SLOCA, <2, QUN,LP, INSUF,NOSPC,, WW O-PSR 4.46E-11 0

0 LLCP LOOP, >6, W

.H/L, NONE,Y/N, LDW, CONT Hi-TEMP 3.79E-11 1

3.79E-11 0.01 %

1 3.79E-11 0.01 %

TLAC TRANS, >6, QUX,HP, INJ.NOSPC, LWW, 3.71 E-11 0

0 llBG IORV,2-6, QUN,LP, SPRAY, SPC,, CONT INTACT 3.58E-11 0

0 MEGG MLOCA, <2, QUN,LP, SPRAY, SPC,, CONT INTACT 3.53E-11 0

0 ILCO IORV, >6, W,LP, NONE,Y/N, LWW, CONT Hi-TEMP 3.31 E-11 1

3.31 E-11 0.01 %

1 3.31 E-11 0.01 %

SLGG SLOCA, >6, QUN,LP, SPRAY, SPC,, CONT INTACT 323E-11 0

0 LLBP LOOP, >6, QUN,LP, NONE,Y/N, LDW, CONT Hi-TEMP 3.19E-11 1

3.19E-11 0.01 %

1 3.19E-11 0 01 %

AEGV LLOCA, <2, QUN,LP, SBCS, Y/N,, DW 0-PSR 2.71 E-11 0

0 ALCT LLOCA, >6, W,LP,CRO/SS.NOSPC,, DW 0-PSR 2.51 E-11 0

0 MEGT MLOCA, <2, QUN,LP CRDISS.NOSPC,, DW O-PSR 2.42E-11 0

0 LEAY LOOP, <2, QUX,HP, NONE,Y/N, LDW, CONT Hi-TEMP 2.38E-11 1

2.38E-11 0.01 %

0 TEFC TRANS, <2,0UX,HP, CRD,NOSPC, LWW, 2.10E-11 0

0 MLCT MLOCA, >6, W

,H/L, NONE.NOSPC,, DW O-PSR 2.04E-11 1

2.04E-11 0.01 %

1 2.04E-11 0.01 %

SEFG SLOCA, <2, QUX,HP, SPRAY, SPC,, CONT INTACT 1.97E-11 0

0 ILCS IORV, >6, W

.H/L, NONE.NOSPC,, WW 0-PSR 1.71 E-11 1

1.71 E-11 0.01 %

1 1.71 E-11 0.01 %

SEGT SLOCA, <2, QUN LP, INSUF.NOSPC,, DW O-PSR 1.32E-11 0

0 TIGF TRANS,2-6, QUN,LP, CRD.NOSPC. LDW, 1.15E-11 1

1.15E-11 0.00%

1 1.15E-11 0.00%

TLCl TRANS, >6, W

,H/L, INJ.NOSPC, LWW, 9.70E-12 1

9.70E-12 0.00%

1 9.70E-12 0.00%

AEGS LLOCA, <2, QUN,LP, NONE.NOSPC,, WW O-PSR 7.02E-12 0

0 LEAD LOOP, <2, QUX HP, INJ NOSPC, LDW, 6.39E-12 1

6.39E-12 0.00%

0 AEGF LLOCA, <2, QUN,LP,CRDISS,NOSPC, LDW, 5.15E-12 0

0 MEGE MLOCA, <2, QUN,LP,CRDISS,NOSPC LWW, 5.08E-12 0

0 SEFB SLOCA, <2, QUX,HP, INJ, SPC,, CONT INTACT 4.97E-12 0

0 Quad Cities-41

Tcble 6-5 PDS Contribution to LERF (Cont.)

PDS DESCRIPTION CORE DAMAGE LERF7 PDS CONTRIB.

LERF PCT LMT?

PDS CONTRIB.

LMT PCT FREQ 1 = YES TO LERF 1=YES TO LMT 0=NO 0=NO ILCT TORV, >6, W

.H/L, NONE,NOSPC,, DW O-PSR 4 00E-12 1

4.00E-12 0.00 %

1 4 00E-12 0.00%

MEGH MLOCA, <2, QUN,LP, INJ, SPC,, CONT INTACT 24HR 3.83E-12 0

0 LLAG LOOP, >6, QUX HP, SPRAY, SPC,, CONT INTACT 3.65E-12 0

0 LEAX LOOP, <2, QUX,HP, NONE,Y/N, LWW, CONT Hi-TEMP 3.43E-12 0

0 MEFC MLOCA, <2, QUX,HP,CRD/SS.NOSPC, LWW, 2.95E-12 0

0 TIGM TRANS 2-6, QUN,LP, CRD NOSPC, LDW, 2.92E-12 1

2.92E-12 0.00%

1 2.92E-12 0.00%

TLBP TRANS, >6, QUN,LP, NONE, YIN, LDW, CONT Hi-TEMP 2.82E-12 1

2.82E-12 0.00%

1 2.82E-12 0.00%

ALCF LLOCA, >6, W,LP.CRD/SS.NOSPC, LDD, 2.42E-12 0

0 TEAG TRANS, <2, QUX,HP, SPRAY, SPC,, CONT INTACT 2.38E-12 0

0 AEGE LLOCA, <2, QuN,LP.CRD/SS.NOSPC. LWW, 2.16E-12 0

0 MLCF MLOCA, >6, W

.H/L, INJ,NOSPC, LDW, 1.86E-12 0

0 AEGT LLOCA, <2, QUN,LP, NONE,NOSPC,, DW 0-PSR 1.74E-12 0

0 LLAD LOOP, >6, OUX,HP, INJ.NOSPC LDW, 1.62E-12 1

1.62E-12 0.00%

0 TEFL TRANS, <2, QUX.HP, INJ,NOSPC, LWW, 1.30E-12 0

0 TLAG TRANS, >6, QUX HP, SPRAY, SPC,, CONT INTACT 1.22E-12 0

0 SEGG SLOCA, <2, QUN,LP, SPRAY, SPC,, CONT INTACT 9.36E-13 0

0 TEGE TRANS, <2, QU LP, CRD.NOSPC, LWW, 8.52E-13 1

8.52E-13 0.00 %

1 8 52E-13 0.00%

TLBJ TRANS,56, QUN,LP, INJ.NOSPC LDW, 8.01 E-13 1

8.01 E-13 0.00%

1 8.01 E-13 0 00%

TEAD TRANS, <2, QUX,HP, INJ.NOSPC, LDW, 7.80E-13 1

7.80E-13 0.00%

0 SEFE SLOCA, <2, QUX,HP,CRD/SS NOSPC, LWW, 7.57E-13 0

0 BEAX SBO, <2, QUX HP, NONE,Y/N, LWW, CONT Hi-TEMP 7.18E-13 0

0 MEFH MLOCA, <2, QUX,HP, INJ, SPC,, CONT INTACT 24HR 6.40E-13 0

0 SLCE SLOCA, >6, W.HP.CRD/SS.NOSPC. LWW, 6.12E-13 0

0 SEGE SLOCA, <2, QUN,LP,CRD/SS.NOSPC LWW, 6.12E-13 0

0 LLCX LOOP, >6, W,HP, NONE,Y/N, LWW, CONT Hi-TEMP J 27E-13 0

0 SLBG SLOCA, >6, QUN,LP, SPR AY, SPC,, CONT INTACT 167E-13 0

0 SEFS SLOCA, <2, QUX HP,CRD/SS,NOSPC,, WW O-PSR 2.59E-13 0

0 LLAY LOOP, >6, QUX,HP, NONE,Y/N, LOW, CONT Hi-TEMP 2.36E-13 1

2.36E-13 0.00%

0 TEGL TRANS, <2, QUN,LP, CRD.NOSPC, LWW, CONT O-PSR 2.34E-13 1

2.34E-13 0.00%

1 2.34E-13 0.00 %

MEFE MLOCA, <2, QU.HP, INJ,NOSPC LWW, 1.99E-13 0

0 Total plant damage state frequency 2.21 E-06 Total LERF 3.42E-07 LERF due to LMT 2.55E-07 Quad Citics-42

Table 6-6 PDSs Contributing Greater Than One Percent to the LERF D

l PDS Frequency Percent of CDF Percent of LERF Containment Failure Mechanism (vr*3)

TEFE 9.02E-8 4.09 26.36 Liner Melt-Through TEEQ 6.62E-8 3.00 19.36 Over-Pressure g

TIGS 4.93E-8 2.23 14.41 Liner Melt-Through j

LLCO 2.47E-8 1.12 7.23 Liner Melt-Through TEER 1.98E-8 0.90 5.78 Over Pressure LLBS 1.50E-8 0.68 4.39 Liner Melt-Through TIGT 1.47E-8 0.67 4.30 Liner Melt Through LLBO 1.26E-8 0.57 3.69 Liner Melt-Through D

TLBS 1.02E-8 0.46 2.98 Liner Melt-Through LLCS 9.77E-9 0.44 2.86 Liner Melt-Through TIGE 7.27E-9 0.33 2.12 Liner Melt-Through i

LLBT 4.47E-9 0.20 1.30 Liner Melt-Through IEBP 3.46E-9 0.16 1.01 Liner Melt-Through D

D l

i e

D 9

e i

Quad Cities-43 O

)

Comparison of Results to Base IPE

)

The changes to the Quad Cities model have produced several changes in the overall results as compared to the Base IPE' However, CDF has increased by only a factor of 1.8 over the base IPE CDF value of 1.20E-06 and has remained in the range of 1.0E-06. The top initiators have changed from DLOOP (56%), LOOP (16%), MLOCA (14%), ATWS (6%) and General Transient (4%) to DLOOP (33%), General Transient (27%), LOOP (22%), Loss of Service

).

Water (9%), ATWS (4%), and Loss of 125VDC Bus IB-1 (4%). The DLOOP initiator, however, is still the most important initiator, due in part to conservatively assuming that the SBODGs would be used to power buses only in a unit blackout.

A significant change to the model is the consideration of additional special initiators, Loss of

)

125VDC Bus IB-1, Loss of Service Water, Loss of Bus 13, Loss ofInstn: ment Air, Loss of Bus 18, Loss of Bus 14, Loss of MCC 18-2, Loss of Bus 11 and Loss of Bus 12. The greatest contribution from these new initiators is from Loss of Service Water which contributes less than 9%. The next largest special initiator is Loss of 125VDC Bus IB-1 which contributes less than 4%. The combined contribution from the remaining special initiators is less than 1%. General

)

Transient initiators have become significantly more important in this PSA Update while contributions from all LOCAs have been significantly reduced. The sequence with the highest frequency had been a DLOOP but now is a single-unit LOOP.

Some of the most significant changes in system importances occurred in the diesel generators.

]

With the addition of the two new Station Blackout diesels, the relative importance of each diesel diminished. However, the combined imponance of diesel generators remained essentially unchanged. Correspondingly, the imponance of recovering offsite power was also diminished because of the increased reliability of diesel electric power.

3 High pressure injection systems increased in imponance for a variety of reasons. The primary reason for this increase was the significant increase in HPCI and RCIC failure probabilities. The failure probabilities of both systems more than doubled due to some extended maintenance unavailabilities. Because failures of these systems are almost always found together, their higher failure probabilities compound each other. Feedwater and SSMP importances are also elevated

)

because they are found in many of the same high pressure injection failure sequences with HPCI and RCIC, Finally, the importances of high pressure injection systems were elevated even further because of higher failure probabilities of operator actions to depressurize the reactor.

Several operator actions also showed significant changes in importance. The operator action to

)

depressurize the reactor to facilitate low pressure injection increased in importance by a factor of five. Much of this increase can be attributed to the higher failure probabilities of HPCI and RCIC.

Additionally, the actual failure probability of this response was increased to make it more representative of the failure probabilities expected for this action. The imponance of operator

{

actions to initiate SSMP also increased for much the same reasons as the operator action to j

).

I

' The results are compared to the Base IPE because the Base IPE is the model that is currently in use for applications at the plant.

Quad Cities-44

)

depressurize the reactor. The operator action to align suppression pool cooling was greatly reduced in importance because of a change (reduction) in the HEP value for this action.

)

There have been numerous changes to the plant since the Base IPE. It can be concluded from this analysis that, although the overall CDF has not changed significantly, the relative ranking of initiating events and system importances have changed as a result of the plant changes. The contributions of the HPCI and RCIC systems to CDF have increased significantly because of

)

actual component performance changes and also changes in dependencies (for HPCI).

ECCS Suction Strainer Clogging Sensitivity A sensitivity analysis was performed on the updated Quad Cities PSA model to estimate the impact to CDF of clogging all ECCS suction strainers due to insulation blowdown. The sensitivity

)-

assumed that all ECCS pumps taldap, suction from the torus would fail a short time after the occurrence of a medium or large LOCA. This loss of the ECCS pumps is assumed to be caused by blowdown forces from the break removing insulation from equipment in the drywell and carrying the insulation into the torus. Once in the torus, it is assumed that the insulation could become trapped against the ECCS suction strainers, reducing pump flow below minimum required

)

for cooling and thereby failing the pumps. It was assumed in the performance of this sensitivity that small LOCAs and transient type events would not cause sufficient insulation damage to cause clogging of all the strainers.

For this sensitivity, it was assumed that initial operation of one of the low pressure injection

)

systems would provide sufficient time prior to loss of the ECCS to allow the operators to align the standby coolant supply system for injection and prevent core damage. If the low pressure systems did not initially operate, core damage was assumed.

The results of this sensitivity indicated that CDF would increase to 3.29E-6 per year. The

)

DLOOP event would still be the dominant initiating event in these scenarios followed by large LOCA, general transient, LOOP, medium LOCA and LOSW events.

The large LOCA contribution increased from 3.04E-9 per year to 6.63E-7 per year and medium LOCA increased from 1.00E-8 per year to 4.18E-8 per year. The other initiating events did not change in their overall contribution to CDF.

)

Modifications are planned and scheduled to modify the ECCS suction strainers to reduce the likelihood that a LOCA blowdown would result in clogging.

It is expected that these modifications would significantly reduce the likelihood of ECCS pump loss by this failure mechanism. These modifications are scheduled to be completed during refueling outages QlR14

}

for Unit 1 and Q2R14 for Unit 2. Because the changes will be completed in the near future, suction strainer clogging was not included in this PSA Update.

)

Quad Cities-45

)-

I

?

Insights j

)

i A complete dependency of the HPCI system on room cooling was assumed for this PSA update.

l If room cooling fails due to either loss of cooling water from DGCW, loss of electrical power to i

the fan, or random failures of the cooler, HPCI is modeled s failing immediately. A more detailed t.ssessment of the room cooling requirements for HPCI could allow removal of the dependency of l

the HPCI system on room cooling or coul.i allow modeling of HPCI operation for a significant

)

period of time following loss of room cc,oling. Removal of this dependency would result in a decrease in CDF.

f Operation of the DGCW pump is not automatically initiated when the HPCI system is actuated.

)

If operation of the Unit I diesel-generator is not demanded, there is the potential for the operators to omit starting the DGCW pump to provide the required HPCI room cooling. Providing for an automatic start of the DGCW pump on actuation of the HPCI system would remove the potential for HPCI system failure due to an operator's failure to manually do so.

Current plant procedures do not require that the SBO diesel-generators be started if there is a.

)

LOOP and power to only one emergency AC bus in a plant. The SBO diesel-generator may be

?

started in such scenarios at the discretion of the operator; however, there are a large number of actions directed by the procedure prior to starting the SBO diesel-generator. Because the battery power supply needed to start the SBO diesel-generator has a one-hour design capacity, delaying I

the start of the generator could result in the inability to use the generator later. Starting the SBO

)

diesel-generator early in a LOOP scenario and allowing the generator to power its associated auxiliary loads could ensure that the generator is available at a later time in a scenario.

The failure probability of the SBO diesel-generator system,0.157, is fairly high. This high failure probability is caused by the need for auxiliary systems to support the operation of the generator.

)

Although the failure probability of any individual component in these auxiliary systems is low, there is a large number ofindividual components that could fail and cause failure of the diesel-generator. For example, current calculations show that all room fans and dampers are required to ensure sufficient cooling. A realistic assessment of room ventilation requirements and radiator cooling water fan requirements could allow relaxing auxiliary system requirements currently

)

modeled in the SBO diesel-generator fault trees. This relaxation would result in a lower system failure probability.

)

)

Quad Cities-46

)

)

VII. OSPRE/EOOS

)

A Comed software package, called OSPRE (Operational Safety Predictor), provides an on-line risk monitor that is used to evaluate changing plant configurations. This tool is used to evaluate past, day-to-day, and future (planned) plant configuration changes (failures, maintenance, modifications) with respect to their impact on risk (core damage frequency and/or large early release frequency).

It is capable of performing instantaneous as well as integrated risk

)

determinations for specific configurations or for trending purposes.

The current OSPRE utilizes the results of Risk Management Query System (RMQS) runs.

RMQS stores the principal components of a probabilistic model in database files. These include:

)

Initiators, Accident Sequences, System Cut Sets, Component Failure Probabilities, and e Risk Measurement Factors.

j

)

i RMQS results are entered in a table referenced for OSPRE. Users of OSPRE enter Equipment Out of Service (OOS) information and OSPRE provides safety information such as Risk Achievement Worth (RAW) from the table. A disadvantage of the current OSPRE is that not all possible configurations are covered by the data in the table. At times, new RMQS runs must be

)

made and the results entered into OSPRE before OSPRE can provide the needed safety information.

OSPRE will be revised to use an EPRI software package called EOOS. The updated PSA model information will be entered during this software change. The new OSPRE software will utilize

)

fault trees and cutsets to quantify the safety imp

  • of changes to the plant state. Equipment OOS information entered in tbc revised OSFRE will b. processed dynamically in a manner timilar to making an RMQS nn. Thus, the intermediate sty of building tables bast.d on many different configurations, will be eliminated. This revision of OSPRE will commence in 1997.

)

A comparison of the syatem RAW values for the updated PSA and the base IPE models shows some differences. These differences in the system importance measures indicate that the results from the present OSPRE and RMQS models will differ from the results coming from the updated PSA model. The results fiom OSPRE and RMQS will be conservative except for the components that would impact the operability of the following systems:

Bus 18/28 Bus 19/29 Main 135 VDC Service Water

)

Condensate /Feedwater Instrument Air Quad Cities-47

)

)

Turbine Building Closed Cooling Water Bus 14-1/24-1 Essential Services Bus

)

Therefore, for these systems, it is expected that the results using the existing OSPRE would be non-conservative. Until the new OSPRE is implemented, evaluation of the impact of these systems to plant safety will be conducted on a case by case basis as needed.

)

y

)

3

')

D J

Quad Cities-48

)

)

VIII. Applications

)

I The Quad Cities PSA Update Model may be used for risk evaluation applications leading to making good decisions based en the true impact to plant safety. The following list identifies potential types of applications for the PSA Update Model:

On-line Maintenance Policy Implementation - OSPRE e

)

PSA Performance Indicators j

e Quarterly Risk Trending e

)

Maintenance Rule Implementation l

1. Risk Significance Performance Criteria Issues Management Relative Ranking
1. Plant Modifications

)

2. ~ Procedure Changes
3. MOV testing Severe Accident Management e

)

Significant Event Assessments e

I Regulatory Issues e

1. Licensing Modifications & Technical Specification Issues
2. Evaluation / Findings Responses

)

3. DiscretionaryEnforcement
4. Backfit Evaluation

)

i

)

Quad Cities-49 1

)

IX. Conclusions

).

The results of the updated PSA meet all accepted industry criteria with no additional actions needed. In acc, dance with the Severe Accident Issue Closure Guidelines (NUMARC 91-04),

ferenced by the update section of the PSA Applications Guide (EPRI TR-105396), no new vulnerabilities were identified. Since no vulnerabilities were identified in the original IPE, no h

modification or removal of vulnerabilities is necessary. Due to the low core damage frequency, the cicsure guideline, indicate that no corrective or compensatory actions are required. As identified i.n S.,ction VI of this document, the change in the model is deemed to be oflow safety

- significance per the PSA Applications Guide (EORI TR-105396).

l

)

' Until the OSPRE has been updated the current models can be utilized with some precautions relative to the systems identified in Section VII of this document.

l The " Maintenance Rule" risk significance criteria are RAW greater than or equal to 2.0, a RRW greater than or equal to 1.005, or systems identified in the core damage sequences representing about 90 percent of the core damage frequency. The PSA Update confirmed that the two SBO

)

diesel-genera tors meet the Maintenance Rule criteria. No new systems or components need to be added to the Maintenance Rule list.-

i

)

)

J 1

)

J Quad Cities-50

)

)

)

)

)

)

Appendix A

)

Support System Event Tree Example l

)

)

)

)

A-1

)

l

v AACCesD0AACCE 0oFF NN FFGGNNEEFFGGNNEEDDI I

DDtI DD 0

AAAAAAe0AAAAA 5eAA AA AAAAAASBAAAAAA5SAAAA AAAA AA 0

2222222222222 2222 22 22222222222222222222 2222 22 SSSSSSSSSSSSS SSSS SS SSSSSSSSSSSSS5SSSSSS SSSS SS 1

TTTTTTTTTTTTT TTTT TT TTTTTTTTTTTTT7TTTTTT TTTT TT

  • * *
  • 2*
  • 2* * * * * * * * * * * * * * * * * * *
  • 2*

2*

TED 1234567890123 567890123456789012345678901234567890 A

1111 1 11112222222222333333333344444444445 C

v 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 D

A A

A A

A A

A A A A A A

A A

A A

A A

A A

A A A

A A A

l l

l l

l l

U TC l

l l

l l

l l

l l

l l

l C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C C

C C C

1 I

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

I 1

1 1

1 1

1 y

9, 1

1, 1

3 9,

1 1

1 g

1 1

1 9

g 1

1 1

1 1

9 1

3 9

1 1

1 W

4 4

4 4

4 4

4 4

4 4

4 4

4 4

9 3

1

~ 1 1

1 1

j 1

9 9

1 1

1 l

i1

,i l

II 1

1 g

1 1

v W

1 1

g 1

1 3

3 3

3 3

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

i 1

M 4

G G

G G

G U

0 D

D D

D D

1 1

1 W

W W

W 1

1 t

1 G

G G

G D

D D

D V

1 1

s B

S G

G G

D D

D U

1-4 4

1 1

)

\\.

3g 1ST TE

)

S g

L S

a j

TN E

I S

N AR T

LA 1

2 R

M 5

E U

1 N

8 E

2 G

8 S4 1

E I f 6

T o 9

I

/

C1 2

0 0 e

/1 4 g E

2S0a I

1 T0P U

l lll I l EEFF DDb l EEFFAA AACC AACC AA BB AACCBBAAAACCBBAA 0

AAAABBAAAAAABBBB BBBB BBBB BB BB 8BBBBBCCBBBBBBCC 2222222222222222 2222 2222 22 22 2222222222222222 0

SSSSSSrSSSSSSSSS SSSS SSSS SS SS SSSSSSSSSSSSSSSS 1

TTTT TTTTTTT T TTTT TTTT TT TT TT TT TTTTTTTTTTTTTTTT

  • * * * * * * * * * * * * * *
  • 22*

e**2*

2*

2*

  • 2*
  • * * * * * * * *
  • C****

67890 T

1234567890123456789012345678901234567S9012345 E

5555555556666666666777777777788888888B899999999990 D

1 AC j

g 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

l" 1

1 1

5 A

A A A A A

A" A A

A A

A A A A A

A A

A A

A A

A A'

A A

C C C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

AC C

C C

^

- T lC l

l l

l l

l l

l I

l l

I l

1 1

1 1

1 I

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 I

I l

L o

1 1

1 1

1 1

1 1

I 1

1 1

1 1

1 1

I' 1'

1 1

1 1

1 1

1 1

4 4

4 4

4 4

4 A

4 4

4 4

4 4

4 4

4 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 l

l1 i3 gI

,l ii 1

1 1

1 1

1 1

u 1

1 1

1 1

1 1

1 1

1 3

3 3

3 3

3 3

3 3

1 1

1 1

1 1

1 1

1 l1 1

1 1

1 1

1 1

1 i

1 1

1 G

G G

G 1

D D

D D

D D

D G

G G

U 1

1 1

W W

C W

W C

C 1

C 1

1 G

1 G

G D

G D

D D

,V 1

1 B

B B

G G

G D

D D

4 1

iv r

1 3

3 1

1 1S T

T U

ES 1

S R

1 TN E

I S

NAR T

LA 1

2 R

M 9

5 E

1 N

8 E

2 G

8 S4 1

E I f 6

T o 9

I

/

C2 20 D e

/1 A g E

2SU a I

1 T QP O

lllllll l

ll(l(

ll)ll l

llj lllll llj lll lllll

v I

AA88JJ AAJJFFGGHHJJFFGG*.MCC EE D0 JJFFGGHHO0EEAAI CCAAEEEEEEAAEEEEEEDD 0D D0 0

AAEEEEEEDDEEEEEE DD00EE 2222222222222222 222222 22222222222222222222 22 22 0

SSSSSSSSSSSSSSSS SSSSSS SSSSSSSSSSSSSSSSSSSS SS SS TTTTTTTTTTTTTTT T TTTTTT TTTTTTTTTTTTTTTTTTTT

.TT TT

  • * * * * * * * * * * *****2*

2*

  • * * * * * * * * * * * * * * * * *
  • 2*e2*
  • 1 T

12345678901234567890123456789012345678901234567890 E

111222222222233 333333344444444445 D

0000000001 11111 1 11111111111111111111111111111111111111111111 A

111111 C

U 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1,

1 1

1 1

1 A

A A

A A

A a

A A A A

A A A A

A A

A A

A A

A A A A A A

1 1

1 1

1 1

i 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1C C C

C C

C C

C C

c C

C C

C C

C C

C C

C C

C C

C C

C C

1 1

l l

l l

l l

l l

l l

l l

l l

1 l

l l

l l

l V

3, 3,

9, 3,

3, 3,

3, g

1 1

1 1

g 1

1 g

1 3

g 3

1 9

1 9

1 1

3 3

3 3

1 1

3 4

4 4

4 4

4 4

4 4

4 4

4 4

4 4

4 4

4 1

3 g

1 g

1 9

3 1

1 3

3 9

3 1

1 3

l II I

lg

,a

,i I

1 1

1 1

1 1

1 1

U 1"

1 1

1 1

1 1

1 1

3 3

3 3

3 3

3 3

3 3

1 1

1 1

1 1

1 1

1 1

1 1i 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

G G

G G

G G

G G

G U

D D

D D

D D

D D

D 1

1 1

1 1

1 1

W W

W W

W W

W W

C C

C C

C C

C C

1 1

1 1

1 M

G G

G G

C 1

1 D

D D

D D

D D

D G

G U

1 1

1 1

1 8

8 8

8 8

8 G

G G

G G

G D

D D

D D

D U

1 1

4 4

'1 1

1 U

~

3 1

1ST T

1 U

E S

1 1

S R

R 1

1 TN E

I SNAR T

LA 1

2 R

M U

5 E

1 N

8 E

2 G

8 S4 1

EI f 6

T o 9

I

/

C3 20 D e

/1 A g E

2SU a I

1 TOP U

v EEDDEEAAS8AA5 CC JFGNDEAS 0

EEDDEE0DD0DDD CC GGGGAEEE0EDDG 2222222222222 22 2222222222222 0

SSSSSSSSSSSSS SS SSSSSSSSSSsSS fITTTTTTTfTTT'TT TTTTITTfTTiTT 1

  • 2* * * * ' * * * * * * *
  • TE 1234567890123 5678901 234567890 D

5555555556666 6666677777777778 A

1111111111 111 1111111111111111 C

v 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1_

A A A

A A A A

G A A A A A A M A

A A

d C C C

C C

C C

C C

C C

C C

C C

C 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

l l

l l

v 1

1 1

1 1

1 1

1 1

3 1

1 1

1 1

1 1

t 9

1 1

1 1

1 1

1 1

1 4

4 '

4 4

4 4

4 4

a 4

4 4

4 I'

1 1

1 1

t 1

1 1

1 1

1 l

1 1

i I

m 1

1 1

1 1

1 1

1 1

1 1

v 1

1 1

1 1

1 1

1 1

1 1

1 3

3 3

3 3

3 3

3 3

3 3

3 1

1 1

1 1

1 1

1 1

1 1

1 il l

m 1

1 1

1 1

1 1

1 1

1 1

1 1

1 i

1 i

1 1

1 1

G G

G G

G G

G G

G G

G v

D D

D D

D D

D D

D D

D 1

1 1

1 1

1 1

W W

W W

W W

W W

C C

C C

C C

C C

1 1

1 1

1 1

1 1

G G

G G

G G

G G

D D

D D

D D

D D

v e

6 m

1 1

1 1

1 1

1 B

8 8

8 8

g s

s G

G G

G G

c G

G D

D D

D D

O D

D v

1 1

1 1

4 4

4 4

4 1

1 1

1 1

ia l

m U

1 1

3 3

3 1

1 1

1 S

T 1

T U

E 1

1 R

R 1

1 TN E

I SNAR T

5 LA 1

9g 2

R M

U 3

5 E

1 N

8 E

2 G

8 S4 1

E If 6

T o 9

I

/

C4 20 D e

/1 A g E

2SUa I

1 TQP U

e U

0 A0A0A0A0A0A08F8FA0A0A0A0A0A0sF8FA0A0CGCG0000EEEEA0 v

33333333333333333333333333333333333333333333333333 0

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS5SSSSSSSSSSSSSSSSS T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T *T T T T T T 1

T E

12345678901234567890123456789012345678901 234567890 v

D 11111111112222222222333333333344444444445 N

AC

+

v U

w v

2 2

1 1

1 1

2 2

2 2

2 1

1 1

1 1

1 2

2 2

2 2

2 2

2 u

W W

W W

W W

W W

W u

W W

W u

W W

W W

W W

W W

W W

W 8

S s

s s

s s

s S

s s

S s

s s

s s

s S

S s

s s

S s

s U

l l

l l

l l

l l

l l

l l

l l

l l

l l

l l

l l

V 1

1 1

1 1

1 1

1 1

1 I

1 9

9 l'

9 9

1' 9

l' 9'

l 1

l 1

1 l

1 1

I 1

II 1i I1 Il II U

1 1

1 1

1 1

8 8

8 8

8 8

8 1

1 1

1 1

1 1

)L 1

1 1

7 7

7 7

1 1

1 1

U U

1 6

6 1

1 AA2S T.

TE D

SS m

T u

NE g

S 5

g N

1 AR T

LA 7

R 4

E N

2 E

3 G

1 S2 1

EI f 6

T o 9

I

/

C1 0A 1 A0e

/2A g 2SU a 1 TGP U

u

v 0

4DCGCG0DDDEEEE 0

33333333333333 ssssss5sssssss T T T T *T T 7 T T T T T T T 1

  • ***
  • 8 *******

TE 2345678901234 1

D A

55555555566666 C

v m

2 Z

2 2

2 2

W W

W' W W

W W

'v l

l l

l l

l v

1 1

1 1

9 9

9 9

9 1

1 1

1 1

l v

~

1 1

8 8

8 1

1 1

U 1

7 7

1 1

U 1

(

6 6

1 1

AA2s T

TE f

s

(

s TN E

ls 5

N 1

ART LA 7

R 4

E U

N 2

E 3

G 1

s2 1

EI f 6

T o 9

I

/

C2 A

0A A

1 AD e 2

/2A g 5

2 sue T

1 TGP U

i

! j l?

e!

i m

v 0

A0 A0A0A0 8F8FA0 A0A0A0 8F sFA0 CGCG00 EEEEA0 CGCG0 33 333333 333333 333333 333333 333333 333333 33333 0

SS SSSSSS SSSSSS SSSSSS SSSSSS SSSSSS SSSSSS SSSSS TTTTTT

.TTTTT TT,TTTT**2* * * * **2*****

T T T T *T *T 2*

1 TT TTTTTT TTTTTT TTTTTT

  • 2* * * * *
  • 2*

2*

  • * * *
  • 2*

7890 12345678901234567890123456789012345678901234562222222222333333333344444444445 TED 1111111111 AC v

e

~

1 1

1 1

1 1

2 2

2 2

2 2

2 2

2 2

1 1

1 1

2 2

2 2

2 2

2 2

W W W

W W W W

W W W W

W W W W

W W W W

W W W W

W W W W

W s s S

s s s s

s s S s

S S

S S

S s S s

s s S S

s s s s

S v

W l

l l

l l

l l

l l

l l

l l

l l

l l

l l

v 1

1 1

I 1

1 g

1 1

1 g

a

~

9 9

9 9

9 9

9 g

9 9

1 1

1 I

1 g

1 9

1 1

1 g

W l

lI l

,i l

,i U

e 1

1 1

w d

1 1

1 8

8 8

8 8

8 8

8 1

1 1

1 1

1 1

1 se m

U 1

1 1

7 7

7 7

1 1

1 1

U 1

U 1

6 6

1 6

1 1

8 A

m 2S T

T U

E$$

T 1

N E

5 I

1 S

5 N

1 AR T

LA 7

R U

4 E

N 2

E 3

G 1

S2 1

EI f T o M

I

/

C1 s

0B A

1 AD e 2

/2A g 2SU a T

1 TGP U

^v 0

D EEEE 3

3333 0

S SSSS 1

T TTTT 2*

T E

123456 D

555555 AC U

2 2

2 2

u W W

u C'

]

l l

S S

S S

U 1

1 9

9 9

1 1

l U

1 8

8 1

1 U

g 7

7 1

3 6

1 BA 2S T

T j',,

ESS TN E

I S

5 N

1 AR T

LA 7

R 4

E N

2 E

3 G

1 S2 1

E I f 6

T o 9

I

/

C2 g

08 A

1 AD e 2

/2A g S

2sU e T

1 TCP Q

1l l.

v 0

A0ADA0A0A08FADADA0A0AD8FA0ADCGDDD0EEA0A0CG0DD0EE 333333333333333333333333333333333333333333333333 0

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS6SSSSSSSSSSSSSS 1

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT7 TTTTTTTTTTTTTT TE 123456789012345678901234567890123456789012345678 D

111111111122222222223333333333444444444 AC v

1 1

1 1

1 2

2 2

2 2

2 2

1 1

1 2

2 2

2 2

2 2

2 2

W W

W W

W W

W W

W W

W W

W W

W W

W W

W W

W W

W W

W s

s s

s S

s S

S s

s s

S s

s s

s S

s s

s s

s s

s S

v

{

l

=

l l

l l

='

l l

l l

l

="

v

- 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

9 9

9 9

9 9

9 9

9 9

9 9

9 9

9 9

9 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1l 1(

1(

I1 v

1 1

1 1

1 1

1 1

8 8

8 8

8 8

8 8

8 1

1 1

1 1

1 1

1 1

U 1

1 1

1 7

7 7

7 7

1 1

1 1

1 U

U 1

1 6

6 6

1 1

1 CA2S T

T V

ESS TN E

1 I

5 S

5 N

1 1

AR T

LA 7

R U

4 E

N 2

E 3

G 1

S1 1

EI f 6

T o 9

I

/

C1 C

0C A

1 AD e 2

/2A s S

2SU e T

1 T Q9 U

m p

u v

e A0A0CGCG0000EEEEA0A0CGCG0 0

A0A0A0A0A0A08F8FA0A0A0A0 3333333333333333333333333 w

333333333333333333333333 0

SSSSSSSSSSSSSSSSSSSSSSSS SSSSSSSSSSSSSSSSSSSSSSSS5 TTTTTTTTTTTTTTTTM*TTTTTTTT TTTTTTTTTTTTTTTTTTTTTTTT 1

2*

T 12345678901234567890123456789012345678901234567890 E

11111111112222222222333333333344444444445 D

AC v

w 2

2 2

2 1

1 1

1 2

2 2

2 2

2 2

1 1

2 2

2 2

1 1

1 1

W W

W W

g W

W W

W W

y W

W W W

W W

W W

v W

W W

W W

y w

S S

S S

S S

S S

S S

3 S

S S

S S

S S

S s

S S

s S

S 3

v l

l l

l l

l l

l l

l l

l l

l l

l l

l l

l v

ww 1

1 1

1 1

1 1

1 1

1 1

1 1

9 9

9 9

9 9

9 9

9 9

9 9

9 9

1 1

1 1

1 1

1 1

1 1

1 1

1 1

11 1l v

1 1

1 1

1 1

1 8

8 8

8 8

8 8

8 1

1 1

1 1

1 1

1 n

w v

1 1

1 7

7 7

7 1

g 1

1 v

a v

1 1

6 6

6 1

1 1

0A2ST T

v ESS TN 1

E I

5 S

5 1

N 1

A R

T LA 7

R v

4 E

N 2

E 3

G 1

S2 1

EI f 6

T o 9

I

/

C1 0

00 A

1 A0e 2

/2A p S

2SU o T

1 TQP v

m m

)

8!

6665555 rrrrrrr IA en

~

~

~

~

R

.R..R. R R

).

I 5

p p

2 2

2 s=

I i

)

I 1

4 s

h E._

i

-)

4. -

1 as 5"

l e C li R,

Um I.

~

)'

v 0

A0 A0A0A0 8F8FA0 A0A0 A0 CGCG00 EEEEA0 CGCG00 EEEE 33 333333 333333 3333 33 333333 333333 333333 3333 0

SS SSSSSS SSSSSS SSSS SS SSSS$S SSSSSS SSSS5S SSSS 1

TT TTTTTT TTTTTT TTTT TT TTTTTT TTTTTT TTTTTT TTTT

  • 2*

2*

  • * * **2*

2*

  • 2* * ****

2******2**

  • *8
  • 2* * *
  • T 123456789012345678901 234567890 ED 1234567890123456789M222222222333333333344444444445 1111111111 AC v

1 1

1 1

1 1

2 2

2 2

2 2

2 1

1 1

1 2

2 2

2 2

2 2

2 2

2 2

2 v

W W W

W W W W

W W W W

W W W W W

W W W W

W W W W

W W v W

W s s s

s 5 s s

s S

S S

S S

s s s

S S s s

s S

S s

S s s s

s l

l l

l l

l l

l l

l l

l l

l l

l l

l l

v 1

1 1

1 g

1 1

1 9,

1 1

1 1

l 1l

,i l

,i l

,a

,i I,

,i 1

9 9

9 9

9 9

9 9

9 9

9 9

9 9

1 1

1 1

1 1

1 1

1 1

1 3

1 v

1 1

1 1

1 I

1 8'

8 8

8 8

8 8

8 1

1 1

1 1

1 1

1 v

1 1

1 1

7 7

7 7

7 1

1 1

1 1

v 1

v 1

6 6

6 1

1 1

EA2 S

T TE v

SS TN 1

E I

5 S

5 1

N 1

AR T

LA 7

R v

4 E

N 2

E 3

G 1

S1 1

E I f M

T o I

/

C1 E

0E A

1 AD e 2

/2A g S

2SU a T

1 TQP v

v_

ADADsF8F40A0ADA0ADA0eFBF0000EEEE 0

33333333333333333333333333333333 0

sssSsssssssssssssssssSsssssSSss5 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 1

T E

12345678901234567890123456789012 11111111112222222222333 DAC U

1 l

3 2

2 2

2 2

2 2

3 2

2 2

3 2-N'

~

W W

W' W' W W

u W

W W

W' W W

u u

U W

l l

l l

l l

l l

l l

l l

ls s

S

>(

1 1

1 1

1 1

1 t

9 9

9 9

9 9

9 9

9 1

1 1

1 1

1 1

1 1

ll ll Il l1 l1 g1 lg J(

1 1

1 1

8 8

8 3

8 1

1 1

1 1

V 1

1 1

-7 7

7 7

1 1

1 1

V U

1 1

-6 6

6 1

1 1

F' A

2ST T

U ESS T~

N 1

E 5

Is 5

1 N

1 AR T

LA 7

R U.

4 E

N 2

E 3

G 1

S1 1

EI f 6

T o 9

I

/

C1 F

0F A

1 ADe 2

/2A g S

2sU a T

1 TGP U

v 0

ADA08FADA0A0ADAD8FDD00EE 333333333333333333333333 0,

SSSSSSSSSSSSSSSSSSSSSSSS 1

TTTTTTTTTTTTTTTTTTTTTTTT TE 123456789012345678901234 D

111111111 122222 AC v

m e

w 1

1 2

2 2

2 2

2 2

2 2

2 8

W W

W W

W W

W W

W W

W W

w v

l l

l l

m S

S S

S S

S S

S S

S S

S c

v m

/\\

1 1

1 1

1 1

1 1

9 9'

9 9

9 9

9 9

9 1

1 1

1 1

1 1

1 1

I1 II I1 4

y 9

/

\\

1 1

1 1

s w

8 8

8 8

8 1

1 1

1 1

v U_

a 1

9, 7

7 7

h 1

1 3

V A

U 1

1 6

6 6

1 1

1 GA2ST T

U ESS TN E

1 I

5 S

5 1

N 1

AR T

LA 7

R U

4 E

N 2

E 3

G 1

S1 1

EI f 6

T o 9

I

/

C1 0G 1 A0 e

/2A g 2SUa 1 TOP U

v 0

A0 8F8F A0 ADA0A0 BF8F00 EEEE 33 333133 333333 333333 3333 0

ss sss2s5 ssss5s sss5ss ssss 1

TT TTTTTT TTTTT1 TTTTTT TTTT 2*

          • 2*

2*

    • 2*

T 1234567890123156789012345678 ED 111111111 1222222222 AC v

2 2

2 2

2 2

2 2

2 2

2 2

1 1

2 2

W W W

g u W W

W W W W

W W W W

W s S s

g s

S s

S s s s

s s

S s

s v

l l

l l

l l

l l

l l

l v

1 1

1 1

1 1

1 1

9 9

9 9

9 9

9 1

1 1

1 1

1 I

1 1

l 1I l

1I v

1 1

1 1

0 8

8 8

8 1

1 1

1 1

v g

g g

7 y

7 7

g 9

1 g

v v

1 1

-6 6

6 1

1 1

nA 2s T

T v

EsS TN E

1 t

5 s

5 1

N 1

A tfT LA 7

R v

4 E

N 2

E 3

G 1

S1 1

E I f 6

T o 9

I

/

C1 n

0N A

1 A0 e 2

/2m g s

2su a T

1 top U

y 0

ADADADADAD8FAoADAD ADADCGDDDDEEADADCGDDDoEE 0

333333333333333333 333333333333333333333333 SSSSSSSSSSSSS3SSSS SSSSSSSSSSSSSSSSSSSSS3SS 7TT TTTTTTTTTTTTTTTTTTTTT.

TTTTTTTTTTTTT.

7TTTT 1

  • * *
  • 2*

TE 12345678901234567890123456789D123456 890123 DA 111131111122222222223333333 334444 C

-U 1

1 1

1 1

2 2

2 2

2 1

1 1

2 2

2 2

2 2

2 2

~

W W

W W

W W

W W

w W W W'

8 W'

W W

W W

W W

W W

U l

l l

l l

l l

l l

l l

l l

l l

l l

l l

S S

S S

S S

S S

S S

8 S

S S

S S

S S

S S

S U

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 9

9 9

9 9

9 9

9 9

9 9

9 9

9 9

9 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 ll l1 ll U

1 1

1 1

1 1

1 1

8 8

8 8

8 8

8 8

8 1

1 1

1 1

1 1

1 1

U 1

1 1

1 7

7 7

7 7

1 1

1 1

1 O

O 1

1 6

6 6

1 1

1 I

A 2S T

TE O

SS TN E

1 I

S 5

5 N

1 1

AR T

LA 7

R E

4 E

N 2

E 3

G 1

S1 1

E I f T o I

/

C1 t

0I A

1 AD e 2

/2A g S

2SU a T

1 T QP O

il l

1

9 A0A0A0A0A0A08F8FA0A0A0A0A0A08F 8FA0A0CGCG00DoEEEEA0 0

33333333333333333333333333333333333333333333333333 0

sssSsssssssssssSsSssSssssssssSsSsSsssssSssS3sssssS 7TTTTTT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT. *

    • S 1

TE 123456789o1234567890123456759012343678901234567890 12222222222333333333344444444445 D

t1111 1111 AC y

w w

w w

l l

l 1

t 1

2 2

2 2

2 2

2 2

2 2

I 1

I 1

2 2

2 2

2 W' W' W

W w

W s

W' W-s*

w w

u W' W' W'

W e

W W

W w

W W

W W

w 8

s s

y l

l 5

l l

l l

l l

l l

'L l

l l

l l

l 5

l l

l l

s s

s 8

8 s

s s

s S

s y

1 1

1 1

1 1

1 1

1 1

1 1

9 9

9 9

9 9

9 9

9 9

9 9

9 1

1 1

1 1

1 1

1 1

1 1

1 1

ll ll J1 l1 l1 ll l1 O

1 1

1 1

1 1

8 8

8 8

8 8

8 1

1 1

1 1

1 1

t[

C 1

1 1

7 7

7 7

1 1

1 1

U V

1

-6 6

1 1

J A

2s T

T U

Es s

T N

1 E

t 5

s 5

1 N

1 A

R T

LA 7

R 4

E N

2 E

3 G

1 S2 1

E I f 6

T o 9

I

/

C1 J

0J A

1 A0 e 2

/2A g S

2SUa T

1 TGP

0 ADCGCGDDDDEEEE 33333333333333 0

sssssssSsssSss 1

TTTTTTTTTTTT TT TE 12345678901 234 D

55555555566666 AC u

2 2

2 2

2 2

2 V

w W

w W

W W

W o

l l

'J ls l

l ls S

s S

o 1

1 1

1 9

9 9

9 9

1 1

1 1

1 l

ll u

1 1

8 8

8 1

1 1

o 1

7 7

1 1

o 1-6 6

1 1

J A

2s T

T Ess TN E

ts 5

N 1

AR T

LA 7

R 4

E N

2 E

3 G

1 S2 1

E I f 6

T o 9

I

/

C2 J

0J A

1 ADe 2

/2A g s

2sU a T

1 TQP l

,lllllllllllllllll\\

v 0

DDDDEEEE 0

33333333 SSSSSSSS 1

TTTTTTTT TE 123'5678 DAC v

2 2

2 W

w W

w v

l 5

l l

S S

v 1

3 9

9 9

1 1

1 l(

v 1

8 8

1 1

v 1

7 7

1 1

v v

1 6

6 1

1 A82ST T

v ESS TN E

1 I

S 5

5 N

1 1

A R

T LA 7

R v

4 E

N 2

E 3

G 1

S1 1

EI f 6

T c 9

I

/

C1 A

04 8

1 8D e 2

/2A g S

25Ua T

1 TQP U

)

8 66 2006

~~~

77~r777 0

-~~mes

~

y ?

y E

$3 $$

)

)

?

?

?

S S

)

l.

2 2

)

)

e s

  • n

)

G W

=2 7

j C

C i

n 1

s.

I

  • M W Uw

{

=

..tme& tt 20B2

)

y 0

0000EE 0

333333 ssSsss 1

TTITTT T

E 123456 DAC w

2 2

2 W

w W

W w

l l

S s

S S

W 1

1 9

9 9

1 1

1 W

1 8

8 1

1 W

1-7 7

1 1

U U

1 6

6 1

1 CB2S T

T C

E55 T

N E

1 I

S 5

5 N

1 1

AR T

LA 7

R 4

E N

2 E

3 G

1 S1 1

E I f 6

T o 9

I

/

C1 C

0C B

1 BD e 2

/2A g s

2sU a T

1 TCP O

I

u 0

A05F A08FCGEECGEE 0

3333333333333333 ss'45S5SS55fSsSS5 1

TTTTTTTTTTTTTTTT TE 1234567890123456 D

1111111 AC v

2 1

2 2

2 1

2 2

W m

w W

w v

W w

w

=

r r

v 1

1 1

I 1

1 1

1 9

9 9

9 9

9 9

9 1

1 1

1 l

1 1

1 1

v 1

1 1

1 1

1 1

1 8

8 8

8 8

8 8

8 8

1 1

1 1

1 1

1 1

1 v

1 1

1 1-7 7

7 7

7 1

1 1

1 1

v 1l Il 1l

/

1 1

t 6

6 6

1 1

1 0925T T

v E5$

TN E

1 I

S 5

5 N

1 1

AR T

LA 7

R v

4 E

N 2

E 3

G 1

S1 1

EI f 6

T o 9

I

/

C1 0

00 0

1 0De 2

/2A g 5

2SU a T

1 TGP v

a mu.u u-.,a s se_ aa,.

==-4

.a s-u ss.a.,ntw.

e.ns-a+

. wsw sn.-,..1

-s,e-.s

=>a&

6..m vom u n-.,.

u W me r

3 E.E.!.!.!.E.E.E.

s=

e= N M at en ne N W h

i i

3 3

.a 3, pg t

?

I i

v 2

2 2

2 2

i l

1 S

S S

S S

A' s

s s s

+

e e-e=

o=

J 3

4 4

e=

e-

>=

9 m2 i

S S

9. I mW N es.

t t*

g u; e e=

o.

?

=

sassesg.gessgen rererr~

tre. rr "NMNAObOOO"N 4M p

3 Y

~

~ ~

~

~

~

Y l

.R. R.

R.R R.

R.

R.

R.

3

(

i a

i I

e-e e

s s

s s s s

s s

^

e 1

i '

L e

4 4

4 4 4

'4 4

4 e

e 0

7 7

7 7

A s

s s

s i

e=

_ =

_ _=

e w

e=

e

)

1 i

)

7 Y

I b.

5-M e2 7

C C

.J N

7.

o u,-

" Nw t 2;

  • s a

u-

%~

O

1

-l g

f5 1

i t

e i

I E.

!i p.

t I

j '

g

' Il r

S D

e=

e

?

?

I i

l D

i e

e e

h i

b b

)

L 7

e-e

>=

f r

p t

1 i

r s

5

  • i ma g

ew

e. o b**

e-P e

a 6

y...

.r.

1

.s 55 et

  • N N N a

s i 7

).

).

).

)

)

e e

1

>=

mN.

C C

Pam 1.

w DI - 5 Nt>

g :-

,,~I-N

~

v 0

CGCGEEEECGCGEEE 0

333333333333333M SSSSSSSS0SSSSSS 1

TTTTTTTTTTTTTTTT TED 1234567890123456 A

1111111 C

v.

~

~

'^

~

T

. 2.

l l

1 2

2 2

2 2

y W

W W

g u

W W

S S

S g

v

^

r w

v 1

1 1

t 9

9 9

9 9

1 1

1 1

1 w

1i I1 1l 11 v

w w

1 1

1 1

8 8

8 t

8 1

1 1

i 1

~

v 1

1 7

7 7

1 1

1 v

v 1-6 6

1 1

AD 2S T

TE v

SS TN E

1 I

S 5

5 N

1 1

AR T

LA 7

R 4

E v

N 2

E 3

G 1

S1 1

EI f 6

T o 9

I

/

C1 A

0A D

1 DDe 2

/2A g S

2SUa T

1 TGP U

1 8

55555858-rrrrrFrF

-um<mene

)--

i W

N N

N

=

)

l

.i 1

e e :e :e s 1

l

)

1 o-e.

e e-o"

)-

P P

b y

J a

e I

.2 T

g C

C me b

]

1.m I.

5 j '%

1 g _.-

Ue I

4 i

i i

j

v.

0 3m3333333333MgMM A

ADsFspDDDD 0

S SSSSSgSSSSS3SS 1

TTTTTTTgTTTTT7 TT T

E 1234567390123456 c

1111111 aC U

2 2

2 2

2 2

2 2

U W

W W' W W

W W

W W

l I

l l

l l

l

/.\\

1 1

1 1

9 9

9 9

9 1

1 1

1 1

ll ll e

w m

e 4

v U

1 1

8 8

8 1

1 1

>L 1

7 7

7 1

1 1

V a

U 1

1 6

6 6

1 1

1 C

D 2

S T

u T

U E

SS TN E

1 I

S 5

5 N

1 1

A R

T L

A J

7 R

L 4

E N

2 E

3 G

1 S1 1

EI f 6

T o 9

I

/

C1 C

0C D

1 DDe 2

/2mg S

2Sua T

1 TcP U

1 t

8

1. 9. 9. 5!. !. !. 5 -

r r

g

- u m.e m e.

t 7

7 7

I

)

a a

a a

a 4

6 b

1 2

S S

2 R

1 1

)

2 2

2 2

).

D' s

s s

l e.*

9

)

~ 9. I ms 5

C"

-1; k ;U -

43 8I l S8

- Es

)

8!

$.5555555 rrrrrer

- _ _.~.

g

?

?

?

?

E

_R R_ R_.R.

?

?

?

S 2

2

)

D D

D l

)

e e

s

)

W.

E2 C

C

.J A

)

1.

W M W N es.

( ::

  • QUGEUmDE EmEuwmEummw2WEmmEEm*m*=***a l

<a<avau-mamaxww~samasmuxaaam s.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY NN N

N h

i t

l 1

R

.R. R.

R.

.R.

R.

.R. R.

R.

R.

R.

R.

.R R.

R.

R R

r i

i 4

e f

T T

T T

T T

T T

i S

S S

S S

S S

S S

i 4

l l

T T

T T

S S

S S

S i

)

i T

T s

s s.

e e

)-

7 S

S

s.

t=

}

m B

S g

C C

3 N

)

?-

W l

mW i

m-5 1

{O 5

e=

N 1

4

)

8 5555-rrrr

-NM*e 4

R R.

R

)

T S

2 2

l a

)

l T

T S

S S

.)

)'

2 2

2

)-

)

e e

s

>=

z i

2 i

E C

C 3

~.

I

  • M W N to.-

g =-

e he

1 8

56565666665656666656666656558656 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr g

"'* * * * * *

  • S :: S C S C S b S R M 2 A ;6 M ;6 2 2 2 M 4

)

i e

7 7

7 7

7 7

?

?

?

?

?

?

?

?

?

?

)

R.

R.

R.

.R.

R.

R.

R.

R

.R. R.

R R

R R

R R

R I

f R

2 2

2 2

R R

R R

2 S

S S

S R

2 R

i 1

I J

)

S S

S S

2 S

S

_2 h

2 k

2

)

)

7 7

5 5

5 b

6 W

M N5 T

C C

.d N

?.

W

)

M W

$w ge

,,o-

=6 I m.

yn,m,,

,an'*-a 4om a\\M-m--

6

%om6-

-&a-&

4 44>4

---@.p'n 4

{

,a,-a n,

5-m J-->

J--

k3,,

s, s

m a+ea e

4.,1-al____,

)

8!

50585555585855555555555555555555 rrrrrrrrrFrerrrrrrrrrrrrrrrrrrrr

~

"""***""*SCUCSCSDS$2ENNNN252%SEN

{

i f

7 7

7 7

7 7

7 7

7 7

7 7

7 7

7 7

E

.R.

R.

R.

R R.

R.

R.

R.

R.

R R.

.R. R.

R R

R

)

1 1

t e

e e

e e

e e

e e

v v

v v

v v

v v

S S

S S

S S

S S

S

)

1 1

)

I S

S S

)

a u

Y l

C C

.J N

1.

W

)-

M W

$ ee.

(*

USI NN

)

8!

5555555555555555

.rrrrrrrrrrrrrrrr

    • N M W M @ >= e & O *= N M 4 m 4 R

R. R.. R.. R R.

R.. R.. R.

).

A I

I ee y=

y=

e.

e=

e=

e=

e=

s s

s s

s s

s s

L i

i 7

7 7

7 7

7 7

7 l

S S

S S

S S

S S

S

)

l

>=

c.

>=

w.

_ =

_ =

_ =

e e

e e

e=

)

I t

i

)

e e

e e

e-

  • =

E

$=

)

5 s

e W

W

.s 1

)

DI W 5

C'

t g :U "

=

.= I-

~

).

)

  • = N M @ en @ ~ # D O *" N M 4 p 4 7

y v

v v

v v

R R.

R.

R..R R.

R R. R

).

)

)-

=

8 S

?

?

?

2 2

2

)

)

s a

m2 C

C

~3!.!

=-

N eo-g :-

~I-

)

)-

8-655g

.rrr.

' 8" N M 4 i

e 7

7

)

R R.

R.

i a

?

I i

)'

i 2

t I

1 2

_ 2_

i

).

)

s

b

>=

E D

C S

'3 al u.

=..

1 g =--

i j

)--

T N

R.i

,a R

R I

r

)'

i T

i S

?

l i

I

~

i

)

D

=

s s

5

>=

mE 7

l C

C l

N 3

5I i sI i

{

t".

l.

N i

~ -

}. -

.,,__.. _-,~

+...- -,~~

-....n.

..a-n s..

. ~..~.-. -,.. ~

h 1

1 g-wNeNwNeNeNwNeNeNwNeNeNeNwNeNwNeNwNeNeNeNvNeNeNeNeN e* N M 4 en 4 N e D O e N M 4 en @ >= W D O e N M 4 en @ N e D O e N M 4 en @ b. e D O e= N M y an @ N S D O E

  • = *= e= e e= ** *= *= e= e N N N N N N N N N N M M M M M M M M M M 4 4 4 4 w 4 4 4 4 4 en

~

)

l

?

5 e

i w*

n=

s=

==

s=

s=

s=

e=

e.

w=

==

s=

s=

e-w s=

n=

p s=

s=

s=

==

e-

==

==

==

=

=

==

p P

9 i

Y.

Y.

5 Y.

Y.

N N

N N

N e

4

_ =

=_

=

e=

1 l

I t

l i

).

7 Y

Y Y

Y 7

l O

N I

I

)

e e

e e

e e

ei I

2 2

U C

e e

e e

s

/

e

=

N N

Y.

g il

)

w 16 5 N

.N2.

2 7_ : '

g,ue

==

e w

b

1 t

?

):

3.:

    • N ** N P fd *= N ** N e= N *= N g

am=xmammas:;ams j

t 1

)

l 4

)

5 5

5 l

I

)

~

N N

5

)_

1 4=

=

j a

)

-E tad 5

.J 5

7.

W

)

2 W

=

.N

!'! +

- s-o

.O

=qI 5

~

)

i

_A c..h.-u 4

v*-

e

-,a*. -

A a,

e-4.

4 4s 4

,44.

)

g e:

eNwNwNeNeNwNeNeNeNeNeNeNwNwNwNeNwNwN

    • N M W en @ P= W D O *= N M 4 en @ P. W D O += N M W en @ N W D O *= N M 4 en @

e- *= ** *= *= ** += e= e= e* N N N N N N N N N N M M M M M M M W*

W=

B*

W*

W*

W=

p=

B-p p=

r=

se e=

s=

g=

um

)

h. h. h. h. h. h. h. h. h. h. h.

.. h.

f o

p D

I I

)

7 7

Y Y.

T.

7 7

7

,7 7

7 Y.

=

m e

e e

e e=

e=

e=

e=

e=

e=

v=

' e=

P

_ =

f e

e e

e e

. manum I

)

N N

N N

e=

e=

e=

e=

)

5 e

5 eA8

&s-e e

0

  1. " E

)

g e e>

-o O e e

4

-. - a

.=.u.

.:m

.m I

S eNwNeNeNwNeNwNeNeNeNeNeNwNwNeNeN

> = -

  • = N M W m @ P. e p D *= N M 4 m 4 N W D C e= N em 4 m 4 >= W D O e-N -

e= e= = = e= c e== e=== N N N N N N N N N N m M M

)

)

a 4

e=

e=

e=

e=

e=

e=

em e=

e e

e e

e s

e e

H M

M M

[

i w

w w

w w

w w

w w

e=

e=

e=

w=

e=

e=

e=

e=

e n.us u.m.m.

==m

-=.a

. mms

. mum E

4 e

e e

e

- e 4

e e

e S

e S.

e.

e

.e.

e S

e=

m em

==

.em

=

e=

emD e*

e*

e=

e=

=

==

N N

N N

N

>=

e=

e=

e=

e=

wm

).

e e

I 4

I

.=

e-

==

e*

e*

W M

)

.=

W a=

W e

O

>=

e=

v ta=

W= I

)

2 5 eW W e*

ea W

em es=

m e-O E *=

em u w=

O e e

h e-A 1

8 e= N ** N e-N e= N e= N e= N ew N *= N e= N e-N *= N e= N ** N *= N f* N ** N

>=

N M W m @ N e @ C - N M d m 4 N e @ O - N g d m 4 N e g m m-N o

g


NNN NNNNN m

e b

4 9

9 9

9 0

0 9

0 9

4 0

0 t

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 C

O m

to e

e a

cc e

co e

a co re co ce e

sa m

M M

M n,

M M

4A M

M M

to M

en M

to M

,f

==

==

-=

m.

m.

==

==

.M.

4A.

-=

==

e.m e."

9."

0 M

4A M

M M

M M

M M

W W

W W

W W

W W

W e=

e-e=

e=

e=

e=

e=

e=

e=

l J

9" 9"

4 e

S 9

m e

e e

m

==

ea

==

a=

f=

9" i

"._,A

~ Y 4

0 N

N N

e-

>=

>=

e=

f=

<n, w

3 7

a

  • e a=

==

e=

t-W M

~j M

e=

2 e=

W e

e e

M

>=

p-X e=

e=

J

  • C E0 cc W

9 ee E

W N

U ee N-

==

W

= = *

@==>=

0

>E==

%== U 9" O e e-O O W

% M =C CD NM S

e=>=

b n,

t.

JJJh-4+-.

A

  • EA3-<

W-e*h---e

-hs-

-^

-M------

M**

M 4'

J' d-*-*h d

5'A---

'M4 8

e= N *= N e= N

>=

    • N M ed ern *O h-5 1

1 e

e e

en.

e e

e e

1 h

f 6

4 W

W f

M M

M W

W W

e=

e=

e-men mes s

1 e-e e

S 5

S S

e=

e*

3 i

j a

?

f N

N

>=

i I

I I

e.-

4 I

.=

em i

e=

e*

l M

.=

S E

e=

t-e=

9"

.J W

S.

W 2..

5 98 N em to-

- > - o E-em u e O

  • W e-M M

i N

e=

j e= >=

l 0

4 i

l

s-

.-.-.-~~.--.--,nn

.u

...---a-wna=.8, x a 1

. -. o.,

r.... -..

.--a

.a-s.

r f

6 l

)

i 8

I e= '

e= N e= N e= N e= N== N e= N e N m.een e >.e ase e n

,= e= e=

e

?

1 t

s.=

s.=

l s=

,=

y=

3

).

o

\\J e,

e, e

e e

e H

Y Y

Y O

{

w w

w w

w r

e.

- e=

e=

e=

e

.au uma num mum b

i T

T e

a.

m.

.=

e e=

==

num -

y h

9 N

N e=

a=

e e

f t

I l

l e

e l

is..

i e

R 5

e e

i.

.J n'

Y*

I 16 5 e

N s'8 W

a=.o 3e

= u e

O e m

em m

aG

.2.=-r,-. - ~,- + + _

am.

.. s, a _

a.. m Jv~.m.

ua a.~e

.4.

.-a.--.__Su, 4

=.,,.m.,

~.=-4a.4%-m..aa.s. mum. a.m j 2..-.

w...

w.-#A..4%_umm.

w 3 >. a. a m o u e-.m t.

4

.m 4

)'

f e*

e= N e= N ** N e= N.

.i e" N M 4 M 4 >= W 1

i i

I I

58 B"

EW W*

)'

t i

T.

T.

i

.W W

W l

e=

e=

e 1

I

)

e=

e=

e e

i e

.S S

e4 e*

eh k

o 4

N N

t em e=

f

}'

I l

I T

P e

.I I.

l m

e*

F i

I 1

I 9.*

i I

E-T i

E E

ME R

B W

==4>

a= 0= 0 3 *U em

=8 e=.

0'8

-e D

)

Appendix B

)

Large LOCA Event Tree Model

)

)

i

)

h e

i

)

S B-1 9

.Aa a

e,A.s,.

m,su. ana4.SM.n4

'.-Mse n.

dkA

-nLra,-

s

)

e me

.6.a me g

-~-....,-

i

)

i I

1 l

l 1

J k,

/

E E

E E E "c'ec o

o o

o u 5

I

?

I i

i 1

5

)

. i t

2 2

2 2

1 a

a a

a 1

t i

l C

?

9*

)-

_1 i

i 1

1 b.

wI v

~ ::

}

g m

3."

~t1 9

e g s I.

m 3.

e

-a

SSS S

SS v

SSS S

SS 0

EEE E

EE STE STEFS STCEFSTSTEF STSTEF8 STCCgFSTSTEF 0

CCCEF CCCCC CCC' CCCCC CCCCCCCCCCCCCCCC C

CCCCt CCCCCC UUULL LLL LLLL LLULLLLLLLLLLLLLL LLUUtLLLLLL L s

SSSAAA AAA#

AAAA AASAAAAAAAAAAAAAA AASSAAAAAAAA T

E D

123456 890' 4567 012345678901 23456 90123 567890 A

1 1 111 2222222222333333 34444 444445 C

U 1 1 1

1 3

1 1

3 1

1 3

I 1

I 1

1 1

1 1

1 I

1 1

1 I

I 1

1 W

S S S

S g

S S

3 S

S 3

S S

S S

S S

S S

S s

S S

S S

S S

S S C

C C

C C

C C

C D

C C C

C C

C C C g

C C

C C

C C

C, C

C c_

/

W D

D D D D D D D D

D D

D D

D D

D D W W W W W

W W W D

D D D

D D

D D W

W W W W W W W W W W W W W W

W W

,n 1 I I

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 I

1 1

1 1

1 S S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S C

C C C C

C C

C C

C C

C C C C

C C

C C

C C

C C

C C

C C

C D

D D D D D

D D

D D

D D

D D D D

D D

D D D D

D D

D D D

D D

Y V

V V

V V

V V

V V

V V

V V

b V

V V

V v V V

V V

V V

V V

V L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

V ii ii iI i

II ia ii 1

1 1

1 1

I I

1 1

1 I

1 1

1 I

1 1

1 1

I S

S S

s S

S S

S S

S S

S S

S S

S S

S S

S C

CC C

C C

C C

C C

C C

C C

C C

C C

C C

W W

W W W W W

W W

W W

W W

W W

W W

W W

W W V

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L l

l l

I I

l l

I 8

8 8

3 S

8 8

S 8

8 8

8 8

1 1

1 1

I 1

1 I

1 1

1 1

1 U

S S

S S

S S

S S

S S

S S

S C

C C

C C

C C

C C

C C

C C

T N

T T

T T

T T

T T

T T

T T

T V

V V

V V

V V

V V

V V

V V

V O

O O O O

O O

O O

O O

O O O

1 1

1 1

I 1

1 1

1 I

S S

S S

S S

S S

S S

C C

C C

C C

C C

C C

W W W W

W W

W W

u W

W F

F F

F F

F F

F F

F F

U I

1 1

1 1

1 1

S S

S S

S S

S C C C

C C

C C

S C

C C

C C

C C

C B

B B

B B

8 B

B S

S S

S S

5 S

S 2

2 0

2 2

1 1

1 1

1 S

S S

5 S

U S

C C

C C

C C

8 B

B B

8 8

S S

S S

5 S

O O O O

0 O

I I

1 S

S S

C C

C S

T S

S S

N T

T T

C C

C C

U 3

1 9

S S

S C

C T

N N

N C

C C

O O

O 1

S d

C-C C

P P

S S

SSEC C

C P

U S

S O

P MU P

R X

H H

R R

H R

S SECCU 2

S 5

O S

X 4

C H

1 O

2 3

1 ACf 6

O o 9

L

/

1 02E 1 CG e

/ OR g V

2LA a L

1 LLP O

S S

S v

S S

S 0

E E

E 0

STSTEFSTS CEFSTSTEFSTSTEFSTSTCEFST EIST EFST CE CCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCC CUCC CCCCC CCC 1

LLLLLLLLL ULLLLLLLLLLLLLLLLLLULLLL LLLL LLLLL UL AAAAAAAAA SAAAAAAAAAAAAAAAAAASAAAA AAAA AAAA ASA T

1 2345678 12345678901 2345678901 234 7090 3456 890 E

55555555 666666666777777777788888 3089 9999 990 D

A 1

C 1

I 1

I 1

g 1

1 1

1 1

1 1

I I

1 1

1 1

1 1

1 1

1 1

)

1 1

1 1

11 I

v W

S S

5 S

S 3

S S

S S

S S

5 S

S S

S S

S S

S S

S S

S S

S S S S

S S S D

C C C C C

g C C C

C C C 0 C

C C C C

C C C C C

C C C

C C C C

C C C

/

D D D D

D D D D D

D D D D

D D D W

D D D D D D

D D 2 W

W W W W

W W W W W

W W W

W W D

g W

W W W W

W W W

D D 2 W W W W W

W l

l l

l l

l l

l l

l l

I 1

1 1

1 1

1 3

I 1

1 1

I I

1 1

I g

1 I

1 1

1 T

1 1

1 S

S S

S S

S S

3 S

S S

S S

S S

S S

S S

S S

S S

S S

S C

C C

C C

C C g

C C

C C

C C

C C

C C

C C

C C

C C

C C D

D D'

D D

D D

9 D

D D

D D

D D g

D D

W D

D D D

D D

D W

v V

V v

v V

V V

V v v V

V V

V V

V V

V V

V V

V V

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

v I8 II I'

Ii 1I I3 s

i 1

1 1

1 1

I 1

1 1

1 1

1 1

1 I

1 1

1 1

S S

S S

S S

S S

S S

S S

S S

S S

S S

S C

C C

C C

C C

C C

C C

C C

C C

C C

C C

W W

W W

W W

W W

W W

W W W W

W W

W W

W W

L L

L L

L L

L L

L L

L L

L L

L L

L i

L L

l Ii ii iI II 31 I

l 8

8 8

8 8

8 8

8 S

S 8

1 1

1 1

1 1

1 1

I I

1 S

S S

S S

S S

S S

S S

v C

C C

C C

C C

C C

C C

T N

T T

i T

t T

i T

T i

T V

v V

v v

v v

v v

V v

V O

D O

o O

o o

o O

D O

O 1

1 I

1 1

1 1

1 S

S S

S S

S S

S C

C C

C C

C C

C W

W W

W W

W W

W W

F F

F F

F F

F F

F j

v 1

1 I

1 1

1 S

S S

S S

S C

C C

C C

C S

C C

C C

C C

C 8

8 8

S 8

B 8

S S

S S

5 l

0 2

0 1

1 1

S S

S S

C C

C U

C B

8 8

S S

S S

S O

O O

O 1

1 1S S

S C

C C-S T

S S

S N

T T

T C

C C

C U

3 3

1 1

S S

C C

S T

N N

NC C

C O

O O

1 1

S S

C C

U C

C C

P P

P S

S S

2 S

2 S

S S

C E

C C

C P

C P

P S

U S

S O

S O

O P

U N

U 1

P S

C R

X M

M X

R R

M M

R R

SSEC CU 2

S U

5:

S X

4 C

M 1

O 2

3 1

A Cf 6

Oo 9

L

/

2 02E 1 CG e

/OR g V

2LA a L

1 LLP U

v 0

FS STEFSTSTEFS ST 0

CC CCCCCCCCCCC CC a

1 LL LLLLLLLLLLL LL AA AAAAAAAAAAA AA T

E 45678901234 67 D

0000001111 11 A

1111111111 11 C

v M

1 I

1 1

1 1

1 I

W S

S S

S S

S 8 S

S D

C C C C,

C C C C

C

/

e W

W W W

@ e

  • W 1

1 1

1 1

I 1

I S

S S

S S

S S

S C

C C

C C

C C

C 0

D D

D D

D D

D D

v V

v V

V V

V V

V u

I L

L L

L L

L L

L L

ii iI 1

1 I

1 I

1 S

S S

S S

S C

C C

C C

C W

W W

W W

W W

L L

L L

L L

L I

l 8

8 8

1 1

1 u

S S

S C

C C

T N

T T

T V

V V

W D

O O

O 1

I 1

S S

S C

C C

W W

W W

F F

F F

U 1

1 S

S C

C S

C C

C S

B s

S S

S 2

1 S

V S

C CS 8

S 5

O 0

'l I

SC S

T S

N T

C C

J.

\\

3 1

S S

C T

N N

C C

O O

1 SC U

C C

P P

S S

S 2

S S

E C

C C

C P

P U

S S

S O

O

)

PN L

U P

1S R

X C

N M

R R

X N

M R

R SS ECC 2

U S

2 S

C U

5 S

X X

4 C

M M

1 O

O 2

3 1

ACf 6

Oo 9

L

/

3 02E 1 CG e

/OR g v

2LA a L

1 LLP

)L

I j

li r

!i r

I1 r

V SS 0

E 0

CEF S

EF EF CCC C

CC CCC 1

ULL LL LL L

SAA AA AAA TED 123 56 89 456 1

111 AC V

1 1 I

1 1

1 1

I 1

I I

g 1

W S S S

S S

S S

S S

S S

3 S

D C C C

C C C C C

C C C g

C

/

W W

W W W m D

D D D D

D D D

W W W W W

W W l

l l

l V

1 1

1 1

I 1

1 1

1 1

S S

S S

S S

S S

S S

C C

C C

C C

C C

C C

+

D D

D D

D D

W W

D D D V

V V

V V

v V

V V

U ii I

L L

L L

L t

L L

L L

L 1

I 1

1 I

1 S

S S

S S

S C

C C

C C

C U

W W

W W

W W

W L

L L

L L

L L

Il I

II 8

8 8

8 1

1 1

1 S

S S

S U

C C

C C

T N

T T

T T

V V

V V

V O

O D

O O

U I

1 1

S S

S C

C C

W W

W W

F F

F F

U 1

1 S

S C

C S

C C

C E

S B

8 R

S S

U L

I A

F P

U M

M R

0 H

1 R

S S

C C

S S

S S

S S

E O

O CCU 2

S 5

S 4

C 1

2 1

1 ACf 6

O o 9

L

/

1 03E 1 CG e

/OR g V

2LA a L

1 LLP g

l SS S

v SS S

0 EE E

CCEF STEF STEFS STCEFSTSTEFS STEFSTST 0

CCCC CCCCC CCCCC CCCCCCCCCCCC CCCCCCCC 1

UULL LLLL LLLLL LLULLLLLLLLL LLLLLLLL SSAA AAAA AAAAA AASAAAAAAAAA AAAAAAAA TE 1234 78901 34567 9012345678 0

23456789 D

1111111 1222222222 3333333333 AC v

1 1 1 1

I 1

1 1

1 1

g 1

1 1 1

I I

g 1

1 1

I W

S S S S S

S S

S S

S 3

S S S S

S S

g S

S S

S D

C C C C C

C C

C C C g

C C C C

C C

C C

C C

W

/

O' D

D D

D D D D

D D W W D D W W W W W W

W 2

W D D D D D D W

,b

,b, W W W W W W v

1 1 I

1 1

1 1

I 1

1 1

1 1

1 1

1 1

1 1

I 1

S S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

C C C

C C

C C

C C

C C

C C C

C C

C C

C C

C D

D D D

D D

D D

D D

D D

D D D

D D

D D

D D

D V

V V V

V V

V V

V V

V V

V V

V V

V V

V V

V V

L L L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

i i:

ii ii ii ii v

T I 1

1 1

1 1

1 1

1 1

1 1

1 S

S S

S S

S S

S S

S S

S S

S C C C

C C

C C

C C

C C

C C

C W

W W

W W W W

W W

W W

W W

W W V

L L

L L

L L

L L

L L

L L

L L

L l

l l

I 8

8 8

S 8

8 8

8 8

1 1

1 I

1 1

1 1

1 v

S S

S S

S S

S S

S C

C C

C C

C C

C C

T N

T T

T T

T T

T T

T V

V V

V W

V V

V V

V 0

O O

O O

O O

O D O l

1 1

1 I

1 1

1 S

S S

S S

S S

U C

C C

C C

C C

W W

W W

W W

W W

F F

F F

F F

F F

1 1

1 1

1 S

S S

S S

C C

C C

C S

V C

C C

C C

C S

8 B

J S

S S

S F_

S 5

S 0

2 1

1 1

5 S

S C

S C

C C

8 S

B B

5 U

S S

S O

O O

0 1

1 S

S S

C S

X C

M X

E M

C R

M C

N H

R U

U R

R S

I CPL 2

E S

R C

U L

X I

X M

A M

O 2

F O

V 5:

S 4

C 1

2 1

1 A

Cf 6

Oo 9

L

/

1 04E 1 CG e

/OR g y

2LAa L

1 LLP U

U U

U

\\>.

U

.U v

v

-v v

v CADET 1.00 I

12/10/96 12:14:52 LLOC5 LARGE LOCA - CS AND RNR INJECTION VALVE FAILURE, RNR PUNP SUCCESS i

Page 1 of 4 LV ONX RNRNK OCNTS CNYS OSOCS SSCS FW OWT LW Le 6

t OSB-CS17 SS'-CS1 FW-CSI OVT-CS18 LW-CS1 LvD-CSI WD-CS1 1 AEGG W-CS1 2 AEGF LW-CS1 I

iLvD-CS1 3 AEGU

. e-CS1 4m-OUT-CS10 LW-CS1 LVD-CS1 5 AEGU l m-CSI 6M LVD-CS1 e-CS1 7 AEGE i

e-CS1 8 AEGF I LW-CS1 I

FW-CSI

'L

-CS1 9 AEGS lWD-CS1 10 AEST i

OVT-CS18 LW-CSI LVD-CS1 l WD-CS1 12 E LvD-CS1 e-CS1 13 AEGE WD-CS1 14 AEGF i

LW-CS1 '

i SOC-CS1 FW-CSI

'Le-CS1 15 AEGS l m-CS1 16 AEGT CTS-CS1 OWT-CS18 L W-CS1 LVD-CS1 l e-CS1 8

i LVD-CS1 WD-CS1 19 AEGE I

I e-CS1 20 AEGF.

ILW-CS1 I

050-CS17 58C-CS1 FW-CS1 iLVD-CS1 21 AEGS i

. e-CS1 M MGT

[

OVT-CS18 LW-CS1 LVD-CS1 lWD-CS1 AE W-CSi 25 AEGF LW-CS1 I

26 AEGU l

l W-CS1 27 AEGV y

OWT-CS10 LW-CS1 LVD-CS1'

.e-CS1 LVD-CS1 WD-CSI 30 AEGE i

e-CS1 31 AEGF I LW-CS1 8

FW-CS1 Le-CS1 32 AEGS l W -CS1 33 AEGT GvT-CS18 L W-CS1 LVD-CS1 AE -

. g.cgg LVD-CS1 WD-CSI 36 AEGE i

e-CS1 37 AEGF I LW-CS1 I

SSC-CS1 FW-CSI'

' LVD-CS1 38 AEGS i

WD-CS1 39 AEGT

[

D CS10 CTS-W ort-CS18' L W-CSI LVD-CS1 A

[

.g,cg3 LVD-CS1 e-CS1 42 AEGE I

W-Cte 43 AEGF I LW-CS1 I

oSg-CS19 SOC-CS1 FW-CS1

'Le-CS1 44 AESS i

45 AEST OWT-CS18 LW-CS1 LVD-CSI e-CSI e-CS1 48 AEGF LW-CS1 iiLe-CS1 49 AEGU i

g le-CS1 50 AEGV

v 00 UVEFSTSTEFSTSTEFSTSTFUVUVEFSTSTEFST EFST TFUV EF GGGGGGGGGGGGGGGGGGGG!GGGGGGGCGGGGGG GGGG GGGG GG EEEE EEEE EEE EEEEEEEEEEEEEMEEEEEEEEEEEEEEEEEEEEE AAAA AAA AA 1

AAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA TE 1 2 3 4'567890123 567890123456789012345 8901 3456 890 55555555$6666M666667777777777888888 8899 9999 990 DA 1

C v

1 1

1 1

1 I

1 I

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

I 1

1 1

1 I

1 1

1 W

S S

S S

S S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

D C C C C

C C C C

C C C C

C C C

C C C C

C C C C

C C C C

C C

C C C C

/

W W

W W W W

W W W

D D W

D D D D D

D W W 2 W 2 W W

W W W W

W W W W

W W W

W W D

D D D D

D D

D D

D D

D D W W

W W D

D D l

l l

l l

l l

l l

l l

l l

l l

1 1

I 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

I S

S 8

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

v D

D D

D D

D D

D D

D M

D D

D D

D D

D W

V V

V V

V V

V V

V V

V V

V V

V V

V L

L L

L L

L L

L l

L L

L L

L L

L L

L L

iI iI E'

i' iI I3 s

li 1

)

1 1

1 1

1 1

1 I

1 1

1 1

I 1

1 S

S S

S S

S S

S S

S S

S S

S S

S S

C C

C C

C C

C C

C C

C C

C C

C C

C W

W W

W W

W W

W W

W W

W W

W W

W W

W L

L L

L L

L L

L L

L L

L L

L L

L L

L v

gi l1 lI gI lI g1 i

0 S

8 8

0 8

8 8

0 1

I 1

1 1

1 1

1 1

S S

S S

S S

S S

S C

C C

C C

C C

C C

T N

T T

T T

T T

T T

T V

V V

W V

V V

W V

V O

0 O

O O

D O

O O

O l

v 1

1 1

I 1

1 S

S S

S S

S C

C C

C C

C W

W W

W W

W W

F F

F F

F F

F 1

1 1

1 S

S S

S C

C C

C v

S C

C c

c C

8 8

e e

8 S

S 5

g 7

7 1

1 S

S u

S C

C.

C 8

8 g

S S

S S

O O

o U

S E

CCUS M

P C

M S

U T

S P

N T

C C

R H

R U

ERU L

S I

T A

N F

CO EV LAV N

U O

X I

T M

C R

E N

J R

N I

RH R

DN 2

A X

5 M

U S

O 4

C 1

2 4

1 A

Cf Oo L

/

2 05E 1 CG e

/OR g V

2LA a L

1 LLP U

v-v v

v_.-

u v-m

~

12/10/96 12:14:52 CADET 1.00 LLOC5 LARGE LOCA - CS AIS RNR INJECTION VALVE FAILURE, RNR PUpr SUCCESS Page 3 of 4 LV OMX RNRMX OCNTS CNTS OSSCS SBCS FW OVNT LW LVD W/DW I LW-CS1 1

FW-CS1 I l*

  • 8I 101 AECS lW-CS1 102 AEGT OVT-CS18 LW-CS1 LVD-CSI 103 AECS
g.CSI 104 AECT LVD-CS1 WD-CSI 105 AEGE W-CSI 106 AEGF I LW-CSI i

107 AEGS SOC-CSI FW-CS1 I

le-CSI M MGT OCN-CS10 CTS-CS1 0FT-CS18 LW-CS1 LVD-CSI 109 AEGS lg-CS1 110 AEGT LVD-CSI e-CSI 111 AEGE I

W-CS1 112 AEGF t LW-CS1 I

OSe-CS19 ftsc-CS1 FW-CS1' i l*.C8 113 AEGS l e-CS1 114 AECT Ovi-CS18 L W-CS1 LVD-CS1 115 AEGS le-CS1 116 AEGT'

@-CSI 117 AEGF L W-CSI i

i LW-CS1 118 AEGU

@-CS1 119 AECV OWT-CS10 LW-cst LVD-CS1 120 AEGU n g.CSI 121 AEGV LVD-CS1 WD-CSI 122 AEc2 I

m-CS1 123 AEGF I LW-CS1 e

FW.CS1 ILW-CS1 124 AEGS l W-CS1 125 AEGT OVT-CSIS LW-CS1 LVD-CS1 126 AEGS

~

l 2-CS1 127 AEGT LVD-CS1 2-CSI 128 AEGE i

W-CS1 129 AEGF I LW-CS1 I

130 AEGS Sec-CS1 FW-CST I

l W-CS1 131 AEGT OvT-CS18 LW-CS1 LVD-CS1 132 AEGS lW-CS1 133 AECT LVD-CS1

@-CSI 134 AEGE I

@-CS1 135 AEGF 1 LW-CS1 i

Oss-CSIT Sec-CS1 FW-CS1 ILVD-CS1 136 AEGS l@-CS1 137 AEGT OWT-CS18 LW-CS1 LVD-CS1 138 AEGS

g.CS1 139 AEGT m-CS1 140 AEGF LW-CS1 i

ELW-CS1 141 AEGO l W-CS1 142 AEGV OWT-CS10 LW-CS1 LVD-CS1 143 AEEl

g.CS1 144 AEGV (VO.CS1 e-CS1 145 AEGE g

@-CS1 146 AEGF I LW-CS1 i

FW-CS1 iLVD-CS1 147 AEGS l W-CS1 148 AEST OWT-CSI8 LW-CS)

LVD-CS1 149 AEGS I

le-CS1 150 AEGT

g g

v v

v v

v v

CADET 1.00 -

12/10/96 12:14:52 LLOCS LARGE LOCA - CS AND RNR INJECT 10H VALVE FAILURE, RMR PUl4P SUCCESS Page 4 of 4 LV OHX RMRMX OCNTS CNTS OSSCS 58CS FW WNT LW N

WM LVD-CS1 W-CS1 151 AEGE i

@-CSI 152 AEGF l LW-CS1 i

SSC-CS1 FW-CS1 Il II 153 AEGS lWD-CSI 154 AEGT CTS-CS1 OWT-CS18 L W-CS1 LVD-CS1 155 AEGS lWD-CSI 156 AEGT LVD-CS1 WD-CS1 157 AEGE WD-CS1 158 AEGF lLW-CS1 i

159 AEGS OSS-CS17 SSC-CS1 FW-CS1 I

l W CS1 160 AEGT Oux-CS2 RMX-CS1 OVT-CSIS LW-CS1 LVD-CS1 161 AEGS l @-C51 162 AEGT W CSI 163 AEGF LW CSI i

164 AEGU I LW-CS1 l W CS1 165 AEGV ovi CS10 LW-CS1 LVD-CS1 l WD-CSI 16 GV LWD-CS1 W CS1 168 AEGE l

WD-CS1 169 AEGF I LW-CS1 l

FW-CS1 il CS1 170 AEGS lWD-CS1 1 71 AEGT OVT-CS18 LW CS1 LVD-CS1 l @-CS1 LVD-CS1 WD-CSI 174 AEGE W CS1 175 AEGF LW-CS1 1

176 AEGS SBC-CSI FW-CS1 sL W CS1 l W CS1 177 AEGT OCN CS22 CTS-CS1 OWT-CS18 L W CS1 LVD-CS1

'WD-CSI A

LVD-CS1 W CSI 180 AEGE I

W CS1 181 AEGF i LW-CS1 I

182 AEGS OSB-CS19 SSC-CS1 FW-CS1

'LW-CS1 l W CS1 183 AEGT cf ovi-CS18 LW-CSI LVD-CSI

p egg

- mm.

v 00 GWG yEFST EF EFST F

V gGGGG GG g

GGGI 1

EEE EEEE EEE EEEE AAA AAAA AA AAAA TED 123

$6789 23 78901 A

111 1

1122 C

v 1

I 1

I 1

1 I

1 1

1 1

1 1

1 1

W S

S S

S S

S S

S S

S S

S S

S S

D C

C C

C C

C C

C C C

C C C C

C

/

W W

l l

l l

D D

W W W W W

D 2 W W

2 W W

W D

W W

v 1

1 1

1 1

1 1

1 I

1 1

S.

S S

S S

S S

S S

S S

t C

C C

C C

C C

C C

C D

D D

D D

D W

D D

D D

V V

V V

V V

V v

V V

L L

L L

L L

L L

L L

L L

t

't ia i'

1 I

1 1

I 1

S S

S S

S 1

C C

C C

C 0

v W

W W

W W

W W

L L

L L

L L

L II I

Il 0

8 S

8 1

1 I

1 S

S S

S V

C C

C C

T N

T T

T T

V V

V V

V O

O O

O O

U 1

1 1

S S

S C

C C

W W

W W

F F

F F

U 1

1 S

S C

C S

C C

C 8

S O

S S

ERU L

U I

A F

P 7

M 1

S LP S

C C

R S

B N

S S

R O

O DN 2

A 1

5:

S L

4 C

1 2

1 1

ACf 6

Oo 9

L

/

1 06E 1 CG e

/OR g V

2LAa L

1 LLP JU

P

)

)

)

I

)

i

)

Appendix C

)

Fault Tree Example (TBCCW)

)

)

l i

)

c-1

)

l

m,_

4a s:_.

,..1..

a#

m 4_.a

..m.--.

m.

.m.

m._.

r I

l e...

eteP4 sEB88hdSS enemisess estr ass essee We89e l

I e

1 I

l es

.u.

_.u._,

Elm strefWeep Wem SS h aeEl I

9 m

I i

met Race Wue esse edW E ese B 4

S l

l

]

I I

W 6 meg me asse

[ essee w tmo mense i

seas setep esteseas j 4mposassa sus teness m

WeWMA E kWes a

SGS emeMMSS BSW r

l M

M O

__O O

l

]

I 1

1 I

Wem emD8 Wet Wtm Wtm WtmIB assume M 6300 msm mentand es asegue se gena am sess menaul WestdW W eses sat ceas eDW6 case teness L.

MG W WeSel W SqSe M

M tt gg game W 3:3m senaded asse 413 5 ename selAg sees i

I O

O

_O_

O l

I I

T 1

es.

amameen emannes em e=

==

M D4 Weeltaef M Gmesme M e##

WMW WI8eMW i

I I

O es 5

3 8

3 i

samm644 essulm64 eseIIDD.4 assess 4 I

I l

ema semme ese emes samme e sse a te emettes 5 See ausstems W Bem e

o e

a esseen6e4 esmageMs4 anseM64 essmase s C-2

)

v v

v u-v v

u-v-

m m

m Apperdix D Core Damage Sequences 1.

1.789E-007 8.10% LEAB IOOP 2.400E-002 IOSS OF OFFSITE POWER IN ONE UNIT HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABL'I RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 2.

1.383E-007 6.27% TEFB GTR 3.400E+000 GENERAL TRANSIElfr IE OFW1 1.400E-003 OPTR FAILS TO RESTART A FW PUMP (2)

HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; MANUAL DG1CW RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 6.300E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (11)

OAD1 5.200E-002 OPTR FAILS 'IO INITIATE ADS (12) 3.

1.251E-007 5.67% LEAB IOOP 2.400E-002 IOSS OF OFFSITE POWER IN ONE UNIT DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 HP1 1.000E+000 EVENT FAILURE RCIC-1.512E-001' RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 4.

1.103E-007 5.00% LEAB DIDOP 1.600E-002-LOSS OF OFFSITE POWER IN BCfrH UNITS HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS 'IO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS 'IO INITIATE ADS (12) 5.

9.156E-008 4.15% TEFB GTR 3.400E+000 GENERAL TRANSIElfr IE DG1CW 5.987E-002. FAILURE OF COOLING WATER FOR DG1 OFW1 1.400E-003 OPTR FAILS 'IO RESTART A FW PUMP (2)

HP1 1.000E+000 EVElfr FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 6.300E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (11)

OAD1 5.200E-002 OPTR FAILS 'IO INITIATE ADS (12)

D-1

v v

v-v v

v v

v m

Appendix D Cere D;mige Segrences 6.

7.850E-008 3.56% TEAB LOSW 8.240E-003 LOSS OF SERVICE WATER IE (INCL LOIA CONT.)

t SW 1.000E+000- EVElfr FAILURE IIA 1.000E+000 EVENT FAILURE PCSA 1.000E+000 EVENT FAILURE FW 1.000E+000 EVENT FAILURE HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; MANUAL DG1CW I

RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

CRD 1.000E+000 EVENT FAILURE OAD1 5.200E-002 OPTR FAILS M INITIATE ADS (12) 7.

7.054E-008 3.20% LEAB DLOOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 IIA 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVElff FAILURE 2CIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS W INIT.SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) v r

8.

6.903E-008 3.13% TEFB GTR 3.400E+000 GENERAL TRANSIENT IE PCSA 3.390E-001. POWER CONVERSION SYSTEM UNAVAILABLE; T2+T4/T1+T2+T3+T4 OFW1 1.400E-003 OPTR FAILS TO RESTART A FW PUMP (2)

HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; MANUAL DG1CW RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE i-OSMP3 6.300E-002 OPTR FAILS W INIT SSMP FROM CCST (ECCS CONDITION) (11)

OAD1 5.200E-002 OPTR FAILS E -INITIATE ADS (12) i I

i r

I D-2 i

- ~... -,.. ~

v v

v v

v v

v

-v-v v

v Appendix D Core Damage Sequences 9.

5.196E-008 2.35% TEAB IDSW 8.240E-003 LOSS OF SERVICE WATER IE (INCL IDIA COffr.)

DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 SW 1.000E+000 EVENT FAILURE IIA 1.000E+000 EVENT FAILURE PCSA 1.000E+000 EVENT FAILURE' FW 1.000E+000 EVEffr FAILURE HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

CRD 1.000E+000 EVENT FAILURE OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 10.

5.058E-008 2.29% BEAY DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 IDP FROM DG1 'IO BUS 14-1 (6 HRS)

DG2 9.021E-002 IDSS OF DG2 AFTER DG1 (6 HRS)

DGB 1.455E-001 IDSS OF DG1/2 AFTER DG1 AND DG2,. (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBD2 1.870E-001 SBODG2 FAILURE AFTER SBD1 FLR (HC)

SBC */

1.000E+000 SBO IN UNIT 1, SBO IN UNIT 2 HF1 1.000E+000 EVENT FAIIBRE F.CIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE 'IO REC OSP; SBO, SHORT TIME AVAILABLE 11.

4.569E-008 2.07% TEFB GTR-3.400E+000 GENERAL TRANSIENT IE DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 PCSA 3.390E-001 POWER CONVERSION SYSTEM UNAVAILABLE; T2+T4/T1+T2+T3+T4 OFW1 1.400E-003 OPTR FAILS 'IO RESTART A FW PUMP (2)

HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAIIABLE OSMP3 6.300E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITT'.16) (11)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12)

D-3

g g--

7-g g-g g

g g

g g

Appendix D Core Damage Sequences 12.

4.528E-008 2.05% TEFE LIB 1 1.010E-003 LOSS OF 125VDC BUS IB-1 IE IM1 7.344E-005 LOSS OF 125VDC TB MAIN BUS 1A 1R1 1.000E+000 EVENT FAILURE FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.000E+000 EVENT FAILURE SSMP1 1.000E+000 EVENT FAILURE ADS 1.000E+000 EVENT FAILURE CS 1.000E+000 EVENT FAILURE 13.

4.504E-008 cot TEFB GTR 3.400E+000 GENERAL TRANSIENT IE FW 2.054E-003 FW FAILS; ALL SUPPORTS AVAILABLE HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; MANUAL DG1CW RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 14, 4.409E-008 2.00% BEAY DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DGB 9.262E-002 LOSS OF DG1/2 AFTER DG1CW FLR (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 1T2 AVAILABLE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE D-4

v v

v v

v v

v -

v

- v v

v Appe@ dix D Core Damage Sequences 15.

4.309E-008 1.95% BEAY DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DG2 9.235E-002 LOSS OF DG2 AFTER DG1CW FLR DGB 1.144E-001 ICSS OF DG1/2 AFTER DG1CW AND DG2 FLR (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBD2 1.870E-001 SBODG2 FAILURE AFTER SBD1 FLR (HC)

SBO?

1.000E+000 SBO IN UNIT 1, SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE 16.

4.090E-008 1.85% BEAY DIDOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 LOP FROM DG1 TO BUS 14-1 (6 HRS)

DGB 9.071E-002-IOSS OF DG1/2 AFTER DG1, (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 1T2 AVAILABLE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVElfr FAILURE 17.

2.981E-008 1.35% TEFB GTR 3.400E+000 GENERAL TRANSIENT IE DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 FW 2.054E-003 FW FAILS; ALL SUPPORTS AVAILABLE HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.'iODE-002 OPTR FAILS TO INITIATE ADS (12)

D-5

v v

v v

v v

v v-y Appendix D Core Damage Sequences l

18.

2.641E-008 1.20% LLAB IDOP 2.400E-002 LOSS OF OFFSITE POWER IN ONE UNIT SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAILABLE ROP 1 1.000E+000 EVENT FAILURE RCIC2 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE HP2 2.660E-001 HP FAILS (MULTIPLE START) ; ALL SUPPORTS AVAILABLE OAD1 1.300E-003 OPTR FAILS M INITIATE ADS (2) 19.

2.461E-008 1.12% TLAB L'OSW 8.240E-003 LOSS OF SERVICE WATER IE (INCL LOIA CONr.)

SW 1.000E+000 EVENT FAILURE IIA 1.000E+000 EVENT FAILURE PCSA 1.000E+000 EVENT FAILURE I

FW 1.000E+000 EVENT FAILURE SSMP1 7.037E-002 SSMP\\ CST FAILS; FOLIDWING SW FAILURE CRD 1.000E+000 EVENT FAILURE RCIC2 1.512E-001 RCIC FAILS; ALL SUPPCRTS AVAILABLE HP2 2.660E-001 HP FAILS (MULTIPLE START) ; ALL SUPPORTS AVAILABLE OAD1 1.300E-003 OPTR FAILS TO INITIATE ADS (2) 20.

2.276E-008 1.03% TEFE LIB 1 1.010E-003 LOSS OF 125VDC BUS 1B-1 IE IM1 7.344E-005 LOSS OF 125VDC TB MAIN BUS 1A 1R1 1.000E+000 EVENT FAILURE PCSA 3.390E-001 POWER CONVERSION SYSTEM UNAVAILABLE; T2+T4/T1+T2+T3+T4 FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE t

LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.000E+000 EVENT FAILURE SSMP1 1.000E+000 EVENT FAILURE ADS 1.000E+000 EVENT FAILURE CS 1.000E+000 EVENT FAILURE t

D-6 m~

3

'7-3 (J

V W

U W

W W

W Appendix D Core Damage Sequences 21.

2.247E-008 1.02% TEFB GTR 3.400E+000 GENERAL TRANSIENT IE PCSA 3.390E-001 POWER CONVERSION SYSTEM UNAVAILABL5; T2+T4/T1+T2+T3+T4 FW 2.054E-003 FN FAILS; ALL SUPPORTS AVAILABLE HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; MANUAL DG1CW RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 22.

2.121E-008 0.96% LEAB IDOP 2.400E-002 LOSS OF OFFSITE POWER IN ONE UNIT DGB 9.034E-002 LOP FROM DG1/2 (6 HRS)

DG1CW 1.036E-001 FAILURE OF COOLING WATER FOR DG1 AFTER DGB FLR (HC)

HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS 'IO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 23.

2.036E-008 0.92% TEEQ ATWS 1.100E-004 ATWS INITIATOR MC 3.040E-001 MAIN COND FAILS (GIVEN FW SUCCESS) AFTER ATWS; T2/T1+T2 RCFM 3.330E-001 FRAC RPS FAILURES THAT ARE MECHANICAL OIADS 3.000E-003 OPTR FAILS TO INHIBIT ADS (26) 24.

1.896E-008 0.86% TIGS GTR 3.400E+000 GENERAL TRANSIENT IE 131 1.838E-004 IDSS OF BUS 13-1, 13 AVAIL 141 1.257E-002 IDSS OF BUS 14-1 AFTER 13-1, 14 AVAIL FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.586E-002 SSMP\\ CST FAILS; 1R1, IM1, 1T2 AVAILABLE (241, 2ES)

CST 1.000E+000 EVENT FAILURE CS 1.000E+000 EVENT FAILURE LVW 1.000E+000 EVENT FAILURE i

LVD 1.000E+000 EVENT FAILURE i

i D-7

?

U v

v.

U v

v v

v v

v v

Appendix D Core Damage Sequences 25.

1.705E-008 0.77% TEEQ A'IWS 1.100E-004 AW S INITIATOR MC-3.040E-001 MAIN COND FAILS (GIVEN FW SUCCESS) AFTER ATWS; r2/T1+T2 RCFM 3.330E-001 FRAC RPS FAILURES THAT ARE MECHANICAL OSL1 4.500E-002 OPTR FAILS TO INITIATE SLC (1/2 PUMP REQ) ~17)

OSL2 5.600E-002 OPTR FAILS 'IO INITIATE SLC (2/2 PUMPS REQ) (16) 26.

1.685E-008 0.76% LLAB DLOOP 1.600E-002 IOSS OF OFFSITE POWER IN BOTH UNITS SSMP1 3.424E-002 -SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 14-1, 1T2 AVAILABLE ROP 1 1.000E+000 EVENT FAILURE RCIC2 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE HP2 2.660E-001 HP FAILS (MULTIPLE START) ; ALL SUPPORTS AVAILABLE OAD1 1.300E-003 OPTR FAILS TO INITIATE ADS (2) 27.

1.621E-008 0.73% LEAB LOOP 2.400E-002 LOSS OF OFFSITE POWER IN ONE UNIT DGB 9.034E-002 IDP FROM DG1/2 (6 HRS)

HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS'IO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS 'IO INITIATE ADS (12) 28.

1.487E-008 0.67% TEFB GTR 3.400E+000 GENERAL TRANSIENT IE DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 PCSA 3.390E-001 POWER CONVERSION SYSTEM UNAVAILABLE; T2+T4/T1+T2+T3+T4 FW 2.054E-003 FW FAILS; ALL SUPPORTS AVAILABLE HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS 'IO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS 'IO INITIATE ADS (12)

D-8

g a

v v

v v-v v

v v

v Appendix D Core Damage Sequences 29.

1.317E-008 0.60% BEAY DIDOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DGB 9.262E-002 IDSS OF DG1/2 AFTER DG1CW FLR (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE 'ID REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 1T2 AVAILABLE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE WW/DW 2.300E-001 FRAC OF CONT FLRS IN DW (VS. WW) 30.

1.283E-008 0.58% LEAB LOOP 2.400E-002 IDSS OF OFFSITE POWER IN ONE UNIT UP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAILABLE OAD1 1.600E-003 OPTR FAILS 'ID INITIATE ADS (10) 31.

1.277E-008 0.58% TEFE GTR 3.400E+000 GENERAL TRANSIENT IE 1M1 7.344E-005 LOSS OF 125VDC TB MAIN BUS 1A 1R1 8.375E-005 LOSS OF 125VDC TB RESERVE BUS 1B-1 FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.000E+000 EVENT FAILURE SSMP1 1.000E+000 EVENT FAILURE ADS 1.000E+000 EVENT FAILURE CS 1.000E+000 EVENT FAILURE

\\

e D-9

O e

O-

~ 1)

U U

V N

V U

U l

Appendix D Core Damage Sequences 32.

1.222E-008 0.55% BEAY DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 LOP FROM DG1 TO BUS 14-1 (6 HRS)

DGB 9.071E-002 LOSS OF DG1/2 AFTER DG1, (C HRS)

SBD1 1.572E-001 SBODG1 FAILUPS SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, IT2 AVAILABLE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE WW/DW 2.300E-001 FRAC OF CONT FLRS IN DW (VS. WW) 33.

1.197E-008 0.54% TEAB LOSW 8.240E-003 LOSS OF SERVICE WA'IER IE (INCL LOIA COhT.)

SW 1.000E+000 EVENT FAILURE IIA 1.000E+000 EVENT FAILURE PCSA 1.000E+000 EVENT FAILURE FW 1.000E+000 EVENT FAILURE HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; MANUAL DG1CW RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 7.037E-002 SSMP\\ CST FAILS; FOLIDWING SW FAILURE CRD 1.000E+000 EVENT FAILURE OAD1 1.600E-003 OPTR FAILS M INITIATE ADS (10) 34.

1.138E-008 0.52% LEAB IDOP 2.400E-002 IDSS OF OFFSITE POWER IN ONE UNIT DG1 6.017E-002 IOP FROM DG1 TO BUS 14-1 (6 HRS)

HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; imNUAL DG1CW RCIC 1.512E-001 RCIC FAILS ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS 'IO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12)

D-10

U u

U U

v v

v v

v v.

O Appendix D -

Core Damage Sequences 35.

1.102E-008 0.50% LEAB LOOP 2.400E-002 LOSS OF OFFSITE POWER IN ONE UNIT 1TB 5.803E-002 TBCCW FAILS; IDOP/DLOOP IIA 1.000E+000 EVENT FAILURE HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE RCIC 1.512E-001.RCIC-FAILS;'ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS 'IO INITIATE ADS (12) 36.

1.045E-008 0.47% BEAY DIDOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS DGICW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DGB 9.262E-002 IDSS OF DG1/2 AFTER DG1CW FLR (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SW 1.108E-001 FAILURE OF SW (DIDOP), 13 & 14 & 23 & 16 UNAVAIL SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001' RCIC FAILS; ALL SUPPORTS AVAIIABLE ROP 2

1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 7.037E-002 SSMP\\ CST FAILS; FOLIDWING SW FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE 37, 1.028E-008 0.47% LEAB DLOOP 1.600E-002 IOSS OF OFFSITE POWER IN BOTH UNITS DGB 9.034E-002 IOP FROM DG1/2 (6 HRS)

HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE LPA 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL' SUPPORTS AVAILABLE-OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS'IO INITIATE ADS (12)

[

i i

i l

?

t f

D-Il L

- - ~,.

c~

,+

G B

9 9

U b> -

- U U-U U

C Appendix D Core Daninge Sequences y

38.

9.695E-009 0.44%.BEAY 'DLOOP 1.600E-002 IDSS OF OFFSITE' POWER IN BOITI UNITS 4

DG1 6.017E-002 IDP FROM DG1 TO BUS 14-1 (6 HRS)

DGB 9.071E-002 LOSS OF DG1/2 AFTER DG1, (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE i

SW 1.100E-001 FAILURE OF SW (DIDOP), 13 & 14 & 23 & 16 UNAVAIL SBO?

1.000E+000 SBO IN UNIT 1, NO SBO.IN UNIT 2 l

HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE 'IU REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 7.037E-002 SSMP\\ CST FAILS; FOLIDWING SW FAILURE

[

LVW 1.000E+000 EVElfr FAILURE LVD 1.000E+000 EVENT FAILURE 39.

9.476E-009 0.43% TIGS GTR 3.400E+000 GENERAL TRANSIENT IE j

131 1.838E-004 IDSS OF BUS 13-1, 13 AVAIL 141 1.257E-002 IDSS OF BUS 14-1 AFTER 13-1, 14 AVAIL f

PCSA 3.390E-001-POWER CONVERSION SYSTEM UNAVAILABLE; T2+T4/T1+T2+T3+T4 i

FW 1.000E+000 EVENT FAIIDRE HP1 1.000E+000 EVENT FAILURE LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 ~ RCIC FAIM ; ALL SUPPORTS AVAILABLE i

SSMP1 3.586E-002 SSMP\\ CST FAILS; 1R1, IM1, 1T2 AVAILABLE (241, 2ES)

CS 1.000E+000 EVENT FAIIDRE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE

{

40.

8.975E-009 0.41% LEAB IDOP 2.400E-002 LOSS OF OFFSITE POWER IN ONE UNIT

- i DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FLILS; ALL SUPPORTS AVAILABLE l

SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAILABLE OAD1 1.600E-003 OPTR FAILS TO INITIATE ADS (10)

- [

I e

t

?

5 D-12

(

~.

m.

m..
m. -....

.=

.m..

___._m.,__m.

m

..mm w~.

--....~e

._w-....s_e,__.~..m..

n.i

....w

v.

u v

v v

v v

v v

v v-Appendix D Core Dassage Sequences 41.

8.184E-009- 'O.37%

LEAB 'DLOOP~ 1.600E-002 IDSS OF OFFSITE POWER IN BCTIH UNITS HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.424H-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 14-1, 1T2 AVAILABLE OAD1 1.600E-003 OPTR FAILS W INITIATE ADS (10) 42.

7.923E-009 0.36% TEAB IDSW 8.240E-003 IDSS OF SERVICE WATER IE (INCL IDIA COTE.)

DGICW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 SW 1.000E+000 EVENT FAILURE IIA 1.000E+000 EVEIR FAILURE PCSA 1.000E+000 EVEIE FAILURE FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 7.037E-002 SSMP\\ CST FAILS; FOLIDWING SW FAILURE CRD 1.000E+000 EVEIE FAILURE OAD1 1.600E-OO3 OPTR FAILS TO INITIATE ADS (10) 43.

7.709E-009 0.35% LEAB IDOP 2.400E-002 IDSS OF OFFSITE POWER IN ONE UNIT DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 ITB 5.803E-002 TBCCW FAILS; IDOP/DIDOP

[

IIA 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 44, 6.797E-009 0.31% LEAB DIDOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS r

ITB 5.803E-002 TBCCW FAILS; LOOP /DLOOP l

lIA 1.000E+000 EVElE FAIIDRE HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE i

RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST. (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS W INITIATE ADS (12) l f

i D-13

[

r

_.,_,..,._,._....__.m__._.,...

v

-. v v

v

-v v

v m

m y

Appendix D Core Damage Sequences 45.

6.441E-009 0.29% LEAB DIDOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 LOP FROM DG1 TO BUS 14-1 (6 HRS)

IIA 1.000E+000 EVEfff FAILURE HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; MANUAL DG1CW LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS 'IO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 46.

6.417E-009 0.29% TEFE GTR 3.400E+000 GENERAL TRANSIENT IE IM1 7.344E-005 IOSS OF 125VDC TB MAIN BUS 1A 1R1 8.375E-005 IDSS OF 125VDC TB RESERVE BUS 1B-1 PCSA 3.390E-001 POWER CONVERSION SYSTEM UNAVAILABLE; T2+T4/T1+T2+T3+T4 FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVElff FAILURE LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVElff FAILURE RCIC 1.000E+000 EVEfff FAILURE SSMP1 1.000E+000 EVElff FAILURE ADS 1.000E+000 EVENT FAILURE CS 1.000E+000 EVElff FAILURE 47.

6.338E-009 0.29% LEAB DIDOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG2 7.349E-002 -IDP FROM DG2 "IU BUS 24-1 (6 HRS)

ORDG 1.000E+000 OPERA 70R FAILS *ID REALIGN DG1/2 'ID APPROPRIATE UNIT HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS 'IU INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12)

D-14

u u

v v

- u v

v.

v v

v v

Appendix D Core Damage Sequences 48.

6.329E-009 0.29% LEAB DLOOP 1,600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DG2 9.235E-002 LOSS OF DG2 AFTER DG1CW FLR HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROtt CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS

'.12 )

49.

6.140E-009 0.28% TEEQ ATWS 1.100E-004 ATNS INITIATOR FWA 1.440E-001 FW FAILS (FRACTION OF IEs THAT ARE IDFW; T3+T4/T1+T2+T3+T4 MC 5.450E-001 MAIN COND FAILS (GIVEN FW FAILS) AFTER ATWS; T4/T3+T4 RCFM 3.330E-001 FRAC RPS FAILURES THAT ARE MECHANICAL OIADS 3.000E-003 OPTR FAILS TO INHIBIT ADS (26) 50.

6.081E-009 0.28% TEER ATWS 1.100E-004 ATWS INITIATOR MC 3.0402-001 MAIN COND FAILS (GIVEN FW SUCCESS) AFTER ATWS; T2/T1+T2 RCFM 3.330E-001 FRAC RPS FAILURES THAT ARE MECHANICAL OIADS 3.000E-003 OPTR FAILS TO INHIBIT ADS (26)

WW/DW 2.300E-001 FRAC OF CONT FLRS IN DW (VS. WW) 51.

6.015E-009 0.27% BLAY DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 LOP FROM DG1 TO BUS 14-1 (6 HRS)

DG2 9.021E-002 LOSS OF DG2 AFTER DG1 (6 HRS)

DGB 1.455E-001 LOSS OF DG1/2 AFTER DG1 AND DG2, (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBD2 1.870E-001 SBODG2 FAILURE AFTER SBD1 FLR (HC).

SBO?

1.000E+000 SBO IN UNIT 1, SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE ROP 2 2.120E-002 FAILURE TO REC OSP; SBO, LONG TIME AVAILABLE (~16 Nk)

D-15

-v v

v v

v v

-v v

v v

y Appendix D Cost Daninge Sequences 52.

5.923E-009 0.27% LEAB DIDOP 1.600E-002 IDSS OF OFFSITE POWER IN BOIH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DGB 9.262E-002 IDSS OF DG1/2 AFTER DG1CW FLR (6 HRS)

IIA 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVGNT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 CPTR FAILS 'IO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 CPTR FAILS *IO INITIATE ACO iles 53.

5.749E-009 0.26% BEAY DLOOP 1.600E-002 IDSS OF OFFSITE POWER IN B01W UNITS DG1CW 5.987E-002. FAILURE OF COOLING WATER FOR DG1 DGB 9.262E-002 IDSS OF DG1/2 AFTER DG1CW FLR (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE t

SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE l

ROP 2 1.000E+000 FAILURE *IO REC OSP; SBO, SHORT TIME AVAILABLE OSMP3 4.800E-003 OPTR FAILS *IO INIT SSMP FROM CCST (ECCS CONDITION)- (17) t LVW 1.000E+000 EVENT FAILURE 3

LVD 1.000E+000 EVENT FAILURE

}

54.

5.663E-009 0.26% TIGT GTR 3.400E+000 GENERAL TRANSIENT IE 131 1.838E-004 IDSS OF BUS 13-1, 13 AVAIL 141 1.257E-002 IDSS OF BUS 14-1 AFTER 13-1, 14 AVAIL FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.586E-002 SSMP\\ CST FAILS; 1R1, IM1, 1T2 AVAILABLE (241, 2ES).

CST 1.000E+000 EVENT FAILURE f

CS 1.000E+000 EVENT FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE WW/DW 2.300E-001 FRAC OF CONT FLRS IN DW (VS. WW) i h

i I

D-16

4 7-U

~]

U U

W U

v' U

U Appendix D Core Damage Sequences 55.

5.654E-009 0.26% LEAB DICOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 IIA 1.000E+000 EVEttr FAILURE HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVEtrr FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 1T2 AVAILABLE OAD1 1.600E-003 OPTR FAILS *IO INITIATE ADS (10) 56.

5.492E-009 0.25% TIGS GTR 3.400E+000 GENERAL TRANSIENT IE 18 2.644E-006 IOSS OF BUS 18, 13-1 & 19 AVAIL 19 2.743E-001 LOSS OF BUS 19 AFTER 18, 13-1 & 14-1 AVAIL FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVElff FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAILABLE CST 1.000E+000 EVEfrP FAILURE CS 1.000E+000 EVENT FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVEttr FAILURE 57.

5.362E-009 0.24% LEAB LOOP 2.400E-002 LOSS OF OFFSITE POWER IN ONE UNIT SW 2.746E-002 FAILURE OF SW (LOOP) 13/14/16 OR 14/16 AVAIL IIA 1.000E+000 EVEttr FAILURE HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAITS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12)

D-17

U U

U U.

U C

v v

v

.v

.v Appendix D Core Dansage Sequences 58.

5.333E-009 0.24% BEAY DIDOP 1.600E-002 LOSS OF OFFSITE POWER IN BOIH UNITS t

DG1 6.017E-002 IDP FROM DG1 TO BUS 1 (6 HRS)

I DGB

-9.071E-002 LOSS OF DG1/2 AFTER DG1, (6 HRS)-

SBD1 1.572E-001 SBODG1 FAILURE SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 l

HP1 1.000E+000 EVENT FAILURE-i RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE OSMP3 4.800E-003 OPTR FAILS TO INIT SSMP FRON CCST (ECCS CONDITION) (17)

LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE

,l 59.

5.262E-009 0.24% BLAS DLOOP 1.600E-002 IDSS OF OFFSITE POWER IN BOIH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DGB 9.262E-002 LOSS OF DG1/2 AFTER DGICW FLR (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT'2 HP1 1.000E+000 EVENT FAILURE ROP 2 2.120E-002 FAILURE TO REC OSP; SBO, IONG TIME AVAILABLE (~16 HR)

SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 1T2 AVAILABLE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE

,I 60.

5.142E-009 0.23% TEEQ ATNS 1.100E-004 ATWS INITIATOR FWA 1.440E-001 FW FAILS (FRACTION OF IEs THAT ARE IDFW:-

f T3+T4/T1+T2+T3+T4 MC 5.450E-001 MAIN COND FAILS (GIVEN FW FAILS) AFTER ATWS; T4/T3+T4 RCFM 3.330E-001 FRAC RPS FAILURES THAT ARE MECHANICAL OSL1 4.500E-002 OPTR FAILS TO INITIATE SLC (1/2 PUMP REQ) (17) l OSL2 5.600E-002 OPTR FAILS TO INITIATE SLC - (2/2 POMPS R2Q) (16)

(

61.

5.126E-009 0.23% TEEQ ATNS 1.100E-004 ATWS INITIATOR FWA 1.440E-001 FW FAILS (FRACTION OF IEs THAT ARE IDFWs

{

T3+T4/T1+T2+T3+T4 F

RCFM 3.330E-001 FRAC RPS FAILURES THAT ARE MECHANICAL OIADS 3.000E-003 OPTR FAILS TO INHIBIT ADS (26) e

~

{

l r

D-18 I.

i

~ _.. _, _. _. ~. _. _ _ _ _. _..,,.

v v

v v

v v

-v v

v v

v Appendix D Core Damage Sequences 62.

5.125E-009 0.23% BLAY DIDOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DG2 9.235E-002 I4SS OF DG2 AFTER DGICW FLR DGB 1.144E-001 LOSS OF DG1/2 AFTER DG1CW AND DG2 FLR (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBD2 1.870E-001 SBODG2 FAILURE AFTER SBD1 FLR (HC)

SBO?

1.000E+000 SBO IN UNIT 1, SBO IN UNIT 2 HP1 1.000E+C00 EVENT FAILURE ROP 2 2.120E-002 FAILURE TO REC OSP; SBO, LONG TIME AVAILABLE (~16 HR) 63.

5.093E-009 0.23% TEER ATWS 1.100E-004 ATWS INITIAE R MC 3.040E-001 MAIN COND FAILS (GIVEN FW SUCCESS) AFTER ATWS; T2/T1+T2 RCFM 3.330E-001 FRAC RPS FAILURES THAT ARE MECHANICAL OSL1 4.500E-002 OPTR FAILS % INITIATE SLC (1/2 PUMP REQ) (17)

OSL2 5.600E-002 OPTR FAILS 'IO INITIATE SLC (2/2 PUMPS REQ) (16)

WW/DW 2.300E-001 FRAC OF CONT FLRS IN DW (VS. WW) 64.

4.881E-009 0.22% BLAS DLOOP 1.600E-002 LOSS OF OFFSITE PCWER IN BOTH UNITS DG1 6.017E-002 LOP FROM DG1 TO BUS 14-1 (6 HRS)

DGB 9.071E-002 LOSS OF DG1/2 AFTER DG1, (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBO? - I.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE ROP 2 2.120E-002 FAILURE TO REC OSP; SBO, IDNG TIME AVAILABLE (~16 HR)

SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, IT2 AVAILABLE LVR 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE D-19 r

______y-

-y_

--y-.

y-

- m -- - - -.

m---

Appendix D Core Dantage Sequences 65.

4.858E-009 0.22% LLBO DLOOP 1.600E-002 IDSS OF OFFSITE POWER IN BOIH UNITS DGB 9.034E-002 LOP FROM DG1/2 (6 HRS)

LPA 1.000E+000 EVENT FAILURE LPB 3.092E-003 RHR B FAILS; 14-1, 1R1, 19 AVAILABLE 1T2 AVAILABLE l

SSMP1 3.424E-002 SSMP\\ CST FAILS ~ (DLP) ; 1R1, 2R1, 24-1, 14-1, ROP 1 1.000E+000 EVENT FAILURE l

CS 5.236E-002 CS FAILS; 14-1, 19, 1R1 AVAILABLE i

66.

4.793E-009 0.22% LLCO IDOP 2.400E-002 IDSS OF OFFSITE POWER IN ONE UNIT OHK 1.000E-005 - OPTR FAILS TO ALIGN COOLING'TO RHR (2) i SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAILABLE ROP 1 1.000E+000 EVENT FAILURE OCST 1.000E+000 OPTR FAILS 'IO ALIGN TO CCST SOURCE (25)

[

67.

4.784E-009 0.22% LEAB DIDOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS v

l DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 1TB 6.351E-002 TBCCW FAILS, 17 UNAVAIL; LOOP /DIDOP IIA

-1.000E+000 EVENT FAILURE I

HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE l

OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS 'IO INITIATE ADS (12) 68.

4.709E-009 0.21% MEFG MLOCA 3.500E-005 MIDCA IE HP1 9.266E-002 HP FAILS; ALL SUPPORTS AVAILABLE; S/M IDCA; MNL DGICW OAD1

~1.600E-003 OPTR FAILS TO INITIATE ADS (10)

I i

'h k

i b

u l

D-20

-._______m

-v

-u v

v v

v v

v v

v v

Appendix D Core Damage Sequences 69.

3.886E-009 0.18% LEAH DLOOP 1.600E-002 IDSS OF OFFSITE POWER IN BOIH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 IIA 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVElfr FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS 70 INITIATE ADS (12)

CS 5.236E-002 CS FAILS; 13-1, 18, 1M1 AVAILABLE 70.

3.751E-009 0.17% LEAB IDOP 2.400E-002 IDSS OF OFFSITE POWER IN ONE UNIT DGICW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 SW 2.746E-002 FAILURE OF SW (LOOP) 13/14/16 OR 14/16 AVAIL IIA 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 71.

3.646E-009 0.17% TLBS LOSW 8.240E-003 IDSS OF SERVICE WATER IE. (INCL IDIA CONT.)

SW 1.000E+000 EVENT FAILURE IIA 1.000E+000 EVEffr FAILURE PCSA 1.000E+000 EVENT FAILURE FW 1.000E+000 EVENT FAILURE OHK 1.000E-005 OPTR FAILS TO ALIGN COOLING TO RHR (2)

SSMP1 7.037E-002 SSMP\\ CST FAILS; FOLLOWING SW FAILURE CRD 1.000E+000 EVElfr FAILURE OCST 1.000E+000 OPTR FAILS TO ALIGN 70 CCST SOURCE (25)

LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE 4

D-21

v v

v v

v v

m

~

~

Appendix D Core Damenge Sequences 72.

3.310E-009' O.15% BEAY DIDOP 1.600E-002 IDSS OF OFFSITE POWER IN BOIH. UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DGl.

DGB 9.262E-002 IDSS OF DG1/2 AFTER DG1CW FLR (6 HRS)

OSB13 1.400E-002 OPERATOR FAILS 'IO TIE SBODG1 *IO BUS 13-1 (10)

SBO?

1.000E+000 SBO IN UNIT.1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E&000 FAILURE 'IO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 3.699E-002-SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 1T2 AVAILABLE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE 73.

3.296E-009 0.15% LEAB DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BCTIH UNITS SW 2.737E-002 FAILURE OF SW (DIDOP), 23 UNAVAIL HP1 9.608E-002 HP FAILS; ALL SUPPORTS AVAILABLE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAIIABLE OSMP3 1.400E-002 OPTR FAILS 'IO INIT SSMP FRON CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS 'IO INITIATE ADS (12) 74.

3.277E-009 0.15% LEAS DLOOP 1.600E-002 LOSS OF OFFSI'IE POWER IN BorH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 IIA 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RHRHK 9.186E-003 RHR HK FAILS /RHR A PUMP AVLBL; 13, 18, IM1 AVAILABLE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 9.600E-002-OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (19)

OAD1 5.200E-002 'OPTR FAILS 'IO INITIATE ADS (12)

ROP 1 1.000E+000 EVENT FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE e

D-22

v v

v v

v v

v v

v v

v Appendix D Core Damage Sequences 75.

3.237E-009 0.15% MEFG MLOCA 3.500E-005 MIDCA IE DGICW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 HP1 1.000E+000 EVENT FAILURE OAD1 1.600E-003 OPTR FAILS 'IO INITIATE ADS (10) 76.

3.231E-009 0.15% TEFB GTR 3.400E+000 GENERAL TRANSIENT IE FW 2.054E-003 FW FAILS; ALL SUPPORTS AVAILABLE HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; MANUAL DG1CW RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAILABLE OAD1 1.600E-003 OPTR FAILS 'IO INITIATE ADS (10) 77.

3.122E-009 0.14% BEAY DIDOP 1.600E-002 IOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DGB 9.262E-002 LOSS OF DG1/2 AFTER DG1CW FLR (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SW 1.108E-001 FAILURE OF SW (DICOP), 13 & 14 & 23 & 16 UNAVAIL SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE 'IO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 7.037E-002 SSMP\\ CST FAILS; FOLIDWING SW FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.00CD000 EVENT FAILURE WW/DW 2.300E-001 FRAC OF CONT FLRS IN DW (VS. WW)

D-23

v u

v v

v v

v

- m

[

Appendix D Core Damage Sequences 78.

3.078E-009 0.14% BEAY DIDOP 1.600E-002 LOSS OF OFFSITE POWER IN BUTH UNITS DG1 6.017E-002 LOP FROM DG1 TO BUS 14-1 (6 HRS)

DG2 9.021E-002 LOSS OF DG2 AFTER DG1 (6 HRS)

DGB 1.455E-001 IDSS OF DG1/2 AFTER DG1 AND DG2, (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE OSB23 1.400E-002 OPERATOR FAILS W TIE SBODG2 % BUS 23-1 (10)

SBO?

1.000E+000 SBO IN UNIT 1, SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001-RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE M REC OSP; S30, SHORT TIME AVAILABLE 79.

3.070E-009 0.14% BEAY DLOOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 LOP FROM DG1 TO BUS 14-1 (6 HRS)

DGB 9.071E-002 LOSS OF DG1/2 AFTER DG1, (6 HRS)

OSB13 1.400E-002 OPERAM R FAILS TO TIE SBODG1 TO BUS 13-1 (10)

SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 1T2 AVAILABLE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE 80.

3.057E-009 0.14% LLCO DLOOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS OHX 1.000E-005 OPTR FAILS % ALIGN COOLING W RHR (2)

SSMP1 3.424E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 14-1, 1T2 AVAILABLE ROP 1 1.000E+000 EVENT FAILURE OCST 1.000E+000 OPTR FAILS TO ALIGN M CCST SOURCE (25)

D-24

________._.________________.___.._.___.__.____________________________________________,_________s

v v

v v

v v

v v

v v

v Appendix D Core Damage Sequences 81.

3.033E-009 0.14% BEAY DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 LOP FROM DG170 BUS 14-1 (6 HRS)

DG2 9.021E-002 LOSS OF DG2 AFTER DG1 (6 HRS)

DGB 1.455E-001 IDSS OF DG1/2 AFTER DG1 AND DG2, (6 HRS)

OSB13 1.400E-002 OPERATOR FAILS TO TIE SBODG1 TO BUS 13-1 (10)

SBD2 1.572E-001 SBODG2 FAILURE SBO?

1.000E+000 SBO IN UNIT 1, SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC

-1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 - FAILURE 'IO REC OSP; SBO, SHORT TIME AVAILABLE 82.

2.896E-009 0.13% BEAY DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 LOP FROM DG1 TO BUS 14-1 (6 HRS)

DGB 9.071E-002 IOSS OF DG1/2 AFTER DG1, (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SW 1.108E-001 FAILURE OF SW (DLOOP), 13 & 14 & 23 & 16 UNAVAIL SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 11P1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE 'IO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 7.037E-002 SSMP\\ CST FAILS; FOLIDWING SW FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE WW/DW 2.300E-001 FRAC OF CONT FLRS IN DW (VS. WW)

D-25

Appe' dix D Core Damage Sequences 83.

2.830E-009 0.13% TIGT GTR 3.400E+000- GENERAL TRANSIENT IE 131 1.838E-004 IDSS OF BUS 13-1, 13 AVAIL 141 1.257E-002 ' IDSS OF BUS 14-1 AFTER 13-1, 14 AVAIL PCSA 3.390E-001 POWER CONVERSION SYSTEM UNAVAILABLE; T2+T4/T1+T2+T3+T4 FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.586E-002 SSMP\\ CST FAILS; 1R1, IM1, 1T2 AVAILABLE (241, 2ES)

CS 1.000E+000 EVENT FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE WW/DW 2.300E-001 FRAC OF CONT FLRS IN DW (VS. WW) 84.

2.745E-009 0.12% TIGS GTR 3.400E+000 GENERAL TRANSIENT IE 18 2.644E-006 IDSS OF BUS 18, 13-1 & 19 AVAIL 19 2.743E-001 IDSS OF BUS 19 AFTER 18, 13-1 & 14-1 AVAIL PCSA 3.390E-001 POWER CONVERSION SYSTEM UNAVAILABLE; T2+T4/T1+T2+T3+T4 FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 ' EVENT FAILURE LPA 1.000E+000- EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAILABLE CS 1.000E+000 EVENT FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE D-26

____......_.-_.m.

m._____._.

___au___

_.u

__m_am._ _ _ _

.__a-___-_t_

__L.____-_--m

- ___ _ _r

_ ___ ' = - _. - _

. + -

'm--.

_ewwe s

m w

N

'w-7 e.

-e.+-e

U u

u u

v v

v v.

v v,

v.

Appendix D Core Dennage Sequences I

85.

2.656E-009 0.12% TEFB LOIA 7.390E-003 IDSS OF INSTRUMENT AIR II (EXCL LOSW CONT.)

l IIA 1.000E+000 EVENT FAILURE PCSA 1.000E+000 EVENT FAILURE OPTR FAILS W RSTRT A FW PMP'OR RCVR HW LVL W/ ISEL BEI VLV OFW1 8.400E-003 HP1 9.622E-002 HP FAILS; ALL SUPPORTS AVAILABLE; MANUAL DG1CW

+

RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE

.OSMP3 6.300E-002.OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (11)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12) 86.

2.623E-009 0.12% BEAY DIDOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS l

DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 l

DG2 9.235E-002 10SS OF DG2 AFTER DG1CW FLR DGB 1.144E-001 LOSS OF DG1/2 AFTER DG1CW AND DG2 FLR (6 HRS).

SBD1 1.572E-001 SBODG1 FAILURE OSB23 1.400E-002 OPERATOR FAILS TO TIE SBODG2 TO BUS 23-1 (10)

SBO?

1.000E+000 SBO IN UNIT 1, SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE 87.

2.584E-009 0.12% BEAY DLOOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER POR DG1 y

DG2 9.235B-002 LOSS OF DG2 AFTER DG1CW FLR DGB 1.144E-001 IDSS OF DG1/2 AFTER DG1CW AND DG2 FLR (6 HRS)

OSB13 -1.400E-002 OPERATOR FAILS TO TIE SBODG1 TO BUS 13-1 (10)

SBD2 1.572E-001 SBODG2 FAILURE SBO?

1.000E+000 SBO IN UNIT 1, SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE '

RCIC 1.512E-001 RCIC FATLS;.ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC.OSP; SBO, SHORT TIME AVAILABLE I

l

- i L

4 i

D-27

-.m.m

.m...

.a

.w_-,

.,,,.,w..__...,,.w.,

9


W U

T U

U U.

U u

v v

Appendix D Core Damage Sequences 88.

2.421E-009 0.11% TIGS GTR 3.400E+000 GENERAL TRANSIENT IE 131 1.838E-004 LOSS OF BUS 13-1, 13 AVAIL 141 1.257E-002 IDSS OF BUS 14-1 AFTER 13-1, 14 AVAIL FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 ~ RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 4.800E-003 OPTR FAILS 'IU INIT SSMP FROM CCST (ECCS CONDITION) (17)

CST 1.000E+000 EVENT FAILURE CS 1.000E+000 EVENT FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE 89.

2.393E-009 0.11% LLAB LOOP 2.400E-002 LOSS OF OFFSITE POWER IN ONE UNIT DGB 9.034E-002 IDP FROM DG1/2 (6 HRS)

SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAILABLE ROP 1 1.000E+000 EVENT FAILURE P.CIC2 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE HP2 2.660E-001 HP FAILS (IRTLTIPLE START) ; ALL SUPPORTS AVAILABLE OAD1 1.300E-003 OPTR FAILS TO INITIATE ADS (2) 90.

2.370E-009 0.11% BEAY DIDOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-302 FAILURE OF COOLING WATER FOR DG1 DGB 9.262E-002 IDSS OF DG1/2 AFTER DG1CW FLR (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE 'IO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, IT2 AVAIIABLE OVNT 5.100E-002 OPTR FAILS TO VENT CONT (18)

D.28

v_

v_ -

u v~

,v v-v v

U

_v v

Appendix D Core Daninge Sequences 91.

2.344E-009 0.11% LLBS DLOOP 1.600E-002 IDSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 IDP FROM DG1 'IO BUS 14-1 (6 HRS)

IIA 1.000E+000 EVENT FAILURE LPA 3.078E-003 RHR A FAILS; ALL SUPPORTS AVAIIABLE LPB 1.000E+000 EVENT FAILURE SSMP1 3.424E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 14-1, 1T2 AVAILABLE ROP 1 1.000E+000 EVENT FAILURE CS 5.236E-002 CS FAILS; 13-1, 18, 1M1 AVAILABLE LVW 1.000E+000 EVENT FAILURE.

LVD 1.000E+000 EVENT FAILURE 92.

2.320E-009 0.11% LLBS DIDOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 IIA 1.000E+000 EVENT' FAILURE HP1 1.000E+000 EVENT FAILURE LPA 3.078E-003 RHR A FAILS; ALL SUPPORTS AVAILABLE LPB 1.000E+000 EVENT FAILURE SSMP1 3.424E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 14-1, 1T2 AVAILABLE ROP 1 1.000E+000 EVENT FAILURE CS 5.236E-002 CS FAILS;-13-1, 18, 1M1 AVAILABLE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE 93.

2.200E-009 0.10% LEBG DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 19 1.130E-002 IDSS OF BUS 19, 14-1 UNAVAIL IIA 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 1T2 AVAILABLE CS 5.236E-002 CS FAILS; 13-1, 18, IM1 AVAILABLE LV 1.000E+000 EVENT FAILURE D-29

v v

v v

v v

v -

v

-v v

v Appendix D Core Damage Sequences 94.

2.198E-009 0.10% DEAY DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1 6.017E-002 LOP FROM DG1 'IO BUS 14-1 (6 HRS)

DGB 9.071E-002 LOSS OF DG1/2 AFTER DG1, (6 HRS)

SBD1 1.572E-001 SBODG1 FAILURE SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, IT2 AVAILABLE OVNT 5.100E-002 OPTR FAILS *IO VENT CONT (18) 95.

2.166E-009 0.10% IEBP IORV 1.960E-001 IORV + OTHER IEs x RVC 131 1.838E-004 IDSS OF BUS 13-1, 13 AVAIL 141 1.257E-002 LOSS OF BUS 14-1 AFTER 13-1, 14 AVAIL FW 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.586E-002 SSMP\\ CST FAILS; 1R1, IM1, 1T2 AVAILABLE (241, 2ES)

LPA 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE CS 1.000E+000 EVENT FAILURE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE 96.

2.160E-009 0.10% LEAB DIDOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 SW 2.788E-002 FAILURE OF SW (DLOOP), 14 & 23 UNAVAIL HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE OSMP3 1.400E-002 OPTR FAILS TO INIT SSMP FROM CCST (ECCS CONDITION) (9)

OAD1 5.200E-002 OPTR FAILS TO INITIATE ADS (12)

I s

D-30

v o

U v.

v v

v v

v v

C Appendix D Core Damage Sequences 97.

2.138E-009 0.10% TEFB GTR 3.400E+000 GENERAL TRANSIENT IE DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 FW 2.054E-003 FW FAILS; ALL SUPPORTS AVAILABLE HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAIIABLE OAD1 1.600E-003 OPTR FAILS W INITIATE ADS (10) 98.

2.095E-009 0.09% TEFB GTR 3.400E+000 GENERAL TRANSIENT IE OFW1 1.400E-003 OPTR FAILS TO RESTART A FW PUMP (2)

HP1 9.622E-002 HP FAILS; ALL Sb WORTS AVAILABLE; MANUAL DG1CW RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.310E-002 SSMP\\ CST FAILS; ALL SUPPORTS AVAILABLE OAD1 1.600E-003 OPTR FAILS TO INITIATE ADS (10) 99.

2.088E-009 0.09% LEBG DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BCyrH UNITS DG1 6.017E-002 LOP FROM DG1 'IO BUS 14-1 (6 HRS) 19 1.130E-002 IOSS OF BUS 19, 14-1 UNAVAIL IIA 1.000E+000 EVENT FAILURE HP1 1.000E+000 EVENT FAILURE LPB 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, IT2 AVAILABLE CS 5.236E-002 CS FAILS; 13-1, 18, IM1 AVAILABLE LV 1.000E+000 EVENT FAILURE 100.

1.920E-009 0.09% BEAY DLOOP 1.600E-002 LOSS OF OFFSITE POWER IN BOTH UNITS DG1CW 5.987E-002 FAILURE OF COOLING WATER FOR DG1 DGB 9.262E-002 IDSS OF DG1/2 AFTER DG1CW FLR (6 HRS)

OSBD1 6.800E-003 OPERATOR FAILS TO START SBODG1 (10)

SBO?

1.000E+000 SBO IN UNIT 1, NO SBO IN UNIT 2 HP1 1.000E+000 EVENT FAILURE RCIC 1.512E-001 RCIC FAILS; ALL SUPPORTS AVAILABLE ROP 2 1.000E+000 FAILURE TO REC OSP; SBO, SHORT TIME AVAILABLE SSMP1 3.699E-002 SSMP\\ CST FAILS (DLP) ; 1R1, 2R1, 24-1, 1T2 AVAILABLE LVW 1.000E+000 EVENT FAILURE LVD 1.000E+000 EVENT FAILURE

~

D-31

- -