ML20099H634

From kanterella
Jump to navigation Jump to search
Nonproprietary VC Summer Pressure Pulsation Analysis Re Fatigue Usage of Steam Generator Preheater Mod
ML20099H634
Person / Time
Site: Summer South Carolina Electric & Gas Company icon.png
Issue date: 12/31/1984
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML19269B208 List:
References
WCAP-10746, NUDOCS 8503190441
Download: ML20099H634 (39)


Text

WCAP-10746 WESTINGHOUSE NON-PROPRIETARY CLASS 3

. . . v c.

V. C. SUMMER PRESSURE PULSATION ANALYSIS REGARDING FATIGUE USAGE OF STEAM GENERATOR i

PREHEATER MODIFICATION

)-

December 1984 I

g5j3190 g $ h 5 P

WESTING 4OUSE ELECTRIC CORPORATION Nuclear Eneroy Systems P. O. Box 155 Pittsburgh, Pennsylvania 15230

1.0 INTRODUCTION

Continuous pressure oscillations are present in the feedwater system whenever the plant is above O percent power. These oscillations are not induced by any particular transient event but are relatively small, high frequency deviations from the mean pressure value and are inherent to the feedwater system (e.g.,

pump vane pass frequencies, pump vibrations, pipe vibrations, turbulence, etc.).

These pressure oscillations propagate throughout the secondary loop and act upon internal steam generator parts, and any modifications to this system, such as the D3 preheater modification, shown in Figure 1.

In plants where preheat steam generators have been installed, pressure transducers were placed in each feedwater line adjacent to each feedwater nozzle for monitoring of continuous pressure oscillations. The transducers are used to verify that the plant feedwater system pressure oscillations are equal to or less than those shown to be acceptable by the steam generator i structural analysis.

1584c/0166c/110684:5 2 p.--.

2.0 OBJECTIVE The objective of this report is to familiarize the reader with the various methods of continuous pressure oscillation analysis and to collect, reduce and analyze test data taken during power escalation following the preheater inlet modification.

E e

1584c/0166c/110684:5 3 i

3.0 DATA REDUCTION Data recorded at the plant site were reduced by Westinghouse personnel in Pittsburgh. The objective of the reduction was to provide information that would determine the pressure fluctuation amplitudes, and the frequency content of the signals.

Signal analyses were performed using a Westinghouse Digital Data Analysis Package.

Two types of displays were used; power spectral density vs. frequency; and real time fluctuating pressure vs. time. The frequency domain displays represent the average of a number of samples of data (typically 64).

Averaging of the result from each data sample leads to the identification of signal frequency content to which statistical evaluations could be applied.

The power spectrum is the magnitude squared of the rms spectrum. The result is a real valued function containing magnitude information only (no phase).

t The power spectrum can be represented in different ways. As a power spectrum, h it has units of volts squared and is useful for_ analyzing spectra with discrete spectral components. However, with broad band signals, such as random noise or transients, the spectrum level will vary depending upon the analysis band width. To avoid this, the power spectrum is normalized to a 1 hz band width so that analysis with different analysis frequency ranges are directly comparable one to another. This normalized power spectrum is referred to as power spectral density (PSL) measurement. This type of plot is used as input for the fatigue analysis discussed in this report.

3.1 Interpretation of Frequency Spectra Plots Figure 2 illustrates a typical linear frequency spectrum produced using the Westinghouse Digital Data Analysis Package. The power spectral density spectra were plotted with frequency along the abscissa and PSD amplitude as the ordinate. The plot origin is at the bottom left corner. The full scale i

1584c/0166c/110684:5 4

frequency value is indicated at the bottom right corner of the plots. The full scale amplitude is indicated on each plot.

3.2 Interoretation of Instantaneous Time Histories The instantaneous time histories are time domain plots of the transducer signal for the given time interval (Figure 3). Instantaneous time histories were produced using a Westinghouse Digital Data Analysis Package. Time is represented along the abscissa and pressure is represented along the ordinate. The signal responses have plus and minus values centered about l zero. The zero to full scale amplitudes are indicated on each plot. '

j The instantaneous time histories contain amplitude and frequency information of transducer signais, but are not normally used to determine the frequency content because the spectral plots are more accurate for that purpose. The -

determination of signal peak-to-peak amplitudes is a major use of these time l I

domain plots. s Maximum peak-to-peak pressures are determined from these time histories in the [

following manner: for each power level and plant loop, the maximum positive pressure and the minimum negative pressure is found from the recorded time history trace. This maximum positive to negative value is determined to be j the maximum peak-to-peak pressure. It should be noted that this is a

{

conservative approach, which gives pressure values slightly higher than the actual.

i I

F i

I 1584c/0166c/110684:5 5 i

. r i

4.0 ACCEPTANCE CRITERIA DEVELOPMENT Figure 4 shows the continuous pressure oscillation acceptance curve for the modified Westinghouse Model D3 steam generator. This curve represents the frequency response function between pressure pulsations in the feedline at the inlet of the steam generator and deflection (stress) of the limiting preheater component at that particular frequency. It represents a composite of the previous 03 acceptance curve for an unmodified D3 steam generator and the acceptance curves for the various preheater modification components. The lowest value from each component acceptance curve at each frequency was used ,

to form the acceptance curve for the modified generator.

)

)

0 1584c/0166c/110684:5 6

~

_$ ", t 1584c/0166c/110684:5 7

5.0 FEE 0 WATER PRESSURE PULSATION ANALYSIS METHODS Two methods are used to compare measured feedline cscillation data to the acceptance criteria.

i Method 1 This technique of demonstrating acceptability is to compare the maximum peak-to-peak (p-p) pressure pulsation determined from the pressure time-history plots for each power level to the minimum value of the acceptance curve of Figure 4. If the measured value is less than [ ]a,b,c.e psi peak-to-peak, the fluctuation levels are acceptable. This is a simple, although very conservative method of evaluation.

S Shouldthemaximumpeak-to-peakpressurepulsationexceed(. [AS,C.

Method 2 is used to analyze the pressure pulsation data.

Method 2 This technique involves a frequency domain fatigue analysis of the feedline pressure oscillations. This technique requires a spectral

! analysis of the time history data to produce a power spectral density plot.

t Experience has shown that the simpler method of evaluating the pressure oscillation data rarely gives acceptable results. The pressure fluctuations are usually distributed over a fairly broad range of frequencies and the maximum value of peak-to-peak variation in the time signal is usually greater than the minimum value of the acceptance curve. Therefore, a frequency domain analysis (Method 2) of the measured feedline oscillations must be performed to evaluate the measured data against the acceptance criteria.

The acceptance curve of Figure 4 represents the locus of points which give a stress equivalent to the endurance limit of a particular structure. Hence, this curve can be thought of as relating the input pressure oscillations to the structural response representing negligable fatigue usage. Therefore, the demonstration of satisfactory feedline pressure oscillations is obtained by evaluating the composite effect of the contributions of pressure components I

1584c/0166c/110684:5 8

from all frequencies to the structural response of the preheater and verifying that the root mean square structural response is some number of standard deviations less than the endurance limit for the material.

1584c/0166c/110684:5 9

6.0 MATHEMATICAL DISCUSSION The method employed in evaluating the feedline pressure oscillation data is essentially a steady state frequency domain analysis in which the composite effect of the contributions of the pressure components from all frequencies is considered. g

)

)

1584c/0166c/110684:5 10

- _O,c, L 1584c/0166c/110684:5 11

7.0 ANALYSIS RESULTS Time history data was analyzed at 0,19, 51, 81, 90, and 100 percent power (Figures 9 thru 26). The measured maximum peak-to-peak pressure pulsation values for the analyzed power levels is shown in Table 1.

Method I was used for 0, 19, and 51 percent power levels since the maximum peak-to-peak pressure pulsation values were all below ( ).a,b.c.e Loop 2 at 81 percent power also had a pressure pulsation value less than ['

j,a,b c.e Method 2 was used to analyze the pressure fluctuations for the remaining power levels and loops.

As varying input, the analysis uses a series of points from the power spectral density plot for the specific power level and loop. This series of points is taken from the plot and forms an enveloping conservative curve of that plot.

The results of method 2 analysis are shown in Table 2. The highest RMS value of response was calculated to be [ Ja ,b,c.e normalized units, found at t 100 percent power in loop 3. Since this is less than [i Ja .c.e that the structural response of any component in the preheater will not be above the respective material's endurance limit due to all feedwater pressure fluctuations.

The power spectral density plots for the power levels and loops analyzed using Method 2 are given in Figures 27 thru 34.

t f

1584c/0166c/110684:5 12

l i

8.0 CONCLUSION

S ,

i This report has shown that the measured continuous pressure oscillations in the feedwater system at the Virgil C. Summer Nuclear Station are acceptable at the power levels analyzed. The analysis indicates that there will be negligable fatigue usage on the preheater or the preheater modification due to the measured pressure oscillations.

1584c/0166c/110684:5 13

- . . - ~ . _ _ . . . ._ - - . . .- .

i Table 1 ,

MAXIMUM PEAK TO PEAK PRESSURE PULSATION VALUES (Given in psi) f Power Levels k29A 0 Percent 19 Percent 51 Percent 81 Percent 90 Percent 100 Percent l l

5 1 .155 .264 2.0 4.0 4.8 6.4 2 .058 .173 1.0 2.4 2.7 3.3 3 .132 .342 2.3 5.0 5.6 6.6 I

t f

1 L

4 i

L I

I 1584c/0166c/110684:514

c e [

Table 2  !

i NORMALIZED LIMITS OF STRUCIURAL RESPONSE  :

. i Power Levels i

Loop '

81 Percent _ 90 Perc_eg 100 Percent

-a _ A,h,C,t 1 i 2 s i

3 , t t

t 4

g!i {

i I

i t

l o , , ,J l w I

>' '; j

.'+ . l

.a t s

_ 5} $ n 1,

s r

- / t 4

A i

r  ;

i t

,,r l t

i 1584c/01Mc/110684:5 15 '

l t

i i

4  !

t

) ,

D3 PREHEATER l INLET MODIFICATION '

i SG TUBING INTERNAL MANIFOLD

, yWRAPPER

  1. ANIFOLD l 1 / SUPPORT SLEEVE i i I '

SAFFLE PLATE NO.S- - -, ' -

,[

j

/ PLOW SPLITTER t jTHERMAL SLEEVE j

" .~x g /

/ REVERSEFLOW LIMITER

" f

, VENTURI .

Se i r === 8 l .

/ 0  !  :

i

,, s

, t.

/

D '

- ~

... ,- \ \  :

'' / I UPPORT

~~"~,,,,- k CYLINDER

/

. {\

EXIT ENTRANCE INLET NOZZLE BAFFLE PLATE NO. S PLATE PLATE I

FIGURE 1 l

l

_________J

l

... - 4 ...... .,

40 s a s a B B u Y-Ants nutttpiter .

m

. se - .

v - .

t9 . .

Number of - _

Averages Plot -

. Type  :

- J -

7 ~

v f . i i i . . _ , _

==

Tape Channel g", 3g= , ,,

.j in e in . .

and Instrumentation cm =rie-; ..== = a x,...

Test Identification- / \ .

Itns value lift 5 Frequency Range Volts / Engineering Units Figure 2 PLOTTING ISIENCLATURE FOR DIGITAL DATA' ANALYSIS PACKAGE m

____m____ . __ _ . _ _ _ _ _ - - - . , _ . , - _ _ - , , - - . , , , _ ____-_.__-__y-,_ -- _.e_. , , - - -- - - - - - -

4 i

W i . . . . . . g g u

I .

E M.

o Y

= .J t

t g E

a .,

J 2

  • 3' "

d *

- l i u se

6*J C an.  ;

' W E

& 4

=

1:3

- a ,

i W

. i - i g I

- o 5

l i - 3 E

{ f E

m

{

g

- a, 3 em L.

3 l l t  ! I I l .=*

c (ISd) 3MDSS3Vd

= ,--

1 i

Figures 4 thru 8 are allcuable continuous oscillation curves for the Westinghouse Model D3 steam generator components and are considered proprietary to Westinghouse.

T 4

1,1,, ni,- -it,.,, u m 1 .im .i n '

9 -. _ _

E .i e _ _

J -i . _ _

[ -.".

g,,;, ,,,.,,w,,- , , . .. ... m , -- - -

b b 3 -. _ _

~

1 -i n _

5 .i . _ _

g ..". . _

3;, , , ,, ., , w ,,- , ,. .. . ... z , -- - -

t 1l {

9 -. _ _

! -i n _ _

g -i . _ _

g .. . _ _

g ,,- .. .,.: n,

,',.,,,,,,,w- .

- ~ .-

9 -. _ _

1

.i _ _

/ _ _

l .i . _ _

,l ,,4 .ll,OR, 11&C 3 0% Power Loop 1 Figure 9 i

a l

gg 1/11/94 entifr_q pe0Peff tast CLW 2 etM et re

? I9 _

e pg bi TF1 f .. _

i .. _

.s s - _

-l e _

.t f b9 31 4.

ytmess Ftweg esp.33 f t4 nisfat agKa I "

30

? ie _

I i2 -

N

  • 4
  • i .. _ _

g.. _ _

5 U

-i * -

- t re 9 8 4. TIM Mf BfMT $6K.

mint FIT'S 33 e

? I6 _

I t3 .. .

[T 9 .. _ _

.s .s . .

  • l 3 _ _

3 at e _

I .: .

' "  := .iir.,' "ac. '* '"

' 15 .

eptment Fts*t esp.33 ee 7 ie - , _

I la NMw mMe* %

f .. _ _

.e

.i. _ ..

l -i : - _

l

-u e 3m, am ,,,,,,3 gc , am a esa am R.. . . . ,2.!'. ,t i 0% Power Loop 2 Figure 10

D inntreseofst moperttet CLus 2 elm et29 2/21rea

? 4 -

9 .. -

t -i s _

3e _

C 1 4 fl4 Miligt? C3 i

e4 -

I te -

1 .i e _

l i ...

82 i

ta C 13 44 flE MilfMT C8 eptasas ,te st esp.33 9 .. -

! .i a _

}g .:.se. _

V .. e i ts TIE M1870RT C3 I

,Ig4 ,

se _

2 ie _

- L

. k 9 .. _

i .i _

a -i- _

l g .. . _

tas 3 ese 2 l's 2 age 2 432 3 681 n = i "= ' =< >

g.L ,,,,,ig,,

j 0% Power Loop 3 .

Figure 11 i

,, anim mstr m e, irte, anas > . is. ein.

t i. _ _

in _ _

, di b iJl in .l I abiN I t JtilG)d4 kb il I

~

.- pr qgr p 9 wT

. . . .9'Fr "'prgw \ "r g\

-e . _ _

j l

" p m ,, , ,, - ,,. ..... 2 , - - -

3. .

t i. - _,

k

, ll J k J J il l L) av lLI i l I L i .l , .I b

.;; f7 '"'WiP MN y U 'W f/gifl1"1 -

[g ..-, .. _

""* g g 45, -

n.c . ... ' s . ' " ' ' ' ' "

2 i. _  !

, hi lLA id I djls il ikd ib i de 9 ., I'9 lrj "7j 'I' P

'fl j j])Yl'l*' U l1  !}t' _

i .. . i .

1 :::- ,,. .....: a, -- - -

g ,,,,,-

-ie _ _

, .A Ida laJki ik Nl 3M.'i Mihu. At e  !

I -. j,6 y E }ll' {Y .l7 [ hf kh I I i g .. . _ _

" g, u ,, - ,, ,

,,......2, .- - -  !

19% Power Loop 1 Figure 12 l

\

,,m,, m, _ y,m m ,

- i. _

~_

-in _

a kd IJ 11 i n nk d di I t aAN f 1. lJ n"y]qypJ gygyt)

, v

. Liv q r qNglg i .
_

!.. flE.Ilfen,EC, s.

ie -
  • in _

11$ ill83 h a lit ,Jllak I

I t k 4 th d L

, ' ' ' l l j '

yg'dl l ' ' ' _

T}

9 .. f i K iy V1 i

g..

' 784 ullf0lIT C, se -

is _

2 : _

I Allii At A kl bJ Aail;) di % klE.11 W a

. rimng 7 rp wp w iy y p p r y

[. _

g..

~ -

~" g u ,,,,, - ,,. .....: a, --

~

- ie _

ie _

3 L l 1 3 , M .w.

$ blb bd i4i!$k,Id:1 e . p y'st 1 y Yp 'W Y ' q ff' Fh"firl Wil _

g .i _

g..

!gy y,' "* ria . int ! !L'c, 19% Power Loop 2 Figure 13

I 2/11/04 Kfitpapels W.WRIf1WV CLf23 2 4124 .19.

r a. _ _

s s. _ _

in l ( Wl,

iL ( u# a o It aka 1 4 '

i.9, d -

g..

EyU'TY'TVpM'y 'L/ Rg

_ u g .. . _ _

  • i. _ _' '

ss _ _

Dd "t d l L 1) , b i b .] .I llh li J JI . .

~

j .::

JhylU'\q"flQl'lT)ff(N l

i :::- ,,. . . .... r. , - -- -

.i. 3 . _ '-

. -n. , _

, l . < i ib b (2 Il k k ! b)I dI b 1i li I J g..

.s : _.

ml 1TH "i 4

q TfFURWF_ _

g ..--. _ _

m., . -- - ~ -

3 ._ ,,,,, ,,. .. .

, n. _ _

s s. _ _ a l tl .L k ll J l h l I t tjL - .

g .. . _

3yr i

m w(viray ppig_

. ,tt ..s,.T tNca 19% Power Loop 3 Figure 14 , ,

r ---- , , -- ~_- -- -

e i, u, m, - m, ., m . , .. -

i.

D'E, .. , , A b, i.d . ,yOaA.ddud..,N...A.1.A.A., -

-. 3 l-

-i 2 _ -

N T14 Mllf9T 3EE)

i. _ -

in _ -

k* Nb..AMM.,M b M M. AIM v

y -

y yy N

. N. 3NWN ai 2 _ -

-i . - -

'Tg g, , g,' '" n=.i..! L '"

i. _ -

. ,Lk ,i e n, , , .,

i-- -

-i : .. -

-i . -

Ti mistsf S8

i. _ -
i. _ -

k, ,

.. .. M., N d., M ,b.b,.l..,h.,-

i.: _ =

-a . _ -

3 9 3 g, , g,' n= .i..! L CGE 51/ POWER S/G FEEDWATER Figure 15 Loop 1

,, m .-

h I I I k i I

I 1'

l l lk h a, r

I t,

. .. _T ri i y g l I i V ll' v1 j "lq t.

l l M.  ;

l - - -

g i,, _ a,c ,- ... . -,

M! iAiMlk.luWhbkl.OYdi\,

1 i

-i n

{ 1" lif lI j I

' gP I l  ;

{

. _ l _ l

~' '" '~

, E t,- ,JJ!$'" "" ""*~" ' ' "

i

[', I nill A .11. . i ,ni )( k i i ila k$

lN F

f"$ @l fp ly T' N P l ... ,_ _ _ .. ,

7 , , ,,,

t .. _

l l Ida i hik l i, > II L L ih!, i E h i I l

. l .

~9 5 ,, ** '" '"

a J " a- ' * >

CGE S/G FEEDWAT:R 51/ POW".R Figure 16 Loop 2 l

t REITflesEhtR Mff9afrT CLAElR 9 4AEf GEEP 1/12/04

i. _

.. J J dh "1 l

f f"'

kb "l I

i d I

.i s _

, ,. . a. - .. .. --

i. _

[, iVWNh %(b % Y kI M k

,1- Mit,Wlf LSE.D

'l l

' l '

I l

.. s _

[

' ~ '~ '"

~ ' 5 6, a.

'- "-L

. f\ ll

~

^

). _

I r

"; y ;, _ a;- ,,- . , , , .s - - - ~

CGE 51/ POWER l S/G FEEDWATER l Fiqure 17 Loop 3 h ----w -w-----+----v -

m - -

,, m .m -- - m. - - , .-

i. _ -

f Dd118 11. 4 M n .. , A J1- eli a lt ponmyypynn'y ppy?

, I I

.i . -

.e . -

I y ,.. . ..- . . . . -.

s. -

i.: -

NJi IL lli 11 . 4L i I ct a .e I - l c., aqpy . r tyryype ygggy  ;

3 g,, , yj = , = ..' L  !

ll _ -

i.: -

~

L t! .] , 61, i all ..lJ Al I '

NM. Li l d W

1 b; ,

T D JffT[  ! ' 'IO 9N "1 y, _ g,* "* ,,<...? L ** *~ '"

3 - ,

~i hd kk udl O 'J

d. , j 1 q q r jj " 711 '

1 ' 1 ~ ' l l 'l ll' lr li g -

.i . _

a ,14 88751 L 88 i CGE B1/ POWR S/G FEEDWATER Figure 18 Loop 1

wrim- manttte am n esas emer viu e ie _

,_ e _

g i.na k. Ia i I b I Ba I ti Al- - 1 1 a yr

'TP VIWryVD Mp*Im'l8T Y'

.i , -

734 altf97 ILD

{

i. -

i.: -

I g i a A .i _ .

kil J - m

4) 'y V l' T l 3 { [ ' ' [' ' ' ' ' 'Wl ' l' f

=

  • l 3 _

+4 0 _ ,

flg altip?' (SLt3 '

ie _ .

is -

, hLI) .11 L1 .i .!

klj ab i l ila i I J _L J k l 3 {+yrrimi" 'ngpiy yy m mi w yyqryg

  • 8 f ag utsfenf asica

{

ie _

is _

g al lI 11 l l I il L i k. J 1i - I tI I E

.. j '

JU p1 \

fi y '

' V

-s _

=

ei e _

m f14 uttTst tSC)

CGE 8 / POW R ,

S/G F EDWAT R Fiqure 19 Loop 2

~ - - . , - _ _ . - - . _ _ . _ , __

,,m -r -

u,---, -

i i . -

g le .Jk $ .t j h $ bI N !I a j i 1. . .b I i k l h Im 13,W7 atK3

. _ t

e. _

_i . _

$l Til d l la,. . A l. 3 . 11. . - l. .

, ,1 LL d il s ; i

&"' h Y YD N f 1

~ * '"

..'gg,,,gj" em .=,' E

_i.

{* , . l. , m ll i J It! 1 dab, k 11-- i l-

* "MgYTfl)YP4NTflYl%

,, Alp

~

' a.

'- -' S

' '~ '~ '"

. . E i.,

b* 'Ii , a e, ..i Ui L 4. l a. mJa 1 Jin.>kA-lMl/ W V S ')f IYT %hg7Y ]

=. _

~ ~ ~ -

" ; g g,, _ a; -= ,.,,,.,=n, CGE 81/ POWER ,

S/G FEEDWATER  !

Fiqure 20 Loop 3 ar - , - - - _ , - , . - - - - . - . - - - - -.-

mm. -,- -n.,-, .-

_i. ~

~

[ [ l# a di, , ,1 . e ai s a .11 a i a I .s i Q

-. s fifQhlQV@N%fQ 1

flE ultiget alta is _ .

f;' , 7. k . .I I t - a i al i , W i .it

^

I i

-. e _ _

a ffE uttTWT $3 i .. _

f* T.i Ifd

, iJ ., ik nL. l)h l .k iW'(F F IT Q)Qf ii i, uI Ih Ad b h.

Ilg 4 ' f lj l i -. s 3 ,. , g' "* fiE ier.' E3 g i a ia ., hk .t _ la a LL l kl ki  !. I l q WKyWW$Fg9T1%'7%

kN%1M} _

-. 3 - _

i a g f1E uttfer tatza CGE 90/ POWER l S/L FEEDWATER  ;

Figure 21 i Loop 1 1

i i

h 1/firee 11tT M - ".FMPefUapTti m f een 4030 se _

i.: _

m e -

~

t 'l l i k k tillh l . .7

} . _

fN )Q)@h/ h  ;

" g g , g,'- ... . ,u, g l 2 l iu i j. .. .N s 1 I iik Q@Q{YYNff'fWW M T6t .-

'" 3 g , a; =

. .s m, ' = '= '-

i. _

p

~

6i d-l t .al. i . , tla, nakd 1 A kJa , il hk L

[ . 1 u . .

ph TM {f" VPYg 1.yV (pl 9 a-d 5' ' - '" '"

se 5 L . a l" .

\

l

\

, il L I elm L d ukilllal . k lib . Lllt i

5pp p,y wnryv mngrq  !

.. _ 'l _

-s e _

,la utsts ,' $ 3 g

CGE 90/ POWER S/G FEEDWATER Fiqure 22 Loop 2

s

,, um wm ,a -ineum, .

e _ _

ie _

' il i be ih NJ i h a dd ,a # .klath L llk k f lid

VVY Q F "f'"

-e . _

W Yl K f l f P W W "]

-e. _ _

-e e C, y inst utITyrt astra is,.

p ,

l, 1 M IN,lI A i 1 , '

. . Ik (AkJ n I

il

.e 1i l

( iR (f' 11

$gllhi1i l M

'")P ]JP 'll'}'_ _

-a _ _

C y flIE 8088791 satta .

s. - _
l. jdk gv y n g Il dl. . I e . . .

, . MN i

-8 : _

y,ry g m ppn 9) ye, , g* "^ fm utsm,' L ** ** *"

.e . .

es _ _ l is _ _ ,

1A l d lidIL $ ib w

e t .. 1. m e - si

-e e .

"gq 'rgy (pyy gpqq _

l C W fisE nitfWit Sa CGE 90/ POWER S/G FEEDWATER ,

Figure 23 l Loop 3 e

N - -- - _ v - . - - - , , - . . - - - . , -- - - - , . , -

--.-,<-g - . - ,

y

- ~

i i

i am- mentries, a - ,

hivw e, _

~

e. _  !

e.e -

iI E l1 as {m 1 al Ia a i bl

% f t l . .

e: ypyTyp

+

y 4 y (pg 'qm

. . t

<e _ l '

. f g Im 1883fS1 El

.e _

s: -

ie _

j l _

IJki fa k. i hi$h d AL. a k k }, i l

[W'llylF Mphirp y rp d i 1 l-i 1 'y fp 1 J .

.e . _

ra merm' E. l

'$a,,g,"

es _

s' \

y li d n ilIUh,i}l I > ] l kk ,

k . ,. _M "}T } l I '

I F' '( (l) 8

-e . .

-e 3 .

  • E. ** '" *"

g a, , g* "* rm mere, f .. .

~

es .

s. .

il J

' k, .1) stkt! I d iL f I ""]

i i '

I '

l' -

il

-e .

'}'

i:: : i

-e * *"

  • a g fisE solem SS E95 d880/A9EP Figure 24  :

Loop i

[

l -

l  !

I

~

e i =sem. =.ine um ,

,,_ime ~

~ '

i.e _

i.: _

I l k [ i 5t e ,

f Ifti b _

I l Ill p:: 7 ' NM pdgj }l ) $ { 4 FF Q"3$

y ffE Mittst ELC) ikk Ilk lah di jp mi w ngrro w 'rq I

Li ik) . tl h I l.l ,

g.. _

-l , _

al S flE MitTWIY (stsi g -

,e se _

l _

db6A dh le _

}

n a Un i2MM 3 M g.. yy qg i> l g cyp () y 7 p ig _

l

  • 18 .

$3 9 g flE ultist

! is_

f, k

Nikil Iki is in II

py,r y I{ ) .

9

c. gip'*17i il mpr g el .3 _

ne -

S) 9 g flE nisfet CGE 100/ POWER S/G FEEDWATER Figure 25 Loop 2

~

9 i , ..

1 nn rn,a ,

. um e: -

I k k d si II I

i1 l a P' l 1, Wj Il ' 1 T TI ')y1 Ili f.

}

-e e -

  • S.3 ,.

e C

fl8E NIS?WT stK) es - 1 I h Id 'b i I i 1, k

'f .

I

'5 ' I [ {

E I 8 1,I i l- ,

,' )

ff e

m,

. 3 .,,,,_ a : - -

I

- se ,.

il f

L.d l. l- i lt, ,

I ) 11 k l- <,

w p b pynr1i'7 9 f

gi, p iw y3 -

l

~

g-a e -

  • 43

'~ '~

5* a,' "' '- ' - *> '

i $l L 1

'l "

l 1

'l' I I I 4 p-

.. \"] Il l {l ig 1 -

a. . -

s -

f tst mittpv Sp C

E% d22$d9 Eft" Fiqure 26 Loop 3 t

I

Figures 27 thru 34 are power spectral density plots for continuous pressure oscillation data taken at yarious power levels at V.C. Sunmer and are considered proprietary to Westinghouse.

l l

"