ML20081C014
| ML20081C014 | |
| Person / Time | |
|---|---|
| Site: | Callaway |
| Issue date: | 03/07/1984 |
| From: | Neichalfen A, Schnell D UNION ELECTRIC CO. |
| To: | Harold Denton Office of Nuclear Reactor Regulation |
| References | |
| PROC-840307, ULNRC-760, NUDOCS 8403120104 | |
| Download: ML20081C014 (127) | |
Text
-
Rev. 2 UNION ELECTRIC COMPANY CALLAWAY PLANT OFFSITE DOSE CALCULATION MANUAL Approved:
h.f,//84
/.2 b $
g.. Chairman, ORC
/
'Date ORC meeting i
number 3/7/2fI Reviewed:
1M supergtendent, ealth Physics Date Prepared By:
dddha 3 [7 /F4 Date 8403120104 840307 b
PDR ADOCK 05000483 A
PDR Og
I i-l 1
i.
f F-Rev. 2
+
1 i
I.
r I
I I
t, i.
I.
r l'
t t
r.
1 I.
i.-.
4 i
i t
i.
This document contains the following:
Pages.
1 thro:gh 100_
t Tables 1
through 12 i
i-Figurec 4. '1, 5.1A, 5.1B, 5.2A, 5.2B, 5.3 i
t 9
f o
I
(
l b
i J
I r
t t
t i
l a
i
)
k i.
Rev. 2 Table of Contents f
Page 1.0 PURPOSE AND SCOPE 1
2.0 LIQUID EFFLUENTS 2
?
' 2.1 RADIOLOGICM. EFFLUENT TECHNICAL SPECIFICATION 3.3.3.10 2
2'2 LIQUID EFFLUENT MONITORS 2
2. 2.1 -
Continuous Liquid Effluent Monitors 4
i 2.2.2 Radioactive Liquid Batch Release Effluent Monitors S
2.3 ODCM I'ETHODOLOGY FOR THE DETERhiIN-s ATION OF LIQUID EFFLUENT MONITOR SETPOIi1TS 6
i 2. 3.1' Development of ODCM Methodology for the Determination of Liquid Effluent' Monitor Setpoints 6
2.3.2 Summary, Setpoint Determination Methodology for Liquid Effluent Monitors 12 j
2.4 LIQUID EFFLUENT CONCENTRATION MEASUREMENTS 12 2.4.1
. Radiological Effluent Technical i
Specification 3.11.1.1 32 i_
'2.4.2
'-Liquid Elfluent Concentration l
Aeasurements 12 L
.- 2. 5
. INDIVIDUAL LOSE DUE TO LIQUID l
EFFLUENTS 13 2 5.1 Radiological-Effluent Technical
[
Specification 3.11.1.2 13
+
- . s 2.5.2 The. Maximum' Exposed Individual 13 ll 2 - 5. 3 '.
. 7DCM Hethodoloay for Determining 1-Doce Contributions.from Liquid Effluents 13
-i-6 g-
- i y=+v--
y v+ pr
-p-wwy y es'< w s, w e A-m e te
-e--
.ww w g v e
-.,ww w w vwe es, en,e-v a e -ere-ar me v e _.
-es -o e-
- = - * -
- + - - - * *
- * = = - -
- o
.Rev. 2 Table of Contents (continued)
Page 2.5.3.1 Calculation of Dose Contributions 13 2.5.3.2.
Dose Factor Related to Liquid Effluents 15 i
2.5.4 Summary, Determination of Individ-ual Dose Due to Liquid ' Effluents 17
)..
2.6-LIQUID RADWASTE TREATMENT SYSTEM 21 2.6.1 Radiological Effluent Technical Specification 3.11.1.3 21 2.6.2 Description of the Liquid Radwaste Treatment System 21
-2.6.3 Operability of the Liquid Radwaste Treatment System 21 L
3.0 GASEOUS EFFLUENTS 22 3.1 RADIOLOGICAL EFFLUENT TECHNICAL SPECIFICATION-3.3.3.11 22 3.2 RADIOLOGICAL EFFLUENT TECHNICau SPECIFICATION 3.11.2.1 22 3.3
~
GASEOUS EFFLUENT MONITORS 22 3.3.1 Continuous Release Gaseous Effluent Monitors 23 3.3.2 Batch Release Gaseous. Monitors
~25 l
3.4 ODCM METHODOLCGY FOR THE DETERMIN-ATION OF GASE9US EFFLUENT MONITOR SETPOINTS 26 3.4.1 Development of ODCM Methodology l'
for 'the Determination of Gaseous b
Effluent Monitor.Setpoints 26 3. 4.1.1 -
Total Body Dose-Rate Setpoint g
l Calcul'ations 26 13.4.'l.2 Skin'D'ose Rate Setpoint-l Calculation 28 3.4.1.3 Gaseous Effluent Monitors Setpoint l
Determinati on.
29 L
t-
-ii-
[.
7 Rev. 2 Tabls of contents (continued)
Page i
3.4.2 Summary, Gaseous Effluent Monitors
'Setpoint Determination 31 3.5 ODCM METFODOLOGY FOR DETERMINING DOSE CONTRIBUTIONS FROM GASEOUS EFFLUENTS 31
_3.5.1 Determination of Dose Rate.
31 i'
3.5.1.1 Noble Gases 31 3.5.1.2 Radionuclides Other Than Noble Gases 32 l.
I 3.5.2 Individ'tal Dose Due to Neble Gases 38 i
3.5.2.1
. Radiological Effluent Technical Specification 3.11.2.2 38 f
1 3.5.2.'1.1 Noble Gases 38 i
3.5.2.2 Radiological Effluent Technical Specification 3.11.2.3 39 L-
~3.5.2.2.1 Radionuclides other Than Noble L
Gases 43 1
i 3.6.
GASEOUS RADWASTE TREATMENT SYFTEM 6.:
i-b 3.6.1 Radiological Effluent Technical Specification 3.11.2.1 61 3.6.2 Description of the Gaseous Radwaste Treatment System 61 1'
3.6.3 Operability of the caseous Radweste Treatment system 61 4
4.0 DOSE AND DOSE CO!OliTMENT FROM l
URid?IUM-FUEL CYCLE SOURCES 62 4.1 RIsDIOLOGICAL EFFLUENT TECHNICAL i-SPECIFICATION 3.11.4 62
(:
i.
4.2
_ODCM METHODOLOGY FOR DETERMINING DOSE AND DOSE COMMITMENT FROM U
URANIUM FUEL CYCLE SOURCES 62
[:2
'4.2.1 Identification of the MEI'iBER 63
['
OF THE PUBLIC
-iii-p
. =. -. -
~
n Pev. 2 Table of Contents @ontinued]
Page 4.2.1 1 Utilization of Areas Within the SITE BOUNDARY 03 4.2.2 Total Dose Fram Gaseous Effluents 64
'4.2.3 Total Dose From Direct Radiation 64 4.2.3.1 Direct Radiation From Outside Storage Tanks 64 4.2.3.2 Direct Radiation From the Reactor 67 5.0 RADIOLOGICAL ENVIRONMENTAL MONITORING 68 5.1 RADIOLOGICAL EFFLUENT TECHNICAL SPECIFICATION 3.12.1 68
5.2 DESCRIPTION
OF THE RADIOLOGICAL ENVIRCNMENTAL MONITORII;G PROGRAM 68
! 6.0 DETERMINATION OF ANNUI1L AVERAGE AND SF. ORT TERM ATMOSPHERE DISPERSION PARIJ1ETERS 84
-6.1 ATMOSPHERE DISFEP.SION PARAMETERS S4 6.1. l '
Long Tern Dispersion Estimates 84 6.1.1.1 The PUFF Model Si
.6.1.1.2 The Straight-Line Gaussian Diffusion Model 85 6.1.1.2'.1 Mixed Mode and Elevated Release'Fodel 86
!'6.1.1.2.2 Gound-Level-Release Model 86
!"6.1.i.2.3
--Decay, Depletion, and' Deposition Methodology 87.
~
I.6.1.2-Short Tern ~ Dispersion Estimates 8S
! 6.1.2.1 The Determination of the Slope
. Factor.(S) 90 7.0 SEMI-ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 94
-iv-
._.,,,,,,----y-.,,m-
+ --,, ---,--,- -
,t 1
Rev. 2 1 -
}
t Table of Conten'ts (continued')
Page 8.0 IMPLEMENTAT1GN OF ODCM METHODOLOGY 96 T
4 i
9. 0..
REFERENCES 97 1
j-I r-I e
?.
i h
r e
L -
j-r.
t N
+
k e
c '
h
- j..
l.'
l' 1.
I i
e a
1 1
e I
i-i f
m T[ aus i
ma*=-+we
--ww r-w-...-.-.--,.
Rev. 2 List of Figures Figure 4.1 Site lirea Closed to Public.Use
- ! : Figure - 5. lA Airborne _ & TLD Sa2cpling Network
! Figure 5.lB Airborne & TLD' Sampling Network
- Figure-5.2A Location of liquatic Sampling Stations Figure 5.2B Location of Aquatic Sampling Stations
! Figure 5.3 Food Products Sampling Locations
! Figure 6.1 Slope Factor (S) for Short Term Dispersion
~
Parameters I
f 1
I t
1 1
I-i
> =.
+I i
f l '.
'[
-vi-N
-........, ~. - -.. ~,,. -.. -__ _.__ -,...._,,,,, _.., _,.,, - _..... _, _ _ _, _ -. - _., _... _,.. _ _. _. _., _ _ _. _ _... _ _.. _... _. -.. _ _. -. _ - =
i Rev. 2 i
List of Tablea t
Page Table 1 Ingestion Dose Commitment Factor (Ag7) for Adult Age Group 18 5
Table 2-Bioaccumulation Factor (BF;ific
) Used in the Absence of site-spec Data 20 Taole 3 Dose Ftators for Exposure tc A Semi-Infinite Cloud of Ncble Cases 30 Table 4 Dose Parameter (P.) for Radio-nuclides Other Thln Noble Gases 35 Table 5 Pathway Dose Factors (R4) for l
Radionuclides Other Thah Noble Gases 43 r
Table 6 Radiological Environmental Monitoring Program 69 Table.7 Reporting Levels for Radioactivity Concentrations in Environmental Simples 80 l
Table 8 Maximum Values for the Lower Limits of Detection 81 i
j Table-9 Highest Annual-Average Istmospheric I
Dispersion Parametel.a - Raduaste Building Vent 90 Table 10 Highest Annual Average Atmospheric Dispersicn Parameters - Unit Vent-91 i
.!L Table 11 Short Term Dispersion Farameters 92
(
Table 12 Applic: tion of Atmospheric Dispersion
(.
Parameters 93 t -
5 I
-vii-
-
- wi g e we p wer,w yy t= wr-- v'w e,
--,,er
,-e,
- <-* w w--e rwee r w av ww-w e ne.,=
-.-rw ee-e+
m-enw----.
'-+-*--a-----~---'-*---'*--
- " ' * - ~ " * * " - ' " " * " "
r;.
11ev. 2 Record of Revisions Revision Number Date Reason for Revision i
Rev.
0-'
March 1983 Rev. 1 November 1993 Revised to support the current RETS submittal
.and to incorporate NRC Staff comments 1
Rev. 2 March 1984 Revised to incorporate NRC Staff comments-t f
i
!.j.
[
l l
l'
~
i t
e L
i i
-vill-l
\\,-
c Rev. 1 1.0 FURPOSE AND SCOPE The Offsite Doce Calculation Manual-(ODCM) describes i--
.the methodology and-parameters used in the calculation of. offsite doses and dose rates due to radioactive
-liquid and gaseous effluents =and in the calculation of liquid and gaseous effluent monitoring instrumentation i.
alarm / trip setpoints.
The ODCM also contains a lir,t and description of the specific sample locations for l
the radiological environmental moni toring program.
i-l Changes i he calculational methodologies or par:amet-1 ers will o,.* incorporated into the ODCM and documented i
in the' Semi Annual Radioactive Effluent Release Report.
j-The ODCM does not replace any st-tion implementing
. procedures.
i L
t.
j.~
i 9
f t
I l
l I
?
r I
i i
?
L l t
't..
Rev. 2
-2.0 LlOUID EFFLUENTS Radiolog cal Effluent Technical Specification 4
-2.1 3.3.3.10 The-radioactive liquid effluent monitoring instrumenta-tion channels shall be OPERASLE with their alarm / trip setpoints set to ensure that the limits of Radiological Effluent Technical Specification 3.11.1.1 are not exceeded.
The alarm / trip setpoints of there channels
- ! shall_be adjusted.to the values determined in accord-ance-with the methodology and parameters in the ODCM.
2.2 Licuid Effluent Monitorc Gross radioactivity monitors which provide for au-tomatic termination of. liquid eifluent releases are present on the liquid effluvat lines.
Flow rate meas-urement devices are present on the liquid effluent lines and the discharge line (cooling-tower blowdown).
Setpoints, precautions, and. limitations applicable to-the operation of the Callaway -Plant liquid effluent monitors are provided in the appropriate Plant Proce-
! dures, <.hich are= contained in Volume 6 of the Plant Operating Manual.
Setpoint values are caJculated to assure that alarm and trip actions occur prior to ex-ceeding the Maximum Permissible Concentration (MPC) limits in 10 CFR Part-20 at the release point to the
~
! UNRESTRICTED AREA.
The calculated alarm and trip ac-
' tion setpoints_for the liquid effluent line monitors and flow measuring devices must satisfy the'following equation:
cf i C F+f (2.1)
L i-f Where:
C=
the liquid effluent concentration limit (MPC) i
_ implementing Radiological ~ Effluent Technical Specification 3.11.1.1 for the site in (pci/ml).
c=
The setpoint, in.- ( p Ci/ml ), of the radioru,tiv-ity monitor measuring the radioactivity i.
concentration in.the effluent line prior to dilution.and subsequent release; the setpoint, which is inversely proportional to the L: -
j.--
Fev. 2 4
I-
' volumetric flow of the effluent line and l-directly proportional to the volumetric flow of the dilution stream plus the effluent j
stream, represents a value, which, if ex-ceeded, would resu]t in concentrations exceed-ing the limits of 10 CFR Part 20 in the UNRES-TRICTED AREA.
t r
i f-=
.The flow cetpoint as measured at the radiation monitor location, in volute per unit time, but in the same units as F, below.
i F=
The dilution water flow setpoint as measured prior to the release point, in volume pur unit l
time.
{If (F)'is-large compared to (f), then F + f 2 F}.
' (Ref. 9. 8.1)
'If no dilution-is provided, then c 1 C.
i i
I I
! ~
The_ radioactive liquid waste _etream is diluted by the plant discharge line prior to entry into the Missouri River.
Normally, the dilutien flow in obtained from the cooling tower blowdown, but snould this become 1
anavailable, the plant water treatment facility sup-l plies the necessary dilution flow via a bypass line.
The batch release limiting concentration (c) which cor-responds to-the liquid radwaste effluent line monitor setpoint_is to be calculated using methodology from the expression above.
'Thus, the expression for determining-the setpoint on the: liquid radwaste effluent line monitor becomes:
c<~
C(F + f)
(pCi/ml) f (2.2) k Re c.
1
-2.2.1 Continuous Liauid Effluent Monitors The radiation detection monitors associated with conti-nuous liquid effluent releases are (Ref.
9.6.1, 9.6.2):
Monitor I.D.
Description 0-EM-RE-52 Steam Generator Blowdown Discharge Monitor 0-LE-RE-59 Turbine Building Drain Monitor These effluent streams are not considered to be radi-onctive unless radioactivity has been detected by the associated effluent radiation monitor or by laboratory analysis.
The sampling frequency,-minimum analysis frequency, and type of analysis performed are as per Radiological Effluent Technical Specification Table 4.11-1.
.The steam generator blowdown discharge monitor conti-nuously monitors the blowdown discharge pump outlet to detect radioactivity due to system demineralizer break through and to provide backup to the steam generator blowdown process radioactivity monitor to prevent ~ die-charge of radioactive-fluid.
The sample point is
. located on the discharge of the pump-in order to moni-tor. discharge or recycled blowdown fluid and upstream of 1the discharge isolation valve to permit termination of the radioactive release. prior to exceeding the in-stantaneous concentration limits of 10 CFR Part 20.
.The high radioactivity alarm / trip (alarm and trip) set-point initiates control room alarm annunciatian and au-tomatic isolation of the blowdown isolation valver and the. blowdown discharge valve.
.The turbine building drain effluent monitor is provided to monitor turbine building liquid effluents prior to release to the environs.
The' fixed-volume detector as -
.sembly contir'toutly : monitors the drain effluent 'line upstream of.the drain line isolation valve.
The high radioactivity alarm / trip setpoint initiates control 1
. room annunciation and automatic isolation of the drain i
- line isolation valve to prevent the release of radioac-tive fluids.
.The sample location. ensures that all potentially radioactive turbine building liquid ef-
'fluents-are monitored prior to discharge.
m Each monitor channel is provided.with.a two level.sys-L tem which provides sequential alarms on increasing radioactivity levels.
Theee setpoints are designated as. alert setpoints and alarm / trip:setpoints.
(Ref..
9.6.3)-
l l
a t -
m
I~
L s.
t Rev. 2 1
i The alarm / trip 1setpoints are determined through the use of Equation -(2.2 )- methodology to ensure that Radiologi-l cal Effluent Technical Specification 3.11.1.1 limits j
! L are not exceeded at.the UNRESTRICTED AREA.
The alert j
setpoints have been administrative 1y established belew the alarm / trip setpoints, thus providing an additional i
margin of safety.
The alarm / trip setpoint ' cal.culations are based on the
! mini, mum dilution flow rate (cooling tower blowdown,
!;5900 gpm), the maximum-effluent stream flow rate, and the actual isotopic analysis.
Due to the possibility of a simulataneous-release from more than one release pathway, a portion of the total site release limit is allocated to each pathway.
The determination and usaae of'the allocation factor is discussed in Section 2.3.1.
In the event the alarm / trip setpoint is reached, the radiation monitor setpoint (c), will be reevaluated us-l
~ing the' actual dilution flow rate (F), the actual of-
}
fluent stream flow rate (f), and the actual irotopic analysis.
This evaluati~on will then be used to' ensure i
that Radiological Effluent Technical l
Specification 3.11.1.1 limits were not exceeded.
i
-2.2.2
~ Radioactive Licuid Batch Release Effluent Monitor I
.The two radiation monitors which are associated with the liquid effluent batch ralease. systems are (Ref.
9.6.4, 9.6.5):
MONITOR I.D.
Description
.O-HE-RE-18 Liquid Radwaste Discharge-Monitor j
i HF-RE-45 Secondary Liquid Waste System Monitor l
The liquid radwaste-radiation ~ monitor continuously monitors the discharge of the liquid radwaste process-
[
ing system to prevent'the discharge of radioactive' t
fluid to the environs.
The fixed-volume detector as-sembly continuously monitors the ' system discharge line i
upstream of ' the discharge valve.
The high radioactiv-ity alarm / trip setpoint initiates control room alarm
(
annunciation and automatic isolation of the liquid rad-
[
waste system discharge valve to terminate discharge.
The sample point is" located to ensure that all potenti-
[
allyEradioactive fluids frcm the liquid radaaste processing system cre monitored prior to discharge.
l The sciondary liquid waste system discharge radioactiv-
'i ity moi ; tor continuously monitors' secondary liquid !
{
-~
Rev. 2 waste system effluents prior to discharge.to the
~
envir'ons.
The fixed-volume detector assembly monitors the discharge line upstream of the discharge isolation valve.
The high radioactivity alarm / trip setpoint ini-tiates' control room alarm annunciation end automatic isolation of the secondary liquid waste cyctem dis-charge valve to prevent the discharge of radioactive fluid. ' The sample location ensures that all potenti-ally radioactive sources from the system are monitored Lprior to. discharge.
The setpoint for these monitors is determined according to the methodology described by Equation (2.2) and is a
' function of the dilution flow rate (F), the radioactive effluent line flow rate (f) and the tank liquid ef-fluent concentration, as determined oy a pre-release isotopic analysis.
Based -on these factors, a setpoint is calculated for the appropriate monitor to ensure that Radiological Effluent Technical specification
! 3.11.1.1 limits are not exceeded at the UNRESTRICTED
! AREA (Figure 5.2A).
2.3 ODCM Methodologv for the Determination of Licuid Effluent Monitor Setpoints The dependence of the setpoint (c), on the radionuclide distribution, yields, calibration, aud - raonitor paramet-ers, requires that several variables be considered in setpoint calculations.
(Ref.~9.8.1) 2.3.1 Development of ODCM Methodology for the Determination of Liquid Effluent Monitor Setpoints The isotopic concentration of-the releace being consid-ered must be determined.
This is obt,.ined from the sum of the1 measured concentraticns as determined by the analysis required per Radiological' Effluent Technical Specifications Table 4.11-1:
i t
C=
(Z (Cg)1) + C
+CS+Ct r
+ C, (2.3)
T A
a 4
a Where:
-C=
the total concentration of radionuclides as determined -by the analysis of the waste saople.
p-
Rev. 1
{(C9)1 = the sum of the concentrations (C ) of each measured gamma emitting nuclide 8bserved by gamma-ray spectroscopy of the waste sample.
the measured concentrations (C of alpha em-itting nuclides observed by gr8s)s alpha C**
=
analysis of the monthly composite sample.
C*=
the measured concentrations of Sr-89 and Sr-90 s
in liquid waste as determined by analysis of the quarterly composite sample.
C*=
the measured concentration of H-3 in liquid t
waste as determined by analysis of the monthly composite sample.
C*=
the measured concentration of Fe-55 in liquid F
waste as determined by analysis of the quar-terly composite sample.
The C term is included in the analysis of each batch; 9
terms for alpha, strontium, Fe-55, and tritium are in-cluded as appropriate.
- Values for these concentrations will be based on previous composite sample analyses as required by Table 4.11-1 of the Radiological Effluent Technical Specifications.
-The measured radionuclide concentrations are used to calculate a Dilution Factor (Fa), which is the ratio of total dilution flow rate to taMk flow rate required to assure that the limiting concentrationn of Radiological Effluent Technical Specification 3.11.1.1 are met at the point of discharge.
This is referred to as the required Dilution Factor and is determined according to:
T.
gi
+
a
+
s
+ t F
,iFg (2.4)
P
=
d i
(MPC )
,MPC a
p i
Where:
measured concentrations of as C
C C
C C
=
g, a,
6e,fibe,d [n 2.3.1.1.
Terms C C
C and C will be included in the caledlatfo,n 5s, D
appropriate.
= are limiting concentra-9, F,
Eions8ftheapprohriateradionuclidesfrom p.
_.. _ _. ~.
.m..
k
~,
b t.
Rev. 1~
4 F
10CFR 20, Appendix B, Table II, Column 2.
For l'
dissolved or entrained noble gasec, the
~
concentration shall be limited to 2x10 4 i
pCi/ml total activity.
the safety factor; a conservative factor used l-F-
=
8 to compensate for statistical fluctuations and i
errors of measurements.
(For example, F
= 0.5 corresponds to a 100 percent v5riation.)
Default value is F
= 0.9.
S For.the case F
< 1, the monitor tank effluent concen-r-
tration meets hhe limits of Radiological Effluent Tech-
[
L -
nical Specification.3.11.1.1 E thout dilution and the i
effluent may be released at any desired flow rate.
If L.
F
> 1 then dilution is required to ensure compliance wIth' Radiological-Effluent Technical Specification i
3.11.-l.1 concentration limits.
If simultaneous l
l releases are occuring or are anticipated, a modified j.
dilution factor (!
),
must be determined so that d
available dilution Slow may be apportioned among l
simultaneous discharge pathways.
~
1 l
~
I Fdn = Fd a
t F (2.5) i i
Where:
F^-
the allocation factor which will modifv the f
=
I required dilution factor such that
^
e simultaneous' liquid releases may be made-without exceeding the' limits of Radiological i-Effluent Technical Specification 3.11.1.1.
{'
F
[;
The ' most' straight-forward determination -of the allocc-
~
- tion Octor is:
{
i F=1
- I' a
n (2.6) j F
l Where:
l:'
I r
l :
t ~i.
....--.w.
a
~.
...-~- -.-....-..
~. ~ _ -. - - -. _. -
... - ~...
-....n.;.
l
.a us.= ;
l' Rev. 1 1
i-
[
.n=
the number of liquid discharge pathways for
~which F simultaNe>ousrelease.1 and which are planned for i
However, this value for F may be unnecessarily res-trictive in.that all releh,se pathways are apportioned i
I the same fraction of the available dilution stream, i.
regardless of the relative concentrations of each of l-the sources.
Since the rndionuclide concentration of the two conti-j' nuous sources is less than that of the batch release source, it is acceptable to allecate smaller portions of the dilution stream to the continuous releaues and a
{_
larger portion to the batch releases.
L Therefore, F is necessarily defincd as a flexible f
quantity witfl a default'value of 1/n.
Prior to initi-l
~
ating a simultaneous release,.a check must be made to l
4-'
assure that the sum of the allocation factors assigned to pathways. for the simultaneous release is < l.
i L
The calculated maximum permissible waste tank efiluent F'
(f "Nn)d the effective dilution Flow rate, is based on the modified dilution flow rate, TNO)" effective dilution flow rate is.given by:
I
- factor, (F
(Fggg).
+
Feff = (0.9)F (2.7) f e
a
'Where:
the cooling tower blowdown flow rate and/or F =
bypass dilution flow.
L-A conservative value for F, would be the minimum allow-r able cooling tcwer blowdown of 5000gpm which is used as a-default value.
I E
r i
-9
\\
r
)
=,w%=wh,
--ene-=-m===
r O
i i
I Re v.__1_
Having establiched the values of F and F,g the Cal-culated maximum permissible waste Y.9nk floc ^$a,te can be
- calculated by:
t F
+f F
l-fmax -
eff p
eff (for fp << Feff)
(2,8)
F
'dn dn
}
i l
t i
'< tere :
l
[
f i
.f,.= the expected undiluted effluent flow rate.
e t
Thus, the effluent flow rate is set at or below f I-actual effluent pump capacT6),may be larger than Ell 5 Even though the value of f (f
it does represent-l the upper limit to the effluent ffo)w, rate whereby the j
requirements of Radiological Effluent Technical Specif-ication.3.11.1.1 may still be met.
IfF.< 1, the ef-fluent flow' rate setpoint may be ascigned Eny value since the waste tank effluent concentration meets the limits-of Radiological Effluent ~ Technical Specification j
3.ll.l.l.without dilution and the: release may be made.
.without' regard to the setpoints.for other release l
pathways For tbose discharge pathways celected to be secured during the release under consideration, the i
flow rate setpoint should be s'et at as low a value as i
practicable to detect'any inadvertent release.
i The-liquid radiation monitor setpoint may row be deter-mined based on'the values of.C and f
, which were specified to provide ~complianc$,with tE8* limits of i
Radiological Effluent Technical Specification 3.11.1.1.
I The monitor response is primarily to gamma' radiation,.
l therefore, the actual setpoint is based on f(C ):.
The l
calculated monitor cetpoint concentration is dOtermined l
as follows:
i r
i 6
-- lo _
l l
l 1
I
= -
.. -. ~. _ _ _
t f
Rev. 1 4
1
.i
)
c = A ((Cg)ii pCi (Re fer to Note (2.9) ml Following) j.
Where:
A=
. Adjustment factor which uill allow the set-
{
point to.be established in a practical manner i
j for convenience and to prevent spurious l
alarms.
I q
i i '
A=f (Refer to Note (2.10) max i
f Following) p l
If A > 1: Calculate-c 'and determine the maximum value
-for the actual monitor setpoint-(pCi/ml).
l If A <~ 1:No release may be I..ade.
This condition must be flagged and the operator instructed to re-evaluate F and F (i.e., reduce effluent flow rate b$ returl$$adwas te for reprocessing).
NOTE If F
< 1, 'no further dilution is. required and the releNte may be made without regard to available d21u-
-tion Jr -to other reJ. eases made simultaneously.
Ilow-it is necessary to establish a monitor setpoint ever whirn will provide alarm'should the release concentra-tio4 inadvertently enceed Radiological Effluent Techni-
' cal Specification 3.11.1.1 limits.
This can be accom-
.plished by esta.blishing the adjustment factor as L
follows:
. 1
.i = g--
'(2.11) d Rev.
l' Summary.,d Effluent MonitorsSetpoint Calculation flethodology 2.3.2 for Licul
. The methodology described in '2.3.1 is used to deter:nine setpoints for each of the radiation monitors assigned a liquid process function.
The limiting release concen-tration can be increased by reducing the discharge flow-rate and decreased by reducing the cooling tower
' bloudown -flow-ra te.
2.4 Licuid Effluent Concentration Measurements 2.4.1 Radiolocical Effluent Technical Specification 3.11.1.1 The concentration of radioactive' material released in liquid effluents to UNRESTRICTED ARCAS shall be limited to the concentrations specified in 10 CFR Part 20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained nchle gases.
For dissolved or entrained noble gases, the concentration chall be limited to 2.0 E-04 pCi/ml total activity.
2.4.2 Liquid Effluent Concentration Measurements Liquid batch releases are discharged as a discrete volumefand each release is authorized based upon the sar..ple analysis' and the dilution flow rate existing in the discharge line at time of release.
To ascure re-presentative campling, each liquid monitor tank is isolated and thoroughly mixed by recirculation of tank contents prior to sample collection.
The methods for.
. mixing, sampling, and' analyzing each batch are outlined in applicable plant procedures.
The allowable-release rate limit-is calcu?.ated for each batch based upon the pre-release analysis, dilution flow-rate, and other procedural conditions, ' prior to authorization for release.
The radwaste liquid effluent discharge is monitored prior to entering the dilution discharge line
. and will automatically be t.erminated i f the pre-selected alarm / trip setpoint is exceeded.
Concentra-tions are determined'primarily from the gamma-isotopic-analysis of the liquid batch sample.
For alpha, Sr-83, SR-90, Fe-55, and-H-3, the measured concentration from the previous composite analysis is used.
Composite-samples are collected for each batch release and monthly and quarterly analyses are performed in accord-
- ance with Table 4.11-1 of the Radiological Effluent Technical Specifications.
- 12'-
l=.
O _.... w w.-.
.,..... a-
..w -.. o w. a.. -.. a
~.... - _. -..
Rev. 1 Dose' contributions from liquids discharged as conti-nuoua releases are determined by utilizing the last measured values of samples required in accordance with Radiological Effluent' Technical Specifications l'
-Table 4.11-1.
2.5 Individual Dose Due to Licuid Effluents L
2.5 ' 1
_ Radiological Effluent Technical Specification.
3.11.1.2 The. dose or dose commitment to an an Individual from radioactive materials in liquid effluents released, for each unit, to UNRESTRICTED AREAS shall be limited:
a.
During any calendar quarter to less than or equal to 1.5 mrem to the total body and less than or equal to 5 mrem to any organ, and b.
During any calendar year to less than or equal to 3 mrem to the whole body and to less than or egual to 10 mrem to any organ.
i 2.5.2 The Maximum Exposed Individual The' cumulative dose determination considers the dose L
contributions from the maximum exposed individual's consumption of. fish and potable '.' ster, as appropriate.
-Normally, the adult is considered to be the maximum ex-posed individual.
(Re f.
- 9. 8. 3, 9.8.4) 4 -
S
.TheLCellaway Plant's liquid effluents are discharged to the Missouri-River.
As there are no potable water in-takes within 50 miles of the diccharge point (Ref.
i.
9. 7.1 ', 9.G.6), this pathway does not require routine
= evaluation.
Therefore, the dose contribution from fish consumption is expected to account for more than 95% of the total man-rem dose from discharges to the Missouri River.
Dose from tecleational activities is expected to contribute the additional 5%, which is considered to
(
be negligible.
(Ref. 9.6.7)
Thus, the maximum -exposed irdividual is an adult,
-receiving 95% of the' total dose from eating fish and 5%-
of-the' total dose from recreational activities.
~2.5.3 -CDCM Methodology for Determining Lose Contributions from Liquid Effluents 2.5.3.1 Calculation of Dose Contributions The dose centributions for the total ~ time period Rev. 2 t
m t-Iatg A=1 i
! are calculated at least once each 31 days and a cumula-tive. summation of the total body and individual organ doses is maintained for each calendar quarter.
These dose contributions are calculated for all radionuclides identified in' liquid-effluents released to UNRESTRICTED AREAS using the following expression (Ref. 9.8.3) i i
k m
D
= Z [A.
I At C
F]
(2.12)
I it I
if 1
E=1 Where:
d D
the cumulative dose conmitnent to the total I =
body or T.ny organ, I,
from the liquid ef-fluents for the total period n
Iatf 2=1 in mrem.
the' length of the fth time period over which At
=
g C
~and F are averaged for all liquid rbleases,g in hours.
the average measured concentratior. of radionu-
'C.#
=
l clide, i, in undiluted liquid effluent during.
time period At from any liquid release, in g
(pci/ml).
A,g' =
the site related ingestion doce commitment factor to1the total 1 body or any organ I for each identified principal gammr. and beta emit-ter listed ~in Table 4.11-1, Radiological Ef-
-fluent Technical Specifications, (in mrem /hr) per (pci/ml).
These factors are given in Table 1, as derived through the use of Equation (2.16).
the near field average dilution factor.for C "A =
if during any liquid effluent relecse.
Defined
.~.
Rev. 1 b
l f
' an t'ae ratio of-the maximum undiluted licuid vastc. flou during release to tlie product'of l-the average flow from the site diccharge
[
structure to unrestricted receiving waters L
times 89.77.
.(89.77 is the site specific ap-i plicable factor for the mixing effect of the discharge. structure.)
(Ref.-9.5.1)
The term C;k is the-composite undiluted concentration 1
of radioact ve material in liquid waste at the common I
release point determined from'the Radioactive Liquid j
Waste Sampling and Analysis Program, Table 4.11-1 in L
-_the Radiological Effluent Technical Specifications.
j All dilution factors beyond the sample point (s) are in-
[
cluded in the F term.
j 2.5.3.2 Dose' Factor Related to Licuid Effluents i
' Calculating Jose contributions via Equation (2.13) j O
requires the use of a dose factor A for each nuclide, i, which embodies the dose factors,2 pathway transfer factors (c'.g.,
bioaccumulation factors), pathway usage factors, and dilution factors for the -points of pathway origin.
The adult total nody dose facter-and the maxi _-
mum adu?t organ dose factor for each radionuclide is used.from Table E-11 of Regulatory Guide 1.109; thus, Table.1 contains critical organ dose factors for various; organs.
The dose factor is calculated ancord-ing-to (Ref. 9.8.4):
Air * "o(U /D t U BFg)DFy (2.13) y y F
-115 -
- 2. :_ w,
Rev. 2 i
Where:
composite dose parameter for the total body or A3
=
- I critical organ of an adult for nuclide, i, for all appropriate. pathways, as (mrem /hr) per
( p ci/ml )_.
k := ~
units conversion factor, derived according to:
g 1.14E05 = (IE06pCi/pCi x lE03ml/kg) + 8760 hr/yr.
Up'=-
. adult fish consumption factor, equal to 21kg/yr~(Regulatory Guide 1.109, T.ble E-5).
Bicaccumulation-factor for nuclide, i, in fish BF. =
1 (Table 2), as (pCi/kg) per (pCi/f).
DF..=
Dose conversion factor for nuclide, i, for 1
adults in pre-selected organ, r,
as (mrem /pCi)
(Pegulatory. Guide 1-109, Table E-11).
receptor individual's water' consumption by age U
r group as per Regulatory Guide 1.109, Table E-5.
For adults, U
= 730kg/yr.
D" =
dilution factor from the near field area kithin one-quarter mile of the release point to the potable water intake fo; the adult water' consumption.
NOTE The nearest municipat potable water intake downstream from the -liquid eff]uent discharge point into the Mis-souri River is located near the city of St. Louls, Mo.,
approxis.ately 79 miles downstreami As there are cur-rently no potable-water intakes vithin 50 river miles of the discharge point, the drinking water pathway is not included in dose estimr.tes to the maximally exposed individual, or_in dose estimates to the population.
Should future water intakes be constructed within 10.
river miles downstream of the discharge point, then this manual will be revised to include this pathway ir dose. estimates.
(Ref. 9.6 6).
Therefore, it is not necessary to evaluate,(U /D ).at this time, and Equation (2.13) simplies to:
A.-
= ko (U,EF.)DF.
(2.14) 1T r
1 1 -
~
Rev. 1 i
l
' Inserting the appropriate usage factors fron Regulatory l;
Guide 1.iO9.into Equation (2.14) yields the following
. expression:
1 i
l i-
}
l' j
it 1.14E051(21BF )DF (2.15)
.A
=
f f
l or A.
2.39E06 x BF. x DF.
(2.16)
=
1T 1
1 l_
i.
i i
.2.5.4 Summary, Determination of Individual Dose Due to Liquid Effluente The dose contribution for the total time period m
L2atg f=1 is determined by calculation.at least once per 31 days and a cumulative summation of the' total body and organ doses is maintained for each calendar _ quarter.
The projected dose contribution from batch releases for which radionuclide concentrations are determined by
. periodic composite and grab sample analysis, as stated in Table 4.11-1 of the Padiological Effluent Technical specifications, may.us approximated by using the last measured value.
However, for reporting purposes, the calculated dose contribution from those radionuclides is based on-actual composite /grsb sample-analysis.
Dose contributions 1are. determined for all radionuclides identified -in liquid effluents rele7 sed to UNRESTRICTED
~
AREAS.
Muclides which are below the LLD for the-analyses are reported as "less than" the nuclide's Min-imum Detectable Activity (MDA)=and are not reporteo as being present at the LLD level for that nuclide.
The "less than" values are not used in.tbe required dose calculations.
Rev. 2 TABLE 1 INGESTION DOSE COMMITMENT FACTOR (A:_) FOR ADULT AGE GROUP (mrem-hr per pcichl)
Total Nuclide Bone Liver Body Thyroid Kidney Lung GI-LLI H-3 No Data 2.26E-01 2.26E-01 2.26E-01 2.26E-01 2.26E-01 2.26E-01 C-14 3.13E+04 6.26E+03 6.26E+03 6.26E+03 6.26E+03 6.26E+03 6.26E+03 Na-24 4.07E+02 4.07E+02 4.07E+02 4.07E+02 4.07E+02 4.07E+02 4.07E+02 P-32 4.62E+07 2.87E+06 1.78E+06 No Data No Data No Data 5.19E+06 CR-51 No Data No Data 1.27E+00 7.62E-01 2.81-01 1.69E+00 3.2-E+02 MN-54 No Data : 4.38E+03 8.35E+02 No Data 1.30E+03 No Data 1.34E+04 MN-56 No Data 1.10E+02 1.95E+01 No Data 1.40E+02 No Data 3.52E+03 FE-55 6.57E+02: 4.54E+02 1.06E+02 No Data No Data 2.53E+02 2.61E+02 FE-59 1.04E+03' 2.44E+03 9.34E+02 No Data No Data 6.81E+02 8.1?E+03 CO-58 No Data 8.94E+01 2.00E+G2 No Data No Data No Data 1.81E+03 C0-60 No Data ' 2.57E+02 5.66E+02 No Data No Data No Data 4.82E+03 NI-63 3.11E+04: 2.15E+03 1.04E+03 No Date No Data No Data 4.49E+02 NI-65 1.26E+02 1.64E+01 7.48E+00 No Data No Data No Data 4.16E+02 CU-64 NO Data 1.00E+01 4.69E+00 No Data 2.52E+01 No Data 8.52E+02 ZN-65 2.32E+04' 7.38E+04 3.33E+04 No Data 4.93E+04 No Data 4.55E+04 ZN-69 4.93E+01 9.44E+01 6.56E+00 No Data 6.13E+01 No Data 1.42E+01 BR-83 No Data No Data 4.04E+01 No Data No Data No Data 5.81E+01 BR-84 No Data No Data 5.26E+01 No Data No Data No Data 4.13E-04 RB-86 No Data 1.01E+05 4.71E+04 No Data No Data No Data 1.99E+04 RB-88 No Data 2.90E+02 1.54E+02 No Data No Data No Data 4.00E-09 RB-89 No-Data 1.92E+02 1.35E+02 No Data No Data No Data 1.12E-11 SR-89 2.21E+04 No Data 6.35E+02 No Data No Data No Data 3.55E+03 SR-90 5.44E405 No Data 1.34E+05 No Data No Data No Data 1.57E+04 SR-91 4.07E+02 No Data 1.64E+01 No Data No Data No Data 1.94E+03 SR-92 1.54E+02 No Data 6.68E+00 No Data No Data No Data 3.06E+03 Y-90 5.75E-01 No Data 1.54E-02 No Data No Data No Data 6.10E+03 Y-91M 5.44E-03 No Data 2.10E-04 No Data No Data No Data 1.60E-02 Y-91 8.43E+00 No Data 2.25E-01 No Data No Data No Data 4.64E+03 Y-92 5.05E-02 No Data 1.48E-03 No Data No Data No Data 8.85E+02 ZR-95 2.40E-01 7.70E-02 5.21E-02 No Data 1.21E-01 No Data 2.44E+02 l
ZR-97 1.33E-02 2.68E-03 1.22E-03 No Data 4.04E-03 No Data 8.30E+02 NB-95 4.47E+02 2.48E+02 1.34E+02 No Data 2.46E+02 No Data 1.51E+06 MO-99 No Data 1.03E+02 1.96E+01 No Data 2.33E+02 No Data 2.39E+02 TC-99M 8.87E-03 2.51E-02 3.19E-01 No Data 3.81E-01 1.23E-02 1.48E+01 RU-103 4.42E+00 No Data 1.90E+00 No Data 1.69E+01 No Data 5.17E+02 RU-305 3.68E-01 No Data 1.45E-01 No Data 4.76E+00 No Data 2.25E+02 RU-106 6.57E+01 No Data 8.32E+00 No Data 1.27E+02 No Data 4.25E+03 J
~
w
,,,w,
--m
Rev. 2 TABLE 1 INGESTION DOSE COMMITMENT FACTOR (A:_) FOR ADULT AGE GROUP (mrem-hr per pcichl)
Total Nuclide Bone Liver Body Thyroid Ki dney Lung GI-LLI H-3 No Data 2.26E-01 2.26E-01 2.26E-01 2.26E-01 2.26E-01 2.26E-01 C-14 3.13E+04 6.26E+03 6.26E+03 6.26E+03 6.26E+03 6.26E+03 6.26E+03 Na-24 4.07E+02 4.07E+02 4.07E+02 4.07E+02 4.078+02 4.07E+02 4.07Et02 P-32 4.62E+07 2.87E+06 1.78E+06 No Data No Data No Data 5.19E+06 CR-51 No Data No Data 1.27E+00 7.62E-01 2.81-01 1.69E+00 3.2-E+02 MN-54 No Data ' 4.38E+03 8.35E+02 No Data 1.30E+03 No Data 1.34E+04 MN-56 No Data 1.10E+02 1.95E+01 No Data 1.40E+02 No Data 3.52E+03 FE-55 6.57E+02 4.54E+02 1.06E+02 No Data No Data 2.53E+02 2.61E+02 FE-59 1.04E+03 2.44E+03 9.34E+02 No Data No Data 6.81E+02 8.13E+03 CO-58 No Data 8.94E+01 2.00E+02 No Data No Data No Data 1.81E+03 CO-60 No Data 2.57E+02 5.66E+02 No Data No Data No Data 4.82E+03 NI-63 3.llE+04 2.25E+03 1.04E+03 No Data No Data No Data 4.49E+02 NI-65 1.26E+02 1.64E+01 7.48E+00 No Data No Data No Data 4.16E+02 CU-64 NO Data 1.00E+01 4.69E+00 No Data 2.52E+01 No Data 8.52E+02 ZN-65 2.32E+04 7.38E+04 3.33E+04 No Data 4.93E+04 No Data 4.65E+04 ZN-69 4.93E+01' 9.44E+01 6.56E+00 No Data 6.13E+01 No Data 1.42E+01 BR-83 No Data No Data 4.04E+01 No Data No Data No Data 5.81E+01 BR-84 No Data No Data 5.26B+01 No Data No Data No Data 4.13E-04 RB-86 No Data 1.01E+05 4.71E+04 No Data No Data No Data 1.99E+04 RB-88 No Data 2.90E+02 1.54E+02 F Data No Data No Data 4.00E-09 RB-89 No Data 1.92E+02 1.35E+02 No Data No Data No Data 1.12E-ll SR-89 2.21E+04 No Data 6.35E+02 No Data No Data No Data 3.55E+03 SR-90 5.44E+05 No Data 1.34E+05 No Data No Data No Data 1.57E+04 SR-91 4.07E+02 No Data 1.64E+01 No Data No Data No Data 1.94E+03 SR-92 1.54E+02 No Data 6.68Et00 No Data No Data No Data 3.06E+03 Y-90 5.75E-01 No Data 1.54E-02 No Data No Data No Data 6.10E+03 Y-91M 5.44E-03 No Data 2.10E-04 No Data No Data No Data 1.60E-02 Y-91.
8.43E+00 No Data 2.25E-01 No Data No Data No Data 4.64E+03 Y-92 5.05E-02 No Da'ta 1.48E-03 No Data No Data No Data 8.85E+02 ZR-95 2.40E-01 7.70E-02 5.21E-02 No Data 1.21E-01 No Data 2.44E+02 l
-ZR-97 1.33E-02 2.68E-03 1.22E-03 No Data 4.04E-03 No Data 8.30E+02 NB-95' 4.47E+02 2.48E+02 1.34E+02 No Data 2.46E+02 No Data 1.51E+06
}
l
~
MO-99 No Data
- 1. 03E4 02 1.96E+01 No Data 2.33E+02 No Data 2.39E+02 xTC-99M 8.87E-03 2.51E-02 3.19E-01 No Data 3.81E-01 1.23E-02 1.48E+01
.RU-103 4.42E+00 No Data 1.90E+00 No Data 1.69E+01 No Data 5.17E+02 s
'RU-105 3.68E-01 No Data 1.45B-01 No Data 4.76E+00 No Data 2.25E+02 RU-106 6.57C+01 No Data 8.32E+00 No Data 1.27E+02 No Data 4.25E+03 g_
p
'.;'^
t.
y,
(
l
^
,o
= __-
Rav. 2 TABLE 1 (continuad)
Total Nuclide Bone Liver Body Thyroid Kidney Lung GI-LLI TE-125M 2.57E+03 9.30E+02 3.44E+02 7.72E+02 1.04E+04 No Data 1.02E+04 TE-127M 6.47E+03 2.32E+03 7.90E+02 1.66E+03 2.63E+04 No Data 2.17E+04 TE-127 1.05E+02 3.78E+01 2.28E+01 7.80E+01 4.29E+02 No Data 8.30E+03.
TE-129M 1.10E+04 4.11E+03 1.74E+03 3.7SE+03 4.60E+04 No Data 5.54E+04 i
TE-129 5.01E+01 1.13E+01 7.33E00 2.31E+01 1.26E+02 No Data 2.27E+01 1
TE-131M 1.66E+03 8.09E+02 5.75E+02 1.28E+03 8.21E+03 No Data 8.03E+04 TE-131 1.89E+01 7.88E00 5.96E00 1.55E+01 8.25E+01 No Data 2.67E00 TS-132 2.41E+03 1.56E+03 1.47E+03 1.72E+03 1.50E+04 No Data 7.38E+C4 I-130 2.71E+01 8.01E+01 3.16E+01 6.79E+03 1.25E+02 No Data 6.89E+01 I-131 1.49E+02 2.14E+02 1.22E+02 7.00E+04 3.66E+02 No Data 5.64E+01:
I-132 7.29E+00 1.95E+01 6.82E+00 6.82E+02 3.11E+01 No Data 3.66E+00' I-133 5.10E+01 8.87E+01 2.70E+01 1.30E+04 1.55E+02 No Data 7.97E+01' I-134 3.81E+00 1.03E+01 3.70E+00 1.79E+02 1.64E+01 No Data 9.01E-03 I-135 1.59E+01 4.16E+01 1.54E+01 2.75E+03 6.68E+01 No Data 4.70E+01 CS-134 2.98E+05 7.09E+05 5.80E+05 No Data 2.29E+05 7.62E+04 1.24E+04 CS-136 3.12E+04 1.23E+05 8.86E+04 No' Data 6.85E+04 9.39E+03 1.40E+04.
CS-137 3.02E+05 5.22E+05 3.42E+05 No Data 1.77E+05 5.89E+04 1.01E+04' CS-138 2.64E+02 5.22E+02 2.59E+02 No Data 3.84E+02 3.79E+01 2.23E-03 l
BA-139 9.29E-01 6.62E-04 2.72E-02 No Data 6.19E-04 3.76E-04 1.65E+00 l
BA-140 1.94E+02 2.44E-01 1.27E+01 No Data 8.31E-02 1.40E-01 4.00E+02 j
LA-140 1.50E-01 7.53E-02 1.99E-02 No Data No Data No Data 5.53E+03 CE-141 2.24E-02 1.51E-02 1.72E-03 No Data 7.03E-03 No Data 5.78E+01 CE-143 3.94E-03 2.92E+00 3.23E-04 No Data 1.28E-03 No Data 1.09E+02 CE-144 1.17E+00 4.88E-01 6.26E-02 No Data 2.89E-01 No Data 3.94E+02 PR-143 5.50E-01 2.21E-01 2.73E-02 No Data 1.27E-01 No Data 2.41E+03 ND-147 3.76E-01 4.35E-01 2.60E-02 No Data 2.54E-01 No Data 2.09E+03 W-187~
2.96E+02 2.47E+02 8.64E+01 No Data No Data No Data 8.09E+04 NP-239 2.84E-02 2.80E 1.54E-03 No Data 8.72E-03 No Data 5.74E+02 19 -
I Rev. 1 TABLE 2
[
BI0 ACCUMULATION FACTOR (BF;) USED IN THE ABSENCE OF SITE-SPECIFIC D7TA
.(p C,.ij'};g_) por (pCi/ liter) f f
BF.
I 1
Element Fish (Freshwater)
[
l.
f H
9.0 C - 01 C
4.6 E + 03 1
l -~
Na 1.0 E + O2
}
l-P 1.0 E + 05 Cr 2.0 E + O2 tin 4.0 E + O2 j.
Fe 1.0 E + 02 Co 5.0 E + 01 l
Ni 1.0 E + 02 1
Cu 5.0 E + 01 Zn 2.0 E + 03 Br 4.2 E + O2 Rb 2.0 E + 03 4
Sr 3.0 E 4 01 i
i Y
2.5 E + 01 i:
Zr 3.3 E + 00 Nb 3.0 E + 04 L
Mo 1.0 E + 01 i
Tc 1.5 E + 01 i
Ru 1.0 E + 01 Rh 1.0 E + Ol' E
Te 4.0 E + O2 i
I 1.5 E + 01 7
Cs 0.0 E + 03 i
Ba 4.0 E + 00 La 2.5 E + 01 Ce 1.0 E + 00 Pr 2.5 E + 01 Nd 2.5 E + 01 W
l.2 E + 03 f
Np 1.0 E + 01 i
(a)
Values taken frc:n Regulatory Guide 1.109, Rev 1, Table A-1.
e r
~
I'
[
l' !
i v
r
-,, e r -. /. -.
,-----..m-....-....--.
-.. - _, -. _, - -. -.. ~ _. -...., _ _ _ _.
Rev. 2 2.6 LIOUID RADWASTE TREATMENT SYSTEM 2.6.1 Radiolocibal Effluent Technis al Snecification 3.11.1.3 The LIQUID RATJ<lASTE TREATMENT SYSTEM Shall be OPERABLE and appropriate portions of the system shall be used to reduce releases of radioactivty when the projected j.
! doses due to the liquid effluent, from each unit, to
! UNRESTRICTED AREAS, tould exceed 0.06 mrem to the total t body or 0.2 mrem to any organ in a 31 day period.
i 2.6.2 Description Of The LIOUID RADWASTE TREATFlENT SYSTEM 2.6.3 OPERABILITY Of The LIQUID RADWASTE TREATMENT SYSTEM e
The LIQUID RADWASTE TREATMENT SYSTEM is capable of varying treatment, depending on waste type and product desired.
It is capable of concentrating, gas strip-ping, and distillation of liquid wastes through the use
.of the evaporatcr system.
The demineralization system J
is capable.cf removing radioactive ions from solutions to be reused as makeup water.
Filtration is performed on certain liquid wastes and it may, in some cases, be the onlv required treatment prior to release.
The sys-tem has the ability to absorb halides through the use ol charcoal filters prior to their release.
The design and cperation requirements of the LIQUID RADWASTE TREATMENT SYSTEM provide assurance that releases of radioactive materials in liquid effluents will be kept "As Low As Reasonably Achievable" (ALARA).
The' OPERABILITY of the LIQUID RADWASTE TREATMENT SYSTEM ensures this' system will be available for use when liquids require treatment prior to their release to the environment.
OPERABILITY is demonstrated through com-pliance with Radiclogical Effluent Technical Specifica-tions 3.11.1.1 and 3.11.1.2.
1 4
4 e
A Rev._2_
3.0 GASEGUS EFFLUENTS 3.1 Radiological Effluent Technical specification i
3.3.3.11
! The radioactive gaseous effluent monitoring instrumen-
! tation channels shall be OPERABLE with their Alarm / Trip
! setpoints set to ensure that the limits of specifica-
! tion 3.11.2.1 ale not exceeded.
The Alarm / Trip Set-
! pointu_of these channels shall be adjusted to the
! values determined in accordance with the methodology i
! and parameters in the ODCM.
3.2 Radiological Effluent Technical specification 3.11.2.1 The dose rate due to radioa'ctive materials released in gaseous effluents from the site to areas at and beyond the SITE BOUNDARY shall be limited to the following:
a.
For noble gases:
oess than or equal to 500 mren/yr to the total body and less than or equal to 3000 mrem /yr to the skin, and i.
b '.
For Iodine - 131 and 133, for tritium, and for all radienuclides in particulate form with half lives greater than 8 days:
Less than or equal to 1500 mrem /yr. to any organ, from the inhalation pathway only.
3.3 Gaseous Effluent Monitors 4
Noble gas activity monitors, iodine monitors, and par-ticulate monitors are present on the containment build-ing ventilation system, plant unit ventilation system, and radwaste building ventilation system.
The alarm / trip (alarm & trip) setpoint for any gaseous effluent radiation monitor is determined based on the instuntaneous concentration limits of 10 CFR Part 20, Appendix B, Table II, Column 1, and are applied at the
! point at which the discharge leaves the SITE BOUNDARY
! (Figure 5.1B)~
-(Ref. 9.8.6) _
Each monitor channel is provided with a two level sys-tem which provides sequential alarms on increasing radioactivity levels.
These setpoints are designated as alert setpoints and alarm / trip setpoints.
(Ref.
- 9. 6 ;3 )
The radiation monitor alarm / trip setpoints for each release point are based on the radioactive noble gases in gaseous effluents.
It is not considered-practicable to apply; instantaneous alcrm/ trip setpoints to inte-r A. - a
~
m
~
Rev. 1 gratin ~g radiation monitors sensitiv' to radiciodines, radioactive-materials in particulate form and radionu-4 l
clides_other than noble gases.
Corservative assump-tions may be necessary in establishing setpoints to ac-i count for system variables, such as the measurement system efficiency and detection capabilities during normal, anticipated, and unusual operating conditions, the variability in release flow and principal radionu-clides, and the time lag between' alarm / trip action and I
the final isolaticn of the radioactive effluent.
(Ref.
9.8.6.)
Table 4.3-13 of the Radiological Effluent Technical Specifications provides the instrument sur-veillance requirements, such as calibration, scurce checking, functional testing, and channel checking.
3.3.1 Continuous Release oaseous Effluent Monitors The radiation detection monitors associated with conti-nuour gaseous effluent releases are (Ref.
9.6.8, 9.6.9):
Monitor I.D.
Description 0-GT-RE-21 Uni t. Vent 0-GH-RE-10 Radwaste Evilding Vent The Unit Vent monitor continuously monitors the ef-fluent from the unit vent for particulate, iodine (halogen), and gaseous radioactivity.
The unit vent, via ventilation exhaust systems,. continuously purges various tanks and sumps normally co:'taining low-level radioactive aerated liquids that can potentially gener-ate airborne activity.
The exhaust systems which supply air to the unit vent
- are from the fuel. building, auxiliary building, the ac-cess control area, the containment purge, and the con-
['
denser air discitarge.
i All of these systems are filtered'before they exhaust to the unit vent.
The unit vent nonitor measures ac-tual plant effluents and not inplant~ concentrations, i
Thus, the system continuously monitors downstrean of l
te last point of potential radioactivity entry.
The h
monitoring system consistr of an off-line, three -way airborne radioactivity-monitor.
En isokinetic sampling probe is located downstream of the last point of poten-
. tial radioac*ivity entry for sample collection.
4 The sample extracted by the isokinetic nozzle is passed l
' through the fixed filter (particulate), charcoal filter (iodine), and fixed-volume (gaseous) detector assen-blies and then through the pumping systen for discharge
_ l L
_m,----,,,,,..-.-.m
. < ~
. - ~.
.Rev. 1 back to the unit vent.
Indication is provided on the radioactivity monitoring system CRT in the control room.
The Radwaste Building Ventilation effluent monitor con-tinuouslyfmonitors for particulate, helogen, and gaseous radioactivity in the effluent duct downstream of the exhaust filter and fans.
The sample point is located downstream of the last possible point of radi-cactive influent, including the waste gas decay tank
' discharge line.
The flow path provides ventilation ex-haust for all parts of the building structure and ccm-
.ponents within the building and provides a discharge path for the waste gas decay tank release line.
These components represent potential sources for the release of gaseous and air particulate and iodine activitics in addition to the drainage sumps, tanks, and equipment purged by the waste processing system.
The monitoring sy3 tem consists af a fixed filter par-ticulate monitor, an iodine monitor, and gaseous activ-ity monitor.
?
The sample is extracted through an isokinetic nonsle to ensure that a representative-sample of the air is ob-tained prior to release to the environment.
After 4
passing throu; the fixed filter (particulate), char-coal filter (halogen), and fixed-volume (noble gas) cetector assemblies and the pumping system, the cample is discharged back to the exhaust duct.
Indication is provided on the' radiation monitoring system CRT in the control room.
s This monitor will isolate the weste gas decay tank dis-charge line if-the radioactivity release rate is above
-the present limit when the waste gas discharge valve has.been deliberately or inadvertently opened.
The continuous gaseous effluent monitor setpoints are established using the methodology described in Section i
3.4.
Since there are~two continuous gaseous effluent release points, a fraction of the total MFC will be al-located to each release point, Neglecting the, batch releases, the plant Unit Vent monitor has been allo-t eated 0.7 MPC and the Radwaste Building Vent monitor 4
has been allocated O'3 MPC.
These will be changed as required, but limited to 1 MPC.
Therefore, a particu-lar monitor reaching the fractional MPC setpoint a'ould
'not necessarily mean'the MFC limit at-the site boundary
'ic being exceeded; the alarm only indicates that the specific. release point is contributing a greater frac-tion of the MPC limit than was allocated to the associ-ated. monitor and will necessitate an evaluation of both cystems.
t
_~-
r Rev. 1 3.3.2 Batch Release Caseous Monitors The radiation monitors associated with bctch release gaseous effluents are (Pef. 9 6.9, 9.6.10, 9.6.11):
Monitor I.D.
Dgscription 0-GT-RE-22 containment Purge System Monitors
! GT-RE-33 0-GT-RE-31 Containment Atmosphere Radioactivity 0-GT-RE-32 McDitors 0-GH-RE-10 Radwaste Building 6.nt The Containment Purge System continuously monitors the containment purge exhaust duct during purge operations for particulate, iodine, and gaseous radioactivity.
The purpose of these monitors is to isolate the con-tainment purge system on high gaseous activity via the i
These monitors also serve as backup indication for personnel protection and reactor coolant pressure 4
boundary leakage detection for the containment at-mosphere radioactivity monitors.
l The sample points are located outside the contairaent betueen the containment isolation dampers anc the con-4 tainment purge filter adscrber unit.
cach monitor is provided with two isokinetic nc 21es to ensure that~ representative samples are obtained for both norn.al purge and minipurge flow rates.
The sample is extracted through the selected nozzle and then passed through the selector valve, the fixed filter i
.(particulate), charcoal filter (iodine),.and fixed-volume gaseous detectors.
The sample then passes through the pumping system and is discharged back to the duct.
I-l Indication-is provided for each monitor on individual l
indicators on the radioactivity monitoring system con-
. trol-panel and, through isolated signals, on the radio-activity monitoring system CRT in the control room.
n L
.The. Containment Atmosphere Radioactivity monitors, con-tinuously monitor the containment atmosphere for par-1 ticulate, iodine, and gaseous radicactivity.
They isolate the containment purge system on-high gaseous activity'via the ESFAS.
These monitors elso serve for 1
reactor coolant pressure ~ boundary leakage detection and l'
for personnel protection.
The.containnent atmosphere l
radioactivity monitors provide backup indication for E
. the containment purge nicnitors.
i L L I
r.
r.,-
,,n,---
-,--.w,
(- -
=. - - -
1.
i l
Rev. 1 l
t i
i j
Samoles are extracted from the operating deck level 1
(El. 2047'-6") through sample lines which penetrate the containment.
The monitort are located as cloce as i
l-
'possible to the containment penetrat1wls to minimine l
the length of the sam a tubing and the effects of sam-ple plute out.
The sarr,ple points are located in areas i
which ensure that representative samples are obtained.
1 Each sample passes through the penetration, then
}
through the fixed filter (particulate), charcoal filter j
(iodine), and fixmj-volume gaseous detector assemblies, j
'After passing through the pumping system, the sample is L
discharged back to the containment through a separate l
[
l i'
I Indication is provided for each monitor on individual
[
j-indicators on the radioactivity monitoring system con-1-
trol panel and, through isolated signals, on the radio-f activity monitoring system CRT in the control room.
i I
l The Radwaste Building Vent monitors are described in Section 3.3.1.
l The batch gaseous effluent monitors setpoints are nor-I mally established using the methodology described in j
Section 3.4.
j i
l A pre-release isotopic analysis is performed for :ach batch release to determine the identity and cuantity of t
i the principal radionuclides.
The alarm / trip i
se tpoint(s ) are adjusted accordingly to ensure that the i
limits of Radlological Effluent Technical Specification 3.11.2.1 are not exceeded.
3.4 ODCM Methodology for the Determination of Gaseous Effluentlucnitor Setuoints 3.4.1-Development of CDCM Methodoloay for the Determi-f nation of Gaseous Effluent Monitor Serpoints.
[
The alarm / trip setpoint for gaseous cffluent monitors i
is determined based on the lesser of the total body U
dose rate and skin dose rate, as calculated for the
-SITE BOUNDARY.
3.4.1.1 Total Body Dose Rate Setpoint Calculations j
To. cnsure that the limits of Radiological Effluent F
Technical-Specification 3.11.2.1 are met, the
{L
. alarm / trip setpoint based on the total body dose rate j
jl 1s ca1culated according to:
t 1-i I
i t
i i
l i
r i
I I
i i
m
i.
Rev. 2 7
l 1
l S tb < D.b t..F F (3.1)
R t
sa Where:
l 4
tb =
the alarm / trip retpoint based an the total
! S body dose rate (pCi/cc).
t Dtb =
Radiological Ef fluents Technical Specification l
j 3.11.2.1 limit of 500 mrem /yr, conservatively t
interpreted as a continuouc release bvet a one I
year period.
l the cafety factor; a conservative factor used F
=
s to compensate for statistical fluctuationa and
(
crrors of measurement.
(For example, F
= 0.5 i
c l
correcponds to a 100% variation.)
Defadlt l
l value is F, = 1.0.
the allocation factor which will modify the i
1 F
=
8 required dilut. ion facter such that simultanecuc gaseouc releases may be made i
without exceeding the limits of Radiological Effluent Technical Specifi cation 3.11.2.1.
The default value is 1/n, where n is the num-t her of pathways planned for release.
I I Rtb =
factor uced to convert dose rate to the ef-fluent concentration as measured by ' he ef-l fluent monitor, in (pCi/cc) per (urem/yr) to t
the total body, determined according to:
j s
o tb.
(X O} k i i)
( * }
R
+
2 1
I Where:
j i
l C =-
monitor reading of a noble gac monitor cor-l responding to the sample radionuclide concen-trations for the batch to be released.
t Concentrations are determined in accordance with Table 4.11-2 of the Radiological Effluent
{
Technical Specifications.
The mixture of i
radionuclides determined via grab sampling cf the effluent stream or source is correlated to a calibration.~ actor to determine monitor recponse.
The monitor response is based on i
b i
I wm +m-,.,-mw.-.- -.
~.. - -.
- - - - - ~ - - - - - ~ ~ -
{~
i.
i
~
i-
-Rev. 2 i
l
]
concentrations, net release rate, and is in units of (s i/cc).
c i
i j
X/Q =
the highest calculated annual average relative L
concentration for any area at or beyond the i
SITE BOUNDARY in (sec/m'). Refer to Tables 9, 10, and 12.
g=
the total body.duse factor due to gamma emis-K l
sions for each identified noblg) gas radionu-
)
clide, in (mrem /yr) per (pci/m (Table 3) i i
O. =
rate of release of noble gas radionuclide, i, 1
l in (pCi/sec).
L i
Q. is calculated as the product of the ventil-lbtion path design flow rate and the measured I
activity of the effluent stream as determined by grab sampling.
Flow rates for the ventil-Jation pathwt.7s can be found in references
' t 9.6.21, 9.6.22, 9.6.23, and L.6.24.
t l
1 1
3.4.1.2 Skin Dose Rate'Setuoint Calculation 4
I I
To ensure that the limits of Radiological Efiluent Technical Specification 3.11.2.1 are met, the alarm / trip setpoint based on the skin dose rate is cal-culated according to:
i l
i i
!~
j S
<DRFF (3.3) s-sssa i
i-i t
l Where:
[
L l
F and F are as previ usly defined in Section 3.4.1.1.
g a
I the alarm / trip setpoint baced on the ekin dose
! S
=
g rate.
I I
[f D',
=
Radiological Effluents' Technical Specification 3.11.2.1 limit: of 3000 mrem /yr, conservatively
[
interpreted as a continuous release over a one year period.
L i
- 28 5
-wn -
-e
-r 4* *yww ww w w-v e ', w e wwe d r m w-e m
---.-**=+=-*=.w--w e**.--'e -- -'----- - = - "*- - *'~-
Rev. 2 factor used to convert dose rate to the ef-
! R
=
U' i
fluent concentration as measured by the ef-fluent monitor, in (pci/cc) per (mrem /yr) to the skin, determined according to:
- l. '
i R
=C+
[(X/Q) 2.(L1 + 1.1Hi) Q ]
(3.4) g i
.1 j..
Where:
l.
F L.
=
the skin dose factor due to beta emissions for I
1 each identified noblg) gas radionuclide, in (mrem /yr).per (pCi/m (Table 3) 1.1 =
conversion factor:
1 mrad air dose = 1.1 mrem skin dose.
M.
the air dcse' factor due to camma emissions for
=
1 each identified noble gas radionuclide, in (mrad /yr) per (pci/m').
(Table 3)
'C,-(X/Q) and Q. are as previously defined.
1
+
b-3.4.1.3' Gaseous Effluent Monitcra Setpoint h
Determination The results of Equation (3.1) and Equation (3.3) are compared.
The setpoint is then selected as the lesser of the two values.
f L
t --
' 2 C)
.l Iti*{
- ti{
[i
[l:'
.t 6'I!!-
f:!fi r
t
~
)
3 m
/
iC 2
r p
ro 23343433332343'
(
it 000000090000000 v
Acb
+ + + + + + t +
t + + + + + +
e aNe EEEEEEEEEEEEEEE R
aF p
t 875336318596758 ee 899090314034272
)
Bs r
o y
211121711172143 D
/
d a
r S
m E
(
S A
G
)
3 E
m L
/
B i
O C
N p
9 13l34442223333' 3 0
r
(
F ir 00O00000000000O 1
O AoMr
+ + & + + + + + + + t t 4 + &
t e
EEEECEEEEEEEEEE 1
D ac p
U ma 332723367362110 e
O mF 927157652539523 d
)
L a
r i
C Ce y
111611113331199 u
s
/
G E
o d
T D
a I
r g
N m
e I
(
R F
N n
)
I r
3 i
3 o
m I
t
/
1 E
M c
i L
E a
C B
S
_F p
33334322223433 O
0000000O000000 e
(
T A
e 4 + + + + +
+i+++4
+ +
l s
r EEEECEEEEEEEEE b
O o
.d a
T DLp 64371964616239 T
- 43730279018216 E
n m
)
....... ~.
R i
r
- 11921749371142 o
U k
y r
S S
/
f O
m P
e d
X r
e E
m v
(
i R
r O
)
e
~F 3
d
~
m S
/
e R
i r
-C C
a T
p C
yr 23134441223J333 s
(
A do 000000000000000 r
F ot r
- + + + + + ++++++F
+ 4 o
Bc e
EEEEEEEEEEEEEEE t
E a
p c
S lF i 671276651421234 a
O a
Kl 516946515918488 f
D te r
os y
711511192231188 e
To
/
s D
m o
e d
rm d
(
e t
e s
d i
i mm m
l l
mm 1335578 c
355789033333331 e
u 888888911111114 h
n T
o rrrrrrreeeceeer i
PKKKKKKXXXXXXXA d
)
a a
R
(
U g'
!i1Il!II f
_. _... _... - =. -.
s
_Rev. 2 1
i t-i.
3.a.2 S unna ry', Gaseous Ef fluent Monitors Setpoint i
Determination l
i.
l The. gaseous effluent monitors setpoints are calculated
! according to equations (3.1) and (3.3), as described in l
Section 3.4.
However, it should be noted that a batch i
release will alter the flow rate characteristics at the j
Unit Vent and therefore the concentration as sensed by the monitor.
For example, in the case of a mini-purge, I
the setpoint for the Unit Vent monitor must be re-I calcula' ed to includa both the continuous and batch t
sources.
(
3.5 ODCM Methodology for Determining Dose contributions
[
)..
[
From Gaseous Effluents Dose rate calculations are performed for ga-rous ef-j.
fluents to ensure compliance with Radio]ogical Effluent Technical Specification 3.11.2.1 as stated in section 3
}
3.2.
1 3.5.1 Determination of Dose Rate c
t-
- i The following methodology is. applicable to the location (SITE BOUNDARY or boyond) characterized by the values j
of the parameter (X/Q) which results in the maximum l.
total-body or skin dose rate.
In the event that the
_ analysis indicates a differe.it location for the total f
t body and skin dose limitations, the location selected i
l for consideration is that which minimizes the allowable l
l release values.
(Ref.
.8.7)
\\'
' *he factors K Iq, and M.
relate the radionuclide air-i l
~borneconcentba,tionstovhriousdoserates, assuming a L
semi-infinite cloud model, and are tabulated in
[
Table 3.
t 3.5.1.1 Noble Gases The release rate limit for noble gases is determined i
according to the following general relationships (Ref.
9.8 7).
I t
T
[K f(X/S)O )) 1 500 mrem /yr (3.5)
'Dtb
- I i
i 1
1 5
> L i.
L
c_
+
Rev. 2 4
t (3.6)
D
= I [(L
+ 1.1 M1)((X/R)R )] i 3000 mrem /yr i
i 3
1 l
Where:
l Dtb =
Total body dose rate, conservatively averaged over a period of one year.
e Total body dose factor due to gamma c: missions i
K.
=
1 for each identified noble gas radionuclide, in (mrom/yr) per (pci/m").
(Table 3) e L
(X/Q) =
The highest calculated annual average relative concentration for any area at or beyond the l
SITE BOUNDARY.
Refer to Tables 9, 10, and 12.
L i
1
! Q. =
The release rate of noble gas radionuclides, 1
i, in gaseous effluents, from all vent releases in (pci/sec).
Q. is calculated as the product of the ventil-lhtlon path design flow rate and the. measured activity of the effluent stream as determined by grab sempling.
Flow rates for the ventil-i lation pathways can be found in references
]
9.6.21, 9.6 22, 9.6.23, and 9.6.24.
Skin dose rate, conservatively averaged over a s
D
=-
l s
period of one year.
Skin dose factor due to beta e:aissions for L.
=
l' each'. identified noble gas radionuclide, in-
.(mrem /yr) per (pci/m3) (Table 3).
1.1 =
Units conversion factor; 1 mrad air dose = 1.1 mrem skin dose.
f Mi=
Air dose' factor due to gax.ma emissions for each identified noble' gas radionuclide, in (mrad /yr) per (pci/m3) (Table 3).
3.5.1.2 Radionuclides Other_Than Noble Gases The release rate limit for Iodine 131'and 133, for tri-tium, f and for all radioactive materials in particulate form.with half lives greater than S days is determined M -
according'to-(Ref. 9.8.8):
I '
7-_
i U
i-Rev. 2 l
t V
}
l l.
D
=
i[(X/Q)Q ] $ 1500 arem/yr (3.7) i IP i
g a
1 l'
i e
i.
b i
.. here:
W
}
~
Doce rate to any critical orgen, in (mrem /yr).
.I D
=
1 Dose parameter for radionaclides other than P.
=
1 i
noble gases for the inhalation pathway for the j
child, based on the critical organ, in l
(mrem /yr) per (pCi/m3).
(Table 4)
}
r
! Q.x The release rate of radiciodine, i, in gaseous
}
1 e f fl ue rts, from all vent releacec, in (pCi/sec).
Q4 is calculated as the product of j
1-the ventillatIon path design flow rate and the f
measured activity of the effluent stream as i
deternined by grab sampling.
Flow rates for the ventillation pathways can be found in ref-
[
t erences.9.6.21, 9.6.22, 9.6.23, and 9.6.24.
f
! (X/0) is.as previcusly. defined.
f r!
The docc para:ceter '(P
) includes the internal docimetry of radionuclide, i, abdthereceptor'sbreathingrate,-
which are functions of the receptor's age.
Therefore i
the child age group has been selected as the limiting age group.
For the child exposure, separate values of P.
are-tabu-lated in Table 4 for the inhalation pathway.1 These values were calculated according to (Ref. 9.8.9);
L
~~
P.
=
K' (BR) DFA.
(3.8) 1 1
9
'Where:
K' =
Units conversion factor: 1pCi = lE06 pCi.
- I f
y
- yw y 7eeg - v
,mg&w
--p-'e weev
- T --v v ywpr7, v-wr,mege wow, Wy=-te-+_w-+rww="-*--w ree- -
==m-=w-m- - - - - - " - -
- " " " ~ ~ ~ -'
1 i
Rev. 2 j
i-
! BR=
The breathing rate of the mannum exposed child age group, 3700 m3/yr.
(Regulatory Guide 1.109, Table E-5).
r DFA.-=
The maximum organ inhalation dose factor for 1
the child age group for the ith radionuclide, in (mrem /pci).
The total. body is censidered 3
as an organ in the selection of DFA (Regulatory Guide 1.109, Table E-9)j.
4 j
Note:
All radiciodines are assumed to be released in elemental form.
(Ref.9.8.8) b l
i a
v I
h 4
i l
[
r s.
1 l'
7 h
34 -
,S 9eq7h-w&T--Swe-D*WF=9turE dTTrer
- N4
W~6-'-Dem+h-mm5 w*ewww***g,ee-'w* * '**-eww+eee=%e
-'-"-**-----w-ee--wwwmre
1..
1 1
t.
l fr h
1 1
Rev. 1 i
l-i I
Taf>LE 4 l
l l :
DOSE PARAMETER (P ) FOR RADIONUCLIDES OT!IIR TiiA'; NOBLE GASE3 I
1 i
j i
I Inhalation Pathway 4
1 i
{
(mrem /yr) per (uCi/m )
l 3
4 a
j NCCLIDE~
SONE-LIVER TOTAL SODY THYROID CDNEY LUNG GI-LLI_
1 i
H-?
ND 1.12E3 1.12E3 1.12E3 1.12E3 1.12E3 1.12E3 l
C-1
. 3.59E4 6.73E3 6.73E3 6.7353 6.73E3 6.73E3 6.73E3 i
j Na-24
. 1.~61E4
- 1. ele 4 1.61E4 1.61E4 1.61E4 1.61EL 1.61E;
[
P-32.
2.60E6 1.1425 9.88E4 ND ND ND
.22E4 i
Cr-51 ND ND 1.5LE2 8.55El 2.43E1 1.70E4 1.06E3 f
Mn-54 ND 4.29E4 9.51E3 ND 1.00E4 1.56E6 2.29E'.
Mn-56 ND 1.66E0 3.12 E-1 ND 1.67E0 1.31E4 1.23E5 Ee-35 4.74E4 2.52E4 7.72E3 ND ND 1.11E5 2.87E3 l
1 Fe-59 2.07E4 3.34E4 1.67E4 ND ND 1.27E6
'.07EL i
2c-58 ND 1.77E3 3.16E3 ND ND 1.11E6 3. '. L E '.
4 i.
I t
i Co-60 No 1.31E4 2.26E'.
ND SD 7.27E6 9.62E4 j
. N I - 6 3' 5.21E3 4.63E4 2.80E4 ND ND 2.75E5 6.33E3
'41-6 5' 2.99E0
- 2. 96 E-1
- 1. 64 E-1 ND SD S.18E3 S.40E'.
Cu -6 i.
ND 1.99E0 1.07E0 ND 6.01E0 9.5sE3 3.67E4 2n-65 4.26E4 1.13E5 7.03E4 ND 7.14 E '.
9.95E5 1.63E4 2n-69
- 2. 73 E-2 ' 9. 66 E-2 5.52E-3
..ND
~ 5. 8 5 E-2
- 1. '. 2 E 3
- 1. 0 2 E '.
3r-83 ND ND 4.74E2
- ND ND SD 0
l E -34 ND SD 5.4SE2
'ND SD
- .D 0
[
Br-85 ND ND 2.53El
'ND ND ND 0
f Rb-86 ND 1.98E5 1.14E5 ND ND ND 7.99E3 i
f Rb-88 ND 5.62E2 3.66E2 ND SD ND 1.72El Rb-69 ~
ND 3.45E2 2.90E2 ND ND SD 1.39E0 t
Sr-89 5.99E5 ND 1.72E4 ND ND 2.16E6 1.67E5
(
' l.01E8 ND 6.44E6-ND ND 1.4SE7 3.43E5 I-
'Sr-91 1.21E2 ND 4.59E0 ND ND 5.33E4 1.74E5 I.
I l,
i 4
5
'[
r t
t i
t G
t u. ;,
- -.. =
?
6 Rev. 1 j..
i UELE 4 (Cont'd.)
a DCSE i' ARA"ETER (P ) FOR EADt0N"CLIDES OTHE2 TH'" NOELE GASES 1
Inhalm: ion Fathway 3
(tren/yr) pc; (uti/m )
i i
i b
1:
NL*CLIDE BONE LIVER TOTAL 30DY TFYROID E I~:N EY L'?';G C.I-LLI Sr-92 1.31El ND
- 5. 2 5 E-1 ND NL
- 2. '.0 E4 2.42E5 v.oD 4.11E3 ND 1.11E2 ND SD 2.62E5' 2.6SE5 s
c Y-91m 5.07 E-1 ND
- 1. 34 E-2 ND ND
?.81E3 1.72E3 i
Y-91 9.14E5 ND 2.44E4 ND ND 2.62E6
. S '.E 5 l
Y-92, 2.04El ND 5.81 E-1 ND SD 2.39E4 2.39E5 1
Y-93
.l.86E2 SD 5.11E0 Nu ND 7. '. '. E 4 3.59E5 Zr-95 1.90E5 4.1SE4 3.70E4 ND 5.96E4 2.23E6 6.11E' Zr-97
' SSE2 2.72El 1.60El ND 3.89El 1.13E5 3.51E5 Nb-95
4 Ic-99m
- 1. 7S E-3
- 3. 48E -3
- 5. 7 7E -2 ND 5.0 7E -2 9.51E2
- 1. ele 3 Ic-101 8.10 E 5. 51E -3 1.03E-3 ND 1.45E-3
- 5. 8 5E 2 1.63El
~Ru-103 2.79E3 ND-1.07E3 ND 7.03E3 6.62E3 4. 4 e E '.
Ru-105-1.53E0 ND_
5.55E-1 ND
.l.34E0 1.59E4 9.95E4
~Ru-105
'.36E5 ND 2.69E4 ND
- 1. 3 *.E3 1.43E7 S.29E5 i
c Ag-110m
' 69E4 1.14E4 9.14E3 ND 2.12E4 5.'.8E6 1.00E5 Te-125m 6.73E3 2.33E3 9.14E2 1.92E3 ND 4.77ES 3.38E4 Te-127m 2.49E4 8.55E3 3.02E3 6.07E3 6.36E4 1.4SE6 7.14E4
'Te-127 2.77E0
- 9. 51E -1 6.11E -1 1.96E0 7.07E0 1.00E4 5.62E4 Te-129m 1.92E4 6.8523 3.04E3 6.33E3 5.03E4 1.76E6
_1.82E5 t
t Te-129
- 9. 7 7E -2
- 3. 50 E -2 2.38E-2 7.14 E -2 2.57E-1 2.93E3 2.55E4 I
Te-131m 1.34E2-5.92E1 5.07El 9.77El 4.00E2 2.06E5 3.08E5 Te-131.
- 2. 7E 8. 44E -3 6.59E-3
- 1. 70E -2 5.88E-2 2.05E3 1.33E3 Te-132 4.8122 2.72E2 2.63E2 3.17E2 1.77E3-3.77E5 1.3SE5 I-130 8.lSE3 1.64E4-8.44E3L 1.85E6 2.45E4 ND 5.llE3 t
h i
i l'
I-e t-['
!~ t
_ - _. - _... - -.. -, =, - _ - - - -... -. - - - -. - -. - - _ -
4 t
i e
l Ov. ;
r, l
TAELE 4 (Cont'd.)
l 00SE PAFE ETER-(P ) FOR RADIONUCLIDES OTHER THA'? NOBLE GASE3" I
Ithalation Pathway l
I 3
(mrem /yr) per (pCi/m )
l f
e
?
i i
r I.
N"cLIDE
~ 30Nr
' IVER TOTAL BODY THYE01D
_3:I_DNEY
_L_C._:G M '._ I l
i l
I-131 4.81E4 4.SIE4 2.73E4 1.62E/
e.8SE4 ND 2.%E3 l
i i
1-132 2.12E3 4.07E3 1.58E3 1.94E5 6.25E3 ND 3.2CE3 l
I-133
- 1. 66E; 2.03E4 7.70E3 3.35E6 3.38E4 ND 5.;$E3 I-130 1.17E3 2.16E3 9.95E2 5.07E4 3.30E3 ND 9.53E2 1
i I
j I-135 4.92E3 S.73E3 4.14E3 7.92E5 1.3cE4 ND 4.44E3 l
l-Cs-134 6.51ES 1.01E6 2.25E3 ND 3.30E5 1.21E3 3.65E3
[
[
Cs-136 6.51E4
. 71E5 1.16E5 ND 9.55E4
- 1. 4 5 E ',
L.15E3 Cs-137 9.07ES 8.25E5 1.28E5
- ~D 2.72E5 1.04E5 2.62E3 L
l' Cc-133 6.33E2 8.40E2 5.55E2 ND 6.22E2 6.81El 2.70E2 32-139 l'. S4 E0 9.84E 5. 37 E-2 ND S.62E-4 5.77E3 5. 7 7 E '.
f 3a-l 0 7.40E4 6.43:1 4.33E3
- D
.2.11El
- 1. 74 E's 1.02E5 3 a-1 ;1-2.19E-1 1.09E-4
- 6. 36 E-3 ND 9.47E-3 2.92E3 2.75E2-i 32-142 3.0^E-2
- 3. 60 E-3
- 2. 79 E-3 ND 2.91E-3
- 1. 61. E 3 '
2.74E0 l'
La-100 6.44E2 2.25E2 7.53El ND ND 1.53E5 2.26E3 j1
-La-142--
1.30E0 4.llE-1 1.29E-1
" ND ND a.70E3 7.59E4 e
Ce-ll.1 3.92E4 1.45E4 2.90E3
. ND 3.53E3 5. 4 /.E5 5.66E4 i
l t
Co-143' 3.66E2 1.99E2 2.87El ND S.36El 1.15E5 1.27E3 Ce-144 6.77E6 2.12E6 3.51E5
- D.
1.17E6 1.20E7
- 3. 8 S E3 l
Pr-143 1.85E4 5.53E3 9.14E2 ND 3.0nE3 4.33E5 9.73E4 P r-14 '.
5.96E-2 1.85E-2 3.0CE-3 ND 9.'/E-3 1.37E3 1.97E2 Nd-li7 1.03E4-S.73E3 6.81E2 ND 1.31E3 3.2SES 8.21E4 i?-187 1.63El 9.66E0 4.33E0 ND ND 4.11E4 9.10E4
'p-239-4.66E2-3.34El 2.35El ND 9.73El 5.51E4 6.40E4 l
l
_ ( a) ' The child. age grcup deternins rica; Table E-9 Reg. Guide 1.109, Rev. 1, 1977 1
U l
'{.
I t
e i
l-.
~. _
i I~
Rev 1
i-3.5.2 Iadividual Dese Due To Gaseous Effluents I
i 3 5.2.1 Radiological Effluent Technical Snecification a
3.11.2.2 1
4 The. air dose due to noble gases releaced in gaseous ef-fluents, from each unit, to areas at and beyond the l
SITE BOUNDARY shall be limited to the following:
a.
During any calendar quarter:
Lesc than or equal to i
5 mrad for gamma radiation and less than or equal to.10 mrad for beta radiation and, i-b.
During any calendar year:
Less than or equal to 10 l
mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.
3.5.2.1.1 Noble Gase_s i
i The air doce at the SITE EO'ROARY due to noble gases released from the site is determined according to the following methodology (Ref. 9.8.10):
l' During any calendar quarter, for gamma radiation:
i D
= 3.17 E-03 I [M. f(X/Q) 2. + (X/q) g }] <5 n. red
{3.9) 1 1
j
}
9 i
t During any calendar quarter. for beta radiction:
Db = 3.17 E-08 Z [N
{ (X/Q) Og + (X/q) qf } ] i 10 mrad (3.10) i 1
During any calendar year,-for gamma radiation:
D '= 3.17 E-08 I [M. {(X/Q) Q.; + (Z/q) qi}] < 10 mrad (3.11)
[
9 i
1 During any calendar year, for beta radiation:
Db = 3.17'_ E-08 I [Ng {(W Q) Qi + (X/q) qi}] 1 20 mrad (3.12) l.
l l
r l-g i
~. -
-. - - = _ -. - -. - _ -.
I
_Rev. 2 Where:
Air dose from gamma radiation due to noble t
D
=
9 gases released in gaseous effluent.
Air dose from beta radiation due to noble i
D
=
b gases released in gaceous effluents.
+
(X/q) =
The relative concentration for areas at or beyond the SITE BOUNCTRY for shcrt-term releases (equal to or less than 500 hrs / year).
Refer to Tables 9, 10, 11, and 12.
- q. =
The average release of noble gas radionu-1 clides, i, in gaseous effluents from all vent releases for short-term relaases (equal to or
-less than 500 hrs / year), in (pCi).
Releases are cumulative over the calendar quarter or year, as appropriate.
The air dose factor due to beta emissions for H.
=
1 each identified noble gas radionuclide, i, in (mrad /yr) per (pci/n3). (Table 3)
Q. =
The average release of noble gas radionu-1 clides, i, in gaseous effluents from all vent releases for long-tern releases (greater than 500 hrs / year), in (pci).
Releases are cumula-tive over the calendar quarter or year, as appropriate.
(X/Q ) =
The highest calculated-annual average relative concentration for areas at or beyond the SITE BOUNDARY for long-term releases (greater than 500 hrs /yr).
Refer to Tables 9,
10, and 12.
I ~
3.17E-08 = The inverse of the number of seconds pel year.
M is as previcusly defined. (Fefer to Section 3.4.1.2) g 3.5.2.2 - Radioloaical Effluent Technical Sneci fication L
- 11.2.3 The dose to 'ar. Individual frcm Iodine-131 and 133, tri-
. tium, and all radionuclides-in particulate form with
' half-lives greater than 8 days in gaseous effluents relcased, from'each unit, to areas at'and beyond the SITE EOUNDARY shall be limited to the following (Ref.
9.8.10):
a.
During any calendar quarter:
Less than or equal to 7.5 mrem to any organ and, o 1
EcV. 1 i
r I
i l
b.
During any calendar year:
Lens than or equal to 15 mrem to any organ, t
f 3.5.2.2.1 Radionuclides other Than Noble Gaces i
The dose to an Individual from Iodine-131 and 133, tri-r tium, and all radionuclides in particulate form with i
half-lives greater than 8 days in gaseous effluents I
J released, from each unit, to areas at and beyond the SITE BOUNDARY, is determined according to the following i
j' expressions:
I l-l l
I During any calendar quarter:
i 3.17E-08 ? Rf [W Qg + w qi] 1 7.5 mrem (3.13) f j
D
=
1 i
i
'During any calendar year:
I l'
[W Qi + w qi] 1 15 mrem (3.14)
D
=
j 3.17E-08 ? Ri 1
. ilhere:
[
t i
Dose to an individual from radionuclides other l
D.
=
1 than noble gases.
- Q. =
The releases of radionuclides, radioactive
[
1 materials in particulate form, and radionu-clides other than noble gases, i, in gaseous
[
effluents, for all vent releases for long-term
{
releases (greater than 500 hrs /yr), in (pci).
{
Releases are cumulative over the calendar j
j
-quarter or year as appropriate.
The releases of radionuclides, radioactive I
J.. =-
~1 materials in particulate form and radionu-clides other than noble gases, i, in gasecus effluents for all vent-releases for short-term releases (equal to or less-than 500 hrs /yr),
i in'(pci).
Releases.are cumulative over tha i
calendar quarter or year as appropriate.
l Ra The dose factor for each identified radionu-
=
clide, i, in m2(mrem /yr) per (pci/sec) cr
^
j-(mre.a/yr) per (pci/mI)..(Table 5)
I f
i I
.r,,-r.-
, -,..,-., '.,..,_..,__.--,-,__wn.a..,,-,
-_w.,,mr,n
- n,.n m e m.
,,,,p-
- -. = - -. _. _ _ _ - -.
Rev. 2 l
W=
The dispersion parameter for estimating the dose to an individual at the controlling loca-tion for long-term releases (greater than 500 hrc/yr):
I I
W= (R76) for the inhalation and tritium pathways, in(sec/m3).
i.
I W = (D/Q) for the food and ground plane pathways, in(meters 2),
Rcfer to Tables 9, 10, and 12.
w=
The dispersion parameter for estimating the l
Jose to an individual at the controlling loca-tion for short-tern releases (equal to or less than 500 hrs /yr):
p w = (X/q) for the inhalation pathway, I-in(sec/m3) r l
w (D/q) for *he food and ground plane pathway, g
in (meters 2).
Refer to Tables 9, 10, 11, and 12.
t 3,17 E-08
= The inverse of the number of seconds per year.
j.
(0/Q) =
the average relative daposition of the ef-fluent at the SITE BOUNDARY, considering depletion of the plume during transport, for long term releases (greater than 500 hrs /yr),
in (meters 2).
i l'
(D/q) =
the relative deposition of the effluent at the SITE BOUNDARY, considering depletion of the plume during transport, for short term releases (less than or equal to 500 hrs /yr),
in-(meters 2).
Note:
For the direction sectors with e::isting pathways within 5 miles from the site, the-appropriate R values are used.
Ifnorealpathwayexistswithin5mkles from the center of the building ccuplex, the cow-milk
'R.
value is used, and it is assumed that this pathuay ef.ists at the 4.5 to 5.~0 mile distance in the limiting-case sector.
If the R for an existing. pathway within i
5 miles is less than a cow-milk R.
at 4.5 to 5.0 miles, then the value of tne cow-milk R,2 at 4.5 to 5.0 miles is used. (Rev. 9.8.10.)
.! Although the annual average relative concentration
! (X/Q) and the average relative deposition rate (D/Q)
Rev. 1 i.
! are generally considered to be at the approximate l' receptor location in lieu of the SITE EOUNDARY for 1 these calculations, it is acceptable to consider the 1
! ingestion,' inhalation, and ground plane pathways to
! coexist at the
, cation of the nearest residence with l
l
! the highest value of (X/Q).
(Re f. 9. 8.10 )
The Total l
1
! Body doce from ground planc deposition is added to the j
! done for each individual organ.
(Re f. 9.11.3 )
I l
i 1
i i
t i
I
'h ij.
I j
j i
t 4
h 1
i -
i i
1 r
t t
j,
. 1 1
I 2
.-....a.-u..,:.a-.~......-
-.. -. -... -. -., ~
s_
In-.
.~...
d W
?,ev. _1 i
J
- 4:
TABLE 5 l'
PATE'AY DOSE FACTORS (R ) FOR RADIONUCLIDES OTHER THAN NOELE GASES i
Inhalation Pathway (arm /yr) per (uCi/n')
NUCLIDE SONE LIVER TOTAL SCDY THi"0ID-KIDNEY LE':G GI-LLI i
i H-3.
ND 1.12E3 1.12E3 1.12E3 1.12E3 1.12E3 1.12E3 C-14 3.59E4 6.73E3 6.73E3 6.73E3 6.73E3 6.73E3 6.73E3 f
Na-24 1.61E4 1.61E4 1.61E4 1.61E4 1.61E.
1.61E4
- 1. 61E /.
P-32 2.60E6 1.14E5 9.SSE4 ND ND ND
,.22E4
{
Cr-51 ND ND 1.54E2 3.55El 2. l. 3 E1 1.70E4 1.08E3 Mn ND 4.29E4 9.51E3 ND 1.00E4 1.58E6 2.29E4 Mn-56 ND 1.66E0 3.122-1 SD 1.6 7E0 1.31E4 1.23E5 Fe-55'-
4.7-E4 2.52E4 7.72E3_
ND ND 1.11E3
- 2. 3 7E 3 Fe-59
'2.07E4 3.34E4 1.67E4 ND ND 1.27E6 7.07E4
- Co-3B ND 1.77E3 3.16E3 ND N2 1.11E6 3.
'E4 t-Cc ND 1.31E4 2.26E4 ND ND 7.07E6 9.62E4 Ni-63 3.21E5 4.63E'.
2.80Ea ND SD 2.75E3 6.33E3 l
'1-65 2.99E0
- 2. 96 E-l ~
.1. 64 E-1 ND ND 3.lSE3 B.?.0Ei Co-64 XD 1.99E0 1.07E0 ND 6.03E0 9.5eE3 3.67E4 r -
En-63
-4.2624 1.13E5 7.03E4 ND 7.14E4 9.95E5 1.63E4 I
'Zn-69
- 6. 7 0 E-2
- 9. 66 E-2 6.922 ND
'5.S5E-2 1.02E3 1.02E4 3r-33 ND ND 4.74E2 ND ND ND 0
Br-SS ND SD 2.53E1 TD ND ND 0
RS-86 ND-1.98E5 1.14E5 ND SD "D
7.99E3 Rb-88 ND 5.62E2 3.66E2 ND ND ND 1.72E1 Rb-89 ND 3.45E2 2.90E2 ND ND ND 1.89E0 Sr-89
- 5.99E5 ND 1.72E4 ND ND 2.16E6 1.67E3 Sr-90 1.01E8 ND 6.44E6 ND ND 1.48E7 3.43E5 Sr 1.21E2 ND 4.59E0 ND ND 5.33E4 1.74E5 Ps f"*
i%
y.
g*+
n
+
"k--
g, s-w.
T
+.
4 -
~* (\\
'4
- v \\
Y n,
?
.b N-.-
s g-
- -+
y- --
.p..
. ~. _ -. = - - _..
m.
i.
f i
Rev. 1 f
I i
TABLE 5 (Cont'd.)
1 PATINAY DOSE FACTO?.S (R )' FOR RADIONUCLIDES OTHER T*.iAN NOBLE CASES Inhalation Pathway 1
i (mrem /yr) per (pCi/m )
f 3
T
- i b
NUCLIDE SONE LIVER TOTAL EODY THYROID EIDNEY LE':G GI *_L:
+
i I
Sr-92 1.31El ND 2.25E-1 SD
- D
- 2. /.0 E 4 2.42E5 i
Y-90 4.11E3
'ND l.11E2 ND ND 2.62E5 2.6SES d -
7-91m 5.07 E-1 ND
.7.44E4 3.39E5 1
Zr-95 1.90E5 4.18E4 3.70E4 SD 5.96E4 2.23E6 6.11E4 l
1
- 'r-97 1.58E2 2.72E1
. 50El ND 3.89El 1.12E5 3.51E5 i
I Nb-95 2.33E4 9.lSE3 6.53E3 ND 8.62E3 6.14E5 3.70EL t
l Mo-99 ND.
1.72E2 4.26El ND 3.92E2
- 1. 3_ ~ 5
- 1. 2 7 r. 5 4
Tc-99c
- 1. 73 E-3. 3. 4 SE -3 5.77E-2 ND 5.07E-2 9.51E2 4.31E3
(
Ic-101-3.10 E-5 ' S. 51E -5
- 1. 08 E - 3 XD
- 1. a 3E - 3 5.E3E2 1.63E1 Ru-103-
-2.79E3 ND 1.07E3 ND 7.02E3 6.62E5 1.43E4 Ru-105 1.53E0 ND 5.55E-1 ND 1.34E0 1.59E4 9.95EL j
l Ru-106.
1.36E3 SD 1.59 %
'l.54E5 1.43E-4.29E5 1
Ag-110m 1.69E'.
1~14E4 9.14E3 ND 2.12E4
- 5. 43 E6' 1.00E5
-Te-125m' 6.73E3 2.33E3 9.1422 1.92E3 ND 4.7/E5 3.38E4 i~
Te-127m 2.49E4 8.55E3 3.02E3 6.07E3 6.36E4 1.46E6 7.14E4 To-127 2.77E0
- 9. 51E -1
- 6. llE -1 1.96E0 7.07E0 1.00E4 5.62E4
.Tc-129m 1.92E4 6.SSE3 3.04E3 6.33E3 5.03E4 1.76E6 1.32E5 Te-129
- 9. 7 7E -2
- 3. 50E -2
- 2. 38E -2 7.14 E -2 2.57E-1 2.93E3 2.53E4
- Te-131c-1.34E2 5.92El-5.07El 9.77El.
4.00E2 2.06E5 3.08E5 l'
Te-131' 2.17E -2. S. 44E-3 6.39E-3
- 1. 70E -2 5.88E-2 2.05E3 1.33E3 d
Te-132
'4. 61E2 '
2.72E2 2.63E2 3.17E2
- i. 77E3 3.77E5 1.3SE3
.I-130 S.18E3 1.64E4 8.44E3 1.SSE6 2.45E4 ND
- 3. ll E2 i
g-1
.u
~. _ _
____y._
r i
6, -
t' Rev. 2 il, TA3LE 5 (Cont'd.)
1; i
-PATINAY DOSE FACTORS (R ) FOR RADIONUCLIDES OTHER TIU;. S0BLE CASES 1:
i Inhalation Pathway l
3 (mrem /yr) per (pCL/m )
i t
i i.
i
- t. '
~;
t SONE LIVER TOTAL 30DY THYROID K2DSEY LO:'
2!-;L:
-NUCLIDE-I-131 4.81E4 4 '. 31E4 2.73E4 1.62E7 7. S S E '+
ND 2.54E3
)
i I-132 2.12E3 4.07E3 1.88E3 1.94E5 6.25E3 N3 3.20E3 1
I-133 1.66E4 2.03E4 7.70E3 3.65E6 3.3SE4 SD 5.45E3 I-134 1 17E3 2.16E3 9.95E2 5.07E4 3.30E3.
ND 9.55E2
-I-135 4.92E3 S.73E3 4.14E3 7.92E5 1.34E4 ND 44E3 i.
Cs-134 6.51E5 1.01E6 2.25E5 ND 3.30E5 1.21E5 3.25E3 I
i
- Cs-136 6.51E4 1.71E5 1.16E5 ND 9.55E4
- 1. 4 5 E '.
a.1SE3 j
Cs-137 9.07E5 d.25E5 1.2SES ND 2.72E5 1.0iE5 3.62E3 Cs-133 6.33E2 8.40E2 5.55E2
- O 6.22E2 6.31El 2.7022 3a-139 l.34E0 9.84E 5.37E-2 N3 3.62E-4 5.77E3 5.77E4 g
j
. Sa-11.0 7.40E4 6.4SE1 4.33E3 SD 2.11El 1.74E6 1.02E5 l~
3a-141 2.19 E-1 1.09E-4
- 6. 36 E-3 ND 9.47E-3 2.92E3 2.75E2 3a-112 3.0CE-2 3.60E-3
- 2. 79 E-3 20 2.91E-3 1.6eE3 2.74E0 Lc-140 6.44E2 2.2552 7.55El ND
- O 1.83E5 2.26E5 E s - l '. 2 1.30E0 4.11E-1
- 1. 2 9 E-1
- D ND S.70E3 7.59E4 Ce-141 3.92Ei 1.95E4 2.90E3-N3 S.55E3 5.44E5 5. 6 6 E '+
l.
Ce-143 3.66E2 1.99E2 2.87El SD 3.36El 1.15E3 1.27E5 L
u-144 6.77E6 2.12E6 3.61E5 SD 1.17 E6 1.20E7 3.89E3
'?r-143 1.S5E4 5.55E3 9.14E2 ND.
3.00E3 4.33E5 9.73E4 Pr-144 5.96E-2 1.35E-2 3.0CE-3 ND
- 9. 77 E-3 1.57E3 1.97E2
'Nd-147 1.08E4
'S.73E3
~6.31E2 SD 4.SlL3 3.2SE3 S.21E4
- W-137 1.63El 9.66E0 4.33E0 ND ND 4.11E4 9.10E4 Sp-239 4.66E2 3.34El 2.35El ND 9.73E1 5.81E4
- 6. 0E4
- (a) The child age group deter:'natic..; Table E-9 Reg. Guide 1.109, Rev. 1, 1977 P
f 5
~Y +
t rv s - -- ~. -,- w, wn..,.re w wn,
,wn w - m,,
. - -, - ~ - - - - - - - - -
- ~ ~
~
' - ~ * ' " '
' ~ ~ ~ ' ' ~ ' ~ ' ~ ~ ~ ~ ' - ~~
- - - - ~ - -
n - -.n a
-+.vw-,~
~
4
m' *A,
?'
.y-l3 s'
'E j
- t' i N..*
E 1 -1 r
,t c
I 5E20 1 4E61 9
-m721-eT 6E31 2 6E55 1 md21-eT 9E10 4 9E44 3 m0.J-gA 7
L SE70 5 SE22 4 601.rk L
3E12 7 5E63.'6 501-uR5 4-
+
i i}
i
{
8E62 1 8E80 1
- 301.dR
'g '/ N 4E62 2 4E40' 101--eTe' i.,'
5E11 2 5E48 1
%9-cT L
f,' '
6E26 4 6E89 3 49-E 8E16 1 8E73 1 59-bE-t' /.
J f, ~.<L 6E41 3 6E69 2 7 9-r.:-
t
.r 8E4S.2 8E54 2 59-rZ.
- n.
t 5E15 2 5E33 1
,39-Y.
U
'4, 5E41 2 5E06 1-29-Y i o' 6EL2 1 6E70 1' L9-Y
~
nif g
f/
SE61 1 5E00 1' i
3E13 3 3E94 4
~
m19-Y '
2 09-Y
(
5E36 8 5E77 7 29-tS
[
6E15 2 6E51 2 19.-r Sc
',,'f %.
4E15 2 4E61 2 9 3'-r S W'
u i
5E34 1 5E32 1
,3'5-b?
y r'
i 4E57 3-4E13 3 68-bA-p.
t 7E30 1 bE99 8 68-bR~
~.
aw*
i v i i
3E63 2' 5E30 2 48-rB-T l
3ES0 7 3E78 4 rB F
.t SE95.S 8E74 7
)6-n2 n
+
, A. i i~
SES8 6 5E70 6
~ r 46-uC s
I 5E54 3 5E79 2 56-1N
- i l
01E35 2 01E51 2 t
,06-oC
~', >
SE44 4 SE97 3 33-oC' i
~
i 3E02 3 8E27 2 95-eF
, e.
i
{
6E70 1-5E30 9 63-n3 i
0E36 1 9E93 1 i S-ne' e
?
6E15 5 6E56 4 15-rr
^
6 7E93 1 7E91 1 42-a!
[
A'
-edilcuN p
~
1 nikS ydoB latoT 1/.
- m s-t
)ces/iCt( rep )ry/.aerm '9m('.
2 I.
. A' t
r vawhtaP enalP dnuorG
. ~ TL m-
-,m 3ESAC ELMY NuiT REHTO SEDILCUNOIDAR ROF )g R( SROTCAF.7GCD tA'.gLIAT r
4,%[ ~ ' e..
g f
).dtnoC( 5 ELBAT d
~ J
)
n a.
n.
t.
[
st
>t
?
l 1.veR 1.g'(t
~-
r 3 '.,.:t ?-eM
~;
e l
4
-Y 4
'.i -
,g j,
'x...
c;
_t o
,?
VK..'_
a.y
o j-,
,r
~-k
_.~ - - -,. _...
m
.s
(7,....~.-n.....--.___..-___-..
I l
.s.
4t l
i 1
i f-t Rev. 1 2
TAELE 5-(Contd.)
i-Cround Plano Pathway v
.l.
(m2 mrem /yr) per ( :C1/see) p j.
I f
Nuclide T_ otal' Bod.y Skin I
)
i Te-127 2.98E3 3.2SE3 I
Te-129m.
1.98E7 2.31E7 Te-129 2.62E4 3.10E4
-Te-131m.
3.03E6 9.46E6 Te-131 2.92E4 3.45E7 Te-132 4.23E6 4.98E6 i
I-130 5.SlE6 6.69E6 f
I-131 1.72E7 2.09E7 T-132 1.2156 1.45E6 I-133' 2.45E6 2.93E6 4
I-134 4.47E5 5.30E5 I-135 2,51E6 2.93E6 Cs-134 6.86E9 0.00E9 Cs-136 1.53E8 1.74E8 l
Cs-137-1.03E10 1.20E10 i
i o
l' Cs-138
.3.39E5 4.10E5 i
Ba-139 1.06E5 1.19ES r
Sa-140 2.05E7' 2.35E7 I
3a-141 4.13E4 4.73E4 J
4.44E4 l
5.06E4 i
La-140 1.92E7 2.13E7 La-142 7.40E5 8.89E5 h
r Ce-141
- 1. 37E 7 1.54E7 l
Cc-143 2.31E6 2.63E6 l
s Ce-14 4.-
'6.96E7 8.04E7 l
i L
Pr-144 1.84E3
-2.11E3 Nd-147 8.41E6 l.01E7
'4-187 2.36E6-2.74E6 i
Np-239 1.71E6 1.98E6 I
.}
t i
f t
t P
b -
..._.__7_._,
1 i
Rev. 1 TABLE 5 (Contd.)
t PATHWAY DOSE FACTORS (R. ) FOR RADIOSUCLIDES OTHER THAN NOSLE GASES 4
J 1
1 MEAT PATHWAY 2
(m mren/yr) per (uCt/sec)
I t
NUCLIDE BONE LIVER TOTAL BODY THYROID MDNEY LUNG GI-LLI H-3 ND 2.34E2 2.34E2 2.34E2 2.34E2 2.34E2
- 2. 34 E2 C-la 3.83ES
'7.67E7 7 ^. 67 E7 7.67E7 7.67E7 7.67E7 7.67E7 S a-2 '.
1.78E-3 1.78E-3 1.78E-3 1.78E-3 1.75E-3 1.78E-3 1.78E-3 P-32 7.41E9 3.47ES 2.86E8 ND ND ND 2.05E8 Cr-51 XD ND 8.79E3 4.88E3 1.33E3 8.911.3 4.66ES
[
Mn-54 ND 8.01E6 2.13E6 ND 2.25E6 ND 6.72E6 Mn-56 ND 0
0 ND 0
ND 0
Fe-55 4.57E8 2.42E8 7.51E7 ND N0 1.37ES 4.49E7 Fe-59 3.76E8 6.09ES 3.03ES XD SD 1.76ES 6.34E8 Co-58 ND 1.64E7 5.02E7 ND ND ND 9.58E7 l
I Co-60 ND 6.93E7 2.04E8 ND ND ND 3.34E8 Si-63 2.91E10 1.56E9 9.91E8 FD ND ND 1.05ES N i-65 0
0 0
ND ND ND 0
Cu ND 2.97E-7 1.79E-7 ND 7.17E-7 ND
- 1. 39 E-5 1
Zn-63 3.75E8 1.00E9 6.22E8 hD 6.30ES ND 1.76ES
,En-69 0
0 0
ND 0
ND 0
Er ND ND ND ND ND ND-ND Sr-84 ND ND ND ND ND ND ND Br-85 ND ND ND ND ND ND ND I
Rb-86 FD 5.82F8 3.58E8 ND ND ND
- 3.74E7 Rb-88 ND 0
0 ND ND ND 0
Rb-89 ND 0
0 ND ND ND 0
i St-89 4.82E8 hD 1.38E7 ND ND XD 1.86E7 l
.5r-90 1.04E10 ND 2.64E9 ND ND ND 1.40E8 Sr-91 2.40E-10 ND 0
ND ND ND 5.29E-10 1.-
at TN 3' ywvy='Fwm"-Tv-9t-P#we e r e-- D NH ur-4TW=*w-+7Pm se 1m--
hrha*
r
- 5 E
t i
6-E40 3 031-1 6-E78 2 DN 6-E71 9 4-E67 6 6-E61 3 6-E31 6 6E33 9 DN 6E06.S 6E531 6E21 1 5E62 9 6E90 2 231-eT 1
0 DN O.
0 0
0
_ 0 131-eT i
3E28 9 DN 3E43 2 2E89 4 2E85 2 2E24 2 2E00 7-a131-eT 0
DN 0
0 0
0 0
'921-oT 9E31 2 DN 9E52 5 SE67 5 SE77 2 SE99 4 9E97 1 m921-eT 8-E16 1 DN 9-E71 1 01-E56 2 0
01-Ell.1 01-E.1 4 721-eT 1
9E44 1 DN 9E60 5 8E42 4 8 Ell.2 SE87 4 9E77 1 m721-eT 8E94 5 DN DN-8E06 1 7E95 7 GE45 1 SE96 5 a521 eT SE57 6 DN 7E60 1 DN 6E35 4 6E76 5 6E04.S.
m011-gA.
01E09 6 DN 9E99 5 oN 8E45 5 DN 9E44 4 s ol-u.F 9
0 D:
0 DN 0
DN 0-501-uR 9E10.-
DN 8E09 3 DN 7E69 5 DN SE55 1 301-uR 0
0 0
- DN 0
0 0
101-cT 0
0 0
DN 0
0 0
- 299-cT 4E15 9 DN 5E64 2 DN 4E48 2 3E51 1 DN 99-oM 9E32 2 DN 6E31 1 DN 3E16 8 6E02 1 6E90 3 59-bN 1-220 7 DN 6-E56 6 DN 6-E37 2 6-E36 4 3-E02 3 79-rZ e511 6 DN 5ES3.S DN 5E12 5 5E5S.5 6E66 2 59-rZ 7-E55 1 DN DN DN 0
DN 0
39-Y 0
DN DN DN 0
DN 0
29-Y 6E04 2 DN DN DN 4E2S.4 DN 6808 1 19-Y 0
DN DN DN 0
DN 0
n19-Y.
3ES8 4 DN DN DN 0E95 4 DN 2E17 1 09-V 0
DN DN 0h 0
DN 0
29-rS ILL-g GNUL "ENDIK.
DIORYHT YD03 LATOT REVIL ENOB EDILCCN' I
i
)ces/iC;-(rep )ry/merm m(
2 YAWHTAP TAEM 1
SESAG ELB0N NsU!T REH10 SEDILCTh0IDAR ROF ).RJ SROTCAF ESOD YA4F1 TAP
__).dtnoC( S'ELBAT i
1 1. veR -
u
_ _ =. _. _
t_
I I
r Rev. 1 4
i TASLE 5 (Centd.-)
1 PATHWAY DOSE FACTORS (R ) FOR RADIONUCLIDES OTHER THAN NOBLE CASES
+
1 1
MEAT PATHWAY li' (n mrc:/yr) per-(uCi/sec) 2 i
L
'iUCLIDE BONE LIVER TOTAL 30DY THYROID KIDNEY LUNC GI-LLI I-131 1.66 E7 1.66E7 9.46E6 5.50ES 2.71E7 13 1.48E6 i
1-132 0
0 0
0 0
SD 0
I-133-C.16E-1 7.61E-1 2.88E-1 1.41E2 1.27E0 ND 3.07E-1 I-134.
0 0
0 0
0 ND 0
I-135 0
0 0
0 0
ND 0
i
-Cs-134 9.22ES
-1.51E9 3.19ES ND 4.69ES 1.68E8 8.16E6 i
Cs-136' 1.61E7 4. -. 3 E7 2.A6E7 ND 2.36E7 3.51E6
- 1. 5f E6 j
Cs-137 1.33E9 1.28E9 1.ccES ND 4.16ES 1.50E8 7.99E6 i-Cs-138 0
0 0
ND 0
0 0
l j
Ba-139 0
0 0
ND 0
0 0
i
+
Sa-- 140 4.38E7 3.34E4 2.56E6 XD 1.25E4 2.29E4 2.22E7 Ba-141 0
0 0
ND 0
0 0
-Sa-142 0
0 0
ND 0
0 0
U-142 5.69E-2 1.99E-2 6.70E-3 FD ND ND 5.54E2 j-La-142 0
0 0
ND ND ND f
Ce-141-2.22E4 1.llE4 1.64E3 ND 4.85E3 ND 1.38E7 Ce-143 3.17E-2
,1.72El 2.49E-3 ND 7.21E-3 ND 2.52E2 Ce-144 2.32Eu
/. 2';E5 1.24E5 ND 4.02E5 ND 1.89E8 l
'Pr-143 3.35E4 1.00Ei 1.66E3 ND 5.44E3 ND 3.61E7 i :.
Pr-144 O.
0 0
h3 0
h3 0
Nd-147~
1.17E4 9.50E3.
7.35E2 ND 5.21E3 ND 1.50E7 i
W-187-3.35E-2 1.98E-2 8.91E-3 ND ND ND 2.79E0 h'
'Np-239-4.20E-1 3.02E 2.12E-2 ND 8.72E-2 FD 2.23E3 4
.l b
L i.
_ _ - - ~ ~.. -. - -.... _ _. __.._.. _ _. - _ _. _ _.
_m_
N.
i I
l Rev. 2 h
iA3LE 5 (Contd.)-
-FATHWAY DOSE FACTORS (R ) FOR RADIONUCLIDES OTHER THAN N0 ELE GASES f
i-Grass-Cow-Milk Pathway
(-
(n~ mren/yr) per (;_C1/sec) e r
l t
NUCLIDE EONE LIVER TOTAL BODY THYROID KIDNEY LUNG GI-LLI i
H-3 ND 1.57E3 1.57E3 1.57E3 1.57E3 1.57E3 1.57E3 R
C-14 1.19E9 2.39E8 2.39E8 2.39ES 2.39ES 2.39ES 2.39E8 Na-24 S.S9E6.
6.89E6 8.89E6' 8.S9E6 5.89ES 8.59E6 3.89E6 P-32 7.77E10 3.64E9 3.00E9 ND SD SD 2.15E9 Cr-51 ND ND 1.03E5 5.65E4 1.56E4 1.04E5 5.40E6 Mu-54 ND 2.10E7 5.59E6.
ND 5.88E6 ND 1.76E7 I
i Mu-56 SD 1.29E-2 2.90E-3 ND 1.56E-2 ND 1.86E0 fe-55 1.12E3 5.93E7 1.84E7 ND ND 3.35E7 1.10E7
[
fe-59 l'.20ES 1.94ES 9.69E7 ND ND 5.64E7 2.02E8 r
l' Co-56' ND 1.21E7 3.71E7 ND ND ND 7.07E7 l
t Co-60 ND 4.32E7 1.27ES ND ND ND 2.39ES Ni-63 2.96E10 1.59E9 1.01E9 ND ND
'D 1.07ES L
Ni-65
-1.66F0 1.56E-l' 9.10E-2 ND ND SD 1.91El
'Cu-64' ND' 7.46E4
'.51E4 ND 1.SOE5 ND 3.50E6 r
Zn-6 5.
4.13E9-1.10E10 6.85E9 ND 6.9'.E9 ND 1.93E9 i
Zn-60
'0-0 C
ND 0
SD 1.12E-9 LR-83 -'
NJ ND ND ND ND ND ND BR-84 ND ND ND ND NJ ND NJ Br-85 ND ND
.iD ND ND ND ND Rb-86' ND S.80E9' 5.41E9 ND SD ND 3.66ES Rb-88 ND C
0 ND ND ND 0
RB-89 ND 0
0 ND ND ND 0
Sr-89 6.62E9 ND-1.89E8 ND ND SD 2.56E3 Sr 1.12E111 ND 2.S3E10 ND ND ND 1.51E9 SR-91
.!.30E5 ND
.4.92E3 ND ND ND 2.8SE5 i
i L
i h
i 5
' b I
t
( '
. a
4' Rev. 2 4
e TJ.3LE 5 (Contd.)
i
{
PATiiWAY DOSE FACTORS (R ) FOR RADIONUCLEDES order IliAN NOELE CASES f
j Grass-Cow-Milk Pathwav i-2
~
(m crem/yr) cer GCi/sec)
NUCLIDE 30NE LIVE?,
IOTAL BODY TIiYROID KIDND' 7"NG GI-ELI 1'-
i s
Sr-92 2.18E0 ND 8.75E-2 ND ND ND 4.13E1 Y-90 3.22E2 ND 8.62E0 ND ND SD 9.I7E5 1-X-91a 0
ND 0
ND ND ND 0
Y-91 3.90E4 ND 1.04E3 ND ND ND 5.20E6
' Y-92 2.53E-4 ND 7.24E-6 ND ND ND 7.31E0 Y-93 1.03E0 ND 2.90E-2 ND ND ND 1.57E4 Zr-95 3.S3E3 8.42E2 7.50E2 ND 1.21E3 ND S.79E5 l
Zr-97 1.92E0 2.77E-1 1.64E-1 ND 3.98E-1 SD 4.2024 r
Nb-95 3.18E5 1.24F5 8.84E4 ND 1.16ES ND 2.29ES j.
' Mo-99 ND 8.14E7 2.01E7 ND 1.74ES ND 6.73E7 i
Tc-992 1.32E1
- 2. 59 E1.
4.29E2 ND 3.76E2 1.32E1 1.47E4 Tc-101 0
0 0
ND 0
0 0
i Ra-103 4.28E3 ND 1.65E3 ND 1.08E4 ND 1.11E3 l-Rn--105 3.82E-3 ND=
1.39E-3 ND 3.36E-2.
ND 2.49E0 t
?'
Ru-106 9.24E4 ND l'.15 E4 ND 1.25E5 ND 1.44E6 i
I Ag-1102 2.09ES 1.41E8 1.13ES.
ND 2.63E8 ND 1.6SE10 Te-125m _7.3SE7-2.00E7 9.34E6 2.07E7 ND ND 7.12E7 Te-127a 2.0SES 5.60E7 2.47E7 4.97E7 5.93E8 ND 1.6SE8 Te-127 3.05E3.
S.22E2 6.54E2
.2.11E3 S.67E3 ND 1.19E5 i
Tc-129n 2.71E8 7.57E7 4.21E7-
'8.74E7 7 06E8 ND 3.31E8 f
-Te-129 0
0 0
0 2.90E-9 ND 6.17E-3
' Te-131a 1.60E6 5.53E5 5.89E5 1.14E6 5.35E6 ND 2.24E7
?
.Te-131 0
0 0
0 0
ND 0
P
. Te-132 1.02E7 4.52E6
.5.46E6 6.5SE6 4.20E7 ND
'+. 5 5E7 j -
I-130
- 73E6 3.49E6 1.80E6 3.34ES 5.27E6 ND 1.63E6 i
i
['..
)
I 4
I l
,i :.
o
i E P". 2 TABLE 5 (Contd.)
PAIhTAY DOSE FACTORS (R.) FOR MDIONUCLIDES OTHER THAN NO3LE GASES 1
Grass-Cow-Milk Pathway (c' crem/yr) per (t.Ci/ccc)
NUCL II>E BONE LI'!ER TOTAL EODY THYROID (.IDNEY L'JNG GI-LLI I-131 1.30E9-1.31E9 7.45ES 4.33E11 2.15E9 ND 1.17ES I-132 6.02E-1 1.11E0 5.03E-1 5.13El 1.69E0 KD 1.3CEO I-133 1.74E7 2.15E7 8.13E6 3.99E9 3.58E7 ND 8.66E6 I-134 0
0 0
0 0
SD 0
1-135 5.40E4 9.72E4-4.60E4 3.61E6 1.49E5 ND 7.40E4 Cs-134 2.26E10 3.72E10 7.64E9 ND 1.15E10 4.13E9 2.00E8 Cs-134 1.01E9 2.77E9 1.79E9 ND 1.4SE9 2.20ES 9.74E7 Cs-137
- 3.22E10 3.09E10 4.56E9 ND 1.01E10 3.62E9 1.92ES Cs-138 0
0 0
N.:
0 0
0 Ba-1 9
' 1.89E-7 0 5.4CE-9 ND 0
0 1.09E-5 Ba-140 1.17ES 1.03E5 6.84E6 ND 3.34E4 6.12E4 5.93E7 Ba-141 0
0 0
ND 0
0 0
Ba-142 0
0 0
ND 0
0 0
La-140
. 1.93E1 6.80E0 2.29E0 ND ND ND 1.90E5 La-142
.0 0
0 ND ND
':D 2.90E-6 Ce-141-2.19E4 1.09E4 1.62E3 ND 4.78E3 ND 1.36E7 Ce-143 1.87E2 1.02E5 1.47El ND 4.26El ND.
1.49E6
- Ce-144 1.62E6 5.09ES 3.66E4 ND 2.S2E5 5D 1.33ES Pr-143 7.19E2 2.16E2 3.57El ND 1.17E2 ND 7.75ES P r-l'44 0'
O O
NE O
ND 0
t Nd-147 4.45E2
. 3.'61 E 2 2.79El ND 1.9EE2 SD 5.71E5 W-137 2.91E4-1.73E4 7.73E3 ND ND ND 2.42E6
- Np-23_9 1.72E1
'1.23E0 8.6SE-1 ND 3.57E0 ND 9.14E4 4
4 L
g-l.
i-,
b
._, ;.. i..
4
[
,.,,,,,._._..._.,,,,r
,,,..,m.._
, _ _ _ _ _,.. _,. _.. - - _ _,,. _,. _ _. _,.... _. - _, _. -, - _ _ _,,, - _.,, ~
r:
i i :.
Rev._2 t-;.
TA3LE 5 (Centd.)
i'
{
s PATHWAY DOSE FACTORG (R ) FOR RADIONUCLIDES OTHER TRAN NO3LE GASEE Grasc-Coat-Milk Pathway 2
i (n crem/yr) per (vCi/sec) t'
'NUCLIDE EONE LIVER TOTAL BODY THYROID KIDNEY LUNG GI-LLI i
i H-3 ND 3.20E3 3.20E3 3.20E3 3.20E3 3.20E3 3.20E3
_ C 1.19E9 2.39ES 2.39ES 2.39E6 2.39ES 2.39ES 2.39ES Na-24 1.07E6 1.07E6 1.07E6 1.07E6 1.07E6 1.07E6 1.07E6 j
P-32 9.33E10 4.37E10 3.60E9 ND ND ND 2.53E9
~
Cr-51 ND
.ND 1.23E4 6.78E3 1.87E3 1.25E4 6.45E5 I
' ND _
2.52E6 6.70E5 ND 7.06E3 ND 2.11E6 l-Mn-56 ND 1.54E-3 3.49E-4 ND 1.87E-3 ND 2.24E-1 Fe-55 1.'4 5E 6 7.71E5 2.39E)
ND ND 4.36E5 1.43E5 Fe 1.56E6 2.53E6 1.26E6 ND SD 7.33E5 2.63E6 i
Co ND 1.45E6 4.45E6 YD ND ND 8.49E6 Co-60 ND 5.18E6 1.53E7 ND ND 5D 2.87E7 Ni-63 3.56E9 1.90E8 1.21E8 ND v*
ND 1.20E7 Ni-65 1.99E-1 1.87E-2 1.09E-2 ND ND 2.29EO Cu-64 ND 8.31E3
.5.02E3 ND
- 2. m E4 ND 3.90E5 Zn-65' 4.96E3 1.32E9 S.22EF ND 8.33E8 ND 2.32E8 l.
'O' O
O KD' O
ND 1.35E-10 Br-63 ND ND ND ND ND ND ND Br-84 ND ND ND a
ND ND ND ND i'
Br-85 ND ND ND ND ND ND ND i
~ Rb-S6 ND 1.06E9 6.50ES ND AD-ND 6.80E7 Rb-88 FD 0-0 ND ND ND 0
Eb-89 ND 0
0 ND' ND ND 0
Sr-89
- 1.39E10 SD 3.97ES ND ND ND 5.38ES Sr 2.35E11: ND 5.95E10 ND ND ND 3.16E9
- Sr 2.74E5 ND 1.03E4 ND ND ND 6.04E5 s
L Rev. 2 TABLE 5 (contd.)
PATlWAY ' DOSE FACTORS (R ) FOR RADIO:'UCLIDES OTHER TilAN NOBLE GASES 4
Grass-Goat-> ilk Pathway i
(c'. mrem /yr) per (LCi/sec) l J
NUCLIDE SONE L.IVER.
TOTAL 3CDY THYROID KIDNEY LUNG GI-ELI I-f j
Sr-92 4.58E0 ND 1.24E-1 Nn ND ND 3.ESE1 l
j Y-90.
3.87El ND 1.02E0 ND ND 57 1.10E5 i
Y-91a
.0-ND 0
ND NU ND 0
.Y-91
_4.63E3 ND l.25E2 ND ND NU 6.24E-5 Y-92 3.04E-5 ND S.69E-7 ND ND ND 8.77E-1 i
Y-93
- 1. 2 7 E-- 1 ND 3.4SE-3 ND ND ND 1.39E3 l-Zr-95 4.60E2 1.01E2 9.00E1 ND 1.45E2 ND 1.05E5
[
Zr-97 2.30E-1 3.33E 1.96E-2 ND 4.73E-2 XD 5.04E3 i'
Nb-95 3.81E4 1.48E4 1.06E4 ND 1.39E4 ND 2.75E7 j'
>10-99 ND 9.76E6 2.42E6 ND 2.09E7 ND S.0SE6 t
i
&[
Tc-99m-1,59EO 3.11E0 3.15El ND 6.52E1 1.5SEO 1.77E3 l
l Tc-101 0_
0 0
ND 0
0 0
i i
Rn-103 5.14E2 ND 1.93E2 ND 1.29E3 ND 1.33E4 I
Rr.-105 4.58E-4 ND 1.66E-4 ND 4.03E-3 ND 2.99E-1 f
Ru-106.
i.11E4 D
1.38E3 ND-1.50E4 ND 1.72E5 Ag-110 2.51E7 1.69E7 l '. 3 5 E7 ND 3.15E7 XD 2.01E9 Te-125m 8.SSE6 2.40E6 1.18E6 2.48E6 ND ND S.54E6 Te-127m 2.50E7 6.72E6 2.96E6 5.97E6 7.12E7 ND 2.02E7
[
=Te-127 3.66E2 9.86El 7.85El 2.53E2 1.04E3 XD 1.4JE4 Te-129:
3.25E7 9.09E6 5.05E6.
1.05E7 7.55E7 ND 3.97E7 I
Te-129 0
'O O
O O
ND
'.40E-9 Te-131n 1.92E5 6.64E4 7.07E4-1.37E5 6.43E5 ND 2.69E6 Te-131 0
0 0
0' 0
ND 0
i i
Te-132 1.23E6
.5.42E5 6.55E5 7.90E5 5.04E6; ND
-3.46E6
- I-130 2.07E6 4.19E6 2.16E6
-4.61E8 6.26E6 ND 1.96E6 i
i n
t i
i
?
i 1
i t i
n
_ _ -. _ _.. _ _,. - _ _. _ _... -., ~.... -.. _ _ _. _. _. _.. _ _. - - _ _ _
~..
_ ~ ~.. - -.... -. -. -..
I a.
i Rev. 2 d
TABLE 5 (Contd.)
I, PATHk'At DOSE FACTORS (R ) FOR RADIONL'C' IDES OTHER THA NOBLE CASES i
i Grass--Goat-Milk Patinmv i
3 (m' mrem /yr) per (LCi/sec) 4 I"
NTCLIDE' BONE LIVER TOTAL 30DY THYROID KIDNEY
. Li'NO G I-LLI p
I-131 1.56E9 1.57E9 8.91E8 5.2CE11-2.36E9 ND 1.40ES I-131
'7.22E-1 1.33E0 6.10E1 6.15E'
?.03E0 ND 1.36E0 i
P I-133 2.09E7 2.SSE/
9.76E6 4.79E9 4.20E7 ND _
!.04E7 I-134 0
0 0
0 0
ND 0
i I-135 6.48E4 1.17E3 5.52E4 1.03E7 1,7925 ND S.SSE4 h
Cs-134 6.79E10' 1.11E11 2.35E10 ND 3.45E10 1.24E10 6.01E8 l-Cs-136 3.03E9 8.32E9 5.38E9 SD 4.43E9 6.61ES 2.92E8 4
i-Cs-137 9.67E10 9.26E10 1,37E10 KD 3.02E10 1.09E10 5.60E8 Cs -138 0
0 0
ND 0
0 0
Ba-139 2.27E-8 0 0
ND 0
0 1.31E-6 1
F Ba-140 1.41E7
-1.23E4 S.20E5 ND 4.01E3 7.34E2 7.12E6 Ba-141 0
0 0
ND 0
0 0
5 i
Ba-142 0
0 0
-ND 0
0 0
i La-140' 2.34E0 8.17E-1 2.75E-1 ND ND ND 2.28E4 l~
- La--142 0
0 0
ND ND ND 3.49E-7 f-
~
ND 5.74E2 ND 1.63E6 l
Cc-141 2.'6 2E3 1.31E3 1.94E2 Ce-143 2.25El 1.22E4 1.77E0 l
ND:
5.12E0 ND 1.79ES s
ND 3.38E4.
ND 1.39E7 l
Cc-144 1.95E5 6.11E4 1.04E4 Pr-143-8.62E1 2.59El 4.28E0 ND 1.40E1 ND 9.30Z4 Pr-144 0
0 0
ND 0
.ND 0
5 Nd-147 5.34E1 4.33E1 3.35E0 '
ND 2.37El ND 6.85E4 h-L'-18 7 3.49E3 2.07E3 9.27E2
-ND ND ND 2.90E5 l
Np-239 2.06E0 1.48E-1 1.04E-1 ND
_4.26E-I ND 1.10E'4 v
P h
L i _. -,.. -... _ _., _ _ _ _. _... _ _. _ _
___ - _ _ _. _ _. _ - ~. _ _. _. _ _. _, _ _ _ _
Rev. 2 TABLE 5 (Cant'd.)
,PATHk'AV DOSE FACTORS-(R ) FOR FADIONUCLIDEs OTHER THAN NOBLE GASES f
i f
Vegetation c'athway J.
3 (fraren/yr) per (F.1/sec) 1 1
NCCLIDE SONE LIVER TOTAL BODY THYROID KIDNEY LUNG CI-LLI l
H-3 '
~ND 4.01E3 4.01E3 4.01E3
.4.01E3 4.01E3 4.01E3
.C-14'
'8.89E8 1.78E8 1.78ES 1.78E8 1.7 PES 1.78E8 1.7SES Na-24
- 3. 73 ES
- 3. 7 5 ES 3.75 E5 -
3.75E3
- 3. "> E 5 1.7sES
- 3. 7 5 E5 P 3.37E9 1.57ES 1.30E3 ND ND ND 9.30E7
- Cc-51 SD ND 1.17E5 6.50E4 1.78E4 1.19E3 6.21E6 Mn-54 ND 6.65E8 1.77ES ND 1.86E8 ND 5.5SES
[I Ma-56 ND 1.88E1 4.24E0 ND 2.27El ND 2.72E3 l
.Fe-55 8.01E8 4.25E8 1.32E8 ND ND 2.40E8 7.87E7 i
Fe-59.-
3.97ES 6.43E8 3.20E6 ND ND 1.S6E8 6.69ES l
Co-58 ND 6.44E7 1.97ES-ND 3;'
ND 3.76ES
?
.ND 3.78E3 1.12E9
- D ND ND 2.10E9 Ni-63 3.95E10 2.11E9 1.34E9 ND ND ND 1.42E8 i
'1-65 1.05E2 9.S9E0 5.77E0 ND ND SD
-1.21E3 i
j.
Cu-64 ND 1.10E4
- 6. 6!.E 3 ND 2.66E4 ND 5.16E3 j
Zn 8.12E8 2.16E9 1.35E9 ND 1.36E9 ND 3.SOES i-4 Zn-69
.l. 09 E-5 _ l. 5 7 E-3 1.43E-6 ND 9.52E-6 ND 9.11E4
{.
3r-83 ND ND 5.37E0
- D ND ND 0
l
. 3r-34 ND ND 0
XD ND ND 0
ar ND' ND 0
ND SD ND 0
i
- Rb-c6^
ND 4.58E8 2.82ES ND SD ND 2. 9 '. E7 f
Rb-88 ND 0
0 ND ND ND 0
l I'b -89 ND 0
0-ND ND ND 0
.Er-89 3.59E10 ND
'1.03E9 ND ND ND 1.39E9
. Sr-90 1.24E12 ND 3.15 Ell ND ND ND 1.67E10 i
i Sr-91
'5.24E5 ND -
1.98E4' ND SD ND i.16E6 f
I r
l-i 6
p i
f i !
l L
~ ~ _ _ _ _. _ _.
m..
m t
i.
Rev. 2 i
1A3LE 5 (Cont'd.)
t i
PATHk'AY DOS FACTOR 5 (R ) FOR PaDIONUCLIDES OTHa T:'aN NOBLE GASES i
Vegetation Pathway 3
i 3
(m'arem/yr) per ( Ci/sec)
NbCLIDE BONE LIVER TOTAL BODY THYROID KIDNEY LD;G CI-LLI Sr-92 7.28E2 ND.
2.92El ND ND ND
- 1. 3 S E '.
Y-90 2.31E4
,ND
.6.18E2 ND ND ND 6.57E7 i
y-91m 8.87E-9 ND 3.23E-10 ND ND Na 1.74E-3 Y-91 1.86E7 ND
~4.99E5 ND SD ND 2.4SE9
[
Y-92
.l.53E0 ND.
4.53L-2 ND ND ND
'.5SE4 f
I Y-93 3.01E2 SD S.25E0 ND ND ND 4.adE6 Zr 3.86E6-8.45E5 7.55E5 ND
- 1. 1E6 ND S.84E8 Zr-97' 3.70E2 8.24El 4.86El ND 1.18E2 ND 1.25E7 i.
Nb-95 4.10E5.
1.59ES 1.14E5 ND 1.50E5 XD 2.95E8 t
,sto-99 ND 7.71E6 1.91EG ND 1.65E7 ND 6.38E6
'Tc-99m 4.71E0 9.24E0 1.53E2 ND 1.34E2
.4.69E0
~ 5.26E3 l
(Tc-101
_. 1.54E)
. ND -
S.90E6
':D 3.37E7 ND 3.97ES.
0
(
0.
ND 0
0 0
.Ru-103 Re-105 9.16El 3D 3.32El ND 8.05E2 SD 5.98E4
+
au-106 7.45ES ND 9.30E7 ND 1.01E9 ND 1 16E10 i
~
A4-110m 3.22E7 2.17E7 1.74E7 ND 4.05E7 No 2.58E9 Te-125m 3.51E8 9.50E7 4.67E7 9.84E7
.ND ND 3.38E3 Te-127m 1.32E9 3.56ES-1.57E8.
3.16EE 3.77E9 ND 1.07E9
[
Te-127 1.00E4 2.69E3 2.14 E 3 6.91E3 2.84E4 ND-3.90E5 Te-129m 8.38ES.
2.34E8' l.30E8 2.70ES 2.46E9 ND 1.02E9 l
Te-129 1.16E-3 3.22E-4 2.75E-4 8.26E-4 3.39E-3 ND.
7.20 -2 E
Te-131m' cl.54E6 5.33E5 5.6SE5 1.10E6 5.16E6 ND 2.16E 7 re-131 0~
0 0
0 0
ND 0
!1 Te-132-
'6.98E6 3.09E6 3.73E6 4.50E6 2.S7E7 ND 3.llE7
~
-I--130 6.16E5 l.24E6
.- 6. 3 SES 1.37ES 1.36E6 ND 5.79Es p
i i
i'
't j
i i
l' T
.i f
^. - -,,.... _. ~. -, _.. _. _... _ _. _. ~.. _ _. _ _ - _ _ - _.. _ _ _ _. _. _. -. _. _, _. _. _ _ _
.. _ -. -. _ _ -. ~. _ _. _.._.. _..._._ _ _ _. _.
t-k Rav
-2 j.
TABLE.5 fCont'd.)_
I t
)
PATHWAY DOSE FACTORS. (R ) FOR RADIONECLIDES OTHER TiiAN N0 ELE GASES i -
l Vegetation Pathway l
s 7
i (n'nren/yr) per (pCi/sec) i;
~NECLIDE 30:sE.
-LIVER TOTAL BODY iIHYROID KIDNEY LENG CI-LLI l-i I-131 1.43E8 1.44ES 3.17E7 4./5E10 2.36E8 ND 1.2SE7
,.I-132 8.58E1 1.5SE2 7.25El 7.31E3 2 '3E2 ND 1.86E2 I-133.
3.56E6 4.40E6 1.67E6 3.18ES.
7.34E6 ND 1.77E6 I-134 1.55E-4 2.8EE-4 1.32E-4 6.62E-3 4.40E-4 ND 1.91E-4 I-135 6.62E4 1.13E5 5.33E4 9.97E6~
1.70ES ND S.58E4
.Cs-134 1.60E10 2.63E10 5.53E9 ND S.15E9 2.93E9 1.42ES Cs 236 8.17E7 2.25E8 1.45ES SD 1.20E3 1.73E7 7.90E6 Cs-137 2.39E10 2.29E10 3.38E9 ND
- 7. 4 6E9 2.6SE9 1.43E8 Cs-135 0
0 0
ND 0
0 0
Ba-139 4.80E-2
- 2. 56 E--5 1.39E-3 ND 2.24E-5 1.51E-3 2.77EO Sa-lic 2.77E3 2.42E5 1.62E7 ND 7.89E4 1.45E5 1.40E8
.Ba-141 0-0-
0 ND 0
0 0
La-142 0
0 0
ND 0-0 0
La-140 3.25E3 1.14E3 3.83E2 ND ND SD 3.17E7 La-142
-2.5uE-4 7.98E 2.5CE-3 ND ND 5D 1.58E1 Ce-141 6.'56E5 3.27E5 4.86E4 ND 1.43E5 ND 4.0SES Ce-lat 1.72E3' 9.31E5 1.35E2 ND 3.91E2 ND 1.36E7 Cc-144-1.27E3 3.98E7' 6.78E6
-ND 2.21E7 ND 1.04E10
'r-143 1.46E5 4.38E4 7.25E3 ND 2.37E4 ND 1.5SES Pr-144 0
0 0
ND 0
.ND 0
Nd-147 7.17E4.
5.81E4 4.50E3 ND 3.1954 ND 9.20E7 W-187 6.47E4 3.83E4 1.72E4 ND ND ND 5.3SE6 Sp-239 2.55E3 1.83E2 1.29E2 ND 5.30E2 ND 1.36E7,
Rev. 2 i
i 1
i I
F TABLE 5 NOTES r
). ".
The values presented in Table 5 were calcu-
~1ated according to the methodology and guidance 4
provided in NUREG 0133, Rev.
O.
i Specific parameters utilized are:
I-
,t i
Parameter-Value Reference SF 0.7 Re f. 9.11. 2 f
1.0 Ref. 9.8.2 fP 1.0 Ref. 9. 8. 2 3
3 11 8.0 g/m Re f.
- 9. 8. 2 i
f 1.0 Ref. 9.8 5 f"
0.76 Ref. 9.8.5 9
).
i i
f.
i
+
, ~., -. _, _, _, _., -... - - -. _ _ _,,.
l Rev. _2 l
The cumulative critical organ doses for a monthly, j
. quarterly or annual evaluation are based on the calcu-j lated dose contribution from each specified time period
, occurring during the reporting period.
l 3.6 Gascous Raduaste Treatment System I
I j
3.6.1 Radiological Effluent Technical Specification i
f 3.11.2.A The VENTILATION EXHAUST TREATMENT SYSTEM and the WASTE GAS HOLDUP SYSTEM shall be OPERABLE 'and appropriate portions of these systems shall be used to reduce releases-of radioactivity when the projected doses in
)
! 31 days due to gaseous effluent releases, from each l.
unit, to areas at and.beyond the SITE BOUNDARY world I
exceed:
1 a.
0.2 mrad to air from gamma radiation, or
[
b.
0.4 mrad to air from beta radiation, or j-c.
0.3 mrem to any organ of an Individual f
(
l 3.6.2 Descrintion of the Gaseous Radwaste Treabrunt l
[
System
{
o The gaseous-radwaste treatment system and the ventila-f tion' exhaust system are available for use whenever gaseous effluents require treatment prior to being
~
. released to the environment.
The gaseous radwas~te 2[
' treatment system.is designed to allow for the retention offall gaseous fission products to be discharged from l-the reactor coolant system.
The retention system con-i
.sists of eight (8) waste gas decay tanks, six (6) for r
i fuse during normal operations and two (2) for use during shutdown conditions. -These systems will provide reas-l onable assurance that the releases of. radioactive i
materials.in gaseous effluents will be kept ALARA.
l v
\\
c3.6.3 OPERABILITY of the Gaseous'Radwaste Treathient j
System
[
1 i
t i
The OPERABILITY of the gaseous radwaste treatment sys-l tem ensures.this system.will be available for use when gases require treatment prior to their release to the environment.
OPERABILITY is' demonstrated through com-pliance with-Radiological Effluent Technical Specifica-i j
tions 3.11.2.1, 3.11.2.2, and 3.11.2.3.
i 9
h t'
I L
)
l t
1 l p
i --
I 1
O l
... o. c _.._
2.
.m..
_ ~.
.. _ ~ ~ _. -
_=-c.
Rev.
1-4.0 DOSE AND DOSE COMMITMENT FROM' URANIUM FUEL CYCLE SOURCES-4'1 Radiological Effluent Technical Specification 3.11.4 The annual.(calendar year) dose _or dose commitment to any MEMSER OF THE PUELIC due to releases of radioactiv-ity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the total body or.any organ, except the thyroid,. which shall be' limited to less than or equal to 75 mrem.
4.2.
ODCM Methodology for Determining Dose and Dose Commitment from Uranium Fuel C"cle Sources The annual dose or dose commitment to a MEMBER OF THE PUBLIC for Uranium Fuel Cycle Sources is determined as:
a)
Dose to the total body due to gamma ray expo-sure from immersion in a cloud of radioactive noble ~ gases and direct radiation from the unit and outside storage tanks; b)
Dose to the skin due to beta radiation fron immersion in a cloud of radioactive noble gases; c)
Thyroid dose due.to inhalaticd and ingestion of radioiodines.
d)
- Organ dose-due to inhalation and ingestion of radioactive' material.
Since the doses via liquid releases are very conserva-tively evaluated,-there is reasonable assurance that no real individual will' receive a nigniticant dose from radioactive liquid release pathways (<1 mrem fyr/
reactor).
Therefore, only doses to individuals via airborne pathways and doses resulting from. direct radi-ation are considered in determining compliance to 40 CFR 190. -(Ref. 9.12.3)
It should be noted that there are no other Ulanium Fuel Cycle Sources within 8km of the Callaway Plant.
The annual dose or dose commitment to-a MEMBER OF THE PUBLIC from Uranium Fuel Cycle Sources, is determined-
.whenever the-calculated doses from the release of radi-oactive materials in-liquid or gaseous effluents exceed
-twice the limits -of ' Radiological Effluent Technical
' Specification 3.11.'1.2a, 3.11.1.2b, 3.11.2.2a, 3.ll.2.2b,'3.11.2.3a, or 3.11.2.3b.
(Ref. 9.22.1 and
.~.. -
t Rev._1
- 9.12.2.).For those situations where there limits are
.not exceeded by substantial amounts, it should be poos-ible to demonstrate continued compliance with 40 CFR 190 through. reevaluation of the exceeded Appendix I
- design objective dose _using more realistic assumptions.
( Re f. 9.12. 3 and 9.12.4. )
t 4.2.1 Identification of the MEMBER OF THE PUBLIC The MEMBER OF THE PUBLIC is considered to be a real in-dividual, including all persons not occupationally as-sociated with the Callaway Plant, but who may use por-tions cf the plant site for recreational or other pur-
_ poses not associated with the-plant.
(Ref. 9.13.1 and 9.8.11.)
Accordingly, it is necessary to c! iracterize
-this. individual with respect to nis utilization of areas both within and at or beyond the SITE BOUNDARY and identify, as far as possible, major assumptions which can be reevaluated as previsously mentioned.
4'.2.1.1 Utilization of Areau Within the SITE BOUNDARJY The Union Electric Company has entered into an
.agreerent with the State of Missouri Department of Con-servation for management of the residual lands sur-rounding the Callas:ay Plant, including some treas within the SITE.EOUNDARY.
Considering_the terms of this agreement and the pre-censtruction utilization of the area; it is reasonable to assume that primary util-ination of lands : within the SITE LOUNDARY will be _ by hunters.
(Ref.
9.7.2, 9.7.4, and 9.14.)
Based on the availability.of game, state of Missouri hunting regula-tions and'certain assumptions regarding hunting habits,
- the average' hunter is postulated to c:ccupy areas within 1theSITE BOUNDARY for a. maximum of 448 hours0.00519 days <br />0.124 hours <br />7.407407e-4 weeks <br />1.70464e-4 months <br /> each year
'(16thours each weekend for 28 weeks; a combination of
-the squirrel'-and rabbit hunting seasons).
This value is considered to ' be acceptably conservative such that i-the effect of minor variations in hunting regulations will be negligible.
(Ref. 9. 7. 3, 9.7.5, and 9.15)
' Occupancy of areas within the SITE'EOUNDARY is acsumed to: be ' averaged 'over a period of one year.
i,
_ Figure ;4.1 identifies the area immediately adjacent to the plant -site v:hich is restricted from puolic use.
(Re f. 9.14.1. )
Any reevaluation of assumptions should
' include a reevaluation'of the occupancy period at the locations of. maximum expasure (e.g. a real individual would not. simultaneously exist at each point of maximum exposure; squirrel and rabbit hunters would_be constan-tly on the move, most likely in the direction away from the plant' site),
i.
_ i-
~
Rev. 1 4.2.2 Total Dose from Gaseous Effluents The annual doce to a MEMBER OF TIIE PUBLIC from gaseous effluents is determined through the use of the metho-dology presented by equations (3.11), (3.12), and (3.14), using the appropriate atmcepheric dispersion parameters from Table 9 and Table 10 for the maximum exposed real individtal.
It is assumed that ingestion pathways do not exist for areas within the SITE BOUNDARY.
4.2.3 Total Dose from_ Direct Radiation 4.2.3.1 ~ Direct Radiaticn from Outside Storage Tanks The Refueling Water Storage Tank (RWST) has the highest potential.for receiving significant amounts of radioac-tive materials, and constitutes the only potentially significant source of direct radiation dose from out-side ttorage' tanks to a MEMBE3 OF THE PUBLIC. (Ref.
13.6.17, 2.6.18, 9.6.19, and 9.6.20.)
The direct radiation dose from the RWST is detertined by' isotopic measurement of the tank contents and calcu-lation. of the direct dose.
-Direct radiation dose from the RWST to a MEMBER OF THE PUBLIC is determined at the nearest point of the boun-
'dary of the area closed to public use which is not ob-scured by significant plant structures.
This has been determined to be approximately 1,020 meters from the RWST.
The RWST is approximately 12' meters in diameter, 14 meters in height with a capacity of approximately 1,514,000 liters.
(Ref. 9.6.20.)
The walls are of type 304 stainless steel and have an average thickness of 87 cm.
(Ref. 9.16.1.)
Assuming that the RUST approximates a point source at this distance, and neglecting' attenuation provided by the: walls of the tank, the expost.re rate from monoen-ergetic. gamma radiation is given by:
ER'= BAF exp(-pen )
-(4.1) d d'
Where:
~ER.
'= Exposure rate at distance d from a point source of strength A, (in Rcentgens/ hour).
B:
= Buildup factor.
64 -
._.m t
a Rev 2
i
.-A-
= Activity of the source, (in Curies).
'd.
= Distance frora the cource, (in meters).
.p
= Linear attenuation coefficient for air, in e n.
i tm-t).
4 2
E
= Exposure rate constant, (in R - m /Ci -
hr.).
4 i
The exposare rate constant F is given by:
i -
F = K f Ep (4.2) a j
- Where:
s f
E
= Energy of the gamma radiation, in (MeV).
ij.
-p
" Linear absorption coefficient for air, (in a
m -).
f f,
f
= Number of photons emitted per j
disintegrition.
i 3
! K
= Constant, 1.49 E04 R - m /hr - McV - Ci.
f E
Io as previously defined.
=
}
I'or nuclides emitting ' multiple garria rays, equation (4.1) becomes:
I ER = KA I B.
( f. E. pal)-exp (-p
. d)
(4.3) en1 1
1 1
-y i
d" i
?
Where:
l B.
= Buildup factor for ith photon.
1 E.
=-Energy of the ith~ photon, (in IleV).
1
!. p.-
= Lineal absorption coefficient for air, for al the 1th photon, (in m-1).
t li
- = Linear attenuation egefficient-for-air, for eni i
the ith photon, (in m~ ).
I<
! fi
= Nuraber of-ith photons emitted per I
h-I disintegration.
.I 65 -
. -.. = -.. -.......
n.-, - -
=.
t 1
l' ic Rev. 1 f-1 t
l
'ER,-K,A, and d are as'previously defined.
j.-
For' photon energies in the range of 60 kev to 2 MeV rhe value of-the linear absorptica coefficient 'for air i
is relatively constatt (i 15%), therefore, equation j
b (4.3) can be approxiinated as-t 1
ER = K'A I B. (f. E[) exp (-p
.d)
(4.4) 1 1
ent 2
i j
d i
1I l
- j' Where:
1
)
I' '
-K'
= A constant, 0.48 R-m"/hr - MeV - Ci.
ER,.A, d,
f, E,
B..
and p are as previously i
i 1
eni derined.
1 Through the use of equation (4 4), the exposure rate i
for a partic.11ar nuclida can be determined.
The total
?
exposure rate from the RWFT is calculated as:
i ER
=I ER.
(4.5)
I
- totar, J
j 4
ER total
= Total exposure rate at the location of i,
'the MEMEER'OF THE PUELIC-from the RWST,
['
(in. Roentgen /hsur).
i ER.
= Calculated exposure rate from the jth i
3 l
nuclide,-(in Roentgen /hr).
i The total-direct radiatica dose rate from the RWST to a
-MEMBER.0F THE PUBLIC is given by-4-
t DRtotal =ERtotal (4'.6) r Where:
f DR
= Total dose rate from'the RWST (in total rem /hr).
i 7
ER is as previously defined.
total
=The direct radiation dose to a MEMBER OF'THE PUBLIC is
)
{
then' determined for a specific time period:
i.
i
(
t m. a - m.-.- u _;- _._ -,..--_ _ _ _ _ _-
....__ __._.-~... _ -. _. _ _ _ - _ _ _ _ _ _ _.
f F
i Rev. 1 j
F' p
i D
=1.23 (DRscotal) (t)
(4.7)
DR D'R
= Direct radiation dose to a MEMBER OF D
i THE PUBLIC for the specific time inter-i val, (in' rem).
I i
= Occupancy factor (448 hours0.00519 days <br />0.124 hours <br />7.407407e-4 weeks <br />1.70464e-4 months <br /> / year ^
j 1.23 j-365.25 days / year),.(in hours / day).
I-t
= Length of specific time period, (in I
days).
P
{
DR is as previ usly defined.
total l
'4.2.3.2
-Direct Radiation from the Reactor i
! The maximum direct radiation ' dose from the Unit to a I-
! MEMBER OF.THE PUBLIC has been determined to be 9E-3.
I
!~mrads/ calendar year, based on a point source of primary
- 1 coolant N-16 in the steam generators.
This~ source term
'! was -then projected onto the inside surface of' the con-tainment dome,.taking credit for distance attenuati'on.
I
!-No credit was allowed for shielding by the containment
! dome or other buildings.
A number of cammas per cecond i
! was generated and then converted to a dose rate at the.
I given distance by use.of ANSI /ANS-6.6'.1. " Calculation
,h
-! and Measurenent of Direct and Scattered Gamma Radiation
! from LWR Nuclear Power Plant 1979".
This method con-l
!'siders attenuation and. buildup in air.
The final value
~
! is based on one unit. operating at 100% Power..The j
!-distance was selected as-1222 meters, which is approxi-l
!;mately the closest point'of'the boundary of the area
! ' closed tv public.use', which is not obscurred by.signif-j
._icant plant structures.
(Ref. 9.5.3)
The maximum direc radiation dose from the Unit to a MEMBER.0F THE PU!
.C c'.ue to activities within the SITE
! BOUNDARY is thus approximately SE
- mrads per.; ear, as-suming a maximum occupancy of 448 hours0.00519 days <br />0.124 hours <br />7.407407e-4 weeks <br />1.70464e-4 months <br /> per year.
4 P
s
!~
k 5
i f-b !
t NNW 4 -
NW h,
N h,
h
?
s
[
)
WMW e
u J
7/ s j
o*
d I
e O
o WSW 1
O 00f
~~
\\
SSE i
1 1,200 ME
\\
(
/
NE jj/,7 ME TEOROLOGIC AL TOwEa-o E
80b.NDARY-*
ENE ZONE NTY ROAD 448
@ CLOSED TO PUBLIC USE
-f,-
E T.
A?ERTUE CAD ESE N
I Also Available Urr SE AREA CLOSED TO PUBLIC USE Aperture Card 8 40 312 010 4 -bl UNION ELECTRIC CO.
CALLAWAY PLANT SITE AREA CLOSED i g
TO PUBLIC USE y
FIGURE 4.1 REV 2
,n_
.ns
-..e
- ~.
..~~~~~s
-n
,-~*-..e
=
+. ~ ~.
- ~ ~
L i
Rev.--
2 lp j.
5.0' RADIOLOGICAL ENVIRONMENTAL MONITORING l
5.1 Radiological Effluent Technical Specification l
3.12.1 l-II The radiological environmental monitoring program shall be conducted as specified in Table 3.12-1.
(CDCM Table l
6).
5.2
-Description of the Radiological Environmental Monitoring Progran The Radiological Enviormental Monitoring Program is in-
+
p tended to act as a background data base for preopera-l tion and to supplenent the radiological effluent c
j
. release monitoring program during plant operation.
j Radiation exposure to the public from the various spe-
[
cific pathways and direct radiation can be adequately evaluated by this program.
Some deviaticns from the sampling frequency may be necestcry due to seasonal unavailability, hazardous conditions, or other legitimate bases.
Efforts are made~to obtain all required samples within time frame 1
outlines..Any deviation (s) in sampling frequency or loration is documented in the Annual Radiological En-vironmental Operating Report.
The Environmental samples are collected and analyzed.at l
the' frequency outlined in Table 6.
Repor ting _ levels l
and. lower-limits of. detection (LLD) are outlined in Ta-l
- bles 7 and 8.
'-Samples collected under the monitoring _progrcm are
- ! analyzed by an independenti third-party' laboratory.
{
! This laboratory is required to participate in the En-l
! vironmental. Protection Agency's (EPA) Environmental
!= Radioactivity Laboratory Intercomparison-Studies I
-!~(Crosscheck) Program or an equivalent program.
Partic-
-i
~
!:ipation includes all of the determinations'(sample
! medium radionuclide combination) that are offered by
!:the: EPA ~and that are also included in the monitoring
! - progran.
j i
I h
i
- ; G8 -
}
- =..
,,_e_
A 4
.L4b4
-'=.. -
a
+-
.2 1
5 44-i= a d
4_
I s
d J-u i
$.n.
'*l C*
I N Ng
[
.A y,, p.
g g
Wd 2
.2 C
i a
4.
i.
e a
e e
l' 4 2 2 *:
E
- e e.
o*
e E
=
O.
N
- 3..
A.
.c."
e e-
.a i
. #1l 9Y.
W O
mN eO Gu.M 4
e.m
.ee
)
a*
d
' W
=..
.e T
J.
3 E E.
E E
E E
E
?
- ~
w 4
~.
~,
N 88'"
O O
=8 O
ese D
I
- e. 3 5
9
'e y
g,'
a C.
- e. W.
< m'
- J. ls t
.L 46,-'
e, d-d' e' i
% me "
.a.
e
[
2 5
W x
2.
"A 4 L *
.e
=
J..
a-
.- x 6",
_x a
. g, u
<=-
--=
-2
?
- ~
- M
- i
- g U.
-4
.... w >.
d
,2 u
- t M
~:
i3
)
M
- E g,
.==
-- 7 O
.. O m
~
e..
=.i=.
E. ',
w 4
O +=
- 7. = - *.~._
= 4 a L
lJ 2
{
. O If r
. ~ = =
7
-*N-1
-z-
.J. ;
- 7 3
- r
'O i
.= 4 3
?.
3 >
L 3
4.,
O.J
=
< - %e
+ = = -
.i :
7 7
r=
Y
% 3 *"" >
.?. 'O:. n. -
"a
~
~.
2'
=~-
0 O'
w f
-M' E O
.e
~ 4
?
s
- w i I 6
-., o i s - -" L 3p J
s*
O
- 0
. w'.
=. '**
1.
Z
- r 4
A 2 d w -
7*==-'
~. ~
~ L
.a -40 L
L -
V
.*. w? - : '
L A
- b.
O Z:
ta f. C
.1..L.
F 4
i
'.*.g 9
V AwZ -O.
J
- O<
- b. ;
4, ; r =
^; -
g-e.
<. c =
~
- 0.=
- u H-A 4, E C 0 L M.:
-L t g 0
- '- ?
.t - :~,
't
~
.*; - > i : L
-. 4.a ;,
-V^
4 ?
s' -,
a 0 w
).;
.a
=
7.
E
=-
rO a - i L
..u t x-f "g".
C GL O
"w7 4
- O **
E a-
- ' = ~-4
- .
0-J
- r. < M O C U:
O O
O C -
"L=~
2 4 i '
> k O. ;:d I e
h e.
- 11 6 0 2 h L
0 ) -
w 0.; z*.
i 3= (; = ;- vc.
. g1
- i
-O.
O *. 'A. ; !.
t-6 3
- L.
4 L
2 m
- ". - w L
-X
".i*
O a; e
D-G w
- F **
"J E i E
. O O t-w E ": w.
C 0 :
' w - C a.
= y.
- w
.. 3 -.=. ::
b 4 L
-s
=
n W
er u
.y
' = t: G er e
..e w
- 2.
L' L n a.
O-
.~a
==
2 LA w'
.? 3 L== L
< 0
=e
.C l m
o
==%,
W eE
-e eb
.a,e qq s.
9 4
e enee 49 p
'-y on
[
e'
.J "eE W.
"2 -
~:
4
==*
L;
- L h
< ZI
-J t
/
- c
. e
- x e e
'O'
'A l ss 5 se 7
/
O
?
x' b,&
CU E. x;
.u y
- ~, O 4
'A A V'
,s-
~
a
. *~
be.
r 4
x.< l m
u h
(
i
%g
',N
/
',m v-
-s
-, m [
t e
- ~'
,p,t-
,;( g ;i.5
.k},t" I
!)-
![!
f[
,1iji
. i P t.I!i fit {,,f{
((r t
I I
f.
W W
W W
S W S
N W N
E E
5 S ;
W W W N N
N.
b N
'7 I
N i
N F
f
'4
'1 n
4 8 2 l
'n o i 0 2
?i 7
4 i
l 1 2 2
?
2 1
"8 7'
I ta ip fr s
H H H
- i sr 4
6 H
t s
d te.
Io.. i
)
i t
i l
i l
iw i
l t
v m
m m n
m a.
m m
m m
i a
I-m I
5 5
8, 1
'1 6
5 9
H H.
I 0 0 1
1 9
I 4
e 4
I tFA R
t o
n N
-,4b' l
t m
l i
t t
ot l
1 I '
t.
t t
i e
t r
y i
sr t
y n
v n i. e y
y y
y t
i 1
t g
',g G
l e
l A
l u
i r
i i
J e
t i
i t e l
1 t
i N
it ag i
d i b
a n m I
s.
it t '
t.
l o
i 1
t l
N l
u.
l n.
l
)(
alo U
fI l
U t
t i
it t
O e
M e
C ei I
t i
i l)
T v
v' v.
t nr e
i v
v v
v i
I e y. e ey N n i e)
I
(
n n
tmAs p
p l
e n e O
Ini e
e c
r t
t !
t i
n 1
tu O
e a
l a a f
i a
txt a 4
t t
t i i r
a i
a t
e a <o s
o s
nr r
r r
a s;%
I M
t r
l l
p o
p o m p
p i
p t
f e
i o
il o
f o
e sos o
h o
o 0,
I' r
o 6 W a o
t o
s ck r
a o
o
,3 p
a, i
c c
t
- u. y l '
r l
o i le t
s i
l i
n
?
C r C it gm
(
l c.
C H
tnl l.
el C
s C
t f
t O
i n.
v e
r r c r
i s
r r.
wke f
n o
e r
c i
e 6_
t u
o k
e s 5 y a
- i. i t
t I I
V
.it r
1 d
t i rW t
't O
a <
t 7 t
-i 1 s
A N
.S i 1 r
u te/
I e4 t
r et 4
1 tc0 4 0 tc/
c n
rS M
e /
1 l
o e
(
C l 8 f
ir(
n l 8 o
t n e le1 e1 r6 e9 J
I m i F1 N
- i. i h f
l' l
9 t
2 l
1
.-g' i
t 1 F 1 E1 s
l y.
t Si a o.
'l te a o, e
o t
y,
y.
y.
y.
e r n.
r v
n t e cr y
a y
A
- t. o e l
nnni a o a o e.
o p
o C
i wJ A oI wN wN wN wt wN m S
wn fQ C
l e z na lao k
W aol l
e l
o l
e l
e n
l i
I a
u t
ht e r S la' M
a a
a a
e t
.a ol e a -c l
e i
l l
l t.
i
-;y I
CP P lPAs C
l' A N CP O.
lao laol laol lac O
C l'
\\
l D
A t
s
.s.
s A;' e
- n~
= -
'J r
r o
t i
R A
I C
D'
, y',tf~
t I.
K I
I
.N, P
l l
t e
i
.S r'
r G g1 t
.mfk, :,
_ D,
n i
4' e' \\,j?.
oe t t
/
7 1
f.
.6 3
e 6
1 0
6 s
(
\\
s<
t o 3 4 4
4 4
3 1
1 1
4*
3# ;..
- i. C fs S
t t
./
f
%, y-
, je
. #L p
-,N
,a;v e
p s
m,
&\\
('(
2L.
i
~-
r '
%1 4
f, J,.,.
,,. (
4 :,
c
- f v
2-tlh tj ie
,i j t 8. ji;L1. 31;!,1i}li j'!!
!I s 2j'.
iU 2ij
,w
~-.. -
.n
.u-,.
. - ~~ - --
. - ~ ~.
. ~
-a i '
i
.w, i
1 k
l 1
4 e
J d
f is d
s 4
t j
i" 4
f I
I 1
?
1 r
]
4 a
- ad
- 3 A
".I 3
j[
4.a n"a M '
W
- i
't n
t 9
4 v.
- J
.I 3
a E*.
W e
e e
e.
a e.
e, e
e e
e a :
e
== c3
-t.
-a ry 1
C' x
c' o.
n.
- e
.s ac
"* {
-= -.
% re
% N q
t i
s.
r s
t s s 7
i
- t T-3
-we
+
L a;
- ='
2 Y'
d B E d E
E C S 5 2
g o
1 O
j e
f'4 C-O.
N.-
O.
- f.
E.
?.
O.
e
.r=
- 4
< e
.s e
,s e
r
~.
s 4
h d
}
.3 p
4 i
p 1
y, f
<a n.
I x;
A b.
D.
A t
)
1s. g g
p e
.evo o
.=
~ ;
l 9
'g 4
.e.
e
==
%q me m
g 12 T
4 e.
a..;
=
.a
=ee T
,l*
4 q
=
i ;
6
{
.d se 6
~ 1'
=
- ...: - = =
t i
O'
?
i
- C E
i t
- * = '
ka -.
m 2
ne 7
e
[.
==
.=.,,
- f. '
on7' n
= A w
w
.es
~
- f y. =
l 3'
0 i.
- ,7,
[;
.b
=
.i.
1 4
7
(
- l. 2 i
t
~
a
- u
+
1
==
b-C
- I
- i A
?.
j
= = '
41 C
~.
L s
7 i
O.
p.
6..'
-3 *-'
I u w L e :;
i
.w.
~j w.
w
.?w
.w
. ~.
t d
/.
i w
4 "*!be 4
L L
t
='4 0
a..
.Z
}'
T -
~-
~
=
- 3-I 1 5 Oi
,, j G
a W.
w; >
-, ?.
4a i
O.
- e -
i
- w
=
f.
w
=
=
N:
A
.L.
~. =. - =;:
y es
- . ~
y,-,
7 a
?
/
J, v
.i s
- . ~. - ; --. 2 2
e -
a z
,s
-s
-x
-es v-a. :
- e O
O 2== - "
w".
L L-A W-4-
4.= 4 "*
a j
r.,
w 1 ~, -.
2-l E.
lr w
- O e-T O 7 0.
x 7
?.
.i 4s
- O
- O
~. ; e, ;__ :., i -
I
~.
x.
- 0. b 4
.u
- O h-0 3 E.
'O O
3 F.
=i ~ *
==.L.
..4.,.
~.. *.
-.h, aa
-7 3 11 3 ki 3 &; 3 Z W v C
5
- i i
.d a
=..
N
,l A ; * *
- L.
V O,,
Or*.
7 "J
3
- .h,. =.,
g E
W 4 '.; ',) L n 0;
- y"*.O -
- 4 3.
(
- O T ;
C 0
".L.
- 3 JJ
. f.
UL p
p O,
L
- Wh 1
h 6(
~'
0.* 7 -
,U.
N E N A*
7 M
" *l 0
g a
= y.
.N-D N as :
i." - C
,O e
s r
w,
rm q
.g
==
y
.r3 b.
A e
- D h
i i
V f
4&
h
,e O'
+
[ J.
m_.
tt.de-'".*#1 915WBt-*W
.WW*8eed raw
- -ti ma'w T-ww-1-'5re-we"+wd
1 n
...a-,
- ---.>.., ~ ~
u >
--- -- - " - ~ ~ " -" -- " ----
t I
3g-
's ss u
s
- 3 s
s 1
i 6
L s.,
' 5, s e r
l.
g-
.s
.e
[
- f Y
I-
?
< s
[
I i-i a
e i
r
' s.
4 e a
s l
6 g.
L 2
6
.-.=
.L.
m 4
]
4
=
4.*==
1 4
d' a
=c.
e
~ L;
[
n v
f t
m
, s 7,
3.:
'.7..
.L.
2
=
.b, - 3
=
i 2
4
- h; t
3 4
3
).,
- E A
.4 J
Z Y
- s 7.
-= ; ;
2,
= '.
.e '.r e
=i -
o e
o e
a e.
e t
-5.
t 7
x ~ s o
e,-.
u
. w :
-3 a:
e.
..,., e e,
. s :- -
t z
s s
s s
- ~
>._.r -;
i
~,
1 m.
.r.
2 - - - - - -
- d
- 3. L ::
x.s~
y:
. w 1
s a a
e a
a a
a s
.w 2
=.
O.
V'.
4 d.
',v.
b
- N e
S e/*
b 33 t'*
.s a
/,i, e:.
R-b."
s
,3
.T
- /. '
/
5 1+'
s.
w
- u
-L; *
'r
=1
% ::= -
- f'
}m" a:
s l_
b-s.
s R
h h b
k i
[;
4
- T g -2 eE j q*
.b 3 - 2 w
i P
6- *
- m Z,:
e o
i 1.
=
L.
J e
- l; g
x
. is ~
c ir.
i "H,
=
0 0"
-a
+
,. j.
^'
~
~
J
.7
{
i
-?
Sl 9
=
~
=C v
7
.4
.6 w
5 g-t
=
f C.
r
.=.
H.
bi T
w t
t.J -
P.
"' j
.e
~
c w
y 4s.'
A E
.8
- . ~
H
=
s w
-a O
3 f.0
'O
=:
E'
}s t
r;
'J ' L, ".. "
M L
$=.
1?-
w 2
d
- - 2 1 7-Q; e
.A.
e.
7 L
C L
.3 6
J 3
3 3
O
(' -
2:
~
.e-4 C c
k.
E G
~,
3 j'
<, - -sp Z
3
)
=
4 L. ~
l 4-
~- ~
C
-= =- -
2.
=.
E -i.c; H
ia U
V U
V E
- 3 J
G
}g-.-
M.
1 "e -- - a-3
=
e
s-7,=
b.,
N *-
?N C.E
- **)
( ;
'j,
u
~1 n
q I,
=
0 "4
t - r..
- c [.e7%
r.
=
m 7-m.
gW W$
u a>
- E
.h.
h OO
=~ @
l'
- r. - 0 E i= *.
.L r
I L,
C EM- -z:
v e
.a.
L L
- =
f.
t
- 2.
t
-.L T : '"
.L f
.-** p:
2~
w
.: i:
l n
(
ew e*
d O
w
=
w w
C U
7 5
- J 6
b 1 m s"'"
4 s
e v!.
a
- c.
a.
e
.=t c
.y
- w l
- w - 4
.- n p..
.*y',
r e t, a p
c1 m
e-es s
ca w
N m
.. = =
i-
-4%'
. '*ae
=
l
...j
=
- w
+
/
W W
s' N
- c-r aC i
I l
e.
i
's s
I e
e s.-
ki i
-b
[d e
s%.
%?
f g
- A F
i e
A l _, = _
..4' ger f
.,S
'#97
'-W"
b i e'
-**N*
" ' " " * ' ' " " ' ' * * ' ' * " " ' ' " ' ' " ~
^#
y vt hw *-c f f A
-e. - r*
(fe p
')N'*-*-
=+4 M>
- T-86
u-M ' Y--*""9e'
T
.A.
.w8 O
M==
4> d r
=* L e T
tA ft ** es el G
d.
E
.h
=== 41 6.
IdB h 6
C E ** 4 a 6 E ** m m C t.0 1 4 h e
la P
' h3 M
Z 7
.b.
. s n.. hx =, u.4 nm g
a s
gMJ E a L
C. 1 C su et w== AAe 4 - 0N s
4 C u C
w
====P 4
r4 b U w
..? f
- .== 4 6
+=
J O
M
=
- ; q w C
e.
N M
e"
== m== 6 w.
M=
s.
=
k
?
N
- f. g 4 C C
=C. s 6 L
=r.
= -*
=
i
$C m.
.C.
3 2
s=
w.t 4 3 E 1 h E r-e 6 D
L 2
O.O..-
- - 4 r,
7 Y i. C Q
E G
is G
y e
.a L
.1 sa
- w ;
m,
==
EA Q
t.
e.
ee 7
i if l?
li" l l
<w ra S
[
r.
f T
i v
u 4
E
{
t.
E a
0 s-we 4
ed E
c Cl V.
5
>=
0 a
v
=
6 0
se CO
-e
=
W,
-A.e 0
=
lt q
4 y
-6 C"
-S.
u O
"3.
==
c 6.
C h".
' f.
=
C' W
f.a.
6 g
.L 4
- V w
3 eJ 7*
i nu
<l 4.
7 *. = A
.= t s
. M)
- r. -
A 6
J{
M C
6 y.
e.
- x. w y;
u5-.
==
- .L M-A.
0 4 E
=4, 1
w h
R=
g d
-e.3 C
f
- O 6
.A.
am.
2.3 4
E=
w 6-Q ;;.=. 0 E *A C
A L
g*,
C
.=
U
~Cg G 4 5 7
4a m
L t41
~ :s ~
E
.?
- J M
2
--LL
=O E= 4 me M C== b
=.
b 4
't
==
C E O"
3
?.
F. -J O
ed C
g j
k
.N Lh h M
N N
4 6
I s
,7 4
.U e
D 1
eb!
t
,t1:
li f
-[9i,y i,* fltf[>f s[
IsIl[
,k F "
l[
-t!.
!fi tt.
1 m
m m
r d
r
- e n
se pt a
y i t
)
a a l
a d
d e r
- us
.a r
yw.
(
s u e
csr t 6 r e s.
e s
i l p
h n n r,
. s ot w et i
e s
put wo :o L sf r h
r.
ri s e
. sr y
a t
t d ly e
.d a m. 1 eu ai e
!r. T n
s n.
eeri e
. t q p u n.
a o4 nit yuai f i n
c p
os t e r msa r
v a
ccet t r B ot ed e s
E E
ii ra S
F isur a e cps t l r c
owpri u' y au i.
s rp c
s! f opa l h oe l y m
I yw
=- mf oL a hL el c
- c. !
4 3
l dh e -
t n
nS t l u
ims t
4 3
reet as o
.a n
w o u m
sa.
r t rt s i
irs 1
1
,csey a
a1 taf ii y a.
k i hi s
t 0
9
- l 2
o: c.
l u n m. w n
e a yl a t
1 n u waht i
ue 1
. n rf z
el pd a
r un qrt i or a e e
cf na2 o
m a
1 tsl <as a ai lc aca r
t t
v u
aw c
l a
a h o "> o r
- uc!
C.
2 LP c.
G s R
C o r-s9 l
1 t t C r. m t r
L r
4 5
gp
,n m
e t i i i n nrh i ot ot
'n M
ne l
A r r.
eoh H
es r n rMt C
v ee t
O on vh e
sl.
K a
ow 7 :r
- h. a t.
I I
h.
s1 i 4 t s
et s e
i*!t r
i u
sni c
l y
c l
wo n
p sa p.
p s u c.
d t p i
msd r
mdi i e o r,
y nt n
M ae 1 e
fc
, o h r
-t l
e os rt a.
O sl r1 y 1
1 ef r
s i %lm d. t
)
T 3
g t i r l
e v a a
4 oo a
s
!, n. h u
i t
i t
h di t
3 rami n
t 4
i m
u sd c.
- t. t r s e 1 s.
t ool s
f ct1 oo ml t
n pi a i
o pe1f p aadi a
t 1
m, r u n
d s w1 r e er i
n A
i n
o T
eq o
u.
o-
- e i e
e r 1, h i
f C2J pr Cpe c
4 t a S
p
(
t o
e s et m
p r
- o. l 6
t i
t of 0
r a
s t io c
r n
dd m
u n:
s r
w e
A I
!c t
o s Lu l
N s
d m
u e
s l
a u
T E
pk k
ay l
I t r a
a e
un sn eb o
1 u t.
e v
L t
a ra r
r me u r
A i
tb I b
- se n
t eh a
ah f
at d t
3Mw t
t i
r S
e m
s r u
l e
o f nt o
1 o
n o t.s c
m f t t
t el wc c
yd w gt i
1 o.
u r
r r
hh roe o
ct Pdf a
lua r
4 o.
ws d nt t
r B s s
1 n a
u f
h a e i a o
t t
n ef s sa m
t l l
. t e u
s w
o e
o il l
- esr A
p u
f rl ee r
waa ri c R
u d
oeeib g f'
C f w e et m r
s r
cr
~
e e
er a d a e
eee e
l l
l h w0l h l
kh v l hl p
p pt 1 uc pi at f )
pt a a
4 t
r6
- n. i i m
m r
t os mo a
a oosnci ai nf i
r c
i wt s
s st ei
- d. ~ st i o 0 t.
rht 1
ae a
e e
.< uat a,
ec rt 9
eet n n r-rih'.
no er n nr e n
n O ap O
O O i wt 8 Ol ta gh f ai.
w t te m
si i gaw(
r o l d o
f
- e.
t 3 e c
H C
i d t y c
s u us rl a
d cz i
l r
t.
k' t
g ot : 1 t
e e
n n
np n i n
c i
t o e
l q
o f
n d
eocm m
e r
a r n l
imr b
r oe 1
7 f
a eh d oo r
u ii 0
0 r
yb t er!
x 5
S D
el SfE e
S t 4 aC rt se
.ta t
e ned W
a S
b h e k u c
t r al rt c s unn 3
AciI
,1
- i jJl
- ili, l!il!t!jljll!{l
3 f
e 3
o d
n u
1
- e t
l I h,.
a n
r c
s wes d
r e pei i
s i yum h
y r
al t i at o l
h st
. y ri n
t as t a r
d ao npr nf E
c :e e
r t s tpo i.-
i S
i i m. t t
pm - e d evi ct t
en r
oe e e
np 3
o aa ludI r t
'5 t sr t c
o e-n.
t sn n*
+
n t.
r il sy i u1 J 1 2
t O
. sl l s
i d!
y ah t nl r
t ml s t o el se n
v e
l at n nCi e
e c
a P
. nn e w
e n
1 lye G o C aar s s t
s 5
s U ar r
et gu o r
n r
r e
ul p c
f as l aiu. t l
l i
i r y t
ynn f
t aA w n e, R
a w
1
,i P
h m1 t
n y
e n
l C
e l
t i,
- o. 1 1
a h nh pt s n
wot 1
t o
a k l a
e y s.
lG ye uw sl a v
r l
)
T l r r :
I. or l
e 1
I htnset e
r a
r
- r. h r na s e
N n
,i S r i
M e k.
ol r h
t i n. t u
a a
n u
t no ri im a. u r t. ;
l an i
a.
et e mr
- t t
TA t
r s1 nt sh
,at
- m. n e e
T o
n en1 t sr s
sa er T
wh S apo C
I f
ot t g S
n o e.
E
(
t 6
Ip d r e r e P
o s
nPh M
r sn t
L I
e e
l t
r g E
R a
s r
T 1
u r, a
I l
d imoa n
l s
i ny t
V c
t c l
f s
t c
uil lA N
3 n
I.
eoi qs s I
r an i.
t e:
a5 a
c ru t ie
.en nt c 1
cn r t t t
L t
ei nhh l oest l nl aar g
.b o
i a n
A m
n 1
vc at t a
nnsu i n i enc a f.
t r.
i i s ri g, iw r. i n eic!
l on t
+4 o
t e
t Mh r
a c
d n
nt egrdl imadi ah c
nia l i i
(
i c
oye
- 0. f i sinh na an t
r t l i h
pt r t
k nveti mcu IO 1
o l oat k ek l
cnd yt w adI n J
i ih o
,l e
et moa f n en i e, d
i t peir8 r o*
l s es ayrfva n
r a
inh ar r
t r nn f
l r
/
ae p
F mc c eo t o e.
f l ni no o yl oons nm t st aaw tn ei l
h
- a. n r rl ao of ea et t e i a l aeiri rt el r
t er o
'r c
l t st e r. d wr f
rf r
p u. d o
t n
h vc pit neit a h nd pa r
e e
cnc mct sd r rd s ec e e
ar l
!pt s h, r p e-wrt ak v lf.
rI
- a. rae h
eel a e e c. y s
ma eit sewr e
sl n c n an irem t e r
e e
ai m
k ce a h s neh r e nt 0 r sc n o e pl Si5ht r. i b wt g O a3 p l
s ocr s p irl
- a. o a n
n t
i.r ni r
nin o
d a k
t; n
t C
! E ce S
!nt i
nF f a1 ol l P a n
k u
t yt n
l k
a.
y ne t
l l
. oa b
v w
id s
i s.
eh lu t o C
e r
al ct F
t aC g
i na t
i.
oaep s
S 1
s t r t.
t r s eeii f
1%h nh t
t
,sT s
.I
!F4e;ift};
lemk t I ;!t II{<;iI!
[i{f[
!i' i[{7rl^ Efil+Irfi!(![!
f-r
~
ma lae
)
4 r
(
trst d
1 s
nm.
3 n
1 e
i s
y sio I
l ed in.
l as d
a.
i P e) n ao m
7 a
l E
E i
t i E
S ct r
nm7
)
S ipo vl -
r r
e a d
op i p t 9
(
D.
wt 4
t r
1 5
or yl m tp n
2 t
P 1
ui 0 ar a o
l b
', w t
ad
. 106 t
e i
o,
7 tss v
v c
l mc inllen a
i e
o m
l m
h i
s m
a n t ri) ay b'
ml F_
l G o I.
1 9
et hif a.r g
s n
5 4
dt wr C a e
P gt d(
r ue a.
t
! t c.
- r. ue t
r N
is : r p t
p t.
y e
i
)'
. m d
n t l
s n b
O a a e.
e a
u l'
t c
t l
s ed i lp t
e b
G v
leea a
u
- b t v
H P1 r
eu t
s r
i.
vt b
a r -es n
O.
e e
)
T 1
h Ink t h
s.
t d
I a
o eyn s w
f 9
r t
e N
n O
a y
n P'
ek m.
e t.
l I
e l
e r t d
r t
a r
anr ti h
I.
IA n.
r b t.
i.
e t
weei t
t n.
r c
n.
i.
t n
tr k.
t tnuwi M
c r tan
's r
wh u a.
A i.
i t
F _.
t ot PI ac
(
M_
fp d r "h
lpt et no 6
N o
CO r
nn st ol E.
I.
e t
i o i d I
c.
e cr d nt e
A I
l mg r y t
n ius g e.
st n
V.
e i e i
qi! l oou c
nn T
. F e
seh cd er pt r t
t n/t r
eb i
r v a i r e.
l er e wioQ t
8 1A i
v c cr n
h y anI o I
s ip ivr
.r
.d e
- f c
n' C
S iri r
t rh r yl e ict ee nooodl a
a c
rb C
d r
(
ab i b eut l foac ec e ub l
een r
sl I h t vI
- 0. f ee O
- 6. is hf t
ml r oydi e pul in 1
o af,
0d a
n el v r.
sna csat a
inmI i e
t at il
- n m
a w
es.peid D
i g r
abh sd rd sedi A
t r
f emgr r
i m h leet f r nl t
a' I-et a oioiis,
t inmn t
- f pup e n t.
e f
e r i v reo e m i
ol rr rh e l
r lpas irwt d ahh n f l f r t r a.
l s e wt S o o
aat rgsd pni nag r
r r e nci e
ar ad rai ci a
bt.
p s et nel ek m n pt niwr y
ar cv r gyl r p rt sc u rt b nre ipf awf h r mf ed neiaio nn nd t en t di ah c
a ei oat as r nl nr rh al i eor t mieof e
r pg air r OI p oppt w pd ta on Sd1 gdi f v1 e oa1 p ge r e i gPh r r r ar.t r
ib v,
o it e
n r r n t
G' 1
t ed e
1 s
aioi e
S c
t it o p
!u ac n b oe 4
ot M r r
n r
P f l a
eoab n
d r
t r
ine o
amns t.
o ael t n C
A F
eeml aC r r n e t
et oe S
c h srh t ut t vv sovf l
A d I'
o a*
t tL
! f ?1.II (;jT' 4,;' {1sI
.{;-
lilit j!]i!{.i(('.
+fji<lrf
- i1i }
.,j j4 i ).f sJ
>> b
,.h..
t f.t *:r+
4!'
If ;rIr
[tIlI(tl;!
rI!;,l>t{
i.
t l>
Y
!i
~
r 1
~
1 l
l.
.I-
?-
. i m
i s.
m
)
d t
S ip S
W E
(
r S
e
's W
o 7
0 t
8 0
o.
4 n
2 1
sr a
2
?
it m
2 o
r t
P s
I 9
ay t
ml l
a a
w c.
e a
t
- m. a t
c a
n o.
l f
p G
e.
I m
3 5
5 3
3 1
Mt e
R l
7 C
b O
a C
l I'
l C
v l
f a
i R
n O
e 7
)
T 1
I hw e
N O
y m
.M l
t L
t n
i b
n A
n u
o T
o o
o C
ID l_
il t_
(
t t
6
. O tp tp f
. 4l r
I r
T R
s e
f r.
I V
e m
e m
7,-
M D
m r
D r
T
- D r
i.
a e
a r
e F
t F
t lA i
k
! o i
t C
I S
r e
f at S
t e
c or cd e
~,
n a
I 5b iwk i
r o
rd 1 t
t l
u o
l b
y t
G r
aann l
L n
DI r owit i t I
r o. nmo A
f b rt e r
P o
gul f r
aais eant v i.
l nn in d
lpiii r oge mmt d pi n m ai a tol o ir ss - mt gk s cpf e er a r mr nh e0 ciae O t v33 d sp r
r o
o t
1 i
c P
1 e
3 l
r e
S S
n n
t <
V V
tee 3
ie e
2 4
aC a d o
V t
tac S
S s~'s 8
e El 1f.
L e
a b
d t
y f ed ee n
e a
a el s t
y a
c d
m
'n I v. t b e en a
e u
n t nih h e mt rt d
t e
t
. c est t m noo e
n a
r aems e
yemn re u
h t
)
h o
t n
y nruon yc l c l
o r c pI df ad ssrsaet l r n
l ss oo nil e ueoicb og s
w r
ps on i
f rk e
o u
uacd e
.atnei u i o s. h yo t c d
d o
oe b
d ree enerv n m
- r r pa na i
h r
t b t n d
e i ut eams ob l
oieI gr t l i r c
c c
e cee ztl l net n
nost gsi d
u h
.ia omaaort hi n
T g
a a pl s
h mmayre n
cr t ees.
sl o
i oh aoumit ed sgt i g i a i
e ot csm qaar eh e ern l v d
(
ti n
rt o t t r0 omei b
a e
goet o n gb p a
e4 t i t d ae r
g t
1 eet li ii ooe rad sca t d r
r r
r egoaf si g
a o
ul u
,t
,i a yP r a
sb nd r ev n
h h
d ed v
rd esca oe r en'I i a1 o
i c
s e
eeah e o w gf h ol o dfh a or t
s R
l h mt ml S n t
db c r o c r.
t p t
i e
t i) a
. o i
l d
r btaoe
- i. d arsn gt encren t
l t
a a
n b g epo( i n
r oc ehi aa e
e id nt r t n i saiab t m ch h
t anl i airioe di t
m i t a
t e
,sanid rht ad unh t
m h
t al l el ot u ot eienot cs m
f t
b ap o
,h mtd uMal c
kd c pi ae a
o nt sa a c
cc ef c aueuw rt g
s un sh t il on roardh pi e
l et t st al i p
etd n s
f c
a emre ort d e t r no t
o n
v rpohd manwo nsac t ei or e
r aif t e pees ac eeapt ne n
u e
uf ze mnl pnrbh e u h
o l
t sqemih en a
grii td m st i
f n
ne ont h oe nu d y r
i o t
n i
a yrg. t rhd i ps a ol o a
i mgrf ot i t n r
rgmsl f t,
c e
i ne carv a
ueon i n i a i
t m
civse ony shhi srwi i
f n
i el enr ef Ef t at prne f r i
a t
e.
)
pp o
c i r e
s uot s e I
t c.
d sm,i sinl t o nrosiams n
i e t
t i
a f n a
e ant i oeanp oh at weo u
N f soa h s cee) rF pea td
.r u
i o r.
O i
iit coidR s o
mt rs nc q
nz d
i I
ct vI h gi
(
f e
s eym o
g e
g t
t T
eice f co en
.rr vsu i n d
i n
A l t nd
.o ld so
,soogo m
t o n
sn c
eonai rrmf n Di ai a
i e
o T
uau C
O d mfl t abi aet ee i eLt mt d x l
(
D eol l ri d
l a b t r : rbT p rc n
ni l
ec ueor o o
oe o
om o
ht aA od yav.R 6'
E cum pear o
am et l r f r i
y c
L s a enm wa l
hiot il on ni t
ee E
t
. R eht cawenif i id a
bh e
l l
L A
gf nd esh t nu ot mow a
c.
t r.
5 T
noe o gh nt aee nd i m t t dd i y e
a) 1
- s sub nn f t c r y
A i
mint o pun o
T l npri i n l
i gronr o o ui ii na sl poiet f ti tf e nod ood ow tl a e t h miupaoa afh dih i t ao r
ni t n ot at q r
cshLt et pst cet gd ec s
un scegesoyt zas aaer k n d n i t qo n
npel a eg i ro i s d
ca ii d u i m d ugiOl d rvn r gh d d r e a
b l
ef nl pd oii u e. p e a e o t b e ee a
a rl i pl mn0f t t st srm c
c' hh i al maaa3 cc s neu ose nn t t t d eg umpat n sa e ein t sil i a
'.n l
at r m o
pe q
mnn aneol r,oec,se l e ys t s ao ny m(
e
,a eniil if p
ryst midh pd e oe rel bi r
ee a
t xnaet mar atb t i t ae od df kb sd eioeot miaR odi nb u
a o
hl t nrb wn M
snon se oe n :.
t a ei t i i oe lC aot f
d th i t e
mr b eev vef aD i
]
onf?
t f n er ue mauh noid ouO htdl aou s
ee b a l
p ol d t Et t a n
ciear e o
ih d u o
ri amyne ud rh e c yh t
t l n vg f aef l en tAh sd esb ocs ci sf l
a n
,ad m
n i w if a
t i vl oaursi - t i suned p
e h n nt d ab cnenl i
enadiit oimr snsenaun ae s
si ai t unngtlib eo t i ng qa a c i e t
s t
i eonat aSf n
od et e sn sh en s o i l a l o ul ercah ard a
yt l e np pk om e
sd mat eocet it e mo LT
,f l
rd a o ma co nbhi l i axl u
s s
i
- r. o o t d eu h oe nt at
,c c
obt veb r,i m psn at asana tf l
.gh t
ct a
c auoR tb n t
so) i r
.T m cu e
e me b
ah ee t
ciuue n
DF ee e
f at cl "m
rt eL b
t o
i ib rse l i us hd i
s et n cT m;.s nt pa al g
a,rrab aoua eh a
ea(.usyy eis ot el oo ss i nc
,t t n rl s nnl s n
b t a ra r t nnsrnis a i) oprr og os u oh t h p
oonpAt eif s
m eeeinc pns si a s e
ro i r p
sv il e ccr os(
nt t t t i i t i mneanp ee rieeuadf uie t
o e i i
- ii ohraoel r c
mml t ri ptb at t
ht id cit pt rspu dii oioc a
ma p
t n vnet spumg eesscmce ecy m
c m i
eol cnrnpaai nsoobi cp h oa oe h e ne D csaioiacsf O udd al as Tl m Cb T s I r
)
)
)
)
)
)
a b
c d
e f
(
(
(
(
(
(
w 5
i2'
i
,ll ti> [
~;
!.i IL '
- It!
>fiI
! tI!e k.l!
- i i'.I Ii6fIIt!,
1 1
i
+1 s
ru M
c C
c c
D od O
o t o e
sf n
e t
vt ro n
ao i
hr s
fd r
I n e
a te
.s m
t u a
so r
er 2-a ve p
rb au~
v d
ht e
n R-a ef t o y
e g
rs o
ce l
sl o
ip d
d m o
a h
hs
~
t cig e
-en m
i e
gd
~.
h nu t
ilrc g
un n
di is d o u
et
)
mrd d
e p
oi i
u F
u f a n
O o
rp i
I r
e t
T g
pe n
A b
o T
e e
C O
g bl
(
U a
l l a 6
E d
lh L
n a s.
E B
a h
L A
sn B
T n
o A
a gi T
r nt n
i n o
l e pt i
mt nu aA m
s i
x 1
ry m
al eh e
yt h
n t
ao
-n r
e o
ce f
nb
- o. l de nl t
aa a
hh l
t s u
c eg l
rn a
oi c
nl p
e sm b
ra us l
c l
c a
oy h
l s
t s su'.
'e eos c
vut o
rnc d
aiu htd e
no h
f or T
I cp
)
)
g h
(
(
be'
- I I L ;.
!l
\\fil[il'.t
- l
- i;s
... ~.
a-,---~--.-
---..~.---.-.n.---..-
_. - - ~ c- - -. - - - - -.. ~..-
i
, j-
..a t
1.s.
i.
I i
s 5
l i
(
I.
l I
1 I
l t
we i
ua
=
1 f
L l
2 i
': 3 e
i-
.u
.e.
~~ -- 0 I
O 0
0 0
~
l i
a 7
- x -.
4 a
y A
we g
g J
]
TN N
G-3 i
CU l
i O
- ,i,, c 3
t a
I v
_-+
r
=.
i
>l o.
C i
%I th !
~
n f
W;
^
L
^
.g %
_=
_a l
El.
i e-O O e i
~.- -
{
-=,
\\
+
w
-u e ~
e n
i e
v g
4#
-O i
6 i
Aj I.
.2 i
w+
m.
o 1
i e
~*
w EI I
I 7
.O, !
l "J
i a.
3 0
6
-s b
i d
3 O e O O O O t
7
!.: ^
O O O O O O 1-M' C *i O.
O.
O.
O.
O.
O.
I t.
t
- a ZI L N.
n O
O' O O
- m -
N e
(
6 r;
)
i W
L i
e n'
v
-t j
t e
H!
- 7. -
g A
r
<l
- o s
(
i j
U l
a em 6!
s f
O 4
~
e Hj 4
~*
...e w,
i z '.
M vN.,
n..
t
.~:.
=
0 t
f l
=:
O C
uf
, - p
- ~ r w
b L
,a b,
L I
i-
- *: v
? O O
- l L
l'.
=-
L l
- r.
- - n w
O
' O
., =
x i
= z y
w.r-
]
)
w w
x
--. O., '
I 6 6 i
c,,
O
< a,.
j <
4 L L
g;
=
b-1 r.2
,4 r
gep Ag
- l
~
1-2 Y
.l
j I
d
- a.:
I
.?
- '.T I
c 8
g L
0-t:
I
^
.^
^
OO
.5 i
e*%
O 4
j f
-. O.
- [
I O ' ed k -.
v v
w e
sN
~
i 3
L.
-.z,
c i
w, e
.C.
c'e e.
e, n
w s e e nO eu i
-..w h
w
~
w n e
~;
eh 4 'L
.L* g -
O.
C. - 4%#~ C.
he n
a O
w
.e l
.w g
'.C L
1 s
- w v
i 01 Lt O -
- s 0 6 N
O O
t.:
A' s
~l I
p I.
+
L =
f' T e.=-
ani=
i T M i
j k
(
- > w I,
I'
'. *==
p t.
t I.
- i I
h
{.
O
^
^
to.
th 8,
f e
c 7 t;c O e
N v
v 2
m e a'a O
I M
t
}-
e t
e I
e, e-t
=- = = -c a.
t f*
4 O.
U O.
t t
7,
-e y.
\\
' k
- .,,o Q
k-N 1
- i I
4 I
f 80 -
t L
i c.
, ~ ~ -. - -,,. +...
r,,,_,
_._._...--..-.,_m_
___._.~,_.-r.._
s
s _ w n-m = a u s,.. m r m u a
.s. n.
+.a
=
a a a n a
-a a+.s-+.a ma m u m.se a eas. m s sw s.u n a_u s +.
-.a.~..n
-s. e m m a-s.
.-w..
a.
a
,-.n...
.-.u+
Y j
.w,-
f
..a
.4
, Ee waA u 6
,e-
~e-
- d*4*-+#'a-
~^
5 t
t 5
t
['.
=
t k
i k
e f
r*%
h i
w %
CM U5
- O O W M e Z I
- 3.4 I
h s"J N
}
e
- 1 I
C
~
L 4
v 4
1 I'
q
[
e ed O
.no ?
h-
- )
La l
j s
8, U O
- 3 s
5'-
l 0
C C O
+
j '
36
- u u
e o x
- i
.:t l
- 3 %.
- r Y
t
-.i. O ;
4 e
4
,i k
4f emme a!
n e d 4
J J
-=
i.
vl ZL
- = =
l l
v 4
~j t'
te~,
s ee
\\'
(
a e
O 1
~
x, bt Z
z
=
1 O l, I
E i
4 p:
I o
gl y.
f m
., O 4
O
='*
.- e."
r.*
a
- 2 N
i
-a
]
~ ZI f
Ad I
M I-- !
N-
[
E
=; E :l
,I U
j, Ml -~;
i a
N.
r J,
v i
g t
i
- g l
7C ; 5) 1 6
. ~.
,i 3
<3 s
O t
?
O e
I O
y.
e M
I t
i
- 7. :f l
C
~
P w
l C
O e%
K,,
nee
- Q j
O, O E
-.O.
a-
'e"*-
1 sN i
I '
M; O
4, w L g
~Ov
'i
- = n O
~
i j
O.
O.
O.
O.
t' i
a t
oo.I t
n T.
a 7*
..e
.T.
.S I
I i
1.. -%*
- l
~
f i
5 E
4 X
- 1
=I Xl
. j. W
- a L
-** O 2
i i'
.C W
4
)
g f
-a l
,j i
3 j
.2 r
- e i
e c
j l
O a
i h
^
e w-
'o v.-.2 u
u i,
QN 4
g
- CU
' Q '.0 '
C' O
-m e
d 03 e
'3 4
s 4'
- S
.-e 53 F
- ): L N
l
~1 i
E.
A I
L 6
r i
c O-w i
b 2
a
.a 3 C 7 O Y q
'4 f,
~
4,
(
~
==
/.
O a
a a
r9 r
m.
I I
1 0"s a
-.=
d' j
O "
A'd Z.
"J 1
1 4
e
- e e n'
t C
O Q
U'
-*C W
U N
[
~
U
' t t
e n1 r
}4 A
y F y m &9"M*F'
, W'T WW'7 9pf-*Wi-W* e 0,reveww eW N' -4 ' W W ' -
,.m.
I Rev. 1 t
l' TABLE 8_ (CONTihdED1 i
TIGLE t<OTATIOrl 4
i -
(a)
The LLD is defined for purposes of cottpliance
- with the Radiological Effluent Technical Spe-I cifications as the smallest concentration-of l
l radioactive material-in a sample that will I'
L yield a net count, above syste.n background, i
that will be detected with 95% probability
[
with 5% probability of falcely concluding that p
a blank observation represents a "real" signal.
t 4 :
1 For a particular measurement nystem (which may 4
include radiochemical separation):
i I
I 1
i 4.66 S LLD =
b E
V 2.22
'Y exp (-AAt)
Where:
LLD =
The lower lir.dt of detection as defined above (as picocurie per unit macs or volume).
Sb=
The standard deviation of the background l
counting rate or of the counting rate of a blank sanple as appropriate (as counts per minute).
E=
The counting efficiency (as counts per 3
disintegration 1 I
i V.=.
The sample size (in' units of mass or volume).
2.22 =
-The number of disintegrations per minute per picocurie.
I'
-Y.=
The fractional radiochemical yield (when applicable).
i A =-
The radioactive decay constant for the par-ticular radionuclide and,
- 8 2 --
i
h f
Rev. 1 i
l At =
the elapsed time between sample collection j
(or end of the snaple collection period) j and time of counting ( for environmental j
samples, not plant effluent samples ).
h Typical values of E, V,
Y and At shall be uced in the l
calculations.
i It should be recognized that the LLD is defined as a a i
priori (before the fact) limit representing the capa-I bilj tv of a mesaurement svstem and not as an a
^
posteriori (after the fact) limit for a particular l'
measurement.
Analyces are performed 2a such a manner i
that the stated LLDs are achieved under routine conditions.
Occassionally background fluctuations, unavoidable small sample sizes, the presence of inter-i
-fering-nuclides, or other uncontrolle' e circumstances l
may render these LLDs unachievable.
such cases, the contributing factors shall ! 2 identil and described i
. in the Annual Radiologica) Environment.
Operating
[
Report.
L (b;
LLD for drinking water.
(c)
Total for parent and daughter.
I
'(d)
-This list does not mean that only these nu-c3 ides are to be considered.
Other peaks that l
Eare identifiable, together witL those of the i
above nuclidts, shall also be anlayned and reported in the Annual. Radiological Environ-mental Operating Report.
I h
t 1.
\\
t
' " "^ ~
I
[g N
l
(
y
\\
h) I hf@fhkb;L 0%
4!
a h
ddNW i
i
..,C....
~ Wee f
\\
4
^^'
'f.I
]'.
f f.
j m
.n ma g,
-warj M au a uus y
f"r WNW 3
/
...I..%.
f
/j g
/
/,,
1 I
/
9C..
eVkM~
A s
/
vv
\\
Y h
s
\\ WsW ( bl (ig t
\\
\\
g.m x
\\,,,/ < y
........ e... x y,a
..... a
,. ** CHaucis cO,,-
9 Q'). #
/
$p
j, / 'e'a # ' p * ',..
,, /,,.,p e,y -
n
>L
/
/
='
,,/
/
,,/
- scar
,../
e, s-
'5' ssW f..
, /
s
(
i 80 MILE R Aclu $
/
e d
\\,s 4NE l
l l
l l
1
/
N ENE
,/
l
=te/
I i
LEGENO:
/
j f,9);
- NCORPOR ATED CQWWUNITIES se o
uNiNCORPOR ATED COWWUNiflES AIR S AMPLER LOC ATIONS
,LO LO....ON S d
E TLo a air s AWPLER LOCATIONS
- Uir,
>l:
E
-,s A
-g!:j A 3E TU F_-
~
CAD V
e PEF ERENCE:
LNO
,p THi$ WAP w AS PREP ARED FROW A PORTION I
stur TDwN OF THE FOLLOhiNG U.S.O.S. W AP:
COUNTV F 034 ST. LOus$ WO.,1962.
g r,
~,
e 8
'ESE d ' 'frg,3, g fl kexN I--
I Wat E S SE i
Also Available Un Apertnre Card
> 0 UNION ELECTRIC CO.
5,_
SSE e,:3 CALLAWAY PLANT w 0 I
NN
$a AIRBORNE & TLD S AMPLING NETWORK FIGURE 5.1 A REV 2 8403120104-02,
NW NNW N
/
NNE ENE 4
REFORMg f
N A-9 h.4 6 N
sei
^^
RESTRICTED AREA BOUNDAFIY WNW 47 (SITE BOUNDARY FOR c
GASEOUS EFFLUENTS 45 A-1 48 J5
'-/
_,.4 A DI E
52 4
h,b
/
x
>T = x j
l 950
/
7e ESE SW COUNTY RD 459 i:-
LROAD D.468 i
RTLAND
/
8" ~
\\
N SSw o4
/
/
gy~ CHUTE STEEDMAN O
2000 0
20,00 UNION ELECTRIC CO.
SSE C ALL AWAY PL ANT AIRBORNE & TLD LEGEND.
5 MILE RADIUS e TLD LOCATION FIG U R E 5.1 B REV 2
N D&
R S Af LER LOCATION
NW NNW N
NhE NE WNW ENE
/
n REFORM W
/
E 7
o eo
+
p WSW o
ESE v
0 i
0 SE 1%
SSE PORTLAND 8
- @f LOGAN CREEK
~
S01 F
f..
+
.li r
s\\}*9
..[4/q840/o A'
MISSOURI RIVER SSW 1og# s DISCHARGE POINT S
(RESTRICTED AREA s
BOUNDARY FOR Rt RtVER LIOUID EFFLUENTS) a CH AMOIS LEGEND:
6 TOWNS i
-INTERMITTENT STREAMS CONTINUOUS STREAMS 9
AQUATIC SAMPLING STATIONS 1
0 1
O COMPOSITE SURFACE WATER MILES UNION ELECTRIC CO.
CALLAWAY PLANT LOCATION OF AQUATIC S AMPLING STATIONS FIGURE 5.2 A REV 2
l }
N NNE NE I
NNW LE Riofgg US NW SIT,E W
A O
AND GASCONADE NEW M 3h2 WSW CHAMOIS N
SW t
REFERENCE:
I U.S. ARMY CORPS OF ENGINEERS,1977 MISSOURI RIVER HYDROGRAPHIC SURVEY, RULO, NEBRASKA TO THE SOUTH, KANSAS CITY DISTRICT.
k j
b ENE
$'q
\\
ce n
ST. CHARLES I
AUGUST A. BUSCH WILDLIFE AREA g
h$$$$>.
ST. LOUIS CITY n
j VATE
/ORKS Y OF JS OURI wet [O gp EXPERIMENTAL FARMS T
((
~??
g; D
i SOUTH I
POINT i
I l
Also Ay,;;gy l
ESE Aperfore Caret 4
0 4
g W%%
MILES UNION ELECTRIC CO'
'CALLAWAY PLANT 1
LEGEND:
LOC ATION OF AQUATIC O SURFACE WATER STATIONS SAMPLING STATIONS
@ AOUATIC/ SURFACE WATER STATION (REFER TO FIG, 5.2A)
FIGURE 5.2B REV 1
j 84031201
l
~
,,,,,,c,,-
/
NNW
(
\\
c;!
s: ':m ;f M u p n y \\
- gi; w.
kn k' O k l,
\\
gy x
udry
,, 's g N
i WNW
~
y
\\
~l"f 8
I x
~x s]z/' -
c
.~
, - s a....
4v q
W 7- /'hN~
q 1
/, \\ xx }
f J
~js
//
l/
l
\\
n
/
/
\\___
~ ~
WSW
\\
.'/ w p-/
~j w
MM.. -
(
n x'
_m..,
..-4,',,,
\\c\\
y V, ,o c-SW -
/- e,p tp q
f' flt
+'p
, - 00:j E ',c,o r
../
/
z,
/
,.. ' s i..um o,
)
N',g?
,/
s
~
SSW v.3
/"
g
....a.. o.us
/
NNE I
/
/
NE l 1
1 y9 ENE N
A St+sL L E
/.
I LEOEND:
?;:
thC ORPOR AT E D COWWUNITIE S
[0
- ~
P i
l l
~rf E
Li
!j:!
APERTdE H
\\\\.i CARD l
s x
</
8 i
98 4
REFEREhCE
~~~-
OtFNT Y OF THE F OLL OWING U S.G S. W AP:
q
..-w....,
BL uf TOWN THi$ W AP wa5 PAEPaRED FROM A PORTICN N
St.LousS,uO.,1962.
1 Os4
! *0, g -
l I'
C ouN y y h4 LESE
.h.- ;._
2 l
/WORaiSON C-i 1
0 t
2 3
kr.wl-m i
Wet E S j
Also Available On SE i
Aperture C.-d l
- l UNION ELECTRIC CO.
I h!E CALLAWAY PLANT S
a!5 ai!
FOOD PRODUCTS 00 S AMPLING LOC ATIONS FIGURE 5.3 REV 2
8403120104-Dy
Rev. 2 d'
6.0 DETERi4INATION OF ANNUAL AVERAGE AND SHORT 'r_9RM ATMOE W RIC DISPERSION PARAMETERS 6.1 Atmosphere Dispersion Parameters The values presented in Table 9 and Table 10 were
' determined through the analysis of on-site meterologi-
. cal data collected during the three year period of Ilay 4,
1973 to May 5, 1975 and March 16, 1978 to March 16, i~
'1979.
4 The PUFF (fluctuating plume) model and the straight-line Gaussian (constant mean wind direction) model were used for determination of the long-term atmospheric I
dispersion parameters.
A more detailed discussion of the methodology and data utilized to calculate these 4
parameters can be found elsewhere (Ref. 9.6.12).
The. terrain within 80 km of tne site is gently rolling
! with no important ranges of hills or mountains.
There are several small lakes and reservoirs in the region, however none are large enough to significantly affect the ambient dispersion parameters (Ref. 9.6.13).
! 6.1.1 Long Term Dispersion Estimates l'
6.1.1.1 The PUFF Model I
The general-equation for the PUFF model is (Ref. 9.10.1):
X/Q = 2[(27t)*2 g ]" exp - %(r /c;'4+ h'/o')
2 46.0 a
z J.
c Where:
2=
(x-ut) 2, y2 r
and H
y x
Effective release height (in meters).
h
=
e i- '
Q ='
. Effluent emission over the time interval (in-Curies).
.t.=
Travel time (in' seconds).
u =.
mean windspeed at the height of the-release point (in m/sec)..
.s.,
Pp. 2 L
t x=
Distance from center of PUFF in the direction of flou (n meters).
y=
Distance from center of PUFF in the cross flow direction (in meters).
Plume spread along the direction of flow (in e
=
x meters).
Lateral pluna spread (in meters).
o
=
y Vertical plume spread (in ueters).
o
=
g J
p X=
Atmospheric concentration of effluent in a PUFF _at ground level and,at distance, x, from the PUFF center (in Ci/m").
4 Calculations utilizing the PUFF model were performed for 22 standard distances to obtain the decired disper-sion parameters.
Dispersion parameters at the SITE BOUNDARY and at special receptor locations were esti-l mated by logarithmic interpolation according to (Ref.
L 9.6.14):
1-4 X=X y
( )B
( 6. 2 ) -
1 Where:
B=
in (X,/X-)/in (d /d ).
t 2
2 1
X, X2.= Atmospheric concentrations at distances d and y
y d, gespectively, from the source (in 3
.Ct/m ).
j The'distancesud and d were selected such tha t y
2 dy <d<d '
2 6.1.1.2
.The Straight-Line Gaussian Diffusion I:odel.
~
l.
l
! The U.S. Nuclear Regulatory Commission computer program
.! XOQDOQ (Ref. 9.17) was used to'determina the ground-
! level relative atmospheric dispercion factors, X/Q, and
!: deposition' factors,.JD/Q, from the unit vent and-from-
! the'radwaste building vent release points.
XOQDCQ
! utilizes a straight-line -trajectory Gaussian plume
- :model in which diffusion of material relcased to the
! atmosphere is described by a Gaussian distribution.
! within the plume and plume transport is described by a
, ii
p---...-...
- _. - - _. ~... - -.
- -. ~. -. - -..
l
+
+ -..
.__.._.....m, k-3 l
r l:
Rev. j j
i i
l
! straight-line trajectory.
The plume conc 0ntration was
! also d=pleted by dry deposition and radioactive decay.
l
! 6.1.1.2.1 l
l Mixed Mode and Elevated Release Model.
l
! The Unit Vent and Raduaste Euilding Vent releases are j'
! at elevations 66.5 meters and 20 meters above grade, I-respectively.
Both release points are within the bu-t
! ilding wake of the structures on which they are l
I
! located, and the Unit Vent is equipped with a rain
! rover which effectively eliminates the possibility of l
! the exit velocity exceeding five times the horizontal f
! wind speed.
All gaseous releases are thus considered
! to'De ground-level releases, and therefore no mixed l
[
! mode or elevated release dispersion parameters were j
f determined.
(Ref. 9.5.2)
I
[
! 6.1.1.2.2 j
Gound-Level Release Model.
)
I
! Gound-level release concentrations were determined ic-t
!' cording to.(Ref. 9.17.1):
l I
I-
[
i-f N7 X/d(x,K) :
P,F(x,K) -
DEPL; (x,K) DEC;(x) f;;(K)[0;(ci;(x) + co' l7r)' 2]"
(6.3) x z
L 1,i i
I N7
?
x/o(x,x) = 2.032 gg(,,y) gggt;c,,K)ggc(x)7(x)77gg,,(,))
I I
i,j I
i 3:
- 86'-
u
j-
~_
[
l l-Rev. 2 e
j.
i i
j i:
! Where:
l 1 (X/Q) (x,K)
= average effluent concentration nor-l malized by source s+rength at distance x i
in directional sector K (seconds / cubic meter).
! x
= the downwind distance (meters).
f i-
! i
,= the ith wind-speed class.
! j
= the jth atmospheric stability class, i
grouped into seven classes according to i
j t
!- K
= kth wind-direction class.
U.
= mid-point value of the ith wind-speed I
l class.
! czg(x)
= the vertical plume spread for stability l'
class j at distance x (meters).
j
! 6.1.1.2.3 Decay, Depletion and Deposition Methodology.
l i
! The reduction factor due to radioactive decay was I
,!-determined according to (Ref. 9.17.2):
i i
I t
1 j
DEC ( x ) = EDT (-0. 693 t /T )
(6.5) j f
g
! Where:
t
! t
= x/(86400'Ui) g L! _T
= half-life, in days, of the radioactive material.
t.
= travel time, in days.
1
! x
= downwind or travel distance, in meters.
!'U.
= Midpoint of the ith wind-speed class in 1
- 1. -
meters /second.
--!-Halflives of 2.26 days (decayed-and undepleted) and 8.0 r
! days.(decayed depleted) were utilized.
\\
RrN. 2
! The. effect of plume depletion due to dry deposition was
! also considered, using the plume depletion curves pre-
! sented in Ref. 9.10.2.
! For each directional sector, relative deposition was
! computed by the following relationship for a specific
! downwind distance (Ref. 9.17.3):
.,NJ RF(x,K)
D.. f (K)
'l U (6.6)
.I 8
(2K/16) x
! Where:
l
! (D/Q)(x,K)
= average relative deposition per unit area at a downwind distance x and direc-tion K, in meters.
D..
= The relative deposition rate from Ref.
13 9.10.3 for the ith wind-speed class (since plume height is dependent on wind speed) and the jth stability class, in meters.
! fg3(K)
= joint probability of the ith wind-speed I
class, jth stability class, and Kth wind-direction sector.
!x
= downwind distance, in meters.
!n
= 3.14159265
! 9F(x,K)
= correction factor for air recirculation and stagnation at distance x and Kth wind direction.
! The resultant deposition amounts were modified accord-
! ing to site specific terrain / recirculation factors as
! given in Ref. 9.6.25 and 9.6.26.
I fg3(k)
= joint probability of occurrence of the ith wind-speed class, jth stability class, and Kth wind-direction sector.
! DECf(x)
= reduction factor due to radioactive decay at distance x for the ith wind-speed class. _.
l 4
I i
Rev. 2 b
d
! DEPLg3(x,K)
- : reduction factor due to plume depletion at distance x for the ith wind-speed class, jth stability class, and Kth vind-l direction class.
J
! RF(x,K)
= correction factor for recirculation and
'l stagnation at downwind distance x and Kth I
I terrain / recirculation factors used are wind-direction class.
Site specific j
given in Ref. 9.6.25 and 9.6.26.
' ;)
1
! c D.
= building height used to compute addi-
'j tional atmospheric dispersion due to the
~
building wake, based on Yanskey et al.
(1966).
I
! Equation (6.4) represents the maximum additional
! dispersion due to the building wake.
XOQDO2 compares l'the results.from Equations (6.3) and (6.4) and retains I the higher (more conservative) X/Q value.
! The required joint frequency' distribution of
! meteorological data is based on the three years of on-
! site date (Refer to Section 6.1).
l
~
6.112 Short Term Dispersion Estimates Airborne releases-are clar.,sified as short term if they are less than or. equal to 500 hours0.00579 days <br />0.139 hours <br />8.267196e-4 weeks <br />1.9025e-4 months <br />.dui-ing a calendar year and not more than 150 hours0.00174 days <br />0.0417 hours <br />2.480159e-4 weeks <br />5.7075e-5 months <br /> in any quarter.
Short term ~ dispersion estimates are determined by multiplying j
tha appropriate long term dispersion estimate by a cor-i 1 rection factor (Ref. 9.9.1 and 9.17.4):
l t
1 i
\\
e F = (T /T )
(6.7)
?
s a
LWhere:
y
)
The total'numberi of hours of the short term T
=
i 6
release.
1r^ = -
The total number'of-hours-in the data collec-I
. tion period from which.the long term diffusion estimate was determined '(Refer to Section 1-6.1).
~^ /-l
- 1
!q s
L sn
' l y
F. 4 g
'i x
g
-i
--- U
f4 S. _;.
n I...
N N
Rev. 2
~. _,
.gs j~
?' Values of the slope factor (S), are presentcu in TABLE 1.i.
x Short term dispersion estimates are applicable to short
^
' term rcleases which are not sufficiently random in both 4
time of day and duration (e.g., the short term release 3
periods are not dependent solely on atmospheric condi-
/
tions or time of day) to be represented by the annual
^
average. dispersion conditions.
(Rev. 9.8.12.)
xw
.m.
U.-+e T
6.1.2.1 The Determination of the Slope Factor (S).
I 2,
!. The -general approach employed by subroutine PURGE of I XOQDOQ (Ref. 9.17.4) was utilized to produce values of A...
I the slope-of the (X/Q) curves (Slope Factor (S)) for
! both the Radwaste Building Vent and the Unit Vent.
(-
! However, instead of using approximation procedures to 2
! produce the 15 precentile (X/Q) values, the 15 percen-
!' tile (X/Q) value for each release and at each location
! was determined by ranking all the 1-hour (X/Q) values
!'for that release and at the location in descenbing
! order.
The (X/Q)i.value which corresponded to the 15
~
a 3.! percentile of all the calculated (X/Q) values within a sector was extracted for use in the intermittent
,;j
!' release (X/Q) calculation.
! The-intermittent release (X/Q) curve was constructed
!.using the calculated 1-hour 15 percentile (X/Q), hic re-and I its corresponding annual average (X/Q)a.
A grap 0
! presentation, tased on Ref. 9.17.4, of how the computa-
'!.tional procedure works is illustrated in Figure 6.1.
~ The straight-line connecting these points represents
~
(X/Q). values for interaittent relecces, ranging.in
~
?
! duration from one (1) hour to 8700 hours0.101 days <br />2.417 hours <br />0.0144 weeks <br />0.00331 months <br />.
The slope
!-(S) of the curve is expressed-as:
w y
1
-log ( (X/0),/(X/Q)y (6.8)
~.
^
4-S=
}-
log-(Ta/Ty) or
- log (X/Q) )
(6.9)
-(log-TX/Q),
-!s S=
- ^
,y log Ta - log Ty-
~-
la
~
b 5-.
I
.(
3 7
,O_
1~-
s-*-
r.v -.,_ _.A-
~
w,
- 6
[f
~[
'~
s 1.-
. ~
/
Rev. 2
. =
1 TABLE 9 -
HIGHEST ANNUAL AVERAGE ATMOSPHERIC DISPERSION PARAMETERS (a)
RADWASTE BUILDING VENT DISTANCE-X/Q~
X/Q
' LOCATION'(b)
SECTOR (METERS)
X/Q Decayed /Undepleted Decayed / Depleted D/Q (m /sec)
(m-2)-
2 2
2 L (m /sec)
-(m /sec)-
SITE BOUNDARY
.S' 1300 1.3E-6'
'9.8E7 1.2F-6 4.4E-9 Nearest Cow:
- W 2575
-4.3E-7'
.4.4E-7 3.6E-7 1.2E-9' Nearest Goat
.NNE 3540 3.9E-7 3.9E-7 3.2E-7 1.5E-9
' Nearest" Meat Animal.
NNW.
~2736 7.6E-7' 7.6E-7 6.4E-8 2.4E-9 E
.. Nearest Vegtable I*
Garden
.NNW 2736 7.6E-7 7.6E-7 6.4E-8 2.4E-9 Nearest! Residence NNW 2736 7.6E-7 7.6E-7 6.4E-8 2.4E-9
~
Boundary, Area Closed to.Public Use (c)
NW l154 4.0E-6 4.0E-6 3.5E-6 1.4E-8 i
(a) Values given are from:FSAR, Table 2.3-84, and Table 2.3-86 j
(b) Data from 1978 survey (c) Values derived from FSAR, Table 2.3-81, using the methodology presented in Equation (6.2) i Building Shape Parameter (C) = 0.5 (Ref. 9.5.4)
Vertical IIcight of Highest Adjacent Building (V) = 19.96 meters (Ref. 9.5.4)
Q-s t
+,m r-
.m-
7 -.. u-
.y
-.,, 7 _.. _
,' r,
I b
- f.,
o s -
S
./-
- a-
.s.
s q
,[
e
[t,
,i.
u?.
? '~i
~
Rev. 2 e
.}f';
,k' i
,j
'!TABLi! 10 y
.p;. -
-IIIQlE'ST ANNUAL AVERAGE ATMOSPilERIC DISPERSION PARAMIUERS' (a)'
I s
ll '
~
( '
i
-. r
,s.
j 3
llN!T VE!;T
. J.
4.
j N
j
- ]
[
DISTANCE
!X/Q
__ Decayed / Depicted D/Q.
\\
?X/Q.
2 LOCATION (b).
SECTOR (METERS)
X/Q-Decaye-d/Undepleted
'(' '/sec)
(m-2)-
2-
?
s m'
(m /sec)
.(m'/sec)
Jc
~
y SITE, BOUNDARY-
.S,g 1300 9.9E-7 9r8E-7 8.8E-7 4.4E-9 ENearest Cow W
2575 3.5E-7
'3.4E-7
,2.9E-7 1.2E-9 NearestHCoat NNE 3540
~ '3.2E-7 3.2E-7 2.6E-7 1.5E-9 6.y Nearest Meat Animal NNW 2736 5.9E-7' 5.9E 5.0E-7 2.4E-9
~
Nearest.Vegtable Carden NNW 2736-5.9E-7 5.9E-7 5.0E-7 2.4E-9 Nearest Residence NNW 2736 5.9E-7 5.9E-7 5.0E-7 2.4E-9 Boundary, Area Closet to Public Use-(c)-
NW
. I154
.2.8E-6 2.8E-6 2.5E-6 1.4E-8 (a) - Values. given are from FSAR Table 2.3-82,- and Tabic 2.3-85 (b) ' Data from 1978 survey (c) Values derived from FSAR, Table 2.3-83, using.the methodology presented in Equation (6.2' Building Shape' Parameter (C) = 0.5 (Ref. 9.5.4)
Vertical liefght. of Adjacent Building (V) = 66.45 meters (Ref. 9.5.4)
t Rev. 2 i
E 4
TABLE 11
[
SHORT TERM DISPERSION PAPX1ETERS (a)
I
,i
.i i
f I
Slope I
! Location (b)
Sector Dictance factor (S) 7adwaste (meters)
Unit Vent Building Vent 4
i
[-
! Site Boundary
~
S 1300
.328
.'320 (c) l t-
{
! Nearest Cow W
2575
-i350
.351 I
! Nearest' Coat NNE 3540
.289
.288
! Nearest' Meat NNW 2736
.262
.268 j
! Aniraal
! Nearest Vegetable NNW 2736
.262
.268
! Garden
! Nearest Residence NNW 2736
.262
.268 f
l f
f-
! (a)
Referenc a 9.5.4
! (b)
Data fron 1979 Survey
!-(c);: Recirculation Factor== 1.0 I.
l*
j.
lo.
1 I
j-
[
$p t
1 l
i l- -
ii l i. --.
--n__.._._..______..__.._____._.___._,
... - ~........ -.
Rev.'2 TABLE 12 APPLICATION OF ATMOSPilERIC DISPERSION PARAMlrERS DOSE PATIIWAY ODCM REFERENCE DISPERSION PARAMETER CONTROLLING AGE GROUP 1
~
. Noble Gas, Beta Air-
-3.5.2.1 X/Q, decayed /undepleted Noble Gas, Camma Air-3.5.2.1 x/Q. decayed /undepleted Nobic Cas, Total Body 3.4.1 & 3.5.1.1 X/Q, decayed /undepleted
-Noble Cas, Skin 3.4.1 & 3.5.1.1 X/Q, decayed /undepleted Ground Plane Deposition 3.5.2.2.1 D/Q
?
8 Inhalation 3.5.2.2.1 X/Q, decayed / depleted Child Vegetation 3.5.2.2.1 D/Q*
Child l
Milk 3.5.2.2.1 D/Q*
Child Meat 3.5.2.2.1 D/Q*
Child
- For li-3 and C-14, X/Q, decayed / depleted is used instead of D/Q (Reference 9.11.1).
]
~
t i
-m
Rev. 2
=
t 10 W--- 15 PERCENTILE x/O 1.
w X/Q VALUE FOR i -
' ]
-4 INTERMITTENT (PURGE)
-6 10 RELEASE l
i.
a I
I
~
l
' ANNUAL
- l
<- AVERACE X /Q -
1 10 l
I l_ -
I i HR.
80 HRS.
8760 HRS.
I TIME i
i rigure'6.1 Slope Factor (3) for Short Tern Dispersion Paraireters 4
d 5
i
'E h
-,-,.4 e,-
,,e.-
...w.
9-c.-y,=--.m,,,,,.-u--
.w e,,--..-.-,
wm, y:,--m w..y.
-,---mw-_,
wy
..w w-
,,,,,-.%.w q -
s Rev. 2 7.0' SEMI-ANNUAL RADIOACTIVE EFFLUENT RELEASE g,
1 REPORT Routine Radioactive Effluent Release Reports covering
'the operation of the unit during the previous 6 months of operation are submitted within 60 days aftcr January i-1.and) July 1 of'each year.
The period of the first report.begins with the date of initial criticality.
The Radioactive Effluent Release Reports include a sum-mary of the quantities of radioactive liquid and gaseous effluents and solid waste-released from the unit as outlined in Regulatory Guide 1.21, " Measuring, s
Evaluating,:and' Reporting Radioactivity in Solid Wastes
-and Releases of Radioactive Materials in Liquid and GaseousLEffluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974, with data summarised on a quarterly basis following the format -of Appendix B 1
thereof.
For solid wastes, the format for Table 3 in Appendix B is supplemented with three additional categories:
class of solid waste (as defined by 10 CFR Part 61), type of container (e.g.,
cement, urea formaldehyde).
The Radioactive Efiluent Release Report to be sub.nitted within 60L days after. January 1 of each year includes an annual summary of hourly' meteorological data collected over'the previous year which may be either in the form 4
- of'an hour-by-hour listing on magnetic tape of wind speed, wind direction,. atmospheric stability, and pre-
'cipitation,1 or in the form of joint frequency distribu-tions of wind speed wind direction, and atmospheric stability.*~ This same: report includes an assessment of-the ' radiation doses dne to ' the radioactive liquid and caseous effluents released from the unit or station during the1 previous calendar year.
This same report
! also' includes, the asessment of the ' radiation doses
- from. radioactive liquid and gaseous effluents to MEM-L.
BERS OFLTHE~PUBLIC due to their activities inside the
-SITE BOUNDARY during the report. period.
All assump-tions used in making-these assessments, i.e.,
specific activity,. exposure time' and. location, is included'in these reports.
!sThe assessment of radiation doses is performed in ac-L! cordance with the methodology and parameters-in the
! ODCM.
The' Radioactive Effluent Release Report to be submitted 60 days.after January-11 of each year also includes, as requir'e'd by Technical Specification'3.11.4',_an assess-ment of-radition doses to the likely'nosr exposed MEM-BER OF THE PUBLIC from Reactor releases and other (neirbyLuranium fuel cycle sources,~ including deras from D,
- 2-
~.,
,w,,.r.
> +,
, +.,. _ -
,,,,r
,,,m
,-,,,.,e-r,.=
ymy3,-,.~~.,-
, -,. - +..
m
..,m-3+---
r
. x. w.
.._,,o.
__-..;.,~.m.
_._m__>
.a g
Rev. 1 nearby uranium fuel'.ycle sources, including doses from 4
pi-imary effluent pathways and direct radiation, for the
' previous calender year to show conformance with 40 CFR Part 190, " Environmental Radiation Protection Standards for Nuclear Power Operation".
The Radioactive Effluent Release Reports-include a list f
and description of unplanned releases from the site to
{l T
1.NRESTRICTED AREAS of radioactive materials in gaseous Land liquid effluents made during the reporting period.
t-The Radioactive Effluent Release Reports include any changes mado during the reporting period to the PROCESS
. CONTROL PROGRAM and to the ODCM, pursuant to Specifica-tion 6.13 and 6.14, respectively, as well as any major change to Liquid, Gaseous, or Solid Radwaste Treatment System,- pursuant to Sps cifica tion 6.15.
It also in-cludes a listing of new locations for dose calculations and or environmental monitoring identified by the Land Use Census pursuant to Specification 3.12.2.
1 The Radioactive Effluent Release Reports also include the'following information:
An explanation as to why the inoperebility ofJ11guid.or gaseous effluent moni-toring.' instrumentation was not corrected within the time specified in Specification 3.3.3.10 or 3.3.3.11, respectively; and description of the events leading to liquid holdup tanks or. gas' storage tanks exceeding the
-limits of-Specification 3.11.1.4 or 3.11.2.5,
.respectively.
t L*In' lieu of submission, theLUnion Electric Company has-the option of retaining ~ this summary cf required meteorological: data on site in a file that shall be provided to-the NRC.'upon request.
.(Ref.9.4) p f
O 1
4 t
i h
m _ _.. _. _ _. _. _ _ _ _ _ _ _
g._
d s
E Rev. 2 i
f-
+
v i
l 4.
8.0' I!!PLEMENTATION OF ODCM METHCDOLOG'i l
The ODCM provides the mathematical relationships used
[
i to implement the Radiological Effluent Technical j
specifications.
j 6
j:
For-routine effluent release and dose assessment, com-l
[
puter codes are utilized to implement the ODCM i-methodologies.
These calculational methods include the f
.[
same general. features ac provided in the ODCM.
These j;
!' codes are currently being evaluated by Bechtel Power
[
! Corporation to ensure that they produce results con-t
}
- sistent with the ODCM methodologies.
j I
t-
~ A final report, to be issued by Bechtel Power Corpora-
}:
i-
! tion on or about March 15, 1984,-will provide complete j
. I
'nd accurate documentation of the testing procedure, a
ll
! test cases, initial findings, resolution of findings, 4
! and a final. evaluation as to the utilication of these i
j
' ! codes to implement the OLCM methodologies.
~
4 k
j -
F k
n t
f l
r f
s l
J t
I e
t t
t I
I
=.
i
[
l i
97 -
~
E i
l f
w-,,c.,-,-.a.__,__._..___
t
. ~.- -..
~
(
,.-4.-.
4
.s i4 f.- [..,
L
.a h 4#.
.. ~,
,.mj t 6 e-s
. + r I'
Rev. 2
?
-9.0 PEFERENCE3
~ 9.1 Title 10, "Enerri", Chapter 1, Code of Federal Regulations,. Part 20; U.S. Government Printing Office,' Washington, D.C. 20402.
-9.2 Title-10, " Energy", Chapter 1, Code of Federal Regulations, Part 50, Appendix I; U.S. Govern-ment Printing Office, Washington, D.C. 20402.
9.3
. Title 40, " Protection of Environment", Chapter 1,- Code of Federal Regulations, Part 190; U.S.
Government Printing,0ffice, Washington',
D.C.
20402.
9.4-Callaway Technical Specifications. Section 3.3.3.9, 3.3.3.10, 3/4.11, 3/4.12, and 6.9.1.7 as submitted to the U.S. Nuclear Regulatory
'Commisssion, August 1983.
- 9. 5' Communications 9.5.1
. Letter NEO-54, D.W.
Capone to S.E. Milten-berger, dated January 5, 1983; -Union Electric ECompany correspondence.
^ !' 9.5.2-
. Letter BLUE 1285, "Callaway Annual Average X/Q and-D/O Values",
J.
H. Smith (Dechtel Power Corporation),;to D.
W.
Capone (Union-Electric Co. -), dated February 27, 1984.
9.5'3 Letter BLUE 1159, J. H. Smith (Ecchtel Power Corporation) to D.
W.~ Capone (Union' Electric 11 Company),-dated January 18, 190^.
! 9.5.4
. Letter-BLUE 1232, "Callaway Annual Average X/Q Values and'"S" Values", J. H. Smith-(Eechtel Power Corporation) to D. U. Capone (Union Elecctric Co.),-dated February 9, 1984.
9.6~
Union Electric Company Callaway Plant, Unit 1, Final Safety Analysis Report.
19.6.1 Section ~11.5.2 2.3.1
'9.6.2.
.Section-11.5.2.2.3.4 9. 6'. 3 Sec tion 11.5.2.1.2
'9.6.4-Section 11'.5.2.2.3.2 i
9.6.5' Section-11.'5.2.2.3.3 i
l 4
98 -
. ---_. -...., _. - ~
~..,.
l a.
., a... -..
a..
.. ~.
!~
f Rev. 2 1:
t.
Section 11.2.3.3.4 i.
'_9.6.6 19.6.7 Section 11.2.3.4.3
~
t 9.6.8
~Section. 11.5.2.3.3.1 9.6.9-Section 11.5.2.3.3.2 I
.9.6.10 Section 11.5.2.3.2.3
[
9.6.11' Section-11.5.2.3.2.2
~
9.6.12 Section-2.3.5 i
l-9.6.13 Section~2.3.5.1 1
l}
! 9.6.14 (Reference ' Deleted )
! 9.6.'15 (Reference Deleted) l
! 9.6.16 (Reference Deleted) 9.6.17 Section-9.2.6L 9.6.18 Section 9.2.7.2.1.
j-9.6.19-DSectien-6.3.2.2
- 9.6.20 Table 11.1-6
! 9.6.21' Table 9.4-6
.!i9.6.22 Table 9.4-8
! 9.6.23:
. Table 9.4-11
! 9.6.24
-Table-9.4-12
! 9.6.25 Table 12.3-66 l:
! 9.6.26 Table.2.3-68 i-
!E 9.7 Union-Electric Company Callaway Plant Environ-
. mental Report, Operating License Stage.
t 9.7.1
. Table 2.1-19 9.7.2'
-Section 2.1.2.3 9.7.3' Section 2.1.3.2.8 I?
9.7.4-Section 2.l.3.3.4 H99 -
A
_ _ r _._ _.. _.. _
.,-a.
....n
_ ~..:
. ~. -. =.. -..
II f
b Rev. 2 l
9.7.5 Section 2.1.3.3.3 j
i 9.7.6~
~ Section 5.2.4.1
! 9.7.7 Table 2.1-19 l
9.8.
U.S. Nuclear Regulatory Commission,
- " Preparation of Radiological Effluent Techni-4 cal Specification For Nuclear Power Plants",
USNRC NUREG-0133, Washington, D.C.
20555, Oc-F
.tober 1978.
9.8.1-Pages AA-1 through AA-3 11 9.8.2 Sectoin 5.3.1.3
]7.
9.8.3 Section 4.3 l
i i
9.8.4 Section 4.3.1 l
i
'9.8.5 Section '5. 3.'l. 5 o9.8.6 Section 5.1.1' j.
- 9. 8. 7 -
.Section 5.1.2-L 9.8.8
. Section 5. 2.1 4
9.3.9 Section 5.2.1.1 9.8.10-Section 5.3.1 9.8.11 Section 3.8 I
9. 8.~ 12 Section 3.3 i
9.9 U.S. Nuclear Regulatory' Commission, "XOQDOQ,
.Frogran For the Meterological' Evaluation Of Routine Effluent Releases At Nuclear Power-Stations", USNRC NUREG-0324, Washington, D.C.
20555.
9.9.1-Pages 19-20 Subroutine.PURCE I
9.10 Regulatory Guide 1.111, "Methocs For Estimat-ing Atmospheric Transport And Dispersion of Gaseous Effluents In Routine Releases From Light-Water-Cooled Reactors", Revision 1, U.S.
Nuclear Regulatory Commission, Washington, D.C.
20555,' July, 1977.
9.10.1.
.Section'c.l.b
- 100 -
me.-m
< s.
Rev. 2
!'9.10.2
' Figures 3 ',hrough 6
!.9.10.3.
Figures 7 through 10
!- 9.10.4 (Reference Deleted) i 9.10.5 Section-c.4 9.11~
Regulatory Guide 1.1.09, " Calculation of. Annual Doses to Man Prom Routine Releases Of Reactor l
' Effluents For the Purpose Of Evaluating Com-1 pliance With 10 CFR Part 50, Appendix I",_
q Revision 1, U.S. Nuclear Regulatory Commis-sion,-Washington, D.C.
20555, October 1977.
9 ',11.1 -
'Appendi::.C, Sectien 3.a 3.11.2 iAppendix E, Table E-15
! 9.11.3' Appendix C, Section'1' 9.12. -
U.S.~ Nuclear _ Regulatory Commission, " Methods
-for Demonstrating LWR Compliance.with the~ EPA Uranium Fuel Cycle Standard (40 CFR Part t
- 190 )",
USNRC NUREG-05Ca, Washington, D.C.
i 20555, January 11900.
i 9.12.1-'
Section~I, Page,2 l
9.12.2
.Section'IV, Page 8 l
9.12.3.
Section'IV,-Page.9' t
9.J2.4 Section III,cPage 6-
! 9.13
_U..S.? Nuclear Regulatory' Commission, " Standard Radiological Effluent Technical Specifications
~
ifor. Pressurized ~ Water: Reactors", USNRC NUREG-0472, Draft' Revision 3,. Washington, D.C.
- 20555, January 1983.
?9 13.1-
-Definition 1.7; Page 1-2 L9.14' Management Agreement for the Public Use of Lands,' Union Electric Company _and.the State of
. Missouri Departr.ent of Conservation, December 21,-1982.
9.14.1 Exhibit'A.
9.151 Wildl'ife Code of Missouri, Rules of ' the Con-
'servation Commission, Issued January 1, 1983.
5
- 101 -
(
Rev.
2_
9 16 Miscellaneous References 9.16.1 Drawing Number M-109-n007-06, Revision 5.
!'9.17 U.S. Nuclear Regulatory Ccmmission, "X0QD0Q:
I Computer Program for the Meterological Evalua-tion of Routine Effluent Releases at Nuclear
- Power Stations", USNRC NUREG/CR-2929, S e,v tcm -
ber, 1992,. Washington, D.C.
20555.
! 9.17.1 Section 4.1, " Subroutine ANNUAL", pages 23-25.
! 9.17.2 Section 4.1, " Subroutine ANNUAL", page 25.
! 9.17.3 Section 4.2,
" Subroutine DEPOS", page 26.
! 9.17.4' Section 4,
" Subroutine PURGE", pages 27 and 28.
I-
?
i i
I L
J
-- 102 -
F
s#
e._.--..
UNION ELECTRIC COM PANY 1908 GRATIOT STREET ST Louis, MISSOURI M*3 LING ADDR E..:
oo~ co r..c"",""
March 8 1984
.r. Lou i., m.."o'u n.....
i m........
- - Mr. Ilarold R.
Denton, Director Office-of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission
-Washington, D.C.
20555-
Dear Mr. Denton:
ULNRC-760 DOCKET NUMBER 50-483 CALLAWAY PLANT, UNIT 1 OFFSITE DOSE CALCULATION MANUAL REV. 2
References:
- 1) ULNRC-688 dated November 22, 1983
- 2) NRC letter dated February 14, 1984 from B. J. Youngblood Reference 1 transmitted Revision 2 of the Callaway Plant Offsite. Dose. Calculation Manual (ODCM) to NRC for review.
NRC Staff comments.on the ODCM were transmitted by Reference 2.
. Enclosed herewith for NRC review and approval are five copies of the.ODCM Revision 2 which incorporate the NRC comments from Reference 2.
By copy of this letter, we are also transmitting a copy of the ODCM to Messrc.
J.
Holonich and E. Branagan.
Very truly yours, Dona Schnell
.DS/lw
-Enclosure (5 copies)
. O 6
- ~
-n
-w.--u.
,.g 7 e
-w-,
n1,-
J STATE OF MISSOURI )
)
Robert J. Schukai, of lawful age, being first duly sworn upon oath says that he is General Manager-Engineering (Nuclear) for Union Electric Company; that he has read the foregoing document and knows the content thereof; that he has executed the same for and on behalf of said company with full power and authority to do so; and that the facts therein stated are true and correct to the best of his knowledge, information and belief.
1
(
By
\\
Robe t J. S hukai Gene ager-Engineering Nuclear h day of SUBSCRIBED and sworn to before me this 1984 w 0- M y PbFF BARBARA NOTARY PUBLIC. STATE OF MISSOURf AtY COMMISSION EXPIRES APRll 22,19S5 SL LOUIS COUNIX 4
-e
.. s cc:
Glenn L. Koester Vice President Operations Kansas Gas & Electric P.O. Box 208 Wichita, Kansas 67201 Donald T. McPhee Vice President Kansas City Power and Light Company 1330 Baltimore Avenue Kansas City, Missouri 64141 Gerald Charnoff, Esq.
Shaw,.Pittman, Potts & Trowbridge 1800 M. Street, N.U.
Washington, D.C.
20036 Nicholas A. Petrick Executive Director SNUPPS 5 Choke Cherry Road Rockville, Maryland 20850 John H. Neisler.
Callaway Resident Office U.S. Nuclear Regulab7:y Commission RRf1 Steedman, Missouri 65077 J. E.
Konklin Division of Projects and Resident Programs, Chief, Section lA-U.S. Regulatory Commission Region III 799 Roosevelt Road Glen Ellyn, Illinois 60137 J. Holonich (NRC)
Brawagns (NRC) l l
l
- - - ~. -. _
y--
.g
_