ML20072R675

From kanterella
Jump to navigation Jump to search
Nuclear Power Plant Sys Source Book - Bellefonte 1 & 2
ML20072R675
Person / Time
Site: Bellefonte  Tennessee Valley Authority icon.png
Issue date: 03/31/1991
From: Lobner P, Schoene T, Wooten B
SCIENCE APPLICATIONS INTERNATIONAL CORP. (FORMERLY
To:
NRC
Shared Package
ML20072R679 List:
References
CON-FIN-D-1763, CON-NRC-03-87-029, CON-NRC-3-87-29 SAIC-91-1065, NUDOCS 9104030117
Download: ML20072R675 (165)


Text

-- -

5 .

SAIC 91/1065 p -n NUCLEAR POWER PLANT g i SYSTEM SOURCEBOOK

%, . 1... /

I I ,

BELLEFONTE 1 & 2 50 438, 50 439 i

Editor: Peter Lobner Author: Bruce Wooten and Tom Schoene 1

1 Prepared for:

, U.S. Nuclear Regulatory Commission j l Washington, D.C. 20555 )

t .!

l Contract NRC 03 87-029 l FIN D 1763 l

l l l @v;0bolf i l

p~ ' 1 -

- .a Bellefonte 1 & 2' 1

1 TABLE OF CONTENTS -

1 Sssd2n East l

'l S UMMARY DATA ON PLANT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4

2 IDENTIFICATION OF SIMILAR NUCIRAR POWER PLANTS .... 1 3 ' S YSTEM INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.1 Reactor Coolant S ystem (RCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Auxiliary Feedwater System (AFWS) and Secondary j S tcam Rellef S ystem (S S RS)................................... 19 i' 3.3 Emergency Core Cooling System (ECCS) ................... 26

- 3.4 - M akeup . and Purificat .on System............................... 39 3.5 Instrumentation and Control (I & C) Systems................ 46 3.6. Electric Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -53 3.7 Component Coolie System (CCS) . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.8 Essential Raw Co ..ng Water System (ERCW).............. 81 3.9 Containment Cooling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 89

4. PLANT INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 97 4.1 S ite and B uildin g S ummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 L4.2 Facility Layout Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 a 5- BIB LIOG RAPHY FOR BELLEFONTE 1 & 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 APPENDIX A, Definition of Symbols Used in the System and Layou t Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

. APPENDIX B, Definition of Terms Usea in the Data Tables ..... . .... 154 a

s

i. 3S1 y

';6' ..

Bellefonte 1 & 2 i

.1 1

LIST OF FIGURES -

d q

l 5 5 31 Cooling Water Systems Functional Diagram for Bellefor.te.............. 7

- 3.1 - 1 i Isometric View of a B&W 205 Primary System......... .................. I1 3.1 2 Elevation View of a B&W 205 Primary System........ .................. 12 i

3.1 3 Plan View of a B&W 205 Primary System . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . 13

, 3.1-4; General Arrangement of a B&W 205 Reactor Vessel..... ................ 14 3.15' General Arrangement of a B&W 205 Once Through Steam G e n erator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 g - 3.1 6 -

Bellefome 1 Reactor Coolant System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6:

3.1 7 Bellefonte 1 Reactor Coolant S

' locations . . . . . . . . . . . . ....,................'.........................

. . . . . . . . . . . . .ystem S howin g Component 17 ,

3.2 1 Bellefonte l' A uxiliary Feedwster System . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . 23 3.2-2 Bellefonte 1 Auxiliary Feedwater System Showing Component L oc a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 1: Bellefonte 1 High Pressure Injection / Makeup System.................... 30 3.3 2 Bellefonte 1 High Pressure injection / Makeup System, ECCS .

Injection Mode Showing Component . Locations........................... 31 l3.3e3l lBellefonte 1 High Pressure Injection / Makeup System, ECCS High Pressure Recirculation Mode Showing Component Locations .......... 32~

.3.3 ,Bellefonte 1 Decay Heat Removal (DHR) System .:......................

33 3.3 5; Bellefonte 1 Decay Heat Removal (DHR) System, ECCS Injection Mode Showing Component Locanons.......................... 34 3.3 6' Bellefonte 1 Decay Heat Removal (DHR) System, ECCS High Pressure Recirculation Mode Showing Component. locations........;. 35 v

< 3.3-7J Bellefonte 1 Decay Heat Removal (DHR) System, law Pressure -

, Recirculation Mode Showing Component Locations..................;.. -

-'36 3 3.4 l= Bellefonte 1 High Pressure Injection / Makeup System ................... '42 i:

? 3.4 2 Bellefonte 1 Pressure Injection / Makeup System, Normal Makeup L Mode S howing Component Location s . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 43' 3.4-3 . Bellefonte 1 Seal Injection / Return Portion of the Makeup and .

Purification System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ii. 3S1

i .

Bellefonte 1 & 2 l

LIST OF FIGURES (Continued)

Figun- bgt 3.4-4 Bellefonte 1 SealInjection/Retum Portion of the Makeup and Purification System S howin g Component Locations . . . . . . . . . . . . . . . . . . . . . 45 3.6-1 Bellefonte I and 2 Station Electric Power System.................... .... 56 3.6-2 Bellefonte 1 and 2 Station Electric Power System Showing Component Locattons........................................................ 57 3.6 3 Bellefonte 14160 and 480 VAC Electric Power Systems................ 58 3.6 4 Bellefonte 14160 and 480 VAC Electric Power Systems Showing Component Locations......................................................... 59 3.6 5 Bellefonte 1 120 VAC Electric Power System . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 60 3.6-6 Bellefonte 1 120 VAC Electric Power System Showing Component Loc ati ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.67 Bellefonte 1 125 VDC Electric Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6 8 Bellefonte 1 125 VDC Electric Power System Showing Component Locati on s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.7-1 Bellefonte 1 Component Cooling System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.7-2 Bellefonte 1 Component Cooling System Showing Component Locations......................................................................, 77 3.8 1 Bellefonte 1 Essential Raw Cooling Water System Train A.............. 84 3.8 2 Bellefonte 1 Essential Raw Cooling Water System Train A S howin g Compoac nt Location s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.8 3 Bellefonte 1 Essential Raw Coolir.g Water System Train B.............. 86 3.8 4 Bellefonte 1 Essential Raw Cooling Water System Train B S howin g Component Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.9 1 Bellefonte 1 Reactor B uilding Spray S ystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.9 2 Bellefonte 1 Reactor Building Spray System, Injection Mode S howin g Componen t Location s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.9 3 Bellefonte 1 Reactor Building Spray System Recirculation Mode S howin g Componen t Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.9 4 B ellefonte 1 Reactor Buildin g Coolin g S ystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 iii. 3/91

~

y i e . j Bellefonte 1 & 2 i LIST OF FIGURES (Continued) -

4 l

Figure P.agt i 3.9 5 Bellefonte 1 Reactor Building Cool' ; System Showing Component L oc a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3 41 General View of the Bellefonte Site and Vicimry. . .. .. . . .. . . . . .. . . . . . . . . . . 98 *

)

2 B elle fonte S implified Plot Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 l

l 4-3 Elevation View of the Bellefonte Containment............................. 100 y 4-4 Elevation Views of the Bellefonte Auxiliary and Control Buildings .... 101 i

45 Elevation Views of the Bellefonte Turbine Building ...................... 103 1

1 4-6 Bellefonte 1 Auxiliary B uilding, Elevation 579'0" . . . . . . . . . . . . . . . . . . . . . . . . 105 4-'7 Bellefonte 1 Reactor Containment, Auxiliary and Contrul Buildings, Elevation 590'0"............................................................... 106 4-8 Bellefonte 1 Reactor Containment, Auxiliary and Control Buildings, Elevation 610'0".............................................................. 107 4-9 Bellefonte 1 Reactor Containment, Auxiliary and Control Buildings, Elevation 629'0".............................................................. 108 4-10 Bellefonte 1 Reactor Containment, Auxiliary and Control Buildings, Elevation-649'0"............................................................... 109 4 11 Bellefonte 1 Reactor Containment, Auxiliary and Control Buildings, Ele ya tio n 66 9'0" a n d 67 3'0".. .. .. .. . . .... . . . . . . .. .. .. . . .. .. . . .. . . .. .. . . .. . . . I10 4-12 Bellefonte 1 Reactor Containment, Auxiliary and Control Buildings, Elevation 686'0"............................................................... 111 4-13 Bellefonte 1 Reactor Containment and Auxiliary Buildings, Eleyatien 706'0"............................................................... I12 4-14 Bellefonte 2 Auxiliary Building, Elevation 579'0"........................ I13 4 15 Bellefonte 2 Reactor Containment, Auxiliary and Control Buildings, Elevation 590'0"............................................................... I14 4-16 Bellefonte 2 Reactor Containment, Auxiliary and Control Buildings, El e y ati on 610'0" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I15 4-17 Bellefonte 2 Reactor Containment, Auxiliary and Control Buildings, Eleyation 629'0"............................................................... I16 4-18 Bellefonte 2 Reactor Containment, Auxiliary and Connul Buildings, Eleyation 649'0".............................................................. I17 iv. 3/91 s

c ,; ,

Bellefonte 1 & 2 E

- LIST. OF FIGURES (Continued) .

Elgun Page 4 19- . Bellefonte 2 Reactor Containment. Auxiliary and Control Buildings, Ele va tio n 669'0" a n d 67 3'0"... . .... .. .. ... . . ... .. . .. . . . . . .... .. . . .. . . .. .. ... I18 4-20 Bellefonte 2 Reactor Containment. Auxiliary and Control Buildings, Eleyation 686'0"............................................................... I19 4 Bellefonte 2 Reactor Containment and Auxiliary Buildings, Ele vation 7 06'0" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .~. . . . . . . . . . . . . , 120 4-22 Elevation Views of the Bellefonte Diesel Generator Building............ 121 4 23 - Bellefonte 1 Diesel Generator Building, Elevation 623'0"............... 123 4 24 Bellefonte 1 Diesel Gr.nerator Building, Elevation 629'0" ............... 124 4-2.*. - Bellefonte i Diesel Generator Building, Elevation 655'0"............... 125 4 26 Bellefonte 2 Diesel Generator Bulkiing, Elevation 623'0"............... 126 L4 -- Bellefonte 2 Diesel Generator Building, Elevation 643'0" ............... 127 -

4 Bellefonte 2 Diesel Generator Building, Elevation 669'0".............. . 128 4-29: Elevation Views of the Bellefonte Intake Pumping Station............... 129-14-30 Bellefonte 1 and 2 Intake Pumping Station, Elevation 557'0"........... 131 L4 31 Bellefonte 1 and 2 Intake Pumping Station, Elevation 6070"........,.. 132 c4-32 Bellefonte 1 and 2 Intake Pumping Station, Elevation 627'0"........... 133 g

c 33 Elevation View of Bellefonte Fire Water Pump Room.................... 134 A-li Key to Symbols in Fluid System Drawings . . . . . ..'. . . . .. . .. .. .. . . . . .. . . . . . 150 LA-2 3 Key to Symbols in Electncal System Drawings ........................... 152

, ', -A-3 Key to ' Symbols in Facility Layout _ Drawings.............................. 153 4

A

v. 3S1.

g ,

l-2 i

I.

, . _ . . . . -;__-,._.._,..........~._.___.,._,,____.,__,,,.,_.__-_._...,._,_..._.,,_.;

1: .._-

Bellefonte 1 & 2-LIST-OF TABLES -

Tabh Eags 3.1: Summary of Bellefonte 1 & 2 Systems Covered in this Report ......... 3 3.1 Bellefonte 1 Reactor Coolant System Data Summary for S e 1 e c t e d Co m o po n e n t s, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8 3.2 1 Bellefonte 1 Auxiliary Feedwater System Data Summary for Selected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3-1 Bellefonte 1 Emergency Core Cooling System Data Summary for Selected Com ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5 l' Summary of Bellefonte Essential Controls and Instntmentation (ECI)............................................................................ 50 3.5 2 Bellefonte 1 125 VDC Con trol Power S ummary. . . . . . . . . . . . . . . . . . . . . . . . . . .52 -

3.5 3 Bellefonte 1 120 VAC Instrumentation and Control Power

- D i s t r i b u t 10 n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6-1 Bellefonte 1 Electric Power System Data Summary for Selected -

Components.................................................................... 64 ,

3.6-2 Partial Listing of Electrical Sources and I naA at Bellefonte 1.......... 68 3.7-1 Bellefonte 1 Containment Cooling System Data Summary for Selected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.7-2 S ummary of Bellefon te CCS Heat Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 l 3.8-1 Bellefonte 1 Essential Raw Cooling Water System Data Summary for Selected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88:

l 3.9 1 Bellefonte 1 Containment Cooling System Data Summary for -

L Selected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  %

-41 Definition of Bellefonte 1 Building and location Codes ................. - 135 -

4-2 Partial Listing of Components by Location at Bellefonte 1............... 140.

p P-1 Component Type Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155-t l

vi. 3S1

. 1 Bellefonte 1 & 2 q-l l- CAUTION L

The information in this report has been developed over an extended period of time based on a site visit, the Final Safety Analysis Report, system and I layout drawings,- and other published information. To the best of our  !

knowledge, it accurately reflects the plant configuration at the time the

! information was obtained, however, the information in this document has

! not been independently verified by the licensee or the NRC. i l u 1

l NOTICE l

1 This sourcebook will be periodically updated with new and/or replacement pages as appropriate to incorporate additional information on this reactor plant. Technical errors in this report should be brought to the attention of the following:

Mr. Mark Rubin

- U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulstion Division of Systems Technology Mail stop 8E2 L Washington, D.C,20555 i

l With copy to:

Mr. Peter Lobner -

Manager, S stems Engineering Division

' Science A ationsInternational Corporation -

1 10 Campus Point Drive-

- San Diego, CA 92131-

.(619)458 2673 Correction and other recommended changes should be submitted in the form

- of marked up copies of the affected t:xt, tables or figures. Supporting '

- documentation should be included if possible.

l l1 vii. 3/91 l

., . ~ - . - _ _ _ _ _ . _ . _ _ _ . . . _ _ .

BELLEFONTE 1 & 2 ..

RECORD OF REVISIONS' l

l REVISION ISSUE COMMENTS 0 3/91 Original report

.viii, 3/91

Bellefonte 1 & 2 BELLEFONTE 1 & 2 SYSTEM SOURCEBOOK This sourcebook contains summary information on the Bellefonte 1 & 2 nuclear power plant. Summary data on this plant are presented in Section 1, and similar nuclear power plants are idenufied in Section 2. Information on selected reactor plant systems is aresented in Section 3, and the site and building layout is illustrated in Section 4. A aibliography of re arts that describe features of this plant or site is presented in Section 5.

Symbols used in t:1e system and layout drawings are defined in Appendix A. Terms used in data tables are defined in Appendix B.

1.

SUMMARY

DATA ON PLANT Basic information on the Bellefonte nuclear power plant is listed below:

Docket number 50-438/439 Operator TVA Division of Power Production

- Location Jackson County, Alabama

- Commercial operation date Construction temporarily on hold. No commercial operating dates set.

Reactor type PWR

- NSSS vendor Babcock & Wilcox

- Number ofloops 2 .

Power (MWt/MWe) 3620/1271

- Architect-engineer TVA Division of Engineering Design

- Containment type Post tensioned concrete primary containment with a steelliner and a free-standing reinforted concrete secondary containment

2. IDENTIFICATION OF SIMILAR NUCLEAR POWER PLANTS The Bellefonte 1 and 2 plants have Babcock & Wilcox 205 " raised loop" PWR two-loop nuclear steam supply systems (NSSS) and a large, dry containment. Other Babcock & Wilcox plants in t ne United States include:

ANO1

- Crystal River

- Davis Besse (raised-loop)

- Oconee 1,2 & 3 Rancho Seco

- TMI l All of these plants are B&W "177" model PWRs with large, dry containments. In addition, the cancelled Washington Public Power Supply System plant WNP 1 is a B&W 205 model PWR that is about 60 percent complete and is being maintained in a state of preservation that may enable construction to be restarted.

A B&W "205" model PWR has a raised loop primary coolant system similar to Davis Besse and a larger reactor core comprised of 205 fuel assembles. The 205 model PWR core is designed to use the 17x17 Mark C fuel assemblies and 24 " finger" control rod assemblies (CRAs). In contrast, the "177" model PWR uses the 15x15 Mark B fuel assemblies and 16 finger CRAs.

The reactor vessel in the 177 and 205 model PWRs respectively have inside diameters of 171 and 182 inches. The once through steam generator (OTSG) in a 205 model PWR has greater heat transfer capability than in the 177 model plants, and the I_

1 3/91 i l

e .

Bellefonte 1 & 2 feedwater inlets and steam outlets are located lower on the steam generator vessel. The 205 OTSG is termed an " integral economizer" OTSO.

The ECCS in the 205 model PWR is comparable to the ECCS found in the 177 lowered loop plants. The high head injection pumps in the B&W 205 plant double as chargine pumps during normal operation. Bellefonte has provisions to durnp hot leg B to th: contamment emerpncy sump approximately 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after a LOCA has occurred and emergency coolant recirculation has been estabhshed.

Bellefonte has a free standing reinforced concrete secondary containment.

Many containment isolation valves are located in the secondary containment annulus.

3. SYSTEM INFORMATION This section contains descriptions of selected systems at Bellefonte I and 2 in terms of general furetion, operation, system success criteria. major components, and support system requirements. A summary of major systems at Bellefonte 1 and 2 is presented in Table 31. In the " Report Section" column of this table, a section reference (i.e. 3.1,3.2, etc.) is pmvided for all systems that are described in this report. An entry of "X" in this column means that the system is not described in this report. In the "FSAR Section Reference" column, a cross teference is provided to the section of the Final S tfety Analysis Report where additional information on each system can be found. Other sources ofinformation on this plant are identified in the bibliography in Section 5.

Several cooling water systems are identified in Table 3-1. The functional relationships that exist among cooling water systems requinid for safe shutdown are shown in Figure 31. Details or. the individual coohng water systems are provided in the report sections identi&d in Table 31.

Functionally equivalent systems at Bellefonte 1 and 2 generally are identical in design, however minor differences exist. In this sourcebook, Unit 1 system information is arovided. Interconnections between Units 1 and 2 systems are indicated. Systems shared aetween Units 1 and 2 are as follows:

Essential Raw Cooling Water System

- Fire Prctection System Control Building Environmental Control System l -

Auxiliary Building Common Zone HVAC System Fuel Handling Area HVAC System Spent Fuel Cooling System Portions of Fuel Handling Systems l

Fuel Oil Storage Tanks l -

Chemical Addition and Boron Recovery System Portions of Waste Disposal Systems i

i 2 3/91

y Table '3-1. Summary 'of Bellefonte -I . & ' 2 ' Systems ' Covered in Ihis Report..

Generic Plant-Specific Report FSAR " Section System Name: Svstem Name- Section Reference Reactor Heat Rernovat Systems Reactor Coolant System (RCS) Same' 3.1 '5- ,

Auxiliary Feedwater(AFW)and Same (the term SSR is not used : - 3.2 10.4.9 Secondary Steam Relief (SSR) at Bellefonte)

(ECCS) _

_ Iligh-Pressure Injection Iligh Pressure Injection System . 3.3 6.3  ;

& Recirculation  ;

- Iow-pressure Injection Iow Pressure Injection System. 3.3 6.3

& Recirculation Core Flooding System  !

w .

Decay Heat Removal (DIIR) . Same 3.3 5.4.7 System (Residual Heat Removal (RHR) System);  :

Main Steam and Power Conversion Main Steam System, ,

X 10.3 .,

Systems Condensate and Feedwater System. X- 10.4.6, 10.4.7 1 Heat Rejection System X 10.4.5

. - Other Heat Removal Systems None identified X Reactor Coolant Inventory Control Systems -

Chemical and Volume Contml System Makeup and Purification System, 3.4 9.3.6 l (CVCS)(Charging System) Chemical Addition and Boron X- 9.3.4 .

Recovery System i

i w -

ECCS See ECCS, above - -

~ l i

d 5

4 w

a Table' 3-1. Summary of Bellefonte 1 & _2 Systems Covered in this Report (Continued)

Generic _ Plant-Specific - Report FSAR Section System Name System Name Section Reference Containment Systems

- Containment Primary Containment, . X 6.2.1, 6.2.4, 6.2.6 Secondary Containment X 6.2.3 Containment II:at Removal Systems

- Containment Spray System Reactor Building Spray System 3.9 6.2.2

- Containment Fan Cooler System Reactor Building Cooling System 3.9 6.2.2 Containment Nonnal Ventilation Systems See Reactor Building Cooling X 6.2.2  !

System, above i Secondary Containment Air -

Cleanup System ,

u Combustible Gas Control Systems Ilydrogen Recombiner, X 6.2.5 Ilydrogen Purge System, Ilydrogen Sampling System.

IIydrogen Circulation System

^ '

Reactor and Reactivity Control Systems Reactor Com Same X 4 Control Rod System Control Rod Drive System, X 4.6 Control Rod Drive Contml System X 7.4.1.3, 7.7.1.3 Boration Systems See Makeup & Purification System - -

Instrumentation & Control (I&C) Systems

- Reactor Pmtection System (RPS) - Same 3.5 7.2 w

3 -

Engineered Safety Feature Actuation Same 3.5 . 7.3 System (ESFAS)  ;

i

p-Table 3-1. Summary of Bellefonte 1 & 2 Systems Covered in this Report (Con'tinued)

Generic Plant-Specific Report FSAR Section System Name Section

~

System Name - Reference Instrumentation & Control (I&C) Systems ~

(continued) - . .

- Remote Shutdown System Essential Contmls and 3.5 7.4.1.2

. Instrumentation (ECI).

7.4.1.3 Auxiliary Shutdown Panel 3.5 Other I&C Systems Various systems X 7.6 to 7.8 Support Systems 3

- Class IE Electric Power System Same 3.6 8 ,

Non-Class 1E Electric Power System Same 3.6 8

" - DieselGenerator Auxiliary Systems Same 3.6 9.5.4, 9.5.5. 9.5.6 9.5.7. 9.5.8 Component Cooling Water (CCW) Component Cooling System (CCS) 3.7 9.2.2 System Service Water System (SWS) Essential Raw Cooling Water 3.8 9.2.1

~

System

- OtherWater Systems Ultinute Heat Sink '3.8 9.2.5 Raw Cooling Water System X 9.2.7

Danineralized Makeup Water X 9.2.3 ,

System i

Potable and Sanitary Water Systems X 9.2 4 ,

Condensate Storage Facility 3.2 9.2.6  :

Borated Water Storage Tank 3.3 9.2.8 FirePmtectionSystems Same X 9.5.I h -

. - , ~ .i.__ .,,u... -

Table 3-1. Summary of Bellefonte I & 2' Systems Covered in this Report (Continued) '

Generic . Plant-Specific - Report FSAR Section System Name System Name Section Reference Support Systems .. (continued) -

- - Room 11 eating, Ventilating, and Air-- Control Building Environmental - X 9.4 Conditioning (llVAC) Systems Control. Fue!Ilandling Area ,

Ventilation, Auxiliary Building Common Zone Environmental <

Control, Turbine Building flVAC, l 4

Auxiliary Building ESFZone EnvironmentalControl Diesel Generator Buikling Environmental Control, Intake Pumping Station 11 eating and Ventilatior, .

Containment Environmental Contml o - . Instrument and Service Air Systems Compressed AirSystems- X 9.3.1  ;

Essential Air, Control Air, and -

Service AirSystems  :

Refueling and Spent FuelSystems Fuel Storage and llandling X 9.1 Systems ,

Radioactive Waste Systems Same X 11 Radiation Pmtection Systems Same X 12 Other Auxiliary Systems Sampling and WaterQuality X 9.3.l2 Systems .

Equipment and Floor Drain Systems X 9.3.3 .

Failed Fuel Detection System X 9.3.5 Breathing Air System X 9.3.7 w Plant Communications System X 9.5.2 3 1.ighting Systems X 9.5.3 t

i

ArW . Auxswy resesaw l CCS = Componere Cootng System .F ' +

DHR - Oscay Heat Remowel . .

O R HEAT FRCW . Essenset Raw Cootng Water EXCHANGERS ESr . Engineer *d Sassey reense <,

- ' 2

, m . % Pressure W i

LOCA = Loes ed Ceetou AccWent RBS . Reeder Sussng Scroy r T mm' F '

SYSTEM HEAT - OHR PUMP COOL ERS L EXCHANGERS (2) ; ,

L j .

} r m r , '

A~ DESEiGEl(RATOR HPtteAMEUP PUMP -

COOLERS A -

COOLERS

  • L J t J f

r .

, r ,

TO 2 g Ass PUMP COOLERS W.ATLOADS ' " ' J sL {

r , r ,

g,

, Q r , COOLERS p. RBS.

ESSENTIAL RAW ArW, C@

r COOtJeG WATER ' 2 ' 2 SYSTEM (UNIT 2)

NTAKE FROM oUNTtR = 1

'l F

CONTROL ArdO

'. Auxu.aY -

M 04 TIERS (TENNESSEE r NORMAL ESSENTIAL RAW OPERATION NATURAL ORAFT N
COOUNG WATER r COOLNG TOWER

. SYSTEM (UNIT 1) e a ,

BASIN l r e J NON ESSENTIAL HEAT dL LCADS 9

L > , 8 MAM CO,OLNSER I '

BACKLF WATER I SOuRa rOR Arw SYSTEM

vAno wOuOma eO,o 7

LOCA AND LOSS OF g j BACKUP WATER OFTSITE POWE R y SOtRM FOR FHE CONDtTIONS g

PROTECTION SYSTEM Figure 3-1. Cooling ' Water Systems Functional Diagram for Bellefonte  ;

Bellefonte 1 & 2 3.1 REACTOR COOLANT SYSTEM (RCS) ,

l 3.1.1 System Function i The RCS transfers heat from the reactor core to the secondary coolant system via the steam generators. The RCS pressure boundary also establishes a boundary against ,

the uncontrolled release of radioactive material from the reactor core and primary coolant.

3.1.2 System Definition The RCS includes: (a) the reactor vessel, (b) main coolant loops, (c) main coolant pumps, (d) the primary side of the steam generators, (e) pressurizer, and (f) connected piping out to a suitable isolation valve boundary. Illustrations of a B&W "205" raised-loop RCS and major RCS components similar to Bellefonte 1 and 2 are shown in Figures 3.1-1 to 3.1-5. Simplified diagrams of the RCS and important system interfaces are shown in Figures 3.1-6 and 3.1-7. A summary of data on selected RCS components is presented in Table 3.1 1, 3.1.3 System Goeration During power operation, circulation in the RCS is maintained by two main coolant pumps in each of the two main coolant loops. RCS pressure is maintained within a prescribed band by the combined action of pressurizer heaters and pressurizer spray. RCS coolant inventory is measured by pressunzer water level which is maintained within a prescribed band by the chemical and volume control system (makeup and purification system).

At power, core heat is transferred to secondary coolant (feedwater) in the once-through steam generators. The heat transfer path to the ultimate heat sink is completed by the mMn steam and power conversion system and the circulating water sys, tem. ,

Following a transient or small LOCA (if RCS inventory is mamtamed), reactor core heat is still transferred to secondary coolant in the steam generators. Flow in the RCS is maintained by the main coolant pumps or by natural circulation. The heat transfer path to the ultimate heat sink can be established by using the secondary steam relief system (see Section 3.2) to vent main steam to atmosphere when the power conversion and circula%

water systems are not available. If reactor core heat removal by this alternate path is not adequate, the RCS pressure will increase and a heat balance will be established m the RCS by venting steam or reactor coolant to the containment through the pressurizer relief valves.

There is one power operated relief valve (PORV) and two safety valves on the pressurizer.

A continued inability to establish adequate heat transfer to the steam generators will result in a LOCA like condition (i.e., continuing loss of reactor coolant through the pressurizer relief valves). Repeated cycling of these relief valves has resulted in valve failure (i.e.,

relief valve stuck open).

Following a large LOCA, reactor core heat is dumped to the containment as reactor coolant and ECCS makeup water spills from the break. For a short term period, the containment can act as a heat sink; however, the containment cooling systems must operate in order to complete a heat transfer path to the ultimate heat sink.

The RCS is equipped with a High Point Vent System which provides vents on each of the two hot legs, on the pressurizer, and on the reactor vessel. This system vents noncondensable gases from the primary system to the containment or the RC drain tank to

aid in refilling the RCS and to promote natural circulation flow following a transient or small LOCA and loss of normal circulation. The fail-closed solenoid valves in the vent paths are remotely operated from the control room. Design and line sizing limit the flow rate through these vent paths so that the maximum vent rate will not exceed 200 gpm at normal RCS pressure (Ref.1).

8 3/91

1 I

Bellefonte 1 & 2

'Ihe capability exists to dump hot leg B to the containment sump for emergency decay heat removal. There are tv o parallel dump paths, each with two series, normally closed motor-operated valves. This dump system is used in conjunction with the ECCS, as described in Section 3.3.

3.1,4 System Success Criteria The RCS success criteria can be described in terms of LOCA and transient mitigation, as follows:

- An unmitigatable LOCA is rot initiated.

If a mitigatable LOCA is initiated, then LOCA mitigating systems are successful.

- If a transient is initiated, then either:

RCS integrity is maintained and transient mitigating systems are successful, or

- RCS integrity is not maintained, leadinE to a LOCA like condition (i.e.,

stuck-open safety or relief valve, reactor coolant pump seal failure), and LOCA mitigating systems are successful.

3.1.S Comoonent InformAllan -

A. RCS

1. Water volume, including intemals: 4,791 ft3
2. Normaloperating pressure: 2195 psig B. Pressurizer
1. Normal water volume: 1100 ft3
2. Normal steam volume: 1500 ft3 C. Reactor Coolant Pumps (4)
1. Capacity: 1(M,200 gpm (each) @ 376 ft. head (162 psig)
2. Type: Squirrel cage induction, single speed D. Safety Valves (2)
1. Set pressure: 2500 psig
2. Relief capacity: 500,000lb/hr each E. Power-Operated Relief Valve
1. Set pressure: 2295 psig
2. Relief capacity: 150,000 lb/hr F. SteamGenerators(2)
1. Type: Once-through
2. Primary side volume: 2030 ft3 G. Pressurizer Heaters
1. Capacity: 1742 kW supplied from Class IE AC power 9 3/)1

Bellefonte 1 & 2 3.1,6 Sunnort Systems and Interfaces A. Motive Power I

1, Some pressurizer heaters are Class lE AC loads that can be supplied from

'the standby diesel generators as described in Section 3.6.

2. The main coolant pumps are supplied from Non Class IE switchgear.

B Main Coolant Pump SealInjection Watei System The makeup and purification system (see Section 3.4) supplies seal water to cool the mam coolant pump shaft seals and to maintain a controlled inleaka;;e of seal water into the RuS. Loss of seal water flow may result in RCS leacage through the pump shaft seals which will resemble a small LOCA.

C.; Backup Main Coolant Pump Seal Cooling On each main coolant pump, an integral heat exchanger supplied by the component cooling system (see Section 3.7) provides enough cooling capacity -

to pn: vent excessive seal heating if seal injection is lost.

3.1,7 Section 3.-1 References

1. Bellefonte 1 and 2 FSAR, Section 5.4.1.

l L

!)

1

{

10 3/91.

. - - ......-. w .,

- = . - - . . . . - . . , , _ . - - . _ - . . - _ . . - - , , . . ,.

> e NOT LEO FtrinG STEAN GENERATOR O i

PRES $yRg2Eg C0WTROL R00 DRIVE 3 AND SERVICE O STRUCTURE i I, _

1 -a

& p i

u', .

~

w REACTOR g C00LAuf

{

v 'y 4 ;'- 3 PUMP N0 TOR jm r - '

dl P % ,w

%,, sf 8

- )

<____ s. ,

N M'% ,

o e C OLA T PUWP e O t%=smesus8 1

/

STEAW OUTLETS (2)

CORE FLOOD ARD LOW PRES 3URE INJECTION N0ZZLE (2) FEECMATER lulETS (2)

COLD LEG PIPING REACTOR VESSEL Figure 3.1 1. Isometric View of a B&W 205 Primary System i1 3/91

> e

~~ ~~

EL 64' ! 3/4" Z _

== -

l 6 Pit!!Util!R SPRAY PIPING .. I -

f

$1 TAN I GENttaf0R I i CONTROL R00 CRIVE -

$ERVICE Situr W . [ , ,

H 1

r .

.\... .\.

l I O l s v. ==

-)

50 R ' - , , .

El _

7,s ..q E3 Pit $$Util(k t

i a. . \ b, w

-m Ni

%3r.)

_ i i

a,

. IoI '

t. ~ :. .~: ;'.;.% 1, ; .': .~ : :%

HIGH PRES $URE INlttil0N N0ZZtt (4) (ifPICAL)

Cott FLOODING AND LOI PRES $URE INj!CilCN N0ZZLt (2)

Figure 3.1-2. Elevation View of a B&W 205 Primary System i 12 3/91

o .

STEAM GEN (NATOR--

r=.

l

. r.- T

' f@ g ,@

"", ,m _

j /\( , ,

\

C {~~

. , 4G' * * *%

irr.-8 , f.df g9 u ... . _

f

h. , ,

W

~ Wit- ' .-b W - _ . ,

REACTOR \ REACTOR COOLANT s , COOLANT PUWP/ MOTOR '

/ PUNP MOTOR

- REACTOR VESSEL

s. M* . 45' -

'  % /

CORE FLOODING AND LOW

( PRESSURE INJECT 10N H0ZZLE (2) i REACTOR REACTOR

\, / p COOL A NT 000LANT /, .

, PU M P/ MOTOR PUMP /WOTOR .:. 4 ,-

p .yf-~ wp g ._+_. y , _.

If': B:.d 6

C . . . _= '

L-M.- $ s  !

OTSG TRUNNION SUPPORT

': :l STEAM .

JJ- . v.f GENERATOR Figure 3.13. Plan View of a B&W 205 Primary System 1

l 13 3/91

i TTTTTT7  ;- 'i

- - . ,re_ss s I y  :

/g'

.i n l w\l i

-t - = -

y T <e, ,e n r m :::= -: .

'P  :

hl i)0 O ( D O Ol f/

f.0j o( ) o 3 4 p@"=

g g; o - > ay , f - o-L4-~g~ a, -

y -

~*r=

. . . - .,e

~ r)

_..,@ :s e __

r,

<~

,  ! ! l i :N u m e.e i

, I ) N i . _e t' l i F: s .- -

i j ,

f I w --

,  !. , s i I 4

1 fl r[

y e., -

!j l  ;

I

/

i . I sww wymt wwwfamwr

{hhMIdIfi ._U.i,_t_

[ddk3f

% k W (4 i

~ B "~

!  ;%g&lk ?bg C.' jN

":,~.,,,

i i i li Figure 3.1-4. General Arrangement of a B&W 205 Reactor Vessel 14 361

9 RthCfDR INLET

/ COOLANT HANDH0Lt

,.; ,2 M " "'AII

% M+p i ,

.: = =  : y SUP(RH[Af

"- ' ]"" R(GION pig,

-.. _. 1 -~ _.J L 1 00iLING CTLINORICAL _ _ .

t

' IO IAIILI l' HE AT TO ANSF[R

m. _ a ggg,gg g7 100$ POWER p ir

,' N fy

$1 TAM ANNULU$ -

l NUCLi AT E BOILING

- ~

-- .._ _ __ _ , REGION i i 1

SilAll OUTLET $ (2)

L AUtlllART  ! _. jl o Fit 05ATER INLET - ,_ ,

N$ NLE 2) ( gg

{'C

\\ 5 WR

- G  ; o REGION 2 REACTOR .-

(

~

COOLANT

< DUTLETS BANIAT ORAIN N0ZZLE HANCHOLE Figure 3.15. General Arrangernent of a B&W 205 Once Through Steam Generator 15 3/91

ty V W L mtm T .

t TO *4CM TN TO MED8 l 125A wwy

. - . ~. -

g - -

HE ADEft ME sit ra ca ra #=,m~

O O N t' 84CSSr4 WE tXPE PEESSURSE8B a I NM h(

Ro00 R0tn tre a TAsest 9 Yapex a C2

,,, m O u S [ I'l

'*"l**

rrr's one en.

~*

CNC2-TtfouOrt opsCE-THROUGro so = sTE - . , , , ,

324 m- ,o,,, #

Mt2Ra?tN4 P masE54R70R 4 WMTS ~

(\ u,ov ,

Edf-

~ MZ Q Q x to 74Y" c:,;.~

~ ~

RCS

~ ~ ,,

meesa n

m***s oess t.cor a j , _

LDOP $ MQf UO -e LOOPA*CftEO gg t,

t e - :Q: :Q: x N. _.

M M

, I c="a oa= =

O,,'J, .

"f,,,, **sa twe o

+>0 enen *** raiswv

Q: :Q: -

-oo.-

t . uToo- coau=

futP eer toors,. cato ue toor catouc stCPep5 g ,

.or g

g

  • + c..

W-arr.

-4 ces t-

_ m ,,,

g'+= TQ tS o'm=w' Z, irr

'h toopermoun toorar e rtec ,, ,,

_. _. _ i 1_ .

' 2

- - . - - o.<.: .q so  :>o-4. =

m m

<a

- *1DNS OF ,

suorE To . .T.HE..DE1mm ~_TysOW a-.14 DLa.dP Figure 3.1-6. Bellefonte 1 Reactor Coolant System

l r r r - ' - '--

r,a ,o - ra , , - r,a & ^

d WE 8ef w.oea a WWT w morn

j. M _- 4

- ORRef va ,., "'

?,Yi  ?,'(,i 6

N4 en. .

Y

,U,NE,,

Yesu 9

,M.x, 1

Y apoet .

PYW S$B 8MFER S

--- ~. .~

_, was, go i

u A f1_ ""

O

r.,',

' .n.

or= =

ONCF TWKBe M W* MuGp4 -+-

5"A , @ =* @ '"

  • E,'."" a . O,",'.

If*M M

(- M M. ,,. . .

ncs VIISEt btP'-

g Q

ownenn Q,,

t>ste..

x-see iOF.

s .s,. .

N w unr = wn ua Q Q

~ tare a ua -. . no urwm l

.Q R

, c-f __ ,,

- - - + ~ +

,, x

- - .r-F' '

(fG am hh titFS m

Q

,, u Q +ewam -

e**

-c +,

na -

, , r srm-cau a unre,anas toorn, m n as q q -

htw467 RC3* **-

Q=> r. . .&. zr 4 7-

. , . . 1, . as . _._ n (ETDL'ur'n CO t i R p ,, .

e_

unw on eanao exp e:wn tso Vacr ea s t .

l

, mm.e s -* _pG, M

. , . . &. >G- 4W *" . . , , .

I w

2 m=c=

=m -tw..ee.s.m.

,o arossrs t.wo<w

- r>< ome. ,_,

p, w.,

m l

l Figure 3.1-7. Bellefonte 1 Reactor Coolant System Showing Component Locations l

l 1

I l

l

. o t

i Tame 3.1-1. Benefeate 1 Reactor Coolant Systems Data Susnesary -

for Selected Components i

COMP. POWER SOLHCE EMEHG-

. COMPONENTID TYPE LOCATION POWER SOURCE VOLTAGE LOCATION LOAD GRP.

1 i MU-21A MOV- RGPC MCC-1E1 A 480 6695CdhA AQA i

MU-22B MOV RC-PC MCC-1E1B 480 669SGRMB ACB +

i MU-2BA MOV RC-PG MCC-1E1 A 48C 669SGRMA AQA MU-298 MOV FCPC MCC-1E1B 480 669SGRMB ACB I

RCS-235A MOV RC-PC MCC-1E2A 480 6695GRMA ACIA RCS-2378 MOV FCPC MCC-1E2B 480 669SGRMB ACB '

FICS-57A - MOV RC-PC UNKNOWN t

RCS-588 NV FCPC UNKNOWN t

~

oo f i

e i

e w '

r i

t

o ,

Bellefonte 1 & 2 I 3.2 AUXILIARY FEEDWATER (AFW) SYSTEM AND SECONDARY STEAM RELIEF (SSR) SYSTEM .

3.2.1 System Function ,

The AFW system provides a source of feedwater to the steam generators to remove heat from the reactor coolant system (RCS) when: (a) the main feedwater system is not available, and (b) RCS pressure is too high to xrmit heat removal by the decay heat removal (DHR) system. The SSR system provices a steam vent path from the steam generators to the atmosphere, thereby completing the heat transfer path to an ultimate heat I sink when the main steam and power conversion systems are not available. Together, the AFW and SSR systems constitute an open loop fluid system that provides for heat transfer from the RCS following transients and small. break LOCAs.

3.2.2 System Definlilon The AFW system includes two motor driver aumps and one turbine driven [

pump. The normal water source for the pumps is the condensate storage tank (CST). An alternate source of water is the Essential Raw Cooling Water System, which provides an unlimited supply of water. Each motor-driven pump is normally aligned to supply one of two rteam generators, but can be aligned to supply the opposite steam generator through a cross tic containing normally closed motor operated valves. The turbine driven pump receives its steam supply from both steam generators and exhausts to the atmosphere.

Using the turbine driven pump, the AFW system is capable of maintaining hot standby conditions for two hours with battery power only.

The SSR system includes eleven safety valves and two power operated atmospheric dump valves for each of the two steam generators. One of the atmor,pheric dump valves on each steam generator is a pneumatic valve that is used to modulate the steam dump rate. A parallel motor operated dump valve also is available to dump steam only at the maximum rate.

Simplified drawings of the AFW and SSR systems r.re shown in Figures 3.21 and 3.2 2. A summary of data on selected AFW system components is presented in i Table 3.2-1. ,

3.2,3 System Oneration  !

During normal operation the AFW system is in standby. When 7 eded. AFW system operation is initiated automatically. The system can also be manuahy staned. All essential instrumentation and controls are available in both the main and auxiliary contml rooms. The AFW system can operate independently of the Integrated Control System.

Each motor-driven AFW pump is no mally aligned to feed one steam generator, '

' but both pumps can be aligned to feed the opposite steam generator. The tu bine driven  !

AFW pump is supplied with steam from both steam generators and can feed both steam

' generators. Following loss of all AC power, all valves and controls necessary for i operation at the turbine-driven AFW pump are capabic of being operated on the station 1 batteries and qualified air reservoirs for at least two hours. For longer periods of time, the affected valves can be operated manually (Ref 1).

, During AFW operation, level in the steam generators is maintained

! - automatically by a safety grade system which modulates level control valves located between the AFW pumps and the steam generators.

The AFW pumps are normally supplied via a common header from the condensate storage tank. The Essential Raw Cooling Water System is the backup water source for the AFW system.

19 3/91 l

Bellefonte 1 & 2 When the main condenser is not available as a heat sink, reactor cort decay heat

- is rejected to an ultimate heat sink by venting to atmosphere via a modulating atmospheric dump valve for each steam generator. A non modulating, motor. operated dump valve is available if 6e modulating valve should fall. ,

3,2,4 System Success Crlierin For the decay heat removal function to be successful, both the AFW system and l the SSR system must operate successfully. The AFW system success criteria are the I following (Ref.1):

- Each design basis event with the exception of secondary system pipe ruptures, .

requires a 1200 gpm AFW supply. The secondary system pipe rupture requires l a 600 pgm AFW supply. The 1200 gpm supply can be met with two motor- i s or one turbine driven pump l

- driven The CSTAFW or the pum[ssential Raw Cooling Water System is a adequate sourc water for the AFWS pumps.

- Makeup to one steam generator provides adequate decay heat removal from the -)

RCS.

The SSR system success criteria are as follows:

- Either the pneumatic (modulating) dump valve or the motor operated (non-modulating) dump valve is available to vent steam to atmosphere from a steam '

generator being supplied from the AFWs.

- f both atmosphenc dump valves are unavailable then at least one main steam safety valve operates to limit secondary system pressure and establish the heat .

transfer path to the atmosphere.

3.2.5 Comnonent Informe, tion A.' Motor-driven AFW pumps 1 A and 1B

1. Rated flow: 600 (net),650 (gmss) gpm @ 3300 ft. head (1426 psig)
2. Type: Centrifugal J

B. Steam turbine driven AFW pump 1 A

, 1. Rated flow: 1200 (net) 1300 (gross) gpm @ 3300 ft. head (1426 psig)

2. Type: Centrifugal C. Condensate storage tank
1. Capacity: 300,000 gallons reserved for AFWS D. Safety valves (22,5 or 6 r main steam line,11 per steam generator) 1 Set pressure: 1235 p (valves 1 to 5),1265 psig (valves 6 to 11)
2. Relicf capacity: 900, Ib/hr(each).

E. Modulating atmospheric dump valves (2, I per steam generator)

1. Valve type: Pneumatic
2. Set pressure: .1220 pst ..
3. Relief capacity: 591'5 lb/hr (each) at 1035 psig inlet pressure F. Non modulating,;tmospheric dump valve (2,1 per steam generator)
1. Valve type: Motor-operated
2. ' Relief capacity: Not determined i

20 391

l i

Bellefonte 1 & 2 j Sunnort Svstems and interfaces 3.2.6 .

A. Control Signals ,

l. Automatic 1
a. Pump Start The AFW system is actuated automatically by any of the following conditions:

an ESFAS signal

- a low water level signal in either stam generator

- loss of all reactor coolant pumps

- loss of both main feedwater pumps,

b. Water source switch over The ERCWS water supply is automatically (or remote manually) initiated on a two-out of three low pressure signal at the auxillary feed pump suction,
c. Steam generator isolation

- AFW flow is automatically tenninated to a steam generator affected by a main steam line or main feedwater line break. This is effected by the Feed Only Good Generator (FOOO) Subsystem of the ESFAS (see Section 3.5).

2. Remote manual Plant operators can place the AFW i.ystem in operation from the main contml room or from the auxiliary control room.
3. Manual The AFW pumps can be started and controlled locally. AFW valves can be operated locally.

B. Motive Power

1. The motor-driven AFWS pumps and motor operated valves are Class IE loads that can be supplied from the standby diesel generators as described in Section 3.6.
2. The turbine-driven pump is supplied with steam from the main steam lines of both steam generators upstream of the main steam line isolation valves.
3. Power for the AFW turbine control system is pmvided from 120 VAC vital distribution panels 1 F and 1-0 (see Section 3.6).
4. Power source for the modulating atmospheric dump valves has not been determined. The motor operatec dump valves AFW 869A rnd 868B are powered from MCC IES A and lES B respectively.

C. Other

1. Cooling for the motor driven pumps is arovided by the Essential Raw Cooling Water System. It is assumed coo ing for the turbine-driven pump is provided locally.

2.- Lubrication for the AFWS pumps is provided locally.

3. The Essential Raw Cooling Water (BRCW) system provides cooling water to the pump room coolers (air handling units, AHUs) for motor driven AFW pumps l A and IB (see Section 3.8). These AHUs are powered from 480 VAC Class IE MCCs IE2-A (pump room l A) and 1E2 B (pump room IB) (see Section 3.6).

21 3/91

a .

l i

I f

3.2.7 Section 3.2 Hererences ,

i

' l. Bellefonte I and 2 Final Safety Analysis Report. Section 10.4.9.

i 22 3Si

O e d

4_ d' 4 d'

oxidiox! osi . .

oxi +xi oxj oxi e& ,

p pe>xi eep p p

! t; t i T_; i t; i t l l b_ I

)l b I, ,

t .

nn1+ill.

O4 t21 t2; t2e efio4anlll.

123 t e

,i o

i roxieoxi X.  :

syi syi o-Xi i &Xi j e &Xi l g ]

eli eXi eXi eXi p, m

e

-k4--05 Ifi -

t'E I t[I  %-M-e 1

i bj j  : bj i i kXI OE kN OEg ON k21 ON I I I eXI oX..' eX !oKl oI! eXi oK.t e I e .

lla 11 11 11 il v

u 1

  • hh

eswa___.A44 m - A sa.Am,M44 4m=-+-J44-D4+A.-hAhbh4 4 hh &

  • 44a'- '8 M WD .M a h hh M Mh 1R JSd4+-'M.A- l^-a 14 W w- f :wMA 4a.am M h &_4._ A4 4

! i lii lli.  !!!-  !  !  !!!'.  !!! .

oxje
a m:!* oxi

%q

!ilox i e:i m:! oxi =

pp20) - eo h, p p

, , , , i e , r . s j iB I B 2 I B -

A

_ j

- c  : =

r . 3 = , r . 3 E 55 '

(

l 2

,1

)iEl s

1

'8 l

s 1

l!)

Jgll&

8 e

E E

l a , a i 's Iges ' ', Eges el * ,i eg y iI iI i a ' iki di N:1 ON OF"I OE!a OE!a M :t i E a a l W 7 4 $

i - -

'l '

- I  : b

! I. is 20Ei20E; k  !.  !  !

2 eog; g _. .... ...... ... m g 2, 5 I

7

%, .+,.

5 s

l i

Ei e di' i

g

o

]OE e Mi g

j j t

m

  • ', fi f.,k' - , ,I,

[ f.$ -

3

-<>o- . -C.a ,

s 1 m , . A. --o.o- a.

-" N g- g $.- t i

erg;

.\ $

1 l% - kl art; ei f2: O g N Ok!;O g .flV O ! h

!  : era ;j ena ;i:w! en a i

[llg o ,

II II Il II

- i u 1 lW 24 3/91

D Table 3.2-1. Bellefonte 1 Auxiliary Feedwater System Data Summary '

for Selected Components COMP. I POWER SOURCE EMERG.

COMPONENTID TYPE LOCATION POWER SOURCE VOLTAGE LOCATKX4 LOAD GRP.

AFW-1000 MOV 590ABIRNB MCC-1E2B 480 669SGRMB AC/B AFW-16A MOV AFWTDPMRM MCC-1ESA 480 649eGRMA AC/A AFW-17A MOV AFWIDPMRM MCC-1 ESA 480 649SGRMA AC/A AFW-29A MOV 590ABTRNA MCC-1 E2A 480 669SGRMA AC/A AFW-30A MOV 590ABTRNA MCC-1E2A 480 669SGRMA AC/A AFW-37A MOV RC-SCA MCC-1E2A 480 669SGRMA AC/A AFW-54B MOV RC-SCA MCC-1E2B 480 669SGRMB AC/B i

AFW-648 MOV RC-SCA MCC-1 ESB 480 649SGRMB AC/B AFW-71 A MOV RC-SCA MCC-1 ESA 480 649SGRMA AC/A AFW-8688 MOV STVRMA MCG-1ESB 480 649SGRMS AC/B AFW-869A MOV STVRMB MCC-1ESA 480 649SGHMA AC/A AFW-87A MOV 590ABTRNA MCC-1E2A 480 669SGRMA AC/A AFW-888 MOV 590AB T RNB MCC-1 E2B 480 669SGRMB AC/B AFW-918 MOV AFWTDPMRM MCC-1ESB 480 649SGRMB AC/B AFW-928 MOV AFWIDPMRM MCC-1ESB 480 649SGRMS AC/B AFW-998 MOV 590ABTRNB MCC-1E2B 480 669SGRMB AC/B AFW-P1 A MDP 590ABTRNA BUS-1ET1 A 6900 649SGRMA ACIA

~

AFW-P1B MDP 590ABTRNB BUS-1ET1B E900 649SGRMB nC/B AFW-TDP1A TDP AFWTDPMRM to 3 CST TK CST

Bellefonte 1 & 2 1

3,3 EMERGENCY CORE COOLING SYSTEM (ECCS) .

3.3.1 System Function l

The ECCS is an integrated set of subsystems that perfonn emergency coolant l injection and recirculation functions to maintain reactor core coolant inventory and adequate decay heat ternoval following a LOCA. The coolant injection function is performed during a relatively short term period after LOCA initiation, followed by realignment to a recirculation mode of o xration to maintain long-term, post LOCA core cooling. Heat from the reactor core is transferred to the containment. The heat transfer path to the ultima;e heat l sink is completed by the decay heat removal heat exchangers and by the reactor building cooling system (see Section 3.9).

3,3.2 System O finition f

The emergency coolant injection (ECl) function is performed by the following three ECCS subsystems:

- Core flooding s stem (passive core flood tanks)

- High pressure i ection (HPI) system Low pressure i etion (LPI) system The core flood tanks provide makeup when RCS pressure drops below the nominal tank pressure of 600 psig. The HPl system, consisting of three HPI pumps, provides the high pressure coo. ant injection capability for an RCS pressure range from operating pressure down to approximately 200 psig. One HPI pump also is used as the normal source of RCS makeup (see Section 3.4). The decay heat removal (DHR) pumps perform the low pressure injection function when the RCS has depressurized below 200 psig. The Borated Water Storage Tank (BWST) is the water source for ECCS during the injection phase. The HPl system injects coolant into all four RCS cold legs while the LP!

system and the core flood tanks inject directly into tht: reactor vessel through separate core flood nozzles.

After the injection phase is completed, recirculation (ECR) is performed by the DHR pumps taking suction from the containment sump and discharging into the reactor vessel (low pressure recirculation) or to the suction of the HPI pumps (high pressure recirculation). Decay heat is transferred to the component cooling water system by the DHR heat exchangers.

Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> following a LOCA, the operator is required to establish a flow path from one of the two hot legs to the containment emergency sump. This is accomplished by dumping hot leg B via parallel dump paths, each contaming two normally closed motor-operatea valves. After opening the valves in the dump to sump I t.cs, power is removed to revent instrument malfunctions fmm closing the valves.

S lified drawings of the high pressure injecuon system air shown in Figures 3.31 and 3. 2. The low pressure injection / recirculation system is shown in '

Figures 3.3 3 and 3.3-4. Interfaces between the core flood tanks, the ECCS injection and recirculation subsystems, and the RCS are shown in Section 3.1. A summary of data on selected ECCS components is presented in Table 3.3-1.

3.3.3 Svstem Oneration

, During normal operation, one of three HPI pumps is normally operating as part of the makeu ) and purification system (see Section 3.4) and the balance of the ECCS is in standby. Fol;owing a LOCA, the cost flood tanks will supply borated water to the RCS as soon as RCS pressure drops below tank pressure (about 600 psig). The engineered safety feature actuanon system (ESFAS, see Section 3.5) automatically starts the two HPI pumps not used for normal RCS makeup, and the two LPI pumps. All pumps air aligned to take l 26 3S1

Bellefonte 1 & 2 suction on the BWST, and the normal makeup suction path from the makeup tank is isolated.

When the BWST water level drops to the low level point, the low pressure injection pumps are automatically realigned to draw a suction from the containment sump and deliver water to the RCS. The suctions of the Hpl pumps are automatict.lly aligned to the discharge of the LPI system at the low level recirculation switchover pcint. The llPI pumps cannot take a suction directly on the containment sump.

3,3,4 Ssstem Suvess Criterin LOCA mitige. tion requires that both the emergency coolant injection and emergency coolant rectreulation (ECR) functions be accomplished. The ECl success critena are not clearly defined in the Bellefonte FSAR, but the following success criteria can be inferred (Ref.1. Table 6.3.2 4). For a large LOCA:

- 1 of 2 core flood tanks provide makeup as RCS pres:ure drops below tank pressure, and

- 1 of 2 low pressure injection (DHR) pumps takes a suction on the BWST and delivers water to the RCS If the large LOCA ECl success criteria are met, then the following large LOCA ECR success criteria will apply (Ref,1):

- the successful establishment of at least one pumping path from the containment sump to an LPI pump to the RCS.

- after 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, successful est3bli3hment of at least one hot leg " dump to sump" Dow path.

Fct small LOCAs that do not result in RCS depressurization below the LPI aump shutoff head, the HPI pumps are required. The ECl success criteria for a small LOCA are the following:

- 1 of 3 HPI pumps take a suction on the BWST and delivers water to the RCS.

If the small LOCA ECl success criteria are met, then the following small LOCA ECR success criteria will apply:

- The success establishment of at least one tandem pumping path from the containment sump to an LPI pump to one HP1 pump to the RCS.

It appears that the RCS can be depressurized by the following mee.ns if the LPl pumps are to provide makeup following a small LOCA:

- RCS cooldown (i.e., using the AFWS, see Section 3.2)

- Opening the power operated relief valve on the pressurizer (see Section 3.1),

3.3.S Comnonent Information A. High pressure injection pumps l A,2A, and 3B

1. Rated flow: 540 gpm @ 3692 ft. head (1600 psid) 306 gpm @ 6250 ft. head (2710 psid)
2. Discharge pressure at shutoff head: 3500 psig
3. Ratedcapacity: 100 %
4. Type: multi stage centrifugal 27 3/91

Bellefonte 1 & 2 B. Low pressure in:ection (decay heat removal) pumps l A and 2D -

1. Rated flow: .4125 gpm @ 385 ft. head (167 psid)
2. Rated capacity: 1(O%
3. Discharge pressure at shutoff head: 246 psig
4. Type: smgle stage centrifugal C. Core floni tanks (2)
1. Accumulator total volunt 1800 ft3
2. Normal water volume: 1350 ft3
3. Normal operating pressure: 600 psig
4. Minimum baron concentration: 2270 ppm D. Borated water storage tank
1. Capacity: 740,000 gallons
2. Design pressu'r: Atmospheric
3. Approxumate boron concentr : ion: 2270 ppm E. Decay Heat Removal Heat Exchangers 3A and 4B
1. Design duty (normal / max.) 41/146 x 106 Bru/hr <
2. Type: shell.and tube 3,3.6 Sunnort Systems and Interfnen A. Contml signals
1. Automatic
a. The ECCS is automatically actuated by the ESFAS if any of the following conditions exist:

Low RCS pressure (< 1700 psig)

High containment pressure (> 4 psig)

Low steam generator pressure (< 600 psig)in steam generator A or D.

b. Transfer of the HPI pump suction from the BWST to the LPI (DHR) aurnp discharge is automatically initiated when BWST level drops to the

,ow low setpoint.

c. Transfer of the 1.PI (DilR) pump suction from the BWST to the containment enwgency sump is automatic.
2. Remote manual
a. An ESPAS signal can be initiated by remote manual means from the main contro' room or the auxiliary contrul imm.
b. Initiation of hot leg" sump.to sump"is manual.

B. Modve Power l

The ECCS motor-driven aumps and rootor.oxrated valves are Class lE AC loads that can be supplicc from the standby ciesel generators as described in Section 3.6.

C. Other

1. The HPI and DHR pump lube oil coolers, the DHR pump seal coolers, and the DHR the component cooling system (CCS, see Secuon 3.7).

! 2. Auxl!!ary tube oil pumps are provided for the HPl/rnakeup and DHR aumps. All auxiliary lube c!! pumps are powered from 480 VAC Class 1E MCCs, as follows:

I 28 3S1

Bellefonte 1 & 2 ECCS Pump but LO Pumn Pder Source

~

HPl/ Makeup Pump 1 A MCC IEl A HPl/ Makeup Pump 2A MCC IEl A HP!/ Makeup Pump 3B MCCIElB DHR Pump A MCC IE2 A DHR Pump B MCC IE2 B

/

Details on the operation of the auxiliary tube oil pump have not been determined. However, following practices noted in other nuclear power plants, it is likely that the auxiliary lube oil pumps are only used during startup of the associated ECCS sum . When the ECCS pump is running, a shaft-driven tube oil pump pronbl takes over and the auxiliary tube oil pump shuts down. Furthermore,it s likely that the ECCS pump can start up in an emergency without the auxiliary tube oil pump.

3. Air handling units (AHUs) are provided in the DHR and HP!/ makeup pump rooms. The DRH pump room AHUr. are cooled by the ERCW system (see Section 3.8). The source of cooling water (if any) of the HP!/ makeup pump room AHUs has not been determined. All AHUs are powered from 480VAC Class IE MCCs, as follows: ,

Room 6HU Power Source HPl/ Makeup Pump Room 1 A MCC IEl A HPl/ Makeup Pump Room 2A MCC IEl A HPl/ Makeup Pump Room 3B MCC IEl B DHR Pump Room A MCC lE2 A DHR Pump Room B MCC IE2 B 3.3.7 Sgetton 3.3 Referenegg

1. Bellefonte 1 and 2 Final Safety Analysis Report, Section 6.3.

29 3/91

Q2 Q& QoE

  • 9o2 els els ses eas tk tk tk tk 9 tX 11 tX tX tX tX tX e x

e0-X 03 :l o: :l o: :l o: :l I s 5 V  !!,,!! ensi, 5 o

,, .s e6 : 4: oi : n::n oI A 3

x 8 tkt

  • tki E

{

Xi Xi Xi a 5

lgis tXi tXi tXi if 1988-Il!!!! ).!I )!i d_g I X 3 fili h *! h *! xi yi

{: ?i .r  !!j

!! 3 l lll  !,I d:Illj 3 l

.'i lgl I "I si Ji e.

111 us J 1 11 rx sii rp!

ir  !!

x u i S 30 3S1

l;l l 2 m EDA oOLGE

_o9'wE G e TCL "t t t

l

+w' b $

C P

e

- d

.C "W +;N o M

"E l

n i

o t

e c

+;A' - Yi e j e

n I

A A n C s. i

?

e 6 , S C C 4+

S- t C.

F wM e ~

- C I E a

S 3 g m

. e c" tc T

t

_= e s j

ocgu

,aE . y u r ,a$. .

, r

. S s

, - - I i

  • C,

, pn

,2 A 0 " ui o c "

g r2 r y et

- - - _ ka a co g .

s A

[

= ML n

w 4,W5 $"w =

o

= M

/

n ot o in n =

u = t e n

U

3 = cn e

jo Ng3 MA== 1 Na a. np l

im l N. I I* I I i eo O

rC A

N I

T C Ef St DAEER L

. =

a 4x;g3 "

a' Niaa m a

~

a Ta.u +. u sg E E O,llDO u . . . s P R ANCS e. a' = . en e UCRA NM .

w^ ="

- P u - i ri Pw ru.-. Q r '

a PAE uCeEUT s R RE " U U* .

ORuT ATS Y r" P*

a' o g AON FBCWES i 1 e I e 1 , .u hh gS i

PLK

- A l

t e  ;

. RA 44 AT EN u wa. z

"' NmA g; I i

A 4

4 l .l J,'5 **

  • f t

e n

o e

g S -

~

e l l

e B

N A

,Cw .

8 , s 2 s A S 2WsAaM s s t . B. ,ie -

U S*i EOmm ma 9, ,, R e-Q. x,, 9 yR 3

3 RK VP AuE A

QuA e tm i g H

_- D , R- I Co w

MAoR e l EN i

. Ne T

V SaY .A r

A A oIN- .

wTq e .

L3rB A

U 4. o S @i.h,, mfA .

q;g a" O A u Es . . = , TAR g i

DGw EA NAtM0 i A c R- . LT s

=

T A

RO Rg .

. u s. ARo A

3tn A.

.uT

.nRN-A

. a U

Cm l

W c i

F

. 0TS . .

8 . tare f

oSfu ou .c A ru t

o" C.

E Ao 1

.a0 a l

," N i

N2ap 3 F , I r

S O

L w~ $-

lllIIfif l( l lIji[ljlll!l lj (I[ \> illjllill

. .! Pllti[t o ,

eoM e, e, _ e ooF tG m= mg ,

, d T. c ( o e

p M l

_N- b $' b n o

i t

,C l

a C

  1. "& +N- u E

c m r U i l

c e

R e i

. +N- $ @' $i e r

u s

s A , .

s e C

S C

, = bnA ,

P r

c F Q ' '

2 a 4 .

h r g i

I A N I

,o C tC O

E T

g S

moKoNL

, aA g C otAE

,FTF

,o oEt Ss s.

e C

. ~ g , c, Es n g

)m ' '

c,J

,2 C

.m g y r mt

- gm_7 '

g ea t c j

. - [ so G yL w

n #g g 3

$1_.

=

=

o b S t

os

=

=

- pn su = ue N

U

. = 5 a

en Mg M.. wE: koap l

r Mm

/

no l

[ g r 1 M,

E L

  • (

~

oC a

m T

A

' GMt0 C

DAR T .

n

  1. M;g = T.i.. = =

@E4, 2 i t

cg r r = = a E

RLoD f = en r

e 2

4 UcRA PA MceEM ANCS ERWM d

E

==

o n.

i p u

o^ - *"

t A

~

=

=

=

s m

u 4

ji I nw o

..Jeur T

OaMTfS V t c roe A e "' <' eh l

FsDWES t g i l 1

. ~~

. rS P

UK - A - A a

u EN , e, ' s

. RA , 2

"' s

.AY W . M'P S Mm e H A r l , P

," n g u#

T8 h

g

, i 4

.s =D 5 l

-" 4 I

. m'. 1

(

aE e AN. " .l' t n

.C S aAEO 9 o a

r i

s.TH MRO '. e.

D.

-4 4

s 9

s

  • Re.

2

.t i

f e

EoU bT

4 . Q. e l

v nOA C

o._ E~

l R R LAME T. D g M e l EN T

g AAOR v R g

l Ng B AA T)

W EST m.Ds F.Y .

. .oA e r

._==

=

"oITON h_,,, r.

rA A n u . AR sART

. i DGW mAEM A.T Re . . sL oU 3-s w

EA A R$

T RO a

c. M=ERo AO R .A mT t

s

_ ann RCR eRH OS T r

. t(On Pe o

n .D C A.

o I O 3 B i a mC E M 3 omOP n

Et l .EM R0 1 g I HR0 5 l

," N l F F e

S r u

g o i

" t F w~ w'b-

4  ; ' 1' j I

i A e

,,, a 5 .

.N.

'ggf".ij.I dti 0x! ai d4:

o$titz! oil oil tZi o$t; ori otj Illi illi a; d:

ox j ex; ext oxj s

l l ox! A9 m - 1, 91 i 65 i  ; 61 s 3- @ w roc &Xi tZi 11 gi tXi &Xi s ro-X; g c'-

1, g- I

.t: - i l' )i t

u g g

2 Y xi i f-~xi $

ig vg

's tXi 's fa {

h! i1 -

,b

^

tiitit

gi;t;$ ti! 13; i; 1111xi $i xiilli txi 11  !!!, ri

!igig

4. u ox!t$5 tii i o 1 s 33 3/91

J. -Ann',.-.--e ,,----e-uwa,,L.,J.---,---\.-,_nnn--w. ebs, 4-, s,_s,m,wwAJa.waA,a,s,,*_R,_ M -mm-Jmu+a _,s- _u._.a,,,.,,u i

,i,. ,g.

Ofl t; r

,t

  • OXl ,

il il OX OXl tZ: t2 OXfOX an,1 an,) 43; 43; g x

eXi sXi 0 1l l .;

0:tl

=

E .

I t . t i 3

IIf " l l ll I Xi Xi  ; 5 OXl _4: -.

_s _

OXl j sg OM g_

i _ - _

.-g

qi $j g ,.,

00 &Xi fMi gg p f!i &Xi n

_ t &X; _ _

u.

=p: - -

gg

&V, g

$ o. l l $ e. $ I 2

f 1 E _) f e I i '

y I i

, lIg, i 1 ,

q yr _ - ee bi y i Is 1 5 #'

  • y 3

5 tII E 'ti:2 $.

. e D.i  !

b..i

  1. A_ __ .
[g; thi fz! .

7

[1; fi
atil 3 if; lill n  !

$i a;ili j.

i -

E lgs  !  ! IE!I !h- ll!n --

i -

l ofl t i tt YEh ni

3 34 3/91

i i

e.I f, i!l s!i er 0 sg.. .g'.

j okt: oK 1! okt; oEl 1 1 .

~

iI i2! 03 O) f25 i$ kl kl

.... . e. . .e tal! 8I1! El E: -

3 e

oXl sXi sXI 01ll l -

l.

Ie- '1:1 r s.

ai r is 11

!1 c.

c e

ir11 _i_ _

e I

d i y d g- iSXi XE  ; g I _

1 0 h!i oEi  ;  ; oEi- gj y --

-g b roIt 6:! ti:i g!-

[

J

- gs, ti:1 H:1 fy T.8.

_a .

l

, r.

l I,

8.  ;'7 _

l io, l' _

E l

]'

El.

ei 1U i 8

[ 1 Ie ,i l [ e _; A i [ $y I a ,

lI y

1 1

uE-;.

bli bd =

N i

"g g:

5 ti:i! ': tD-

  • 8 Dl:: 11 DI  ; ,

gjg; il ti!' .

lllj TEE- t,/A j

-I; !!!l!ilii  ! $; gan gllg. ,

- a

i. ,

, g I ;f $l:I i k I- fl . ,

. I.![ [. .

e e in. .

o a

! n' ) .

l b O3; g ii I g  !

- ' $< L u___; e 35 3/91 l

l . - . _ _ - ~ _ ., . - - . - _ .

I!bI .

5 r

dti o]:l o]:l ohti 1  ;

ti ts:i 01ll 01ll ti:1 t; o:lj oil l .g

.. . .. i 2 8II! IIt! fit Ei

-  :: i

~

Gl'j eXi sXi oilj l  !

I

. . g x f 'f__ _ e 0]:l gy]:i 2:1 x

o]
l j.

EE 05 l- j  ; 6,1 [5 e -

-g 2.s ee: e:!- fi:i n - -

a fi:1 01:5- g; y -

y eg

_ee: _ _ s. " _ s. g _ J_ ji l l

_g  !

1 l l  ! [y

a ig, i I i .,

ge gr s I'- i i' -

p :g.

! 35-~ fi:s '5 fs;i.

f l Dl; i,, i, LDI j=

F ell *i

h. -...

f

' ell

  • 4 5 'lh[i i >

E l l

+ 5 i- Ih! i ~

l{

! e .

f ioxlt t) de li  !

o 2 u3: -

36 3/91

Table 3.3-1. Bellefonte 1 Emergency Core Cooling System Data Summary for Selected Components POWER SOURCE EMERG.

i COMP.

POWER SOURCE VOLTAGE LOCATION LOAD GRP.

COMPONENTID TYPE LOCATION BWST TK BWST

. MCC-1E2B 480 669SGRMB AC/B DHR-1048 MOV 610ABTRNB MCC-1E2A 480 669SGRMA AC/A DHR-10A MOV 610ABTRNA MCC-1E2B 480 669SGRMB AC/B DHR-1428 MOV DNRBCLRM

^

MCC-1E1B 480 669SGRMB AC/B DHH-1628 MOV DHBPMRM MCC-1E2B 480 669SGRMB AC/B DHR-174B MOV RC-SCA MCC-1E2B 480 669SGRMB AC/B DHR-1798 MOV RC-PC MCC-1E2A 480 669SGRMA ACIA DHR-185A MOV RC-PC MCC-1E2B 480 669SGRMB AC/B DHR-1928 MOV VvPIT MCC-1 E2A 480 66SSGRMA AC/A DHR-48A MOV DHRACLRM l

480 669SGRMA AC/A l

MOV DHAPMRM MCC-1 E1 A DHR-68A 480 669SGRMA AC/A MOV RC-6CA MCC-1E2A DHR40A 480 669SGHMA AC/A MOV RC-PC VOC-1E2A DHR45A 480 669SGRMB ACIO MOV RC-PC MCC-1E2B DHR-91A 480 669SGRMA AC/A MOV VVPIT MCC-1E2A DHR-9BA DHRHX1A HX DHRACLRM DHRMX1B HX DHROCLRM -

6900 649SGRMA AC/A MDP DHAPWRM BUS-1ET1 A DHR-P1 A 6900 649SGRMB AC/B MDP DHBPMRM BUS-1ET1B DHR-P2B 480 669SGRMA AC/A MOV RC-SCA UFJKNOWN HPI-101 A 480 669SGRMA AC/A MOV RC-SCA MCC-1 E1 A HPI-113A

Table 3.3-1. Bellefonte 1 Emergency Core Cooling System Data Summary -

for Selected Components (Continued)

COMP. POWER SOURCE EMERG.

COMPONENTID TYPE LOCATION POWER SOURCE VOLTAGE LOCATION LOAD GRP.

HPI-2138 MOV RC-SCA UNKNCTwiN 480 669SGRMB AQB HPI-219A XV HPIA2RM HPI-2250 MOV RC-SCA MCC-1Et B 480 6695GRMB AC/B HPI-386A XV HPIA1RM HPI-4198 IL*OV 610ABTRNB MCC-1E1B 480 66%GRMB ' AC/B HPI-450A MOV 610A8 TRNA MCC-1E1 A 480 669SGRMA AQA HPI-P1A .MDP HidA1RM BUS-1ET1 A 6900 649SGRMA AQA HPI-P2A MDP HPIA2RM BUS-1ET1 A 6900 649SGRMA AQA HPI-P3B MDP HPIB1RM BUS-1ETIB 6900 549SGRMB AQB SUMP-1A TK RC4)C

~

SUMP-1B TK RC-PC l l t i D

a

Bellefonte ! & 2 3.4 h1AKEUP AND PURIFICATION SYSTEh! .

3.4.1 System Function The makeup system, in conjunction with the purification system,is responsible for maintaining the proper water inventory in the Reactor Coolant System and maintaining .

water purity and the proper concentration of neutron absorbing and corrosion inhibiting l chemicals in the reactor coolt.nt. Its safety related function as part of the Emergency Core l Cooling System (ECCS, see Section 3.3) is to mitigate consequences of loss of reactor coolant through an offset rupture of a 3/4 inch line.

3.4.2 System Definition The makeup and purification system provides a means for the injection of control poison in the form of boric acid solution, chemical additions for corrosion control, and reactor coolant cleanup and degasification. This system also adds makeup water to the l RCS, draws off a small side stream of reactor coolant for purification, and provides seal  ;

water injection to the reactor coolant pump seals.

The RCS water makeup funct;on v l rmed using portions of the High Pressure Injection (HPI) System, which f the ECCS. In particular, one HPUmakeup pump is o xrated continuously v. r agh pressure makeup water into the RCS during normal and transient operation. lt p 3B is not used for normal makeup since its pump suction is not connected to the make,up tank.

The HPUmakeup pumps are shown supplying water from the makeup tank to the Reactor Coolant System and to other services in the simplified system drawings in Figures 3.41 to 3.4 4. A sunnery of data on selected HPI makeup system components is presented in Section 3.3.

3.4.3 System Oneration During normal plant operation, one high pressure injection pump (pump 1 A or 2A)is running with its suction aligned to the makeup tarx The normal letdown flow of 50 to 200 gpm from RCS cold leg 1 (loop A) is cooled on the tube side of the letdown heat exchanger, then directed to the purification system and the makeup tank The pressurizer level control system regulates the letdown flow rate in order to maintain the desired water inventory in the pressurizer, A fraction of the makeup Cow is pumped back to the RCS thmugh cold leg 2 A2. The majority of the charging flow is directed to the reactor coolant pumps through a sealinjection filter with a total seal injection flov< of 8 to 15 gpm per reactor coolant pump and a seal in leakage to the RCS of 7 to 14 gpm per pump (i.e., total RCS r.3akeur via reactor coolant pump sealin leakage of 28 to 50 gpm).

When the ESFAS actuates the ECCS, normal operation of the makeup and purification system is terminated by isolating the letdown line, the normal charging path and the makeup tank, aligning all HPl pump suctions to the BWST, and starting a'.1 HPI pumps (see Section 3.3).

If seal injection is lost durin2 normal operation, a second HPUmakeup pump (l A or 2A)is automatically started. If the second pump falls to start, HPUmakeup pump 3B is started after a time delay to provide seal injection with water from the BWST. To accomplish this, the pump 3B BWST suction valve and seal injection supply valve must be opened and train B of the component cooling system must be started (this CCS train is not normally operating, see Section 3.7).

3,4,4 System Success Criterin For post transient makeup to the RCS the following makeup system success criteria is assumed:

One of three HPI pumps is available.

39 3/91

o .

1 Bellefonte 1 & 2

- A makeup path to the RCS is available (i.e., the nomal makeup path via cold

leg 2A and the tractor coolant pump seals, or the ECCS injection paths),

j - A long term water source must be evallable to the charging pumps. Available i

water sources for pumps l A and 2A include the makeup tank (supplied from the

! demineralized water and boric acid s stems) and the BWST. The only available water sourre for pump 3B is the BW ST.

3.4.5 Comnonent Information A. High pressure injection pumps 1 A,2A, and 3B

1. Rated flow: 306 gpm @ 6250 ft, head (2710 psid)
2. Ratedcapacity: 100% (based on nukeup function)
3. Type: centrifugal B, Borated Water Storage Tank (BWST)
1. Capacity: 740,000 gallons
2. Minimum water volume: 482,778 gallons
3. Boron concentration: 2.270 ppm minimum
4. Operating pressure: atmospheric C. Makeup Tank
1. Vol ime: 1200 ft3
2. Nominal water volume: 800 ft 3(about 6000 gallons)
3. Operating pressure: 15 to 35 psig
4. Design pressure: 100 psig 3.4.6 Suncort Systems and Interfaces A. Control Signals
1. . Automatic
a. During normal operation, either Train A HP1 pump 1 A or 2A is aligned to provide continuo w makeup to the RCS. The second Train A HPl pump (I A or 2A) is automatically started on low injection flow to the reactor coolant pump seals,
b. HPl pump 3B is automatically started and aligned to supply seal injection flow from the BWST lf both HPI pumps I A and 2A ire not ava!!able.
2. Remote Manual The HPI pumps can be actuated by remote manual means from the control room and aur.111ary control room.

B. Me:ive Power The HPI aumps and motor-operated valves are Class IE AC loads that can be supplied from the standby diesel generators as described in Section 3.6.

C. Other

1. The HPl pump lube oil coolers are cooled by the Component Cooling System (see Section 3.7).
2. Auxiliary tube oil pumps are provided fur the HPI/ makeup pumps. The auxiliary tube oil pumps are powered from 480 VAC Class IE MCC IEl A (for HPI/ makeup pumps l A and 2A), and MCC IEl-B (for HPl/ makeup pump 3B).

40 3/91

llellefonte 1 & 2

3. Air handling units (AHUs) are provided for the liPl/ makeup pump rooms.

The AHUs are powered from 480 VAC Class lE and MCC IEl A (pump rooms l A and 2A) and MCC IEl B (pump room 30). The source of cooling water for the AHUs (if any) has not been determined.

l l

1 41 3SI

9 9 d d d d I

tX tX tX tX tX s x

98 d[ d[ d[ d[

f I f  !!!! ahl 1 e

4 :d:

e 9 01 : b d: 1 2

> <: y tki

  • tki {

Xi Xi a Xi t

lg tXi tX! tXi 1. [

s . . .

i .

Ig*!!

ll y 0 $ I

' .f fil! , ,

  • i *! fi *! xi y: a

+ bI 4 y . we s E

6 TN- M I 64 AT -

P A W

    • 2

"' 3 4

2 W 1

. f g e

s

~ - p R t g e . U n 4 t i

~ T W f o

5 y^ 4 e l

Q l e

B NE' AH

.C T .

8AE 8 2-2, E O A -, S 2 aS 3S REA e S ,M m8 1

4T R 4 S)U )NA , Q,74G R r N A '

EMC V MR R yN 3 Rt LAM MAT j i T [

~-

l Ee l A4O - ' -

NB e T P AA V R cNA 8 u

WTg L5F W RON .

d o TON r R uI R UITA u

SM.

s . ,

ES UA 4.ED . O' M STA . t m SAR t

S DGW EA M

E NA T AsA

. 4 P sLAR U

T R.

. a s P SLT EU R g

7RS P MeR 0 A

  • C5 4 D R RC H i

W S

4 RO OS T

s 2 :ST R N ,A4 L A. u P

eFD F B s EAf 361EO T D C EM o mCM E M2B l . RO F

, l aHR0 f l l F N F O

r" L e wb"

-i lll lll

n 4

-D(j >< DQ+ stat suECTION TO g - aCP 905 ca t) i ke

]

-4)< D4- -DC X [ DC' D4- '

y sg r st= =cta mtas

>< 'k >< k >4+

>: >< X 3 X D4 ' "'"'

14 Ase tA AJ t  !

Ym

._"-" X  ? $i--D4- -

->< X D 4 + .S _ tat _ ,.

_=euw 3a acrecen VG t X D< D 4 + . ._EAL _ ,. .

ace m er, t

>A 4

nat m 7

x- =~

t ~4 f- J atacroa san _ne_r

. ,wwan0 r.o

==aerun coouas >< kk hT .

esstru

-DG +  ;< O -

1 ,

Y $

4 sex N m _[

WaCTOR ,

. CD0r b

ta

'O i

, Figure 3A-3. Bellefonte 1 Seal Injection / Return Portion of the Makeup and Purification System j 1

i

1 einasiana 1 3 ==.-o.. g oc Sc. g .c ,e  ;

, _ __D(i k p seat McT10ps TO W,P 0D5 44ty

>4

%A T& .

acta seu c -

]

sm m cra ntri=S _ _p<1 kN k- p u.t ecem ro 1

.~.=PUMPS

>< l

>< x E) x ,

~~

1A A94)2A t

-c,fe a u + M  % >q - ._ _p<1 k p seat . ,

mm. ac, we c ,,

HPLMAMfuP PUMPS 3fB v4 A

M M

' kM '

kpu t mKcTutise TO wr ee.can

>4 M"" "" l. -pc.- u.t

- ~~ m =-

m acsw o coots.c sfAt strTipe TO C ,

GE Ai 8tf fuRft cOM1RS M 1 PM

.tsur sow.up ae carm ~

sVSTies

- $ fat arrua ,

m.

wm M

w G

Figure 3.4-4. Bellefonte 1 Seal Injection / Return Portion of the Makeup and Purification System Showing Component Locations

o .

Bellefonte 1 & 2 3,5 INSTRUMENTATION AND CONTROL (1 & C) SYSTEMS 3.5.1 System Function The instrumentation and control systems consist of'the Reactor Protection

% stem (RPS), the Engineered Safety Features Actuation System (ESFAS), and systems

.or the display of plant information to the operators. The RPS and the ESFAS monitor the reactor plant and alert the operator to take corrective action before specified limits are exceeded. The RPS will ininate an automatic reactor trip (scram) to rapidly shutdown the reactor when plant conditions exceed one or more specified limits. The ESFAS will automatically actuate selected safety systems based on the specific limits or combinations of limits that are exceeded. A remote shutdown capability is provided to ensure that the reactor can be placed in a safe condition in the event that the main control room must be evacuated.

3.5.2 System Definition The RPS includes sensor and transmitter units, logic units, ano Output trip relays that generate a reactor trip signal. De reactor trip signal de-energizes the control rod drives, allowing mechanical springs to separate the roller nut ha'.ves, disengaging the leadscrew and allowing the control rod assemblies (CRAs) to fall into the core. The ESFAS includes independent sensor and transmitter units, logic units, and relays that interface with the control circuits for the many different sets of engineered safety features components that can be actuated. Operator instrumentation display systems consist of display panels in the control room and at local control stations that are powered by the 120 VAC electric power system (oe Section 3.6) 3.5.3 System Oneration A. RPS The RPS is comprised of four identical protection channels which are redundant and independent. Each channel is served by its own independent sensors, which are physically isolated from the sensors of the other protection channels.

Each sensor supplies an input signal to one or more signal processing strings in the RPS channel. Each signal processing string terminates in a bistable that electronically compares the processed signal with trip setpoints. All bistable trip outputs are connected in series. In the normal, untripped state, the output associated with each bistable will be closed, thereby energizing the channel terminating device. The bistable is reset with a toggle switch located or. :he front plate of the bistable module. The bistable will reset only if the trip condition has cleared.

Should there be a trip of one of the bistables on the trip string, it will de-energize the channel terminating device, which de-energizes the photo-optic is,olators, causing one input into the two of-four logic in each RPS channel to trip.

Should another channel trip with one channel already tripped, its terminating device will de-enerpize, which in turn will de energize that channel's photo-optic.:1 isolators. % hen these devices de-energize, another input into the two-of-four logic in each RPS channel will trip. Thus, when two-out-of four Res trip logic is satisfied, a reactor trip will occur.

The following conditions result in a reactor trip:

High or low reactor coolant pressure

- High or low pressurizer water level 46 3/91

Bellefonte 1 & 2

- High coolant outlet temperature ,

- Overpower

- High power / reactor coolant flow Calculated trips:

- Offset (Egh locallinearhest rate)

- Low departun: from nuclexe boiling (DNBR) ratio

- RC pump status (2/0,1/0, or 0A) pump configuration)

- Power delta T (startup) trip

- Anticipatory trips:

- ESFAS actuation

- High power / main feedwater flow

- Loss of both main feedwater pumps B. ESFAS The Engineered Safety Feati'r s Actuation System (ESFAS)is a protection system that initiates actioris of various Enginected Safety Feature (ESP) systems to mitigate the consequences of a LOCA or transient. The ESFAS initiates the following functions:

Emergency Core Cooling Injection and secondary system isolation and cooling (ECCI)

- Feed Only Good Generator (FOGG)

- Containment Isolation and Cooling (CIC)

Reactor Building Spray (RBS)

- Borated Water Storage Tank (BWST) to RB emergency sump switchover

- Main steam isolation and modulating atmospheric dump valve control (MSIV/MADV)

- Automatic Reactor Coolant Pump Trip (ARCFT)

- Main feedwater overfill prevention

- Select " Mode C" (small LOCA) auxiliary feedwater (AFW) level control in Essential Contmls and Instrumentation (ECI)

The ESFAS is divided into an analog and digital subsystem. The analog subsystem contains signal processing, setpoints, analog to digital conversion, FOGG logic, and isolation devices. The digital subsystem contains logic, manual trip, reset, and output devices. There are two digital systems: one for actuation of Train A Engineered Safety Features and one for actuation of Train B Engineered Safety Features.' Digital subsystems are composed of actuation channels. Each actuation channel is tripped by twc> out of three coincidence of the analog subsystems for the actuation channels trip parameters.

The design of the ESFAS logic can be summarized in terms of the system operation as follows:

Each protective action is initiated by either of two actuation channels with a 2-out-of 3 coincidence between input signals.

- Protective action is initiated by applying power from the actuation channel coincidence logic to individual output relays in the unit control modules.

This in tum energizes the safety features device controller.

47 3/91 l

< o j l

Bellefonte 1 & 2

- There are two identical and isolated output actuation command circuits provided by each unit control module for operating safety features devices  ;

(valves, pumps, etc.). The unit control module. trip input circuits are connected in common for an entire ESFAS digital channel.

C i sential Controls and Instrumentation (ECI)

The ECI provides the capability to establish and maintain a hot shutdown capability. There are two ECl channels: ECI-A (also designated ECl X) and ECI B (also designated ECl Y), that are powered from 120 VAC divisions D and E, respectively (Refs. I and 2). A summary of the Bellefonte ECl capability is provided in Table 3.5 1.

D. Remote Shutdown The main control room is the primary station for safe shutdown control of the plant, in the event that the main control room becomes uninhabitable, the plant can be brought to and maintained in a hot standby condition using alternate controls on the Auxiliary Shutdown Panel. The following functions can be performed at the Auxiliary Shutdown Panel:

- Maintain RCS inventory by monitoring pressurizer level and controlling:

- HPI/ makeup pumps and valves

- Letdown isciation valves Maintain RCS pressure by monitoring pressurizer p essure and controlling pressurizer heaters

- Maintain decay heat removal by monitoring reactor coolant tem xrature and steam generator pressure and level and controlling auxiliary fecc water now.

After hot shutdown has been achieved, the instrumentation and controls provided at the Auxiliary Shutdown Panel, in conjunction with control stations provided locally, could be used to bring the plant to a cold shutdown condition.

3.5.4 System Success Criterin A. RPS The RPS uses hindrance logic (normal = 1, trip = 0) in both the input and output logic. Therefore, a channel will be in a trip state when input signals are lost, when control power is lost, or when the channel is temporarily removed from service for testing or maintenance (i.e., the channel has a fail safe failure mode). A reactor scram will occur upon loss of control power to the RPS. A reactor scram is implemented by the reactor trip breakers which must open in response to a scram signal. There are two series breakers in the power path to the scram rods. One of two circuit breakers must open to cause a scram. Each

! reactor trip breaker has an associated bypass breaker to permit testing of the trip breakers. Details of the scram system for Bellefonte 1 have not been determined.

B. ESFAS In general, the loss of instrument power to the sensors, instruments, or logic devices places that channel in the trip mode. Details of the ESFAS for Bellefonte 1 have not been determined.

! C. Manually Initiated Pmtective Actions l When reasonable tic. ,, is available, certain protective actions may be performed munually by plant personnel. The control room operators are capable of 1

l l 48 3/91

l Bellefonte 1 & 2 operating individual components using normal control circuitry, or operating -

groups of components by manually tripping the RPS or an ESFAS subsystem.

The control room operators also may send qualified persons into the plant to operate components locally or from some other remote control location (i.e., a motor control center or local control panel). To make these judgments, data on key plant parametc., must be available to the operators.

3.5.5 Sunnort Systems and Interfaces A. Control Power

1. Instrumentation and control power sources are summarized in Tables 3.5 2 and 3.5 3.
2. Operator instmmentation display are powered from the 120 VAC system (see Section 3.6).

B. Control Room and EssentialInstrumentation Area Ventilation Systems

1. The control building water chiller and the auxiliary control room chiller are .

cooled by the Essential Raw Cooling Water (ERCW) System (see Section 3.8).

2. Specific sources of auxiliary building ventilation have not been identified, however, Zone 1 A and IB fans and air handling units are known to serve essential electrical equipment areas and auxiliary mstrument rooms.

3.5.6 Section 3.5 References

1. Bellefonte 1 & 2 FS AR, Section 7.4.1.2

,2. Bellefonte 1 & 2 FSAR, Table 8.3.1 18 1'

L 49 3Si w

o n .

Table 3.51.- Summary of Bellefonte Essential Controls and Instrunientation (ECI) p b

' ECI . Automatic Controls . .

i System Action Controlled Function Controlled - Controlled Variable Initiated by Components l

AFW flow to SGs SG A and B water AFW pump AFW control valves, A anc.B (ECI X) level TDI A runn,s ing I A and pumps AFW flow to SGs SG A and B water . AFW pumps IB and AFW control valves,

' A and B (ECI-Y) level - -TDIA running pumps

ECI Manual Controls a

L Comp;mgat Tvoc of Control Pressurizer heaters (bank 2, groups 8 & 9) on/off i- HPI/m.skeup pumps (I A,2A,3B) on/off

- HPI/BWST suction valves (HPI-450A, -419B) open/ shut  :

, HPIinjection' valves ~ jog Normal makeup isolation valve - .open/ shut

- Letdown isolation valves (MU 21 A, 22B,-28A, 29B) open/ shut Atmospheric dump valves modulate f . Pressurizer PORV -open/ shut

.CCW cooler outlet valves (28A/28B) modulating L DH cooler outlet valves (3A/3B) modulating L DH cooler bypass valves (14A/14B) modulating 4

L..

50 3/91 i

, , ,. - - , , . , . - - . . . , . - -. , , . . - , . . . . . - , . , . . . ~ . . . ~ . _ , . . , - - - - . . . , . . . . ~ ,-,- . -~ , , - . . .

s .

Table 3.5 2, Bellefonte 1 125 VDC Control Power Summaty 125 VDC Roniti D

- 13,8 kV unit board IRA (IEA EMVS-01) circuit breakers

- 6.9 kV shutdown board IET1 A circuit breakers

- 6.9 kV intake pumping station board IET2 A circuit breakers 480 VAC shutdown boards LEX 1 A an:11EX2 A circuit bmakers

- 480 VAC pressurizer heater MCC 1 A6 circuit breakers Diesel generator 1 A. A control system (primary) 125 VDC Board E 13.8 kV unit board 1RB (1EA EMVS 02) circuit breakers

- 6.9 kV shutdown b--1 lET1 B circuit breakers

- 6.9 kV intake pumpm3 station board IET2 B circuit breakers

- 480 VAC shutdown boards LEX 1 B and LEX 2-B circuit breakers 480 V AC pressurizer heater MCC IDS circuit bmakers

- Diesel generator IB-B control system (primary) 125 VDC Board F

- Diesel genemtor l A A control system (alternate) 125 VDC Boatti G Diesel generator IB B control system (altemate)

Note: Availability of diesel generator control power fmm 125 VDC boards F and G is based on incomplete information and should be confirmed.

51 3/91

4 .

i -

Table 3.5 3. Bellefonte 1 120 VAC Instrumentation and Control Power Distribution 120 VAC Board D

- NIRPS channel D

- ESFAS analog (sensor) channel A

- ESPAS digital (actuation) train B

- Essential control and instrumentation A (ECl X)

- Main steam isolation valve 59 A and 60-A controls Main feedwater isolation valve 68-A and 70-A controls 120 VAC Board E

- NIRPS Channel E

- ESFAS digital (actuation) train B

- Essential controls and instrumentation B (ECl Y)

- Main steamisolation valves 57 B and 58 B controls 120 V AC Board F NIPRS Channel F

- ESFAS analog (sensor) Channel C

- AFWS turbine controls ESF"A" solenoid valves 120 VAC Board G NIRPS Channel G

- ESFAS analog (sensor) Channel B AFWS turbine controls

- ESF"B" solenoid valves Note: ESFAS has three sensor (input) channels (A, B, and C) and two actuation (output) trains (A and B) 52 3/91

.~ . - - . . .- . - . . .-.

4 .-

Bellefonte 1 & 2 3.6 ELECTRIC POWER SYSTEM .

3.6.1 System Function The electric power system supplies power to various equipment and systems needed for normal operation and/or response to accidents. The onsite Class IE electric power system supports the operation of safety class systems and instrumentation needed to establish and maintain a safe shutdown plant condition following an accident, when the normal electric power sources are not available.

3.6.2 System Definition

-The onsite Class lE electric power system consists of two 6.9 kV buses for each unit. These buses are designated 1 A and IB. There is a standby dicsd generator connected to each bus. Diesel generator I A is connected to bus l A, and diesel generator l IB is connected to bus 1B. Similarly, in Unit 2 diesel generator 2A is connected to bus  !

2A, and diesel generator 2B is connected to bus 28. There are also four Class IE 480 l

.VAC load center buses in Unit 1, designated 24A,25A,28B, and 298. Buses 24A and 25A are connected to 6.9kV bus l A through transformers, and buses 28B and 29B are connected to 6.9kV bus IB. Various motor control centers receive their power from the 480 VAC buses. . In addition, two 6.9 kV buses in the intake Pumping Station are connected to 6.9 kV buses l A and IB. A 480 VAC bus in the Intake Structure is powered .

by each of the 6.9 kV buses. These buses in the Intake Pumping Station power the 1 Essential Raw Cooling Water System. Details of the 6.9kV and 480 VAC systems are shown in Figures 3.6-3 and 3.6-4.

The configuration o'the 120 VAC control power system for Unit 1 is similar tc,  !

Unit 2. Each unit has four identical >ower channels (c esignated Channels D, E, F, and G), 1 with the equipment of each channel yeing electrically and physically independent from the equipment of other channels. Each channel consists of an uninterruptible power supply 1 (UPS)'and a distribution which facilitates load grouping and povides circuit protection. 1 The UPS is normally powered by a 480 VAC MCC through a transformer and has a 125 VDC battery board as a standby power source. Each UPS has an auctioneered solid state transfer switch between the 480 VAC and 125 VDC sources. In addition, there is one maintenance supply shared between channels D and F and another maintenance supply shared between channels E and G. An automatically synchronized manual transfer between the output of the UPS and the maintenance supply is provided so that the UPS may be taken out of service for maintenance without interrupting power to the loads. Details of the 120 VAC system are shown in Figmes 3.6-5 and 3.6 6 The Class IE DC system for the two units consists of four 125 VDC divisions for each unit. The divisions are designated Channels ID, IE, IF, and IG. The 125 VDC l -buses are each normally supplied by a battery charger and a battery. Each unit also has a .

o spart battery charger that can supply Channel D or F and one that can supply Channel E or G. Details of the 125 VDC system are shown in Figures 3.6-7 and 3.6-8.

Simplified one line diagrams of the electric power system are shown in Figures L 3.6-1 to 3.6-8. A summary of data on selected electric power system components is

. presented in Table 3.51 : A partial listing of electrical sources and loads is presented in Table 3.5-2, 3.6.7 System Oneration The 6.9 kV Class IE switchgear in each power train normally is powered from the main generator via the unit station service transformers. When this preferred source of power is unavailable, power via the reserve station service transformers can be supplied from a 161 kV substation (to 6.9 kV train A) or the 500 kV switchyard (to 6.9 kV train B).

During conditions when neither normal nor alternate power is available, each 6.9 kV switchgear is energized from a separate standby diesel generator.

l 53 3/91 i

l

.. =,

Bellefonte 1 & 2 Loss of voltage to the 6.9 kV switchgear initiates an automatic transfer from the ,

preferred sourte to the alternate supply if the alternate supply has nomial voltage. The '

transfer is delayed until the residual voltage has decreased to less than 30 xrcent of nominal system voltage. The return transfer to the preferred supply is initiatec manually and is a high speed transfer, completed in approximately six cycles.

A sustained loss (less than or equal to 70, percent of nominal system voltage for 0.5 second) on the 6.9 kV switchgear starts the diesel generator and initiates the load shedding logic. After reaching rated speed and voltage, the diesel generator is automatically connected to the 6.9 kV switchgear. The 6.9 kV switchgear bus then initiates logic which connects the required loads in sequence.

The normal supply of power to the 120 VAC distribution panels is from the UPS in each channel. The UPS consists of three major subassemblies: s DC power supply, an auctioneering circuit, and a UPS ci;cuit.- The DC power supply converts the 480 VAC normal UPS input into direct current. The auctioneering circuit accepts the DC power supply (normal supply) and battery (emergency supply) inputs and permits a transfer between them in the event of 480 VAC supply failure or restoration. The DC output of the auctior,cering circuit is converted to 120 VAC by the inverter circuit.

The DC power system normally is supplied through the battery chargers, with the batteries " floating" on the system, maintaining a full charge. Upon loss of- AC power, the entire DC load draws from the batteries. The batteries can support the design DC load for a minimum of two hours.

Redundant safety equipment such as motor driven pumps and motor operated valves are supplied by different Class lE buses. For the purpose of discussion, this equipment has been grouped into " load groups". bad group ."AC/A" contains components receiving electric power either directly or indirectly from 6.9 kV bus I A. Load group "AC/B" contains components powered either directly or indirectly from 6.9 kV bus IB.

Components receiving DC power or 120 VAC power are assigned to load groups "DC/D",

"DC/E", "DC/F", "DC/G", based on the battery power source.

3.6.4 System Success Crlierin

- Basic system success criteria for mitigating transients and loss of-coolant accidents are defined by front line systems, which then create demands on support systems. Electric power system success criteria are defined as follows, without taking credit for cross ties that may exist between independent load groups:

Each Class IE DC load group is supplied initially from its respective battery (also needed for diesel starting)

Each Class IE AC load group is isolated from the non Class lE system and is supplied from its respective emergency power source (i.e. diesel generator)

Power distribution paths to essential loads are intert Power to the battery chargen is restored befote the batteries are exhausted 3.6.5 Comnonent Information A. Standby diesel generators l A,1B

1. Maximum continuous rating: 7000 kW i 2. Rated voltage: 6900 VAC
3. Manufactmer: DeLaval B. Batteries ID, IE, IF, IG
1. Rated Voltage: 125 VDC 2, Capacity: 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> minirnum (Ref.1, Section 8.3.2.1.1) l 1

j 54 381 1

1 i _ _ . _ _ _ . _ _ _ _

Bellefonte 1 & 2 3.6.6 Sunnort Systems and Interfaces .

A, Control Signals -

1. ' Automatic-The standby diesel generators are automatically started when an accident signal or loss of offsite power signal is received.
2. Remote mr.nual The diesel generators can be started by manually operateci emergency start switches located on the unit control board in the main control room and auxiliary control room. The diesel generators can be started locally as well as a remote manually from the main control room for testing purposes.

B. Diesel Generator Auxiliary Systems

1. ' Diesel Cooling Water System Heat is transferred from a jacket water system to the Essential Raw Cooling Water System (see Section 3.8),
2. DieselControlSystem

- Controls for diesel generators l A and ID are powered respectively from 125 VDC diesel generator distribution panels l A and 1B.

L 3. DieselStarting System Each diesel generator starting system consists of two independent and redundant pneumatic starting subsystems. Each of the two starting subsystems is capable of cranking a cold diesel engine five times without recharging the air accumulator.

4. Diesel Fuel Oil Transfer and Storage System A 550 gallon " day tank" is provided for each diesel generator. The day tanks are automatically replenished from separate fuel oil storage tanks during engine operation. The fuel oil storage tanks are embedded in concrete in the diesel generator building base slab and can store 104.000 gallons of fuel for each diesel generator unit. This is sufficient for seven
days of continuous operation.

L

5. DieselLubrication System Each diesel generator has its own lubrication system located on the diesel

. generator" skid",

6. Combustion Air Intake and Exhaust System Each diesel generator is equipped with an independent combustion air intake and exhaust system which sup? lies fresh air tc Ge diesel intake, and directs the dicsci exhaust outside of tae diesel building. The intake air filters and exhaust silencers are located on the second level of the diesel building.
7. Diesel Room Ventilation System l Diesel room ventilation is provided by fans, ventilation air intakes, and L exhausts that are located on the second level of the diesel building.

!. 8. Power for Diesel Auxiliary Systems L Except as noted above, diesel auxiliary systems are powered from 480 VAC MCCs IE4-A (diesel 1 A A) and IE4-B (diesel 1B B).

C. Switchgear and Battery Room Ventilation Systems L

S xcific sources of switchgear and battery room ventilation have not been identified, however, zone 1 A and IB fans and air handling units are known to serve essential electrical equipment areas.

3.6.7 Section 3.6 References

1. Bellefonte 1 & 2 FSAR, Section 8.3.

55 3/91 e . (e+e u4

. 7 o  : Ii

=

vm R r A O e

eT T A

eM P SC

1. _ @_.E R I

0T = I 7et s S ., o

,. I= f i

_ = 11 R O

= J22e

,Kw$

T 4

e 1 e

,nsS T

R E

A s A arf

_T Em , rusa sD e Y

nE oaO G.

ee SS Y m e TtL AL 1 c E t

av i l

Es Aa L

Ase Os = D i

R e Os <K  ;

eY s A .i Y

T T T O .s CU SS

fsc w

r eEAF iS vM I

f r

a m

e anA t t s

_TE3 SS 7 y 1 S

= r 4l e

= w

- o I= I R

- P I

0

= c ppE8 2 C

v=

l E 1

4 t

E.

- i r

_Oi$

TtA As 3 TER

. us*SsA D

N.

G. f t

c

$ST ,oaO e Y--

YtL t l 1 c S

E E

VFC

tu KA Y

D n

eH o L

t SC i O!T TW = Y t

a

PE8 EC KI6We 4

2 l

S 2

t A8 TE s4

_T SSM l

A 1 d

n a

D Y wF uAV o

oH SC L

= I e

oIT  ; t n

TW S

NE 81 OC It r 1 E w*S R,

O T

R A ., c f l

o e

I W osD

=.

l N

AR TEW msA oAO E_

E, T e

_T SS8 T 1 c TtL C L

E.

=, B S. c

= 1 1

E.

D I

c a, .

= -

1 I

6

= " 3

=

sE s

S e OCI IS r _

I W ss

_TtA A8 TE4 u

g

&ST 5

. i l i. F

.u K

E EE = Y f sm a

Ct =

r p

6W i vK V

084 = R O,

01 1

TA A, W eE A u 1 1 E R O K' 8 TV8 I

, os0 *8

(_

=.

s sA E T TE nAO G,

_ARW SS5 T itL ELA A,

l e SA e

- = l ET O

r T

- l

=

I m

=

- _, = eE A 1

1 "

BC 1

- _,_ EeS AftvN Vf D _T TER

$S T A ,

R KAT . O T

eH I l

I A

n SL .

OT Tw l

S

@_a= E Ll -

g wD

t O N

If }!  ;

k f5l  ; f Ig _

s e _

gf

_ It g <g w i  : 5 E

't y i!!! -

'qi

_.er h, -

j

- i3 bs :5

t 3- a t y g= .

,  : u C.G

>- a
't . C

$3 150 -

a sql 5 o sua o at f - .3

( . s N E.

q gge=- _

5 2, *s nu -

$ !5 ff

- , om

?k g 3"""" I f6 ss,  : i i r el ~ -

!{151 8 $ev ma!

WEWE --j -lt2c # W

!k 0"~ + g.:

I! = .; y$

Si i,rg

n-

[,- _

g *a

_ ihf We m-II  ! O-  ! $N 83- i (j[ 5

[* i g ;=

5  :

_g-- 5: .

c; -

,,,,,i t

~

t.

if  : -.o 3 it c:

50E 2 Is:-aj . - _ .

3 g

g m kI  ! W c: . 4 h{

=== E -

f
t

!!!i w

~Yi! !- g e.--

- i  !!S r_ iln

g-

=.

gg l.

_ t .

[ -

N

$- :t 3 -l 11 2e  : t!!==l .

i 58- = la3 o-

-g  ::[

i 57 3/91

==

FfEW RET,E34WE .

FROM RESERVE FRtJM UNIT FTRW(NT STATON SERvtCE STATaDN SERvw;E STATON SERVICE STATON SERVICE TRMcSTORMER 18 TRANS50 AMER IA 1 RANSFORMER 18 TRANSFORMER 1 A DfESEL gRSS-T Roa-1 A7- (SS-TRA418) DilESEL plSS-TRAnis)

(SS TRAM 1A) GENERATOR

CENERATOR

19 8 (EP DCr18) 1A A (EP 0G(A)

  • ll (Ep.c3 cggy 11 (EP-CS CI A) 8 9 NV SHUTDOtw BOARD TET18 (78) 4 9 MV SMDOWN 80ARD TET1 A (5A) (EP OS 81B)

(EP BS BI A) 1I .

TIE TO LNT 2 g; gl bT bl T

l TIE TO LNT 2 eus 2ET) 8 II Il BUS 7ET1A M "m T

"" "" S MM s $4aov SS/480V TRAN29 TRANTA (EP-TR TX20)

(EP-TATX1 A)

. . . . . , _ _ _ _ _ _ ___ 1EX18 (268) 1EX2 8 998) STATON BOARO tET2 8 ST ATON BOARD TET2A 1 ext-A 944* 1EX2 A 95A) (129; (EP BS 829)

(rP BS 289) (E P BS 298)

(EP SS 24A* (EP BS 25A)

(11A) (E P-BS 82Al Il 11 11 Il it II 11 15 b 11 Il di 11 Il ll 1

fl 15 ll 11 9

<t sacy MCC 1E2 A 4eovMCCtEt8 asov MCC tE2 8 g g TIETO O saavMCC1 eta (#78)

UNIT 2

($1A) (82A) (ses) s seasov euS BUS s $4aov Il TRA*d 3R 2ET2 8 15 II 2ET2 A TRAN3A II 4e0v VTT AL OtST 48av Vff AL DIST asov vf7AL D ST asov vf7AL DIST PANEi se8 (1G) PANFL e's (1E)

PANEL SSA (1F) PANEL SSA (10)

(EP.EDP ee8) (EP-EDP478)

(EP EDPasA) (EP EDP44A)

II 15 Il 11 NT ARE PUMPING $7 ATION asov MCC IESB 480v MCC TES.A esov MCC tE3 8 (ee8) eMT AKE PUMP 1NG STATON po8; 4acy MCC IE3 A (s3A) (asA)

II lI saov MCC tE48 saov MCC 1E4 A f698)

(64A) w D

Figure 3.6-3. Bellefonte 14160 and 480 VAC Electric Power Systems

_ _ _ - U

s ID WY I b E DG18-SRM 8I E STA TON $lRV3CE E DGt A-ARM E E STATION SE RVCE STAim SERV 1CE TRANSFORMER 19 STATION SERVnCE TRANSFORMER 18 TRANSFORMf R 1A DESEt T RANSFORME R 1 A (Rss TRAr* 18)

DESEL (RSS TRAN-1A) (SS-TRA418) GErs RA Yt wt (SS TRAt+1A) GENERATOR tB e d e :M ts)

.1 A A (EP OG IA) l 649SGRMS 649SGRM A l ggp a ggg) ll (EP-CS C f A)

...v 5 NUT - Ro ,n ,8(,,,

.. -oOW-Ro ,n, A nA) (EP BS 8tH)

(EP 85 81A)

. . TsE TO UNff 2 ll lg g; qg 11TOLNT2-3} i ,g .

. O'JS 2ET18

- _ BUS 2ET1 A l SSDSGRMA l l 6593GRMS l

. to.0v

. . 0v

'RAN 24 M M ~f T M TRANIS MM MN ..

(EP TR TX18) 89480V

, gg , (EP-TRTX2A) -

TRAN28 TRAN1A (EP T4T K28)

(EP-TETX1 A) El. Il Il ll El 11... ff 4R0v SHUTDOWN BOARD e 9 KV WT AME PUMPING 480V SHtJTDOWN 00ARD 480v SHLff 00WN BOARD 4eow SHJTDOWN 90AR9 1EX2 B (298) STATm BOARO 1ET2 8 e S KV WT AKE PLAaPNG TEX 2 A (2SA) 1 Ext 8 (2es) 1EX1-A (24A) 4P BS 298) (128) (F P BS (*28)

ST ATION BOARO 1ET2A (EP BS 298)

(EP BS 74A) (EP BS 25A)

(11 A) (EP BS 82A) IF fl ll ll' 11 Il il ll ll ll ll ll ' ll ll ff '11 ll 15 t

esov MCC 1El-A 480V ACC TE2 A 480v MCC 1Et a 480v uCC tE2 e g g (TE NT2 TO IyQ (e68) (679) 6 e<480v Bus (6 tA) (82A)

, gg-TRAre 2 2ET28 BUS e tesov yg -gg lI 2ET2 A ' ym 3n .

4e0v vff AL OtST aa0v vfTAL DtST 480v vf1 AL OtST saov vtTAL DIST PANEL 679 (IE)

PANEL BeA (10) PANEL 898 (10)

PANEL sea (1F) (FP E OP498) (EP EDP478)

(EP EOP46A) (tP E DP48A)

II II II Il WiME PUMPINGSTATION 480v MCC 1ESB As0v MCC *E3 8 tee 9) l 480v 4ACC 1ES A WTAME P(SAPINGSTATION (708) aa0V MCC tES A(sSA) (ssa) j l GesSGRMS

[ e499GRMA II'

-lg se0vMCC1E48 4a0vuCC1E4A (ese)

(64A) [DG15MCCRM l egetK-ERua l

, l DGI A-MCCRM

{ fMTK-ERM A l u

D

~ NOTE: LfNES MAY NOT RE PRESENT TRUE CABLE ROUTING BETWEEN ROOMS Figure 3.6-4. Bellefonte 14160 and 480 VAC Electric Power Systems Showing Component Locations

--% .-.-.s.-_. a b H--- .-- 4 A- A- ..s-A

% - .n,-

e p.e *.e e e. .e , e...e e e e e4 i f f' . , 8

-oe l=  :: l s  : s R Vg#@ -

8 e -

a  ;  : 30- n 6 8 h *b5k h, '

b,{I- E9- , . l Eb gy: 5[,

y

'.....................l E

vg$

a k,e , ' .

- 8 g =. ' -

N O

-u - - - *

,ya ,

s o

I '

i

-.  : = s5

  • 6 g

- o.c s vi l EE

-o* ob e.

.b

, h e^

,w-E gm.E m

.po , (...................., s - 4 sah 3$ _

~

y5 ,g

$h $e l l Bfg -t I m-

.l s a,es S e I  :

3o- E -

t g

BI E),, -

g ,

e-W

"""04 '

: U l *C l.

i >

g 9 ....... . ............e

@ $ M t

-* l=

l

{e

' - ' e 2 ggli 6 C 0b , .

sis { =  :......................

l l n

,e e

gpe si[.

g

,e

=

>l j.

k,

  • 8 m

a O G

-"  ?- . .

l t i

= 1l5 1

-c a

-u  : ' , ,

= - O4C 3 g u 88 , .

,Q fn-6

,,l

=

su(

N7 #s sg k g a.

.= .

- a l,le ne , ~

vM"s o

-l -

.o'o I

>EEk B - .

e e s....................d 60 3S1

o g ....c==. g ..

I eseseaua 1_

440 vac vti AL CET m vaC MTAL OrST 480 VAC W1Y AL Dest 490 VAC W AL DtST PANFL 999 g>cp PMsEL esA (tF) PANEt $79(TE)

PANELasA('O) (EPf DP 479) (PEUP 398)

(EP EDP 86A) (EP EOP 88A) 125 VDC BATTE AY 125 VDC BAT TERY 125 VDC BATTERY h

125 VDC BATTERY 6 h soAno , E o b noAreio 6 h sonno s o h soAnois (EPOC88 TE) (P DCBS TG)

(EP OC8B-10) (EP OCSS IF) i ll ll lI ll l

i a *

  • n ise ir---- . n n .
  • it---- . o i, o *' .
  • a i

l .,m== i

==~2.

l

= ~im  : .,w = = l

==...

= p . ,,  ;

. im vAC . im vAC .

ra vec * . 320vAC . .

vr. .

  • . wie .

vna .

a . uPs ,to wie,o . a ,

e ,r . ,

ePs , E gs n, on ,o, l

,e, ,o, . .

-F, .

,m vACA. - - a I  : ,,vACm m - .  : _

_  : OtSTRflUTION PAfFL e 8

. , , _x

. OtSTRIBUTION PAPEL t A . -

. _.# e .

n i

n n

n .

. n . n ,

a

= . .

f_____h.

I o o s____.___9 o o g Y i Y I

u ,I n n i

120 VAC VfTAL 120YAC vffAt 120 VAC Vti At 120 VM vsTAt OtSTABUTioNPAPdFL to OtSTROUTsDN PANEi.1 E DISTRSUTON PANE'l 10 DISTRfL*fTION PANEt ts (t20PNL-tG)

(120PPL-tE)

(12TPNt.-tD) (120 int-tT) __

u l *Fev A C E O l

[ ersw ACDf l uoTE: t.ss.nAv e ntPnessNT <as Cama nouTec eErwEEN srxurs Figure 3.6-6. Bellefonte 1 120 VAC Electric Power System Showing Component Locations

7 k

9 E &

4 is 38 g.

r, v*

EI En-@F = 0

=E

$E N'

.b.. ?I jh i!

-*~

'! gj*

ul, VQ ui =

j'l i

!y!

g ,..........., y o  :

VI -l

-c  ; > 5 E a

l ,

e wli sa l . -

N - ,

  • E

, . -e w 9 l , l - 0, '

= y[ .'t--o- c  ; > E! m y ............ . st , e i 58

- . l_ n j f i[v- jl"s!s i a If

!! H, Ih re E

i

e sh N l IE -

W I v!

> , m.

E lf

  • I I" sEE >

a e e l I

  • h I

5,f. . ia i, ,

e  :  : s. N  :

  • e b h 1 lh

~*-

I! y'ie ,

E {0 1

E .

N ' ~

g!E sl li-

, ut, s[i l sevg n

p. . . . . . . . . . . . . ,

l g y

M ms

. $=I , . e W- . .

, 'l 1 8 k $

l -

N- -l l .9

,,, , -. a

$ l l' -

y[ ' --o- -c  ; > E'

{:...........'- a y  ;

le n

, e n I-g$-*-- il llj > g*

F ,[

[

s' E I-i

't 8 .

_= n.

N W

- v, i:

vg g

s 9 h6

=

=

!f *< $1* Vir n 1 = sa*

$21 l

62 3/91

e e l l

lsl

-I ei f a g

Es yr e

a$ %. is .

-.- 'e se N

_ o is ll_

v VI E it.o m e

5

-*- I.N.

' I g?8 3 [3

, g5 .

I- 2 ze wl R I C5: 6 I l l  : e

- 3o kn 2 e $}5 o n i y q, s.

a a

l[ r-+

> S e; g,

5 e

l , '

. - - 's 8 O O.

g . N  ; s i 5 l i l 7 0

je* _; el -

> 85 u

. ...........' - st .e E

NE 5 w 9- 5 l3 s  ; a .$c g a g! E M

+

$:I'

~

88 E

ehc -

,E g!-

c. j E gl-3 r .E
  • W a wE
  • uw

-= = s. N - :- U = $

mE

[I W! 5 n

U6 *

!*g if I vieln  : = Si -

V-j sgt- _

g 3 gl Io 5 c Er e -

3 Q: -3 'R ge W t t

$ 88 E a

go

! =

vt a $R TaE

  • s rG y  :.
se N  : + -

9u la Vi i 15 i :

gr

-' ff . a g:e e.

8e e-28 i >m

. . 8

i. c. .E ga dl,igg i -

g; g N,3

. .g- ,

U gg*

ll, 'p...........,_

tl > -

er E g . . .. . . . '91f C i '

~; -N-ll.' 4; i a

o m

,. o ... . e ., -

' : g{ r--o- gg

.. -c  ; -> ,

.W g ll...........' e j{ g i

j I s: g .

+

't g[ li!c lI = N i l~ h 8- = s.

yr sBit N

V U, 1:i vg hk $5 0

~

g I vis m l6

!B si* = = -

ss"

, B* E n E E

i 2 a l

63 3f)1

y.

1

__ r i s.

_ . Table 3.61. n Bellefonte l' Electric Power. Systems Data Sesamsary

for Selected:.Consponents

- ~

COMP. POWER SOURCE EMERG.

COMPONENTID TYPE i LOCATION' POWER SOURCE VOLTAGE LOCATION LOAD GRP.

120PNL BUS 120VACDF - UPS-1 D 120 120VACDF. . AQD-120PNL-1 D , BUS- 120VACDF - 120PNL-1 A - 120. 120VACDF . AC/D-F ,

120PNL-1E BUS- 120VACEG UPS-1 E. . 120 120VACEG - AC/E

! 120PNL-1E a BUS- 120VACEG . 120PNL-18 120. 120VACEG AC/E-G -

120PNL-1F BUS- 12CVACOF UPS-1 F 120 120VACDF - AOF 120PNL-1 F - BUS 120VACDF 120PNL-1A 120 120VACDF .- AC/D-F l

120PNL-tG - BUS 120VACEG. UFS-1G 120 120VACiG AC/G i 120PNL-1G BUS 120VACEG - 120PNL 120 120VACEG - ACE-G l BC-1D (500) BC 669SGRMA PANEL-86A 480 669SGRMA AC/A -

BC-1E (51E) BC 669SGRMB PANEL-87B 480 669SGRMB AC/B BC-1F (52F) BC 669SGRMA PANEL-88A 480 669SGRMA AC/A BC-1G (53G) BC 669SGRMB PANEL-898 - 480 669SGRMB AC/B BT1D BT BAT 1DRM 125- DC/D

BT1E BT BAT 1ERM 125 DC/E

' ~

BT1F. BT BAT 1FRM 125 DC/F BT1G BT BAT 1GRM - 125 DGG

BUS 24A BUS 669SGRMA TRAN 1 A 6900/480 669SGRMA AC/A

! BUS 25A BUS 669SGRMA TRAN 2A 6990/480 669SGRMA AC/A -

l BUS 288 - BUS 669SGRMB TRAN 1B 6900/480 669SGRMB AC/B

3 BUS 298 BUS 669SGRMB TRAN 2B 6990/480 669SGRMB AC/B -

j BUS-1 ET1 A BUS 649SGRMA DG-1A-A 6900 AC/A l DG1 A-ARM

Table 3.6-1. Bellefonte 1 Electric Power System Data Summary for Selected Components (Continued)

POWER SOURCE EMERG.

COMP.

f TYPE LOCATION POWER SOURCE VOLTAGE LOCATION LOAD GRP.

l COMPONENTID t

649SGRMA SS-TRAN-1A 6900 UNKNOWN AQA BUS-1ET1 A BUS F: S-TRAN-1 A 6900 UNKNOWN AC/A BUS-1ET1 A BUS 649SGRMA -

DG-18-8 6900 DG18-ARM AC/B BUS-1ET1B BUS 649SGRMB SS-TRAN-1B 6900 UNKNOWN AC/B BUS-1ET1B BUS 649SGRM8 RSS-TRAN-1B 6900 UNKNOWN AC/B BUS-1ET1B BUS 649SGRMA l

BUS-1ET1 A 6900 649SGRMt AC/A BUS-1ET2A BUS INTK-ERMA BUS-1E118 6900 649SGRMB AC/B BUS-1ET2B BUS INIK-ERMB BC-!A 480/125 669SGRMA D C D-F DCBB-1D BUS 669SGRMA BT-1 D 125 BAT 1DRM DCO DCBB-1 D BUS 669SGRMA BC-1D 480/125 669SGRMA DCO DCBB-1D BUS 669SGRMA 3C-1 E 480/125 669SGRMB DC/E DCBB-1E BUS 669SGRMB 480/125 669SGRMB D O E-G BUS 669SGRMB BC-1 B

! DCBB-1E BT-1E 125 BAT 1ERM DC/E DC88-1E BUS 669SGRMB BT-1F 125 BAT 1FRM DC/F DCBB-1F BUS 669SGRMA BC-1F 480/125 6695GRMA DC/F DCBB-1F BUS 669SGRMA BC-1 A 480/125 669SGRMA DCD-F DCBB-1F BUS 669SGRMA BT-1G 125 BAT 1GRM DOG DCBB-1G BUS %9SGRMB .

BC-1G 480/125 669SGRMB DOG DCBB-1G BUS f 669SGRMB 484/125 669SGRMB DC/E-G BUS 069SGRMB BC-18 DCBB-1G

'6900 AC/A DG 1 A-A DG DG1A-APM 6900 AC/A DG-18-B DG DG18-BRM

- J

__M- *

.g

{ ..

_' y I

, y m .

~ ~

w ,.

Table' 3.6-1./BeIIefonte .1 Electric Power System: Data Summary _

for Selected Components (Continned)-

~

- i-

. COMP. .

POWER SOURCE EMERG.

COMPONENTID - iTYPE: - LOCATION ' POWER SOURCE VOLTAGE '

~ LOCATON . LOAD GRP.

l +

t DG-PNL-1 A - BUS: eewSGRMA DCEE1D . 125- 669SGRMA DC/B ..

)f DG-PNL-1 A . BUS 669SGRMA DCBB-1F - 125 669SGRMA DC/F .

DG-PNL-18 BUS- ouv6GRMB DCBB-1G 125 669SGRMB DQG 1

DG-PNP-1B BUS. eassGRMB DCBB-1E - 125 669SGRMB . DC/E  ;

EP-CB-C1 A CB 649SGRMA I

EP-CB-C1B CB '- 649SGRMB i

MCC-1E1A : MCC. 669SGRMA BUS-24A 480 - 669SGRMA AC/A f MCC-1E18 MCC- 669SGRMB BUS-288 480 669SGRMB AC/B MCC 1E2A MCC 669SGRMA BUS-25A 480 6696GRMA AC/A . 4

& .i i MCC-1E2B MCC, 669SGAMB BUS-298 480 669SGRMB AC/B MCC-1E3A . MCC MTK-EIMAA TRAN-3A 6900/480 INT"-ERMA AC/A I

MCC-1E3B MCC '

WTK-ERRM3 TRAN 6900/480 WTK-ERMB AC/B

~

MCC-1E4A MCC DGIA4ACCRM BUS-24A 430 669SGRMA AC/A '!

1 4

MCC-1E4B MCC DG184sCCRM BUS-288 480 669SGRMB AC/B 'f 15A MCC- 649SGRMA BUS-24A - 480 669SGRMA AC/A

'iB MCC 649SGRMB BUS-288 480. 669SGRMB AC/B  !

- i l TL-86A BUS 669SGRMA BUS-25A 480 669SGRMA AC/A l h..cL-87D BUS- 669SGRMB BUS-298 480 669SG9MB AC/B I

PANEL-88A : BUS 669SGRMA BUS-24A 480 669SGRMA AC/A .

[ PANEL-890 BUS 669SGRMB ~ BUS-28B 480 6695GRMB AC/B .f l TRAN 1A TRAN 669SGRMA BUS-1ET1 A 6900. 649SGRMA - AC/A j 4

i j t a

~._.;.

, ,, . . - _. ,. _. -- . , ~ . .

i t

Table 3.6-1. : Bellefonte 1 Electric Power System Data Summary'

. for Selected Components (Continued)

COMP. POWER SOURCE EMERG.

COP 8PONENTID TYPE LOCATION POWER SOURCE VOLTAGE ~ LOCATION LOAD GRP. l titan 1B TRAN 669SGRMB BUS-1En3 6900 649SGRMB AC/B

~

TRAN 2A TRAN 669SGRMA P" 5C'. 6900 649SGRMA AC/A

~

l TRAN 28 TRAN 669SGRMB BUS-1ET1B 6900 649SGRMB AC/B ERAN-3A - TRAN INTK-ERMA BUS-1ET2A 6900/480 INIK-ERh% AC/A TRAN-38 TRAN INTK-ERMB BUS-1ET2B 6900/480 8NTK-ERMB AC/B tJPS ID j UPS 120VACDF PANEL-86A 480 669SGRMA AC/A UPS-1D UPS 120VACDF DCBB-1D 125 669SGRMA DC/D UPS-1E UPS 120VACEG PANEL-87D 480 669SGRMB AC/B 4 UPS-1E UPS- . 120VAGEG DC88-1E 125 669SGRMB DC/E UPS-1 F UPS 120W'CDF

. PANEL-88A 480 669SGRMA AC/A '

UPS-1 F UPS 120VACDF . DCBB-1F 125 669SGRMA DC/F UPS-1G UPS 12GVACEG PANEL-890 480 669SGRMB AC/B UPS-1G UPS 120VACEG DCBB-1G 125 669SGRMB DC/G l

W

. e _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . _ _ _ _ _

e .

Table 3.6 2. Partial Listing of Electricel Sources and Lords at Bellefonte 1 POWER VOLTAGE EMERG POWER SOURCE LOAD LOAD COMP COMPONENT SOURCE LOAD GRP LOCATlON SYSTEM COMPONENT tD TYPE LOCATION 120PNL 1A 120 AC/D-F 120V ACDF EP 120PNL 1D BUS 120VACDF 120PNL 1 A 120 AC/D-F 120VACDF EP 120PNL 1F BUS 120VACDF 120P N L-1 B 120 AGE G 120V AC EG EP 120PNL-1 E BUS 120VACEG 120P N L-1 B 120 AC/E G 120VACEG EP 120PNL 1G BUS 120V ACEG BC-1 A 480/126 DC/D-F M9SGRMA EP DCBB-10 BUS 6696GAMA BC-1A 480/125 DC/DT %9SGRMA EP DCBB-t F BUS 669SGRMA BC t B 480/125 DC4 G M9SGRMB EP DCBS-1E BUS %9SGRMB BC 1B 480/125 DC4-G %bSGRMB EP DCBB-10 BUS 6695GRMB BC-10 480/125 D60 669SGRMA EP DCBB-10 BUS 6695GRMA BC-1E 480/125 DC/E 669SGAMB EP DCBB 1E BUS 6695GRMB BC1F 480/125 DQF 669SGRMA EP DCBB-1F BUS 6695GRMA BGtG 480/125 DGG 669SGAMB EP DCBB-1G BUS 669SGRM3 BT 1D 125 DC/D BAT 1DRM EP DCBB-10 BUS 669SGRMA BT 1E 125 DC/E BAT 1ERM EF DCBB1E BUS 669SGRMB BT1F 125 '98 BAT 1FRM EP OCBB-1F BUS 669SGRMA BT1G 125 DGG BAT 1GRM EP DCBB 10 BUS 669SGRMB BUS 1ETI A 6900 AC/A 649SGRMA AFW AFW-PI A MDP 590ABTRNA BUS-t ET 1 A 6900 AC/A 649SGRMA CCS CCS-P t A MDP CCWPMRMA BUS 1ET1 A 6900 AC/A 649SGRMA CCS CCS-P3A MDP GCWPMRMA BUS-t ET t A 6900 AC/A 649SGRMA ECCS DHR-PI A MDP DHAPMRM BUS-1ET 1 A 6900 AC/A 649SGRMA ECCS HPI-P1A MDP HPiAIRM BUS-1ET 1 A 6900 AC/A 649SGRMA ECCS HP6-P2A MDP HPLA2RM BUS-1ETI A 6900 AC/A 649SGRMA EP BUS 1ET2A BUS INTbERMA BUS-1ET1 A 6900 AC/A 649SGRMA EP TMN 1 A TRAN 669SGRMA B031ET1A 6900 AC/A 649SGRMA 'EP TMN 2A TRAN 669SGAMA 1 S-lET I A 6900 AC/A 649SGRMA PAHR RBS PI A MDP RBSAPMRM 8US-t ETI B 6900 AC/B 649SGRMB AFW AFW PIB MDP 590ABTRNB f GUS-1ETIB 6900 AC/B 649SGRMB CCS CCS-P2B MDP CCWPMRMB TUfd. IIB 6900 AC/B 649SGRMB ECCS DHR-P2B MDP DNBPMRM BUS-1ET 1B 6900 AC/B 649SGRMB ECCS HPIP3B MDP HPIB1RM BUS-t ET 1B 6900 AC/B 6495GRMB EP BUS-1ET2B BUS INTK ERMB 68 3/91 )

a .

TCble 3.6 2. Parti:1 Listing of Electrical S:urces cnd Lords at Bellefonte 1 (Continued) .

POWER VOLTAGE EMERG POWER SOURCE LOAD LOAD COMP COMPONENT SOURCE LCAD GRP LOCATION SYSTEM COMPONENT 10 TYPE LOCATION BUS-1 E T 1 B 6900 AC/B 6495GRMB EP TRAN 10 TRAN 669SGRMB E S 1ET1B 6900 AC/B 649SGRMB EP TRAN 2B TRAN 6695GRMB BUS-1 E 11 B 6900 AC/B 649SGRMB PAHR RBS-P I B MDP RBSBPMRM BUS-1E T2A 65 *0<460 ACsA INTK.ERMA EP TRAN4A TRAN IN TkERMA BUS 1ET2A 6900 AC/A INTK ERMA ENW EROW P1A MDP INTKPRMA BUS-1ET2A 6900 AC/A INIK ERMA ENW ERCW P2A MDP INTK PRMA BUS-1E T 2B 6900/480 AC/B INTK.ERMB EP TRAN48 IRAN INTK ERMB BUS 1ET2B 6900 AC/B INTK ERMB ERCW ERCW-P3B MDP INTKPRMB BUS-1E T2B 6900 AC/B INTK ERMB ERCW ERCW P48 MDP INTKPRMB BUS-24 A Ado AC/A 669SGRMA EP MCC-1 E I A WC 669SGRMA BUS 24A 480 AC/A 6695GRMA EP MCC 1E4A WC DGI A-MCCPM BUS-24A 480 AC/A' 6695 F MA EP MCC 1E5A WC 649SGRMA BUS 24A 480 AC/A 6698GRMA EP PAN EL-88A BUS 669SGAMA BUS-25A 480 AC/A 669SGAMA EP MCC 1E2A MCC 6695GRMA BUS 25A 480 AC/A 669SGRMA EP PANEL 66A BUS 6695 GRATA BUS-25A 480 AC/A 6695GRMA ERCW ERCW.BP13A MDP CCWPMAMA BUS 25A 480 AC/A 669SGRMA PAHR RBC-FAN 1 A FAN RC-PC BUS-28B 480 AC/B 669SGRMB EP MCC1ElB MCC 669SGRMB BUS-28B 480 AC/B 669SGRMB EP MCC-1 E4B MCC DGIB-MCCAM BUS-288 480 AC/B 669SGRMB EP MCC1E5B MCC 649SGRMI-BUS 288 480 AC/D 669SGRMB EP PANEL 690 BUS 669SGAMB l

BUS-288 480 AC/B 669SGRMB ERCW ERCW.BP118 MDP CCWPMRMB BUS-28B 480 AC/B 669SGRMB PAHR RBC-FAN 1B FAN RC PT BUS-298 480 AC/B 6696GAMB EP MCC-1 E2B WC 6695GRMB 1

l BUS-29B 480 AC/B 6698GRMB FP PANEL-670 BUS 669SGRMB 8US-298 480 AC/B 669SGRMB ERCW ERCW.BP l2B MDP CCWPMRMB BUS-298 480 AC/B 669SGRMA PAHA RBC-FAN-2B FAN RC PC DCBB 10 125 DC/B 669SGAMA EP DG PNL-1 A BUS 6696GRMA DCBB1D 125 DC/D 6695GAMA EP UPS-ID UPS 120VACDF DCBB 1E 125 DC/E 669SGRMB EP DG-PNP 18 BUS 669SGRMB DCBB-1 E 125 DC/E 669SGRMB EP UPS-1 E UPS 120VACEG l

l l

69 3/91 1

r

Table 3.6 2. Partial Listing of Electrical S .arce: snd Laads at Bellefonte 1 (Continucd) '

l l

l POWER VOLTAGE EMERG POWER SOURCE LOAD LOAD COMP COMPONENT SOURC 8" LOAD GRP LOCATION SYSTEM COMDONENT ID TYPE LOCATION DCBB1F 125 DOF 669SGRMA EP DG-PNL 1 A BUS 669SGRMA DOBB tF 126 DC,F M95GRMA EP UPS-1F UES 120VACDF M~ 125 DGG M9SGRMB EP DG-PNL 1B BUS 6MSGAMB DCBB-1G 125 DC/G M9SGRM6 EP UPG-1G UPS 120VAC EO

~

DG 1A A 6900 AC/A DG i A ARM EP BUS-1E T I A BUS 6495GRMA DG-18-B 6s00 AG/B DGIB-ARM EP BUS-1E TI B BUS 6495GRMB

~

! MCC 1EI A 460 AC/A 669SGRMA ECCS DHR-68A  :.00, Orw uxlA l

MCC-1E 1 A 480 AC/A M95GRMA ECCS HPi 113A MOV RC SCA MCC-1 E I A 480 AC/A %9SGRMA ECCS HP 6-450A MOV 610ABTRNA MCC-18i1 A 480 AC/A 669SGAMA ERCW ERCW 295A MOV DGI A-ARM MCC-1E 1 A 480 AC/A %9SGAMA RCS MU 21A MOV RGPC

, MCC 1E1 A 480 AC/A %9SGRMA ACS MU-28A MOV RC-PC MCC1E1B 480 AciB M9SGRMB ECCS DHR 1628 MOV DH8PMAM

~

MCC-1E18 480 AC/B 669SGRMB ECCS HPI2260 MOV RC-SCA MCC 1E1B 480 AC/B M9SGRMB ECCS HPI-4190 MOV 610ABTRNB MCC 1EIB 480 ACsB M9SGAMB ERCW ERCW 2968 MOV DG10-BRM MCC-1E lB 480 ace 8 M9SGRMB EACW ERCW 3100 MOV HC4CA MCC1G1B 480 AC/B M9SGRMB ERCW ERCW 3160 MOV RC-SCA l MCC1ElB 480 AC/D M9SGRMB RCS MU-228 MOV RC PC 1

l MCC 1E1B 480 AC/8" M9SGRMB RCS MU-290 MOV R4PC MCC-1E2A 480 ACiA M9SGRMA AFW AFW 29A MOV 69IABTRNA E 1E2A 480 AC/A 669SGRMA AFW AFW 30A MOV 590ABTRNA MCC-1E2A 480 AC/A 669SGRMA AFW AFW 37A MOV RC SCA l WCC-1E2A 480 AC,5 * ^ %9SGRMA AFW AFW47A MOV 690ABTRNA MCC-1E2A 1 l' AC/A M9SGAMA ECCS DHR 10A MOV 610ABTRNA

~

MCC-1E2A 480 AC/A 660SGAMA ECCS DHR 185A MOV RC-PC l

MCC-1E2A 480 AG/A 669SGAMA ECCS DHR W MOV DHRACLAM MCC-1E2A 480 AC/A 669SGAMA ECCS DHR-80A MOV RC-SCA MCC-1E h 480 AC/A 669SGAMA ECCS DHR-85A MOV RC-PC

~

MCC-1E2A 480 AC/A 669S?aAMA ECCS DHR AA MOV VVPIT MCC-1E 2A 480 AC/A 669SGAMA ERCW ERCW 161 A MOV 610ABCOR 70 3/91 i

I

Tcble 3.61 Pcrtial Listing of ElectricCl Sources Cnd Lo-ds at Ilcliefonte 1 (Continued)

POWER YOLTAGE EMERG POWER SOURCE LOAD LOAD COMP COMPO W SOURCE LOAD GRP LOCATION SYSTEM COMPONENT 10 TYPE LOCATION ME2A 460 AC/A M&SGRMA ENW EROW 266A MOV RC SCA MCC lE2.A 460 AC/A MySGAMA ENW EROW 276A hCV RC SCA "M20 1E2A 460 AC/A M95GRMA PAHR DH R- 104 A MOV 610ASTRNA MCC-1E 2A 460 AC/A %95GAMA PAHA RBS-31 A MOV RC-SCA MCC-1E2A 460 AC/A M95GRMA RG0 RCS 236A MOV RC PC NCC 1E2B 460 AC/B M9SGRMB ArW AFW 100D MOV 690AbTRND MdB 460 AC, B M95GRMB AFW AFW44D MOV RC SCA MCC 1E2B 460 AC/B M95GAMD AFW AFW46B MOV 690ADT RND MCC 1E2D 480 AC/D M95GRMB AFW AFW 9sD MOV bbOADTRND MCC 1E20 460 AC/D M95GRMD ECCS DHR 104B MOV 610ADTRND MCC-1E20 440 AC/B M9SG4MB ECCS DHR 142B MOV DHRDCLRM MCC1EED 480 AC/D M95GRMB ECCS DHR-1740 ACV - C-SCA TCC1E20 460 AC/B MGSGRMB ICCS DHR 1790 MOV RC-PC MCC-1E2B 460 AC/B MGSGRMB ECCS DHR-162B MO T VVP7 MCC 1E2D 460 AC/B M95GRMB ECCS DHR 91A MOV RC-PC MCC 1E2D 460 AC/D MGSGRMD ENW ERCW 2760 W CCWPMRMB McGdE20 460 AC/D M95GRMB ENW ERCW 323B M3V RC-SCA MCC 1E2B 480 AC/D M95GR.AB ERCW ERCW 3300 MOV RC-SCA MCC 1E2B 460 AC/B M95GRMB ENW ERCW 69B MOV 610ABCOR MCC-1E2B 400 AC/D 6695GRMB PAHR VHR 1040 MOV 610ABTRND MCG 1E2D 480 AC/B M95GRMS PAHR RBS-64D MOV RC-SCA MCC-1E2B 480 AC/B M95GRMB 'ACS RCS 237B MOV RC PC MCC-1ESA 480 AC/A 6495GRMA AFW AFW 16A MOV AFWTDPMAM "lidClE6A 480 AC/A 640SGRMA AFW AFW 17A MOV AFWTC?MRM MCC 1E5A 460 AC/A 64GSGRMA AFW AFW-71 A MOV RC SCA MCC 1E6A 480 AC/A 64&SGRMA AFW AFW469A MOV STVRMB MCC-1E 6B 460 AC/B 64950RMb AFW AFW44B MOV RC-SCA MCC 1E6B 480 AC/D 6495GRMD AFW AFW468B MOV STVRMA MCC-1E6B 400 AC/D 64bSGRMB AFW AFW 91D MOV AFWTDPMRM MCC-1ELO 480 AC/D 64sSGRMB AFW AFW 910 MOV AFWTDPMRM PANEL 66A 480 AC/A M95GRMA EP BC-10 (60D) BC M96GRMA 71 3/91

Table 3.6 2. Partiel Listing of Electrical Sources and Loads at Bellefonte 1 (Continued)

POWER VOLTAGE EMLFG POWER 60VRCE LOAD LOAD COMP COMPONENT COURCE LOAD GRP LOCATION SYSTEM COMPONENT ID TYPE LOCATION PANEL %A 460 AC/A %95GRMA EP UPhiD UP5 120VACOF PANEL 67B 460 AC,0 M95GRMB EP D6IE (61E) BT M95GRMB PANEL 670 460 A C,B %W50RMb EP UPS 1E UPS 12pv AC EG PANEL %A 460 AC, A %wSGRMA EF B4tF(62F) DC %95GRMA PANEL 86A 460 AC/A %95GRMA EP UPS-1F UPS 120VACDF PANELobb 460 AC< B M95GRMB EP B41G lMG) DC MGM4MB PANEL 890 460 AC/B %95GRME EP UPS 1G UP5 120V AC E G R$TFMN 1 A 6900 AC/A UNANOWN EP BU4tETlA BUS 649%RMA RSS TFMN tB WOO AC,0 UNN% WN EP BUE1ETIB BUS 649%RMA 55 TRAN 1 A 6907 AC/A UNNNOWN EP BU4tETIA BUS 6495GRMA SS TRAN 1B 6900 AC/B UNMOWN EP BukiET t B BUS 6495GRMB TRANlA 6900/460 AC/A %95GRMA EP BU5 24A BUS M9%RMA TFMN 1B  % 00/460 AC< B %GSGRMB EP BUS kbB BUS %95GRMB TFMN 2A 69 W0/460 AC/A %95GRMA EP BUS 26A BUS %95GRMA TFMN 2B @ WO/480 AC/B kW5GRMB EP BUS 29B BUS %W5GRMB

~

TFMN4A 6900/460 ACIA INTK ERMA EP MCC tE3A MCC ININ ERMA TFMN48 %00<460 AC/B INTN ERMB EP MCC 1E3B WC INIK ERMB UNNNOWN 460 AC/B %95GRMB CCS CCS 136 MOV CCWPMRMA UNNNOWN 460 AC/A kWSGRMA CCS CCS 137 MOV CCWPMRMA UNNNOWN 460 AC/A %95GRMA CCS CCS 313A kOV CCWPMRMA UNNNOWN 460 AC/B M9GGRMB CCS CCS 316B h0V CCWPMRMB UNNNOWN 480 AC/A M95GRMA CCS CCS-376 kOV CCWPMRMA UNNNOWN 460 AC/B %95GRMB CCS CCS476 MOV CCWPMRAM UNKNOWN 460 AC/A %95GRMA ECCS HPl101A MOV RC-bCA UNNNOWN 460 AC/B %95GRMB ECCS HPI2130 MOV RC 5CA UNNNOWN RCS RCS-67A MOV R4PC UNKNOWN RCS RCS 668 NV R4fC UPS 10 120 AC,0 120VACDF EP 120PNL tD BUS 120VACDF UPS 1E 120 AC/E 120VACEO EP 120PNL lE BUS 120VACEG UPSlF 120 AC/F 120VACDF EP 120PNL 1F BOS 120VACDF UPS10 120 AC/G 120VACEG EP 120PNL tG BUS 120VACEO 72 3/91

s .

j Bellefonte 1 & 2 3.7 COMPONENT COOLING SYSTD1 (CCS) -

3.7.1 Suttm Function The CCS is designed to provide cooling for various components and remove residual and sensible heat from the RCS during plant shutdown cooling via the Decay lleat Removal (D51R) heat exchangers. The CCS is an intermediate cooling loop between the heat loads anJ tb dssential Raw Cooling Water (ERCW) System (see Section 3.8).

3,7,2 System Definition The CCS is a closed loop cooling system consisting of two essential cooling loops and two non essentialloops. The CCS A loop consists of two CCS pumps (one is an " installed sprJe"), one CCS heat exchanger and necessary distnbution piping and valves. CCS loop B is similar except that it has only one CCS pump. The CCS essential loops A and B serve the corresponding trains of safety related components such that each CCS loop can provide coolini necessary to establish and maintain a safe shutdown condition following a desi;n assis accident. The CCS also provides cooling to two non-essentialloops, one in (1e reactor building and one in the auxiliary building. Vaiving is provided so that the non essential cooling loads can be served from either essential loop, however, the norrnal system alignment has CCS loop A serving the non essential l oops.

The CCS heat exchangers transfer heat to the Essential Raw Cooling Water System. CCS surge tanks accommodate expansion and contraction, protect against potential overpressurization due to inleakage of water, and maintain the net positive suction head for the pualps.

Simplified drawings of the CCS essentialloops are shown in Figures 3.71 and 3.7 2. A summary of data on selected CCS components is aresented in Table 3.71. A suinmary of the heat loads served by the CCS is presented in Table 3.7 2.

3.7,3 System Oncration During nonnat operation CCS train A is operating with one CCS aump supplying essentialloop A and both non essentialloops. CCS train B is idle, Max,rnum normal CCS water temperature at the CCS heat exchanger outlet is less than 105 F. The standby pump in train A will automatically start if CCS supply header pressure decreases to a low pressure setpoint which is indicative ofloss of the operating CCS pump.

Both CCS train are used during a normal cooldown whici can reduce RCS temperature to 140 F in about 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br />. Cooldown can be accomplished with a single CCS train, however, RCS cooldown to 140 F will take longer than 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> (Ref.1).

Following a LOCA, an ESFAS signal automatically stans the idle CCS train B, isolates the non essentialloops, and opens the CCS control valves downstream of the DilR heat exchangers, During the injection phase of ECCS operation, the DHR heat exchangers do not transfer a significant heat load to the CCS, During the recirculation phase of ECCS operation, the DHR heat exchangers, ECCS and Reactor Building Spray pumps can impose design heat loads on the CCS. The CCS is monitorect for high radiation levels in the A and B train coolant. Radiation monitors are located in a CCS side stream flow path parallel to the CCS heat exchangers.

3,7,4 System Success Criteria A CCS train can successfully perform its safety related cooling function if: (a) flow is maintained to essential heat loads with one CCS pump,(b) the respective CCS heat exchanger is cooled by the Essential Raw Cooling Water System,(c) water inventory in the CCS train is maintained, and for train A. (d) the non essential loops are isolated.

73 3/91 l

L . .

Bellefonte ! & 2 3.7 S comnonent Information .

s l A,2B, and 3A A. Component

1. Rated flow: 8745 Cooling gpm @ Water
2. PumE,0 ft. head (109 psid)
2. Rated capacity: 100 %
3. Type: centrifugal B. Component Cooling Heat Exchangers 6A,7B
1. Design duty: 113 x 106 Btu /hr
2. Rated capacity: 100 %
3. Type; shell and tube C. Component Cooling Surge Tank
1. Volume: 343 fr3
2. Design Pressur 50 psig 3.7.6 Sunnort Sutems and Interfaces A. Control Signals
1. Automatic
a. Low supply header pressure in CCS train A will automatically start the standby pump in that train.
b. Loss of reactor coolant pump seal injection may cause llPl/ makeup pump 3B to be started (see Section 3.4). CCS train B will be automatically started to cool HPl/ makeup pump 3B.
c. An ESFAS signal automatically starts CCS train B, isolates the non.

essential loop supply and return headers from CCS train A, and opens the CCS control valves downstream of the DHR heat exchangers. The standby CCS pump in train A does not receive a start signal.

2. Remote Manual The CCS pumps can be actuated by remote manual means from the control room.

B. Motive Power

1. . The CCS motor driven pumps and motor operated valves air Class IE AC loads that can be supplied from the standby diesel generators as described in Section 3.6.

C. Other

1. The CCS heat exchangers are cooled by the Essential Raw Cooling Water System (ERCWS, see Section 3.8).

2.- Lubrication and cooling are assumed to be provided locally for the CCS -

3. C ump room coolers are cooled by the ERCWS (see Section 3.8).

Power sources for these room coolers have not been determined.

.3.7.7 Section 3.7 References

1. Bellefonte 1 and 2 Final Safety Analysis Report, Section 9.2.2.

74 3/91

.: e:  :

, i< <

ji ti- < i 1 _ I

(

i lr y X  ;

+ +

EE X X X X X kE

-, -, 1 1 1 1 l' - ,

a il il il 11 ili 11 i

il ilis ,il  :

v i: is v

i: 1 s s is v in v

z E

M W E E e i

u e

S$ 3!

Vi -

l -[-i,Ii Vi -[fAi ' ll = i X Xi $1 '"I i I I a I

E EI X e

i f f f

,i $1 g Il I Il 9 V

u

! i L 75 3/91

e

== = = en =,u,=-

  • o g cc.> = cc. m  :

SUPPt.Fftou 1peEET t O X O g

DIG- ,

cc, ,,,

r= A o =-

= ,u- . . = ,.

g= =,u

,= ,. m.

i 8

Ot.t3 A

- .- .J.E .,L,DG

. =

co wu .m o = = ~e , -,

_g co== m - .,-Ea. to m

, OXcc**>r ac u- co . =

1 4 CCSser A

^

,.,o _

utnuas soass EteENTIAL EOulptBENT AC cutsP1A9 Wm Cottigte EEp i

4

"* Om me,unsru.m coou museca.ntsen.vose

.- u O.., OXarra ac e P- ==

OK.= O O coau.

og,,. .,

_ _ O O

. X X.

m- X. -. .N- - =X. X.

m X

m.

X

r. ,

O][= -D4-{ invoo- cootE===

}-b4- o][= = ,

O][= = Pu- = = = =

  • ce='Ea

) - o][= =  ;

i , 4

.ic.u- .mco=Em a ,

M= o

,-D4-ac eo=

u , m.

. men . P.Eo,.=.=u=. =

}

nc Pumur ter um cocu,t. m

-DG-

=

ac u--m eE==

comm e-o= ===on

.u Um i 1

e comEn,.

g,,,, Rc Punse ser SER AREA COULER  ;

i,

< r- == ar I,

. , , , = =

X ru. ==4 ,

.T .  ;

. t m

I ff Tuples TO 91EEY t 8'ETt8'" 4>oER w

D

~

I Figure 3.7-1. Bellefonte 1 Coenponent Cooling System (Sheet 2 of 2) ,

i 8

a i'

I

t E tE . tE E 14 a

t 1r! ri 1

t 3 E] .

, , i, P

4 6 a  :
*  ; a 1 -

I Fl l x i 1 1 x i x l k ! F1, i?

l

~

l s

, <, <, e f;i *s 5 it<g il (5

,dll i lg is i<sg <3 el i}-

< '

W  ! 0 5

7_, i, .#

e E.

ski ski b u . ..

=

e 7 at r,n ; e e,i

,8

!s II .- 15 = . fr V c's 1 gg t ., 8g g . da i y, 0..,; 'ul ". v.,i h,; 'a l" ig oEi oEl Ski cEi c6l Y! f I 1 .

)., (,,I h., I 3; a

, tZ tZ a

: : _, a

'A r r r 4 4- r r r ,E i  ! ! I' 'l i  ! !

n n 3 lo j!:!=>111 I o {!: i

=> -

Ill 77 3/91

1 I

1 i c ,.

, r _4 - .. ..

huma

'lll 7.

y

.c Y_ ,c! D g ,

e - g

~

' OEf OE!  ;

t k8 5

's Ir E

e a f", e A

i e e oE j s , , , .

.f; i , i li; 8- il.i l e i l li 1

t li t

i e

e

'A i *i r i j i i  ! i I I~ i si i I l s! i i

.ll 'i I

!I

,e

.I ,lie ,

l r r  ;'

ic ts i I$

ie ts e

,i t! i ll m A

I -

W gg < ) ig a y <

W hj E E W W W L W L' W y W W W 3 , a h b- h I k E I -

a t

g; ii g

_ ir g-

, il . oEi a

! m s il 5 l  ! c .

i I !8 il 8 e II.

=,

it- [g _i oEi . v _ 1 m I i y - ,. ,_.. g

,7,s.

.., Le u

- 'I

= 05,;  :

, a j E, 78 3/91

Table 3.7-1. Bellefonte 1 Component Cooling System Data Summary '

for Selected Components COMP. POWER SOURCE EMERG.

COMPONENTID TYPE LOCATION POWER SOURCE VOLTAGE LOC?. TION LOAD GRP.

'CCS-136 MOV CCWPMFM4A UNKNOWN 480 609SGRMB ACB CCS-137 MOV CCWPMRMA UNKNOWN 480 669SGRMA AC/A  :

CCS-313A MOV CCWPMRMA UNKNOWN 480 669SGRMA AC/A CCS-3168 MOV CCWPMRMB UNKNOWN 480 669SGRMB AC/B CCS-375 MOV CCWPMRMA UNKNOWN 480 669SGRMA AC/A CCS-376 MOV CCWPMRMA UNKNOWN 480 669SGRMB AC/B i CCS-HX6A IM CCWPMRMA CCS-HX7B IOC CCWPMRMB CCS-P1A MDP CCWPMRMA BUS-t ET T A 6900 649SGRMA AC/A c

  • CCS-P2B MDP CCWPMRMB BUS-1ET1B 6900 649SGRMB AC/B CCS-P3A MDP CCWPMRMA BUS-1ET T A 6900 649SGRMA ACIA e

s .

Table 3.7 2. Summary of flelltfonte CCS llent Loads '

iMentini i nnn A

- HPI/ makeup pump 1 A and 2A lube oil coolers

- DHR pump 1 A seal and tube oil cooler

- DHR heat exchanger lA

- Reactor building spray pump 1 A seal and bearing cooler

- h ntintInnpB

- HPl/ makeup pump 3B lube oil cooler

- DHR pump IB seal and tube oil coolers

.  : DHR heat exchanger IB

- Reactor building spray pump 1B seal and bearing cooler Non Nntiali nnn (inside contninmenti

- Letdown coolers Reactor coolant pump seal ama coolers Reactor coolant pump motor and lube oil coolers

' Non Fcientialimp (outside containment)

- Spent fuel pool coolers

- Reactor toolant pump seal rtturn coolers

- Reactor coolant drain tank cooler -

- Waste disposal evaporators

- Waste gas compressor

, - Reactor coolant biced evaporators

- Sample coolers (pressurizer, steam generator) 80 3/91

o .,

Bellefonte 1 & 2 3.8 ESSENTIAL RAW COOLING WATER SYSTEM ,

3.8.1 System Function The Essential Raw Cooling Water System (ERCWS) supplies cooling water from the ultimate heat sink, the Tennessee River, to essential and non-essential components and systems, including the component cooling system heat exchangers and diesel generator coolers. The system is designed to provide a continuous flow of coohng water to systems and components necessary for plant safety either during normal operation or under abnomial and accident conditions. The system also serves as a backup source of water for the Auxiliary Feedwater System (see Section 3.2).

3.8.2 System Definition The ERCWS is a once-through system that provides cooling to engineered safety featun:s and various non safety equipment of each unit. Each unit has two ERCW trains, A and B. The two A trains are normally cross tied, and operate in a " hydraulically-shared" configuration. The two B trains also are cross tied. There are a total of eight ERCW pumps for both units (two per train) located in the Intake Pumping Station wh.ch supply water from the river to the components to be cooled, and discharge the water into the cooling tower basins. The intake well for each unit is divided into a Train A half and a Train B half by a stationary screen which has grid openings that allow water now b tween the halves.

There are three ERCWS booster pumps per unit, one in train A and two in train B. These pumps increase the ERCW pressure in the supply lines to the reactor building cooling uruts located inside the primary containment.

Simplified drawings of the ERCWS are shown in f igures 3.81 through 3.8 4.

A summary of data on selected ERCWS components is presentd in Table 3.81.

3.8.3 System Oneration Water enters the ERCWS from the Tennessee River through the mtake structure and travelling water screens. The ERCWS can be operated as either a hydraulically shared (i.e., Units 1 and 2 cross tied) or unitized (i.e., Units 1 and 2 isolated from each other) system. The normal configuration for ERCWS operation is as a hydraulically shared system. In the hydrauhcally shared connguration, the supply headers of one unit are cross-cor eted though normally locked open, manual valves to the corresponding supply header of the other unit, in this confi;;uration, the system is designed to supply, with only one plant wide train consisting of tiree main pumps and all booster pumps on that train, the minimum flow requirements for a postulated worst case accident condition. As a shared system, two main ERCW pumps (one in each shared train) are considered installed spares.

A single spare uninstalled booster pump is also provided.

To operate the ERCWS on a unitized basis, manual valves must be closed to remove the cross tie that exists between the units. In this configuratior,, only one unitized train (two main ERCW pumps and all booster pumps on that train) is necessary to supply the uanimum flow requtrements during accident conditions.

In either mode of operation, cooling water discharging from the various heat exchangers is normally conveyed to the two natural draft cooling tower basins in the Heat Rejection System (evaporation in the cooling towers removes heat transferred from the main condenser to the Raw Water System). During normal operation, when the cooling towers are in operation, the discharged cooling water provides all makeup requirements for the evaporati ve and drift losses in the Heat Rejection System. During LOCA or loss of off site power conditions, the ERCWS water is discharged to the yard holding ynd.

The ERCW booster aumps are provided to supply a pressurizec source of cooling water to the reactor builcing coolers. These pumps provide sufficient pressure to prevent flashing of the water due to the high temperatures in those coolers during a LOCA.

There is one booster pump fc,r each reactor builcling cooler. During normal operation, the 81 3N1

Bellefonte 1 & 2 booster pumps are used to supply cooling water to the reactor building coolers and the auxiliary control room air conditioning units. Flow to the secondary containment air clean-up unit also is provided from the booster pumps during a LOCA.

The ERCWS also provides an alternate source of Gre protection water in safety related areas under conditions when the primary source of fire protection water is no longer available. These provisions consist of an inter tie between the ERCWS and fire protection piping in both the intake Station and in the Auxiliary Building. Separating the two systems at each interconnection is a minimum of two locked closed valves.

In the event of a loss of offsite power, all available ERCW pumps are automatically restarted in sequence and powered from the standby diesel generators.

3,8.4 System Success Criterin in the hydraulically shared mode of ERCW operation (i.e., Unit I and 2 ERCW cross connected) and the worst case design conditions, the total ERCWS flow requirements to both units is 36,319 gpm (Ref.1 Table 9.2.12). This now can be provided by three of the eight ERCWS pumps available at both units. The worst case design conditions include a LOCA in one unit, shutdown of the other unit, loss of offsite power, loss of train A power plant wide, loss of the downstream dam, ERCW source water temperature of 95'F, a safe shutdown earthquake, and AFW makeup to both units supplied from the ERCW system. The ERCWS pumps must also have access to a water supply from the intake pumping station, and an intact and unblocked flow path to supply the essential heat loads served by the ERCWS described t.nder the conditions deserved above, the Bellefonte FS AR (Ref.1, Table 9.2.1 2) lists the following ERCW needs:

Plant experiencing the LOCA: 19,939 gpm Plant proceeding to hot shutdown following loss of offsite power: 15,485 gpm An additional 895 gpm is required for ERCW strainer backwash.

In the unitized mode of operation, this backwash now rate would have to be provided for each unit, resulting in flow requirements of 20,834 gpm (LOCA plant) and 16,380 gpm (hot shutdown plant). The rated flow from a single ERCW pump is 13,300 gpm @ 200 ft. head. Based on this infomiation, it appears that the ERCW success criteria for unitized (i.e., not cross-connected) operation is two of four ERCW pumps per unit.

Most likely this implies that two of two pumps in one ERCW train are needed.

3,8,5 Comoonent Information A. Emergency Raw Cooling Water Pumps (8,4 per unit)

1. Rated flow: 13,300 gpm each @ 200 ft, head (86.1 psid)
2. Type: horizontal centrifugal B. Booster Pumps (6,3 per unit)
1. Rate flow: 2,800 gpm @ 135 ft. heat (58.4 psid)
2. Type: horizontal 3.8.6 Suooort Systems and Interfaces A. Control Si;;nals
1. Automatic An ESFAS signal at either unit automatically starts a.ll ERCWS pumps.

82 3S1

o- .

Bellefonte 1 & 2

2. Remote Manual .

Adequate instrumentation and controls are provided in the rnain control room and the auxiliary control panel for the operator to control and monitor the ERCWS as needed to achieve a safe shutdown condition. i B. Motive Power

1. The ERCWS pumps are Class lE AC loads that can be supplied from the standby diesel generators as described in Section 3.6.
2. ERCW control power is supplied via 125 VDC Intake Pump Station Disuibution Panels I A and IB (see Section 3.6).

C. Other

1. 'Ihe ERCWS pumps are assumed to be self cooled.
2. ERCWS pump lubrication is provided locally.
3. Ventilation fans and heaters for the intake Pumping Station are powered from 480 VAC MCCs IE3 A and IE3 D (Unit 1).

3.8.7 - Section 3.E References

1. Bellefonte 1 and 2 Final Safety Analysis Repon, Section 9.2.1.

l

^

ll p

i.

L l'

83 3/91

a -

il el h oki 'Il tki tEi tEi tXi g: tZi b t:

Xi Vi {i sXi  !!jlji SXi l

Okl obl Gi I!ll y Xi Xi SXi j-1 1 5 Xi )

oXit e z

8[ 82 [I 8

[ d' [ . XI , y Xi eXi 5 #I 1 1 kk h[i hh h h Xi XiI'l

~

tEi &X! Xi Xi Xi y Xi Xi &X oXII*f I

I 1

  • 3Xi Xi -Xi Xi X Xi Xi

Il l1

!lIi tXi li Xi gj 'j ffi tXI

.. ee  :

8I N e Xi oKiloKi kl e

ls in e sXll -li g SVi Xi ri vi r e1;l!-

I- I11 84 3/91-

I -

e .

03 i tkiikit$i

~

tMi g tYi .!

l "ti I! $"i 2:ii I Iltj Ieu e

{III -

S:i:i

( 0 c l

O Ox OEi (

e l

$i hi .

l Sli

(.g

( i _ i -- -

01<1 - -

l=2 P

.- khlkk-

, ,. 1 J- r .s j -,. ,, ,.,, J l

m,. ,..,

lc 1 ,. .  !

!ll i! !! 11!ll -ll _ li !li;I!  !

i0 +xi iHi iI, -

, i 2 2 +a xi +xi +x J. xi Eig 5, .

t$i oEs :si Xi Xi X 11' Ei 6: I [' oEll* f i !

I 8 - -

i exi zi xi xi x 11 - -- -

a:

l II.li a -

p

!;ulij

  • ll,,

xi it ee i tp 'tp gj iL Io ' 'I' " h*

exi CEllOxit ns g g

() i) 5 t 0 i Q I

y

-=

i. _

e

~

Xe

' l i fa. r t i- . i  !  ;

l e I,.gi - -

!
i 11 85 3/91 1

l

--_ _ . _ . _ ____ . _ . _ __._. .._ _ .- _.. ,__ _ ., _ .. ,._ _ _. . ..a

s .

I e

Y k' kl tki tki tki tka fLi fLi Xi Vi

{i SXi gigil et i;h[il c

sXI eXi 8

ob! l &Xi &Xi =

SfE SXI eXi sXi f E

E X

oXI i oX[I i S X X*a SXi XI SXi y Sp

!g!

Sp g 2 { yl -

eg

, {

.__ v n i.-g  !!g!lg s

l i Ill

- I 9

&Xi  ! / l &Xi W- i/l i }j g" a y ay .i eX: &Ki &XI&Ki XI Xi Xi Xi XIlXi j g i e a tki&Xi X X X OXg

~

yi oXe~ oXil' Xi -

i 3 Xi Xil X X X 4 In! gi ij exigj si si ";

x; . . ,

e::i oK!!oKi "ki S5 S8

?

ll! I lll E I eXi li  :: si ss g

XE f f i 2 fllgl i I 86 3SI

\ .

i I E 8

, d. -

4 9l l tkitkit$i th s tIl ti:t  ! .

fI f' i !IllI  !!dli"

! sg! s;i:i i f:

1 1 "i i i I lll1 di t d:t -

e:i e:; -

1.

I SVI 3f3 '

3:i:i 3:s:i  %

l M,

I a "

f lj i .s a

. _ _ I i 1 i de:li i i ..

I 1 - .. di:1 ..

- ,e.

3 3I 3 -lh

'El. SEi Ei[ 3 11-l i . . _ ._

[ '

h

"; i i l 1 i l'~

a

at

'i 'I

' i *..

l b(i b(I b(I  : Ni -' d lsk Ni Ei t

, _. ~ Si" , 3 tIl 6:3 X X X djll ji l dij  ; dell " Xi !g g

- - , _ _ e.

s:(i Is xxx - - -

i l ,gg- m  :< - ::: 1 J .ig in f;;;yij; Sztl  ; '

fit fi:ii iw

- . ee ., ;. ,

(-

%)(i .dshld(i ,

._ _ , ,3

.  :!,[i Di/llll Dr

,-ws q-e:

i*

lh q q

l$9Y i '3 8, d I 3 $f 3

S hl-M _r e.

l l

M x; _

g i

u j

_f i i  ! -

l >1  ! Ill I -

( I  !

87 3/91

Table 3.8-1. Belleronte 1 Essedst Raw Cooling Water Sptem Data Summary for Scletted Components POWER SOURCE EMERG.

COMP.

POWER SOURCE VOLTAGE LOCATION LOAD GRP.

COMPONENT ED TYPE LOCATION MCC-1E2A 480 669SGRMA AC/A ERCW-161 A MOV 610ABCOR MCC-1E2A 480 669SGRMA AC/A ERCW-268A MOV RC-SCA MCC-1E2A 480 669SGRMA AC/A ERCW-275A MOV RC-SCA MCC-1E2B 480 669SGRMB AC/B )

ERCW-2790 MOV CCWPMRMB MCC-1E1 A 480 669SGRMA ACiA ERCW-295A MOV DG1A-ARM MCC-1E1B 480 669SGRMB AC/B ERCW-2968 MOV DG18-BRM MCC-1E1B 480 669SGRMB AC/B ERCW-310B MOV RC-SCA MCC-1E1B 480 669SGRMB AC/D ERCW-3168 MOV RC-SCA MCC-1 E2B 480 669SGRMB AC/B ERCW-3238 MOV RC-SCA MCC-1E2B 480 669SGRMB AC/B ERCW-330B MOV RC-SCA MCC-1E2B 480 669SGRMB AC/B ERCW-598 MOV 610ABCOR BUS-288 480 669SGRMB AC/B ERCW-BP118 MDP CCWPMRMB BUS-298 480 669SGRMB AC/B ERCW-BP128 MDP GCWPMRMB CUS-25A 480 669SGRMA AC/A ERCW-BP13A MDP CCWPMRMA 6900 INIK-ERMA AC/A MDP INTK-PRMA BUS-1ET2A ERCW-P1A BUS-1ET2A 6900 INIK-ERMA AC/A l

ERCW-P2A MDP INIK-PRMA 6900 INIK-ERMB AC/B MDP INTK-PRMB BUS-1ET2B ERCW-P3B ~

BUS-1ET2B 6900 INIK-ERMB APA ERCW-P48 MDP INTK-PRMB w

D -

_ _ . _ _ _ N

6 .

Bellefonte 1 & 2 3.9 CONTAINMENT COOLING SYSTEMS .

3.9.1 System Function The contatnment cooling systems consist of the Reactor Building Spray (RBS) system and the Reactor Building Cooling (RBC) System. These systems cool the containment t.tmosphere and reduce contamment pressure following a loss of coolant accident. The RBC system also provides reactor building cooling during normal operation.

The Essential Raw Cooling Water (ERCW) system completes the heat transfer path from the RBC system to the ultimate heat sink.

3.9.2 S ystem . Definition The Reactor Building Spray system consists of two redundant loops that contain a motor driven pump, valves, a senes of spray nozzles inside containment, and necessary piping and contmis to draw water from the Borated Water Storage Tank (BWST) during the injection phase of operation, and from the reactor building emergency sumps during the recirculation mode of operation. There are no heat exchangers in the RBS system.

The Reactor Building Cooling System consists of three indep:ndent units, each consisting of a exling coil and a two speed fan enclosed in a ducting network inside the primary containment.

Simplified drawings of the RBS system are shown in Figures 3.91 and 3.9 2 and the RBC syst:m is shown in Figures 3.9 3 and 3.9 4. A summary of data on selected containment cooling system components is presented in Table 3.91.

3.9.3 System Goeration During normal operation two of the three RBC units operate at full fan speedt the standby unit is isolated from the containment by a damper, but has continuous cooling water flow. Following a LOCA, the two operaung units automatically provide initial cooling. An ESFAS signal indicating reactor building high pressure transfers the RBC system to its emergency mode and will: (a) reduce fan speed (to reduce power requirements),(b) reconfigure the cooling system valves, and (c) start the idle fan. The RBC system is fully operational within 30 seconds of the ESFAS signal. Cooling water is provided by the Esserc.!al Raw Cooling Water System.

The RBS system is in standby during normal operation. The reactor building high pressure signal starts the RBS pumps and opens the valves. The system is at full capacity 121 seconds after the LOCA initiation. Suction is taken initially from the BWST, but after tank water level falls to the low level setpoint, the pump suctions are automatically transferred to the reactor building emergency sumps.

3,9.4 System Success Criterin Success of the containment cooling systems is based on removal of 100% of the required heat (296 x 106 Btu /hr) from the containment. Minimum system availability requhed to adeountely cool the Reactor Building can be any of the following combinations of the RBS andkDC c'ains:

- Full capacity of the RBS System (i.e., two of two RBS trains)

- Twoahirds capacity of the RBC System, or (i.e.,two of three RBC coolers)

- One third capacity of the RBC System and one half capacity of the RBS System (i.e., one of three RBC coolers plus one of two RBS trains) 89 3/91

4 .

Bellefonte ! & 2 3.9.5 Comnonent Information -

A. Reactor Building Spray Pumps l A,2B

1. Rated flow: 2040 rpm @ 575 ft. heat (250 psid)
2. Rated capacity: 50%
3. Type: Centnfugal B. Reactor Building Cooling Units l Al A, IB1 B,1B2 B
1. Design heat load: 148 x 106 Btu /hr
2. Rated capacity: 50%

3.9.6 Suonort Systems and interfaces A. Contml Signals

1. Automatic
a. An ES' > ' ilgnal will start the RBS pumps and any idle RBC units on high res m the primary containment.
b. Or 1C units will be shifted from fast to slow speed.
2. Renx The, and RBC units can be started by remote manual means fron - oom.

B hiotive Powei

1. The RSS pumps ar.d RBC units t e Clase IE AC loads that can be supplied from the stanery diesel raf 'ators as described in Section 3.6.

C. Other

1. The RBC units are sooled by the Essential Raw Cooling Water System (ERCWS, see Section 3.8). Note that the ERCW booster aumps increase the water pressure in the supply line to each RBC unit so tint any leakage will F: Wo the containment, and flashing will not occur in the coolers.
2. The dbS pump seals are cooled by the Component Cooling System (see Section 3.7).
3. The RBS pumps and RBC fan cooler units are assumed to be locally lubricated.
4. Room room. The coolers AHUs (air handling are cooled units, by the ERCW AHUs) are pS (see Section 3.8) and ar powered from 480 VAC Class IE MCCs IE2 A (pump room l A) and IE2 D (pump room IB).

3.9.7 Section 3.9 References

1. Bellefonte 1 & 2 Final Safety Analysis Report, Section 6.2.2.

l l

l 90 3S1 l

$j $: . . 1 1.:- li  : - l1 y 11 HJ, <

1,9 1,,9 l',* Ir eXi eXi , f tXi tXi 1

d l 0 ll 0: :j 0: :g E,

3: :s El E ,

s y

1 [

' m y

i oi :1 ski eXi ski sXi 5 o-] :i eXitXi sXi tXi [!

=

b -

.s s x ~

j i T , '

5 txi qi ,

li tXI yi li 'II' L ski xi1l!si!1 xi  !

L  !! txi li  !!!, tx!

,ll . tii o

t a oxlt$r oxi a s 91 3/91

I r

i I ***' I I ==o== .c na ac ec 1 1 [ .  !

m

.-sr 9 1

.M.. a c.

% ., s 90 RATED W.YER STORAM TAret i 1-p (O M 'SN l to I *'a "= I a*S - I = = I.

I =*= W

.. some.

mw . +

i ......

7--i !c n.

4 sr= ** = a s l

+:

+ to Q to i

+;

, , , , , . ,g e

g, ,,, 3 m.Nu . .

.R 4.#m.

.7. a A  :

j f t,

,_m ,

4 W maa

- a-I

s - - -

map. . pc tc l

+ u, Wme 44 N 14 Aps0 9es. tC .25 a (C r.

er i

I l j to to e28 a W

"" a cr-e .r LO SP.4mv .4 eDF = a o,L& ----

M ?i '

a i a i h nion su as. a

-l -== ,,

55=

sp.uv .

Acortwe i- var. -a [

[ e,c a 1

.y b

4 ,,

r==_=_c.ro.n

.. .. s,E. o i w I 2,, .

S - r..--. , .c.ro . .r  !

4, .  ;

I ...... l [ g ..n, t

' I Figure 3.9-2. Bellefonte 1 Reactor Building Spray System, Injection Mode Showing Component Locations l t

I i

a

8 e 5: . 1 ,

s:5 1 _.

1 0 . - {i s,:i

. e

_  !-< ,1 e 3 f Uf Yh u= k,h t" r 9 a W _,. E!  !!

B,A,.s S,15 "

2 1 4 3

8.

fli tZi  !

oilj---i i l dij oy c.q,F- .[

3

......... ...... m

  • 3 b j . . .

i H

s e r'  ! 2 e

- j j - -

o

.e g

0-II Ski 9ls',! BkiBli I  : 1 l _ _ - _

a 0-Xi eXitZi sXifli a L l A j di H e

r<

e di --

l t 8.

I  : *

- i . Ef

l. l t2-,, .5- i s=

fO I '

E

$syl CC t;,,3

. ga Elg- u g=l e

E el ,

B

- g a 1

s I li!

r- 1 I E l

5 m

a

!!  !,  !, tZi 5" i aj!.. t$1 I,

el .

- e  : e g 3 e

! n 1 *a "

5 I ,

_ r -u _

m b i 3 93 3/91 l

f .

NOTE- 1. CONTROL VAL'dS 664 A,  !

665-8 AND 666-8 ARE SET  !'

AT 50 PSIG. ,

i 2. iREFER TO ERCW SYSTEM i DIAGRAMS FOR DETAILS ON COOLANT SUPPLY 6 AND RETURN PATHS.

FROM ERCW I

749-A ERCW- 270-A

% A 272-A ERCW- 91-A 664-A TO ERCW A RETU N TRAIN A 268A HEADER 275A FEACTOR BUILDING FAN COOLER 1 A1-A

, (RBC. FAN-1 A)

r I

f FROM ERCW 750-8 312-8 l

% y TO ERCW 8 RETURN TRAIN B ERCW- & 314-B ERCW- 476-B 665-B HEADER 310B 316B REACTOR BUILDING FAN COOLER 181-B +

(RBC-FAN-18)  !

FROM ERCW 751 B ERCW- 325-B

% 327-B ERCW- 318B 666-B TO ERCW E RETU M TRAIN B e6 HEADER 3238 -

3300 t

REACTOR BUILDING . i FAN COOLER 182-8 I (RBC-FAN-28) i t

i Figure 3.9-4. Bellefonte 1 Reactor Building Cooling System [

l

o j

NOTE- 1. CONTROL VALVES 664-A,

~

665-B AND SEGB ARE SET AT 50 PStG.

2. REFER TO ERCW SYSTEM DIAGRAMS FOR DETAILS RC-PC [ ON COOMNT SUPPLY l

AND RETURN PATHS.

TO ERCW A FROM % I ERCW 749.A I

I'ERCW :

. 270-A ~ 4&

272-A ' ERCW- l, 91-A l

664-A RETURN t

L 27$A , UEADER

( TRAIN A ' 268A l REACTORBU1 DING l

- FAN COOLER 1 A1-A (RBC-FAN-1 A)

I I

  • TGERCW 8

$ FROM i, 4 ~314-8 I ERCW-i 476-8 665-B RETURN ERCW 750-8  : ERCW- 312 8 A HEADER TRAIN B . 3108 3168 REACTOR BU1Dt*JG l l:

', FAN COOLER 181-B i' (RBC-FAN-18)

LO. LO. O f  % IM > TO ERCW B FROM l- i i IV 327-8 ERCW- 3188 i

666-8 RETURN l

ERCW 751-B 'ERCW : 325-8 A HMR TRAIN B 3238 3300

- REACTOR BUILDING .

FAN COOLER 182-B ,

{

(RBC-FAH-2S) l I

g Figure 3.9-5. Bellefonte 1 Reactor tiuilding Cooling System Showing Compocent Loretions

L Table 3.9-1. Bellefonte I Cen*_sinment Cooling System Data Summary for Selected Components p

-~ POWERSOURCEi EMERG.

COMP.

POWER SOURCE VG:TAGE LOCATION LOAD GRP.

COMPONENTID TYPE LOCATEXG BWST IK BWST MCC-1E2A 480 6G9SGRMA ACIA Yft *04A MOV 610ABTRNA MCC-1E2B 480 669SGRMB AC/B DHR-1048 ,MOV 610ARTRNB BUS-254 480 669SGRMA AC/A RBC-FAN-1A FAN RCPC BUCr288 480 6695GRMB AC/B RBC-FAN-1B FAN RC-PC l AC/B FAN RC-PC BUS-29B 480 669SGRMA

'r4BC-FAN-22 MCC-1E2A 480 669SGRMA AC/A

~RBS-31A MOV f0-SCA MCC-1E2B 480 669SGRMB AC/B RBS-64B MOV RC-SCA

, BUS-1 ET1 A 6 sos 649SGRMA AC/A RE3S-P1 A MDP RBSA'MHM e r e __

6900 6495GRMB AC."d RBS-P1B ' aitvP RBSBPMR5J ' BUS-1ET16

~

SUMP-1# TK HCrPC --

NVA-1 B *TK HCrPC ,

l I N -- ._ '

1

) -

u D

o ,

l Belletonte 1 & 2

4. PLANT INFORMATION .

4.1 SITE AND BUILDING SUMM ARY The Bellefonte site is 'ocated about seven miles from the city of Scottsboro,in Jackson County in north-east Alabama on the west side of the Guntervilfe Reservoir which is supplied fmm the Tennessee River. A general view of the Bellefonte site and vicinity is

[ shown in Figure 4-1 (from Ref.1) and a simplified plot plan is shown in Fipure 4 2. The major structures at this two-unit site include the containment buildings, auxtliary, control, turbine, and service / office buildings, and two hyperbolic natural draft cooling towers.

Bellefonte 1 and 2 have steel.lfned, post tensioned concrete primarv containments surrounded by a free standing reinforced concrete secondary containment building. The Auxiliary Building,locatet between the two containments, houses the purification and makeup system, component cooling system, the Class IE electric power distribution system, and the spent fuel storage pools as well as front line transient and LOCA mitigating systems (i.e., AFW system, ECCS, and Reactor Building Spray Systen). The Auxiliary Control Room also is located in the Auxiliary Building.

The Control Building is located on the west side of the Auxiliary Building, with the Unit 1 Diesel Generator Bu Iding to the nor'h, the Unit 2 Diesel Generator Building to the south and the Turbine Building to the West. The main control rocm is on the 673 foot elevation of the Control Building, with the cable spreading room immediately below.

The intake Pumping Station is locatec at the end of an 'ntake channel from the Gunterville Reservoir and houses the Essential Raw Cooling Water pumps for both units.

The F.RCW system provides cooling to the Component Cooling Systern and other essential equ$nent and systems.

Each unit has a closed cycle cooling system single hyperbolic natural draft coolirWve that rejects heat from the Balance-of Plant to the atmosphere. These cooling towers @ K, serve as the ultimate heat sink for safet' related systems. ERCW discharge water serm makeup to the natural draft cooling tower basins.

4.2 FA%ITY LAYOUT DRAWINGS Elevgit.t. views of the the BellefoW t.ontainment and auxiliary, control and turbine bWdings te shown in Figures 4 3 to 4 5. Simplified layout drawings for the Bellefome I contslecmt, auxiliary, and control buildings are presented in Figures 4 6 to 4-

13. Similarlayou W,#gs for Belletonte 2 are shown in Figures 414 to 4 21. Elevation views of tt.c diesd genert.1 : building are shown in Figu:t 4 22. Layout drawings for the Unit I and Unit 2 diesel generator buildings am shown in Figures 4 23 to 4 28. The Intake Pumping Station is shown in elevation in Figure 4 29 and in plan view in Figures 4 30 to 4 32. The fire wt,ter pump room is shown in Figure 4 33.

Major rooms, stairways, elevators, and doorways am included in the simplifies layout drawings, however, some interior features are omitted for clarity Labels printed in bold uppercase correspond to the location codes listed in Table 4 1 and used in the system drawings and component data listings in Section 3. Some additional labels are included for information and are printed in lowercase type.

4,3 SEOTION 4 REFERENCES

1. Heddleson, F. A.," Design Data and Safety Features of Commercial N;: lear Power Plants", ORNL-NSIC 55. Volume III, Oak Ridge National Labora,W April 1974.

97 3/91 1

1

A: A. ss-a.a h 4 EAa; x -4, ---2

. - - - - + - 3- mn-4\ -a + - - - - ' ----s-u- 1a----4-h-M &n+- a a4-x--

O e

< d o g /b m, i

le c # g .

y joA  %; J . . .q \,.-. .l-

q N. n , . 3 f . 3 r ,f $ '}' )

')}E,f 3 h ,,N , '< 1 ,

(9

\ y i

[ M(o> "kf(4\t#$g,@fs

,s, i -

~

sli j &,,.

p s

hl u j, j e

=

, f, >' 0\

. . ll % , = .' glpG. v%,i .. pS* ?

t 5

^ ' i

,_ tj -

<< c  : .-

\%)$ljp\ / Y I , . .

p.[h[;l - -

f j

2 j,,M

'b i , . .

i.j' < hI '4

{

.\,t l, , ' l . ' ,ft ,

f h' \Yf,..{

f\

in f &z._ s.\....7' .

l;.1 Q 1' >$ &g;;.~ai/\f9~$v

2 . k a ,< $ .v.

,, w .

., ,1 y

L., .. s. p 's' ~)<..; >, t ,.

y a,li;

'\, ,

o,%4, ,

. si s , e

/>

r z.7.a,j4 . /y ',

...! s u. .. . q.,

I 98 3/91 w - - -

m- ,e + - - 1 4

% ..g..............gmn....

. .. . . . .... .... .. . ... . ...... , v.

7 Bedt** T--

Pe=or se non '

Raeoed 8..sorg 3 irmes O*---- s- r-

. O p T.es Puae -eg 3,,,,,

wm~g

-;m.x q,g . - ., ,

.mw...

~ , CST e.m

% g ,.

&: W: t' l i :

  • r $

[:^(:  %

.:p- a:e q<.gy z: ,

' meet censonnee , ;.;hE.Q 3.W 'iW ; a? - 'g .  %+

a.

wd o., ^ ,. s, , _zg "M f morageTesi A*"

. 6@',ti% c"n TC'::M Q pgh.O M:h

f ge' m.

80*** S'* ""  ?;k % a ee 07 ir

..+~%,c Rh g';g.lg? , ;T.r;ww;A.%,r$bt Ma

~ b y: - ~~ ~ ~

_s

.~

c.w . y ma Enyamerme ,

,/w. o,,, n

. . . ' .c.

CoM

- waaer w* amq::J.u,m.

G1 f.d c%

<~- u. n*<vrm:one.

. -! :la.

- /r.;.1 a t y 9;s..q.'y.,,. ,g::.vn %s/.,so^? ,n. ,n;, . ~ . , f' f.

L t%

%:.:.?QtD:' ,^.17 gy d',y Mi. y

.p p n

~ , . .'m. '

1 M, , .l.,. -

Q;g;sQ'g c m ? (p,,~l3/ i,q.,,94- ~[._

---J l tueesnere hey

..u

%.%:W.WV'h?  ? }mg'

.~ Q:p.4, - .- . '.- .$,l Case 'j iG Q' . ~

~ H.,,ee -

l'!: &

Y"*ygf 4' "p;; y .. i ; m 'v.=e VM:

~-f:

M --~

~

-l Q,,,,

ii w m%.S.

, % L DM. h. k_NM_ N ,gg g s W:s c- '. ;i One

m. n,.assig

$Ge** an' & . m

$
+gp#M*"**F

+1 ~~M&^

1:.W; w :AGeowaaer > ' y Q s es ,t 3 f \y. . . .

4maaaae.,f  :

C si .n. , . ~. -

C Roosedumon MM NMQ% Q" Up"C'H.y$. , $X3S MIM \ C ' II Em cd O'q%Wi '} Gh% h * ' . ,?;Hre$ ." $ ASYO \ \a,,,,,

, s eeng .h ~'

  • i$., b ;;.s . M"aQ.f 5 .

Hosen

. ; g a:; w*,gy g W w %gi;3.,'; pTw:w g: en pea, s e rum

, g - -

-n,wy w svg

, si,e.

b m.n ,

.g (m .-Q '46 '~^^'f j p y 'Q R 1,.'(Q-Serused waner .f J

. WQ Of ' + ">3:lQ #87 s.t.o. Tere Jc% Am.g. m.;d;l M. .IMyt u . , M+;fW-wc--

z

A . m . ., , .

8

>g .yN l Qf'. , ' y, i

y+kg.g i : n )N '

ef

'l ' '

J':x g

'. k; , pag 3 q $, ~

he'me a"6 p#9<AfiM.7,.3 MYa :" _

3' .J%& 'wM "zm6 - 'Mn ' :^

Recmes.on Canea-

' ' ' ./  : " "'m 1 E1guemiere

' %?::-M& r .

? hp !p:9h FoolOs FuelOi 1, di: G seerage Osiposeweg asum messe h Suom Tam a s ruiem ve== h==== 7 C,g,n- vah* N== wame m:r - -

l

'J . r-*=

f w.m_ . . . a3 .J

, , n a h_;

g g,,,g y,,,,, m;:g u am.Hee sJ.;

r .

f smop u" .

- m.yv t.a y

D _ om. - -

- - A r

Figure 4-2. Bellefonte Simplified Plot Plan  !

o 4 l

l yo"~ %n

,,/ '=-~ =.

-v l ,d,' .

.1 -

t <#T 3e .' N N J m/' '~ ~ lle:. N s , (

="=-

W'ck glI - - - ~ ~

N ')15 g _w -

., = , ,UT,  %., n

'lur gens ,,

-.1 ..

~~~~

\. '

i .

'rr a is::.. >=r l

... - _ , - - ~ ~

1 dJe ___.._ nd . en :a

=-( I. kY~~~~~ ur mm-jj

'f '

@g - -

=~.

I' -

l l$

i. a-2 . . ,

au-1:4. ,,

s 1 g-w

. m

,- .,. g

--m ..

3 *a p m -

pr' '~

i.e N

yg hs M

_ lME _l _

. .n hE!g d '-d h sg- -

y -

-- ?

' c n la

--4m 4:pu r4 l 9

==.-JjE A "t;":_ ' j - -

.pd p._ _

a a tl , c. .a l i, bt:u ib ~

~

.=.

l.,.

4 Figure 4 3. Elevation View of the Bellefonte Containment l

l l

100 3/91

l  ! ,l

(

3g Yt

[l j-l

,7wnr - ._ -

7"f e"

i r_

[

)

w ._

a dM4.

m m- 4a "7, ",

s i

a r

y-2 f

y3,#

a -

" .m o

l a

j!I )

.. l1i

! , 1 M

I

. ~ T .

h - ,

, m =~- t e

e

-N' 4[

I l 1j l

u h

)

i i.

, .n S

.r e E, -

- (

I  ;, =.

n -

_ rp f

o -

s g

g i n

7 e

s s

a d..

J, I.t F' ".o.

  • . . l-x.un d

l i

u a ' f ., 'l Il T.

f B

g-' "r l

,hTm

) o T },e r j

,I t

g gg ~ .

u n

s. ,

o pg r C

hrsm e

~

jj l

liF' { ,

d ij d

,. a n p

fg ,

~

i ,. a sE i ,

A ig ,

= .I$$g y

  • = i ,. ; *,.

! r

{

7 a

  • lIA_ "', L i i

l I7,@"

_ , x d'",m g:_T A -

, l A

u f,1 J' , f.

e

[ ,

7[ l

'. t n

G,s. 1g-@U o

',a

, f l

e 7

l l I .i l

e l

e

  • j ,

v9 =

h t

f

_=

_ o o /. "

m a! <-

a/g 7"  ?

i s

w e

w .

u wl a r V n

7' 1 ,

1

,C%.9,,g,. aa f ,'

i o

c 4~ ,

, t O m a

v l

e np

.I

,=

8

=

%m .

e u

- =

E 4-fd m m

4 q

e n

iI a

~a a.u m.

~i m~ %~E 4-T E e

r u

M n T, VgE i g

I F

h ,,i ' .

s ,,,

d

~

s . ,

"i J _

11 _

m 3 u'B~

. Il1ll

4 f

< E.....< . . . . . .

. -=:=

c.r ,

==. .

___ _ .a - - - - -

.9-- =-. -

'mN Vr' ~M Yh $ N Yks WY N *, ?N k- e.

  • 2m.1-? s W W

I

  • ri 7,,  ! 15 -

n 'd~ , ""h iH' # a- 5=

S.1 m = n=.

ri 1 1b;2 n .

Wrad. m"..~

F'tl .%b'"=r r M N r$ 41 ~~

r. iir? r="T1 ' '~

i g.,

i. -, a,nelN ,
h. ==~_n =~ ,, r(- . _'

gg,'.,.,,.,;.'  % ... ', .. , . .' '" _g . . .

.. . i

r. -_ -,/-

3... . . ...., .

,- , -- , l. .

_ _ _ _ _a o _ . i

. _ _ .3.

0;It

& r.c::

EI .=

w

~v:

r m a Ms w f~IIll M .s M L.iM iin Mc . M= [P t- .

g.

.g .

r" ."n a

a. . i i "h f"~b^. s$'.t4.LT..d saus v ,an=erK, . - -

tK o

.)

3 '

tEiii"~ gJ W. 2~ 4 l- Nar. ^l~h~

lE'w!

    • ~~

u~-;0

~

[,_M~ 411----e--rt 7

~ )I 3

. - . in. ...

.I -+Q. -

t c[7 ' i 'j _=-

.y ..m_ ,

. : :v -u - -

4 l

(

1 i

to

~~

i 4

- i Figure 4-4. Elevation Views of the Hellefonte Auxiliary and Control Huildings (Sheet 2 of 2) j i

UM i

a -

a rra s{,  ;-rwe < aus n=r

-- yD en I s ~

.c

~

~

- a~.n, i amar-a meus .

j,

~

O# ' ___ W _,

$'*er'm W

, Q ,

^*"

9' i a ner, l n mr-r2

, ---s _ __

em .i m .

\/1 M -

. . ry , men.

- n e,

't n inw y 3

.s.e f f) '~ hjisimImEmune summe  !

mm e llp ieau4ll>m sum >

I il I i JP ll 0 ll - M I

, I I l i "

yusr M isese h 4W -

I ' !<- I ,

J iM{*=

LI

- e=A = . deems wwmw

  • Ii r m:f I ,'

aner

,x i -l f22.L -> T-.

- itmeer menss .

o or -

earren  ; , ,

" ,,,,'",y orurm l l memir isr fi l mrsuraar l llr l mrecim , M QQ a 4, ,y 3 ma a,

' ' ~

a- ;l ,'araaau, y .

==aram

,  ; 1 m 7 y, f as i

i l

i.  ; jl-

". fw*n,

,is429 M i li

. .q. .

g' . . .

gygg g="==.' ,cu a n uro r r._r] gcg= 4,,,; ;, g,,.r-A 1[

ae, ,,,,,e ,,,,,

-c f, ga

=og- u-r. .

m,

yg,;gr,. ==g = sura =;

t - _

is

    • - l u n, an **ur 2 i _

i .

f' ... rra m . ,a saa,a s f=*i  ;

-' ~

1 ~' h"'"

aus===r-, 1 ac my - ,- ~

W- - &

a serog -s

, [ E Fsor es

( *' * *Z, M

/ ..__ - { g} g e

-QN uourner

,, ,,,,coes r gn= ,

's w

B Figure 4-5. Elevation M - ; of the Heliefonte Turbine Building (Sheet I of 2)

a J

m--ww __

re w--a a i n 7k f ~ ~ ~s i .--

i EU?fe... ., ,,... l , ll- - . '

.nGarila,,%

\

u n us. l m m. g.

[a m*

sersmr

~ m la<anraasr,--

< m  % E i ase m- 5N V mu> 4 g' ~.AMw NJ .

I_ g g*ca"u. .l~oon s is son t , ,

.e,o- ,r,,.

gggo \

\ ,. , - am{c mo amarmasaw unrr von nor- m rs i na i+ -, 6

- , , im -

l h

g -'~' . asesremer

  • ew* mM N

[

's__ *'**** g' see a cow'rn"25 u **" Ji in en

'I

(

p

. :) : ? - * , 5i + ,- 9 mus w .* l:

D / 71 \ 1 g , ,g y ,

as a .. 1 j . . .e in - -

~

i" j"* **^ Q , .

{

      • "'*}---

2 ' - _

-- =; . i

)

,/ aano f - ..

} _

c N,1 . . .

..4 __

ol, I g eEc Kr 'r g i ' mm

_sma e] ~,-i /-

wheria rese , gii g3

,,, 'W/ @KM~~

Nr' c' '  !- J

-Q

  • A W k -

L hi.;n-y, .

twW R R ji ,

D ;;__

g _

gm b =nsama ncm 4

~

1 u i D

Figure 4-5. Elevation Views of the Bellefonte Turbine Building (Sheet 2 of 2)

1' ,

I

-=~~>

Called North O  !=

FC Aunt en0 "

roa=> XX To lht 2 +--

y' U v Figure 4-6. Bellefonte 1 Auxiliary Building, Elevation 579'-0" 105 3/91

h a Ce rth CRDPSRM AFWTDPMRM m a \

"d890A5TR "69C ASCO

- To umt 2 \

g][

l O h  ! f !E $90ABTRNB EL

  • 5 Y mr 8% -

i e i now."'

I Tam c F"*C

, ResAPMRM RBSBPMRM

^

.ra'1 E

(Figure 415)

  • $ g d

- DHAPMRM U

! E U pHsPMRM D~

U

}

v D \

\vvPIT l

To Umt 2 4-- -

c o -

h To Unit 2 .

MC PC thli FWNY Contrwnent i

RC.8CA Secondrary SeconomrY Conenment Conwnrnent Annso.

l l

Figure 4 7. Bellefonte 1 Reactor Containment, Auxiliary and Control Buildings, Elevation 590' 0" ig 3/91

{

-a. ,

i To tht 2 % dVUIEl

, , n v v v Colled North O

% stoABCoR U 2 C () C

()

4

')

b 2 Q

) PPCHSA PPCHSL e

d CoI*Et 0

{ g \ / j p I and ntrol E a - no.

Elev. 61Otl*

um aIan -

.D . i ii;L (Figu'* 416) ...

.. () l e E

W 55 W f

/ g

"~"

)

2 To Unit 2 4--.

~

RC.PC tht1 j

Pnenery Pipe Containment Cn... .

N

- RC.8C A _

s .,y

  • Containment Co t Annulu.

Figure 4 8. Bellefonte 1 Reactor Containment, Auxiliary end Control Buildings, Elevation 610' 0" 107 3/91 1

'e ,

4-. To LW 2 [

O Called North (I~ D L

4-- To unst 2 h 626ABCOR O

Q v CCWPMPRMN CCWPMPRM O A B E O -C i o 3 6tlPEN 829 PEN e a E L_

d ci

^ I Te tw o r*

ram RC.PC Umt t

'C' Storage Containment

-, \

er,t==

id De RC.8C A r .m mo ,

onoa Conisernent Ann *e 3m5 Figure 4 9. Bellefonte 1 Reactor Containment, Auxiliary and Control Buildings, Elevation 629'0" 108 3/91

Q t ders .

% Ell 6 '

csR g M CeNe twowng Room O ,D ,

o 440SORMB I  : 2 To Unit 2 4--

O "

@ STVRMA y 64980RMA V h

-y OU w 649 PEN A 649 PENS

' ~

D Personne:

Unt2 Reactor Contamment -

Ausdery LQuipment R PC and Control Bodengs Tsn6W Canal Hatch N(

  • i Elev. 6401T run (Figure 418) $9 (

l 'r:

Smrage Contamment Cap

\

Ares y V RC.8C A g conmemeni Seconcery 8TVRM Containment 8 Anndus c o ;- -

m IB& ,

f To Hot Mechme Shop and Decontaminanon Facdily Figure 410. Bellefonte 1 Reactor Containment, Auxiliary and Control Buildings, Elevation 649'0" 109 3/91

O. e m

8m~d h --.-

CR O f Called North

  • Convol Room EL 6770* O "k (E g

D I

h 4- To Unit 2 h uCC 1E25

~

66980RM A TRNA TRNB ACR ,

Aux >hary Cont $ Room g -

y e

< 66980RMB c , e l*a

  • 4 LJO s ..

STVRMA e , e c a- n n , 669 PENA g - - 669 PEN 8 j g Personnet Match EL 667

() ,- To tht 2 TLSFP ()

l @

N f RC (ht1

am ,"

m a Urut2 E .E Pnmag g g , ,

() Containment Ausikary and Convol

~ > '

kg Buldin0s Eisv. 66r0' and 673t*

ne,e ~ 63 _ _ _._ <> ,_\ ,,,

[ RC.5CA La0 Secondary 6 TVR g;. Containment

[ Annulus EL 667 StsJrs e Crane WD d

U l

l Figure 4-11. Bellefonte 1 Reactor Containment, Auxiliary and Control Buildings, Elevation 669'0" and 673'0" 110 3/91

h' g Unit 104sei Dailding Hoof Et,678't M

dy starrs ,. Called North

- Control BJldag ._

Roof El. 6620* ~ ,

t-() B AT1DRM B ATIE RM BAT 10RW BAT 1FRW% /

+ + GD us -c Db C Coetninment, m

h -

Auxilian .;.:.

and Controi  ::::: 60$ PEN BJidegs (.::

Elev. sa6V*  :::::

(Figare 4 20) >

\ RC.PC f Unit 1 Pnmary Contamment a- :

0 RC.8C A S*condsfy Contamment Secondary

's wen Sloam Contamment J Vetv Annulus Roo,eame Room B i bi Figure 412. Bellefonte 1 Reactor Containment, Auxiliary l and Control Buildings, Elevation 686' 0" 111 3/91 i

=- - - . . . _

Y ,

Called North Q w ABRF Ausday Bodeng Eut Floof El 706 0" Me: hine.,

Fbom Roof @

=

D D @O -

Staton - -

Vent thtt fhecer Continment Austhey BuildnSe Eww.70601r (Figure 4 21)

RC PC Unit 1 L

P**Y Contamment RC.8C A Secondary Contamment Secondary Conumment Aneulus l

(bot et 728tP Figure 4-13. Bellefonte 1 Reactor Containment and l Auxiliary Buildings, Elevation 706' 0" 112 3gi

m _ _ _ . . - _ . . _ . . . - __ _- ._ =.__-__....____...m _ , ~ - _ _ _ _ _ . .

_ .____.__...m 3)- .,

W Celled North

,, ' AC '

Bioed Wt 1

' Hokiup Aangiery BJidm0 Ter* Elev 629V*

(Figure 4 6) v 4 To tht 1 i

l l

l l:

h Figure 414. Bellefonte 2 Auxiliary Building, Elevation 579' 0" 113 3/91

> e Called North a n M g , tt

=a m

=

n

~

D:enG D arm Reector nt, go v coniroi eakkng.

E U U = E'9*' 7)

_U. MU ff l I

I

-* L t

( )

ht 2 Figure 415. Bellefonte 2 Reactor Containment, Auxiliary and Control Buildings, Elevation 590'-0" 114 3/91

f. e

%Uh -c =

To Wt i ~*

Y -

W l l

)

0

---+

O O C '

l1 k

o 1 Urvt i 1T Fleactor Conismment, 9 Aumhey and Control Deldegs Eev 6100*

D g g D

l AE (Figure 4 6)

()

3 \

To tht 1 ---e.

I Urut 2 l

s l

1.

l l

l-1 I

Figure 4-16. Bellefonte 2 Reactor Containment, Auxiliary and Control Buildings, Elevation 610' 0" 115 3/91

1

-> Io Und 1 =

U

=

m

~

h > To Urut 1 a.

^

- h o

/

O O. una s sencior con =nenent.

O l ,f y, .

Ausdery and Control BJungs C

g y Elev 6290' v.,u . < e>

U

M_To Unit 1 Urst 2 retsser Spent Fwei Storage -

x=

Aree ,0 A -

Figure 417. Bellefonte 2 Reactor Containment, Auxiliary and Control Buildings, Elevation 629'0" 116 3/91

O 4 I

U

'--+ To Urut 1 D Catne Spreseng Room O

6 _ _f

.I $

W L)it 't Reactor Commmment, Ausikay and

, Cont

  • Ddongs Mam Steam e g- f U gI4 h

h (F .se 4 )

= E Wo m  ?

_ / N 7 7 --+ To urvi 1 Personnel Hatch E qupment 4- [ Urut 2 ",Y

/ E a

so.ni E S e

)

% Decon Main Steam Valve Room B peew q Fuel 8..go Figure 418. Bellefonte 2 Reactor Containment, Auxiliary and Control Buildings, Elevation 649'0" 117 3/91 )

1

l e ,

L .

& y ~ sun f Aoisy Control Room Room

=

I* E a uCc 2c2e h v

v

) E-+T**"

v

{ Trari B Instrurnentaten Train A instrumentabon to a N Main Stoem

/ S g Velve Room A N El 3 W u m y < 2 n

unit t Q two Q 6 Reactor Cortainment.

O N 8 AW8'h*'Y **d C 2 Control Buddings 1 Q E h 662t*

E- C ^ 5 ^ Ogg and 673V' y , y O , j (Fgure 411) j

/ *

  • V V l

i Personnet 1

- Hatch i

() -e> To L.ht 1 l f

L.ht 2

() 5.

. , ..a lk I'5L :

W -- -

! N . .. i O

:4::+:

m w.

Pues

E.*08. l kW:::::R:

__ Tc unto Figure 419. Bellefonte 2 Reactor Containment, Auxiliary and Control Buildings, Elevation 669'0" and 673'0" 118 3S1

' a l#ut 2 Desei Dulidang Hoof EL 6?te g Colle6 North

. $mles~ C of B h W m 6u

() ---e. To Umt I

\

-o- -o-em Q--

@40

, Mew a iremL Co B ark >ngs Elev 68f!v

- (Figure 412)

Urut 2

-I OI Main Steam .

' veno twom 0

  • Roof EL 685 C' '

Figure 4-20. Bellefonte 2 Reactor Containment, Auxiliary and Control Buildings, Elevation 686' 0" 110 3/91

=e .

I W

  • Celled North w Gk

- Awaikery Buliding -

Roof EL 706 0" Q

EWlor D Memnery Room Roof Eg \

j .

I D DU $$r s sinson - Conwnment Aumkay and

/

M vent Control Baldings O. Elev. 706 0*

(Figure 4-13) tht2 l

Roof at 72tr0" l

I Figure 4 21. Bellefonte 2 Reactor Containment and Auxiliary Buildings, Elevation 706' 0" 120 3/91

A t

i -

3 r" I.i t I h .S CASTE ruvritt s  ;-Et 6780 'wa' f ,

I

..:r .

'; ..? :  ;)y 1,b+ y;~ .

t i EvausT twausr

~1 cuct

'"),, ] Strix!R ma, lyi nina . . I

. ,, T carceo N l r:nr Ain inrant s

f / l .

6

~

f ,_,7 g,,o l  ; . (,Q,,, yy[ rAn c

.i Q p,p g, ,y,,

, r. . - , . - . . . . . . . . . - . .

l (,g, g r*f1P JT ---- s ggg,  ; l }},-JWSrmOPipf ott w r , , \ - f twm l a rwe r ,7,%I~ M

                                                               .      ,,             e                                                        !                          s-Et r>430             I l Et 6430 "'

w .

                                                                                   $ DIESEL                $                          .

G ) Lggggpsynp " ' (:- araxt j. g enging - l .

                                                                                                           ,q~     \[connicop                               as ccccros           a pgg sL0ntrEn u re ;9                             ;; ;                                                                                                    _

l_ L, . cortaco ~

                                                                                                 #                                                           ST&nAGE           p Syg,,,

PAWGlitty .

                                         & , [Q-)                                                                           q(ujmpt             ~t rip sr
                                                                                        ~
                        ;                                                             - Z4                                                                                   ,
                                                                                                                                                                               , ,,, , 5
1w
         -      .,2, s-
                                          ~
                                                   *:- W : cootin                       -r.'                         *: .; '       91 ~ ' n ~:   -s   6
                                                                                                                                                          ,,       ..,      :.~ ~

9( szs w ~ mrt at .smaist rwxs

                                                                                             ~

_ Et sts:s )t \. no siu.ip V sicec

                     } l. 'a. -Q             - , .
                                                                                                                       . . .. - . . -   ).k.

conc -nu.m ~ :- c__ _ _=  ; - s w 'O Figure 4 22. Elevati'on Views of the Bellefonte Diesel Generator Building (Sheet I of 2)

g~ , , < i, ' . A y g. r 0 E 3 G3 6 6 n9 E ,, - l M7 E 3 e E f / C- - ) u - 2

                                                                                                                                                                   -                                                                   f o

1

q. . <

j i,

                                                                                                                                                                                                                      =,
                                                                                                                                                                     .Wn                          f;r.          ..

2

                 -                        0
                                                                                                                                                                     ,]            -

t ( t e e 4, 4 6 7 L _ l 5, { mw' -.

                                                                                                                                       }0 t'/s                          f         t l   ,

h S (

            = g,
                    - e V                E "l

i g

              - F     a 4                  =

_ i*

                                                                               * **          I l        e 4

L., i n I *

                                                                                                                                         )                       '                                          _".

E T

                                                                                                                    ;n gyt p/                       :>&                                            -                      d l

i u R f

                                                                                             /l                   ~
                                                                                                                   ,               gw y
                               ,b,g    ,
                                                                                  ~

B O S a ,L-x

  • r 0

C V * .

                                                  ?.

nTiL E R l

                                                                                                        \

l W[N[ iA .i p. Dl,. .. w t o a E- sf SR r

                                                                                                                                                                          F[Q*;:.

E P ~ .. 8l N .C } e n Tl ,y e 3 *- l i t EY e b '- l G l To

                 -                                                                              /                                  '       M-                '       ,                                                                    e s

s 4

                                                                                               / N nY TW'                                                                                                 e
                                                                                                               .n                   -
                                                                                                                                                        -A         rl                                                                  i e s]f                                                         ,*                   <l*                                          -

i D x -

                       -    *s                                   ,
                                                                                             's l]

n i*

                                                                                                                                                                                      ~

e

                 .}s
                                   '                                _     r    I'l   *?      *
  • 3:
                                                                              , * *
  • l{
                                                                                                                      -            4                                    i t

n t_ o 7 *~

                                                                                                                                                                     +M D.
          )

f 5 3 [k; ,4 t

                                                                                             /

l

                                                                                                                    ;         n p,y
                                                                                                                                      ,y l

l e 9 . l>

                                                                                                                                                                                                 .                                        e 5                           op              e n                                               W-                                     a                                                          B l

E w - y&

                                                                                                                                                               "Q,4.D&

fl *., t n l e i S

                                                                      # z             a                                    M*'

E f .

                                                                                                                                                                                                                  ..                    h AL Cfs i
                                                                      #r Jr -                                          -  O!
                                                                                                                                  !                                                            '[                 ._.

f t j N o

                                                               -                         -                                                    I T                                                                                                                                   ;-
                                                                                 'J -

C t. ErL  : \ / ,. s ST ~

                                                    \

g . ( w (. -

                                                                                                               ._                                             ~          i         "                                                      e i

O

  • _ ,l l a; V 6*T G UE R (,' 05 srLE
                                                                                                                                   / R
                                                                                                                                         . 0 3ef
                                                                                                                                                                                          -                        ._                     n OT                 5                                  4                    7 c                       -

o L E LE LL 6 OT LL 6 R - k_ c i AH FS L E LE L AH E 4,o,  :

                                                                                                                                                                                      ;. -. s L _0                         ,

t a m

                                                 ,z                                                                               FS r s

a 6 v

                                                                                                        's                                                                         '                                       ,
                                                                                                                                                                                                                           .              e
                                                                                                                                                                                     = , ' c*.s!
3
  • l

- 3 6 -- f E _ E

                                           =_*                                                                    ..

[_a _r-w L _- _~

                   'p                            __                                                               _-

_- 2 _-  ; 2- __ t

                                                                                                                                                                                                                          -              4 g*                                                                                  ,
                                                                                                                                                                                          ,l i
                                                          .                                                                        ~

3, a mL e r

                         - E S

L L  ; o - wE _ u g g 0 - cW_ S tt a 0 U SE f n gS4 E0 Cx osz - s R . i F - RM 8 7 S A oRA - gA6 N - r I oT __;,! I T A< T A 6 CH E nT gH gCE L Mc- a C wE SP E l C a S - c nA ., _ E

                                                      ~

L E l ( E- V s ': / g 1 iP

                                                 ?                                                                       (\

li r W _po wD-

1 l Z 1

                      --+

car.o no.in l twayoune De rues on swy f ar* Am I j

                                                                                /               \

l .. .. .. .-

                                                               .-- .e:-- ,'. . - > . .-v--+-.-.

1- wav  : .: f: e .. .. .. l . ., w , , ta . e,m .:

                                              , ,. 1 -m e- s r                                                                   .

r- eir  :..

                                                     .wp e a*m                            em .3,       .

e- .,a . \ ,. ,, ., * .,

                                                                                                       .                      e t                                                               e                          .
                                                               . ......u..... . . .e .      . ..u....,     . . ~ . . . . ...,

I . . , t n a-s m Etowesoa617 Gs 4 Figure 4-23. Bellefonte 1 Diesel Generator Building, Elevation 623'0" f i --- - - .

                                                   ~
3. ~ ,. , / p

j , iiI ,i- t?i Iti [-t)e*  ; !' , ;!l; s  !?,  ?[!I:' j ; . i 1b TI

                                                                                 , i
                                                                                            'tI          .                                                                        i-j                                   .

eg

       ^              cm i

h t vdn r - r oeu o o _ TSB s r d e m ,etna = *ra _ o C T r s~ n

                                                                                                                                  ~o
  • O -
                                                                                     )                                                                             ,8 le9 u

f (4 O Fy ts u "e .

                                                                                                                                                                     ""*""               9' A

u . C. f r- 2 _ e 6 _ s BO

   -                                                                  B                                                                                                                    n            .

i a M B G t a n-1 n - B v l*I

                                                                 ^V B

M en 9 R o8 o1 R0 E l e D E B. B g Y n . I-) i _ d W B. E l i B u W o B la.A n n 1 N R A Ea ' c r o B owm-iooA Dto1 R0 B r* _ t ar 0 e n _ B. B e _ G l

 ,                                                     aV e

s O - l  ! I I 4I i e -

                                                          ;g;
                                                           ,5 r   i p

D .. em m nV

                                                                                ,)     n r

t s o um rpo o 1

                                                                                , o
                                                                                ,to                    mRp
9 sear 7m Pau CP s-R c b n
.: _I" O ..fo ,

g . I i l e N' l l s

                                                                                                                                                       .-                                  e           s e ew pWt
                                                         )                                                                 .
                                                                                                                           .                                                             B no Lnl                                                                   ...a'm ui e a

H8T( t e e t

e. s a . .

_ e =

                                                                                                                                                                      =u 4

2-e .v 4 W  % e r u

                                                    .m
         -                                                                                                                                                                                  g T

m i F .

                                                                                                                    ..  = -

c uO ye-j i

                                                                                                                           '                                                              :r
                                                      ,             '.                     g;                      .
 ' f
                                                                                                          * '- .' *                          ,.6
  ,m +                       %               +
                                                        '4 L'j~

gj*I

                                   %%                                  ' g, $' .,'O                                              ' . ' . ;' .: {           2.
                                                          ~
                                                              .     . .              a
                                                                                              ?s.. _ . . ' .; *j
                                                                                                                                                                                                    ^

5 6 i ab & E zhasust . L s

                                                     &                                                                                                                                                             l Catted North                         __

s h s# e

                                                                                                        /
                                                                                                   '7                   '#"""'*                               Desad Room 1B T e es % '                                                        nwt Fers                            Ezhaust Fana k
                                                                                                                                  *=am                  A keer2b M **'1A             '6D           m 490 W M 1t 4 8 I'

Q gg g g.g. wap;

  • DG e-MCCRM
                                                                                                    /)         I 4R0 VAC uCr 1E4 A
                                                                                                                 @ MAN                              e Q. Eied Board Am 19             F#ne'b MY 1

f Desel 19 I' Gius81A

  • Ex$ suet Sderscar I Erha.st Saencer Room I Room corece Buseng Electncel *
           ~                                Easwanon ser           sus Chase o                                                         (6dF)                                                }                -

e <- t.A Dusal 1 A Deses 18

                                                                                                      .l 0u                 l
                                                                                                                               " I"*'
                                                                                                                                                                    "noo,,

P", {i g.-n

                                                                                               ~.                x                                         -

ht_ x

                                                                                                                                  .,                                   a Au % sueno                                                               l           =w u

2 Beilefonte ! Diesel Generator P fMim;, Elevutien 655'0" Ficce 4-25.

o i a f 1 t . 8 A ! l 8 i i I W f cb.a4 Diesee Fued Of W Tank AssemF.aa 4\ M Called teort., I 1

                                                                                                                                                /                                                                                3             t
                                                                                                                        .- , , - . ;._s_,           , .- : t. _- ;;-                                        .;- s
                                                                                                                                                                .:                   ..                       :.       :                                1- e-
                                                                                                                                                                                                                       .                                                                             l 4

l l  ::  :. l:.  :  ::  ::  :.  : e i i toc,r ~ , .

m. . ~ ;. ,
                                                                                                                                ,                                                    l*    .

y  : .: - e.

                                                                                                                                                                                                              ..       :              s-,

Eheson 61r i j . . .. ,. ', .. ,  !

                                                                                                                                                                                                              .*       .                                             conwes eueses
                                                                                                                                                                                                              .        .                                              c - .. ,

i

                                                                                                                                                                                     ..                       ..       .                                                                             4 s_._.
                                                                                                                                ..  . _ : .._ ____a.
                                                                                                                                                      . L ._ _.s__..
                                                                                                                                                                                               . _ h.__           __

l e i e i ep- ' n t l ?  ! Au=Lary Busong , Devanonga y i a I i - ( W. , 4 i l 4 ji ! i d 'd 4 j ( , A it. Ti . w .. b LY$ Figure 4-26. Bellefonte 2 Diesel Generator Building, Elevation 623'-0" l I I' 1 .

O 4 a i HEttf45 I DEBCW I .. O /TW (188D*) t -:::::

                              ^                    n v                    v

! B B B B E E E 5 e r cm.en-= l ManNWes e / i M Yartyne guadmg Fast Os Te A , ? ! .,* Serme. em ti PS ' l

i i

o=== om.* Efg** Enghe l f { g === re w.n

!                  U                                                                                                                                             l U

mm N i i a Em m ar .

          ,,     .                                                                     cm Fue Os Taya                                                                     (EL e2F)                                                                   ,

mi s  ;

!                      B   B     B B     B      B     B B                    !                                                                                  l l             F.w o.                                                          o                                                                                  l o.,1-*

O p i i i i,

                                                                                            ~=<-s m
                                                                                                                                                                ~

j 4; , t' j 1

                                                                                                                                                          -    i i

i,94 t

   ,            h,                    Y'Is                                                  .

4 g . -fm. . Figure 4-27. Eellefonte 2 Diesel Generator Building, Elevation 643'-0" l 1 i t I i i

a ik;I t l I't  ?. I s

                                                                                   <*                                                        =

h il J 5 i

                                                                                   ,                                  {                    m
                                                                                   !$m,                                                      e
                                                                                                                                           .,6
                                                                                                                                           =
                                 \                                                            E>                                           a s

w c 5 y n if a z U ()

                                                      "I                I        z                                                         "
                               ~

li i Il la!) r 15 1

                                                                        -                                                                   a 1                                                                                                            s J                    s
i <> <>

t R ' O . l

                               -                      j R}                E I
                                                                                'N Rg1             -                       4 gj                         11                 1 a                                                                    r 5

to O $ oEID 128 3B1 1 - - -. -. . - . . . - . - _ . - - - - - - - . . . . - . - . _

Y __ I f l o O o D 3 c d $\ $ 4 (\  ! l n= .~y ... .. .. .. ..

                                                                                                                                             ~

N .- - .- --.['., g

  • 7 t
           ~p                                                                                                                                g
                                                                                                                                             ~
b. _

m _.my

                                                                                                                     -                       .I i         L.                                                              ;f                                               :

3 o l d d  : .6

  • a
                    ===m     .
                                                   )a                   '

t t

                                                                                                                                     !D i        E P

L 2 $ r i ( l',li i i 2 c 3

                                                                                                                                             .w S
               .                                      \                                                                   t A

Il, il 1 ( 2

                                                                                                               ;                             h a                 .           s 8

88 Y

                                 -                                              4                              d              ..

g- 'f kh ,

                                            ,,      u                         {g                               g                     g       4 a                     =

he

                            ) *2h

[ , s in r s ', 3, i s. 9 V h d" .E Q#s\ .-. .

                                                                                    )i
                                                                                               . ,I ' ' ,

j

                                                                                                                                             ,a I
                 . . . .                      }                 '

i 4

                                                                                       \

s. o t i i l.R c [ ll r!B y' i

                                                                                                                                             }

8 I I

                                                                                       ,E                th l
                                             .                                I J

it u I 't 129 3/91

t 4 e h co c E. cl if

                                                       .                                    ..:.,                                                                                   c..   ...
                                                                                                                                                                                                  ;)       a 7
                        =

c..

                                                         -a                                       rg                                                                  -

p y e - 4 g I I (,._9 , ___M .. .. ....

                                                                                                                                                                          '1W17                      \     N g                                                                                                                *i g

t .

                                                                                                                                                                                                      /    .:

g p w I -

                                                                                                                                                                   -                                  i      g 0                                                                                                             1:                                            :

w-- a I.;'l *d

  • I U G.a ga It u j' ,

M -- t g.

                                                                                           =-
                                                                                                   .             (! '
                                                                                                          . . . . I . $. . .,
                                                                                                                                                 ~

L1 y f a-

n 1
                 ,                            0 l

( g ,jx jil.i

                                                                                                                       .i L                                .

t (. l.,

                               ,                                           9 i

n  ::. r ,\, ' 3

                                                                                                   ' bT Llgg '

[ I g

                                                                   ./                                                                                  ' f,
                                                                                                   , _'                                                                        ,4)
                                                   -g                   -

Ig l k . u

                                                                                                                                     =                              .. ...

g q~n glhl n g,

                                                                                                        ~'I
                                                                                                    .o ur,
                                                                                                                                   .i                     ; __'__ _r:q "                                   so g        gwp pL                             .           [j                             -

5 f -

                                         .a.

l - '"[.,;.j k

     -)

t' i

                                                                                                     ..l....    ....d*

k i N i .

                                                                                                                                                                                                         )

w r__ - l. m 4

                                                      ,4
                                                                                                  '. . 1 l-              .
                                                                                                                          .. c... .
                                                                                                                                                                                       .g.   :.' . g
                                                                                                                                                                                                +
                                                                                                                                                                                                           ,E w

I ll - -. Y

3 [,3 d 2 ..f........ .. ,! ..... . .

M { v .+ F i n. i.

                          %               7
                                                                                                     . . {. ... . . .t :i i

I ,:

                                                                                                                                                                                                            ,g 6

i

                          .. s_-                             "lg                ~

! l - T3 t .. , ! '. t 1 < - n. .. . . .... . , ) i u- . . 1 l 130 3/91 l

Y Celled Pkwth A I Unit 2 Unit t  ? ERCW Pump sucson wees Cypt 1 1 l \ i ( i & I. 4r sswe P:=p vwe capped orr

  • as s2r orp) was. umme
                                                                                                           \\                                                                  name         wes.

2A-A 2&B 4 1BB 1 A- A . O O O O w a a 3 D Figure 4-30. Bellefonte 1 and 2 Intake Pumping Station, Elevation 557'-0"

l

  • i i

j --> ! Called North , t t Urut2  : Une 1 e y - 69kV ' 6-wV 4%V 69kV Intake intahe iroke antale W stason U j statme W W stason u sianon Board Board Board Boad 2ET2-A 2ET28 1ET28 1ET2 A (128) (11A) 4sov uce 4sov ucc 2E3 B *El-B (688) INTK-ERMS 4sov ucc 4aov uce l 2ESA 1E3 A (63A) ERCWEtedncal ERCW Elecencal _ Room 2B Room 1B i U u u l G = , G h INTK-ERMA ' ERCW W Room 2A UM U lilll>: ERCW EMW Room 2A l i e'L <s- %W. Cw wa 62r m e .

                                                                         /                                                                    .
s. , .r"^

3 e M i' D

  ~

} f Figure 4-31. Bellefonte 1 and 2 Intake Pumping Station, Elevation 607'-0" I i

i Y CeIIed Meeth Uret 2 h Urut t  : E ERCW Pumps , f 88 88 . 88 88 M2 Omt 2 Une 1 t.htt ERCW Pump ERCW % ERCW Pump ERCW Puny Ite m A Room B Room B Ibom A ' Waer9ght E..--r Wauwtryt Emerpncy i Escape N trom Escape m kom Enoct Egmp. Room Elect Ewip Room l INTK-PRMB INTK-PRMA Wawmght

                                               ^                                                                                    ^                                 Electncat         ,
             !!!!!!!!!!!!!                            !!!!!!h!!!!!!!

a--> c- -, b 5 /

                                                                                                                                                                      =

es c is!911!ss!sss lissssssis #l@'--  :

85::555::$:!!!$i
                                                                   -:-   Escape                            Escape    &                                        ..

w  ::55555::::::s::::$

                                                                                                                        .h h!$!$ihIh!$$N
  • h '
!b!kbh!bkfh ,
                                            ~

0 . . . vi. r. O - I

                                                          .                            Ei83M8:0
IIH o agga o I  ::ss:ss::s::s
                                                                                       $55$::559sf sissses                                                                  _ _                  ;

e O O O O

                                               ~5_555                     \ r space 2      oseurp une cypt                            EM             }}$$j
       =:
                       *                      *                                                                                  \ entatej k                    2A-A                  ss                               dr Space Oscturgo Lue (typ)                                          kmee                               *
                  /                                   NJ .                /                                                      /

is s N t A-A i l

                                         - s--- - :--:-s:;-

g .e4 s i D I i Figure 4-32. Bellefonte I and 2 Intake Ps.wping Station, Elevation 627'-0"

l

                                            //                  .

g,},g

                  ?!                                                                  E i                         .                                        -
        !+n f.iiiii1 r!                          ,

5

               ,f,              - .. 1    --         [

_, a

                ]             I                                                        E I               .                                        m gh          . -
                                 -k- -             '

A

                .                                      l i
                       % n.{?

sg _ h i 2._  ! N

        ""; j t               ~~ ~E]                                                   $
             .  ..                                                                    L

[ g , tI d

                \q__h,.,
                                         -  l.                        -

a e 4 __ g d ',*' i (Q ___t., . I f" ;c e . l ,, , m l l >

                                             ,'              lIel i

i ,

                                                                           -             b t-
      .          i . .    .s     J                                h                     p

{ 'l~ C l ( *.+ .3

  !,{                                    3                                               3 c                                               a

_-s t W 1 9

                                         \\\                                              o u

E bc M 134 3/91

t % l' Table 41. Definition of Bellefonte 1 Building and - Location Codes Abbreviation DescrIntion

1.- ABRF Auxiliary Building Roof.
2. ABYD Yard area adjacent to the Auxiliary Building.
3. ACR Auxiliary Control Room located at level 669 of the Auxiliary Building.
4. AFWTDPMRM Room containing the turbine driven auxiliary feedwater .'

pump at level 590 of the Auxiliary Bullding.

5. BATlDRM Room containing battery ID located at level 686 of the Auxiliary Building.
6. BATIERM Room containing battery lE located at level 686 of the Auxiliary Building, ,
7. BATlFRM Room containing battery IF located at level 686 of the Auxiliary Building.
8. BATIGRM Room containing battery 10 located at level 686 of the Auxiliary Building.
9. BWST . Borated Water Storage Tank located in the yard area north of comainment.
10. CCSA UNK Undetermined plant locations containing certain supply and return piping in CCS essentialloop A (see Section 3.6).
11. CCSB UNK Undetermined plant locations containing certain supply and retum piping in CCS essentialloop B (see Section 3.6). ,

l

12. CCWPMRMA "A" train component cooling water room at level 629 of the Auxiliary Building.

13.1 CCWPMRMB "B" train component cooling water room at level 629 of the Auxiliary Building, t

14. . CR Control Room located at level 673 of the Control Building.
15. CRDPSRM Control Rod Drive Power Supply Room located at level 590 of the Control Building.
16. CSR' Cable Spreading Room located at level 659 of the Control  ;

Building.

17. CST Condensate Storage Tank located in the yard area north of turbine building.

135 3B1 h

  • 4 Table 41. Definition of llellefonte 1 Building and .

Location Codes (Continued) AbbreylatIon D,ngtillIDD l

18. DGl A ARM Room containing emergency diesel generator I A A on levei 629 of the Unit 1 Diese Generator Building.

19, DGIA MCCRM Room containing 480 VAC MCC IE4 A on level 655 of the Unit i Diesel Generator Building.

20. M11B BRM Room containing emer;;ency diesel generator 1B B on level 629 cf the Unit 1 Diese Generator Building.
21. DGlB MCCRM Room containing 480 VAC MCC IE4 B on level 655 of the Unit 1 Diesel Generator Building.
22. DilAPMRM Room containing decay heat removal pump 1 A A located at level 590 of the Auxilia!y Building.
23. DHRACLRM "A" train decay heat renoval heat exchanger room located at level 610 of the Auxiliary Building.
24. DHKBPMRM Room containing deca heat removal pump 1B B located at level 590of the Auxill Building.
25. DiiRBCLRM "B" train decay heat removal heat exchanger room located at level 6100f the Auxiliary Building.

26, HPIAIRM Room containing high pressure injection pump 1 A 1 located at level 590 of the Auxiliary Build!ng.

27. HPIA2RM Room containing high pressure injection pump 1 A 2 located at level 590 of the Auxiliary Building.
28. HPIBIRM Room containing high pressure injection pump 1B 1 kcated at level 590 of the Auxiliary Building.
                               . . .. HP1452RM                           Undetermined plant location contAing valve IEM 452 and associated piping between the makeup tank and the "A" train HPI pumps.
30. INTK ERMA Unit 1 ERCW train A electrical room on level 607 of the intake Pumping Structure.
31. INTK ERMil Unit 1 ERCW train B clectrical room on level 607 of the intake Pumping Structure.
32. INTK PRMA Unit 1 ERCW train A pump room on level 627 of the Intake Pumping Structure.

I 136 3/91

e h l I Table 41. Definition of Bellefonte 1 Building and . Location Codes ! Continued) Abbrevintion Descrlotion

33. INTK PRMB Unit 1 ERCW train B pump room on level 627 of the intake Pumping Structure.
34. PPCHSA "A" train i chase tunning trom level 590 to level 629 of the Auxill Building.
35. PPCHSB "B" train pipechase running from level 590 to level 629 of the Auxiliary Building.
36. RBSAPMRM Room containing reactor building spray pump 1 A A located at level 590 of the Aunillary Building.
37. RBSBPMRM Room containing reactor building spray pump 1B B located at level 590 of the Auxiliary Building.
38. RC PC Reactor primary containment.
39. RC SCA Secondary con:ainment annulus.
40. STVRMA "A" train steam valve room located at level 649 of the Auxiliary Building on the northwest side of the containment.
41. STVP.MD "B" train steam valve roota located at level 649 of the Auxillary Building on the southeast side of the containment.
42. TLSFP Spent fuel pool operating floor at level 667 of the Auxiliary Building.
43. TRNA "A" train instrument room located at level 669 of the Auxiliary Building.
44. TRNB "B" train instrument room located at level 669 of the Auxiliary Building.
45. VVPIT DHR sump suction valve pit located at level 590 of the Auxiliary Building adjacent to the containment.
46. 120 VACDF Undetermined plant locations containing components in 120 VAC divisions D and F (see Section 3.6).
47. 120 VACEO Undetermined plant locations containing components in 120 VAC divisions E and O (see Section 3.6)
48. 590ABCOR Corridor along the northwest wall of the Auxiliary Building at level 590.

137 3/91

,y  % , Table 41. Definition of Bellefonte 1 Building and

  • Location Codes (Continued)

Abbreviation Descrlpilon

49. 590ABTRNA The area of the Auxiliary Building at level 590 containing AuxilJary Feedwater "A" train equipment.
                                $0. 590ABTRNB                              The area of the Auxiliary Building at level 590 containing Auxiliary Feedwater "B' tmin equipment.

St. 610ABCOR Corridor along the northwest wall of the Auxiliary Building at level 610.

52. 610ABTRNA Undetermined area of the Auxiliary Building at level 610 c containing "A" train HPI and DHR system components.
53. 610ABTRNB Undetermined area of the Auxiliary Building at level 610 containing "B" train HPI and DHR system components.
54. 610 PENA . "A" train containment penetration area at level 610 of the Auxiliary Building.

55, 610PENB "B" train containment penetration area at level 610 of the Auxiliary Building. 56, 629ABCOR Corridor along the northwest wall of the' Auxiliary Building at level 629. 57, 629ABTRNB Undetermined area of the Auxiliary Building at level 629 containing "B" train HPI and RBS system components. 'i

58. 629 PENA "A" train containment penetration area at level 629 of the
                                                                         ~ Auxiliary Building.

59.- 629PENB "B". train containment penetration area at level 629 of the Auxiliary Building.

60. 649 PENA - A" train containment penetration area at level 649 of the Auxiliary Building.
61. - 649PENB ' "B" train containment penetration area at level 649 of'the .

Auxiliary Building.

62. 649SGRMA ." A" train switchgear room located at level 649 of the Auxiliary Building.

p 63, 649SORMB - "B" train 'switchgear room located at level 649 of the 'I Auxiliary Building. l 138 3/91 L

e b Table 41. Definlilon of IIellefonte 1 Building .ind

  • Location Codes (Continued)

Abbreviation Descrlotion

64. 649TB Level 649 of the Turbine Building.
65. 669 PENA "A" train containment penetration area at level 669.
66. 669PENB "B" train containment penetration area at level 669.
67. 669SGRMA "A" train switchgear room located at level 669 of the Auxiliary Building.

6S. 669SGRMB "B" train switchgear room located at level 669 of the Auxiliary Building.

69. 686 PEN Containment peneustion area at level 686 common to both "A" and "B" trams.

l l l 139 3/91

C. Q Table 4 2. Partial Listing of Components by Location at llellefonte 1 - COMsCNLNT COA > LOCATION SYSTEM D TYPE 120VACDF EP U PS-I D UPS 120VACDF EP VPS 10 UPS 120VACDF EP 120PNL 1D BUS 120VACDF EF 120PNL 1D BUS 120VACDF EP UPS1F UPS 120VACDF EP UPS1F UPS 120VACDF EP 120PNL IF BUS IkOVACDF EP 120PNL 1F BUS 120VACEO EP UPS 1E UPS 120VACEO EP UPS1E UPS 120VACEG EP 120PNL 1E BUS { 120VACEG EP 120PNL 1E BUS 120VACEO EP UPS10 UPS 120VACEO EP UPS-10 UPS 120VACEO EP 120PNL 10 BUS 120VACEO EP 120PNL.10 BUS 6MABTRNA AFW AF W 29A MOV 6MABTRNA AFW AF W@A MOV 690ABTANA AFW AFW47A MOV 6MABTRNA AFW AFW P1A MDP 690ABTRNB AFW AFW 1000 MOV 6MABT RNB AFW AFW48B MOV 690ABTRNB AFW AFW MB MOV 590ABTRNB AFW AFW P1B MDP 610ABCOR ERCW ERCW 161A MOV 610ABCOR ERCW EROW496 MOV

610ABTRNA ECCS HPI-460A MOV l 610ABThNA ECCS DHR-10A MOV 1

610ABTRNA PAHR DHR-104A MOV 610ABTANB ECCS HPI 419B MOV i l l 140 3/91 i l l - - .

 .                            g l

1 l Table 4 2. Partial Listing of Components by Location at fiellefonte 1 (Continued) - COMFCt1ENT CCW LOCATON SYSTEM O TYPE 610ABT RN D ECCS DHR 104B MOV 610ABT RNB PAHR DHR 104B MOV 6495GRMA EP EP CB CIA CB 6495GRMA EP BUS 1ET1 A BUS 6495GRMA EP Buk1ET1A BUS 649SGRMA EP BUS 1ET1 A BUS 6495GRMA EP BUS-1ET 1B BUS 6495GRMA EP MCC1E6A MCC 64kSGRMB EP EP CB C1B CB 6495GRMB EP BUS 1ET1B BUS 6495GRMb EP BUS 1ET1B BUS 6495GRMB EP MCC 1E6B MCC M9SGAMA EP BC 10 (60D) BC 6695GRMA EP BC 1F (62F) DC M96GRMA EP DCBB 1F BUS M93GRMA EP BUS 24A BUS M95C'<' MA EP BUS 25A BUS 669SGRMA EP TRAN 1 A TRAN

                                         ~669SGAMA           EP       TRAN 2A          TRAN M98GRMA            EP       DCBB-10          BUS M9SGRMA             EP      DCBB-1F          BUS
                                          %9SGRMA             EP      DCBB-1F          BUS 6%SGRMA             EP      PANEL MA          BUS M9SQRMA             EP       PANEL MA         BUS
                                           %9SGRMA            EP       MCC1E1A          WC
                                         >M9SGRMA             EP       MCC 1E2A         MCC M95GRMA            EP       DCvPNL 1 A       BUS 66r 3GRMA           EP      DG PNL 1 A       BUS
                                           %9SGRMA             EP      DCBB10           BUS
                                           %95GRMA             EP      DCBB-1D           BUS 141                         3/91
e.  %

Table 4 2. Partial Listing of Components by Location at Bellefonte 1 (Continued) , COMPONENT COIF LOCATION SYSTEM D 1YPE M95GRMB EP BC-1E (51E) BC 6695GRMB EP BC 1G (63G) BC

                                                                               %95GRMB          EP       DCBB 10                BUS M95GRMB          EP       BUS 200                BUS 6695GRMB         EP       BUS 295                BUS M95GRMB          EP       TMN IB                 TRAN M95GRME          EP       TRAN2B                 TRAN 6MSGRMB          EP       DCBB 1E                BUS 66950RMB         EP       DCBB 1E                BUS "66950RMB         EP       DCBB10                 BUS M9SGRMB          EP       DCBB 10                BUS 66950RMB         EP       PANELSTD               BUS M95GRMB          EP       PANEL 89D              BVB M9SGRMB          EP       MCC1E1B                MCC M98GRMB          EP       MCC 1E2B               MCC 660SGRMB        EP        DG PNP.15              BUS 669SGRMB         EP       DG-PNL.1 B             BUS 6MSGRMB          EP       DCBB-1E                BUS AFWTDPMRM       AFW      AFW 16A                 MOV AFWTDPMRM        AFW      AFW 17A                 C AFWTDPhmM        AFW      AFW 91B                 MOV AFWTDPMRM        AFW      AFW 028                 MOV AFWTDPMRM        AFW      AFW TDP1A               TDP BAT 1DRM         EP        BT tD                  BT BATIERM          EP        BT1E                   BT l.

l BATIFRM EP BT 1F BT BAT 1 GAM EP BT 10 BT BWST ECCS BWST TK BWST PAHR BWST TK CCWPMRMA CCS CCS-HX6A HK l 142 381

t -< Table 4 2. Partial Listing of Components by Location at Bellefonte 1 (Continued) , COMPONENT ode @ LOCATON SYSTEM D TYPE CCWPMRMA CCS CCIP t A MDP CCWPMRMA CCS CCb 313A MOV l CCWPMRMA CCS CCS P3A MDP l CCWPMRMA CCS CCS 136 MOV CCWPMRMA CCS CCS 137 M.)V CCWPMAMA CCS CCS3?6 MOV CCWPMAMA CCS CC5 376 MOV I CCWPMRMA ERCW EROW BP13A MDP CCWPMRMB CCS CCS 3168 MOV l CCWPMRMB CCS CC#HATB HK CCWPMRMB CCS CCS-P2B MDP l CCWPMFMB ERCW ERCW BP118 MDP GCWPMRMB ERCW M128 MDP CC W"""/O ERCW ERCW 2796 MOV CST AFW CST TK DGI A ARM EP DG1AA DG DG1 A ARM ERCW ERCW 296A MOV DG1A-MCCRM EP MCC tE4A MCC DG18-BRM EP DG 1B-B E. DGtBBRM EACW ERCW 2669 MOV DGlB-MCCRM EP MCCtE*B MCC DHAPMRM ECCS DHR44A MOV DHAPMRM ECCS DHR Pi A MDP DHBPMRM ECCS DHR 1628 MOV DHBPMRM ECCS DHR P2B MDP DHRACm M ECCS DHR-HX1 A HK DHRACLAM ECCS DHR 44A MOV DHRBCLAM ECCS DHR-HX1B HK DHRBCLAM ECCS DHR-1428 MOV HPLAtRM ECCS HPIP1A MDP ~ l l 143 3/91

g

                                           '3 Table 4 2. Partial Listing of Components by Location at Bellefonte 1 (Continued)                                        .

COMPONENT COW LOCATON SYSTEM C TYPE HP6AiRM ECCS HPi 3A6A XV MM ECCS HPFP2A MDP liPnA2RM ECCS HPl.21bA XV HPIBIRM ECCS HPFP3B MDP INIK ERMA EP ' 30S 1ETEA BUS l INTK ERMA EP MCC-1E3A MCC . INTK ERMA IP TRAN-3A TRAN INTK ERMB GP BUS tET2B BUS ) INTKERMS EP MCC tE3B MCC INTK.ERMB EP TRAN-38 TMN INTK PRMA ERCW E ROW.P) A MDP INTK PRMA ERCW ERCW P2A MDP INTK PRMB ERCW ERCW P3B MDP lNTK-PRMB ERCW ERCW.P48 MDP RBSAPMRM PAHR RSS P1 A MDP RBSBPMRM PAHR RBS PIB MDP M-PC ECCS DHR45A MOV M-PC ECCS DHR 91 A MOV M-PC ECCS DHR-1798 MOV M PC ECCS DHR-186A MOV kfC ECCS BUMP.1A jTK M-PC ECCS SUMP 1B TK-l- E-PC PAHR RBC. FAN.1 A FAN RC#C PAHR RBC-FAN 1B FAN RC-PC PAHR RBC-FAN 28 FAN RC-PC . PAHR BUMPtA TK RC-PC - PAHR SUMP.1B TK M-PC RCS RCS-57A MOV M-PC RCS RCS6tB NV M-PC RCS MU 21A MOV 144 3/91

                                     ..~      . _ . _      _          _   __                  . _ _ . _   . _ _           __          _    __ , _ . - _ _ _

Table 4 2. Partial Listing of Components by Location at flellefonte 1 (Continued) , CCMO.ENT CCW LOCAW M SYS'iEM O TYPE RC PC RC5 ~~ MV 22b MOV R4PC RCS MJ 26A MOV F40-PC FiCS MV 200 MOV RC PC F4CS RCb-23M MOV RCPC RCS RCS 237b M3v R46CA AF W AF W-47A NV R4bCA AF W AF W44B MQV RC GCA AFW AF W440 MOV kC-SCA AF W AFW 71 A MOV F4C-LCA ECCS HPI 2130 MOV RC!CA EES DMR 174D MOV R4GCA ECC6 DHREA MOV RCEA ECCS HP6 22SB 60v R46CA ECCb HP4113A MOV RMXA ECCS HP6101 A MOV R4bCA EROW ERCW 266A MOV

                 'R4GCA                             ERCW                         ERCW 276A   M3v R4SCA                             ER6N                         ERCW 3100   MOV RC SCA                            ERCW                        EROW 3160   MOV R46CA                             ERCW                        E ROW-3238  MOV RC-SCA                            EROW                        EROW 330B   MOV R45CA                             PAHR                        RBS 31 A     MOV R4SCA                              PAHR                       RBS 640      MOV STVRMA                             AFW                        AFW 6680     M3V STVRMB-                            AFW                        AF W-669A    MOV W PIT                              ECCS                        DHRMA       MOV W PIT                               ECCS                       DHR 1920  MV 145                   3/91

a y Bellefonte 1 & 2

5. BillLIOGRAPilY FOR IIELLEFONTE 1 & 2 -
1. NUREG/CR 3724. " Ultimate Strength Analysis of the Watts Bar, Maine Yankee, and Bellefonte Containments," Sandia National Laboratories, July 1984.
2. NUREG/CR 4563,"Ar nly" sis of Station Blackout Accidents for the Bellefonte Pressurized Water Reactor, Sandia National Laboratories, September 1986.
3. NUREG/CR 4741,"Feedwater Transient and Small Break Loss of Coolant Accident Analyses for the Dellefonte Nuclear Plant," EG&G Idaho, Inc., March 1987.
4. NUREG/CR 4803,'"The Possibility of Local Detonations During Degraded-Core Accidents in the Bellefonte Nuclear Power Plant," Sandia National Laboratories, January 1987.

l l 146 3/91

     - . -        .- - - _ - . - - - -                                        . _ - - - - - _ - - . _ -                            . - . - ~ - - -

a  % - Bellefonte 1 & 2 MPENDIX A DEFINITION OF SYMilOLS USED IN Tile SYSTEM AND LAYOUT DRAWINGS A 1. SYSTEM DRAWINGS 3 A 1.1 Fluid System Draw!ngs The simplified system drawing are accurate representations of the major flow paths in a system and the important interfaces with other fluid systems. As a general rule, small fluid lines that are not essential to the basic operation of the system are not shown in these drawings. Lines of this type include instrumentation lines, vent lines, drain lines, and other lines that are less than 1/3 the diameter of the connecting major flow path. There usually are two versions of each Guld system drawing; a simplined system drawing, and a comparable drawing showing component locations The drawing conventions used in the fluid system drawings are the following:

                         -     Flow generally is left to right.             .
                               -       Water sources are located on the left and water " users" (i.e., heat loads) or discharge paths are located on the right.
                               -       One exception is the return flow path in closed loop systems which la richt to left.
                               -       Another exception is the Reactor Coolant System (RCS) drawing wh'ch is
                                       " vessel centered", with the primary loops on both sides of the vessel.
                               -       Horizontallines always dominate and break vertical lines.
                         -     Component symbols used in the Guld system drawings are defined in Figure A 1.
                               -       Most valve and pump symbols are designed to allow the reader to distinguish among similar components based on their support system req uirements    (i.e., electric power for a motor or solenoid, steam to drive a turbine, pneumatic or hydraulic source for valve operation, etc.)
                             ---       Valve symbols allow the reader to distinguish among valves that allow How in either direction, check (non return) valves, and valves that perform an overpressure protection function. No attempt has been made to define the specific t of valve)ype of valve (i.e., as a globe, gate, butterfly, or other specif
                               -       Pump syrnbols distinguish between centrifugal and positive displacement pumps and between types of pump drives (i.e., motor, turbine, or engine).
                         -     1.ocations are identified in terms of plant location codes defined in Section 4 of this Sourcebook.
                               -       Location is iridicated by shaded " zones" that are not intended to represent-the actual room geometry.
                               -       Locations of discrete components repitsent the actual physical location of
                                    - the component. -
                               -       Piping locations between discrete components represent the plant areas through which the piping passes (i.e. including pipe tunnels and underground pipe runs).
                               -       Component locations that are not known are indicated by placing the components in an unshaded (white) zone.
                               -       The primary flow path in the system is highlighted (i.e., bold white line) in the location version of the Guid system drawings.

147 3/91 _ _ ~ _

0 % Bellefonte 1 & 2 A 1. 2 Electrical System Drawings The electric power system drawings focus on the Class 1E portions of the plant's electric power system. Separate drawings are provided for the AC and DC portions of the Class IE system. There often are two versions of each electrical system drawingt a simplified system drawing, and a comparable drawing showing component locations. The drawing conventions used in the electrical system drawings are the following:

              -  Flow generally is top to bottom
                 -      In the AC power drawings, the interface with the switchyard and/or offsite
rid is shown at the top of the drawing.
                 -       .n the DC power drawings, the batteries and the interface with le AC power system are shown at the top of the drawing.

Vertical lines dominate and break horizontal lines.

              -   Component symbols used in the electrical system drawings are defined in Figure A 2.
               -  Locations are identified in terms of plant location codes defined in Section 4 of this Sourcebook.
                   -     locations are indicated by shaded " zones" that are not intended to represent the actual room geometry.
                   -     Locations of discrete components represent the actual physical location of the component.
                   -     The electrical connections (i.e., cable runs) between discrete components, as shown on the electrical system drawings, DO NOT represent the actual cable routing in the plant.
                    -     Component locations that are not known are indicated by placit.g the discrete components in an unshaded (white) zone.

A2. SITE AND LAYOUT DRAWINGS A 2.1 Site Drawir.gs A general slew of each reactor site and vicinity is presented along with a simplified site plan showing the arrangement of the major buildings, tanks, and other features of the site. The general view of the reactor site is obtained from ORNL NSIC 55 (Ref.1). The site drawings are approximately to scale, but should not be used to estimate distances on the site. As-built scale drawings should be consulted for this purpose. Labels printed in bold uppercase correspond to the location codes defined in Section 4 and used in the component data lic..ngs and system drawings in Section 3. Some additional labels are included for information and are pnnted in lowercase type. A2.2 Layout Drawings Simplified building layout drawings are developed for the portions of the plant that contain com,onents and systems that are described in Section 3 of this Sourcebook. Generally, the fo , lowing buildings are included: reactor building, auxiliary building, fuel building, diesel building, and the intake structure or pumphouse. Layout drawings generally are not developed for other buildings. Symbols used in the simplified layout drawings are defined in Figure A 3. Major rooms, stairways, elevators, and doorways are shown in the simplified layout drawings however, many interior walls have been omitted for clarity. The building layout 148 3/91 1

                                                                            !!ellefonte 1 & 2 drawings, are approximately to scale, should not be used to estimate room size or distances. As built scale drawings for should be consulted his purpose.

Labels printed in uppercase bolded also correspond to the location codes defined in Section 4 and used in the component data listings and system drawings in Section 3. Some additional labels are included for infonnation and are printed in lowercase type. A 3. APPENDIX A REFERENCES

1. lieddleson, F.A., "Desi:n Data and Safety Features of Commercial Nuclear Power Plants.", ORNi NSIC 55, Volumes 1 to 4. Oak Ridge National Laboratory, Nuclear Safety Information Center, December 1973 (Vol.1),

January 1972 (Vol. 2), April 1974 (Vol. 3), and March 1975 (Vol. 4) l l l l l l 149 3N1 i

LJ MANU AL VALVE . XV MANU AL NON.RE f URN F7 (OPEN, CLOSED) V ALVE XCV (OPEN CLC$ED) ____'d MOTOR. OPERATED V ALVE . MOV _ MOTOR OPER ATED F' (OPEN' CLOSED) 3-W AY Y ALVE . teOV (CLOSED PORT M AY V ARY) l

       ' Y>      SOLENQlD.OPER ATED V ALVE . SOV                                                                   SOLE NCID.OPER ATED F'        (OPEN/ CLOSED)                                                                                    3 WAY V ALVE . SOV l

(CLOSED PORT MAY V ARY)

        ' > --    HYDR AULIC V ALVE HV                                                                             HYDR AUL6C NOh RETURN F'        (OPEN CLOSED)                                                                                    VALVE . HCV (OPEN' CLOSED) 4                                                         4

_ PNEUM ATIC VALVE . NV _ PN E UM ATIC NON kETURN (OP E N/CL OS ED) . V ALVE NCV (OPEN' CLOSED) CHECK VALVE . CV B AFETY Y ALVE . SV (CLOSED) W Ch POWER OPERATED RELIEF VALVE, POWER OPER ATED RELIEF V ALVE. J SOLENOID-PILOT TTPE

  • PORY J PNEUMATIC ALLY OPERtTED . PORY (CLOS E D) OR DU AL.F U NCTION S AF E T Y/R E LIE F V ALVE SRY (CLOSED)

CE NTRIFUC AL CENTRIFUC AL MOTOR. DRIVEN PUMP . MDP TURBINE DRivtN PL;dP . TDP

                                                                                           \ /

I POSITIVE DISPL ACEMENT , POSITWE 018PL ACEMENT MOTOR DRIVEN PUMP

  • WDP TURBINE. DRIVEN PUMP . TDP I
                                                                                               \

l_l

 -->                EDUCTOR ED Figure A 1.          Key To Symbols In Fluid System Drawings 150                                                                                      3/91
                   \                                                                                                   c.
                    )

p g.g .p,w g M AIN CONDENSER COND I REACTOR VCESEL ft V L WC ANIC AL MAFT 4 -. - HEAT EXCHANOtR . HR h f L i STE A M.TO.WAt t R

                                                                                                                    ~

AIR C00U'<G VNlt.ACU OM W ATER TO STE AM HE AT ExCHANCER Rt. f tEDW AT2R l 4_ 84E ATEA, 00,AIN C00LIR, l'(C.)

  • HX C

oR SPR AY NO22LES . $N t ANr, . tx d'% a a a a n Y v

           -f                       RunuRE ois< . Ro                                                           g           ,,,,,,,,,,
         @                          ORect . oR t

Figure A 1. Key To Symbols In Fluid System Drawings (Continued) ,e 151 3/91

                        .                                           ._     _ . _                        . _ _ . .m_

A.C Dif SF.L GE NERmTOR . Do fi4TTERY . B ATT OR A C. TURBINE 3ENERATOR . TO OR g CIRCUlf BRC AMER . C8 ( ) "*'g gg TNT E R L SCK t 0 U (OPf h CLOSED) gi....[) CIRCUIT BRE AKERS . C9 f S Wf .'C H . S W p AUYCW4fl0 Cf' O OR OTHER TYPE OF TR AhDFTR BWitCH . ATS Dl9 CONNECT DE ylCC OR (O P E N /CL OS[b/ HANUAL TR ANSFER itsitCH . WTS SWITCH 0t AR BUS . BUS l (RUS N AMKd WOTOR CONTROL CENTER e WCC N OR f,7. M " TR ANSFORMER . Th AN l OR I DtSTRIBUTION P ANEL

  • PNL I I

B AfitRY CHARGER (lltCTIFICR) . BC , I

 ==

og - / RELAY CONTACTS Futt . FS

 ~~
                /~"   (OPEN/ CLOSED)                                     j
          ,           mC1RI. WC10R . W1R                                              . ,0R 0,N,R A,0R . WO l

l l Figure A 2. Key To Symbols In Electrical System Drawings l 152 3NI i

Wl k STAIRS

           $7$P,,n g      SPIRAL STAIRCASE LADDER

('l U . Up D= Down ELEVATOR ggy". HATCH OR OPEN AREA GRATING DICK (NO FLOOR)

    -O--   PERSONNEL DOOR            --r
  • EQUIPMENT DOOR m

RAILROAD TRACKS x FEIR'E LINE Ei m O TANK / WATER AREA i l l l Figure A 3. Key To Symbols In Facility Layout Drawings 153 3/91 1

llellefonte 1 & 2 APPENDIX 11 - DEFINITION OF TERMS USED IN Tile DATA TAllLES Terms appearing in the data tables in Sections 3 and 4 of this Sourcebook are denned as follows: SYSTEM (also LOAD SYSTEM) All components associated with a particular system description in the Saurcebook htye the same system code in the data base. System codes used in this Sourcebook are the following: fJyh Definition RCS Reactor Coolant System AFW Auxiliary Feedwater System ECCS Emergency Core Coollng System (including ILPI and LPI) PAHR Containment Heat Removal Systems (including Reactor Building Spray and Reactor Building Coolers) EP Electric Power System CCS Component Cooling System ERCW Essential Raw Cooling Water System COMPONENT ID (also LOAD COMPONENT ID) The component identification (ID) code in a data table matches the component ID that appears in the corresponding system drawirg. The component ID generally begins with a system preface followed by a compfnent number. The system preface is not necessarily the same as the system code desenbed above. For component ids, the system preface corresponds to what the plant calls the component (e.g. HPI, RHR). An example is HPI 730, denoting valve number 730 in the high pressure injection system, which is part of the ECCS. The component number is a contraction of the com>onent number appearing in the plant piping and instrumentation drawings (P&lDs) anc electrical one line system drawings. LOCATION (also COMPONENT LOCATION and POWER SOURCE LOCATION) - Refer to the location codes defined in Section 4. COMPONENT TYPE (COMP TYPE) Refer to Table B 1 for a list of component type codes. POWER SOURCE - The component ID of the power source is listed in this field (see COMPONENT ID, above). In this data base, a " power source" for a particular component , (i.e. a load or a distribution component) is the next higher electrical distribution or generating component in a distribution system. A single com >onent may have more than one power source (i.e. a DC bus powered from a battery and a sattery charger). POWER SOURCE VOLTAGE (also VOLTAGE) The voltage "seen" by a load of a power source is entered in this field. The downstream (output) voltage of a transformer, mverter, o. battery charger is u r.ed. EMERGENCY LOAD GROUP (EMERG LOAD GROUP) AC and DC load groups s electrical divisions) are defined as appropriate to the 31 ant. Generally, AC load groups are identified as AC/A, AC/B, etc. The emergency loac group for a third of a4 kind load (i.e. a " swing" load) that c.m he powered from either of two AC load groups would be identified as AC/AB. DC load group follows similar naming conventions. 154 391 l

TABLE H.I.- COMPONENT TYPE CODES - COMPONENT _C_O M P TYPE VALVES: Motor operated N.e MOV Pneumatic (air operated) valve NV or AOV Hydraulic valve HV Solenoid operated valve SOV Manual valve XV Check valve CV Pneumatic non return valve NCV Hydrau'.!: non-retum valve HCV Safety valve SV Dual function safety / relief valve SRV Power-operated rehef valve TP." (pneumatic or solenoid-operated) PUMPS: Motor driven pump (centrifugal or PD) MDP Turbine driven pump (centrifugal of PD) TDP Diesel driven pump (centrifugal of PD) DDP OTHER FLUID SYSTEM COMPO!i2NTS: Reactor ves el RV Steam generator (U tube or once-through) SG Heat exchanger (water to-water HX, HX or water to air HX) . Cooling tower Cr Tank TANK or TK Sump SUMP Ruptun: disk RD Orifice ORIF Filter or strainer FLT Spray nozzle. SN Heaters (i.e. pressurizer heaters) HTR L VENTILATION SYSTEM COMPONENTS: Fan (motor-driven, any type) FAN l Air cooling unit (air to water HX, usually ACU or FCU including a fan) Condensing (air-conditioning) unit COND EMERGENCY POWER SOURCES: Diesel generator DG Gas turbine generator GT Battery BATT 155 3/91

TABLE B.I. COMPONENT TYPE CODES (Continued)' COMPONENT COMP TYPE ELECTRIC POWER DISTRIBUTION EQUIPMENT: Bus cr switchgear BUS Motor control center MCC Distribution panel or cabinet PNL or CAB Transformer TRAN or XFMR Battery charger (rectifier) BC or RECT Inverter INV Uninterruptible power supply (a unit that may UPS include battery, ;" attery charger, and invener) Motor generator MG Circuit oreaker CB Switch SW Automatic transfer switch ATS Manual transfer switch MTS 156 3/91 l -}}