ML20041F717

From kanterella
Jump to navigation Jump to search
Discussion of Kuosheng Safety Relief Valve Mutli-Valve Actuation (MVA-4) Response Spectra. Design Impact Considered Confirmatory
ML20041F717
Person / Time
Site: Grand Gulf  Entergy icon.png
Issue date: 03/15/1982
From:
MISSISSIPPI POWER & LIGHT CO.
To:
Shared Package
ML20041F714 List:
References
NUDOCS 8203170330
Download: ML20041F717 (29)


Text

s Attachment 1 to AECM-82/79 DISCUSSION OF KU0SHENG SRV MULTI-VALVE ACTUATION (MVA-4) RESPONSE SPECTRA i

I l

l l

l 8203170330 820315 PDR ADOCK 05000416 A PDR C46rgl

i s

, N Bechtel has provided MP&L with a technical evaluation of the Kuosheng SRV in-plant test data. This technical evaluation shows that the test data can be considered confirmatory MARK III SRV in-plant test data applicable to Grand Gulf (see MPB-81/0607, MPB-81/0610, and MPB-82/0010).

At an informal meeting between MP&L, Bechtel, and NRC on February 9,1982, additional information was shown to NRC to provide added technical i justification to support elimination of the proposed Grand Gulf SRV in-plant test. That information and technical evaluation follows.

Ten acceleration response spectra (ARS) were taken from the results of the j Kuosheng four valve tests (see Figure 1 to Figure 10). These ARS showed the

highest observed test ARS exceedences when compared to the Kuosheng four valve predicted ARS and the Grand Gulf eight valve predicted ARS. Grand Gulf SSE and LOCA DBA ARS predictions were then superimposed upon the SRV ARS predictions.

, The following observations can be made from the comparisons in Figure 1 to Figure 10:

1) In most cases, the SSE ARS envelope the SRV ARS. This is important because SSE response spectra were used for piping, equipment, and component design qualification prior to the advent of the MARK III New Loads Adequacy Evaluation Program.
2) In nearly all cases, peak Grand Gulf structural acceleration predictions (zero period acceleration ZPA) exceed Kuosheng test results. The Kuosheng predictions have been reduced by one half and still exceed test results in nearly all cases. Since all structures at Grand Gulf are designed for the combined effect of SSE + SRV + LOCA DBA, even slight ARS ZPA exceedences are of no concern to existing structural integrity.
3) The test ARS exceed predicted ARS in the high frequency range of the spectra. This is of little concern to piping design or equipment and component qualification. Table 1A through SC show modal frequencies, Modal participation factors, and percent relative contribution of each l

mode for five critical piping systems at Grand Gulf. Because piping system analysis is multi-frequency, it can be seen that beyond approximately 60 hz, over 90% of the total system response has been accounted for based upon modal extractions up to 100 hz. Therefore, high ARS exceedences at high modal frequencies have little impact on system design.

4) SRV ARS predictions bound SRV ARS test results by us much as an order of magnitude at frequencies below approximately 30 hz. Table 1A through SC show that between 50% and 90% of the total system response can be captured-by modes below approximately 30 hz. Thus, as much as an order of magnitude less piping system test response compared to piping system predicted response could be observed considering only SRV loads.
5) All equipment and components in the Grand Gulf containment building have been requalified by analysis and/or test for SSE + SRV + LOCA P3A loads.

This qualification level is multi-frequency in nature similar to piping systems. Thus, the relatively low amplitude, high-frequency exceedences shown do not have any impact to equipment or component qualification.

l

V I

l As shown above, results and observations obtained from the Kuosheng SRV  !

in-plant test do not represent a design impact to Grand Gulf and the Kuosheng test data can be considered confirmatory.

l 4

--r -- - ~ _ - - _ _ _ _ _ _ . _ - - - _ _ . - _

I- Ma.utts suivat l'a j W

I?ESPONSESPpCTRRCOMPRRISON LEGEND i s.s - \ -~

l

-- -= r ) .,

7

..........Mvn 4I .

t ,

sse -

.,, . ~2W -

4 g .. , - [ h

... e\ -- -

2 ..s - p ,

e / . ,

g ...  ! b: .~. -

= /  : .y *

/ )  ! , . m

/ l l %Q l

.., J n

';i),( \

/ j l [ji h~ X '. ...__ ,

_d - _ C .' $ * ,

~

l

racouocr scrB '"'

l , ACCELERONETER ENVELOP: R32,R33,R35,R36

-i VS. KSHG NODE 320 CONTNNT EL106.08 HORIZ ..

VS. G.G. NODE 301 CONTNMT EL237.75 HORIZ b W4. /.* _i-

.. .V

t . nun rm w w sz u .i .

RESPONSC SPECTRA COMPARISON i.. .

LEGEND (- 'j

... s.s. s=v res muosecno sRv j ..........n iu

.., - 1 ,

,1 '

5 ... .

    • I y L .!

8

..,_ aN /N "I f  ;

kl L i  ! .

?l > +

i

),

.J a

T ,

+m

\

"l l

(

) P h \ ; . , ..

.., i R i \ M rN \

V M

~

l .

f 5 I) ( .

i .

t

/ -

'i %

^. -%. .- r:  : .

l d ,, ..... ... ..__- .- _

i ""

5 . rncouocr iced 8 RCCELERONETER ENVELOP: A18,R31,A34

. . VS. KSHG NODE 320 CONTNNT EL106.08 VERT o-VS. G.G. NODE 301 CONTNMT EL237.75 VERT a

, b V- /k.T . _

i

e' .

lautta su12n1 M

,g I" .

RESPONSC SPECTRA COMPRR[ SON 3.s LEGEND

--G.G. SRV W i . . -- ruoses snv -

. . . . . . . . . . nvn i o s.,

\ _

~

I

e s.e .

E i .s - -

r

E ,

e ss e h E

=

i.e -

t 1% R L y\

~ --

f e.,

-/

/ .

u

,L .- N J ::

\ .

, ~ '

p ' c -

' . . . .2 .~. - :

d _x a f .'.. . " . .' ... .- .-

g *~' s. :

i

,,y ,

is

RCCELEROMETER ENVELOP
R126

.

  • VS. KSHG NODE 282 CONTNNT EL-28.08 HORIZ .

j . VS. G.G. NODE 277 CONTNMT EL109.17 HORIZ '

LO gg, .i

Maltes 4

  • suivst ss .3 f-

' RESPONSE SPECTRR COMPARISON LEGEND

l '

    • " 9.8. 58tv RDS f~ I

..te

..........nvn i4i i y, ii i

/

, F ll j j

  • "- 7

% ly ,

F )

/ 1l a

E - l p 1 a ..n - ,

. g

.. m -

ll~ (

/ y llt i h 3 L l Ill\L nj #s

/

.. i s ,  ; . .

jg

! \

3 I r - \ \ -

~ .. a

/ .

)) jl y [ (M;[\

[A lll c sA 5. .

h ,,,,.

_. 2 $ ... . . .. ..

.h'**

i recoucacyicre 3

RCCELEROMETER ENVELOP: Al25 d VS. KSHG NODE 282 CONTNMT EL-28.08 VERT -

. . VS. G.G. NODE 277 CONTNMT EL109.17 VERT

'E. -

. . .O m ./m

I eni.mm tutust x RESPONSESPpCTRACOMPARISON

.. n -

r-v'

_y_...__.._._.,_.f-4.,, i . ...w

9. . ._ g

~

...- LEGEND , ___ _ [ 7 _ _ _ _ ,

.._c.c. saw nos t .,

o.m ,,, _._. ... ... 1 .

.. ..........revn iti ___ ..

4 r l.p _L_.

i 1

p .

.. n . -- / .._..

,  !.i.; _,._ _ _.

..., f '

r

.i mf.

l v

~L. sst ,i 1]

a .. = - 7 ,  : -

a,

e. co -

j a

" l I

1  ;

5 - :

g y :M

..._ t JI

s 3

O

.. , s . f '

5 \

- \i: b::

g ..

- J T ::  ; -

/

8

\I I !.

/ / .i\ f \ \. .

[

I l \ ~ ,

? ',

g ,,,,. _. ) .r mi g .

).

.3 .s F - -

. ... ~*

pef e recouocr ices: ,

5 RCCELEROMETER ENVELOP: R60,R61,R63,R64 d VS. KSHG NODE 31 DRYWELL CL 49.2S HORIZ

~~

.= VS. G.G. N0DE 8 DRYNELL EL182.17 HORIZ p~-

A.s2 '-

e

. .p m -

I '

puutts la/12/s1 25 .j RESPONSE SPECTRA COMPRRISON e.. .

LEGEND -

I G.G. SRV RDS  ;

      1. j KUOSMCesG SRv
..........Mvn i4 e en '

i T

i I ( "

  • til -

e ssar3 1 i

) erm, r -

7 q r I g t  ;

e.s _

_ l I i ( -

c .

l $

r k i  :-

l i. ..

2Q e.

a ,

5 4 4 <  : .

f -

i. 1 h , ,!

...- ,f,

/ (i JV  % n N ai .r i

l / .

J

///

t

,, g l-'h.

.t

/

l ,,, ,

p f ff f V ~

Q ~

,g

, .,, . ..... ...m.. ..i.. .. . . ..-

2. ..d. . .

w ,Q

... . i e

] RCCELERONETER ENVELOP: R59,R62 8 -

VS. KSHG NODE 31-DRYWELL CL 49.25 VERT '

VS. G.G. NODE 8 DRYWELL EL182.17 VERT

.=

E ~

,V /%.6%

nn.ucs wum me i r- ,

RESPONSE SPECTRA COMPAR[ SON .

.. e

  • n fa M ."

i.es LEGEND ry s.s. saw nos

'# wuos a snv 1

. . . . . . . . . . nvn i u l J (  !

[ - -

tsen / . l ,

- . /

( i I v

e

l 5

- , ,t' i .,,_ _

'i
e. n -

e ,

l e -

r '

l 1,

u.. .

f N.,

2 . t l. \Il l \t j  : .: .

I ,,,

- C

,i '

N ,

s R W-. ,

g .

... y #....

/

- # \:

1/lf { psX -

L .-

g ..... ... ... .. .. . . . .

= .. e .

i i.

n.

g racouocr scesi 8 ACCELEROMETER ENVELOP: R72,R73,R75,A76 d

VS. KSHG NODE 82 PEDESTAL EL-9.33 HORIZ ..

.= VS. G.G. NODE 47 PEDESTAL EL121.42 HORIZ

.)v sf. g w.

g*

1 fat.Ltts 3&/12/s1 27 j T- , .

RESPONSE SPECTRA COMPRRISON .

e.n -_,

I LEGEND e.n 7 G.G. SRV fC5 e.n - Ku(MpOeG SRV . ,

..........Mvn 41 I l

I e.ee l I

e.n - -

e.,, _

ssa n L , -<1 c; ' a - D rl: l L -

p e r 7 .

! s .. . --

/ ,

/ Li , ,

j I 2 =- 7 '

" * [ I.

e n- )

I= .

/

t i -c

\  ;

I I 'd 3 \ -

W JNPc. V~.

e. n ^

% L

/ u

-,c.

) h$, .

.~

l-I ' ' " ' -

. ,,/ .-. ... .. . .. . ..... ,

g ........ ... .. .. .

  • ' menuocr scrE e .
RCCELEROMETER ENVELOP
R71,R74.

VS. KSHG NODE 82 PEDESTRL EL-9.33 VERT d . . .

... VS. G.G. NODE 47 PEDESTRL EL121.42 VERT N  % 5 57 'A

4 g. , .i f

, . . Halte Su12/e1 le q

. RESPONSE SPECTRR COMPARISON

..s -

LEGEND

, _ g -

s.s. saw nos ' -

3..

__..ruos o s sev i

.......... . ,4, 7

t 2.s --

T  !

e a.. j

! {

/ -

q ,

i.s --

[ \ . NerA b

I (l g

a sse m 0 ,

i m

i.. -

c

.] (!  :

\

o

- 2

=

( \

\  ;

'y  %

)

.. s =

A

( '

Q J /1 M l*

a .

- - \s ... . ' '".

.{ .. .& '

&f

,5 ...> ....... . .. . ........ ...% [- ,. .

~

i . ,

e - - io '

r.couocr scesi in -

2 8 -

RCCELEROMETER ENVELOP: R44,A46

  • VS. KSHG NODE 80 DRYWELL EL-14.83 HORIZ

. L

.VS. G.G. NODE 48 DRYMELL EL120.83 HORIZ "

.. . - - . ~ . Ja

.v

- - . . , v. A 4 . 9 .

.- . . n.  ;- .

_. ; _ c.. , . _

t

. nas.tcs sutust 17 : .

RESPONSE SPECTRR COMPARISON

-~ ~

o.n -

I.EGENO I e.es I

. _.G.G. SRV-MOS KUO9CNG SRV  ! _ _ _ _

e.ee _

..........nvn 4i ,

f .:w --

qW J

pm- \ IT f g M J _

I

..,e

  • SS E f ___
e. n , , p

_ . I en '

' J E e.w -

_s ..., I 1' ,

r .!+ -

l a

El e.= -

/

r l

l\

'7 1

3

1 sw j

/ al x-

.:1 a

$ h. ]

!1 1 .

l. / . . <.

3.N

. / ),l h._ ' . ' .}M

/b A./ \ f k

/

. '\

l \. f \

, / j h. -

YYA

  • ~

h - -

mi

. .. a .

rWEDLENCY iCP l 9

ACCELEROMETER ENVELOP: A43,A45 2

d VS. KSHG NODE 80'DRYHELL EL-14.83 VERT ~~

. s VS. G.G. NODE 48 DRYHELL EL120.83 VERT

-)~ 'y $6. . /O J s . .

~

(('. .

m ix u -

Modal Frequencies, Participation Factors, and Relative Total Response Contribution Problem 172 - Suppression Pool Makeup Water X - Direction Mode Frequency (hz) Participation Factor  % Contribution Cumulative % Contribution 1 15.79 -2.18846 6.02 6.02 2 16.19 5.94399 44.42 50.44 3 28.44 .21459 .06 50.50 4 34.70 -2.06974 5.39 55.89 5 36.31 -2.67347 8.99 64.88 6 40.34 .60570 .46 65.34 7 42.86 1.45486 2.66 68.00 8 46.74 .45717 .26 68.26 9 50.33 -2.61169 8.58 76.84 10 51.54 -2.66001 8.90 85.74 11 51.78 2.18625 6.01 91.75 12 52.36 .79516 .79 92. 54 13 55.73 -1.33491 2.24 94.78 62.81 .70845 .63 95.41 lh14 05 69.27 .67658 .58 95.99 16 85. 92 -1.68370 3.56 99.55 17 93.02 .31860 .13 99.68 18 98.31 .27476 .09 99.77 19 99.83 .42902 .23 100.00 e

1 TAB 12 IB

('.-

)

Modal Frequencies, Participation Factors, and Relative Total Response Contribution

Problem 172 - Suppression Pool Makeup Water Z - Direction j Mode Frequency (hz) Participation Factor  ! Contribution Cumulative % Contribution 1 15.79 -5.82569 38.57 38.57 16.19 -2.05136 4.78 2 43.35 3 28.44 .00655 .00 43.35 4 34.70 -2.71991 8.41 51.76 5 36.31 2.01557 4.62 56.38 6 40.34 -1.34993 2.07 58.45 7 42.86 .71998 .59 59. 04 8 46.74 -1.49149 2.53 61.57 9 50.33 -2.73189 8.48 70.05 10 51.54 2.48423 7.01 77.06 11 51.78 1.35110 2.07 79.13 12 52.36 -1.43388 2.34 81.47 13 55.73 1.77444 3.58 85.05 14 62 81 3.44129 13.46 98.51 15 69.27 .98582 1.10 99.61 16 85.92 .06342 .00 99.61 l(-- 17 93.02 .46122 .24 99.85 18 98.31 .27760 .09 99.94

, 19 99.83 .21943 .06 100.00 s

( -

P 1*

9

(

l

l. , ,

?

ZABLE IC Modal Frequencies, Participation Factors, and Relative Total Basponse Contribution Problem 172 - Suppression Pool Makeup Water Y - Direction Mode Frequency (hz) Participation Fa-tor  % Contribution Cumulative 1 Contribution 1 15.79 .10373 .01 0.01 2 16.19 .11009 .01 0.02 3 28.44 -8.86804 88.26 88.28 4 34.70 .00874 .00 88.28 5 36.31 -1.97315 4.37 92.65 6 40.34 .02461 .00 92.65 7 42.86 -2.13987 5.14 97.79 8 46.74 .79944 .72 98.51 9 50.33 .12669 .02 98.53 10 51.54 .04799 .00 98.53 11 51.78 .12644 .02 98.55 12 52.36 .02859 .00 ' 98.55 13 55.73 .28696 .09 98. 64 14 62.61 .00119 .00 98. 64 15 69.27 .14694 .02 98.66 85.92 .95038 1.01 99.67 l(16 17 93.02 .07765 .01 99.68 18 98.31 .34005 .13 98.81 39 99.83 .39716 .19 100.00 O

(- m2a 3 Modal Frequencies, Participation Factors, and Relative Total Response Contribution Problem 60 - Righ Pressure Core Spray X - Direction Mode Frequency (hz) Participation Factor I Contribution Cumulative I Contribution 1 14.42 2.13213 16.06 16.06 2 15.75 3.09933 3 3. 94 50.00 3 17.46 -1.84438 12.02 62.02 4 19.95 1.92530 13.10 75.12 5 23.03 .00197 .00 75.12 6 25.72 .10511 . 04

. 75.16 7 35.30 -1.14243 4.62 79.78 8 42.45 .10726 .04 79.82 9 47.97 -1.94605 13.38 93.20 10 51.67 -1.12723 4.49 97.69 11 52.71 .29926 .32 98.01 12 57.48 .74873 1.98 99.59 13 63.32 .06132 .01 100.00 14 76.39 .01215 .00 100.00 I

t l

l

('

TABIZ 2B C' . .~ .

Modal Frequencies, Participation Factors, and Relative Total Basponse Contribut* ion Problem 60 - High Pressure Core Spray Z - Direction Mode Frequency (hz)

, Participation Factor  ! Contribution Cumulative % Contribution 1 14.42 .82911 2.09 2.09

,- 2 15.75 1.57159 7.50 9.59 3 17.46 -3.00580 27.43 37.02 lp 4 19.95 -4.16089 52.56 89.58 5 23.03 .78722 1.88 91.46 6 25.72 .88811 2.39 93.85 7 35.30 .45619 .63 94.48 8 42.45 .06021 .01 94.4 9 9 47.97 .47078 .67 95.16 10 51.67 .40732 .50 95.66 11 52.71 .35444 .38 96.04 12 57.48 .40815 .51 96.55 13 63.32 .32881 .33 96.88 14 76.89 1.01405 3.12 100.00 k-i G

t

S TAB 1Z 2C

(- )

Modal Frequencies, Participation Factors, and Relative Total Response Contributi'on Problem 60 - Righ Pressure Core Spray Y - Direction pgde Frequency (hr) Participation Factor Z Contribution Cumulative % Contribution 1 14.42 -2.91317 25.12 25.12 2 15.75 -1.21134 4.37 29.49 3 17.46 -2.69677 21.67 51.16 4 19.95 1.26753 4.79 55.95 5 23.03 3.14655 29.50 85.45 6 25.72 .60675 1.10 86.55 7 35.30 -1.31609 5.16 91.71 8 42.45 -1.13168 3.82 95.53 9 47.97 .73353 1. 60 97.13 10 51.67 .03931 .00 97.13 11 52.71 .05055 .01 97.14 12 57.48 .64783 1.25 98.39 13 63.32 .43456 .56 98.95 14 76.89 .59157 1.05 100.00 k'

\ -

e

~

-. o 1 .

M2M l^' '

Modal Frequencies Participation Factors, and Relative Total Response Contribution Problem 229 - Main Steam Supply to RCIC Turbine I - Direction Mode Frequency (hz) Participation Factor  % Contribution Cumulative % Contribution 1 10.66 -1.55837 1.28 1.28 2 12.78 .15447 .01 1.29 3 13.87 -10.65272 53.31 54.60 4 15.65 2.57900 3.51 58.11 5 18.12 .01482 .00 58.11 6 18.73 .10936 .01 58.12 7 22.55 .25310 .03 58.15 8 25.81 2.16041 2.46 60.61 9 30.58 -4.04787 8. 64 69.25 10 31.78 .64225 .22 69.47 11 36.57 .03986 .00 69.47 12 37.65 .00034 .00 69.47 13 39.28 1.96064 2.03 71. 50 14 39.75 .97197 .50 72.00 15 40.50 1.60565 1.36 73.36 41.27 .01967 .00 73.36 lh.16 . 17 41.74 42.36 1.35076 .96 74.32 18 .53494 .15 74.47 19 43.92 -2.28720 2.77 77.24 20 44.56 2.07788 2.27 79.51 21 45.59 2.25976 2.69 82.20 22 46.63 1.69924 1.53 83.73 23 46.75 -3.35179 5.93 89.66 24 50 33 .97723 .50 90.16 25 50.74 -1.47311 1.15 91.31 26 52.48 3.73266 7.35 98.67 27 53.86 .59825 .19 98.86 28 68.88 .60711 .20 99.06 29 70.06 .08365 .00 99.06 30 73.37 .92754 .45 99.51 31 75.04 .06812 .00 99.51 32 76.55 .90325 .43 99. 94 l 33 84.53 .16724 .01 9a.95 34 85.21 .11931 .01 99.96 35 91.17 .31001 .04 100.00 3 i

9 e

l

i TAB 12 35 s

(~-l 4 Modal Frequencies, Participation Factors, and Belative Total Response Contributioh Problem 229 - Main Steam Supply to RCIC hrbine Z - Direction Mode Frequency (hz) Participation Factor 1 Contribution Cumulative I Contribution i 1 10.66 .00008 .00 .00

2 12.78 .08114 .00 .00 3 13.87 .23066 .03 .03

, 4 15.65 .00043 .00 .03 5 18.12 .31201 .05 .08 6 18.73 .54783 .16 .24 7 22.55 .37045 .08 .32 8 25.81 -9.73777 52. 04 52.36 9 30.58 -1.07801 . 64 53.00 10 31.78 .03267 .00 53.00 11 36.57 -2.28945 2.88 55.88 12 37.65 -2.26659 2.82 58.70 13 39.28 -1.65640 1.51 60.21 14 39.75 .02492 .00 60.21 15 40.50 .38681 .08 60.29 16 41.27 -1.74610 1.67 61.96 41.74 .13385 .01 61.97

.{. 17 18 42.36 .94424 .49 62.46 19 43.92 .41384 .09 62.55 20 44.56 .54236 .16 62.71 21 45.59 -1.95790 2.10 64.81 22 46.63 .79489 .35 65.16 23 46.75 5.87473 18.94 84.10 24 50. 33 .99548 . 54 84. 64 25 50.74 -1.02718 .58 85.22 i 26 52.48 .29728 .05 85.27 27 53.86 1.97592 2.14 87.41 28 68.88 -2.37791 3.10 90.51 29 70.06 -2.91030 4.65 95.16 30 73.37 '2.69012 .3.97 99.13 31 75.04 .00284 .00 99.13 32 76.55 .93855 .48 99.61 33 84.53 .08321 .00 99.61 34 85.21 .46051 .12 99.73 35 91.17 .68926 .27 100.00 .,

l 1.

('

A TABIZ 3C Modal Frequencies, Participation Factors, and Relative Total Basponse Contributioh Problem 229 - Main Steam Supply to RCIC Turbine Y - Direction Mode Frequency (hz) Participation Factor  % Contribution Cumulative % Contribution 1 10.66 .00015 .00 .00 2 12.78 .01927 .00 .00 3 13.87 .24729 .03 .03 4 15.65 .00029 .00 .03 5 18.12 -2.24639 2.62 2.65 6 18.73 9.99197 51. 84 54.49 7 22.55 -3.44973 6.18 60.67 8 25.81 .60382 .19 60.86 9 30.58 .99932 .52 61.38 10 31.78 .00906 .00 61.38 11 36.57 2.25499 2.64 64.02 12 37.65 .09491 .00 64. 02 13 39.28 2.47639 3.18 67.20 14 39.75 .05479 .00 67.20 15 40.50 .28802 . 04 67.24 16 41.27 .41630 .09 67.33

'7 41 74 .24986 .03 67.36 l[18 42.36 .77207 .31 67.67 19 43.92 .00282 .00 67.67 20 44.56 .22125 .03 67.70 21 45.59 1.91046 1.89 69.59 22 46.63 1.42595 1.06 70.65 23 46.75 2.01929 2.12 72.77 24 50.33 -3.55179 6.55 79.32 25 50.74 3.90861 7.93 87.25 26 52.48 2.02669 2.13 89.38

27 53.86 -1.15245 .69 90.07 28 68.88 -3.13873 5.12 95.19 29 70.06 .33076 .05 95.24 30 73.37 -1.83956 1.76 97.00 31 75. 04 -1.31014 .89 97.89 32 76.55 1.94740 1.97 99.86 33 84.53 .24640 .03 99.89 34 85.21 .03552 -

.00 99.89 35 91.17 .39545 .11 100.00 O

1

TAB 12 4A

c. ModalFrequencias,ParticipationFactors,andRelativeTotalResponseContributiod Problem 323 - RER Shutdown Suction 1 - Direction Mode Frequency (hr) Participation Factor Z Contribution Cumulative I Contribution 1 10.49 1.68801 1.82 1.82 2 11 54 .78171 .39 2.21 3 15.14 5.36644 18.37 20.58 4 17.85 -6.86175 30.04 50.62 5 19.74 1.65757 1.75 52.37 6 27.78 3.23553 6.68 59.05

, 7 30.33 2.05488 2.69 61.74 8 31.98 .13409 .01 61.75 9 32.90 3.12923 6.25 68.00 10 33.55 -1.16949 .87 68.87 11 35.71 1.02429 .67 69. 54 12 37.36 -1.65391 1.75 71.29 13 40.68 .73971 .35 71. 64 14 44.48 .78150 .39 72.03 15 46.11 5.60422 2 0. 04 92.07

. 51.76 -1.01713 .66 92.73

(.16 17 56.74 .63266 .26 92.99 18 57.40 1.45065 1.34 94 . 3 3 19 61.13 .77985 .39 94.72 20 65.01 .88603 .50 95.22 21 71.83 .16303 .02 95.24 22 74.13 .42659 .12 95.36 23 75 73 .56160 .20 95.56 24 82.72 .98956 . 62 96. 18 25 85.72 2.43851 3.79 99.97 26 92.77 .21388 .03 100.00 l

5 i

TABLE 48 i

h~ Modal Frequencies, Participation Factors , and Relative Total Response Contributio'n Problem 323 - RER Shutdown Suction Z - Direction Mode Frequency (hz) Participation Factor Z Contribution Cumulative 1 Contribution 1 10.49 2.20227 3.15 3.15 2 11. 54 .77284 .39 3. 54 3 15.14 -4.30693 12.05 15.59 4 17.85 -1.85108 2.23 17.82 5 19.74 4.98541 16.15 33.97 6 27.78 -3.70760 8.93 42.90 7 30.33 -1.80967 2.13 45.03 8 31.98 4.47939 13.04 58.07 9 32 90 5.12021 17.04 75.11 10 33.55 .60636 .24 75.35 11 35.71 -1.62381 1.71 77.06 12 37.36 .75197 .37 77.43 13 40.68 .70775 .33 77.76 14 44.48 2.58588 4.34 82. 10 15 46.11 .19526 .02 82.12 16 51.76 .96952 .61 82.83 lb,17 56.74 1.19837 .93 83.76 18 57.40 .71601 .33 84.09 19 61.13 .39315 .10 84.19 20 65.01 .30700 .06 84. 25 21 71.83 3.73619 9.07 93.32 22 74 13 1.97964 2. 54 95. 86 i 23 75.73 .29890 .05 95.91 24 82.72 .44985 .13 96. 04 25 85.72 .24647 .03 96.07 26 92.77 -2.48035 3. 93 100.00 l

L l . .

l l

l l

(

l

1 .

TAB 12 4C h' ' $

Modal Frequencies, Participation Factors, and Relative Total Response Contribution Problem 323 - RHR Shutdown Suction Y - Direction Mode Frequency (hr) Participation Factor  ! Contribution Cumulative ! Contribution 1 10.49 .55054 .19 .19 2 11. 54 -2 64523 4.30 4.49 3 15.14 -5.11281 16.07 20.56 4 17.85 -5.70188 19.98 4 0. 54 5 19.74 -7.63959 35.87 76.41 6 27.78 .01648 .00 76.41 7 30.33 -4.56261 12.80 89.21 8 31.98 .58646 .21 89.42 9 32.90 .76870 .36 89.78 10 33.55 .07314 .00 89.78 11 35.71 .28707 .05 89.83 12 37.36 -3.10543 5.93 95.76 13 40.68 .35477 .08 95 84 14 44.48 .35539 .08 95.92 15 46.11 1.52944 1.44 97.36 51.76 .52440 .17 97.53

( .16 17 56.74 1.22938 .93 98.46 18 57.40 .37420 .09 98.55

. 19 61.13 -1.19181 .87 99.42 20 65.01 .14464 .01 99.43 21 71.83 .21837 .03 99.46 22 74.13 .54530 .18 99. 64 23 75.73 .63022 .24 99.88 l 24 82.72 .20326 .03 99.91 l

25 85.72 .26263 .04 99.95 26 92.77 .28544 .05 100.00 O

S 1

TAB 12 SA

' l'b Modal Frequencies, Participation Factors, and Relative 1btal Response Contributio!n Problem 225 - MSRV Dischar8e 1.ine I - Direction f Mode Frequency (hz) Participation Factor Z Contribution Cumuistive Z Contribution 1 12.56 .83264 3.59 3.59

! 2 19. 94 .43601 .98 4.57 3 25.16 .54180 1 52 6.09 1

4 25.90 2.57904 34.43 40.53 5 26.37 .63423 2.08 42.61 6 29.78 -1.23442 7.89 50 50 7 33.48 .00861 .00 50.50 8 35.42 .96721 4. 84 55.34 9 39.07 .21851 .25 55.59 10 40.44 -1.04192 5.62 61.21 11 48.44 .18751 .18 61.39 12 49.70 .30619 .49 61.88 13 50.92 -1.00432 5.22 67.10 14 56.79 .17483 .16 67.26 15 63.98 .95687 4.74 72.00 65.02

.89387 4.14 76.14 lh.16 17 66.85 -1.54665 12.38 88.52 18 70.34 .09532 .05 88.57 19 71.93 .89994 4.19 92.76 20 73.39 1.02029 5.39 98.15 21 78.91 .09268 . 04 98.19 22 82.81 .28549 .42 98.61 23 83.78 .51783 1.39 100.00 l

~

l l- .

l l

l' I

TABLE 5B

(.' Modal Frequencies, Participation Factors, and Relative Total Response Contribution i

Problem 225 - MSRV Discharge Line 2 - Direction Mode Frequency (hz) Participation Factor  ! Contribution Cumulative ! Contribution 1 12.56 -1.56901 10.74 10.74 2 19.94 .62189 1.69 12.43 3 25.16 .27432 .33 12.76 4 25. 90 .87347 3.33 16.09 5 26.37 -1.56838 10.73 26.82 6 29.78 .31845 0.44 27.26 7 33.48 2.29591 22.99 50.25 8 35.42 .85096 3.16 53.41 9 39.07 .40524 .72 54.13 10 40.44 .08553 .03 54.16 11 48.44 .19278 .16 54.32 12 49.70 .39931 .70 55.02 13 50.92 1.72434 12.97 67.99 14 56.79 1.20628 6.35 74.34 15 63.98 .87276 3.32 77.66 16 65.02 -1.04473 4.76 82.42 lh'17 66.85 1.08663 5.15 87.57 18 70 34 1.25686 6.89 94 .4 6 19 71.93 .14558 .09 94.55 20 73.39 .11068 .05 94. 60 21 78.91 .21947 .21 94.81 22 82. 81 .01820 .00 94. 81 23 83.78 1.08990 5.19 100.00 O

. 3 e .

4

( TABIZ 5C ,

Modal Frequencies Participation Factors, and Relative Total Response Contribution Probles 225 - MSRV Discharge Line Y - Direction Mode Frequency (hz) Participation Factor I Contribution Cumulative % Contribution I 1 12.56 .11437 .11 .11 4 2 *

19. 94 -2.14081 40.15 40.26 g 3 25.16 .63341 3.52 43.78 o

~

4 25.90 .45357 1. 80 45.58 5 26.37 .48233 2.04 47.62 6 29.78 .00210 .00 47.62 7 33.48 .29992 .79 48.41 8 35.42 .19024 .32 48.73 9 39.07 .20443 .34 49.07 10 40.44 1.11453 10.89 59.96 11 48.44 -1.43242 17.75 77.71 12 49.70 .30897 . 84 78.55 13 50.92 .28824 .73 79.28 14 56.79 .48050 2.02 81. 30 63 98 .09042 .07 81.37 lh.15 16 65.02 .80082 5.62 86.99 17 66.85 .02805 .01 87.00 18 70.34 .13072 .15 87.15 19 71.93 .62307 3.40 90.65 20 73.39 .91786 7.38 98. 03 21 78.91 .48365 2.00 100.00 22 82.81 .00370 .00 100.00 23 83.78 .00422 .00 100.00 e

('

. i Attachment 2 to AECM-82/79 Collection of SRV Load Data During Startup Testing

1. Single Valve Actuation (SVA) Data Current plans call for conducting three shakedown tests to ensure.

proper operation of all instruments, data collection equipment, etc.

The first shakedown test is conducted at approximately 250 psi reactor pressure. The subsequent two tests occur at approximately normal operecing reactor pressure and essentially provide additional SVA data. For more detail on shakedown testing see the confirmatory test plan previously . submitted for your review. This plan is summa-rized in FSAR Appendix 6B.

2. Transient Testing Current plans call for the collection of data (if available) during MSIV closure and turbine trip. Turbine trip is not expected to result in SRV actuations due to turbine bypass operation, however, MSIV closure is likely to result in an additional single valve actuation as a minimum. In the case of Kuosheng, the single group-one valve opened, immediately followed by the opening of one group-

, two valve. Following the closure of the group-two valve, and the group-one valve, a number of Consecutive Valve Actuations (CVA) occurred relative to the group-one valve. As stated above, our test plan currently considers this test.

All pressure sensors and strain gauges provided for in the confirmatory test plan will be utilized to collect data. This data will be submitted to the NRC as additional information to supplement our evaluation Kuosheng data and its evaluation with regard to Grand Gulf. In addition, all accelerometers presently planned will be utilized to collect data which may be used to provide an indication of plant structural response should pressure data exceed j expected values.

l t

i e

- _. ._. ._ _ _ - . _ _ _ _ . . . _ _ _ ._ . _ _ a