ML20024A651

From kanterella
Jump to navigation Jump to search
Proposed Changes to Tech Specs 3/4.6-2,B 3/4 6-6 & Added 3/4.6-46 for Unit 2 & 3.7-10a,3.7-34,3.7-34a & Adding 3.7-10b & 3.7-34b for Unit 1 Re Purge & Vent Valve Operability
ML20024A651
Person / Time
Site: Hatch  Southern Nuclear icon.png
Issue date: 06/15/1983
From:
GEORGIA POWER CO.
To:
Shared Package
ML20024A646 List:
References
TAC-42603, TAC-42604, TAC-51984, TAC-51985, TAC-53476, TAC-53477, TAC-59543, TAC-59544, NUDOCS 8306220010
Download: ML20024A651 (55)


Text

- - -

7,.

ATTACIMNr 3 NBC DOCKET 50-366 OPERATING LICENSE NPF-5 EIMIN I. HA'ICH NUCLEAR PIANP UNIT 2 PRO 10 SAL FOR TECHNICAL SPECIFICATION CHANGES PURGE VALVE OPERATION

'Ite proposed change to the Technical Specification (Appendix A to

. Operating License) would be incorporated as follows:

Remove Page Insert Page l

3/4.6-2 3/4.6-2 l ---

3/4.6-46 B 3/4 6-6 B 3'4

/ 6-6 c

1 4

8306220010 930615 PDR ADOCK 05000321 PDR p

f 3/4.6 CONTAll#ENP SYSTEMS SUWEILIANCE REQUIRENENTS - (Continued)

b. By verifying each contaiment airlock OPERABLE per Specification 3.6.1.3.

By verifying the suppression chamber OPERABLE - per Specification

~

c.

3.6.2.1.

1 .

l E

r l

l I

4

^

T

'-7, i

HMOI - UNIT 2 3/4 6-2 l

l 6 ..

A

CONTAIMENT SYSTEMS PRIMARY CONTAIM1ENT PURGE SYSTEM LIMITING COOITION FOR OPERATION 4

3.6.6.5 'Ite drywelliand h,tppression chamber 18 inch purge supply and exhaust isolati Vs1ves shall be OPERABLE with:

a. Each valve may bp[t purge system operation for inerting, deine; ing and p re control.
b. A leakage ch that the provisions of Specification 3.6.1.2 are met.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3.

ACTION:

a. With an 18 inch drywell and suppression chamber purge supply and/or exhaust isolation valve (s) inoperable or open for other than imrting, deinerting or pressure control, close the open 18 inch valve (s) or otherwise isolate the penetration (s) within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> or be in at least HOF SHUTDOW within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUIDOW within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

SURVETT.TAEE REOUIREMENTS 4.6.6.5 'Ihe primary containment purge system shall be demonstrated OPERABLE:

a. At least once 'per 31 days, when not purging and venting, by verifyirg that each 18 inch drywell and suppression chamber valve is closed.
b. At least once per 18 months by replacing the valve seat of each 18, .

inch drywell and suppression chamber purge supply and exhaust isolation valve having a resilient material seat and verifying .that the leakage rate is within its limit.

s 3/4 6-46

i; ~

3 l ODNIRIl@ENP SYSTEMS BASES CONTADMENP ATMOSPHERE CONIHL (Continued)

Se OPERABILITY of the systems required for the detection and control of hydrogen gas'_ ensures that these systans will be available to maintain the hydrogen concentration within containment below its flansnable limit during post-IOCA cpoditions 'Either .recombiner is capable of controlling the

expected hydrogen- generation associated with
- (1) zirconium-water reactions, .(2) radiolytic (+x--- sition of water, and (3) corrosion of metals within containment. %e hydrogen mixing system is provided to ensure adequate mixing of the containment atmosphere following a IOCA. his mixing

- action will prevent localized _ acetsnulations o,f hydrogen from exceeding the flansnable limit The ' requirement for the primary contairanent -atmosphere oxygen concentration to be less than 4% by volume is being added for fire protection considerations. %is is being done in lieu of the installation of sprinkler for the recirculation pumps inside the drywell.

3.6.6.5 PRIMARY 03FPADGENP PURGE SYSTEM

%e primary containment purge system- is designed ,to perform two basic functions:--pressure control ~ and inert /de-inert the primary containment.

Under normal operations the- purge system is used to maintain containment.

pressure less than two psig. Post IOCA, the purge system, through the 2

-inch bypass lines, is also used to reduce containment pressure. %e 18 inch lines are the- primary means of reducing the oxygen concentration inside containment before long term power operations to less than 4% in accordance with - Technical' Specification 3.6.6.4. Conversely, it is also the path for restoring oxygen concentration to life sustaining levels -before drywell-entry. . % e system is hard-piped to the Standby Gas Treatment System; therefore, any entrained radioactivity will be reduced before being released to the environment through the main stack.

%e use of the drywell and suppression chamber purge lines is - not-limited since the 18" valves will close during a IDCA or steam line break accident and therefore the site boundary dose guideline of 10 CFR Part 100

.would not be exceeded in the event of an accident during purging operations. %e design of the 18" purge supply and exhaust isolation valves meets .the requirements of -Branch Technical Position CSB 6-4, "Contairunent Purging During Normal Plant Operations."

LReplacement of the 18" valve resilient seats on a cyclic basis will

-allow the opportunity for repair before gross leakage failure develops. %e 0.60 La leakage limit shall not be exceeded when the leakage rates determined by the leakage integrity tests of these valves are added to the previously determined total for all valves and penetrations subject to Type B and C tests.

B 3/4 6-6

ATTACWENT . 4 NBC DOCKErr 50-321 OPERATING LICENSE DPR-57 ENIN I. HATCH NUCLEAR PIANT UNIT 1 PROPOSAL FOR TECHNICAL SPECIFICATION OLN PURGE VALVE OPERATION The proposed change to the Technical Specification (Appendix A to Operating License) would be incorporated as follows:

Remove Page Insert Page 3.7-10a 3.7-10a' 3.7-10b 3.7-34 3.7-34 3.7-34a 3.7-34a 3.7-34b a-l is i

4

LIMITIPO COPOITIONS FOR OPERATION SURVEILLANCE REQUIREMENTS 3.7.A.8 Primary Containment 4.7.A.8 Primary Containment Purge System Purge System

'a. When' primary containment is a. Each drywell and suppression required, all drywell and chamber 18 inch purge supply suppression chamber 18 inch and exhaust isolation valve purge supply and exhaust- shall be verified to be closed isolation valves shall be at least monthly.

operable and in the fully closed position except when b. Each refueling outage each required for inerting,.de- drywell and suppression inerting, or pressure control. chamber 18 inch purge supply and exhaust isolation valve

b. Each drywell and suppression with a resilient material seat chamber 18 inch purge supply shall be demonstrated operable and exhaust isolation valve by having its valve seat re-shall have a leakage rate as placed and verifying that the specified in 4.7. A.2. leakage rate is within its limit.

If either of these require-ments cannot be met, close the valve (s) or otherwise isolate the penetration (s) within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> or be in at least Hot Shutdown within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in Cold Shutdown within the next 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

9. Shutdown Requirements If Specification 3.7.A cannot be met, an orderly shutdown shall be initiated and the reactor shall be brought to Hot Shutdown within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and shall be in the Cold Shut-down condition within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

B. Standby Gas Treatment System B. Standby Gas Treatment System

1. Operability Requirements 1. Surveillance When System Operable A minimum of three (2 of 2 in Unit 1 and 1 of 2 in Unit 2) of the four in-- At least once per operating dependent standby gas treatment system cycle, not to exceed 18 months, trains shall be operable at all times the following conditions shall when-Unit 1 secondary containment be demonstrated:

integrity is required.

3.7-10a

a COPqAIPMENT SYSTEMS BASES FOR LIMITING C0tOITION FOR OPERATION

'3.7.l4.8 Primary Containment Purge System The purge system is designed _to _ perform two basic functions: pressure control and inert /de-inert the primary containment. Under normal operations the purge system is used to maintain containiaent pressure less than two psig. Post LOCA, the purge system, through the 2 inch bypass lines, is also used to reduce containment pressure. The 18 inch lines are. the primary means of reducing the oxygen concentration inside containment before long term power operations to less than 4% in accordance with Technical Specification 3.7.A.5. Conversely, it is also the path for restoring oxygen concentration to life sustaining levels before drywell entry. The system is hard-piped to the Standby Gas Treatment System; therefore, any entrained radioactivity will be reduced before being released to the environment through the main stack.

The 'use of, the drywell and suppression chamber purge lines is not limited since the 18" valves will close during a LOCA or steam line break accident and therefore the site boundary dose guideline of 10 CFR Part 100 would not be exceed in the event of an accident during purging operations.' . The design of the 18" purge supply and exhaust isolation

. valves meets the requirements of Branch Technical Position CBS 6-4,

" Containment Purging During Normal Plant Operations."

Replacement of the 18" valve resilient ' seats on a cyclic basis will allow the' opportunity ic repair before gross leakage failure develops.

The 0.60 La leakage limit shall not be exceeded when the leakage rates determined by the leakace integrity tests of these valves are added to the previously determined total for all valves and penetrations subject to Type B and C tests.

4.7.A.9 Shutdown Requirements Bases for shutdown requirements are discussed above in conjunction with the individual requirements for primary containment integrity.

B. Stan&y Gas Treatment System The stanty gas treatment systems are designed to filter and exhaust the Unit 1. secondary containment atmosphere to the off-gas stack during secondary containment isolation conditions, with a minimum release of radioactive materials from these areas to the environs. The Unit 1 standby gas treatment system fans are designed to automatically start upon receipt of .a high radiation signal from either the Unit 1 or Unit 2 refueling floor ventilation exhaust duct monitors or the thit I reactor building ventilation exhaust duct -monitors, or upon receipt of a signal from -the Unit 1 primary containment isolation system. The Unit 2 standby gas treatment system fans are designed to automatically start, to assist the thit 1 fans to exhaust the thit 1 secondary containment atmosphere upon receipt of a high radiation signal from either the Unit 1 or Unit 2 refueling floor . ventilation exhaust duct monitors or the Unit 1 reactor

. building ventilation exhaust duct monitors, or upon receipt of a signal from' the Unit 1 primary containment isolation system. In addition, the systems may also be started manually, from the Main Control Room.

3.7-34

LIMITIPC C0tOITIONS FOR OPERATION SLRVEILLANCE REQUIREMENTS

. a. Pressure drop across the With one of the Unit 1 standby gas conbined HEPA filters and treatment systems' inoperable, for charcoal absorber banks is any reason, Unit 1 reactor operation less than 6 inches of water and fuel handling and/or handling of at.the system design flow casks in the' vicinity of the' spent r. ate'(+10%, -0%).

fuel pools is permissible for a '

period of seven (7) days provided b. Operability of inlet heater that all active components in the at rated power when tested remaining operable stancby gas in accordance with ANSI treatment systems in each unit N510-1975.

(minimum of 1 in lkilt 1 and 1 in Unit 2) shall be demonstrated to c. Air distribution is uniform ,

be operable within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, and within 20% scross the

-daily thereafter. filter train when tested in accordance with N510-1975.

l l

1 i

(

i 3.7-10b

m CONTAIPMENT- SYSTEMS BASES FOR LIMITING C0tOITION FOR OPERATION B. Stan&y Gas Treatment System In the case of the Unit 1 standby gas treatment system, upon receipt of any of the isolation signals, both fans start, isolation dampers open and each fan draws air from the isolated Unit 1 secondary containment.

In the case of the Unit -2 standby gas treatment system, upon receipt of an isolation signal from the thit 1 primary containment isolation system, reactor building ventilation exhaust duct monitors, or the Unit 1 or Unit 2 refueling floor ventilation exhaust duct monitors, both fans start, _ _

fan supply and discharge dampers open, and the fans draw air from the isolated Unit 1 secondary containment. ,

Once the SGTS systems have been initiated automatically, the operator may place any one of the Unit 1 and Unit 2 trains in the stan&y mode provided the remaining train in each unit is operable. Should a failure occur in the remaining operating trains, resulting in air flow reduction below a present value, the standby systems will restart automatically.

As a minimum for operatJon, one of the two Unit 1 standby gas treatment trains and one of the two Unit 2 standby gas treatment trains is required to achieve the design differential pressure, given the design building infiltration rate. Once this design differential pressure is achieved, any leakage past the secondary containment boundary shall be inleakage.

A detailed discussion of the stanty gas treatment systems amy be found in Section 5.3.3.3 of the thit 1 FSAR, and in Section 6.2.3 of the thit 2 FSAR.

Any one of the four filter trains has sufficient adsorption capacity to provide for cleanup of the Unit 1 secondary. containment atmosphere following containment isolation. Any one of the four available standby gas treatment trains may be considered an installed spare. Therefore, with one of the standby gas treatment trains in each unit inoperable, there is no immediate threat to the Unit 1 containment system performance, and reactor operation or fuel handling operations may continue while repairs are being made. Should either or both of the remaining standby gas treatment trains be found to be inoperble, the thit 1 plant should be placed in a condition that does not require a stan@y gas treatment system.

High efficiency particulate air (HEPA) filters are installed before the charcoal adsorbers to prevent clogging of the iodine adsorbers. The charcoal adsorbers are installed to reduce the potential release of

' radiolodine to the environment. Bypass leakage for the charcoal adsorbers and particulate removal efficiency for HEPA filters are determined by halogenated hydrocarbon and DOP respectively. The laboratory carbon sample test results indicate a radioactive nethyl iodide removal efficiency for expected accident conditions. Operation of the fans significantly different from the design flow will change the removal efficiency of the HEPA filters and charcoal adsorbers. If the

- performances are as specified, the calculated doses would be less than the guidelines stated in 10 CFR 100 for the accident analyzed.

3.7-34a 1

s CONTAIl4ENT SYSTEMS BASES FOR LIMITING COPOITION FOR OPERATION 4.7.C. Secondary Containment

- The' secondary' containment is desigfied' to minimize any ground level release

'of radioactive materials which might result from a serious accident. The refueling area' of the reactor building incudes the Unit 1 and thit 2 refueling floor volumes. Therefore, the reactor building provides secondary. containment .during unit 1 reactor operation when the drywell is sealed and in ~ service; land provides_ primary containment when the tkilt 1 and/or Unit 2 reactor is -shutdown and -its respective drywell' is' open, as during refueling. -

4 4 3.7-34b L

r ci o

ATTACHMENT 5 i

SYSTEM DESCRIPTION 18" PURGE / VENT LINE EXCESS FLOW ISOLATION DAMPERS 2T46/T48 l

l l

[

1 June 15, 1983 i

i

+

1.0 Function The function of the excass flow isolation dampers is to provide automatic isolation capabilities on high flow in the 18" purge / vent,line

~,2 to protect-the Standby Gas Treatment System (SGTS) filter trains from overpressure in the event of a LOCA.

2.0 Design Basis 2.1 Safety Design Basis I ,

A. The excess flow isolation dampers will prevent the SGTS filter trains from being subjected to more than 2 psig due to a flow / pressure increase in the event of a LOCA while purge and/or vent operations are in progress.

B. The excess flow isolation dampers will be safety' grade and seismic Category I.

C. A 2" bypass line without an isolation valve will be installed

( around the isolation dampers to assure post LOCA venting capabilities.

l D. The dampers will be self-actuating and self-contained.

l t

E. The dampers shall be tested prior to installation for closure time and structural integrity with the LOCA pressure and flow.

l

! F. Redundant isolation dampers are installed so that a single failure will'not prevent compliance with safety design basis A.

2.2 Power Generation Design Basis A. The excess flow isolation dampers shall remain open for normal plant operation.

1

+ . . I

?

l l

1 B. By assuring protection of equipment, increased purge / vent times are feasible. This allows for more operat.ional flexibility.

2.3 Codes and Standards ,

The applicable portions of the following codes and standards will be met:

AMCA 500-75 Test Methods for Louvers, Dampers and Shutters ANSI N45.2 (1977) Quality Assurance Requirements for Nuclear Power Plants ANSI N509 (1980) Nuclear Power Plant Air Cleaning Units and Components AWS D1.1 Structural Welding Code IEEE 344 (1975) Recommended Practices for Seismic Qualifications of Class 1E Equipment for Nuclear Power Generating Stations 3.0 Description Two redundant safety grade, fast acting, excess flow isolation dampers with control room position indication will be installed in the common

, IS" vent / purge line from the drywell and torus before it ties into the SGTS filter trains. The location of the dampers within the system is shown in figure 1 for Unit I and in figure 2 for Unit 2. These dampers will close due to a flow / pressure spike resulting from a LOCA, Calculations have shown that while purge or venting operations are in process a LOCA could overpressurize the SGTS filter trains within 0.475 seconds. The dampers will be designed and tested to assure that they will close within this limit.

2

To assure that post LOCA venting capabilities are maintained, a 2 inch bypass line will be installed around the isolation dampers as shown on figures 1 and 2. Calculations have demonstrated that the SGTS filters will not be overpressurized with the 2" bypass line. ,

These dampers will not be containment isolation valves. Containment isolation capabilities are provided by the existing valves. For unit 1 from figure 1 these valves are T48-F318, F319, F210 and F326. For unit 2 from figure 2 these valves are 2T48-F318, F319, F320 and F326. These containment isolation valves will close within 5 seconds post LOCA.

l 4.0 Component Description Excess Flow Isolation Dampers 2T46-F076,2T46-F077,T48-F392 T48-F393 Quantity 2 per unit i Size, I capacity 100% each Type Actuator Counter Weight

Leakage Class III l Seismic Class I Max /iF Closed 53 psig Closing Time, (post LOCA) 0.4 seconds or less m

3

I

\ '

i

(

T4e 'e8 74 8 74 6 T46 4 g L g g I I 3

Ft.rER ASSOGLY T46 00014

  • pgg.g 10 W OFF GAS STACK _

B 3 i

  • g ab 8 NCPO .

NOFO NOFO "

h NCFO I

l g Q,O ru y 00 =%

v r=F'ggg, Ei.

-q i N . EI,14,

'"te '

i HE'*' N ac o ts l ,q- W  ; wrm w-a,, m, ggf*'

-g, s aw n a

_km -t g#Ih kr ni rMas a

' ry e.2 g g i t

i

.v(M'L't*

y

-2 c :,,

  • D sp' *= yaih +=

t

'e=M I rHAS f X26. > v.

S

\ w

, e ra rm: /pf /  ; /

\

  • BE E rees O O 3-A #ih kr at rHAa i

~ ,y o ,3 g r

! _ ,ac m '

ern,a A rHA. ,m,

'a eo

.m i _

J,2 .' ' . w q .  ; fw, 1 . -

a i ,Mw ,M l

g,$

, " d'. ir %',lii"CAME",e*L'"'

,o

.. a -ur FIGURE' NO.1 l

-l-.. - , - - , ....-.~,s.-. , . , - , . _ . - , .,_,,_-. ,,og , ,.-,_ , .....-..._m,m-.~____---.

' ~

( _ _ . _ . . . _ . . _ _ _ _ . . . . _ . . . . _.

l .

i l

ac - ,

1 < . -

J l 8 A -

A A

p ,o -,,

., rl-4j l4 h*.

@E 11 g * '"=

> = =

g g =4

o. .

l s, 5 ea m a a s ce i em,a . M R, v

if M* - 0 SE=

i mAo @2t ,i ;t' N3 NCFo j .

27 6 ,_

m, = =

n.-aco,

'o me._ l s h b N '

ans-,on-g g i

l

( n e r n o p- v',

__ g to muo=

s e, 4,g NC c .c,c

~

n

, ---.! n g.n a p 2*7. - _

su . M f6e8 I I kl t f>a_a - O*

' WNaa

_ y a-NCFC 5

\ 5 qg[gg [ k

, NCFCl N i NCK.'

JQ m 0 l

n n n , M M \

  1. ^

U O 8O O 4 J.,.'""@. ,

'4 \s J ** k m m NCFC8 N s

s, x,,N,#CFC I

n

, X-220

~

1 CRUS UNIT t l .

NOTE 1 DECESS FlDV IRIATON DAWEft$

( .


E FIGURE NO 2 ,

i l .

1 . _ _ _ . . _ . - _ . _ - - - - _ - - - - ._- . -

r-.

s' y ATTACHMENT 6

SUMMARY

OF PURGE VALVE LOCA AND SEISMIC LOAD TEST June 15, 1983

-e o.

i Summary of Purge Valve LOCA and Seismic Load Test

- The valves identified as containment isolation valves in the purge and vent system are 18-inch butterfly valves, Fisher Controls Model number 9220. The valves are equipped with Bettis Model 733C-SR60 (Unit 2 valves) or 733B-X-SR60 (Unit i valves) air open - spring to close operators. The capabilities of the

~two operators are identical.

The valve assembly tested was an 18 inch ~ Fisher butterfly valve, model 9220 with a Bettis 733C-SR60 pneumatic actuator. The assembly was mounted in a bookend type fixture, with the valve shaft oriented in'the horizontal plane. The mounting fixture was welded to the triaxial seismic simulator table at Wyle Laboratories, Huntsville, Alabama.

Six accelerometers were mounted on the valve assembly, three at the valve -

.a:tuator connecting bracket, refer'to photograph 1, and three at the end of the actuator refer to photograph 2.

. To simulate the in-service fluid dynamic loads, which occur during a LOCA, a torsional load of 5164 in-lbs, which is equivalent to the required torque to close the valve at 62 psid, was applied by means of a hydraulic cylinder to the valve shaft, in an opposing direction to the closing rotary motion. The

' cylinder was attached to the valve shaft at the point as shown in the attached sketch.'.Since the actuator. valve connection is a critical point on the assembly. and the shaft is the weakest part, this attachment point was ponsidered as being the worst case condition. The torsional load was applied

[ only during the SSE test.

The valve. assembly was subjected to 30-second duration triaxial multifrequency i . random uotion which was amplitude controlled in one-third octave band widths

- spaced one-third octave apart over the frequency range of 1-40 Hz. Three simultaneous random signals were used as the excitation in the' vertical and two horizontal axes. . The amplitude of each one-third octave bandwidth was adjusted I

in each of the axes until the Test Response Spectra (TRS) enveloped the Required

,- Response Spectra (RRS) at percent damping. Refer to the attached Operating j Basis Earthquake (OBE) and Safe Shutdown Earthquake (SSE) TRS vs RRS curves.

The functional operability of the valve assembly was verified by cycling the valve from close-to-open-to close during each OBE test and from open to closed

'twice with the simulated fluid dynamic load applied during the SSE test. Five I- (5) OBE tests were applied prior to the SSE test.

L i

It was demonstrated that the valve assembly possessed sufficient integrity to L withstand the combined fluid dynamic and SSE loads, without the compromise of structure and function. Under' full load conditions, the valve went from open to

closed in a maximum of 2 seconds. The plant Technical Specification requires that the valves close in a maximum of 5 seconds. Therefore, the test has l . demonstrated that the T48 containment isolation valves will function as required with the combined seismic and LOCA loading conditions.

J P

1 l

l l

i t

l

'. j' " .:  :'.3,y[ } r.

k q.-, . '8 4 .), j g.; .( . .

,, ,g,4.. .%;+4 . , ,-;g ,

c.

3..>..,- - 3 . ,, ,3 .: ;,

A(J. . ,- ,, s ,

w .

5 .

. . . ' .2-- . . -

, e4 . - .

y, . s . <.,,-t.  ;.: -n. 3 ,7'  : ,,4 '+

ey .w. .

7 #- e .," l 't17. " {. ' R %, + f.? ' ' ? ' S - 's -' p'( ? .' , - g#, 4r .g ,,

? ,y-#

M , . < , g e p~ . 6,, W.,

- 'S Y',i.

. . 3,4 y, - '. .-. .+

- . . ' . .~',.j r.,. ?d .', -.~,'. ' 'l: ( f, 'm t, -

'. l. f..- , - . _'/ ' -/ 2 . V ,,-} ' t i, y ;.' - . .,: , . ..;.

. , .r , ' _ .: - ,+

. : ',6...'.'

y. g. u - s- ,- .~ ,.. y- u ,. ,

v w- -

g., g ....g

- - t, g .w . +w. . . .

,3. . . ,. _ < , .. , ~ t . ,- v,' ;

4i -

.c .; ,a - ' .c,

, - -x .g,_ ., -r ' g u; a. <.. u.. _

u -+

u. . . * -j t','..'.

y' ,, - s , ;E *, ,'y.

, > - k, . ..' +ii

- ,, i =

  • _, '.., *. -~ >

0* . , _f . , . #; .,.

...,* ,. fr . e ,s .e - . , . ,,

j7 ...e.,,.g..a.:. ~',t, g s' i. ,' ! +; ' ' ' ,, i, .

  • . . 4 ,

.h, ,-

"o

'. ' ,/*. ' ' ' ([, '-' y' -cg "

. f  %.

1...', g ),- <

. 3 .

'--! ' I k .. ' . .- 'i'.* 'f)[, 'T ' ' I .. , " , . '-' .' ,

, f

./ '. -r J'.-

' , . , ' '. -4 . . .

( i ../ - (t S # s , !. -

,. ' ._ 8 - - [ . .; / .[ . ,

s ,

- . -) i, ,

..I f ;&J b{ f *fy l_j_.' .f [.? [ ij .

c .. .; 3; R q. f' A f

.[

f

~

t s A

. DZ.'.*'t . N 5f A A

. ,.i ~J  ! y k'* I;. ".' '"

' ' h y -c - . 'a M + m..s. W'

' Qr.M D.

'j 4 - ,' ,-

.g. g'm%. , -m

}  ::

\ ,

O ' -

, , . - 4 .. . . / 7'h 1% *

.J [ N  %. ,[y ,', .

/ .

g ,'*' -

(

I ,jh .3 h-

' ' f * ,. k, . , . as m  :. -

w M," e%#*, z. , , % fp

. ,' .e .ts . '

,- .. . = . . . .

-2 ,w.., .

, 7."".,.. ._, '.; 'c .. 'nd

.y*

' ,.1  ?

? - h e ' ., :  ; .a' w  ;

- - -^

p,. . 4 -

g

~

.~  : % ,.

. .-xr..

y - ( , .. .,?. . . . , , n' i 4,. ,; p,'f4. W

, , , p3 .g

' ~

J p.t -M.(

g ,' ' m } - L , .R l j,2*- . '.; f :' *. _ :: . ,.R .

,  ; y y[ Qd g s. . .

% ;4. ,~. . , ,; u win [.,?- , n'

.i [ ,k h g.

L.- U < . ' ' a -; M:<- &;,N

  • [

.I hhh

/ sg:s:Y p., 3y; ,.

= . ,7,r

.;. ;-f ; c .

9 . . - -

. .. ..e yy. -w, u ;e 7 ,;.,.,,

. . p:'3,n . '-y ,w > m >;.'  %. ; :  ? ;.+4.c  ; .g< p .p vA w . . , ,

7 - .; : ,: '

s

.e r

7',

a r- t .1:.,".-- -

  • y = y;q:9 +-m v.

'q , ., . , -

, w .\ -

-g@/m-;-e .

.. . W g, ~s 3,z PHOTOGRAPH 1 ACCELEROMETER LOCATIONS 1 LONG, 2 LAT, AND 3 VERT

j l

4 g

, -s- .

. p '

6 . . _

.a.- .

/

g .

? .WA -

~

j M .

  • g %. 4 wg ~._ -

t' '. Stp _ jk

, L A p~ " - -ens ' \ .

. t. t s .

  • . g --

' '" m 2 ~

p .

PHOTOGRAPH 2 ACCELEROMETER LOCATIONS 4 LONG, 5 LAT, AND 6 VERT AND CONTROL ACCELEROMETER LOCATIONS

4 1

I ATTACHMENT PolNT FOR FLUID

. DYNAMIC LOAD

~

{ I Y &

I ^7 '

____. /

g

~

_t. ,- G e l~\ h f)r a

/

,j . .

i TORSIONAL LOAD ATTACHMENT POINT

. .. ~ - _ _ - ._. . . - - . . - . - . - . - - - = _ . - - - - - - - - - - - _ - . _ , . . -

4 I O Paga.No. R -

Report No. 46754-1 puu, scala SHOCK SPECTRUM to PeeW i

l 1.00 10 4 100 0 100G"! l

! DAMPlNG M -

se 4

1 e

.n- ,

I J

e ___ .- ...

T I --

l g [ f I 5 1  %

.= -_. .. h

._. I s __. -

m

. m. .... . ,_ .-_

4 "'*

l -

, . .ame e-.

Y I

1 I .

I' . i . a. I .

Il I I. I 1 6'

1 1I il ,

1 8

.1 1" 1' 1,1-5 6 FWrh . a p. t I ia i p

. .. I P

'1 's

.I 1 r []

,e .. .

1 3 eli F ,i se i-i , , . ,. , i ,,o c ..

lT i,

i !je

'f*

i i

9 " _

1 e -

- y y 1 1 4 ,

e , , , , , . ., . Ii i.

M wb

=

> r.

e -_ -

2e e ___-

s .. _

f- ___ -

4 e

O 6-

.s

- n -

. . .n I I

F a
o. !I. ] l l

- i . i-  :. _ .i .,

, L

. 1 t i i i fa '

, 3 '

I4 I. l ti3

. . . i.

i6 e i

, , - i. .

Ii

...f, ,!

I t i i i . f. I l

, 'L' . . ' . .. ir-, '

i

i. , .- . , .ei i . o , .

.I .l; ,i i i l

,i I 1

.., i , . .a i , .ri l 4.. .

i M.' .

^ _

Y I

& b O . I_ l j I I iI, ,a. I I

I E 5 ) Ij 1 _ L

-- e -=.., ;I- 't, I i [ I I I ! r #

2

  • em

.g..

=.

g *** . ,

~_

A e'_

  • -~~'
  • a+-

. . 4%_ --

4 1 ,

, . . +. -

s_._ '

O.,R.

1

m. - -

c.:- -. - 4 .

, __ =

m

.=

We 1 ------

_.._ M. . *-.=*

i 1 4 -

t

_ r i

. I a i I i 1 1 !e l

1 I i i Y' i 1 1 l '

I d

& Ii 7 l *l*

s . t i l- I af i Il l l i l i I e I; f a

1

, , ,, m.. .

. i: _1,1. , , . , . .i.

_f

]o 3

i,o if 3 i

.I i-  ! i I a

u ,,, i . . ..'

,o. i,

. . e e i e e se ,a  : . . . r e e se e a . . e e e is 1 ' '

' 10 100

, ,  !. Frequency (Hz) s 1000 y

4 i ,

s LOCATION NO. V Oc 066 .

l Axis T R \ All AL s TEST RUN NO.

  • s s

.m . s

' s

.[ .N

%A

, o

% A

.[ \ ,

p yv- w - w-,r7M.e.v.. w- . - e-N

._ _ .. - _ . _ . _ _ _ _ _ . _ _ _ __ _ ~__ . _ _ __ _

7 .

Pag? No. 21

[

Report No. 46754-1 j FULL SCALE SHOCK SPECTRUM is Peak 3

[ 1.00 10$ 100 0 10000 DAMPING M

,e e I

s W' 5

. I t i l I I .

  • I i I A a 1 i i  !

1 1 I iI 1-

' I i 3 1 3 I I I I i l , 1 3 3 i '1 I 1 l 1 [I I & I I I O  ; .-;; 3 3_ , ~ ~

.~.

.33- .+-- 4 r.-----

2:::

y- ~ ~;_y,3- - - - - ._ . . .-_.

-. -+

_-- 3_

9 -

~ _ . _._

-og.e< 6 e ?4.e..-ee*.

l

  • 1 I I I I I 1 I 1 I I I I I I I I I  !

h , . . . . - - ,7 .-,-

9. .. I_. -.-- .<.,. .m.- -- .

7 - -% . .

n< 9 e.- - + . . . -. .~. .

g ;7 g

- :_-.-._ _. i

==- r :::

m i _

I I I . I Y l I I I I I I 1 S " I . I I II I I I I 1 1

. . I i. i

. . .  ; tI 1 I I I II  !! .

i 1

. I

t IY j a 2 il f I i 'I 3 i I !!'3 F".3 4Z l i I e I~

,s p' i i il .

  • i Ill 'l' s 3  ! _i lI . . i . .. ..i. .'. . j'T [36 jj; . ] lI s . 11; i

I11 ) i I i l l j l3 6il; .3I 1l lii' II 31+ to , li e

,,f e i 'lil i e 1 it _

9 r

, e i t . .

I i i

! 'I

. . I !I.  ! l I e s t, i _T Am.F ' k. I 1 i y;

0 I r se f I I

s i 1 [ l I

av I

_+. . . .

T [I I e il

! 1 l

e 8 -

l I E

l w I 1 1 I I E' 1 I I I T I I I I 1

( . I

\ .

,  : a

-.zg  ::: .m _ . , ,

-w , - -

m ,.:- :m _ _

- t-  ::r .::: a

- + - - - g.

l l

b. ,

,[

J

I Sim - a r X I I IT I i I I I I I I I I I

' F I . . I I ] 1

' I .

7 : . ,

l'.

.I' I .~i I I I I I

I '1I I;. 'I. .. il L fi I I;!I 'III .1 ii l I It i I a ii i I . I i  ! i  !!  !!! i I i 'ie i ~i

! ti+ II ilt' i i .i 4! Ilit i i  !  ! .I  ! l il li l l 1 ilti lii. 6,i si ioni 1 1 II 6;i iin: tin I. i . (j i 1 1

- e e .

- N I i i

. I , .

I i, i, ,i ,i I

i i i

. ,~,i..

. i iI .1,.,+

, o 1 i l!1 I . , ,

i i1.

to . ,

i

, I ,i

u. .

,.,_I-1 ,, -. , . - -,-- . _ .

g _ :

j yo.

e -

n II II I 1 I 1 I I I I Y I I 1 1 I 1 I I I I 1 I I II I 1 I I I I I e __. .._..____ _ _.

1 l I 1

I I I 1 I 1

--'I . I i s. . .. 1 i

'[ I l  ! II J } [ I I $ I I l'! f

' I I ' 1 l . i i I . II 'I. . i  ! 'I' _a

'l i i f4 I!+ i I i  !!' I .!'!  ?

I I I t! r I+i' I . 11  !!i' I I i *the l{l: e I I  ! Il 3

i * .i i I l i!' { 4to e 3 s i i . . . e i e e so a a . e e r... e a . . e r e e io 1 10 Frequency (Hz)

LOCATION NO. M Axis T R t A% IA L TEST RUN NO.

7

.~-

Paga No. 20 Report No. 46754-l'

FULL SCALE SHOCK SPECTRUM is PeeM i

1.00 10 4 100 0 100G3 i DAMPING i

se ,

e 4-

. .ees e

~+ -*.e- -.e- , ,

a l i 1 a 1 , 4 iF I I T t 3 i rv I r i 1 I i  :

-- .,. .. . ~ . _ -*- ~,.

'*M - - - -M Z. 'O_ * ,T

~ w~ _-~-

l 7 ' -e --

<=,

we

, s 4

( e>

g 9M*

l I I I J r y I O - -

, . - - - -e --- -

-- _a -

._.,go--  ;

s _ .

y TT I I

[

Y y y

I I

~

f f -

j i i r P*

! _ I .

t i1

, . . I 1 - 1 Ii . . . [ I,j i ,t. ]

4 I i ti 3 I l l i I I eIi i i

% gig r,,,, e g . .;;, _

qgi sg, i 3

1 0

ihE . . . .1 . 1 3 Eb Ibi l  !

~

$ }O*' lll 1 3 ,( l': 0 l

i '

j I *4 I i e fI '4 .I4i e.6, iI 6i e ,

a i l , i ii,.

jui. '6i j l 4 e

+'

1 g .E J

n

.'E r i s j y 1 - E a i - a 1 .1 51 1 1 i 't I 1

/ 3 I e g y yy i g I l 3 y , y

, j _ _

f --W- -

-3 153 e .

<===

, , . zz:

8

, , 1 . , , , ,

.=:

mr m, -

eu-s .  :

i, 2 .-

E 1 I 1 1

- X = * ..

a. a I ,

i I Ei eA_ l'f. 16 l 1 6 I'3 a ' I llf 1 I l ], q. )' f d

I f 1i! iI .

I i 8

] [i 1 l I ii1, t i

.e i

,e i ,, . . .

.. i t- ,i,i n. . , , o ,

n . ) i,- , .i , ,

m, , ,., , .,- ,

.- .... ,.,; ., . ,,. .o .n. . . , ,. . ,, ,, , . .... , , , ,n; , . .m , ,, . , , ,

!, =

3

, e e

I I ii i i i1. >i .2. . 1 i ,

. .. . , o, , n , ,o , . . ,,, ,. , , ,

I I:e w

3:. e ._ _ _

I I i i 1 i 1 i

. s u

e 4

! . _ i i . . . .

I'I Ial I i r 1 I i i lil' l l [- i .

. 'Ii .. _i n . . a . .

, 'e1- e i. tl3 e i ] .

I t I i 1

, I t'I. {  ! 6I.gi,.  ! t i F I i.8 I li ;if I e i l }

4 i  ! l I.

. i

, .o ..,. . ,io. , . , i . . ,. i , ,, n , , , , ,, ,o. , ,

,i . ee r e s ie e e . . e e r . . .. e . . e e r e e is 1 10 g 100 1000 l.OCADON NO. LO d A M' 0B AXIS TA1At l AL TEST RUN NO. 4 e

i 1

e g- + t + v: -w e ,,-e-*** a ' e v- M-W '-e=e--W ->+9-e-wew--' s =+*1m,es-m-:m.--e-weweu.- m e e m e- eea. w-wo _ e, -- ewww---w -e m- _- - - , . m -_ - m_. ._ = - - - - - - + - -

l

} Pag > No. 37 Report No. 46754-1 FULL SCALE SHOCK SPECTRUM (g Peak)

/

1.00 10,' 100MI 10000 DAMPING M se e

= . ,

e ,

?

,,,, e ,

4 _' = i u , ;l

. m. ._.

2 -.;; _ _ _ . _ _ . _ . .

-= r- - -- .= ;_ __ = -

= _

4 '

I I 1

8 I 1 1 I I I 1 1 1 s _-_- _ . __-. - - _ _ ._. . -. -

_.=_. =._.__ _.. .

=

w =

.- =. = =

=t a I i i ' '

, , i i I . 1 T

3 '. il I i t i l 6 !l:  ? .

i 11 I . . .

8 I I; A Ili i  ! Ill l  !! 11.  ? .

i I

!.' 1e l~. ' i I

el I l'! il i i I 3

61 ;t'. 11 i I ei l' ' + !Il ..

i i I !t L 6- i 36 I i

'] il ,

I , li i iei. le 1 iI e '1' i .I i a3. e iI' I4 I.i i se -

e e

i , . . .

i i 1,

. 4- t

! i , -

=3 e ____.

w I

) _ __ .. . . . _ . . -

s . _._ _. . .

-- =--

m a 7 a, 1.

i  ; - :

s , ,, , 1.

I -

I i I

J

.I

_D B 1 J' T 3 13 3

.1, t II a i l 1 iI '

it ll ~. ] l l'

'i / 3 1. .fi i  !! 6f_ s f.t' i  !. ] . . #

3 t

a i Ie  !

3 l!  !!!  ;! l 1 I1 1 ifit  !! /! I i! I 'l t i !ill .. t' i li;I ie l I l ii lief i41 ( Ii.4 ie 4i e {

I I I iie f6i i si .ii {

f i e 9 ,' '

e

+

o i ,r . .,. . . , ,, , , ., m i

, , 4 u f 114 16 1 i I i i I I ii I I TiY i i ii1 4 i i l

I# I . f I I li 1 I g

l'

}

l l

ja #

e ,

= 4 l .

~) -' i i i

I t

f .I 1 1 1 II I I 1 I I l 1 I I l s .- ---

l .

. .a ,.

E I i i_ .

ie .

. ~

. . 1 .

8 I f I I .

3

} I

" I i l Ii.. .I 3 l l III' .. is ii i 'Ti i  !

I.

I e li i I  !. le li i :i if' i .

i I3+ 'i  ! 6 4 l I I i- ' I i I! ii . Ii 3'!. + l 4 i f i.r j

I i iie i.

3. t 1 It .il. i t 6 f i  !  !!it i i !3 i- 8  :

I I le, g a . e e r e e so e - e e r e e io I i a s . e e r e e so P

Frequency (Hz)

.in

=, LOCATION NO. 4 ~

8b l' Axis "TR 1 Alt iAL TEST RUN NO. b lD l=

I

. e .

PJge Nci. 36 Report No. 46754-1 FULL SCALE SHOCK SPECTRUM (g Peak) 1.00 10 .

100 5 10000 DAMPlNG M l 9 i

8 . Y a

. # I I a1  :

. 1 I I I

, I i 3} {

lls 6 e)' Y I I $

~._. ,g; . _ _ . ,,_ _. _. ._

O- _ . . .

g.+g7 - -

- +

y -._ .

.g _

~ __ _--gn ,-,;

4 * , .D .,*".T 2 -. -

- w .. -..m..

= ---

_.. -_ _ _ . _ _2

_ _ _ _ . _ -- n._ ..7 -.

1 3

I I g I I I I I l y ,

. 1

{,

a i I '

I I I' 41!_ mi l I I I1e 2

  • l . t Q-

! .!  !#.. 11 ! - i ; . ..-

i.i i: li  ! i> ,, 1,

.n

+

i - e

+i 1

".. i , i io i . o o, . .

, , , .. . i. i i. i i a: n, , , , .

i I

.a ,

. eiI. .i l; , 6 i4ai i . 1 iii is , &i I i j , e .

9 e , , ,

, i

_, .i i . .

~

e 4

i

- = .

cm t ,. . 1

. . m

, I E E 13 I

I 1 P

,#' i1. I ,

. .i f 7

.i'l i .. t i I1 I 1 I

'i .II I a i i' I .tli i i . _

l'

' I I i I I . t I' ,

I~ 3 il .

s!!! t i11. II' i i l

+ ' iisi  !  ! I 1 It -t. I 13 'i' 6t l

  • 1 * ..!! I! il

., alle . 1i+. 1 a 4 I II;l i p. i.e. i;l 4 e  !

a 14 3 I 16 is lii. 1 64 . 4, e  : ,

a f I T 1  : It ].

a

  1. , a I ' .,

. i r

.i 1

,1 i i i i in

, i i i i ,! ,,- iii i Se ,

i f i

3 ..

64 , s

=

4 .' 1 ,

1 I

] 1 I I 1 f

8 . . - . ..-. , .

T

. .. e 8

.E 1 1

i i .

. i ,

i r , , , .

r , g o, g. ,y;  ; i , 3 ,

g. .,

, [

J .I 3 i iil .I I , ,,

, , i,. , i i i i

,  ;.., , , i i ,,

, i a ,. i ; _ , c ,

,n ,. .

i .n i .. 1. , , , , i , , m , i.o i i i 3

. so

,i i l , ,,

. e e 1 e e io e a . e e r.... . . . . e e a Frequency (Hz)

LOCATION NO. Lw  % cA - S E AX;3 T R1 Ai1 At TEST RUN NO. 9 j

Page No. 35

- Report No. 46754-1 FULL SCALE SHOCK SPECTRUM (g Peaki 1.0 i . , 100$ 10000 DAMPING M S ..e . -._. ,

- p r

7 i 1 --- NW i i i ' ' li i i ii i . i i

  • ---- =. = = =; : ._

=. = .=- =.= - - - - - - -

= .a. = = - - -

m -- =:.r--- -2

~_. _..= =_= -

- - - .r.: = a.#.

-. =.=.:..

8 - - -.

w ='u'au.eer * " "

  • m ,

4  ?

Ji edi.e. ~_-

I i l I T T I I 3_ .- . _ ...

3 ~

~

- 4 .

np

  • I I j

t i i 2 i

! i Fe i. I 1 i. .fi i f 1 I i i ,1 4 ill i I .n i I! I' l f: Iff i i l i Ill' ii,, ;4j' I I) 3 , 3'I. -

64e iIll Ie 34' ill 6 j e f43I ili 'l- i 4

  • I Il e i

=, g -

8 it 3 1 I . i M i .

y i i . ,1 7y.

,y,; , ,

e i i r 7 a i  ;; 9 i i y j g .... . _ . _ .

4 "I I I I T I g

. - , we ._. _.. . .

- -- - - . _ . . _ . - -..a. ... _. ..

k,, I e

I Q g - -' '

1 1 l ,

~

/ , i 1 1

1

.I i m. .

m- r. E-' :

I

' 3 *Ii !i. 1 4L i J' 1 1 a i!/ . 1 ' f l ! .

,; i gi  ! I it' I , is, i 3

!/

! l 1 i .

I iI '4 t .

I3e- l i}i l  ! li! l l I i i .. .=i! If 'it' i'l' l II t i !! I{ lita i ali, I 4 6 l e I . .I*I

  • 6le i f6i  ; 61; Il l e64; 6 il ,ill lli. I II .

w.

. j r

r 84 g i

9 1 . . I e i e i . i i i I , . t li .

. 1 l i' l i, i

.,il' a

i I I i;} I 3 i : iIi iii i 1 I 1 I a i Iii i]3f 1

-I$ f I  !

1

%3 I ' i L

g +.. . . _ _

,) E __ -

+

r::

  • e 4

la-e 4 "

I I 1

1 I l I i T f 1 I 1 I I ..I I I g 'r- - - - - ._.. .. ._ .- _..._

s e

I I I

E i _1 . .

iI .

I i

' I t I i i i Yi, f .i i I 1- I I .,

3f 3? I ' i

' I;a i { ! i '. . ..I '. i !p . i li 11}i i le l 3

.3 [

l'.,.

1 I i I li', I!13 e . .

I i'

, I, Ii '.ii . m '.3i , . i i i, ,u. iiii .-i .a i o :i. i si .

,i a  : . e e r e e io a . . . r . io e a . . . r . . io Frequency (Hz)

'f

  • i LOCATION NO. L odG M ~N AXIS T R t AY t At TEST RUN NO. 9

a n.

4 ATTACHMENT 7 J

PURGE AND VENT SYSTEM OPERABILITY Rev. 1 June 15, 1983 j

e I. INTRODUCTION The intent of this report is to provide full and complete information pertinent to the containment purge and vent system operability issues. It is our understanding that the information provided below will allow the staff to close all open items dealing with the E. I. Hatch Units 1 and 2 containmen,t purge and vent system operability issues. One possible exception is the need to provide test results from a May, 1983, valve test conducted to demonstrate operability of the 18" containment isolation valves.

Each open issue raised in the' July 7,1982, letter from Mr. J. F. Stols to

, Mr. J. T. Beckham. Jr. is addressed.

II. CONFORMANCE TO STANDARD REVIEW PLAN SECTION 6.2.4 REVISION 1 AND BR'ANCH TECHNICAL POSITION CSB6-4 REVISION 1.

(A) Adequate justification for unlimited use of the 18-inch purge / vent systems or en estimate of the expected annual usage of the 18-inch purge / vent. system.

4

, G.P.C. Response:

i

~

The operating history at Hatch Unit 1 and 2 has shown that the requirement that the 18" purge and vent valves can only be open for 1%

, of the operating time has imposed severe restrictions on the operation I of the plant. There are clearly extensive benefits which can be j realized both in the safety and operational aspects of plant operation if unlimited purge times are granted. The operations department personnel at Plant Hatch make drywell inspections soon after startup.

prior to power escalation, to inspect for leaks and just prior to l shutdown in order to assure that any leakage or other abnormalities are detected prior to depressurization. If the drywell is inerted the operations department personnel are not permitted to enter the drywell by corporate policy due to the fact that an inerted ggmosphere will not sustain life. Therefore, drywell inspections can not be made. It is Georgia Power Company's position that this is not in the best interest of safety. For this reason Georgia Power Company will request that the Plant Technical Specifications be changed to allow increased purge times for the purposes of safety inspections of the drywell.

(B) Sufficient information concerning provisions made to ensure that isolation valve closure will not be prevented by debris which could potentially become entrained in the escaping air and steam.

G.P.C. Response:

Debris screens which conform to the guidance provided by the NRC are being installed during the current outage on the 18-inch purge and vent lines which communicate with the drywell on Unit 2.

1

Debris screens will not be installed on the Unit 1 piping since structural members inside the drywell make it very unlikely that t

debris could enter the piping. Pictures of the obstructions were l provided to the NRC Staff on March 31, 1983. GPC has been verbally informed by the staff that no debris screens will be required on Unit 1.

(C) An analysis of airborne radioactivity releases as a result of a LOCA;

-i.e., the amount of air / steam which will be released to the environment prior to purge system isolation following a LOCA.

G.P.C. Response: '.

An acceptable dose consequence analysis has been performed per the NRC position presented in SRP Section 6.2.4 and Section B Item B.5.a. of BTP CSB 6-4. A summary of the analysis is presented below as justification for increased use of the purge system during operational conditions 1.2 and 3.

To determine the most severe consequences of an accident occurring during purging of the drywell, two scenarios ar analyzed. These are loss of coolant accidents (LOCA) with both pre-existing and concurrent iodine spikes. Each scenario-is summarized below. Resulting offsite doses are listed in Table 1.

Case A: LOCA with pre-existing iodine spike Prior to the LOCA the reactor coolant concentration is assumed to be the maximum limit allowed by the technic,al specifications for the 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> following a power transient. For Hatch Unit 1, the limit is 100.0 pCi/g dose equivalent I-131. For Unit 2, the limit is 4.0 g Ci/g dose equivalent I-131. The specific accident analyzed is the instantaneous guillotine rupture of a reactor recirculation line.

Mass blowdown data and primary containment pressure and temperature

profiles are taken from Figures 6.2-23 through 6.2-26 of Hatch Unit 2 FSAR for an accident in either unit.

A flashing fraction of 40% is assumed for the reactor coolant which spills from the ruptured recirculation line. All of the activity in the flashed liquid remains airborne in the primary containment and is available for release through the open purge valves. The 18" purge and vent valves are assumed to close in five seconds. No credit is taken for the reduction in cross sectional area of the duct opening

, during isolation. Because the drywell purge system exhausts via the standby gas treatment system, the activity is filtered and released from the plant stack at a height of 120 meters.

2

D Case B: LOCA with concurrent iodine spike The pre-accident iodine concentration of the reactor coolant is assumed to be 10.0 p Ci/g dose equivalent I-131 for Unit 1 and 0.2 gCi/g dose equivalent I-131 for Unit 2., These are the maximum limits allowed by the technical specifications during steady state full power operation. A LOCA in either unit is assumad to increase the release rate of iodine from the fuel by a factor or 500. The release of radioactivity to the environment is the seie as that described in Case A.

The doses calculated for Cases A and B art only the increments received from a LOCA during purge system aperation prior to closure of the purge isolation valves. The other release pathways of primary ,

containment leakage and MSIV leakage con;ribute much larger dose increments, making the purge portion insignificant in comparison (See FSAR.. Table 14.5-1 in HNP Unit I and Table 15.1-36 in HNP Unit 2 for radiological consequences due to LOCA). ~

(D) An analysis of the provisions to protect structures and safety related equipment located downstream of the purge isolation valves against a loss of function from the environment created by the escaping air and

  • steam.

G.P.C. Response:

The subject of steam flood and jet impingement from a ruptured purge or vent line has been investigated. 'On both units the majority of the lines are fabricated from 150 lb. class pipe and thus do not present a rupture potential. On Unit 2 there is a pipe to duct _ interface which is located on the 130-foot elevation of the reactor building which could rupture if a LOCA were to occur while purge operations are in progress. A review of the existing HELB analysis has demonstrated that the environment created by a main steam line break in the pipe chase bounds that of a rupture in the ducting and is therefore acceptable. On Unit 1 there are two pipe to duct interfaces. One is located in the SGTS equipment room and the other is located in the torus room. The duct at these interfaces could rupture in the unlikely event of a LOCA while purge and/or vent operations are in progress. It has likewise been shown in both these areas that existing HELB analysis yields more severe environments than the SGTS duct rupture. In no case has it been determined that jet forces due to a ruptured duct present a danger to any essential equipment.

i 3

4 Acceptable over pressure protection of the standby gas treatment filter housings in the the unlikely event of a LOCA concurrent with vent operation has not been demonstrated with the existing design.

For this reason, numerous design modifications have been evaluated.

We plan on installing redundant safety grade fast acting, excess flow.

isola ~ tion dampers which will automatically isolate s.se common 18" vent line from the drywell and torus before it ties into the SGTS filter train suction. Our calculations have determined that under the worst case conditions the dampers must have a closing time of less than '

O.475 seconds in order to protect the SGTS filters from overpressure.

To assure that post LOCA venting capabilities are maintained with the worst single failure a 2-inch bypass line will be installed around the isolation dampers. We propose that this plant modification be, completed during the first outage of sufficient duration for l'

installation on both units after NRC approval of the modification ,

the completion of the engineering design, and the receipt of materials on site.

With the completion of the design modification discussed above no safety equipment will be subjected to conditions in excess of their design condition.

III Valve Operability The following information is provided to document the qualification of the purge and vent valves. This information was requested in the September 27, 1979, letter to all light water reactors from Mr. Darrell G. Eisenhut.

(A) Valve closure rate vs time - i.e., constant rate or other.

G.P.C. Response:

The valves are designed with a constant rate of closure. As noted below the data has demonstrated that under the maximum expected loading conditions the valves will close in approximately two seconds.

The plant technical specifications require closure in less than 5 i seconds.

l (B) Flow direction through valves;/SP across valve.

G.P.C. Response:

The valves have symmetric disc design therefore are bi-directional.

The analysis was completed assuming a 2LP'of 62 psi across the valves i

4

4 I

i (C) Single valve closure (inside containment or outside containment valve) or simultaneous closure. Establish worst case.

4 G.P.C Response: '

Both valves on each line are located outside the drywell and receive simultaneous isolation signals. Since both valves are located outside the drywell for each penetration, there is no worst case.

(D) Adequacy of accumulator (when used) sizing and initial charge for valve closure requirements.

G.P.C. Response:

The valves are spring loaded to close with no air assist; therefore, the size of the air accumulator has no bearing on the closure time of the valves.

(E) For valve operations using torque limiting devices - are the settings of the devices compatible with the torques required to operate the valve during the design basis condition.

G.P.C. Response:

The valve operators do not use torque limiting devices.

(F) Valve closure capabilities:

j G.P.C. Response:

In addition the containment purge and vent valve must be capable of closing under a postulated accident condition which results in fluid dynamic related loads combined with seismic related loads.

(F.1) Description of Purge and Vent Valves The valves identified as the containment isolation valves in

! the Purge and Vent System are listed on Table 2.

5 l

The valves are butterfly type Model 9200 (Series 9220) manufactured by Fisher Controls. These valves are equipped with Bettis Model 733C-SR-60(Unit 2 Valves) or 733B-X-SR60 (Unit 1 Valves) air open-spring t;o close operators. The

, capabilities of the two actuators are identical. Valves are limited to a 50' opening angle (90*= full open) by means of mechanical sleeve type stop.

(F.2) Demonstration of Operability

. Operability is based on the following assumptions:

1. Redundant valves on each purge and vent line.
2. Peak design containment pressure (62 psig) is the dP across the valve at all disc angles from 50' to seating.
3. The valves are symmetrical.
4. Pressure losses in the pipeline are neglected.

The torque values are based on a series of laboratory tests performed at Fisher, using a selected group of models.

Analytical technique are used to determine the dynamic torque for the actual valve size.

l The approach taken to evaluate critical valve parts is to determine maximum allowable AP's across the valve is disc angles.' The maximum allowable AP is based on the valves weakest part. The maximum allowable AP for each disc angle, in 10*

increments, is compared to the 62 psig operating condition, and the maximum disc-opening angle is selected.

l A description of the Fisher Computer Program used to determine the maximum opening angle is as follows:

l The program begins by calculating the loadings at a particular opening angle. The hydrostatic load on disc, and seating.

l bushing, packing and dynamic torques are included.

After loading is determined, the program calculate stresses in the shaft, key, pin and bushing for a specific AP and compares the calculated stresses to the material strength.-

The program calculates stress and change fu AP iteratively until the allowable strength matches the stress. This determines the maximum allowable pressure drop for that angle.

Refer to the attached Tables 3'and 4 which establish the disc angle versus allowable AP.

l 6

a

i The weak point of the valve assembly is the shaft. The maximum allowable ZLP based on the shaft stress is 75 psi, which establishes the limiting angle of 50' open. Using the t

50' open angle and the actual 62, psi /LP the program

, calculates the required actuator torque of 5164 in-lbs.

The valves are equipped with Bettis model 733C-SR-60 or 733B-X-SR-60 actuators. The actuator is a spring to close type with a torque output of approximately 8200 in-lbs at the end of stroke. In midstroke, the torque output will drop to approximately 79% of the end stroke values because of the scotch-yoke actuator linkage (approximately 6478 in-lbs). This torque value output is adequate to provide the required closing torque at 50' (5164 in-lbs). Since butterfly valves o'f this type have a flow-closed characteristic when starting at 50' opening, the only resistances to be overcome for closing are friction and seating torques, which are approximately 2500 in-lbs combined. This torque is well within the capabilities of the actuator. Therefore closure from the 50' open position can be assured under flowing conditions at 62 psig.

The 733B-X-SR60 or 733C-SR-60 basic actuator mechanism is capable of withstanding an external input of 51,000 in-lbs end of stroke position and 30,600 in-lbs aid stroke position.

Therefore, a wide margin exists between actuator capabilities and the required performance.

To ensure operability of the valve assembly under to a combined finid dynamic and seismic loading conditions Wyle Laboratories was contracted to test a valve. The preliminary test results have been reviewed. The test program consisted of mounting a valve assembly on a triaxial shaker table at Wyle Laboratories, at Huntsville, Alabama. A resistance equal to 5164 in-lbs of torque was applied to the valve, and j triaxial accelerations equal to plant SSE accelerations were i input into the assembly. The valve was stroked twice while l being subjected to the combined loads. The valve assembly

operated smoothly during the test, and went from the open to close position in aproximately 2 seconds. A summary of the valve assembly test report will be transmitted for your information upon completion.

l l

l -

I L

..: . . . . . . . . :.: . - a . - . . : .: .. . ....----

}

All drywell purge and vent inboard and outboard valvo i

assemblies are being reoriented to an elbow-shaft inplane installation configuration (Unit 2 valves by completion of current outage Unit 1 by completion of next scheduled

, refueling outage). In this configuration use of the 1.5 safety factor is acceptable. Based on the use of the 1.5 i

safety factor there is a requirement for the disc to start notion at an actual AP of 41 psi. Test results demonstrate +

full valve closure in about 2 seconds under full load. Based on the DBA analysis, it takes about 2.5 seconds (Unit 2) and 4 seconds (Unit 1) to reach this pressure. The isolation initiation signal is received at essentially time zero. The

. Plant Technical Specifications require full valve clo'spre within 5 seconds. Therefore, the valves will be subjected to less than the design 2hP prior to motion.

I The torus purge and vent inboard and outboard isolation valve

' assemblies (T48-F309. T48-F318. T48-F324. T48-F326, 2T48-F309,  ;

2T48-F318, 2T48-F324, and 2T48-F326) are not being rotated into a shaft-elbow inplane configuration. Therefore, in the

' out of plane configuration a safety factor of 3 is used. With this safety factor the disc must start to move at a llP of 20 psi. Using figure 14.4-8 curve 2 from the Unit 1 FSAR and figure 6.2-25 curve 2 from the Unit 2 FSAR for the torus on both units, attached, it can be seen that a lip of 20 psi occurs at 6 second on Unit 1 and 7 seconds on Unit 2.

l

' The plant Technical Specifications require valve closure within 5 seconds for both units. The valve will be fully l

closed prior to reaching a lip of 20 psi. Therefore, it is concluded that valve motion will be initiated far befors it is required.

(F.3) Summary The combination of analysis and test has established that the 18-inch containment purge and vent butterfly valves will go to a safe position and maintain that position when subjected to l combined LOCA and seismic loadings. A copy of the December 28, 1979, letter to Mr. M. S. Desai of Bechtel from Mr. J. C.

Dresser of Fisher Controls Company is attached for information

-and use in the evaluation.

IV Safety Actuation Signal Override As indicated in the July 7, 1982, letter the review of this issue is being handled separately outside the framework of the purge and vent review.

8

I V Containment Leakage Due to Seal Deterioration Georgia Power Company has a comprehensive maintenance and surveillance program which assures operability and the leak tight integrity of the 18" i

purge valv,es. The valves are leak tested each refueling outage as part of the LLRT (Appendix J) program which assures their leak tight integrity. In

order to further assure the seats are at their optimum effectiveness at all times, Georgia Power Company will commit to replace the seats on all the 18" purge and vent valves each refueling outage. Based on the above, we do

'not believe revised surveillance requirement such as has been suggested is needed at Plant Hatch.

VI Conclusion It is believed that information provided above will allow the NRC Staff to successfully resolve all open issues dealing with the purge and vent system. The summary report dealing with the valve test program will be forwarded when complete and isolation damper procurement activities will commence pursuant to NRC approval of the proposed design modification.

O 9

TABLE 1 Offsite Thyroid Dose from LOCA During Purging of the Drywell (REM)

Case Description of Release $ nit 1 Unit 2 A Release through open purge 5.5E-3 2.2E-4 valves with pre-existing I spike (5 seconds)

B Release through open purge 6.5E-4 1.3E-5 valves with concurrent I spike (5 seconds) ,

t

{

10

~ __ -

TABLE 2 PURCE AND VENT SYSTEM CONTAINMENTISOLATIONVA[.,VES Valve Tas Valve Size Location T48-7307 2T48-F307 18" Drywell Purge Inboard Inlet Isolation T48-7308 2T48-F308 18" Drywell Purge Outboard Inlet Isolation T48-7309 2T48-F309 18" Torus Purge Inboard Inlet Isolation T48-F318 2T48-7318 18" Torus Purge / Vent Outboard Outlet.

Isolation T48-7319 2T48-7319 18" Drywell Purge / Vent Inboard Outlet Isolation T48-7320 2T48-F320 18" Drywell Purge / Vent Outboard Outlet Isolation T48-F324 2T48-7324 18" Torus Purge Outboard Inlet Isolation T48-F326 2T48-F326 18" Torus Purge / Vent Inboard Outlet Isolation l

l l

11 l

60.

  • ORTWELL PE S$UR ,
  • WETELL PftESSUR ,

CASE R - 80. 7 tim snuit taxys 1

- Na & RIR MN! 4

- N O.Or mR NtilT EDIRIE 2

-NG OF 4R St!MCE

40. W TEI Ptmps 4

- WITH COnTR N U T :p w n 9

hW

20. -

E -

3 C..

g -

m -

~

E .

0

-2.'' O. 2. 4. 6.

6 LOG (TIME /S) TIME AFiER 'dCCIDENT (10 )

{

.

  • DRTELL l 'MPERATLME POOL TEMP J 'IRTURE 300.

l .

200.

E .

sF 100.

<C cc

/

~

2 -

L- W  :

O.2.' ' ' ' l ' ' ' 'O.

2. 4. 6.

LOG (TIME /S) TIME AFTER ACCIDENT LOCA CONTAINMENT PRESSURE EDWIN 1. HATCH AND TEMPERATURE RESPONSE Georgia Power auctaan n.4=1 - unir i FIGURE 14.4-8 uos.o

l O

I l

l l

1 l

. .s so 8e- - -

1. DRYWELL PRESBURE
2. SUPPRESSION CHAMBER PRESSURE 4e- - 1 i

so- - -

3 30 - -

1 to- -

1.2 I e e.1 1.e its soto geooo TIME (SEC) l l

l 1

l RECIRCULATION BREAK, CALCULATED soWIN O.nATcn CONTAINMENT PRESSURE RESPONSE GeorgiaPowerm% _ a muCtaaR Puun-unir:

i FIGURE 6.2-25 m '

i

TABLE 2

, PURGEANDVENTSYSTEN CONTAINMENT ISOLATION VALVES Valve Tag Valve Size Location T48-F307 2T48-F307 18" Drywell Purge Inboard Inlet Isolation T48-F308 2T48-F308 18" Drywell Purge Outboard Inlet Isolation T48-F309 2T48-F309 18" Torus Purge Inboard Inlet Isolation T48-F318 2T48-F318 18" Torus Purge / Vent Outboard Outlet Isolation T48-F319 2T48-F319 '18" Drywell Purge / Vent Inboard Outlet Isolation T48-F320 2T48-F320 18" Drywell Purge / Vent Outboard Outlet

, Isolation t

T48-F324 2T48-F324 18" Torus Purge Outboard Inlet Isolation T48-F326 2T48-F326 18" Torus Purge / Vent Inboard Outlet Isolation a

l

+ * , . .* g. .* , . s e,

  • . Q,:. ..: . '

e  :  ;.

w

.y.:'. ws.: a: .7.y:y, .2 g'd'**se'4" t,*.,L ' ,...

.,c <

J.,=t,;-  %.n.p~. f. ,., - ..

. > . - - e. ..

.:....-...... ; . -. k ,=

Ce-e.i. m u.a. V .S % .ie.$.ht b'Y* .. .w ..% .e D $* *

  • }

0 0 0 0 0 f.} } *) 0

,... . ..... . . . . na  : mona  :,=>; = .= ,vx i n ;  : :a = 2 , u r m, , = .,:,= 1,;,:  ; ,2 , : ,,;,,  : ::, m ,2,1.=, m f b * '

. '.g*< 'r g

i o 3

e

?k ' ' '

3.I . '  ?

e 3 3 < >

m e ooe, e, n

    • =

c

.I @

i ,

8 R o es ,

.e .e l

r.* o. .I qt s. ' W4 , W

. ..- R c ne

<ei

, M. i D.

= -

e i.

e e.t e.,

M.i w, m

. ,. . t. M. d.

M B eme P4 4 i M e.

t a q) ' ai c.

1 D q 4 W it o e b %t s

a s a ce s 1

e'o

% MW '

A.-

~

o o

, e

, .o e o

o o 3 8 3, e

oe o

~

o .

l. .
i. .
o. .. e.
a. e. o. e. o. o. o. i . = e e I
m. e. e.

( es iR em P9 4i i .

M

. . . . . i.

og

. e. e. O ert a.Ie ap

.4 a e .e e e f e *- e.e et art

, 's me Pt e m ap o ae> m.

c et art o' .- "

@ 4% o et ee o@

Wg e4 e

. < < n e . .

I j

o .., e

~

i

, o o o o , o i, o ,, o. ~ . e o ., o - .

o .o

, e P- o o o o,e , e is o <> e e e. o e .

o io e

, e- . . e.

j o.

a n

. e. . o. . .

+-

o. oe o. eW, e. '=. ,
o. n. . e.

et M. e.

e i, c. e. to.

e- c. m s. e e. e o. - .i - =

e I

. em am = . .

e'

. c. <> e  !=,

e o 4 e= a% en em e

$) j- g} i a e n e et e6-e ce i

w r, :I .

1 m, n oo a e o o e o o o o e o e o <> o e e ce o e, e. o e =

p av > c art C o o o o o N o d> o o @ p o el o o o e q gn) o > PG @ 4 o qt e9 q 0 I . en. em. o. . . . o. o. . , M. e . e. e'.l . em.

4>

. o. er.i le. e.

e e m c. 16

. 4i .,.t art am o me e4 ed esp og bl, *e ese me e.

, art 'B Pm e, ar.t c c. 4D o lo en e I g g .ab c. t9 art le e.

, e n e e n e $

(i 1 o -

e=n H )

b IM N 36 n e .3 e em e o o o o o e c o e o <> o e.

  • o e => o e MC 2 C o o o C o e - C 'm o I> o e e o .ee .e e

n J o p em.e i , o P6 ci C 'em

e. .a) u.

C. e. n. es. o. e. c. . n. . - e. n. . o. m. e.s e. =. . o. e. t.

em se in. e= a' e W e4 em o a e e6 m' e e s. o a .e a se i o.e .* e e

. ed l f4 an c <s o e e

.o <g a m 40

.: 4

> EB

.e n e ,e ,em N a4 (e .l *e: el z e o '

l N *

( !=<u e, . :e o . o o ,, o o . . o o e . o . m - o -e

,, , o .e o e o , o e e e o e o <> o o a o e o a e o e e*

o E g i-D g j o.

. em. . o. e. @. C. e. o.

e.

4 m e. a i. o. - *

. em.N. b M.

N em. M. -

e ee h m M em I. e es og ee me ei es we es e e se o e- in o m lm .o e o. ~ n n ,c.

g d t'n e e en gg .I .~ ce se l

MQ

. l. e e,

g = - .

e. I I I t M N M U

hh e - e a

o.

> e SS l *u* W g.t s at U

U a el a a e e f aC A U ,o se as e se et **

.8 et et w w a M Q o be U U T m w w . D S = S 30 af M '1 en o 4 pe  % st ' o 4 U es w 4.

p e lN U h

. i M = 3 m W 3

= = 4 4 3y 5 m M m.

a s a a e m u a uat u a et e 3 m. m use = < setmo u g  ! a. O es j es es U o w o.3 1 - > e h e6 J w e > o .D a

> u a& se a m

, - e po e o e x w ,, w wi U = = e i

U 1

IM -

> 6S , k mea mi n w M

  • d J l

j$ M j >a U U e

l De eg a"3 o o C. m &a,. g a:g as 36 4

>I> a

> ,. m < e = m i e6 et s.

3 I

== a 63 en m a A. O e ese a=e b. .m- .8 .A e

G ee e e e

e l

! l >4 a a pa a w a a a > > a h a c a

e e o sj,e s. 3 = ,e 4 1  ! t I e i i . e I I i . - r: - : : 1 : riri- ;  : .  :  ; - : . - ;,..;.;r -

% . 'o 'J

  • r %a d 1.4 d 's .c V V w .- -'
  • w e o rists , ,
e.
  • a

,...~.. . . . _ . . . . . .

c.m . . . .

G

,s'. . . T ::

1 . . .

.'s ;

z .. .y .. .a (h\[ ff .e s,r . .'-l@ ~$:b '

.3, , ,'y.

  • Qk. ', . ,'. s. .fL%& *.f..Yi,*-&iik&.'#A L. f' t. W' :fg.{,'. ',*

. L*1.

.: .- ~. *

g. . ,

. J9, . .

.-;:..;. ,7:.%...w. -

. ' +b:'% ^ .

w.. p' g Lm. . . y %

. ~ . .

'. ; v

, i .... ._-w -

q) c..

r3

.....no=

o ==

O O un= n=u o O O c 9 O O O O O O O O O

, =i=u =i=,==i=i= r =i= =ixix =i=i= rim =m= xm =m = i=i= =i='='

- .f.... . 9 s - "t -

s* s 4 *r, - . ; 3 +.

,}. . +.* y, 4 8

q L

.i.'*.

  • . Lr

.. rg -

- * ' "

  • f 4 ", -j ' 8 e

4 s.

~

. .4 g

, , s..

.k .,

  • r  ;

+ =

  • ._ 3.

,. ' i

, -; .i

- ,. <e I

*J.
  • l 4 .

~

~. . : .

  • .~ * . ,*

^

, ,,.[. {-. .j, .

~

la ."

'.. .~

  • 9 .

)

t' .

or N .*

l' . I b

l -

a

.  ?

  • DO

!o .,

4

3 .

lW l .  ;

. o

.g ' '

E '

'" ~

.f 6

y m

a .

t M .

4 ,.

eg

  • l7*

j - e o o e e

S8 o i 8 > S oe e e o e e e, e e o o a .- 4

.o

  • e o S e o j e e i i

i 8 o 8 n c ,

4 - .

n o e a 9

e. o. e. a.

.a

o. o. e. o. . 'o. . se. ce o. n. o. e. .. m. n. . e. e. e. e. a. w ,

H 6 .e e a r.

w e ce r o e e en m

m o e o

  • .i .* ie w e .i ce .n.e p. e an e a J 4 w w W 5 ,

- e m e e e 4 m +

N 4

= ..

y c'

.. 4 g

u eg _" * ,

  • e g

ll t,g eeo o o o o o e e o o o o o o o, . o o c o o o o o e o e.

a ., .

m - ~

= a o - -

o e -

o. e. M. o. o. e. e. E
e. 'l 4 w E .l D. o. e. o. M. N. > M. m. ' e. a. e O e a an e s f si. o se .e .i .e m

. g Q

ee .he e

  • m

, an.

c eo m e

=e .* en e4

  • a

> n D

~ > .,.

e e .e w e

,i, p3

~

d -

. , . .e n , .. .

,s -

1 1 -> -

^

J. l*@

c -

t .

I g f"I a a.s '.'

u d h4 go N Mw t b +

w b &

  • .Ne as W at u ' ,= s.o.m. .

e sg m Ou

>* et a s.unse en -w m' O E l 0 b 8e u e.s a w

w w a. - Ia r e P > a - en o e

+

o e u a w >

I E e8 Q

r <a a a as na as a a i

a, e as

.c a ,. a as a as e a en a i

e a d g! sa a as as a e

a. m a 5 et i

o i <

.i .as

  • se a

'"8' ;. > 3 > N o u as es at u

.o4 b w

e6 3 W

.= ,

> m a o se v

. mg > mi e d a u$ u > ze u na o D E O

as ge me W u > 33 lDe 45 ene .3 o oDe o .se

  • E 33 m. *G 4 88I >J m n J a. D.t A B a et a J . >.i . v..

l . < t<= = - = =

lw. a m . . w u

Et i 4 > It e a e a .a p e. e a r

a. a. 2 .

a se se se o 2

as 5p as

.l e =e e e O

i .

I i

. -.... f : It! I f8 Y  ! ';em ~: * ," . *; :l; 18: I - " ...!; .. ..;:.-! 2i =;Y n t

%h , .d u .J J .,i .) J .) ./ .* . e -s -

~l w 4

. ,. ." I' d ' . .- .* - - . . - .

I

%,. e r. -

' i FISHER CONTROLS COMPAhT m .. O . s.

  • l

. g ,in 1. i'J.. J ;.0aP. _ _

Sepfr "e f 9988688C MffsOLS COMPaltY, S. A. Ongel Testelsel- Seeler, P.O. Ses 11. Me,etelleews. Iows 30180 nt, all .

secen J .3 6511 g-December 28, 1979 nome i-E.nos.. F'n 2 Ei  :;

( v

    • ! . P.E.

..,;r .

rix

  • Bechtel Power Corporation M, NSW l U* Pot i 15740 Shady Grove Road -

Gaithersburg, Maryland 20760 sta i I plt. En ._,

CS Atta: Mr. Manu S. Desai Ettc

Subject:

E.1. Natch Nuclear Plant, Units 1 & 2 ovL -

Anos .i  !

Bechtel Job 6511-001/020 ii c7c, I Purge Butterfly Valves

^~

'Pc I File: A-19.3/SS-2102-107/SS-6902-107 5J.E __ , _I Fisher CCN: P87139 & P99769 (25-24142 & 25-30232) ADuN '

18" Type 9220 WV w/Bettis 733B-SR58 or SR40. * ~~

Tas: 748 & 2748-F307, 8, 9, 18, 19, 20, 24, 26 pity, g,g -

Reference:

a. Conference Agreements with Bechtel/ Georgia Power repre-sentatives per 12-4-79 meeting in Marshalltown.
b. Letter: Fisher Controls (Dresser) to Bechtel Power Corp.

(Desai) dated 12-17-79; Same subject. .: 7, 7

c. Letter: Bechtel Power Corp. (Glasby) to Fisher Controls (Fleetwood) dated 12-10-79; Operational, Maintenance, and Surveillance History for subject Valves.
d. NRC letter to "All Light Water Reactors" dated 9-27-79;

Subject:

Containment Purging and Venting During Normal Operation - Guidelines for Valve Operability.

Gentlemen:

1.

Attached is the analysis printout data substantiating the limiting open angle of 50' which was provided per reference (b) above. A brief explana-tion of this analysis follows:

a.

l The horizontal column labeled "DP" shows the allowable differential pressure across the valve, for various opening angles (listed at I the bottost of the page) for the 1.5-inch shaft used. Note that only the opening angles up to and including 50' indicate an allow-able differential pressure higher than 62 psid (accident condition l  ; AP). Therefore 50' is the maximum allowable opening angle.

1

b. Refer to the second sheet of the printout for the " Total Actuator Torque Required" at O' and 50' for maximum differential pressure conditions (65 psid shutoff, 62 psid flowing). (The actuator

. ...s_.m

. _. ... g . o,__:...n.._ _....m .

c. === ~= ==

,.*s.

.s .

i t reassensowroon.smeesmaser

{

  • l l E. I. Estch Nuclear Plant December 28, 1979 l

torque listings on sheet I do not apply because these torque values i

ars for tha maximum allowable AP values at each angle.) The torene ~,

values given art for>1ste Ji<ses. so the flow direction has no p-ettect.on the t9rque requirements.

,j

c. The. analysis was done using material strength values for 340*F (service condition temperature).

, 2. These valves are provided with Bettis Type 733B-SR58 or SR60 actu-ators, which are to be operated with 60-100 psig air. Comparison of the performance characteristics of these actuators with the torque requirements reveals that these actuators are adequate to operate the valve under normal and accident conditions.

i

s. The 7338-8R58 is a spring-close type actuator with a torque out-l put of approximately 10,000 in-lb at the end of the stroke. In i

mid-stroke, the torque output will drop to approximately 79% of l

the end-stroke values because of the scotch yoke actuator link-age (approximately 7900 in-lb at 25' open angle). This torque output is adequate to provide the required open ng torque at 0*

  • (4715 in-lb at 65 psid) and the hold-open to at 50* {5164 i

l in-lb at 62 psid).

b. The 7338-SR60 is a similar spring-close type actuator with a torque output of approximately 8200 in-lb at the end of the stroke. In mid-stroke, the torque output will also drop to approximately 79% of the end of stroke values (6478 in-lb);

thus this actuator is also adequate to meet the required opening torque at 0' and the hold-open torque at 50'.

c. Since butterfly valves of this type have a flow-closed (flow aids closure). characteristic when starting at 50' opening, the only

' resistances to be overcome for closing are the friction and seating torques, which are fairly low (approximately 2500 in-lb combined). This torque is well within the espabilities of the return spring provided; therefore, closure from the 50' open position can be assured under flowing conditions (at 62 paid).

d. A Bettis Chart is enclosed showing typical output torques for '

actuators of the type used (Heavy-duty Series). The curves shown reflect the mid-stroke, loss of output due to the scotch-yoke mechanism. If higher pressure air is used (without changing the spring), the air stroke torque output will be increased, while the spring stroke output will remain unchanged.

e. A marked diagram of a Bettis Type 7338-SR actuator is enclosed, showing the suggested location of the travel stop. The air .

Sreather and body plug should be removed from the spring barrel end, and the end of the spring barrel should be re-bored and re-threaded to take a travel stop (machined from bar stock).

,2___ _- _ ---_ ~ O a = * % '

'WNi'""" ' - " " " " "

3-1 e

  • N **

n-,-

E. 1. Match Nuclear Plant December 28, 1979 i

The travel stop should be bored for an air breather also. The .

length of the travel stop may be determined by noting the posi-l tion ofangle.the spring piston rod extension at the desired rotary l' 4' haft 3.

There sngles.will be substantial capacity reductions at' the limited opening a.

If the valves are limited to a.30' maximum opening, the Cs will be approximately 20,700. This will permit a flow of 1500 SCFM of 150'F air at a minimus AP of 0.5 esid.

b. Ifthevalvesarelimitedba3'maximumopening,theC3 will be approximately 57,000. This will permit a flow of 1500 SCFM
  • of 150'F air at a minimum AP of 0.2 psid.

l

4. The capacity and torque values used in sizing are based on a series of  !

l laboratory tests done at Fisher, using a selected group of models.

Capacity and Torque Curves obtained from a typical test are enclosed to illustrate the method and the general shape of the curves for Type 9200 butterfly valves. " Reverse flow" means flow into the hub side of the disc, and positive torque values are assigned if flow tends to close (the usual condition for partial opening). Note l that the curves provided are for a 6" model, not for an 13" 9200 butterfly v.alve with a plate disc.

5. Consideration is given to the eight topics under "Operibility -

Guidelines for Demonstration of Operability of Purge and Vent Valves" listed in the NRC letter of 9-27-79, as follows:

(1) Valve Closure Rate / Time: The as-installed closure time for all these valves was determined to be 3-5 seconds under no-flow conditions per the Bechtel letter of 12-10-79 (Ref. C). Be-cause flow aids (or does not impcde) closure, the closure time under flow conditions will be at least this fast (even at a AP of 62 psid). Only friction and seating loads must be over-come; these are relatively low, in the order of 2500 in-lbe which are well within the capabilities of the spring return torque from the actuator, disregarding the assistance from the flow-closed effect. The closure rate will rlot be perfectly linear because of the scotch-yoke mechanism, $ut the departure from linearity will not be drastic, and closure should be achieved in 3-5 seconds.

(2) Flow Directi n Through Valve: The preferred orientation for Type 9200 butterfly valves is to have the T-ring retaininA ring on the outlet stae of the valve. However, closure can be acnteved regard- -

less of flow direction. Since these valves are equipped with sya-metrical plate discs, flow direction will have no significant ef-fact on valve capacity or torque requirements. These 13" valves <

will pass 1500 SCFM of 150*F air each, at a minimum _AP of 0.5 l -. _ , , c-- - - - - - - - - - - - ~ ~ ~ ~ ~ ' ~ '

~ ~ ' ' ' ~ ~~

, , = , . . . . *

  • 7 *T

- i e

4

., 4

~. ..

riemeneewonesseempow 4

E. I. Match Euclear Plant December 28, 1979 '

psid if pinned at 30' maximum opening; if pinned at 50' maximum

+pening, each valve would pass the above air flow at a AP of_0.2 psid. .

s.

(3)

Single Valve Closure or Simultaneous Closure: In the Estch In-1 stallation, it is understood that the' subject valves are installed ,;

in pairs (in series) outside the drywell. Thus these valves are not esposed to ambient external pressure / temperature buildup in the event of a IDCA condition. The solenoids and Bettis actuator would be free to vent without backpressure buildup effects, and i the spring-sction would drive the solenoids and the butterfly

, valve actuators to the safety-mode position (valve disc closed).

With the valves pinned at 50' saximum opening, either valve of the series pair would be able to shut off at ~the maximus AP,of 62 psid, and this would be the worst condition (one valve closing against the maximum AP). If both close simultaneously, the total i

pressure drop would bit shared.

, (7) The Effect of the Piping System (turns, braches, etc.): Fisher considers that essentially uniform flow is achieved within 4-5 pipe diameters downstream from an obstruction. Therefore if no obstructions (turns, bends, valves) are present closer than about 72" on the upstream side, there will be little effect on the flow pattern at the valve (assuming 18" line sizes). On the downstream side, there should be ample clearance for the disc motion. If ob-structions are closer than 4-5 pipe diameters on the upstream side, the effect on capacity and torque will be related to the disc shaft orientation with respect to the non-uniform flow pattern.

(Set following paragraph.)

i i (8) The Effect of Valve Disc and Shaft Orientation: The preferred orientation for the valve disc and shaft {is such that any non-uniform flow in the pipe would be split Wy the valve shaft, and such that one-sided impingement on the " Wings" of the disc are avoided. This is related, therefore, to'the nature and orienta-tion of any close obstructions or discontinuities upstream (with-in 4-5 pipe diameters or less). If there are no close obstruc-tions, the orientation of the disc and shaft would be immaterial, since the flow would be essentially symmetrical, distributed evenly across the pipe cross section.

6.

This communication completes our review of the subject valves at the E. 1. Match Nuclear Plant. We trust that the guestions discussed e

e

,e as Ln so eD *Q--- JT LJN --

..S.* #.

ne enoewmen.senesmsw

  • I. I. Hatch Nuclear Plant December 28, 1979 during ou'r December 4, 1979, meeting have been satisfactorily re-solved.

priate', commercial arrangements should be ande.If additional evaluatio .

g.

Sincerely, ,

FISER CONTR01,8 COMPANY C. Se:-->

ohn C. Dresser Nuclear Engineering Specialist JCD:md

Enclosures:

1. Analysis Printout for P87139-02 & P99769-03/10, dated 12-14-79; 2 pages.
2. Diagram of Bettis Model 733B-SR Actuator Marked for Travel Stop, 1 page.
3. Typical Torque Output Chart for Bettis Spring Return Actuators Page 1.27, dated 7-9-74.

4.

Flow vs. Travel Characteristic Curves Fisher Report 13, Problem 983, l Figure 1.

5. Dynamic Torque curve Fisher Report 13, Problem 983, Figure 2.

cc: Richard Hoober - Continental Div.

John Weekley - Continental Div.

! Al Gentile - Continental Div.

Dick Baumann Floyd Jury I 1,arry Fleetwood  !

Floyd Harthun

! . k .

.. v

.,_,_,_._..-m,-.-----, - - --*r-

~ '

..~. <e.y . . ...

r

.. y . .. . . g.:i ..:.c;;g' M& .

.n . . . . . .

'4 y.  ;,,.t.1 dsy.p;.,, . .  ;,. .

c. , . > r ,,.~~ - s -

f.. w. w ;r , . , - .. ..

- -w; . . .. :w. ,.. .;.,;, . .> :.g . . .j:.@

. .~ a .

o o . e,,, o a o , n .a e <.

,.........m......=.=_._,_.m....,=_...m...._...._m,_._a

.. , ro .,

. o er I ' '

Q V;, ,

.l s .:  ?- -

I

- ' $.. b 4-'

I, !. -

R I. I. I. 3.,

p.

I.l l I. I .!.

I. ! .( "I. I I. I, .I. I. I.-

i . . ..i I. 'I. I. .M a t. .en , ,

83  ;

, < . . 3 ,..

q . .. .

Se 1 8,

c .

n; 3- lg'R. ., ,

{ .Bg 3g gl .- . g: t ,

. [ al5g 223,l ., 3 'gi.33 y

,a

, .s, . .

e. . . . .

. -.. . .e 4

. 1 ,. ,

t 3 a.

. l.s = 3. . . =) . !

. =

i

%. v .

~

s .

3<g,*

, .~

I o - - 3) I *,. I l .l

$ I * <*

e op . - E 'lt p.8- .R-..-  :

Iv  : J a B Rn%.

1 W **c I,l(3 g.: -

.. 3. -, .2. <

. I :"t3.3 j

g.Q.e,!"'O

" ' "  ; ~I ; .:

  • 4 :g 4 b, 2lt..I.

.e <r Ii, 3 s I, '

%g !W -

i g-4 I 8' s

-l i ., I"""T e-l ' a p 3. i s e e e .

l..8 . . .

l l t 's . i > e e .e . ..

8

, ,e 2 3. S. L. ' S. 4. ~ g -
.: .g e. *y 3. .

. x

,.,; E. i:.

L . . .

3. l .t I. A 4 *. 3.a i.

1 A. i: * .

!,.v .:... .n.

i .c ,

=

.i<

in l.

A. l l gld. ,s\s.&

1 .

\, ,A s .

I

  • Y e b' ~

i e nn a o e i 4

R o ,

l 3 . ..

.- < e.

. J uc'. . E. F. * *.. . a. . I. s'. .

a e.

a. a. a. *. ' ' * .

d 4 " D. .

E.,

3

. . .. . :.a. a.

. . .~  : E 1 ,

3 l ,i ,3, ,

'" 13 2 S

. .a = ~ ,

> a 4 to s '. ',

.i

. i

, s.

1.

=

A. , .

.I = g s

'I I,, .

.)

et 'I t* ,

c .

CL, 5. H, .

_: 34 nI.. .

~(. . . . .

e o 2 . . . a .

3e a j ,,, ;. gy - e ~ I.

g 4 l.-= es. v. .e- -e- .e* . . . .o. .E .a. . .a .e e a u

=. o a p g -

g a  ; .;  ; ,,* ; -  ; ag 9

. g, g g ed p, ,3 s m . .< , a [-

i

.,. . p.

.< . . 3 s

} sb $ '

8. g 'N , i J. -

5

,a k ,

g

/ d '

a $

4 iJ-M W I.

- " I" it' I

M' h h -

. , 1'

.N %7 he , e a 8 I . m W . U W, I si.d m

.e

. t/

SP 8

. 51 S U 'N *s W m

48 '

ns ett W ee 4 m 8

! t' .4 e.ta mi r IO u i I = w WB 3

.0' a

.a a e .

g %e '

33 s > '6,' .en i :w W e .

. s=i. m

=  ; .o .. .-

J w

' g. 4 'S

.e  ;

,h 4

4 he ; as 3. . B S S .

21 ,R4 l .

9

.=

l fc '-

  1. b l a st. " B

. .S ei l .=h 2E M

N, . > . e i

i a6+ qa 4 <a .a,

.I . w.

. v- . > l W,... -

. 'k i e9 ) .9 es s .

. De e . 8 agg s' 2 3, w w wU = s e

' sin ' lm to as e*

9 a s.s . m.

aq 69 .a et * .u seI>U , .B E . *u a -8O h -

a i l i

=3 .ibl.

ba.

m 'a >:p, a -

i8 i a

6 a I4 e j -8 * "E BW .

W B e .s. 9

= .a e .S 3 e.e i - b' . . .= l a.

A'. ' et S em A ~

. .$ s D. 6 41.4. J. ' u

.I (J es et se g g e e e e

g. g v v g e b
- f*t

, s i as

-. 4 1 .' I

.'..1 , l i

.s

.I l s I

-: 1 - - 1,r, ...  :..: g g g ,. .x ....i. . ::.-  : : 1 ,

w*

3. . .p,6 V *

.a .- . ./ 5 *,,,., .c #  %/ w .

g.

, ,' ,1 e s ast es f . g

~ - 9

< t 4

g

,i -

' .\

..g. _

._.,[._. .-&A__------ - - - - - -

- ~ ~ ~

~

  • . . - .. . . . ,.:...n. -

)

, . *s .'.;. ... Q.

, , ; . . . ~~ : O q1){v&lA u,. '.l, ,,;. ..l. ..'g.tni..&. &. ..ll. 't&m. .;,, ,hh,. h;

...e. ...:; ...,.,..sd5 ' .:. .~. .~f'dg. ..

. t . ..

, . .s.....v.

w ~

.. . 4 . . . . ' .: ..

. - .- -  :. - o. . n . . .~ ., .

. 1 .. - .... --. tM.m.,7ly:,r. .)gi:g:.r. . .

l G r.- 6 o O O O O O O O '3 0 0 0 0 0

r. I q.I. .I.a. *s.

..YI:;T rIIIT'TIIIY Y IX IL Z II II IaXII I YIII L'XIX X II II EIIIX XILIX XIIII I li IX XIIIX 2 II 0 O O O  ;

I X X II IT 1, .

. e-

f. . a ,. . .

's',.

..< . .,s a * ' * ..

.. "? . . r e . t i., .

., i

,, p .  ; *

.e ', .

e

.* .e. ..,- *

. . .;. *. g N

. s

. v

  • M

. \f -

. c. .

"a .

,.o.

,- y . ..

\$

1::. . ;.,5: 9

  • g x. .. .
  • g s .

I I i

! I I

l

' l I

g 1

g y g . > . '

g f

s i .

1 g .

. I i

M 3,

l **

  • n

=

1 i

q t >

. IU I l i , , R em a .G.

e e ,i e pm . De O J., . . Aem. . m se .M

,> . h. 9, . .. . . .

( i n 94 g .e Se Se

. . . . S.e s.e e .' e. '.- e.t . te.

en . es e'  ; 9 e em.

e It. es e4 ei se al .uS ay 9 8 4 es se h e ed e m . as ed I W go og apt M l  :

1 g t '

u l 3.3 t .3 33 .

3 ,,,, 3 ,,

3 . 3 .

. .i ,

~

e.

3 -

.u 1 se $ um h

M

. e i, ..

e .e

. a. . .

.a. ..

. fb f O O 89 O ** m pm.

se ed eI og .me ed em .4 t

h. M ** O ** E gg g
  • M ** N **

, W R S 4 m

g! 3g ,<, .0 ut J.  ;*e f -

? !5 I . i

'd .

et M M te I en ,an

> * .e

  • e . . a. som a U on n .GP

. '-i D . o.ns

.e.d. .

me

, . . . w * *

( r ,

  • e I .. .

. i

.i ,

a 4

,3. L 5 E

...e 5.*. .". .B j 3. !

4 ,' C 2 .g 2 -

. .". ' t

.: E g, t. ;&. E...5 !.!.

6 e

%. g . .J A.

t222

.o f=;

. I U.1 2 "3' 2 3* *

g= . .

a: . . : :

3 ,t.r ea om a s i i 1

m tpu i.4 ,

4 a

- . . ... ... 1 : . ;ir . r - : 1 -

. .
.- : : t M '

'.- ., .* w .e

.1 s : e ; s i: . x r ci - s2.  ::_: 2: -:': .

J J v ./ .:

,., ., . J r' e n m a -

- ^

. .= . . . . " ~ ' .

. r* -

Y 3 M A-L asans '

9 8 J.

ALWAYS FURNISH SERIAL NUMBER OF ACTUATOR WHEN ORDERING -

3

, MODEL 733 B-SR ., -4 M

T xmmnnnum 1Tri"TM '

TT U / q

- =

4 s (~

n f 11, -

. i

- 4 m. Q- .

h b*

b' er '

deb*

I b; brian

\ H%

WL k

Tad shr i

l MODEL 733 B-SR -

t

%" M 47as0 MSte pts 0st osaftnist asattatak SPEC

{

's

'I 25 2B e* 3L"b'NG VDE :

3a cTtt ' 6RDN A-iT & Ad 4 5 di31 GUAE ,}456 QUAniM

' 30 eCJ iNCsCDVEN VTit ' 693w E i it 7U'Titi IRON A'Fu A*36 EST GeAE  : <5 e5.; '

't 3 404 . den A'iTV 4 536 55T GRAD '

M 5 e;'

's >T F.EL a e! v3%  : 8 N RDJER ' 'i'R ['i S P "l D 3E l $

.iTj i EEL iT E Di5 3 3 ))E i t F t " 'O*v R33 iT I'EL '

, '0 3 ' ' Le F'5'ON  !,T a l.ii speJ3r

C ?C ,2 .s u ..TIEDN .b5T 64876 6sT CL A55 m

Yu t'dDE R AGAPTER t.KT*LE6RDN

.'t 3',3 vt PdDE R d5 4 E.6 E 5' GE AC E E3 45% '

iTEEL 1 j oi>C' 5 p'510*d EOD GJiDE *JE*elNG m 3 =,zE 'bBM ad,HS E.pLA'EAP M A7 -

O 3! E ,,5!y.g a3 52 C.3 A2E f 6 .O-Z Fi CON EETa g e31JT '

i T

%. & NYLDN

'eti .' - di i OD A D.J s1.s EC R E W >T :

d 5'V Se94 E 5 GM ADE 2 i 'l 3'l5i< ,553 Re

'O h3 7IL
5DT;.*.

L 5T s'd Er WE n JAV kUT

, i

,T i< EEAL dl%!U AtEd EM GR ADF 1 1-, l .M.k ['uBO FOA i'O fii 8 . T.? E E E A L IJNA N s  ; i t, ,)60,,21 ri5?C'e s:3 5E AL V h3 TWA

'D A
7: u % A*N C VL *NCEp EE AL DUB 3 ESA l't42.3 1 e=?t 5'*,'i CC b E a C 15tE T J N 4.N BL 40 70A 4 a
D4684 8=CJs'N
  • CDvE.1 1CaEW 3'.* a 3E 5 5E D A 55 r 5TDs A 5T 4* D.t73

,U l '0909A LTEEL

YL:8.TE4 ACA F :R GAIMET A5TM-A 307-65 GR A DE A 4 C4670 V L i',JE a A A UT < R ECitE W 'OU DEE 55ED A5mF5TD5

' 45T W.D e t73 i m s

. 3 ' 7 7 O'L F u 4 s14 N I LL'JG 35 42Rr il
i

, .>  ; C 3727 l'

  • L t\.' :8iu' A E T E =e F Lt G [O VV FR D & L gT M l'C joe 7 QasT :D iEGE
  • LDCE M A5*eElt "

,T :

OV V E NCIAL i t#:l37 4 .hJ_L ' .'af.s ICR E W EE AL
C','WE aCIAL

! ' t VLU4 1 ,

'05l'46 i *5 T0% *sE AD SE AL E_ N A h YTELWaQi F

. . 03; 54 1E a.AL Uwf E4 TAG OUR3 7Da ' z

'6C147 % A t uwlNUW

'39205 7 5'3N D23 A%'a-E RTEu1lDN 5IA
W2LvlPANEW

?\%E4 CSLtNCEE .LTrEL CUP DL 43 BJa n D R'hG DURO 70A 2 M i'a 2 M T5

.i .) 475 5 i E TEs 53?v tisa.13 a

.ti 5

!Pfi Cs ~i a F i' C'. @ ntC T:L E IRON iTii- 5 Y W JE'E-E ST G: ADE E0 45-10

B ;

? ?sPf3D 3 1T 's, 33? Ar ap'v e It t o i Ri$$NJP l

? ; 5 'i_

mTE: P ST O'a LEA E B lil2

_ 14

  • ys As taoq
'O b
4$ ." ;& ry -*.EF'A'.iB NUT

?73 4 5 W A PE CLa55 5 35 )

_a:  : y e 'prA_

&%*L"N A F **

  • A 5 A fsEA;f*2 F *&-

2

- v J 2 '. n T ,,?*',EE.. m. A: SEA. E, *a_L %

r _ s3 ~3A 0: C *e 1

55 2 4 .% . 6 ;

.+ ..~n~. .

.. .:.: A_ '

I

'9

' , T.] J q f { 4, f,'.,g se D % ,3 8 * * .,

l 6A-

. e..ie:bie&enn s_Ls A_

YNe L %. t .~ % * . C, '. ' W .

4 0 33944* I ... P,;. D*5 7;'s _V & B AA A

.M .* i =TC N AV" E e S4a 5.C t n.i M 5 il 78eB'c QTLp B DT FEE A'ef R E 85f41NG A 3 I 4* A J 6 CLA5s B a.. ,s c ,;I F,'1 R !JEEL C O* *Vi E 28 4L

, y j g_ '.JLLL y n a %, ahtt YSs' 7th>%a AiSCEDO CAP A5TQ47

!E E 4 DUE T LE IW JN P

L _._ _ _--- " - - - - - - - - '~'

I

, . cv. 5. RESP catchp 74

~ 't .  % enna. cv csw curecer.70Aaes eseavs.0es trew2 cuccv no L or. 8

RErdtN. Tire.Aswnrots. ~290smoM , aoe us 3-JB42-J- .

ars 5 cr.E.As Aaraa 7aA4es. (5a.1:.sM9 ss 5.0.s.

200 ' s.A S. .

t

. .+ 9 AIR STROKE SPRWs STROKE 150 -

b ,

h b E.o.v:

6 /00 I .

~ . ~

/[-s.s.s.

m _\ __. w 3 l b. 73 3 ,

a -

3 se .

l  :

y  : -

l g - -

e e

  • s ,

a

l

. . i . . . .  ! . . . .

AIR 0 la 20 30 40 30 60 70 60 90 Sitiuk 90 Bo 10 60 10 40 20 20 /O O DEGREES ACTUATOR ROTartoN YALVES SWCWN AM THesE f" ROM DNE ACTGn702 $ SkotN.0 BE CONssoERED Arraox/MATC ONLf.

E.0.s. = END OF STRONG.

s.,o.s. . sra=7 or svens. .

= .

1 l

l l

l g,2"I -

j,,,_,,,,.,___. _a. - - - - - - - - ' - - - ^ ~ " " . _, , _ . _ _ _ _ _ _ _ _ - - - - - - - - -

m . . . . . . . . . . . . .

.- s 8"' -

4- t-7 s PROBLEN was DATE FISHER CONTROL 3 COMPANY is m REPORT FIGURE *

' FLOW VS TRAVEL CHARACTERISTIC 50DY slIE 6" DESIGN /TYPr steo *

  • F4 ' 'E* -h 30DY DWG-SEAL CONSTRUCTION SEAL DWG.

' NEASURED PROTECTOR RING DIA.

PROTECTOR RING DWG_

~

SALL/ DISC TYPE = E v n i Am" *maBALL/ DISC DWG: "* - H* o" N14 .

VgyE FLOW DIRECTION: EN0RMAL EREVERSE ./ I WATER TEST . -

- 4.h*[" .

30DYINLITPRESSURE >ieo -

P816

~ ,

81' 8 500Y PRESSURE DROP I!r PSI ~pd h t AIRAVERAGE C' =

TEST ((JN

&41 c = vti CAL ,Y;.y'hli}

80DY INLET PRESSURE- PSIA BODY PRESSURE DROP -' )

. ,q AVERAGE Cg = * *t ' e n

, - 5i l

  • I I

- I I L I 1 I I I I I E g y I j j

g i 1 my T TI I I I I I a r I I

I I A a E

_. 1 1 I I I

1 2

[ ,

' 1 _y 90 g

- I 3 I g,s I 1 1 I I I

f, 1 y g g I E M-I I FX a

" F

, I ' '

l I I I I I

' I 3

' 1 I  :

I I

.'  :: ul

. I 70 I I

1 1

I

,./'

' ' I lI I

I I I I

I y l : 3 I A I E E EM I

_J I E I

.l Hf--t 50 / /

l $;  ;

j j /,

I  : ' '

I g

f'

': I o lio -

/-  !: , , .

I I . I I

_ :.- ,  :. I I I

X. . . I I I 1 A I I 1 X

1 I I I I I

I I I1 I I E Is_ ]

ai E 3 g I

I I I I I L E

I I I I I E J

' I

' I I I I I I ,

Y E R I ,

X - M' I 1 I g

1 g I . _

I E i I I 1 g g

  1. _ E E I j g g

g I L 1 I I E I

I I - .-

10 m. p' I

I I I I . I hC '1 I I

n I I e so I

, n -

l

' $WA

0, 1 I I , I I I  :  : 1 l l' I I .I I I I I

0 10 20 30 40 50 60 70 80 90 as, vm a 1 VALVE OPENING l- DEGREES l'

m . .

ef I

'*e.* I . l

  • t >

t l 1

f 1 k

.i i'

N E'

W 1

h e

P i

l I l O

w O

F i  :

3 LE  !

l w l x  :

! i l-( '

i:!!i.

- ; y_.

I T

( i.;.b*

l

(

: -t==

6 l .. . . - . . . . . .

_ _