|
---|
Category:TECHNICAL SPECIFICATIONS
MONTHYEARML20209H5051999-07-14014 July 1999 Proposed Tech Specs Pages 3.1-15 & 3.1-17 of Table 3.1.1 ML20209E0951999-07-0707 July 1999 Proposed Tech Specs,Changing Component Surveillance Frequencies to Indicate Frequency of Once Per Three Months ML20212H5441999-06-18018 June 1999 Proposed Tech Specs Reflecting Installation of Addl SFP Storage Racks That Will Accommodate Increase in Spent Fuel Assemblies Beyond Existing Storage Capacity of SFP as Described in Licensing Rept ML20195D0761999-06-0303 June 1999 Proposed Tech Specs,Permitting Plant Operation with Three Operable Recirculation Loops ML20205P8531999-04-15015 April 1999 Proposed Tech Specs,Modifying Number of Items in Sections 2 & 3 of Tss,Expanding Two Definitions in Section 1 & Modifying Bases Statements in Sections 2,3 & 4 ML20198K0671998-12-23023 December 1998 Proposed Tech Specs Pages 3.8-2 & 4.8-1,changed to Specify Surveillance Frequency of Once Per Three Months ML20195C6561998-11-10010 November 1998 Proposed Tech Specs Section 5.1.A,removing Restriction on Sale or Lease of Property within Exclusion Area ML20155J7501998-11-0505 November 1998 Proposed Tech Specs,Modifying Safety Limits & Surveillances of LPRM & APRM Sys & Related Bases to Ensure APRM Channels Respond within Necessary Range & Accuracy & to Verify Channel Operability ML20151V5091998-09-0303 September 1998 Proposed Tech Specs 3.4.A.10.e & 3.5.A.2.e Re Condensate Storage Tank Level ML20237D9591998-08-21021 August 1998 Proposed Tech Specs Removing Requirement for ADS Function of EMRV to Be Operable During Rv Pressure Testing & Correcting Note H of Table 3.1.1 ML20237B2221998-08-0606 August 1998 Proposed Revised Tech Specs Pages for Change Request 205,dtd 961031,correcting Minor & Inadvertent Editorial Changes in Locations Where Changes Have Not Been Proposed ML20236T1211998-07-23023 July 1998 Proposed Tech Specs Pages for Amend to License DPR-16,to Establish That Existing SLMCPR Contained in TS 2.1.A Is Applicable for Next Operating Cycle (Cycle 17) ML20236T4981998-07-21021 July 1998 Proposed Tech Specs Re Reactivity Control ML20236T4811998-07-21021 July 1998 Proposed Tech Specs Re Changes to Administrative Controls ML20236J1431998-06-30030 June 1998 Proposed Tech Specs,Consisting of Revised Page 3-5 Re RPV Pressure/Temp Limits ML20236H2181998-06-29029 June 1998 Proposed Tech Specs,Modifying EDG Insp Requirement Previously Submitted in Entirety ML20248K2851998-05-28028 May 1998 Proposed Tech Specs Re That Such First Type a Test Required by Primary Containment Leakage Rate Testing Program Be Performed During Refueling Outage 18R ML20197G2771997-12-23023 December 1997 Proposed Tech Specs Reflecting Change in Trade Name of Owner & Operator of Oyster Creek Nuclear Generating Station ML20197J2561997-12-10010 December 1997 Proposed Tech Specs Changing Pages 2.3-6,2.3-7,3.1-11, 3.1-14,3.1-16,3.4-8,3.8-2,3.8-3,4.3-1,4.5-13 & 6-1 ML20210L3311997-08-15015 August 1997 Proposed Tech Specs,Incorporating Note Which Indicates That Proposed Change to SL Mcrp Applicable for Current Operating Cycle (Cycle 16) Only ML20135C2001996-11-27027 November 1996 Proposed Tech Specs Pages 4.7-1,4.7-2,4.7-3 & 4.7-4 Re Surveillances for Station Batteries ML20129K3401996-11-12012 November 1996 Proposed Tech Specs,Consisting of Change Request 224, Implementing Revised 10CFR20, Stds for Protection Against Radiation Effective 910620 ML20134H0541996-10-31031 October 1996 Proposed Tech Spec,Requesting Deletion of Table 3.5.2 ML20129C0691996-10-10010 October 1996 Proposed Tech Specs,Clarifying Functional Requirement to Provide Interlock Permissive Which Ensures Source of Cooling Water Available Via Core Spray Sys Prior to Depressurization ML20129A5731996-10-10010 October 1996 Proposed Tech Specs,Revising Addl Group of Surveillances Where Justification Completed Following Receipt of Amend 144 ML20134F4101996-10-0404 October 1996 Proposed Tech Specs 2.1.A & 3.10.C to Reflect Change in SLMCPR & Revise Operating CPR Limit for Stability, Respectively ML20117E7061996-08-23023 August 1996 Proposed Tech Specs,Proposing New pressure-temp Limits Up to 22,27 & 32 EFPY Based on Predicted Nilductility Adjusted Ref Temp for Corrresponding EFPY of Operation ML20115G2101996-07-17017 July 1996 Proposed Tech Specs,Allowing Implementation of 10CFR,App J, Option B ML20113A8641996-06-19019 June 1996 Proposed Tech Specs Table of Contents,1.24 Re Footnote to definition,1.25 Re Definition,Section 3.5.A.3b Re Containment,Section 4.5 Re Containment,Bases for Section 4.5 & Section 6.9.3.b Re Reporting Requirements ML20111A3841996-05-0707 May 1996 Proposed Tech Specs,Adopting Provisions of STS NUREG-1433, Rev 1,dtd 950407,Sections SR 3.0.1,3.0.3 & Associated Bases ML20107E7751996-04-15015 April 1996 Proposed Tech Specs 5.3.1 Re Handling Heavy Loads Over Irradiated Fuel ML20101J7681996-03-28028 March 1996 Proposed Tech Specs,Modifying Statements in TS & Bases to Correctly Reflect Ref Parameter for Anticipatory Scram Signal Bypass ML20101J6091996-03-25025 March 1996 Proposed Tech Specs,Deleting Spec Which Requires Thorough Insp of EDG Every 24 Months During Shutdown ML20100J9151996-02-23023 February 1996 Proposed Tech Specs Re Implementation of 10CFR50,App J, Option B ML20100H9971996-02-22022 February 1996 Proposed Tech Specs 3.7-1,3.7-2,4.7-1 & 4.7-2 Re Deletion of TS Requirement to bi-annually Inspect EDG & Mod of Spec Re AOT ML20095C1031995-12-0505 December 1995 Proposed Tech Specs Re Rev of Submittal Date for Annual Exposure Data Rept Bringing Plant Into Conformance w/10CFR20.2206 & Relaxing Overly Restrictive Administrative Requirement ML20086A7161995-06-26026 June 1995 Proposed Tech Specs Re Performance of Reactor Shutdown & Drywell to Inspect Snubbers in Svc for Only 12 Months ML20080P6501995-02-28028 February 1995 Proposed Tech Specs Change Request 225 Re Change to Page 6-4 of Tech Spec Section 6.5.1.12.Change Consistent w/NUREG-1433,STSs General Electric Plants,BWR/4,Rev 0,dtd 920928 ML20078N3791995-02-0808 February 1995 Proposed Tech Specs Re Oyster Creek Spent Fuel Pool Expansion ML20078Q6481994-12-15015 December 1994 Revised TS & Bases Pages to Section 3.1 of TS Change Request 191 ML20078M1431994-11-25025 November 1994 Proposed TS 5.3.1.E,allowing 2,645 Fuel Assemblies to Be Stored in Fuel Pool ML20072S2921994-09-0202 September 1994 Proposed Tech Specs Supporting Rev of APRM Channel Calibr Interval from Weekly to Quarterly ML20072L4741994-08-19019 August 1994 Proposed Tech Specs Control Rod Exercising & Standby Liquid Control Pump Operability Testing ML20070E3411994-07-0808 July 1994 Proposed Tech Specs Re Improved Protection to Safety Related Electrical Equipment from Loss of Capability ML20078A7731994-06-24024 June 1994 Proposed Tech Specs Reflecting Removal of Recirculation Flow Scram ML20069M8231994-06-15015 June 1994 Proposed Tech Spec 2.3.D, Reactor High Pressure,Relief Valve Initiation ML20070R5261994-05-12012 May 1994 Proposed TS Sections 3.1 & 4.1 for Protective Instrumentation ML20029E0451994-05-0606 May 1994 Proposed Tech Specs Clarifying Requirements for Demonstrating Shutdown Margin ML20065M9991994-04-19019 April 1994 Proposed Tech Specs Updating & Clarifying TS 3.4.B.1 to Be Consistent W/Existing TS 1.39 & 4.3.D Re Five Electromatic Relief Valves Pressure Relief Function Inoperable or Bypassed During Sys Pressure Testing ML20029C7571994-04-15015 April 1994 Proposed TS Change Request 215,deleting Audit Program Frequency Requirements from TS 6.5.3 & Utilize Operational QA Plan as Controlling Document 1999-07-07
[Table view] Category:TECHNICAL SPECIFICATIONS & TEST REPORTS
MONTHYEARML20212B5741999-09-0505 September 1999 Rev 11 to 2000-ADM-4532.04, Oyster Creek Emergency Offsite Dose Calculation Manual ML20209H5051999-07-14014 July 1999 Proposed Tech Specs Pages 3.1-15 & 3.1-17 of Table 3.1.1 ML20209E0951999-07-0707 July 1999 Proposed Tech Specs,Changing Component Surveillance Frequencies to Indicate Frequency of Once Per Three Months ML20212H5441999-06-18018 June 1999 Proposed Tech Specs Reflecting Installation of Addl SFP Storage Racks That Will Accommodate Increase in Spent Fuel Assemblies Beyond Existing Storage Capacity of SFP as Described in Licensing Rept ML20195D0761999-06-0303 June 1999 Proposed Tech Specs,Permitting Plant Operation with Three Operable Recirculation Loops ML20205P8531999-04-15015 April 1999 Proposed Tech Specs,Modifying Number of Items in Sections 2 & 3 of Tss,Expanding Two Definitions in Section 1 & Modifying Bases Statements in Sections 2,3 & 4 ML20198K0671998-12-23023 December 1998 Proposed Tech Specs Pages 3.8-2 & 4.8-1,changed to Specify Surveillance Frequency of Once Per Three Months ML20195C6561998-11-10010 November 1998 Proposed Tech Specs Section 5.1.A,removing Restriction on Sale or Lease of Property within Exclusion Area ML20155J7501998-11-0505 November 1998 Proposed Tech Specs,Modifying Safety Limits & Surveillances of LPRM & APRM Sys & Related Bases to Ensure APRM Channels Respond within Necessary Range & Accuracy & to Verify Channel Operability ML20151V5091998-09-0303 September 1998 Proposed Tech Specs 3.4.A.10.e & 3.5.A.2.e Re Condensate Storage Tank Level ML20237D9591998-08-21021 August 1998 Proposed Tech Specs Removing Requirement for ADS Function of EMRV to Be Operable During Rv Pressure Testing & Correcting Note H of Table 3.1.1 ML20237B2221998-08-0606 August 1998 Proposed Revised Tech Specs Pages for Change Request 205,dtd 961031,correcting Minor & Inadvertent Editorial Changes in Locations Where Changes Have Not Been Proposed ML20236T1211998-07-23023 July 1998 Proposed Tech Specs Pages for Amend to License DPR-16,to Establish That Existing SLMCPR Contained in TS 2.1.A Is Applicable for Next Operating Cycle (Cycle 17) ML20236T4811998-07-21021 July 1998 Proposed Tech Specs Re Changes to Administrative Controls ML20236T4981998-07-21021 July 1998 Proposed Tech Specs Re Reactivity Control ML20236J1431998-06-30030 June 1998 Proposed Tech Specs,Consisting of Revised Page 3-5 Re RPV Pressure/Temp Limits ML20236H2181998-06-29029 June 1998 Proposed Tech Specs,Modifying EDG Insp Requirement Previously Submitted in Entirety ML20248K2851998-05-28028 May 1998 Proposed Tech Specs Re That Such First Type a Test Required by Primary Containment Leakage Rate Testing Program Be Performed During Refueling Outage 18R ML20197G2771997-12-23023 December 1997 Proposed Tech Specs Reflecting Change in Trade Name of Owner & Operator of Oyster Creek Nuclear Generating Station ML20197J2561997-12-10010 December 1997 Proposed Tech Specs Changing Pages 2.3-6,2.3-7,3.1-11, 3.1-14,3.1-16,3.4-8,3.8-2,3.8-3,4.3-1,4.5-13 & 6-1 ML20210L3311997-08-15015 August 1997 Proposed Tech Specs,Incorporating Note Which Indicates That Proposed Change to SL Mcrp Applicable for Current Operating Cycle (Cycle 16) Only ML20135C2001996-11-27027 November 1996 Proposed Tech Specs Pages 4.7-1,4.7-2,4.7-3 & 4.7-4 Re Surveillances for Station Batteries ML20129K3401996-11-12012 November 1996 Proposed Tech Specs,Consisting of Change Request 224, Implementing Revised 10CFR20, Stds for Protection Against Radiation Effective 910620 ML20134H0541996-10-31031 October 1996 Proposed Tech Spec,Requesting Deletion of Table 3.5.2 ML20129C0691996-10-10010 October 1996 Proposed Tech Specs,Clarifying Functional Requirement to Provide Interlock Permissive Which Ensures Source of Cooling Water Available Via Core Spray Sys Prior to Depressurization ML20129A5731996-10-10010 October 1996 Proposed Tech Specs,Revising Addl Group of Surveillances Where Justification Completed Following Receipt of Amend 144 ML20134F4101996-10-0404 October 1996 Proposed Tech Specs 2.1.A & 3.10.C to Reflect Change in SLMCPR & Revise Operating CPR Limit for Stability, Respectively ML20117E7061996-08-23023 August 1996 Proposed Tech Specs,Proposing New pressure-temp Limits Up to 22,27 & 32 EFPY Based on Predicted Nilductility Adjusted Ref Temp for Corrresponding EFPY of Operation ML20115G2101996-07-17017 July 1996 Proposed Tech Specs,Allowing Implementation of 10CFR,App J, Option B ML20113A8641996-06-19019 June 1996 Proposed Tech Specs Table of Contents,1.24 Re Footnote to definition,1.25 Re Definition,Section 3.5.A.3b Re Containment,Section 4.5 Re Containment,Bases for Section 4.5 & Section 6.9.3.b Re Reporting Requirements ML20111A3841996-05-0707 May 1996 Proposed Tech Specs,Adopting Provisions of STS NUREG-1433, Rev 1,dtd 950407,Sections SR 3.0.1,3.0.3 & Associated Bases ML20107E7751996-04-15015 April 1996 Proposed Tech Specs 5.3.1 Re Handling Heavy Loads Over Irradiated Fuel ML20101P1561996-03-31031 March 1996 Rev 9 to Oyster Creek Nuclear Generating Station Pump & Valve IST Program ML20101J7681996-03-28028 March 1996 Proposed Tech Specs,Modifying Statements in TS & Bases to Correctly Reflect Ref Parameter for Anticipatory Scram Signal Bypass ML20101J6091996-03-25025 March 1996 Proposed Tech Specs,Deleting Spec Which Requires Thorough Insp of EDG Every 24 Months During Shutdown ML20100J9151996-02-23023 February 1996 Proposed Tech Specs Re Implementation of 10CFR50,App J, Option B ML20100H9971996-02-22022 February 1996 Proposed Tech Specs 3.7-1,3.7-2,4.7-1 & 4.7-2 Re Deletion of TS Requirement to bi-annually Inspect EDG & Mod of Spec Re AOT ML20095C1031995-12-0505 December 1995 Proposed Tech Specs Re Rev of Submittal Date for Annual Exposure Data Rept Bringing Plant Into Conformance w/10CFR20.2206 & Relaxing Overly Restrictive Administrative Requirement ML20086A7161995-06-26026 June 1995 Proposed Tech Specs Re Performance of Reactor Shutdown & Drywell to Inspect Snubbers in Svc for Only 12 Months ML20080P6501995-02-28028 February 1995 Proposed Tech Specs Change Request 225 Re Change to Page 6-4 of Tech Spec Section 6.5.1.12.Change Consistent w/NUREG-1433,STSs General Electric Plants,BWR/4,Rev 0,dtd 920928 ML20078N3791995-02-0808 February 1995 Proposed Tech Specs Re Oyster Creek Spent Fuel Pool Expansion ML20078Q6481994-12-15015 December 1994 Revised TS & Bases Pages to Section 3.1 of TS Change Request 191 ML20078M1431994-11-25025 November 1994 Proposed TS 5.3.1.E,allowing 2,645 Fuel Assemblies to Be Stored in Fuel Pool ML20073F9501994-09-26026 September 1994 Revised Plan for Long Range Planning Program for Oyster Creek Nuclear Generating Station ML20073F9411994-09-26026 September 1994 Revised Plan for Long Range Planning Program for TMI Nuclear Station Unit 1 ML20072S2921994-09-0202 September 1994 Proposed Tech Specs Supporting Rev of APRM Channel Calibr Interval from Weekly to Quarterly ML20072Q4251994-08-20020 August 1994 Rev 0 to Oyster Creek Nuclear Generating Station Sea Turtle Surveillance,Handling & Reporting Instructions for Operations Personnel ML20072L4741994-08-19019 August 1994 Proposed Tech Specs Control Rod Exercising & Standby Liquid Control Pump Operability Testing ML20070J7971994-07-31031 July 1994 Rev 8 to Oyster Creek Nuclear Generating Station Pump & Valve Inservice Testing Program ML20070E3411994-07-0808 July 1994 Proposed Tech Specs Re Improved Protection to Safety Related Electrical Equipment from Loss of Capability 1999-09-05
[Table view] |
Text
.
2.2-1 7 .
2.2. SAFETY LIMIT - REACTOR COOLANT SYSTEM PRESSURE Applicability: Applies to the limit on reactor coolont system pressure.
Obj ec t ive : Preserve the integrity of the reactor coolant system.
Specification: The reactor coolant system pressure shall not exceed 1375 psig whenever irradiated t'uel is in the reactor vessel. f Bases: The reactor coolant system (1) represents an important barrier in the prevention of the uncontrolled release of fission products.
It is essential that the integrity of this system be protected by establishing a pressure limit to be observed whenever there is irradiated fuel in the reactor vessel.
The pressure safety limit of 1375 psig was derived from the de-sign pressures of the reactor pressure vessel, coolar t piping, and isolation condenser. The respective design pressures are 1250 psig at 5750F, 1200 psig at 5700F and 1250 psig t.t 575 F.
The pressure satety limit was chosen as the lower of tl e pres-sure transients permitted by the applicable design codes: ASME Boiler and Pressure Vessel Code Section I for the pressure t~
vessel, ASME Boiler and Pressure Vessel Code Section III for the isolation condenser and the ASA Piping Code Section B31.1 '
for the reactor coolant systcm p.,ing. The ASME Code permits pressure transients up to LO% over the design pressure (110% x 1250 = 1375 psig) and the ASA Code permits pressure transients up to 15% over the design pressure (115% x 1200 =
1380 psig).
The design basis for the reactor pressure vessel makes evident the substantial margin of protection against failure at the safety pressure limit of 1375 psig. The vessel has t een de-signed for a general membrane stress no greater than 20,000 psi at an internal pressure of 1250 psig and temperature of 575 F; this is more than a factor of 2 below the yield strength of 42,300 psi at this temperature. At the pressure limit of 1375 psig, the general membrane stress increases to 21.000 psi, still almost a factor of 2 below the yield strength.
The reactor coolant system piping provides a comparable margin of protection at the established pressure safety limit.
The normal operating pressure of the reacto coolant system is 1020 psig. An over-pressurizat ion analysis 2)is performed each cycle to assure the pressure safety limit is not exceeded. The reactor fuel cladding can withstand pressures up to the safety limit, 1375 psig, without co11apsing(3) . Finally, reactor sys-tem pressure is continuously monitored in the control room during reactor operation on the 1600 psi full scale pressure recorder with an error of < 1% and a recorder time response a 02 second.
REFERENCES (1) FDSAR, Volume I, Sect ion IV .
(2) License Application Amendment 76.
(3) FDcAR, Volume I, Section III-2.3.3 A=aaM= ant %M 8109030202 810827 PDR ADOCK 05000219 P FDR -
2.3-2 1
~
. 1 1
FUNCTION LIMITING SAFETY SYSTEM SETTINGS 1
1
- 2) Neutron Flux, Control Rod Block For recirculation flow. W Z. 61 x 10 6lb/hr:
- 4. ( [1. 34 x 10-6} W + 24. 3) percent of rated neutron flux when total peaking factors in all fuel types are less than or equal to those in Specification 2.1.A.1, or The lowest value of:
- 4. ( [1. 3'. x 10-6} W + 24. 3 o PF percent of rated neut ron flux f rom among those calculated for each fuel type with total peaking facters, PF7 PFo, where PPo = peaking factor in Specification 2.1.A.1 For recirculation flow, W > 61 x 106 lb/hr:
f 106 percent of rated neutron flux when total peaking factors in all fuel types are less than or equal to those in Specification 2.1.A.1, or The lowest value of t 106 [ PFo ) percent PF of rated neutron flux from anong those calculated for each fuel type with total peaking factors, PF >PF o, where PF o
=
peaking factor in Spoeification 2.1.A.1
[ 3) Reactor Iligh Pressure, Scram 3 1060 psig.
l l
- 4) Reactor High Pressure, Relief 2 valves 3 1070 psig Valves Initiation 3 valves _4 1090 psig
- 5) Reactor liigh Pressure, Isola-
-- 1060 psig with time delay 4. 15 seconds, tion Condenser initiation
- 6) Reactor liig'i Pressure, 4 0 1212 psig Safety Valve Initiation 4 0 1221 psig i
I 4 0 1230 psig -+U si l 4 0 1239 psig l
l l Amendment No.
1 i
I l
2.3-5 For operation in the startup mode while the reactor is at low f pressure, the IRM scram setting of 15% of rated power provides 22% thermal margin between the maximum power and the safety limit, 18.3% of rated. The margin is adequate to accommodate anticipated maneuvers associated with power plant startup. There are a few possible sources of rapid reactivity input to the sys-tem in the low power low flow condition. Effects of increasing pressure at zero or low void content are minor, cold water fron sources available during startup is not much colder than that already in the system. temperature coefficients are small, and control rod patterns are constrained to be uniform by operating procedures backed up by the rod worth minimizer. b' orth of in-dividual rods is very low in a uniform rod pattern. Thus, of all possible sources of reactivity input, uniform control rod withdrawal is the most probable cause of significant power rise.
Because the flux distribution associated with uniform rod with-drawals does not involve high local peaks, and because several rods must be moved to change power by a significant percentage of rated, the rate of power rise is very slow. Generally the heat flux is in near equilibrium with the fission rate. In an assumed uniform rod withdrawal approach to the scram level, the rate of power rise is no more than five percent of rated per minute, and the IRM system would be more than adequate to assure a scram before the power could exceed the safety limit. The IRM scram remains active until the mode switch is placed in the run position at which time the trip becomes a coincident IRM upscale, APRM downscale scran. The Reactor Protection System is designed such that reactor pressure must be above 825 psig to success-fully transfer into the RUN mode, thus assuring protection for the fuel cladding safety limit.
The settings on the reactor high pressure scran, anticipatory scrams, react'or coolant system relief valves and isolation con-denser have been established to assure never reaching the rcactor coolant system pressure safety limit as well as assuring the sys-tem pressure does not exceed the range of the fuel cladding integrity safety limit. In addition, the APRM neutron flux scram and the turbine bypass system also provide protection for these safety limits, e.g., turbine trip and loss of electrical load transients (8). In addition to preventing power operation above 1060 psig, the pressure scram backs up the other scrams for these transients and other seam line isolation type transients. With the addition of the anticipatory scrams, the transient analysis for operation at 1930 FNt shows that the turbine trip with failure of the bypass system transient is the worst case transient with respect to peak pressure. Analysis of this transient shows that the relief valves limit the peak pressure well below the 1250 psig l range of applicability of the fuel cladding integrity safety limit and the 1375 psig reactor coolant system pressure safety limit.
Actuation of the isolation condenser during these transients re-moves the reactor decay heat without further loss of reactor coolant thus protecting the reactor water level safety limit.
Amendment No.