ML20010C114

From kanterella
Jump to navigation Jump to search
Summary Rept on Static,Dynamic & Relaxation Testing of Expansion Anchors in Response to NRC IE Bulletin 79-02.
ML20010C114
Person / Time
Site: Clinton  Constellation icon.png
Issue date: 07/20/1981
From:
ILLINOIS POWER CO.
To:
Shared Package
ML20010C110 List:
References
IEB-79-02, IEB-79-2, NUDOCS 8108190134
Download: ML20010C114 (61)


Text

... . . _ . . . _ . - . _

i l

SUMMARY

REPORT  ;

STATIC, DYNAMIC AND RELAXATION TESTING OF EXPANSION ANCHORS IN RESPONSE TO i

NRC I.E. BULLETIN 79-02 I

i JULY 20,1981 O .

I a

e i

O I

R DO D

G

.. .- - - .=. - - .. .-- _....

A i

% REPORT ON i

i STATIC, DYNAMIC AND RELAXATION TESTING OF EXPANSION ANCHORS IN RESPONSE TO NRC IE BULLETIN 79-02 t

TABLE OF CONTENTS f

1

, 1.0 Introduction l l '

,. l l l.1 Background 1_

1.2 Purpose of Test Program

! l t i 2.0 Test Program and Results l 2.1 Phase A - Static Tension Tests on Single Anchors i

! 2.2 Phase B - Cyclic Tests on Anchored Plate Assemblies

l. 2.3 Phase C - Static Tension Tests on Anchored Plate Assemblies 2.4 Phase D - Anchor Preload Relaxation Tests 4

2.5 Conclusions 2.6 Tables and Figures for Chapters 1.0 and 2.0 i

1 O I i

a r ,~, - -e , , ,_ . . , - _, ,#_. .m_r, v. ryr,.__wmm-r,.y,-.-. e

STATIC, DYNAMIC AND RELAXATION TESTING OF EXPANSION ANCHORS IN RESPONSE TO NRC IE BULLETIN 79-02 1.0 Introduction 1.1 Background .

On March 8,1979, the U. S. Nuclear Regulatory Cocznission's ,

Of fice of Inspection and Enforcement issued I. E. Bulletin 79-02 entitled, " Pipe Supp, ort Base Plate Designs Using Con-crete Expansion Anchor Bolts". Subsequently, Revision 1 of the bulletin was issued on June 21, 1979, Supplement 1 to Revision 1 was issued on August 20, 1979 and Revision 2 to the bulletin was issued on November 8,1979.

k The bulletin required a response f rom holders of operacing licenses and holders of construction permits for power re -

actor facilities. The response was to include consideration of the effect of base plate flexibility on calculated expan-sion anchor loads; verification that all expansion anchors have a factor F safety of four or five (for wedge and shell type anchors respec tively) as compared with manuf acturer's reconxnended values for ultimate anchor capacities; a descrip-tion of design requirements for expansion anchors subjected to cyclic loads; and verification by documentation that such design requirements have been met.

t .

1.2 Purpose of Test Program The purpose of the test program was to supplement the prev-ious responses which had referred to these tests. The spec-ific items addressed by these tests are the ultimate static capacities of various types of expansion anchors, load-displacement relationships for these anchors, behavior of ex-pansion anchors subjected to simulated seismic events and other cyclic loads, base plate flexibility and its effect on anchor loads, and the phenomenon of relaxation (loss of anchor preload) with time. An overview of the test program is shown in Table 1.1.

2.0 Test Program and Results llh, The tests can be divided into four series.

Phase A - Static Tension Tests on Single Anchors Phase B - Cyclic Tests on Anchored Pla:e Assemblies Phase C - Static Tension Tests on Anchor Plate Assemblies Phase D - Anchor Preload Relaxation Tests 2.1 Phase A, Static Tension Tests on Expansion Anchors 2.1.1 The purpose of static tension tests on single anchors in-stalled in concrete or other embedment materials was to un-derstand the behavior of expansion anchors with respec t to their ultimate load capacities and their load displacement charac te ris t ic s .

1 l

The unportant parameters which were investigated are :

i) the type at:d size of anchor; ii) the embedment material; iii) the embedment depth; and iv) the prestressing of the anchor.

L le 1.1 lists all the static ter.cs performed.

2.1.2 Test Apparatus ll The testing apparatus is shown in Figure 2.1. The testing was performed in accordance with ASTM E-488.

The load was applied with a motorized hydraulic pump and was llk, measured with a load cell mounted coaxially with the tension loading rod. The anchor displacement was measured with two linear variable differential transformers (LVDT's).

2.1.3 Procedure The expansion anchors were installed according to the anchor manufacturer's instructions. The test data, which consisted of the applied load and anchor displacement, was elec tron-ically recorded. A load-displacement curve was plotted con-currently with the tests. The embedment depth, installation torque, testing torque, if any, the embedment material, the compressive strength when the test was conduc ted , and the mode of failure were recorded for each test.

Any out-of-plumbne ss in the anchor installation was also recorded.

2.1.4 Test re sul ts The ultimate tensile capacity for expansion anchors is shown in Figure 2.2 through 2.7. Each figure represents the re-sults of testing a particular bolt size. Beneath each strength bar, the number of tests, the embedment depth, the embedmen t material, and the anchor manufacturer are listed.

A discussion of anchor behavior based on the various anchor parameters follows:

f )

xj 2.1.4.1. Wedge Type Anchors The load-displacement behavior of wedge type expansion anchors is shown in Figures 2-8 through 2-13. The effects of various parameters are discussed below:

2.1.4.1.1 Embedment Depth Figure 2-8 shows the effect of embedment depth on anchor l

behavior. It is seen that the anchor capacity is higher l l

for the longer embedment depth of eight times the dia-meter of the anchor bolt stud (8D) than for the smaller embedment depth of 4.5 times the anchor diameter (4.5D).

It was also noted during the tests that the anchors with the smaller embedment depth tend to fail in the concrete cone pull-out test, whereas the anchors with the larger embedment depth fail in the' pull-out of the anchor stud.

This effect of embedment depth is in accordance with the expec ted behavior of anchors at varying embedment depths.

2.1.4.1.2 Installation torque Two load displacement plots are drawn in Figure 2.9 for wedge type anchors having the same embedment depth and embedded in the same material but having different in-sta11ation torques. It is noted that the mean maximum O

load is the same for both test series and there fore the

('N, ultimate anchor capacity is unaffected by the magnitude w>

of *he installation torque.

The magnitude of the installation torque is seen to a ff ec t the initial portion of the load-displacement curve. At small displacement magnitudes, the curve for

. che higher installation torque appears to have a much higher proportional IImit. The displacement at the max-imum load also is observed to decrease slightly as the installation torque is doubled.

As the installation torque is increased, the load at which first significant additional displacement occurs b

u should also increase. This fact can be verified by comparing Figures 2.9 and 2.10.

2.1.4.1.3 Testing Torque Part of the total tension force existing in an anchor bolt during its service life is due to the tension in-troduced during installation. However, it is known that the initial anchor tension relaxes with time.

The testing program investigated the influence of anchor tension existing prior to the tension pullout test for

! (m, wedge type anchors. These anchor types were installed V

using torque control. Control of the bolt tent. ion af ter k

  • installation was by application of a " testing torque".

Of the test series conducted, a majority have been test-ed with a testing torque of zero. A zero test torque means the nut on the anchor is finger-tight. In cases whe re a testing torque greater than zero was applied to the anchor immediately before the tension pullout test, the torque magnitude was typically 50 to 60 percent of the installation torque.

Anchor load versus displacement curves, where the test-ing torque was varied, are shown in Figure 2.11. It is noted that no significant differences in gross behavior exist. The mean maximum load of the anchor appears to be f, ')

insignificant 1y affected by a variation of the preload in the anchor.

To understand the effect of testing torque, the initial portions of the load displacement curves of Figure 2.11 are plotted on a magnified scale in Figure 2.12. It indicates that the anchor preload does affect the load displacement curve and the fashion in which the anchor tension increases as the applied load increases. By examining Figure 2.12, several effects can be attributed to anchor preload, em

,f The cost obvious effect is the manner in which the anchor initially carries an externally applied load.

Anchors that were preloaded did not show displacement until the applied load exceeded the apparent anchor initial tension. Once the initial tension was exceeded, the behavior appears to be identical to that shown for t.he z'ero initial preload case.

noth load displacement curves drawn in Figure 2.12 could be represented by a bilinear approximation. The first major departure from linearity appears at about 2000 lbs, the load corresponding to the anchor pretension.

The first departure from linearity is, therefore, assoc-isted with additional displacements after the anchor h load exceeds the anchor pretension.

2.1.4.1.4 Concre te Strength The behavior ot ae , , mon anchors embedded in var-ious strengths of concrete was investigated in this pro-g ram. The load displacement behaviors of wedge anchors embedded in two different concrete streinths are shown in Figure 2-13. The measured pullout capacity of the anchor in the higuer strength concre te is greatet.

Other characteristics of the load displacement curve do not appear to be affected by a change in the concrete compressive strength.

2.1.4.1.5 Effect of Embedeent Material O

v Behavior of sleeve anchors embedded in concrete and in masonry is shown in Figure 2.18. It is apparent that the performance of the test anchor in concrete is super-ior to the same anchor embedded in masonry. The com-pressive strength of the Type M mortar and the con. pres-siveL strength of the Concrete Masonry Units (CEI) are approximately tne same. Although the M mortar is a much denser material than the CMU, the behavior shown in Of ten the I Figure 2.18 does not appear to be affected.

limiting . a: tor in develop ing the tensile capacity of an anchor embedded in masonry is the cracking of the mortar joints or concrete masonry units (CMU) through L the embedment hole.

Type N mortar has a lower compressive strength than Type M mortar (about 1/3 of Type M). The anchor capacity is affected by the lower strength mortar material, however, it appears that the initial portion of the load dis-placement cu rve and the ductility are not greatly in-fluenced.

For the other generic anchor types, the tensile capacity and displacement behavior in masonry may not be as shown in Figure 2.18 when compared to concrete. However, wedge type anchors typically show the ductility depicted

_g_

in Figure 2.18 and also fail by excessive displacement.

The self-drilling anchors were also frequently observed

  • to pull out rather than to form a conical rupture cone dictated by the tensile capacity of the embedding mater-ial.

2.1.4.2 Sleeve Type Anchors A sleeve type anchor is shown in Figure 2.14. The ulti-mate strength values of tension tests on sleeve type anchors are included in Figures 2.3 through 2.5 Figure 2.15 shows a typical load-displacement plot for sleeve type anchors. The behavice of sleeve type

,-,s anchors is essentially similcr to that of wedge type

  • anchors; thus, the discussion on variation of embedment depth, installation torque, and concrete strength applies to sleeve type anchors.

2.1.4.3. Self-Drilling and Drop-In Anchors Self-drilling and drop-in type anchors are shown in Figure 2.14. The behavior of these anchor types is.

generally less dectile and more brittle la nature than the wedge or sleeve anchor. Brittle behavier is defined as a failure that occurs abruptly with little warning er at small, less visible, displacements. Load transfer to

,' the embedding material for the self-drilling and drop-in anchors is accomplished by wedging the shell against the g embedding material. The load carrying bolt is a separate element which is threaded into the shell. The bolt is not associated with the part of the anchor sys-tem that is wedged against the side walls of the hole.

The load displacement characteristics of the self-drilling and the "TZD" drop-in archors are shown in Figures. 2.16 and 2.17 respectively. Tnese ar chors are usually erubedded tc a depth equal to the anchor caell length. The anchor shell is approximately four times the diameter of the bolt that threads into the shell.

Figures 2.16 and 2.17 show that the maximum loads for x- - - - > the self-drilling aad drop-in anchor are achieved at an f anchor displacement of less than 0.5 times the bolt dia-meter. Also, shortly af ter the maximum load is reached, the anchorage sys tem failr , usually by rupturing the concrete in tension on a conical surface.

Shown in Figure 2.17 are test results for drop-in anchors where the anchor shell was observed to fracture in tension. Thus, shell fractures controlled the maxi-mum load carrying capacity.

,m.

f

\._.-

2.2 Phase B - Cyclic Tests on Anchored Plate Assemblies 2.7.1 Introduction The objective of these tests was to investigate the behavior of expansion anchor plate assemblies while subjected to simu-lated seismic events and pipe transient loadings. The tests were performed using 1/2" diameter wedge, sleeve, self-drilling and drop-in type ancnors embedded in reinforced con-crete, concrete block and mortar joints. Table 2.1 summar-l izes the extent of the tests performed.

1 l

l 2.2.2 Test Apparatus The plate assemblies consisted of one 1 1/2" x 12" x 12" steel plate (A-36) with four 1/2" diameter expansion anchors for each plate. The anchors were at the corners of the plate

' (spaced 9" apart) and were installed in accordance with manu- ,

facturers reconsnended procedures. Sleeve type and wedge type anchors were embedded at lengths of 2 1/4" and 4" (corre-1 sponding to 4 1/2 and 8 anchor diameters) and shell type l anchors were inctalled so that the top of the shell was flush with the concre te slab or block wall surface. The concrete test slabs measured approximately 4 f t. by 11 ft. by 12" or 18" thick. They were reinforced with #6 bars (grade 60) spaced at 12" on center with 1 1/2" of cover. The concrete specimens had a specified minimum 28 day compressive strength of 3500 psi. The concrete block walls were approximately 4 ft. by 6 f t. , consisting of solid concrete blocks weighing 3

about 120 lbs/ft with a measured mean compressive strength

of 2525 psi. A Type N mortar with a specified minimum 28-day compressive strength of 700 psi was used. The success of the lll tests using Type N mortar, negated the necessity to te st anchors embedded in Type M mortar.

An electronically controlled servo-hydraulic ram was used to apply load to the anchored plate assembly. The ram and cen-troid of the anchor group were coaxial during each test. Each anchor was instrumented wi'th a load cell beneath the anchor nut and a spring loaded linear variable differential trans-former (LVDT). The LVDT measured anchor movement out of the embedded medium. A sketch of the test assembly is shown in Figure 2.19.

' ~ -

~

2.2.3 Procedure Embedded depth, installation torque, preload, applied load, number of cycles, frequency and number of tests to be per-formed are shown in Table 2.1. Test Type 1 (no preload) was performed for each series. Test Type 2 (preload) was per-formed only if the anchor displacement was equal to or great-er than 1/2" (1 diameter displacemen.t) when a test Type 1 was completed. Simili ar ly , tests in mortar and concrete block using 8D embedded depth anchors were not conducted if the preceding 4 D embedded anchor tests passed the ab ove dis-placement criteria. Also tests in Type M mortar were to be performed only if a test in Type N mortar for a given test series evidenced an anchor displacement of equal to or

(~'s greater than 1/2". At least two tests were conducted for each llg, y t'pe tested.

The seismic load cycles represented five OBE seismic events followed by one SSE event. The fatigue load cycles repre-sented the effec t of pipe transient loadings experienced by the anchors during the life of the plant. For assemblies embedded in concrete, the applied assembly loads for seismic tests were 25% of the manufacturer's recommended ultimate capacities for the OBE events and 50% of the manufacturer's recommenced ultimate capacities for the SSE event. For pipe transient te st assemblies embedded in concrete, the applied assembly loads varied from 12.5% to 25% of the manufacturer's recommended ultimate capacities, depending on the number of

'3

" cycles. For seismic tests conducted in solid concrete block and mortar joints, the applied assembly loads were consistent with individual anchor design loads for OBE and SSE events (since no manu f ac turer 's data is available). Ona cycle is defined as the application of a tensile and then a compres-sive force, both equal to the applied assembly load. This load reversal allows for the effect of impact of the plate on the anchors.

Fcr te s t s performed in concre te block, all four anchors of the plate assembly were embedded in the block itself. Where tests were conducted on anchors embedded in mortar, all four

(~ anchors of the pla te assembly were embedded in the mortar joints.

2,2.4 Results

( ), The results of the tests are shown in Table 2.2' and 2.3. The maximum anchor displacement is the maximum movement that occurred for all anchors tested in that particular test ser-ies and test type. As can be seen, the anchor displacements are, for the most part, very small if not negligible. For anchors embedded in concrete subjected to simulated seismic load s , 100 anchors were tested (25 plate assemblies). All exhibited anchor displacements of less than or equal to 1/2 of an anchor diameter (1/2") af ter five OBE events, and 96 anchors exhibited displacements of less than 1/2 of an anchor diameter after the SSE loads had been applied (96% of anchors i tested). For an-hors embedded in concrete and subjected to pipe transient loads, 44 bolts were tested (11 plate O- assemblies). Forty anchors exhibited anchor displacements of less than 1/2 of an anchor diameter (91% of total anchors tested). For anchors tested on concrete block walls (block and mortar) subjec ted to seismic loads, all 28 anchors (8 plate assemblies) showed anchor displacements of less than 1/2 of an anchor diamecer.

i The only test requiring preload was L-2, which showed neglig-ible movement with tha higher test preload (2150 lbs.). In one D-1 te st , two anchors exhibited 0.5 inch displacements after the simulated SSE load was applied, as can be seen in f Table 2.2. However, because of load attenuation during the test (due to equipment capacities) two additional D tests (w)>

were performed and these exhibited little or no anchor dis-g -

placement. A D-2 test was therefore, not required. All other anchors had a nominal preload of 500 lbs. (except test E-2, which was not required but which was performed after the pipe transient te sts (L-2) had been performed). No tests in Type M mortar were required as all anchors . tested in Type N mortar l experienced movements of less than 0.5 inches.

It should be noted that no anchors experienced a concrete or l mortar cone failure.

l I

o y

\_/

t i ,

8

%/

l l

2.3 Phase C - Static Tension Tests on Anchored Plate Assemblies pu 2.3.1 Introduction The purpose of the static load-deformation test on a flexible plate anchor assembly was to determine if prying action is a significant f ac tor in the calculation of the anchor forces.

Variation of the prying action effect with the load, if any, i

was also studied.

2.3.2 Test Apparatus The anchor plate assembly consisted of a h"x12"x12" plate attached to concrete with four 1/2-inch anchors. Three tests I n>

v were done with wedge type anchors and three with self-drilling anchors. A tension load was applied to the assembly in the middle of the plate. A typical anchor plate assembly with instrumentation is shown on Figures 2.20 and 2.21.

The following three types of sensors were used in the tests:

1. Load cells which measured the load in the anchors.

(

2. Linear variable differential transformers (LVDT's) which measured the vertical displacements of each anchor head, two corners of the plate and one internal point along a diagonal.

____._.____._____...____m

3. Strain gages which mea sured the strain in the base plate.

2.3.3 Procedu re The expansion anchored plate assembif was installed according to the instructions of the anchor manufacturers. A tension load was applied in the middle of the plate. The applied load, the anchor forces, the anchor displacements, the plate displacements and the plate strains were recorded electron-ically at various stages of the applied load.

Three te sts were conduc ted on plate assemblies with Hilti-cy wedge type anchors and another three tests were conducted on plate assemblies with Phillips self-drilling type anchors.

The Hilti-wedge anchors were installed trith 70 f t -lbe of in-sta11ation torque each. Af ter the iasta11ation torque reach-ed 70 ft-lbs, the anchor nuts were loosened, then finger tightened, then tightened further to a torque of 45 f t-lbs.

The assenbly was ' hen loaded to about a quarter of its ulti-mate capac ity , unloaded, the anch6r nut loosened, finger tigStened, given a 1/8 turn, and reloaded. 'Ih is provided data corresponding to test torques of 45 f t-lbs and 0 f t-lbs.

For plate assemblies with ITT-Phillips self-drilling anchors, the installation, loading, and unloading sequence was similar o

to the sequence for wedge type anchors, except that the

tightening of the anchor nu ts before starting the loading (gg, sequence varied from fin 6 rr tightening to an additional 3/4 turn of the nut.

2.3.4 Results The te st results for the three plate assemblies with Hilti vedge type anchors and the two plate assemblics with Phillips self-drilling anchors show that there is a prying action load of about 15%-20% of the applied load. One plate assembly with l

i Phillips self-drilling anchors (Test No. 1) does not show any l

prying actioci. Figure 2.22 shows a plot of the applied load on the anchor plate assembly vs. the total anchor force for t

l each of the six tests. ,

(~'i x - l It is noted that:

a. The anchor force is higher in the early load stages due to the combination of anchor pretension and prying ac tion ;
b. The effect of prying cetion reduces as the applied load is increased; and
c. The inc rea se in the anchor force due to the prying action is only about 15-20 percent. This increase is

' '] much lower than that in an assembly with regular steel

l.

bolts, where the prying acticn effect is calculated to h ', about 110 percent. The reduction in the prying action effec t in the plates with expansion anchors is due to tiu effective lower stiffness of expansion anchors installed in concrete.

e O- .

O l

2.4 Phase D - Anchor Preload Relaxation Tests O -

2.4 .1- Introduction When a concrete expansion anchor is installed, a preload will be inducad on the anchor as a result of torquing the bolt or nut. It is known that a portion of the preload in the anchor dissipates over a period of time a. er installation. The purpose of these single anchor relaxation torque tests was to investigate the loss of anchor preload over time

( re '.axation) .

The tests were performed on single anchors of varying types, and diameters, installed at various embedded depths and with various torques in concrete and mortar (Types N & M). The specific testing requiremet.ts aie outlined in Table 2.4.

w*

2.4.2 Test Apparatus Single anchors were installed in unreinfarced concrete (no reinforcement within a minimum depth of ten anchor diameters) and in Types N and M mortar.

2.4.3 Procedu re Single anchers were installed in concrete and mortar in accordance with manufacturers' recommended installation pro-cedu re s . Installation torques are shown in Table 2.4. The ;

nut or bolt of the anchors was loosened 1/8 of a turn and then retorqued to its original position. The torque required to retu rn the nut or bolt to its original position was then

_ _ - _ - _ _ _ _ . _ 1

e- .

=

recorded as a measure of remaining preload in the anchor. One rm anchor for each set of tests performed was ' tested with a lor i V,

' cell under the nut or bolt head to establish a torque-tersion relationship.

The anchors were re torqued at intervals of 1~4 s, 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />,- 7 days, 14 days and 28 days after initial instal-Lation. The anchor load and the average anchor torque versus time were plotted for each set of tests. (Figures 2.23 and 2.24 show typical load and torque plots.)

2.4.4 Results The results are represented by Figures 2.23 and 2.24. The loss of preload at the end of 28 days was as little as 13% for a 3/4" diameter anchor embedded in mortar and as much as 54%

for a 1/2" diameter anchor embedded in concrete. Overall, it appears that less relaxation occurred for anchors embedded in mortar than for those embedded in concrete.

4 i

O l

l

.- _ _ _ _ _ . ~.

2.5 Con:: Ausions

~

O 2.5.1 Phase A - Static Tension Tests on Single Anchors The static tension tests on single anchors have provided a clear unders tanding of the anchor behavior under loading and the effect of various parameters on that behavior. It . is noted that the prestressing of the anchor at the time of l testing does not affect the ultimate load carrying capacity of the anchor.

2.5.2 Phase B - Cyclic Test on Anchored Plate Assemblies The wedge, sleeve and shell type anchors tested in concrete O and block walls exhibited insignificant anchor displacement when subjected to seismic or pipe transient loadings. It can, there fore , be concluded that anchors embedded in con-crete can withstand cyclic loads up to 25% of manufacturer's ultimate capacity with a simulated OBE condition and 50% of manufacturer's ultimate capacity with a simulated SSE con-dition. It has been shown that anchors embedded in concrete block and mortar can withstand cyclic loads. The tests were conducted at load ' levels of 25% of the measured mean ultimate static capacity or greater.

It. should be noted that anchor preload is not required for the anchors to withstand cyclic ' loading. The preload in the 1

1 I

1 1

anchors tested was generally not grea te r than 500 lbs. (0 s

preload) which is equivalent to tightening the nut or bolt.

approximately 1/8 of a turn after " hand" tight.

2.5.3 Phase C - Static Tension Tests on Anchored Plate Assemblies The results of tests on a flexible base plate with four expan-

! sion anchors show that the, prying action is of the order of 15-20 percent of the applied load. This increase is much lower than the expected increase in an assembly with regular steel bolts where the prying action force is calculated to be 110 percent. The reduc' tion in the prying action force is due to the e f f ec tive lower stiffness of expansion anchors in-stalled in concrete.

2. 5.4 Phase D - Anchor Preload Relaxation Tests From the typical curves showing load or torque versus time (Figures 2.23 and 2.24), it can be seen that the anchor pre-load losses are most pronounced in the first 24 to 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />.

However, it should be noted at this point that the relaxation phenomenon should not be of great concern when viewed in light of the cyclic test results which showed that preload is not required to withst end cyclic loading.

(. ,

L . . .. .

TABLgg AND CHARTS FOR CHAPTERS 1 & 2 Q

O Q

e

=

0 e

j e

se es

. e .e e4 E e r se a: et e d3 een

  • O

==

en ed 0 66

(*

  • e 0

e 4 ee em e se 4 ye A *e e e seer > te e e

me me. 4 e .e. e,e e.e ae. se = . l

  • E e .

en e

e

  1. O se J 49 e

y49 f.a3en.$' o. 4 - * . - 4 4* E =b to u o P

m O O O se O O .e se se E em O.e e me ee wo L e e

  • h,W te e

a e

w w m,

e==

e ee n w m,

a e

w w e,==

a e

w %e

  1. ,m a

w e e, ad n

a e

w w a.

es .J S O O O o e OO W O O O O O 4 3 4 O 4 e M O 4 O 4 O 4 ce es W N et ce ce e

e e E.

e as we to e e  %

M e ee to 4 %

e  % 3 se ce as e a 3 e. 4 ee M 4 e

%% 4 % 4 % e 3 E to  %% 4  % e e=0 6 3 S  % S S 2  % 2 3 Deem an Se 3 Ga 3 Se me en eJ w 0 de G. 2 Se aw Go en G. C e { 4 0 9 9 9

  • K4 me se e w 9 e 8

5 0 0 ee es O

=e e e

a e a w to es a.1 e em e es a es a

e as a ^e mn as e e s 51 J ea e4 A

e er a %se w w w e eAse =e **

e eo g

se w

<%eer og O. S ease %e wee w w O

%.e O E >=

O O O O O O O 4 9 6 9

% en 4 O 4 4 e 3 4em 4 4 O O, e y ee ce O et e

% j esa w me eE

    • em ee O ee O 3 ee O OO e e- ~ -
w. e es e

es se em Q re me me eg o -e se me e es wt se e &

to

+0 +4 to + 6 $s +g en as se Es em et +9 +4 + 6 +e +e+t em es e

=J to en

@ en as e 4 em a 9 De to

  • e E C e ee e U ee & H

>* e to a F e== he e G we 4 4 te # 9 wO et S es a g 4e ee O es e e S e9 es O O O O O ert O O w s **

e en e

me eJ em es e G e.

toaw se m me 6

~ h & M M to he O O se U 8

ar%

N C

db en W F9 e 4 4 as E e

- e. e. a es se M

$ Se gg e he 9 es d D sa G 9 e*

  • w 3 e3 O =J O O O q t e e Q

.J g e O em 9 0 9 N 4 3 De 4 P= 4 W eme e 6 4 peto km e o et 3

w

  • ee er g se to es O se e we 94 to e es me 3 A me &

es i g e Y S e e e e

    • .O M 3 e e O 96 es se S W es g WQ 4 4 e't e't e e e e 9 O ^

%  % men G C JS O e E E  %

    • -e E e's O,. ee V se e so 4 4 =*

S e 3 e =.=e E as #w e eem o **

o O e G es eab 7 ha 4 ee se et

& ch ee C.

Od G 9 99 e e er o 3 es e ** O 9 e e e 3 e a es as e e as oms e to b) Cb e me e 9 Ce O 9 = e e W es e 0 e en W ene e em se to e W C 6e #m oe es o W4 ee se ** 3 *J g Z F  %  %  %'s  %  % es e se me me U oo "e me U M W en M se es es # ame g

F

  • te 4 Ji; e e%

%e me 4

Q C

O e

O e 3 g, eb te b 5" e eR e e e se 3, ee =

3 9 m O e B e O a e se 'a e =

Oe- -8 9 e s Nap , th a e o" 1A en ,e g & ,ae e me ne es e eg f,, y Ops N be o

  • e "o e f g ,, we L *e toe an, e eh "J *e O **

ed e, m

..e e.ee L '-e bs ..ee h

e E p** 't J es y e e e ae e e e,*

es. ob es as

9. #e4 A m.s .
  • es e $ an.

e e me e e e '

me' Ow ee se >= e 9e e es en om g we 3 e e en ebe e e e,n e4 e.7 e.

py 3 = a -

& De e $n  %

en Q etif.e.

awe ee se e *

  • e a

.1 6 e w ee oo ** p to 4 e

..a.- . ,

.-.;,n~ .. . - . . ~ ~ - . . . .~ ,. . .a _ - . - , , + - _ - - . . . . . . . _ . . . . . . , , ~ . . . . . . . . . . ~ . , - -. - . - . - .

~

h M '

( ( .

f.. -

o TAsts 2.1 (cont'd.) i DY4AwfC TFSTS 14 CONcttTE ,

~

TUTAL TEST

, l stwen tatstificATtos .

wupsta OP raequenCT or

  • t-stoots I
  • . FAD TYit OP ANCNOR Dfff)f OF IN$TALIATION TE$T (4) APPLILD ASSEM9tf IDAD CYCLES (Ma) TE$TS 1EST2 Trit nit Al "W4 DIA*Tf3A A?.C)#NL TORQ('E IIELOAD ON 4 SQlT A$$$hBLT Ce M TT[O T)P( $(htL$
  • t!x) (ts) f rf-tM) (t.ns) (i.ms)

O g 2635 (a) . Pu/8 25500 (a) 4 2 3 I

2 1/4 40 +

5470 (b) Pv/4 3000 (b) n YE t/2

" *LIII '

e 70  ; 5120 (es . rw/s 26500 (e) 4- 2 1 ,.

  • + 10240 (b) - Pu/4 3000 (b) ,

f P! _

i 11AN5!! C 0 + 26 35 (e) . Pw/8 26500 (a) 4 *2 3 g

.T xt 1/2 2 4/4 60 + 5270 (b) - Pu/4 3000 (b) .

e (hu.It) 4 70 0 + 5120 (a) - Pu/s 28500 (a) 4 2 5 t? t'. E MN.5360e 2150 f 10740 (b) . Puie 3000 (b) 2 ',

. +

4250 (e) - Pu/8 28500 (a)

!!' F . 1/2 2 1/3. ..... 0 4 2 .-- M

. i t :s.,.

+.

5500 (b) - Pu/4 ' 3000 (t?

y 1

l t. Pu. etti ete pullout capacity, is based en osaufactater's data in 3500 pet concrete. l.

2. Test
  • ge is cr .ated l'y (a), lower test pretoed of the test series and (b), bl &her test preload of the test settes. l l

l 3. M.fers te he t Need wenufacturer Catalog r.unber, d.

. i,

.- I

, ~

r

'T .{

.g -

i 1

I

-c - -

--m

, il:lI\llJ )llI i e

7 W 5 E a 5I A A

-

  • m A

/ :C

  • 1 7
  • 1 w

(

h JI 5I

'I 1 l R

l E

1 n n 7I  ? E

' D J

s, RE s7 A. 2 P :2 '4 1 1

  • o*C2f s E' T C 2 1 2 i

.C y ,

c m)s ty 0 0 0 o l

qR 1 1 1 t(

. p y

) ) )) )) ) )

P ,b ab a b( .

O a b

(( ( r S ( ( (( a R2 0 o t 21 2* Y C

3 o 0

2 le gLO 0o 0h 2

0 k 2

r 2

t C M f

, , l e

  • fL f r r r r t uAI a a . a a i n

t t t M*

LT  ;

t r r r r U

.T t N- N- m w- y r

R CA c i

N 5 e n n DM ib o A s T

R N O e

> . M , t

) ) ) ) ) e

. & ) ) ) b ) b s b r 3 R a b a ( a ( ( ( c

'd K A A ( ( y( n y y ( y o D C D T 0 l M hr ; M60 t l i n

o E O T L I

Y R

O F

l h 0 o4 w 3 1 b 0 0 m 9 5 e 7 1 b O) 2 c 7 I S 1 3

C b_

S B e 1 3 C

( E T N I

L G)

?

f3 s

A s + +- A s

s +- A s

s +3 A

m1+-  : 3 a

1 S2 t i t E SL l

t . l t

i t r P S l 2 A( i o e o o e O T D B D B t E C S Z t

)

s a

L S E I 4 ) ) 2 2 4 a b

)

B T L K a b n a t A P C n( ( o . a ( ( a T C P O C - - C c I A AI 3 0 .

.

  • 0 0 =

B 3 6 9 5 l M 5 1 A 5 1 1 3 " 1 3 b e

- N m Y + +- * +- 2 e D

e h

t

. j s

D) e TA SAas E  !

O o 0 0 t a

c TE 9 (t i P d.

1 1

S r

. C e I ) t TES t A J'D e .

0 0 0 l Z

1FC L. O 5 5 5 ACT S e TTr h S ( "

N .

I

. r e s T;

nP 4 t M-

CR b /

i r

t s / 1 k s g mN%)I P %. (

1

- 4 e o cEA cD 2 2 t e

l t

a

. h a t C

. s r

. e e 2 i r R

O. T. ) 2 . 9' 0 25 1

'A

'0 I m

' 2 / 5 ..  : c

/ 1 r a 5

AW(t 1 3 .

s u t e

d D .

. i Jt e '

a c t s

e F R e C ) g e I ) g g t: ' Zg t:

- g m. r PY *.

Z;'g g

. f TA 8 p J. (::.

g g

1 4

o

( ( .

t s

r 1; e f . C

  • t e

SJ 0 e T A7 2 tY T

S *

  • C S . .

1  ;

lIII  !

r tIl I llIl tl

- ~

e

- .-...._..._......_.g..~.,-.- . - . . . - -- ,

~

e l .I I

if 4

. O'I ~' l s

b

$5' 33 l -  ::

1 l

s 1R 1 6= __

?

. g.E., se m A S ;

g

.n.

g

s
  • l ~ Rt' e.

. . 1O !.< ;. ,

l lnp3 V~'

e ,, .2.e e-gti , . ,

npge a hAS. Ih.: 2 h ko 8 $ $o a; . dN."'

=

N o o o o 6

  • o

[ge . , o g o o oc.

a "

7 agu,  !! - .

Il M Cj t j*a .ksi 5:

l g! d R

~

so eu r a @ O'1 s, b

e. a 5 > :.'

%' M. 5 t!

.. <v

. =

= ,

Of. vrt..9 o,. ito 8

9 1 E. o & o U- 1  %

T3 o o o g g d o d o o Sikus* -ad g

N 2l'NM E

C g.2"4*Mk*

!! 4 -

3 Sg u

, g

  • M d,. gc.:-:  ; -

4 y'Ayd i;  ;  ;  ;  ;  ;  ;  ;

j j s

=

S.t #i 5 E . p I

  • 3 t e g t.

t a

0= H -

s S .

  • ,k

. . g II ** D p,2- a 3 a o a 8 8 a E 3, E e

3 0 o- e i

  • H

%: 8 v. 0 }

U e4 4-

/. 0U at 11 v

o.

g o o o o o o gi f* S,3 o o o o o ,

$1 dc~ 2 1 : .

2:s { A a& s, s

Obg e a

s. # 3 i

1 [iE S $ i I L

, o * $; 6 Y k b i

+

. Syk?;'-j 4$ 4 4 e; li 4 4 l ,-

e 8

-t ---- _ ..-. . . . .

0 tg 2. ,,, E y= f. -

E n

- S. u I$ .

u;;

n e" ~; n ae uq :n n . ya" r: e- ""

uc u- 3 5ym ~ :)

be iis "' (i E ui. *! oa d dQ d !"- ~J .

1 GW t'

-- 8'

f :.5 GG a .:'s t!. =3 = .a ab -u . . . -1

! E, j - - - . - . . . . .

l l . ti 3 l  !SI,5 D

h S 5 5 5 h 5 5 5- 5 I f.i

'o e

a j l2 E,! h

.c 4 0 .. a - = .- p  :.! p !

i

[ .

a

! 2 I

fpE. --. - - - . . - - . -. .. . - . _ .. . ... ..... __

....I

~

l (. .5

r. ii. l-e..., .c <

ga < e, o e. *. 3: . . a r i t Mit l I i 6,,,, , , , _ , , ,

1 j

.~ . _ . .. . -. - . . . . . . . . . = - . . . - . . .. - . - . . - _ _ . . = - .

4- / g

( ,.)

(

  • h ( .

< e'-

+ . , .

e*

^

TAstz 2.3 ,

CYCLIC TbTS Ict Pl!T TRWIENTS !aADING EUTt37 0F TEST PE:ULTS

... . . Refer (- to Tabl*

- - -. 2.2.1 for Tes t identificett.en Desert.ption) m .

PAZIKN ADC!!OR SLIP IN ITSttS AFTD MAXIMJM A3 Cit 03 St.IF IN IllCittS I M' I::=ci :e5

, A:::.a Tm or N DES ter-ter Trev cumcarr Arren ts.50s crer.ss er ras.n 3re,5m cretzg,y go g ,,,,,,,.

IT.A% IAA) CN H:CHOR 12 1/2C 3,OddfCII 3 I".TJC I4;r;'3 III.D i ;;.*;

g
g g .,

T*

aT. l'i _

. . . . . .- .- .n.. . --- -.

Or t%f!UFACT. titer OTATIC ULTIMATE OF Puranaf X 29 0.03"

. ~

i

! 2 1/' " 4 0 concrete 3.02"

! 1 1/2* .l HIL*I '.1:3c: .

. I 0.06" 0.13"

." concrete

.* 1  ;* 1/2" 4 MI:.TI %T.DCEI 4 O ,, j

  • i t , .

. 6 0.03" . 0.o3*

K 1 g 1/2" l '.?1 1T e 21/3s* O concrete e

j ,

! *.*I*. 3 E 0* oa N.*,Y,$*****#*#h

7. 1 1/2" k 1*"!JIrS 4' 0 concrete ,

i !LC.*I ,

coacrete 0.02" i o.Ce*  !

2 h E*!!'I.*$ h* 2150 '  :  :

1/2"

m
  • i

' O.03* g

  • !!!?. 0.03 0 concrete 0.01" .

l* N 1/2" a l. '1 EnILLIN3 i e e -

, t I i +

t..

a 1 g h 8' 9 -

3 1 l'

I l

f '  ;

1 . .

l I I .

t t

.O'9 TABLE 2.4 SINGLE ANCHOR RELAXATION OF TORQUE TESTS Embedded Installa- Embedment >bterial Depth of tion Total Anchor Concrete Anchor Torque Masonry Joint Test Type of Diameter (skp*$fth) Required Anchor (inches) (inches) (ft. lbs.) (Type of Mortar) 5 50 M Wedge N 5 (Hilti) 1/2 4 --

70 3500 5 50 - M 5 Sleeva (Phillips) *HN-5860 4 70 3500 -

5 l

    • 5 l N . _-

1 Self- ** g 5 Drillirig 1/2 2-1/32 ,

5 I

w ** 3500 -

. x ,

s 135 -

N i 5 - -*

Wedge I

(Hilti) 3/4 6 250 3500 5  ;

i

  • Refers to Red Head Catalog number.
    • Install snugtight plus 1/4 turn.

~

O

l l1ll1 llll11l1l1) il l p

( m -

a_

d e

D n n o e i m t i c c a e e p R l S

- a y f, t t s s e e d T e

P g1

/

^;

7 m #

a d R e o m R l c -

a l i g i r

n e l n F o C u i a i ne g c, s d r ror n n a d oiu i e o y d T L l hst a I

cnx o nei i f i f, i ATF L t

u

- o l

-i isI I,

g

I+ +5 E.1 -

-l4o - l u

h( r

-C J'

b[(t_

P i

n o

s n

r e o T th p sc O m en 1 u TA .

P , 2 c -

g i i l

u F a

r d

e H y

i q

3

(

(

[

O _

. tl 'Il\

O O O .

I ( (

l Bolt Diameter I/g" $

, 2500 . ,

Range of Test Results

? . 1

] 2000 . .. g Hean Capacity b '

i  ;.

l u - -

1500 .

t.

u I ,

p ,

o ,

,S 1000 . ,

g ,,

~ ..

c O ,, ,

"I ' 500 . -

i ,

0 Number of testa 6 5 6 G 3 3 Enh edmont l= 3

/ s,"  ;! 1" bl 3732 N Location / Mortar C B*/N J/N C C C >

Comp. Strength, psi 3600 535 535 3600 3500 8200 4

Manufacturer lli.lti ITT-l'l:1111 ps 1 Wedge  : Self-drilling Type

  • Comprensive strength of concrete masonry uut tn: 2525 psi .

Fig. 2.2 Comparison of I /s. in. expannion anchors .

. O O O

- ( ( (

~'

7000 . "

Bolt Dipmeters 8/a " $

  • m 6000 J * '

Range of Test Res. sits j Hean, Capacity 5000 .

D ,,

Y

2. -

a 4000, . < <

9' <,

t . _

o '

.m . , ,

'ij 3000 ,

n.

,4 -

, g 2000 g

1000 0

Humber of Tests 13 6 6 6 5 3 12 18 te t. 3 5 3 F.nb edmen t = 5 1 /8" J /N b 3" I= 3" " bl /3 Location /lfortar  ; B*/N J/N C. J/!! C C B* /tg JlH / C. C Con.p. Strength psi 3600 8 64 2590 465 3600 2745 3600 4000 2755 2755 3500 4200 2620 11anu f ac turer 1111 ti =

  • iqi}((Ip?

-ITT-PhillIp(*"

Type , Wedge  : - S le eve--*- *- S e l f --*

  • drilling
  • Compressive strength of concrete nononry unito: 2525 pal Piq. 2.3 Comparison of 3/o In. expansion anchors
O o I O

( I Bolt Diarneter: I /2" 4 14000 .

. Range of Test Results n ~

j 12000 Mean Capacity g .

3 .

g 10000 O

m ,.

n. '- -

O 8000 .

M "

.a ..

1m 6000 . -

~

d , ,,

4 g 4000 'a'

, i 2000 . I.

O I .

Nurnber of Tests 4 8 4 5 0 0 o lie 10 0 -

Embcdment =

21/8."

U lc 4"HJ Location / Mortar C C C C B*/N /M /N C C /M Comp. strength, psi 3000 3500 5000 6000 510 2550 660 4000 6000 2830 Manufacturer ._

liliti  ;

Type We ttge _

  • Compressive strength of concrete m.asonry units: 2525 psi l (g , (InIlIII E ll$I k N "f g SI . 0* N jlHl$l! $I$I $I$Ik IS S Y

. _ _ _ _ =__. _ - . . . . .- -

O (

O

( I O

14000 - Bolt Diameter: 1 /2" 4

. g ,, -

g Range of Test Results

~

a 12000 - '

8 " ~

Hean Capacity x

a v

-4 t 10000 -

2.
  • a M 8000 -

n.

6000 -

n < -

O ,

2 .. - -

55 4000. .

i ", ,

2000 . ' ""

~

0 I i i?

Number of Tests 4 t, .

se G a. 4 6 0 6 6 Emb;dment ~2 /g'H I 2 1 /2" h= 4" =

3 ,

I.ocation/ Mortar C C C C C B*/tl Jjpg J B*/N /N J /N Comp.atrengthepsi 4100 4400 5700 5700 3600 2390 350 2670 730 390 P!.mu f acture r ' --Wej-it -

-ITT-Phillips L

Type = k'e dre  : -: Siceve z

,

  • Compressive strength of concretc nasonry units: 2525 psi Pig. 2.4 (cont'd) Coinparison of I /2 in, expansion anchors

o I o (

. O I

14000 . Bolt Diameter I/"&2 7 ,,

'g , Range of Test Revults a 12000 . "

o S

Mean capacity b

l tes 10000 - ,

S*

u g 8000 -

.S -

<r

-J .

)

6000 . '

a E

$ 4000 -

. Y 2000 . -

0 Nurr.ber of Tecta se 16 8 3 5 6 .

Enh edment 21/ 32 l- f1 /3b Location / Mortar C C J /H J/t! C C Corep. strength, psi 3G00 8600 2630 515 3600 5000 Manuf acture r ~ ITT-Phillips N11 tid TyP" -Sc i f-d rill- -

TZD Drop-in ing .

  • Compressive strength of concrete masonry units: 2525 pai Fig. 2.4 (et;n t' d) Comparinon of1 /2 in. cypannion anchora

y, (-

t

-g 16000 - -

Bolt Diameter: Sfgn 9

- Range of Test Ecoults .

.g ,

12000 _ __

h Mean Capscity 8 --

Y U

10000 . ,,

f .

n S F~

U U 8000 d bo -,

A .

c 6000 -

~^

5  :: ,.

l H ~~ ~

4000 . "

~~

2000 _

0 Nurber of Tests i. 6 12 4 8 to 8 5 5 84 3 3 3 Embedrnent h2 /p3 I Sie  : I j= e," = 215/ 3p J BA/M J/N t.or.a t ion /lfo r ta r C /tt C B*/M B*/N J/M C C C C J/H Conip.n trear,th psi 3G0 0 2760 3600 3015 1520 2565 3600 5700 2600 725 3600 8600 4 2000

!!anu f ac t ure r = 111 L L L -- ITT-Plaillips Type -c tiedge Sleeve Self drilling '

  • Compresnive strength of concrete masonry units: 2525 pat l'i.e.

. r. Cnine n r l o nn o f **/ ,i lu. a po n+iliin n orlini n

o, q o 41150 l 30000 -

Bolt Dimatetert 3/g " $

?

m E Range of Test haults g, 25000 - I v

h Hean Capacity D

E. 20000 -

  • Li -

N g 15000 . . - -

ne =

g f $ ,,

7 - - ,

f 10000 I Q> l*W 5000 -

+ ,,

I ..

O Nurler of Tests 2 86 3 6 0 86 13 5 7 3 3 3 3 Ech edr.nent h 3 /8 U

=! b6"d S I /" '5 /i 1

a b 3 / ,"

1

, Location / Mortar C B

  • Al B*/N hi J/N C C 3/N J/ft C C C J/tt Comp. o trength, psi 3700 3015 570 2565 rno 3700 6000 1735 2700 3600 4900 5700 2630 flanuf ac tu re r "

TYPc -'

illlti

~" ITT-Phil17 Wedge  :- <- Se l f- --*

drilling -

  • Coinpresnive strength of concrete manonry unitu: 2525 pai *
l' i s t . 2.6 Cent.pna loon of 3/s, in, expamigon uncinian

O O O

( =

{ , I i ,

Bolt Dianneter: 1 /g" ( .

1 Bolt Dianneters - 1" $

4 P s 'O ' '

g , , Range of Test Resulte 8, 25000 .

V 1P s heen Capacity 0o -

g- 20000 . ,,

u ,,

t .+

A 5-n.

15000 .

C 0m

  • C

$ 10000 - -

4 e

5000 -

(

i O _

's t, d I, 3 'e 7 3 Number of Testa ,, n Embedment ^4 /2 5 5/ 0 3" =

8" i Location / Mortar C C 3600 5000 5000 3600 8900 5700 3600 Comp. attength, psi

!!anu f ac ture r = 1111t1 Hilti .

Type  : Wedge  : Wedge i

Piq. 2.7 Comparison of 1 in, and 1 I /t, in, expansion anchors

.,y , , , . , - -

- . - - - . - . - _ - .. - =

o (

O O

(

12 0 0 0 ~-

Anchor Type: Wedge Bolt Size: 1 /2 in.

  • Embedment Material: 5500 psi concrete

. 10000-- "

m .

W ..

Erbedment '

O Depth 8D

z .

D 8000-- cs O .

1 / h

- .. ,/ N

\ ,

/

o /

\

g

<t 6000- - /

Average curve from 2 test.

O I N ~

J '

j Embedment Depth g . -

g 4.5D g 7

O f N x 4000- f N

  • Average curve from 4 tests 0 I Z

l \ -

<r -

\ -

I I \

2000-! l

\

l \

I * \

f \

g .

N N

O 0

. . k. .

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1. 8 2.0

'NCHOR A S LI P (INCHES )

Fig. 2.8 1.oad slip behr.vlor for wedno niichorn cla iliteil 4.5D and 8D

O O O 12000 -

Anchor Type: Wedge

- 10000- . n it size: 1 /2 in. .

Embedment Depth: 4~in. (8D) '

g ,, Enbedment Material: 4500 pui: concrete o

  • z .

3 8000- -

O g -

N ,\ Average curve from 4 teste Moderate Installation 7 o Torque (70 ft-lbs) 7 \

7 )

<t 6000- -

w '

O

~/ Average curve from 5 tests

_. / \

" / \

o / \

n 4000-- \

o / \

Z  ! Low Installation Torque 4

/p!

(35 ft-lbs) \

- \ .

2000- f~~ \

i g

a .

N N

\

'O  :  :  :  :  :  : --  :  :  :  : .  :  :  :  :  :  :  : s}  :

0 0.2 0.4 0.G 0.8 1.0 1.2 1.4 1.6 1.8 2.0 ANCHOR SLIP (INCHES )  ;

Fig. 2.9 Lond slip behavlot of wedge anchorn installed with low and moderate installation torque

OI O

( f O

12 0 0 0 -- .

Anchor Trpe: Wedge .

~~

, Bolt Size: I/hin.

Embedment Depth: 4 in. (8D)

'10000-Embeaient naterial: 5500 p2t concrete en --

o z .

D 8000-- .

o a '

v ..

High Installation Torque '

O ~ (175 f t-lbs)

<t 6000- -

C) -

.2 O'

O c 4000-o -

Z -

<t

  • i 2000- ,

, a a a a a a ... A a a a a a a a a a a a

O O.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1. 8 2.0 ,

l <

ANCHOR SLIP (INCHES ) .

Fig. 2.10 Load slip behavior of wedge anchor inntalled with high installation torque

__ . _ _ . - - - - . . . _ _ _ = . _ - _ . - - _ . _ . . - - -. - _ . - _ . . . - . .

O< O .

O -

12 0 0 0 --

Anchor Typer Wedge

'.1 0 0 0 0 - Bolt Size: I/2 in. -

^

e,3 dment neptu: 4 io. (so3 M

O Preloaded D/ / ~~ N N

\

Erhedment P.aterial: 5500 poi:

concrete Z '

/ Average curve frora 3 tests 8000-N*s[

] /

a /

v \

f g Average curve (rose 4 tests

/

o / \

<t ' \ s 1 6000--

t o \,N .

J N .

\ -

(r /

O /

N 1- 4000-- / \

o / \

z / N

<t - - -\ -

i N  %,

2000- ,

. i 0  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1. 8 2.0 ANCHOR SLIP (INCHES )

Fip,. 2.11 Load Slip behavior of anchors tented with preload ,

m O O U 8 u 0 0 --

7000- - .

Anchor Type: Wedge Bolt Size: 1/2 in.

\ N 6000-- Eithedment Depth: 4 in. (8D) g Erbedment Material: 5500 psi concrete

  • o ._

z o 5OOO-- "~~~

e #,-

Average curve from 3 testa "',"#

v ..

Preloaded o 4000-- ~,,,-

< 's O . Zero preload J / *, ,

tt 3000- -

,s*,/

O

  • y - -

,/s Average curve from 4 testa g" g O /

H H z 2000- r'd. Approximate Bolt Preload Tension 4 I e s t

UV l

i IOOO- l ~

O'  :  : .  : .  : i  :  :  :  :  :  :  :  :  :  :  :  :  :

O O.02 0.04 0.06 0.08 0.1 0.12 '

O.14 0.16 0.18 0.2 ANCHOR ' S LI P (INCHES)

Fig. 2.12 Initial portion of load alip behavior for anchors with dif ferent bolt preloads

O O o jo t (

'(

~

12 0 0 0 --

Anchor Type Wedge Bolt Size: I /2 in- .

Enhedmont Depth: 4 in. (8D) 10000.- Enhedmont Material concrete -

[ fE = 5800 psi gy , g ,, 4 ,

o z u 3 8000--

O .

g, - ~ ,

o __

/, N Average curve from 4 tests o ./ '

< 6000-- / f. - 41 0 P*i N '

o /

\ -

a /

/. \

m / \

o / \

z 4000-- /

g o

z 7

/ g

/

\

/ \

~ ' ' ' " \

2000- '

/ -

' N .

\

N

..I '

N .

o  :  :  :  : .  :  :  :  :  :  : .:  :  :  :  :  :  : Y  :

O O.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1. 8 2,0 ANCHOR SLIP (INCHES ) -

, Fir, 2.13 Effect of concret e compreonive ratrength

gi ,,.seamA 4h? M'M= - * * * * * - * " - ' " '

+ .p-l k

Hilti: Wedge Wej-it: Wedge  ;-

f)

V '3E M -

- 3 3

- 3 L

C-=r r

w ,,

=

E '

EE e 5 E [

"'~

A A ,

-[ -[ >

k I '

A L

'uS A t

  • (

r q- s

" bJ L 4

MDb yDH l

t t

I t

ITT-Phillips: -

Hilti:TZD i ITT--Phillips:Siceve O. Self-Drilling (Drop-In) I Y" ,

I D l

= i.

si .

I l- A A __

d b . d .

i r1 l 3 I

t- 7

.- A l

- m l .

H e V a  ;

4 i r A  :

-f O l

"(=1 i f/sn y l

L2 y i e

.! -,- S - --

3 MB W I

D = Bolt diameter .

B = Drill bit diocater  !

A = Surface of c= bedding caterial i

- Ic3 = Echedeent depth

.s l 1

' 1 Fig. 2.14 Details of Cencric Expansion Anchors

,x o o

. L) U <

.O 12000--

f 10000--

<n --

o -

25 8000-- . s\

3 o N; Average curve from a Anchor Type: Siceve v ..

3 tests Bolt Size: 1

/2 in.

N O Embedinent Deptlu 4 in. 03D) 4 6000-- Embedment H3terial: 3500 pai: Concrete o:

o '

r 4000--

o Z ..

4 2000- - . .

O-2.0 0.4 0.8 1.0 I.2 1.4 1.6 1.8 O O.2 0.6 ANCHOR SLIP (INOHES }

Fig. 2,15 Load olf p charnetcristics of alceve , type anchors .

O, O ,

O'

12000-- '

, 10000 -- -

^

e (t) __ '

o Anchor Typer Self-drilling i Z '

i D 8000 .

Bolt Size: 1 /2 in, O

fL Embedment Depth: 2 1/'2 3 in. (=4D)

Embedment Material: 3500 pai concrete O -

<t 6000--

o

_J Average curve from 3 tests '

, (r o

x 4000- -

[

o ,

-z I 4 . .

2000- -

I -

I i  !

O/ I -

O 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1. 8 2.0 ANCHOR SLIP (INCHES ) .

Fig. 2.16

'I Load displacement characteristics of : elf-drilling anchor e

.. _ _ _ _ - _ _ . . . _ . _ . -._.___ _ _ . . _ . _ _ ~ _ _ _ . __ ___ _ - _ .-

O (

O l' (

O 12000--

10000-- ,

, Anchor Type: Drop-in U)

O

, Bolt Size: I/ 2 in.

Embedmont Depth: 1 3I /32 (=4D)

D 8000- -

O Embedment Material: 3500 psi concrete  :

a. .

b o i s

g 6000-- Average curve from 3 teste i

J -

1 I

tr o 1 c 4000- -

o z I a --

l I

2000- -

l l . .

l l 9- .. .

O O.2 0.4 0.6 0.8 1.0 1. 2 , l .4 1.6 I.8 2.0 ANCHOR SL3P (INCHES ).

l'ig. 2.17 Load displacement character 1= tics of "TZD" drop-in anchor

O (

O ( (

O -

~

12 O d 0 --

Concrete fc = 3500 poi

-- Average curve from 3 tests

'10000- .

n

  • m .

Anchor Type: Sleeve O Bolt Size: 1/2 in.

-7 3 Embedment Depth: 4 in. {8D) 8000-.

O s G. ,

v .. fHasonry Mortar- -

f Type H, averog.

o gMean Maximum curve fiom 3 esta

<t 6000 toad: Mortar Type M O ,

.J l fe. - Concrete Masonry *Jnit 2525 psi

---,g........-,,,,,,.,,m........,.

,,,,,,.....,,,,, Average curve from 2 teata .

/- He O n Maximum Load

  • c 4000 - concrete Masonry unit 2

.> ,rr -

s-

' % n % ,, %...,.,' N-

--l:

- ~

<t -- ..%, ., , _

2000 -  % -= ' N Mean Maximum Load Masonry Mortar-Type N - - - -. N - - - % - =_

Mortar Type N Average curve from 2 tests Q  ;  : , ,

O O.2 0.4 0.6 0.8 1.0 1.2 1.4 1. 6 1. e 2.0 ANCHOR SLIP (INCHES )

Fig. 2.18 Slocyc anchor embedded 1n concruto and concreto manonry

m

- _ . - _ ._ .__ _ _ _ . - , . . _ _ m _ ..

O, o

..J - --

o 9 --

~ ~1 A

    • ee
    • ; ee

.e .

ee ee ee e.

, ,eent.e r,ee. g

. .____a - - . _ _ - - < _ _

, Reetties Freae OO ,

300,

,0,G . ,' .,

O Ce l ,

s j

7 I. 1O'ho, g

  • 57['. r C ~Ii:w_ z- sv 7 , -

,-- [oge'

--J oa

./

[ l.-- ] lee t .

laterne! LVOT to leveauve

'a , Displacement of Applied laed

'fe- 0,l i. O Op . o 7

6

'3s >' t. - Serve-Cantrolled t - - O

l.VDT to Measure Wydraulle see O}

sk [

Y ,# r Anchor $11p ., ~'k LS s oe-Co.t r.n ed mydrewtte see #"{V. I g l3 . - .

g o  : 4

)

t Lead Cell to Meeeure  :  ! , pl.eed Cell to toesours Applied lead q ,.

.e

[ ,*

[}.p Applied laed *

f. Feve Belt Cluster Emedies Assembly

, a

,;3

~

k

  • k'- l LVDT to Measure n

C<~

kq Lead Cell to Measure 7e3 Ancher $1tp ~' Heebers to Nold Test Ancher Lead -l-

',"  % Specteen to Test lleer

  • 4 t {

Xt I

  • 1. -I }l feed Cell t 34

,, .e.v . Amh.c u.ed 4U L

s .

g ,, , y 4p

.F (

Test r .M 4 'I S iI* / Test Specimen specteen

.,': ;F 4 T.

...g. , p

_cr. i.. a~ r ~~~. -

t v Test Fluor N

" Section A-A A

(a) (b)

Fin. 2.19 Test Assembly for Cyclic Load Testa

_ _ _.______ m e m -

~

Outline of Load Cell 1/2 in. Thick Steel g on Anchor Attachment Plate N 5/8" thole em a~~

/ 3.,7 N D/ NE f,7 Io\

x -

~@

ie t

ge e,is ._. -

/

@ ig os., 0-x@ ,

Loading Bar 6

-e -e Vf

//

e- @- '6 G Of G-Oe I

~b1 1/2" g, 2..

G g'f

/

s

\ e -~s

__ l ._ .

s 0,-

(

A su N/

O /) es 1 /2" 1

ri\

\v O)sry y e 12"

< :n Fig. 2.20 Strain Cage Locations on Attach :ent Plate for Flexible Plate Tests

,J m

gb .

12"

= 1/2"

l' 0

h Attached to End of Bolt Stu NE-E X X

NW NE

\ '

4 r Attached to O h flydraulic Ram

/

/

'SW-I

,g

's ly EW SE O @

~~ Y X SU-E .

1/2" -, ___ Flexibic/ Rigid Attrching Plate O-toeace11

- LVDT l

II8- 2 2I Location of Displacement Transducers to Measure Anchor Slip and Plate Deflection

,- p

/ l J

,~. /m w) w/

~

\;

$ (

50 /

III j

X /

/

(11 x t / *

/ 3 43 . '

j vII /

O / i A /

d \ / /

V /

o 30 vt

</ ,s,11 /

s/ /

E

\ s'/ A' 0 ) ' sY

- ', Ay l t

h , s ', /' sf a

Y

,s,/

h

..* * / Wedge Anchor Tests

/


Self-drilling Anchor Testa 10 #'  !

/ '

/

/

/ -

/

/

0 ^ '

O 10 20 30 40 50 Applied Load (kips)

Fig. 2.22 Sur. mary of Anchor Tension Versus Applied Load Relationships for Prying Action Tests g

  • gmg eeog e,symW W 4 r 6 - *D WW89 9 h W ' - O'E

. = - - -- -

~_s. _-_..m -

a d

.......e. ...

.6 . ... .

. .i .

j

... . . .. .... .e

(

.......,.. .l. . . . .

.l

.4

.l

. . O j

. . . . .. .J .

M b

, , g

. . . . . . . . , . e ,

,o .

.. . . . . . . . . . . .- . . . . . . . . . . . . 6

. . . . . . . . . - .e . .. . . ... ......... ..e

.. .-. l

... . . . . . . . . e

.. . .. . .4

... a ... ... ... ....

,.g.. . . ...

.m .

m .

. ..... . .- -..... 9 e..e . . . . g ..

-. g

.._..=..i......

. .....i ...

e. _ _ ... e... .. .. . . . . . . ... ... . ... .

LD

.g l .... ............

~.. W. . _ . _ .

. . ,.. . - . _ .- ..o .- . ._ . . . . .

. _ - . . .)......[._.........._.-.

, _ . . . . . _ . . ~ . . . . . . , . .

...l..

.....,._m..g .. ... . . . _

. ..... .. .t

. . . _. ..-A. ,. .

-.I ..... r._- _ _ . -

..9.._..._-

g_-.

_e..

1 . ..--....

t. ... ... .j_ _. ___ _.,

1 I

.L_..._,.

_A

- _ . .+.. - .j_

.. . 4 d._

.+.

p

_..N .

..a

.N_.-_.

.t .

_4 y p. , _ .

. 6

. _F__,. . . . . -

. . . . . . . . - -..r..__._...L.. . ..4 . __

- _. ~.s . ,

-_e,- ,

, .m m_ -

4 i p_-

- - 9

_ .N' -

.I,

._. . .._-. m. . . - _ . - ,.

-+w .

. . . .. ... w

_4_-. . - . . .

.. or

_.._...._.o _ _ _

+

+ .

M

~ . _ . _ .-- - . . _ . _,.% q 6

_. . . _ ._ L,,..g..-- ,

u

+

..m. .we - .

g ,

b l

. . . . _ . . .. .. . . . . + . . . . . . . . _. .. .

.+.. ..

...p 4

A -

.*'T -

.~_.__4.-

r3 .Q a e

~ . - .. . . __.. _& ._ 4

_ . . ...v....

4.... g

___..I....6.

-.....y.

._..t

.. . . _ _ . . . ~ . _ _ _ - . . . ._qL....

w .. C

...- .s..._._.......n_.-.--.

_. e ..

.. d .e- - . . . . p x. l

... ....._$.....g ....._.y.-4._e. _ _ -. ,. . I .+.. .. 6.L

. 4

-.g.

, . .. . ..., ._..w_...W.._

.....a. . m .

_ _ __.a_ 4 .

3 -

. _ - _ . C (,.*. - a

.q_. _y .

g

_. . . . , . . . ._ ~ ..... . . . . . . .g

. . . . . , .._ _ _ . . _ g Q

,... ... _ . . __ . )_;.- . _..- __ , ~._a._ . . - -

....T.....__........[y I

c.;

j ,.....g. , . . _ _ _ . _ _ _.

p- . ,. . . . .

g

_~.....I_..._..____....,g._

.1

. . . _ u ..

g

--4.._l.__--.

t . _ + . _ . . . ..

, ._~_.-}.....g

-.1._..... . U.. ._. 4.. i ..._.

._ _- _ _. ,.Ib,_.

C, 6

..g. .

m _ ., _ 4, g i

_..l . . g ._ ._.- _ p. . .

4...

_,...._..J_...T....

t...-

g

&. - - +.. . _ . g ,

g-

.s_ . . . . K

... .....,.: . .. g .. -..... . ._, . .... . . .. .

_..h.4 .m .U.. .a.. .-

.. ... .. l. ... .. .. .,. ... _a. .... . .

. . . p....

....4- . u . ...._ . _

... . _ _ ,n_...-.

_., .._-... [

.....f........A..4..-.L.J..._,.......,..__..

_._A . _ _.-- .

.... .. . 9.......j..~.g.._...........,......

. _.. ....g. _. .. m & _. .. . _.

._ _ *~.7 . _.__ ..... . . . _ _ _ .

l. ..

.... 9

,..6

.... .s

.-.....y.....Q-*-._+...

_ . 6 - - r

_4

. . . . . ~ . . , . . . _ . . . ,...h.... ....b...

..._~....~. 9. .

.q 4... ... .....

.t.e. I. ... _ . .

.......~._L.

.. 2

. . ~.. . ..__ .

.. ._.h_ 4._ . _ . .. .. ._ . . . .

. . . . _ _ l

. . ._ .. .y Cn . _..m.,,. .. .. . - .

4.+..

.I 7_.

_ _ _.4,

4. _ ..-

.-.[*1 .._. . _ _ .

}

l

..If...

. - . . . .. . j

._1,*l......]-..__........-...........-...-.-...-.. - - ...._._.. .. ._. .. -,. . . ... ._- _ . . . . .

... ... . . . . .._d.-.._........ .__.

..*) _ ..... - _. .. .

. . f

. .s ._-4_.. . . .

L

..c .... ...g..... . . . . ! ... . _ ... .. .. ... _ ... .&.

.. r, _ ... g..._.. . . . .

. . . ...~. ..

. . . . . . l.1

.. y . ... ..... . _

U. . . -

, . . _ . . _ .t.. ...

. ...-.......j.... . , _ .. . .Q .g. . . . - . _ .. ~ , . . g.__....I....... .4

..n. ...... . _

.. . C . . . U . . _ l .., ._ ....-- .- ..g . .

.. 4.-._..

). . . . . . .

m

..._..4

... . . i

,.._....l___..-. ... ..

. .jg _ . .., .s..... .

..... I......_, . . . . . ,. _ . . .. ,

. ..._. ._......q.._.

..).. . .... . .. . . ,

. .... .l. .

....o ...L.).j....... .._.U..._...

.. .. o.g.... i . .

..~.....

. . ... . ., ..'3...__

.l. ... .. . . (

.g

......p

.... . . i.

.. . .... -g . .

a

_ .l.

, ._ .. .. .. ~ . . - - - >

.h, I.. . -.. . ....... . . . . . . . ..

l C _..-. ... . ...d.

.g... .. . . gg .

.s..

.. .2... .2. . ... . . . . . . .

s 1

. . . I. ~

.g

.[. Fr

..G

, ,,. . tu.. ... ,

.l _. g ,

6 . . . .

.t . *y _ E,M

% n .tl.. - .

..._*3 ( ... .

. . . . . .tC .. .,. >

I

+

. . r .J

.n

. .N

.m .I .

. m . CJ a N,

c. .i.

l.

e

.. .x . m, . ,n . . .

. m. . ,i . . . _ .

.. ... ... , .1

.q .l.

p .  ;

t .. 45GNGDd) GbDi BCH)NB. i j T;..  !

. . t .i._ ___J e

f h

t t

l L - _ . _ _ _ __. ___.;

i e

e * *

.e a a e 1 i .

- ee. .l . U. I

.[. . . , . .

t.

J .

. . . . s g- *e

a. 0 .

,, 3

.- e g ..t ,f9

. -e ed

. . .. , . ... . l

- =.. . . . .

I.

.- .. . . . . - - .cn .-

.l .. .... ..

..m, a.~..s..--

rw -'

.j.( .-

s

.g .

. . . 8

. . . . . . ... . .. . . . . . g ..- --

. .t-

. . . . .-.. . . --- . ..- l

. . i . -- -. -.w.....j

..... . .I

....L.~.~..

. -..,e.-...-...-

- - .... . . . ... . ...m. - - . . . . .

-(M----- ; i

..~

. . 48 . . . . . .. ..

.Ig . . . . - - - .-

...-. ,..-.e..-.-..

.. y -e-

- .. C

~ ~ . - - . - - --t

...- , -. .. . ....-..... g. ....E I J **

    • ***~~j - * - * * * *

. .* . . . **..* . 4.-

f. * * * **
  • I' f

--.'.b-8

. . .. . .*** .t6 -

...-=*-.4.~.**.*.*.*-.+..*.*+$ .+ . ' . . - . .-

~--g."_7 m--*

.. ... s - . * . .

l . . - . v ~- &-. . ..

4

,... . e ._..e ._

. - * + ..J.

e W . . . . - . + , .

e- .g --

-4:

p ...

. ....g.._ ,. - ._ ..~. -_9- .

6.-

p

+ . . -.-...e

-.+

-e-

.., . -1 4 -

. ~ . .-l .~

, .h .. .I.....9.........h...-

. . . - , .9 ..

t.

.. -.s .

.+.

.(T.J - - - - "*

. , ,.. -.4 v. .+ .L-t .. ... -4 .

S ~ .~ .. ~.J .4 -

.b - -.... .. ..,... p e- 1. . q- . + - - . - .

+

4.--..-*

. . .. . .. - .. !, _,, a._

-.-6

.4

.. ...m - 4

+.-l..-- 6

-~

p ,--+. . - . - . . , ,,,3...~.

. . p.

n . - ,. .-- . .

aJ.. ,

1

_J

- I - 6. . .

- - .--.4 I..

_1...... ,_ .

. _..+ -.

4

. . . .p.. -

- -.- -*.... ~ e--w

. w

,,1

. ..--. ,.-.- __ .. . . - - .1..-..

L-ft 3

-.... . - p=w

~

p.

. . . .+..  ?

3 u a. .*. *

, . . -)h

- .. I.^. . - . .

+ . - > - - .  % N,

...9,.....4...--J (,'

r

. .1 .-

... -4 ...+ - . , , - . - . .,... .-

.-~.r

  • C' L .. ~ i 46-.--. . - - - - . .

.. . ,- ,- -4..- -- o 4

-_,-6--. .. .

---~.ss.-.--

- . -. .e .

. + - . . - . . . . , ' . . ~ .- - . . . - ,

. . . .. ,-_.....4.-.-..e

- v. . a

_ l 4

. ,. ~.. - . 1_

.+

s--A.,_-.

. .,G p .#

S.

.-....-; .. 1

. . s. . . - - .g-

..-.....s...._......~1 6_ p . . . ..4. w . _-- .

,. . . ,,L.,.

. . - . - . - . - . . g3 6 . .

4, ..

. . . . ......[.-. + -. +._.J..&._.

I.

...- 4.-.-+_ 4.>,...,.. -.

--. 7 . - 4-1 C.'

/N ._

. - .,.. .. ... .~. .

.s.

s...

., J.._.

- g - y _- _ . .. .. . .] p __b y-.

g-(

s/,

..__...+_o.f_..

C g

s

-. . . . ...-4..... ..4..

.._.9.._._.

- + - - - + - -k- t - ^ + - ~ - - .. - - - - - ~ - - * -

t'~

--*---1+~-

f.+ . _._

4 - -

--t.*.****...4'.

~, ..

._,4 _--y

-...., .-... _ ,9.-._, v 4

. _ . . . ). .. .. +- . . - - . . .,. . - - ,.. - -

,,)_.

.e. l ..,

.t..... ,-e y

. .. ..4 ~ . _

._.-.p__ , . . _ .- . -".b.-=.-...._- - -

s

- .- e

. . - - . . - - - - . +

6--..g.....9...6..-..

- . ~ . .k..,.

.. -.-e.-..__. - - . .

_..*,... .... .. ...,...+ ._

.._.r

.... *. . . . . , . . 4-... . . . . . e ,_.4. ..,d..

. . . . . . . g.

.....~., .+.._m . . . , - . . . . _ . . . .g. . , . . . . _

,y

.. _a

-. <[. .. ..... _ p . . . . . - - . . . . .

.. - . _ -4 . .....

. . . .. _4.. .. -.- _ ..

.. + . - ,,, . . . , _

4 . - _. u,

... . _ . . . __ t. . . , . _ ,.

......._ ....i

. . . - . .. i.-.......

....e4__..,~6. . . .

.) .. u._.

.,. _ . . .. . . _ . . . 4 ..- I f _ . __ _ .._-. . --- - - . - . _ +

.. .. . .-. .9 .. .

- p . _. . _ p . . . ._. 1 y

. . .. . . . . .-.6 . . . , . .

i .

a_ .

. . .... ,. . ~ . _ . ... ..__. . . , _ _ _ . _ _ . . . . . . _

g .._. . . . . . . .

. .. .. . . . _ . . .... __.t . .. . .. i..._._____ . _ . . L7 . . .. ...

.._.~.

. ._. .. . . - ......l........_. .. ., . _ .. .

.. _ . . . .%..h.. .. . . . . _.. . - - - . . .

.. . ....-*..6

.. ... .. .. .a_g

- . . .. e +. i * ._ 6.

.r- .

. . . e.e. . . . . . , . .

i*..b.

e w.

....6.'..y,..,4.....

.(. -.- * .

..9..--......,t,- .a

. . . .) g} .. ( )

.p

. .-. . . . . . . ~. - ..- .'

-- + , . . ,...

.... .. . . _ . . - . .. ._ .. f. . .. -_ .,- .I.

, . . .. .... . .._~._..~.

s..

...I... _. .

. ,g._... . _ .

..p e . . . - . . . . . . . . .. .. . ~ . . .

_. g. . . .-.-...i.a g.. .. .

..._l

_ .. ..-u. . . . _ . . , . _.

/ > -. ._.._..J...__.

.. -.,6..

.......I,.

l... _.../ . .

. . . . . . - _ . _ _ _...s

.. . . . . ._. ..a. . .

.... ... . . . .._3

.6._ _... . . p i.. .

. . .. . .9.-~. .. . . . . . . . - .

.,4}.

.. p. .

4

. .. .}

...--..p....

.p . ........J ... . . . . . _ . - _ .

--..-p- .- 6-..%.. . . . . . - . . . . . . . . _ = * . . . . - ..

....g 4..h. .

j

    1. g .. g .

,.....w

. 6

. . . .I.

e. g

.. . . .. - . . .I.

.4

. p.

.e

.. .w-. . . - . . . . -

.e4._..

_l........- __ . -

.l

.. .s.

4

. .

  • I. ' -

t . .+ --

.t.-.-- , ._ . s .-

,y...

. ..... . . . , . .3

. . ... . . .i. ... .,6-..-- . ef

. . . . . .i. . . .(-

.i

.l.

.._.9

..,,.. . e .,o .A .

.u.

g..

- < .. . .. ~

....J f,./ '~D-

.- . . -e. , , . .s

  • I \ .y r*2
-j -1
yr'%g L "-- .? -, y  ; {_.

. . . - i I . -

~.-.~r . .~

t- t~ tu . u. ,  :- en tu - -

, , ' I:

t . . .; . ..

q

.l

.i4..

3 b .g . .. .. .

l

  • /

g 6 - . . .,

g

, e #.

a s g i

~ ~

- ( ] p =.qJ.4-.1.1)s .M.i [3 g ) rem L; _1 -

. . - - ~