ML18092A888

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Re Boron Injection Tank & Contained Vol, Boron Concentration & Temp & Heat Tracing of Tank & Associated Piping
ML18092A888
Person / Time
Site: Salem  PSEG icon.png
Issue date: 10/25/1985
From:
Public Service Enterprise Group
To:
Shared Package
ML18092A887 List:
References
NUDOCS 8511010226
Download: ML18092A888 (157)


Text

EMERGENCY CORE COOLING SYSTEMS 3 4.5.4 BORON INJECTION SYSTEM BORON INJECTION TANK LIMITING CONDITION FOR OPERATION 3.5.4.l The boron injection tank shall b OPERABLE with:

a. A minimum conta*ned olume of, 900 gallons of borated water, b.

c.

APPLICABILITY:

ACTION:

With the ec on ank inoperable, restore the tank to OPERABLE status wi or e in HOT STANDBY and borated to a SHUTDOWN MARGIN eq en to l 6k/k at 200°F within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />; restore the tank E BLE atus within the next 7 days.or be in HOT SHUTDOWN within t n t 12 h rs.*

4.5.4.l The oron injection tank shall be demonstrated OPERABLE by:

a. V rifying the water level through a recirculation flow test t least once per 7 days,
b. Verifying the boron concentration of the water in the tank at least once per 7 days, and Verifying the water temperature at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

Effective 5:55 P.M. Janu~ry 12, 1979 and expiring at 11 :55 A.M.,

January 13, 1979 the following ACTION statement is applicable: With the boron injection tank inoperable, restore the tank to OPERABLE status within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> or be 1n HOT STA~DSY atid borated to a SHUTDOWN MARGIN equivalent to i i 6k/k at 2Q0°F within the next 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; restore

  • th2 tank to OPERABLE status within the next 7 days or be in HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

SALEM - UNIT l 3/4 5-7 Amendment No, ~, 15

  • EMERGENCY CORE COOLING SYS'1EMS HEA i TAAC ING LIMITING CONDITION FOR OPERATION 3.5.4.2 At least two independent channels of heat acing shall be OPERJl.BLE for the boron injection tank and for the eat traced portions of the associated flow paths.

APPLICABILITY: MODES l, 2 and 3.

ACTION:

With only one channel of heat tra ing on ither the boron injection tank or on the heat traced portion f an as o iated flow path OPERABLE, operation may continue for up 3 d y provided the tank and flow path temperatures are verified to b at least once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />; otherwise, be in HOT SHUT OWN wi 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

4.5.4.2 Each heat tracing hannel for the boron injection tank and associated flow path shall e demonstrated OPERABLE:

a. At least once p r 31 days by energizing each heat tracing channel, and
b. At least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> by verifying the tank and flow path tempera ures to be .!. 14S*F. The tank temperature shall be de nriined by measurement. The flow path temperature shall be de enriined by either measurement or recirculation flow until esta ishment of equilibrium temperatures within the tank. *
  • SALEM - UNIT l 3/4 5-8

. EMERGENCY CORE COOLING SYSTEMS REFUELING wATER STORAGE TANK LIMITING CONDITION FOR OPERATION 3.5.4 The refueling water storage tank (RWST) shall be OPERABLE with:

a. A contained volume of between 364 500 and 400,000 gallons of borated 1

water,

b. A boron concentration of between-2000 and 2200 ppm, and
c. A minimum water temperature of 35°F.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION:

With the refueling water storage tank inoperable, restore the tank to OPERABLE status within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> or be in at least HOT STANDBY within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLO SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

SURVEILLANCE REQUIREMENTS 4.5.4 The RWST shall be demonstrated OPERABLE:

a. At least once per 7 days by:
1. Verifying the water level in the tank, and
2. Verifying the boron concentration of the water.*
b. At least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> by verifying the RWST temperature when the outside air temperature is less than 35°F .

3/4 5-7 I

.EMERGENCY CORE COOLING SYSTEMS BASES .

3/4.5.4 REFUELING WATER STORAGE TANK The OPERABILITY of the RWST as part of the ECCS ensures that a sufficient supply of borated water is available for injection by the ECCS in the event of a LOCA. The limits on R~JST minimum volume and boron concentration ensure .that 1) sufficient water is available within containment to permit recirculation cooling flow to the core, and 2) the reactor will remain subcritical in the cold condition following mixing of the RWST and the RCS water volumes with all control rods inserted except for the rnst reactive control assembly. These assumptions are consistent with the LOCA analyses.

In addition, the OPERABILITY of the RWST as part of the ECCS ensures that sufficient negative reactivity is injected into the core to counteract any positive increase in reactivity caused by RCS cooldown. RCS cooldown can be caused by inadvertent depressuri.zation, a loss-of-cool ant accident or a steamline rupture.

  • The limits on contained water volume and boron concentration of the RWST also ensure a pH value of between 8.5 and 11.0 for the solution recirculated within containment after a LOCA. This pH band minimizes the evolution of iodine and minimizes the effect of chloride and caustic stress corrosion on rrechanical systems and components. The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics *
  • SALEM - UN IT 1 B 3/4 5-2

EMERGENCY CORE COOLING SYSTEMS 4.5.4 BORON INJECTION SYSTEM BORON INJECTION TANK LIMITING CONDITION FOR OPERATION 3.5.4. 1 The boron injection

a. A minimum contained volume of 900
b. Between 20,000 and 22,500 ppm of
c. A minimum solution temperatur APPLICABILITY: MODES l, 2 and 3.

ACTION:

le restore the tank to OPERABLE status d orated to a SHUTDOWN MARGIN equivalent hours; restore the tank to OPERABLE in HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

4.5.4. l The boron tank shall be demonstrated OPERABLE by:

a. Verifying w ter level through a recirculation flow test at least once per 7 d y ,
b. Verifyin th boron concentration of the water in the tank at least once pe 7 days, and
  • UNIT 2 3/4 S-9

EMERGENCY CORE COOLING SYSTEMS HEAT TRACING LiMITING CONDITION FOR OPERATION 3.5.4.2 At least two independent channels of heat racing shall be OPERABLE for the boron injection tank and for the heat tra d portions of the associated fl ow paths.

APPLICABILITY: MODES l, 2 and 3.

ACTION:

With only one channel of heat tr either the boron injection tank or on the heat traced portion of an s flow path OPERABLE, operation may continue for up to 30 da s provi tank and flow path temperatures are verified to be greater t an to 145°F at least once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />; otherwise, be in HOT SHU DO 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

r cing channel for the boron injection tank and associated onstrated OPERABLE:

b. At east once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> by verifying the tank and flow path te eratures to be greater than or equal to 145°F. The tank tempera-t e shall be determined by measurement. The flow path temperature s all be determined by either measurement or recirculation flow ntil establishment of equilibrium temperatures within the tank .
  • 3/4 5-10

EMERGENCY CORE COOLING SYSTEMS

.FUELING WATER STORAGE TANK LIMITING CONDITION FOR OPERATION 3.5.4 The refueling water storage tank (RWST) shall be OPERABLE with:

a. A contained volume of between 364,500 and 400,000 gallons of borated water,
b. A boron concentration of between 2000 and 2200 ppm, and
c. A minimum water temperature of 35°F.

APPLICABILITY: MODES l, 2, 3 and 4.

ACTION:

With the refueling water storage tank inoperable, restore the tank to OPERABLE status within l hour or be in at least HOT STANDBY within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

SURVEILLANCE REQUIREMENTS 4.5.4 The RWST shall be demonstrated OPERABLE:

a. At least once per 7 days by:
1. Verifying the water level in the tank, and
2. Verifying the boron concentration of the water.
b. At least*once per 24*hours by verifying the RWST temperature when the outside air temperature is less than 35°F .
  • SALEM - UNIT 2 I 3/4 5-9 I

With the RCS temperature below 350°F, one OPERABLE ECCS subsystem is acceptable without single fail.ure consideration on the basis of the stable reactivity condition of the reactor and the limited core cooling requirements.

The limitation for a maximum of one safety injection pump to be OPERABLE and the Surveillance Requirement to verify all safety injection lumps except the allowed OPERABLE safety injection pump to be inoperable below 312°F provides assurance that a mass addition pressure transient can be relieved by the o per at i on of a s i ng1e PO PS re 1 i e f va1 ve

  • The Surveillance Requirelfents provided to ensure OPERABILITY of each component ensures that at a minimum, the assumptions used in the safety analyses are ITEt and that subsystem OPERABILITY is maintained. Surveillance requirements for throttle valve position stops and flow balance testing provide assurance that proper ECCS flows will be maintained in the event of a LOCA. Maintenance of proper flow resistance and pressure drop in the piping system to each injection point is necessary to: 1) prevent total pump flow from exceeding runout conditions when the system is in its minimum resistance configuration,
2) provide the proper flow split between injection points in accordance with the assumptions used in the ECCS-LOCA analyses, and 3) provide an acceptable level of total ECCS flow to all injection points equal to or above that assumed in the ECCS-LOCA analyses.

3/4.5.4 REFUELING WA.TER STORAGE TANK The OPERABILITY of the RWST as part of the ECCS ensures that a sufficient supply of borated water is available for injection by the ECCS in the event of a LOCA. The limits on RWST minimum volume and boron concentration ensure that 1) sufficient water is available within containment to permit

  • recirculation cooling flow to the core, and 2) the reactor will remain subcritical in the cold condition following mixing of the RWST and the RCS water volumes with al 1 control rods inserted except for the rrost reactive control assembly. These assumptions are consistent with the LOCA analyses.

In addition, the OPERABILITY of the RWST as part of the ECCS ensures that sufficient negative reactivity is injected into the core to counteract any positive increase in reactivity caused by RCS cooldown. RCS cooldown can be caused by inadvertent depressurization, a loss-of-coolant acc*ident or a steam-1 i ne rupture

  • The 1 imits on contained water volume and boron concentration of the RWST al so ensure a pH value of between 8.5 and 11.0 for the solution recirculated within containment after a LOCA. This pH band minimizes the evolution of iodine and minimizes the effect of chloride and caustic stress corrosion on ITEchanical systems and components. The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics.

SALEM - UNIT 2 B 3/4 5-2

r-0 I c.J 1.11 00 00

~

¢ cl .

Vl t)

-zJ) t-v I.!)

c:l.

4:

L1

\- U- V7

'Z .;,

  • .11 c(

~  ! IJ)

i: tJ}

J rl..

tJ 4: ~

t- 1.!J Q..

<( "'2.

J I

.J Cl r t.!J ~

-:/. IJJ fi. r

~ V'.l t.


been sho'-fl. on -similar plants to less

-- *- severe than the double ended hot leg break. Cold leg breaks, on the other hand are lower both in the blowown peak and in the reflood pressure rise. Thus an analysis of smaller punp suction breaks is representative of the spectrun of. break sizes.

For these analyses it was assuned that the single failure occurred on a diesel ge_nerator such that one spr~ punp and two fan coolers f af led to operate.

Figures 15.4-86 and 15.4-87 give the contail'lllent pressure transients for several break sf zes and locations for the de sf gn basis case. Additio.nal margin cases assuning entrainnent continues up to the 10 foot core level

~re analyzed wf th results presented f n Figures 15.4-88 and 15.4-89.

The peak pressures .for these cases are s1Jmtarf zed in Table 15.4-22.

--. Structural heat transfer.coefficients as a function of time are indi-cated in Figure 15.4-90

  • The DEPS results are shown in Figure 15.4-91. This transient results in the highest peak pressure of 45 psig.
15. 4. 8. 2 Ste an line Breaks 15.4.8.2.1 Analytical Methods

'Jarietis eentaimient models ha*1e been titilized te a"aly!e steMt break;"

t~e Sa le111 P1a..t *

.stu.-.:b"" b<~ ~~y.si.!

The 111a;ier'ity e:f the A"al,ses perfonned utilized the Westinghouse con-tail'lllent model developed for the IEEE-323-1971 Equipment Qualification progran. These models and their justification (experimental .and analyt-ical) are detailed in References 56 through 60. Some major points of the model are as follows:

SGS-UFSAR 15.4-88 Revision 0 July 22, 1982

1. The saturation temperature corresponding to the pt'.rtial pressure of the contairment vapor is used in the calculation of condensing heat transfer to the passive heat sinks and the hea~ removal by contain-ment fan coolers.
2. The Westinghouse containment model utilizes the analytical approaches described in References 6 and 60 to calculate the condensate removal from the condensate film. Justification of this model is provided in References 56, 59, 60, and 6. (For large breaks 100 percent revaporization of the condensate is used, and a calculated fr~tional revaporization due *to convective heat flux is used for small breaks.)
3. The small steCITI line break containment analyses uti l1zed the stag-nant TagC1ni correlation, and the large steCITI line break analyses utilized the blo~own Tagami correlation with an exponential dee~

to the stagnant TagC1ni correlation. The details of these models are given in Reference 38. Justification of the use of heat transfer coefficients has been provided in References 58, 59, and 61.

[1:1] i~lk (f:.]

A complete analysis of main steanline bre.al;f~side co ainment as been LrJJFTfl.A-r-1 110~

perfonned using the MARVEL code (WCAP-~ and the Westing ouse

. r-. .

  • con~tai rment computer code, COCO, as described in ~~ieit";J and its references. All blowdown calculations wfth the code ~re done asslllling the re~tor coolant pllllps ~re running, (i.e. offsite po-..er ,....available) bee ause this increases the primary-to-secondary heat trans\ fer and therefore maintains higher blo\ldown flow rates (Ref.

Section 3..1.7 of WCAP-8822E 63 l). Although this is inconsistent wfth the del~ timfis assuned in containment fan cooler and spr~ initiations, Wiere loss of offsite po-..er is asslllled, the combined effect is extra conservatism in the calculated containnent conditions.

15.4.8.2.2 Mass and Energy Releases

  • Several failures can be postulated Wiich \ttOuld impair the performance of various stea11 break protection systems and therefore \ttOUld change the

..Sh4~lii\L

(. fv\S I t\, ~ .u;1.

net ener re leases from a r14>tured 1f ne. Three different s1 ng le f ai 1-or each break condition These .ere,( 1) failure of "IMJI_ _..,.

a main feed valve; 2) failure of main stec111 1 solation valve;

Feedwater Flow r~"tJ  ;" o. :Lt~ti~f<a~;A.J-There are two valves in each main feedwater line wnich serve to isolate main feed flow following a stec111 line break. One is the main feed regulator valve W1ich receives dual, separate train trip signals from the plant protection system on any safety injection signal and closes within five seconds of receipt. of this signal. The second is the feed line isolation valve W1ich also receives dual. separate train trip sf gnal s from the protection system fo llowf ng a safety injection signal.

This valve closes within 30 seconds. Additionally, the main feed punps receive dual, separate train trip signals from the protection system

--.. following a stec111 line break. Thus. the worst failure in this system is*

a failure of the main fe~d regulator valve to close. This results in an additional 25 seconds during W1ich feedwater from the condensate feed

  • ~stem may be added to the steam generator. Also. since the feed isola-tion valve is upstream of the regulator valve, failure of the regulator results in additional feed line volL1T1e which is not isolated from the stean generator. Thus, water in this portion of the lines can flash and enter into the stean generator.

The only non-safety grade equipment in the main feed system W1ich is relied upon to tenninate the main feed flow to the stean generators are the main feedwater control valves. These valves are not seismic category I. Ho\!Ever, each valve receives dual, independent, safety grade trip:.elosed signals from the protection system following a stec111 line break. A1so. the valves are air-9perated fail-closed design.

Since the assLITled break is inside contairment in a seismic category I pipe, it is not assuned to be i ni ti ated by a seismic event. Therefore, to ass1J11e a coincident sei smfc event with the hypothetic al pipe rupture is not required, and thus a seismic classification for the main feed

  • SGS-UFSAR 15. 4-90 Revision O July 22. 1982

regulation valve is not necessary to insure closure following a ste~;m li ne break inside contai r111ent.

Because of the conservative nature of the transient calculations used for the 1971 Equipment Qualification Progran, the results of thfl Salem temperature transient calculatf on wf 11 fall under the peak transient calculated for the 1971 Equipment Qualification ProgrC111 and presented in Reference 60 (approximately 385.F). The pressure transient wf 11 fall below the design limits for the Salem 2 contail'lllent.

Feedwater flow to the faulted steC111 generator from the main feed system is calculated using the hydraulic resistances of the system piping, head/flow curves for the main f~~'f~ and the steC111 generator pres-sure deczy .as calculated by the MARVEL code. In the calculations per-fonned to match these systems variables, a variety of assunptions are made to maximize the ca le ul ated flows. These f nc l ude:

1. No credit for extra pressure drop in the feed lines due to flashing of feedwater.
2. Feed regulator valve in the faulted loop f s full open.
3. Feed regulator valves in the intact loop do not change position prior to a trip signal.aREi elese iAstaRtly ~aR Feeei~t ef a sigAal te e lase.
4. All feed punps are running at maximun speed.
5. No credit is taken for flow redt.a:tion through the feed regulator or feed isolation valve until they are full closed.
6. Flow from the pllTlpS dec~s 11 nearly followf ng punp trf"p.

LRSFT~N Calculation of feedwater flashing f s perfonned by the MAR'd:L code as described in Section 2.2.3 of WCAP 8843.~ For the Salem units, the

  • . 4.1.r 1'101.

SGS-UFSAR 15.4-91 Revision 0

.)11] v ?2 ] QQ2

maximun volune of rm1solated feed lines is 328.2 ft3 without a feed regulator valve fai'Jure, and increases to 868.5 ft3 with a feed regu-

  • lator valve failure. (See Teele 4 of WSAP B84J).f'62t The feedwater flew as a ft1rietfe" ef tf1t1e fs l'P'ese,.teel f" Ffgtft"e 15.4 92.

Main Ste an I so 1ati on

. Since all main stean isolation valves have closing times of no more than five seconds, failure of one of these valves affects only the volune of the main stean and turbine stean piping htlich cannot be isolated from the pipe r14>ture. Ta~le 4 ef W6i\.? 8822Eii1 and Table 15.4-23 shows the mass in the stean lines with and without an isolation valve failure at the four po~r levels considered in the analyses.

--* Stean contained in the unisolated portions of the stec111 lines and tur-bine plant ~re considered in the contairment analyses in t"'10 w~s. For the large double-ended ruptures, stean in the unisolated steam lines is

  • released to the contairment as part of the reverse flow. This is accom-plished by having the reverse flow begin at the time of the break at the Moody critical flow rate for stean as established by the cross-sectional area of the stean line and the initial stec111 pressure. The flow is held constant at this rate for a time period sufficient to purge the entire unisolated portion of the stean lines. Enthalpy of the flow is also held constant at the initial stean enthalpy. Following the period of constant flow representing purging of the&.!f"~~nes, flow from the intact stean generators, as calculated by f¥cRVEL, is added to the con-tai rment and continues until stean line isolation is complete.

When considering the split r14>tures, stec111 in the steam lines is inc 1uded in the an a ly si s *by addi ng the tot a1*mass in the 11 ne s to the .

initial mass of stean in the faulted stean generator. This is necessary because, unlike double-ended ruptures, the total break area for a split is unchanged by steam line isolation; only the source of the blowdown effluent is changed. Thus, stec111 flow from the piping in the intact SGS-UFSAR 15.4-92 Revision O July 22, 1982

loops is indistinguishable fran steam leaving the faulted stean generator. Ho~ver, by adding the piping mass to the faulted stean

  • generator mass, arid by having dry steam bloMiowns. the stean line inventory is included in the total bloMiown.

Auxi 11 ary Feedwater Flow The Auxiliary Feedwater System fs actuated shortly after_the occurrence of *a stean line break. The mass addition to the faulted stean generator from the Auxi 11 ary Feed water System was conservatively detenni ned by using the fo 1lowf ng assunptf ons.

1. The entire Auxf 11 ary Feedwater System was asst111ed to be actuated at the time of the break and f nstantaneously punpi ng at its maximun capacity.

mu~~d.

. 2. The affected stean generator was au1111d to be at atmospheric pressure.

3. The intact stean generators ~re assuned to be at the safety valve set pressure.
4. Flow to the affected stean generator was calcu~ted fran the Auxiliary Feedwater System head curves. assunptions 2 and 3 above, and the system 11 ne re sf stances. The effects of flow* limiting devices were considered.
5. The flow to the faulted stean generator from the Auxi 11 ary Feed water System-was asst111ed to exist from the time of rupture until realign-ment of the system was completed.
6. The failure of auxi 11 ary feed water runout control was considered a.A <lY\.i &f r'M..u!etn11ate1y u i single failure~. F~ o.f r~o~ ~ft-ol w~

s*,~ 1d tM).)U..~~ a CN\J-1.o-:t OA...UJ(.J*ti~y f.etd~-'ll'" tlaw-

  • of 'Z..040 j r -h> fu ~ sf..ta.- ~~~.

SGS-UFSAR 15.4-93 Revision O July 22, 1982

The a"alys'fs used the felle\IAAg arJM111aPy feeawateF flew Pates:

la With rt1,.elft preteetieA epe~at1eAal, a eeAstaRt awxi 11aFy feeEI fle\IJ of 1840 gpm to the faulted stesn ge"eraters

2. ~a1 lwine ef P"WA&tff eeAt-l:"el was s1111t1lateEI &y asst111Ag a ea,.sta"t al:IK111 aP'.)' feeElwater flew ef 2949 gp11 ta tt:le f abllteEI ste aR geAePateFa The ~eve flew rates 'WI! re he 1d ee"st ar1t freM time ef bl"e ak l::IAti 1 real1 gF1R1eRt1 '*'1 et:! was ass~eEI at te A Mi r11:fte s.

In the ana1ysf sJ the auxi 11 ary feedwater flow to the faulted stean generator was ass1J11ed to exist frcm the time of the r1.4>ture until rea-lf g1111ent of the system was ccmp leted. The Auxf 1f ary Feed water System f s manually realigned by the operator after 10 minutes. Therefore, the analysis asst.mes maxfmt.m auxf lf ary feedwater flow to a depressurf zed stean generator forvfull 10 mf nutes.

4.

In the event a postulated maf n stean lf ne break occurs, aux111 ary feed-water to the affected stean generator must be tennf nated manually.

Present de sf gn crf terf a al lows ten mf nute s for the operator to recognf ze )

the postulated event and perfonn the necessary actf ons. Hohever, the operator f s expected to tennfnate auxiliary feedwater flow to the affected steC111 generator f n much less time due to the anount of Class lE fndfcatfon provided to monitor plant conditions.

The f nfonnatfon avaf lab le to alert the operator of the need to f so late auxiliary feedwater to the affected stean generator fs mounted on the control console fn the control room. The pressure f n each stean gen-

~jpJAye"-

erator 1s~on1tored and d1spl~d by t'-0 independent channels of fnstru-mentatf on. ATso, a bank of pen recorders f ndf c ates stean and feed water flows for each stean generator; thf s al lows t~e contra l roan operator to readf ly vf ew and compare the stean flow of one stean generator to the others.

SGS-UFSAR 15.4-94 Revision O July 22, 1982

The suction and discharge pressures of each auxiliary feedwater pump are

  • indicated on the control console. The auxiliary feedwater flow. indica-tions for each steam generator are mounted on the control counsole next to each other, allowing the operator to easily view and compare flows.

In addition to the above mentioned indications, high steam flow, low steam pressure, and steam-feed fl ow deviation condi tfons for each steam generator are alarmed on the main control console in the control room.

Alanns for these conditions are also provided on the overhead annunciator.

Since a sufficient number of trains of instrumentation must be available for nonnal plant operation, steam generator instrumentation will be in operation at the time of the postulated event. Therefore, changes in steam generator pressure and steam flow will be detected as they occur.

The only delay expected in transmitting the infonnation to the control

    • room is the time required for the instrumentation to react to the changing conditions. This delay is expected to be no more than a few seconds.

Failure of the auxiliary feedwater isolation valve to close has not been considered. The maximum auxiliary feedwater flow that can be delivered to a faulted steam i;n~as been assumed in the analysis for ten minutes with~ ~se\ b~ing considered: 1) F'WRewt pPeteetieA 6f3el"a' 1

~ieRali 2) failure of runout protection. Only after ten minutes the operator takes action to isolate auxiliary feedwater isolation valves fails to close, the operator can trip the two auxiliary feedwater pumps feeding th~ broken steam generator until this valve or* another in the line is manually closed.

The pump curves for the Auxiliary Feed pump are shown in Figure 15.4-93 (Steam Driven) and Figure 15.4-94 (Electrical Driven). A schematic of the Auxiliary Feed System is shown fn Figure 10.4-17 *

  • SGS-UFSAR 15.4-95 Revision 1 1750Q:l July 22, 1983

15.4.8.2.3 Heat Sinks

  • The worst effect of a contair111ent safeguards failure is the loss of a spray pump which reduces containment spray flow by 50 percent. In al 1 analyses, the times ass1111ed for initiat~on of contair111ent spra1s and fan coolers are 59 and 35 seconds re spec ti vely following the appropriate initiating trip signal. These times are based on the assum~tion.of a loss of offsfte power and the delays are consistent with Technical Spec-ification limits. The delay time for spray delivery includes the time required for the spray pumps to reach full speed and the tfme required to fill the sprai headers and piping.

The saturation temperature corresponding to the partial pressure of the vapor in the contairment is conservatively assumed for the temperature in the calculation of condensing heat transfer to the passive heat sinks. This temperature is also conservatively assu111ned for the calcu-latiQn of heat removal by the containment fan Gaolers *

  • Parameters for the Sprays and Fan Coolers are presented in Table 15.4-24. The parameters for the Passive Heat Sinks are presented in Table 15.4-25.

The Fan Cooler heat removal rate as a function of contairment tempera-ture is presented in Figure 15.4-96.

15.4.8.2.4 Results

+w.. Yl+,-r.i~ (7..q)

A total of fit.P't;' eight (48) different blowdowns covering fouI_power five. r1Vl.

levels and~RP'ee different break sizes were evaluated.* The iRP'ee break sizes considered at each power level (0, 30 1 70 and 102 percent of .

nominal) WIF8 i fwll S9W91e eASeQ FY,tWPe Y,StPeam ef tAe Steam l;ne*) r.i I~ c.t r* w/

flew restrietar, a fwll dewble e"ded rw~tYP'e dewAstreaffi ef tAe ~~am 1~+@

H"e flew restrietar and the largest split rupture that will "~' ,er not- result in generation of a steam line isolation signal from the primary plant SGS-UFSAR 15.4-96 Revision O July 22, 1982

_JuJf. s~ ~ ~ ,J ~"'- ~(\.ka.,t,...~ cJUl).'f.Jj

---~*~~~-~~--~--~

    • -**---*--* --------~------------

no( ,,.~ i~ ~kcu""""'o-4.fif+k protection equipment:T"" In the analys;s of the eft;rd (split) break, reactor trip, feed line isolation and steam line isolation are generated by high co~tair111ent pressure signals. Additienally, all blewdewns ~see 1

__* ~Foreach b.rreeaak. ccon~*

i ti .* four di f.ferent $i ngl e. Af~il ures were C0\1..S ic.{ 42 rc,4' (Ar\l'ZllAl'\.M ~ f . "~ li'\ "' ~h~Tf-"N*~*

ijated. These were 1.1' f:n~~e~f a~ontainment safeguards train, (2) failure of a ma;n feed f s~'4at;eA valve, (3) fa;lure of a ma;n steam holation valve, and (4) failure of the auxiliary feedwater runout protect;on equipment.

WCAP=8822 ptovides conta;nment ;n;tial ~al~es (See Taele lia4 28), aAS*

QAtaiAmeAt ;em~eFatwFe& aAd pFe&&wFe' Fe&wl\~Ag fFQm ill ;i&e& ;eA=
  • sieeree are preseAtee iA Table 15.4 27 aleAg with peFtiAeAt trips, trip ti~es, aAe siAgle failijres assee1atee with eaeh. Alse shewA 1A Taele 15.4-27 ate fo~r add;tional entr;es. These shew the resijlts ef aAalyses
  • ef tAe weFst te~peratijre aAa pressijre traAsieAts as aRalyzea witR tRe ceca code modi f; ed to conform to the NRC i nteri111 eentai MeAt e\lal ijati eA
  • ~eeel aAe the resijlts ef the werst pressijre traRsieRt iR1t1ated ~ a de~ele eAeed rijptijre wheA aAalyzed asstlflling e"trail'll'fte"t ;n the blowdown as speeified in Seetie" 3.2.2 f6r WCAP 8822.t§ai These res~lts haYe eeeR pFe'fi ded feP ee1R13arheA ef Westi Agl:teyse aRa mu: eeRta1 AmeRt 111eael s aAd feF ~YaRtifieatieA effeets eR peak preSSijl"e fre111 eRtra1Aed meistYre WRi&R is ex~ectea te ee ~reseAt iR large BFeaK elewdewRSa As eaA ee*

&eeR fpe111 the taele, tl:te ~eak ~ressYPe feP aA;Y ease ijS1Ag tl:te WestiRg ReYse meael is 42.8 ~sig aAe the ~eak tem~eratYFe feP aAy ease YS1Ag the West;ngho~se medel is aaa,6°F, Mass and energy releases for the worst cases are prov;ded in Table 15.4-28 thru 15.4-30. Graphical results sRswiA§ e~ta1NReAt atmas~AeFie teffi~eFatijfe, eeRtaiRmeRt ~PesswPe 1 aR&

etl:tel" pertirtent *1ariables are prov;ded in Figures 15.4-*97 through 15.4-~ ilft.Utra.fl~ ~fN (~ ~~~ p*('~ ~

\O~ U . .

  • fe,,.,,-pJJ...r~-htre.. tr~ W:J fw ~ c~ pr-o~a +N.. ~(J r~ i~ f~ of tN ~'jludt ~~Y'rl'~t'-i pr~ ~

(1~.4-+@)

  • lReference Sect;on 2.3 of WCAP-8822 for a complete d;scussion of this spHt break. ..

SGS-UFSAR 15. 4-97 Rev;s;on 0 JU 1Y 22 1 1982

~I

The large break case resulting in the calculated peak pressure has been ent;fied as the i*.4 ft2 break at 70 percent power. This case re lted in a peak pressure of 39.l psi g when dry steam bl owdowns are used. When this same case was reanalyzed utilizing blowdowns which include the effect of liquid carryover from the secondary side, re~ul ting eak pressures were 37. 7 and 37.2 using the Westi ngh se and NRC contai nt models respectively. This indicates the over. 1 con-servatism of e Westinghouse containment model when used th dry steam, vs. usi n the expected mass and energy releases ch include the effect of entrai nt. Transients for the Westi nghous mode.1 with dry steam blowdowns are ovided in Figures 15.4-97 thro h 15.4-99.

The case resulting ;nth calculated peak pressu for the small breaks has been identified as the .86 ttf. break at 1 percent power. The resulting peak pressure for is case was 4 psig. When this case was reanalyzed* utilizing the NRC c del, and the same mass and pressure was found to be 43.0

  • psig. The transients for the Westi use model are provided in Figures 15.4-100 through 15.4-102. Similar nsients for the case which used the NII: model are provided in Fig es l 4-103 through 15.4-105.

The case resulting in the cal lated peak te erature has been identi-fied as the 0.908 ft2brea at 70 percent powe This case resulted in a peak temperature of 3.5 *F. When this sam case was analyzed with the NRC containment mo l a peak temperature of 34 °F was calculated.

These results verify hat the Westinghouse and NRC m els yield similar results. Transi en s for both of these cases have been Figures 15.4-106 hrough 15.4-108.

An evaluati of the safety related instrumentation will show confo ance with the requirements of IEEE-223-1971. alua-be performed by comparing the containment equipment tes *c_on-

  • versus the calculated containment accident environnents pre-vi o ly discussed. If a thennal analysis is necessary Westinghouse w l
  • SGS-UFSAR 15.4-~8 Revision 0 July 22, 1982

~&""thermal model similar to that presented *tn Reference 24.

dfffe . es between the Westf nghouse then11l arialysf s model and t proposed N nterim model will be dfscussed and Justified.

1.

2. A conv
  • e heat transfer coefffcfent comparable to t reco~

by the NRC will be used. If necessary, sensftfvfty will be performed to j ustffy an.y model differences.

~-

15.4.8.3 Subcompartrnent Pressure Analysts Reference b4 presents the containment subcmpartment pressure analysis usf ng an 18 node contaf nment model and the latest version of the TMD computer code.

15.4.8.4 Mf scell aneous Analysis 15.4.8.4.1 Minor Reactor Coolant Leakage The Hf Contaf rrnent Pressure sf gnal actuates engf neered safety features.

Since the set point for this signal fs two psfg, the maximum containment pressure caused by leakage is restricted to thfs value. The containment response to such leakage would be a gradual pressure and temperature rise whfchjtould reach a pressure peak of slightly less* than two pounds gauge. At thf s point energy removal due to structural heat sinks and and other sources

  • operating fan coolers would match the energy* addition due to the leaka~e SGS-UFSAR 15.4-99 Revf sf on O July 22, 1982

REFERENCES FOR SECTION 15.4

1. "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Noclear Power Reactors," 10CFRS0.46 and Appendix K of
  • .10CFR50. Federal Register, Vol1111e 39, N1111ber 3, January 4, 1974.
2. Bordelon, F. M., Massie, H. w. and Zordan T. A., "Westinghouse ECCS Evaluation Model - S11111J1ary, 11 WCAP-8339, July 1974.
3. Bordelon, F. M., et al ** "SATAN-VI Progr~: Comprehensive Space-Time Dependent Analysis of Loss of Coolant," WCAP-8302, June, 1974 (Proprietary) and WCAP-8306, June 1974 "(Non-P.roprietary).
4. Bordelon, F. M., et al., 11 LOCTA-IV Progr~: Loss of Coolant Tran-sient Analysis, 11 WCAP-8301, June 1974 (Proprietary) and WCAP-8305, June 1974 (Non-Proprietary).
5. Kelly R. D., et al., 11 Calculational Model for Core Reflooding After a Loss of Coolant Accident (WREFLOOD Code)," WCAP-8170, June 1974 (Proprietary) and WCAP-8171, June 1974 (Non-Proprietary)o
6. Bordelon, F. M. and Murphy, E.T., 11 Containnent Pressure Analysis Code (COCO)," WCAP-8327, June 1974 (Proprietary) and WCAP-8326, June 1974 (Non-Proprietary).
7. Bordelon, F. M., et al., "Westinghouse ECCS Evaluation Model - Sup-plementary Infonnation, 11 WCAP-8471-P-A, April 1975 (Proprietary) and WCAP-8472-A, April 1975 (Non-Proprietary).

11

8. Westi nghoi.se ECCS Evaluation Model - October 1975 Version, 11 WCAP-8622, November 1975 (Proprietary) and WCAP-8623, November 1975 (Non-Proprietary).
9. Letter from C. Eicheldinger of Westinghouse Electric Corporation to D. B. Vassallo of the Noclear Regulatory Coamission. Letter N1.111ber NS-CE-924, dated January 23, 1976.

SGS-UFSAR 15.4-101 Revision O July 22, 1982

10. Kelly, R. D., Thompson, C. M., et al., "Westinghouse Emergency Core Cooling System Evaluation Model for Analyzing Large LOCA's During Operation With One Loop Out of Service for Plants Without Loop Iso-lation Valves," WCAP-9166, February 1978.

lL Eicheldinger, C., "Westinghouse ECCS Evaluation Model, February 1978 Version," WCAP-9220 (Proprietary Version), WCAP-9221 (Non-Proprie-tary Version), February 1978.

12. Letter from T. M. Anderson of Westinghouse Electric Corporation to John Stolz of the Nuclear Regulatory Co11111ission, letter ntJ11ber NS-TMA-1830, June 16, 1978.
13. Letter from T. M. Anderson of Westinghouse Electric Corporation to John Stolz of the Nuclear Regulatory C0111T1ission, letter ntJ11ber NS-TMA-1834, June 20, 1978.
14. Letter from C. Eichelainger of Westinghouse Electric Corporation to V. Stello of the Nuclear Regulatory C011111ission. Letter NtJ11ber NS-CE-1163, dated August 13, 1976.

N

15. Beck, ~ s. and Kemper, R. M., "Westinghouse ECCS Four-Loop Plant

( 17 x 17) Sensitivity Studies," WCAP-8865, October 19!6.

16. Salvatori, R., "Westinghouse ECCS - Plant Sensitivity Studies,"

WCAP-8340, July 1974 (Proprietary) and WCAP~8356, July 1974 (Non-Propri etary).

17. Johnson, w. J., Massie, H. w. and Thompson, C. M., "Westinghouse ECCS --Fo~ Loo'if>Plant (17 x 17) Sensitivity Studies," WCAP-8565, July 1975 (Proprietary) and WCAP-8S66, July 1975 (Non-Proprietary).
18. U.s.* Nuclear Regulatory Commission letter, D. G. Eisenhut to Util-ities With Operati'ng Light Water Reactors, November 9, 1979
  • SGS-UFSAR 15.4-102 Revision 0 July 22, 1982
19. NUREG-0630 1 (Draft) Po~rs 1 D. A. 1 Meyer, R. 0. 1 November 81 1979 1 Cladding S~lling and Ruptu~e.Models for LOCA Analysis *
20. Letter from T. M. Anderson of Westinghouse Electric Corporation to D. G. Eisenhut of the Nuclear Regulatory Co11111ission letter ntJnber 1

NS-TMA-2147 November 2 1979.

1 1

21. Letter from T. M. Anderson of Westinghouse Electric Corporation to D. G. Eisenhut of the Nuclear Regulatory Commission, letter nlJllber NS-TMA-2163 November 16 1979.

1 1

22. Letter from T. M. Anderson of Westinghouse Electric Corporation to D. G. Eisenhut of the Nuclear Regulatory C011111ission letter nlJllber 1

NS-TMA-2174 1 December 71 1979.

23. Letter from T. M. Anderson of Westinghouse Electric Corporation to

~* Denise of the Nuclear Regulatory Comnission, letter nt1nber NS-TMA-2175 December 10 1979

  • 1 1
24. Geets J. M., "MARVEL - A Digital Computer Code for Transient Analy-1 sis of a Multi loop PWR System. 11 WCAP-7909 1 June 1972.
25. Moody F. s., 11 Transacti ons of the ASME Journal of Heat Transfer, 11 1 1 Figure 3 page 134 February 1965.

1 1

26. Bordelon, F. M., "Calculation of Flow Coastdown After Loss of Reac-tor Coolant Pt1np (PHOENIX Code) 1 11 WCAP-7973 1 September 1972.
27. Burnett, T. W. T. Mcintyre. C. J., Buker, J. C. and Rose, R. P.,

1 "LOFTRAN Code Description," WCAP-7907 June 1972.

1

28. Huni n C. "FACTRAN, A Fortran IV Code for Thenna 1 Transients in a 1 1 U0 2 Fuel Rod WCAP-7908 June 1972.

1 11 1

29. Burnett, T. w. T., "Reactor Protection System Diversity in Westing-
  • house Pressurized Water Reactors." WCAP-7306, Apri 1 1969.

SGS-UFSAR 15.4-103 Revision O

  • July 22, 1982
30. Taxelius, T. G. (Ed), "Annual Report - Spert Project, October~ 1968, September 1969," Idaho N11:lear Corporation IN-1370, June 1970.
  • 31." Liimataninen, R. C. and Testa, F. J., "Studies in TREAT of Zirca-loy-2-Clad, U0 2-core Simulated Fuel Elements," ANL-7225, January -

June 1966, p. 177, November 1966.

32. Risher, D. H., Jr., 11 An Evaluation of the Rod Ejection Accident in Westinghouse Pressurized Water Reactors Using Spatial Kinetics Methods,M WCAP-7588, Revision 1-A, January 1975.
33. Rf sher, D. H., Jr., and Barry, R. F., ~TWINKLE - A Multi-Dimensional Neutron Kinetics Computer Code," WCAP-7979-P-A, January 1975 (Pro-prietary) and WCAP-8028-A, January 1975 (Non-Proprietary).
34. Barry, R. F., "LEOPARD - A Spectr1J11 Dependent Non-Spatial Depletion Code for the IBM-7094, 11 WCAP-3269-26, September 1963.
35. Bi shop, A. A., Sanberg, R. a. and Tong, L. s., "Forced Convection Heat Transfer at High Pressure After the Critical Heat Flux," ASME I .

65-HT-31, August 1965.

36. "Westinghouse Mass and Energy Re lease Datas for Contai ment Design, 11 WCAP-826.4 (Proprf etary) and WCAP-8312 (Non-Proprietary).
37. Dittus, F. w., and Boelter, L. M. K., University of California (Berkely), Publs, Eng., £ 433 (1930).
38. Jens, w. H., and Lottes, P. A., "Analysts of Heat Transfer, Burnout, PresslJT'e D_rop, and Density Data for High Pressure*Water, 11 USAEC Report ANL-4627 (1951).

SGS-UFSAR Revision 0 15.4-104 July 22, 1982

39. Macbech, R. V., "Burnout Analysis, Pt. 2, The Basis Burn-out Curve,"

U. K. Report AEEW-R 167, Winfrith (1963). Also Pt. 3, "The Low-Velocity Burnout Regimes," AEEW-R 222 (1963); Pt. 4, "Application of Local Conditions Hypothesis to World Data for.

Unifonnly Heated Round Tubes and Rectangular Channels,* AEEW-R 267 (1963).

40. Dougall, R. s., an~ Rehsenow, w. M., Film Boiling on the Inside of Vertical Tubes with Upward Flow of Fluid at Low Quantities, MIT Report 9079-26.
41. EcEligot, D. M., Onnond, L.W., and Perkins, Jr., H. C., "Internal Low Reynolds - Nunber Turbulent and Transitional Gas Flow with Heat Transfer," nal of Heat Transfer, 88, 239-245 (May 1966).
42. W. H. at Transmission, McGraw-Hill 3rd edition, 1954, p.

172.

43. Cunningham, V. P., and Yeh, H. C., "Experiments and Void Correlation for PWR Small-Break LOCA Condition," Transactions of American Nuclear Society, Vol. 17, Nov. 1973, pp. 369-370.
44. lagC111i, Takaski, "Interim Report on Safety Assessments and Facilities Establishment Project in Japan for Period Ending June 196 5 ( N0
  • 1) II
45. Kolflat, A., and Chittenden, W. A., "A New Approach to the Design of Contairment Shells for Atomic Power Plants". Proc. of Amer. Power Conf.,_1957 p. 651-9.
46. McAdams, w. H., Heat Transmission , 3rd Edition, McGraw-Hill Book Co., Inc., New York (1954).
47. Standards of Tubular Exchanger Manufacturers Association SGS-UFSAR 15.4-105 Revision 0
48. Eckert, E. R. G., and Drake, P. M. J., Heat and Mass Transfe~.*

McGraw-Hill Book Co., Inc., New York (1959).

49. Eckert, E. and Gross, J., "Introduction to Heat and Mass Transfer",

McGraw-Hill, 1963.

50. Kern, D. Q., Process Heat Transfer, McGraw-Hill Book Co.~ Inc., New York ( 1950).
51. Chilton, T. H., and Colburn, A. P., "Mass Trarisfer (Absorption)

Coefficients Prediction from Data on Heat Transfer and Fluid Friction", Imd. Eng. Chem., 26, (1934),_ pp. 1183-87.

52. WCAP 7336~L, Topical Report - Reactor Contairment Fan Cooler Cooling Test Coil, w. L. Boettinger, July 1969.
53. S. Weinberg, Proc. Inst. Mech. Engr., 164, pp. 240-258, 1952
54. Ranz, w. and Marshall, w., Chem, Engr., Prog. 48, 3, pp. 141-146 and 48, 4, pp. 173-180, 1952.
55. Perry, J., "Chemical Engineers Handbook" 3rd Ed. McGraw-Hi 11, 1950.
56. Letter to Mr. D. B. Vassallo, Chief, Light Water Reactor Projects Branch 6, USNRC, From Mr. C. Eicheldinger, Manager, Nuclear Safety, Westinghouse Electric Corporation, Dated March 17, 1976 (NS-CE-992).
57. Letter to Mr. D. B. Vassalo, Chief, Light Water Reactor Projects Branch 6, USNRC, from Mr. C. Eicheldinger, Manager, Nuclear Safety, Westingho~se Electric Corporation, Dated July 10, 1975 (NS-CE-692).
58. Letter to Mr. D. B. Vassalo, Chief, Light Water Reactor Projects Branch 6, USNRC, From Mr. C. Eicheldinger, Manager, Nuclear Safety, Westinghouse Electric Corporation, Dated April 7, 1976 (NS-CE-1021)
  • SGS-UFSAR 15.4-106 Revision O July 22, 1982
59. Letter to Mr. J. F. Stolz, Chief, Light Water Reactor Projects Branch 6, US~RC, From Mr. C. Eicheldinger, Manager, Nuclear Safety, Westinghouse Electric Corporation, Dated August 27, 1976 (NS-CE-1883).
60. Hsieh, T., et. al., 11 Envirormental Qualification Instrt.ment Transmitter Temperature Transient Analysis, WCAP-8936, February 11 1977 (Proprietary) and WCAP-8937, February 1977 (Non-proprietary).
61. Letter to John F. Stolz, Chief, Light Water Reactor Projects Branch 6, USNRC, from C. Eicheldinger, Manager, -Nuclear Safety Westinghouse Electric Corporation, Dated June 14, 1977. (NS-CE-1453).

ft.( f.(..f ~"'- " L J..dd J .

62. Krise, R. C., Miranda, s.* "*~RVEL A Bigital Cemp~ter Code For Transient AnalJ si ! of a M~lti Leep PWR System, 11 WCAP 8843,' Nor;ember, 1977 (PP"ef3rietary) and WCAP 8844, Nor;ember, 1977 (Non p1oprietary}.
63. Land, R. E** "Mass and Energy Releases Following a Steanline Rupture, 11 WCAP-8822, September, 1976 (Proprietary) and WCAP-8860, September, 1976 (Non-proprietary).
64. 11 Eval uati on of the Reactor Coo 1ant System Considering Subcompartment Pressurization Following a LOCA for Salem\.Units 1 and 2, 11 transmitted by PSEG letter, R. L. Mottle to O. 0. Parr, dated March 6, 1979
  • SGS*UFSAR 15.4-107 Revision O

TABLE 15.4-23 (Sheet 1 of 2)

  • I.

EFFECTS OF SINGLE FAILURES ON CONTAINf'ENT ANALYSES MAIN STEAM ISOLATION VALVES*

-F Power Piping Slowdown Duration of Break Area (~t2) Percent (lb/sec) Piping Slowdown (sec)* Steam Mass (lb)

No Ms!v MSIV No MSIV MSIV Forward Reverse Failure Failure Failure Failure o.140 z.sg1 qg.,r 1&,3LJ 1.4 4.25 102 7047 8.136 2.532 *9" 17,846 0I 13" 'Lo .f.S4 */O 34 11, z.4.t.

1.4 4.25 70 7595 B.137 2.541 l&3& 19, 302 O*fl 1 Z..S'SD 11+K 'LI,~ g 1.4 4.25 30 8377 B.137 2.556 ~ 21,409

o. o1 i.r.r~ 12.JS' Z.L, '113 1.4 4.25 0 9002 e.1ae 2.s6e ~ 23,115

..... 4.25 1.4 182 . 2315 0.414 7. 786 959 :i-7,848

-tt 4.25 4.25 1.4 1.4 70 30 2495 2752 8.416 0.418 7.736 7.780 1838 1151 19, 382" 21, 489 4.25 1. 4 0 2957 0.420 7.817 1243 23, 115 li\U"u.Jc.4'

  • Failure of main stea)line isolation valve iAePeses the unisolatable steam line volume from 542 t3 to 10,083 ~t3.

f II MAIN FEED LINE ISOLATION VALVE f

Maximum Unisolatable Feed Line Volume = 328. 2 ~t3 Without MFIV Failure l

Maximum Unisolatable Feed Line Volume = 868. 5 ~t3 With MFIV Failure Closing Ti.me of Feed Regulation Valve = <5.0 sec.

Closing Time of Feed Isolation Valve = <30.0 sec

  • Revision O SGS-UFSAR July 22, 1982

TABLE 15.4~23 (Sheet 2 of 2)

    • III. AUXILIARY FEED SYSTEM RUNOUT PROTECTION FAILURE Ma>t'f111tm1 i'.tutil h ry Feed Flew W'f the~t = 1840 gpm Maximum Auxiliary Feed Flow With = 2040 gpm Runout Protection Failure SGS-UFSAR Revision O July 22 1 1982

TABLE 15.4-24

  • Number of Spray Trains SPRAY SYSTEM 2

Number of Spray Trains Operating fn Minimum Safeguards Analysis 1 NwlfleeF ef SpFa:y TPaiRs OpePatiRg iA MaMiA11:iHR SafegyaPfis ARalysis 2 Spray Fl ow Rate per Spray Train 2600 gpm FAN COOLERS Number of Fan Coolers 5 Number of Fan Coolers Operating in Minimum Safeguards Analysis 3 HwA19eP ef ~aR 'eeleFs O~ePatiAg iA na:1tillH:llR SafegyaFfis ARalysis 4 I

INITIATION TIMES/SETPOINTS System Containment Setpoint used Delay After Setpoint (sec)

Spray 26.7 psig 59.

Fan Coolers 7.9 psig 35.

~-

  • ~~'.

SGS-UFSAR Revision 0 July 22. 1982

TABLE 15.4-25 (Sheet 1 of 2)

PASSIVE HEAT SINK Volumetric Thennal Heat (ft2::> ~ft. Cond. Capacity Wall No. Area layer Compositio~ hickness '8tff-/HR-FT-*F . BTU /FT 3_ °F B"M 1 45169 1 Paint 0.000625 0.083 39.6 2 Steel 0.03125 27.0 58.8 3 Concrete 0.5 0.92 22.6 4 Concrete 4.0 0.92 22.6 2 14206 1 Insulation 0.2083 0.024 3.94 2 Steel 0.03125 27.0 58.8 3 Concrete 0.5 0.92 22.6 4 Concrete 4.0 0.92 22.6 3 29249 1 Paint 0.000625 0.083 39.6 2 Steel 0.04167 27.0 58.8 3 Cone rete 0.5 0.92 - 22. 6 4 Cone rete 3.0 0.92 22.6

-*4 11611 1 Paint 0.0015 0.083 39.6 2 Concrete 0.5 0.92 22.6 3 Concrete 3.0 0.92 22.6 5 6806 1 Paint 0.0015 0.083 39.6 2 Cone rete 0.5 0.92 22.6 3 Concrete 0.5 0.92 22.6 4 Concrete 0.5 0.92 22.6 6 9424 1 Paint 0.0015 0.083 39.6 2 Concrete 0.5 0.92 22.6 3 Concrete 1.21 0.92 22.6 7 31660 1 Paint 0.00117 0.083 39.6 2 Cone rete

  • Oe5 . 0.92 22.6 3 Concrete 1.0 0.92 22.6 8 13279 1 Stainless 0.01773 8.0 53.6 Steel 2 Concrete Oe5 0.92 22.6 3 Concrete 1.4 0.92 22.6 9 47590 . 1 Paint 0.000625 0.083 39.6 2 Steel 0.011 27.0 58.8
  • in contact with sump
  • '!i*:

. *"t**

SGS-UFSAR Revision O July 22, 1982

TABLE 15.4-25 (Sheet 2 of 2)

PASSIVE HEAT SINK Volumetric Thennal Heat

( ft!2;; ~ft. Cond. Capacity Wall No. Are Layer Composition hickness ~/HR-FT-*F BTU/FT3-*F

~n\

10 76741 1 Paint 0.000625 0.083 39.6 2 Steel 0.02102 27.0 58.8 11 19348 1 Paint 0.000625 0.083 39.6 2 Steel 0.0437 27.0 58.8 12 9330 . l Paint 0.000625 0.083 39.6 2 Steel 0.611 27.0 58.8 o.o~,,

13 7452 1 Paint 0.000625 0.083 .39.6 2 Steel 0.086 27.0 58.8 14 3218 1 Paint 0.000625 0.083 . 39. 6

  • .2 Steel 0.1112 27.0 58.8

_15 1553 l Paint 0.000625 0.083 39.6 2 *Steel 0.217 27.0 58.8 16 43740 1 Paint 0.000625 0.083 39.6 2 Steel 0.0052 7.0 58.8 17 4272 1 Stainless 0.0329 8.0 53.6 Steel 18 53745 1 Paint 0.000625 0.083 39.6 2 Steel 0.0211 27.0 58.8 19 11244 l Paint 0.000625 0.083 39.6 2 Steel 0.0379 21.0 58.8 20 2989 l Paint 0.000625 27.0 39.6 2 Steel 0.15806 27.0 58.8

  • ~-,

SGS-UFSAR Revision 0 July 22, 1982

TABLE 15.4-26

  • CONTAINMENT INITIAL CONDITIONS FOR MSLB Containment Design Pressure 47 psig Containment Volume 2,620,000 ft3 Initial Containment Pressure 0.3 psig Initial Air Partial Pressure *14.7 psia Initial Steam Partial Pressure O. 3 psia Initial Containmen.t Temperature
  • Refueling Water Storage Tank Inventory Service Water Temperature 350,000 gal as*
  • *~..

~-

Revision 0 SGS-UFSAR July 22, 1982

...a..;..-.;.;..:.:.;.

..........  ;.. ~* ****----

EI !EEi ::cc **** !Iii iii!

I

  • e .....

~:--*ill ~ =-~=

."i"i5 I-*

~1&1.

.. i-1 la D 8 i ~

. =t

  • ~ri

.;n ..

-=-1:

  • 8 ~ -

r-j

=.. ic

.. ~-t  !!  !!-1!-*!  ;~ ~i;  !!~!~!!! !~!!!!!! t g ----

OOOQ

!*i:f'

-,~

  • 1*1 ~ **

p~

              • ******** ******** *
  • Sf~~

... *:-:-~~~?

............. "' :-~:-:-P~!9!9 :-~:-:-!9~!9~ -.. = ----

DDOe_,. ... _,. .. oooe.- ........

~

1 a

  • r ...... ......... ., ____ .............. ..... .......... ......... _11 Q§i l"

...= **** -*** ..

!I'-

~!

p

- .. "'I

........-- ====:s:: _(r I I I -

fit* ...... ......

1*** -.. 11:

iU t i ..

-i :! *

'!~

a:===~
-:-~~

JI r:Ifor

'" I

-- ***&**** -------- ------- .. - ......... .......... -It r

~-

-1

~~

eo

~;;:;;;;:; !9!9,.!9~!9~!9

                • ******** 19~:"!9!9!9!"~

=

-~--

=~

        • ::s:

w..aee  !:.r i_

~,

i r

1-~I

    • :-.;..~--.-..-;,.w.

v.;..;..;..e*** ~~~~

"9"9D* e:...e:.. ---- -f

=~=s o*** -(l hr i

"t'I

....-_*1

~-f..

ar-1~

0 _,

. u ******** ******** * ******* * * **** **** 11

-1

~!a _..

l~I

,~

~

~<C II!

~:--'!"!"ta !'II!"~

~:'!"~:-'!"':"!"

~

~:-~~ .......

.,;,.:..m

~1

.......... !:t Ii! ....-* 151r:,::e=

.. :e::c:r:r::= .. 1-*1:*1:*-;.:.***w**

- ..,.. - .. ;:= =;:=i ....... ......

!!! ~=~!! ~~:f~ -:tf c..

'I"

ici
      • -*-*~ *****-** *:..**

~~~~~:" ~!ll!"!"~:"t-!" ~ ~~!9!13 I' *~ ~-.-.:.. c

~.;!-<'~*

ft)

  • I .. N_.*

................. ................. .................. ..... ....* i:i:1:n:: 1na::::: aa:n::: ......

NO

..... *  :::I

..-. ........... ':¥:=:seee :i:::n:s .. * .. ...... ........... .........

1~==~=== .sr::r::::

  • -~--;.~~  ;.-.m;.**** ~ ~~~~ ,,.,...:-~

~!"'~~

"Ytv+- 7J01/"T\ 3.L313Q

Sheet 1 of 10 TABLE 15.4-28

  • Time Q.f44 MASS AND ENERGY RELEASES FROM A ~ FT2 SPLIT BREAK 3o AT rn PERCENT POWER (Worst Te111@eiaai1:1iae Case)

Break Flow Energy Flow (sec.) (lb/sec.) (million Btu/sec.)

PR6PRIETAR'f

    • RefeF te {5Q 311) "A13111ieatiert fe,. Witl:it:ieleiRg" Ra L. Mittl te Sla" 9. Par1 November 20, U78 ttd-NRC Af:lf31"9val letteP, Qlart Q, PaFF te Wiese~aRR Jani:ia1) 22, 1979
  • *~:

~-~*

SGS-UFSAR Revision 0 July 22, 1982

Sheet 2 of 10 Break Flow Energy Flow Time Break Flow Energy Flow ec.J (lblsec. l !million Btu/sec.l {sec.l {lb/sec.l {million Btu/sec.)

0.0000 0.0000 0.0000 J7.SU 1420. 1.104

  • sooo 1741. z.oeo sa.oo 1416* 1.699 1.000 1.SOO 174'.

1121.

z.oeo SI.SO 1411. 1.693 Z.065 39.00 1406. 1.611 2.000 1711. 2.053 39.50 1401. 1.612 2.500 1708. Z.041 40.00 1396. 1.676 3.000 1691. z .. 030 40.50 1392. 1.670 3.500 1611. z.011 41.00 1387D 1.665 4.000 1671. Z.007 41.50 1382. 1.659 4.500 1669. 1.995 42.00 1377. 1.653 59000 1659. 1.914 42.50 1372. 1.647 5.500 1650. 1.'74 43.00 1367. 1.642 6.000 1641. 1.963 43.50 1362. 1.636 6.500 1633. 1.'54 44.00 . 1357. 1.630 1.000 1625. 1.'44 44.50 1352. 1.624 1.500 1617. 1.tJ5 45.00 1348. 1.619 1.000 1608. 1.9ZS 45.50 1343. 1.613 1.500 1602. 1.917 46.00 1338. . 1.607 9.000 1594. 1.909 46.50 1333. 1.601 9.500 1517. 1.199 47.00 1321. 1.595 10.00 1519. 1.191 47.50 1323. 1.590 10.SO '1572. 1.112 48.00 1319. 1.514 11.00 1565. 1.174 48.50 1314. 1.571 11.50 1551. 1.166 49.00 1309. 1.573 12.00 155Z. 1.151 49.50 1304. 1.567 12.50 1545. 1.151 50.00 1Z99. 1.561 13.00 1539. 1.143 50.50 129S. 1.556 13.50 1533. 1.136 51.00 1290. 1.550

. 14.00 1526. 1.129 51.50

  • 4.505.00.

5.50 1520.

1515.

1509.

1.122 1.115 1.aoe 52.00 52.50 53.00 1217

  • 1217
  • 1215.

1.546 1.546 1.544 1503. 1213. 1.542 6.00 1.801 53.50 1280. 1.539 16.50 1498. 1.795 54.00 1271. 1.536 17.00 1493. 1.190 54.50 1275. 1.533 55.00 1272. 1.529 17.50 1417. 1.112 55.50 1269. 1.526 18.00 1413. 1.111 56.00 1267. 1.522 18.50 1417. 1.110 56.50 1264. 1.519 19.00 1473. 1.766 57.00 1261. 1.516 19.50 1467. 1.759  !;; *so 1251.

20.00 1463. 1.754 1.512 20.50 1.749 51.00 1255. 1.509 1459. 58.50 1252.

21.00 1454. 1.744 59.00 1249. 1.505 21.50 1448. 1.736 1246. 1.502 22.00 1.731 59.50 1.498 1443. 60.00 1243. 1.494 22.50 1475. 1.768 60.50 1240.

23.00 1476. 1.769 1.491 23.50 61.00 1237. 1.417 1411. 1.176 61.50 1234. 1.413 24.00 1412. 1.111 62.00 1231.

24.50 1413 .. 1.771 1.480 25.00 1.719 6l.50 1221. 1.476 1414. - 63.00 1224. . 1.472 25.50 1414. 1.780 63.50 1221.

26.00 1415.  : .1.711 1.469 26.50 1.711 64.00 1211. 1.465 1485. 64.50 1215. 1.461 21.00 1485. 1.711 65.00 1212.

21.so 1485. 1.711 65.50 1.457 21.00 1.. 711 1209. 1.454 1485. 66.00 1206. 1.450 21.so 1414. 1.780 66.50 1203.

29.00 1413. 1.779 67.00 1.446 29.SO 1412. 1.717 11"* 1.443 30.00 1.774 67.50 1196. 1.439 1480. 61.00 1193. 1.435

so.so 1477. 1.771 68.50 1190.

31.00 1474. 1.768 69.00 1117. 1.431 1.421 e-50 *oo

  • so
  • oo 1471.

1467.

1463.

1460.

1.764 1.760 1.755 1.751 69.50 10.00 70.50 1114.

1111

  • 1171
  • 1.424 1.421 1.417 33.50 1.746 71.00 1175
  • 1.413 1456. 11.50 1172.

34.00 1451. 1.741 72.00 1169. 1.410 34050 1447. 1.736 72.50 1166. 1.406 35.00 1443. 1.731 13.00 1163. 1.403 35.50 1439. 1.726 73.50 1160. 1.399 36.00 1434. 1.121 74.00 1157. 1.396 36.50 1430. 1.715 74.50 1.392 37.00 1.110 1154. 1.319 1425.

Sheet 3 of* 10 Break Flow Energy Flow Time Break Flow Energy Flow l blsec. l {million Btu/sec.l {sec. l {lb/sec.l {million Btu/sec.)

.~ 1151. 1cJl5 112.0 i7*.* 1.056 75 .. 50 1149. 1.382 112.5 166.1 1.044 76.00 1146. 1.378 113.0 157.Z 1.033 76 .. ~0 1143. 1.375 113.S 141.0 1.021 11.00 1140. 1.31Z 114.0 139.1 1.011 114.,5 ll0.5 1.000 11.50 1137. 1.368 11.00 'i134. 1.365 115.0 122.1 .9902 1lo50 1131. 1.361 ,15.5 114.0 .990S 19.00 1128. '93SI 116.0 I06.Z .9710 79.50 1125. 1.354 116 .. S 198.6 .9618 I0.00 1123. 1.351 117.0 191.2 .9529 I0.50 1120. 1.348 l1o00 1117. 1.344 11.50 1114. 1.341 117.S 714.0 .9442 12.00 1111. 1.337 111.0 776.t .9357 az.so 1109. 1.334 111.S 110.t .t275 13.00 1106. 1.331 119.0 765.5 .9194 13.SO 1103. 1.327 14.00 1100. 1.324 119.S 120.0 151.9 HO.

.9116

.9040 14.SO 1097. 1.321 120.S 744.5 .1966 IS.00 109'. 1.311 121.0 731.5 .1893 15.SO 1092. 1.314 121.s 732.6 .1822 16.00 1089. 1.311 12l.O 726.f .1753 16.SO 1086. 1.JOI 122.S 721.J .1685 11.00 1084. 1.305 123.0 115.t .1620

  • 11.so 1081. 1.301 123.S .1555 11 .. 00 1.291 110.5 II.SO

. 19.00 1071.

107,.

1073.

t.m t.Z92 124e0

  • 24.5 105.i 100.

.1492

.1431 .

125.0 695.J .1371 1010. 1.m 125.S t90.5 .1313 1068. 1.285 126.0 615.1 .12S6 1065. 1.212 126.S 611.1 .l200 1062. 1.219 127.0 676.6 .1146

'1.SO 1060. 1.276 127.5 672.2 .I093 J2.00 1057. 1.273 128.0 .I041 92.SO 1.210 661.0 93.00 1055. 128.5 663.I .7990 1052. 1.267 129.0 659.7 .1941 93.SO 1049. 1.263 129.S .7893 .

94.00 1.260 655.7 94.SO 1047. 130 .. 0 651.1 .7146 1044. 1.257 130.5 641.0 .7800 95.00 1042. 1.254 131.0 .;1755 95.50 1.251 644 .. J 96.00 1039. 131.5 640.1 .7111 1037. 1.248 132.0 637.Z .7669 96.50 1.245 97.00 1034.

1032. 1.;242 132.5 133.0 w.a .7627

.7Sl7 630.5 97.50 133.5 6Z7.2 .7548 10Zt. 1.ZJ9 134.0 6Z4.1 .7510 91.00 1027. 1.236 134.5 621.0 .7472 91.50 1024. 1.2JJ 135.0 611.0 .7436 99.00 1022. 1.230 135.5 .7401 99.50 615.1 1019. 1.221 136.0 612.Z .7367 100.0 1011. - 1.224 136.5 .7333 100.5 1.221 609.5 101.0 1014.  : 137.0 606.1 .7301 101.s 1012. 1.211 102.0 1009. 1.215 117.5 604.2 .7269 1007. . 1.212 138.0 601.6 .7238 102.S 1004. 1.209 131.5 103.0 599.1 .1208 103.S 1002. 1.206 139.0 596.7 .7179 104.0 999.4 1.ZOJ 139.5 594.4 .7151 104.S 996.7 1.200 140.0 192.1 .7123 994.S 1.191 140.5 105.0 105.5 106.0 "'*'

919.7 1.1M 1.192 1.119 141.0 141.5 "*'

511.1 515 **

.1096

.1010

.1045 917.1 sas.*

142.0 .1020 9-'g!)8.5

.09.0 915.0 912.4 969.7 956.S 1.116 1.113 1.191 1.161 1.152 142.5 143.0 143.5 144.0 144.5 511.6 519.7 577.9 516.0 574.J

.6996

.6913

.6950

.6928

.6901 1"9.5 94:S.I 1.131 145.0 572.6 .6186 110.0 931.6 1.122 145.S 510.9 .6166 1.108 110.S 111.0 111.~

90l.J 197.4 1.094 1.0l1 146.0 146.5 147.0 569.J 567.7 566.Z

.6847

.6127

.6809 1.061 147.5 564.7 .6191

Sheet 4 of 10 Break Flow Energy Flow Time Break Flow Energy Flow lb/sec.) (million Btu/sec.~ {sec.~ {lbLsec. ~ {million Btu/sec. 141.0 563.Z .6m 115.0 515.Z .61'2 148.5 =*I .6156 115.5 514.f .6119 149.0 .4 .6740 116.0 514.1 .6115 149.5 559.1 .6723 116.S 514.4 .6112 150.0 557.1 .6108 111.0 514.Z .6119 150.S 556.5 .6692 111.s 51J.f .6176 151.0 151.5 152.0 555.J 554.1 553.0 551.1

.6671

.6663

.6649

.'635 111.0 181.5 11900 119.5 I"*'

1J.4 513.Z

.6173

.6110

.6167 152 .. 5 512.t .6164 153.0 550.7 .6622 190.0 512.1 .6161 153.5 549.6 .6609 190.S 512.5 .6158 154.0 548.6 .6596 '91 .. 0 512.2 .6156 154.5 547.6 .6514 '91.S 112.0 .6153 155.0 546.6 .6572 192.0 511.I .6150 155.5 545.6 .6560 192.5 511.5 .6141 156.0 544.7 .6549 193.0 511.J' .6145 156.5 543.1 .6531 '93.5 511.1 .6142 157.0 542.9 .6527 194.0 510.f -.6140 194.5 510.7 .6137 157.5 542.0 195.0 510.5 .6135

.'517 195.5 510.J .6132 151.0 541.Z **S06 196.0 510.1 m*'.s**

151.5 .6496 .6130 159.0 196.5 509.9 .6127 159.5 .6417 191.0 509.7 .6125

.6411 160.0

. 160.5 161.0 1.5 531.0 537.2 536=5 *""'

.6459

.6450

'97.5 19'.0 509 .. 5 509.J

.6122

.6120 r*

"5.1 .. 6441 191.5 509.1 .. 6111

  • 0 535.1 .6433 1".o SOl.9 .6115.

5 .6425 SOl.7

=*'

.o 1".5 .61'3 13.1 .6417 200.0 .6111

~'3.5 SJ.1

'4.0 .6409 200.5 .J .6108 SZ.5 .'401 201.0 SOl.1 .6106

.64.5 131.* .6394 201.5 507.9 .6104 165.0 31.S .6316 202.0 507.1 .6102 165.5 530.7 .6319 202.5 166.0 530.1 131.6 .6099 166.5 .6372 203.0 7.4 .6091 529.6 .'366 203.5 507.Z .6095 167.0 529., .6359 204.0 507.0 .6093 167.S sza. .6352 204.5 506.9 161.0 161.5 169.0 5Z1.t 527.4

.6346

.634()

205.0 205.5 5(-C.7

~.5

  • '°"

.at

.6086 169.S 526.t .6334 206.0 506.S .6084 526.4 .6321 206.S 506.Z .6082 170.0 526.~ .6322 207.0 506.0 .ao 170.S 525. .6316 207.S 505.1 111.0 .t071 171.5 525.0 .6311 208.0 .6076 524.6 .6305 208.5 181*6

.5 .6074 172.0 524.1 .6300 209.0 505.J 172.5 .6072 1?3.0 523.7 .6295

  • 209e5 50Sa1 .6010 173.5 523.J - .6290 210.0 505.0 .6068 174.0 522.9  : .6285 210.s 504.1 .6066 174.S 522.5 .6280 211.0 504.1 .6064 nz.1 .6275 211.5 SOtt.5 .6062 175.0 521.1 .6270 212.0 504.J 175.5 .6060 176.0 521.J .6265 212.s 504.2 .60SI 176.5 520.9 .6261 213.0 504.0 .6056 111.0 520.5 .6257 213.5 503.1 .* 6054 520.2 .6252 214.0 503.7 .60S2 214.5 503.5 .6050 117.5 519.1 .6241 215.0 503.4 .6048 111.0 519.5 .6244 215.5 503.2 .6046 41*'

~I0.5 111.0

.o

.5

.o Ill.I 519.1 11.1 11.

.62~

.623

.6231

.6221

.6224 216.0 216.5 211.0 503.1 502.9 502.1

.6045

.6043

.6041 511.S .6220 111.S 112.0 111.z .6216 112.S 516.6

.6213

.6209 113.0 113.S 114.0 116.J 16.0 s1s.1

.6205

.'202

.6199

Sheet 5 of 10 Break Flow Energy Flow Time Break Flow Energy Flow lb/sec.) (million Btu/sec.) (sec.) (lb/sec.) {million Btu/sec.)

211.s 502.6 .6039 Z55.0 491.4 .5903 502.4 .6037 255.5 491.2 *.5901 211.0 .6035 256.0 491.1 .5899 211.s 502 .. J .5891 219.0 50Z.'i .6033 256.5 490.9 219.5 502.0 .6031 257.0 490.I .5196 220.0 501.I .6029 220.s 501.7 .6021 H1.5 490.6 .5194 221.0 501.5 .6026 2n.o 490.5 .Sl92 221.s 501.s .6024 zsa.5 490.3 .5'90 222.0 501.Z .6022 H9.0 490.2 .SM9 222.5. 501.0 .6020 259.5 4t0.D .SM7 223.0 223.5 500.9 500.1

.6011

.6017

.6015 260.0 260.5 m** .7

.SNS

.SM3 224.0 224.5 225.0 225.5 500.6 500.4 500.3 500.1

.6013

.6011

.6009 261.0 261.S 2.z.o 262.S 419.4 4".S 419.1

.SM1

.HIO

.Sl71

.Sl76 226.0 500.0 .6007 263.0 4".0 .Sl74 226.5 499.I .6006 263.5 411.1 .Sl72 227.0 499.7 .6004 2'4.0 411.7 .Sl11 227.5 499.5 .6002 264.S 411.5 .5169 221.0 499.4 .6000 H5.0 411.4 .5167 221.5 499.2 .5991 265.S 411.Z .5165 499.1 .5996 229.0 229.5 230.0 491.9 498.I

.599S

.5993

.5991 266.0 2o6.5 267.0 411.0 417.1

.5163

.5162

.5'60 230.5 491.6 267.5 417 .. 7 .5158 231.0 491.5 .5919 261.0 417.5 .5156.

31.5 491 .. 3 .5917 268.5 417.4 .5154

.o

.5 .

491.2 491.0

.5916

.5914 269.0 417.Z .5153 269.5 417.1 .Sl51

.o 497.9 491.1

.5912

.5980 210.0 416.t .5149 233.5 .5971 210.s 416.I .5147 234.0 497.6 211.0 416.6 .Sl45 234.5 497.4 .5971 211.s 416.5 .5143 235.0 497.3 .5975 212.0 416.J .5142 235.5 491.Z .5973 272.5 416.Z .Sl40 236.0 497.0 .5~."1 486.0

.5~~-,

2n.o .5131 236.5 496.9 213.S 415.9 .5136 237.0 496.7 .59~ 274.0 415.7 .Sl34 274.5 415.6 .5133 237.S 496.6 .5966 275.0 415.4 .5131 238.0 496.4 .5964 275.5 415.S .5129 211.s 496.3 .5962 276.0 415.1 .Sll1 239.0 496.1 .5960 276.5 415.0 .5125 239.5 496.0 .5959 211.0 484.1 .5124 240.0 495.I .5957 240.5 495.7 .5955 zn.s 414.7 .5122 241.0 495.5 .5953 Z71.0 414.5 .Sl20 241.5 495.4 .5952 Z71.S 414.,4 .H11 242.0 49S.Z .5950 279.0 414.2 .5116 242.5 495.1 - .5941 279.5 414.1 .5115 zu.o 494.9 494.I  : .5946 ZIO.O 413.t .Sl13 243.5 .5944 2ao.5 413.I .5111 244.0 494.6 .5943 211.0 413.6 .5809 244.5 494.5 .5941 211.s 413.5 .5807 245.0 494.S .5939 212.0 413.J .5806 245.5 494.2 .5937 21z.5 413.Z .SI04 24'.0 494.0 .5935 213.0 413.0 .saoz 246.5 493.9 .5934 213.5 412.t .saoo 247.0 493.7 .5932 214.0 . 412.7 .5198 247.S 493.6 .5930 214.5

--0

.5196 241.0 241.5 493.4 493.J

.5921

.5926 215.0 215.5 W"' .4 412.J

.5m

.5193 493.2 .5925 216.0 412.1 .5191

.5 491.0 .5923 216.5 .5719

.o 492.9 .5921 211.0 412-a 411. .5717

.5 492.7 .5919 211.s 411.7 .5716 lS1.0 492.6 .5917 211.0 411.5 .5714 251.5 492.4 .5916 211.S 411.4 .5712 252.0 492.3 .5914 219.0 411.2 .5710 252.5 492.1 .5912 219.5 411.1 .5nt 253.0 492.0 .5910 290.0 480.t .sn1

  • 253.5 491.I .5908 290.S 4'0.1 .sns 254.0 491.7 .5901 291.0 480.7 .sm

~~-~ 491.5 .5905 291~_5 £M\.5 .5ll1

Sheet 6 of 10 Break Flow Energy Flow Time Break Flow Energy Flow lb sec. mill ion Btu sec. sec. lb/sec. million Btu/sec.)

2.0 4'0.4 ~sno 329.0 469.7 .564()

292.5 4'0.2 .5761 329.S 469.6 .5639 469.4 .5637 293.0 293.5 .

ZM.O

"°*'

479.9 479.1 479.6

.5766

.5764

.5162

.5761 330.0 330.5 n1.o 331.5 469.J 469.1 469.0

.5635

.,5634

.S6l2 294 .. 5 m.o 479.* 5 419.3

.5759

.5757 332.0 332.5 461.9 468.1

.5630

.5628 295 .. 5 296.0 479.Z .5755 333.0 468.6 .5627 296.5 479.0 .5753 333.5 468.4 .5625 297.0 471.9 .5752 334.0 468 .. 3 .5623 334.5 468.Z .5622 297.5 471.7 335.0 468.0 .5620

.5750 335.5 46709 .5611 291.0 471.6 .5741 298.5 411.4 .5746 336.0 467.7 .5617 299.0 471.J .5745 336.5 467.6 .5615 299.5 471.1 .5743 337.0 467.5 .5613 300.0 471.0 .5741 300.5 417.9 .5739 337.5 467.3 .5612 301.0 477.7 .5737 331.0 467.Z .5610 301.S 477.6 .5736 331.5 467 .. 0 .S60t 302.0 471.4 .5734 339.0 466.9 .5606 302.5 477.J .5732 339.5 466.I .5605 303.0 477.t .5730 340.0 466.6 .5603 303.5 477.0 .5729 340.5 466.5 .56e1

. 304.0 476.I .5727 341.0 466.4 .5600 304.S 476.7 .572' 341.5 466.2 .5598 JOS.O 476.5 .5723 J42 .. 0 466.1 .,5596.

. '°'*s.o

~76.4 476.J

.5722

.5720 342.5 343.0 465.9 465.1

.559S

.5593

.5 476. 1 .5711 343.5 465.7 .5591

.o 476.0 475.1

.5716 344.0 465.S 465.4

.5590

.5511

.5 .5715 344.5 JOl.O 475.7 .5713 345.0 465.Z .5586 JOe.5 475.5 .5711 S45.S 465.1 .5sa5 309.0 475.4 .5709 346.0 465.0 .5583 309.5 475.2 .5708 346.S 464.8 .5511 310.0 475.t .5706 347.0 464.7 .5580 310.5 475.0 .5704 347.5 464.6 .5578 311.0 474.1 .5702 341.0 464.4 .5576 311.5 414.1 .5101 341.5 464.J .5575 312.0 414.S .5699 349.0 464.t .5573 312.5 474.4 .5697 349.5 464.0 .5571 313.0 474.Z .5695 351).0 463.9 .5570 313.5 474.1 .5694 350 .. 5 463.7 .5568 314.0 474.0 .5692 351.0 463.6 .5566 314.5 473.1 .5690 351.5 463.5 .5565 315.0 473.7 .5611 352.0 463.3 .5563 315.5 473.5 .5687 352.5

  • 463.Z .5561 316.0 473.4 .5685 353.0 463.0 .* 5560 316.5 473.2 .5683 353.5 462.9 .5551 317 .. 0 473.1 .5612 354.0 462.8 .5556 354.5 462.6 .5555 317.S 473.0 *.5680 355.0 462.5 .5553 31&.0 472.1 .5671 355.5 462.4 .5551*

318.S 472.7 .5676 356.0 462.2 .5550 319.0 472.5 .5675 356.5 462.1 .5548 319.5 472.4 .5673 357.0 462.0 .5547 320.0 472.2 .S671 320.5 472.1 .S670 321.0 472.0 .5661 357.5 .H45 321.5 322.0 471.1 411.7

.5666

.5664 JSl.O 351.S 359.0 4'1.7 4'1.6

.5543

.5542

.5540 322.5 471.5 471.4

.5663

.5661 359.S 461.J .5531 ti~ 471.J .S659 360.0 461.t .553'."

471.1 .5658 360.S 461.0 .5535 5 471.0 .5656 J61.0 4'0.t .5533 i25.0 410.1 .5654 J61.S . 4'0.1 .5532

$25.S 470.7 .S652 J62.0 4'0.6 .5530 326.0 470.6 .S651 J62.S .5521 326.5 327.0 470.4 410.J

.5649

.5647 J63.0 J63.5  ::8*'

4'0.J

.55"'

.55i.S 327.S 410.1 .5646 364.0 ~-21 .552]

ne.o 410.0 .5644 364.S 459* .5522 328.5 469.1 .5642 -.

565.0 459:: .5520

Sheet 7 of 10 Break Flow Energy Flow Time Break Flow Energy Flow

~lbLsec.} (million_ BtuLsec.) (sec.} (lb/sec.} (million Btu/sec.)

,_, .5398

.o

.5 '"*'

45'.t 45'.4 459.J

.5517

.5515

~.o 403.5

~.o 44f.7 449.6 449.4

.5396

.5395 367.0 '514 .0..,5 449.J .5393 367.S 459.1 *'"1? 605.0 44f.Z .5392

. 361.0 45'.0 .s~10 605.5 449.1 .5390 361.5 451.I .. 5509 606.0 441.f .5389 369.0 451.1 .5507 606.t 441.1 .5317 369.5 451.6 .5506 .01.0 441.7 .5315 310.0 451.4 .5504 .01.s 441.5 .5314 370.5 451.3 .5502 609.0 441.4 .5312 371.0 371.5 451.2 451.0

.5501 a.s 441.J. .5311

.5319

.5499 609.0 441.1 372.0 457.t .5497 609.S 441.0 .5371 372.5 451.1 .5496 410.0 447.f .5376 373.0 457.6 .5494 410.5 447.1 .5374 373.5 457.5 .5493 411.0 447.6 .5373 374 .. 0 457.4 .5491 411.S 447.5 .5371 374.S 457.2 .5419 412.0 447.4 .5310 375.0 457.1 .Ma 412.S 447.Z .5361 375.5 457.0 .5486 *1S.O 447.1 .5367 376.0 456.I .5484 413.5 447.0 .5365 376.S 456.7 .5483 414.0 446.9 .5363 377.0 456 .. 6 .5411 414.S 446.7 .5362 415.0 446.6 .5360

. 317.5 456.4 .5480 415.5 446.5 .5319

  • 371.0 456.3 .5471 416 .. 0 446.J .5357 371.5 456.2 .5476 416.S 446.Z .5356 379.0 456.0 .5475- 417.0 44601 .53S4 319 .. 5 455.9 .5473 380.0 455.S .5411

.s 455.6 .5470 417.5 445.f .5352

~.o 4~5.S .5461

.5 455.4 .5467 411.0 445.1 .5351

.o 455.2 .5465 411.S 445 .. 7 .5349

.sa2.5 455.1 419.0 445.6 .5348

.5463 419.5 445.4 .5346 313.0 455.0 .5462 420.0 445.J .5345 313.5 454., -~ 420.5 445.Z .5343 314.0 454. .5459 421.0 445.0 .5341 314.5 454.6 .5457 421.5 444.9 .5340 315.0 454.4 .5455 422.0 444.1 .5338 315.5 454.J .54S4 422.5 444.7 .5337 316.0 454.Z .5452 423.0 444.S .5335 316.5 454.0 .5451 423.5 444.4 .5334 317.0 453.9 .5449 424.0 444.3 .5332 317.5 453.1 .5447 424.5 444.1 .5331 388.0 453.6 .5446 425.0 444.0 .5329 388.5 453.5 .5444 425.5 443.9 .5327 389.0 453.4 .5443 426.0 443.1 .5326

~-19.5 453.3 .5441 390.0 453.1 426.5 443.6 .5324

.5439 427.0 443.5 .5323 390.5 -.53.0 .5431 427.5 443.4 .5321

,91.0 452.f .5436 421.0 .5320 443.2 J91.,5 392.0 452 .. 7 452.6 - .5435

.5433 421.5 443.1 .5318 392.5 452.S 429.0 443.0 .5317

.5431 429.5 442.9 .5315 393.0 452.3 .5430 430~0 442.7 .5313 393.5 452.Z .5428 430 .. 5 442.6 .5312 394.0 l.SZ.1 .5427 431.0 442.5 .5310 394.5 451.t .5425 431.5 442.4. .5309 395.0 451.I .5423 432.0 442.2 .5307 395~5 451.7 .5422 4~2.5 442.1 .5306 396.0 451.5 .5420 433.0 442.0 .5304 396.5 451.4 .5419 433.5 441.a .5303 391.0 451.3 .5417 ,!,.O 441.1 .5302

  • ~* . ~ 441.7 .5300 41*' .o

.s

.o J99.5 400.0 451.1 451.0 450.9 450.1 450.6 450.S

.5415

.5414

.5412

.5411

.5409

.540*

' J. (,

e35.S

.. 36.0 436.5 437.0 441.S 441.4 441.J 441.1 441.0

.5299

.5297

.5296

.5294

.5293 400.5 450.4 .5406 401.0 450.2 .5404 401.S 450.1 .5403

..oz.~ 450.0 .5401 602.S 449.1 .5400

Sheet 8 of 10 Time Break Flow Energy Flow Time Break Flow Energy Flow lb/sec.) (million Btu/sec.) _ (sec.) (lb/sec.) (million Btu/sec.)

.5 440.9 .5291 475.0 431.4 .5176 31.0 440.I .5289 475.5 431.3 .5175 431.5 440.6 .5211 476.0 431.Z .5173 439.0 440.5 .5216 476.5 431.0 .s112 439.5 440.4 .5285 417.0 430.9 .5170 440.0 440.Z .5213 440.5 440.1 .5212 441.0 440.0 .5210 ~77 .. 5 4J0el .5169 441.5 439.9 .5279 471.0 430.7 .5167 442.0 439.7 .52n 471.5 430 .. 5 .5166 442.5 439.6 .5276 479.0 430.4 .5164 443.0 439.5 .5274 479.5 430.3 .5163 443.5 439.4 .5272 480.0 430.Z .5161 444.0 439.Z .5271 480.5 430.1 .5160 444.5 439.1 .5269 411.0 429.9 .s1se 445.0 439.0 .5268 411.5 429.I .5157 445.5 438.1 .5266 412.0 429.7 .5155 446.0 431.7 .5265 W.5 429.6 .5154 446.5 431.6 .5263 413.0 429.4 .5152 447.0 431.5 .5262 413.5 429.3 .5151 447.5 431.3 .5260 414.0 429.Z .5149 441.0 431.Z .!i259 484 .. 5 429.1 .5141 441 .. 5 438.1 .5257 415.0 421.9 .5146 449.0 438.0 .5255 415.5 421.1 .5145 449.5 437.1 .5254 416.0 421.7 .5143 450.0 437.7 .5252 416.5 421.6 .5142 450.5 437.6 .5251 417.0 421.4 .5140 451.0 437.4 .5249 -87.5 421.J .5139 451.5 437.3 .5248 411.0 421 .. Z .51J7 452.0 437.Z .5246 418.5 421.1 .5136 452.5 437.1 .5245 489.0 427.9 .5134

.o 436.9 .5243 489.5 427.1 .5133

.5 436.1 .5242 490.0 427.7 .5131

.o 436.7 .5240 490.5 427.6 .5130 4.5 436.6 .5239 491.0 427.4 .5121 455.0 436.4 .5237 491.5 427.S .5127 455.5 436.3 .5236 492.0 427.2 .5125 456.0 436.2 .5234 492.5 427.1 .5124 456.5 436.1 .5233 493.0 427.0 .5122 457.0 435.9 .5231 493.5 426.I .5121 457.S 494.0 426.7 .5119 435.1 .5229 494.5 426.6 .5111 451.0 435.7 .5221 49S.O 426.5 .5116 458.S 435.6 .5226 495.5 426.3 .5115 459.0 435.4 .5225 496.0 426.Z .5113 459.5 435.3 .5223 496.5 426.1 .5112 460.0 435.2 .5222 497.0 426.0 .5110 460.S 435.1 .5220 461.0 434.9 .5219 461.S 434.1 .5217 497.5 425.1 .5109 462.0 434.7 .5216 491.0 425.7 .5107 46l.S 434.5 .5214 491.5 425.6 .5106 463.0 434 .. tt - .521J 499.0 425.5 .5104 w.s 434.3  : .5211 499.5 425.4 .5103 464.0 434.Z .5210 - 500.0 425.Z .5101 464.5 434.0 .5208 500.5 425.1 .5100 465.0 433.9 - .5207 501.0 425.0 .5098 465.5 433.1 .5205 501.5 424.9 .5097 466*0 433.7 .5204 502.0 424.7 .S09S 466.5 433.5 .5202 502.5 424.6 .S094 467.0 433.4 . .5201 503.0 424.5 .5092 467.5 433.3 .5199 503.5 424.4 .5091 461.0 433.Z .5197 504.0 424.? .5089 461.5 433.0 .5196 504.5 424.1 .soaa 469.0 432.9 .5194 505.0 424.0 .5086 469.S 432.1 .5193 505.5 423.9 .5085

~~.5.o 432.7 .5191 506.0 423.1 .5083 432.5 .5190 506.5 423.6 .5082 432.4 .5111 507.0 423.5 .5080 432.3 .5117 507.5 423.4 .5079 472.0 432.2 .5185 508.0 423.3 .5077 472.5 432.0 .5184 509.5 423.1 .5076 473.0 431.9 .5112 509.0 423.0 .5074 473.5 431.1 .5111 509.5 422.9 .5073 474.0 431.7 .5119 510.0 422.1 .5071 474.5 431.5 .5171 510.i 422.6 .5070

Sheet 1 of 10 TABLE 15. 4-30

~ll.. AT Hen-~

MASS AND ENERGY RELEASES FROM A 1. 4 FT2 de 1 AT 78 PERCEIH POWER (Including Entrained Moisture Effects)

Time Break Fl ow Energy Flow (sec.) ( 1b/sec.) (million Btu/sec.)

PROPRIETARY

  • RefeF te (5Q Jll) "A~~lieatieA fe F Wi tl:ll:lel eiRg" R, b. Mittl te Ola" 9. Pa11 Novembe1 20, 1978

-af4fJ-NRb Ai;ii;iFeval letteP, QlaA Q, PaFF ta Wiese~aAR JarnJa 'fY 22, 1979

  • SGS-UFSAR Revision 0 July 22, 1982

Sheet 2 of 10 Time Break Flow Energy Flow Time Break Flow Energy Flow

~

.) (lb/sec.) (million Btu/sec.) (sec.) (lb/sec.) (million Btu/sec.)

11899 14.179 37.50 774.I *

  • 000
  • 14 84 38.00 773.6
  • 9 ~ 13 2.552 14945.
  • 9 38.SO 772.3 .929~

3 052 . 14917. 14 .530. 39.00 770.8 *:~~

39

  • 50 769
  • 2 0 3 °552
  • 14517
  • 13.977 6 40.00 767 .5
  • 92LS
  • 4.052 14279. 13. 07 40.50 . 765.8 *:~~~

4.552 13959. 13.224 41.00 764.0 :9181 5.552 13208. 12.469  :}:l,8 ~~=~ .915a 6.552 12495.. 11.753 42.SO 751.2 *:~~~

7

  • 552 113 er 11. 104 43.00 756.2
  • _.. 7 l.O. 43 50 754 2 -~

8.552 11252. 10.527 44:00 1sz:1 .9063 9.552 10656.

9658 9.986 9.197 44.50 45.00 750.1 741.1

  • 8ff
  • -9 11 o 052 o 8 958 45.50 746 0 0 oVYV 11.552 9357.
  • 46.00 744.0 .8964 11
  • 602 4422
  • 3 .028 46.50 47.00 742.o 740.0
  • !?'°
  • ., ... 15 47.50 41.00 737.9 736.0
  • l

.1842 41.50 134.0

  • 8811 12.00 41Z1. 49.00 732.0 :1794 2.760 49.50 730.0 8770 3921.

.~~=~

12.50

, ... 00

. 14.50 3717

  • 3518.

- 3332.

3158

  • 2.667 2.569 2.476 2.387 50.00 50.50 51.00 51.50 121.0 726.0 724.1 122.1
  • ,,46
  • 1122

.8698

.8674 2.3()2 52.00 720.1 .1650 2994.

z.221 52.SO 718.2 *1627 2840. 2.143 53.00 716.J .8604 2696. 2.,070 53.so 714.4 *1581 2515. 1 .. 995 54.oo 112.s *

  • oo 2311
  • 1.895 54.so 110.6 *8558 5s.oo 1oe.1 8535
  • 1512 SS.SO 706.9 *1490 17.50 2131. 1.812 56.00 705. 1 .1468 18.00 1971. 1.737 56.50 703.3 .1446 18.50 1129. 1.661 57 .00 701.S :1424 19.00 1701. 1.605 19.50 1587. 1.547 57.50 699.7 .1403 20.00 1483. 1.493 58.00 697.9 .1381 20.50 1389. 1.443 58.50 696.2 .1360 21 .oo 1304. 1.396 59.00 694.5 .1339 21.50 1226. 1.352 59.50 692.7 .8311 22.00 1154.

1089.

1.310 1.271 60.00 691.0 .am 22.50 60.50 689.4 .1277 23.00 1021. 1.235 61.00 687.7 .1257 23.50 1005. 1.210 61.50 686.1 .1237 24.00 986.0 1.187 62.00 6&4.4 .8217 24.50 968.0 1.165 62.50 6&2.1 .1198 25.00 9S0.7 1.144 63.00 6t1.2 .1179 25.50 934.2 1.124 63.50 679.7 .1160 26.00 911.3 1. 105 64.00 678.1 .1141 26.50 903.1 1.087 64.SO 676.6 .11zz 27.00 888.5 1.069 65.00 675.1 .810lt

. 27.SO 174.5 1.052 65.50 673.6 .1086 28.00 161.0 1.036 66.00 672.1 .8068 2e.50* 148.0 1.ozo 66.50 670.6 .1050 29.00 835.5 1.oos 67.00 669.2 .8033 29.50 123.5 .9902 67.50 667.7 .8015 30.00 111.9 .9762 68.00 666.] .7998 30.SO eoo.a .9627 68.50 664.9 .1'911 31 .oo. 790.0 .9496 69.00 663.5 .7964 779.5 .9369 69.50 .7947 769.3 .9247 662.1 70.00 660.8 .7931 777.2 .9342 70.50 659.4 *.7914 778.0 .9352 71.00 658.1 .7198 1.50 778.5 .9358 71.50 656.1 .7882

.,,4.00 778.8 .9361 72.00 655.5 .7166 34.50 778.I .9361 72.50 654.3 .7152 35.00 778.6 .9358 73.00 653.0 .7136 35.SO 778.2 .9353 73.50 651.7 .7821 36.00 777.6 .9346 74.00 650.5 .7806 36.-50 776.I .9337 74.50 ~9-> .7791 37.00 775.9 .9326

Sheet 3 of 10 Break Flow Energy Flow Time Break Flow Energy Flow lb/sec.) {million Btu/sec.} {sec.} {lb/sec.) {million Btu/sec.)

15.00 75.50 i4i:o 646 .. I

.7716

.7761 111.0 111.5 595.Z 594.1

.7136

.7131 76.00 .645.6 .17.47 112 .. 0 594.5 .7127 76.50 644.4 .n33 112.S 594.1 .7123 77.00 643.3 .77l~ 113.0 593.7 .7118 113.,S 593.4 .7114 114.0 593.0 .,7109 77.50 642.1 .7704 114.5 592.7 .7105 71.00 641.0 .7690 115.0 592.3 .7101 71.50 639.1 .7677 115 .. 5 592.0 .7097 79.00 638.7 .7663 116.0 591.6 .7092 79.50 637.6 .7650 116.5 591.3 .70M 10.00 636.5 .7637 111.0 590.9 .7084 10.50 635.5 .7624 11.00 634.4 .7611 11.50 633.3 .7598 117 .5 590.6 .7080 12.00 632.3 .7586 118.0 590.3 .,7076 12.50 631.3 .7573 118.5 589.9 .7072 13.00 630.3 .7561 119.0 589.6 .7068 13.50 6l9.3 .7549 119.5 589.3 84.00 628.3 .7537 .7064 14.50 .7526 120.0 518.9 .7060 627.4 120.S 588.6 .70S6 IS.00 626.4* .7514 121 .o 588.3 .70S2 15.SO 625.5 .7503 121 .5 588.0 .700

. 16.00 624.6 .7492 122.0 517 .. 7 .7044 86.50 623.7 .* 7481 122.5 587.3 17.00 622.8 .7470 .7041 17.50 .7460 123.0 587 .. 0 .7037 N.00 621.9 621.1 .7~SO

.7440 123.S 124.0 586 .. 7 586.4

.7033

.7029 18.50 620 .. :S 124.S 586.1 .7026 619.4 .7430 41

. .7420 125.0 585 .. 1 .7022 618.6 125.5 585.5 .7018 617.9 .7410 126.0 58~.2 .7015

.7401

, .oo0 617.1 616.3 .7392 126.5 127.0 584.9 584.6

.7011

.7007 11 .so 615.6 .7383 127 .5 584.3 .7004 92.00 614.9 .7374 128.0 584.0 .7000 92.50 614.2 .7366 128.5 583.7 .6997 93.00 613.S .7357 129.0 583.4 .6993 93.50 612.8 .7349 129.5 583.1 .6990 94.00 612.1 .7341 130.0 582.9 .6986 94.SO 611.5 .. 7333 *130.s 582.6 .6983 95.00. 610.8 .7325 131.0 512.3 95.50 .7311 .6979 610.2 131 .s 582.0 .6976 96.00 609.6 .7310 132.0 581.7 .6972 96.50 609.0 .730Z 132.S 581.4 .6969 97.00 608.4 .. 7295 133.0 581.2 .6966 133.5 580.9 .6962 134.0 sao.6 .~9 97.50 607.1 .7218 134.5 580.3 .6955 98.00 607.2 .7211 135.0 580.1 .6952 98.50 6()6.6 .1274 135.S 579.8 .6949 99.00 99.SO 606.1 60S.5

.7267

.7261 136.0 136.5 579.5 579.2

.6946

.6942 100.0 60S.O .7254 137.0 579.0 .6939 100.S '°"*4 .7248 101 .o 603.9 .7241 101.5 .7235 137.5 571.7 .6936 603.4 138.0 578.4 .6933 102.0 602.9 .7229 102.5 602.4 .7223 138.5 571.2 .6929 103;.0 .7217 139.0 577.9 .6926 601.9 139.S 577.6 .6923 103.5 601.4 *.1211 577.,

104.0 140.0 .6920 601.0 .7206

--5 104.5 140.5 577.1 .6916 600.5 .7200 141.0 576.9 .6913 105.0 600.1 .7195 141.5 599.6 .7190 576.6 .6910

.o 142.0 576.S .6907 599.2 .7114 142.5 576.1 .6904

.5 598.8 .7179 143.0 575.1

. .o 59&.4 .7174 143.5 575.6

.6901 07.5 598.0 .7169 . .6898 108.0 144.0 575.3 .689S 597.6 .7164 144.5 575.0 .6891 108.5 597.2 .7159 109.0 145.0 574.I .6888 109.5 596.I .7155 145.5 574.5 .6&85 110.0 596.4 .7150 146.0 574.J .6182 110.5 596.0 .7145 146.5 574.0 .6879 595.6 .7141 147.0 57S.I .6876 147.S 573.$ a617J

Sheet 4 of 10 Break Flow Energy Flow Time Break Flow Energy Flow lb/sec.) {million Btulsec.} {sec.} {lblsec.) {million Btu/sec.)

.o 573.:S 573.0

.6170 185.5 556.3 556.1

.6664

.6661

-.-.5 .6167 186.0 149.0 572.I .6164 186.S 555.1 .6659 149.5 572.5 .6161 187.0 555.6 .6656 150.0 572.J .6158 187.5 555.4 .6654 150.5 572.1 .6155 188.0 555.2 .6651 151 .. 0 571.I .6152 188.5 555.0 .6648 151 .. 5 571.6 .6849 18900 554.1 .6646 152.0 571 .. J .6146 189.5 554.6 .,6643 152.S 571.1 .6843 190.0 554.4 .6641 153.0 570.8 .6841 190.5 554.Z .6638 153.5 570.6 .6138 191.0 553.9 .6636 154.0 570 .. 4 .6135 191 .5 553.7 .6633 154.5 570.1 .6132 192.0 553.5 .6631 155.0 569.9 .6829 192.5 553.3 .6621 155.5 569.7 .6126 19300 553.1 .662S 156.0 569.4 .6123* 193.5 552.9 .6623 156.5 569.2 .6120 194.0 552.7 .6620 157.0 561.9 .6117 194.5 552.5 .6611 195.0 552.3 .6615 157.5 561.7 195.5 552.1 .6613 158.0 .6115 196.0 551.9 .6610 561.5 .6112 196.5 551.6 .6608 158.5 561.Z .6809 197.0 551.4 .6605 159.0 561.0 .6806 159.5 567.1 .6803 160.0 567.5 .6800 160.5 567.J .6798 197.5 551.Z .6603 161.0 567.1 .6795 199.0 551.0 .6600 161.5 566.9 .. 6792 199.5 550.1 .6598 162.0 566.6 199.0 550.6 162.5 .6719 199.5 550.4 .,6S9S 566.4 .6717 .6593

.a* 566.Z .6714 200.0 550.2 .6590

.5 565.9 .6711 200.5 550.0 .6588

.o 565.7 .6771 201.0 201.5 549.1 .6585 64.5 565.o5 .6775 549.6 .6513 165.0 565.3 .6773 202.0 549.4 .6580 165.5 565.0 .6770 202.5 549.Z .6571 166.0 564.8 .6767 203.0 549.0 .6575 166.5 564.6 .6765 203.5 54'.7 .6573 167.0 564.4 .6762 204.0 541.5 .6570 167.5 564.1 .6759 204.5 544.3 .6561 161.0 563.9 .6756 205.0 541.1 .6565 161.5 .. 563.7 .67S4 205.5 547.9 .6563 169.0 563.5 .6751 206.0 547.7 .6560 169.5 563.Z .6741 206.5 547.5 .6558 170.0 563.0 .6746 207.0 547.J .6555 170.S 562.1 .6743 207.5 547.1 .6553 171.0 562.6 .6740 2oe.o 546.9 .6550 171.5 562.J .6737 208.5 546.7 .6541 172.0 562.1 .6735 209.0 546.5 .6545 172.5 561.9 .6132 209.5 546.3 .6543 173.0 561.7 .6729 210.0 546.1 .6540 17305 561.5 .6727 210 .. 5 545.9 .6538 174.0 174.S 561.Z - .6724 211.0 211.5 545.7 545.S .6536 561.0  : .6721 . _212.0 .6533 175.0 560.8 .6719 545.3 .6531 175.5 560.6 -.6716 212.5 545.1 .6528 176.0 560.4 .6713 213.0 544.9 .6526 176.5 560.Z .6711 213.5 544.7 .6523 177.0 559.9 214.0 544.S .6521

.6108 214.5 544.3 177.5 215.0 544.1 .6518 559.7 .'706 215.5 .6516 179.0 559.5 .6703 543.9 .6514 179.5 .6700 216.0 543.7 .. 6511 179.0 559.3 216.5 543.5 559.1 .6698 217.0 .6509 179.5 558.1 .6695 543.3 .6506 558.6 .669Z 558.4 .6690 551.2 .6617

.5 558.0 .6615 12.0 557.1 .6612

.e2.5 557.6 .6679 19J.O 557.3 .6677 19J.S 557.1 .6674 194.0 556.9 .6672 184.5 556.7 .6669 1es.o 556.S .6666

Sheet 5 of 10 Break Flow Energy Flow Time Break Flow Energy Flow lb sec. mi 11 ion Btu /sec. sec. lb/sec. million Btu/sec. 217.5 543.1 .6504 c53.5 5Z9.0 .6334 218.0 542.9 .6501 254.0 521.1 .6331 218.5 542.7 .6499 C?54.5 521.6 .6329 219.0 542.5 .6496 2~5.0 528.4 .6327 219.5 542.3 .6494 255.5 528.3 .6324 220.0 542.1 .6492 256.0 sza.1 .6322 220.5 541.~ co6489 256.5 527.9 .6320 221.0 541 .. 7 .6487 257.0 527.7 .6317 221.5 541.5 .64&4 222.0 541.3 .64&2 222.5 541.1 .6480 257.5 527.5 .6315 223.0 54().9 .6477 Z5a.o 527.J .6313 223.5 540.7 .6475 258.5 527.1 .6311 224.0 540.5 .6472 259.0 526.9 .6308 224.5 540 .. J .6470 259.5 526.7 .6306 225.0 540.1 .6467 260.0 526.6 .6304 225.5 539.9 .6465 260.5 526.4 .* 6301 226.0 539.7 .6463 261.0 526.Z .6299 226.5 539.5 .6460 261.5 526.0 .6297 227.0 539.3 .6453 262.0 525.1 .6295 227.5 539.1 .. 6455 262.5 525.6 .6292 228.0 538.9 .6453 263.0 525.4 .6290 228.5 229.0 538.7 538.5

.6451

.6448 263.5 264.0 szs.z .6288

..6446 525.1 .62&6 229.5 538.3 264 .5 524.9 .6l83

. 230.0 538.1 .6444 265.0 524.7 .6281 230.5 231.0 231.5 537.9 537.7 537.S

.6441

.6439

  • 6436 265.5 266.0 524.5 524.3

.6279

.6277 .

l~.5 524.1 .6274

, 0 537.3 .6434 2t-7 .o 523.9 537.1 .6432 .6272 267.5 523.I .6270 536.9 .6429 263.0 523.6 .6268

.5 536.7 .6427 268.5 523.4 .6265

'4.0 536.5 .6425 2~?.0 523.Z .6263

-~. 5 536.3 .6422 Ct~ .5 523.0 .6261 d~.o 536. 1 .6420 270.0 522.I .6259 23S.5 535.9 .6417 270.5 522.6 .62S6 236.0 535.7 .6415 271 .o 522.5 .6254 236.5 535.6 .6413 271.5 522.J .6252 237.0 535.4 .. 6410 272.0 522.1 .6250 272.5 521.9 .6247 535.2 273.0 521.7 .6245 237.S 535.0 .6408 273.5 521.5 .6243 233.0 .6406 274.0 521.3 .6241 233. 5 534.8 .6403 274.5 534.6 .6401 521.2 .6238 239.0 534.4 275.0 521.0 .6236 239.5 .6399 275.5 520.8 .623' 240.0 534.2 .6396 534.0 276.0 520 .. 6 .623' 240.5 .6394 276.5 520.4 .623(

241.0 533.8 .6392 533.6 277.0 520.2 .622i 241.5 533.4 .6389 21.2.0 .6387 242.5 533.2 .6385 277.5 533.0 520. 1 .6Z25 243.0 532.9 .6382 278.0 519.9 243.5 .6380 278.5 519.7 .6223 244.0 532.7 .6378 279.0 .6221 532.S 519.5 .6218 244.5 .6375 279.5 519.3 245.0 532.3 .6373 280.0 .6216 532.1 519.2 .6214 245.5 .6371 280.5 519.0 246.0 531.9 .6361 211.0 .6212 531.7 518.8 .6210 246.5 531.5 .6366 281.5 518.6 247.0 .6364 282.0 518.5 .6209

. 247.5 531.3 .6361 282.5 .6206 531.1 .6359 518.3 .6204 248.0 530.9 283.0 511.1 241.5 .6357 283.5 517.9 .6202 530.7 .6354 284.0 .6199 530.S 517.1 .6197

.6352 284.5 517.6 530.4 .6350 28s.o .619S 530.Z 517.4 .6193

.5 .6347 285.5 517.2 i .O 530.0 .6345 286.0 .6191

_.,,1.s 529.1 517.1 .6189

.6343 286.5 516.9 252.0 529.6 .6340 287.0 .6186 252.5 529.4 516.7 .06184

.6331 287.5 516.5 253.0 ~~-~ .6336 288.0 516.3 .6182 288.S 516.2 .6180 289.0 516.0 .6171 289.5 515.1 ....

.6176 ., ..

Sheet 6 of 10 Break Flow Energy Flow nme Break Flow Energy Flow lb/sec. mil lion Btu sec. sec. lb/sec. million Btu/sec.)

l90.U 515.6 .6171 326.0 503.0 .6018

. 290.,S 515.4 .6169 3Z6.S 50Z.I .6016 291.0 515.3 .6167 327.0 502.6 .6014 291.s 515.1 .6165 3Z7.S 502.4 .6012

  • 292.0 514.9 .6163 328.0 502.3 .6010 292.S 514.7 .6160 328.S 502.1 .6007 293.0 514.5 .6158 32900 501.9 .6005 293.5 514.4 .6156 329.S 501.1 .6003 294.0 514.2 .6154 330.0 501.6 .6001 294.S 514.0 .6152 330.S 501.4 .5999 m.o 513.8 513.6

.6149 331.0 501.3 .5997 295.S .6147 331.S 501.1 .599S Z96.0 513.4 .6145 33Z.O 500.9 .5993

  • Z96.5 513.3 .6143 332.S 500.7 .5991 297.0 513. 1 .6140 333.0 500.6 .5989 333.S 500.4 .5967 334.0 500.2 .5995 297 .s 512.9 .6138 334.5 500.1 .5993 298.0 512.7 .6136 335.0 499.9 .5911 298.S 512.5
  • 6134 335.5 499.7 .5979.

299.0 512.3 .6132 336.0 499.6 .5977 299.5 512.2 .6129 336.5 499.4 .5975 300.0 512.0 .6127 337.0 499.2 .5973 300.5 511.I .6125 I 301.0 511.6 .6123 301.5 511.4 .6121 5~1.3 .6111 Jp .5 499.1 .5971 302.0 511.1 3:~. Q 491.9 .5969 302.S .6116 03.0 510.9

  • 6114 336.5 498.1 .5967 *

.5 510.7 .6112 33~.o 499.6 .5965

.o . 5i0.6 .6110 33~. s 491.4 .5963 510.4 .61oe 31.0.0 499.Z .5960

.5 510.2 l"L~ 491.1 .S9S&

'05.0 .6106 JS.5 510.0 .6103 341.0 497.9 .S9S6

..106.0 509.9 .6101 341.5 497.7 .S9S4 306.5 509.7 .6099 342.0 497oS .S9S2 307.0 5CYI. S .6'197 342.5 497.4 .59SO 307.5 5~.3 .609S 343.0 497.2 .5948 308.0 s~.z .6'193 343.5 497.0 .5946 3oe.s 509.0 .6'191 344.0 496.9 .5944 309.0 508.8 .6089 344.5 496.7 .5942 309.S 508.6 .6087 345.0 496.5 .5940 310.0 5CMS.5 .6085 345.5 496.4 .5938 310.5 506.3 .6082 346.0 496.Z .5936 311 .o 5oe.1 .6080 346.5 496.0 .5934 3,, .s 507.9 .6078 347.0 495.9 .5932 312~0 507.8 .6076 347.5 495.7 .5930 312.5 507.6 .6074 348.0 495.5 .5928 313.0 507.4 .6072 34!.5 495.4 .5926 313.5 . 507 .3 .6070 349.0 49S.2 .5924 314.0 507.1 .6068 349.5 49S.O .5922 3l4.5 506.9 .6066 350.0 494.,9 .5920 315.0 506.7 .6064 350.5 494.7 .5911 315.5 506.6 .6062 351 .o 494.5 .5916 316.0 506.4 .6060 351.5 494.4 .5914 316.5 506.2 .6058 352.0 49".2 .5912 317.0 506., .6056 352.5 494.0 .5910 353.0 493.9 .5909 353.5 493.7 .5906 3H.5 505.9 .6053 354.0 493.6 .5904 505.7 .6051. 354.5 493.4 .5902 311.0 .6049 355.0 318.5 SOS.6 493.2 .5900 319.0 505.4 .6047 355.5 493.1 .5898 319.S sos.z .6045

.6043 356.0 356.5 492.9 .S896 o.o 505.0 504.9 .6041 357.0 492.7 492.6

.5894

.5192

.5

.a. 504.7 .60'9 -*

.s 504.5 .6037 u.o 504.4 .6035

,22.S 504.Z .6033 323.0 504.0 .6031 323.S 503.1 .6028 324.0 503.7 .6026 324.5 503.5 .6024 325.0 503.J .6022 325.S 503.1 .6020

Sheet 7 of 10 Time Break Flow Energy Flow Time Break Flow Energy Flow lb/sec.} {million Btulsec.} {sec* l {lb/ ~ec.} {million Btu/sec.)

. 39~.o 478.5 ~5722

.s 492.4 .5890 39S.5 476.I .5700 351.0 492.2 .SW 396.0 474.8 351.5 492.1 .Sl86 .S6'7

. 491 .* 9 39o.5 472.7 .S651 359.0 .5884 397.0 470.5 .S62S 359.5 491.7 491.6

.seaz 360.0 .HaO 360.5 491.4 .5171 361 .o 491.2 .5176 397.5 468 .. l .5591' 361.5 491.1 .5174 398.0 465.1 .5568 362.0 490.9 .5172 398.S 463.3 .5537 362.5 490.1 .5170 399.0 460.7 .5505 363.0 490.6 .5168 . 399.5 45'.0 .5473 363.5 490.4 .5166 . 400.0 455.1 .5438 364.0 490.3 .5164 400.5 452 .. Z .S403 364.5 490.1 .S862 401.0 449.Z .5367 365.0 419.9 .5860 401.5 446.2 .5330 365.5 419.1 .5158 402.0 443.0 .5292 36600 489.6 .51S6 402.5 439.1 .5252 366.5 419.4 .5154 403.0 436.5 .5213 367.0 489.3 .5152 403.5 433.2 '.5172 367.5 489.1 .5150 404.0 429.7 .5131 368.0 419.0 .5&44 404.5 426.J 422.7

.soea 368.5 488.8 .5146 405.0 .5046 369.0 418.6 .5144 405.5 419.1 .5002 369.5 416.S .5142 406.0 415.5 .49SI 370.0 418.! .Sl40 406.S 411.I .4913

, 370.S 418.1 .5138 407.0 408.1 .4868 371.0 418.0 .5136 407.5 404.J .4822 371 .5 . 487.8

  • 5134 408.0 400.4 .4776 *

. 372.0 487.7 .. 5832 408.5 J96.S .4721

.5 487.5 .5130 409.0 J92.6 .4681 0 417.J .5129 409.5 311.6 .4633 5 487.2 .5127 410.0 314.6 .45&4

.o 487.0 .5125 410.5 JI0.6 .4S35 14.5 416.1 .5823 411.0 376.5 .4486 fS.O 416.7 .5121 411.5 372.4 .4436 375.5 416.5 .5119 412.0 368.3 .4386 376.0 .a6.4 .5817 412.5 364.1 .4336 376.5 I ~.2 .5815 413.0 359.9 .4216 377.0

  • i&.O .5813 413.5 41400 355.1 351.6

.4235

.4185 414.S 347.4 .4134 377. 5 485.9 .5811 415.0 343.Z .4084 371.0 485.6 .5aoa 415.5 339.1 .4033 378.5 485.4 .5106 416.0 334.9 .3993 379.0 485.3 .5804 416.5 330.8 .3933 379.S 485.1 .5802 417.0 326.6 .3884 380.0 485.0 .5800 380.S 484.8 .5798 381 .o 484.7 .5796 417.S .3"835 381.5 484.5 .5794 322.6 484.3 418.0 318.5 .3716 332.0 .5792 418.S 31406 .37!9 332.5 484.2 .5790 419.0 .3690 333.0 484.0 - .5788 310.6 483.9 419.S )06.7 .3644 333.5  : .5787 420.0 )02.9 .3599 334.0 483.7 .5785 420.5 .* lSSZ 334.5 483.5 .5783 299.Z 483.4 421.0 295.5 .3508 335.0 .5781 421.5 291.I .3463

. 335.5 483.2 .5779 422.0 .3421 4U.1 .5777 218.2 366.0.

482.9 422.5 284.9 .3379 336.5 .5775 423.0 ll1.4 .3338 337.0 482.8 .5773 423.5 278.2 .)299 387.5 482.6 .5771 424.0 .3261 388.0 442.4 .5769 424.5 275.0 271.9 .3224

-5 388.5 482.3 .5767 42500 .31M 389.0 482.1 .5765 425.5 268.9 482.0 266.0 .3153

.5763 426.0 Z63.S .3120 0 481.8 .5762 426.5 .3088 5 481.6 .5760 427.0 260.6

, .o 481.5 .5758 427.5 zsa.o .3057

.3027

,, .5 481.3 .57S6 25S.6 481.2 428.0 253.2 -~

.592.0 .5754 428.5 ZS0.9 .2971 392.5 441.0 .5752 429.0 .2945 393.0 440.a .5750 248.I 480.7 429.5 246.7 .29Z1 393.5 .5748 430.0 244.7 .2897 394.0 440.5 .5746 430.5 .2874 394.5 479.9 .5738 242.9

Sheet 8 of 10 Breo:k Flow Energy Flow Time Break Flow Energy Flow lb sec. mi 11 ion Btu sec. sec *. lb sec. million Btu/sec.)

4 1.0 241.1 .2153 46700 Z12.4 .zsoe ZJ9.4 .2133 467.S 212.4 .2508 431.5 468.0 .lsoe 432.0 Z37.I .2113 21Z.4 .lSOS 432.5 Z36.J .2795 468.S 212.J 234.I .2778 469.0 212.3 .2507 433.0 469.5 .2507 433.S 233.,5 .2761 212.3 .2507 4J4.0 232.2 .2746 470.0 21Z.3 231.0 .2731 470c5 Z12o3 .2S06 4J4.5 471.0 .2506 435c0 229.I .2111 212.2 .2S06 43S.5 228.7 .2705 471.5 212.2 436.0 227.7 .2692 472.0 z12.2 .2506 Zl6.8 .2681 472.5 212.2 .2S06 436.5 473.0 .2SOS 437.0 22S.9 .2670 473.5 211.z .2505 474.0 212.1 .2SOS 212.1 .2sos 437.5 zzs.o .2660 474.5 2,2.1

.2650 475.,0 212.1 .250S 431.0 224.2 47S.5 .2504 431.5 223.5 .2641 476.0 212.1 .2S04 439.0 222.1 .2633 476.5 212. 1 .2504 439.S 222.1 .2625 477.0 212.0 .lS04 440.0 221.s .2617 212.9 440.S 220.9 .2610 441.0 220.4 .2604 477.5 212.0 .2504 441.5 219.S .2598 478.0 212.0 .2504

. 442.0 219.4 .2592 478.5 212.0 .2503 442.5 211.9 .2517 479.0 212.0 .2503 443.0 211.5 .2sa2 479.5 212.0 .2503 443.5 444.0 218.1 217.8

.2577

.2572 480.0 480.S 212.0 212.0

.2503

  • 2503 .

... 5 !17.4 .2568 481.0 211.9 .2SOJ

0. 217.1 .2565 481.5 211.9 .2503 5 216.I .2561 482.0 211 .9 .2502

.o 216.5 .2558

.25S4 482.5 211 .9 *.2s02

\46.5 216.2 483.0 211.9 .2502 47.0 216.0 .2551 483.5 211.9 .2502 447.S Z15.8 .2549 484.0 211 .9 .2502 448.0 21s.s .ZS46 484.5 211.9 .2502 448.5 215.J .2544 415.0 211 .9 .2502 449.0 21s.2 .ZS41 485.5 211.9 .2502 449.5 215.0 .2539 486.0 211.a .2502 450.0 214.8 .2537 486.5 211.a .2502 450.S 214.7 .2535 417.0 211.a .2501 451.0 214.5 .2534 417.5 211.a .. 2501 451.5 214.4 .zs:sz 483.0 211.8 .2501 452.0 214.2 .2530 488.S 211.a .2so1 452.S 214.1 .2529 419.0 211.1 .2501 453.0 214.0 .2527 419.5 211.a .2501 453.5 213.9 .2526 491).0 211.1 .2501 454.0 213.8 .2525 490.5 211.1 .2501 454.5 213.7 .2524 491.0 211.a .2501 455.0 455.5 213.6 .2523

.2522 491.5 211.a .2soi 213.5 492.0 211.a .2501 4S6.0 213.4 .. 2521 492.5 211 ** .2501 456.5 213.4 .2520 493.0 211.a .2so1 457.0 213.3 .ZS19 493.5 211.7 .2500 494.0 211.1 ~2500 457.5 213.2 .2518 494.S 211.1 .2500 458.0 213.2 02517 495.0 211.1 .2500 458.5 Z13.1 .. 2511 495.5 211.1 .2500 459.0 Z13.0 .2516 496.0 211.7 .2500 459.5 .2515 ~96.5 211.1 .2500 Z13.0 491.0 211.7 460.0 212.9 .2515 .2soo 460.5 212.9 .2514 461.0 212.1 .2513 461.5 212.1 .2513 41 212.7 .2512 212.7 .2512 212.7 .2511 212.6 .2511

.>4.0 212.6 .zs11

~.5 212.6 .2S10 465.0 212.5 .zs10 465.5 212.5 .2509 466.0 212.5 .2509 466.5 2,2.4 -~

Sheet 9 of 10 Time Break Flow Energy Flow Time Break Flow Energy Flow

) (lb/sec.) (million Btu/sec.) (sec.) (lb/sec.) (million Btu/sec.)

.5 Z11.7 .2500 533.0 z11.s .Z491 1.0 211.7 .2500 533.S Z11.5 .Z491 491.5 Z11.7 .2500 534.0 Z11.S .Z491 499.0 . Z11.7 .Z500 534.5 211.s .Z491 499.5 211.7 .zsoo 535.0 211.s .Z498 500.0 Z11.7 .2500 535.5 211.s .2491 500.5 211.7 .zsoo 536.0 211.s .2491 501.0 Z11.7 .zsoo 536.5 211.s .. 2499 501.5 Z11.7 .zsoo 537.0 211.s .Z499 502.0 211.7 .2500 502.5 Z11.7 .2499 503.0 211.7 .2499 5]7c5 211.5 .2499 503.5 Z11.7 .2499 5ll.O 211.5 e2498 504.0 Z11.7 .2499 5ll.5 211.5 .249t 504.5 211.7 .2499 539.0 211.5 .2491 50S.O Z11.7 .2499 559e5 211.5 .2498 505.5 211.6 .2499 540.0 z11.s .2491 506~0 Z11.6 .2499 540.5 211.5 .2498 506.5 211.6 .2499 541.0 211.5 .Z491 507.0 211.6 .2499 541.,5 z11.s .2491 507.5 Z11.6 .Z499 542.0 211.s .Z498 508.0 Z11.6 .Z499 542.5 211.s .2498 508.5 Z11.6 .2499 543.0 211.s .2499 509.0 211.6 .2499 543.5 211.s .2498 509.5 211.6 .2499 544.0 211.s .2491 510.0 211.6 .2499 544.,5 211.5. .2491 510.5 211.6 .2499 545.0 211.5 .2491 511.0 211.6 .2499 545.5 211.s .2491 511.5 211.6 .2499 546 .. 0 21105 .2491

--0

- 512.0 211.6 .2499 5'16.5 211.5 .2498

  • 512.5 Z11.6 .2499 547 .. 0 211 .. 5 .Z491 211.6 .2499 547.5 211.5 .2491

.5 211.6 .2499 541.0 211.5 .2499

.o 211.6 .2499 548.5 211.s .2491

.5 211.6 .2499 549.0 211.s .2491 115.0 211 .. 6 .2499 549.5 211.5 .2491

15.5. 211.6 .2499 550.0 Z11.5 .2498 516.0 211.6 .2499 550.5 211 .s .2499 516.5 211.6 .2499 551.0 Z11.5 .2491 517.0 211.6 .2499 551.5 211 .s .2499 552.0 Z11 .5 .Z491 552.5 211.s .Z491 517.5 211.6 .2499 553.0 Z11.5 .2491 511.0 211 .6 .2491 553.5 211.5 .Z491 511.5 211.6 .2491 554.0 211.5 .2491 519.0 211.6 .2498 554.5 211.5 .2491 519.5 Z11.6 .2491 555.0 211.5 .2491 520.0 211.6 .2498 555.5 211.5 .2491 520.5 211.6 .2491 556.0 211 .5 .Z498 521 .o 211.6 .2491 556.5 Z11.5 .2491 521.5 211.6 .2491 557.0 211.5 .2491 522.0 211.6 .2491 522.5 211.6 .2491 Sl3.0 523.5 211.6 211.6

.2496

.2491 557.5 211 .s .2498 Z11.6 551.0 z11.s .2491 524.0 .2491 551.S 211.s .2 .. 9&

524.5 211.6 .2491 559.0 .2491 525.0 Z11.6 .2491 z11.s 211.6 559.5 211.5 .2491 525.5 .2491 560.0 211.s .2498 526.0 211.6 .2491 560.5 211.6 .2491 211.s .2491 526.S 211.6 561.0 211.5 .2491 527.0 .2491 561.5 211.5 .2498 527.5 211.6 .2491 562.0 .2491 528.0 211.6 .2491 Z11.5 211.6 562.5 211.s .2491 521.5 .2491 563 .. 0 Z't1 .5 .2491 529 .. 0 211.6 .2499 563.5 .2491 211.6 .2498 211.s ti~.o 211.6 564.0 211.s .2491

.2499 564.5 z11.s .2498 211.6 .2491 565.0 211.6 .2499 211.5 .2491 211.6 565.5 211.s .2491

.n.5 .2498 566.0 211.s .2498

>32.0 211.6 .2491 566.5 53~.~ 211.5 .2491 - 211.5 .2491

Sheet 10 o.f 10 Time Break Flow Energy Flow Time Break Flow Energy Flow lb/sec.) (million Btu/sec.) (sec.) (lb/sec.) _(million Btu/sec.)

.u 111.s z11.s

.Z491

.Z498 211.5 .2497 567.5 597.5 211.5 .2497 568.0 Z11.5 .Z491 598.0 21105 .2497 568.5

  • Z11 .5 .Z498 598.5 211.5 .2497 S69.0 z11.s .Z498 599.0 211.5 .2497 S69.5 211.s .2498 599.5 211.5 .2497 570.0 211.s .2498 600.0 570.5 211.s .2499 571QO 211 .. s .Z498 s11.s Z11 .5 .2498 57Z.0 211.s .2499 572.5 tn .s .2499 511.0 211.s .2498 573.5 2'11 .s .2499 574.0 211.s .2498 574.5 211.s .2499 575.0 211.s .2499 575.5 211.s .2499 576.0 211.5 .2498 576.5 211 .s .2499 577.0 211.s .2498 211.5 .2498 577 .5 211.s .2497 578.0 211.s .2497 578.5 c*o 211.5 .2491 579.0 Z-11 .5 .2497 579.5 211.5 .2497 211~5 .2497 0.5" 211.5 .2497

.o 211.s .2497 1e5 I 211 .5 .2497 582.* 0 211.s 02497 582.5 211.s 02497 583.0 211.s .2497 583.5 211.s .2497 584.0 . 211 .s .2497 584.5 211.s .2497 585.0 211.s .2497 585.5 211.5 .2497 586.0 211.s .2497 586.5 211.s .2497 587.0 211.s .2497 587.5 211.5 .2497 588.0 211 .s .2497 588.5 211.s .2497 589.0 211a5 .2497 589.5 211.5 .2497 590.0 211.5 .2497 590.5 211.5 .2497 591.0 .2497 591.5 211.5 211.s

- .2497 592.0  :

211.s .2497 592.5 211.s .2497 593.0 211.s .2497 593.5 211 .s .2497 594.0 211.s .2497 594.5 211.s .2497 59S.O 211.s .2497 595.5 211.s .2497 596.0 211.5 .2497 596.5 211.s .2497 597.0

    • *..... !..... *,::  :'i.:**:I~.;,;  :::}::-: *-=~::::: -~*:f*::~~-  :* .. *- r:~ ~i=- .. :~~1:*-  :-::*i:*:* :;_.y*. ~ =;:-:  :-.t  :::.-J .... :;:.* ;-.::;: .....

.... : :* : "':" ~ \J:: .:L;~: *;:j:.: ... I:: :*' . l*": .. !*;: . J: ... : ; . : i *:. .. .. /* I.. : i .

..  ::. "i ...  :::x.:* ":*! :: ... :y::: <:~= ... *Timi:a l'lf1Hi-1 rnnt..aj~m~nt I l . /i*. **:.;r.- .... -

.... .. .. * **' :.. ,.. *. * ..T..... :-.. r*** *"'~ Pressure Tr1*p  : L~*~!:::::::i~~-=._J__=~L_:_=~*,~*

~;; ** , *., **

  • f*
. 1,1 "11111 0

. . :.1*:**

... *=/

,-r.

r*

1 1 1

~~ ~

o o

.. I ..,

- I

  • =. . . *.::. *r. .. .; A alculated F1cw Flow Used 1n.Ana1ysis
-:::y- . ; . :
-: I: , 4 * ! -<*:-*  :;:~~~:;z;:::~ ..~:f:;~~ .:::f~- - : i-:: .. , :-* - - F1cw d in Analysis

... ;.~. *~ -~ :..:~;~: :..:~~; :.: .. j ::; . ' . :-

  • :*** * * *:'...rl':::
  • * * :'°:*~;*:
    • J... . -***:

! . 1:. 'I **. 1 I .. -.*~:*:-.r=*=:~.*::* .... -:-!*. ~*r= *1* ':'". *. *** .1 * .;:: ** *:.:.:~.*=. =1: ::

. i ~ 7'- . :.:.J *~:.:: .... ~.. 'I

... l.

1~

I I.

':J".

I . "'

!~  : I

~ -~,_:_*1=:w~i~t~;~~~:.~l~:~~=.~:~+9=:~~~9=:~l~.6~p~~:--~~,

~,~: I* * ~ I :  :

1 TIME (sec.) * *  : 1

  • Revis1on l...

~ " July 22, 1~

0 41c v~~LEM SERVICE ELECTRIC AND GAS COMPANY NUCLEAR GENERATING STATION 1---------------------~

Feedwater Flow to the Faulted Steam Generator Updated FSAR ~ -1..'o,l.Nlt.. _____ f'1ya1 e 15.4 Si--

I .___._._.______.__ _.~~_._.--...J"--~---_.-----------_.+-v_;_ ~_.--~

20 1-w Wa:

TEST~

LL. w 10 Zl- 90

-c:c

~~

Q.. LL.

zo 0 80 70 4500 w 4000 60 ::E a:

w u LL.

z a:

w A.

0 50 >

<( 3500 u w zw

c

_, u

<(

. 3000 40 LL.

...0 A.

LL.

w

c 30 2500 1500 20 2000 1000 10 500 0 0 . 400 800 1200 1600 2000 GALLONS PER MINUTE FULL CAPACITY AUXILIARY Revision 0 BOILER FEED July 22,
  • 1982 I

Pump Curves for Auxiliary PUBLIC SERVICE ELECTRIC AND GAS COMPANY Feed Pump/Steam Driven SALEM NUCLEAR GENERATING STATION Updated FSAR figure 15.4-93

  • 40 I-w 90 20 i}i ~ .

0..

Z-z

%PUMP Eff. 80 0

70 2:

a:

60 u 3500 a:

w A.

I- >

u w 50 zw w 3000 IL z u IL c 40 IL w

~ .2500 w

J:

...J 0..

~ :c 30 I- 2000 0

I-6~., '\.O 20 1500 600 s\\P @S\l 400 10 200 0 0 200 400 600 800 1000 GALLONS PER MINUTE 1/2 CAPACITY AUXILIARY BOILER FEED Revision 0 July 22, 1982 Pump Curves

  • Auxiliary Feed PUBLIC SERVICE ELECTRIC AND GAS COMPANY Pump/Electrical Driven SALEM NUCLEAR GENERATING STATION Upda~e,41 FSAR L __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ J L __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ._

figure *15 4 !'!-<

Figure 15.4-95 (Intentionally Deleted)

  • Revision 1 July 22. 1983

\

\

\ Q N

N I!.

~

w Q cc Q

N

=>

I-

\ <

cc w

CL.

E w

I-1 -0 CCI I-z w

E z

<C I-z 0

Q (J

..,.Q

\- Q N

0 0 0 0 co 0 N

(.llNn/\:IH/n.l.8 gOL) 3.l.'IH 1\f/\OW3H .l'f3H R.evi si on O July 22, 198t!

Fan Cooler Heat Removal Rate PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Updated FSAR Figure 15.4-96

_j

Q 8

Q

=

Q 8....

Q Q

co

~

Q en Q c z

in 0

(.)

LI.I

~

LI.I Q ~

Q t-Q Q

M Q

Q N

Q Q

Q

=

  • IC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION

('11Sd) 3~:1nSS31:fd Containment Pressure Transient 1.4 FT2 DE Break 70% Power Minimum Safeguards Westinghouse Mode 1 0

1982 Upd*ted FSAR ) II p

FIGURE 15.4-97 1.4ft2 DER. HOT ZERO POWER 40.0

~

-V>

c..

Ll.J 0:: 30.0 V>

V>

Ll.J 0::

c..

I-z:

Ll.J 2:

z:

ct 20.0 I-z:

0 u

TIME (SECONDS)

c 0

cc Q

0 Cf)

Q Q 0 z

in 0

(,J w

~

w Q

0

~

~

I-Q Q

~

Q 0

  • N Q

Q 0

Q

~

Q 0

~

Q 0

N ...

0 0

  • Containment Temperature Transient 1.4 FT2 DE Break PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION 70% Power Minimum Safeguards Westinghouse Mode 1 Updated FSAR Figure 15.4-98

FIGURE 15.4-98

  • 1.4 ft 2 DER, HOT ZERO POWER 300.o,........--------------------------------------------------------------------------------

200.0

-LL..

0 UJ 0::

=>

I-

~

. 0::

UJ 0..

E:

UJ I-l 00. 0 0.o,_________._______~----------------.l.-------------....L------------......J TIME (SECONDS)

Cl Cl co Cl Cl Cl Cl in

  • -0 U) z 0

(.,)

w

~

w Cl :E Cl

"" I-Cl Cl C")

Cl Cl N

Cl Cl in Cl in Cl Cl in N Cl

.- .- .- .- in

(:lo - z.l:I - HH/n.lB) .lN3101:1:1300 H3::1SN'iH.l .l'i3H Containment Heat Transfer Coefficient BLIC SERVICE ELECTRIC AND GAS COMPANY 1.4 FT2 DE Break SALEM NUCLEAR GENERATING STATION 70% Power Minimum Safeguards Westinghouse Mode 1 Updated FSAR Figure 15.4-99

FIGURE 15.4-99 SPLIT BREAK, 30 PERCENT POWER

~0.000

  • *0.000 V'l

~

...., 30.000 a:

~

~

....z 2iJ.OOO

E z

....cz 10.000 0

C.J 0.0 0 0 0 000 0 0 0 0 0 0 0 000

. 0 0 000

. . . c.o o 0 0 00 ~

  • w 0 0 0 000 0 0 coo 0 0 000 0 0 0 0
  • 0*
  • 0 0 0

. .. 00 0 0 -0 0 000 0 0 000 0 0 000 in ..... 0 0 0 00

  • 0 0 00 0 0 0 C'l.I P'.'
  • 0 0 0 000 0 0 000 0 0 oo 1\.1 ('I')

('I') in" -

0 0 0 00 - ('I')

""TIME in ..... -

<SECONDS) ""

('I') in ..... -

"" in ..... -

0 0

a>

0 0

co 0

0 0

0 IC Q

0 in

-c en

  • 2 0

(.)

w

~

w 0 ~

0 I-0 0

C"')

0 0

N 0

0 Q

0 co Q

IC ..,.

Q Q N

('11Sd) 3i::lnSS31::1d w ~J Containment Pressure Transient PUBLIC SERVICE ELECTRIC AND GAS COMPANY 0.860 FT2 Split Break 102% Power Minimum Safeguards Westinghouse Mode 1 SALEM NUCLEAR GENERATING STATION Updated FSAR Figure 15.4-100

FIGURE 15. 4-100

  • SPLIT BREAK, 30 PERCENT POWER t

I I

I.

300.0 I

I 200.0 ~

100.*0 TIME (SECONDS)

0 0

CD 0

0 0

0 co 0 c;; .

0 c in z 0

tJ LU

!!?

LU 8 :E

~ I-0 0

M 0

0 N

0 0

0 0

0

~

0 0

M 0

N ...

0 0

  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY Containment Temperature Transient 0.860 FT2 Split Break 102% Power Minimum Safeguards Westinghouse Mode 1 SALEM NUCLEAR GENERATING STATION Updated FSAR

FIGURE 15.4-101 0.6 DER BREAK, HOT FULL POWER W/0 ENTRAINMENT 40.0 30.0

~

-Vl

. c..

LI.I c:::

Vl Vl LI.I 0::

0.

20.0 I-z:

LI.I

i::

z:

ct I-z:

0 u

i a.a i o:i.

TI ME (SECONDS)

    • 0 0

a) 0 0

co 0

0 r..

0 0

ca 0

0 in <n 0

z 0

(.)

LI.I

~

0 LI.I 0

~ :E I-0 0

M 0

0 N

0 0

0 0 0 0 0 co ca N 0

  • (:f 0 - ~-H - l::lH/n.18) .lN31:>1:f:f30:> l::l3:fSN\tl::l.l .1'13H PUBLIC SERVICE ELECTRIC AND GAS COMPANY Containment Heat Transfer Coefficient 0.860 FT2 Split Break SALEM NUCLEAR GENERATING STATION 102% Power Minimum Safeguards Westinghouse Mode 1 Updated FSAR Figure 15.4-102

FIGURE 15. 4-102 0.6 DER BREAK, HOT FULL POWER W/0 ENTRAINMENT 40 30 LI..

0 1..1..1 c:::

> 20

~

c:::

1..1..1 a.

1..1..1 I-10 0.0 .......~~~.......~~~--i.~~~~~~~~_J,_~~~__J 10- 1 TIME (SECONDS)

Cl Cl Cl Cl co Cl en Q

in c z

0

(.)

w

~

Cl Cl w

~

I-Cl Cl C")

Cl Cl N

Cl Cl Cl

... Cl CIO N

("ISd) 3~nSS3~d Containment Pressure Transient for 0.860 FT2 Split Break at 102% Power with

, PUBLIC SERVICE ELECTRIC AND GAS COMPANY I* SALEM NUCLEAR GENERATING STATION - _

Minimum Safeguards (NRC Model)

    • ~ Cl Cl Cl Cl 0

0 0

cg a.:

~ Ci) w c

.... 0 Cl z z in 0

0 (J

....<( w

!!?

cc 0 w

> ~

<(

Cl

~

i=

en Cl 0

p) 0 0

N 0

Cl

~

0 Cl N

-g 0

  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Containment Temperature for 0.860 FT2 Split Break at 102% Power with Minimum Safeguards (NRC Model)

Updated FSAR 1)ELe;c Fi 11 1m 1S.4 194

Cl Cl Cl Cl IO en Cl Q Cl in z

0 CJ w

~

w Cl Cl :E

'Iii' I-g

~

Cl Cl N

g ..."" in in in N

in Cl in N Cl Cl

"" N Cl

(~ 0 - z*H - ~Htn.18) J.N31:>1~~30:> ~3~SN't~J. J.'13H

  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY Containment Heat Coefficient for 0.860 FT2 Split Break at 102% Power with SALEM NUCLEAR GENERATING STATION Minimum Safeguards (NRC Model)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _..J.._U:.:pd:...:.::a:..:.te=d:_:_FS::A:...:..:..:.R~O~a~~ Fig '5 4 'PS

0 0

in iii' c

2 0

(,.)

w

~

0 0 w "O:I' ~

I-0 0

M g

N

-0 0

Q Q c:o N

('lflSd) 31:inSS31:id Containment Pressure Transient PUBLIC SERVICE ELECTRIC AND GAS COMPANY 0.908 FT2 Split Break SALEM NUCLEAR GENERATING STATION* 70% Power Minimum Safeguards Westinghouse Mode 1

=

=

co

=

c

=c co

== c;;

c .

in 2

0 u

w

~

w

=

= ~

""' I-

=

c N

=

...c

  • g N ...=

c

  • (:lo) 3.l:!n.l'1H3dW3.l Containment Temperature Transient 0.908 FT2 Split Break PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION 70% Power Minimum Safe uards Westinghouse Mode 1 Updated FSAR ()Q.ete; Figa;e 1i:119r

Q Q

=

Q Cl g

co Q

c;;

0 in c 2

0

(.)

w

!1 w

8

~

~

I-0 Q

M Q

0 N

... 0

=

e N Cl

  • (:fo - z.1:1 - t:!Htn.18) .1N31:>1:f:f30:> H3:fSNVt:l.1.1V3H PUBLIC SERVICE ELECTRIC AND GAS COMPANY Containment Heat Transfer Coefficient 0.908 FT2 Split Break 70% Power Minimum Safeguards Westinghouse Mode 1 SALEM NUCLEAR GENERATING STATION Upd*ted FSAR OE\ETE Fi11u:e 1&:1198

Q f6 c;;

g 0 ID z 0

u w

!!?

0 Q

w

~  :!:

I-0 Q

(")

0 0

N Q

Q Q

N

('11Sdl 3~mSS3lid

  • Containment Pressure Transient for 0.908 FT2 Split Break at 70% Power with PUBLIC SERVICE ELECTRIC AND GAS COMPANY Minimum Safeguards (NRC Model)

SALEM NUCLEAR GENERATING STATION Updated FSAR DE1£TE' Fig 16 t 1Qi

  • g 0

0 0) 0 0

co

~

en w

.... 0 c 0 z z U) 0

(,)

0 w

a: w

> 0 :E

.... 0

~ ~

en 8C"'I 0

0 0

0 Q g 0 0

U) ~ C"'I N 0

  • Revision July 22, Containment Temperature Transient for 0.908 FT2 PUBLIC SERVICE ELECTRIC AND GAS COMPANY Split Break at 70% Power with

- - - - - - - L_ ___::_:SALEM NUCLEAR GENERATING STATION Minimum Safeguards (NRC Model)

0 0

0 0

0 0

0 ID iii 0

0 c in z 0

(,J w

~

0 w 0

~

I-0 0

M 0

0 N

0 in in N

0 0 0 in

(:1 0 - zl.:I - '=IH/nl.8) l.N3101::1::1300 '=!3::1SN'V'=ll. l.'V3H 0

Containment Heat Transfer Coefficient for PUBLIC SERVICE ELECTRIC AND GAS COMPANY 0.908 FT2 Split Break at 70% Power with SALEM NUCLEAR GENERATING STATION Minimum Safeguards (NRC Model)

R.E.\/\S~D .SA.L~M rrs~(t. ~E.~'"T\~N \5"2* \3 A~<:...1J)~tJ"TAL 1)E.ft..f..SJU(L.\-Z.A"T\~,.J ~~ \\.liE.

M~\N Si.~M S'f~'iEM

  • 15.2.12.l Results Figure 15.2-38 illustrates the flux transient following the accident.

Reactor trip on overtemperature ~T occurs as shown in Figure 15.2-38.

The pressure decay transient following the accident is given in Figure 15.2-39. The resulting DNBR never goe*s below 1.30 as shown in Figure 15.2-40.

15.2.12.4 Conclusions The pressurizer low pressure and the overtemperature ~T Reactor Protec-tion System signals provide adequate protection against this accident, and the minimum DNBR remains in excess of 1.30.

15.2.13 ACCIDENTAL DEPRESSURIZATION OF THE MAIN STEAM SYSTEM Identification of Causes and Accident Description ere core conditions resulting from an accidental ization of the ain Steam System are associated with an ina opening of a sing steam dump, per~~ed assuming a upture of a main steam pipe 15.\)'

The steam release as a consequ ce of .

s accident results in an initial increase in steam flow whi decreases during the accident as the steam p-ressure.falls. The ergy emoval from the Reactor Coolant System causes a reduction coolant temp ature and pressure. In the derator temperature oefficient, the cooldown results in a reduc *on of core shutdown margin.

is performed to demonstrate that the ing criterion is satisf" d: Assumi-ng a stuck rod cluster control assembly nd a single f

  • ure in the Engineered Safety Features there will SGS-UFSAR 15.2-49 Revision 0 July 22, 1982

15.2.13 ACCIDENTAL DEPRESSURIZATION OF THE MAIN STEAM SYSTEM

  • 15.2.13.l IDENTIFICATION OF CAUSES AND ACCIDENT DESCRIPTION The most severe core cond1t1ons result1ng from an acc1dental depressur1zation of the Ma1n Steam System are assoc1ated w1th an 1nadvertent opening of a single steam dump, relief or safety valve. The analyses performed assuming a rupture of a main steam p1pe are g1ven 1n Section 15.4.3.

The steam release as a consequence of this acc1dent results 1n an initial increase in steam flow which dec~eases during the accident as the steam pressure falls. The energy removal from the Reactor Coolant System causes a reduction of coolant temperature and pressure. In the presence of a negative moderator temperature coefficient, the cooldown results in a reduction of core shutdown margin.

The analysis is perfcrmed to demonstrate that the following criterion is satisfied: Assuming a stuck rod cluster control assembly, with or without offsite power, and assuming a single failure in the Engineered Safety Features there will be no coasequential fuel damage after reactor trip for a steam release equivalent to the spurious opening, with failure to close, of the largest of any single steam dump, relief or safety valve. This criterion is satisfied by verifying the DNB design basis is met.

The following systems provide the necessary protection against an accidental depressurization of the Main Steam System:

l. Safety injection System actuation from any of the following:
a. Two out of three channels of low pressurizer pressure,
b. High differential pressure signals between steam lines.
2. The overpower reactor trips (neutron flux and AT) and the reactor trip occurring 1n conjunction with receipt of the safety injection signal .

sa.s - u ~..SAR

&929Q.1e1e1eees 15*2.-4~A

3. Redundant 1solat1on of the ma1n feedwater 11nes: Susta1ned high feedwater flow would cause additional cooldown. Therefore, 1n addition to the normal control act1on wh1ch will close the main feedwater valves following reactor tr1p, a safety injection signal w111 rap1dly close all feedwater control valves, tr1p the main feedwater pumps, and close the back up feedwater isolation valves.

15.2.13.2 METHOD OF ANALYSIS The follow1ng analyses of a secondary system steam release are p~rformed for th1 s section.*

1. A full plant digital computer simulation, LOFTRAN (Ref. 4), is used to determine Reactor Coolant System temperature and pressure during cooldown.
2. An analysis to determine that there is no consequential fuel damage .

.The following conditions are assumed to exist at the time of a secondary system steam release:

1. End of life shutdown margin at no load, equilibrium xenon conditions, and with the most reactive assembly stuck in its fully withdrawn positiori.

Operation of rod cluster control assembly banks during core-burnup is restricted in such a way that addition of positive reactivity in a secondary system break accident will not lead to a more adverse condition than the case analyzed.

2. A negative moderator coefficient corresponding to the end of life rodded

-core with t~e most reactive rod cluster control assembly in the fully withdrawn positi.on. The variation of the coefficient with temperature and pressure is included. The keff versus temperature at 1000 psi corresponding to the negative moderator temperature coefficient used plus the Doppler temperature effect is shown in Figure 15.2-41 .

S G ~ - U i= ~A.~

8929Q;l9/979885 15*2 - ~o

3. Minimum capability for injection of high concentration boric acid solution corresponding to the most ~estrictive single failure in the Safety Injection System. The injection curve used is shown in Figure 15.2-42.

Th1s corresponds to the flow delivered by one charging pump delivering its full contents to the cold leg header. No credit has been taken for the low concentration boric acid which must be swept from the safety injection lines downstream of the Refueling Water Storage Tank (RWST) prior to the delivery of boric acid (2,000 ppm) to the reactor coolant loops.

4. The case studied is an initial total steam flow of 228 lbs/second at 1015 psia from one steam generator with offsite power available. This is the maximum capacity of any single steam dump or safety valve. Initial hot shutdown conditions at time zero are assumed since this represents the most pessimistic initial condition.

Should the reactor be just critical or* operating at power at the tim~ of a steam release, the reactor will be tripped by the normal overpower protection signals when power level reaches a trip point. Following a trip at power the Reactor Coolant System contains more stored energy than at no load, the average coolant temperature is higher than at no load and there is appreciable energy stored in the fuel.

Thus. the additional stored energy is removed via the cooldown caused by the steam line .break before the no load conditions of Reactor Coolant System temperature and shutdown margin assumed in the analyses are reached. After the additional stored energy has been removed, the cooldown and reactivity insertions proceed in the same manner as in the analysis which assumes no load condition at time zero. However, since the initial ste.am generator water inventory is greatest at no load, the magnitude and d~ration of the Reactor Coolant System cooldown are less for steam line breaks occurring at power.

5. In computing the steam flow the Moody Curve for fl/D = O is used.
6. Perfect moisture separation in the steam generator is assumed.

SGS- U~&"A.t..

~2"9fJ .19f97988S

15.2.13.3 RESULTS

  • The results presented are a conservat1ve 1nd1cat1on of the events which would occur assum1ng a secondary system steam release s1nce 1t 1s postulated that all of the cond1t1ons descr1bed above occur s1multaneously.

F1gure 15.2-43 shows the trans1ent ar1s1ng as the result of a steam release hav1ng an 1n1t1al steam flow of 228 lbs/second at 1015 ps1a w1th steam release from one safety valve.

  • The assumed steam release 1s typ1cal of the capac1ty of any s1ngle steam dump or safety valve. In th1s case safety 1nject1on is 1nitiated automat1cally by low pressurizer pressure. Operation of one centrifugal charging pump 1s considered. Boron solut1on at 2,000 ppm enters the Reactor Coolant System providing suff1c1ent negat1ve reactivity to assure no fuel damage. A DNB analysis was performed for this case and the minimum u

DNBR was above the 11m1t val1e of 1.3. The react1v1ty transient for the case shown 1n F1gure 15.2-43 1s more severe than that of a failed steam generator safety or relief valve Which is terminated by steam line differential

  • pressure, or a failed condenser dump valve which is terminated by low pre1surtzer pressure. The transient 1s quite conservative w1th respect to cooldown. s1nce no credit 1s taken for the energy stored in the system metal other than that of the fuel elements or the energy stored in the other steam generators. S1~ce the trans1ent occurs over a period of about ten minutes, the neglected stored energy 1s 11kely to have a s1gn1ficant effect in slow1ng the cooldown.

15.2.

13.4 CONCLUSION

S The analys1s has shown that the cr1ter1a stated earl1er 1n th1s section is sat1sf1ed s1nt"e a DNBR less than 1.30 does not occur.

SGS- UFS'Afl..

8929Q.1B/67ll85 \S.2.- 5'"2.

System providing sufficient negative reactivity to maintain t well below criticality. The reactivity transient for the 15.2-43 and 15.2-44 is more severe than tha f a rater safety or relief valve which is t inated by stedm line differe *a1 r dump valve which is terminated by low p The transient is quite conservative with ct to cooldown, 1nce no credit is taken for the energy stored in the s em meta oth~r than that of the fuel iler steam generators. Si nee the transi~nt occurs over a minutes, the neglected stored energy effect in slowin~ the cool down.

15.2.13.4 The ana has shown that the criteria stated earlier in this isfied. Since the reactor does not return to critical the 1lity of a DNBR less than l.3u does not exist.

15.2.14 SPUIUOUS uPEAATIUN OF THt:: SAFETY INJECTION ~YST£1~1 AT POwEK 15.2.14.1 Identification of Causes Spurious SIS operation at power could be caused by operator error or a false electrical actuating signal. A spurious signal in any of the followin':;1 channels could cause this incident.

l. rli gh coritai n_ment i->ressure
2. rligh steam line differential pressure
3. Hi~h steam line flow and low average coolant temperature or low steam line pressure *
  • SGS-LJFSAK lti.2-5J Re vision u July 22, 1982
  • TAaLE 15.2-1 (Sheet 1 of 10)

TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS.

Accident

  • Event Time (sec. )

11(' A

!"**_.~ Initiation of uncontro11ed Witndrawal from a rod withdrawal 7.5 x 10- 4 Subcriti cal AK/sec. reactivity insertion Condition rate from la- 13 of nominal power a.a Power range hi ~h neutron flux low setpoint reached 6.9 Peak nuclear power occurs 7.a Rods begin to fall into core 7.5 Peak heat flux occurs 7.a Peak average fuel temperature.

occurs 8.2 Peak average clad temperature occurs a.a Peak average coolant tempera-ture occurs 9.2 Revision a SGS-UFSAR July 22, 19a2

Sheet 9 of 10 Time Break Flow Energy Flow Time Bre~i.k Flow Energy Flow

,c. ) {lblsec.} {million Btu/sec.} {sec. } {lb/sec.} {mi 11 ion Btu/sec.)

1.0 422.5 .506i , .... o 41J.5 .4959 511.5 422.4 .S067 541.5 413.4 .4951 512.0 422.J .5065 549.0 41J.J .4957 512.5 422.2 .5064 549.5 413.Z .4955 513.0 422.0 .5063 550.0 413.1 .4954 513.5 421.9 .S061 550.5 412.9 .4952 514.0 421.1 .5060 551.0 412.1 .4951 5H.5 515.0 421.7 .sose 551.5 552.0 412.7 .4949 421.5 .5057 412.6 .4948 51505 421.4 .5055 552.5 412.5 .4946 516.0 421.3 .5054 553.0 412.3 .4945 516.5 421.2 .5052 553.5 412eZ .4943 517.0 421.1 .5051 554.0 412.1 .4942 554.5 412.0 .4941 517.5 420.9 .5049 555.0 411.9 .4939 511.0 420.I .5()41 555.5 411.7 .4938 511.5 420.7 .5046 556.0 411.6 .4936 519.0 420.6 .5045 556.S 411.S .4935 519.5 420.4 .5043 557.0 411.4 .4933 520.0 420.J .5042 520.5 420.Z .504() 557.5 411.J .4932 521.0 420.1 .5039 551.0 411.1 .4930 521.5 420.0 .5037 551.5 411.0 .4929 522.0 419.I .5036 559.0 410.9 .4927 522.5 419.7 .5034 559.5 410.1 .492.ti

. 523.0 419.6 .5033 560.0 410.7 .4925 523.5 419.S .5031 560.5 410.S .4923 524.0 419.4 .5030 561.0 410.4 .. 4922

. 524.5 419.Z .5021 561.5 410.J .4920 41*5 525.0

.o

.5

.o

)27.5 419. 1 419.0 411.9 411.7 411.6 411.5

.5027

.5026

.5024

.5023

.5021 562.0 562.5 563.0 563.5 564.0

'10oZ 410.1 409.9 409.1

g:.1

.4919

.4917

.4916

.4914

.4913

.5020 564.5 .6 .4911 528.0 418.4 .5011 565.0 409.S .4910 528.5 411.3 .5017 565.5 409.J .4909 529.0 411.1 .5015 566.0 409.2 .4907 529.5 418.0 .5014 566.5 409.1 .4906 530.0 417.9 .5012 567.0 409.0 .4904 530.5 417.1 .5011 567.5 408.9 .4903 531.0 417.7 .5009 561.0 408.7 .4901 531.5 532.0 417.5 417.4

.sooa 561.5 408.6 .4900

.5006 569.0 408.S .4198 532.5 417.3 .SOOS 569.5 408.4 .4197 533.0 417.2 .5003 570.0 408.J 533.5 417.0 .489S

.5002 570.5 408.1 .4194 534.0 416.9 .5001 571.0 408.0 .4193 534.5 416.8 .4999 571.5 407.9 .4191 535.0 416.7 .4991 572.0 407.1 .4190 535.5 416.6 .4996 572.5 407.7 .. 4118 536.0 416.le .4995 573.0 407.S .4887 536.5 537.0 416.3 416.Z

- .4993

.4992 573.5 574.0 407.4 407.J

.4885

.4184 574.5 407.2 .4182 537.5 416.1 - .499() 575.0 407.1 .4881 5ll.O 416.0 .4989 575.5 406.9 .418()

531.5 415.I .4917 576.0 406.1 .4878 539.0 415.7 .49U 576.5 406.7 .4877 539.5 415.6 .4984 577.0 406.6 .4875 540.0 415.5 .4983 540.5

_.5 415.J .4981 577.5 541.0 415.2 .498() 406.5 .4874 541.5 415.1 .4979 571.0 406.4 .4172 542.0 415.0 .4977 571.5 406.Z .4171 414.9 .4976 519.0 406.1 .4169

.o 414.7 .4974 579.5 406.0 .4168

.5 414.6 .4973 580.o 405.9 *4167 4.0 414.5 .4971 580.5 405.1 .4165

,44.5 414.4 .4970 511.0 405.6 .4864 545.0 414.3 .4968 511.5 405.5 .4862 545.5 414.1 .4967 512.0 405.4 .4161 546.0 414.0 .4965 512.5 405.3 .4159 546.5 413.9 .4964 513.0 405.Z .4151 547.0 413.1 .4962 513.5 405.0 .4156 547.S

-. - 413.1 .4961 584.0 584.5 404.9 404.1

.4155

.4154

- Sheet 10 of 10 Time Break Flow Energy Flow

{sec.} {lblsec.} {million Btu/sec.)

  • *oS u 4()1..1 .usz 404.6 .4151

.o 404.4 .4149

.uu 586.5 404.J 517.0 404.z .4146 517.5 4()4.1 .4145 511.0 404.0 .4143 518.S 403.9 .4142 589.0 403.1 .4141 519.5 403.6 .4839 590 .. 0 403.5 .4831 590.5 403.4 .4836 591.0 403.3 .4135 591.5 403.1 .4133 592.0 403.0 .4832 592.5 402.9 .4831 593.0 402.8 .41l9 593.5 402.1 .4828 594.0 402.S .4126 594.5 402.4 .4125 595.0 402.3 .4123 595.5 402.2 .4122 596.0 402.1 .4820 596.5 40Ze0 .4819 597.0 401.I .4811 401 * ., .4816 597.5 .4115 599.0 401.6 .4113 599.5 401.S .4112 599.0 401.4 .4110 599.5 401.2 .4809

.o. 401.1

Sheet 1 of 9 TABLE 15.4-29 O*b p,-L Da AT

  • Time MASS AND ENERGY RELEASE$ FROM A 8.988 FT 2 SPLIT BREAK ID t..

AT ?8 PERCENT POWER (Worst Temperature Case)

Break ~qo*w Energy Flow (sec.) (lb/sec.) (million Btu/sec.)

PROPRIETARY RefeF te (iQ* Jll} "A1313lieatieH rel" Witl'=IAe1EliAg" Ra L. Mittl te Ola" 8. Parr Nu vembe 1 20, 1978

~

NRG AflflF9\'al letteic, QlaR Q, Paicic to WieseffiaAA danaai) 22, 1979 SGS-UFSAR Revision O July 22, 1982

Sheet 2 of 9 Time Break Flow Energy Flow Time Break Flow Energy Flow lb/sec. million Btu/sec. sec. lb/sec. million Btu/sec. .0000 0.0000 0.0000 37050 2215. Z.643

.5000 2048. 2.452 Jl.00 2205. 2.632

, .000 2066. 2.474 Jl.50 219'. 2.621 1.500 2071. 2.418 39.00 2116. 2.610 z.ooo 2089. 2.501 39.50 2177. 2.599 Z.500 2100. 2.514 40.00 2167. 2.5aa 3.000 2111. 2.527 40.50 2158. 2.577 3.500 2122e 2.. 539 t.1.00 2149. Z.566 2132. 2.551 41.50 2139. 2.555 4.000 4.500 2142. 2.563 42.00 I~~* z.w.

5.000 2151. 2.574 5.500 2161. Z.585 6.000 2170. 2.596 4.100 60500 2179. Z.606 42.500 3438.

7.000 2189. Z.617 43.000 2097. 2.505 7.500 2198. Z.628 45.000 1984. 2.371 1.000 2208. Z.640 2.204 1.500 2218. 2.651 47.500 1844.

9.000 2221. 2.663 50.000 1705. 2.039 9.500 2238. 2.674 52.500 1568. , .876 10.00 2248. Z.616 1.714 10.50 2258. 2.697 55.000 1432.

11.00 2268. 2.709 57.500 1298. 1.554 11.50 2278. 2.121 , .395 12.00 2289. Z.,733 60.000 1165.

12.50 2m. 2.745 62.500 1033. 1.238 13.00 2310. 2.757 65.000 902.1 , .083 2.769 13.50 14.00 14.50 2320.

2330.

2340.

2.1ao*

Z.792 67.500 70.000 772.4 643.7 0.928 0.775 .

s.oo 2351. Z.804

  • 50 2357
  • 2.811
  • oo 2365
  • 2.820 6.50 2373. 2.829 70.50 626.6 .7546 17.00 2381. 2.838 71.00 624.7 .7523 71.50 622.7 .7500 72.00 620.1 .7477 17.50 Ula. 2.147 72.50 619.0 .7454 ie.oo 2396. 2.156 73.00 617.1 .7432 11.50 2403. 2.164 73.50 615.3 .7411 19.00 2410. Z.172 74.00 613.6 .7389 19.50 2416. 2.879 74.50 611.1 .7368 zo.oo 2422. 2.116 75.00 610.1 .7341 20.50 2427. Z.191 75.50 60804 .7327 21.00 2431. 2.896 76.00 606.7 .7307 21.50 2526. 3.009 76.50 605.1 .7287 22.00 2661. 3.168 11.00 603.5 .7268 22.50 2865. 3.411 77.50 601.9 .7249 23e00 2825. 3.363 71.00 600.3 .7230 23.50 2751. 3.276 71.50 598.7 .7211 24.00 2677. 3.188 79.00 597.2 .7193 24.50 2597. 3.093 79.50 595.7 .7175 25.00 2521. J.On 10.00 594.2 .7157 25.50 2475. Z.9'9 10.50 592.1 .7139 26.00 2441. 2.908 11.00 591.3 .7122 26.50 2420. Z.813 11.50 589.9 .7105 27.00 27.50 Ht:: Z.857 12.00 581.5 .1oaa
  • Z.143 12.50 516.9 .7069 .

28.00 2379. 2.835 13.00 585.6 .7053 21.50 2372. 2.. 827 13.50 514.Z .7037 29.00 2365. 2.111 14.00 582.9 .7021 29.50 2357. 2.809 84.50 581.6 .7005 30.00 . 2349. 2.800 15.00 .6919 30.50 2341. Z.791 580.3 31.00 15.50 519.0 .6974 2333. 2.781 86.00 577.1 .69S9 .

31.50 2324. 2.771 16.SO 576.5 .6944

  • oo 2316
  • 2.761 17.00 575.3 .6929
  • 50 2307
  • 2.751 17.50 574.1 .6915
  • oo 2291
  • Z.740 18.00 572.9 .6900 3.50 2289. 2.730 18.50 571.7 .6816 34.00 22ao. 2.719 89.00 570.5 .6872 34e50 2271. 2.709 89.50 569.4 .68S&

35a00 2262. Z.699 90.00 568.2 .6844 35.50 2252. Z.687 36.00 2243. 2.676 36.50 2233. 2.665

  • 31.00 2224. 2.654

Sheet 3 of 9 Time Break Flow Energy Flow. Time. .Break.Flow . Energy.Flow lb/sec.} {million Btu/sec.} {sec.} Pb/sec.} {million BtuLse~.)

0 567., .6130 127.5 506.1 .61°'

91.00 566.0 .6117 121.0 506.Z .~7 121.5 .6099 91.50 9Z.OO 9Z.5~

564.9

. 563.1 56Z.7

  • "°'

.6190

.6m 1Z9.0 1Z9.5 130.0 505.6 505.0 506.4

.6082

.6075

.6068 93.00 56,., .6764 503.1 93.50 560.6 .6752 130.5 503.Z .6061 94.00 559.5 .6739 131.0 502.6 .6053 94.50 551.5 .6727 131.5 502.0 .6046 9S.OO 557.4 .6714 132.0 501.4 .6039 95.50 556.4 .6702 13Z .. S 500.9 .6032 96 .. 00 555.4 .6690 133.0 500.] .602S 96.50 554.4 .6678 133.5 499.7 .6019 97.00 553.4 .6666 134.0 499.1 .6012 134.,S 498.6 .6005 135.0 498.0 .5998 552.5 .6654 135.5 497.5 .5991 97.50 .6643 136.0 496.9 .5994 98.00 551.5 136.5 .5971 98.50 550.5 -- .6631 137.0 496.S 495.1 .5971 99.00 549.6 .6620 99.50 541.7 .6608 547.7 .6597 100.0 546.1 .6586 137.S 4".Z .5964 100.5 545.9 .6575 131.0 494.7 .59SS 101 .o 545.0 .6564 131.5 494.1 .m1 101 .5 544.1 .6554 139.0 49J.6 .5945 102.0 543.Z .6543 U9.5 493.1 .5931 102.5 542.3 .6532 140.0 49Z.5 .59JZ 103.0 103.5 5~1.5 .652"2 140.5 141.0 492.u .59ZS 104.0 5.

0 540 .. 6 539.&

538.9

.6512

.6501

.6491 141.5 142.0 142.5 491.5 490.9 490.4 419.9

.S91S

.5906 538.1 .6481 .S900 s 537.Z .6471 143.0 .e9.4 .5894

.o 536.4 .6461 143.5 418.I .5887 06.S .6451 144.0 488.] .sae1 107.0 535.6 144.5 417.1 .5875 107.S 534.1 .6441 145.0 534.0 .6432 417.J .5869 108.0 .6422 145.5 416.1 .5863 108.5 533.2 146.0 416.J .5856 109.0 53Z .. 4 .6412 146.5 531.6 .6403 415.1 .5850 109.S .6394 147.0 415.3 .5144 110.0 530.1 147.5 414.1 .5831 110.5 530.0 .6314 141.0 5Z9.3 .6375 414.3 .Sill 111.0 .6366 141.5 413.1 .sa.Z6 111.5 528.5 149.0 413.3 .5820 112.0 527.1 .6357 149.5 527.0 .6341 412.1 .5114 112.5, .6339 150.0 412.S .SIOI 113.0 526.3 150.5 411.8 .5802 113.5 525.5 .6330 151.0 411.3 524.1 .6321 .5797 114.0 .6312 151.5 480.1 .51'91 114.5 524.1 152.0 480.4 .5715 523.4 .6304 115.0 522.6 .6295 152.5 479.,9 .sm 115.5 116.0 521.9 - .6286 153".0 153.5 419.4 471.9 . .5m

.5761 116.S 521.2 .6271 154.0 471.4 520.5 .6269 .5762 117 .. 0 154.5 471.0 .5756 155.0 477.5 .5750 155.5 477.0 .5745 117.5 519.1 .6261 156.0 476.6 .5739 11100 .519.1 .6HJ ,56.5 476.1 .5733 111.5 511.4 .6244 157.0 475.6 .5728 119.0 517.1 .6236 119.5 517.1 .6221 157.S 475.Z .5722 120.0

'il0.5 1.o 516.4 515.7 515. 1

.6220

.6212

.6204 1Slo0 151.5 159.0 474.1 474.z*

473.1

.5717

.5 514.4 .6196 .5706 159.5 473.S .5700

.o 513.1 .6111

.6180 160.0 47Z.9 .5695

.5 513.1 160.5 472.4 .5689 12].0 512.5 .617Z 161.0 472.0 .5684 12].5 511.I .6164 161.5 471.5 .5671 124.0 511.Z .6157 162.0 471 .. 1 .5673 124.5 510.5 .6149 162.5 470.6 .5667 125.0 S09.9 .6141 163.0 470.Z 125.S 509.J .6134 .5662 163.S 469.7 .5657 126.0 509.7 .61Z6 126.5 127.0 508.0 501.4 _.,,,

.6,19 164.0 164.5 165.0 469.3 461.1 461.4

.565'

.5646

Sheet 4 of 9 Energy Flow Time Break Flow Energy Flow Break Flow lb/sec. million Btu/sec.)

lb sec. mi 11 ion Btu sec. sec . .s 461.0 *5635 z02.s 431.6 431.Z

.5l80

.5276 166.0 461.5 .5630 Z03.0 .5271

. 467.1 .5625 203 .. S 437.8 166.5 .5619 204.0 437.5 .5267 167.0 466.7 204.5 437.1 .5263 167.S 466.Z .5614 436.1 .52sa 168.0 465.8 .5609 205.0 .5254 465.4 .5604 205.5 436.4 161.5 .5599 206.0 436.0 .5250 169.0 464.9 206.5 435.7 .5245 169.5 464.5 .5593 .5241 464.1 .ssaa 207.0 435.3 170.0 .5583 207.5 435.0 .5237 170.5 463.7 .5578 2oe.o 434.6 .5232 171 .. 0 463.Z .5573 209.5 434.3 .5zza 171.5 w.1 .5561 209.0 433.9 .5224 17Z.O W.4 209.5 433.5 .5219 17Z.5 w.o .5563 .5215 461.5 .55sa 210.0 433.2 173 .. 0 .5553 210.s 432.1 .5211 173.5 461.1 211.0 432.5 .5207 174.0 460 .. 7 .. 5548 .5202 460.J .5543 211.5 432.1 174.5 .5531 212.0 431.I .5198 11s.o 459.9

.5533 212.5 431.4 .5194 175.5 459.5 213.0 431.1 .5190 176.0 459.1 .ss2a 430.7 .5185 176.S 458.6 .55l3 213.5 .5181

.5511 214.0 430.4 177.0 458.2 214.5 430.0 .517-1 215.0 429.7 .5173 215.5 429.4 .5169 11705 457.1 .5513 216.0 429.1 .5165 111.0 457.4 .55oe* 216.5 421.a .5162 171 .. 5 457.0 .5503 211 .. 0 428.S .5158 O* 456.6 .5491 456.2 .5493 455.8 .5481

.5 455.4 .5413 217.S 428.1 .5154 1.0 455.0 .5471 21a.o 427.8 .5150 1151 .5 454.6 .5474 211.5 427.5 .5146 112.0 454.Z .5469 219.0 427.2 .5143 112.5 453.1 .5464 219.5 426.9 .5139 113.0 453.4 .S459 220.0 426.6 .5135 11305 453.0 .5454 220.5 426 .. 3 .5132 114.0 452.6 .5450 221.0 426.0 .5121 114.5 452.Z .5445 221.5 425.7 .5124 115.0 451.I .5440 222.0 425.4 .5120 115.5 451.4 .5435 222.5 425.0 .5117 116 .. 0 451.0 .5431 223.0 424.7 .5113 116 .. 5 450.6 .5426 223.5 424.4 .5109 111.0 450.Z .5421 224 .. 0 424.1 .5105 187 .. S 449.9 .S416 224.5 423.1 .5102 181.0 449.5 .541Z 225.0 423.5 .5cm 181.5 449.1 .5407 225.5 423.2 .5094 189.0 441.7 .540Z 226.0 422.9 .5091 189.5 441.J .5398 226.5 422.6 .5057 190.0 447.9 - *.5393 221.0 422.3 .sou 190.S 447.5 .5389 227.S 422.0 .5079 191.0 447.Z .5384 221.0 421.7 .5076 191.S 446.I .5379 221.s 421.4 .5072 192.0 446.4 - .5375 229.0 421.0 .5068 192.S 446.0 .5370 229.5 420.7 .5065 193.0 445.6 .5365 230.0 420.4 .5061 193.S 445.J .5361 230.5 420.1 .5057 194.0 444.9 .5356 231.0 419.I .5053 194.5 444.5 .5352 231.5 419.5 .5050 195.0 444.1 .5347 232.0 419.Z .5046 195.5 443.7 .5343 232.5 411.9 .5042 196.0 443.4 .5331 233.0 411.6 .5039 196.5 443.0 .5334 233.5 411.3 .5035 0 442.6 .5329 234.0 411.0 .5031 234.5 417.7 .* 5026 235.0 417.4 .5024

.5 442.3 .5325 235.5 417.1 .S020.

18.0 441.9 .S320 236.0 416.I .5016 198.5 441.5 441.1

.5316

.5311 236.5 416.5 .son 199.0 .5307 237.0 416.2 .5009 199.5 440.1 200.0 440.4 .5302 200.5 440.0 .5298 201 .o 439.7 .5293 201.5 439.J .5289

Sheet 5 of 9 Break Flow Energy Flow Time Break Flow Enei~gy Fl ow lb/sec.) {million Btu/sec.~ {sec.} {1 b/sec. ~ {million Btu/sec.)

Z37.5 415.t .5005 z15.o 393.J .4733 ne.o 415.5 .5002 Z75.5 393.0 .4729 Z38.5 415.Z .4998 276.0 392.7 .4725 Z39.0 414.9 .4"4 Z76.5 392.4 .4722 Z39.5 414.6 .4"1 211.0 392.1 .4711 Z40.0 414.J .4917 Z40.5 614.0 .4913 Z41.0 413.7 .4990 Z41.5 41J.4 .4976 Z77.5 J91.I .4715 Z42o0 41J., .497Z Z71.0 J91.5 .4711 242.5 412.1 .'969 Z71.5 . J91.2 .4708 243.0 412.5 .4965 279.0 390.9 .4704 Z4J.,5 412.2 .4961 279.5 390.6 .4701 244.0 411.9 4,1.6

.4951

.4954 zao.o J90.4 J90.1

.4697

.4694 z,4.5 210.s 245.0 4n.J .4950 za1.o 389.8 .4690 245.S 4n.o .4947 211.5 389.5 .4687 Z46.0 ..,0.7 .4943 212.0 389.2 .4683 Z46.5 247.0 247.5 Z41.0

~,0.4 410.1 40'1.I 409.5

.4939

  • 4936

.4932

.4921 212.s 2n.o zn.s Zl4.0 JU.9 318.6 JU.4

.4680

.4676 .

.4673

.4669 241.5 409.2 .4925 284.5 317.8 .4666 Z49.0 408.9 .49Z1 2es.o 317.5 .4662 Z49.S 408.6 .4918 zes.s 317.Z .46~

250.0 408.3 .4914 286.0 316.9 .4656 250.5 408.9 .4910 Z86.5 . 316.6 .4652 zs1.o 401 .. .4907 . 217.0 316.4 .4649 251.5 401.4 .490J Zl7.5 386.1 .4645 407.1 .4899 288.0 385.1 .4642 406.I .4896 zsa.s 315.S .4631 406.5 .4892 219.0 315.Z .4635

~.5 406.2 .4189 289.5 315.0 .4632 r..o 405.9 .4185 290.0 384.7 .4628

.,4.5 405.6 .4181 290.5 384.4 .4625 255.0 405.S .4178 291.0 314.1 .4622 255.5 405.0 .4174 291.5 313.9 .4618 256.0 404.7 .4170 292.0 383.6 .4615 256.5 404.4 .4867 292.S *313.3 .4612 257.0 404.1 .4863 293.0 313.0 .46()8 293.5 382.7 .4605 294.0 382.5 .t.602 294.S 312.Z .4598 257.5 403.1 .4860 295.0 311.9 .459S 2sa.o 403.5 .4156 295.S 311.7 .4592 2sa.5 403.2 .4153 296.0 311.4 .4588 259.0 402.9 .4149 296.5 381 .1 .4585 259.5 402.6 .4145 297.0 380.8 .4582 260.0 402.3 .4142 260.5 402.0 .4138 261.0 401.7 .4135 297.5 3'0.6 .4579 261.5 262.0 401.4 401.1 - .4131

.4127 Z98.0 298.5 380.J 380.0

.4S1S

.4572 262.5 400.1 .4124 299.0 379.1 .4S69 263.0 400.6 .4120 . 299.5 379.5 .4565 263.5 400.3 .4117 300.0 379.2 .4562 264.0 400.0 .4113 300.. 5 J78.9 .4559 264.5 m.1 .4110 301.0 371~7 .4556 265.0 399.4 .4806 301.5 371.4 .4552 265.5 399.1 .4802 302.0 371., .4549 266.0 398 ..1 .4199 302.5 377.9 .4546 266.S 399.4 .4795 303.0 377.6 .4543 267.0 391.1 .4791 303.5 377.J .4539 267.5 397.1 .4788 304.0 377.1 .4536

?.d.O 397.5 .4714 304.5 376.1 .4533 5 397.2 .4780 305.0 376.5 .4530 0 396.9 .4777 305.5 376.J .4527

~.5 396.6 .4773 306.0 376.0 .4523 70.0 396.3 .4769 306.5 375.1 .4520

,70.5 396.0 .4766 307.0 375.5 .4517 271.0 395.7 .4762 307.5 375.Z .45'4 271.5 395.4 .4758 :sos.a 375.0 .4511 272.0 395.1 .4754 308.5 374.7 .4508 Z72.5 394.1 .4751 309.0 374.4 .45°'

273.0 394 .. 5 .4747 309.5 374.Z .4501 273.5 394.2 .4743 310.0 373.9 .4491 274.0 393.9 .4740

.L . . . ~

310.5 373.7 .4495

Sheet 6 of 9

., Time

.. .o 311.5 312 .. 0 Break Flow (lb/sec.)

J7J.4 J7J.1 Jn.9 Energy Flow (million Btu/sec.)

.449Z

.4419

.4415 Time (sec.)

349.0 349.5 350.0

. Break Flow (lb/sec.)

J54.I 354.6 354.4 Energy Flow (million Btu/sec.)

.4267

.4264

.4261 312 .. 5 J7Z.6 .4482 . 350.5 354.1 .4251 313.0 72 .. 4 .4419 351.0 353.9 .4256 313.5 J7Z.1 .4476 351.5 J53.7 .4253 314.0 371.I .4473 352.0 353.4 .4250 314 .. 5 371.6 .4470 352.5 353.Z .4247 315.0 371.3 .4467 353.0 353.0 .4245 315.,5 371.1 .4464 353.5 352.8 .4242 316.0 370.I .4461 354.0 352.5 .4239 316 .. 5 370.6 *.4451 354.5 352.3 .42.37 317.0 370.3 .4454 355.0 352 .. 1 .42.34 355.5 351.9 .4231

.4451 356.0 351.6 .4Z28 317.5 370.1 *"356.5 351.4 .4226 311.0 311.5 319.0 369.1 369.5 369.3

.4445

.4442 357.0 351.2 .422.3 319.5 369.0 .4439 357.5 J51.0 .4220 320.0 368.1 .4436 351.0 350.1 .4211 320.S 368.5 .4433 351 .. 5 350.5 .4215 321.0 368.3 .4430 359.0 350.3 .4212 321.5 368.0 .4427 359.5 350.1 .4210 322.0 367.8 .4424 360.0 349.9 .4207 322.5 367.5 .4421 360.5 349.7 .4204 323.0 367.3 .4411 361.0 349.4 .4202 323.5 367.0 .4415 361.,S ~9.Z .4199 324.0 366.8 .4412 362.0 9.0 .4196 324.5 366.S .,44()9 362.S 348.i .4194 325.0 366.3 .4406 363.0 341.6 .4191 366.0 .4403 363.5 341.4 .4189 ti *.5

~~e.o 365.1 365.6 365.3 365.1 364.8

.4400

.4397

.4394

.4391

.4388 364.0 364.5 365.0 365.5 366.0 341.1 347.9 347.7 347.5 347.J

.4186

.4113

.4181

.4171

.4176 321.5 364.6 .4315 366.5 347.1 .4173 329.0 364.3 .4312 367.0 346.9 .4170 329.5 364.1 .4379 367.5 346.6 .4161 330.0 363.I .4376 368.0 346.4 .4165 330.5 363.6 .4373 368.5 346.Z .4163 331.0 363.3 .4370 369.0 346.0 .4160 331.5 363.1 .4367 369.5 345.1 .4151 332.0 362.1 .4364 370.0 345.6 .4156 332.5 362.6 .4361 370.5 345.4 .4153 333.0 362.4 .4351 371.0 345.Z .4151 333.5 362.1 .4355 371.5 345.0 .4149 334.0 361.9 .4352 372.0 344.9 .4146 334 .. 5 361.6 .4.349 372.5 344.7 .4144 335.0 361.4 .4347 373.0 344.5 .4141 335.5 361.2 .4344 373.5 344.3 .4139 336.0 360.9 .4341 374.,Q 344 .. 1 .4137 336.5 360.'I .4331 374.5 343.9 .4134 337.0 360.4 .4335 375.0 343.7 .4132 375.5 343.5 .4130

. 337.5 360.2 .433Z 376.0 343.J .4127 338.0 360.0 .4329 376.5 343 .. 1 .4125 338.5 359.7 .4326 377.0 342.9 .4123 339.0 359.5 .4323 339.5 359.2 .4320 377.5 34Z.7 .4120 340.0* 359.0 .4318 371.0 342.5 .4111 340.5 351.1 .4315 371.S 342.J .4116 341.0 351.5 .4312 319.0 342.2 .4113 341.5 358.3 .4309 379.5- :S4Z.O .4111 342.0 351.1 .4306 380.o 341.I .4109 357.1 .4303 380.5 341.6 .4107 357.6 .4300 381.0 341.4 .4104

. 357.4 .4298 381.S 341.Z .4102 357.1 .4295 382.0 341.0 .4100

    • s 356.9 .4292 382.S 340.1 .4097

... 5.0 356.7 .4l89 383.0 340.6 .409S 345.5 356.4 .4216 383.5 340.4 .4093 346.0 356.Z .4284 384.0 340.3 .4090 346.5 356.0 .4211 384.5 340.1 .40!8 347.0 355.7 .4278 385.0 339.9 .4086 347.5 355.5 .4275 315.5 339.7 .4084 341.0 355.3 .4272 316.0 S39.5 .4082 348.5 355.0 .4270_

Sheet 7 of 9 Break Flow Energy F*r ow Time Break Flow Energy Flow Time lb/sec. million Btu/sec.

lb/sec. million Btu/sec. sec.

J'9.J .4019 424.0 321.1 .3943 Q

J39.Z .4!J71 . 424.5 JZl.O .3942 387.0 .4075 425.0 327.9 .3941 387.5 "9.0 ,.emJ 425.5 327.1 .3940 318.0 S31*.* 426.0 327.7 .3931 318.5 J31.,6 .4n70 327.6 .3937 331.4 .4069 426.5 389.0 .4066 427.,0 327~5 .3936 389.5 331.Z 427 .. 5 327.~ .3935 390.0 S31.1 .4064 .3934 1.9 .4062 421.0 327.J 390.5 391.,0 391.5 11 7.7 331.5*

.4059

.4057 421.5 429.0 321.z 327.1

.3933

.l931 337.3 .4055 429.5 327.0 .3930 392.0 .4053 430.0 326.9 .3929 392.5 337.1 430.5 J26.9 .3921 393.0 337.0 .4051 S36.I .4048 431.0 326.8 .3927 393.5 .4()1.6 431.5 526.7 .3926 394.0 J]6.6 326.6 .392S 394.5 S36.4 .4044 432.0 S36.3 .4042 432.5 326.5 .3924 395.0 .4040 433.,0 326.4 .3923 395.5 S36.1 433.5 326.J .*3922 396.0 335 .. 9 .4038 335.I .40.36 434.0 326.J .3921 396.5 .40l4 434.5 326.Z .3920 397.0 335.6 435.0 326.1 .3919 435.5 326.0 .3911 397.5 J35.4 .4032 436.0 325.9 .39:17 391.0 335.Z .4030 436.S 325.9 .3916 391.5 335.1 .4021 437.0 325.8 .3915 399.0 334.9 .4026 399.5 3l4.7 .4024 400.0 334.6 .. 4022 437.5 325.7 .3914 400.5 3l4.4 .4020 4Ja.O 325.6 .3913

.4011 334 .. 3 438.5 325.6 .3912 3l4.1 .4016 439.0 325.5 .3911 333.9 .4014 439.5 325.4 .3911

.* 5 333.1 .4012 440.0 325.J .3910 J.O J33.6 .4010 440.5 325.3 .3909

-IJ3.5 333.5 .4008 441.0 325.2 .3908 404.0 333.3 .4006 441.5 325.1 .3907 404.5 333.Z .4005 442.0 325.1 .)906 405.0 333.0 .4003 442.5 325.0 .3905 405.5 332.9 .4001 443.0 324.9 .3905 406.0 332.7 .3999 443.5 324.I .3904 406.5 332.6 .3997 444.0 324.I .3903 407.0 332.4 .3996 444.5 324.7 .3902 407.5 332.J .3994 445.0 324.6" .3901 408.0 m*1

.399Z 445.5 . 324.6 .3901 408.5 .o .l990

.3988 446.0 324.5 .3900 409.0 331.I 446.5 324.5 .3899 409.5 331.7 .'987 447.0 324.4 .3898 410.0 331.6 .3985 447.5 324.3 .3898 410.5 331.4 .'983 443.0 324.J .3897 411.0 331.J .3982 443.5 324.Z .3896 -

411.5 331.1 .3980 449.0 324.1 .3895 412.0 331.0 .'971 449.5 324.1 .3895 412.5 330.9 .m1 450.0 324.0 .3894 413 .. 0 330.7 .l975 450.5 324.0 .3893 413.5 330.6 .3974 451.0 323.9 .3892 414.0 330.5 .397Z 451.5 323.1 .3892 414.5 330.J .3970 452.0 323.1 .3891 415.0 330.Z .3969 452.5 323.7 .3890 415.5 330.1 .3967 453.0 323.7 .3889 416.0 . 330.0 .3966 453.5 323.6 .3889 416.5 329.1 .3964 454.0 323.5 .3881 417.0 329.7 .3963 454.5 323.5 .3887 455.0 323.4 .3887 417.5 329.6 .3961 455.5 323.4 .3886 329.5 .3960 456.0 323.3 .3885 II J.0

.. ,o.5 329.4 329.Z 329.1 329.0 328.9

.J9SI

.3957

.39S6

.3954

.3953 456.5 457.0 323.3 323.2

.3885

.3884 421.0 321.1 .3951 421.S 321.7 .3950 422.0 328.6 .3949 422.S 321.4 .3947 423~0 328.3 .3946 423.5 328.Z .39'11 .

Sheet 8 of g Break ~~low Energy Flow Time Break Flow Energy Flow Time ~lblsec.} ~million Btu/sec.)

~sec.} Pb/S£d:.} ~million Btulsec.} ~sec.}

.3126 szs.1 .SNS 496.0 S11.4 .3125 szs.1 .wz 496.S 111.s 11.3 .3124 Rs.g .3182* 497.0 459.0 RS. .3181 459.5 JZZ.9 .J880 s11.2 .3123 460.0 '2Z.t .3880 497.5 )11.1 .3122 460.5 J:Z.I .3179 491.0 s11.1 .3822 322.7 .3171 491.S 461.0 .3171 4"oO s11.o .3121 461.5 S22.7 J17.9 e3120 462.0 JZZ.6 .,)117 499.5 J17.I .3119 462.S S22.6 .3176 500.0 .3811 463.0 szz.s .3176 500.5 .3117 szz.s .3175 501.0 111.1 463.5 .3174 501.5 17.6 .. 3116 464e0 322.4 502.0 J17.5 .Jl1S 464.5 S22 .. 4 .3174 J17.5 .3114 465.0 .3173 502.5 J17.4 .311J 465.5 m*s su.z .z .3172

.3172 503.0 503.5 . S17.J .311J 466.0 .3171 504.0 J17.Z .3112 46605 SZZ.1 111.z .3111 467.0 tiz.1 .3170 504.5 11.1 .3110 467.5 2.0 .3170 505.0 J.17.0 .Jam 461.0 su.o 321.9

.3169

.3161 505.5 506.0 316.9 .JIOS 46105 .3167 S06o5 316.9 .3807 469e0 JZ1.I J16.e .3806 469.5 321.I .S867 507.0 J16.7 .3805 470.0 321.7 .S866 507.S J16.6 .3804 470.5 321.7 .S865 5oe.o J16.5 .3803

. 471.0 321.6 .S865 508.5 J16.5 .3802

.471.5 321.6 .3164 509.0 472.0 47Z~5 321.5 321.4

.3863.

.S863 509.5 510.0 J16.4 316.J 316.Z

.3801

.3800

.J799 321.4 .3162 510.5 473.0 5 '

0 5

321.3 S21.3 321.Z 321.1

.3161

.3860

.3860

.3159 511.0 511.S 512.0 S12.5 I"*'

16.1 16.0 315.9

.3191

.3797

.3196

.3195

.o .3151 513.0 . 315.1 .3194

,75.5 321.1 315.7 .3793 476.0 S21.0 .3851 513.5 315.7 .3793 476.5 321.0 .3857 514.0 315.6 .3792 477 .o 320.9 .3156 514.S 315.5 .3791 515.0 315.4 .3790 477.5 JZ0.9 515.S 315.3 .3789 03155 516.0 471.0 JZO.I .3155 516.S 315.3 .3788 478.5 479.0 479.5 HS*' .7 JZ0.6

.3154

.. 3153 517.0 315.Z .371i'

.31Sl 5Ha5 315.1 .3716 480.0 320.5 .3152 480.5 320.5 .3151 511.0 315.0 .3715 481.0 :SZ0.4 .3150 511.5 314.9 .3714 481.5 JZ0.4 .3149 519.0 314.I .3713 482.0 320.S .3149 519.5 J14.I .3711 482.5 JZ0.2 .3141 520.0 314.7 .37&0 413.0 320.Z .3147 *520.5 J14.6 .3779 413.5 szo.1 5Z1e0 314 .. 5 .3779 484.0 szo.o -~

.3146 s21.5 314.4 .3777 484.5 320.0 .3145 522.0 314.J .3776 J14.2 .3775 415.0 485.S 416.0 I"*'

19.I J19.I

.3144

.Jl4J

.3142 522.S 523.0 523.5 524.0 314.Z 314.1

.3774

.3773

.3772 486.S r**7 .3142 314.s 487.0 19.7 .3141 524.S 313. .3771 525.0 .J770 487.5 488.0 418.S "*'

J19.5 319.5

.ll40

  • 31'9

.3131 525.5 526.0 526.S 31J*J J1

  • 11s.*

1J.6

.J769

.3761

.3767 489.0 319.4 .3131 489.5 J19.S .3137 527.0 S1S.5 .3766 527.5 S1S.4 .3765 490.0 I"*'

19.Z

.3136 521.0 S1S.J .3764 ti~

.3135 521.S 313.Z .3763 J19.1 .3134 J19.0 .3134 5Z9.0 313.1 .3762

.o 319.0 .3133 5Z9.5 313.0 .3761

.t2.5 318.9 .3132 530.0 313.0 .3760 493.0 111.1 .3131 530.5 312.9 .3759 493.5 11.1 .3830 531.0 312.1 .3751 494.0 311.7 .3129 531.5 312.7 .3756 494.5 311.6 .3821 532.0 312.6 .3755 495.0 311.6 .llll 532.5 312.5 .3754 495.5 311.S .38Z7 1..4

  • TABLE 15.2-1 (Sheet 2 of 10)

TIME SEQUENCE Of £VENTS FOR CONDITION I I EVENTS Accident Event Time (sec.)

Uncontro11cd RCCA Initiation of uncontrolled Withdrawal at RCCA withdrawal at maximum Power reactivity insertion rate

1. Case A (7.5 x 10- 4 aK/sec.) 0 Power range high neutron flux high trip point reached 1.5 Rods begin to fall into core 2.0
    • 2. Case B Minimum DNBR occurs Initiation of uncontrolled 2.7 RCCA withdrawal at a small reactivity insertion rate (3.0 x 10- 5 aK/sec. for 3 loop, 3. 0 x 10 -5 aK/sec.

for 4 1oop) o Overtemperature aT reactor trip signal initiated 32.6 Rods begin to fall into core 34.6 Minimum DNBK occurs 34. 7

  • Revision 0 SGS-UFSAR July 22, 1982
  • TABLE 15.2-1 (Sheet J of 10)

TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS*

Accident I:: vent Time (sec.)

Uncontrolled Suren un uti on 1.- Dilution during refueling and startup. Dilution begins

  • 0 Operator isolates source of dilution; minimum margin -2400 to criticality occurs or more
2. Dilution During Full Power Operation

-a. Automatic Reactor One percent shutdown margin Control 1 ost -1300

b. Manual Reactor Control Dilution begins 0 Reactor trip setpoint reached for overtemperature ~T 52 Rods begin to fall into core 54 One percent shutdown is lost (if dilution continues) after trip) -goo Revision O SGS-UFSAR July 22, 1982

TAdLE 15.2-1 (Sheet 4 of 10)

TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS Accident Event Time (sec.)

PartiCJ1 Loss of Forced ReJctor Coolant Flow

1. All loops operating, two pumps coasting down ~oastdown beyins 0 Low flow reactor trip 1.26 Rods begin to drop 2.76 Minimum DNBR occurs 3.7
2. All uut one loop operatiny, two pumps coasting down. Coastdown begins 0 Low fl ow reactor trip 2.30 Rods begin to drop 3.80 Minimum DNBR occurs 4.70
  • SGS-UFSAR Re vision 0 July 22, 1982

TABLE 15.2-1 (Sheet 5 of 10)

TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS Accident Events Time (sec.)

Loss of Externa~

~12ctrical L.oad

1. l~ith pressuri_zer control (BOL) Loss of electrical load 0 Initiation of steam release from steam generator safety va lve*s 9.0 Overtemperature ~T 9.1 Rods begin to drop 11.1 Minimum DNBR occurs 11. 5 Peak pressurizer pressure occurs 12.5
2. Wi th pressurizer control (EOL) Loss of electrical load 0 Initiation of steam release from steam generator safety valves 9.0 Overtemperature ~T Reactor Trip Point Reached 9.5 rt.ads begin to drop 11. 5 SGS-UFSAR Revision O July 22, 1982

TABLE 15.2-1 (Sheet 6 of 10)

  • Accident TIME SEQUENCE OF EVENTS FOR CONUITION II EVENTS Event Time (sec.)

Minimum DNBR occurs ( 1\

Peak pressurizer pressure occurs 10. 5

3. Without pres-surizer control (BOL) Loss of electrical load 0 Initiation of steam release from steam generator safety valves 9.0
  • High pressuriz.er pressure reactor trip point reached 6.1 Rods begin to drop 8.1 Minimum DNBR occurs ( 1)

Peak pressurizer pressure occurs 9.5 (1) Dt~BR does not decrease below its initial value *

  • SGS-UFSAR Revision 0 July 22, 1982

TABLE 15.2-1 (Sheet 7 of 10)

TIME SEQJENCE OF EVENTS FOR CONDITION II EVENTS Accident Event Time (sec.)

4. Without pres-surizer control (EOL) Loss of electrical load 0 Initiation of steam release from steam generator safety valves 9.0 Hi ~h pressuriier pressure reactor trip point reached 6.0
  • Rods begin to drop Minimum DNBR occu~s a.a (1)

Peak pressurizer pressure occurs 9.0 (1) DNBR does not decrease below its initial value *

  • SGS-UFSAR Revision 0 July 22, 1982

TABLE lS.2-1 {Sheet 8 of lu)

TIME SEQUENCE OF tVENTS FOR CONDITION II EVENTS Accident Event Time {sec.)

Loss of Nonnal Fe~dwater and Loss of Off-site Power to the Station Auxiliaries (Station Blackout) Low-low steam generator water level reactor trip; reactor cool ant pumps begin to coast down 0 Rods begin to drop 2

  • Two steam generators begin to receive auxiliary feed from one motor-d riven aux i l i a ry feedwa ter pump 60 Peak water level in pressurizer occurs 3250 Excessive feedwater at full loacL One main feedwater control valve fails fully open 0 Minimum ONBR occurs 15.2 Feedwater flow isolated due to high-high steam generator level 14.0
  • SGS-UFSAR Revision 0 July 22, 1982

TABLE 15.2-1 (Sheet 9 of 10)

TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS Accident Event Time {sec.)

Excessive Load Increase

1. Mdnual Reactor Control (BOL) 10 percent step load increase 0 Equilibrium conditions
  • reached (approximate times only) 200*
2. Manual Reactor Control (EOL) 10 percent step 1 oad increase 0 Equilibrium conditions reached (approximate times only) 75
3. Automatic Keactor Control (BOL) 10 percent step load increase 0 Equilibrium conditions reached 100
4. Automatic ~eactor Control ( EOL) 10 percent step load increase 0 Equilibrium conditions reached (approximate time only) 50
  • SGS-UFSAR Revision 0 July 22, 1982

TABLE 15.2-1 (Sheet 10 of 10)

TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS Accident Events T1me (sec.)

Accidental depressuri-zation of the Reactor Inadvertent Opening of Coolant system one RCS Safety Valve 0 Reactor Trip 22.1 Minimum DNBR occurs 24.0 Accidental depressuri- Inadvertent Opening of one zation of the Main main steam safety or Steam System relief valve 0

-Pressurizer Empties 172

  • 214 Inadvertent Operation. Charging pumps begin of SI during Power borated water 0 Operation Low pressure trip point

. reached 64 Rods begin to drop 66

  • ~Gi.S-UFSA-4...

B928f).l9/979BBS

14202.,

I .04 1.03

~

a:

0 1.02 r-u la..

z 1.0 I

....0 I-u<

...I

....CL 1.00 I-

...I

)
E 0.99 0.98 0.97 .........

- ~~--~~-'-~~--i~~~.1.-~~....L-~~.......L.~~......I 200 250 300 350 400 450 500 550 CORE AVERAGE TEMPERATURE (*F)

Vari*tion of KEFF with Core Temperature PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Updated FSAR Figure 15.2*41

2t+OO 2200 2000 1800 1600 411:

Cl)

~

I ijQO ex

) 1200 Cl)

Cl) ex

~

Cl)

(,,.)

1000 ex 800 600 200 0

0 100 200 300 t+OO 500 600 700 SAFETY INJECTION FLOW (G~)

  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Updated FSAR Safety Injection Curve Figure 15.2-42

14202.2

~

UJ I- -

500 - -

UJ LL..

(!)

450 -

<~

UJ-400 -

a:

0 350 -

u 300 -

250 0.250 UJ 0.200 m-=t 0.150

~~ o. 100 tn

~ 0.500 0

2500 2000 I- 1000

> :E

~~ 0

~-

~ -1000

-2000

-2500 0 100 200 300 400 500 600 TIME (SEC)

Transient Response for a Steam Line Break PUBLIC SERVICE ELECTRIC AND GAS COMPANY Equivalent to 228 Lb/Sec at 1015 PSIA with SALEM NUCLEAR GENERATING STATION Outside Power Available Updated FSAR Figure 15.2-43

3000 20 ..goo p PM BO RON REACH ES LOOPS AT 201 SEC 700 600 0:

L.i L.i a: .

I-

~

L.i a:

~

I-

""' ""'0:

L.i

-0 u.. 500 0

(,,)

xL.i Q,. -

I- ~00 300 2.5 I-

=-- .;;,t. .

t; <J L.i Cl!::

-5.0 0 100 200 300 1+00 TIME (SECONDS)

  • ~E.

PUBLIC SERVICE ELECTRIC AND GAS COMPANY LE.TE...

Transient Response for a Steam Line Break Equivalent to 228 Lb/Sec at 1015 PSIA with SALEM NUCLEAR GENERATING STATION Outside Power Available (Unit 2)

Updated FSAR Figt1re ~ i;,~ 44...

r-0 I

\tJ oO

~

IJ}

~ N </.

v .  ::>

<t \-

_J . Q,..

'./)

QI.

( IJ}

()

1-rJ

~

a,..

r!J V'l I:

IJJ

\-

'--1 cJ "r

~

<t( 111 v1 t- lJ..

"2.

t..IJ ~

! I: <

~ uJ 0 u4'.

J

.t£

'2

~

<(

VJ

~

111 Cl UJ

~

L1 0

.<(

uJ

~ l:

15.4.2 MAJOR SECONDARY SYSTEM PIPE RUPTURE 15.4.2.1 IDENTIFICATION OF CAUSES AND ACCIDENT DESCRIPTION The steam release arising from a rupture of a main steam pipe would result in an initial increase in steam flow which decreases during the .accident as the steam pressure falls. The ~nergy removal from the Reactor Coolant System causes a reduction of coolant temperature and pressure. In the presence of a negative moderator temperature coefficient, the cooldown results in a reduction of core shutdown margin. If the most reactive rod cluster control assembly is assumed stuck in its fully withdrawn position after reactor trip, there is an increased possibility that the core will become critical and return to power. A return to power following a steam pipe rupture is a potential problem mainly because of the high power peaking factors which exist assuming the most reactive rod cluster control assembly to be stuck in its fully withdrawn position. The core is ultimately shutdown by the boric acid injection delivered by the Safety Injection System.

The analysis of a main steam pipe rupture is performed to demonstrate that the following criteria are satisfied:

1. Assuming a stuck rod cluster control assembly, with or without offsite power, and assuming a single failure in the engineered safeguards there is no consequential damage to the primary system and the core remains in place and intact.
2. Energy release to containment from the worst steam pipe break does not cause failure of the containment structure.

Although DNB and possible clad perforation following* a steam pipe rupture are not necessarily unacceptable, the following analysis, in fact, shows that no DNB occurs for any rupture assuming the. most reactive assembly stuck in its

  • fully withdrawn position .

SGS- UF.SA.'2..

8920QilD'070SSS IS* 4-.r'

The fo11ow1ng functions provide the neces~ary protection against a steam pipe

  • rupture:
1. Safety 1njection system actuation from any of the following:
a. Two-out-of-three channels of low pressurizer pressure
b. High differential pressure signals between steam lines
c. High steam 11ne flow in two main steam lines (one-out-of-two per line) 1n coincidence with either low-low Reactor Coolant System average temperature or low steam line pressure in any two lines.
d. Two-out~of-three high containment pressure
2. The overpower reactor trips (neutron flux and 6T) and the reactor trip occurring in conjunction with receipt of the safety injection signal.
3. Redundant isolation of the main feedwater lines: Sustained high feedwater flow would cause additional cooldown. Therefore. in add1t1on to the normal control action which will close the main feedwater valves, a safety injection signal will rapidly close all feedwater control valves, trip the main feedwater pumps, and close the feedwater pump discharge valves.
4. Trip of the fast acting steam line stop valves (designed to close in less than 5 seconds) on:
a. High steam flow in two main steam lines in coincidence with low-low Reactor-Coolant System average temperature or low steam line pressure in any two iines.
b. High-high containment pressure SGS- U~SA~

8920Q:lQ/Q1Q88§ IS.4-l7

Fast-act1ng 1~;olat1on valves are prov1ded 1n each steam line that will

  • fully clo~e w1thin 7 seconds of a signal to close (including instrumentation delays). For breaks downstream of the isolation valves, closure of all valves would completely terminate the blowdown. For any break, in any location, no more than one steam generator would blowdown even if one of 'the 1solat1on valves fails to close. A description of steam line isolation is included in Chapter 10.

Steam flow 1s measured by monitoring dynam1c head in nozzles inside the steam pipes. The nozzles which are of considerably smaller diameter than the main steam pipe are located inside the containment near the steam generators and also serve to limit the maximum steam flow for any break further downstream.

15.4.2.2 METHOD OF ANALYSIS The analysis of the steam pipe rupture has been performed to determine:

l. The core heat flux and Reactor Coolant System temperature and pressure resulting from the cooldown following the steam line break. The LOFTRAN[ 2?] code has been used.
2. The thermal and hydraulic behavior of the core following a steam line break. A detailed thermal and hydraulic digital-computer code, THINC, has J

been used to determine if DNB occurs for the core conditions computed in (l) above.

The following conditions were assumed to exist at the time of a main steam line break. ace i de_nt.

l. End of life shutdown margin at no load, equilibrium xenon conditions, and the most reactive assembly stuck in its fully withdrawn position:

Operation of the control rod banks during core burnup is restricted in such a way that addition of posit1ve reactivity in a steam line break

  • accident will not lead to a more adverse condition than the case analyzed.

SGS- U~.SAt...

\5'*4-18 99266.lB/071185

2

  • The negat1ve moderator coeff1c1ent correspond1ng to the end of life rodded core with the most reactive rod in the fully withdrawn position: The variation of the coefficient with temperature and pressure has been included. The keff versus temperature at 1000 psi corresponding to the negative moderator temperature coefficient used is shown in Figure 15.4-48. The effect of power generat1on in the core on over-all reactivity is shown in Figure 15.4-49.

The core properties associated with the sector nearest the affected steam generator and those associated with the remaining sector were conservatively combined to obtain average core properties for reactivity feedback calculations. Further, it was conservatively assumed that the core power distribution was uniform. These two conditions cause underprediction of the reactivity feedback in the high power region near the stuck rod. To verify the conservatism of this method, the reactivity as well as the power distribution was checked. These core analyses considered the Doppler reactivity from the high fuel temperature near the stuck RCCA, moderator feedback from the high water enthalpy near the stuck RCCA, power redistribut1on and nonuniform core inlet temperature effects.

For cases in which steam generation occurs in the high flux regions of the core, the effect of void formation was also included. It was determined that the reactivity employed in the kinetics analysis was always larger than the reactivity calculated for all cases. These results verified conservatism; i.e., underprediction of negative reactivity feedback from power generation.

3. Minimum capability for injection of boric acid (2,000 ppm) solution corresponding to the most restrictive single failure in the safety injection 9'YStem. This corresponds to the flow delivered by one charging pump delivering its full flow to the cold leg header. Low concentration boric acid (<2,000 ppm) must be purged from the safety injection lines downstream of the Refueling Water Storage Tank prior to the delivery of boric acid to the reactor coolant loops. This effect has been allowed for in the analysis by assuming the lines to contain unborated water. The modeling of the Safety Injection System in LOFTRAN is described in Reference 27.

S.GS- U\:.SAfl....

~26~.lB/676885 15"*4-15

For the cases where offsite power is assumed. the sequence of events in the Safety Injection System is the following. After the generation of the safety injection signal (appropriate delays for instrumentation. logic and signal transport included), the appropriate valves begin to operate and the high head injection pump starts. In an additional 12 sec, the valves are assumed to be in their final position and the pump is assumed to be at full speed. The volume containing the unborated water is purged before the 2,000 ppm boron reaches the core. This delay, described above, is inherently 1ricluded in the modeling.

In cases where offsite power is not available, a 12-sec delay is assumed to start the diesels and to load the necessary safety injection equipment onto them.

4. Four combinations of break sizes and initial plant conditions have been considered in determining the core power and Reactor Coolant System transients:
a. Complete severance of a pipe outside the containment, downstream of the steam flow measuring nozzle, with the plant initially at no load conditions, full reactor coolant flow with offsite power available.
b. Complete severance of a pipe inside the containment at the outlet of the steam generator with the plant initially at no load conditions with offsite power available.
c. Case (a) above with loss of offsite power simultaneous with the initiation of the safety injection signal. Loss of offsite power results-in coolant pump coastdown.
d. Case tb) above with the loss of offstte power simultaneous with the initiation of the safety injection signal.
5. Power peaking factors corresponding to one stuck RCCA and non uniform core inlet coolant temperatures are determined at end of core life. The
  • coldest core inlet temperatures are assumed to occur in the sector with the stuck rod. The power peaking factors account for the effect of the

~GaS- UFSA'-..

- e92ee .1 e/01eees . \5*4-'2.0

local void in the region of the stuck control assembly during t~e return

  • to power phase following the steam line break. This void in conjunction with the large negative moderator coefficient partially offsets the effect of the stuck assembly. The power peaking factors depend upon the core power, temperature, pressure, and flow, and thus, are different for each.

case studied.

All the cases above assume 1n1t1al hot shutdown conditions at time zero since th1s represents the most pessim1st1c initial condition. Should the reactor be just cr1tical or operating at power at the time of a steam line break, the reactor will be tripped by the normal overpower protection system when power level reaches a trip point. Following a trip at power the Reactor Coolant System contains more stored energy than at no load, the average coolant temperature 1s higher than at no load and there is appreciable energy stored 1n the fuel. Thus, the additional stored energy is removed via the cooldown caused by the steam line break before the no load conditions of ~eactor Coolant System temperature and shutdown margin assumed 1n the analyses are reached. After the add1t1onal stored energy has been removed, the cooldow~ and reactivity insertions proceed in the same manner as in the analysis which assumes no load condition at time zero.

However, since the in1tial steam generator water inventory is greatest at no load, the magnitude and duration of the Reactor Coolant System cooldown are less for steam line breaks occurring at power.

6. In computing the steam flow during a steam line break the Moody 0

Curve[ 2S] for fl/D = 0 is used.

7. Perfect moisfure separation in the steam generator is assumed. The assumption leads to conservative results since, in fact, considerable water would be discharged. Water carryover would reduce the magnitude of the temperature decrease in the core and the pressure increase in the containment .

SC.S- UFSAk 8920Q.l9197ll85 \5"*4- 2.\

15.4.2.3 RESULTS

  • The results presented are a conservative indication of the events which would occur assuming a steam line rupture since it is postulated that all of the conditions described above occur simultaneously.

15.4.2.4 CORE POWER AND REACTOR COOLANT SYSTEM TRANSIENT o.. .....ct rS* 4- so 3 Figuresl5.4-50~1 the Reactor Coolant System transient and core heat flux following a main steam pipe rupture (complete severance of a pipe) outside the containment, downstream of the flow measuring nozzle, at initial no load condition (case a). The break assumed is the largest break which can occur anywhere outside the containment either upstream or downstream of the isolation valves. Offsite power is assumed available such that full reactor coolant flow exists. The transient shown assumes an uncontrolled steam release from only one steam generator. Should the core be critical at near zero power when the rupture occurs the initiation of safety injection by high differential pressure between any steam line and the remaining steam lines, or by high steam flow signals in coincidence with either low-low Reactor coolant System temperature or low steam line pressure will trip the reactor. Steam release from more than one steam generator will be prevented by automatic trip of the fast action isolation valves in the steam lines by the high steam flow signals in coincidence with either low Reactor Coolant System temperature or low steam line pressure. The steam line isolation valves are designed to be fully closed in less than 5 seconds after receipt of closure signal with no flow through them. With the high flow existing during a steam line rupture the valves will close considerably faster.

SOB 51B 15* 4-5 2..b LL"'-<{

The steam flow--en Figure 15.4-~ as well as Figures 15.4-}r~7 U1rcn1gl:I 15.4-53B represent steam flow from the faulted steam generator only. In addition, all steam generators were assumed to discharge through the break until steam line isolation has occurred .

~C...S- Uf~AL

-8929Q. l 9/979885 lS*4- 22.

52t> 53D As shown 1n F1gures 15.4-?2" ~nd 15.4-~. the core atta1ns cr1t1cal1ty w1th the rod cluster control assembl1es inserted (with the design shutdown assuming one stuck assembly} before boron solution at 2,000 ppm enters the Reactor Coolant system from the Safety Injection System. The delay time consists of the time to receive and actuate the safety inje.ction signal and the time to completely open valve tra1ns 1n the safety 1njection lines. The safety injection pumps are then ready to deliver flow~ At th1s stage a further delay time 1s 1ncurred before 2,000 ppm boron solution can be 1njected to the Reactor Coolant System due to low concentration solution being purged from the safety 1nject1on 11nes. A peak core power well below the nominal full power value is atta1ned.

The calculation assumes the boric acid is mixed with. and diluted by the water flowing in the Reactor Coolant System prior to entering the reactor core. The concentration after mixing depends upon the relative flow rates in the Reactor Coolant System and in the Safety Injection System. The variation of mass flow rate in the Reactor Coolant system due to water density changes is included in the calculation as in the variation of flow rate from the Safety Injection System and accumulator due to changes 1n the Reactor Coolant System pressure.

The Safety Inject1on System flow calculation includes the line losses in the system as well as the pump head curve. The accumulators provide the addit1onal source of borated water if the RCS pressure decreases to below 580 psia. The integrated flow rate of borated water from both the accumulators and the Safety Injection System for each of the four cases analyzed are shown in Figure 15.4-54.

5IA o.. ..... el I5 *4 - 5 I D Figuresl5.4-}'f show~ case b. a steam line rupture at the exit of a steam generator at n~ load. The sequence of events is similar to that described above for the rupt~re outs1de the conta1nment except that cr1ticality 1s atta1ned earlier due to more rapid cooldown and a higher peak core average power is attained . I S~~- U~SA(L 892Q~:l9/Q1QBBS- 15*4 - 23

51-A,52 l?:> 5"3 A, 5 .3 B F1gure5 15.4-}l'. and 15.4-~ show the responses of the sal1ent parameters for cases c and d which correspond to the cases discussed above with additional loss of offsite power at the time the safety injection signal is generated.

The Safety Injection System delay time 1ncludes 12 seconds to start the diesel (including instrumentation delay time) and 12 seconds to get the safety injection pump to full. speed. In each case criticality is achieved later and the core power increase is slower than in the similar case w1th offsite power available. The ability of the emptying steam generator to extract heat from the Reactor Coolant System is reduced by the decreased flow 1n the Reactor Coolant System. For both these cases the peak core power remains well below the nominal full power value.

It should be noted that follow1ng a steam 11ne break only one steam generator blows down completely. Thus, the remaining steam generators are still available for dissipat1on of decay heat after the initial transient is over.

In the case of loss of offsite power this heat is removed to the atmosphere via the steam line safety* valves which have been sized to cover this condition.

The sequence of events is shown on Table 15.4-1.

15.4.2.5 MARGIN TO CRITICAL HEAT FLUX A DNB analysis was performed for the three cases most critical to DNB. It was found that all cases had a minimum DNBR greater than 1.30.

15.4.2.6 OFFSITE DOSES The off-site doses resulting from the steam line break accident, assuming a primary to secondary steam generator tube leak in the intact steam generators, were calculated. The assumptions and parameters including the mass.

transferred through the steam generator tube leak used in the analysis are listed below:

l. Prior to the accident, activity of fission products in the primary system 1s as given in Table 15.4-8. The 1odine concentration in the secondary
  • side is 0.28 uCi/cc of equivalent 1-131~

Sc-.s .. U~S11>.'-

8929Q:19/97988S IS-* 4- 2.4

2. Off-s1te power 1s lost, main steam condensers are not ava11able for steam dump.
3. Eight hours after the accident the Residual Heat Removal System starts operation to cool down the plant.
4. The primary to secondary leakage is evenly d1str1buted in the three non-defective steam generators. no tube leakage in the defective steam generator.
5. Defective fuel is l percent.
6. After eight hours following the accident. no steam and activity are released to the environment.
7. No air ejector release and no steam generator blowdown during the accident.
8. No noble gas is dissolved in the steam generator water.

amount of iodine/unit mass steam =

9. The iodine partition factor amount of 1odine/unit mass liquid 0 . 1 in steam generators
10. The atmosphere dispersion factors (x/Q) at site boundary and low population zone are as listed in Table 15.4-9. The breathing rate is 3.47 x 10-4 m3/sec for 0-8 hours.
11. In the affected steam generator, all the water boils off and releases through the break inmediately after the accident. One tenth of the iodines in the ~ater is released to the environment.
12. The primary pressure remains constant at 2235 psig for 0-2 hour and decreases linearly to atmosphere from 2235 psig during the period 2-B hour .

sc...s. u~sA.a-8929Q.lBIB78BB' \S'*4- 25"

STEAM LINE BREAK STEAM RELEASE 0-2 Hours 2-8 Hours Mass release from defect1ve S.G. lbs 95.000 0 Steam release from non-defect1ve S.G.'s lbs 424,000 1,188,000 Feedwater Flow to 3 non-defect1ve S.G.'s lbs 433,000 1,300,000 Mass of reactor coolant transferred 1nto 3 non-defective S.G.'s lbs for a primary to secondary leak rate of l gpm, lbm 719 2. 510 Us1ng the above assumpt1ons, the thyro1d 1nhalat1on exposure was calculated to be 2.1 rem at the m1n1mum exclus1on d1stance (1270 meters) and 0.37 rem at the 5 m1le low populat1on zone rad1us. Us1ng the conservat1ve calculational models presented 1n Safety Gu1de 4, the whole body doses were calculated to be 0.0067 rem at the m1nimum exclus1on d1stance and 0.0014 .rem at the low population zone radius .

  • Sc:-...s- U~~A-...

8929Q:19/Q7988S \5" 2.(,

TABLE 15.4-1 (Sheet 1 of 3)

TIME SEQUENCE OF EVENTS FOR CONDIT ION IV EVENTS Accident Event Time{ Seconds)

Major Reactor Coo 1ant System Pipe Ruptures Double-Ended Cold Leg Guillotine

1. {C0 = 1.0) Start 0.0 Reactor trip signal 1.65 Safety injection signal 0.86 AccLmulator injection 14.1 End of Blo~own 28.1 Bottom of core recovery . 40.34 Accllllulators empty 51.15 -

Pllllp i nj ecti on 25.86 End of bypass 25.4

2. (.c 0 = o.8) Start o.o Reactor trip signal* 1.66 Safety injection signal 0.92 Accllllulator injection 14.6 End of 8 lo~own 28.8

. Bottom of core recovery 40.95

~

Ace llllU l ators empty 51.6 Pllllp injection 25.92 End of bypass 26.0

3. ( C0 = O. 6) Start 0.0 Reactor trip si gna 1 1.66 Safety injection signal 1.03 Ace IJ11U l ator injection 16.8 SGS-UFSAR Revision 0 July 22, 1982

TABLE 15.4-1 (Sheet 2 of 3)

TIME SEQUENCE OF EVENTS FOR CONDITION rv* t:VErHS Accident Event Time( Seconds)

End of Blo\l<<iown J0.46 Bottom of core recovery 42.5 Accurn ... lators empty 53.64 P1J11p injection 26.03

£nd of bypass 27.51 Rupture of main Feedline rupture occurs o.oo feedwater pipe

  • High pressure reactor trip setpoint reached (This trip was not considered in the analysis). 11.0 Affected steam generate'. liquid discharge; low level coincident with feed/steam flow mismatch in other steam generators; reactor trip setpoi nts reached. 18. 5 Reactor trip occurs 20. 5 Peak steam relief from pressurizer safety valves 22.5 Pressurizer fills 527 Bulk boiliny oegins in
  • reactor cool ant fluid 876 Re vision 0 SGS-UFSAR July 22, 1982

TABLE 15.4-1 (Sheet 3 of 3)

TIME SEQUENCE OF EVENTS FOR CONDITION IV EVENTS Accident Event Time (Seconds)

Core decay heat decreases to auxiliary feedwater heat removal capacity 2100 Major Secondary System Pipe Rupture

1. Case a Steam line ruptures 0 Criticality attained 40 Pressurizer empty 13 2,000 ppm boron reaches loops 27
2. Case b Steam line ruptures 0
  • Criticality attained Pressurizer empty 2,000 ppm boron reaches loops 24 13 27
3. Case C Steam line ruptures 0 Criticality attained 49 Pressurizer empty 14 2,000 ppm boron reaches loops 33
4. Case d Steam line ruptures 0 Criticality attained 28 Pressurizer empty 15 2,000 ppm boron reaches loops 34 8920Q:l0/070885

CORC: PARAf'ETERS USED IN ST£AM BREAK DNB ANALYSIS Case a Time Point Parameter 2 3 5 Unit 1 Unit 2 Unit 1 Unit 2 Unit 1 Unit 2 Reactor Vessel inlet temperature to sector connected to affected steam generator °F 454.8 443.2 220.1 421.9 405.2 406.9 392.8 396.8 Reactor Vessel inlet temperature to re-mai ni ng sector 497.4 495.3 494.3 49

  • 493.0 483.2 485.5 468.0 473.8 RCS pressure, psi a 869.5 868.6 649.1 796.7 693.1 702.4 578.0 597.4 RCS fl ow, 100 100 100 100 100 100 100 100 100 Heat flu . 6.18 6.76 6.63 8.28 6.99 8.14 6.83 7.39 6.43 6.32 25 30 32.5 34.5 47.5 45.5 70 67.5 97.5 92.5 SGS-UFSAR i ..... Revision O Jul v 22, 1982
  • TABL£ 15. (Sheet 2 of 3) 15* 4.7 CORE PARAftE T£ RS USED IN ST£AM BR£AK DNB ANALYSIS Case b Time Point Parameter 2 . 3 4 5 Unit2 Unit 1 Unit 2 Unit 1 Unit 1 Unit 2 Reactor Vessel inlet temperature to sector connected to affected steam generator °F 391.4 386.7 348.7 372.5 340.l 367.7 328.6 358.4 Reactor Vessel inlet temperature to re-maining sector °F 526.8 518.8 516.4 512.0 451.0 505.3 427.8 488.7 RCS pressure, psi a 1098.8 898.9 879.9 573.9 523.8 795.5 487.9 644.4 RCS flow, 100 100 100 100 100 100 1 100 100 100 8.22 9.57 B.37 12.45 9.65 11.65 8.46 1 58 7.75 12.02 25 27.5 35 37 80 41.5 100 49.5 2.5 70 SGS-UFSAR I ..... Revision 0

.Julv 22. 1982

  • '°DE:..LEIE..

TABLE 15. - (Sheet 3 of J)

-r P-- \3 L ~ \ S°

  • L\* - 7 CORi PARA~T£RS USl:D IN ST£AM BR£AK DNB ANALYSIS Case d, Time Point Parameter 2 3 4 5 Unit 1 Unit 2 Unit 1 Unit 1 Unit 2 Unit 1 Unit 2.

Reactor Vessel inlet temperature to sector connected to affected steam generator °F 390.5 375.5 356.6 345.5 322.1 312.1 303.2 281.5 284.3 Reactor Vessel inlet temperature to re-maining sector °F 530.2 528.9 529.2 528.0 527.5

  • 524.5 526.8 RCS pressure, psi a 1469.3 1359.l 1264.8 1270.4 998.3 >377. 5 891 RCS flow, 47 40.6 33.9 32.3 30.7 24 .* 9 22. 20.9 17.0 17~4 Heat fl 5.27 5.8 6.10 6.74 6.2 7.87 4.52 3.59 3.58 ime (sec) 20 25 32.5 35 37.5 50.5 57.5 65 8
  • 85 SGS-IJFSAR
  • 1* . . . Revision 0

.1111 v n. 1982

TABLE 15.4-8

- REACTOR COOLANT EQUILIBRIUM FISSION AND CORROSION PRODUCT ACTIVITIES (BASED ON PARAMETERS GIVEN IN TABLE 11.1-7)

Activity Activity Isotope µ.C/CC Isotope µ.C/CC Br-84 3.34 x 10-2 CS-136 2.93 x 10- 2 Rb-88 2.66 Cs-137 .859 Rb-89 6.74 x 10-~ Cs-138 .670 Sr~89 3.18x 10- Ba-140 3.24 x 10-3 Sr-90 7.88 x 10- 5 La-140 1.27 x 10-3 Sr-91 1.42 x 10- 3 Ce-144 . 3.88 x 10-4 Sr-92 5.97 x 10-4 Pr-144 3.88 x 10-4 Y-90 1.05 .x 10-4 Kr-85 3.93 Y-91 5.83*x 10- 3 Kr-85m 1. 70 .

Y-92 7.68 x 10-4 Kr-87 .942

  • Zr-95 Nb-95 Mo-99 I-131 6.66 x 6.57 x 2.36 1.87 10- 4 10-4 Kr-88 Xe-133 Xe-133m Xe-135 2.66 194.7 2.09 5.45 I-132 .657 Xe-135m .132 I-133 2.89 Xe-138 .*468 I-134 .376 Mn-54 5.87 x 10- 4 I-135 1.46 Mn-56 2.20 x 10-2 Te-132 .208 Co-58 1.89 x 10- 2 Te-134 2.04 x 10-2 Co-60 5. 67 x 10- 4 Cx-134 .142 Fe-59 7.87 x 10- 4 SGS-UFSAR Revision O July 22, 1982

TABLE 15.4-9 ATMOSPHERIC DISPERSION FACTORS

  • Distance, m AND BREATHING RATES 3

Atmospheric Df spersfon Factors, X/Q (sec/m )

a- 2 hrs 2 - 24 hrs 1 .. 5 days 5 - 30 days 1270 5.0 x 10- 4 2.5 x 10-4 4.25 x 10- 6 2.53 x 10- 6 8052 4.0 x 10- 5 2.0 x 10- 5 9.6 x 10- 8 Time Perf od, hr Breathing Rates, m /sec a- a 3.47 x io- 4

  • 8 - 24 24 - 720 1.75 x 10-4 2.32 x 10-4
  • SGS-UFSAR 1785Q:l Revis ion l

~uly 22, 1983

14202.3 1.04 1.03 a:

I .02

....u0 IL z

0 I .0 I u

_J a.

..... 1.00

  • t-

_J

i 0.99 0.98 0.97....__~~.......~~--"-~~--J.~~~J.-~~...L...~~-L~~_J 200 250 300 350 400 450 500 550 CORE AVERAGE TEMPERATURE (*F)

Variation of KEFF with Core Temperature PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Updated FSAR Figure 15.4-48

14202.4

-u

E

-2000 ------------------------------------------------------------,

-z Q..

I-UJ u

LL.

LL.

UJ 0

u -1000 a:

~

D..

LL 0 .*

_J

< I a:

(!)

I LL.I I I- I z 0 lt-------...J....--------1...._____- ' -_____ ._____________ ~

0 0. 10 0.20 0.30 0.40 0.50 0.60 POWER (FRACTION OF 3423 MWt)

Variation of Reactivity with Power at Constant PUBLIC SERVICE ELECTRIC AND GAS COMPANY Core Average Temperature SALEM NUCLEAR GENERATING STATION Updated FSAR Figure 15.4-49

14202.5 600 550

!!UJ 500

~--

~~

450

< UJ 400 UJ-c 13 u

350 300 250 2500 2250 Pressurizer Empties at 13 Sec

~ 2000 ffi -

Ul ~

1750 a: Ul 1500 UJ -

a.. a..

1250 en

~ 1000 750 500 0 100 200 300 400 500 600 TIME (SEC}

Transient Response to Steam Line Break Downstream PUBLIC SERVICE ELECTRIC AND GAS COMPANY of Flow Measuring Nozzle with Safety SALEM NUCLEAR GENERATING STATION Injection nnd Offsite Power (Ccise al Updated FSAR Figure 15.4-50A

14202.6 3.500 g~

..J

- 3.000 2.500 2.000 IL ~ Faulted Steam Generator Only

E 1.500

< u UJ <

I-U) er.

IL 1.000 0.500 0

0.250

~-

..J :::E 0.200 IL 0 z

I- IL 0.150

<o

~u 0.100 UJ <

er. er.

0 IL u- 0.050 0

0 100 200 300 400 500 600 2500 2000 2,000 PPM Boron Reaches Loops at 27 Sec.

> :::E 1000 j:: ~ 0

~-

UJ er. -1000

-2000

-2500 0 100 200 300 400 500 600 700 TIME (SEC)

Transient Response to Steam Line Break Downstream PUBLIC SERVICE ELECTRIC AND GAS COMPANY of Flow Measuring Nozzle with Safety SALEM NUCLEAR GENERATING STATION Injection and Offsite Power (Case a)

Updated FSAR Figure 15.4-508

14202.7 600 550 c..

E Ll..I 500 LL. 450 Ll..I

> (!)

< Ll..I 400 0

1.1..1-a: 350 0

u 300 250 2500 2250 Pressurizer Empties at 13 Sec.

Ll..I 2000 a:

(/)

(/)

1.1..1-

< 1750 a: (/) 1500 a.. a..

(/)

1250 u 1000 a:

750 500 0 100 200 300 400 500 600 TIME (SEC)

Transient Response to Steam Line Break at Exit PUBLIC SERVICE ELECTRIC AND GAS COMPANY of Steam Generator with SafetY Injection and SALEM NUCLEAR GENERATING STATION Offsite Power (Case bl Updated FSAR figure 15.4.51A

14202.8

  • ~~

-' z 3.500 3.000 2.500 LLLL 2.000

I 0

<u 1.500 UJ <

I- a: I .000 Ul LL 0.500 0

0.250 X ,_ 0.200

> :::E

~~

I- LL

o. 150

<o

~u 0. 100 UJ <

!5u-IE 0.500 0

I-

-u I- a.

....> :::E 2500 2000 1000 0

2,000 PPM Boron Reaches Loops at 27 Sec.

~-

~ -1000

-2000

-2500 f- I I I I r 0 100 200 300 400 500 600 TIME (SEC}

Transient Response to Steam Line Break at Exit PUBLIC SERVICE ELECTRIC AND GAS COMPANY of Steam Generator with Safetv Injection and SALEM NUCLEAR GENERATING STATION Ofhite Power (Case b)

Updated FSAR Figure 15.4.518

14202.9 600 550 -

~

~-

500 UJ

~

450

~ C!)

<~ 400 ---

~- 350 0

u ---

300 -

250 2500 2250 UJ Pressurizer Empties at 14 Sec.

sUl .....

2000 1750

(/) <

UJ ...

1500 IE If 1250

(/)

~ 1000 750 500 0 100 200 300 400 500 600 TIME (SEC}

Transient Response to Steam Line Break Downstream PUBLIC SERVICE ELECTRIC AND GAS COMPANY of Flow Measuring Nozzle with Safety Injection, SALEM NUCLEAR GENERATING STATION Without Offsite Power (Case c)

Updated FSAR Figure 15.4-52A

14202.10 3.500 3.000

~~

_J z 2.500 IL ~ 2.000

E

<u 1.500 UJ <

I- a: 1.000 Ul IL 0.500 0

0.250

~-- 0.200 i~ 0.150

~~

!i! u 0.100 UJ <

25 fE u- 0.500 I- .

0 2500 2000 1000 2,000 PPM Boron Reaches Loops at 33 Sec.

~a 0 I- a..

~-

UJ a: -1000

-2000

-2500 0 100 200 300 400 500 600 TIME (SEC)

Transient Response to Steam Line Break Downstream PUBLIC SERVICE ELECTRIC AND GAS COMPANY of Flow Measuring Nozzle with Safety Injection, SALEM NUCLEAR GENERATING STATION Without Offsite Power (Cue c)

Updated FSAR Figure 15.4-528

14202. 11 600 550

~

UJ 500

~--

~

450 LIJ (!)

> UJ 400

"'c

~~ 350 u

300 250 2500 2250 Pressurizer Empties at 15 Sec.

UJ s

Ul _..

2000 1750 Ul <

UJ -Ul a:: 1500

!l.. D..

1250 Ul u 1000 a::

750 500 0 100 200 300 400 500 600 TIME (SEC)

Transient Response to Steam Line Break at Exit PUBLIC SERVICE ELECTRIC AND GAS COMPANY of Steam Generator With Safety Injection and SALEM NUCLEAR GENERATING STATION Without Offsite Power (Case di Updated FSAR Figure 15.4-53A

h202.12

  • 3.500 3.000

~

_J z E5 2.500 i.. i.. 2.000

Eo

<u 1.500 UJ <

t- a:: 1.000 Ill i..

0.500 0

0.250 x ..... 0.200

> :::E

_J 0 i.. z I- i..

o. 150

~o

I: u 0. 100 UJ <

a:: a::

0 i..

u- 0.500 a

)

2500 2000 2,000 PPM Boron Reaches Loops at 34 Sec.

I-

- :::E I-u a..

u 1000 0

~ -1000

-2000

-2500 0 100 200 300 400 500 600 TIME (SEC)

Transient Response to Steam Line Break at Exit PUBLIC SERVICE ELECTRIC AND GAS COMPANY of Steam Generator With Safety Injection and SALEM NUCLEAR GENERATING STATION Without Offsite Power (Case d)

Updated FSAR Figure 15.4-53B

14202.13 ,

  • 500 400 300 200 Case A 100 ..__

0 500 400 - Case 8 300 .._  !

E 200 .._ I r

Cl.

Cl. 100 .....

z 0 0

a:

0 soo aJ IJJ

- Case C a: 400 0

u 300 -

200 .._

100 -

0 500 400 - Case D 300 -

  • 200 -

100 - I 0

I I I 0 100 200 300 400 500 600 TIME (SEC)

PUBLIC SERVICE ELECTRIC AND GAS COMPANY Integrated Flow Rate of Borated Water versus Time SALEM NUCLEAR GENERATING STATION Updated FSAR Figure 15.4*54

/

600 E

u..

0 Q.

2i I-500

~00

]

1-3000 PRESSURIZER EM FTI ES AT 1~ SEC

z: ~

~

...J en g ~ 2000

<.)

INITIAL STEAM FLOW IS 11261 L SEC FROM FAULTED STEAM GENERATOR (A~Q 2983 LBS/SEC FROM INTACT STEAM !ENERArO S)

STEAM GEHERATOR ONLY 0

2.5 20.000 PPM BOROll REACHES

~ 0 u.I

<.)

ex

~

!:. -2. 5 0 25 50 75 I 00 I 25 I 50 TIME (SECONDS)

~ E:.. L \::..'TE.

0

' 1982 Transient Response to Steam Line Break at Exit of Steam Generator with Safety Injection and PUBLIC SERVICE ELECTRIC AND GAS COMPANY Offsite Power (Case b)

  • Unit 2 SALEM NUCLEAR GENERATING STATION Updated FSAR Fi9WF8 1 li.4 56

.\ a::

~ ~ ~

u Q,,

-c -

w w

a::

i en en I-en Q,,

3000 2000 I

PRESSURIZER EMPTIES AT 19 SEC a::~ 1000

....I 0

0 u

0 600 500 INITIAL STEAM FLOW IS I I 53 LBS/SEC FROM FAULTED STEAM GENERATO (ANO 29BL4 LBS/ SEC FROM INTACT STEAM G ERATORS) 2.5 1-

,~

....I II 2.0

><O ....I

i % w

....I en ao u..u..~O Q. WO I-

~I-

.....1-w I. 5 w % a: u..

w 0 u  %

wa:~1-a:w ~z 0 Q,, I- w 1.0 u - cnu a:

w Q,,

20.000 PPM BORON REACHES LOOPS AT 35 S

-2.5 0 25 50 75 I 00 125 I SO 175 TIME (SECOHOS)

DE.. LE:.IE. ~' ~ u fL.E Transient Response to Steam Line Break at Exit PUBLIC SERVICE ELECTRIC AND GAS COMPANY of Steam Generator With Safety Injection and SALEM NUCLEAR GENERATING STATION Without Offsite Power (Case d) - Unit 1 Updated FSAR Jiii9wre 15 4 5S

3000 I-z:

Cit

...J PRESSURIZER EMPTIES AT 19 SEC

-0 0

w QC 2000

<..:>  :::::> Cit en en en w Q..

ex I 000 Q..

w ex 0

I-I-

""'ar:::

I.I.I z:

...J 0

0 3.0 FL i S 11 261 LBS/ SEC FROM HERATOR (AN02983 LB/SEC EAM GENERA TORS) 2.5

...J w en

"""z: en 2.0

% CZ)

><0 ...J

> :z: I.I.I

...J en~

~~

0 WO (')

I- ...J -

~!:*~~ I. 5

w 0 war:: Cit I -

QCW wz OQ.. 1-W

<..:>-en<..:>

C¥ I.I.I Q..

0.5 0

I-

"<J""

I-z:

2.5 0

20.000 PPM BORON REACHES LOOPS AT ~7

<..:> u.i I.I.I ex QC w

Q..

-2.5 0 25 50 75 I 00 I 25 I 50 I 75 TIME (SECONDS)

  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Transient Response to Steam Line Break at Exit of Steam Generator With Safety Injection and Without Offsite Power (Case. d) . Unit 2 Updated FSAR T-i91.1r11 '5 a.'iL

I

  • 30.000 20,000 CASE A 10.000 0

en ao

...J IX w

I-

~

Q w

30. 000 I-IX 0 20.000 ao u..

0 w

10,000 .

I-

~

IX 0

~

0

...J u..

Q 10.000 w

I-

~

ai:: 5,000 C!3 w

I-

z: 0 CASE D 100 200 TIME (SECONDS)
  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Updated FSAR versus Time
  • Unit 1 Revi si o 0 July 22, 982 Integrated Flow Rate of Borated Water

~*.n:e l5 4-5.8._.

  • 140.000 ca

~

a:

UJ 50.000

-c ~0.000 311:

0 w

'4 30.000 a:

0 ca I.&..

20. 000 .

0 UJ

..... 10.000

-c a:

311: 0 0

~

0 w 10.000 I-

-c a:

C::J

~

I-5.000

z:

CASE D 0

0 so 100 150 TIME (SECOHOS)

"°3) E.. L E I E..

  • 1 PUBLIC SERVICE ELECTRIC AND GAS C9MPANY SALEM NUCLEAR GENERATING STATION Integrated Flow Rate of Borated Water Updated FSAR versus T,ime - Unit 2 figa1e HU-58

(';)

C> ,.

1'.

"fl "P 0

~

r{ii 0 >

-\

I

-\

l.

c )'

-0 (l

~

(ii >-

fl

(/'I l

-l (i1

()t >

I l.

i., (Ta -l

-l

> 'T1 z.. VI

r. .l>

'fl tJ

{It (i\

L

-\

ii3 r

r

()

~

r*

""\)

(j' 00 V\

t:t (..)

I 0

I

-l 11'* w

-\

IT1 r(/t

  • TABLE 6. 3-3 BORON INJECTION TAN~ DESIGN PARAMETERS Number l Total volume, gal (also useable volume) 900 BereA eaAEeRtratigR NomiAal, ppm 21,000 MaximYm, ppm 22,§00 Mi Ai mi:.m, ppm 20,000 Design pressure, psig 2735 Design temperature, °F 150-180 Material SS Clad Carbon Steel Code ASME III Class C llEATERS Ty19e SGS-UFSAR Revision 0 July 22, 198~

.S. At.E.M -r A.~ L..E \S*\-2.

SU 1"\M A~'1 C \: \ N \I 1 A. L.. C:.. c iJ .0 It\~ N ..S c ~ t'\ ~ \J\E.~ c:.. 0 .n E. .s lJ .s. . 0

SUMMARY

Of TABLE 15.1-2 (Sheet l of 4)

INITIAL CONDITIONS AND COMPUTER_ CODES USED REACTIVITY COEFFICIENTS ASSUMED INITIAL NSSS MODERATOR(l) MODERATOR(l) THERMAL POWER OUTPUT TEMPERATURE DENSITY ASSUMED COMPUTER (tik/"Fl (tiK/gm/cc) DOPPLER(Z) (MWT)

FAULTS CODES UTILIZED CONDIT ION I I Lower 0 Uncontrolled RCC assembly Bank Withdrawal WIT-6 .* FACTRAN from a Subcritical Condition*

0 and 0.43 lower and 3423 Uncontrolled RCC Assembly.Bank Withdrawal LOFTRAN upper at Power 0 upper 3423 RCC Assembly Misalignment THINC, TURTLE, LOFTRAN NA NA NA O and 3423 Uncontrolled Boron Dilution NA 0 upper 2396 and Partial Loss of Forced Reactor Coolant PHOENIX, LOFTRAN 3423 Flow THINC, FACTRAN 0.43 lower 2369 Start-up of an Inactive Reactor Coolant MARVEL, THINC Loop 0 and D.43 upper 3423 Loss of External Electrical Load and/or LOFT RAN Turbine Trip NA NA 3577 Loss of Nonnal Feedwater BLKOUT NA NA 3423 Loss of Off-Site Power to the Plant BLKOUT Auxiliaries (Plant Blackout)

Revision 0 lulu ?? lQA?

  • TABLE 15.1-2 !Shoot 2 of~

SUMMARY

OF INITIAL CONDITIONS AND COMPUTER CODES USED REACTIVITY COEFFICIENTS ASSUMED INITIAL NSSS MODERATOR(l) MODERATOR(l) THERMAL POWER OUTPUT COMPUTER TEMPERATURE DENSITY ASSUMED CODES UTILIZED (6K/*f) (AK/gm/cc) DOPPLER( 2) (Mwt)

CONDITION. 11 (cont\nued)

Excessive Heat Removal Due to Feedwater MARVEL 0.43 lower O and 3423 System Malfunctions Excesslve Load Increase LOFT RAN 0 and 0.43 lower 3423 Accident Depressur\zatton of the LOFTRAN 0 upper 3423 Reactor Coolant System Accident Depressurizat\on of the LOFTRAN Functton of Mod- Fig. 15.4-49 0 Main Steam System era tor Dens tty (Subcr1ttca1)

See Sec. 15.2.13

/ (Fig. 15.2.41)

Inadvertent Operat\on of ECCS Durtng LOFTRAN 0 lower 3423 Power Operatton CONDITION 111 Loss of Reactor Coolant from Small WFLASH, LOCTA-R2 . 3511 Ruptured Pipes or from Cracks tn Large Ptpe which Actuate Emergency Core Coo 11 ng nn'lnn. 1 n 1n-,noos::

  • ~UMMARY TABLE 15.1-2 (Sheet 3 OF INITIAL CONDITIONS AND COMPUTER CODES USED REACTIVITY COEFFICIENTS ASSUMED INITIAL N*sss MODERATOR(l) MODERATOR(l) THERMAL POWER OUTPUT COMPUTER TEMPERATURE DENSITY ASSUMED CODES UTILIZED (1Ut/9F) (AK/gm/cc) DOPPLER( 2) (Mwt)

CONDITION Ill (continued)

Inadvertent Loading of a Fuel Assembly LEOPARD, TURTLE NA NA . 3423 into an Improper Position Complete Loss of Forced Reactor Coolant PHOENIX, LOFTRAN 0 upper 2391> and 3423 Flow THINC, FACTRAN Waste Gas Decay Tank Rupture NA NA NA 3571 Single RCC Assembly Withdrawal at TURTLE, THINC NA* NA 3423 Full Power LEOPARD CONDITION IV Major rupture of pipes containing reactor SATAN Function of Function of 3579 coolant up to an including double-ended LOCTA-R2 Moderator Fuel Temp.

rupture of the largest pipe in the Reactor

  • density See See Section Coolant System (loss of Coolant Accident) Section 15.4.1 15 .4 .1 Major secondary syste111 pipe rupture up LOFTRAN, THINC Function of Fig. 15.4-49 0 to and including double ended rupture Moderator (Subcritical)

(Rupture of a Steam Pipe) Density See Sect ion 15. 2. 13 (Fig. 15 . 2-41 )

8920Q:lD/071185

TABLE 15.1- 2 (Sheet 4 of 4)

SUMMARY

OF INITIAL CONDITIONS AND COMPUTER CODES USED REACTIVITY COEFFICIENTS ASSUl"lD INITIAL NSSS MODERATOR(!) MODERATOR( l l THERMAL POWER OUTPUT COMPUTER TEMPERATURE DENSITY ASSUMED FAULTS CODES UTILIZED (11k/°Fl (11K/gm/cc) DOPPLER( 2 ) (MWTI CONDITION IV (cont'd)

Steam Generator Tube Rupture NA NA NA NA 3577 Single Reactor Coolant Pump Locked PHOENIX, LOFTRAN 0 upper 2396 and Rotor THINC, FACTRAN 3423 Fuel Handling Accident NA NA NA 3577 Rupture of a Control Rod Mechanism TWINKLE, FACTRAN -1 pcm/°E BOL Consistent 0 and 3423 Housing (RCCA Ejection) LEOPARD -26 pcmrF EOL wf th lower lfmft shown Ffg. 15.1-5 NOTES:

(ll Only one is used fn an analysis i.e. either moderator temperature or moderator density coefffcfent (2) Reference Figure 15.1-5 SGS-UFSAR Revision 0 h1lu ?? 10Q?