ML16277A117

From kanterella
Jump to navigation Jump to search
ERS-JTL-99-005, Rev. 3, Unit 1 Letdown Radiation Monitor (RM-1CH-101) Alarm Setpoint Calculation and Emergency Action Level (EAL) ERS-JTL-99-005 21 Value Determination.
ML16277A117
Person / Time
Site: Beaver Valley
Issue date: 08/09/2011
From: Lebda J
FirstEnergy Nuclear Operating Co
To:
Office of Nuclear Reactor Regulation
References
ERS-JTL-99-005, Rev 3
Download: ML16277A117 (21)


Text

FORM 1/2-ADM-1611

' .F28 Rev 2 RTL# A9 621A Beaver Valley Power Station Radiation Protection Tecnnical Position/Evaluation/Calculation Subject No. PAGE 1 OF l,lnit 1 Letdown Radiation Monitor (RM-1CH-101) Alarm Setpoint Calculation and Emergency Action Level (EAL)

Value Determination ERS-JTL-99-005 21 Reference HPP EPP TIS CR DCP Category Unit 1 Unit 2 D Technical Position IX I Technical Evaluation D Calculation [8] D Purpose This technical evaluation documents determination of the High and High-High alarm setpoints for the Unit 1 letdown radiation monitor, including process safety limit and trip setpoint for the high range and low range channels (ref. CR 990281 ). Also, monitor response to RCS concentrations of 0.1 uCi/g, 0.35 uCi/g, 21 uCi/g and 300 uCi/g are calculated.

D ORIGINAL ISSUE IBl REVISION# 3 Revision description:

Directly calculated the DE 1-131 monitor response by using ratio technique applied to the 1% FF design e':luivalent concentration (3.69 uCi/g) and the corres'ponding calculated monitor value. Added the letdown radiation monitor indications that correspond to an RCS concentration equivalent to 21 uCi/g dose equivalent iodine-131 (DE 1-131). This is done for both the 843.;.JO and 843-30R detector types. This value is proposed for use as part of the NEI EAL upgrade project for EAL SU9; Updated references. Corrected 843-30R low range channel 1-131 detector efficiency.

by~ ~~f!!Z!;1,_* independent review (calculation only)

John .. Le. da . ~ 6-1_;1/date Michael Unfrie // ~/9/ /I date NIA - Not a Calculation date Checklist Attachments IBl Purpose IBl Results IBl Data Sheets IBl Methodology IBl References D Illustrations

[El Input Data D Printouts 0 Code l;.istings

[RI Transmittal to BVRC 0 Supt, Rad Ops [RI Author: John T. Lebda BV-ERF 00 Original RP ERF FILE D S_upv, RP Services 00 Hal Szklinski BV-SIM D MGR, Radiation Protection D Supv, Rad Waste/Effluents D Michael Unfried SEB-3 D

Beaver Valley Power Station

  • RadiatiOn Protection Techriical Positiorl/Efaluation/Galculatidn REVIS!** 3

Subject:

No.: Page:

Unit 1 Letdown Radiation Monitor (RM-1CH-101) Alarm Setpoint ERS-JTL-99-005 Calculation and Emergency Action .Level (EAL) Value Determination 2

PURPOSE The purpose of this calculation is to determine the alarm setpoi["its (high-high and high) for the Unit 1 letdown radiation monitor, RM-1CH-101 high range and low range channels.

DISCUSSION REVISION HISTORY:

Revision O:

The previous calculation of record, SWEC RP-11700-87, R~v. 01. was reviewed during an investigation of an identified setpoirit discrepancy (ref. CR 990281 2). This review discove.re.d that, for the high range channel, the contribution from iodine-135 to the monitor indication was miscalculated, and the necessary correction for fluid density change between the reactor coolant system (RCS) and the monitor sample line was not made. These errors resulted in an overly conservative setpoint.

Using such a setpoint could lead to spurious alarms ahd may have contributed to the condition described in CR 990281. Revision 0 correeted these issues & used updated parameters in the calcufation.

Revision 1:

This revision was made to calculate alarm setpoints that correspond to reactor coolant radioactivity concentrations of 0.1 and 0.35 dose equivalent 1-131. In addition, monitor indication that corresponds to 300 uCi/g dose eqljivalent 1-131 is provided. Revision 0 was unchanged arid this additional information was provided in an Addendum.

Revision 2:

Made the same calculations as the previous revisions using efficiencies for the 843-30R detector type.

The most recent RCS designffechnical Specification radioactivity concentrations are used in the calculations. The package text was updated.

Revision 3:

Directly calculated the DE 1-131 monitor response by using ratio technique applied to the 1% FF design equivalent concentration (3.69 uCi/g) and the corresponding calculated monitor value. Added the letdown radiation. monitor indications that correspond to an RCS. concen~ration eqµivalent to 21 uCi/g dose equivalent iodine-13'1 (DE 1-131). This is done for both the 8.43-30and 843-30R detector*

types. This value is proposed for use as part of the NEI EAL upgrade project for EAL SU9. Updated references.

ADDITIONAL DISCUSSION: _

The Unit 1 UFSAR3 describes the licensing *basis for the Unit 1 letdown process flow radiation monitor (CH-101):

"The gross activity of the reactor coolant is continuously monitored by two detectors. The samples are drawn from the reactor co9Jant letdown line and delayed to permit sufficient decay of N-16 isotope before they pass by the detector:s. In this system, .large vadations in the activity are possible depending upon the amount of fission products leaked to the coolant. The alarm setpoints can be set to provide graded ind/cations qfreactor coolant activity increases. This system cam be flushed with clean water from a flush line.inlet upstream of the sample monitor."

Beaver Valley Power Statio.n Radiation Protection Technical Posifion/Evaluation/Calculation REVISION: 3

Subject:

No.: Page:

Unit 1 Letdown Radiation Monitor{RM-1CH-101) Alann.Setpoiht ERS-JTL-99-005 Calculation and Emergency Action Level {EAL) Value Determination 3

4 The USN RC SER for Unit 1 states:

"The gross activity of the reactor coolant will be monitored by a low range and a high range detector located in the reactor coolant letdown line. We believe that this system is capable of detecting gross failed fuel and is acceptable. "

CH-101 is an off-line monitor physically located near the northeast corner of the PAB elevation 722'.

It draws sample flow from the letdown piping prior to the system demineralizers ahd degassifiers. The fluid at this point is cooled to approximately 90 °F. Additional cooling may be expected as the fluid passes thourgh the sample line to the monitor. The sample line is equipped wit.h a temperature control valve that closes if the sample fluid temperature exceeds about 134+/-3 °F5. This calculation will use 137 °F as a conservative value.

The original monitor configuration included two shielded gamma scintillation detectors. Channel CH-101 A was designated as the high range channel, arid CH-1018, the low range channel. The detector/sample line geometry between the two channels was identical with the exception that a lead attenuator plug was placed between the high range detector and 'the sample line. This option was available for the low range channel should letdown fluid radioactivity be high and a redundant high range channel de,sired. However, in 1,981 the channels were noted to read the same, and the alarm setpoints for the two channels were changed to be identical 6 *

  • The basis for the alarm setpoints was established in the SWEC setpoint calculation as the RCS design maxim.um radioactivity concentrations which would result from operating with 1% failed fuel.

This is considered a reasonable value for "gross failed fuel", however, no specific commitment to this basis could be found. The basis for the Unit 2 letdown radiation monitor7 is an RCS radioactivity concentration corresponding to the Technical Specification8 radioactivity limit of 1 µCi/g dose equivalE:mt iodine 131. This difference between the Units is thought to result from the difference in dates that the Units were licensed, and is not researched further here.

SWEC 19 also calculated high alarm setpoint values for the high range channel. The calculation used 0.25% failed fuel as the basis. Thi.s is the only plaGe that any high setpoint basis is provided, and no justification is given. During the development of this calculation, Radiological Operations expressed concern that a high setpoint based on 0.25% failed fuel would be too close to the monitor background and requested that setpoint values be based on 0.5% failed fuel. REAP 1.105 recognizes such situations and (Step 5.3.2.3) permits an alternative approach. As such, the high setpoint calculated herein will be based on 0.5% failed fuel.

METHODOLOGY The methodolqgy used herein remains similar to that u.sed in RP-11700-87-0. The RCS ,activity concentrations (µCi/g) assumed are those activities which resu,lt from operatiqn with 1 % failed fuel 9 .

The list of isotopes used is identical to that .in the original calculation of record with the exception of Mn-54, which was added in Revision O of this package. Mn-54, along with the other activation products which are included in this calculation, are present in such low concentrations that they have no influence on the monitor indication.

Beaver Valley Power Station Radiation Protection Technical Positibn/Ev.aluation/Calculatid!l REVISIO . .3

Subject:

No.: Page:

Unit 1 Letdown Radiation Monitor (RM-1CH-101) Alarm Setpoint ERS-JTL-99-005 Calculation and Emergency Action Level (EAL) Value Determination 4

The activity concentrations (µCi/g) are converted to µCi/cc by applying an approp(iate density correction. Because the concentrations are expressed in µCi/g, the only correction needed is to account for the density difference between the fluid in the sample line and the density at standard temperature and pressure. This correction is applied prior to multiplying the monitor efficiency to obtain the ind.iVidual isotope count rate contribution. The individual contributions are then summed to determine the monitor process safety limit.

The activity concentrations used to calculate this first setpoint are based on a specific set of operating parameter values that influence the concentrations. These are related to processes that remove radioactivity from the RCS and are, letdown flow rate, letdown filtration and demineralization efficiencies and leakage from the RCS. The 1% failed fuel RCS concentration calculation maximizes the activity concentrations by selecting each parameter value, within the design operation range, such that radioactivity removal is minimized (ref. Unit 1 UFSAR Table 148-5). Because actual operating conditions are different, and these differences will cause the 1% failed fuel RCS concentrations to be lower, adjustments ar13 necessary to avoid using a non-conservatively high setpoint. The adjustment discussed above is made by assuming a typical letdown Oow rate, of 105 gpm 10* All activity removed from the system by letdown is assumed not to be returnecj. This minimizes RCS radioactivity concentrations, and adds a small conservatism td the .setpciint calculation. RCS leakage is. typically very low, and even when maximized would be low as compared to the radioactivity removal by letdown. Therefore, the influen~e of RCS leakage is ignored in this calculation. To make the correction for increased letdown flow rate, an equilibrium radioactivity removal rate while operation at 60 gpm is calculated for each radionuclide by summing the radioactive decay removal rate constant with the letdown removal rate constant. This is applied to total RCS activity to obtain the net removal rate (µCi/s) from the system. At equilibrium, the removal rate is assumed to be equal to the release rate form the fuel. The sequence of this calculation is then reversed using 105 gpm in place of 60 gpm to obtain radioactivity concentrations (µCi/g) while operating at the higher flow rate. The setpoint calculation is .then repeated to determine the process safety limit when operating with letdown at 105 gpm. The calculations descr\bed above are performed for both the high range and low range monitor configurations.

A second set of monitor indication values are provided which correspond to _the design radioactivity mix reduced to concentrations equal to a dose equivalent iodine 131 of 0.1 µCi/g, 0.35 µCi/g, 21 uCi/g and 300 uCi/g. These calculations do not require any adjustments associated with changes in letdown flow rate as the measurements are direct (the radiation monitor responds to RCS radioactivity), rather than derived (percent failed fuel inferred by measuring RCS radioactivity). All are calculated by simple ratio technique applied to the 1 % FF (3.69 uCi/g) monitor indication. Instrument error is not applied to these values herein. This sh.ould be done if these are later used as alarm setpoint values.

Determination of radiation monitor alarm setpoint uncertainty used herein is consistent with previous simHar applications for qoth l)nit 1 and Unit 2. Regulatory Guide 1. 10512 provides the basis for instrument setpoints for safety related systems. BVPS Unit 2 is committed to .the Regulatory Guide, while Unit 1 is not. Historically established guidelines provide four conditions Where it may be prudent to apply uncertainty analysis to a Unit 1 radiation monitor. These are, if the monitor or setpoint, 1) is QA Category 1, 2) initiates an automatic process control function, 3) is specifically referenced by an emergency operating procedure, or 4) initiates manual operator action that results in a change in the configuration of any safety related process systems.

Beaver Valley Power Station Radiation Protection TeCliriiCal Position!Eva!Uation/Calculation RE 3

Subject:

. No.:

Unit 1 Letdown Radiation Monitor (RM-1CH-101) Alarm S~tpoint CalclJlatioil and Emerge11cy Ac~ion Level '(EAL) Value Determination ERS-JTL-99-005 5

CH-10t is referenced in severalEdPs;:and the High"'Htgh alarm is,.µse,d to*\determine* if fuel-damage may have o.ccurred which; .in turn, may affect :operator actions;* Although other means for defecting*

failed fuel, such as chemistry' sampling and monitoring or 'in-plant radiation levels are - routinely employed, monitor uncertainty analy:sis is* appropriate.

As Wi~h 0,lder monitors at Unit 1,, many of the allowances which are c.onsidered-in setpoint uncertainty analyses are not provided for 'the letdown radiation *monitqr, Historically established appropriate assumptions for some -of these; Also, this .defines the Total Loop 'Uncertainty as:

TLU:= (EA2 + PA2+ CA2 +SA2 + DA2 + LA2 + TA)0*5 and,.tt:te Trip Setpoint as:

TSP:= AL I [1 + (%=TLU) / 100+:(%-DEADBAND)J100]

Because many of TLU allowances ,are not available for the Unit t monitors, the uncertainly analyses for safety related monitors is,assumed tobe'+100%, -50%., This.leads,to:a yalu1fof 2.1 as the divisor for the Analytical Limit (or, Process Safety Limit)-. This high degree* of conservatism is not necessary for the letdow.n radiation moriit()r'. T~e asimmptions :use~ thereif1 were reviewed ag.ainst the available vendor documentation and are found'to be reasonable and sl:lffjtien~ly conservative :for the letdown radiation monitor. The errors, arid uncertainty:allowances are:

Factory calibration allowance (CA1) 20% =

Onsite-calibration allowance (CA2) 10%* =

Sensor allowance for rate meter response (SA 1) = 5%

Sensor allowance for alarm circuitry (SA2) = 2%

Process allowance (PA)= 0%

Leakage allowance (LA) =0%

El1vironrne'ntal allowance (EA) = 0%

Admirilstrative tolerance (TA) *~ 10%

Drift allowance (DA) = 10%

Deadband = 10% * **

TLU = (0;202 + 0.102 + 0.052 + 0.022 + 0.102 + 0.102)o,s* = 0.27 =21%

TSP= AL I (1 + (27 / 100) + (10 / 100)] =1.37 See Attachment 1 for additional information concerning alarm setpoint determination methodology.

After the setpoints (ProcesS, S_afety ~imits) are 9alculated, each will be dhiioed by 1.37 to obtain setpoints having uncertainty analysis applied.

'RadiatiOn<PTotectfon'Techii.ica!:,positforilEvaluatiOti10alcula .... n

Subject:

, No:: ~age:

Uni.t *~ Letdown R~dlation*Monltor {RM~1¢f:M01lAlarm $~tpe>int

Calculation and E~ergency ~c~Jon Level (EAL)Value Determination 6

INPUT DATAAND.ASSUMPTIQNS

1. 1% Failed Fuel RO$ ~c:idioactivity Concentrations (high'-high setpoit)t) [9]

(RefertoAttachrnentt) . . * * ** * .* * **

0:5%. FaileclFuel .*RCS:Radioactivity.*Con~qtratiens (hlgh;;setpolnt)

(r~qµe:~teq *by. Radiol(;)9ical 0peratians as' discussed above) . .

2. Maximum Fluid Temperature* at Monitor= 137 °F. [5]
3. Flj.JidDensity.atMo*nitor= (?1A3. lbm/ft3 [13]

Fluid Density at ST=. 62043 lbmtft3

4. Cl:f* 101 Cha.nriel 'Efficienci.es ., 843-30 det~etor (Se.e. calculations) [14]
4. CH.,.101* Channel£fficiencie.s-843~30R.detector ,(Attachment 2]
5. Letdqwnvolum~ FIGV/.'R~tes =*90.;gprn mihirnun:t. [10,15~16]

=*105gpm normal

6. Letdown*Massflov11, Rates*(calculated):

60 gpm

  • 3785.3 cc/gal
  • 1 g/cc ** (61A3Jbm/ft3 762A3'lbm/ff') =~t725E3*g/s 60 sfmin
  • 1o5;gpm
  • 3785;3 cct9al
  • 1 glee* {6:1.43 lbm/ft~J<62A3 ibm/ft~} =6J5.8E:3.9/s
  • 6Q slrnin * *
7. RCS Mass =*t.80S4E8fg . . [9]

(Averag~'atniass at 100% power, 0% a1,1d 22% SIG tubes plugg~d)

8. Radionuclide Half':"Live Times.= (Refer to Attachment-1) [1BJ
9. RCS Technical Specification and DE 1-131 concentrations *corresponding. to 1% FF [9J
10. Radionuclide Decay.Rate Constants CC:llc1.1lat~d:* =ln(2)/ Ral]ionudideH~lf.;Uve.(s}

11.. Letdown Flow Rate Removal eonstants Oaloulated: =Letdown Mass.Flow Rate .(g;s) I HCS.:Mass* (g) 12, All radioac;tivity re.moved :by the. letdown .system is* assumed* not to be: ,returned to the system.

Returned activity is expected .to be small, and this assumption .is conservative for the setpoint calculation.

13. RCS leakage. is ignor~d. Leakage. isJypicallY venr law,* .and this influence is small :as cbmPared'to the removal by letdown.

'l~eaver Valley Power Statio11

  • Radiation Protect.ion TecliliiCaFPositiOri!IM1h.iation.ICalculati0n REVISION: 3.

Si.Jbje.ct: ,No.: Page:

Unit. 1 Le,tdown Radiatipn *iin~nitor (RM-191:f.*101.) Alarm ~etpoint ER'S-JlL~99.-005 Calculation and Emergen.cy ~ctio.n L~vel (E:-'L}. Value Detemlination 7

14, Whentheamount of RC$:radioattivityJs:::atequ'ilibrium, the r:ate of radioactivity removal from the systelil .is equal tcHhe release rate from the fueL RESULTS 84~-30 detector with updated. sou re~ term:

1% FF Basis 60 gpm letdown operation (cpm) 1.05 gpm letdownqperation (cpr'n)

High High.:High High High-High Ci:M01 HighRang:e,bannel *.'3.72E+03 7A4E+03 3;03E~03 6.0$E+03 CH-101 l:ow Range Cnannei . nla 1.00E+06 n/a 9:93E+05 (1.47E+6) 843-30R detector with updated source term:

1% FF Basis 60 gpm letdown operation (cpm} 105 gpm letdown :operation*( cpm)

High High*High High High:-High CH-101 High R.cinge Channel 4]aE+03 9.57E+()3 3.77E+03 7.54E+03 n/a 1..00E+06  !'lla 1..00E+06 (f;67E+'$) _ (1;ioE+6)

SWEC'provide~fa low range etiall'ne( high~high alarm setpoint with 0,05% falleo fuel used<as thEf basis; ' TM basis is deerned acceptable

'a_nq is applied t<fgivetllei, ~nal,setj)91nts (for ~~EffPW range 'cham1el), BE!t:a1Jse the calcu!~ted low r.ange'channel setpo,ii'lts are still above the monitor *range, th.e, high!3st:on"scale.val1J~ of f;OOE6- ls provided,i,\tltti 'tlie calculate~ value,.shoV)ln in patEinthesis,. C0.nsistent with previous calculation5; *ne> high setpoihPs provid.~ forttie low range chan\'el. :Alf val\,les .are redu~d*for instn1merit error consideration.

RM-CH-101A/B Indication Corresponding to Various:oe I-131 RCS Com;entrations Low Range Channel High Range Channel Updated design source term: basis with s43;:30 detectO,r: (cpm) (cprri)

Page':9.monitor;;indic_ati0n.with 1% FF(3.69 uGjig DE 1-131) = 4:02E~Q7 1.02E+04 Monitorindlcation with 0.1 uCi/g DE 1*131 = 1. 09E+06 *2.76E+Q2

.Moriltorihdication*wlttl o.~$,1,i'ci/g.DE1::13.1 = 3~$2E.+.06

  • _9:66E+o2
Monitor i!JdJcafionwi~f121 ubj/g*QE)~ 13.t = 2::29E+.0~: 5:~0E+04 flltpn!tor:*indlc~tiorJwiih 300. u<?i/g.[)E 1.:13~1 = ~.27E~P9 _8:28.E+05 Updated design souree term basis with s43;,;30R detector:

Page 12 monitor .indication with 1% FF (3'.69 uCi/g DE 1-131) = 7.32E+07 1.31E+04 Monitor.indication with0.1 uCi/g DE 1-131 =. 1.98E.~06 3.55E+02 Monitor indication with 0.35 uCi/g DE .1~131 = 6.94E-+i06 1.24E+03

,Moniforindication wit!') 21 uCi/g: DE b 131 = 4.17E+08 7.46E;¥04 fV!Qi)!t§i: if'ldic:ati9n.wit~* 300 uCjl9'.;E1E 1-1'31 = 5.95E+.09* 1,.o:zE+06 Values ..lnJ'he table.sabovei.ire:piovidejj withOUt*lnstruiTlei:li efror Coriside~ation. ' If.used for' an'alar'rri s~tpoii)t,'.tlievallie{s) ,shouldbe.redueed by'.dlviding by* 1.sj;; Jiigti -alam'fsetpoinufsiiould he 'set arso%/ofthe'higt\"t\igh value;*orif tooclose*to backg(oundindications, at an

  • appropriate \ialUe-ab<>ve background*so.aslo' avoid spurlous'aiaitns-. i=or\vaiues calcui~ted 'tliat exCEi&d the'monl~9daoge of) .OOE+06, an
  • on*scale yalue appr()pii,at~J9r't~~applicatiof'\.~houldb_e.use,d.

______ ]

Beaver Valley Power St~tign Radiation Piotectfon:TechhiCaLRositioil!Evaluiltion/Calc:Ulatfori REVISION:

Subject:

_, N0,;; Piige:

Ur,tit*1 Letaowl'),Radiation* Monitor*(RM.:fo1:1~1in) .Alann*.l?etp~illt ERS-JTL*99~005 Calculation and Emergency .A~~on Level (EALrValue .Determiriatfon 8

REFERENCES

1. SWEG Calculat,ion RP-117Q0.;Q~7-0, Oetermination of High and High-'Higi) Setpoints for all Process.and AreaMonitors in '.the BVPS Unit #1 RMS, 1975 * *
2. BVP& Conditiot,i '~eport*eao2s1., 'Setpoirit IDiscrepancyfOr\RCS Letdown Gross Activity Radiation rrfo11ifor$; Qated 0211:21e9 * * * *
3. BYPS* Unit *1 UFSARChapter 1t; .Section 1:1,;3.a.3.1f.(:ReaciorCo61antMonit9~
4. Unit 1 USNRC SER, S~ction 11.6; Process and Area Radiation Monitoring Systems

'5. Unit 1 OM Chapter*43, 10M-.7,2:B19etpoints

6. BVPS. Onsite.Safety Committee Meeting Minutes, BV~0sc~107'-81'
7. DLCO Calculation ERS..:SFL-88:.021 Rev. 1, Process Safety Limits and Alarm Setpoints f.or 2CHS-H0-10tAIB
a. Uriit 2 Technical Specification 3/4-.4.4; Specific Activity
9. SWEC Calculation', teoab.,URB)484, Primacy :and Secondary 'Glesjgnftechnical Specification Activity CO:nce11tr~~k>n$ ln~lliding Pr~~A~¢ipe~t. *,lo.<;JJ~e Spike* con¢entrations an(f Equilibrium lo.dlnetAppearance Rates FollOwiog:PowerUprate, :2002 . * *
  • 1o.. 'Chemistry Database: for RCS Radioactivity Determinations, :Actual. Logged Letdown ;Flow Rates fdrUnW1Cyc.les*11,12.ar'ld t~* *
11. BVBP*RP-0002, Radiation Monitor Alarm Sefpoint Determination
12. USNRC Regulatory Guide 1.105, Instrument Setpoints
13. 1967 ASME Ste;imTables
14. Victoreen VTI07:503-'011 O, $ection 6, Table~ 8 & 9
15. DLCO NED EM Response, EM 1171., NED Verification of' EM 116252 (Design basis accident pare1metery~rifitatior,i -: lJ~it 1)' Rf?~pons~. Dated ttl2Sl98

-t~: BVP$':Unit1* UFSl,\R~;Qhapter'9, f~blei$.12~

t7. DLeb NEDiEM R~sponse,c'EM :116252,.;oesign:basis:accident::parameferverlfication-*Unit *1, oateo:os:.:ot..:ga * *

18. Koch~r. ,D; ;C,, Radio*active De~ay Tables, Teehnical Information Center, u. $.Department of Energ~, 1981
19. SWEC letter DLS-12168, Beaver Valley Power Station - Unit No. 1 J.O.NO. 11700.;Q~F.E.NO.

8700 - C.O.NO. 3468,. Radiation Monitor Setpoints, October 21, 1975

Beaver Valley Power Station '

.Radiation Protection Technical Posiijon.{EV,aluatiorifGal9ulatio'1

  • REVISION: ... I

Subject:

No.: Page:*

Unit 1 Letdown*Radiation Monitor (RM-1CH~10~)Alanri S~tpoint ERS'-JTL.;;99-005 Calculatl.on and Emer~encyActi.on Level (EAL) Value Petermination 9

CH~1,o1 Setpolnt*¢alc. ulatlon *@s()'.*gpm:Letdown/flow,:~ate U,p_d~teetd~sign R'C$ c(;>nqerlttations ang fot*(h:e*843-3ffdetepto(ty'pe

.*1% FF 60gpin High Range. 1%FF@60gpm Low Range 1% FF@60gpm

  • 1.%FF ~At~monilor Density *-cnannel High Rarige . ~Channel LowRan~e

@*57<fF Density Corrected Efficiency* Channel lridicatlon Efficiency Chcinriel Indication Nuclide (iJCi/g) Correction *(iJCl/ce) (cpm-i:c1oc1) .. (cpm) .(cpm~uCi} (cpm)

Br-84. 3,73E,Q2 .3.67E"02 7:0673E+02 2.59E+01. 6.5003E+05 2.39E+04 Rlr88 2.75E+O.O 2.71E+OO , 3;3324E+02: *9:02E+02 1.8750E-+:05 5.07E+05 Rb*89 1,57E-01 1.54E-01 1.0125E+03. 1.56E+02 8.8684E+05 1.37E+05 Sr-89 3A9E-03 M3E-03 1:6920E,-02 .5.81E-'05 4A819E+01 1:54E*01 Sr*90 2:1se~o4 2:t3E~ *OoOOOOE+OO O.OOEfOO .O;O()OOE-t:OO O,OOEtOO Src91 1A5E-03. -1.43E-03 J;780.4E+02 . '2i54.E-01 6:9789E+05* 9:96E+02 1i01E;o3 .:s:8336E+02: .5;91e-01 4'.6832E+o5**

sr.92

  • 1.<03E:0.3. 4,75E+02 Y"90
  • 5:94E:.05 5.84E-:05 2~130.0E-01 l:24EW5. 9;5400E+o1 ;5,58E-03 Y-91 4.78E-04* 4:70E'04 ' 1;3596E+OO 6,39E~ 1A543E+03 6.84E~OJ y.92 8:84E.:04 8;('0E-'04 -6~7325E+01 5!8.6E~.02 1.* 1881E+05 - t.o3c+o2 zr;95 :6;32E;.Q4 6,22E,04. e:8200Ef01 ':5:4.BE-02 4.9537E+05 3:08E+02 Nb.95 6A1E~: *e:31E"O't - 1:0250E+02'. :_6:il7E-02 . 5i0437E+05 3:18E+02 Mi>'99 7'.:62E;-01 7;50E;01
  • 1':6074E+01 1.21e+o1 1.2222E+05 9.16E+04 Tc-99fu~ --"'.cf.09E*01 ~02E-01 --3;0000E-02 ----'1'.z21 E-02 4;4085805 -----1. 77805 1-129 t.11E-07 1.09E-07 O.OOOOE+OO
  • O.OOE+OO O.OOOOE+OO O:OOE+OO 1-131 2,89E+OO -2.84E+OO .8.6362E+OO 2:46E+.0.1 4:8206E+05. 1.37E+06' 1"132 -1.13E+OO 1.11e+oo 4,3,446E+02 . 4.83E+02 1.5435E+06 t.72E+06 1-133 4.32E+OO 4.25E+OO 6.4390E+01 2.74E+02 5;3280E+05 2:26.E+os.

,~

1-134 6:32E'Of *-e,22e~o1 5.4811E+.02 3.41E+02 .1.3588E+06 '8:45E+05 1*135 2A8E+OO .2A4E+OO 7;8131E+02 1.91E+03 5,79a1E+05* 1.66E+06 Co-58 1;38E'02 1.3.6Ec02 1A106E"-02 .1.92E+OO 6.5859E+05 8;94E+03 c~eo 1;59E;o3 1.56E,Q3 *f;0207E+03' 1.60E+OO 9:6841E+05 1.52E+03 Fe-59* :9.00E~04- 8.86E-04 ,4,34ose+o2. <3:a4e~o1 . 5c0432E+05 ,4"47E+02 Ttr129 1.43E.,02 0,98#0 1A1E-02 . 7*l'*144E+OO 1.09E;01 I 9.3730E+04* 1.32E+03 Te"132 3,ooe-01 :2.95E-01

  • 3i4826E*01 :1.03E*01 4.4459805 1.31E+05 Te-134 2:99e-02 *. 2:94Eco2 .2:osa2e.o.1 6.00E-03 2:88G4E+05* 8:49E+03 Cs-134 6.0SE+OO 5.95E+OO . 2;0187E+02 1.2()E'f:03 1.1422E+06 6.80E+06 cs~1ss :t50E+OO 1:48E:t:OO 4:8303E+02: .7;13E+02 1.5456E+06 2:28E+06 Cs-137 3.79Et00 3.73E-+:QO .5;1000Ef01 J.90E+02* 4.3258Et05 . 1~61E+OO CiH38' l.03Et00 1.01Ei;OO 9.9875E+02 .t.01.EHl.3 8'. Hl1.5E+05 8.27E+0.5 Ba*140 4;10E-03; 4:03E-03* rnoo.se+o1 14:04e~2 ,2:5a22e+os '1'.03E+03.

La"1'40 *1:41E703 1~39E"03 '9:8104E+o2 1:36Et00 9:2029E+05 1:28E+0.3 ce.144 4:69E:041 4.61E-04 ..3~116JE-03 1::44E-06 5.5J62E+04 2:57E+01 PH44' . A.72E.04 *4;6~E,04 _.1.3164E+01 6;11.E,03; 1;2369E+04'. 5.74E+OO Kr-as: .1.25E+.02' 1i23E+02 .9.12ooe:o2 1.12e+o1 2.0185E+03 ' 2.48E+05 Kr~85m *1.42E+OO 1AOE+OO _2.7263E,01 3J~1E,01 .<k2749Et05 5.97E+05

  • Kr"87 9:48E-01 .9,33E~01 6.2626E:i-o2 5.84E+02 6.905.8E+05 6.44E+05

/

Kr~a: 2.65E+OO :2,61E+OO 5~07.62Et02 1.32.e+.oa: 5.3234E+05 1.39E+06 Xe-1.33 s:11e+o2- 3:06E+02 o.ooooe+oo O;QQE+OO 3.5~5E+04 h08.E+07 Xe'-133m 4;20E+OO 4.13E+OO 5,7826E-02 2;39E*01 6;9178E+04 2;86E+05 Xe-135. 9.64E+OO 9:49Ef00 1.8987E+OO L80E+01 :4.6560E+05 4.42E+o6 Xe"135ri:l 9.5se:o1 .s:41e-01* 2.0320E+.01 1.9:tE+.0.1 4.0401E+05 3.80E+05.

    • XtH38 6;70E*01 6..59E-01 ';:.1A864E+o3 9.80Ef02* 1A67.9Et06 9;81E+0.5' Mri"54 4.80E-03 *4:12e~o3., 1.4208E+02 6:7fE..01 5.0129E+05 2,37e+o3.

1.02E*04 4.02E+07

  • o.os% FF> 2:01e+os I 7;~e+o3: 11,37.error' 1.47E+06 I tp:m cpm h  % FF RCS concellfrations:from SWEC 100BO-UR(B)'484 Table Ba

-Letdown: density ~ofrecilon b.ased on 137 f: *(moiii!Or high.temperature isolation) =61.43 lbm/ft3 I. 62.43 lbnilft3

      • Manufacturer cailbration data

Beaver Valley Power Station

.Radiation . ProtectiOn Technical Jfosition/Evaluati()ii/Calc(Jlari<>n REVISI* .  : .3 I

Subject:

No,: f'age:

Unit 1 letdown Radiation Monitor(RJ\'1-'1CH-101) Alann Setpoint ERS-JTL-99-005 Calculation and Emergency Action Level (EAL) Value Determination 10 RCS Specific Activity Determination With letdown Flow Rate Increased to 105 gpm Paramelers tor cooection to 105 gpm letdown no.v rate:

RCS mass (average of 0%

  • 22% SIG lubes plugged) " 1.608E*OB grams Leldown -mass flow tale at GO gpm = 3.725E+03 grilms/s leldwm ~mass now rate at 10Sgpm" 6.5tBE*03 grams/s

@SOgpm* 1% ~F @105gPf!1 @105gpm

  • 1% FF To!Bl RCS "{KCJ!;/lef1981) ). ), ), RCS removal A ~ _Total RCS 1%FF

@576F /\C:u*uv 1,,, Decay Letdown Ett<icfiW. rate@!io gpin Letdown 'EtrecfiVe A9iivily @576F Nuclide (uCVg) (uCi). (s) (s)* .(sl (s"j (uCii.) W'J <s*\) (uC*) 1ucvuJ Br'84 3.73E*02 6.75E*OO. *1.9tE+03* 3.63E*O-88 275E*OO .4.97E*08 1.07E+03 6.49E-04. 6.70E,04 J.3:JE+05 6.85E*04 4.86E*08 2.69E+OO Rt>-89 .1.57E-01

  • 2.64E+Q7 9.26E+02 7A8E-04. 7c69E-04 2:18E+04 7.84E-04 2.78E+07 1,54e.a1 Sr*89 J.4SE.QJ 6.31E>05 4.375+06. 1:59E-07 2,0SE-05* 1:31E+01 J.62E-05 3,62E+05 2.00E*03 Sr-00 2.16E;04 3:91E+o4 *9.02E*OS* 7.69E*10 2.ooe.os*. .6.05E*Ot 3.60E*05 2:23£+04 1.2JE.Q4 Sr-91 1.45E*03 2:62E+-05 3.42Et04 2.03E-05 4.09E-05 1.D7E+01 5.63£,05 1.90E+05 1.05E-03 Sr-92 1.03E*03 1.66E*05 9.76E+03 7.10E*05 9.16E.05 1.7jE+01 1.07E-Q4 1.59E+05 8.81E-IJ4 Y-90 5.94E*05 1.07E+o4 2.31E*05 3.00E*OO 2.36E-05 Ui4E-01 3.90E-05 6.49E+o3 3.59£.05 Y-91 4.7BE*04. 8.B4E-+-04 5.06E+06. 1.37E-07 Z.07E-05 1.79E+OO 3.6ZE-05 4.95E+04 2.74E-04 y.92 .8.84E*04 1.60E*05 1.27E+O-95 6.41E-04 1.t6Et05. 3.03Ei:06" 2.29E-07 2.08E*05 2.41E+OO 3.63£'(}5 6.6GE+04. 3,68E.Q4 Mo-99 7.62E*01 1.38E.+08 .2.36E+05 2.92E-OO 2.35E-05 3'.24E+03 3:90£-05 8.J2E+.o7 4.60E.,-01 Tc-99m 4:09E.:01 7.40E+07 2c17E+04 3.20E,05 s.2se;os. 3.89E+.03 6.80EC05 5.-72£+07 3.16E*01 1*129 1.11E*07 2:o1E+01 4.95E+14 J.40E-15 2.00E-05 4.tJE-04 3.60E-05 1:15E+01 6;34E*08 1-131 *2:B9E+OO 5.23E+08 6.95E+05 9.96E*07' 2.06E*05 2.16E-05 1.13E+04 3.GOE-05 3.70£-05 "3.0SE+08 1.68E+OO 1-132 1.13E+OO 2.04E+08 B.2BE+03 8.37E-05 1.04E-04 2.'13E+04 1;2ae:-04 1.78£+08 9.84E-01 1*133 4.32E+OO 7.81E+08 .7.49E+04 9.26E-06" 2.99E;05 2.33E+04 <1,53£;()5 5.15E+:08 2.85E+OO 1-134 6.32E-01 t.14E+08  ::i:1ee+03. 2:20E.Q4 2.40E*04*. 2.75E+04 2.511E'04 1.07E"18 5.94E-01 1*135 2.48E+OO 4.48E1-08 2.3BE+04 2.91E.Q5 4.97E.Q5,, 2:23E+04 6.52E.05 3.42E+08 :1.89£+00 Co-58 1.38E-02 2.50E+OO. G;12E+OO 1.13E.:07 2.07E.()5 5.17E+01 3:62E.o5 1.43E+06 7. 90E..(J3 Co-60 1.59E*03 2.88E+05 1.66E+08 4.17E*09 2.06E-05 *s. e2E*OO 3.60£,05 1.64E*05 9;09E*Q4 Fe-59 9.00E-04 1:63E*05 3.86E+OO 1.8QE-07 2.00E*OS 3.JSE+OO J;62E'05 9.J3E+04 5.16E*04 Te-129* 1.43E-02 2.59E+OO 4.18E+03: 1.66E-04 1:67E~04 4.82E+02 2.02E-04 2.J9E+06 1.32E*02 Te-132 3.00E-01 5.43E+07 2:1!2E+05 2.46E*06 2.31E*05 1.25E+03 3.85E*05 3.25E+07 1.80£-01 Te-134 2.99E-02 5.41E+06 *2.51E+03 2.76E*04 2.97E-04* 1.61E+o3 3;12E-04 5.14E+06 2.84E*02 Cs-134 . 6.0SE+OO 1.Q9E+OO *6.50Et07 1.07E-OB 2.00E*05 2:25E+04 J.61E.o5 .6.2SE+08 3.46£+00 Cs-136 1.50E+OO 2;71E+08 1.14E+06, 6.10E-07 2;12E*05 5.75E+03 3.67E*05 1;57E+08: 8.68E*01 Cs-137 3.79E+OO. 6.86E+.08 9.51E+OS 7:29E-10. 2.00E*05 1.41E+04 3.60E'05 3:92E+08 2.17E+OO Cs-138 1.03E+OO: 1.B6E+08 1.93E+o3 3.59E-04 3.79E*04 7.07E+04 3:95E;04 t:79E+08 9.90E-01 Ba-140 4.10E-03 7.41E+05 *1.10E+OG 6.27E;o7 2.12E-05 1,57E+01 3.87E*05 4.29E+05 2.37E-03 l.&140 1,41E*03 2.55E*05 "1.45Ef05, 4c7.9E-06.* 2.54E*05 6.47E+OO 4.0BE,Oo 1.59E+o5 8.77E*04 Ce-144 4.69E,-04 8:48E+04 .3.48E+07. 1.99E-08 2.06E'05 1.75E+OO 3:61E'05 4.85E+04. 2.68E*04 Pf*144. 4;72E'll4 e:54E+04 1:04E~03 M9E-04 MSE-04 5.88E<'01 7.05E*04 .B.35E*04 4.62E*04 Kf-85 *t.25E+02 2.26Ef10 3.38E*06 2,05E-09 2.06E-05 4.66E*05 3.60E-.05 1.2~£+10 7.14E+01 Kr*85m 1.42E+oo 2,57e+oa 1.61E'<04 4.30E*05 6.36E.Q5 *1.roe+04 7.90E.o5 2.07E+08 .1.14E+OO Kr-87 9.4SE*01 1.71E+08 4.5SE+03. 1.51.E*04 1.72E-04 *2.95Et04 1.87E..(Jif l.57E+DB. 8.70E-01 Kr.SB 2.65E+OO 4:79E*08 1.02E+04 6.78E-05 2.0SE-05 8.84E;os 4.24E+04 3.60E*05 f.04E-04 4.08E*08. 2.26£+00 Xe-133 3.11E+02 5.62E+10 *4.53E+OS 1.53E-OO 2.21E.:05 1.24E+06 .3:76E*05 3.31E+10 1.83E+02 Xe-133m 4;20E+OO 7.60.E~OB 1.89E+05* 3.66E.,OO 2.43E-05 1.84E+04 3.97E*05 4.64E*08 2.57E+OO Xe-135 9.84E*OO 1.74E+09 3.28E+04 2.11E-05 4;17E*05 7.28E+04 5.72E-as t.27E+o9* 7.04E+oo Xt>-135m 9.56E-0.1 . t,73E~08 *9.22E*02 7:52E*04 7.73E*04* 1.34E*05 7.BBE*04 1.69/!+os *9:37E*01 Xe-138 6.70E-01 1.21E+08 .8.4SE+02 6;18E'll4 8.38E*04 1.02E+05 8.54E*04 1.19E:t08 6.58E'01 MD-54 4.80E-03 6:68E+05 .2.70E+07 2.57E-08 2.06E.05 1.79E+01 3.61E-05 4.96E+o5. 2.74£-03, "1 % FF RCS concentrations. from* SWEC . 10080-UR(B):-484 Tabte ea

=

..LetdciWn. density corr¢ct.ion tjased on 137 S: '(monitor high temperature isolatiOn) 61.43 lbmlft3 / 62.43 lbm/ft3

-* Effective*removal rate colistailt " decay removal rate i::onstaril + leidowri removal rafo constant

, ,*o .REVIS!* 1

  • ,.,, I Subje9t Page:

Unit 1 Letdown Radiati()n Monitor (RM-1CH*101).Alann Setpoint ERS-JTL-99~005 Calculation and Emergency Action Level (EAL) Value Detenninati<>n 1*1

. CH~101 Setl;)~inteafoulation;@tosgpm Letdown flow*Rate

  • updated desigffRCS concentrations'andfor:the:843~3Cldetector l¥pe "1% FF, 105'gpm' .High Range :1_%F:F@105.gpm tow Range' .1% ff,*@105gpm.

1.%FF ~~t*m 011Jtor Density "~C:haimei *'Hig~ R~om~

  • ri*<;:han11et* -Low Range

@576F DensitY* crirr'ectifa Efficiency* .*cti~~i\et :indication Efficiency :charineJ,fni:lication

  • Nuclide... (liCl/g) :correction,, (uCilce)*  :(ctimoCcJ'uCil . tcnml* {cprn*.cC/uCI) fci:im)

Br-64 '.J';59E~02 3;53E-02 ' .7:067~E+02 .2.49E+01 s:5003E+05' 2:20e+04 Rtra3** 2:69E+OO 2.tl4E+OO *3:33NE+02 8.81.E+02 1;8750E+05 4;96E+05 Rb-89 1.54E;01 1.51E-01 *1.0125E+03 1.53E+02 8.8684E+05 1.34E+.05 sr~.89 2.00E~03. 1.97E-03 1.6920E-02 3.33E::05 4.4819E+01. 8.a2e~o2 sr~so 1:23E"04 1.21E.04, O:OOOOEicOO O.OOE+,00 O.OOOOE+O.O o;OOEicOO Sr*91 M5E*03 h04E~03 1.7.804E+,02. 1:84E-01 6,.9789E+05 Z;23E+02 Sr~2 8;81 E.04'.. ,8.67E*04 :5:8336E+02 '5.:06E"01 4'.6832E+O$ 4.06E+02 Y-90 3;59E*05 ,3.53E"05 . 2"1300E7.01 7.52E,06 9,5400E;t'01' 3~37E-03.

Y"91 2;74E~04 2.70E-04 *1.3596E+OO 3.66Eo04 1.4543Ei:03 3;92E-01 Y-92 7;33S.04  :

.1 . 21e;04 M325E+01 . 4.see:o2 1.1881E+05 8;57E+O~*

Zr795 a:s2e~04 * .3:56E-04 '8;8200Ef01 ;u4e;o2 4:9537E+.05 1.76E+02 Nl:>.095 * -.a;aae~04* 3;62E:-04 *1;0250Ef02.* ,3;71E-02 s;0437E+.05. tt83E+02 Mi>"99 '4.60E*01. :4:53E:;01 .1:6074E+01 7;27E+OO 1.2222e+o5. 5.i53EfP4 TC.99in, 3.16E-01 3;11E-01'

  • 3.0000E"02 9:33E-03 4:4085E-+05, .f.37E.j.05 1"129 s:34E-08 S:24E-08 O;OOOOE+OO O:OOE+OO . O.OOOOE+OO O.OOE+OO 1*131 1..68Et00 1.sse+oo 8.6362E+OO 1.43E+01
  • 4.8206E+05 7;99E+OS 1-132 .9Al4E701 .g;68E-01 A.3446E+02 , , 4.21E+02 1.5435E+06 1A9E+06 1-133 2.85E+OO ,2;50E+OO i6A390E+o1 1;8,0E+02 5.3280E+05 .1A.9E+os*

F134 5'.94E~Ol . 5:84E~0,1 .5.48.11 E+02 . *3:2oe+.02 1,3588Ef06, 7.94E+OS*

1*135 '1:89E+OO 1.86E+OO *7.8131E+02 .1A5E+03 ' 6:7981E+:05 1:21E+06' Cocsa 7,90E*03 7.78E~oa 1A106E+02 1.10Er00

  • 6.5859E+05 s:12e+o3.

Co-60  : 9'.09E~04'

  • c8J.~4E-P4 .1.02Q7E+03 9A3E-01, 9'.6841e+os a:sse+o2 Fe-59 5;16E~Q4" .s;oae~ -*U40llE+02. * :2.201:.7111 s:0432E+05 2.56E+02 Te~129. 'l.32E-02 0;98,40 t30E~02 :H144e+oo t;OOE-01 9:3.730E:+-04 1.22E+03 Te,132: *-1.8oe:o1. *1.77E~Of (3'4826E~1 .6:16E-02* 4:4459E+05' 7.86E't04' T&-134* . 2;34e;o2 .2:80E~o2. I 2.0382E.i01 :5.70E*03 . 2.8B84E"t05 ,8:07E+03 Cs-1.34 3:46Et00 3';<\0E+OO 2:0187E+02 6.87E+02 1.1422E+06 3;89E+06 cs~136 .8:68E-0.1 6:54E*0.1 4.8303E+02 4..12E+02 t545se+os 1:32E+06:

cs~1a1 2.17E+OO 2;13e+oo 5:1000E+01 1.09E+02' 4.3258E+05 9;22E+05 Cs-138. 9;0oe;,o1 9:74E-01 ,,9:9875E+02 9.73E+02 , 8.161.5E+05 7,;95E+05*

Ba~140. 2.37E-03 2.33E*03. :1:0006E+'01 '2,34E:02 2;5622E+05 5.98Ef02 La-140' 8.7.7E*04 8:63E~04 *.9.81.04E+0.2 8.46E~o.1 9.2029E+Q5 7.94E+02 Ce-144. .2,s8E--04 2.64E*04 * '3:1167E,03 8<22E:.07 .5:5762E+04 1A7E+01 Pr"144 .. :4.62E"04 4.54Ec04 1,3164E+01 '5,98E-03* t2369E+04 5.62E+O.O Kfr85 7.14E+01 7:03E:t01 , 9;t200E~02 :6A1EfOO

  • 2:0185E+03*: 1A2E+05 Kr"85m 1:14Ef00 1J2E+OO  : :2;7263E~OJ ,a:ose:,01 4.27:49E+05,' 4*.81E;i'.05, l<r"ST *a,7oe-0r '.8i56E~01 96;Zs26Et02* 5l36E'!02 . '.6:9058E+05' 5;91e+os*

Ki'-.88'-. ,... 2.:26E+OO. :2.22E+OO. i510762E+Q2 , . 1':13Eot03 5,3z34e+os. 1.18Ef06 Xe-133 1lB3E+02 **1.80E+o2 >>o:ooooe+oo.*  :.O.OOEtOO 3:5335Ei;0:4 6.37E+os*

Xe~133m *2.57E-t:OO *2;s2e+oo ;5.7826E~02 1::46E-01 . s;9l78E+04 1.75E+05 Xe-135 .7.04.E+OO *6:92E+OO '1.8987E+.OO , *1.3,1 Et01 _ -,U>56QE+05 , 3.22E+0,6 xe~tssm* 9;37e;o1 s:22e*o:r .*2;os2oe+o1 1.87E+0'1 .iU)401Ef05 3.73E+05 Xe-138 6:58E*01 6A7E~01 '1.4864E+03 .9.62Et02 1'4879E+06 9.63E't05 Mn'54 .2.74E-03 2:70Eo03 1A208E+02 .3c84E':01 5.0129E+O:S. 1.35E+03 8~;31Et:93: 2.72E+07 o.os%:FF> 1.36E+OS'.

  • e.OGE'.4'.03 11;37 error 9.93E-+:05 cpm cpm

~1% FERCs_-corCllflttations,~~111 SWEG ,1 oo8Q'U~(B)'48'tTabte aa . ..,

~Letdown'density:eorrectlon basea. on 137 F~(moftitorhigh temperature-isoiation) =*61 :43 lbm/ft:3./ 6Vi3 lbmtft3

....:Manufacturer'Cilllbration*pata * *

  • Beaver Valley Power StattQn Radiation Protectjon Teelmical* Positioill'Evaluation!Calculatfon.* REVISION:

Sutfject:

  • (J1lit 1 L~t~ov.tn Rad!a~ot1..,,o.nJt~r (~M~1.Cf H~1o~)Al~l'.l11.~e,'R?!~t .. ERS~JTL~99-005~
Cal9ulati<m
ar.id Emergency Acto.>n Level (EAL)Value*Detennmation

'QH'-101 iSetpdintCalcuiation@6o gpm Letdown flOw Rate Updated.design RCS concentrations and*for*the 843-30R'.detectqr type

'1%FF 60gpm HighRaqge 1% FF@60 9PIYI LoWRange ** 1%fl'i @60gpm

  • .1% FF ..At-monitor Density '"',"Channel H.i9hRange ... Cliarinel Low Range

@s16F DensltY Corrected Efficien~y Channel Indication Efficiency *C.hannel hidicatlon Nuclide; (uCilg) Cort:eclion * (uGllC:c) (cpm:CC/uci} ccom> (cpm-p<lfuCi) (cpni)

Br-84 .3.73E-Ot 3.67E,02* 2,29E+0.3 8.40E+01 2~11E+.06 7;74E+04 Rtr88 *2,7se+.oo 2:11e+oo 3:69E+02 9:9se~o2 2,oae+.os .5.63E+05.

Rb-89.e 1:57E-01 1.54E~01 9:76E+02* 1:5.1E+02 8.57E+05 1.32.E+05 Sr-89 3.49E-03 3A3E-03 .2:13E,02 . 7:31E'-05 ,5.62E+01* 1.93E-01*

sr;90 2:16E-04 ,, ;2!,13Ei'Q4.. O:OOE+QO, :o;ooe+oo: Q;OOEtOO o:ooe+.oo

$r~91 *1.45E;p3 f:43E"03.: 2:08E+02' ,2,97E.:01 *si13E:+'Cl'5 J:16E+03 Sr-92 1'.03E-03 1Al1E~03: 6:27E+.o2: 6;35E-01 . 5,2se+os 5:32E+02 Y-90 - 5;94E-05 5.84E"05 o.ooe+oo O~OOEtOO .O~OOE+QO o;ooe+oo Y-91 4;78E-04 4.70E~04 . 1.33E+OO s:2se-04 1.41E+03 6.63E*P1 V-92 8.84E..04 8'70E:.Q4. 7;84E+Oi 6;82E-02 *.1.39E+IJ5 1.21 E+02 Zr~95 *s;32E-04 6i22E-04 1.o9E+o2: 6:78E-02 6:0.9E+05 3.79E+02 Nb-95 6:41E-04 .6!31E--04. 1'.27E+02 8.01E-02 6.19E+05 3;9oe+o2 Mo-99 7.62E:-01 7.50E~01 7.* 99E+01 5.. 99E+01 6:()5Eo+:05 4.54E+05 Tei*99m 4'.09E701 4.02E~01 3.73E"02 1.SOE-02 5.47E+05 2;20E+05 )

.. O.OOE+OO '

1.129 1.UE-07 1.09E-07 O.OOE+OQ, O.OQE+OO O.OOEtOO f.131 2.89E+OO,

  • 2.a4e+oo 9.21E+OO 2:62E+01 _: 5.66E+05. 1.61Et06 1~132 .- 1A3E+OO: 1..f1E+oo 5.16E+02' s:.?llE+02 1'8.1Et06 2,01e+.os 1~133: .Jl.32E+OO.* 4,25E+QO; 7.. 56Et01' .3:21E+02. 6:57E'.t05 *2.7ee+oe

. F13.4' 6.32E-Ot ,. l'l:22E~01. 6:44Ei:02' A:ooe+o2. . ,2;ose:1:os. '1'.28E+06 1*.135 2A8E+OO' -2!.f4E+oo*, . 9.62E..:02' 2:35E+03* ,7;25Ef05 1;77E+06 co:sa, MSE-02' *1;36E-02, 1.28E+02 1:74E+OQ: 6.01Ef05 '8.16.E+03 Co-60 1;59E-03 . '1.56E~03 J,15E+03'. **1~soE+OO 1.08Ef06 1;69E+Ci3 Fe,-:59 9;00E~04 '.8;86E':04 4'.90E+02 4:34E-01 :5:69E+05 5.WE+02 T~129 1.43E-02 0,9540 1.41E.,02 .1::17E:t;01' 1;65E-01 1.11E'i'05 1.56E+03 Te-132 3.ooe~o1 2.95E-01 3;59E~o1 1~06E-01 4,59E+05 1.35Et05 Te-134* 2:99E-02 .2.94E*02 2.34E..01 6:88E*.03 3.31E+05 ,9;74E+03 Cs-13.4 6.05E+OO 5.95E+OO, 2:46E+02 1.46E+03 1.39E+,06 s:27E+06 Cs"136 1.50E+OO . 1.48E+OO 5.50E+02 .8J2E+02 *1:nE+06 2:61E+06 -

Cs-137 3.79E+OO 3.73E+OO" '5.92E+01 2.21E+o2* s:03E+05 1.88E+06 Cs-138. 1.03E+00'. 1'.01Et00. J:29E+.03* 1;3lEt03* 1.05E't06 1.06E+06 Ba~.14-0 , ,'4.10E-03* 4;oae,o:t. , 1.09E+0.1 ~.40E-02 ,z:aoe+os .1.13E+03

, La~140 1A1E-03' 1:39E~03' 1.. 09E+03 1i51E+OO 1:02E+06 *1.42E+03

, Ce-.144: 4.69E-04* .4.61E,Q4 .3,99e~o3, 1*:84E~06 7.,6E+04 ;3:30E+01 Pr~144 4~72E-04, ~t64E,04. 1.36E+01 6:32E-Qa** 1c28E+04 5:~E+OO

Kr~85 .* .. 1~25E+02.:; :1.23E+.02' .- 'J.07Et01 *t:32Ef03] !2.:37E+05 :2;92e.+;01 Kr;B,511\ .. *, M2E+OO :1:40E"'00 ,3.20E"~1'* 4.47E:-01 . s;o1e+os 7i00Ef05.

Kr'87 9:4.8E-01 9;33e,01 s:soe+o2 6 ..16Ef02: :7c28Ei:05 .6,79E'l-Q5

, Kr.;a8 ... 2.sse+oo: 2:s1e+oo* 5;14e+o2* 1c3.4E+03 5;sse+os 1.40E+06 Xe-133 3,11E+02

  • 3.06E+02 o:ooe+oo* .Q;OOE+OO 3.27E+Q4 1.00E+07 Xe-133m UOE;+OO 4.1se+oo, *5.98E-02 2,41e.01 7.16E+04 '2.96E+05 Xe-135 9.64E+OO 9.49E+OO 1;97E+'OO 1:87E+o1 4:84E+05 4.59E+06 Xe-135m 9;56E-01 9.41E701 2.40E+01 2'26E+01 '4:78E+05 4.50E+05

)(e.,138 6.70E..01 *s:59E*01 1.55E+03 1~02E+03 1:;55E+06 1.02E+06 Mfl.'54. 4:80E-03 :4;72&03 1.73.Ei:02 .. s:17E,.P1 s.:ioe+os .2,88E't03 P1E+04 M2e+or

-o:os,% Ff>. 3.66E+o*s I *9;57E+03.- x1;37't1nor 2.67E+O.G cpm cptn

  • 1% FF'.R(:S oohcentratlprtscfron'i SYJEC 1OOSQ;;UR(B)-484 Table Ba'

~Letdown d,ensity *ec:~~ion't>aiiid on* 1a7 F<;nonitor ii:l9h' t~mt>era'ture 1sotat1on).=.61 ;'43 lbmltt31s2.431bmltt3

      • Manutacturer caiitiratlon data .. . ..

Beaver Valley Power Station Radiation Proteetion Techhical Positfon/Evaluation/Cafoulation REVISION, 31

Subject:

No.: Page; Unit 1 Letdown Radiation Monitor (RM-1CH-101) Alarm Setpoint ERS-JTL-99-005 Calculation and Emergency Action Level {EAL} Value Determination 13 CH-101 SetpointCalculation @105gpm letdown flow Rate Updated desig11 RCS concentrations and for the 843-30R detector type

  • 1% FF 105 gpm High Range 1% FF@105 gpm LpwRangf! 1% FF@105 gpm 1%FF **At~m.onitor Densiiy ...Channel HighRar1ge ~**Channel low Ra*nge

@57SF Density* Corrected Efficiency channel .1ndieation :Efficiency Channel lndieation Nuclide (uCi/g) correclion. (uCt/ccl /cam"<:c/uCi} .ten~). (cp(ll,cc/uC!l (com}

Br~84 3.59E--02 . 3.53E-02:- 2.29E+03 8.08E+01 2.11E+Q6 7.44E+04 Rb-88 2~69E+OO 2.64E+OO *3,59E+02 9.76E+02 2;oaE+os *s.50E+05 Rb-89 1.54E*01 1.51E-01 9.76E+02 1..48E+02. *8.57E+05 1.30E+05.

Sr-89 2.00E-03 1.97E-03 2.13E-02 4.19E.:05 5.62E+01 1.11E-01 Sr-90 1.23E-04 1.21E-04 O.OOE+OO O.OOE+OO 0.00E+OO O.OOE+OO Sr-91 1.05E:o3 1.04E*03 2.08E+02 2.15E-01 8.13E+05 8A2E+02 Sr-92 8.81E-04 8.67E-04 6.27E+02 5:44E.:01 5.25E+05 4.55E+02 Y-90 3.59E-05 3.53E;05 0.00E+OO 0.00E+OO O:OOE+OO O.OOE+OO Y~91 2.74E-04* V0E'04 1.33E+OO 3.58E-04 1.41E+03 3.BOE--01 Y-92 7.33E-0.4 7.21E,04 7:84E+01 5.* 65E,-02* 1.39E+05 1.00E+02 Zr-95 3.62E~04 3~56E-04 1*.09E+02 3~88E~02* 6:09E+05 2.17E+02 Nti::95 3168E~04. a:62E~04 1.27.E+02 4.60.E-02 e:1sE-i;os 2;24E+02 Mo-99 4;60E,01 4;53E*01 7.99E+Ol 3.62E+O.~ 6.05E+05 2.74E+OS T0.99m 3.16E-'01 3111Ec01 3.73E~02 1.16E*02 5;47E+05 1:70E+05 1-129 .6.34E-08. 6~24E'08 O.OOE+.00 O.OOE+OO O.OOE+OO O.OOE:tOO 1-131 1.68E+QO 1.66E+OO 9.21Et00 1.53E+01 5.66E+05 9.38E+05 1-132 .9.84E"0.1 9.68E-01 5.16E+02 5.00E+02 1.s1E+os . 1:75E+06 1-133 2:85E+OO 2.80E+OO 7.56E+01 2.12E+02 6.57E+05 U4E+06 1-134 5.94E-01* 5:84E~o1 6A4E+02 3.76E+02 2106E+06 1:20E+06 1-135 1.89E.+OO usE+oo 9.62E+02 1.79E+03 7.25E+05 1.35E+06 Co-58 7.90E-03 7.78E-03 1.28E+02 9.96E-01 6.01E+05 4.67E.+03 Co,60. .9.09E-04 8.94E-04 1.15E+03 1..03E+OO 1.08E+06 9.66E+02 Fe-59 . 5.16E-04 5.0SE-04 4:90E+02 :2;49Eco1 .5.69E+05 2.89E+02 Te-129 1;32E,02 0.9840 1.30E:02 1.17E+01 1.52E-01 1.11E+05 1:44E+03 Te-132 1.80E-01 1:77E-01 3.59E-01 6.35E-02 . 4.59E+.05 8.1*1E+04 Te-134 2.84E-02 2:80E,02 2.34E-01 6:54E~03 3.31E+05 9.26E+03 Cs-134 3.46E+OO 3.40E+OO 2.46E+02 8.37E+02 1.39E.+06 4.73E+06 .

Cs-136 8:68E-01 8.54E-01 '5.50E+02 4.70E+02 1:nE+.06 1.51E+06 Cs-137 2.17E+OO 2.13E+OO .5.92E+01 1:26E:i:02* 5.03E+05 1:07E+06 Cs"138 9;90E.01 9.74E-01 . 1.29E+03 1;26E+03' 1.05E+06 1.02E+06 Ba-140 2.37Ec03 2;33E-03 1.09E+01 2.55E.:02 2.BOE+05 6.54E+02 La-140 8.77E:04 8.63E-04 1.09E+03 9.40E-01 1.02E+06 8..80E+02 Ce-144 2.66E-04 2.64E-04* :3.99E-03 1.05E~06 7.16E+04 1.89E+01 Pr-1.44. 4.62E-04* 4.54E*04 1.36E+01 6.18E-03 1.2BE+04 5:81E+OO Kr-85 7.14E+01' .7~03E+01 1.Q7E+01 7,.52E+02 2:37E+05 t.67E+07 Kr*85m 1.14E+OO U2E+OO. 3.20E'.01 :3:60E--01 5.01E+05 5.63E+05 Kr-87 B:70E~01 8.56E-01. 6.60E+02 5.6.5E+02 7.28E+05 6.23Et05*

Kr-88 . 2:26E+.QO 2.22E+OO. 5.14E+02 1.14E+03 5.38E+05 1.19E+06 Xe-133 '1.83E+02 1.80E+02 O.OOE+OO O.OOE+OO .3,z1E+Q4 5.89E+06 Xe-133in 2.57E+OO 2.52E+OO 5.98E-02 1.51E-01 7.16E+04 1.81E+05 Xe-135 7;04E+OO 6192E+OO 1.97E+OO 1.36E+01 4.84E+05 3.35E+06 Xe-135m 9.37E,01 9.22E-01. 2AOE+01 2:21E+01 4.78E+05 4.41E+05 xe~138 6.58E.01 6.47E-01 1.55E+03 1.00E+.03 *1,55E+06 1.00E+06 Mri-54 2.74E-03 2.70E-03 1.73E+02 4.67E~01 6.10E+05 1.65E+03 1.03E+04 4.66E+07 0.05%FF > 2.33E+06 I 7.54E+03 x1.37 error 1.*70E+o6* ]

cpm cprri "1 % FF RCS co.neentratlons from SWEC 10080-.UR(B)'-484 Table. 8a

..Letdown density:'correction l>as~d on.137F (monitor hlQMemperature isolation) = 61 .43 !bmlft3 I 62.43 !bmtft3

      • Manufacturer *calibration data

Beaver Valley Power Station Radiation Protection Technical Position/Evaluation/Calculation REVISIO 3

Subject:

No.:.

LI.nit 1 Letdc>Wf1,Radiation rJlonitor:(Rllll*9H~101) Alarm ~etl)oiri,t ERS*-.JTL-99~005 Calculation a~ Emergency Action Level (EAL) Value Determination Att~.chment 1 14 Alarm:s*etpointMe.ttiodology DISCUSSION This appendix describes the bases for the alarm setpoint methodology. Only increasing value alarm setpoints are addressed. A similar methodology could be described for decreasing value alarm setpoints, but these are not applicable to radiat.ion monitoring.

USNRC Regulatory Guide 1.105, Instrument Setpoints [1], provides a regulatory position on setpoints on systems iniportantto. safety. The guide provides the following definition of "systems importantto*safety":

"... those systems that ate necessary to ensure (1) *the integrity of.the reactorpoolant pressure,boundary, (2) the capability to shutdown the reactor and maintain it in a safe condition, ot (3) the capability to prevent or mitigate the consequences of accidents that could re.suit in potential offsite exposures comparable to the guideline exposures*of 10 CFR Part 100, Reactor Site Criteria; ... "

The BVPS Unit 2 UFSAR (2] contains a commitment to this regulatory guide, but the.referenced discussion in section 7 of the UFSAR does not specifically address radiation monitors. SWEC addressed RG 1.105 in the development of Unit 2 category 1 radiation monitor setpoints. This issue was addressed by the Radiation Safety Committee in meeting 25-67(3) and a position paper was prepared on this is'sue [4]. While recognizing the need to consider instrument errors. in determining alarm setpoints, this position paper concluded that the regulatory guide was (1) applicable to a subset of theJJnit 2 monitors, (2) applicable t0 orily those Unit 1 monitors installed in response to a Unit.2 licensing commitment, and (3) not applicable to effluent monitors (ODCM). This position paper was accepted by the RSC (BV-RSC:-2t-6*7} and approved by the OSC (BV-0SC"48-87).

Regulatory Guide 1.105 provides, in part:

"... The setpoints should be established with sufficient margin between the technica/specification limits for the process variable and the nominal trip setpoint to allow' for (a) the inaccuracy of the instrument; (b) uncertainties in the calibration, and (c) the instrument drift that could occur during the interval between calibrations .... "

The methodology employed by SWEC was, as was this appendix, based on ANSl/ISA-S67.04,.1988, Setpoints for Nuclear Safety-Related Instrumentation [5], which provides a means to accomplish the above.

DEFINITIONS Safety Limit [SL] A limit on an important process variable that is necessary to reasonably protect the integrity of the physical barriers that guard against uncontrolled release of radioactivity [5]. Safety limits are documented in the UFSAR, in technical specificatioh bases, and in 0ther design basis documentation.

Analytical Limit [AL] Limit of a measured or calculated variable estal:?lisned by safety analyses to ensure that a safety limit is not ,exceeded [5]. The difference, between a safety liIT)it . and ail analYtical limit,provides margin to. acco!Jnt for process dependent effects. such as {but not limited. to) process delays; emergency diesel generator sequencing, *valve or damper closure times, and instrument response times.

Trip Setpoint [TSP] A predetermined value (of the monitored parameter] at which a bistable device changes state *to indicate that the quantity under surveillance has reached the selected value [5]. The difference between a trip setpoint and an analytical limit is the ailowance provided to account for instrument uncertainty, instrument calibration' uncertainty (and, if not addressed in the determination of analytical limit, process dependent effects).

\

Beave.r Valley Power St~lion

. Radiation:Protection* TecllriicaJ:PositionfEy~1µ11tion!Calc_ul11~ic>n -.REV .. J , . . i Subject '.~()'.: *Page:

Unit 1 Letdown Radiation Monitor (RM;CH~101) Alarm Setpoint ERS-JTL-99-005 Calculation and Emergency Action Level (EAL)Value Detennination Attachment 1 15 Upper Setpolnt Limit [USL] A predetermi.ned value of the monitored parameter above the trip setpoint that, if exceeded du.ring periodic suryejllancei :testing, indiCates*unsatisfactory instrument perform~nce. The band defined:between:tfie trip setpoint and the upper*setpoint limit is*the*allowance provided *to ac:c.ount for ins.trument uncertainties such as

$etpointdrift,. pqWet ~uj:>pty*drift, *rand6rri r~sponsl*v~~iation, deadbandi etc; Operational Limit (QL] The~ rna~iml.lm y~llue that th:e 'nfonitore<;I. t>>arameter may attain during normal' operations; based on administrative controls, ttlat will nofresulf'in the occurrence of an*alarm. * **

These quantities are illustrated on the figure below.

Design Safety Limit Analytic~! Limit (AL)

Total Loop Uncertainties TLU=EA +PA+LA.+SA+ TA +DA Upper SetpointLimit (USL)

=TA+DA TRIP:SETPOINT (TSP)

TotaiLoop Vncertafnties TLU=EA +PA +LA +SA+ TA +DA MCALRMSP.DRW Op:erational. Limit (OL)

Norf'Tlal Operatibn DETERMINATION 0-F ALLOWANCES Environmental Allowance [EA] Includes the effects of radiation, temperature, pressure, humidity, chemical sprays on the instrumentation. EA shol!ld .be determined for all safety related mor:iitors exp~cted. tp operate under accident conditions if the instrument vend¢r has in,d,icated,an ?ccuracy under, these conditions that.differsffom the a~curacy:expressed. for operatiOn under normal 'condition's-: Applies only to QA C~tegory. 1 monitors.

Beaver Valley Power Station Radiation *Protection TechiliCal Position!E:Valuatiori/Ca!Cufation .I I* : 3 Subje:ct: No.:

Unit 1 Letdown~~a~iatiQh r~fonitor (RM~C.H~101) >\lamfSetpoinf.

ERs~J1L.:9s-oos Calc.ulation and Emergency Mtfon Level *(EAL) Value QetermiJi~tion Attachmen~ f -16 Leakage Allow.a nee: [LA] Includes lnstru.rneot ,signal losse.s 9ue tQ .cable or penetration lea~age or impedence. Applies *only to* ClA'Categary 1 manitars, Process Ailowance [PA] Includes eff~ds associ~teq:witl:l the . mea~u~ementof tt~e.prpcess parameter (e:g.t'. sample; iine ;plateo.ut; i.sekin~tic samplirig), errors assocJ<?ted wifll calcUIC!_tjon -of the. process paramet~~ ,by,* indirect measurements (e.g.,

determining flow from Op rneasQrements).

Calibration Alk:>wance [CA] Includes errors* associated with .calibrations of the sensor and the readout rack; su9h as those related to the calibration standard, equipment, and method.

Sensor Ailowanc~ [SA] lnclude.s errors asso.ciate,d wit.h the se.11sor and reado.uf acc;uracy.

Coosi,clerations include: . *une(lcity; deadUme; en.ergy response 'linearity; repe_afabiUty; _power ~upply staoility; temPetature *. pressure, -.and humidity changes; .~DCICDA:C*errors1 :etc..

Drift Anowaoce [OA,] :lnclu.des *error~; due to unde~if~o changes.,* ih- instrument; response, over a .

p.eriod. of ti.me, that are .fridependent of the instrument iriput or use enylronment The. period. of time is normalizecl. ta .tne period between

    • instrument cali~ration(:!or sur:veillarice* te~tirig; Tolerance *Allowance [TAJ In.eludes admlnistra'tlve tolE!rances ,:!Jllowed for *callibration and/or setpoint adjustment (e.g., adjust to within+/- xx% ofxxxx c;pm).

The errors a_ddressed by these allowances, may qe depencle~t or independent: Dependent errors. are summed algebraically; lndependenterrors.. are sljmmed :u~ing *~ne r9ot-of-s,qu;ared-s,~ms, method.. Prior to summing, ~II errors are normalized*to.;~pqmmpn bas,e'{e,g .. J?er,cerjt:of:spa11.,;P,~rc.ent ofJ1,11l s,c:cit~). tlnift calibration MSPs *

    • provide .a-tolerance of +/-1.()%. Unit.2.* calibratipn MSPs provid.e>a tolerance* of :tf5o/o:

Not all. of these allpwanee,s *i\!re ;applicaqle :to a; partipµJar* mpnJtor-- PO!Y those applic;able are ~nsideretj.

Dependept '.E;?rrOrs,(e.g;, LA, .OP); a.re' not ad,qn~ssedeXpli¢itly: 1nt::1s n:iasonable *to conclude that sensor~to readout: (end~to-end) c;f.ilibratlons adequately* comp~nsate .fc;;r* the~e .effect~ .. In :ca~es; wliere one' allowance envelopes a related *allowar:ice; only th~ rnost restrictive allqwance is summed. For example, an instrument setpoint accuracy (i.e., SA) of +/-1% is considered enveloped by a tolerance allowance (T:A)of +/-10%.

The tatal ihstrument loop uncertainty (TLU} .is the sum of the individual allowances. Assuming LA, to be dependent, .and' the r.emainde(to be independ,eht:

TLU =LA f SQRT( EA? + PA.4 :.:. CA2'.+.sA2*+ DA2+ TA2)

The trip setpointequals:

NOTE: In the foUQwln*g, 0/o+TLUrefers to t~e;total IQop- uncerlaiQtWifl>th~ under~respo,h~e dire¢ti9ir expressed in percent. %.::TLl} refers to t):ie total lobp uncertainty in tlie over~resporise directicm expressed in percent.

TSP = AL - (TLU xTSP)

TSP= AL I [ 1 + *(%-TLU) /10.0]

The upper setpoint liinit (USL) (NOTE: -See definition above:);

Beaver Valley Power Station Radiation Protection Technical Position/Evaluation/Calculation 3

Subject:

No.:

Unit 1 Letdown Radiation Monitor (RM-CH-101) Alann Setpoint ERS-JTL-99-005 Calculation and Emergency Action Level (EAL) Value Determination Attachment 1 17 USL = TSP + (TSPxDA) + (TSPxTA)

USL = TSP[ 1 + SQRT(DA2 + TA2) ]

The operational limit (OL):

OL = TSP - (TLUxTSP}

OL = TSP[1- (%-TLU/100)]

1. USNRC, Instrument Setpoints, Regulatory Guide 1.105, USGPO ,11176
2. DLC, BVPS Unit 2 Updated Safety Analysis Report, 1990
3. DLC, Minutes of Radiation Safety Committee Meeting 25-87
4. DLC, Applicability of RG1.105 to BVPS Radiation Monitors, ERS-SFL-87-036, 1987
5. ISA, Setpoints for Nuclear Safety-Related Instrumentation, ANSl/ISA-867.04-1988
6. Ficke, R, Instrument Setpoint Calculations, presentation at Sorrento Electronics DRMS User's Group Meeting, Fall, 1990

B*eaver Valley Power Station Radiatia,n J>rotectjori. T:ecfuiic'al?Position!Efalua~iOil/CalCulatiOn

  • 3
  • subject Unit 1 Letdown* RC{diation Monitor(RM~t-id91) Aiarn:i S~tpoint Calculation a.nd Emerge11cy, Action Level '(EAL;;) Value [}etern:iinatiori Attachment 2 FLt..Jt<E Biomedieal Radlatido.Managem~nt$ervic$$

6045 ..Cochran Road Cleveland, 01144139~3303 To: Pravin Vakharia Tephone: 724-682~ 76J.5 Beaver Valley 1 Telefax: 724-682-4743

  • From:. A.ndyLasko .Telepho11e: ,;(~40)542-3 61 J

'.Projec~:Manager~ Teletax: .~440)349:..8059

  • c;:-:lllafl: AnclrewJ~ask.o@fl\iJSebio.llledic11~.c~m Date: Apt.it 19;:2006

Subject:

Reyised *Model g43:.3(}R Efficiencies Mr. Vakharia Enclosed ate revised isotopic efficiencies. f,or ttie Model 843-3.0R Oamma Scintillatiqn detector used in your liquid ,and gaseous effi.lieilt radiation monitors, Fout (4) sets of efficiency tables are enclo~ed, Eadb table refle.cts the effiC,iency for:., each. of the sampling geometries used inyour.pl11nt.

  • The source of the efficiency:datfril; our primary isotopiC.calibr:ation.report 958.402. This r:iypoii dp9uµu;l1t~. t.he; primai): ,isqtopi9. c~Ubtati~h pe~forined on tbe .~odel J~43;;,~0R detector* *inourJ~1o.del 841~334 three* ('3) iLlter dff;.line liqµid sailipting.g~ometry.. The Model 841-334 is our current *version of your Model 841-3N: .thl'.ee (3.) liter *()ff.:tine sampling .geometry. The sample vollime and *detector location in both sampling geometries is the same, and the datir taken with our Model 841-334 will apply directly to your Model 841-3N.

To obtain revised *efficiencies for your Letdown m*onitor .and* Gaseous *effluent mcmitors,.

the rl!ltio between your origipai ,liquid mqn_itor efficiency atjd the new. efficiency was calculated for each :isotope; The efficiency ratiq was ttien ilPPlied:to:the preyioqs, Jet<Jo.wn monitor arid ga$eous ef,flueht mohitor*isotopiC. efficiencies~ .and' a;,new efficiency was:

c~lculated **. We b~~iev~: this ~ppr,oach .~*Valid !Jep¥use 'the detector response haS been validated in report 958:402, What .chtl_nges ill the* iC:tdown ~nd gaseous effluent *monitors is the samplingg¢orrtetry. By knowing the response difference bf the detector ftOmthe primary liqµid isotopic. calibration, and the previous response ofthe letdown.and gaseous monitor sampling geometries, ,a new effieiency for the letdown and gaseous geometries may be obtained by multiplying the original efficiencies by the difference in detector efficiencies.

Beaver Valley Power Station Radiation Protection Technical Position/Evaluation/Calculati 3 Subject No.:

Unit 1 Letdown Radiation Monitor (RM-CH-101) Alarm Setpoint ERS-JTL-99-005 Calculation and Emergency Action Level (EAL) Value Determination Attachment 2 19 The results of this analysis are provided on the four (4) tables enclosed.

Please feel free to contact us should you have any questions or comments on the above.

Sincerely Yours, Andrew Lasko Project Manager FLUKE Biomedical Radiation Management Services E-Mail: Andrew. Lasko@flukebiomedical.com Note: Only the portions of the letter attachment that pertain to CH-101 are provided below.

Beaver Valley Power Station Radiation Protection Technical Position/Evahiation/Ca!culation REVISION: 3

Subject:

No.: Page:

Unit 1 Letdo.wn Radiation Monitor (RM-CH-101) Alarm Setpoint ERS-JTL-99-005 Calculation and Emergency Action Level. (EAL)-Value Determination Attachment 2 20 BVPS Unit I Reactor Coolant System Letdown Radiation ~onitors 4/l 7 /2006 Ganuna Sensitivities ofthe.903664 Sampler & 843-30 High E:hannel to-Liquids Monitors; RM-lCH-IOIA Used as a High Range Instrument RM-lCH-IOIB Used as a High Range Instrument (I) (2) 843-30 843-30-R Detection Detection

  • Nuclide Efficiency Efficiency (cpm/uCi/ml) (cpm/uCi/ml)

Br-84. 7.07E+o2 2'29E+o3 2 Rh-88 3.33E+o2 J.69E+o2 3 Rb-89 l.OIE+o3 9.76E+o2 4 Sr-89 l.70E-02 2.13E-02 5 Sr-90 O.OOE+oO O.OOE+oo 6 Y-90 2.lJE-01 O.OOE+oo 7 Sr-91 l.78E+o2 2,0SE+-02 8 Y-91 L36Et(JO u;3E+oo 9 Sr-92 5.~SE+-02 6.27E-t-02

10. Y-92 6.73E'i:()l 1.84E+ol 11 Zr-95 8:82E+ol l.09E+-02 12 Nb-95 l.OJE-t-02 l.27E+o2

.13 M<>-99 1.61E+ol 7.99E-t-01 14 Tc-99m 3.00E'02 3.73E*02 15 1-1}2 4.34S+o2 5J6E+Q2 16 1-133 6.44E+OI 7.56E+ol 17 1-134 S.48E+o2 6.44E+o2 18 1-135 7.SIE-t-02 9.62E-t-02 19 Te-129 1.71E+o0 1.17E+ol 20 1-IJI 8:64EWO 9.21E+oo 21 Tc-132 3.48E-01 3.59E-Ol

  • 22 Te-134 2.04E-01 2.34E-01 23 Cs-134 2.02E-t-02 2.46E+o2 24 Cs-136 4.83E+o2 5.SOE+-02 25 Cs-137 S;IOE+ol 5.92E+ol 26 Cs-138 9.99E+oz, 1.29E+o3 27 Ba-140 l.OOEf-01 l.09E+o!

28 La-140 9.81E+02 J.09E+03 29 Ce-144 3.1 IE-03 3.99E.03 30 Pr-144 l.32E+ol L36E+01 31 Kr-85 9.12E-02 l.07E+ol 32 Kr-85m 2.73E-Ol 3.20E-OI 33 Kr-87 6.26E+-02 6.60E+02 34 Kr-88 S.OSE-t-02 5.14E+02 35 Xe-133 O.OOE+oO O.OOE+oO 36 Xe-133m 5.78E,02 5.98E-02 37 Xc-135 l.90E+oo 1.97E+o0

.38 xe:J35m 2.03E-t-01 2.40E+Ol 39 Xc-138 l.49E+o3 1.55E+o3

.40 Mn-54 l.42E+o2 1.73E+o2 41 Mn-56 6.74E+o2 8:47E+02 42 C<>-58 1.41E+02 l.2SE+o2 43 Co-60 J.03E-t-03 1.l5E+03 44 Fe-59 4.34E+02 4.90E+o2 (I) Original Gamma Sensitivities from Addendum to BVPS Sp~ No. BVS-414. Table V, I0 (2) Gamma Sensitivities from Fluke Biomedical for Replacement Detector

Beaver Valley Power* Station Radiation Protection Technical Position/Evaluation/Calculation REVISION: 3

Subject:

No.: Page:

Unit 1 Letdown Radiation Monitor (RM-CH-101) Alarm Setpoint ERS-JTL-99-005 Calculation and Emergency Action Level {EAL) Value Determination Attachment 2 21 BVPS Unit l Reactor Coolant System Letdown Radiation Monitors 4/ 17 /2006 Gamma Sensitivities of the 903664 Sampler & 843-30 Low Channel to Liquids Monitors: RM*ICH-JOIA Used as a Low Range Instrument RM-lCH-IOlB Used as a Low Range Instrument (I) (2) 843-30 843-30-R Detection Detection Nuclide Efficiency Efficiency (cpm/uCi/ml) (cpm/uCi/ml)

I Br-84 6.50E+05 2.l IE+06 2 Rb-88 l.88E+o5 2.08E+05 3 Rb-89 8.87E+05 8.57E+o5 4 Sr-89 4.48E+OI 5.62E+OI 5 Sr-90 O.OOE+OO O.OOE+OO 6 Y-90 9.54E+OI O.OOE+OO 7 Sr-91 6.97E+05 8.13E+05 8 Y-91 l.4SE+03 J.41E+03 9 Sr-92 4.68E+05 S.25E+05 10 Y-92 1.19E+05 l.39E+05 JI Zr-95 4.95E+05 6.09E+05 12 Nb-95 5.04E+05 6.19E+o5 13 Mo-99 l.22E+05 6.05E+05 14 Tc-99m 4.40E+05 5.47E+05 15 16 17 Te-129 1-131 1-132 9.37E+04 4.82E199 l.54E+06 I.I IE+05 5.666188 1.8JE+06

. 4.82E+5 5.66E+5 Corrected values jtl 8/8/11 18 1-133 5.33E+OS 6.57E+05 19 I-134 l.36E+06 2.06E+06 20 1-135 6.SOE+OS 7.25E+05 21 Te-132 4.45E+05 4.59E+05 22 Te-134 2.89E+05 3.31E+05 23 Cs-134 l.14E+06 l.39E+o6 24 Cs-136 l.55E+06 l.77E+o6 25 Cs-137 4.33E+05 5.03E+05 26 Cs-138 8.16E+05 1.05E+o6 27 Ba-140 2.56E+05 2.80E+05 28 La-140 9.20E+05 l.02E+o6 29 Ce-144 5.58E+04 7.16E+04 30 Pr-144 l.24E+04 l.28E+04 31 Kr-85 2.02E+03 2.37E+o5 32 Kr-85m 4.27E+05 5.0JE+05 33 Kr-87 6.91E+05 7.28E+o5 34 Kr-88 5.32E+05 5.38E+OS 35 Xe-133 3.53E+04 3.27E+o4 36 Xc-133m 6.92E+04 7.16E+o4 37 Xe-135 4.66E+05 4.84E+o5 38 Xe-135m 4.04E+05 4.78E+o5 39 Xe-138 1.49E+06 l.55E+o6 40 Mn-54 5.0IE+05 6.10E+05 41 Mn-56 7.05E+05 8.86E+o5 42 Co-58 6.59E+05 6.01E+05 43 Co-60 9.68E+05 l.08E+o6 44 Fe-59 5.04E+05 5.69E+o5 (I) Original Gamma Sensitivities from Addendum lo BVPS Spec No. BVS-414, Table V, I 0-7*

(2) Gamma Sensitivities from Fluke Biomedical for Replacement Detector