NL-15-1898, Enclosure 3: Hatch EAL Calculations - License Amendment Request for Changes to EAL Schemes to Adopt NEI 99-01 Rev. 6 and to Modify Radiation Monitors at Farley Nuclear Plant. Part 2 of 3
Text
X6CNA15 X6CNAI 5 ~ATTACHMENT C1 HETC-SHEET C1-1 ANS/SD-76/14 A HANDBOOK OF RADIATION SHIELDING DATA J. C. COURTNEY, EDITOR Sponsored by: Nuclear Science Center Louisiana State University Baton Rouge and Shielding and Dosimetry Division American Nuclear Society JULY, 1976 X6CNA15 ATTACHMENT C1 SHEET C1-2 5-27 Gamma Ray Dose Albedos C) C. N. Davisson U. S. Naval Research Laboratory The dose rate reflected from a surface as deduced from Reference 1 through 4 may be represented as: D.R. = D.R.° case -o A (Eo, 80 ,)r where D.R. = Reflected dose rate D.R. = Dose rate incident on surface at angJ.e 8 0 o A =Reflecting area r = Distance from center of reflecting area to receptor (A and r 2 must be in the same units)cs(E° e0, 0, *) = Dose albedo The albedos, cL(E , 9 , 0, 4), for gammas incident on water, concrete, iron and lead have been calculated by C. N. Davisson and L. A. Beach 5 using Monte Carlo techniques in an extension of the original work by Theus and Beach 6.The albedos are given for incident gamma energies of 0.2, 0.662, 1.0, 2.5 and 6.13 MeV and for O incident angles with respect to the normal of 0°, 22°, 44°, 66° and 88°, as well as (1 for point sources on the surface of the materials.
The emerging polar angles, 0i'as well as the emerging sectors or directions into which the emerging gammas were divided are shown in Fig. 5.13. The values of the polar angles, @. and of the aziuthl agle c, dfinng heemerging directions, are given on each page of Table 5.8.Note: The dose albedo values have statistical errors that range from 40% or 50% at very small albedo values to 5% or 10% at large albedo values.References SReactor Shielding Design Manual, T. Rockwell III, editor, TID-7004 (March 1956)SD. J. Raso, "Monte Carlo Calculations on the Reflection and Transmission of Scaterd GmmaRay,"Nuci.
Sci. and Eng. 1__7, 411 (1963). This report has a good discussion of the meaning of various terms and derived quantities.
The dose albedos given here are those which he described in quotes, as "dose" albedos.s W. E. Selph, "Neutrons and Gamma-Ray Albedos," DASA-1892-2 (May 1967), ORNL-RSIC-21 (February 1968), or Chapter 4 of Weapons Radiation Shielding Handbook (NTIS No.AD-816 092). The dose albedos given here are those defined as a_ in this report.'R. L. French. and N. B. Wells, "An-Angle-Dependent Albedo for Fas~-2 eutron Reflection Calculations," Nucl. Sci. and Eng. 19, 441 (1964).s C. N. Davisson and L. A. Beach, "Gamma-Ray Albedos of Iron," NRL Quarterly on Nucl. Sci. and Tech. (January 1, 1960), p. 43; and private communication.
6R. B. Theus and L. A. Beach, "Gamma-Ray Albedo," NRL Quarterly on Nucl. sci. and C9 Tech. (July-September 1955).
X6CNA15 X6CNAI 5 ~ATTACHMENT C1 HET0-.SHEET C1-3 5-28 Figure 5.13 NORMAL.ietry and Solid Angle Divisions Ge on 1/2>';'K..?091196 RAy 90SE AIREDOS f In poroont9 Rgng Emerging Water Water Polar Direction 0.20 HelV 0.662 NoV Angle incident or Point
- incident:
at Point *B1 ftc V (:* 22' 144c 660 88' Doorce 0'* 440 660 080 Snorce l89 1 90.0-180.0 5.7317 5.8879 6.5397 7.1396 6.7159 6.5177 1.9553 2.0403 2.3331 3.1599 2.9591 0.o-15.4 2 0.0- 90,0 +.039o 6.oo6o 6.7538 6.essk 6.0503 6.2107 t.036 2.1273 2.3769 3.1206 3.9089 +.1583 8o 3 20.0-190.0 5.6227 5.8329 6.3709 7.0713 6.7905 6.8210 1.8933 1.8038 2.3975 2.8528 1.2022 2.90111 15.4-21.8 4 0.0- 80.0 *.1326 5.6935 6.7727 6.5315 7.2458 %.0066 t. 0214 2.0361 2.3693 3.2040 4.2395s t.1563 5 150.0-180.0 5.3226 5.7366 6.605a 6.6278 1.8595 2.0083 2. 5859 2.6781120.0-150.0 5,5072 6.4osa 6.17o4 5.s813 1.7426 2.1703 2.61467 2.6752 en 7 0.0-122o.0 5.2967 5.0768 6.1451 6.82so 7.0716 6.64+23 1.7141 1.7619 2.1509 2.6726 3.4651 2.8262 21.9-34.9 8 60.0- 90.0 &.0951 5.7920 2. 9097 7.0255 7.0148 i46 +/-. 0422 1.2933 2.7734 4.2727 +.o662 9 30.0- 6oo 5.7062 5.8698 8.2760 8.2716 1.8004 2.2758 3.4947 5.5355 10 0.0- 30.0 5.6732 5. 5703 7.2005 9.2535 1.9838 2.7804 4.35674 6.0625 11 150.0-180.0 4.7862 5.1608 6.1585 5.9273 1.7232 1.6182 2.45O0 2.2660 12 120.0-150.0 4.8543 5.40o3 6.3124 6.7229 1.9158 2. 5032 2.9693 S4 13 90.0-120.0 4.94235 .3779 5.2097 6.4662 6.5197 6.0182 1.65e4 1.71,50 2.85--4 3.4144 2.8344 34.8-44.4 14 6o.0- 90.0 +. 1364 2.3698 5.7463 6.6722 6.6247 +/-.1502 *.0557 1.8078 2.2060 3.1180 3.7612 j.1092 15 30.0- 6o.o 4. 8361,, 5.a46o 7.00o77 1.9726 2. 5414 3.7423 6.320o i6 0.0- 30.0 5.0333 5.6692 7.3892 11.6576 1.7260 2.4595 4. 8742 8.6182.17 157.5-190.0 3.8943 4,.6709 5.5329 6.3102 1.2535 1.6351 2.0032 2.5697 18 135.0-127.5 4.1841 5.0667 5.4716 5.26177 1.2764 1.4813 1.8277 2.3120 19 112.5-125.0 3.9395 4.3232 5.2745 6.0289 1.4b636 1.6o58 2.0346 2.624i 20 90.0-112.5 3 .9792 4.31 4~b .8077 5. 1726 6.2428 6.0433 t.34i0 1.5351 1.64ss 2.5741 3.7130 2.2464 2 21 67.5- 90:0 6,0902 4.59892 4. 50o4 5.6655 t.69 6.0170 1.80 2.7336 6.0448 42 S.o- 6.3773 .181 2B 227 3.3179 5.9400 23 22.5- 45.o 3.29117 5. 1208 7.1514 11.4543 i.4gs6 2.3681 4.4333 8.0746 24 0.0- 22.5 4.3hs9 7. 314o 14.4690 1.7503 2.7725 12.2532 25 127.5-180.0 3.2459 3.7645 4.606s 5.7163 .6832 1.343 1.Glgo 2.0010 26 135.0-157.
5 3.3258 2.7108 4.77a6 5.8588 1.1749 1.2018 1,.7129 2.2899 27 112.5-135.0 3.5545 S. 35657 4.8880 5.6029 1.1867 1.4367 1.7247 2.6920 8e 28 90.0-112.5 o.94s2 3.5478 3.7974 4.2356 6.2432 5.5716 1.1053 1.2017 1.3056 1.8535 2.0433 2.9021 55.2-64.6 29 67.5- 80.0 ,.0532 2.5231 3.8955 5.3080 6.6770 +/-h.149,2 *-.0395 1.1743 1.6336 2.6800 3.8038 j. 1075 30 4,s.o- 67.5 3.1921 4,. 032 6.6316 8.9316 1.340oo 1.7971 3.3062 6.4853 31 23.5- 4s.o 2.3366 4.3713 7.4570 32.5727 1. 5O4a 2.2454 4.3329 1o.7o36 32 0.0- 22.5 2.9447 5.1837 8.1211 15.64 17 1.5937 5. 5367 16.7499 33 165.0-180.0 2.1264, 2.1916 3.2329 4. 5678 .6614 .8297 1.2365 1.6597 34, 150.0-165.3O 2.2341 2.63143 3.3451 5.0043 .6472 .8533 1.1356 1.6204135.0-150.0 2.2259 2.4257 3.527 5.9316 .7441 .8133 1.1131 1.9323 36 320.0-135.
0 2.10898 2.4169 3.3150 5. 1764 .6158 .9166 1.3366 2.0239 37 05.0-120.0 2.0710 2.0229 2.4214 3.3904 4. 3769 .7831 .9157 1.24,17 2.1577 er 38 S0.0-105.0
- i.0458 2.2786 3.7703 2.6111 5.6150 4.2031 .7253 .7500 1.0093 1.5037 2.7019 2.5424 64.6-T77.6 139 75.0- 90.0 2.4287 2.6761 3.6498 6.4994, 4.13. j.01 4.0 .7835 1.1006 1.9463 3.7924 &.1789 40 6o.o- 75.0 2.1719 2.6086 4.oho6 7.5953 1.0125 1.4012 2.,1352 4.30505 4i 6o.0 2.1870 3.1039 5.0227 9.5097 .9799 1,5390 2.9494 6.893330.0- 45.o 2.5634 3.6170 6.0643 13.1252 .9323 1.68g1 4. 0389 11.2933 43 15.0- 30.0 2.4511 3.9100 7.0110 35.0822 .6866 1.9528 4,9537 17.5611 44 0.0- 15.0 3. 7460 7.5061 17.9590 1.1932 2.24,26 6.3270 21.3197 45 365.0-190.0
.6499 .7465 1.1593 2.0293 .1533 .2103 1.0093 46 150.0-165.0
.6o36 .7643 1.286o 2.9972 .2359 .2374 .3727 1.0970 47 135.0-150.0
.8528 .9479 1.2625 3.2789 .1763 .2514 .3979 1.1505 48 120.0-135.0
.6o26 .9205 1.2109 3.1119 .3752 .2462 .4231 1.3052 43 1o5.O-120.0
.7090 .8667 1.29842 2.8818 .2544 .2749 .4993 1.3626 Go 50 90.0-105.0
.7446 .81223 .8467 1.5001 3.0618 2.0500 .3518 .1291 .3925 .6755 1.5183 i.444O 77.6-20.0O 51 75.0- 90.0 *..0285 .8259 .7707 -~ 1.1257 3.66as 6.,0543 +%.1067 .2460 .3933 .7809 2.2239 6.0444, 52 E0.o- 75.0 .8780 1.0763 1.7809 4.9976 .4366 .3926 .o6oa 3.2155 53 45.o- 6o.o .7515 1.1401 2.0393 6.5075 .3167 .6955 1.4,673 5.3678 5s, 30.0- 45.o .7289 1.368w 2.7729 10.1964 .3288 .6577 1.9128 2.4908 55 15.0- 30.0 1.1237 1.5215 2.3798 12.3710 .4299 .8547 3.7434 15.892.6 56 0.0- 15;.0 1.0129 t..is46 3.0126 13.44h18 .4806 1.2246 3.2726 19.2331 Dun over 01 176.5573 164.2439 213.4322 280.2326 425.5670 270".5963 53.8091 86.0986 140.22)06 226.6791 -139.3121 Tot~al Dooe Albodon 189.897 30.6833 31.4421 47.7495 20.3609 6.64,55 7,2758 g.6sao 15.7205 235.2872 15.6297* Symetrical soorcos. On 11 voloeo ooeraegd z-A I-. "-LnO Ln IT m z H9 0r CD m-m H=0 lAY DOSE ALDID0S ( in percent)Emerging Energiog Deter Woter Polar Direction 1.iO 8eV 2.50 8eV Angle incident at: Pit*incident:
Polr 8l l\ o 440 64o g8n Souron cp* 44 660 88° Soerce1 90.0-180.0 1.3792 1.2130 1.5516 2.3172 2.2958 2.1535 .5272 .5519 .6597 1.167.5 1.0562 0.0-15.4 2 0.0- 90.0 9:.1285 1.8977 2.4498 2.9657 +/-.1131 +/-.0443 .5907 .8154, 1.2089 1..91415 9.0729 G= 0 90.0-180.0 1.1622 1.1998 1. 5320 1.gi44 9.44;15 20,080 .5i46 .545 .8225 .ss45 1.2512 1.1o62 15.4-21.9 4 0.0- 90.0 1.2977 1.6221 o.6ss6 3.7843 121 *.0120 .534 .011 1.2085 2.4114 9.0172 5 50.0-180.0 1.2604 1.2716 1.5763 2.0974 .4917 .5920 .7605 1.1507 6 120.0-150.0 1.09214 i.406g 1.9570 2.1800 .5598 .4es41 .8912 1-.3571 Go 7 90.0-130.0 1.1308 1.1671 1.3991 1.9764
- 2.7299 2.1566 .4799 .4564 .doos .2818 1.6670 1.15O3 21.8-34.8 8 6o.0- 92.0 h.0l99 1.3096 1.6o45 2.4786 z.44oi r.o655 9. 0203 .4810 .7400 1,.2661 2.0716 9. 0632 9 3c.0- 6o.o 1.3700 1.5146 2.7524 4.2180 .5841 .7796 1.5035 3.0785 10 0.0- 30.0 1.3196 .93981 3.1252 4,.7032 .6258 .7921 1.6A896 3.3791 11. 15.3.0-190.0 1.1512 1.2025 1. 5561 1.8327 .5305 .6796 .9691 12 122.2-150.0
.9574 1.2832 1.65kG8 2.1939 .4609 .5725 .7768 1.252713 9,..0-120.0 1.1139 1.2226 1.2921 2.1096 2.5559 2.1148 .4354 .4556 .6202 1.0551 1.4250 1.1t359 34*.1-41., 5" .C.2- 80.0 e.0248 1.2667 1.4964 2.42098 3.4848 -F.o440o .5187 .66o5 1.1330 2.0963 .9.0448 15 2:.0- 6o.o 1.2658 1.7322 0.0008 5.2290 .5696 .7724 1.6281 3.1771 IC 0.0o- 30.0 1.1588 1.7278 3.6435 7.0896 .5248 .8362 2.1I041 4.9020 17 157.5-190.0
.8520 1.0542 1.8321 .3764 .4222 .5828 1.052g 18 105.0-157.5
.9069 1.0317 1.2798 1.6722 .3738 .4218 .5861 .8154 13 1 12.5-125.0
.2506 1.1171 1.5228 1.9945 .4312 .7858 .920880.0-112.5
.9122 1.0373 1.2421 1.7373 2.3077 2.2096 .2768 .4218 .5687 .s126 1.3843 1.88 31 67.5- 90.0 +/-.0220 i.0i46 1.34355 2.0632 1.4207 9.0494 .4294 .5950 1.1142 2.115O 9.0975 kL 67.5 1.1603 1.6922 2.89o8 .445S9 .7777 1.4705 2.9209 23 22.5- 45.0 .9707 1.7171 3.503d 7.8551 .49861 .8072 5.1611 a!. o.0- 22.5 1.17329 1.9935 3.8207 11.8427 .5343 .8870 2.0890 7.6425 aS 157.5-190.0
.66ii .8137 t.0616 1.5202 .2596 .2648 .4879 .7997 a4 135.0-157.2
.7920 .7575 1.0910 1.5915 .3059 .2365 .5625 .8336 a7 112.5-135.0
.7570 .9088 1.2150 1.9792 .2967 .2760 .5906 .9810 0 c 20 00.0-111-..5
.740o6 .7299 .8506 1.3554 2.4202 .3318 .2328 .7618 1.43589 55.3-0L.0 22 67.5- 80.0 *.0027 .7762 1.3658 2.0094 3.1028 9.0767 9.0088 .2559 .5297 .siko 1.7158 e, 12G8 0 45.o- 67.5 .8047 1.4033 2.4900 5.368s .4153 .6776. 1.4482 2.5288.1 22.5- 45.o .9608 3.8124 3.4070 9.4818 .3770 .8316 2.0515 6.8683.Ac 0.1- 22.5 1.O346 1.9922 4. 9906 15.5466 .5515 1.0130 2. 8838 12.0925 34 15oo-165.o .kaOk .5223 .7631 1.1637 .1424 .1878 .2898 .6436..5 13.5.0-150.0
.4702 .5316 .7746 1.z666 .2215 .2697 .2142 .7o14 36 120.0-135.0
.4523 .6182 .90423 1.2936 .2269 .2220 .3427/ .9418 37 13i5.0-120.0
.5262 .5983 :9486 1.5807 .2112 .2391 .4527 .961o 87 38 20.0-105.0
.5025 .5328 .6694 1.2836 2.2205 2.1587 .2212 .2597 .2672 .5172 1.2192 1.3698 04.6-77.6 32 75.0- 20.3 -,.O188 .6311 .8946 1.2734 3.o561 0465 -,. 0095 .2596 .4157 .6790 i.949 9.0750 40 6o.0- 75.0 .7128 1.0019 1.5556 4.ooik .2902 .4764 ,aoo5 2.6061 b1 4S.O- 60.0 .64z6 .96i5 2.2296 6.0820 .o565 .6178 4,.2256 42 30.0:- 45.0 .7109 1. 1s31 0.3240 11.IO94 .5720 2.01,73 7.9182 43 15.0- 90.3 .7960 1.6053 4. 1934 17.2134 .2802 .8217 2.8371 16.5923 44 0.0- 15.0 .8527 1.772 5.2778 22. 2788 .3671 .8820 3.5535 26.27,3o 45 165.0-190.0
.1197 .1537 .2331 .6492 .0613 .0667 .0687 .2852 46 150.0-165.0
.1502 .1265 .2185 .7564 .0450 .C62'7 .1044 .3378 4y 135.0-150.0
.1378 .1428 .2090 .8177 .0723 .0622 .1175 .3682 48 120.0-135.0
.1558 .1359 .2592 .8202 .o362 .0954 .1573 .3404 42 105.0-130.0
.2053 .is66 .4122 1.0017 .0765 .0727 .1626 .5771 8 n 50 90.0-105.0 .l689 .1222 .2734 .4483 1.3044 1.3622 .0737 .1096 .0714 .i666 .7704 1.1224 77.6-90.0 51 75.0- 90.0 i.0079 .2078 .3814 .5680 9.042 9.0061 .0738 .1013 .2107 1.0922 52? 6o.o- 75.0 .2748 .3520 .6 o34 2.6556 .1012 .1811 .2448 1.7108 53 ks5.o- 6O.O .2362 .3932 .9221 4.8310 .1028 .2478 .5518 3.1068 54 30.0- 45.o .2350 .5390 1.7295 8.7884 .1301 .3102. .9296 6.6789 55 15.0- 20.0 .3140 .6676 2. 8791 16.2760 .1320 .2751 1.5280 16.5150 56 0.0- 15.0 .3203 .8174 3.9470 .1183 .4654 2. 5214 32.8152 Sam over ¶0 38.8207 44.0586 40.5977 300.2228 264.7072 112.5704 16.8020 18.7845 27.9942 58.9736 213.2030 62.7539 total lone ilbedos 4.4690 4.9434 6.7990 12.2559 22.0246 12.6304 1.8852 2.1087 3.1402 6.6168 23.89989 7.8264 WSycmaerloal nourcees no 3 valnen averaged 0)0 z 01 I-n CD rt C-68.z--.-I 0 ,,1%K-)
C>'0~4~'Ci !0 z>, 03A0(9 DAY DOSE (ton percent)Eintging Eoerglng Water Concrete Polar Direction 6.13 9eV 9.2 NoV Angle inc~dent at Point
- incident or Poter u,ak (p* Ihn 660 a8V Source 00
- 220 440 66a i8 Sourn.81 1 90.0-180.0 .S09S .3638 .6899 .6976 1;.5352 4.4543 4.7637 5. 5.9071 5.1598 0.0-I5.J 2 0.0- 20.0 .*3331 .4734 .7897 1. 3721 j.0161 3.8359 4.5791 6.o659 8 o 3 9o.0-480.0
.2578 .31.7 .3899 .6o06 .9558 .6227 4.i1o9e 4.351 5.0985 .55 5.2982 1.-ia 4 0.0- 90.0 8.0095 .1243 .6566 L.505 8.0108 &.0541 4.1439 4.8685 5.3798 6.7652 515o.0-193.0
.3979 .3932 .5171. .9835 3.9934 4.6ts6 4.7019 5.8179 6 120.0-1.50.0
.2337 .3199 .9719 3.8219 4.33 99, .iy747 90.0-120.0 .S309 .3155 .3946 .5157 L053 4 .653? 3.7133 4i.0026 4.S369 5.4393 6.0265 5.4293 21.8-34.8 8 60.0- 92.0 &:.0078 .2433 .3401 .586 1.2751 :. 0194' 8. 0932 3.6716 4.1899 5.2797 6.1243 9 3o.o- 60.3 .3316 .4760 .7639 1.6719 4.2174 4. 5325 6.1074 9.1110 10 0.0- 30.3 .5057 .5149 .p439 2.0850 4.0947 4. 3484 5.9747 9.1129 41 150.0-190.0
.2141 .2S69g .4442 .f6696 3.5770 4.6975 13 130.0-150.0
.2173 .29.73 .4324 .7499 377 .%O 8-44'.4 14 6o.o- 93.0 8.0119 .9290 .3575 .7095 1.2473 t.0176 9.0412 3.1392 3.9545 5.2921 6.oos,6 +.0456r 15 30.3- 6o.o .2859 *3971, .8255 3.2757 4. 3977 9..577 16 9.0- 30.0 .2636 .4ts6 1.os .u115 4.0913 h.3774 6t.1h39 10.6395 17 157.5-190.0
.1610 .2355 .307h .8453 3.2055 3.4274 4. '6634 s.46oo 19 135.0-157.5
.1759 .1998 .3244' .67T13 3.1532 z.t62o 4.364,7 5.2342 19 112.5-135.0
.2o36 .2619 .5201 .8713 2.8923 3.6709 4.35318 4.7637 0s 20 90.0-112.5
.2090 .2101 .3022 .460'.6 .a563 .6972 2.9763 3.3066 3.6614 4.3557 5.51139 4.i36 44.4-55.3 21 67.5- 90.0 8.0059 .2370 .2649 .4900 1.3248 8.4309 8.1024 3.0541 3.4667 4.65o5 5.7364 9.12032 92 45.0- 67.5 .2187 .3091 1.9976 3.3882 3.9239 5.5390 7.6715 33 22.5- 4S.o .21.39 .3985 1.1IO44 3.2042 3.3180 4.1492 6.02% 10. 5345 34 0.0- 32.5 .2119 .4739 1.0919 5.1885 2.9231 4. 5731 6.9974 95 157. 5-190.0 .1590 .9479 .2296 .6ilOl 2.2100 3.1600 3.9595 4.4952 26 135.0-157.5
.1.393 .1903 .2893 .6823 2.5306 2.9S034 3.0702 4,. 9446 27 112.5-135.0
.1559 .2492 .3919 .7271 2.2888 2.7043 3.4321 5.3944% 29 90.9-112.5
.1770 .1314 .1754 .hiio .8769 .7173 3.4196 2.6234 3.1339 3.91196 5.464=7 =.71.37 55.3-64.6 29 67.5- 90.0 8.0071 .1795 .2525 .5295 1.1451 8.0331 9.0393 2.4971 3.-3553 4.1I31. 6.5517 j099 4~30 4S.o- 67.5 .1493 .2435 .6470 2.0265 2.7271 2.8319 4.6989 7.4996i 31 22.5- 4S.O .1769 .4152 1.0313 4.2079 9.4902 3. 164 22.92L-32 9.0- 22.5 .1957 .3699 1.3912 9.2644 2.6057 3.9543 7.603C 15.7320C 33 1.65.0-180.0 .iop6 .0973 ,i655 -5455 1.6948 2.0742 2.9494 4. 3220 3415o.0-165.0
.0913 .1116 .1916 .4832 1.5891 1.9194 2. 5071 4.4477 3%5 135.0-150.0
.1197 .1473 .2568 .h355 1.9763 1.9715 2.6490 4.8949 36 120.0-135.0
.1194 .1623 .2040 .5520 1.5997 1.9533 2.7197 4. 1335 37 105.0-120.0
.1oz6 .1993 .2179 .6sis 1.93498 2.2759 2.91.31 4.8515 8, 38 90.0-105.0
.0992 .1021 .1617 .2629 .7543 .8353 1.6023 9.7625 1.8482 2.7899 4.7097 3.8056 64.6-77.6 39 75.0- 99.0 =. 0037 .1226 .1940 .3141 1.h.250 8. 0357 8:.0353 1.5941 2.2123 3.0426 5.7263 9.06266o.o- 75.0 .1099 .1489 .4164 1.44o03 1.6523 2.4310 3.4018 6.6971 41 45.o- 60.0 .o867 .2294 .5o6,4 2.4667 1.7459 3.2292 9.7597 42 30.0- 4S.0 .1103 .2946f .7999 4.9109 1.7666i 2.7971 4.6234 13.1994 43 15.0- 33.0 .1021 .2704 1.2737 10.31622 1.8129 3.0706 5.9535 44, 0.0- 15.0 .1545 .3172 1.9099 20.2675 3.1231 3.540 6.4699 16.9059 4 s 16s.o-ieo.o
.0530 .0260 .0509 .2529 .3761 .9931 2.6021'4=6 150.0-165.0
.0190 .o439 .o415 .3679 .5195 .6o61 .930'9 2.6769 47 135.0-150.0
.0236 .0394 .o6o6 .2907 .5987 .7263 .9010 3.0199&8 120.0-135.0 .o157 .0293 .0654; .2o'65 .5794 .511.3 .9930 2.8103 49 105.0-120.0
.0315 .0o43 4 .0794 .3243 .5254 .7247 .9878 2.5313 00 50 90.0-105.0
.0907 .0339 .0369 .0813 .2970 .8157 .s043 .5707 .8062 1.3979 2.2391 1.864 77.6-s0.0 59 75.0- 90.0 -. 0331 .0494 .0960 .0652 .5242 8-.0458 8.0326 .6915 .9435 1.3-967 3.3595 ,.o5h6 52 6o.o- 75.0 .0399 .0870 .1249 1.0090O .7262 .9253 1.1153 4. 2514.53 45.o- 6o.o .0683 .0639 .2678 1.4634, .56991 .o525 2.0029 6.5419 54 3o.9- 45.o .0695 .101,1 .3726 3.3541 ,7039 .8577 2.9897 9.7499 55 15.0- 30.0 .0590 .1441 .9623 .9632 1. 3774 3.1693 12.909.3_______ 6 0.0- 15.0 .0346 .2239 1.5243 39.500h .634, 1.3625 3.1264 i3.1o'35.9cc ver F 8.4413 9.0476 30.0240 158.804h 42.0609 129.6130 135.3957 144.2352 227.221'6 391.9107 337.1319 Toctal Dose Alhedoe .s1.9 4i.o151 1.54 17.92'69 4.7193 14.h304 15. 1202 la.4271 25.5139 43,.4119 25.4847*3Syenetrlco1 fiourco, mo 01 caleo ovrerged.t+'or compoottico non follocoteg page e-g a-oTm C Z mH CCo m 0 0)
AMARAy lOSE ALIZODS Emerging Emerging Concret~e 1 Concret~e Polar Directilon 0.662 MnV 1.00 Fla Angle incident:
at incident or-.Si 1 1 1 p W°
- 90 440 68' 8or Point:
- Point */ore 5 4080 Source 9, 1 90.0-180.0 1.7235 1.7597 2.2777 2.6910 .35634 2.6826 1. l148 1.1035 1.4476 2.1105 2.5916 1.9543 o.o-x5.4 2 0.0- 90.0 *.o667 1. 7050 2.o66t 2.9851 2.9974 1311 *:. 099 1.14C60 1.5772 2.2313 3.1876 *.O198 B2 3 90.0-180.0 1.6116 1.7190 1.s46& 2.5441I 2.9454 2. 5246 1.0172 1.ii6o 1.44kgf 2.1496 2.3992 2.oso6 15.4-.21.8 4, 0.0- 20.0 +E.0296 1.8234 2.2575 2.1t202 4,.4469 8. 140 +/-E.O418 1.1828 1.5012 2.44os 3.6558 d:.o657 5 150.0-180.0 1.6153 1. 6782 2.4829 2.7652 1.o610 1.1343 1.5255 1.8818 S120.0-150.0 19 897 2.4549 2.618¶ .9692 1.19117 1.51 .97 2s 7 0.0-120.0 1.4+511 1.6171 175 2.21 3.199h 2.6659 .9262 .9827 1.87 1.9154 2.6979 1.9928 21.8B-34.8 a 6o.o- 20.0 81.0231 1.7227 2.1599 2.8g782 1.0218 0205 1.1299 1.2562 2.1449 2.2201 *.0695 9 20.0- 6o.o 1.7565 2.2596 3.7876 5.5501 1.osgl 1.6172 2.5944 5625 10 0.0- 20.0 i.65s2 2.6210 3.9159 6.2722 1.5870 3.0896 5.1207 11 150.0-180.0 1.3201l 1.5202 2.o56 .9734 1.0281 1.4427 1.7874 12 120.0-150.0 1.lrrT7 1.5699 2. 1031 2.4o0o6 .9262 1.0746 1.8761 84 03 90.0-190.0 1.10O6 i.514i i.8149 2.4931 2.8179 2.7485 .9650 i.o16i 1.3222 o.sssd 2.1826 2.9672 34.8-44.4 i4 6a.o- 20.0 *.osas i.s566s 1.9687 o.6667 3.8192 j.00 .923 1.54827 2.2760 2.s461 15 20.0- 6o.0 1.5502 2. 1703 3.6205 6.8277 1.1098 1.6111 2.8121 5.29298 16 0.0- 20.0 1.6252 4.2196 8.7624 1. 1294, 1.8946 3.5769 7.542 17 157.5-180.0
- 1. 1835 1.2371 1.5420o 2.1925 .8o24 .8256 1.1752 1.o560 19 135.0-157.5 1.3392 1.7296 2.1981 .7883 .9735 1.2253 1.6a4y 18 112.5-125.0 1.1268 1. 565a 2.1549 2.2631 .7727 1.0422 1.4835 1.9522 8 s 20 90.0-122.5 1.1750 1.2916 1.5121 2.1287 2.9122 2.7133 .7692 .7826 1.1s64 1.4884 2.2154 2.1934 21- 67.5- 20.0 6. 0370 1.4411 1.7658 2.5523 2.9315 8. 1031 8. 0204 .9495 1.2386 2.0827 2.2244 i. 0729 22 4s.o- 67.5 1.2726 2.1503 2.94I75 5.9450 .954+0 1.5370 2.2995 4.946o 22 22.5- 1.4413 2.1972 4.4g56 9.5807 1.0920 1. 7967 9.1487 7.9503 24 0.0- '22.5 i. 4266 2. 5701 4.6773 11.o96~s 1.0928 1.8270 4. 1598 10.6785 25
.8503 1.2790 1.5766 1.92.70 .6OLO .6569 1.o26s 1.2170 26 135.0-157.
5 1.0381 .g994 1.4918 2.1053 .6soa .7157 1.1205 1.5499 27
.9002 1.2028 1.5000 2. 5272 .644s .6550 1.14177 1.8911 80 29 20.0-112.5
.8512 1.0842 1.2028 1.s003 2.8284 2.7574 .6571 .7079 .9659 .*1. 236 3.2479 2.2644 29 67.5- 20.0 +/-.0221 .9898 2.2999 4t.2219 -*. .7360 .9913 Il.6lL' 9.2119 20 45.o- 67.5 1. 1232 1.7101 3.1201 5.7558 .9250 1.263 2-5073 4.8773 21 22.5- 45.n 1.i565 2.0752 4.9711 10.1097 .9927 2.7029 2.6026 8.3202 " 32 0.0- 22.5 1.2092 2.3217 5.44,6 16.1240 .773 1.9S016 11.1876 16.44oa 23 165.0-180.0
.5977 .6g33 .so22 1.6092 .4o65 .4165 1.0859 \-.I: 34150.o-165.o .7990 .o752. 1.632 .3269 .5923 .7256 1.2279 35 125.0-150.0
.7098 .65s6 1 .0520 .2941 .4+823 .626a 1.7299 26 120.0-135.0
.5552 .6505 1.1433 1.9709 .406i .5116 .7718 1.5392 37 105.0-120.0
-7537 .7829 1.0284 2.2125 .4571 .5i712 .0122 1. 7477 9, 39 90.0-105.0
.6so4 .7s57 .926 1.2800 2.7667 2.4299 .464 .4517 .6218 1 il"1.2 .2.1470 2.0862 64.6-77.6 39 75.0- 20.0 *.o179 .8291 1.1694 2.7156 A.o 6 6 9 .6194 .9151 2.9289 A.9 6 4 6 40 6o.o- 75.0 .9290 1.1294 2.0594 4.7747 .6xs4 .9823 l.640OO 4. 9087 41 45.o- 6o.o .8947 i.261 2.9866 6.7246 .6oo1 .9909 2.5312 6.3592 -42 20.0- 4s.o .9238 1.6641 2.0099 11. 9256 .8602 1.1284 9. 1438 10.2826 43 15.0- 20.0 .9473 1.98599 4.9260 17.0101 .5516 1.4438 4. 1275 17.9320 44 0.0- 15.0 1.1750 1.9909 5.9095 31,3204 .9189 i. 8096 5.2756 22.9916 45 i65.o-18o.o
.2:448 .2126 .4014 .9673 .1193 .1288 .2121 .61oa 46 150.0-165.0
.2262 .2997 .3154 .9256 .tkoo .9011 .2152 .5825 47 135.0-150.0
.2449 .2343 .4096 1.0272 .1661 .140s .2004 .7449 I8 120.0-235.0
.2414 .2693 .4143 1.4216 .1272 .1357 .2395 .9394 48 105.0-120.0
.1779 .2527 .4708 1.3059 .1293 .1785 .3137 .993450 90.0-105.0
.2413 .s96x .2291 .5010 1.2286 i,44i1 .1836 .1650 .3153 .4278 1.1935 1.3139 ,s 7.6-20.0 51 75.0- 90.0 .ails .3910 .7014 2.1334 +.044,2 0197 .0201 .2910 1.6142 52 6o.o- 75.0 .3894 .42081 .9190 2. 5707 .224 .3777 .6724 2.9628 53 45.o- 6o.o .261a .5959 9.29892 5.4957 .2041 .2383 1.267 4.4470 54 20.0- 45.o .2329 .6977 1.7761 a.5s~s .2315 .6056 1.6201 8.220o7 55 15.0- 20.0 .4218 .9078 2.9413 15.o24o .2005 .724 2.496 17.oo45________ 56 0.0- 15.0 .4069 1.1469 3.2689 19.3449 .2220 .g14o 3.1314 22. 1170 Soun ever fl 52.0000 57.7279 78.3201 132.2333 290.2227 133.1027 95.259"52 9.0749 56.2420 103.9129 242.5002 Total Dose MAcbdon 5.6344 6.41770 9.7996 32.5620 3.9602 4.3942 6.3217 11.6591 39.5647 12.2171 lSyzoet~riesi neurcens so 0 yeluensaenraged ttzoopnoition in percent: by unfght:: 0 52.9, 11 23.7, GA 4.4, Al fla 1.,6 Fe 1.4, K 1.2, 9 0.0, Hg 0.2, 0 0. 1 0)01 H 03 I-T-ooml-m m-.k at
,1.'~.-N 4'---C.,;'.77j<' Kj*.0 z Ca 02308. RAY DOSS ALSt2D2 to t percent;)EKotergng Emerging Concrete 6 ocrt Polar Direction 2.50 NoV I6.13 9ev Point *nnn 9 ; °* 22' 44 60' so' Scarce 2'
- or 440 660 so' Pointe.0.-15.4 35.4-21.6 6 o 21.8-24.8 44-4-55.2 890 64.6-77.6 1 60.0-160.0 2 0.0- 90.0 3 90.0-180.0 510.0-190.0 6120.0-150.0 7 0.0-120.0 8 6o.o- 90.06o.o 10 0.0- 00.0 11 250.o-lso.o 12 120.0-150.0 22 20.0-120.0 14 6o.o- 90.0 15 30.0- 6o.o o6 0.0- 00.0 17 257.5-160.0 18 125.0-157.5 19 112.5-135.0 20 90.0-112.5 21 67.5- 20.0 22 45.0- 67.5 04 0.0- 22.5 25 157.5-180.0 oC135-0-157.5 27 112.5-135.0 28 20.0-112.5 29 67.5- 90.0 30 5.o- 67.5 31 22.5- 4 5.o 32 0.0- 22.5 33 165.0-160.0 34 150.0-165.0 35 135.0-150.0 36 120.0-135.0 37 105.0-220.0 38 60.0-105.0 29 75.0- 00.0 40 6o.0- 75.0 41 45.o- 6o.o 42 20.0- 4s.o 43 15.0- 30.o 44 0.0- 15.0 45 165.c-16o.o 44 lso.o-i65.o h8 120.0-135.0 43 1.5.C-120.0 51 75.0- 90.1 52 60.0- 55 15.0- 30.1.. l- l$.* 446s ..514a .6759 1.0003 1.3063 2.0070 .4659 .7357 2.2620 1.0791.4780 .4676 .6778 1.0381 1.3095 o.0026 .5102 .7300 1.0172 .42oo .564o .6719 1.0862.4so81" .5844 .6105 1.-2955.4494 .5228 .5699 .8734 1.5201 2e.0183 .4502 .6s~c 2.063 2. 1777.5729 .6978 1.4007 2.866,7.4761 .80(4; 1.7671 3.1484l.3822 .4647 .g6676 1.0237.4312 .5244 .65so 1.1345.4220 .4o54 .5830 1.0456 1.41o2 2.oi60 .5154 .6o~i 1.3008 1.923x7.5159 .8370 1.5657 .5490 .8008 1.9276 5.2213.3172 ,416s .5710 1.1315.o449 .4000 .6719 .2489.3501 .4446 .7313 1.2483.3518 .4o69 .4ssc .61o6 1.3755 2.0136 -h457 .5978 1.0304l 2.0.110.3881 .7345 1.0172 2.6517.46c5 .7 4 c*5 1.886 5.7391.4361 .9473 2.4680 7.9827.2541 .27/68 .4512 .8108.2102 .3117 *.5oha .2249 .404b8 .096,3.280.0 .3088 .4t 9 .42 72 1. 2351.2.0105 .3342 .4al6 1.0276 2.8234.3500 .5207 I.3451 3.6001..7627 2.3745 6.b7,7.2445 2.o6oo 2.66-7 12.9331.16a73 .2671 .3579 .5689.1895 .1929 .3305 -.5-67.1920 .2251 .3oh46 .91.27.16e4 .1836 .3420 .81.02.2086 .3020 .3551 .86355.2050 .2058 .2422 .5331 1.2612 2.0103 .1s67 .3224 .6287 1.7711.2854 .h324 .6843 2.4~r72.2814 .4'961 1.342h9 4.422.2892 .6667 1. 2969 7.',51'1.2921. 2.0816 14.7135.3-h70 *. d4=7 .0C583 .1825.0L71t .21'."53 .08972 .dll! .,.6>97 .0i'5" .308?.7*.034 ....1123 03609.95("*0 f .3 .1'"" ." ,.2717 .-27.37 .1327, .1703 -2.2252 .o7hl .1h1.'3 .2701 .,;979 .L,.-o5 .359h .,49..0630. .1390 .6'mO .1342 .c':1. 1.1320 ...lIro'3 .3383- 1.70v?3 I.2"-3.0800 2.O0052 1.0301.,.o6oo 1.0703*.0,7a 1.1824 2.0566 1. 3021 2.0242 1. 3395.3496 .3667 .3645 .E5io 1.0531 .7128 e.on6 .4o085 .4996 .7087 1. 5261 +.1.297.3163 .3511 .4096 .6215 1.6783 .6372+/-.C110 .2345 .4902 .81.8 1.3683 ÷.6c66.2565 .43,57 .6084 1.4500.2808 .3001 .09816
- 1.3324 .7:60 2.0180 .3842 .4102 .7134 1.4951 .2721 .451.5 .8157 1.7584.3153 .5229 .0815 .2553 .2126 .7971.0.280 .3068 .4117 .D'77.2692 -3077 .3912 .91la 1.C1.47 .8170 2.0117 .3128 .4562 .7.71. 1.420 .2881 .41.39 .3917 2.i44:.3682O .5222 1.o303 3.1380.0318 .3974 .4.4.. .8973.2495 .0587 .2318 .551.4 1.1211. .7941..0391 .3919 .7801 2. 1430.3648 .4c01l I..c 68 3.2937.Ol73 .4927 1.1354 4.01.1*.1475 .1991 .04s1 ,,931..1503 .1001 .3.4-7 .2287 .2575 .*331 .2535.1833 .1837 .231.0Z .41 ]77 .9139 *.1732l.t1.. 4. .725.1118 .16147 .172 .6.25*.151o .13039 .2235 .603.3.1311 .1073 .211e ,3100 .97l' .7503+/-.01.66 .1361 .1974 .44c9 O.os9 .Cr81.1240 .225- ,h4oa *.1572 .3cr 4. 4 ,hh..1074 .o 9 c 1.'o-: LS.0549 080,".2h78 no-1.0460 .=511 .07098 1.1.912 .1411 111 1.29;.? 1..I't.4rIs i-f I>o -,-t m m m--I 0 03 bun over .2 Ttotl Dcoc Albdeno 15.ul7.0 17.8' .70 ?33139 5fla.-309 21 .: 03 2 ; 1.7-3:4 1. 3504I 2.05,1 <.054,1 03.7-91" 7.70.11*Syonoetrical socrces* no 7 calons oacogaed Fiec eompositoln coo pcevoioo pege 0808RAY DOSE At1nE10S tin parasotlS E8orging Enorgiog Iron Iron Polar Dirortion 0,20 So=S 0.662 HaS Anglo loeldent at Poa niero Point *-. 50 40 65 95 Sou~rce .P 2' 40 6 a Source 81 1 20.0-180.0 1.5372 i.484 6 .2.0526 2.6779 3.5226 2.4796 1.0076 1.01140 1.4037 2.0759 2.6992 1.2663 o.0-15.s.
2 0.0- 20.0 +/-. 1010 1.61439 2.0055 2.6215 3.9449 *.,012 j.1018 1.1198 1.5665 2.5252 3.14640 *.0953 3 0.-900 1.5109 1.5593 1.98762 2.S942 3.2766 2.14272 1.0322 1.0663 1.311*2 2.1220 2.5832 1.96265 o542. .0- 9o.o +/-.1te6 1.6576 1.9261 2.7796 4. 5250 j.1I157 :t. o36 1.156o 1.51s4 2.5446 3.5o9 8.o0r71 5; 15o.o-180.0 1.46g8 1.6217 2.4093 3.5728 1. 1427 1.2509 1.9589 6 120,.0-150.0 1.466 1.7220 2. 3935 2.1727 .9763 1.1774 1.7272 2.2689 As 7 90.0-120.0 1.4123 1.5146 2.1613 3.0891 2.6696 .s7so 1.1249 1.3510 1.6590 2.5143 1.9900 21.8-34.8 9 60.o- 90.0 6.o6.61 1.5156 1.8528 S944 4.8as1 +/-.10 +/-OO '.0212 1.0516 1.3809 2.1326 2. 5245 +/-.o443 a 10.9- 6o.o 1.5414; 1.8838 5.7419 1.114 1.8467 2.0375 4.a10a 20 0.0- 30.0 2.5341 2.2123 3.1433 5.0692 1.1921 1.6913 3,.2082 11 lso.0-xao.o i.4184 1.7211 o.o594 2.2251 .8939 1.1979 1,.5055 2.0353 12 120.0-150.0 1.2906 2.0450 3.2534 .8051 1.1654 1.6441 2.2273 84 13 90.0-120.0 1.2123 1.1965 1.6049 2.3911 3.28871 2.51s6 .9350 1.1206 1.2932 1.9343 2.7315 i4 6o.0- 90.0 *.0612 1.2424 2. 1266 2.6748 +:.0744* t.0482 1.0611 1.3302 2.1299 3.2048 +/-.0597 25 30.0- 6o.o 1.34349 1.9646 2.0721 6.0579 1.1113 1.7646 2. 7042 26 0.0- 30.0 1.6132 2.1616 3.4489 9.4756 1.1000 1.6732 2.2511 8.34:57 17 1.3010 1.4394 1.2701 3.2361 .8233 .9517 1.1310 1.9990 18 235.,0-157.5 1.0210 1.2873 2.0322 .9012 .9551 1.1895 2.1307 19 112.5-135.0 1.1742 1.3293 2.0440 3.6469 .8433 1.o566 1, 5185 1.9741 On 20 80.0-112.5 2.1498 2.6974; 3.5142 2.4760 .2127 .8453 1.9565 1.5644 2.5277 2.1996 44.4-55.21 21 67.5- 90.0 +/-.0609 1.330 1.6043 1.9129 4.1397 +/-.0402 A.0 2 3 0 .9111 2.4326 2.1287 3.4911 22 45.o- 67.5 1.2609 1.9389 3.0298 6.4339 .2494 1.3839 2.5177 5.7997 23 22.p- 4s.o 1.5067 1.2065 3.956 7.9156 1.138 1.7201 3.2916 8.1409 94 0.0- 2-2.5 1.4I372 1.9852 3.7774, 10.4674, 1.1656 2.0229 4.oo85 21.8762 25 157,.5-180.0
.7769 1,1868 1.7142 2.9974 ,56 .7698 .2321 1.7746 26 135.0-157.5
.8S39 .9813 1.623 3.0509 .6o22 .8374 1.0551 1.7562 27 112.5-135.0
.168 1.2092 1.5555 3.6631 .6452 .8314 1.1621 1.9226 98 28 90.0-112.5 1.0272 .8855 1.3433 2.0747 s.6o74 2.5078 .6625 .6182 .9525 1.2878 2.6589 2.3397 55.2-64.6 28 67.5- 20.0 +.o417 1.2879 1.2522 2.2082 4.2249 8.0791 +/-.0I5S .965 3.1054 t.0749 so 5.o- 67.5 1 .0920 i. sto 3.2457 6.2325 .9760 1.2590 2.7597 5.7641t 31 22.5- 45.o 1.0701 1.6630 4.4o~o 9.4597 .1938 1.6526 3.7575 2.2133 32 9.0- 32.5 1.0462 2.0640 5.2791 11.0549 .3722 1.7716 5.5776 15.9001 33 165.0-180.0
.65 .9175 1.1417 2. 9463 .377'8 .4764 .7595 1.1313 3415.0-165.0
.6646 .6022 1.1812 2.86li0 .5067 .4529 .6842 1.4494 35 135.0-150.0
.9336 .7313 1.0638 2.8775 .4975 .5036 .811,62 i. 726, 36 130.0-135.0
.7/167 .8123 1.300O6 2.4159 .4981 .4679 .945o 1.6787 37 105.0-120.0
.8300 .9275 1.6010 1.2351 .1163 .6129 .1336 3.0847 87 39 90.0.105.0
.6913 1.0000 .9591 1.2211 2.9600 2.3316 .4258 .64s6 .7632 1.1'637 2.160 2.1950 64.6.77.6 39 75.0- 90.0 t.o26 4 .7163 1.0922 1.50987 3.1074 8.0775 t.oS1l .5t54 .2801 1.6226 3.0780 +/-.0S73 40 6o.o- 75.0 .7262 1.1768 2.6475 5.6336 .4768 .8902 1.7992 4.1588 4I 45.9- 6o.o 2.8%000 6. slo8 .5606 1.0295 2.6715 6.7002 42 30.0- 45.o 1.oa16 L,7211 1,7528 9.6517 !.4074 3.65oo 11. 5581 43 15.0- 30.0 .9923 1.7045 4.2409 11.8919 .7395 1.4113 17.6072 44 o.0- 15.0 .96o7 1. 5542 4.310o7 13.4253 .7751 1.7127 5.7192 23.1043 4s 165.0-190.0
.2188 .2168 .5323 1.8721 .1606 .1434 .2327 .1025 46 150.0-165.0 .2286 .4428 1.9059 .1467 .1573 .2224 .9206 47 135.0-150.0
.2917 .2907 .4237 1.5886 .1125 .14191 .2211 .-8278 4a8 120.0-135.0
.2152 .2067 .5597 1.6248 .1885 .2255 .2502 1.0964 40 105.0-120,0 .2913 .5769 1.6451 .1504 .2197 .434 .9515 90 50 90.0-105.0 .3286 .5722 .7125 1.1600 1.2150 .1780 ,2223 .2584 .14449 1.4156 1.2988 77.6-90.0 51 75.0- 90.9 8.0250 .3982 .2877 .7725 2.7212 +/-.o668 8.0026 .2092 .3765 .6a, 1.8987 +. 066C 52 69.0- 75.0 .26o1 .4197 ,9190 2.28sr_0 .2384 .3052 .596s 2.1325 53 45.0- 6o.o .3070 .5444 2.3706 4.7045 .0768 .61o5 1.2054 4.7341 54 30.0- 45.0 .3219 .7733 1.8763 7.3207 .2954 .7457 1.7216 9.9637 55 15.0- 20.0 .4087 .8232 1.9746 8.2884 .3041 .9029 2.4 142 15.9231 56 0.0- 15.9 .2826 .9552 2.4550 10.2915 .2231 .9978 3.5418 ig.46s6 Suo over) 5 -0.4040 55.0273 73.3776 125.6609 272.9526 123.1752 35.5002 58.0037 109.4706 272.3117 110.5822 Total Dooe Albodom 5.6553 6.17h0 8.2129 14.0767 20.6140 13.8427 3.9233 4.5461 6.5092 12.2826 30.5533 12.4ta4 0 Syooe~rriol sourooo. 00 0 volues uvorogsd 0 z 01 i-.3 I-ll* H o I>H-t 00.(D N.
0A2964 RAY 901S81A98999 ( in percent)Emerging Emerging iron Iron Polar Direction 1.00 loB 2.50 lis Anglo incident:
or Point:
- incident:
at: Point*0 0=* 2r 601 86° Source
- 440 660 8 Source 9I 1 90.0-180.0
.7169 .7215 1.0108 1. 5934 2.4'300 1.49989 .4166 .4;299 .6992 1.2402 i.oo61 0.0-to.4 2 0.0- 90.0 +/-.0521 .7829 1.1295 1.9932 2.8909 3.10O36 t.0070 .4927 .7020 1.2171 1. 9402 +/-. 05693 90.0-180.0
.6795 .8,200 .9084; 1.4742 2.0661 1.64.69 .11167 .466i .794'6 1.4197 i5.4-21.a 4 0.0- 90.0 *.0139 .84409 3.3586 3.0291 .49835 .8030 1.2051 2.0295 8. Oh99 5 150.0-189.9
.*r3,rl.9
.9939 1.1010 1.4813 .5163 .41657 .9239 0.2795 6 120:.0-150.0
.6753 .7413 1.3472 1.8255 .4607 .5012 .8697 1.1296 9 ~ 7 90.0-120.0
.6e26 .703 .s~i4 1.4652 2.0559 1.5709 .3938 .39332 .5 .9124 1.5599 1.0292 21.9-34.19 60.0- 90.0 8.0193 .SI 4' 1.0506 i.654o 2.7399 .oos5 .4541 1.2015 1.9746 3.0551 2 30.0- 60.0 .8.013 1.1L929 2.,26 4).1249 .5120 .7346 1,.364s 2.5990 10 0.0- 90.9 .7258 1.4423 2.4536 4.o117 .4667 .7359 1.5291 2. 7762 11 150.0-990.0
.7027 .7197 .97013 1.6333 .9011 .4566 .6469 * .9976 92 190.0-150.0 .yA-3 .7265 1.2900 1.7195 .3332 .4827 .7243 0.0469 9, 13 90.0-120.0
.1'-'20 .77h9 1.5220 2.0551 1.7344 .3783 .3729 ,56h9 1.4334 1.0473 14 60.0- 90.0 .7320 .9765 1.7212 2.7323 3:. 008 .4522 .6211 1.2321 1.9435 :. 0339 15 30.0- o.u, .7913 1.3077 o. 50h8 4.4381 .3592 .7592 1.5796 3.3929 16 0.0- 30.0 ,8671 1.3197 3. 0801 7.13349 .5465 .9069 1.a161 5.3232 17 157.5-190.0
.4575 .6253 .8"219 9.03911 .3510 .3518 .5449 .9951 19 135.0-157.5
.5391 .7045 .9384 15729 .3 .5654; 1.1159 19 112.5-135.0
.6236 .8582 1.1021 1. 9254 .2712 .4287 .5"739 1.2693 9o 20 90.0-112.5
.5693 .6i15 .7619 1.2420 2.0949 1.e469 .342a .419 .4932 .8275 1.6877 1.1555 44.9-55.2 21 67.5- 90.0 8. 0097 .7209 .9805 1.5214 3.200. 88.0119 .3842 .5211 .2427 1.9904 22 45.c- 67.5 .7202 9.0049 1.8769 4. soos .4294 .7222 1.1824 2.9697 23 20.5- 45.o .704,h6 1.5370 2.7752 7.5225 .3665 .7042 1.7232 5.1596 2!. 1.0- 22.5 .2991 3.1816 11.2643 .4l660 .7991 2.2427 25 157.5-160.0
.4328 .4376 .6702 1.2226 .2905 .24;29 .49886 .9312 26 135.0-157.5
.4562 .44a6 .7306 1.2020 .2079 .2385 .6249 .7977 27 31.2.5-135.0
.4415 .6649 .9846 1. 5377 .2521 .3533 .5872 .e5&4 9n 28 90.0-112.5
.5099 .4795 .7717 1.0274, 2.o434 1.9392 .9003 .2203 .3613 .6329 1.4647 1.3119 55.2-04.6 39 67.5- 90.0 8.0129 .5996 .9340 1. 5595 2.8889 ~..0424 8.0149 .2593 .4883 .986e 1. 9344 9.0989 90 45.o- 67.5 .7328 .aoh2 2.0504 5.2210 .3115 .5266 1.3091 31 32.5- 45.o .7312 1.2399 3.2926 9.5(.35 .4058 .8537 2.2919 7.0199 32 0.0- 22.5 ,8359 1.5294 4.95027 15.5758 .4599 ,9034 2.7837 12.3695 33 165.0-190.0
.0271 .2759 .4746 .9099 .1795 .1913 .2919 .6024 oh 350.0-165.0 .3556 .4so3 1.0587 .1784 .1701 .2979 .7371 35 135.0-150.0
.3061 .3909 .44 1.1395 .2382 .1996 .3471 .9787 36 920.0-135.0
.3509 .3421 1.2393 .2099 .14'o7 .3866 .8069 37 305.0-120.0
.3291 .4567 .6e5e 1.6678 .1856 .2265 .4229 .9012 97 38 go.0-I05,0
.3774' .5391 .5452 .a594 2.0177 2.0131 .3042 .2398 .3808 .4197 1.1801 1.4324 64.6-77.6 32 75.0- 90.0 8 .0080 .3796 .7169 1.3474 2. 5854 :I.0375 8.0058 .1862 .3512 .6996 0. 9235 4o0 60.0- 75.0 .4729 .7567 1.445a 3.6395 .2379 .4212 .7630 2.3709*I 4s.o- 6o.o .4970 .97,6 2.2236 5.7674; .3261 .4787 1.410o 4.0442 43 90.0- 45.o .5947 1.2299 3.0631 .4 145 .6158 1.94o9 9.1786 43 15.0- 90.0 .5481 1.9633 4. 3905 16.6909 .3900 .69O7 2.7519 14.9459 44 0.0- 05.0 .62a6 5.0524 24. 55s0 .4021 .654o 3,9013 24.1I125 45 o65.o-180.o
.0979 .0798 .1050 .5799 .0932 .016a .0724 .3263 46 15o.o-165.o
.0535 .1593 .1521 .5178 .o364 .0786 .0547 .5720 47 135.0-150.0
.1279 .0277 .t1oh .7210 .0'389 .0790 .0759 .4237 4a 190.0-135.0
.1232 .1503 .2059 .7719 .0566 .1059 .1372 .3292 4;9 305.0-120.0
.1107 .1364 .2845 .aoo6 .9397 .1890 .6100 8 n 50 80.0-105.0
.126o .1186 .1922 .01,90 1.oiI 4 .0715 .0446 .1692 .1994= .6925 1. 1729 77.6-90.0 51 75.0- 90.0 8.0051 .2228 .2696 .3947 1.3009 9. 0319 8.0053 .13619 .1191 1.06514 +. o629 52 60.0- 75.0 .1826 .9073 .5624 2.7561 .8621 .2035 .3579 1.7955 53 45.o- So.o .2097 .4syy .3229 4.5711 .0995 .14o4 .6516 3.0012 54 0.0- 4s.o .2494 .465i 1.5190 9.1261 .1390 .2299 1.0919 6.9146 55 15.0- 30.0 .2790 .6022 2.6834 15.4489 .2002 1.7202 16.3709 56 0.0- 15.0 .0681 .9389 3.3991 22.1740 .1340 .44a4 2.5737 30. 3438 loin over 0!3 25.3560 22.28h,0 43.2632 99.3462 249.9465 97.2193 14.9134 16.5445 24.9426 56.6220 209.3356 67.3976 Total Dose Albedon 2.949 3.2857 4.9541 9.9124 28.0337 10.9079 1.6621 1.9563 2.7986 6.3530 23.4874 7.5609*s$yn29tricol oouroes, so II valueo averaged 0)0 z 00 H 1 020 r--H.o m 0881 18 DOSE A1820D00 f in percent] __________________________________
Emerging Emerging Iran Lead Poebt Direction 6.13 PleD 0.20 He inlcident atPar Angle *incident at: PaiLnt * , ac 44n 660 it Pin 81 'q 4 2 440 85 oarae Soarce 8: 1 o.0-lso.o
.4o36 .5580 .5385 .89,*0 1.498'. .8883 .0756 .0792 .0929 .1ogS .5o45 .i424o .3- 90.0 t.0173 .4627 .6624 .8116 1.6362 +.o145 -. 0082 .1134 .1202 .2046 .-079 6.0010 U_ 0 0.0-l10.o
.4384 .4072 .5387 .9101 1.24e4 .s562 .0720 .0864 .0984 .21f12 .4603 .1689 15.9.-21.8 0.0- 90.0 0062 .5333 .8782 1.0008 1.5376 3.0383 +/-.0134 .0244 .1796 .2048 .5589 *.0780 5 850.0-180.0
.4541 .5809 .7648 1. 2208 .0882 .0922 .1145 .2501 6 120.0-150,.0
.3oo4 .6067 .980B 1.2146 .0842 .0471 .1447 .0227 9s 7 80.0-120.0
.415o .4263 .5007 .8518 1.2965 .s363 .06525 .0692 .1282 .0892 .26ag .2125 21.9-34.9 8 6o.o- 90.0 3.0215 .4563 .6579 .9533 1.5707 +/-.0157 3.0083 .0760 .1026 .1228 .3165 3.0216 9 2.0- 6o.0 .5042 .56s5 .9703 1.8Q662 .0621 .0653 .1281 .5344 10 0.0- 30.0 .6665 .8973 2.0297 .o842 .oood .2511 .4294 11
.4041 .4a45 .6255 1.3514 .o749 .1263 .0904 84 1 82o.0-150.0
.4874 .7 7 1.0410 .03y5 .0800 .0641 .292], S4 13 80.0-120.0
.3793 .S4o9o 3 .7 91 1.4008 .9058 ,06ya .055s ,1120 .2214 .4044 .8109 24.8-44.4 o4 80.0- 90.0 +/-.0143 .414a .4762 .8959 1.7680 :*.0079 .0910 .1056 .2920 .3891 3:.0128 15 00.0- 6o.o .4069 .6250 1.0247 2.2382 .0607 .o665 .1714 .6142 16 0.0- 30.01 .464 .5326 1.1368 2.9767 .0910 .0788 .3108 .7237 17 157.5-180.0
.3073 .4177 .5327 1.0516 .0834 .1139 .071-3 .4269 1i8215.0-157.5
.3638 .4527 .57a4 1.2114 .0427 .0586 .1703 .2099 13 112.5-135.0
.2339 .4o4 .6461 1.2305 .0352 .0220 .0951 .4069 a 0 20 80.0-112.5
.3420 .5317 .2854 1.4514 .8722 .o6c. .0279 .0833 .1692 .3157 .2o00 44.4-55.2 21 67.5- 80.0 0101 ,3864 .4973 .8621 1.5275 3.0664 +/-.0100 ,0736 .1280 ,0808 *.34 :. 0268 22 45.0- 67.5 .3471 .5771 .0456 2.u267 .0757 .1782 .2228 .8026 23 22.5- 45.o *4023 .5092 1.0553 3.0850 .0514 .0959 .1787 .a544 24, 0.o- 22.5 .4100 .616a 1.2288 4.2741 .1317 ,1511 .2526 1.0802 25 157.5-180.0
.3302 .3392 .5o4a 1.2230 .0492 .0732 .1017 .4247 26 125.0-357.5
.2906 .2235 .5590 1.0667 .0692 .0430 .o544 .3832 27 812.5-035.0
,2823 .4771 1. 1687 .0210 .o065 .0508 .2921 8 n 28 80.0-102.5
.2588 .2102 .3183 .5188 1.1808 .8553 .0714 .0466 .0615 .o445 .2615 .2016 55.2-64.8 29 67.5- 90.0 3:.0104 .3177 .3680B .7209 1.5828 j.0432 3.0060 .0290 .0828 .1443 .6385 +/-.o026o 30 45.o- 67.5 .2565 .2644 .7804 1.9769 .1088 .1213 .25a5 .5520 31 22.5- 45.o .2538 .5515 1.0C*80 3.9179 .os14 .o634 .2287 .7821 02 0.0- 22.5 .3367 ,5199 1.4457 6.1981 .0232 .2565 .5167 1.2283 33 165.0-180.0
.1613 .1040 .3522 .8580 .0583 .0401 .0973 .1882 oh 150.0-165.0
.1655 .2065 .3042 .974i3 .0558 .0253 .1021 .2554 25 135.0-150.0 .i686 .1786 .3828 .8730 .0832 .0127 .0410 .2821 36 120.0-13,5.0
.2017 .2123 .2120 .8916 .0782 .0421 .0182 37 805.0-120.0
.2004 .1.359 .339 1.0213 .0587 .o424 .0168 .32801 87 38 00.0-105.0
.1812 .1556 .1723 .3558 1.1853 .9180 .01.82 .0630 .06o1 .1080 .1825 .2121 64.6-77.6 39 75.0- 90.0 3.0033 *1647 .1747 .5203 1.3515 3E.0508 3.0079 .0565 .0508 .0407 .3109 6. 0270 4o 6o.o- 75.0 .1931 .2644 .6280 1.7604 .0414 .0304 .1627 .4145 41 45.o- 62.0 .2031 .2831 .7229 2.6274 .0500 .1271 .1712 .6286 42 30.0- 45.o ,2718 .4174 1.0074, 4.2527 .0232 .114,2 .3898 1.0058 43 15.0-. 30.0 .2308 .3688 1.2687 8.1121 .0681 .oa06 .3132 1.87A0.0- 15.0 .2486 ,4562 1.6i75 15.4125 .0800 .1103 .4205 1. 5684 45 165.0-180.0 .o856 .0395 .0894 .5673 .0274 .0291 .0253 .2327 46 150.0-165.0
.0638 .0727 .1151 .563o .0044 .0186 .0305 .2167 47 135.0-150.0
.0742 .0751 .1045 .5883 .0476 .0258 .o0030 .0398 49 130.0-135.0
.0872 .0930 .io63 .4479 .0381 .0116 .0156 .1270 i9 105.0-120.0
.0480 .0816 .1325 .4804 .0044 ,o024 .0517 .1263 9 n 50 90.0-105.0
.0620 .0272 .0774 .1406 .6249 .7064 .0is4 .0262 .0247 .2059 .2075 .1053 77.6-80.0 51 75.0- 80.0 .0719 .1161 .1605 .7523 3.0810 3.0041 .0016 .0382 .0700 .35383 .0323 52 6o.o- 75.0 .0636 .o863 .2686 1.0385 .0283 .0093 .0085 .2217 so 45.o- do.o .o445 .15a4 .3647 1.6135 .01*81 .0238 .0584 .5791 54 2.0- 45.0 .0829 .1854 .5794 3.3587 .0388 .1120 .1576 1.068 55 15.0- 20.0 .0243 .2202 .8549 9.2047 .0131 .0352 .2877 1.0107 56 0.0- 15.0 .0828 .2245 1.2380l 28.2443 .0435 .0419 .28l11 1.2373 San aver 13 14.3508 15.7682 20.7162 38.9146' 148.0572 4.9.1472 2.8220 3.2531 4.2971 8.3422 28.8204 10.1863 nToel] Doee Albndna 1.6103 1.7693 2.2044 4.3550 16.6121 5.5143 .3245 .3650 .4810 .8361 3.2248 1.1440* Sy~nmenieal souecen, en 12 values averaged 0)a z--t 01 In -H* --H Ooo/ N,.:.
- ,,&. Cl., 1~~<L CT>V X)0 z 0A980A RAY 9098 A8125]90 (to~ peroenoll Emerging Soersiog 1Lead 1 Loa Polar jDirection 9 .662 lieUV 1.00 lieU A)820 IncdentA PEr incident at Point *o£ Qk r ¢* 660 8 0 or 440° 60 Bsr-kSource Source Al 15.4-21.8 21.8-34.9 84 4. 9-44.4 44.4-65.2 8.64.6-77.6 80 77.-0.1 90.0-180.0 2 0.0- 20.0 2 90.0-180.0 4 c.o- 9:.o.5 950.0-180.0 6 1a,2,-15u..
7 29.0.-120.0 8 60.,2- 00.0 1- 0.0- 20.0 LI 150.0-180.:
12 90.0-120.2 lh 6c.o- no.:.15 20.0C- 60.0 oS 0.0o- 20.0 17 157. 5-1820.18 225.0-157.5 is 112. 5-125.'.220 .0-112. 5 21 ls.c- 67.5 22 225-c 4s7.o 24 ".c-- 72.5 25 157.5-180.0 o6 135.0-751.
5 21 112.5-035.098.0-112.5 28 67.5- so.0 320 45.o- 67.5 21 22.5- 45.o 22 22.5 21 165.0-180.0 24 15O.0-165.o 25125.0-155.0 27 1O5.0-120.0 38 80.0-105.0 22 75.0- 20.0"o 6:.o- 75.0 4i 45.o- 60.0 42 15.o- 20.0 44' 0.0- 15.0 46 165.0-165.0 47 125C.0-165.0 49 120.0-15.0.
42 105.0-120.0 50 80.0-205.0 51 7'5.0- 80.0 52 75.0 5! 4'5.o- 6o.o 54 2o.0- 45.o 55 15.0- 20.0.% 5.0- 15.0.01028_8.0030.0502.0727 4.0o66 8.0122 8,0109.0582 8. 0072.0225.O088.0642.0662.1185.09 58.0851.1122.0802.0714.o474.0881.0562.0159.0o946.0827.109I4 ,0527.0792.0226.1059 ,0925*14195.0597.0402.0265.1072.1254.1006.12h44.1827.20209.0081.0292.0160.0 182.0121.0119.0948.0)505.1I028.1558 ,1216.1975.1002.0721.1129.1669.0692.056e.1507.2155.0557.1287.0724.0778.2022.23122.0461.068.o66s.1111.1988.2088-2270.0227.0171.0226.0602.o4ti.0478.1262.1282.2187.2576.2761.0187.0209.o156.014 2.0602.o56.1602.l1g84.2822.22 14.2748 .9858 .4098.4484 1,46s7 8.1048.2512 .s246 .4412.4o11 1.5805 8.0818.2279 .6670.1724 .8162.2196 .0e49 .4261.2880 1.4295 .6200 2.0108.7252 2.4172.1226 .6446.i6ii .7240.2839 l.osg4 .5578.542 1.2500 8.0620.7060 2.8262.9258 4. 5052.0822 .6o41.0918 .7088.1400 .6571.5258 .8855 .61o3.2843 1. 8167 8.0217.5009 2. 8052.s16s 4.580ve 1.2752 5.966.1032 .4627.os06 .5525.0729 .7082.2469 .9125 .2650 1.2507 8.,o16.5744 2.5626 1.2759 5.0918 1.7785 8.2177.0576 .2742.0832 .2596.0542 .4008.1255 .5411.0800 .7414.1855 .8815 .a614.2172 0.5105 j.0498.2855 2.0616.6a66 2.8180 1.4202 6.6765 1.7616 8.2775 2.5921 12.2787.0040 .1521.0218 .1274.0080 .1855.0197 .2729.0118 .2020.o476 .4062 .5449.1126 .8074 .0607 1.2227.2202 2.5hg4.6765 4.5817 1.1625 8.4809 1.4270 lo.206s.o696 .0774_+.0091 .o645.o674 .04820122 .0782.o665.o447 .0462 8.0014 .o566.o5da.0479.0621 .041s 8.0051 .0710.1072.o186.0527 .0476 8,0048 .0618.0928.1101.1090.0442.074*9.0279.0589 .0280 8=.0o55 .1158.1254.0o926.0880.0o276.0246.0487 ,0621,0571.0804.0868.1262 la188.2068.0108.0126.0242.0124.0220.0216 .9218 8.0021 .o206.0444.o6o5.0802.oh86.01147*.o651 ,1716 .9247 .4288*.0904 ,4262 1.6012 4.0821.1687 .2084 1.8244 8.0051*.0700 .a18 .6326.0724 .1552 .6615*.0852 .9492 .Mo5 .4641.1462 .2598 1.5649 8.0206 ,1885 .5971 2.26557*.1584 .7889 2.0021.o575 .oe65 .5672.0484 .1424 .8015 ,1326 .2046 1.1620 .5850.1225 .4481 8.0248.2280 .6457 2.8778*.2781 1,0228 4,9602.0467 .ops4 .4922.1021 ,0805 .5845.0825 .16ev .oo6a.1021 .2571 .8745 .6874.14e1 1.7241 ,2285 ,6724 2.2451.30O7 1.i6i6 4.1727.25128 1.5128 6,8o11.0221 .1027 .2972.0421 .o61o " .4061.0585 .0720 .7221.0742 .2527 .8078 .8167.1202 .2125 1.2801 .2216 .6844 2.9178.2522 1.2772 6.2064.415o 2.2465 10. 1802.0187 .o414 .2224.0226 .054 .2415.0147 .o0o .2861.0285 .065~ .4712.0219 .1121 .7208.0709 .1688 0.0061 .9725.1580 .2528 1.48o5 8.0210.0g54 .4558 .2857 .8858 2.8278.23815 1.4840 6.8755.4270 1.9062 12.6528.5258 2.6287 17.0801.0076 .o06a .1281.0077 .o168 .1585.0027 .o1v6 .1521.0180 .0118 .1852.o266 .o040 .2146.0216 .0902 .4o6o .7125.0502 .i126 .8128 .0508 .i62o 0.5821.1187 .4022 2.0209.1896 .8404 5.51181.28972 1.7274 10.4706.2717 2.0488 16.6491 mm H' 0 CD p..,.Sup over 1 5.2924 4.204,7 8.4210 26.2228 122.7812 34. 1480 2.6715 2.6340 7.9902 29.0589 152.1524 40,0798 Total Pose Albedoos .2804 .4718 .8460 2.2422 14.8891 4.0558 J .2887 .l0g0 .8852 2.2604 17.1827 4.4969 C,)I-m 0'0yrramntricol sources, so Ii velueos averaged 0138RAY DOSE AIIEDOS Emerging Emerging Lead I t ecn~Lead Polar Dilrection 2.50 31eV 6.1:3 81eV Angle incident at Pon
- fnccdent 01 Pontre Rt i 0 1c *n 22 ,44n 66" 988 Source O8' 220 h44 66n a8r Sourne 1b 50.0-180.0
.2ss44 .2195 .2872 .46so o,9964 .6274 .4258 .4450 .5763 .6986 1.5990 .7166 o.o-15.4 2 0.0- 90.0 -. 1044 .2641 .2817 .7.528 2.0225 E. 0666 +.o181 .3551 .5015 .7065 1.8155 j.0245 O8 90.0-180.0
.2829 .2589 .4641 .5469 1.8760 .5708 .5891 .2668 .4782 .6774 1.2943 .8186 15.4,-21.8 4 0.0- 90.0 00 .3O70 .2657 .6067 1.8127 +/-. 1525 ~ .. 0160 .2745 .4+963 .6262 1.5250 L 50.0-180.0
.20614 .2797 .4481 1. 2004 .3220 .4I724 .7205 1. 5693 6 120.0-i0.0
.2769 .2622 .5251 1.4O0, .2984t .44i23 .6854 1.5625 8a 7 80.0-120.0
.2087 .1ss4 .2328 ,4964 1.3106 .7559 .2642 .26Z61 .4661 .Sg9i 1.2865 .7441 21.8-54.8]
8 6o.o- 50.0 :. 0280 .2464 .2810 .6553 i.5861 :5.0524 ,.0235 .4.582 .452o .6616 1.4s41 9 3O.0- 6o.0 .5179 .4612 .7291 2.6510 -.4746 .4887 .7565 1.8284 10 0.0- 20.0 .2997 .5450 .8707 2.8079 .4025 .5159 .8252 2.0149 11 152.0-180.0
.2056 .5259 .2807 1.1017 ,2860 .4ii5 .6228 1.22501 12 120.0-150.0
.2525 .302 .3213 1.0818 .2856 .415o .5g76 1.4os5 84 15 90.0-120.0
.1859 .161o .1924 .5929 1.0946 .7106 .2171 .5382 .5245 .6297 0.5260 .77s6 14 60.0- 94.0 2.0092 .204o .2715 .5142 1.6526 k. 0238 2.o0208 .4406 .4so4 .6620 i.ss86 15 20.0- 6o.o .2171 .2782 .7888 s.685s .2678 , 208 .7564 1.7921 16 0.0- 20.0 .17D5 .3801 .7897 .2818 , 445 .8105 2.5121[17 157.5-180.0
.1525 .1858 .s586 1.1225 .2729 .2877 .4812 1.4609 18 025.0-157.5
.1647 .1837 .36ii 1.1267 .3554 .2787 .6271 1.5890 19 112.5-125.0
.2109 .2501 .2088 1.1815 .2477 .5554 .587h 2.4o45 Rs 20 50.0-112.5
.1805 .1487 .2040 .5885 i.45og .7869 .2750 .2888 .5420 .5358 1.4220 .7416 44.4-55.2 21 67.5- 80.0 2:.o183 .1467 .2287 .5178 1.6821 2.0488 .2865 .2546 .5982 1.6678 ...o462 22 45.o- 67.5 .2701 .2717 .6260 2.5642 .2964 .4089 .Ga11 1.8525 23 2-2.5- 4s.o .2127 .4502 1.1871 4. 5478 .2852 .3779 .7898 2.23555 24 0.0- 22.5 .1867 .5221 1.5018 6.079e .5228 .4649 ,e668 2.798l0 25 157.5-180.0
.1710 -.1287 .2822 .8189 .2520 .2076 .5222 1.2464 26 135.0-157.5 .i54s .1550 .5850 .s67o .2162 .2285 .5249 1.5562 27 111.5-125.0
.1262 .1422 .2612 .2198 .2548 .2635 .4581 1.42s6 8 n 28 90.0-112.5
.1265 .0952 .154a .4669 1. 1265 .8709 .22?14 .1920 .1957 .4567 1.54,64 .7154 29 67.5- 80.0 0094 .1108 .5158 ,48e6 1.7775 :. 0557 4.0050 .2381 .1778 .4849 1.7109 20 45.0- 6y.5 .1761 .1272 ,7465 2.4760 -.2663 .2788 .5512 1.7226 31 22.5- 45.o .2175 .3531 1.0705 5.2397 .2077" ,2447 .7429 2.0467 52 0.0- 22.5 .1803 .4648 1.5884 9.6765 .2952 .s514 1.0045 4.5886:33 165.0-220.0 .o624 .1624 .2297 .7074 .1251 .2577 .1581 1.1751 34 150.0-265.0
.0855 .1822 .1815 .8053 .1570 .1947 .20(5 1.1729 55 155.0-1.50.0
.0221 .0590 .2406 .8820 .14o5 .1906 .5951 1.1581 26 120.1-125.0
.056:3 .1621 .1228 .7825 .1476 .0888 .si42 1.2522 37 105.0-120.0
.11529 .i146 .1055 .9465 .1666 .1424 .5711 1.I1137 8o 28 90.0-105.0
.1101 .0456 .1187 .2138 1.1157 .859JI .1588 .2145 .2528 .2870 1.0551 .6758 64.6-77.6 59 y5 90.0 2.0088 .0935 .116s .z154 1.5508 ..o44 .,.o68 .1872 .26o5 .45c2 1.1595 4o 6o.o- 75.0 .i64s .1427 .54o6 2.25249 .4 .1670 .2107 .4857 1.7667 42l 45,o- 6o.o .14.12 .2298 .7558 2.156ti .z646 .2212 .5603 1.867Ts 42 30.0- 45.o .1458 .5351 1.1756 6.2"255 .2004 .2,21 .6154 2.8281 42 15.0- 20.0 .1855 .4563 1.8554 10.6279 .14ig .2746 .8120 5.5890 44 0.0- 15.0 .1771 .4o55 2.4oo4 19.1122 .lS4O .5147 1.0637 8. 1545 4s 165.0-180.0
.0150 .o444 .5482 .4173 .0523 .0.599 .624, .7287 46 1.50.0-165,o
.0377 .0122 .~54o .0o47 .0558 .0800 .6047 47 115.0-t50.0
.0527 .0174 .0428 .4227 .0625 .06x95 .5569 48 120.0-155.0
.0550 .0560 .1220 .2998 .o5s4 .1482 .1254 49 105.0-210.0
.0672 .0429 .0858 .2822 .o063 .c571 .0o21 .65 50 8s 50 90.0-105.0 .o36e .0219 .054o .0731 .7936 .84,98 .04J6 .0712 ,1622 .8399 .4856 77.6-80.0 51 75.0- 80.0 .0231. .0577 .1014 .7204 4.0552 +/-.0053 .o7r54 .cObi .7435 52 60.0- 75.0 .0271 .0837 .2483 1. 2278 .4188 .1265 .2093 5:3 45.0- 60.o .0428 .1051 .3725 2.26'i6 .0717 .1153 ."1,24 i.548 55 15.0- 20.0 .1187 .2185 1.4023 11.261D .4978 .1500 .56oo 6.59480.0- 15.0 .0704 ,0958 2.145g 23.5555 .06i5 .3743 .901-9 15.2152 Sue cvent 71 7$97 8.68(4 15.289] 39.6002 ib7.763i 45.8361 12.2313 13.0220 18.4757 29,820.z 117.8521 5(.897(Totnl DOnce Albedcn .8483 .9701 3. 7700 18.0220 5~i,14c 1.5752 3. 1458 12. 1101 4.26cc t Snacnrrtcal nources. nc 0 veloec averaged.0 z 5191 I-c*oo rt m C~u -..-i-m H-0 it 7<9.C-'>
Southern Nuclear Design Calculation SPlant: Votl Unit: 1&2 Calculation Number: X6CNA15 Sheet: C2-1 ATTACHMENT C2 -VALIDATION OF SPIRAX SARCO ON-LINE STEAM TABLES Rather than interpolate from the ASME steam tables, an on-line set of steam tables was used to determine the specific volume of the reactor coolant at normal operating conditions.
Spirax Sarco, a global provider of products for the control and efficient use of steam, provides on-line steam tables at their company website, http://www.spiraxsarco.com/resources/steam-tables.asp.
Reactor Coolant @ Normal Operatingq Conditions To verify that the Spirax Sarco steam tables provide accurate results, the specific volumes of subcooled water at 2200 and 2400 psia and 580 and 590 F (see sheets C2-2 & C2-3) are compared below to the corresponding ASME steam table values (excerpt attached; sheets C2-9 & C2-10).Units fASME Sprx Delta* ASME Sprx Dla Sarco ISarco P psia 2200 2200 2400 2400 Psat psia 649.50 649.558 0.01% 662.16 662.233 0.01%T F 580 580 580 580 SV cu ft/Ibm 0.022358 0.0223481
-0.04% 0.022271 0.0222606
-0.05%T F 590 590 590 590 SV cu ft/Ibm 0.022754 0.022743 -0.05% 0.022653 0.0226425
-0.05%* Delta =[(Spirax Sarco -ASME)/ASME]
X 100%The Spirax Sarco steam tables agree extremely well with the ASME steam tables.The linearly interpolated results from the ASME Steam Tables would likely be less accurate than using the on-line steam tables because specific volume is a non-linear function of pressure and temperature.
For P = 2250 psia and T = 588.4 F, the RCS coolant density = 707.149 kg/in 3 (sheet C2-4).RCS coolant density = 707.149 kg/m3 x [103 g/1 kg] x [1 m3/10 6 cc] = 0.71 g/cc CVCS Letdown (P= 385 psigq & T = 98.5 F)The density of CVCS letdown flow = 994.454 kg/rn 3 (sheet C2-5) = 0.99 g/cc.Saturated Steam Atmospheric Conditions (14.7 psia)The specific volume of saturated steam at atmospheric conditions is 26.804 cu ft/Ibm (sheet C2-7.Refueling Cavity & Spent Fuel Pool Water Density Duringq Mode 5 The specific volume of water at 130 F and 14 to 15 psia is 0.016246 cu ft/Ibm (sheet C2-8).Thus the Refueling Cavity and SFP water density at 130 F = 1/(0.016246 cu ft/Ibm) = 61.55 Ibm/cu ft X6CNA1 5 Attachment C2 Sheet C2-2 spira sarco International site tor Spirax Sarco Tel: (800) 575-0394 Fax: (803) 714-2222 Hoamo About Us v Produots & Sundae, "w Industries
& Applgcations , Training Resourses Contact V Feature that targets plant mBa improvements and energy/cost savings Eraowr your team, You are here: !:ogj Reoe ). Steam Tabls li Sub Saturated Water Region Sub Saturated Water Region -Steam Table At any presure, wate below its saturation temperature as said to be In a sub Crt,,l poin saturated state. Sub sauraod t water 'stet For example, water ata pressure of 1 atmosaphere and a temperature below the saturated temperature of 100OC is sub saturated Water at a pressure of 10 atmospheres has a, saturation temperature of 1W0C, and so water below this temperature is also sub saturated
' 4 w etrsem Learn more about steam in our" tutorial -gjaji Stam.Set your oreferences for these steam tables. Enihalp Note:. You cannot use commas (,) as decimal points.Please use periods (.)Example: 1.02 not 1,02 Pressure Temperar Stu ration Ternperature~p~lfi Volume of Water (v)SpeoifIo Entropy of Water (ee]I8 absolute PF P fta/lb J11kg K 220000 580000 649556 00223481 3268,186 2400.00 580.000 682.233 0.0222806 3262.42 ttp://www.spiraxsarco.conm/rsources/steam-tables/sub-saturated-water.asp X6CNA1 5 Attachment 02 Sheet C2-3 spira arco International site for Spirax Sarco T,,l (800) 575-o3g4 Pax: (803) 714-2222 Home About Us w Products &Services w tndustrles
&Appflcattons w, Training Resources v Contact V Feature Training tha Trainelg ,. plant improvements and energylcost savings Enu~ower your team You are here: Home ) Steam Tables I. Sub 8ahrtredm Water Region Sub Saturated Water Region -Steam Table At any pressure, water below its saturatin temperature Is said to be in a sub saturated state.For example, water at a pressure of I atmosphere end a temperature below,=the saturated temlperature of 100"C is sub saturated.
Water at a pressure of 10 atmospheres has a saturation temperature of 180"C, and so water below -this temperature Is also sub saturated,.j Learn more about steam In our tutorial -WhtsSea?Set your orefeecs for these steam table.Note: -You cannot use commas (,) as decimal points.Please use periods (.)Example: 1.02 not 1,02 Cntscat ghana Sub siztsraod 0, 5ipe~h.a~ed1 water ~' slooni 4, a 4*~ Watatram I EnthipyTemperatur
~peoficm Volume of Water =l abolute*PF Ift'b l220000 89.000 / 00227430 /2400.00 590.000 0.0228,425 ttp://www.spiraxsarco.com/resources/steam-tables/sub-saturated-water.asp X6CNA1 5 Attachment C2 Sheet C2-4 s ill ] r o. r International site for Spirax Sarco Tell: (800) 576-0394 FPaz (803) 714-2222 Home About Ua ,w Products &. Srvices v Industries
& Applications ,v TraIning Reaources v Contact v You are here: Home i. Resoures k. Steam Tables. 8aturaead Water Re~lcn Feature~Sub Saturated Water Region -Steam Table tha t traintn At any pressure, water below its saturation temperature is said to be inca sub Cutsst po~tt" the saturated temperature of IO0°C Is sub saturated Water at a pressure of -Improvements and 10 atmospheres has a saturation temperature of 180"C and so water below energy/cost savings this temrperature is also sub satur.ated. I Wet steam Emnoower your team Leaml more about steam In our tutorial -What is Steam7 I Set your orfrne for ths stea tables entheipy Note: -You cannot use commas (,) as decimal points.Please use periods ()Example: 102 not 1,02 Inputs Pressure and Temperature Output O, Single Value ' Table Pressure absolute V, Temperature
'p, " I Vapour Pressure Saturation Temperature Specific Enthalpy of Water (hq)Densiy of Water Specific Volume of Vater (v)specfc Entropy of Water (a')Specifi Heat of Water (c, Speed of sound Dynamic Viscosty of Water P+4014 13310714j914.697 f8 49904E-05 bar gauge ItNRb Pa a'V, ttp://www spiraxsarco com/resources/stearn-tables/sub-saturated-water asp X6CNA1 5 Attachment C2 Sheet C2-5 spilray ro International site for Spirax Sarco Tel: (600) 575-0304 Pax: (803) 714-2222 Home About Us w Producte & Services v Industries
& Applications v Training Resources v Contact V Feature TTaaning that targets-plantlimprovements and energylcost savigs Emonower your team You are here:, Home~ l Resoures.
St eam Tabtes I> Sub Saturated Water Region Sub Saturated Water Region -Steam Table At any pressure, waler below its saturation temperature is said to be in a sub saturated state.For example. water atea pressure of 1 atmosphere and a temperature below the saturated temperature of 100"C is sub saturated.
Water at a pressure of 10 atmospheres has a saturation temperatura of 180"C, and so water below this temperature is also sub saturated.
Leamn more about steam in our tutorial -What i Stam?.Set your ortrne for these steam tables.Note: -You cannot use commas (,) as decimal points.Please use periods (.)Example: 1.02 not 1,02 inputs Prassure arid Temperature Output si Single Value Table Pressure psigazuga Temperature
'. F Citctza pawn Sub saturated O,"" .. uperhatied w ~er doom Vapour Pressure Saturation Temperature Specifi Entalpy Of Wate (h)Density or Water Specifc Volume of Water (v)Specifc Entropy of Water (a,)Specifc Heat of Water Speed of sound Dynamic Viscosity of Water 530.374 i4178 35 6 .92848E-04 bar gauge mJtg J11kg K J11g K ntis Pasa V, iv¸,ttp://www.spiraxsarco.comlresources/steam-tables/sub-saturated-water.asp X6C NA15 X6CNA1 5 ~Attachment C2 SetC-Sheet C2-6 CRTD-Vol.
58 ASME INTERNATIONAL STEAM TABLES FOR INDUSTRIAL USE Second Edition Based on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97)
Prepared by WILLIAM T. PARRY General Electric Company JAMES C. BELLOWS Siemens Energy, Inc.JOHN S. GALLAGHER Retired ALLAN H. HARVEY National Institute of Standards and Technology on behalf of ASME Research and Technology Committee on Water and Steam in Thermal Systems, Subcommittee on Properties of Steam THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS Three Park Avenue Oe New York, N.Y. 10016 X6CNA1 5 Attachment C2 Sheet C2-7 Table U-2. Properties of Saturated Water and Steam (Pressure) p Volume, frilb., Enthalpy, Btu/)b 1 m Entropy, Btu/(lb 1-*R) p_p!_.!.1'(0 F) vL Av ~ v hL. Ah hv S L AS sv psi 01.1 0.12 8.14 1t.16 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7 0.8 0.9 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 35.0015 39,632 43,620 47,134 53.132 59.293 64.452 68.906 72.834 76.355 79.549 85.180 90.046 94.342 98. 195 i 01.694 (07.869 113.212 117.934 122. 174 (26.027 129.563 132,835 135.88 I 138,734 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7,.5 3.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12..0 12.5 13.0 13.5 14.0 14.696 15 16 17 18 19 20 21 22 23 24 25 14 1.418 147.51(5 152.913 (57 .767 162.184 166.243 170.002 173.505 176.790 179.883 182.807 185.582 188.224 190.746 193.160 (95.475 (97.700 199.842 201.908 203.904 205.834 207.704 209.517 211.954 212.988 2 16.273 219.392 222.363 225.201l 227.9 18 230.526 233.034 235.450 237.781 240.034 0(.016 0120 2945.0 0,016 020 2476.9 0.016 020 2139.9 0.016 022 1885.3 0.0(6027 1525.9 (0.016 034 (235.2 0.016 042 1039.4 0.016 050 898.40 0.016 057 791.84 0.0 16 065 708.43 0.016073 641.31 0.016 087 539.89 0.016 (00 466.80 0.016 113 411.56 0.016 125 368.30 0.016 137 333.49 0.0 16 158 280.87 0.016 (78 242.93 0.016 196 214.25 0.016214 191.79 0.016 230 173.70 0.016 245 158.82 0.016 260 146.35 0.016 273 135.75 0.0(6 287 126.63 0.016 299 118.69 0.0(6 329 102.70 0.016 356 90.612 0.016382 81.137 0.016 406 73.507 0.016 428 67.226 0.016 449 61.963 0.0 16 469 57.487 0.016 488 53.632 0.016 507 50.277 0.016 524 47.328 0.016541 44.717 0.0(6 558 42.387 0.016 573 40.295 0.016 589 38.406 0.016604 36.692 0.016618 35.128 0.016 632 33.697 0.0 16 646 32.381 0.016659 31.167 0.016 672 30.044 0.0 16 685 29.002 0.016697 28.031 0.016 714 26.787 0.016 721 26.278 0.016 745 24.738 0.016 767 23.374 0.016788 22.156 0.0(6 809 21.063.0(06 829 20.075 0.016849 19.179 0.016 868 (8.361 0.016 886 17.613 0.016 904 16.924 0,016922 16.289 2945.0 2476.9 2139.9 1885.3 (525.9 (235.2 1039.4 898.41 791.86 708.44 641. 32 539.90 466.81I 4(1.57 368.32 333.51 280.89 242.95 214.27 191.80 173.72 158.84 (46.37 135.77 126.65 118.70 102.72 90.628 8 1.154 73.523 67.242 61.979 57.503 53.649 50.293 47.345 44.733 42.404 40.3 12 38.423 36.708 35.1(45 33.714 32.398 31.184 30.061 29.018 28.048 26.804 26.295 24.755 23.390 22.173 21.079 20.092 19.196 (8.378 i17.629 16.941!16.306 3.009 7.662 11.668 (5.193 21.204 27.37 I 32.532 36.985 40.91 I 44.428 47.6(8 53.242 58.1(00 62.389 66.236 69.728 75.892 8 1.225 85.939 90. 172 94.0(9 97.55 I (00.82 103.86 106.71 109.39 115.49 (20.89 125.74 130.16 134.23 137.99 141.50 (44.79 (47.90 150.83 153.61 156.27 158.80 161.22 163.55 165.79 167.94 (70.02 (72.03 173.97 (75.85 177.68 180.13 181.18 (84.49 (87.63 190.63 (93.50 (96.25 198.88 201.42 203.86 206.23 208.51 (073.5 1076.5 (070.9 (078.5 (068.6 (080.3 1066.6 1081.8 (063.2 (084.4 (059.8 1087.1I (056.8 (089.4 (054.3 1091.3 1052.1 (093.0 (050.1 ( 094,5 (048.3 (095.9 (045.1 (098.3 (042.3 ((00.4 (039.9 ((02.3 (037.7 i1103.9 1035.7 1105.4 (032.2 (108.1I 1029.1 (((0.3 (026.4 ((32.3 (024.0 ( 114.1 1021.7 (((15.8 1019.7 (117.2 1017.8 (((8.6 (0(6.0 (119.9 10(4.4 1121.1 10(2.8 ((22.2 (009.2 ((24.7 (006.1 1(26.9 (003.2 ((28.9 (000.6 ((30.7 998.14 1132.4 995.90 ((133.9 993.79 (135.3 991.81 ((36.6 989.94 ((37.8 988.17 1139.0 986.48 1140.1 984.87 1141.1 983.32 (142.1 981.84 (143.1 980.42 1(44.0 979.04 ((44.8 977.71 ((45.7 976.43 ((46.4 975.19 (147.2 973.98 1148.0 972.81 ((48.7 971.67 (149.4 970.14 1150.3 969.48 ((50.7 967.40 1 151.9 965.42 1153.1 963.52 ((54.2 961.70 ((55.2 959.95 ((56.2 958.26 1157.1I 956.63 ((58.0 955.05 ((58.9 953.52 1(59.7 952.04 ((60.5 0.0061 0.01(55 0.0235 0.0304 0.0422 0.0542 0.064 I 0.0725 0.0799 0.0865 0.0925 0.1028 0.1117 O. 1195 0.1264 0.1(326 0.1435 O. 1529 0.16(1 0. 1684 0. (750 0.1810 0. 1865 0.19(6 0. 1964 0.2009 0.2(10 0.2(98 0.2277 0.2349 0.24(4 0.2474 0.2529 0.2581 0.2630 0.2675 0.27(9 0.2760 0.2799 0.2836 0.2871 0.29O5 0.2938 0.2969 0.3000 0.3029 0.3057 0.3084 0.3(21 0.3 137 0.3 186 0.3232 0.3276 0.33(8 0.3358 0.3396 0.3433 0.3468 0.3502 0.3534 2.1701 2.1447 2.1(233 2.1046 2.0734 2.042 I 2.0164 1.9947 (.9758 (.9591 1.9441 1.9182 1.8962 (.8770 1.8601 (.8450 (,8187 (.7964 1.7770 1.7599 1.7445 (.7305 1.7(78 (.7060 1.6951I 1.6849 (.662 I (.6423 (.6247 (.6090 1.5947 1.5816 (.5695 1.5583 1.5479 1.538 t 1.5288 1.5201 1.5(18 1.5040!(.4965 1.4893 (.4825 I1.4759 1.4696 (.4635!1.4577 1.4520 (.4445 (.44(3 (.4312 1.4217 (.4(27 1.4042 1.3961 (,3884 (.38(0 (.3739 (.3671 1.3606 2.1762 2,1602 2.1(467 2.1351 2.1156 2.0962 2.0805 2.0672 2.0557 2.0456 2.0366 2.02(I0 2.0079 (.9965 (.9865 1.9776 (.9623 (.9493 1.938 I 1.9283 1.9195 1.9(15 1.9043 1.8977 1.89(5 1.8858 1.8731 1.8621 (.8525 1.8438 1.8361 i(.829O 1.8224 (.8(64 1.8108 (.8056 (.8007 1.7961 (.79(7 1.7875 1.7836 (.7799 i(.7763 (.7728 (.7696 (.7664 (.7634 (.7605 1.7566 1.7549 1.7497 (.7449 1.7403 (.7360 (.7319 1.7280 1.7243 (.7207 (.7(73 (.7141 0.1 0.12 0.14 0.16 0.2 0.25 0.3 0.35 0.45 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.6 1.8 2.0 122 2.4 2.6 2.8 3.0 3.5 4.0 4.5 5.0 6.0 6.5 7.0 7.5 8.0 3.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 13.0 13.5 14.0 14.696 15 16 17 18 19 20 21 22 23 24 25 174 X6CNA1 5 Attachment 02 Sheet C2-8 Table U-3 (continued).
Properties of Superheated Steam and Compressed Water I 14 psia (t,,, = 209.52 0 F) f 15 psia({t,,=
2I2.99 °F) I 16 psia (t = 216.27 °F)Sat. Liq.Satl. yap.32 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 430 490 500 510 520 530 540 550 560 570 580 590 600 0.016 697 177.68 0.3084 28.048 1149.4 1.7605 0.016 021 0.024 0.0000 0.016019 8.073 0.0162 0.016 023 18.106 0.0361 0.016034 28.1 18 0.0555 0.016051 38,116 0.0746 0.016073 48.106 0.0933 0.016 100 58.090 0.1116 0.016 131 68,071 0.1296 0.016 165 78.052 0.1473 0.016 204 88.033 0,1647 0.016246 98.017 0.1817 0.0!6 292 108.00 0.1985 0.016 341 118.00 0.2151 0.016393 128.00 0.2313 0.016 449 138.01 0.2473 0.016 507 148.03 0.263 I 0.016 569 158.06 0.2787 0.016633 168.10 0.2940 28.0'70 11I 49.6 1.7608 28"521 1154.5 1.7681 28.969 1159.4 1.7752 29.415 1164.2 1.7822 29.860 1169.0 1.7890 30.303 1173.8 1.7958 30.744 1178.6 1.8023 31.185 1183.4 1.8088 31"624 1188.1 1.8152 32.062 1192.9 1.8215 32.499 1 197.6 1.8277 32.935 1202.3 1.8338 33.371 1207.1I 1.8398 33.806 1211.8 1.8457 34.240 1216.5 1.8516 34.674 1221.2 1.8574 35.107 1225.9 1.8631I 35.540 1230.6 1.8688 35.972 1235.4 1.8743 36.404 1240.1I 1.8799 36.836 1244.8 1.8853 37.267 1249.5 1.8907 37.698 1254.2 1.8961 38.129 1259.0 1.9013 38.559 1263.7 1.9066 38.990 1268.4 1.9117 39.420 1273.2 1.9 169 39.849 1277.9 i1.9220 40.279 1212.7 1.9270 40.708 1287.4 1.9320 41. 137 1292.2 1.9369 41!.567 1297.0 1.9418 41!.995 1301.7 1.9466 42.424 1306.5 1.9514 42.853 1311.3 1.9562 43.281 1316.1 1.9609 43.710 1320.9 1.9656 44.138 1325.7 1.9703 44.566 1330.5 1.9749 44.994 1335.3 1.9794 0.016721 181.18 0.3137 26.295 1150.7 1.7549 0.016 021 0.027 0.0000 0.016 019 8.076 0.0162 0.016 023 18.109 0.0361 0.016 034 28.120 0.0555 0.016 051 38. I1I9 0.0746 0.016073 48,109 0.0933 0.016 100 58.093 0.1116 0,016 130 68.074 0.1296 0.016 165 78.054 0.1473 0.016 204 88.036 0.1646 0.016246 98.019 0.1817 0.016 292 108.01 0.1985 0.016 341 118.00 0.2150 0.016 393 128.00 0.2313 0.016 449 138.01 0.2473 0.016 507 148.03 0.2831 0.0 16 568 158.06 0.2787 0.016633 168.11 0.2940 0.016 701 178,17 0.3092 0.016745 184.49 0,3186 24.755 1151.9 1.7497 0.016021 0.030 0.0000 0.016019 8.079 0.0162 0.016023 18.112 0.0361 0.016 034 28.123 0.0555 0.016051 38.122 0.0746 0.016 073 48.111 0.0933 0.016 100 58.096 0. l11I6 0.016 130 68.077 0.1296 0.016 165 78.057 0,1473 0.016 204 88.038 0.1646 0.016246 98.022 0.1817 0.016 292 108.01 0.1985 0.016 341 118.00 0.2150 0.016 393 128.00 0.2313 0.016 448 138.01 0.2473 0.016 507 148.03 0.2631 0.016 568 158.06 0.2787 0.016633 168.11 0.2940 0.016 701 178.17 0.3092 SaL. Lq.Sat. Vap.32 40 s0 26.591 1154.1 1.7601 27,012 1159.0 1.7672 27.430 I 163.9 1.7742 27.846 1168.7 1.7811 28,261 1173.6 1.7878 28.674 1178.4 1.7945 29.086 1183.1 1.8010 29.497 1187.9 1.8074 29,906 1192.7 1.8137 30.315 1197.4 1.8199 30.723 1202.1I 1.8260 31.131 1206.9 1.8320 31.537 1211.6 1.8380 31,943 1216.3 1.8438 32.349 1221I.1 1.8496 32.754 1225.8 1.8554 33.158 1230.5 1.8610 33.562 1235.2 1.8666 33.966 1239.9 1.872 I 34,369 1244.7 1.8716 34.772 1249.4 1.8830 35.174 1254.1 1.8884 35,577 1258.9 1.8936 35.979 1263.6 1.8989 36.381 1268.3 1.9041 36.782 1273.1I 1.9092 37.184 1277.8 1.9143 37.585 1282.6 1.9193 37.986 1287.3 1.9243 38.387 1292.1I 1.9292 38,787 1296.9 1.9341 39.188 1301.6 1.9390 39.588 1306.4 1.9438 39.989 1311.2 1.9485 40.389 1316.0 1.9533 40.739 1320.8 1.9580 4I. 189 1325.6 1.9626 41,589 1330.4 1.9672 41,988 1335.3 1.9718 24,903 25.299 25.692 26.084 26.474 26.862 27.249 27.635 28.020 28.405 28.788 29.,170 29,552 29.933 30.3 14 30.694 31.074 3 1.453 3 1.832 32.210 32.588 32.966 33.344 33.721 34.098 34.475 34.851I 35.228 35.6O4 35.980 36.356 36.732 37. 107 37.483 37.858 38.233 38.608 38.983 39.358 1153.7 1158.7 1163.6 1168.4 1173.3 1I78.1 1182.9 1187.7 1192.4 1197.2 1202.0 1206.7 1211.4 1216.2 1220.9 1225.6 1230.4 1235.1 1239.8 1244.5 1249.3 1254.0 1258.7 1263.5 1268.2 1273.0 1277.7 1282.5 1287.2 1292.0 1296.8 1301.6 1306.4 1311.1 1315.9 1320.7 1325.6 1330.4 1335.2 1.7525 1.7597 1.7667 1.7736 1.7804 1.7871 1,7936 1.8000 1.8063 1.8125 1.8187 1.8247 1.8307 1.8366 1.8424 1.8481I 1.8538 1.8594 1.8649 1.8704 1.8758 1.8811 1.8864 1.8917 1.8969 I1.9020 1.9071 1.9121 1.9171 1.9220 1.9269 1.93 18 1.9366 1.9414 1.946 I 1.9508 1.9554 1.9601 1.9646 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 3380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 S70 530 590 600 UNITS: v in ft 1 1/b,,,; h in Btu/Ib., ; s in Btu/(Ibm.°R) 198 X6CNA1 5 Attachment C2 Sheet C2-9 Table U-3 (continued).
Properties of Superheated Steam and Compressed Water 1800 psi. (t:, = 621.07 °F) 2000 pIia (tin= 635.85 0 F) 2...200 pita (:.,ff 649.50 F)t (0 F) h s 1 h s h s [t (F)Sat. Liq.Sal. Vap, 32 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 32,0 330 340 350 360 370 380 390 409 410 420 430 440 450 460 470 480 490 510 520 530 540 550 0.024 7 0.2184 0.015 923 0.015 923 0.015 93!0.015 944 0.015 962 0.015 986 0.016 013 0.016 044 0.0 16 079 0.016 118 0.016 160 0.016 205 0.016 253 0.016 304 0.016 358 0.016 415 0.016 475 0.016 537 0.016 603 0.016 67!0.016 742 0.016 816 0.016 893 0.016 973 0.017 056 0.017 142 0.017 23!I 0.017 324 0.017 420 0.017 5 19 0.017 623 0.017 730 0.017 841 0.017 956 0.018 076 0.018 200 0.018 329 0.018 464 0.018604 0,018 749 0.0183902 0.019 061 0.019 227 0.019 402 0.019 585 0.019 778 0.019 981 0.020 195 0.020 422 0.020 663 0.020 921 0.021 196 0.021 492 0.021 813 0.022 162 0.022 545 0.022 970 0.023 448 648.27 1150.7 5.367 13.3 13 23.232 33.144 43.053 52.960 62.868 72.776 82.687 92.601 102.52 1 12.44 122.37 132.31 142.26 152.22 162.19 172.17 182.16 192.17 202,20 212.25 222.31I 232.40 242.50 252.64 262.80 272.98 283.20 293.45 303.33 314.05 324.41 334.81I 345.26 355.76 366.31 376.92 387.60 398.34 409.15 420.04 431.02 442.09 453.27 464.56 475.96 487.51 499.20 511.06 523.10 535.35 547.84 560.59 573.66 587.10 600.97 615.39 0.8415S!.3063 0.0001 0.0161 0.0358 0.0550 0.0739 0.0925 0.1106 0.1285 0.1461 0.1633 0.1803 0.1970 0.2 134 0.2296 0.2455 0.2612 0.2766 0.2919 0.3069 0.3218 0.3364 0.3509 0.3652 0.3793 0.3932 0.4070 0.4206 0.4341 0.4475 0.4607 0.4738 0.4868 0.4997 0.5125 0.5251I 0.5377 0.5502 0.5626 035750 0.5873 0.5995 0.6117 0.6238 0.6359 0.6480 0.6601 0.6721 0.6842 0.6963 0.7085 0.7207 0.733!I 0.7455 0.758 I 0.7708 0.7838 0.7971 0.8 107 0.025 63 0.1882 0.015 912 0.015 913 0.015 921 0.015 934 0.015 953 0.015 976 0.016 003 0.0 16 035 0.016 070 0.016 108 0.016 15O 0.016 195 0.016 243 0.016 294 0.016 348 0.0 16 405 0.016 464 0.016 527 0.016 592 0.016660 0.016 73!0.016 805 0.016881 0.016 961 0.017044 0.017 129 0.017 218 0.017 310 0.017 406 0.017 505 0.017 607 0.017 713 0.017 824 0.017 938 0.018 057 0.018 180 0.018 309 0.018 442 0.018 581 0.018 726 0.018 876 0.01!9 034 0.019 199 0,019 371 0.0 19 552 0.0 19 743 0.019 943 0.020 154 0.020 378 0.020 615 0.020 867 0.02! 137 0.02! 427 0.021 739 0.022 078 0.022 450 0.022 859 0.023 317 671.80 1136.5 5.960 13.894 23.802 33.703 43.603 53.501 63.400"73.301 83.205 93. 112 103.02 1 12.94 122.86 132.80 142.74 152.69 162.65 172.62 182.61 192.62 202.64 212.67 222.73 232.8!I 242.9!253.03 263.18 273.36 283.56 293.80 304.07 314.38 324.73 335.12 345.56 356.O4 366.58 377.17 387.83 398.55 409.34 420,21 431.16 442.21 453.35 464.60 475.98 487.48 499.12 510.93 522.9!535.09 547.49 560.15 573.11I 586.4!600.11I 614.31 0.8622 1-2864 0.0900 0.0161 0.0357 0.0550 0.0739 0.0924 0. 1105 0. 1284 0. 1459 0.1632 0. 1801 0.1968 0,2132 0.2294 0.2453 0.2610 0.2764 0.2917 0.3O67 0.3215 0.3361I 0,3506 0.3649 0.3790 0.3929 0.4067 0.4203 0.4338 0.4471 0.4604 0.4735 0.4864 0.4993 0.5 120 0.5247 0.5373 0.5497 0.562!0.5744 0.5867 0.5989 0,6111 0.6232 0.6352 0.6473 0.6593 0.67 14 0.6834 0,6955 0.7076 0.7198 0.7320 0.7444 0.7568 0.7695 0.7823 0.7954 0.8089 0.026 68 0. 1627 0.015 901 0.015 903 0.015 910 0.015 924 0.015 943 0.015 966 0.015 994 0.016 025 0.016060 0.016 099 0.016 141 0.016 186 0.016 234 0.016 284 0.016 338 0.016 395 0.016 454 0.016 516 0.016 581 0.016 649 0.016 720 0.016 793 0.016 870 0.016 949 0.017 031 0.017 16 0.017 205 0.017 296 0.017 391 0.017 490 0.017 592 0.017 697 0.0 17 807 0.017 92!0.018 039 0.018 161 0.018 289 0.018 421 0.0 13 559 0.0 18 702 0.018 85!0.019 007 0.019 171 0.019 341!0.019 520 0.019 708 0.019 906 0.020 114 0.020 334 0.020 567 0.020 815 0,021 080 0.021I 363 0.021 668 0.021 998 0.022 353 0.022 754 0.023 193 695.09 1120.4 6.551I 14.475 24.370 34.262 44. 151 54.041 63.932 73.825 83.721I 93.62 I 103.53 113.44 123.35 133.28 143.21 153.16 163.11 173.08 183.06 193.06 203.07 213.10 223.15 233.22 243.31 253.43 263.57 273.74 283.93 294.16 304.42 314.72 325.06 335.43 345.85 356.32 366.85 377.42 388.06 398.76 409.53 420.38 431.31 442.33 453.44 464.66 476.00 48"7.46 499.06 510.81 522.73 534.85 547.18 559.75 572.59 585.76 599.31 613.31 0.8825 1.2659 0.0001 0.0161 0.0357 0.0549 0.0738 0.0923 0.1104 0.1283 0. 1458 0.1630 0.1800 0.1966 0.2 130 0.2292 0.245 I 0.2607 0.2762 0.29 14 0.3064 0.3213 0.3359 0.3503 0.3646 0.3787 0.3926 0.4064 0.4200 0.4335 0.4468 0.4600 0.4731 0.4860 0.4989 0.5 116 0.5242 0.5368 0.5492 0.5616 0.5739 0.5862 0.5983 0.6105 0.6225 0.6346 0.6466 0.6586 0.6706 0.6826 0.6946 0.7O67 0.7188 0.73 10 0.7433 0.7556 0.7682 0.7809 0.7939 0.807!Sat. Liq, Sat. Vap.32 40 50 60 70 50 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 310 320 330 340 350 360 370 330 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 560 580 600 570 580 590 609 UNITS: v inl fI 3/Ib. h inl B1/Ibm ; s in BtuI/(Ibm-R) 238 X6CNA1 5 Attachment C2 Sheet C2-1 0 Table U-3 (continued).
Properties of Superhteated Steam and Compressed Water I 2 4 1 1 p"a (,a. ffi662.16
~'F) 2600 p6Ia (t,, = 673.98 *F) 1 7, 8 00psia = 685.03 "F)t (*F) A s v h s ] 6 : t (F)Sat. Liq.Sat. yap.32 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 32,0 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 5OO 0,027 89 0. 407 0.015 890 0.015 892 0.015 900 0.015914 0.015 933 0.0)5 957 0.015 985 0.016016 0.0 16 05 0.016090 0.016 131 0.016 176 0.0)6 224 0.016 275 0.016 328 0.016 385 0.016 444 0.016 506 0,016 571 0.0)6 638 0.016 709 0.016 782 0.0)6 858 0.016 937 0.017 019 0.017 103 0.0)7 191 0.017 283 0.017 377 0.017 475 0.0 17 576 0.017 68)0.017 790 0.017 903 0.018021 0.018 142 0.018 269 0,018 400 0.0)8 536 0.0)8 679 0.018 827 0.018 98)0.019 143 0.019 3)2 0.0 19 488 0.0)9 674 0.0)9 869 0.020 074 0.020 291 0.020 52 I 0.020 764 0.021 024 0.02) 30)0,O21 599 0.021 921 0.022271 0.023 076 7)8.67 1101.9 7.14)15.054 24.938 34.8 19 44.700 54.581I 64 .464 74.349 84.238 94.131 104.03 I1)3.93 123.84 133.76 143.69 153.63 163.57 173.54 183.5)193.50 203.5)I 213.53 223.57 233.63 243.72 253.82 263.96 274.11 284.30 294.52 304.77 315.06 325.38 335.75 346.15 356.61i 367.12 377.68 388.30 398.98 409.73 420.55 431!.46 442.45 453.54 464.72 476.02 487.45 499.00 5)0.71I 522.58 534.63 546.88 559.37 572.1)585,16 598.56 612.38 0.9027 1.2443 0.001)0.0161I 0.0357 0.0549 0.0737 0.0922 0.I 103 0.128)O. 1457 0.1629 0.1798 0.1965 0.2128 0.2290 0.2449 0.2605 0.2760 0.2912 0.3062 0.32)0 0.3356 0.3500 0.3643 0.3784 0.3923 0.4060 0.4)96 0.433 I 0.4464 0,4596 0.4727 0,4856 0.4985 0.5)12 0.5238 0.5363 0.5488 0.5611 0.5734 0.5856 0.5978 0.6099 0.62 19 0.6339 0,6459 0.6579 0.6699 0.6818 0,6938 0.7058 0.7179 0.7300 0.7422 0.7545 0.7669 0.7795 0.7924 0.8055 0.029 38 0.12))0.015 880 0.015 882 0.015 89O 0.0)5 905 0.015 924 0,0)5 947 0.015 975 0.0)6 007 0.0)6042 0.016 080 0.0)6 122 0.0)6 167 0.016 214 0.0)6 265 0.016 319 0.016 375 0.016 434 0.016 496 0.0)6 560 0.0)6 628 0.0)6 698 0.0)6 77)0.0)6 846 0.0)6 925 0.017 006 0.017 09)0.0)7 178 0.0)7 269 0.017 363 0.0)7 460 0.017 561 0.0)7 666 0.017 774 0.017 886 0.018 003 0.0)8 123 0.018 249 0.0)8 379 0.018515 0.0 18 656 0.0)8 802 0.018 955 0.0)9 115 0.0 19 282 0.019 457 0.019641 0.0 19 833 0.020 036 0.020 249 0.020 475 0.020 7)5 0,020 970 0.02) 24)0.021 533 0.02) 847 0.022 186 0.022 557 0.022 965 743.27 1080.2 7.730 15.632 25.505 35.376 45.247 55. 120 64.995 74.873 84.754 94.640 104.53 114.43! 24.33 134.24 144.16 154.10 164.04 173.99 183.96 193.94 203.94 213.96 223.99 234.05 244.12 254.22 264.34 274.49 284.67 294.88 305.12 315.39 325.71 336.06 346.46 356.90 367.39 377.93 388.53 399.20 4039.93 420733 431.61 442.58 453.64 464.79 476.06 487.44 498.96 510.62 522.43 534.42 546.6)I 559.0)571.66 584.60 597.87 6)1.52 0.9236 1.2208 0.0001 0.0161 0.0356 0.0548 0.0736 0.092)0.1)02 0. 1280 0.1455 0.1627 0.1796 0. 1963 0.2127 0.2288 0.2447 0,2603 0,2757 0.2909 0.3059 0.3207 0.3353 0.3498 0.3640 0.378 I 0.3920 0.4057 0.4 193 0.4328 0.446 I 0.4593 0.4723 0.4852 0.4980 0.5108 0.5234 0.5359 0.5483 0.5606 0.5729 0.5851I 0.5972 0.6093 0.6213 0.6333 0.6453 0.6572 0.6691 0.6811I 0.6930 0,7049 0.7 169 0.7290 0,7411 0.7534 0.7657 0,7782 0.79O9 0.8039 0.03) 34 0. 1029 0.0)5 869 0.015 872 0.0)5 880 0.0)5 895 0.0)5 9)4 0.015 938 0.0)5 966 0,015 997 0.0)6032 0.0)6 071 0,0)6 113 0.016 157 0.0)6 205 0.016 255 0.016 309 0.0)6 365 0.016 424 0.0 16 485 0.0)6 550 0.016 617 0.0 16 687 0.016 759 0.016 835 0.016 913 0.016 994 0.017 078 0.017 165 0.017 255 0.017 349 0.017 446 0.017 546 0.017 650 0.017 758 0.017 869 0.017 985 0.018 105 0.0)8 229 0.018 359 0.0 18 493 0.0)8 633 0.0)8 778 0.0)8930 0.0 19 088 0.0)9 254 0.0)9 426 0.019608 0.019 798 0.0)9 998 0.020 208 0.020 431I 0.020 666 0.020 917 0.02) 183 0.021 468 0.02 1 775 0.022 105 0.022 465 0.022 859 770.20 1053.4 8.3 17 16.2 10 26.071 35.932 45.794 55.658 65.525 75.396 85.270 95.,149 105.03 114.92 124.82 134.73 144.64 154.56 164.50 174.45 184.4)194.39 204.38 214.39 224.41 234.46 244,53 254.62 264.73 274.87 285.04 295.24 305.47 315.73 326.04 336.38 346.76 357.19 367.66 378.19 388.78 399.42 410.13 420.92 431.77 442.7 1 453.74 464.87 476.10 487.45 498.92 510.54 522.30 534.23 546.35 558.68 571!.24 584.08 597.22 6 10.72 0.9462 1. 1936 0,.001 o.0160 0.0356 0.0547 0.0735 0.0920 0.1101 0. 1279 0. 1 454 0.1626 0.1795 0.196)0.2 125 0.2286 0.2445 0.2601 0.2755 0,2907 0.3057 0.3205 0.335)0.3495 0.3637 0.3778 0.3917 0.4054 0.4 190 0.4324 0.4457 0.4589 0.4719 0.4848 0.4976 0.5103 0.5229 0.5354 0.5478 0.5601 0.5724 0.5846 0.5967 0.6087/0.620}7 0.6327 0.6446 0.6565 0.6684 0.6803 0.6922 0.704 I 0.7160 0.7280 0.7401 0.7522 0.7645 0.7769 0.7895 0.8023 Sac. Lcq Sat. Vap 32 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 20o 210 220 230 240 250 260 270 2,80 290 300 310 32,0 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 510 520 530 540 560 580 600 UNITS: vin ft'/1b,,;
h in Btu/Ibm,;
£ in BluI(lbm.*R) 240 X6CNA15 X6CNAI5 ~~ATTACHMENT C3 SETC-SHEET C3-1 Bornt, Butch From: Collins, Reggie V.Sent: Wednesday, August 27, 2014 9:25 PM To: Pournia, Faramarz Cc: Hayden, Mark S.; Bornt, Butch; Martin, Jlustin C.; Bell, Weston Kevan; Olive, Celeste
Subject:
Re: Vogtle EAL Setpoints We always have a permit open for Ul and U2 PVS because it is a continuous release point for 1/2RE 12442-C and 1/2 RE 12444-C.We generate a new permit each week.Reggie Collins Sent from my iPhone From: Hayden, Mark S.Sent: Wednesday, August 27, 2014 4:15 PM To: Bornt, Butch; Martin, Justin C.; Bell, Weston Kevan; Olive, Celeste Cc: Poumnia, Faramarz; Collins, Reggie V.
Subject:
RE: Vogtle EAL Setpoints Butch is in need of help on the below question.He does have a very short fuse on this project, he has not gotten a response from this original request, can any of you help him with the required information??
Mark Hayden Emergency Preparedness Supervisor Southern Nuclear Co.- Plant Vogtle 1 & 2 Office (706) 826-3792 Cell (706) 551-2019 From: Bomnt Butch Sent: Wednesday, August 27, 2014 2:42 PM To: Hayden, Mark S.
Subject:
Vogtle EAL Setpoints Importance:
High Mark -I am revising the calculation that supports the EAL setpoints in NMP-EP-110-GL03.
Several of these are based on gaseous effluent monitors ARE-0014, RE-1244CC, RE-12444C, & RE-12839C high alarm setpoints.
I have reviewed procedure 34333-C for these setpoints.
The following table summarizes my results.SMonitor IRelease Path IHigh Alarm Setpoint I Gain Factor
Reference:
Procedure X6CNA15 X6CNAI5 ~~ATTACHMENT C3 SETC-SHEET C3-2 (!Cl/cc) [( ,Ci/cc)/cpm]
34333-C ARE-0014 Waste Gas Process Effluent Line Sections 10.1 & 10.2 During Release Release Permit Dependent Between Releases 9.99E+20 1.00E+00 RE-12442C Plant Vent Sections 7.1 & 7.3 During Release Release Permit Dependent Between Releases Not specified 3.28E-08 RE-12444C Plant Vent Sections 8.1 & 8.3 During Release Release Permit Dependent No Activity Not specified 1.04E-08 RE-12839C Steam Jet Air Ejector -Normal Sections 9.1 & 9.3 No Confirmed Primary-to-Secondary 7.84E-04 1.04E-08 Question:
what are the setpoints for RE-12442C
& RE-12444C between releases?I e-mailed the Rad Mon System system engineer and his supervisor Monday (Westin Bell and Justin Martin), but neither has read nor responded.
While I don't expect them to have an answer, I thought they'd be able to point me at the correct POC.I'm on a short timeline here, and I would appreciate any help the site can provide me.Thank you.&4!c PE Nuclear Safety Analysis Fleet Design Engineering Southern Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bborntc.southernco.com"Keep silence for the most part, and speak only when you must, and then briefly." -Epictetus X6CNA15 ATTACHMENT 04 SHEET 04-1 Bornt, Butch From: Collins, Reggie V.Sent: Thursday, August 28, 2014 3:38 PM To: Bornt, Butch
Subject:
RE: Turbine Building Vent Release Permit -1/2RE-12839C It is a continuous release path; however, we do not have a primary to secondary leak so a permit is not required.Thanks, Reggie Collins Vogtle Chemistry Manager Phone: 706-826-3850 Beeper 706-727-0080 From: Bornt, Butch Sent: Thursday, August 28, 2014 3:25 PM To" Collins, Reggie V.
Subject:
Turbine Building Vent Release Permit -1/2RE-12839C Reggie -Is the Turbine Building Vent also considered a continuous release path, with a new permit issued each week?The Steam Jet Air Ejectors discharge to the environment via the Turbine Building Vent.Thank you for your help.B'4 z4q., PE Nuclear Safety Analysis Fleet Design Engineering Southemn Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bbornt@southernco.com"Keep si/ence for the most part, and speak only when you must, and then briefly."-
Epictetus 1 X6CNA15 X6CN~l 5 ATTACHMENT C5 C-C5-1 Bomnt, Butch From: Stanley, John B.Sent: Thursday, September 04, 2014 4:40 PM To: Hayden, Mark S.; Bornt, Butch; Cowman, Ronald S.Cc: Griffin, Michael J.; Churchwell, J. John; Waidrup, Charles Steve; Stanley, John B.
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes No Air to Air openings in Mode 5&6. They are not required to be design pressure proof but must be closed. We have dedicated closure crews for other opening such as the equipment hatch.From: Hayden, Mark S.Sent: Thursday, September 04, 2014 5:31 PM To: Bornt, Butch Cc: Griffin, Michael J.; Stanley, John B.; Churchwell, J. John; Waldrup, Charles Steve
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes Butch, We do use penetrations during the outage to bring in Westinghouse communications for Eddy current testing and other activities such as sludge lance hoses etc.As for the details on acceptance criteria and procedures that govern this, I will pass along to someone else.Do any of you who I've CC'd on this email know who may have answers for Butch??Mark Hayden Emergency Preparedness Supervisor Southern Nuclear Co.- Plant Vogtle 1 & 2 Office (706) 826-3792 Cell (706) 551-2019 From: Bornt, Butch Sent: Thursday, September 04, 2014 4:12 PM To: Hay'den, Mark S.
Subject:
Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes Mark -Sorry to bother you, but can you point me at somebody who can answer some questions about containment integrity during Modes 5&6?Does Vogtle use temporary penetrations as Farley does?If so, what procedure governs their use and sets acceptance criteria?Thanks.1 X6CNA1 5 ATTACHMENT C5 C5-2qw, PE Nuclear Safety Analysis Fleet Design Engineering Southern Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bbornt@southernco.com"Keep silence for the most part, and speak only when you must, and then briefly."-
Epictetus Stanley, John B.Oetiaons Outage Manager Generi Org.~atui Ptn eA..clts Member Of tiame AJddess: C,4.,Suite Catvfry~e:~
John1 fre: Star~.~v, Bon .
GA USA St.ie~JBS'Mf~f Oneraban.
Outage '.lanage,&ntwrrt t,WBd: QpuraenmI Ptat I&Ad9 to~p.I.ds Ac9a~a-I 2 X6CNA15 X6CNAI 5 ~ATTACHMENT C6 SET0-SHEET C6-1 Bomt, Butch From: Cowman, Ronald S.Sent: Friday, September 05, 2014 5:37 AM To: Stanley, John 8.; Hayden, Mark S.; Bornt, Butch Cc: Griffin, Michael J.; Churchwell, J. John; Waidrup, Charles Steve
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes When we install the Sludge Lance penetration, we have isolation valves both inside and outside containment.
From: Stanley, John B.Sent: Thursday, September 04, 2014 5:40 PM To: Hayden, Mark S.; Bornt, Butch; Cowman, Ronald S.Cc: Griffin, Michael J.; Churchwell, .J. John; Waldrup, Charles Steve; Stanley, John B.
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes No Air to Air openings in Mode 5&6. They are not required to be design pressure proof but must be closed. We have dedicated closure crews for other opening such as the equipment hatch.From: Hayden, Mark S.Sent: Thursday, September 04, 2014 5:31 PM To: Bornt, Butch Cc: Griffin, Michael J.; Stanley, John B.; Churchwell, J. John; Waldrup, Charles Steve
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes Butch, We do use penetrations during the outage to bring in Westinghouse communications for Eddy current testing and other activities such as sludge lance hoses etc.As for the details on acceptance criteria and procedures that govern this, I will pass along to someone else.Do any of you who I've CC'd on this email know who may have answers for Butch??Mark Hayden Emergency Preparedness Supervisor Southern Nuclear Co.- Plant Vogtle 1 & 2 Office (706) 826-3792 Cell (706) 55:1-2019 From: Bomt, Butch Sent: Thursday, September 04, 2014 4:12 PM To: Haydlen, Mark S.
Subject:
Vogtte Containment Penetrations
-Cold Shutdown & Refueling Modes 1 X6CNA15 X6CNAI5 ~~ATTACHMENT C6 SETC-SHEET C6-2 Mark -Sorry to bother you, but can you point me at somebody who can answer some questions about containment Integrity during Modes 5&6?Does Vogtle use temporary penetrations as Farley does?If so, what procedure governs their use and sets acceptance criteria?Thanks.& ed PE Nuclear Safety Analysis Fleet Design Engineering Southern Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bbornt@ southernco.*com T M Keep silence for the most part, and speak only when you must, and then briefly."-
Epictetus Cowman, Ronald S.UPpl~emental Generj O~gamuatcn Phone.ftlotes Piembu Of
~II Erat: Address R I~ S Last 7821 Rye' Rna: GA o~m: USA ter tefnU: MaaaneDC co:t V a g9 e 1'Add.m wtcm Acior X£ N KO i ":C :c 2 Southern Nuclear Design Calculation SPlant: Vogtle IUnit: 1&2 [Calculation Number: X6CNA15 [Sheet: D-1 Attachment D -TEDE & Thyroid CDE Dose Calculations DescrptionNumber Descrptionof Pages D1 -Plant Vent Stack TEDE & Thyroid CDE Calculations 6 D2A -SJAE Release Path TEDE & Thyroid CDE Calculations 6 (No Core Damage)D2B -SJAE Release Path TEDE & Thyroid CDE Calculations 6 (Core Damage)I _____________
4 4 4 4 4 4 4 4 4 4 Total Number of Pages Including Cover Sheet 1 19 X6CNA15 X6CNAI 5 ~ATTACHMENT D1 HETD-SHEET D1-1 Plant Vent Stack Release Path TEDE & Thyroid CDE Calculations Note: Method described in "TEDE & Thyroid CDE Calculations" in METHODS section of calc main body.Postulated Release Activity XRLS "" Release Concentration XRLS = [Partition Factor x Xrcs (gCilg)] x [pris (glcc)]Partition Factors Noble Gases: 1.0 Iodines Primary coolant leakage to steam generator:
1 .0E-02 Condenser thru SJAEs 1 .0E-04 RCS -> S/G -> Condenser
-> SJAEs: 1 .0E-06 Xrcs = RCS coolant activity (pCi/cc)Xrcs = RCS Equilibrium Activity (pCi/g) +[Release Fraction x Core Inventory (Ci) x (1 .0E+06FCi/1 Ci)]/MRcs (g)Release Fractions 1 .0 for Noble Gases for core damage 0.4 for Iodine for core damage 0 for no core damage MRCS = RCS coolant mass (g)MRCS = 2.53E+08 g pris = Density of release fluid (g/cc)pris = 1 .00E+00 g/cc [Arbitrary Value]
X6CNA15 X6CNA1 5 ~ATTACHMENT D1 HETD-SHEET D1-2 Isotope Core Core Xeq Xrcs jg) Partition XRLS Inventory Release Factor (Ci) Fraction Kr-85 1.04E+06 1.00 8.37 4.1E+03 1.00 4.1E+03 Kr-85m 2.68E+07 1.00 2.04 1.1IE+05 1.00 1.1IE+05 Kr-87 4.93E+07 1.00 1.28 1 .9E+05 1.00 1 .9E+05 Kr-88 7.02E+07 1.00 3.68 2.8E+05 1.00 2.8E+05 Xe-131 m 7.13E+05 1.00 2.02 2.8 E+03 1.00 2.8 E+03 Xe-133 2.12E+08 1.00 256 8.4 E+05 1.00 8.4 E+05 Xe-133m 3.01E+07 1.00 17.60 1.2E+05 1.00 1.2E+'05 Xe-135 4.65E+07 1.00 8.30 1.8E+05 1.00 1.8 E+05 Xe-135m 4.18E+07 1.00 0.56 1.7E+05 1.00 1.7E+05 Xe-138 1.69E+08 1.00 0.74 6.7E+05 1.00 6.7E+05 I-131 1.03E+08 0.40 2.91 1.6E+05 0.01 1.6E+03 1-132 1.50E+08 0.40 2.96 2.4E+05 0.01 2.4E+03 I-133 2.10E+08 0.40 5.56 3.3 E+05 0.01 3.3 E+03 I-134 2.26E+08 0.40 0.69 3.6E+05 0.01 3.6E+03 1-135 1.95E+08 0.40 2.72 3.1E+05 0.01 3.IE+03 X6CNA15 X6CNA1 5 ~ATTACHMENT D1 HETD-SHEET D1-3 Postulated Release TEDE Calculations TEDE = Total Effective Dose Equivalent (mREM)TEDE = EDE + CEDE EDE = Effective Dose Equivalent (mREM) from external exposure EDE = DCFFGR-12 X XEAB X texp DCFFGR-12
= FGR #12 dose conversion factor [(mREM/hr)/(#iCi/
cc)] CEDE = Committed Effective Dose Equivalent (mREM) from inhalation CEDE = DCFFGR-11 X XEAB X BR X texp DCFFGR-11
= FGR #11 dose conversion factor (mREM/jiCi)
XEAB= Radionuclide concentration at Exclusion Area Boundary (FtCi/cc)
XEAB= [QRLS (m^3/sec)]
x [X/Q (sec/m*3)]
x [XRLS (pCi/cc)]Qris = Release flow rate (mA3/sec)Qris = 187,000 CFM x [1 mini60 sec] x [0.0283 mA3/ft*3]Qris = 88.3 mA3/sec X/Q = Atmospheric dilution factor (sec/mA3)X/Q = 4.62E-07 sec/m3 texp = Exposure time texp =1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = Breathing Rate (mA3/sec)BR = 3.47E-04 m^3/sec BR = I1.25E+06 cc/hr = m^3/sec x [(1 .0E6 cc)/(1 mA3)] x [3600 sec/I hr]
X6CNA15 X6CNAI 5 ~ATTACHMENT D1 HET0-SHEET D1-4 Isotope Release XEAB FGR-12 EDE FGR-11 CEDE Activity (jltCilcc)
DCF (mREM) DCF (mREM)(mREMIhr)l (mREM/(l.tCi/cc) lpCi)Kr-85 4.1E+03 1.7E-01 1.59E+I03 2.7E+02 0.00E+00 O.OE+OO Kr-85m 1.1E+05 4.3E+00 9.96E+04 4.3E+05 O.00E+OO O.OE+OO Kr-87 1 .9E+05 7.9E+00 5.49E+'05 4.4E+06 0.00E+00OO 0.0E+O0 Kr-88 2.8E+05 1.1E+01 1.36E+06 1.5E+07 O.00E+O0 O.OE+00 Xe-131m 2.8E+03 1.1IE-01 5.18E+03 6.0E+02 O.OOE+OO O.OE+OO Xe-133 8.4E+05 3.4E+01 2.08E+04 7.1E+05 O.OOE+OO O.0E+O0 Xe-133m 1.2E+05 4.9E+00 1,82E+04 8.9E+04 O.OOE+OO O.0E+O0 Xe-135 1.8E+05 7.5E+00 1.59E+05 1.2E+06 0.00E+00 0.OE+OO Xe-135m 1.7E+05 6.7E+00 2.72E+05 1.8E+06 O.OOE+OO 0.OE+OO Xe-138 6.7E+05 2.7E+01 7.69E+05 2.1E+07 O.OOE+00 O.OE+OO 1-131 1.6E+03 6.6E-02 2.42E+05 1.6E+04 3.29E+01 2.7E+06 1-132 2.4E+03 9.7E-02 1.49E+06 1.4E+05 3.81E-01 4.6E+04 1-133 3.3E+03 1.4E-01 3.92E+05 5.3E+04 5.85E+00 9.9E+05 1-134 3.6E+03 1.5E-01 1.73E+06 2.5E+05 1.31E-01 2.4E+04 1-135 3.1E+03 1.3E-01 1.06E+06 1.3E+05 1.23E+00 1.9E+05 Total = 4.6E+07 mREM Total = 4.0E+06 mREM TEDE = EDE + CEDE EDE = 4.6E+07 mREM CEDE = 4.0E+06 mREM TEDE = 4.9E+07 mREM X6CNA15 X6CNA1 5 ~ATTACHMENT D1 HETD-SHEET D1-5 100 & 1000 mREM TEDE Thresholds Xioo = 100 mREM TEDE Noble Gas concetration (j, Ci/cc)Xioo = [(100 mREM)/(TEDE mREM)] x XRLS TEDE = 4.9E+07 mREM Xioo = 2.0E-06 X XRLS Xioo0 = 1000 mREM TEDE Noble Gas concetration Xiooo =l0 xXioo Isotope XRLS Xi00 Xl000 (lpCi/cc) (pCilcc) (lpCilcc)Kr-85 4.1E+03 8,3E-03 8.3E-02 Kr-85m 1.1 E+05 2,1E-01 2.1E+00 Kr-87 1 .9E+05 3.9E-01 3.9E+00 Kr-88 2.8E+05 5.6E-01 5.6E+00 Xe-131 m 2.8E+'03 5.7E-03 5.7 E-02 Xe-133 8.4E+'05 1.7E+00 1.7E+01 Xe-133m 1.2E+05 2.4E-01 2.4E+00 Xe-135 1.8 E+05 3.7 E-01 3.7 E+00 Xe-135m 1.7E+05 3.3E-01 3.3E+00 Xe-I138 6.7E+05 I1.3E+'00 I1.3E+01 I-131 1.6E+03 3.3E-03 3.3E-02 I-132 2.4E+03 4.8E-03 4.8E-02 I-133 3.3E+03 6.7E-03 6.7E-02 I-134 3.6E+03 7.2E-03 7.2E-02 I-135 3.1E+03 6.2 E-03 6.2 E-02 Totals 5.2E+00 5.2E+01 pCilcc pCilcc a X6CNA15 X6CNAI 5 ~ATTACHMENT D1 HET0-SHEET D1-6 Thyroid CDE Calculations CDETHY = Thyroid Committed Dose Equivalent (mREM) from inhalation CDETHY = DCFFGR-11 X XEAB X BR x texp DCFFGR-.11
= FGR #11 dose conversion factor (mREM/p#Ci/cc) texp = 1.00 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = 1 .25E+06 cc/hr X500T = 500 mREM Thyroid CDE Noble Gas concentration
(#tCi/cc)X50OT = [(500 mREM CDE)/(CDETHY mREM)] x XRLS X500r = 500/ 1 .3E+08 x XRLS X5oom = 4.0E-06 x XRLS X5000T = 5000 mREM Thyroid CDE Noble Gas concentration (pCi/cc)XSOOOT = 1 0 X X5OOT Postulated Release Thyroid CDEThresholds Isotope XEAB FGR-11I CDETHY XRLS X500T X5000T (p.Cilcc)
DCF (mREM) (jltCi/cc) (lpCi/cc) (mREM/ipCi)Kr-85 1.7E-01 0.00E+00 0.OE+00 4.1 E+03 1.6E-02 1.6E-01 Kr-85m 4.3E+00 0.00E+00 0.0E+00 1.1IE+05 4.2E-01 4.2E+00 Kr-87 7.9E+00 0.00E+00 0.0E+00 1.9E+05 7.7E-01 7.7E+00 Kr-88 1.IE+01 0.00E+00 0.OE+00 2.8E+05 1.1IE+00 1.1E+01 Xe-131m 1.1E-01 0.00E+00 0.0E+00 2.8E+03 1.1E-02 1.1E-01.Xe-I133 3.4E+01 0.00E+00 0.0E+00 8.4E+05 3.3E+00 3.3E+01 Xe-133m 4.9E+00 0.00E+00 0.0OE+00 1.2E+05 4.7E-01 4.7E+00 Xe-135 7.5E+00 0.00E+00 0.0E+00 1.8E+05 7.3E-01 7.3E+00 Xe-135m 6.7E+00 0.00E+00 0.0E+00 1.7E+05 6.6E-01 6.6E+00 Xe-I138 2.7E+01 0.00E+00 0.0E+00 6.7E+05 2.7E+00 2.7E+01 1-131 6.6E-02 1.08E+03 9.0E+07 I-132 9.7E-02 6.44E+00 7.8E+05 , 1-133 1.4E-01 1.80E+02 3.0E+07 I-134 1.5E-01 1.07E+00 1.9E+05 I-135 1.3E-01 3.13E+01 4.9E+06 -Total CDETHY =1 .3E+08 mREM Totals I1.OE+O1 pC i/cc I1.0E+02 pC i/cc a.
X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASHED2-SHEET D2A-1 SJAE Release Path TEDE & Thyroid CDE Calculations (No Core Damage)Note: Method described in "TEDE & Thyroid CDE Calculations" in METHODS section of calc main body.Postulated Release Activity XRLS = Release Concentration XRLS = [Partition Factor x Xrcs (jCi/g)] x [pris (g/cc)]Partition Factors Noble Gases: 1.0 Iodines Primary coolant leakage to steam generator:
1 .0E-02 Condenser thru SJAEs 1 .0E-04 RCS -> SIG -> Condenser
-> SJAEs: 1 .0E-06 Xrcs = RCS coolant activity '(pCi/cc)Xrcs = RCS Equilibrium Activity (jiCi/g) +[Release Fraction x Core Inventory (Ci) x (1 .0E+06jiCi/1 Ci)]/MRcs (g)Release Fractions 1.0 for Noble Gases for core damage 0.4 for Iodine for core damage 0 for no core damage MRCS = RCS coolant mass (g)MRCS = 2.53E+08 g prls = Density of release fluid (g/cc)pris = 1 .00E+00 g/cc [Arbitrary Value]
X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASHEDA2 SHEET D2A-2 Isotope Core Core Xeq Xrcs ilg) Partition XRLS Inventory Release Factor (Ci) Fraction Kr-85 1 .04E+06 0.00 8.37 8.4E+00 1.00 8.4E+00 Kr-85m 2.68E+07 0.00 2.04 2.0E+00 1.00 2.0E+00 Kr-87 4.93E+07 0.00 1.28 1.3E+00 1.00 1.3E+00 Kr-88 7.02E+07 0.00 3.68 3.7E+00 1.00 3.7E+00 Xe-131 m 7.13E+05 0.00 2.02 2.0E+00 1.00 2.OE+00 Xe-133 2.12E+08 0.00 256 2.6 E+02 1.00 2.6E+02 Xe-133m 3.01E+07 0.00 17.60 1.8E+01 1.00 1.8E+01 Xe-135 4.65E+07 0.00 8.30 8.3E+00 1.00 8.3E+00 Xe-135m 4.18E+07 0.00 0.56 5.6E-01 1.00 5.6E-01 Xe-138 1.69E+08 0.00 0.74 7.4E-01 1.00 7.4E-01 I-131 1.03E+08 0.00 2.91 2.9 E+00 1.00E-06 2.9E-06 I-132 1.50E+08 0.00 2.96 3.0E+00 1.00E-06 3.0E-06 I-133 2.10E+08 0.00 5.56 5.6E+00 1.00OE-06 5.6E-06 1-134 2.26E+08 0.00 0.69 6.9E-01 1.O0E-06 6.9E-07 I-135 1.95E+08 0.00 2.72 2.7 E+00 1.00OE-06 2.7E-06 X6CNA15 X6CNA1 5 ~~ATTACHMENT D2ASHEDA3 SHEET D2A-3 Postulated Release TEDE Calculations TEDE = Total Effective Dose Equivalent (mREM)TEDE = EDE + CEDE EDE = Effective Dose Equivalent (mREM) from external exposure EDE = DCFFER-12 x XEAB x texp DCFFGR-12
= FGR #12 dose conversion factor [(mREM/hr)/(j#Ci/
cc)] CEDE = Committed Effective Dose Equivalent (mREM) from inhalation CEDE = DCFFGR-11 X XEAB x BR x texp DCFFGR-11
= FGR #11 dose conversion factor (mREM/pCi)
XEAB= Radionuclide concentration at Exclusion Area Boundary (#Ci/cc) XEAB= [QRLS (m^3/sec)]
x [X/Q (sec/mA3)]
x [XRLS (#tCi/cc)]
Qris = Release flow rate (mA3/sec)Qris = 900 CFM x [1 mini60 sec] x [0.0283 m^3/ftA3]Qris = 0.42 m^3/sec X/Q = Atmospheric dilution factor (sec/m^3)X/Q = 2.55E-06 sec/m3 texp = Exposure time texp =1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = Breathing Rate (m^3/sec)BR = 3.47 E-04 m^3/sec BR = 1 .25E+06 cc/hr = m^3/sec x [(1 .0E6 cc)/(1 m^3)] x [3600 sec/Ilhr]
X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASETDA4 SHEET D2A-4 Isotope Release XEAB FGR-12 EDE FGR-11 CEDE Activity (J4Cilcc)
DCF (mREM) DCF (mREM)(m RE M/h r)/ (m REM/(lpCilcc)
J.LCi)Kr-85 8.4E+00 9.1 E-06 1 .59E+03 1 .4E-02 0.OOE+OO O.OE+OO Kr-85m 2.0E+00 2.2E-06 9.96E+04 2.2E-01 0.OOE+O0 O.OE+O0 Kr-87 1 .3E+00 1 .4E-06 5.49E+05 7.6E-01 O.OOE+OO O.OE+OO Kr-88 3.7E+00 4.0E-06 1 .36E+06 5.4E+00 O.OOE+00O O.OE+OO Xe-131m 2.0E+00 2.2E-06 5.18E+03 1.1IE-02 O.00E+00 O.OE+00 Xe-i133 2.6E+02 2.8E-04 2.08E+04 5.8E+00 0.OOE+00 0.OE+00 Xe-i133m I1.8E+01 1 .9E-05 1 .82E+04 3.5E-01 0.OOE+OO O.0E+O0 Xe-135 8.3E+00O 9.0E-06 1.59E+05 1.4E+00 O.OOE+O0 O.0E+00 Xe-135m 5.6E-01 6.1E-07 2.72E+05 1.6E-01 O.OOE+OO 0.0E+00 Xe-i138 7.4E-01 8.0E-07 7.69E+05 6.2E-01 0.OOE+OO 0.OE+OO 1-131 2.9E-06 3.2E-12 2.42E+05 7.6E-07 3.29E+01 i.3E-04 1-132 3.0E-06 3.2E-12 1.49E+06 4.8E-06 3.81E-01 1.5E-06 1-133 5.6E-06 6.0E-12 3.92E+05 2.4E-06 5.85E+00 4.4E-05 1-134 6.9E-07 7.5E-13 1.73E+06 1.3E-06 1.31 E-01 1.2E-07 1-135 2.7E-06 2.9E-12 1.06E+06 3.1E-06 1.23E+00 4.5E-06 Total = 1.5E+01 mREM Total = 1 .8E-04 mREM TEDE = EDE + CEDE EDE =CEDE =TEDE = 1.5E+01 1 .5E+01 mREM 1.8E-04 mREM mREM X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASHED2-SHEET D2A-5 100 & 1000 mREM TEDE Thresholds Xioo Xiooo Xlooo= 100 mREM TEDE Noble Gas concetration = [(100 mREM)/(TEDE mREM)] x XRLS TEDE = I1.5E+01 mREM= 6.8E+00 X XRLS= 1000 mREM= 10 xXioo TEDE Noble Gas concetration (pCi/cc)Isotope XRLS Xi00 Xl000(p.Ci/cc) (lpCi/cc)Kr-85 8.4E+00 5.7E+01 5.7E+02 Kr-85m 2.OE+00 I1.4E+01 I1.4E+02 Kr-87 1.3E+00 8.7E+00 8.7E+01 Kr-88 3.7E+00 2.5E+01 2.5E+02 Xe-131 m 2.OE+00 1.4E+01 1.4E+02 Xe-133 2.6E+02 1.7E+03 1.7E+04 Xe-133m 1.8E+01 1.2E+02 1.2E+03 Xe-i135 8.3E+00 5.6E+01 5.6E+02 Xe-i135m 5.6E-01 3.8E+00 3.8E+01 Xe-I138 7.4E-01 5.0E+00 5.0E+01 1-131 2.9E-06 2.0E-05 2.0E-04 1-132 3.0E-06 2.0E-05 2.0E-04 1-133 5.6E-06 3.8E-05 3.8E-04 1-134 6.9E-07 4.7E-06 4.7E-05 I-135 2.7E-06 1.8E-05 1.8 E-04 Totals 2.0E+03 2.0E+04 pCilcc pCilcc X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASHEDA6 SHEET D2A-6 Thyroid CDE Calculations CDETHY = Thyroid Committed Dose Equivalent (mREM) from inhalation CDETHY = DCFFGR-11 X XEAB X BR x texp DCFFGR-11
= FGR #11 dose conversion factor (mREM/pCi/cc) texp=- 1.00 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = 1 .25E+06 cc/hr XS00T = 500 mREM Thyroid CDE Noble Gas concentration X500T = [(500 mREM CDE)/(CDETHY mREM)] x XRLS X500T = 500/ 5.7E-03 X XRLS =X500T =X5000T =X5000T --8.7E+04 x XRLS 5000 mREM Thyroid ODE Noble Gas 1 0 X X500T concentration (j, Ci/cc)Postulated Release Thyroid CDE Thresholds Isotope XEAB FGR-11I CDETHY XRLS X500T X5000T (mREMI ipCi)Kr-85 9.1E-06 0.00E+00 0.0E+00 8.4E+00 7.3E+05 7.3E+06 Kr-85m 2.2E-06. 0.00E+00 0.0E+00 2.0E+00 I1.8E+05 1 .8E+06 Kr-87 1.4E-06 0.00E+00 0.0E+00 1.3E+00 1.1IE+05 1,1 E+06 Kr-88 4.0E-06 0.00E+'00 0.0E+00 3.7E+00 3.2E+05 3.2E+06 Xe-131 m 2.2E-06 0,00E+00 0.0E+00 2.0E+00 1.8E+05 1.8 E+06 Xe-i133 2.8E-04 0.00E+-00 0.OE+00 2.6E+02 2.2E+07 2.2E+08 Xe-133m 1.9E-05 0.00E+-00 0.OE+00 1.8E+01 1.5E+06 1.5E+07 Xe-I135 9.0E-06 0.00E+00 0.0E+00 8.3E+00 7.2E+05 7.2E+06 Xe-135m 6.IE-07 0.00E+00 0.0E+00 5.6 E-01 4.9 E+04 4.9 E+05 Xe-I138 8.0E-07 0.00E+I00 0.0E+00 7.4E-01 6.4E+04 6.4E+05 1-131 3.2E-12 1.08E+03 4.3E-03 .. ..1-132 3.2E-12 6.44E+00 2.6E-05 , ,. , ,..1-133 6.0E-12 1.80E+02 1.4E-03 ., .*,, I-134 7.5E-13 1.07 E+00 9.9 E-07 1-135 2.9E-12 3.13E+'01 1.2E-04 Total CDETHY " 5.7E-03 mREM Totals 2.6 E+07 2.6E+08 IpCi/cc a I X6CNA15 X6CNAI 5 ~~ATTACHMENT D2BSETD2-SHEET D2B-1 SJAE Release Path TEDE & Thyroid CDE Calculations (Core Damage)Note: Method described in "TEDE & Thyroid CDE Calculations" in METHODS section of caic main body.Postulated Release Activity XRLS "- Release Concentration (pCi/cc)XRLS = [Partition Factor x Xrcs (p#Ci/g)]
x [prls (glcc)]Partition Factors Noble Gases: 1.0 Iodines Primary coolant leakage to steam generator:
1 .0E-02 Condenser thru SJAEs 1 .0E-04 RCS -> S/G -> Condenser
-> SJAEs: 1 .0E-06 Xrcs = RCS coolant activity (iCi/cc)Xrcs = RCS Equilibrium Activity (j#Ci/g) +[Release Fraction x Core Inventory (Ci) x (1 .0E+06jiCi/1 Ci)]/MRcs (g)Release Fractions 1.0 for Noble Gases for core damage 0.4 for Iodine for core damage 0 for no core damage MRCS = RCS coolant mass (g)MRCS = 2.53E+08 g pris = Density of release fluid (g/cc)pris = 1 .00E+00 g/cc [Arbitrary Value]
X6CNA15 X6CNAI 5 ~~ATTACHMENT D2BSHTD22 SHEET D2B-2 Isotope Core Core Xeq Xrcs (ltCi/g) Partition XRLS Inventory Release (JLCi/g) Factor (llCilcc)(Ci) Fraction Kr-85 1.04E+06 1.00 8.37 4.IE+03 1.00 4.1E+03 Kr-85m 2.68E+07 1.00 2.04 1.1IE+05 1.00 1.1IE+05 Kr-87 4.93E+07 1.00 1.28 1 .9E+05 1.00 1 .9E+05 Kr-88 7.02E+07 1.00 3.68 2.8E+05 1.00 2.8E+05 Xe-131 m 7.13E+05 1.00 2.02 2.8 E+03 1.00 2.8 E+03 Xe-133 2.12E+08 1.00 256 8.4 E+05 1.00 8.4 E+05 Xe-133m 3.01E+07 1.00 17.60 1.2E+05 1.00 1.2E+05 Xe-135 4.65E+07 1.00 8.30 1.8E+05 1.00 1.8E+05 Xe-135m 4.18E+07 1.00 0.56 1.7E+05 1.00 1.7E+05 Xe-138 1.69E+08 1.00 0.74 6.7E+05 1.00 6.7E+05 I-131 1.03E+08 0.40 2.91 1.6E+05 1.00E-06 1.6E-01 I-132 1.50E+08 0.40 2.96 2.4E+05 1.00E-06 2.4E-01 I-133 2.10E+08 0.40 5.56 3.3E+05 1.00OE-06 3.3E-01 I-134 2.26E+08 0.40 0.69 3.6E+05 1.00E-06 3.6E-01 1-135 1.95E+08 0.40 2.72 3.1IE+05 1.00OE-06 3.IE-01 X6C NA15 X6CNAI 5 ~~ATTACHMENT D2BSHEDB3 SHEET D2B-3 Postulated Release TEDE Calculations TEDE = Total Effective Dose Equivalent (mREM)TEDE = EDE + CEDE EDE = Effective Dose Equivalent (mREM) from external exposure EDE = DCFFGR-12 X XEAB X texp DCFFGR-12
-FGR #12 dose conversion factor [(mREM/hr)/(pJCi/
cc)] CEDE = Committed Effective Dose Equivalent (mREM) from inhalation CEDE = DCFFGR-11 X XEAB X BR x texp DCFFGR-11
= FGR #11 dose conversion factor (mREM/jiCi)
XEAB= Radionuclide concentration at Exclusion Area Boundary XEAB= [QRLS (m^3/sec)]
X [X/Q (sec/mA3)]
x [XRLS (pCi/cc)]Qris = Release flow rate (mA3/sec)Oris = 900 CEM x [1 mini60 sec] x [0.0283 m^3/ft^3]Qris = 0.42 mA3/sec X/Q = Atmospheric dilution factor (sec/mA3)X/Q = 2.55E-06 sec/m3 texp = Exposure time texp =1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = Breathing Rate (mA3/sec)BR = 3.47E-04 m^3/sec BR = 1 .25E+06 cc/hr = m^3/sec x [(1 .0E6 cc)/(1 m^3)] x [3600 sec/i hr]
X6CNA15 X6CNAI 5 ~ATTACHM ENT D2BSHED2-SHEET D2B-4 Isotope Release XEAB FGR-1 2 EDE FGR-11I CEDE Activity (j+/-Ci/cc)
DCF (mREM) DCF (mREM)(liCilcc) (mREMIhr)l (mREMI Kr-85 4.1E+03 4.5E-03 1.59E+'03 7.1E+00 O.OOE+OO O.OE+OO Kr-85m 1.1E+05 1.1IE-01 9.96E+04 1.1IE+04 0.00E+OO O.OE+OO Kr-87 1.9E+05 2.1E-01 5.49E+05 1.2E+05 O.OOE+OO O.OE+OO Kr-88 2.8E+05 3.0E-01 1.36E+06 4.1E+05 O.00E+OO O.OE+00O Xe-131 m 2.8E+03 3.1E-03 5.18E+03 1.6E+01 O.OOE+OO Q.OE+OO Xe-133 8.4E+05 9.1E-01 2.08E+04 1.9E+04 0.OOE+OO O.OE+OO Xe-133m 1.2E+05 1.3E-01 1.82E+04 2.4E+03 O.OOE+OO O.OE+OO Xe-135 1.8E+05 2.0E-01 l.59E+05 3.2E+04 O.00E+O0 O.OE+OO Xe-135m 1.7E+05 1.8E-01 2.72E+05 4.9E+04 O.OOE+OO O.0E+OO Xe-1 38. 6.7E+05 7.2E-01 7.69E+05 5.6E+05 O.OOE+OO O.OE+00 1-131 1.6E-01 1.8E-07 2.42E+05 4.3E-02 3.29E+01 7.2E+00 1-132 2.4E-01 2.6E-07 1.49E+06 3.8E-01 3.81E-01 1.2E-01 1-133 3.3E-01 3.6E-07 3.92E+05 1 .4E-01 5.85E+00 2.6E+00 1-134 3.6E-01 3.9E-07 1.73E+06 6.7E-01 1.31E-01 6.4E-02 1-135 3.1E-01 3.3E-07 1.06E+06 3.5E-01 1.23E+00 5.1E-01 Total = 1.2E+06 mREM Total = 1.1E+01 mREM TEDE = EDE + CEDE EDE =CEDE =TEDE = 1.2E+06 1 .2E+06 mREM 1.1E+01 mREM mREM X6CNA15 X6CNAI 5 ~~ATTACHMENT D2BSHED2-SHEET D2B-5 100 & 1000 mREM TEDE Thresholds Xioo = 100 mREM TEDE Noble Gas concetration (pCi/cc)Xioo = [(100 mREM)/(TEDE mREM)] x XRLS TEDE = I1.2E+06 mREM Xioo = 8.4E-05 x XRLS Xiooo = 1000 mREM TEDE Noble Gas concetration (pCi/cc)Xiooo =l0 xXioo Isotope XRLS Xi00 Xl000 (lpCi/cc) (jtC i/cc) (lpCi/cc)Kr-85 4.1E+03 3.5E-01 3.5E+00 Kr-85m 1.1E+05 8.9E+00 8.9 E+01 Kr-87 I1.9E+05 1 .6E+01 1 .6E+02 Kr-88 2.8E+05 2.3E+01 2.3E+02 Xe-i131 m 2.8 E+03 2.4E-01 2.4E+00 Xe-I133 8.4E+05 7.0E+0I 7.0E+02 Xe-133m 1.2E+05 1.0E+01 1.0E+02 Xe-135 1.8E+05 1.5E+01 1.5E+02 Xe-135m 1.7E+05 1.4E+01 1.4E+02 Xe-i138 6.7E+05 5.6E+0I 5.6E+02 1-131 1.6E-01 1.4E-05 1.4E-04 I-132 2.4E-01 2.0E-05 2.OE-04 1-133 3.3E-01 2.8E-05 2.8E-04 I-134 3.6E-01 3.0E-05 3.0E-04 I-135 3.1E-01 2.6 E-05 2.6 E-04 Totals 2.1 E+02 2.1 E+03 j~CiIcc p.C i/cc X6CNA15 X6CNAI 5 ~~ATTACHMENT D2BSHED2-SHEET D2B-6 Thyroid CDE Calculations CDETHY -Thyroid Committed Dose Equivalent (mREM) from inhalation CDETHY = DCFFGR-11 X XEAB X BR x texp DCFFGR-11
-FGR #11 dose conversion factor (mREM/ltCi/cc) texp = 1.00 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = 1.25E+06 cc/hr Xsoom = 500 mREM Thyroid CDE Noble Gas concentration (pCi/cc)X5oom = [(500 mREM CDE)/(CDETHY mREM)] x XRLS X500T = *500/ 3.3 E+02 X XRLS =X500T = i ,5E+00 X XRLS X5000T = 5000 mREM Thyroid ODE Noble Gas concentration
(!iCi/cc)X5OOOT = 10 X X5OOT Postulated Release Thyroid CDE Thresholds Isotope XEAB FGR-11I CDETHY XRLS X500T X5000T (jtCi/cc)
DCF (mREM) (liCilcc) (lpCilcc)(mREMI ipCi)Kr-85 4.5E-03 0.00E+00 0.0E+00 4.1E+03 6.2E+03 6.2E+04 Kr-85m 1.1E-01 0.00E+00 0.0E+00 1.1E+05 1.6E+05 1.6E+06 Kr-87 2.1E-01 0.00E+00 0.0E+00 1.9E+05 2.9E+05 2.9E+06 Kr-88 3.0E-01 0.00E+00 0.0E+00 2.8 E+05 4.1E+05 4.1E+06 Xe-131m 3.1E-03 0.00E+00 0.0E+00 2.8E+03 4.2E+03 4.2E+04 Xe-133 9.1E-01 0.00E+00 0.0E+00 8.4E+05 1.3E+06 1.3E+07 Xe-133m 1.3E-01 0.00E+00 0.0E+00 1.2E+05 1.8E+05 1.8E+06 Xe-135 2.0E-01 0O00E+00 0.0E+00 1.8E+05 2.7 E+05 2.7E+06 Xe-135m 1.8E-01 0.00E+00 0.0E+00 1.7E+05 2.5E+05 2.5E+06 Xe-138 7.2E-01 0.00E+00 0.0E+00 6.7E+05 1.0E+06 1.0E+07 1-131 1.8E-07 1.08E+03 2.4E+02
_______.....
1-132 2.6E-07 6.44E+00 2.1E+00 , ...,., ... ..1-133 3.6E-07 1.80E+02 8.1E+01 _________..
... ... ..: , 1-134 3.9E-07 1.07E+00 5.2E-01 _________
____ ___ _______ ...1-135 3.3E-07 3.13E+01 1.3E+01 .... .___..._Total CDETHY " 3.3E+02 mREM Totals 3.8E+06 3.8E+07__________________________
.5 & I Southern Nuclear Design Calculation IPlant: Vogtle lUnit: l&2 Calculation Number: X6CNA15 Sheet: E-1l Attachment E -Shielding Calculations DescrptionNumber Descrptionof Pages El -Water Shielding Properties 5 E2 -Modification of VEGP SEP Dose Rate vs. Depth Analysis for VEOP RPV 18 E3 -Operating Deck Dose Rates for Reduced RPV Water Level 3 E4 -Seal Table Room Dose Rate Evaluation 2 I-4.4-1-Total Number of Pages Including Cover Sheetl 29 Southern Nuclear Design Calculation
!Plant: Vogtle Unit: l&2 Calculation Number: X6CNA15 ISheet: El-1I Attachment El -Water Shielding Parameters Several shielding evaluations are performed in support of this calculation, using existing analyses.
The associated shielding parameters are available in tables in nuclear engineering reference books as functions of gamma energy. The energies in the tables do not align with the energies of the spent fuel gamma source terms used in Vogtle calc X6CDE.01.Linear interpolation of the tabulated values is a time consuming option. However, these parameters are non-linear functions of gamma energy, so additional error is introduced by linear interpolation.
Curvilinear regression can be performed on these parameters using the Data Analysis Regression tool in Microsoft Excel. The following on-line references provide guidance for using this tool:*Cameron, "EXCEL 2007: Multiple Regression," Department of Economics, University of California
-Davis, 2009 (http ://cameron.econ.ucdavis.edu/excel/ex61 mulItiplereciression .html)*"A Quick Guide to Using Excel 2007's Regression Analysis Tool," Fuqua School of Business, Duke University, 2009 (https://facu ui~pecklu nd/ExcelReview/Use%20ExceI%202007%20Repres sion.pdf)The regression is judged as adequate based on the following.
- The Multiple Correlation Coefficient, R 2 or R Square, is a measure of amount of reduction in variability in the dependent variable.
It varies from zero to one. A R Square approaches one, the regression fit improves.*The relative error of the regression is calculated as the difference between the regression value and the tabulated value divided by the tabulated value at each value of the dependent variable (gamma energy in this case). As the relative error approaches zero, the accuracy of the regression improves.Curvilinear regressions on several water shielding parameters are documented in the Excel spreadsheet comprising the remainder of this attachment.
X6CNA15 X6CNAI5 ~~Attachment El -Water Shielding Parameters SetE-Sheet E1-2 Water Mass Attenuation Coefficient Curvilinear regression performed using Excel Data Analysis ToolPak ,aip = Ko + [Ki x E] + [1K2 x (E^2)] + [1K3 x (EA3)] + [K4/E] + [ K5(E^2)] + [K6/(E^3)](cmA2/g)Ey, pip Error MeV Table Rgrssn ____0.1 0.1670 0.1670 0.01%0.2 0.1360 0.1356 -0.26%0.3 0.1180 0.1188 0.70%0.4 0.1060 0.1061 0.08%0.5 0.0966 0.0965 -0.12%0.6 0.0896 0.0890 -0.64%0.8 0.0786 0.0782 -0.57%1.0 0.0706 0.0705 -0.20%1.5 0.0575 0.0579 0.73%2.0 0.0493 0.0499 1.26%3.0 0.0396 0.0398 0.41%4.0 0.0339 0.0336 -0.88%5.0 0.0301 0.0297 -1.25%6.0 0.0275 0.0273 -0.75%8.0 0.0240 0.0246 2.36%10.0 0.0219 0.0217 -0.87%Ey 10.0 MeV dpi= 0.0217 cm^2Ig Ko =K1=1K2=K3 =K4 =K5=Ke =5.26E-02-1 .13E-02 1.41 E-03-6.21 E-05 3.14E-02-3.75E-03 1 .77E-04 Regression Statistics Multiple R 1.0000 R Square 0.9999 Standard Error 0.0005 Observations 16
Reference:
Table 11.4, page 648, Lamarsh, "Introduction to Nuclear Engineering" Water Mass Attenuation Coefficient vs. Energy ,..,0.20.~0.10 a)0 0.05 Coo 4)l0.0 t I 4 4-~-... --e'-- 4--4 ......
- 41, 0 1 2 3 4 5 6 Gamma Energy (MeV)7 8 9 10 Table* Table --- Regression X6CNA15 Attachment El -Water Shielding Parameters Taylor Exposure Buildup Factor Coefficient Ai for Water Curvilinear regression performed using Excel Data Analysis ToolPak Ai = Ko + [Ki x E] + [K2 x (E^2)] + [K3 x (E^3)] + [K4/E] + [Ks/(E^2)]
+ [KO/(E^3)]
Sheet E1-3 Ey Al-tab Al-reg Error MeV ___ ____ (%)0.3 226.726 226.731 0.002%0.4 103.797 103.771 -0.025%0.6 72.516 72.586 0.097%1.0 54.278 54.119 -0.293%1.5 39.009 39.252 0.622%2.0 32.003 31.835 -0.526%3.0 22.738 22.781 0.188%4.0 11.703 11.695 -0.064%
Reference:
Table 5.2, ANSI/ANS-6.4.3-1 991 Ey,(= 4.0 MeV Ai = 11.695 Ko =Ki =K2=K3 =K4 =K5 =K(6=-2.73E+02 1 .22E+02-2 .45E+01 1.64E+00 3.68E+02-1.71 E+02 3.07E+01 Regression Statistics Multiple R 1.0000 R Square 1.0000 Standard Error 0.3465 Observations 8 250 I-0 4.'U (U IL.0..5 0 I..I.0.5'(U I-200 150 50 Water Taylor Exposure Buildup Factor Coefficient A1-4 -0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Gamma Energy (MeV)3.5 4.0 4.4.5* Tabulated
...Regression X6CNA15 Attachment El -Water Shielding Parameters Taylor Exposure Buildup Factor Coefficient (al for Water Curvilinear regression performed using Excel Data Analysis ToolPak cti = K0 + [Ki x E] + [K2 x (E^2)] + [K3 x (E^3)] + [K4/E] + [KS/(E^2)]
+ [KBI(E^3)]
Sheet E1-4 S a(Xl-tab (XI-reg Error MeV ___ ____ (%)0.3 -0.1084 -0.1084 -0.002%0.4 -0.0975 -0.0975 0.009%0.6 -0.0763 -0.0763 -0.032%1.0 -0.0506 -0.0507 0.109%1.5 -0.0357 -0.0356 -0.235%2.0 -0.0274 -0.0275 0.213%3.0 -0.0194 -0.0194 -0.076%4.0 -0.0226 -0.0226 0.012%
Reference:
Table 5.2, ANSI/ANS-6.4.3-1 991 E7 = 1.5 MeV-0.0356 Ko =K1=1K2=K3=Ks=K=6.52E-02-4.58E-02 1 .53E-02-1 .95E-03-1 .04E-01 2.26E-02-1 .75E-03 Regression Statistics Multiple R 1.0000 R Square 1.0000 Standard Error 0.0001 Observations 8 0.00 I..0.==-0.05 4.'0 U U 0 C.)Water Taylor Exposure Buildup Factor Coefficient ai-0.10-0.15 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Gamma Energy (MeV)* Tabulated Regression 3.5 4.0 4.5 X6CNA15 X6CNAI 5 ~Attachment El -Water Shielding Parameters SetE-Sheet E1-5 Taylor Exposure Buildup Factor Coefficient cc2 for Water Curvilinear regression performed using Excel Data Analysis ToolPak 02 = Ko + [K1 x E] + [K2 x (E^2)] + [K3 x (E^3)] + [K4IE] + [K5/(E^2)]
+ [Kd/(E*3)]
E c(c2-tab Or=rg Error MeV ___ ____ (%)0.3 -0.0871 -0.0871 0.006%0.4 -0.0605 -0.0605 -0.043%0.6 -0.0386 -0.0387 0.183%1.0 -0.0182 -0.0180 -0.880%1.5 -0.0036 -0.0038 6.796%2.0 0.0041 0.0043 4.137%3.0 0.0151 0.0151 -0.286%4.0 0.0366 0.0366 0.021%
Reference:
Table 5.2, ANSI/ANS-6.4.3-1 991 Ey, =(2 =4.0 0.0366 MeV Ko = -5.94E-02 Ki = 7.01 E-02 K2 = -2.51E-02 K3 = 3.42E-03 K(4 = -7.87E-03 K5 = 1.87E-03 Regression Statistics Multiple R 1.0000 R Square 1.0000 Standard Error 0.0003 Observations 8 Water Taylor Exposure Buildup Factor Coefficient (a2 0.05 --L..0.0 U..0.0.00 4."C 0 U o 0-0.05 --.-0.10-0,15 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3. 40 45 Gamma Energy (MeV)3.5 4.0 4.5 4 Tabul~ated Regres~sion Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Icalculation Number: X6CNA15 Isheet: E2-1 Attachment E2 -Modification of VEGP SFP Dose Rate vs. Depth Analysis for Vogtle RPV Introduction Appendix D of VEGP calculation X6CDE.01 determined dose rate vs. SFP water depth over a full core (193 fuel assemblies) discharged to the SFP at 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after shutdown.
The core was modeled as an equivalent disc source with a water shield.These results may be used to estimate water surface dose rate vs. water depth above fuel in the Vogtle reactor vessel at 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after shutdown subject to the following modifications.
Source Strengith To account for the greater spacing between fuel assemblies in the SFP racks, the VEGP core volumetric source terms (MeV/cc-sec) were multiplied by 0.72 (sheet D4, X6CDE.01).
The water surface dose rate is proportional to the water surface gamma flux, which in turn is proportional to source strength.
Multiplying the gamma source terms in X6CDE.01 by 1.39 (~-1/0.72) will normalize them back to the source strength above an irradiated core in the reactor vessel.Source Radius The VEGP discharged core was modeled as a disc source (SA y/cm 2-sec) of radius R feet overlaid with a slab water shield of thickness d feet similar to the disc source described on pages 487-488 of "Introduction to Nuclear Engineering." _ s The shield thickness dcorresponds to the water q depth above the core and the radius R is one half of jj dp the effective cylinder diameter 13.7 feet on page D4 in X6CDE.01.
Disc._. -Shield source The buildup flux at the water surface is calculated as shown on page 488 of "Introduction to Nuclear Engineering":= (SA/2) x {Ai*{Ei[(1
+ a )*,t*d] -E4[(1 +
0]} +A 2*{Ei[(1 + a2)*,i*d]
-E4[(1 + a 2)*,i*d*sec 0]} (1)where A 1 , A 2 , ai, & a2 = Coefficients for Taylor Buildup Factor; functions of gamma energy (pages 481-482 of "Introduction to Nuclear Engineering")
The angle O is a function of water depth d and source radius R: tan 0 = R/d 0 = tan-1 (R/d)
Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: E2-2 Attachment E2 -Modification of VEGP SFP Dose Rate vs. Depth Analysis for Vogtle RPV The effective diameter of the Vogtle core is 11.06 feet (Design Input #10); the RPV disc source radius is 5.53 ft. Thus, for a given water depth the angle 8 will differ between the RPV disc source and the SFP disc source.Per page 483 of "Introduction to Nuclear Engineering," the exponential function E 1 (X) can be approximated by E,(X) = [exp(-X)]*{[1/(X
+ 1)] + [1I(X + 1)3]} for X > 14. For X = 10, the error is 0.11%; the smallest value of X used in this evaluation is -8; any error due to this approximation is negligible.
Equation (1) is modified and simplified for the Vogtle RPV and SEP as follows: (*RPv/(SA/
- 2) = A1*[E, (XRPVll) -- E1 (XRpvl2)]
+ A 2*[Ei (XRPv21) -- E1 (XRPv22)]
(2)XRPV11 " (1 +
(2a)XRPV12 = XRPV1l*sec OF (2b)XRPV21 = (1 + a 2)*Ji*d (2c)XRPV22 = XRPV 2 1*sec ORPV (2d)ORPV = tanl(RRPv/d)
(2e)(*SFP/(SA/
- 2) = AI*[El (XsFP11) -- E1 (XsFP12)]
+ A 2*[EI (XsFP 2 1) -- E1 (XsFP22)]
(3)XSFP11 = (1 + (a)*p,*d (3a)XSFP12 = XSFP11*SeC 0V (3b)XSFP21 = (1 + a 2)*14*d (3c)XSFP22 = XSFP21*sec Ov (3d)OSFP = tan-1 (RsFp/d) (3e)Equation (2) is divided by equation (3) as follows: 4RPv/(SA/2) A1*[El(XRPv11)
-- E1(XRPv12)]
+ A2*[E1(XRPv21)
-EI(XRPv22)]
(4)(*SFP/(SAI
- 2) AI*[E1(XsFPll)
-E1(XsFP12)]
+ A2*[E1(XsFP21)
-E1(XsFP22)]
- 1RPV A1*[E1(XRPv11)
-E1(XRPv12)]
+ A2*[E1(XRPv21)
-E1(XRPv22)]
(5)(1SFP AI*[E1 (XsFP1l) -- E1(XsFPl2)]
+ A2*[E1(XsFP2l)
-E1 (XsFP22)]Since dose rates is proportional to gamma flux, and applying the source term normalization described on sheet E2-1 yields DRRPv Al*[E1(XRPv11)
-E1(XRPv12)]
+ A2*[El(XRPv21)
-E1(XRPv22)]
(6)= FNORM X DRsFP A1*[E1 (XsFP11) -- E1 (XsFP12)]
+ A2*[E1(XsFP2l)
-E1 (XsFP22)]where FNORM = 1/0.72 = 1.39 Southern Nuclear Design Calculation SPlant: Vogtle Unit: l&2 ICalculation Number: X6CNA15 ISheet: E2-3 Attachment E2 -Modification of VEGP SFP Dose Rate vs. Depth Analysis for Vogtle RPV The above dose correction factor is calculated for each energy and depth listed in Attachment D to X6CDE.01 in the Excel spreadsheet that comprises the remainder of this attachment.
The results are summarized below E Depth =8' Depthl=10 Depthl=1.1'(MeV) SFP RPV SFP RPV SFP RPV 0.90 6.3E+02 8.6E+02 1.0E+01 1.4E+01 1.1IE+00 1.4E+00 1.35 3.8E+02 5.2E+i02 1.2E+01 1.5E+01 1.7E+00 2.2E+00 1.80 8.6E+03 1.1 E+04 4.0E+02 5.2E+02 7.5E+01 9.5E+01 2.20 9.4E+i02 1.2E+03 5.4E+01 6.9E+01 1.1 E+01 1.4E+01 2.60 2.0E+03 2.6E+03 1.4E+02 1.8E+02 3.4E+01 4.1E+01 3.00 6.0E+01 7.6E+01 5.2E+00 6.4E+00 1 .3E+00 1 .6E+00 4.00 7.7E+01 9.6E+01 9.2E+00O 1.1 E+01 2.8 E+00 3.4E+00 TOTALS 1 .3E+04 1 .7E+04 6.4E+02 8.1 E+02 1 .3E+02 1 .6E+02 mREM/hr mREM/hr mREM/hr mREM/hr mREM/hr mREMIhr E Depthl= 2' Depth= 4' Depthl= 6'(MeV) SFP RPV SFP RPV SFP RPV 0.90 1 .6E-01 2.0E-01 2.7E-03 3.5E-03 4.6E-05 5.8E-05 1.35 3.2 E-01 4.1E-01 9.8 E-03 1.2E-02 3.3 E-04 4.0E-04 1.80 1.7E+01 2.2E+01 8.2 E-01 1.0E+00 3.9E-02 4.7E-02 2.20 2.8E+00 3.5E+00 1.6E-01 2.0E-01 9.5E-03 1.1E-02 2.60 9.4E+00 1.1E+01 6.7E-01 8.0E-01 4.9 E-02 5.6E-02 3.00 4.1E-01 4.9E-01 3.5E-02 4.1E-02 3.1E-03 3.5E-03 4.00 1 .0E+00 1 .2E+00 1 .2E-01 1 .4E-01 1 .4E-02 1 .6E-02 TOTALS 3.1 E+01 mREM/hr 3.9E+01 mREM/hr 1.8E+00 mREMIhr 2.2E+00 mREM/hr 1.2E-01 mREMIhr 1.3E-01 mREM/hr mREMIhr mREM/hr mREMIhr mREMIhr mREMIhr_____________
I A _____________
I I Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1 &2 ICalculation Number: X6CNA1 5 Isheet: E2-4 Attachment E2 -Modification of VEGP SFP Dose Rate vs. Depth Analysis for Vogtle RPV The dose rates vs. depth are plotted below for comparison.
Dose Rate vs. Water Depth 1.0E+05 -S1.0E+03 1.0E+02____
..... ....S1.0E+01 ____1 .0E+00 ...........
..8 9 10 11 12 13 14 15 16 Water Depth (feet)----SFP ,,-,- RPV Depth Dose Rate feet SFP RPV 8.0 1.27E+04 1.67E+04 10.0 6.38E+02 8.14E+02 11.1 1.27E+02 1.60E+02 12.0 3.14E+01 3.89E+01 14.0 1.83E+00 2.19E+00 16.0 1.15E-01 1.35E-01 X6CNA15 X6CNA1 5 ~ATTACHMENT E2 SETE-SHEET E2-5 Calculations Input Parameters Water Shielding Parameters E ld ,Ai A2 CI 0L2 (MeV) (cm^A21g)
(1/cm)_____
0.90 0.0740 0.0730 58.3145 -57.3145 -0.0554 -0.0221 1.35 0.0610 0.0602 42.6872 -41.6872 -0.0391 -0.0073 1.80 0.0528 0.0520 34.2498 -33.2498 -0.0303 0.0015 2.20 0.0474 0.0467 29.8353 -28.8353 -0.0251 0.0066 2.60 0.0432 0.0426 26.3424 -25.3424 -0.0215 0.01 06 3.00 0.0398 0.0392 22.7808 -21.7808 -0.0194 0.0151 4.00 0.0336 0.0331 11.6955 -10.6955 -0.0226 0.0366 p/ap = Ko0 + [Ki x E] + [K2 x (E^2)] + [1(3 x (EA3)] + [K(4/E] + [Ks/(EA2)]
+ [K6/(E^3)l
= (/)x p p = Water density (g/cmA3)p = 61 .55 Ibm/cu ft p = 0.986 g/cm^3 = Ibm/cu ft x [(0.016018463 g/cc)/(1 Ibm/cu ft)]A= Ko +[K(1x E]A2 = 1 -Ai o = Ko0 + [Ki x E]o2= Ko + [Ki x E]+ [K2 x (EA2)] + [1(3 x (EA3)] + [K(4/E] + [K5/(EA2)]
+ [K6/(E^3)]
[page 481, Lamarsh "Introduction to Nuclear Engineering"]
+ [K2 x (EA2)] + [K3 x (EA3)l + [K(4/E] + [K5/(E^2)]
+ [K6/(E^3)]
+ [K2 x (EA2)] + [K(3 x (E^3)] + [K(4/El + [K5/(EA2)]
+ [K6/(E^3)]
1.dp Ai eLI Ko =Ki =K2 =K3 =K4=K5 =0.05261 -2.73E+02 0.0652 -0.0594-0.01131 1.22E+02 -0.0458 0.0701 0.00141 -2.45E+01 0.0153 -0.0251-0.00006 1 .64E+00 -0.0020 0.0034 0.03138 3.68E+02 -0.1043 -0.0079-0.00375 -1.71E+02 0.0226 0.0019 0.00018 3.07E+01 -0.0018 -0.0011 From Attachment F1 of this calculation X6CNA15 X6CNAI 5 ~ATTACHMENT E2 SETE-SHEET E2-6 Vogtle RPV Source Geometry DRPV -VEGP Reactor Pressure Vessel inner diameter (ft)DaPv=- 132.7 inches RRPV = VEGP Reactor Pressure Vessel inner radius (ft)RRPV=- 1/2 xDRPV x(1 ft/12 in)RRPV -5.529 ft Vogtle SFP Source Geometry DSFP -Vogtle SEP cylindrical source effective diameter DSFP=- 13.7 ft RSFP = Vogtle SEP cylindrical source effective radius RSFP = 1/2 x DsFP RSFP=- 6.850 ft Source Strength Re-Normalization Fnorrn -lNogtle SEP source strength adjustment Fnorm -- 1.39 Vogtle SEP Dose Rates vs. Depth E Depth Depth Depth Depth Depth Depth (MeV) 8 ft 10 ft 11.1lft 12 ft 14 ft 16 ft 0.90 6.335E+02 1.031E+01 1.082E+00 1.551E-01 2.736E-03 4.569E-05 1.35 3.848E+02 1.156E+01 1.687E+00 3.179E-01 9.808E-03 3.305E-04 1.80 8.601E+03 4.038E+02 7.523E+01 1.733E+01 8.218E-01 3.933E-02 2.20 9.403E+02 5.407E+01 1.1 25E+01 2.834E+00 1 .637E-01 9.471 E-03 2.60 2.000E+03 1 .435E+02 3.368E+01 9.374E+00 6.749E-01 4.870E-02 3.00 5.971E+01 5.174E+00 1.347E+00 4.081E-01 3.546E-02 3.086E-03 4.00 7.717E+01 9.187E+00 2.847E+00 9.956E-01 1.189E-01 1.423E-02 TOTALS I1.270E+04 6.375E+02 1.271 E+02 3.14 1E+01 1 .827E+00 1.1 52E-01 NOTE: All significant figures on sheets D-7 thru D-9 of X6CDE.01 entered into this spreadsheet.
X6CNA15 X6CNAI 5 ~ATTACHMENT E2 SETE-SHEET E2-7 Depth Dependent Adjustment Factors d =Water depth d= 8 d = 243.84 Vogtle RPV RRPV -ORPV "-sec ORPV =feet cm 5.529 0.605 1.216 feet radians = arctan(RRPv/d)
E'y XRPVI 1 XRPV12 XRPV2i XRPV22 MeV 0.90 16.808 20.432 17.401 21.153 1.35 14.098 17.137 14.564 17.704 1.80 12.304 14.956 12.707 15.446 2.20 11.111 13.507 11.473 13.946 2.60 10.159 12.349 10.492 12.755 3.00 9.374 11.395 9.703 11.795 4.00 7.896 9.598 8.374 10.179El (XRPv1I) El1(XRPvI2)
El1(XRPv2I)
E1 (XRPv22)MeV 0.90 2.83E-09 6.26E-11 1.51 E-09 2.94E-11 1.35 5.02 E-08 2.00E-09 3.05E-08 1.10E-09 1.80 3.43E-07 2.01E-08 2.22 E-07 1.19E-08 2.20. 1 .24E-06 9.43E-08 8.40E-07 5.90E-08 2.60 3.50E-06 3.27E-07 2.43E-06 2.11E-07 3.00 8.26 E-06 9.13E-07 5.76 E-06 5.93 E-07 4.00 4.24E-05 6.46E-06 2.49E-05 3.42E-06 X6CNA15 X6CNA1 5 ~ATTACHMENT E2 SETE-SHEET E2-8 Vogtle SFP d=RSFP =OSFP --sec OSFP "-8 6.850 0.708 1.316 feet feet radians = arctan(RsFP/d)
E'y XSFPtl XSFPI2 XSFP21 XSFP22 MeV 0.90 16.808 22.128 17.401 22.909 1.35 14.098 18.560 14.564 19.174 1.80 12.304 16.198 12.707 16.728 2.20 11.111 14.628 11.473 15.104 2.60 10.159 13.374 10.492 13.813 3.00 9.374 12.341 9.703 12.775 4.00 7.896 10.395 8.374 11.024 Ey EI(XsFPII)
EI(XsFPl2)
EI(XsFP2I)
EI(XsFP22)
MeV ___ _0.90 2.83E-09 1.06E-11 1.51E-09 4.71E-12 1.35 5.02 E-08 4.46 E-10 3.05E-08 2.34E-10 1.80 3.43E-07 5.39E-09 2.22E-07 3.07E-09 2.20 1 .24 E-06 2.85E-08 8.40E-07 1 .72E-08 2.60 3.50E-06 1.09E-07 2.43E-06 6.80E-08 3.00 8.26E-06 3.29E-07 5.76E-06 2.07E-07 4.00 4.24E-05 2.71 E-06 2.49E-05 1.37E-06 Ey DRsFP Fnorm DRRPv DRRPV MeV mREM/hr DRsFP 0.90 6.3E+02 1.39 0.98 8.6E+02 1.35 3.8E+02 1.39 0.96 5.2E+02 1.80 8.6E+03 1.39 0.95 1.1E+04 2.20 9.4E+02 1.39 0.94 1.2E+03 2.60 2.0E+03 1.39 0.93 2.6E+03 3.00 6.0E+01 1.39 0.92 7.6E+01 4.00 7.7E+01 1.39 0.90 9.6E+01 TOTAL = I1,3E+04 mREM/hr TOTAL = I1,7E+04 mREMIhr X6CNA15 X6CNA1 5 ~ATTACHMENT E2 SETE-SHEET E2-9 d= 10 d = 304.8 Vogtle RPV RRPV =ORPV -sec ORPV "" feet cm 5.529 0.505 1.143 feet radians = arctan(RRPv/d)
E"y XRPVI1 XRPV12 XRPV2I XRPV22 MeV 0.90 21.010 24.008 21.752 24.855 1.35 17.622 20.137 18.205 20.803 1.80 15.380 17.574 15.884 18.150 2.20 13.889 15.871 14.341 16.387 2.60 12.698 14.510 13.116 14.987 3.00 11.718 13.390 12.129 13.860 4.00 9.870 11.278 10.467 11.961 Ey Ei1(XRPvI i) Ei (XRPVI12)
Ei (XRPv2I) Ei1(XRPv22)
MeV 0.90 3.42E-11 1.50E-12 1.57E-11 6.22E-13 1.35 1.20E-09 8.52E-11 6.48E-10 4.24E-11 1.80 1.28E-08 1.26E-09 7.52E-09 6.87E-10 2.20 6.27E-08 7.61 E-09 3.87E-08 4.41 E-09 2.60 2.24E-07 3.23E-08 1 .43E-07 1 .95E-08 3.00 6.45 E-07 1.07E-07 4.14E-07 6.47E-08 4.00 4.80E-06 1.04E-06 2.50E-06 4.96E-07 X6CNA15 X6CNA1 5 ~~ATTACHMENT E2SHEE21 SHEET E2-10 Vogtle SEP d=RSFP =OSFP =sec OSFP =10 6.850 0.601 1.212 feet feet radians = arctan(RsFP/d)
E7XSFP1I XSFP12 XSFP21 XSFP22 MeV 0.90 21.010 25.467 21.752 26.365 1.35 17.622 21.360 18.205 22.067 1.80 15.380 18.642 15.884 19.253 2.20 13.889 16.836 14.341 17.383 2.60 12.698 15.392 13.116 15.898 3.00 11.718 14.203 12.129 14.702 4.00 9.870 11.963 10.467 12.688 Ey Ei (XSFPI i) Ei (XsFPI2) Ei (XSFP21) Ei (XSFP22)MeV 0.90 3.42E-11 3.29E-13 1.57E-11 1.30E-13 1.35 1.20E-09 2.37E-11 6.48 E-10 1.13E-11 1.80 1.28E-08 4.09E-10 7.52E-09 2.15E-10 2.20 6.27E-08 2.74E-09 3.87E-08 1.54E-09 2.60 2.24E-07 1 .27E-08 1 .43E-07 7.40E-09 3.00 6.45 E-07 4.48 E-08 4.14E-07 2.63 E-08 4.00 4.80E-06 4.95E-07 2.50E-06 2.27E-07 Ey DRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP 0.90 1.0E+01 1.39 0.96 1.4E+01 1.35 1.2E+01 1.39 0.94 1.5E+01 1.80 4.0E+02 1.39 0.93 5.2E+02 2.20 5.4E+01 1.39 0.91 6.9E+01 2.60 1.4E+02 1.39 0.90 1.8E+02 3.00 5.2E+00 1.39 0.89 6.4E+00 4.00 9.2E+00 1.39 0.87 1.1IE+01 TOTAL =6.4E+02 mnREM/hr TOTAL = 8.1E+02 mREM/hr X6CNA15 X6CNA1 S ~~ATTACHMENT E2 SETE-SHEET E2-11 d= 11.1 d = 338.328 Vogtle RPV RRPV =ORPV --sec ORPV -feet cm 5.529 0.462 1.117 feet radians = arctan(RRPv/d)XRPV11 XRPVI 2 XRPV21 XRPV22 MeV 0.90 23.321 26.055 24.144 26.974 1.35 19.561 21.853 20.208 22.576 1.80 17.071 19.072 17.631 19.697 2.20 15.417 17.224 15.918 17.784 2.60 14.095 15.747 14.558 16.264 3.00 13.007 14.531 13.463 15.041 4.00 10.955 12.239 11.619 12.981Ei (XRPVI i) Ei (XRPVI12)
E1 (XRPV2I) El (XRPV22)MeV 0.90 3.06E-12 1.79E-13 1.30E-12 6.91E-14 1.35 1.56E-10 1.42E-11 7.91 E-1I 6.66E-12 1.80 2.14E-09 2.60E-10 1.19E-09 1.35E-10 2.20 1.23E-08 1.82E-09 7.24E-09 1.01 E-09 2.60 5.03E-08 8.69E-09 3.07E-08 5.02E-09 3.00 1.61 E-07 3.16E-08 9.88 E-08 1.84E-08 4.00 1.47 E-06 3.67E-07 7.17E-07 1.66E-07 X6CNA15 X6CNA1 5 ~~ATTACHMENT E2SETE21 sHEET E2-12 Vogtle SEP d=RSFP =OSFP -" sec OSFP --11.1 6.850 0.553 1.175 feet feet radians =arctan(RsFP/d)
E'y XSFP1I XSFPI2 XSFP21 XSFP22 MeV 0.90 23.321 27.405 24.144 28.372 1.35 19.561 22.986 20.208 23.746 1.80 17.071 20.060 17.631 20.718 2.20 15.417 18.117 15.918 18.706 2.60 14.095 16.563 14.558 17.107 3.00 13.007 15.284 13.463 15.821 4.00 10.955 12.873 11.619 13.653 E'y EI (XSFP11) EI (XSFP12) EI (XSFP21) EI (XsFP22)MeV 0.90 3.06E-12 4.42E-14 1.30E-12 1.63E-14 1.35 1.56E-10 4.35E-12 7.91E-11 1.97E-12 1.80 2.14E-09 9.23E-11 1.19E-09 4.64E-11 2.20 1.23E-08 7.I1E-10 7.24E-09 3.83E-10 2.60 5.03E-08 3.66E-09 3.07E-08 2.06E-09 3.00 1.61 E-07 1.42E-08 9.88 E-08 8.03E-09 4.00 1.47 E-06 1.86E-07 7.17E-07 8.06 E-08 Ey DRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP 0.90 1 .08E+00 1.39 0.95 1 .4E+00 1.35 1.69E+00 1.39 0.93 2.2E+00 1.80 7.52E+01 1.39 0.91 9.5E+01 2.20 1.12E+01 1.39 0.90 1.4E+01 2.60 3.37E+01 1.39 0.89 4.1 E+01 3.00 1.35E+00 1.39 0.87 1.6E+00 4.00 2.85E+00 1.39 0.85 3.4E+00 TOTAL = 1 .27E+02 mREM/hr TOTAL = 1.6E+02 mREM/hr X6CNA15 X6CNAI 5 ~~ATTACHMENT E2SHEE23 SHEET E2-13 d = 12 feet d = 365.76 cm Vogtle RPV RRPV = 5 ORPV = C sec ORPV -1 p.529).432.101 feet radians = arctan(RaPv/d)
E'y XRPVI I XRPVI 2 XRPV2I XRPV22 MeV___ _0.90 25.212 27.760 26.102 28.739 1.35 21.147 23.284 21.846 24.054 1.80 18.456 20.320 19.060 20.986 2.20 16.667 18.351 17.209 18.948 2.60 15.238 16.778 15.739 17.329 3.00 14.061 15.482 1,4.555 16.026 4.00 11.843 13.040 12.561 13.830 E'y E1(XRPv11)
EIl(XRPvI2)
EI(XRPv21)
E1(XRPv22)
MeV__ _ _ __ _ _0.90 4.29E-13 3.06E-14 1.70E-13 1.11E-14 1.35 2.96E-11 3.19E-12 1.43E-11 1,43E-12 1.80 4,98E-10 7.03E-11 2,64E-10 3.50E-11 2.20 3.28 E-09 5.55E-10 1.85E-09 2.97E-10 2.60 1,.49E-08 2.92E-09 8.76E-09 1,.63E-09 3.00 5.22 E-08 1.15E-08 3.08 E-08 6.46 E-09 4.00 5.63E-07 1 .55E-07 2.60E-07 6.68E-08 X6CNA15 X6CNAI 5 ~~ATTACHMENT E2SHEE21 SHEET E2-14 Vogtle SFP d=RSFP =OSFP --sec OSFP =12 6.850 0.519 1.151 feet feet radians = arctan(RsFP/d)
E'y XSFP11 XSFP12 XSFP21 XSFP22 MeV 0.90 25.212 29.031 26.102 30.055 1.35 21.147 24.350 21.846 25.155 1.80 18.456 21.251 19.060 21.947 2.20 16.667 19.192 17.209 19.816 2.60 15.238 17.546 15.739 18.122 3.00 14.061 16.191 14.555 16.760 4.00 11.843 13.637 12.561 14.463 E, E1(XsFP11)
E1 (XSFP12) E1 (XsFP21) E1 (XSFP22)MeV 0.90 4.29E-13 8.22 E-15 1.70 E-13 2.85E-15 1.35 2.96E-11 1.05E-12 1.43E-11 4.55E-13 1.80 4.98E-10 2.66E-11 2.64E-10 1.28 E-11 2.20 3.28 E-09 2.30 E-10 1.85E-09 1.19E-10 2.60 1.49E-08 1.30E-09 8.76E-09 7.07E-10 3.00 5.22E-08 5.43E-09 3.08E-08 2.97E-09 4.00 5.63E-07 8.20E-08 2.60E-07 3.40E-08 E7DRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP 0.90 1.55E-01 1.39 0.94 2.03E-01 1.35 3.18E-01 1.39 0.92 4.07E-01 1.80 1.73E+01 1.39 0.90 2.17E+01*2.20 2.83E+00 1.39 0.89 3.49E+00 2.60 9.37E+00 1.39 0.88 1.14E+01 3.00 4.08E-01 1.39 0.86 4.90E-01 4.00 9.96E-01 1.39 0.84 1.16E+00 TOTAL = 3.14E+01 mREM/hr TOTAL = 3.89E+01 mREM/hr X6CNA15 X6CNAI 5 ~~ATTACHMENT E2SHEE21 SHEET E2-15 14 426.72 feet cm Vogtle RPV RRPV =ORPV " sec ORPV =5.529 feet 0.376 1.075 radians = arctan(RRPv/d)
Ey XRPVI 1 XRPVI 2 XRPV21 XRPV22 MeV 0.90 29.414 31 .625 30.452 32.741 1.35 24.671 26.526 25.488 27.403 1.80 21 .531 23.150 22.237 23.908 2.20 19.445 20.907 20.077 21 .586 2.60 17.778 19.114 18.362 19.742 3.00 16.405 17.638 16.981 18.257 4.00 13.817 14.856 14.654 15.756 E'y E1(XRPV1I)
E1(XRPVI2)
E1(XRPV21)
EI(XRPv22)
MeV 0.90 5.53E-15 5.65E-16 1.89E-15 1.79E-16 1.35 7.53E-13 1.10E-13 3.22E-13 4.43E-14 1.80 1.98E-11 3.66E-12 9.49E-12 1.66E-12 2.20 1.76E-10 3.81E-11 9.07E-11 1.87E-11 2.60 1.02 E-09 2.49 E- 10 5.49E- 10 1.29 E-10 3.00 4.33E-09 1.18E-09 2.35E-09 6.13E-10 4.00 6.77E-08 2.24E-08 2.77E-08 8.60E-09 X6CNA15 XGCNA1S ~~ATTACHMENT E2SHEE21 SHEET E2-16 Vogtle SFP d=RSFP =OSFP ---sec OSFP 14 6.850 0.455 1.113 feet feet radians = arctan(RsFP/d)
Ey' XSFPII XSFP12 XSFP2I XSFP22 MeV 0.90 29.414 32.747 30.452 33.902 1.35 24.671 27.466 25.488 28.375 1.80 21.531 23.971 22.237 24.756 2.20 19.445 21.648 20.077 22.352 2.60 17.778 19.791 18.362 20.442 3.00 16.405 18.263 16.981 18.905 4.00 13.817 15.383 14.654 16.315 El' EI (XsFPII) EI (XsFP12) EI (XSFP21) EI (XSFP22)MieV 0.90 5.53E-15 1.78E-16 1.89E-15 5.42E-17 1.35 7.53E-13 4.15E-14 3.22E-13 1.62E-14 1.80 1.98E-11 1.56E-12 9.49E-12 6.89E-13 2.20 1.76E-10 1.75E-11 9.07E-11 8.42E-12 2.60 1.02E-09 1.22E-10 5.49E-10 6.19E-11 3.00 4.33E-09 6.09E-10 2.35E-09 3.10E-10 4.00 6.77E-08 1.28E-08 2.77E-08 4.76E-09 EyDRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP ____0.90 2.7E-03 1.39 0.93 3.5E-03 1.35 9.8E-03 1.39 0.90 1.2 E-02 1.80 8.2E-01 1.39 0.88 1.0E+00 2.20 1.6E-01 1.39 0.87 2.0E-01 2.60 6.7E-01 1.39 0.85 8.0E-01 3.00 3.5E-02 1.39 0.84 4.1IE-02 4.00 1.2E-01 1.39 0.82 1.4E-01 TOTAL =1 .8E+00 mREM/hr TOTAL = 2.2E+00 mREM/hr X6CNA15 X6CNA1 5 ~~ATTACHMENT E2SHEE21 SHEET E2-17 d = 16 feet d = 487.68 cm Vogtle RPV RRPV = 5.529 ORPV =sec 0RPV --0.333 1.058 feet radians = arctan(RRPv/d)
E'y XRPVI 1 XRPV1 2 XRPV2I XRPV22 MeV 0.90 33.62 35.57 34.80 36.82 1.35 28.20 29.83 29.13 30.82 1.80 24.61 26.04 25.41 26.89 2.20 22.22 23.51 22.95 24.28 2.60 20.32 21.50 20.98 22.20 3.00 18.75 19.84 19.41 20.53 4.00 15.79 16.71 16.75 17.72 Ey Ei (XRPVI11)
Ei (XRPV1 2) Ei (XRPV2I) Ei (XRPV22)MeV 0.90 7.3E-17 9.8E-18 2.1E-17 2.7E-18 1.35 1.9E-14 3.6E-15 7.4E-15 1.3E-15 1.80 8.0E-13 1.8E-13 3.5E-13 7.5E-14 2.20 9.6E-12 2.5E-12 4.5E-12 1.1E-12 2.60 7.1E-11 2.IE-11 3.5E-11 9.8E-12 3.00 3.7E-10 1.2E-10 1.8E-10 5.6E-11 4.00 8.3E-09 3.IE-09 3.0E-09 1.1E-09 X6CNA15 X6CNAI 5 ~~ATTACHMENT E2SHEE21 SHEET E2-18 Vogtle SEP RdP=RSFP =sec OSFP =16 6.850 0.405 1.088 feet feet radians = arctan(RsFP/d)
E'y XSFPII XSFP12 XSFP21 XSFP22 MeV 0.90 33.62 36.57 34.80 37.86 1.35 28.20 30.67 29.13 31.69 1.80 24.61 26.77 25.41 27.64 2.20 22.22 24.17 22.95 24.96 2.60 20.32 22.10 20.98 22.83 3.00 18.75 20.39 19.41 21.11 4.00 15.79 17.18 16.75 18.22 Ey E1 (XSFP11) E1(XsFP12)
EI (XSFP21) E1(XsFP22)
MeV 0.90 7.3E-17 3.5E-18 2.1E-17 9.3E-19 1.35 1.9E-14 1.5E-15 7.4E-15 5.3E-16 1.80 8.0E-13 8.5E-14 3.5E-13 3.4E-14 2.20 9.6E-12 1.3E-12 4.5E-12 5.6E-13 2.60 7.1E-11 1.1E-11 3.5E-11 5.1E-12 3.00 3.7E-10 6.5E-11 1.8E-10 3.1E-11 4.00 8.3E-09 1.9E-09 3.0E-09 6.4E-10 Ey DRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP 0.90 4.6E-05 1.39 0.91 5.8E-05 1.35 3.3 E-04 1.39 0.88 4.0E-04 1.80 3.9E-02 1.39 0.86 4.7E-02 2.20 9.5 E-03 1.39 0.85 1.1IE-02 2.60 4.9E-02 1.39 0.83 5.6E-02 3.00 3.1 E-03 1.39 0.82 3.5E-03 4.00 1 .4 E-02 1.39 0.80 1 .6E-02 TOTAL = 1.2E-01 mREM/hr TOTAL = 1 .3E-O1 mREM/hr Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1 &2 ICalculation Number: X6CNA1 5 Isheet: E3-1 Attachment E3 -Operating Deck Dose Rates for Reduced RPV Water Level Introduction The purpose of this evaluation is to determine the dose rates at the Containment operating deck area radiation monitors (1/2RE-0002, II2RE-0003, 1/2RE-0004, 1/2RE-0005, & 1/2RE-0006) that correspond to an RPV water level at the Top of Active Fuel TOAF (EL 181'-10" or 63% on Full Range RVLIS).Evaluation Dose Rate at Water Surface or TOAF The dose rate vs. graph in Attachment E2 does not extend down to zero feet of water depth.The Vogtle RPV dose rate vs. depth data from Attachment E2 are used to generate another graph and the line is extended down to fuel uncovery as shown below: Vogtle RPV Dose Rate vs. Water Depth 1.0E+10 _ ---1.0E+08 ---------E" 1.0E+07 -- --" ----1.0E+04 ....-- --...... .. ....~- _ -__1.0E.0O1 ..1.0E-0" P1.. ....I 2 3 4 56778 1011012 213 14 15 16 Water Depth Above TOAF (feet)At an RPV water level 2.0E+06 REM/hr corresponding to fuel uncovery, the dose rate is ~2.0E+09 mREM/hr, or Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: E3-2 Attachment E3 -Operating Deck Dose Rates for Reduced RPV Water Level Ooeratina Deck Reflected Dose Rate A review of the instrument location drawings (Unit 1: 1X5DS4B002
& 1X5DS4D002; Unit 2: 2X5DS4B002
& 2X5DS4C002) indicates the Operating Deck rad monitors (1/2RE-0002, 1/2RE-0003, 1/2RE-0004, 1/2RE-0005, & 1/2RE-0006) do not have a direct view of the irradiated fuel. The containment operating deck area radiation monitor locations are over laid on the containment structural drawings below: 2X2D48O05
--REO"O Note: 2RE-0004 not shown on 2X5DS4C002; location inferred based on 1 RE-004 location on 2X5DS4C002 They do "see" gammas that reflect off the containment dome. The operating deck dose rate due to these reflected gammas is given by the following equation from Davisson, "Gamma Ray Dose Albedos," (copy in Attachment C1): DRmon/DRsfc
= (cos O)*(A/r)*a where DRmon = reflected dose rate at area radiation monitor (mREM/hr)DRsfc = dose rate at surface of water above irradiated fuel (mREM/hr)o = incident angle = 00 A = reflecting area (sq ft)r = distance from reflecting surface to receptor cx= dose albedo; dependent upon incident angle, gamma energy, reflected angle, and reflecting surface Rearranging the above equation to solve for the dose rate at the area radiation monitor yields DRmon = DRsfc x [(cos O)*(Ner)*(a]
Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 ]calculation Number: X6cNA15 Isheet: E3-3 I Attachment E3 -Operating Deck Dose Rates for Reduced RPV Water Level The containment geometry is shown to the .......0right= (from. AosASumptiono=10
- 11)". LLner (jSee /-,/' t/"i "'" A = area of reflecting surface (sq ft) D =RPV ID ; D = 14.4167 ft [Design Input#7] Dek ,,,' , Aljt A = H[ (14.4167)2/4
=163.24 sq ft ii r = hypotenuse of right triangle i-~ ii 4 y = 397'-9" -220'-0" ---.y= 177.75ft ' i -t x = 70 ft r = SQRT[x 2 + y 2] = SQRT [(70)2 + (1 77.75)21 r = 191 ft Containment dimensions:
Design Input #7 The containment has a carbon steel liner, so the dose albedo for iron is used. For an incident angle of 0O, a range of emerging angles of 0O to ~30, and the predominant gamma energy (-2 MeV based a review of the dose rate data in Attachment E2), ax = -0.004 based on a review of the table on sheet Cl-10 of this calculation.
DRmon = DRsfc x {(1.00)*[1 77.75/(191 2)]*(0.004)}
DRmon = 1 .95E-05 x DRsfc Operating Deck Reflected Dose Rate -RPV Water Level TOAF The Containment operating deck dose rate due to an source dose rate of 2.0E+09 mREM/hr is therefore DRmon = 1 .95E-05 x (2.0E+09 mREM/hr)DRmnon = 3.90E+04 mREM/hr DRmon = ~4E+04 mREM/hr DRmon --40 REM/hr Southern Nuclear Design Calculation JPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: E4-1 Attachment E4 -Seal Table Room Dose Rate Evaluation Introduction The purpose of this evaluation is to determine the dose rates at the seal table room area radiation monitor, RE001 1, that correspond to the operating deck dose rates calculated in Attachment E3 of this calculation.
Evaluation The dose rate is proportional to the gamma flux, DR a *, (page 442, Lamarsh, "Introduction to Nuclear Engineering"), so the dose rate in the seal table room (DRstr) may be estimated by modeling the reflected gamma flux at the operating deck (Cod) as a monodirectional planar source at the back of a concrete shield. The gamma flux in the seal table room (¢str) is the buildup flux passing through the operating deck (equation 10.26, page 484, "Introduction to Nuclear Engineering"):
- str = (Pod/2) x {A 1 E 1[(1 + cx,) X p. X aod] + A 2 E 1[(1 + cx2) x p. x aod]}4)str/lCod
= 1/2/ X {ALEt[(1 + cxi) x p. x aod] + A 2 Ei[(1 + cx2) x p. x aod]}DRstr/DRod
= % x {AEi[(l + cx,) x p. x aod] + A 2 E4[(1 + cx2) x p. x aod]}A review of the data in Attachment E2 indicates that 2 MeV gammas are predominant; the evaluation will be based on 2 MeV gammas to estimate the overall effect on dose rate.Where, for 2 MeV gammas A 1 = 18.089 [Table 10.3, page 482, "Introduction to Nuclear Engineering"]
A 2 = 1 -A 1 [page 481, "Introduction to Nuclear Engineering"]
A 2 = -17.089 cxi = -0.04250 [Table 10.3, page 482, "Introduction to Nuclear Engineering"]
cx2 = 0.00849 [Table 10.3, page 482, "Introduction to Nuclear Engineering"]
p.= (pip) x p (piap) = 0.0445 cm 2/g [Table 11.4, page 648, "Introduction to Nuclear Engineering"]
p = 2.40 g/cm 3 [Table 11.4, page 648, "Introduction to Nuclear Engineering"]
- p. = (0.0445 cm 2/g) x (2.40 g/cm 3)p. = 0.1068 cm-'aod = operating deck thickness ad= 2'9" = 2.75 ft X (30.48 cm/i ft) [Design Input #5]ad= 83.82 cm Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: E4-2 Attachment E4 -Seal Table Room Dose Rate Evaluation Per equation 10.24 on page 483 of "Introduction to Nuclear Engineering," for X > 14 the function E 1 (X) may be approximated as: El[X] = [exp(-X)]
x {[1/(X + 1)] + [1/(X +13]Xi = (1 + a1) x !t x aod = (1 -0.04250) x (0.1068 cm 1) x (83.82 cm) = 8.571 X2= (1 + cx2) x p. x aod = (1 + 0.00849) x (0.1068 cm'1) x (83.82 cm) = 9.028 For X = 10, the error is 0.11%; the values of X used in this evaluation are sufficiently close to 10 that any error due to this approximation is negligible.
For X 1 = 8.571: E4[X 1] = [exp(-8.571)]
x {[1/(8.571
+ 1)] + [1/(8.571
+1)]E,[X 1] = 2.002E-05 For X 2 = 9.028: E4[X 2] = [exp(-9.028)]
x {[1/(9.028
+ 1)] + [1/(9.028
+1)]E4[X 2] = 1 .209E-05 Therefore DRstr/DRodj
= 1/2 x [(1 8.089)x(2.002E-05)
+ (-1 7.089)x(1
.209E-05)]
DRstr/DRodj
= 1/2/ x [3.62 1E-04 -1 .979E-04]DRstr/DRodj
= 7.777E-05 DRstr = (7.777E-05) x DRod For RPV water level EL 181'-1 0" (TOAF), DRod = 3.90E+04 mREM/hr (Attachment E3): DRstr = (7.777E-05) x (3.90E+04 mREM/hr)DRstr = 3.0 mREM/hr DRstr = -3 mREM/hr Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Icalculation Number: X6CNA15 ISheet: F-I Attachment F -Evaluation of 52 psig Pressure on Mechanical Penetrations Introduction There is a discrepancy between the DBA Design Pressures for the Containment (52 psig per section 3.4.5 of DC-2101) and the pipe penetrations (50 psig per Attachment 2 of specification X4AQ10).This attachment evaluates the effect of a 52 psig Containment pressure on the pipe penetrations.
Conclusions The compressive and shear loads imposed by a 52 psig Containment pressure on the Unit 1&2 pipe penetrations' welds are well below their allowable loads, less than ~4% and ~30%respectively.
Thus, the pipe penetrations are expected to maintain containment integrity at 52 psig.Method A Type I pipe penetration is shown below:[From 1X4DL4A014
& 2X4DL4A014]
The weakest point of the penetration sleeve is the weld between the penetration sleeve and the containment liner. If the loads imposed by containment pressure on these welds are less than the weld strength, the penetration is expected to maintain containment integrity.
From page 443 of "Strength of Materials": "The strength of a butt weld is equal to the allowable stress multiplied by the product of the length of the weld times the thickness of the thinner plate of the joint. The American Welding Society specifies allowable stresses of 20,000 psi in tension or compression and 13,600 psi in shear." The specifications for Containment liner welds are likely to be more stringent (i.e., higher allowable stresses) than the values in this textbook.
Using these textbook values is conservative for the purposes of this evaluation:
establishing an allowable limit.
Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 ICalculation Number: X6CNA15 ISheet: F-2 Attachment F -Evaluation of 52 psig Pressure on Mechanical Penetrations These allowable stresses are most likely specified at standard temperature (68 F or 20 C). The maximum fluid temperature passing through one of these penetrations is 557 F (-290 F).Per VEGP ESAR Table 6.2.1-1, the peak DBA containment temperature is 250 F (-120 C). The yield strength of steel decreases with increasing temperature as shown in the representative graph to the right.Reducing the above allowable stresses by 15% conservatively addresses the effect of increased temperature 1,1 1,0 0,9 0,8 I.-0,7 _ _V\0,6 __ __ __0,5 1 __ .__ __'0200 400 600 Temperature 0 C Variation of ultimate strength (So, and yield strength (Sy))with ratio of operating temp/Iroom temp (ST/SRT)http://www.roymechi.co.uk/UsefulTables/Matter/Temperature_effects.h~tml The circumferential weld length (Lw) is calculated as follows Lw=I-x ID where ID = Inside diameter of penetration sleeve = OD -2 x t 0 = OD of penetration sleeve (inches)t = penetration wall thickness (inches)The weld compressive strength (Fc Ibf) is calculates as follows: Fc= [ac-norn x ftemp] x Lw x t where ac-nom = Nominal allowable compressive stress (20,000 psi)ftemp = Reduction due to increased temperature
= 0.85 = 1 -0.15 Lw= Weld length (inches)T = Weld thickness (inches) = Wall thickness (inches)The weld shear strength (Fs Ibf) is calculates as follows: Fs= ['s-nom X ftemp] X Lw x t where as-nom = Nominal allowable shear stress (13,600 psi)ftemp = Reduction due to increased temperature
= 0.85 = 1 -0.15 Lw= Weld length (inches)T = Weld thickness (inches) = Wall thickness (inches)
Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: F-3 Attachment F -Evaluation of 52 psig Pressure on Mechanical Penetrations The Containment pressure (Pctmt psig) exerts a compressive load (Pc Ibf) on the end of the penetration sleeve. Using the sleeve outside diameter (D in the above figure) maximizes this load: Pc = Pctrnt x [I x D 2/4 The Containment pressure (Pctrnt psig) exerts a shear load (Ps lbf) along the length of the penetration sleeve. Using the overall sleeve length (L in the above figure) maximizes this load: Ps= Pctmt x L-[ x 0 x L Evaluation The effect of a 52 psig Containment pressure on the Unit 1 and Unit 2 pipe penetrations are calculated in Excel spreadsheets Attachment Fl and Attachment F2.References FI. IX4DL4A013, Revision 7, "Containment Building Unit 1 Containment Wall Pipe Penetration Design List" F2. 1X4DL4A014, Revision 9, "Containment Building Unit 1 Containment Wall Pipe Penetration Design List" F3. 2X4DL4A013, Revision 5, "Containment Building Unit 2 Containment Wall Pipe Penetration Design List" F4. 2X4DL4A014, Revision 4, "Containment Building Unit 2 Containment Wall Pipe Penetration Design List" F5. Singer, "Strength of Materials," second edition, 1962 X6CNA15 X6CNAI 5 ~ATTACHMENT FSHEF-SHEET F-4 Bornt, Butch From: Jani, Yogendra M.Sent: Tuesday, October 14, 2014 4:52 PM To: Bornt, Butch Cc: Patel, V. R.; Evans, William P. (SNC Corporate);
Lambert, David Leslie
Subject:
FW: VEGP Pipe Penetration Eval Butch, I concur with your methodology used to evaluate 52 psig pressure on Mechanical Penetrations depicted on drawings 1X4DL4A014
& 2X4DL4A014.
The loads imposed on the weakest point (weld)of penetrations are less than the weld strength.
The penetrations shall exceed the requirements of ASME Section III code. So the penetrations are in compliance with specification no. X4AQ1 0.Therefore, I agree with your conclusion that the pipe penetrations are expected to maintain structural integrity of containment integrity at 52 psig.Thank you, Yogendra Jani SNC Fleet Des -Safety Ani & Mech 205.992.5125 office 205.410.9806 mobile SOUTHERNA COMPANY X6CNA15 X6CNAI 5 ~ATTACHMENT F1 HETF-SHEET F1-1 Evaluation of 52 psig Pressure on Ul Pipe Penetrations L = Overall Length of Penetration Sleeve (inches)D = Penetration Outside Diameter (inches)t = Penetration Sleeve Wall Thickness (inches)ID = Penetration Inside Diameter (inches)I D= D- (2 xt)Lw= Weld Length (inches)Lw= Hx ID ac = Allowable compressive stress (psi)'c= a'c-nom X ftemp ac-nomn = 20,000 psi = Nominal allowable comprssive stress ftemp = 0.85 = Reduction due to increased temperature O'c = 17,000 psi as =Allowable shear stress (psi)= a's-nara X ftemp a'c-nomn -ftemp =as = 11,560 13,600 psi = Nominal allowable comprssive stress 0.85 = Reduction due to increased temperature psi Fc= ac x Lw x t = Allowable Compressive Load (Ibf)Fs = x Lw x t = Allowable Shear Load (Ibf)Pctmt =Pc =Pc =Ps =Ps =52 psig = Containment Pressure Compressive Load (Ibf)Pctmt x ]-[ x [(D^2)/4]Shear Load (Ibf)Pctmt x(HIx D).x L X6CNA15 X6CNAI 5 ~ATTACHMENT F1 HETF-SHEET F1-2 Evaluation of 52 psig Pressure on UI Pipe Penetrations Compression ZIII= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 1X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 1X4DL4A013 or 1X4DL4A014, use B instead PEN # Type L D t ID Lw Fc Pc Pc/Fc 1 -4 I 48.25 56.000 1.500 53.000 167 4.2E+06 1.3E+05 0.030 5 VII 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 7- 10 I 18.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 11& 12 III 11.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 13 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 14 VII 15.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 15 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 16- 17 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 18-21 I 37.500 34.000 1.500 31.000 97 2.5E+06 4.7E+04 0.019 22 II 15.750 10.750 10.020 31 2.0E+05 4.7E+03 0.024 23 I 14.930 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 24 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 25 V 8.250 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 28 & 29 II 16.750 18.000 0.500 17.000 53 4.5E+05 1.3E+'04 0.029 30 &31 II 18.750 14.000 0.438 13.124 41 3.IE+'05 8.0E+03 0.026 32 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 33 II 18.750 14.000 0.438 13.124 41 3.1E+'05 8.0E+03 0.026 34 & 35 II 19.250 20.000 0.500 19.000 60 5.1E+05 1.6E+04 0.032 40 II 16.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 41 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 42 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 43-46 II 18.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 47 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 48 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 49 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 50 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 51 -55 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 X6CNA15 X6CNAI 5 ~ATTACHMENT F1 HETF-SHEET F1-3 Evaluation of 52 psig Pressure on Ul Pipe Penetrations Compression I I= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 1X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on IX4DL4A013 or 1X4DL4A014, use B instead PEN # Type L D t ID Lw Fc Pc Pcc 56 I 44.750 34.000 1.500 31.000 97 2.5E+06 4.7E+04 0.019 57 & 58 I 32.000 24.000 1.000 22.000 69 1 .2E+06 2.4E+04 0.020 59 & 60 I 28.000 26.000 1.000 24.000 75 1 .3E+06 2.8 E+04 0.022 61 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 62 & 63 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 64 VI 13.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 66 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 67 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 68 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 69 -73 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 75 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 76 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 77 & 78 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 79 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 80 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 81 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 82 V 8.250 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 83 & 84 10.000 24.000 0.500 23.000 72 6.1E+05 2.4E+04 0.038 85 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 86 III 23.670 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 87 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 88 VII 15.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 90 VII 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+'03 0.024 91 -98 II 19.750 18.000 0.750 16.500 52 6.6E+05 1.3E+04 0.020 100 9.250 4.500 0.237 4.026 13 5.1E+04 8.3E+02 0.016 101 -104 I 20.550 18.000 0.750 16.500 52 6.6E+05 1.3E+04 0.020 Maximum PclFc = 0.038 X6CNA15 X6CNAI 5 ~ATTACHMENT Fl1HETF-SHEET F1-4 Evaluation of 52 psig Pressure on Ul Pipe Penetrations Shear Type V orVII peerto;dimension B used instead of L Type V Penetration:
Per 1X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 1X4DL4A013 or 1X4DL4A014, use B instead PEN # Type L D t ID Lw Fs Ps Ps/Fs 1 -4 I 48.250 56.000 1.500 53.000 167 2.9E+06 4.4E+05 0.153 5 VII 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 7- 10 I 18.000 18.000 0.500 17.000 53.4 3.1E+05 5.3E+04 0.171 11& 12 III 11.750 12.750 0.375 12.000 37.7 1.6E+05 2.4E+04 0.150 13 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 14 VII 15.250 10.750 0.365 10.020 31.5 1.3E+05 2.7E+04 0.202 15 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 16- 17 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 18 -21 I 37.500 34.000 1.500 31.000 97.4 1.7E+06 2.1E+05 0.123 22 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 23 I 14.930 10.750 0.365 10.020 31.5 1.3E+05 2.6E+04 0.197 24 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 25 V 8.250 18.000 0.500 17.000 53.4 3.1E+05 2.4E+04 0.079 28 & 29 II 16.750 18.000 0.500 17.000 53.4 3.1E+05 4.9E+04 0.160 30 & 31 II 18.750 14.000 0.438 13.124 41.2 2.1E+05 4.3E+04 0.205 32 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 33 II 18.750 14.000 0.438 13.124 41.2 2.1E+05 4.3E+04 0.205 34 & 35 II 19.250 20.000 0.500 19.000 59.7 3.5E+05 6.3E+04 0.182 40 II 16.750 18.000 0.500 17.000 53.4 3.1E+05 4.9E+04 0.160 41 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 42 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 43-46 II 18.750 18.000 0.500 17.000 53.4 3.1E+05 5.5E+04 0.179 47 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 48 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 49 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 50 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 51 -55 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 X6CNA15 X6CNAI 5 ~ATTACHMENT F1 HETF-SHEET F1-5 Evaluation of 52 psig Pressure on Ul Pipe Penetrations Shear 11111= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 1X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 1X4DL4A013 or 1X4DL4A014, use B instead PEN # Type L D t ID Lw Fs Ps Psl__s 56 I 44.750 34.000 1.500 31.000 97.4 l.7E+06 2.5E+05 0.147 57 & 58 I 32.000 24.000 1.000 22.000 69.1 8.0E+05 l.3E+05 0.157 59 & 60 I 28.000 26.000 1.000 24.000 75.4 8.7E+05 1.2E+05 0.136 61 V 8.250 10.750 0.365 10.020 31.5 l.3E+05 1.4E+04 0.109 62 & 63 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 64 VI 13.250 10.750 0.365 10.020 31.5 l.3E+05 2.3E+04 0.175 66 V 8.250 10.750 0.365 10.020 31.5 l.3E+05 l.4E+04 0.109 67 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 68 II 16.000 18.000 0.500 17.000 53.4 3.IE+05 4.7E+04 0.152 69 -73 III 12.750 12.750 0.375 12.000 37.7 1 .6E+05 2.7E+04 0.163 75 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 76 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+Q4 0.109 77 & 78 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 79 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 80 II 16.000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+04 0.152 81 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 82 V 8.250 18.000 0.500 17.000 53.4 3.1E+05 2.4E+04 0.079 83 & 84 10.000 24.000 0.500 23.000 72.3 4.2E+05 3.9E+04 0.094 85 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 86 III 23.670 12.750 0.375 12.000 37.7 1.6E+05 4.9E+04 0.302 87 II 16.000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+04 0.152 88 VII 15.250 10.750 0.365 10.020 31.5 1.3E+05 2.7E+04 0.202 90 VII 8.250 10.750 0.365 10.02.0 31.5 1.3E+05 1.4E+04 0.109 91 -98 II 19.750 18.000 0.750 16.500 51.8 4.5E+05 5.8E+04 0.129 100 9.250 4.500 0.237 4.026 12.6 3.5E+04 6.8E+03 0.196 101 -104 I 20.550 18.000 0.750 16.500 51.8 4.5E+05 6.0E+04 0.134 Maximum Ps/Fs = 0.302 X6CNA15 ATTACHMENT F2 SHEET F2-1 Evaluation of 52 psig Pressure on U2 Pipe Penetrations L = Overall Length of Penetration Sleeve (inches)D = Penetration Outside Diameter (inches)t = Penetration Sleeve Wall Thickness (inches)ID = Penetration Inside Diameter (inches)I D= D-(2xt)Lw= Weld Length (inches)Lw= ix ID ocm = Allowable compressive stress (psi)Ocm = G-c-nom X ftemp-c-norn = 20,000 psi = Nominal allowable comprssive stress ftemp -0.85 -Reduction due to increased temperature ocm = 17,000 psi = Allowable compressive stress o-s = Allowable shear stress (psi)O-s = os-S-hin X ftemp O'c-noin = 13,600 psi = Nominal allowable comprssive stress fteinp = 0.85 = Reduction due to increased temperature a-s = 11,560 psi = Allowable shear stress Fc = a-c x Lw x t = Allowable Compressive Load (Ibf)Fs= a-s x Lw x t = Allowable Shear Load (Ibf)Pctrat = 52 psig = Containment Pressure Pc = Compressive Load (Ibf)Pc = Pctint x H- x [(D^2)/4]Ps = Shear Load (lbf)Ps = Pctint x (H x D) x L X6CNA15 X6CNAI S ~ATTACHMENT F2 SETF-SHEET F2-2 Evaluation of 52 psig Pressure on U2 Pipe Penetrations Compression
[1111= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 2X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 2X4DL4A013 or 2X4DL4A014, use B instead PEN # Type L D t ID LFcPc Pc/Fc 1 -4 I 48.25 56.000 1.500 53.000 167 4.2E+06 1.3E+05 0.030 5 VII 8.250 10.750 0.365 10.020 31 2,0E+05 4.7E+03 0.024 7- 10 I 18.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 11& 12 III 11.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 13 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 14 VII 15.250 10,750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 15 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 16- 17 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 18-21 I 37.500 34.000 1.500 31.000 97 2.5E+06 4.7E+04 0.019 22 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 23 I 14.930 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 24 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+'03 0.024 25 V 8.250 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 28 & 29 II 16.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 30 & 31 II 18.750 14.000 0.438 13.124 41 3.1E+05 8.0E+03 0.026 32 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 33 II 18.750 14.000 0.438 13.124 41 3.1E+05 8.0E+03 0.026 34&35 II 19.250 20.000 0.500 19.000 60 5.IE+05 1.6E+04 0.032 40 II 16.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 41 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 42 II 12.000 10.750 0,365 10.020 31 2.0E+05 4.7E+03 0.024 43-46 II 18.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 47 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 48 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 49 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 50 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 51 -55 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+I03 0.024 X6CNA15 X6CNAI 5 ~ATTACHMENT F2 SETF-SHEET F2-3 Evaluation of 52 psig Pressure on U2 Pipe Penetrations Compression
[113= TyeV orVII peerto;dimension B used instead ofL Type V Penetration:
Per 2X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 2X4DL4A013 or 2X4DL4A014, use B instead PEN # Type L D t ID Lw Fc Pc PclFc 56 I 44.750 34.000 1.500[ 31.000 97 2.5E+06 4.7E+04 0.019 57 & 58 I 32.000 24.000 1.000 22.000 69 1 .2E+06 2.4E+04 0.020 59 & 60 I 28.000 26.000 1.000 24.000 75 1 .3E+06 2.8E+04 0.022 61 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 62 & 63 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 64 VI 13.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 66 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 67 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 68 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 69-73 III 12.750 12.750 0.375 12.000 38 2.4E+05 6:6E+03 0.028 75 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 76 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 77 & 78 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 79 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 80 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+-04 0.029 81 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 82 V 8.250 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 83 & 84 10.000 24.000 0.500 23.000 72 6.1E+05 2.4E+04 0.038 85 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 86 III 23.670 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 87 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 88 VII 15.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 90 VII 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 91 -98 II 19.750 18.000 0.750 16.500 52 6.6E+05 1.3E+04 0.020 100 9.250 4.500 0.237 4.026 13 5.1E+04 8.3E+02 0.016 101 -104 I 20.550 18.000 0.750 16.500 52 6.6E+05 1.3E+-04 0.020 Maximum Pc/Fc = 0.038 X6CNA15 X6CNAI 5 ~ATTACHMENT F2 SETF-SHEET F2-4 Evaluation of 52 psig Pressure on U2 Pipe Penetrations Shear I=Type Vor VIpenetration; dimension B used instead o Type V Penetration:
Per 2X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 2X4DL4A013 or 2X4DL4A014, use B instead PEN # Type L D t ID Lw Fs Ps Ps/Fs 1 -4 I 48.250 56.000 1.500 53.000 167 2.9E+06 4.4E+05 0.153 5. VII 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 7-10 I 18.000 18.000 0.500 17.000 53.4 3.1E+05 5.3E+04 0.171 11& 12 III 11.750 12.750 0.375 12.000 37.7 1.6E+05 2.4E+04 0.150 13 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 14 VII 15.250 10.750 0.365 10.020 31.5 1.3E+05 2.7E+04 0.202 15 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 16-17 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 18-21 I 37.500 34.000 1.500 31.000 97.4 1.7E+06 2.1E+05 0.123 22 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 23 I 14.930 10.750 0.365 10.020 31.5 1.3E+05 2.6E+04 0.197 24 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 25 V 8.250 18.000 0.500 17.000 53.4 3.1E+05 2.4E+04 0.079 28 & 29 II 16.750 18.000 0.500 17.000 53.4 3.1E+05 4.9E+04 0.160 30&31 II 18.750 14.000 0.438 13.124 41.2 2.1E+05 4.3E+04 0.205 32 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 33 II 18.750 14.000 0.438 13.124 41.2 2.1E+05 4.3E+04 0.205 34 & 35 II 19.250 20.000 0.500 19.000 59.7 3.5E+05 6.3E+04 0.182 40 II 16.750 18.000 0.500 17.000 53.4 3.1E+05 4.9E+04 0.160 41 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 42 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 43-46 II 18.750 18.000 0.500 17.000 53.4 3.1E+05 5.5E+04 0.179 47 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 48 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 49 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 50 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 51 -55 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 X6CNA15 X6CNAI5 ~~ATTACHMENT F2 SETF-SHEET F2-5 Evaluation of 52 psig Pressure on U2 Pipe Penetrations Shear I I= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 2X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 2X4DL4A01 3 or 2X4DL4A014, use B instead PEN # Type L D t ID Lw Fs Ps Ps/Fs 56 I 44,750 34.000 1.500 31.000 97.4 1.7E+'06 2.5E+05 0.147 57 & 58 I 32,000 24.000 1.000 22.000 69.1 8.0E+05 1.3E+05 0.157 59 & 60 I 28,000 26.000 1.000 24.000 75.4 8.7E+05 1.2E+05 0.136 61 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 62 &63 II 15,750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 64 VI 13,250 10.750 0.365 10.020 31.5 1.3E+05 2.3E+04 0.175 66 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 67 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 68 II 16,000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+04 0.152 69-73 III 12,750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 75 V 8.250 10.750 0.365 10,020 31.5 1.3E+05 1.4E+04 0.109 76 V 8.250 10.750 0.365 10,020 31.5 1.3E+05 1.4E+04 0.109 77 & 78 II 15,750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 79 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 80 II 16.000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+-04 0.152 81 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 82 V 8.250 18,000 0.500 17,000 53.4 3,1E+05 2,4E+04 0.079 83 & 84 10,000 24.000 0.500 23,000 72.3 4.2E+05 3.9E+04 0.094 85 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 86 III 23.670 12.750 0.375 12.000 37.7 1.6E+05 4.9E+04 0.302 87 II 16.000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+04 0.152 88 VII 15.250 10.750 0.365 10.020 31.5 1.3E+05 2.7E+04 0.202 90 VII 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 91 -98 II 19.750 18.000 0.750 16.500 51.8 4.5E+05 5.8E+04 0.129 100 9.250 4.500 0.237 4.026 12.6 3.5E+04 6.8E+03 0.196 101 -104 I 20.550 18.000 0.750 16.500 51.8 4.5E+05 6.0E+04 0.134 Maximum Ps/Fs = 0.302 Southern Nuclear Design Calculation IPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 ISheet: G1I ATTACHMENT G -REFERENCES DescrptionNumber Descrptionof Pages G1 -WCAP-8253 Section 4.1 15 G2 -Containment Rad Monitor 16MAY14 Data 5 G3 -VEGP 16 May 16 2014 Morning Report (First Page) 1 I _____________
4.I-4.*1-4.1~+*1.4 4.+4.Total Number of Pages Including Cover Sheet 2 22 SNC CALC X6CNA1 5 ATCMN ISETG ATTACHMENT G1 SHEET G1-1 c,.-J L.. Z, WESTINGHOUSE NON-PROPRIETARY CLASS 3 SOURCE TERM DATA FOR WESTINGHOUSE PRESSURIZED WATER REACTORS JULY 1975 6<APPROVED: C. EICHELDINGER, MANAGER NUCLEAR SAFETY DEPARTMENT WESTINGHOUSE ELECTRIC CORPORATION NUCLEAR ENERGY SYSTEMS.. ...........
P;O. -BO ~X 355 .. ............
.PITTSBURGH, PENNSYLVANIA 15230 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-2 4.0 REACTOR COOLANT SYSTEM ACTIVITY The long term environmental impact of normal reactor operation is eval-uated from the quantities of radioactivity in plant effluents.
The source of this activity, both fission and corrosion products, is the Reactor Coolant System.The fission product activity in the reactor coolant results fromr diffusion through fuel cladding defects and direct recoil from exposed *uranium within the system. The contribution from each mechanism, diffusion and recoil, can be resolved by observing the 1-131 and 1-133 concentrations in the coolant as described in Section 4.1.1. Although this is a useful tool-for estimating fuel defects, the total activity in the reactor coolant, regardless of source, is the important parameter for evaluating the long term environmental impact° Even more important is the total radioiodine concentration in the coolant because of offsite thyroid dose limitations.
The intent in this section, therefore, is not only to present operating plant data. in the conventional manner, relating radioiodine concentration to fuel defects, but subsequently to de-emphasize the "fuel defect" concept in favor of the "expected 1-131 concentration".
Operating plant data for seventeen Westinghouse Pressurized Water Reactors which use Zircaloy Il 1 clad fuel are presented in Section 4.1.2.The corrosion product activity in the reactor coolant results from neutron activation of metals deposited into the system from materials of construc-tion. Operating plant corrosion product data for seven Westinghouse pressurized water, reactors are given in Section 4.2.4.1 FISSION PRODUCT ACTIVITIES IN THE PRIMARY COOLANT 4.1.1 RELEASE MODEL The predicted fission product activity (disintegrations per second) in the reactor coolant during operation, with fuel defects, is computed using the following differential equations:
4-1 SNC CALC X6CNA1 5 ATCMN ISETG ATTACHMENT G1 SHEET G1-3 For parent nuclides in the coolant, dNwiB dt -DviNi -(.(i+ Rni Bo -fr w (A)For daughter nuclides in the coolant, ddt vj+Rj +~ t,) + XN(B)where: N = population of nuclide D = defective fuel fraction of reactor rated power R = purification flow (coolant system volumes per second)B°= initial boron concentration (ppm)B' = boron concentration reduction rate by feed and bleed (ppm per sec)n= removal efficiency of purification cycle for nuclide A= radioactive decay constant (sec&l)v = escape rate coefficient for diffusion into coolant (sec-l)Subscript C refers to core Subscript w refers to coolant Subscript i refers to parent nuclide Subscript j refers to daughter nuclide Predicted I-131 concentrations at the one percent defect level are cal-culated in this manner using the assigned values of D = 0.01 and v = 1.3-................... -x--l0 8-_. se c-]--a long w ith-s pe i fi cp-pant---paramete rs ms'u ch --as ""-pUrifi-cat-ion.....................
flow rate, boron values, and reactor coolant weight. The measured 1-131 concentration is compared to this predicted 1-131 value at the one percent fuel defect level to determine the apparent defects by a simple ratio. For any exposed uranium in .the system, however, there is no diffusion barrier and fission products from this source are deposited directly into the reactor coolant by the recoil mechanism.
A correction can be made for this recoil component by observing the 1-131 and 1-133 concentrations in the reactor coolant.4-2 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-4 The relationship between reactor coolant system 1-131 to 1-133 ratio and the correction of apparent fuel defect levels is derived from the solution of the simultaneous equations which describe the components of the fission product activities:
131ID 131I =131I 133ID 133I= 133I-where Uhe ar'e deffined as follows: -___________
D = diffusion component R = recoil component 0 = observed total For the diffusion relationship, the concentration in the fuel is given by: dtF -FYi -Ai IF- Vj IF (1)(2)(3)where IF =t =F -Yi =1i fission product iodine (atoms) and time (seconds)affected power fraction given as fissions/sec.
fission yield for i-th radionuclide decay constant for i-th radionucli'de (sec&l)escape rate coefficient for i-th radionuclide (sec-l)At steady state, the fuel rod inventory is given by: FY.Similarly, the reactor coolant system (RCS) concentration resulting from defective fuel can be expressed:
dlcc_(4)(5)4-3 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-5 where Icis the RCS concentration of the fission produce IF and S= purification rate in the letdown system, given by Letdown Rate (kg/sec)/RCS Mass (kg), (sec'l)Ei = purification efficiency for i-th radionuclide Ei Rq + B'/(Bo + tB') of Equation (A)Again at steady state:-IFVi (6)Substituting IF from (4) into (6) and multiplying by Ai: FYivix 1 AiIc = (Ai + j3Ei)(Ai + vi) = ID(7)A.ic is by definition ID, the diffusion component.
For practical purposes vi~ is considered to be identical for all isotopes of the same element, and for the case of the iodine radionuclides vi (13xlO'8sc is negligibly small compared to A.. When the prfcto efficiency is high, E. may be taken as 1.00; equation (7) then becomes: Fivi ID= "('i + 6 8 Then the ratio l31ID/133ID is obtained:__ 31ID _ 131 Al 3 3~ +___ (9)1 33ID 1 3 1 + 6 For the recoil relationship, the RCS concentration for the i-th radionuclide is given by: dtc -F'Y. -A.il -6IcE. (10)where F' = Effective source term, fissions/second At steady state, the result obtained when multiplied by xi is: xiIc -i + 'Y i I (11)4-4 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-6 where the recoil component IR is defined as Again, taking E. : 1.00, the usual expression for the steady-state activity derived from a recoil source results: IR = F'Yixi/(?Xi
+ 13) (12)The resulting ratio of 131IR/133IRi hs I1R 1 Y31 1i31. X133 + (13)1331R Y1V33 X131 + B os derived above as follows: RD = 131/31 (14)and RR = 131R133R (15)the simultaneous equations may be solved; rewriting equation (2) by substituting for 133D and 133R' using (14) and (15): 131~ 131~ID I R = 1331o (2')RD RR0 Then multiplying 2' by RR and subtracting from (1), the following is ob ta ined: (1l- RR/RD) 131ID 131Io -RR 1 3 3 Io (16)S rce1-1--n r-epres ent-s--th-e
"'tru-e" or corre-cted d-efec-t-level-, the rat;io ..................
131I /13]I" gives the ratio of corrected defects to apparent or observed D o defects : 131 -RD RRRD 133io 131i°- RD _RR RD _RR 131i° (17)Substituting (9) and (13) into (17), the relationship between the observed ratio of 131i to 133I and the ratio of corrected to apparent defect levels becomes : 4;5 SNC CALC X6CNA15ATAHETG ATTACHMENT G1 SHEET G1-7 13I _ ___133 _ -Y131 .131
- l133~ ++
- o1(8 11o 13 -131 Y1'33 -'131 X131 *(8 where Ro= 131~Io/3I i.e. the observed ratio of 13I to 13I For a typical purification rate constant (B) of 2 x 10-5 sec-1 , the values of equations (14) and (15) become 0.62 and 0.067 respectively when the following nuclear constants are used: Yl31 =2.93%"'133 -l.-9 A13 =1.0 x10O 6 secl 133= 9.26 x 10- sec1 substituting into equation (17) gives:-1 .12 -0(9 131 ioR Similarly, the isotopes of Xe-133 and Xe-135 can be used to estimate fuel defects. However, more uncertainties exist such as burnup of Xe-135, stripping fractions, and coolant system leaks for predicted concentrations, as well as more difficulties in the radiochemical analyses for fission gases.Typical values of RD and RR for xenon, using the applicable nuclear constants and plant parameters, are 47.5 and 0.5 respectively.
The xenon equation (17)counterpart then becomes:............-
3eD- 1.01 --.(20)1 3 3 Xe°where Ro = 1 3 5Xeo The observed concentrations of Xe-133 and Xe-135 are used in the same manner as the iodine isotopes to calculated apparent and corrected defects as shown in Table 4-18. The escape rate coefficient (v) used for xenon is 6.5 x lO sec-4-6 SNC CALC X6CNA15 ATCMN iSETG-ATTACHMENT G1 SHEET G1-8 The above model is valid for evaluating the long term environmental impact provided the value used for the escape rate coefficient (v) is consistent throughout the calculations.
The predicted reactor coolant activity concentrations are based on a defect level of one percent (chosen for equipment design purposes, not environmental impact) and an assumed value of v (1.3 x 10-8 sec-I for iodine). The term '"defect level 1' is defined as the equivalent percentage of average power density ( fuel rods, or that percentage of reactor rated power, contributing activity to the reactor coolant at a specific escape rate through cladding defects (e.g., a reactor rated at 1520 MWt having defective fuel rods generating 15.2 MWt would be operating at a defect level of one percent).to the predicted concentrations to determine an inferred defect level for the core. The "estimated" reactor coolant activity for long term environmental impact (40 years of plant operation), in turn, is based on a time integrated "average" fuel defect level and the selected value of v. If the assumed value of v were decreased by a factor of two, for example, the average defect level used for environmental impact calculations would be increased by the same factor of two. Therefore, no matter what value is assigned to v, the calculated environmental impact will not change because of the compensating change in the average defect level.4.1.2 OPERATING PLANT FISSION PRODUCT DATA The reactor system in an operating reactor plant is monitored periodically to determine activity levels and evaluate fuel performance.
Gross beta-gaimma measurements are made to determine general radioactivity
........................
evels and to-ascertain-that-Technical--Spec-i-fi-cation-concentration-limits
..-...~............
are not exceeded.
The coolant is analyzed for radioiodine in particular because of its biological importance and because it provides a good indication of fuel performance.
These analyses are usually performed three to five times per week but may vary from plant to plant and for different situations.
For this report, data points were selected on a monthly basis to be representative of normal operating conditions as near to equilibrium as possible.
Using all data points, or even a random selection of data points, would not really describe normal operating conditions because reactor power changes cause abnormal fluctuations in primary coolant activity concentrations, and because fission product saturation is time dependent.
wcap-284 4-7 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-9 Operating plant data was reviewed in depth for 17 plants which have Westinghouse Pressurized Water Reactors (PWRs) with Zircaloy clad fuel.These 17 plants includeall Westinghouse PWRs using.Zircaloy clad fuel which have been operating for a sufficient period of time to provide meaningful data on coolant concentrations.
Representative data points were obtained for each month of operation from startup through December, 1974. The results were tabulated and are presented in Tables 4-1 through 4-12 and Tables 4-12-A-l through 4-12-A-5.
The effective full power ____days (EFPD) are given as a cumulative total. The percent power level given is that level at which samples were taken for analysis, and not the average power level for the month. All calculated defect levels were corrected linearly to 100 percent power. This correction is expected to underestimate the inferred fuel defect level, since the release of volatile fission products likely has a non-linear dependence on fuel temperature.
Conversely, the correction overestimates release on a calendar time basis since corrected coolant concentration values are greater than actual values. Examination of the data, however, shows this effect to be small and it should have little or no effect on the overall averages.
The inferred fuel defect levels for each plant are given on two bases. The column headed "apparent" defect level represents the level based on the measured reactor coolant 1-131 activity.
This apparent fuel defect level does not distinguish between iodine activities resulting from fission of uranimum in fuel rods, with release to the.........................
re actr_ oolant vi .d iffu sion,. and iodin ac2t iv itie s prod uced from._sourc es ...........
which permit direct recoil of fission fragments to the coolant 0 The column headed "corrected" defect level shows values inferred from measured reactor coolant iodine activities and corrected by the observed 1-131 to 1-133 ratio, as described previously, to give the contribution to the coolant activity from the diffusion mechanism only. Corrected defect levels could not be determined in the absence of 1-133 data. The apparent, rather than corrected, fuel defect levels are important because a major factor determining the radioactivity of the effluents from a plant during normal operation is the overall primary coolant activity, regardless of source.
...SNC CALC X6CNA1 5ATAHETGSETGIl ATTACHMENT G1 SHEET G1-10 The weighted average inferred fuel defect level was calculated on three bases: for each cycle of each plant, for the plant life, and for the total life of all plants through December, 1974. Summaries are presented in Table 4-13-A-I and 4-13-A-2.
Table 4-13-A-i reflects all of the data presented in the preceding seventeen tables. Table 4-13-A-2 excludes the first year of operation and periods when the reactor was operating at less than 70 percent power because these factors tend to underestimate the fuel defect levels expected over the forty year life of the plant. The summary tables are consistent with the data of Table 4-14, which was previously reported to the AEC(I 0) and covers the period through June, 1973. The values given in these summary tables are not simple arithmetic averages but rather values weighted by the effective full power days of operation during each cycle and over the plant life, according to the relationship:
Average inferred defect level=(EP.D where: EFPD = Effective full power days for the month or period D .= Representative defect level for the month or period A minimum value of 0.001 was Used in the averaging calculation when the inferred defect levels were less than 0.001.Table 4-13-A-l shows the overall average "apparent" fuel defect level for all plants to be 0.064 percent and a value of 0.028 percent excluding the first cycles of Beznau 1 and Ginna. It should be noted by comparingl Table 4-13-A-2 with Table 4-13-A-l that the elimination of both the first.....................and the data~from~those ess .........than 70 percent power does not make a significant difference in the overall time "integrated apparent fuel defect: 0.071% vs 0.064%. The high defect levels observed in the Beznau 1 and Ginna first cycle cores were due primarily to hydriding problems in a single region of fuel for each plant which have since been corrected.
Approximately once a year, about one-third of the fuel in a PWR is replaced.
Thus, after about 3 years, no original fuel remains so that even older planits will keep pace with fuel improvements.
11_0 SNC CALC X6CNA15ATAHETGSETGil ATTACHMENT G1 SHEET G1-11 During a single cycle the coolant iodine concentration generally increases with operating time. This increase might imply a correlation between fuel burnup and defect level but the core region, or regions, which are the source of the coolant activity cannot be identified by radioiodine analysis.
Thus, it is not possible to provide a simple correlation between iodine concen-tration and fuel burnup, nor is it probable that such a correlation exists, based on available data.The overall average fuel defect level is useful and valid for calculating"epctd activity concentrations in the reactor coolant and subsequently-e-valuai-ng--the-4og-term--env4r4onmenta1--impac~t.
However. i t-isnot-valid for other applications such as.Technical Specifications since it is an"average
value and the actual inferred defect level will be above the average as much as it is below.Occasionally an extensive isotopic analysis is performed on the primary coolant. The results of some recent analyses performed on Surry Unit 1, H. B. Robinson unit 2, and R. E. Ginna are presented in Tables 4-15, 4-16, and 4-17 respectively.
Fuel defect levels were calculated from this data using 1-131 and 1-133 concentrations and, for comparison, using Xe-133 and Xe-135 concentrations.
The results are given in Table 4-18. The inferred defect level values show fair agreement between the iodine and xenon methods for Surry 1 and Robinson 2. However, the iodine method results in an inferred defect level which is a factor of six greater than that provided by the xenon method for the Ginna plant. The values using iodine concentrations should be more dependable because gas predictions
.......................
and-analyses are dif~ficult as-stated prev-lousiy (Page 4-6).,and subject -.........
.......to greater errors. Additionally, where a substantial discrepancy occurs, as for Ginna, the iodine method is more conservative.
The inferred fuel defect level values and 1-131 concentrations from Tables 4-1 through 4-12 are presented graphically in Figures 4-lA through 4-12A and 4-lB through 4-12B, respectively.
The "A" Figures are plots of inferred fuel, defect levels as a function of effective full power days. These figures include average inferred defect level values and pertinent informa-tion such as fuel density, rod pressure, and number of assemblies for each 4-10 SNC CALO X6CNA15ATAHETGSETG-1 ATTACHMENT G1 SHEET G1-12 cycle .of operation.
The figures clearly show that improvements in fuel technology have significantly reduced fuel defect levels. The "B" Figures are plots of 1-131 concentration, corrected linearly to 1O00 percent power, as a function of effective full power days. These figures are included because the radioiodine concentration in the primary coolant is the important parameter for evaluating the long term environmental impact of normal plant operation.
The same scale was used in the plots for all plants to demonstrate the improvements in fuel performance and iodine concentrations.
The figures were not updated to reflect the additional data included in I1 Revision 1.I The inthioiecth-has been eVa-Tat-d-th us-far-i-ivT h---conventional manner, relating reactor coolant radioiodine concentrations with inferred fuel defect levels. To avoid possible misinterpretations, another method of data handling should be considered.
The "fuel defect" concept, with regard to radiological evaluation, should be de-emphasized in favor of "expected reactor coolant radionuclide concentrations".
The inferred defects levels,.as determined in this study using radioiodine concentrations, were based on an assumed escape rate coefficient (v) of 13x 108sc. This value of v could vary significantly depending I1 on the type of defect involved.
Post irradiation examination of fuel rods could very well show a different number of defective rods than indicated by 1-131 concentration because of this variation and the variation of rod power level. Also, radioactivity can be present in the coolant even with zero defects because of recoil sources. Therefore, since the total activity in the reactor coolant is the important parameter for evaluating long-term environmental impact, expected concentration values should be established
.............
.... .... ..w h ich in cic d e -l s r-es ;.........
..............
..... .... .............................
.............
........ .....An effort to establish such concentration values in currently in progress via the ANS 18.1 Working Group. This group is in the process of developing the American National Standard Source Term Specification, N237. The standard is to establish typical long-term concentrations of radionuclides in principal fluid streams of light water-cooled nuclear power plants. The numerical values could be used directly for radiological evaluation rather than calculating concentrations from a specified fuel defect level. The draft 4-11 SNC CALC X6CNA15ATAHET1SETGI1 ATTACHMENT G1 SHEET G1-13 version of the N237 Standard gives an 1-131 concentration value of 0.27 iiCi/gram in the reactor coolant of the reference PWR. This is the average 1-131 concentration in the primary coolant expected over the lifetime of the reactor.Although the value of 0.27 .iCi/gram is *higher than that indicated by the data presented here, it is lower than the values based on the current defect criterion.
The time integrated average 1-131 concentration for the fourteen plants given Table 4-13-A-2, corresponding to 0.071 percent defects, is 0.118 pCi/gram.
The 1-131 concentration values corresponding to thfe current WAs -1258-cirterion or 0.25 percent d~fe--W-t1-oud-range-from 0.33 to 0.59 pCi/gram f'or the plants reported here. The range is due to varying plant parameters.
The proposed N237 standard is equivalent to a compromise between the original 0.25% defects and the 0.07% defects shown in Table 4-13-A-2.
Since the proposed standard diverges from the fuel defect concept and will be revised periodically to reflect additional operating plant data, it should be adopted when available.
For shorter term hazards considerations, Technical Specifications for 1-131 could be calculated for each plant based on a specific postulated accident and offsite thyroid dose limitations.
The calculated 1-131 concentration in this case would be an upper limit. Actual iodine concentrations in the reactor coolant could then be reported as a percentage of Technical Specifications rather than as the percent fuel defects.4.
1.3 CONCLUSION
S AND RECOMMENDATIONS 4.1.3.1 Conclusions A survey was made of operating plant data from seventeen Westinghouse I Pressurized Water Reactors, which use Zircaloy clad fuel, to determine trends in radioactivity concentrations in primary coolant systems during normal operation.
The concentrations of 1-131 and 1-133 were used to estimate fuel defect levels. The "apparent" fuel defect level is that based on tOtal 1-131 in the coolant, regardless of source. The "corrected" 4-12 SNC CALC X6CNA15ATAHETGSETGI1 ATTACHMENT G1 SHEET G1-14 defect level represents only the diffusion component based on an escape rate coefficient of 1.3 x 10-8 sec-l. Corrections for recoil sources were made via the 1-131 to 1-133 ratio. The term "inferred defect level" is defined as the inferred equivalent percentage of defective average power fuel rods, expressed as a percentage of reactor rated power contri-buting activity to the reactor coolant at a specific escape rate. The following observations were made: a. The time-integrated average fuel defect levels, for the seventeen plants studied, from startup through December, 1974 are 0.064 percent- ' p -n ected.b. The time-integrated average fuel defect levels, excluding the first year of operation and points of less than 70 percent reactor rated power, through December, 1974 are 0.071 percent "apparent" and 0.058 percent "corrected".
- c. The time-integrated average fuel defect levels have been continually decreasing with reactor operating time because of fuel technology improvements.
- d. The time-integrated averages for inferred fuel defect levels in this survey are consistent with the data given in Table 4-14 which was previously submitted to the AEC.e. A simple correlation between fuel defect levels and fuel burnup cannot be provided by radioiodine analysis of the coolant and based on... ...............................
avai-lab-le-data-iti1s improbable that such -corretation-existsT.
...............
.........f. Reactor coolant concentrations of Xe-133 and Xe-135 can also be used to estimate fuel defect levels but the iodine method presents fewer uncertainties and is therefore more reliable.g. An average fuel defect level and an escape rate coefficient of 1.3 x 10-8 sec-1 for iodine could be used for evaluating the long-term environ-mental impact of normal reactor operation.
However, this should not be used for otherpurposes such as Technical Specification limits 4-13 SNC. CALC X6CNA15ATAHETGSETGI1 ATTACHMENT G1 SHEET G1-15 because the actual inferred defect level will be above the average as much as it is below. Recommendations for environmental impact calculations are given in the following section.4.1 .3.2 Recommendations The "fuel defect" concept, with regard to environmental impact evaluation, should be de-emphasized in favor of "expected reactor coolant radionuclide concentrations".
- 1. For evaluating the long-term environmental impact (40 years of plant life), the proposed N237 Standard should be adopted. This standard, which establishes typical long-term concentrations of radionuclides in principal fluid streams of light water reactors; should provide a uniform approach to radiological evaluation for those involved in design, licensing and operation of nuclear power plants.2. For accident considerations, Technical Specificationis for 1-131 con-centrations in the reactor coolant should be established for each plant based on maximum permissible thyroid doses resulting from a specific postulated accident, just as Technical Specification concentration limits are set for total activity.
Actual iodine concentrations in the reactor coolant could then be reported as a percentage of Technical Specification limits rather than as the percent fuel defects.A._AA SNC Calculation X6CNA15 Attachment G2 Sheet G2-1 Containment Rad Monitor Data Bornt, Butch From: Harris, Glenn W.Sent: Friday. May 16, 2014 4:01 PM To: Collins, Reggie V.Cc: Odom, Scott M.; Brett, H. Mike; Hayden, Mark S.; Bornt, Butch; Bell, Weston Kevan;Melton, Charles; Harris, Glenn W.
Subject:
RE: VEGP Containment Rad Monitors RE005 & RE006 Attached is 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> trend of 1RE-006 & 005 and 2RE-O06 & 005. The trends were done at "1645 toda The following data is the 10 minute average readings in mr/hr from 1/2RE-005 and 1I2RE-006:
5-16-14: 1RE-O05 12:00 5.05E+02 12:10 4.84E+02 12:20 5.09E+02 12:30 5.11E+02 12:40 5.02E+02 12:50 4.99E+02 13:00 4.93E+02 1RE-O06 12:00 2.50E+02 12:10 2.32E+02 12:20 1.93E+02 12:30 1.89E+02 12:40 2.40E+02 12:50 2.38E+02 13:00 2.50E+02 2RE-O05 12:00 4.22E+01 12:10 2.97E+01 12:20 5.33E+01 12:30 5.49E+01 12:40 4.74E+O1 12:50 6.13E+01 13:00 5.28E+01 2RE-006 12:00 1.92E+01 12:10 2.13E+01 12:20 2.31E+01 12:30 2.39E+01 12:40 1.54E+01 12:50 1.88E+01 1 SNC Calculation X6CNA15 Attachment G2 Sheet G2-2 Containment Rad Monitor Data 13:00 1.66E+01 From: Collins, Reggie V.Sent: Frdday, May 16, 2014 3:50 PM To: Harris, Glenn W.Cc: Odom, Scott M.; Brett, H. Mike; Hayden, Mark S.; Bornt, Butch; Bell, Weston Kevan; Melton, Charles
Subject:
RE: VEGP Containment Rad Monitors RE005 & RE006 Glenn, Could you have the PERMS Tech send the data to Butch?Thanks, Reggie Collins Plant Vogtle Chemistry Manager Phone: 706-826-3850 Beeper 706-727-0080 From: Hayden, Mark S.Sent: Friday, May 16, 2014 9:21 AM To: Bomt, Butch; Bell, Weston Kevan; Melton, Charles; Collins, Reggie V.Cc: Odom, Scott M.; Brett, H. MikeRE: VEGP Containment Pad Monitors REOO5 & REO06 Reggie, Do you have a specialist that can provide this data to Butch, I thought this would be easy for you guys as you probably already have a process for capturing PERMs data so this should be similar...
Thank you, Mark Hayden Emergency Preparedness Supervisor Southern Nuclear Co.- Plant Vogtle 1 & 2 Office (706) 826-3792 Cell (706) S51-2019 From: Bornt, Butch Sent: Friday, May 16, 2014 9:14 AM To: Hayden, Mark S.; Bell, Weston Kevan; Melton, Charles Cc: Odom, Scott M.; Brett, H. Mike
Subject:
VEGP Containment Rad Monitors RE005 & RE006 2 SNC Calculation X6CNA1 5 Attachment G2 Sheet G2-3 Containment Rad Monitor Data Mark-Would it be a major science project to send me an hour of data from both units' rad monitors, while they are operating at full power? I have no preference as to tabular vs. a screen cap, though the screen cap would probably require fewer pages.I would pull the data from the plant computers, but since our "upgrade" to Windows 7, the Weblcon links no longer work.If you have any questions, please do not hesitate to call me.Thank you for your help.&C PaPE Nuclear Safety Analysis Fleet Design Engineering Southern Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bbomt @southernco.com T M Keep silence for the most part, and speak only when you must, and then briefly." -Epictetus 3 SNC Calculation X6CNA15 Attachment G2 Containment Rad Monitor Data Sheet G2-4 1RE-O06 iRE-O05 SNC Calculation X6CNA15 Attachment G2 Containment Rad Monitor Data Sheet G2-5 2RE-O06 2RE-O05 SNC Calculation X6CNA15 Attachment G3 Sheet G3-1 SNC Calculation X6CNA15 Attachment G3 Sheet G3-1 SOUTHERN a~COMPANY MSPI STATUS U1 Emergency A/C Power High Pressure Injection Heat Removal Residual Heat Removal Cooling Water U2 VOGTLE NUCLEAR PLANT DATE: May 16, 2014 SHIFT MANAGER Night Day 51 IN WORK WEEK 37 Hi~33 El ta;Every day, every job, safely.FREE DAYS UE FREE DAYS RE FREE DAYS ISPO FREE DAYS CR 791199 CR 797929 CR 803343 CR 812741 1 M NUCLEAR SAFETY TRAIT: #6 Respectful Work Environment:
Trust and respect permeate the organization.
Protected Train: B Train Protected Train: B Train Protected Equipment B Train systems required for SFPC PoetdEupetCnest up &;HPA&B Current Risk profile: -This represents no significant Current Risk profile: -This represents no significant impact to the safety index. impact to the safety index.Projected Risk profile: I- This represents no significant Projected Risk profile: -This represents no impact to the safety index. significant impact to the safety index.Hand Protection Protect your hands! Always wear the right gloves for the job.* Our OPTICS Observation Data reveals an increase in At-Risk behaviors with hand protection.
- Use the correct hand protection for the job.* All employees shall have gloves with them when working in a PPE required area.* View the glove matrix on the SAFETY webpagelmanual for correct application of hand protection OFPI I OAI Indicators I NRC Security Threat Level No Alerts in Effect (Sustained Vigilance)
Reactor Mode / % Reactor Power 1/100 1/ 100 Gross / Net MWe 1236/1179 1235/1183 SFP reaches 200 deg on loss of cooling (hrs) 35 78 Protected SFPC Equipment
... ...Days on Line 29 36 Preceding Day's Generation Gross / Net 29267/27900 29287/28012 RCS Leak Rate (ID / UID) gpm 0.13/ 0.01 0.04/ 0.03 UID 7 day Avg 0.01 0.01 Next Scheduled Outage/ On Line Dates September 20, 2015/October 14, 2015 September 14, 2014/October 8, 2014 Southern Nuclear Design Calculation SPlant: Vogtle Unit: I &2 Icalculation Number: x6CNAI5 ISheet: HI ATTACHMENT H -VEGP 1 EAL THRESHOLDS DescrptionNumber Descrptionof Pages HI -Loss of Fuel Clad FP Barrier EAL Threshold
-Air Immersion 2 H2 -Loss of RCS FP Barrier EAL Threshold
-Air Immersion 2 H3 -Potential Loss of Containment FP Barrier EAL Threshold
-Air Immersion 2 Total Number of Pages Including Cover Sheet 7 SNC CALCULATION X6CNA15 ATCMN iSETH-ATTACHMENT H1 SHEET H1-1 VEGP I Loss of Fuel Clad FP Barrier Threshold
-Air Immersion Iodines -300 Dose Equivalent 1-131 FG R-12 DC FairDoeRt sooe A300 Xctmt-I DCFair DoseMRate Iooe (lpCi/g) (Ci/m^3) (REM/hr) (REM (rEMh_____(ci/m^3) (Ci/m^3) (E/r 1-131 2.22E+02 6.72E-01 2.42E+02 1.04E+02 7.38E+00O 1-132 2.25E+02 6.81E-01 1.49E+03 6.41E+02 4.60E+01 1-133 4.23E+02 1.28E+00 3.92E+02 1.68E+02 2.27E+01 1-134 5.40E+01 1.64E-01 i.73E+03 7.44E+02 1.28E+01 1-135 2.07E+02 6.27E-01 1 .06E+03 4.57E+02 3.02E+01 Kr-85m 1.55E+02 4.70E-01 9.96E+01 4.28E+01 2.12E+00 Kr-85 6.36E+02 1.93E+00 1.58E+00 6.81 E-01 1.38E-01 Kr-87 9.73E+01 2.95E-01 5.49E+02 2.36E+02 7.32E+00 Kr-88 2.80E+02 8.47E-01 1 .36E+03 5.84E+02 5.21 E+01 Xe-I131 m 1.54E+02 4.65E-01 5.1 8E+00 2.23E+00 1 .09E-01 Xe-133m 1.34E+03 4.05E+00 1.82E+01 7.85E+00 3.35E+00 Xe-133 1.95E+04 5.89E+01O 2.08E+01 8.93E+00 5.55E+01 Xe-135m 4.26E+O1 1.29E-01 2.72E+02 i.17E+02 1.59E+00 Xe-135 6.31E+02 1.91E+00 1.58E+02 6.81E+01 i.37E+01 Xe-I138 5.63E+01 1 .70E-01 7.68E+02 3.30E+02 5.93E+00 Total Dose Rate =Total Dose Rate =261 2,6E+05 REM/hr mREM/hr Dose Rate (REM/hr) = [Xctmt (Ci/m^3)]
x [DCFair (REM/hr)/(Ci/m^3)]/GF SNC CALCULATION X6CNA15 ATCMN ISETH-ATTACHMENT H1 SHEET H1-2 VEGP 1 Loss of Fuel Clad FP Barrier Threshold
-Air Immersion Xctmt =Radioisotope concentration in containment (Ci/m^3)Xctmnt = [A3oo (p, Ci/g) x (I Ci/I1.0E+06 p, Ci) x Mrcs (g)]/[Vctmt (mA3)]A3oo = RCS activity corresponding to 300 gCi/g DE 1-131 MRcs = Mass of RCS coolant MRcs = 2.53E+08 g Vctrnt = Containment Volume Vctmt = 2.95E+06 cu ft x [(0.3048 m)/(1 ft)]A3 Vctmt -8.35 E+04 m^3 DCFarr = (I1.2/pair) X [FGR #12 dose conversion factor for immersion in air@ density = 1 .2 kg/m^3]pair = Density of air in containment (kg/mA3)pair "- 2.791 kg/mA3 GF = Geometry Factor GF = 11 73/(VrnonA0.338)
Vrnon = Volume of containment seen by monitor (cu ft)Vmon -- fview X fspray X Vctrnt (cu ft)fview = 0.679 fspray -- 0.771 Vmon = 1 .55E+06 cu ft GF = 9.493 SNC CALCULATION X6CNA15 ATCMN 2SETH-ATTACHMENT H2 SHEET H2-1 VEGP 1 Loss of RCS FP Barrier Threshold
-Air Immersion ATS Xctmt-! OFair 1 Fi Dose Rate Isotope (Cl/rn^3) (REM/h r) (E/r______(Cilm^3) (Ci/m^3) (~lr 1-131 0.74 2.24E-03 2.42E+02 1.04E+02 0.025 1-132 0.75 2.27E-03 1.49E+03 6.41E+02 0.153 1-133 1.41 4.27E-03 3.92E+02 1.68E+02 0.076 1-134 0.18 5.45E-04 1.73E+03 7.44E+02 0.043 1-135 0.69 2.09E-03 1.06E+03 4.57E+02 0.101 Kr-85m 0.52 1 .57E-03 9.96E+01 4.28E+01 0.007 Kr-85 2.12 6.42E-03 1.58E+00 6.81 E-01 0.000 Kr-87 0.32 9.82E-04 5,49E+02 2.36E+02 0.024 Kr-88 0.93 2.82E-03 1.36E+03 5.84E+02 0.174 Xe-131m 0.51 1.55E-03 5.18E+00 2.23E+00 0.000 Xe-133m 4.46 1.35E-02 1.82E+01 7.85E+00 0.011 Xe-133 64.86 1.96E-01 2.08E+01 8.93E+00 0.185 Xe-135m 0.14 4.30E-04 2.72E+02 1.17E+02 0.005 Xe-135 2.10 6.37E-03 1.58E+02 6.81E+01 0.046 Xe-I138 0.19 5.68E-04 7.68E+021 3.30E+02 0.020 Total Dose Rate =Total Dose Rate =0.870 870 REM/hr mREM/hr Dose Rate (REM/hr) = [Xctmt (Ci/m^3)]
x [DCFaIr (REM/hr)I(CifmA3)]/GF SNC CALCULATION X6CNA15 ATTACHMENT H2 VEGP 1 Loss of RCS FP Barrier Threshold
-Air Immersion Xctmt = Radioisotope concentration in containment (Ci/mA3)Xctrnt = [ATS (pCi/g) x (1 Ci/1 .0E+06 j, Ci) x Mrcs (g)]/[Vctmt (ftA3)]ATS =RCS concentration corresponding to 1.0 mCi/g DE 1-131 MRCS = Mass of RCS coolant MRcs = 2.53E+08 g Vctmnt = Containment volume (m^3)Vctmt = 2.95E+06 cu ft x [(0.3048 m)/(1 ft)]^3 Vctrmt = 8.35E+04 mA3 DCFair = (1 .2/pair) X [FGR #12 dose conversion factor for immersion in air@ density = 1.2 kg/mA3]pair = 2.791 kg/m^3 GF =Geometry Factor GF = 11 73/(VrnonA0.338)
Vmon = Volume of containment seen by monitor (cu ft)Vmon '- fview X fspray X Vctmt (CU ft)fview = 0.679 fspray --- 0.77 1 Vrnon= 1 .55E+06 cu ft GF = 9.493 SHEET H2-2 SNC CALCULATION X6CNA15 ATCMN 3SETH-ATTACHMENT H3 SHEET H3-1 VEGP I Potential Loss of Containment FP Barrier -Air Immersion FGR-12 DCFairDoeRt Agap Aris Xctmt DCFairDoeRt Isotope (Ci) (Ci) (Cilm^3) (REM/hr) (REMIhr) (E~r______________(cilm^3) (Cilm^3) (E /r 1-131 1.03E+07 2.06E+06 2.47E+01 2.42E+02 1.04E+02 2.71E+02 1-132 1.50E+07 3.00E+06 3.59E+01 1.49E+03 6.41E+02 2.43E+03 1-133 2.10E+07 4.20E+06 5.03E+01 3.92E+02 1.68E+02 8.92E+02 1-134 2.26E+07 4.52E+06 5.41E+01 1.73E+03 7.44E+02 4.24E+03 1-135 1.95E+07 3.90E+06 4.67E+01 1.06E+03 4.57E+02 2.25E+03 Kr-85m 2.68E+06 5.36E+05 6.42E+00 9.96E+01 4.28E+01 2.90E+01 Kr-85 3.12E+05 6.24E+04 7.47E-01 1.58E+00 6.81E-01 5.36E-02 Kr-87 4.93E+06 9.86E+05 1.18E+01 5.49E+02 2.36E+02 2.93E+02 Kr-88 7.02E+06 1 .40E+06 1 .68E+01 1 .36E+03 5.84E+02 I1.03E+03 Xe-131m 7.13E+04 1.43E+04 1.71E-01 5.18E+00O 2.23E+00 4.01E-02 Xe-133m 3.01E+06 6.02E+05 7.21E+00 1.82E+01 7.85E+00 5.96E+00 Xe-133 2.12E+07 4.24E+i06 5.08E+0-1 2.08E+01 8.93E+00 4.78E+01 Xe-135m 4.18E+06 8.36E+05 1.00E+01 2.72E+02 1.17E+02 1.23E+02 Xe-135 4.65E+06 9.30E+05 1.11E+01 1.58E+02 6.81E+01 7.99E+01 Xe-I138 1 .69E+07 3.38E+06 4.05E+01 7.68E+02 3.30E+02 1.41 E+03 Total Dose Rate =Total Dose Rate =1.31 E+04 I1.3E+07 REMIhr mREMIhr Dose Rate (REM/hr) = [Xctmnt (Ci/m^3)]
x [DCFair (REM/hr)/(Ci/mA3)]/GF SNC CALCULATION X6CNA15 ATTACHMENT H3 VEGP I Potential Loss of Containment FP Barrier -Air Immersion Xctmt = Radioisotope concentration in containment (Ci/m^3)Xctmt -- Arils~ctmt Aris = Gap inventory released through fuel clad failure (Ci)Aris = D X Agap D = Fuel clad failure fraction D = 20%Agap-= Core Fuel Rod Gap Inventory (Ci)Vctmt = Containment volume (m^3)Vctmt = 2.95E+06 cu ft x [(0.3048 m)/(1 ft)]^3 Vctmt = 8.35E+04 m^3 DCFair -(1 .2/pair) X [FGR #12 dose conversion factor for immersion in air@ density = 1 .2 kg/mA3]pair = 2.791 kg/mA3 GF = Geometry Factor GF = 11 73/(Vrnon^0.338)
Vmnon = Volume of containment seen by monitor (cu ft)Vmon -fview X fspray x Vctmt (cuift)fview = 0.679 fspray "- 0.77 1 Vmon = 1 .55E+06 cu ft GF = 9.493 SHEET H3-2 Southern Nuclear Design Calculation IPlant: Vogtle Unit:l1&2 Calculation Number: X6CNA15 Sheet:l I I ATTACHMENT I -VEGP 2 EAL THRESHOLDS DescrptionNumber Descrptionof Pages Ii -Loss of Fuel Clad FP Barrier EAL Threshold
-Air Immersion 2 12 -Loss of RCS FP Barrier EAL Threshold
-Air Immersion 2 13 -Potential Loss of Containment FP Barrier EAL Threshold
-Air Immersion 2 4 4 Total Number of Pages Including Cover Sheet 7 SNC CALCULATION X6CNA15 ATCMN ISETI-ATTACHMENT I1 SHEET I1-1 VEGP 2 Loss of Fuel Clad FP Barrier Threshold
-Air Immersion Iodines -300 1Dose Equivalent 1-131 FGR-12 D~i A300 Xctmt-I DCFair DoseMRate Isotope (Ci/m^3) (REM/hr) (RE_/hr) DoeRatehr________________(Ci/m^3) (Ci/m^3)1-131 2.22E+02 6.72E-01 2.42E+02 1.04E+02 8.41E+00O 1-132 2.25E+02 6.81 E-01 1.49E+03 6.41E+02 5.25E+01 1-133 4.23E+02 1.28E+O0 3.92E+02 1.68E+02 2.59E+01 1-134 5.40E+01 1.64E-01 1.73E+03 7.44E+02 1.46E+O1 1-135 2.07E+02 6.27E-01 1.06E+03 4.57E+02 3.44E+O1 Kr-85m 1.55E+02 4.70E-O1 9.96E+01 4.28E+01 2.41E+00 Kr-85 6.36E+02 1.93E+00 1.58E+00 6.81 E-01 1.58E-01 Kr-87 9.73E+O1 2.95E-01 5.49E+02 2.36E+02 8.35E+00 Kr-88 2.80E+02 8.47E-01 I1.36E+03 5.84E+02 5.94E+01 Xe-131m 1.54E+02 4.65E-01 5.18E+00 2.23E+O0 1.24E-01 Xe-133m 1.34E+03 4.05E+00 1.82E+01 7.85E+00 3.82E+OO Xe-133 1.95E+04 5.89E+01 2.08E+01 8.93E+00 6.32E+01 Xe-135m 4.26E+01 1.29E-O1 2.72E+02 1,17E+02 1.81 E+OO Xe-135 6.31E+02 1.91E+00 1.58E+02 6.81E+01 1.56E+01 Xe-I138 5.63E+01 1.70E-01 7.68E+02 3.30E+02 6.76E+00 Total Dose Rate =Total Dose Rate =297 3.0E+05 REM/hr mREM/hr Dose Rate (REM/hr) = [Xctrnt (Ci/mA3)]
x [DCFair (REM/hr)/(Ci/m^3)]/GF SNC CALCULATION X6CNA15 ATCMN ISET1-ATTACHMENT I1 SHEET 11-2 VEGP 2 Loss of Fuel Clad FP Barrier Threshold
-Air Immersion Xctrmt = Radioisotope concentration in containment (Ci/m^3)Xctmt -[A3oo (gCi/g) x (1 Ci/1 .0E+06 pCi) x Mrcs (g)]/[Vctmt (m*l3)]A3oo = RCS activity corresponding to 300 p, Ci/g DE 1-131 MRCS = Mass of ROS coolant MRcs = 2.53E+08_g Vctrnt = Containment Volume Vctmt = 2.95E+06 cu ft x [(0.3048 m)I(1 ft)]A3 Vctrmt =8.35E+04 m^3 DCFair = (1 .2/pair) X [FGR #12 dose conversion factor for immersion in air@ density = 1 .2 kg/m^3]pair = Density of air in containment (kg/m*3)pair -2.791 kg/m^3 GF = Geometry Factor GF = 11 73/(Vmon*0.338)
Vmon = Volume of containment seen by monitor (cu ft)Vmon = fview X fspray X Vctmt (cu ft)fview = 1.000 fspray "" 0.771 Vrnon = 2.27E+06 cu ft GF = 8.331 SNC CALCULATION X6CNA15 ATCMN 2SET1-ATTACHMENT 12 SHEET 12-1 VEGP 2 Loss of RCS FP Barrier Threshold
-Air Immersion ATS Xctmt-I CFGir 1CFi Dose Rate Isotope (Cilm^3) (REM/hr) (REM/hr) (REMIhr)_________________ (CilmA3) (ci/m^3)1-131 0.74 2.24E-03 2.42E+02 1.04E+02 0.028 1-132 0.75 2.27E-03 1.49E+03 6.41E+02 0.175 1-133 1.41 4.27E-03 3.92E+02 1.68E+02 0.086 1-134 0.18 5.45E-04 1.73E+03 7.44E+02 0.049 1-135 0.69 2.09E-03 1.06E+03 4.57E+02 0.115 Kr-85m 0.52 1.57E-03 9.96E+01 4.28E+01 0.008 Kr-85 2.12 6.42E-03 1.58E+00 6.81E-01 0.001 Kr-87 0.32 9.82E-04 5.49E+02 2.36E+02 0.028 Kr-88 0.93 2.82E-03 1.36E+03 5.84E+02 0.198 Xe-131m 0.51 1.55E-03 5.18E+00 2.23E+00 0.000 Xe-133m 4.46 1.35E-02 1.82E+01 7.85E+00 0.013 Xe-133 64.86 1.96E-01 2.08E+01 8.93E+00 0.211 Xe-135m 0.14 4.30E-04 2.72E+02 1.17E+02 0.006 Xe-135 2.10 6.37E-03 1.58E+02 6.81E+01 0.052 Xe-1 38 0.19 5.68E-04 7.68E+02 3.30E+02 0.023 Total Dose Rate =Total Dose Rate =0.991 991 REM/hr mREMIhr Dose Rate (REM/hr) = [Xctmnt (Ci/m^3)]
x [DCFair (REM/hr)I(Ci/m^3)]/GF SNC CALCULATION X6CNA15 ATTACHMENT 12 VEGP 2 Loss of RCS FP Barrier Threshold
-Air Immersion Xctrmt = Radioisotope concentration in containment (Ci/m^3)Xctmt = [ATs (jCi/g) x (1 Ci/1 .0E+06 pCi) x Mrcs (g)]/[Vctmt (ft*3)]ATS = RCS concentration corresponding to 1 .0 mCi/g DE 1-131 MRCS = Mass of RCS coolant MRCS = 2.53E+08__g Vctmt = Containment volume (m*3)Vctrnt = 2.95E+06 cu ft x [(0.3048 m)I(1 ft)]^3 Vctrnt = 8.35E+04 m^3 DCFair = (1 .2/pair) x [FGR #12 dose conversion factor for immersion in air@ density = 1.2 kg/m^3]pair = 2.791_kg/m^3 GF = Geometry Factor GF = 1 173/(VmonA0.338)
Vmon = Volume of containment seen by monitor (cu ft)Vmon = fview X fspray x Vctmt (CU ft)fview = 1.000 fspray = 0.771 Vmon = 2.27E+06 cu ft GF = 8.331 SHEET 12-2 SNC CALCULATION X6CNA15 ATCMN 3SET1-ATTACHMENT 13 SHEET 13-1 VEGP 2 Potential Loss of Containment FP Barrier -Air Immersion Agap Aris Xctmt DFair-2 Car Dose Rate~Isotope (Ci) (Ci) (Cl/rn^3) (REMIhr) (REM/hr) (REM/hr)________ _______ (CilmA3) (Cilm^3)1-131 1,03E+07 2,06E+06 2.47E+01 2.42E+02 1,04E+02 3.09E+02 1-132 1,50E+07 3,00E+06 3.59E+01 1,49E+03 6.41E+02 2.77E+03 1-133 2.1OE+07 4,20E+I06 5.03E+O1 3.92E+02 1.68E+02 1.02E+03 1-134 2.26E+07 4.52E+06 5,41E+01 1.73E+i03 7.44E+02 4.84E+03 1-135 1.95E+07 3.90E+06 4.67E+O1 1.06E+03 4.57E+02 2.56E+03 Kr-85m 2.68E+06 5.36E+05 6.42E+00 9.96E+01 4.28E+01 3.30E+01 Kr-85 3.12E+05 6,24E+04 7,47E-O1 1,58E+00 6.81E-01 6.11E-02 Kr-87 4,93E+06 9.86E+05 1.18E+01 5.49E+02 2.36E+02 3.34E+02 Kr-88 7.02E+06 1,40E+06 1.68E+01 1,36E+03 5.84E+02 1.18E+03 Xe-131m 7.13E+04 1.43E+i04 1.71E-01 5.18E+00 2,23E+00 4.56E-02 Xe-133m 3,01E+06 6.02E+05 7.21E+00 1,82E+O1 7.85E+00 6,79E+00 Xe-133 2,12E+07 4.24E+I06 5,08E+01 2,08E+O1 8.93E+O0 5.44E+O1 Xe-135m 4.18E+06 8,36E+05 1.O0E+01 2.72E+02 1.17E+02 1,40E+02 Xe-135 4,65E+06 9.30E+05 1.11E+01 1.58E+02 6.81E+01 9.11E+01 Xe-1 38 1.69E+07 3.38E+06 4.05E+01 7.68E+02 3.30E+02 1 .60E+03 Total Dose Rate =Total Dose Rate =1 .49E+04 1 .5E+07 REM/hr mREM/hr Dose Rate (REM/hr) = [Xctmt (Ci/m^3)]
x [DCFair (REMIhr)I(Cilm^3)]IGF SNC CALCULATION X6CNA15 ATTACHMENT 13 VEGP 2 Potential Loss of Containment FP Barrier -Air Immersion Xctrnt = Radioisotope concentration in containment (Ci/m^3)Xctrnt = ArisNctmt Aris = Gap inventory released through fuel clad failure (Ci)Aris = D x Agap D = Fuel clad failure fraction D = 20%Agap = Core Fuel Rod Gap Inventory (Ci)Vctrnt = Containment volume (mA3)Vctrnt = 2.95 E+06 cu ft x [(0.3048 m)I(1 ft)]A3 Vctmnt = 8.35E+04 m^3 DCFair = (1 .2/pair) x [FGR #12 dose conversion factor for immersion in air@ density = 1 .2 kg/m^3]pair = 2.79 1 kg/mA3 GF = Geometry Factor GF = 1 173/(Vrnon^0.338)
Vrnon = Volume of containment seen by monitor (cu ift)Vmon -- fview X fspray X Vctmt (cu ft)fview =1.000 fspray = 0.771 Vrnon = 2.27E+06 cu ft GF = 8.331 SHEET 13-2 Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: i-1i ATTACHMENT J -REVIEWER ALTERNATE CALCULATION Purpose: The purpose of this section is to document alternate method check of the radiation EAL set points for the "Loss of RCS FP Barrier Threshold" section of this calculation.
==
Conclusion:==
The calculation main body section "Loss of RCS FP Barrier Threshold" and Attachment C2 have calculated the set point for air immersion of 0.870REM/hr.
The alternate methods have calculated the expected radiation levels as 1.34R/hr and 0.896R/hr.
Since these values are within factor of 2 the method used in the main body of this calculation is acceptable.
Calculation:
The original section used luCi/g TS limit of the RCS isotope concentration to develop the containment isotope concentration and then used FGR12 immersion dose conversion factors and the finite cloud geometry factor to determine radiation readings.
This verification section will use a different method. In this method luCi/g TS limit is used to determine total containment isotope in Ci. The curie content is converted into gamma energy source strength.The source radiation strength is converted into radiation readings via Etherington dose conversion factors and geometric factor for non-absorbing cylindrical volume source.The following MathCAD sheet will demonstrate why non-absorbing cylindrical volume vs.absorbing cylindrical volume is appropriate for this calculation.
The cylindrical model is chosen because the containment can be approximated by cylindrical geometry and locations of the radiation sensors can be approximated by the point (P1) as shown on Figure 1 below.Figure 1: Excerpt from Engineering Compendium of Radiation Shielding)Rcf. p. 415) 6.,4. Vjlunmcsources 381 C. Interior and Exterior without Slhield [[Tie uncollided fluxes at interior and exterior a points of a non-absorbing cylindrical volumle source, & p 6 with geometry shown in Fig. 6.4,-7, are given by the rollowing eNIprt'SSiOnS (31 At .;, (,) , "~ &9 ... .-( : (6.4.*- 2t Iig 6.47. t ton o o i hii V dia ot o Southern Nuclear Design Calculation Plant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: J-2 ATTACHMENT J -REVIEWER ALTERNATE CALCULATION The mean free path was calculated for the containment air (Figure 2). It can be seen that the mean free path is over 400 feet, which is much larger than the containment diameter of 140 feet. Therefore it was concluded that the containment atmosphere does not provide any appreciable gamma shielding and that the non-absorbing cylindrical model should be used.Figure 2: Mean Free Path for Containment Air.l/p= Mass Absorption Coefficient (cm^2/g)p = Density (g/cc)= Absorption Coefficient (1/cm)ja= X p X = Mean Free Path (cm)x= 1/ta Air p = 2.791 E-03 g/cm^3 Assumption
- 4 Energy X (MeV) (cm^A2Ig)
(1/cm) (cm) (ft)0.5 0.0297 8.35E-05 1 .20E+04 3.93E+02 1.0 0.0280 7.87E-05 1.27E+04 4.17E+02 1.5 0.0256 7.20E-05 1 .39E+04 4.56E+02 2.0 0.0238 6.69E-05 1.49E+04 4.90E+02 3.0 0.0211 5.93E-05 I1.69E+04 5.53E+02 4.0 0.0194 5.45E-05 1.83E+04 6.02E+02
Reference:
Table 11.5, page 649, Lamarsh, "Introduction to Nuclear Engineering," 2nd edition, 1983 Southern Nuclear Design Calculation SPlant: Vogtle IUnit: 1&2 Calculation Number: X6CNA15 Isheet: J-3 A'nTACHMENT J -REVIEWER ALTERNATE CALCULATION The Figure 3 shows the amount of isotope activity that would be present during RCS rupture and all of the activity is released into the containment.
The first part of the figure determined equivalent DEl 131 present in normal operation of the reactor (WCAP-16736 Table 7.8-1). The ratio to luCi/gm DEl 131 was found and noble gases as well as iodines were adjusted with this ratio. To find the containment activity the isotopes concentration were multiplied by the mass of RCS. The final activity was entered into GRODEC to find source strength.Figure 3: Calculation of Isotopes present in containment during RCS leak.WCAP-16736 Table 7.8-1 (uCi/gm)WCAP-16736 Table 7.8-1 (Ci/gm)DCF FGR 11 (Sv/Bq)DCF FGR 11 (Rlid)Activity (R/gm)1-131 2.91 2.91E-06 2.92E-07 1.08E+06 3.14E+O0 1-132 2.96 2.96E-06 1.74E-09 6.44E+03 1.91E-02 1-133 5.56 5.56E-06 4.86E-08 1.80E+05 1.00E+00 1-134 0.69 6.90E-07 2.88E-1O 1.07E+03 7.35E-04 1-135 2.72 2.72E-06 8.46E-09 3.13E+04 8.51E-02 SUM 4.25E+01 1.00E+06 uCi = 1*Ci 100 Rem=1*Sv 3.70E+10 Bq=1*Ci Mass RCS (gm)=2.53E+08 IDEl 131 Normal (uCi/gm)=
I 3"93E+001 WCAP-16736 Table 7.8-1 (uCi/gm)Ratio of Normal DEl to luCi/gm DEl Isotopes Concentration fat luCi/gm DEl (uCi/gm)Activity in the containment (Ci)Ratio of Normal DEl to 300uCi/gm DEl Isotopes concentration at 300uCi/gm DEl (uCi/gm)Activity in the containment (ci)1-131 2.91 3.93E+00 0.740 1.87E+02 1.31E-02 221.995 5.62E+04 1-132 2.96 3.93E+00 0.753 1.90E+02 1.31E-02 225.809 5.71E+04 1-133 5.56 3.93E+00 1.414 3.58E+02 1.31E-02 424.155 1.07E+05 1-134 0.69 3.93E+00 0.175 4.44E+01 1.31E-02 52.638 1.33E+04 1-135 2.72 3.93E+00 0.692 1.75E+02 1.31E-02 207.500 5.25E+04 Kr-85m 2.04 3.93E+00 0.519 1.31E+02 1.31E-02 155.625 3.94E+04 Kr-85 8.37 3.93E+00 2.128 5.38E+02 1.31E-02 638.522 1.62E+05 Kr-87 1.28 3.93E+00 0.325 8.23E+01 1.31E-02 97.647 2.47E+04 Kr-88 3.68 3.93E+00 0.936 2.37E+02 1.31E-02 280.736 7.10E+04 Xe-131m 2.02 3.93E+00 0.514 1.30E+02 1.31E-02 154.100 3.90E+04 Xe-133m 17.6 3.93E+00 4.4751 1.13E+03 1.31E-02 1342.650 3.40E+05 Xe-133 256 3.93E+00 65.098. 1.65E+04 1.31E-02 19529.454 4.94E+06 Xe-135m 0.56 3.93E+00 0.142 3.60E+01 1.31E-02 42.721 1.08E+04 Xe-135 8.3 3.93E+00 2.111 5.34E+02 1.31E-02 633.182 1.60E+05 Xe-138 0.74 3.93E+00 0.1881 4.76E+01 1.31E-02 56.452 1.43E+04 Southern Nuclear Design Calculation IPlant:Vogtle U nit 1&2 Icalculation Nube:x6CNA15 Sheet:' J-ATTACHMENT J -REVIEWER ALTERNATE CALCULATION The following MathCAD worksheet determined the geometric factor for non-absorbing cylindrical source. It was found that the geometric factor is 878.Pg 381 and 382 of Engineering Compendum of Radiation Shielding:
At PI:Svh j The containment volume equivalent height is found as follows: Vcontainment
- =2.95. 106£3 Design Input 4 for this calculation.
FiactionlAboveOperating_Deck
- =0.771 The .volume fraction for above operating deck.Design Input 5.Vaod := Vcontainment*
FmctionlAboveOperatingDeck
= 2.274 x 106 ft3 vcy .-d 2 h equation for cylinder volume decnt dcn =140it P~n :=- = 70ft Containment diameter Design Input 6 he-- 147.751fit or hq =4.503xx 103 cm t.dcont2-2.111 or approximately 2 the fuction is determined via page 382 table 6.4-3 of Engineering
\KR Compendum of Radiation Shielding and is 0.390.a =0.390 Sv- e2 9a --f = 8.781728686246464.
Sv. m or I-e =4503 *cm Sv- ~2
- Pa = 878.085. Sv. cm Southern Nuclear Design Calculation IPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 ISheet: l'5 A1TACHMENT J -REVIEWER ALTERNATE CALCULATION The activities from Figure 3 were entered into the GRODEC computer program (CALC F-86-03)to convert the activity to specific energy groups which are used to estimate the detector response.
The source volume 8.35E10cc and source density of 2.791E-03g/cc was used in GRODEC (DI #4 & Assumption
- 4). Note: GRODEC was installed on a computer DELL SN#CYC7LS1 that was running Windows XP. To verify the program proper operation nine test cases were executed and output results were matched/verified against the verification files listed on pages G1-G26 CALC F-86-03. The GRODEC input and output files "TSDEI" are listed on sheets E-7 through E-11.The GRODEC results were entered into the EXCEL spread sheet in Figure 4. The Dose Conversion Factors were obtained from Table 3 pg 7-66 Etherington "Nuclear Engineering Handbook".
The geometric correction factor of 878 was calculated above.Dose rate (R/hr) = Source (MeV/cc-sec) x Geometric Factor + Dose Conversion Factor (MeV/cm^2-sec per 1R/hr).Figure 4: GRODEC output converted into radiation field strength.GRODEC for luCi/gm DEI ___________
Energy Maximum Source Source Dose Conversion (R/hr)Group Energy Strength Strength times Factor (MeV) (MeV/cc-sec)
GF (878) = (1R/hr for, (MeV/ MeV/cm^2-sec) cmA2*Sec)
________ ____1 1.00E-01 2.16E+02 1.89E+05 5.90E+05 3.21E-01 21 3.OOE-01 8.14E+O1 7.14E+04 5.54E+05 1.29E-O1 3 5.00E-01 3.81E+01 3.34E+04 5.43E+05 6.1GE-02 4 7.00E-01 1.50E+02 1.31E+05 5.49E+05 2.39E-01 5 LO00E+O0 1.04E+02 9.13E+04 5.77E+05 1.58E-01 6 1.50E+00 1.10E+02 9.62E+04 6.27E+05 1.53E-01 7 2.00E+O0 9.29E+01 8.16E+04 6.81E+05 1.20E-01 81 2.50E+00 1.05E+02 9.25E+04 7.35E+05 1.26E-01 9 3.00E+O0 2.50E+01 2.20E+04 7.89E+05 2.78E-02 10 1.00E+01 O.OOE+0O0______
___________
SUM (1/(cm^2-sec)=
Geometric Factor= 878 8.09E+05 SUM (R/hr)=1.34E+00 Southern Nuclear Design Calculation Plant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: J-6 A1TACHMENT J -REVIEWER ALTERNATE CALCULATION The second method used source strength to determine the sensor current that will result from this flux.The resulting current was converted into radiation readings via the sensor constant (Flux Response).
See the following MathCAD worksheet.
Flux :=8.09. 105 2 em *see GRODEC summed all gammas. According to 2X6AZ01 -10004 Section B-8-5-2 the detector is responsive to gammas of energies 0.1MeV to 3.0MeV.therefore it is appropriate to sum all the listed gammas.The detector cross section is calculated next. The cylindrical detector cross section area is found by multiplying diamater by height.Diameter 1= 1.25in 2XSAZ01-10004 Radiation Monitoring manual Section B-8-1-2 Height : i Areacros : Diameter.
Height =72.581 cm Per B-8-1-2 of 2X6AZ01-1 0004 the detector is a gamma-sensitive ion chamber. Per Shultis/Faw"Fundamentals of Nuclear Science and Engineering" page 205 section 8.1.1 for ionization chambers the output current level is proportional to the intensity of the incident radiation and permits direct measurement of the exposure rate. On page 207-208 section 8.1.3 once charged particles enter the activie volume of the detector, they are detected with almost 100% efficiency.
Therefore it is assumed that each gamma will generate an ion-electron pair, thus allowing us to calculate the expected current.-19 Electroncharge
- =1.602. 10
- C Shultis/Faw "Fundamental of Nuclear Science and Engineering" page 6 table 1.5.InstrumentCurrent
- =Areacros
- Flux- lcroca. = 9.407>< 10- 12A FieldResponse
- =1.05- .1011 InstrumentCurrent R Radiation
- = = 0.896--FieldResponse hr 2X6AZ01-1 0004 Radiation Monitoring manual Section B-8-5-2 Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: J-7 ATTACHMENT J -REVIEWER ALTERNATE CALCULATION GRODEC Input "TSDEI" 1 15 61,5.38e+02,0 62,1.31e+02,0 63, 8.23e+01,O 64,2.37e+02,0 141, 1.87e+02,O 142,1.90e+02,0 143,3 .58e+02,0 144,4.44e+01,0 145, 1.75e+02,0 146,1.30 e+02,0 147,1.65 e+04,0 148,1.13e+03,0 149,5.34e+02,0 150,3.60e+01,0 152,4.76e+01,0 Southern Nuclear Design Calculation IPlant: Vogtle IUnit: 1&2 Calculation Number: X6CNA15 ISheet: J-8 A1-IACHMENT J -REVIEWER ALTERNATE CALCULATION GRODEC Output "TSDEI" OUTPUT OF GRODEC CALCULATION OPERATING IN MODE 1 DATA FILE NAME:TSDEI INPUT DATA LISTING ISOTOPE INITIAL ADDITION ACTIVITY(CI)
RATE(CI/HR)
KR-85 5.380E+02 0.000E+00 KR-85M 1.310E+02 0.OOOE+O0 KR-87 8.230E+01 O.O00E+00 KR-88 2.370E+02 O.O00E+O0 1-131 1.870E+02 O.OO0E+OO 1-132 1.900E+02 O.OOOE+00 1-133 3.580E+02 0.OOOE+00 1-134 4.440E+01 0.OOOE+00 1-135 1.750E+02 O.OOOE+00 XE-131M 1.300E+02 O.O00E+OO XE-133 1.650E+04 O.O00E+OO XE-133M 1.130E+03 O.OOOE+OO XE-135 5.340E+02 0.000E+O0 XE-135M 3.600E+O1 O.OOOE+00 XE-138 4.760E+01 O.OOOE+O0 WHAT ARE THE START, STOP, AND INTERVAL TIMES 1.00 1.00 1.00 TIME THIS INCREMENT
= 1.000000 HOURS TOTAL ACTIVITY = 20102.740000 CU RIES Southern Nuclear Design Calculation SPlant: Vogtle [Unit: 1&2 Calculation Number: X6CNA15 Sheet: J-9 I ISOTOPE ISOTOPE NUMBER NAME ATTACHMENT J -REVIEWER ALTERNATE CALCULATION INITIAL ADDITION ACTIVITY ACT(CI) RATE(CI/HR) (CI)61 62 63 64 75 76 141 142 143 144 145 146 147 148 149 150 152 161 164 KR-85 KR-85M KR-87 KR-88 RB-87 RB-88 1-131 1-132 1-133 1-134 1-135 XE-131M XE-133 XE-133M XE-135 XE-135M XE-138 CS-135 CS-138 5.380E+02 1.310E+02 8.230E+01 2.370E+02 O.O00E+iO0 O.O00E+O0 1.870E+02 1.900E+02 3.580E+02 4.440E+01 1.750E+02 O.O00E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 0.O000E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 5.380E+02 1.119E+02 4.763E+01 1.850E+02 1.044E-13 1.813E+02 1.863E+02 1.398E+02 3.460E+02 1.996E+01 1.578E+02 1.300E+02 O.O00E+O0 1.301E+02 1.650E+04 O.O00E+O0 1.642E+04 1.130E+03 O.O00E+O0 1.116E+03 5.340E+02 O.O00E+O0 5.080E+02 3.600E+01 O.O00E+O0 2.505E+00 4.760E+01 O.O00E+O0 4.424E+00 O.O00E+O00O.O00E+O0 1.373E-08 O.O00E+O000.O00E+O0 1.031E+01 START OF MESS RUN ISOTOPES NOT INCLUDED IN MESS RUN NAME ACTIVITY (CI)RB-87 1.043966E-13 CS-135 1.373235E-08 WHAT IS THE SOURCE VOLUME (CC)8.350000E+10 Southern Nuclear Design Calculation IPlant: Vogtle [Unit: 1&2 Calculation Number: X6CNA15 ISheet: J-10O A1TACHMENT J -REVIEWER ALTERNATE CALCULATION WHAT IS THE SOURCE DENSITY (GM/CC)2.791000E-03 START EXECUTION OF THE MESS SUBROUTINE, ID NUMBERS ARE MESS ID NUMBERS, NOT MAIN PROGRAM IDS.THE NUMBER OF ENERGY GROUPS INPUT: 10 THE MAXIMUM ENERGY OF EACH GROUP: ENERGY MAXIMUM GROUP ENERGY 1 1.000000E-01 2 3.000000E-01 3 5.000000E-01 4 7.000000E-01 5 1.000000E+00 6 1.500000E+00 7 2.000000E+O0 8 2.500000E+00 9 3.000000E+O0 10 1.000000E+01 MESS INPUT DATA: SOURCE DENSITY (GM/CC) = 2.791000E-03 SOURCE VOLUME (CC) = 8.350000E+10 ISOTOPE ID NO. SOURCE STRENGTH UC/GM UC/CC CI KR 85 47 2.308519E+00 6.443077E-03 5.379969E+02 KR 85M 46 4.802016E-01 1.340243E-03 1.119103E+02 Southern Nuclear Design Calculation IPlant: Vogtle IUnit:l1&2 Calculation Number: X6CNA15 ISheet: J-11 A1-TACHMENT J -REVIEWER ALTERNATE CALCULATION KR 87 48 KR 88 49 RB 88 67 1131 4 1132 5 1133 6 1134 7 1135 8 XE 131M 53 XE 133 54 XE 133M 55 XE 135 56 XE 137M 57 XE 138 59 CS 138 36 2.043672E-01 7.939883 E-01 7.780501E-01 7.995351E-01 5 .999796E-01 1.484605E+00 8.564094E-02 6.769193E-01 5.703889E-04 2.216022E-03 2.171538E-03 2.231502E-03 1.674543 E-03 4.143531E-03 2.390239E-04 1.889282E-03 4.762748E+01 1.850378E+02 1.813234E+02 1.863304E+02 1.398243E+02 3.459849 E+02 1.995 849 E+01 1.577550E+02 3 1.301385E+02 1.641791E+04
)2 1.115654E+03 5.080421E+02 5 2.504613E+00 4.424265 E+OO 1.031379E+01 5.584181E-01 1.558545E-0:
7.044848E+01 1.966217E-01 4.787219E+00 1.336113E-0 2.179984E+00 6.084336E-03 1.074717E-02 2.999536E-0!
1.898431E-02 5.298521E-05 4.425598E-02 1.235184E-04 MESS OUTPUT DATA: ENERGY MAXIMUM SOURCE STRENGTH GROUP ENERGY 1 1.000000E-01 2 3.000000E-01 3 5.000000E-01 4 7.000000E-01 5 l.000000E+O0 6 1.500000E+00 7 2.000000E+O0 8 2.500000E+00 9 3.000000E+O0 10 1.000000E+01 (M EV/CC-SEC) 2.155118E+02 8.135855E+01 3.809687E+01 1.496649E+02 1.039826E+02 1.095226E+02 9.292861E+01 1.053104E+02 2.501774E+01 (GAMMAS PER SEC)1.799524E+14 2.264480E+13 6.362 177E+12 1.785289E+13 8.682548E+12 6.096756E+12 3.879769E+12 3.517367E+12 6.963272E+11 O.O00000E+O0 O.O00000E+O0 X6CNA15 Attachment K ENERCON Calculation for RA1 SHEET K-I CALC NO. SNC024-CALC-005E N E R CO N CALCULATION COVER PAGE NO. 1 of 9 Title: Vogtle EALs RAI Threshold to Address NEi Ciet ...SN 99-01 Revision 6 Poetietfe:SC2 Item Cover Sheet Items Yes No I Does this calculation contain any open assumptions, including preliminary ri 0]____information, that require confirmation? (If YES, identify the assumptions.)
2 Does this calculation serve as an "Alternate Calculation"? (If YES, identify the [] 0 design verified calculation.)
Design Verified Calculation No. __________
3 Does this calculation supersede an existing Calculation? (If YES, identify the ][design verified calculation.)
____Superseded Calculation No. __________
Scope of Revision: Initial Issue Revision Impact on Results: Initial Issue Study Calculation EZI Final Calculation
[]Safety-Related
[] Non-Safety-Related
[]('Print Name and Sign)Originator:
David Hartmangruber Ojs Design Reviewer Dominic Naoloaoo,,,o
--, Ph. 7)L Date: /6 a/.Approver:
Jay Maisler, CHiP 21c2cA2&2~
6' I Digitally signed byIJavJMaisler(CHP O N: cn=Jay J._Mais eP9~P,.o=ENERCON, ou, Date: 2015.10.23 17:32:40 -04'00' X6CNA15 X6CNA15Attachment K ENERCON Calculation for RAI SHEET K-2 CALC NO. SNC024-CALC-005ER C ON CALCULATION REVISION STATUS SHEET -RV PAGE NO. 2 of 9 CALCULATION REVISION STATUS REVISION DATE DESCRIPTION 0 10/23/2015 Initial Issue PAGE REVISION STATUS PAGE NO. REVISION PAGE NO. REVISION 1-9 0 APPENDIX/ATTACHMENT REVISION STATUS APPENDIX NO. NO. OF REVISION ATTACHMENT NO. OF REVISION PAGES NO. NO. PAGES NO.
X6CNA15 X6CNAAt5aSHEETtK-ENERCON Calculation for RA1 SHEET K-3 CALC NO. SNCO24-CALC-005 TALOCNET ENERCON project. Eery day. T B EO ONTEN SR V PAGE NO. 3 of 9 Section 1.0 Purpose and Scope ......................................................
2.0 Summary of Results and Conclusions
.....................................
3.0 References................................................................
4.0 Assumptions..............................................................
5.0 Design Inputs..............................................................
6.0 Methodology..............................................................
7.0, Calculations
..............................................................
8.0 Computer Software........................................................
9.0 Results and Conclusion
...................................................
Page No.4 5 6 6 7 7 8 9 9 X6CNA15 Attachment K SHEET K-4___________________
ENERCON Calculation for RA1 ________CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold FiEN ER C ON to Address NEI 99-01 REV. 0...
Revision 6 PAGE NO. 4 of 9 1.0 Purpose and Scope The purpose of this calculation is to calculate the Emergency Action Level (EAL)thresholds for the update of the RA1 calculation in the Southern Nuclear (SNO) Design Calculation X6CNA14 (Reference
- 1) in response to the changes made to the Initiating Condition (IC) AA1 in Revision 6 of NEI 99-01 (Reference 2). Calculation RA1 is meant to address the IC AA1 (Section 4.1 of NEI 99-01 Revision 6 states "R may be used in lieu of A" for this recognition category provided the change is carried through for all the associated IC identifiers).
Revision 6 of NEI 99-01 IC AA1 identifies an EAL threshold for a release of gaseous or liquid radioactivity resulting in an offsite dose to a member of the public greater than 10 mrem Total Effective Dose Equivalent (TEDE) or 50 mrem thyroid Committed Dose Equivalent (CDE). IC AA1 is applicable to all operating modes and there are 4 EALs outlined in NEI 99-01 for IC AAI.1. Reading of site specific radiation monitors greater than threshold values that would generate a dose rate greater than the dose criterion established in IC AA1 in 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />. Reading must be shown for 15 minutes or longer.2. Dose assessment using actual meteorology indicates doses greater than 10 mrem Total Effective Dose Equivalent (TEDE) or 50 mrem thyroid Committed Dose Equivalent (CDE) at or beyond site boundary 3. Analysis of a liquid effluent sample indicates a concentration or release rate that would result in doses greater than 10 mrem TEDE or 50 mrem thyroid CDE at or beyond site boundary for one hour of exposure.4. Field survey results indicate either of the following at or beyond site boundary.
A closed window dose rate greater than 10 mR/hr expected to continue for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> or longer an analyses of field survey samples indicates a thyroid CDE greater than 50 mrem for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> of inhalation.
X6CNAI5 Attachment K SHEET K-5_________________
ENERCON Calculation for RA1 ________[CALC NO. SN1 4GL-0 Vogtle EAL RA1 Threshold SEN ER C ON to Address NEI 99-01 vyp poe,. doy Revision 6 REV. ]0______________I________________PAGE NO. J 5 of 9 The scope of this calculation is to determine site specific instrument readings for the RA1 EAL I threshold.
The IC RAI EAL 2, 3, and 4 are not evaluated in this calculation.
The quality rating of this calculation is non-safety related due to results only being used to generate a revised set of EALs for submission by the Vogtle Electric Generating Plant (VEGP).2.0 Summary of Results and Conclusions The instrument readings that indicate an EAL threshold value has been reached for IC RAI are calculated in this calculation.
IC RAl is the release of gaseous or liquid radioactivity resulting in offsite dose to a member of the public greater than 10 mrem TEDE or 50 mrem thyroid CDE.The RA1 EAL 1 is the valid reading on one or more of the following radiation monitors that exceeds or is expected to exceed the reading shown in Table 2-1. It should be noted here that the threshold value calculated for the turbine building vent (steam jet air ejector) is below the lower limit of the monitor RE-12839E (40 pCi/cm 3), which was used for RS1 EAL 1. The monitor RE-I12839E is not applicable for determining if an RAI EAL I threshold has been reached for the turbine building vent (steam jet air ejector) release pathway. Based on Design Input I of Reference I, the steam jet air ejector mid range monitor, RE-12839D, has sufficient range to be used for determining if an RA1 threshold has been reached.
X6CNA15 Attachment K ENERCON Calculation for RA1 SHEET K-6 CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold
-____F~EN ER C ON to Address NEI 99-01 REV. 0~xe~nc Erp e rydty Revision 6 PAGE NO. 6 of 9 Table 2-1 Radiation Monitor RA1 EAL Threshold Values RE-i12444E Plant Vent 0.5 pCi/cm 3 RE-i ~~Turbine Building Vent (Steam Jet 2 ~/m Air Ejector)3.0 References
- 1. X6CNA14 Rev 7, NEI 99-01 EAL Calculations, Southern Company, October 15, 2014.2. NEI 99-01 Rev 6, Development of Emergency Action Levels for Non-Passive Reactors, November 2012, Nuclear Energy Institute.
4.0 Assumptions
Based on the analysis of the methodology of Reference 1, the following assumption is consistent with the previously performed calculations, but were not included in the listed assumptions of Reference 1.4.1 Perfect Monitor Response This assumption is applied to be consistent with the calculations performed in Attachment D of Reference
- 1. It is assumed in this calculation that the monitors at the end of each pathway are not energy dependent or that the monitor response accounts for the relative energy spectrum associated with the thresholds determined in this calculation based on the expected proportion of each isotope in the overall concentration.
This is a simplifying assumption applied due to the limited information provided about the monitoring equipment.
X6CNA1 5 Attachment K F~NFRCOlN falclrafkiinn fnr RA1 SHEET K-7 CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold F~EN E R CON to Address NEI 99-01 REV. 0ey ...£ day,, Revision 6 PAGE NO. 7 of 9 5.0 Design Inputs 5.1 Vogtle Indication and RSI EAL 1 Thresholds X6CNA14 (Reference
- 1) addresses the IC RS1, which is based on the release of gaseous radioactivity resulting in offsite dose to a member of the public greater than 100 mrem TEDE or 500 mrem thyroid CDE. X6CNA14 evaluates two release pathways and determines the monitor readings that would indicate an EAL threshold value has been reached for IC RSI. The monitor readings that would indicate an EAL threshold value for IC RS1 are provided in Table 5-1.The indicating ranges for the radiation monitors are also provided in Table 5-1 and the ranges are based on Design Input 1 on Sheet 36 of Reference
- 1. These values are used to calculate the IC RA1 EAL threshold values.Table 5-1 Radiation Monitor RS1 EAL Threshold Values Radiation Monitor Vent Path Moio Raig Iniain ag RE-12444E Plant Vent 5 IJCi/cm 3 4.0E-01 to 5.8E+04 pCi/cm 3 RE-189 TrieBidnVet 210 tpCi/cm 3 4.0E+01 to 5.8E+04 pCi/cm 3 (Steam Jet Air Ejector)6.0 Methodology In the X6CNA14 (Reference
- 1) RS1 evaluation, EAL I thresholds were set based on readings of radiation monitoring equipment for several effluent pathways.
The thresholds are shown in Table 5-1 of this calculation.
The calculations for dose rate estimates is linear, therefore the RSI readings are scaled down by a factor of 10 (multiple of 0.1) for the RA1 evaluation performed in this calculation resulting in EAL 1 threshold values reflecting an offsite dose to a member of the public greater than 10 X6CNA15 Attachment K ENERCON CalculIation fnr RAl SHEET K-8 CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold
-____ _______I~EN ER C ON to Address NEIl99-01 REV. 0Revision 6 PAGE NO. 8 of 9 mrem Total Effective Dose Equivalent (TEDE) or 50 mrem thyroid Committed Dose Equivalent (CDE). The calculation of the RA1 EAL 1 threshold values is provided in Section 7.0.7.0 Calculations As discussed in Section 6.0, the values provided in Table 5-1 are multiplied by a scaling factor of 0.1 for the RA1 EAL I thresholds.
The resultant threshold values for RA1 EAL 1 are shown in Table 7-1. The monitor applied for the plant vent pathway for RS1 EAL 1, RE-12444E, is applicable for RAI EAL I (close to the limit of the monitor, but still within the indicating range). The monitor applied for the turbine building vent (steam jet air ejector) for RS1 EAL I, RE-I12839E, is not applicable for the RA1 EAL I because the threshold calculated in this calculation, 21 pCi/cm 3 , is below the lower limit of the monitor, 40 pCi/cm 3.Based on Design Input 1 of Reference 1, there is an additional monitor for the turbine building vent (steam jet air ejector) release path, RE-12839D, and it has a range that is applicable to the RA1 EAL I limit calculated in this calculation.
The monitor, indicating range, and the RA1 EAL 1 threshold for the turbine building vent (steam jet air ejector) release pathway are shown in Table 7-1.Table 7-1 Radiation Monitor RA1 Threshold Values Radiation.....
Vent Patti =:
Moinitor R:iesultant!I. )Indic:'
(" 4.0E-01 to 5.8E+04 RE-I12444E Plant Vent 5 IpCi/cm 3 0.1 0.5 pCi/cm 3 iaCi/cm 3 Turbine Building Vent 3.4E-03 to 4.0E+01 RE-12839D 210 pJCi/cm 3 0.1 21 iiCi/cm 3 a/m (Steam Jet Air Ejector) I~/m X6CNA1 5 Attachment K IFNFRCON CalcIulaItion fnr RAI SHEET K-9 CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold
____ ________F~E NE R CON to Address NEI 99-01 REV. 0 EacelIerce--Evey project Every day R v s o PAGE NO. 9 of 9 8.0 Computer Software No computer software was used in the creation of this calculation.
9.0 Results and Conclusion The purpose of this calculation is to calculate the EAL thresholds for the RA1 calculation in the SNC Design Calculation X6CNA14 (Reference
- 1) for VEGP use in development of an EAL submittal based on NEI 99-01 Revision 6. Table 2-1 contains the threshold values associated with the RA1 EAL 1. These values will be applied to the VEGP Emergency Action Level Scheme developed using the guidance of NEI 99-01 Revision 6.
X6CNA1 5 Attachment K ENERCON Calculation for RAI SHEET K-IO CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 0E NE R CON CHECKLIST E~o, ...
NO. Page 1 of 8 CHECKLIST ITEMS 1 YES NO N/A GENERAL REQUIREMENTS
- 1. If the calculation is being performed to a client procedure, is the procedure being used the latest revision?Client procedure is not used in this calculation.
ENERCON QA procedures used throughout Li L] [this project.2. Are the proper forms being used and are they the latest revision?
Jz] L [ Li[3. Have the appropriate client review forms/checklists been completed?
Client procedure is not used in this calculation.
ENERCON QA procedures used throughout z] [][this project.4. Are all pages properly identified with a calculation number, calculation revision and page number consistent with the requirements of the client's procedure?
Client procedure is not used in this calculation.
ENERCON QA procedures used throughout Li L] [this project.5. Is all information legible and reproducible?
[] []6. Is the calculation presented in a logical and orderly manner?. [] []7. Is there an existing calculation that should be revised or voided?This calculation does not replace any ENERCON produced calculation.
Information generated
[ ][by this calculation will be used by SNC to update their Vogtle EAL report.8. Is it possible to alter an existing calculation instead of preparing a new calculation for this situation?
No current ENERCON calculations exist that are similar to this calculation for addressing the Li [] Li SNC Vogtle EAL update.9. If an existing calculation is being used for design inputs, are the key design inputs, I assumptions and engineering judgments used in that calculation valid and do they Li [ Li apply to the calculation revision being performed.1 1 _ 1_ _
X6CNA15 Attachment K SHEET K-il__________________
ENERCON Calculation for RAl CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 E N R CO NCHECKLIST Fxcdae-Fe
...eryproJe42.
Ey doy. PAGE NO. Page 2of 8 CHECKLIST ITEMS 1 YES NO NIA 10. Is the format of the calculation consistent with applicable procedures and expectations?
[] [][11. Were design input/output documents properly updated to reference this calculation?
No ENERCON design inputs or outputs are affected by this calculation.
This calculation will affect the Vogtle EAL evaluation.
- 12. Can the calculation logic, methodology and presentation be properly understood without referring back to the originator for clarification?
1 1 1[ ______OBJECTIVE AND SCOPE 13. Does the calculation provide a clear concise statement of the problem and objective of the calculation?
[ ][14. Does the calculation provide a clear statement of quality classification?
[ ][15. Is the reason for performing and the end use of the calculation understood?
[] D] L 16. Does the calculation provide the basis for information found in the plant's license basis?The plant's license basis is not applied in this evaluation.
LI [] [17. If so, is this documented in the calculation?
The plant's license basis is not applied in this evaluation.
LI [] [18. Does the calculation provide the basis for information found in the plant's design basis documentation?
The plant's license basis is not applied in this evaluation.
LI LI [19. If so, is this documented in the calculation?
The plant's license basis is not applied in this evaluation.
LI LI [
X6CNA1 5 Attachment K ENERCON Calculation for RA1 SHEET K-12 CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST aco, ... ay.P AGE N O. P age 3 of 8 CHECKLIST ITEMS 1 YES NO NIA 20. Does the calculation otherwise support information found in the plant's design basis documentation?
Calculation is applied in the development of the Vogtle EAL evaluation, not the plant license Li [] [basis.21. If so, is this documented in the calculation?
Calculation is applied in the development of the Vogtle EAL evaluation, not the plant license L basis.22. Has the appropriate design or license basis documentation been revised, or has the change notice or change request documents being prepared for submittal?
Calculation is applied in the development of the Vogtle EAL evaluation, not the plant license Li LI [basis.DESIGN INPUTS 23. Are design inputs clearly identified?
[] [][24. Are design inputs retrievable or have they been added as attachments?
[ -[25. If Attachments are used as design inputs or assumptions are the Attachments traceable and verifiable?
Attachments are not included in this calculation.
Li Li [26. Are design inputs clearly distinguished from assumptions?
Iz]L [L i[27. Does the calculation rely on Attachments for design inputs or assumptions?
If yes, are the attachments properly referenced in the calculation?
Attachments are not included in this calculation.
Li Z] Li 28. Are input sources (including industry codes and standards) appropriately selected and [] Li Li are they consistent with the quality classification and objective of the calculation?
- 29. Are input sources (including industry codes and standards) consistent with the plant's Lii design and license basis? [ ][
X6CNA1 5 Attachment K ENERCON Calculation for HA1 SHEET K-13 CALC NO. SNC024-CALC-005 CALCULATION PREPARATION REV. 0 E N R (0 NCHECKLIST.... ,e~ p~j~c.
N O. Page 4of 8 CHECKLIST ITEMS 1 YES NO NIA 30. If applicable, do design inputs adequately address actual plant conditions?
[ ][31. Are input values reasonable and correctly applied? [ ][32. Are design input sources approved?
[] [ LI 33. Does the calculation reference the latest revision of the design input source? LI[][34. Were all applicable plant operating modes considered?
[] LI LI ASSUMPTIONS
- 35. Are assumptions reasonable/appropriate to the objective?
[] LI LI 36. Is adequate justification/basis for all assumptions provided?
Li[][37. Are any engineering judgments used? I Z] [ LI 38. Are engineering judgments clearly identified as such?No engineering judgments were applied in this evaluation.
LI [] [39. If engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria?
LI w][No engineering judgments were applied in this evaluation.
METHODOLOGY
- 40. Is the methodology used in the calculation described or implied in the plant's licensing LII basis? [ ][41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated?
Plant licensing basis was not affected by this evaluation.
LI LI [
X6CNA1 5 Attachment K ENERCON Calculation for RA1 SHEET K-14 CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST Exctl ... Eeryproec.
NO. Page 5 of 8 CHECKLIST ITEMS 1 YES NO NIA 42. Is the methodology used consistent with the stated objective?
[ ][43. Is the methodology used appropriate when considering the quality classification of the I 1 -1 D* calculation and intended use of the results? 1] [] [BODY OF CALCULATION
- 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? [ ][45. Is there reasonable justification provided for the use of equations not in common use?Equations applied in this evaluation are in common use in the industry.
L] [] [46. Are the mathematical operations performed properly and documented in a logical [ ][fashion?47. Is the math performed correctly?
[ ][48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? [ ][49. Has proper consideration been given to results that may be overly sensitive to very small changes in input?Results generated by calculations performed in this evaluation are not significantly affected by Li [] [minor perturbations of variables.
SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?
No software languages or codes were used in the development of this calculation.
LI [][51. Have the requirements of CSP 3.09 for use of computer codes or software languages, including verification of accuracy and applicability been met?No software languages or codes were used in the development of this calculation.
L X6CNA1 5 Attachment K ENERCON Calculation for RA1 SHEET K-I5 CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST....
NO. Page 6of 8 CHECKLIST ITEMS" YES NO NIA SOFTWARE/COMPUTER CODES (Continued)
- 52. Are the codes properly identified along with source vendor, organization, and revision level?No software languages or codes were used in the development of this calculation.
i Z 53. Is the computer code applicable for the analysis being performed?
No software languages or codes were used in the development of this calculation.
D] D][54. If applicable, does the computer model adequately consider actual plant conditions?
No software languages or codes were used in the development of this calculation.
Iii [l [55. Are the inputs to the computer code clearly identified and consistent with the inputs and assumptions documented in the calculation?
No software languages or codes were used in the development of this calculation.
[ ][56. Is the computer output clearly identified?
No software languages or codes were used in the development of this calculation.
LI E] [57. Does the computer output clearly identify the appropriate units?No software languages or codes were used in the development of this calculation.
El [] [58. Are the computer outputs reasonable when compared to the inputs and what was expected?No software languages or codes were used in the development of this calculation.
E 59. Was the computer output reviewed for ERROR or WARNING messages that could invalidate the results?No software languages or codes were used in the development of this calculation.
l E X6CNA1 5 Attachment K ENERCON Calculation for RA1 SHEET K-16 CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 SE NE RCZO N CHECKLIST....E N O. Page 7of 8 CHECKLIST ITEMS 1 YES NO NIA RESULTS AND CONCLUSIONS
- 60. Is adequate acceptance criteria specified?
This calculation provides results for the SNC Vogtle EAL evaluation.
No acceptance criteria required for this evaluation.
- 61. Are the stated acceptance criteria consistent with the purpose of the calculation, and intended use?This calculation provides results for the SNC Vogtle EAL evaluation.
No acceptance criteria D] D][required for this evaluation.
- 62. Are the stated acceptance criteria consistent with the plant's design basis, applicable licensing commitments and industry codes, and standards?
This calculation provides results for the SNC Vogtle EAL evaluation.
No acceptance criteria zJ []l [required for this evaluation.
- 63. Do the calculation results and conclusions meet the stated acceptance criteria?This calculation provides results for the SNC Vogtle EAL evaluation.
No acceptance criteria required for this evaluation.
- 64. Are the results represented in the proper units with an appropriate tolerance, if applicable?
- 65. Are the calculation results and conclusions reasonable when considered against the [ ][stated inputs and objectives?
- 66. Is sufficient conservatism applied to the outputs and conclusions?
[] El El 67. Do the calculation results and conclusions affect any other calculations?
No ENERCON calculations are affected by this evaluation.
Results are provided to SNC Vogtle nuclear power plant for input into the Vogtle EAL evaluation.
- 68. if so, have the affected calculations been revised?No ENERCON calculations are affected by this evaluation.
Results are provided to SNC Vogtle nuclear power plant for input into the Vogtle EAL evaluation.
X6CNA15 Attachment K ENERCON Calculation for RA1 SHEET K-17 CALC NO.SNC024-CALC-005 ENERCON ExceIlence--Every proj.ct. Every CALCULATION PREPARATION CHECKLIST REV. 0 PAGE NO.Page 8 of 8 CHECKLIST ITEMS 1 YES NO N/A 69. Does the calculation contain any conceptual, unconfirmed or open assumptions requiring later confirmation?
Calculation is based on design input and assumption data provided and used by client in their j] 0] 0 current EAL evaluation.
Parameters maintained for consistency.
- 70. If so, are they properly identified?
No open assumptions applied in this evaluation.
Assumptions have basis based on information0 provided by the client.DESIGN REVIEW 71. Have alternate calculation methods been used to verify calculation results? u][][Note: 1. Where required, provide clarification/justification for answers to the questions in the space provided below each question.
An explanation is required for any questions answered as "No' or "N/A".Originator:
David Hartmangruber 4 Date Print Name and Sign X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-1 CALC NO. SNCO24-CALC-O04EN F_ R C0 N CALCULATION COVER e0y iE S H EET REV. 0 PAGE NO. I of 8 Til:Level for Initiating Condition E-HUI rjc dntfe:SC2 Item Cover Sheet Items Yes No 1 Does this calculation contain any open assumptions, including preliminary E] [information, that require confirmation? (If YES, identify the assumptions.)
2 Does this calculation serve as an 'Alternate Calculation"? (If YES, identify the design [] [verified calculation.)
Design Verified Calculation No. __________
3 Does this calculation supersede an existing Calculation? (If YES, identify the design [][verified calculation.)
Superseded Calculation No.__________
Scope of Revision: Initial Issue Revision Impact on Results: Initial Issue Study Calculation LI Final Calculation Safety-Related L'- Non-Safety-Related
[Z (Print Name and Sign)Originator:
Andrew Blackwell 1(0/ Design Reviewer:
Curt Lindner Date: 7 /j-Dg/,~ge yJy.~~eH Approver:
JayMaisler, CHP) ON .....y jmal$1 ...............
Dat:O1 /9/01 Approver:
on=aJay Maisler, CHP ~aIjas,@eeoENRCOm,cou, 6" ~ ~ ,/ Da20 2015,10.09
] 1I2IOQO040' D te 0//2 1 X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-2 CALC NO.SNCO24-CALC-004 SENERCON S CALCULATION REVISION STATUS SHEET REV. 0 PAGE NO. 2 of 8 CALCULATION REVISION STATUS REVISION DATE DESCRIPTION 0 10/07/2015 Initial Submittal PAGE REVISION STATUS PAGE NO. REVISION PAGE NO. REVISION 1-8 0 APPENDIX/ATTACHMENT REVISION STATUS APPENDIX NO. NO. OF REVISION ATTACHMENT NO. OF REVISION PAGES NO. NO. PAGES NO.
X6CNA15 X6CNAI 5Attachment L ENERCON Calculation for E-HU1 SHEET L-3 CALC NO. SNCO24-CALC-004
£,.,E NE R CON TABLE OF CONTENTS REV. 0 Eoceitence--Eoeiy project. Every doy____________________________________
PAGE NO. 3 of 8 Section 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Purpose and Scope Summary of Results and Conclusions References Assumptions Design Inputs Methodology Calculations Computer Software Page No.4 4 5 5 6 7 8 8 X6CNA15 Attachment L SHEET L-4_________________
ENERCON Calculation for E-HU1 CALC NO. SNC024-CALC-004 VEGP DETERMINATION OF EMERGENCY ACTION LEVEL REV. 0 SE N E R C 0 N FOR INITIATING CONDITION E-HU1 PAGE NO. Page 4of 8 1.0 Purpose and Scope The purpose of this calculation is to determine the emergency action level (EAL)thresholds for the initiating condition (IC) E-HUI, which is defined as damage to the confinement boundary of a storage cask containing spent fuel, as described in NEI 99-01 Rev. 6 [1]. The IC is defined as an "on-contact" radiation reading greater than two times the allowable dose readings as specified in the technical specifications listed in the cask's Certificate of Compliance (CoC). A dose rate reading greater than EAL threshold value indicates that there is degradation in the level of safety of the spent fuel cask.This calculation is performed under guidance from NEI 99-01 Rev. 6 [1], which describes development of a site-specific emergency classification scheme.2.0 Summary of Results and Conclusions The emergency action levels for initiating condition E-HUI are calculated based on the HI-STORM 100 and HI-TRAC 125 cask system technical specification for spent fuel cask surface dose rates [2]. An elevated cask surface dose rate is indicative of degradation of the cask confinement barrier. The calculated elevated dose rates used as emergency action level thresholds are provided in Table 2-1.
X6CNA15 fnr I.-I-II II SHEET L-5 CALC NO. SNC024-CALC-004 VEGP DETERMINATION OF ____________
EMERGENCY ACTION LEVEL REV. 0 SE N E R C 0 N FOR INITIATING CONDITION E- -__________
HU1 PAGE NO. Page 5 of 8 Table 2-1 Emergency Action Level Spent Fuel Cask Surface (Neutron + Gamma) Dose Rates for IC E-HU1 LocationEL
__________________________ (mrem/hr)HI-TRAC_125
______Side -Mid -height 950 Top 200 HI-STORM 100 Side -60 inches below mid-height 170 Side -Mid -height 180 Side -60 inches above mid-height 110 Top -Center of lid 50 Top -Radially centered 60 Inlet duct 360 Outlet duct 130 3.0 References
- 1. NEI 99-01, Rev. 6, "Development of Emergency Action Levels for Non-Passive Reactors." Nuclear Energy Institute.
November 2012.2. VEGP 10 CFR 72.212 Report. Docket Number 72-1 039, Version 2.4.0 Assumptions There are no assumptions made in this calculation.
X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-6 CALC NO.SNC024-CALC-004 SENER CON Excellence--FeypoetEeydy VEGP DETERMINATION OF EMERGENCY ACTION LEVEL FOR INITIATING CONDITION E-HU1 REV. 0 PAGE NO.Page 6 of 8 5.0 Design Inputs 1. The contact dose rates from the HI-STORM 100 and HI-TRAC 125 cask system technical specification
[2, Table 6.2-3] are provided below in Table 5-1. These source values are scaled to develop the emergency action levels for initiating condition E-HUI.Table 5-1 Technical Specification (Neutron +Gamma) Dose Rate Limits for HI-STORM 100 and HI-TRAC 125 Number of Technical Specification LoatonjMeasurements j Limit (mrem/hr)HI-TRAC 125 Side -Mid -height 4 472.7 Top 1 4 j102.4 HI-STORM 100 Side -60 inches below mid-height 4 87 Side -Mid -height 4 88.9 Side -60 inches above mid-height 4 54.8 Top -Center of lid 1 24.5 Top -Radially centered 4 29.2 Inlet duct 4 178.8 Outlet duct 4 64.5 X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-7 CALC NO. SNC024-CALC-004 VEGP DETERMINATION OF -____________
EMERGENCY ACTION LEVEL REV. 0 SE N E R C 0 N FOR INITIATING CONDITION E- -__________
£co ,
HU1 PAGE NO. Page 7of 8 6.0 Methodology The "on-contact" dose rates from the technical specification for the HI STORM-I100 cask system are scaled by a factor of 2, as specified in NEI 99-01 Rev. 6 [1], for use in initiating condition E-HUI.
X6CNA15 X6CNA1 5Attachment LIor'.iiIfnrn f,~r 1:=_1411 SHEET L-8 CALC NO. SNC024-CALC-004 VEGP DETERMINATION OF ____________
EMERGENCY ACTION LEVEL REV. 0 I~E N E R C 0 N FOR INITIATING CONDITION E-E~ce, ..... E'ery proj~c,. ero,,doy.
HUI1 PAGE N O. Page 8 of 8 7.0 Calculations The dose rates in Table 5-1 are multiplied by 2 in order to calculate the EAL dose rate limits. These calculations are presented below in Table 7-1.Table 7-1 Dose Rate Scaling Calculations for EAL Limits TTechnical LoainSpecification Scaling Calculated Value EAL LoainI Limit Factor (mrem/hr) (mrem/hr)I(mrem/hr)
_____________
HI-TRAC 125 _______ ______Side -Mid -height 472.7 J 2 945.4 950 Top 102.4 2 204.8 J 200 HI-STORM 100 Side -60 inches below mid-height 87 Side -Mid -height 88.9 Side -60 inches above mid-height 54.8 Top -Center of lid 24.5 Top -Radially centered 29.2 Inlet duct 178.8 Outlet duct 64.5 174 170 177.8 180 109.6 110 49 50 58.4 60 357.6 360 129 130 8.0 Computer Software Microsoft WORD 2013 is used in this calculation for basic multiplication.
X6CNA1 5 Attachment L
C'alrilIfr~n fv~tr I:iMI I1 SHEET L-9 CALC NO. SNC024-CALC-004 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST
&ey oy PAGE NO. Page 1lof 8 CHECKLIST ITEMS 1 YES NO NIA GENERAL REQUIREMENTS
- 1. If the calculation is being performed to a client procedure, is the procedure being used the latest revision?Client procedure is not used in this calculation.
ENERCON QA procedures used throughout this LI LI [project.2. Are the proper forms being used and are they the latest revision?
j ] J[]3. Have the appropriate client review forms/checklists been completed?
Client procedure is not used in this calculation.
ENERCON QA procedures used throughout this [ ][project.4. Are all pages properly identified with a calculation number, calculation revision and page number consistent with the requirements of the client's procedure?
Client procedure is not used in this calculation.
ENERCON QA procedures used throughout this LI LI [project.5. Is all information legible and reproducible?
II[][6. Is the calculation presented in a logical and orderly manner?.[
]]7. Is there an existing calculation that should be revised or voided?This calculation does not replace any ENERCON produced calculation.
Information generated LI [] LI by this calculation will be used by SNC to update their VEGP EAL report.8. Is it possible to alter an existing calculation instead of preparing a new calculation' for this situation?
No current ENERCON calculations exist that are similar to this calculation for addressing the LI [] LI SNC VEGP EAL update.9. If an existing calculation is being used for design inputs, are the key design inputs, [assumptions and engineering judgments used in that calculation valid and do they LI [ LI apply to the calculation revision being performed.
[ ___ ____
X6CNA15 Attachment L SHEET L-10 ENERCON Calculation for E-HU1 CALC NO. SNCO24-CALC-004 CALCULATION PREPARATION REV. 0 SEN E R CON CHECKLIST Fvery doy PAGE NO. Page 2of 8 CHECKLIST ITEMS 1 YES NO NIA 10. Is the format of the calculation consistent with applicable procedures and expectations?
[] [][11. Were design input/output documents properly updated to reference this calculation?
No ENERCON design inputs or outputs are affected by this calculation.
This calculation will affect the VEGP EAL evaluation.
- 12. Can the calculation logic, methodology and presentation be properly understood without referring back to the originator for clarification?
[ ][OBJECTIVE AND SCOPE 13. Does the calculation provide a clear concise statement of the problem and objective of the calculation?
[ ][14. Does the calculation provide a clear statement of quality classification?
[] [][15. Is the reason for performing and the end use of the calculation understood?
Ii[][16. Does the calculation provide the basis for information found in the plant's license basis?The plant's license basis is not applied in this evaluation.
LI LI [17. If so, is this documented in the calculation?
The plant's license basis is not applied in this evaluation.
j] [] [ " 18. Does the calculation provide the basis for information found in the plant's design basis documentation?T The plant's license basis is not applied in this evaluation.
{] [][19. If so, is this documented in the calculation?I The plant's license basis is not applied in this evaluation.
{] [] L X6CNA1 5 Attachment L ENERCON Calculation for E-HU1 SHEET L-11I CALC NO. SNCO24-CALC-004 CALCULATION PREPARATION REV. 0 OEN E R CON CHECKLIST.....~
doy PAGE NO. Page 3of 8 CHECKLIST ITEMS 1 YES NO NIA 20. Does the calculation otherwise support information found in the plant's design basis documentation?
Calculation is applied in the development of the VEGP EAL evaluation, not the plant license [] E [ [basis.21. If so, is this documented in the calculation?
Calculation is applied in the development of the VEGP EAL evaluation, not the plant license basis. _____ ____1_____
- 22. Has the appropriate design or license basis documentation been revised, or has the change notice or change request documents being prepared for submittal?
Calculation is applied in the development of the VEGP EAL evaluation, not the plant license El El [basis.DESIGN INPUTS 23. Are design inputs clearly identified?
LI[][24. Are design inputs retrievable or have they been added as attachments?
[ ][25. If Attachments are used as design inputs or assumptions are the Attachments traceable and verifiable?
Attachments are not included in this calculation.
El [][26. Are design inputs clearly distinguished from assumptions?
1z1' [{E[DESIGN INPUTS (Continued)
- 27. Does the calculation rely on Attachments for design inputs or assumptions?
If yes, are the attachments properly referenced in the calculation?
Attachments are not included in this calculation.
El [] El 28. Are input sources (including industry codes and standards) appropriately selected and [] El El are they consistent with the quality classification and objective of the calculation?
X6CNA1 5 Attachment L ENERCON Calculation for E-HU1 SHEET L-12 CALC NO. SNCO24-CALC-004 CALCULATION PREPARATION REV. 0~jEN E R CON CHECKLIST, e doy PAGE NO. Page 4of 8 CHECKLIST ITEMS 1 YES NO NIA 29. Are input sources (including industry codes and standards) consistent with the plant's design and license basis? [ ][30. If applicable, do design inputs adequately address actual plant conditions?
[ ][31. Are input values reasonable and correctly applied? [ ][32. Are design input sources approved?
[ ][33. Does the calculation reference the latest revision of the design input source? [ ][34. Were all applicable plant operating modes considered?
[] [][ASSUMPTIONS
- 35. Are assumptions reasonable/appropriate to the objective?
[] III L 36. Is adequate justification/basis for all assumptions provided?
[] []37. Are any engineering judgments used? LI Z] LI 38. Are engineering judgments clearly identified as such?No engineering judgments were applied in this evaluation.
LI L] [39. If engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria?
[ ][No engineering judgments were applied in this evaluation.
METHODOLOGY
- 40. Is the methodology used in the calculation described or implied in the plant's licensing
[ ][basis?
X6CNA1 5 Attachment L ENERCON Calculation for E-HU1 SHEET L-13 CALC NO. SNC024-CALC-004 CALCULATION PREPARATION REV. 0E N ERCON CHECKLIST NO. Page 5of 8 CHECKLIST ITIEMS 1 YES NO NIA 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated?
Plant licensing basis was not affected by this evaluation.
LI III [42. Is the methodology used consistent with the stated objective?
[] LII L 43. Is the methodology used appropriate when considering the quality classification of the [ ][calculation and intended use of the results?BODY OF CALCULATION
- 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? ________45. Is there reasonable justification provided for the use of equations not in common use?Equations applied in this evaluation are in common use in the industry.
LI [] [46. Are the mathematical operations performed properly and documented in a logical fashion? [ ][47. Is the math performed correctly?
[ ][48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? [ ][49. Has proper consideration been given to results that may be overly sensitive to very small changes in input?Results generated by calculations performed in this evaluation are not significantly affected by LI LI [minor perturbations of variables.
SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?
Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
LI LI [
X6CNA1 5 Attachment L ENERCON Calculation for E-HU1 SHEET L-14 CALC NO. SNCO24-CALC-004 CALCULATION PREPARATION REV. 0 O h ENER CON CHECKLIST NO. Page 6 of 8 CHECKLIST ITEMS 1 YES NO NIA 51. Have the requirements of CSP 3.09 for use of computer codes or software languages, including verification of accuracy and applicability been met?Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
SOFTWAREICOMPUTER CODES (Continued)
- 52. Are the codes properly identified along with source vendor, organization, and revision level? [ ][53. Is the computer code applicable for the analysis being performed?
El L] [54. If applicable, does the computer model adequately consider actual plant conditions?
Li w][55. Are the inputs to the computer code clearly identified and consistent with the inputs and [] [][assumptions documented in the calculation?
- 56. Is the computer output clearly identified?
Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
Li LI [57. Does the computer output clearly identify the appropriate units?Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
Li [] [58. Are the computer outputs reasonable when compared to the inputs and what was expected?Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
Li i 59. Was the computer output reviewed for ERROR or WARNING messages that could invalidate the results?Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
i L RESULTS AND CONCLUSIONS
- 60. Is adequate acceptance criteria specified?
This calculation provides results for the SNC VEOP EAL evaluation.
No acceptance criteria Li i required for this evaluation.
X6CNA1 5 Attachment L ENERCC)N CalcuiiItinn fnr E-HUl SHEET L-15 CALC NO. SNC024-CALC-004 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST E~c, ....Evoj. NO. Page 7of 8 CHECKLIST ITEMS 1 YES NO NIA 61. Are the stated acceptance criteria consistent with the purpose of the calculation, and intended use?This calculation provides results for the SNC VEGP EAL evaluation.
No acceptance criteria D] []required for this evaluation.
- 62. Are the stated acceptance criteria consistent with the plant's design basis, applicable licensing commitments and industry codes, and standards?
This calculation provides results for the SNC VEGP EAL evaluation.
No acceptance criteria El [] [required for this evaluation.
- 63. Do the calculation results and conclusions meet the stated acceptance criteria?This calculation provides results for the SNC VEGP EAL evaluation.
No acceptance criteria required for this evaluation.
T 64. Are the results represented in the proper units with an appropriate tolerance, if applicable?
[ ][65. Are the calculation results and conclusions reasonable when considered against the l E stated inputs and objectives?
[ ][66. Is sufficient conservatism applied to the outputs and conclusions?
[ ][67. Do the calculation results and conclusions affect any other calculations?
No ENERCON calculations are affected by this evaluation.
Results are provided to SNC VEGP -___for input into the VEGP EAL evaluation.
- 68. If so, have the affected calculations been revised?T No ENERCON calculations are affected by this evaluation.
Results are provided to SNC VEGP El_[]_El for input into the VEGP EAL evaluation.
X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-16 CALC NO. SNC024-CALC-004 CALCULATION PREPARATION REV. 0 SE NE R CON CHECKLIST...
NO. Page 8of 8 CHECKLIST ITEMS 1 YES NO N/A 69. Does the calculation contain any conceptual, unconfirmed or open assumptions requiring later confirmation?
Calculation is based on design input and assumption data provided and used by client in their 10 [] U][CFR 72.212 Report. Parameters maintained for consistency.
- 70. If so, are they properly identified?
No open assumptions applied in this evaluation.
Assumptions have basis based on information provided by the client.DESIGN REVIEW 71. Have alternate calculation methods been used to verify calculation results? [ ][Note: 1I. Where required, provide clarification/]ustification for answers to the questions in the space provided below each question.
An explanation is required for any questions answered as "No' or "N/A'.Originator:
A Nameand ignDate vName and Sign 6-~ ~-~'~'
Southern Nuclear Operating Company Joseph M. Farley Nuclear Plant Units 1 and 2;Edwin I, Hatch Nuclear Plant Units 1 and 2;Vogtle Electric Generating Plant Units 1 and 2;License Amendment Request for Changes to Emergency Action Level Schemes to Adopt NEI 99-01 Rev. 6 and to Modify Radiation Monitors at Farley Nuclear Plant Enclosure 3 EAL Calculations Joseph M. Farley Nuclear Plant Units 1 and 2 License Amendment Request for Changes to Emergency Action Level Schemes to Adopt NEI 99-01 Rev. 6 and to Modify Radiation Monitors at Farley Nuclear Plant Enclosure 3 Farley EAL Calculations o ,.mmL Southern Nuclear Design Calculation I Calculation Number. SM-RNC524~fl0-flf1 Plant: Farley Nuclear Plant 1
~~ "-&1 DiiDsc/pline:
Mech'anical Title: .... .. I
Subject:
EmergencY*NE1 99-01 Rev 6 EAL Calculations .I Action Level Setpoints Purpose I Objective:
Document Emergency Action Level Values to support conversion to NEI 99-01 Rew.6 System or Equipment Tag Numtbers:...-..
-Topic ... Page Attachments
'#of... " (Computer Printouts.
Technical Papers, Pages-... ... .Sketches, Correspondence)-
Purpose .I A I SNC EP Concurrnce -'! I .Cniterda ...I B -. Reserved .._0 Conclusions
... .. ...=3 C*:- References
.. ... 23 Design Inputs -. .. ., ,D .Water Level! Elevations Corresponding to 2 19 -Fuel Uncovery
.. .' .. .. 22 E.-TEDE &Thyroid CDE Dose Calc~ulationis
-43 Mehdo ouin -25i F , Shieldin-gCalculations " 29 Body of :. 30 :G -Fuel Clad BarrierThreshold Calculations " .44-....____,-___
,__ .. ....._ H -RAI Calculation-18.... ... .._ _ _ _ __. _ _ __.. r _. ..E .H U l1 C a lc u la tio n 1 6:... ..* Tota.# of Pages ......... _...including cover~sheet
& 21 Attachments
- NJuclear Quality Level " .. _" 0 rSafety-Related Il i Sgnificant 0 ENon- Safety -Significant1 Notes: 1. Additional work and changes to this. calculation are required.
The calculation is"APPROPOVED NRC review and acceptance of the Emergency Plan (EP)submittal.
F01 NMP-ES-039-O01 I Southern Nuclear Operating Company$OTEN' Pat N Title: NEI 99-01 Rev 6 EAL Calculations SM-SN Sheet -00 SOTEN~Unit:
1&2She1 COMPANY Purpose: The purpose of this calculation is to provide values/data/curves and bases for use in development of the Farley Nuclear Plant Emergency Action Levels (EALs) using NEI 99-01 Rev 6 guidelines.
This combined calculation includes all unique calculations required to support emergency action level thresholds as well as references to calculations used to create thresholds, but serve purposes beyond emergency action levels.The contents of this calculation are primarily an amalgamation of the calculations which supported the previous emergency action level scheme. The work performed in calculations SM-96-1 076-001 and SM-96-1 076-002 is directly transposed into this document and edited to account for the differences between NEI 99-01 Rev 4 and 6.Several emergency action level thresholds have been eliminated due to the new scheme. The thresholds previously calculated supporting ICs RA2 and OG1 have not been carried into this document.
Attachments H and I of this document contain calculations supporting new emergency action level thresholds and represent the only portion of this document which is not directly transposed from SM-96-1076-001 and SM-96-1076-002.
The transposed material in this calculation has been further altered to reflect the new language and organization of NEI 99-01 Rev 6. These changes in language and organization are administrative in nature and have no impact on the calculation output.Criteria: The calculation performed will support the development of guidelines for NEI 99-01 initiating conditions (ICs) RU1, RA1, RS1, RG1, CS1, CG1, E-HU1, Fuel Clad Barrier Loss 3.A, ROS Barrier Loss 3.A, Containment Barrier Potential Loss 3.A, and Containment Barrier Potential Loss 4. B.1. Declaration of an emergency, when such a declaration is not required, involves risk to the public as does the failure to make such a declaration, should one be warranted.
Therefore, this calculation shall develop a "best estimate" value for the dose rates or curie concentrations sensed at the monitors chosen for the Emergency Action Level (EAL) set points. When judgments are necessary, these judgments shall be as close to anticipated conditions as possible.2. If a particular monitor is to be used for an EAL, then the dose rate or curie concentration set point developed for that specific monitor shall be within the range of the monitor, or the monitor shall not be cited as applicable for the EAL.3. In accordance with the guidance of Regulatory Guide 1.97 Revision 2, post-accident radiation monitors must read within a factor of 2 of actual radiation conditions.
Therefore, changes in the set points of this revision that are within a factor of 2 of the previous revision's set point for the same EAL do not invalidate the previous set point. It is up to the ultimate user of these calculations to determine if change to the EAL set point guidance document(s) is warranted.
Southern Nuclear Operating Company SOTHRN4. Plant: FNP ITteNE990Re6EACaclios SM-S NC524602-001 COMPAENy-u Unit: 1&2 Tite NE 90 e A acltosSheet 2 4. Methods and Assumptions shall comply with the guidance of NEI 99-01 Revision 6.Note: NEI 99-01 Rev. 6 states that the "A" Recognition Category designation may be changed to "R" provided the change is carried through for all of the associated IC identifiers.
As such, the Farley Nuclear Plant Emergency Action Levels use the Recognition Category designation of "R" for the Abnormal Radiation Recognition Category.
Southern Nuclear Operating Company SOTH Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-S NC524602-O01 I OMPHAN ZY Unit: 1&2 Sheet 3
Conclusions:
This calculation contains thresholds for the Farley Nuclear Plant Emergency Action Levels.Site specific information used to develop the scheme is included in the Body of Caclulation section. In this document, thresholds are calculated.
The results of these calculations are as follows.Initiating Condition RU1 Greater than any of the following monitor readings for 60 minutes or longer serves as the threshold for EAL 1.Liquid Effluents Liquid Radwaste Effluent Line RE-I18 1 .60 x I104 cpm Steam Generator Blowdown 28 0 p Effluent Line RE-23B Gaseous Effluents Steam Jet Air Ejector RE-I15 3.54 x I102 cpm Plant Vent Gas R-I14 3.20 x 104 cpm RE-22 4.0 x 102 cpm RE-29B (NG) 8.90 x 1 0 A pCi/cc Initiating Condition RA1 Greater than any of the following monitor readings for 15 minutes or longer serves as the threshold for EAL 1.Radiation Monitor Vent Path Monitor Reading RE00155C Steam jet Air Ejector (SJAE) 1.3 pCi/cc 1.3 R/hr RE0029B Plant Vent Stack 0.008 pCi/cc RE0060A/B/C S/G Atmospheric Relief Valves (ARVs) & Safety Relief Valves 0.005 pCi/cc 0.005 R/hr (S RVs)RE0060D Turbine Driven Auxiliary Feedwater Pump (TDAFW) 0.11 pCi/cc 0.11 R/hr_______________Turbine Exhaust Initiating Condition RS1 Greater than any of the following monitor readings for 15 minutes or longer serves as the threshold for EAL 1.
Southern Nuclear Operating Company SUIEN Plant: FPS-NC524602-001 COPAF nPt & Title: NEI 99-01 Rev 6 EAL Calculations I MSSheet 4 Radiation Monitor Vent Path Monitor Reading RE0O15C SJAE 13 IpCi/cc 13 R/hr RE0029B Plant Vent Stack 0.08 pCi/cc RE0060A/B/C S/G ARV & SRVs 0.05 pCi/cc 0.05 R/hr RE0060D TDAFW Turbine Exhaust 1.1 pJCi/cc 1.1 R/hr Initiating Condition RG1 Greater than any of the following monitor readings for 15 threshold for EAL 1.minutes or longer serves as the Radiation Monitor Vent Path Reading RE0015C SJAE 130 130 R/hr RE0029B Plant Vent Stack 0.8 !pCi/cc RE0060A/B/C S/G ARV & SRVs 0.5 pCi/cc 0.5 R/hr REOO600 ~TDAFW Turbine11gic11Rh RE0060D________Exhaust11Fic11Rh Initiating Condition CSI The following indication serves as a threshold for EAL 1 .b.Reactor Vessel Level Indication System (RVLIS) level less than 121 '0" Greater than or equal to either of the following monitor readings serve as thresholds for EAL 2.b.RE27A RE27B 100 R/hr 100 R/hr Initiating Condition CG1 Greater than or equal to either of the following monitor readings serve as thresholds for EAL l.b.RE27A RE27B 100 R/hr 100 R/hr Initiating Condition E-HU1 Greater than any of the following on-contact radiation readings serve as thresholds for EAL 1.Side-Mid-height l 1360 Southern Nuclear Operating Company SOTIEIIIi 1 Plant: FNP ITitle: NEI 99-01 Rev 6 EAL Calculations ISM-S NC524602-001I SoUT paNy. Unit: 1&2 JSheet 5 Top 260 HI-STORM 100 Side- 60 inches below mid-height 340 Side-Mid-height 350 Side-60 inches above mid-height 170 Top-Center of lid 50 Top=Radially centered 60 Inlet duct 460 Outlet Duct 160 Fuel Clad Barrier Loss Threshold 3.A Greater than the following monitor readings serve-as loss threshold 3.A.RCS Barrier Loss Threshold 3.A Greater than the following monitor readings serve as loss threshold 3.A.RE-27A RE-27B 600 R/hr 600 R/hr RE-2 RE-7 1 R/hr 500 mR/hr Containment Barrier Potential Loss Threshold 3.A Greater than the following monitor readings serve as loss threshold 3.A RE-27A RE-27B 8000 R/hr 8000 R/hr Southern Nuclear Operating Company SOUTEMPANY Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SetSM-SNC524602-001 DESIGN INPUTS Radiation Monitor System Parameters
- 1. Farley Radiation Monitoring System Operating Ranges Area Radiation Monitors TPNS ID Description Indicating Range FSD Section ND21RE0002 Containment EL 155'-0" 10.4 to 101 RAD/hr 3.1.3.2 ND21RE0005 Fuel Handling Area EL 155'-0" 10-4 to 101 RAD/hr 3.1.6.2 ND21RE0007 Incore Instrument Area 10.4 to ,101 RAD/hr 3.1.8.2 QD21RE0027A/B Containment High Range 1Ito 107 RAD/hr 3.1.11.2.1.
Liquid Effluent Monitors TPNS ID Description Indicating Range FSD Section ND11IRE0018 Waste Monitor Tank Discharge 101 to 106 CPM WR 3.2.3.4.2 101 to 104 CPM NR ND11RE0023B SIG Blowdown Discharge 10' to 106 CPM WR 3.2.6.4.2 101 to 104 CPM NR Noble Gas Monitors TPNS ID Description Indicating Range FSD Section ND11IRE0014 Plant Vent Stack 101 to 106 CPM WR 3.3.4.3.2 101 to 104 CPM NR Steam Jet Air Ejector Exhaust 3.3.5.2,1 ND11IRE0015 Normal Range 101 to 106 CPM I10-6 to 10-1 pCi/cc ND11IRE0015B Intermediate Range 10-2 to 106 mR/hr**ND11RE0015C High Range10toI pic**The FSD reports the indicating range of ND11IRE0015SB/C as 10-2 to 10Q5 mR/hr. This is not consistent with the reported range in pCi/cc based on the accident coolant activity dose rate to concentration curves. A visual field inspection of the indicator shows the indicating range is 10-2 to 106 mR/hr. This value-is in concurrence with the reported indicating range. ..in pCi/cc and is used.
2.3.ND11IRE0022 Plant Vent Stack 10Qi to 106 CPM WR 3.3.6.3.3 101 to 104 CPM NR QD11RE0024A/B Containment Purge 10.6 to 10.3 pCi/cc 3.3.7.4.1 101 to 106 CPM 3.3.7.4.2 ND11RE0029B Plant Vent Stack 10-7 to 105 pCi/cc 3.3.10.2.2 ND11RE0060A/B/C S/G ARV &SRV 10-1 to 103 pCi/cc 3.3.17.2.1 ND11RE0060D TD AFW Turbine Exhaust102t16mRh ND1 1 RE0029A Plant Vent Stack Grab Not Specified 3.3.19 Sampler
Reference:
A181015, "[FNP 1&2 FSD]: Radiation Monitoring System.Area Radiation Monitors' Alarm Setpoints Monitor Unit I Unit 2 Bounding RE002: Containment EL 155'-0" 80 mR/hr 80 mR/hr 80 mR/hr RE005: Fuel Handling Area EL 155'-0" 4 mR/hr 4 mR/hr 4 mR/hr RE0027N/B:
Containment High Range 50 R/hr 50 R/hr 50 R/hr References Section 2.1, Section 2.1, FNP-1-RCP-FNP-2-RCP-252 252 Liquid Effluent Monitors' Alarm Setpoints Monitor Unit I Unit 2 Bounding RE0018: Liquid Radwaste Effluent Line Calculated each Liquid Waste Release Permit Planned release in progress (LWRP)No planned release in progress 7900 cpm 7900 cpm 7900 cpm RE0023B: S/G Blowdown Effluent Line 1400 cpm 1770 cpm 1400 cpm References Table 1, Table 1, FNP-1-CCP-FNP-2-CCP-212.1 212.1 Southern Nuclear Operating Company SO~tH==R Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-S NC524602-001
- 4. Gaseous Effluent Monitors' Alarm Mo)nitor Unit 1 Unit 2 Bounding RE0015: Steam Jet Air Ejector 177 cpm 337 cpm 177 cpm RE0060A/B/C:
SIG SRVs & ARVs 71 mR/hr 71 mR/hr 71 mR/hr RE0060D: AFW Turbine Exhaust 71 mR/hr 71 mR/hr 71 mR/hr RE0014: Plant Vent Gas Monitor 18200 cpm 16199 cpm 16199 cpm RE0022: Plant Vent Gas Monitor 218 cpm 200 cpm 200 cpm RE0029B: Plant Vent Gas Monitor 4.44E-04 4.44E-04 4.44E-04 (Noble Gas) pCi/cc .pCi/cc pCi/cc RE0024ANB:
Containment Purge Mode 1-4 16,800 cpm 16,800 cpm 16,800 cpm Mode 5-6 Fast Purge 180,000 cpm 180,000 cpm 180,000 cpm Mode 5-6 Slow Purge 315,000 cpm 315,000 cpm 315,000 cpm References Table 1, Table 1, FNP-1-CCP-FNP-2-CCP-213.1 213.1 5. FNP ODCM Gaseous Effluent Annual Dose Limits Effluent Organ Annual Dose Limit Noble Gases Total .Body 500 mREM/year Noble Gases Skin 3000 mREM/year Iodines, Tritium, & Particulates Any Organ 1500 mREM/year with half-lives
> 8 days
Reference:
Section 3.1.2, FNP-ODCM Southern Nuclear Operating Company SI Plant: FNP ITteNE990Re6EACaclios SM-S NC524602-001
- OUTH!NN..
Unit: 1&2 TteNI9-0Re6EACacliosSheet 9 Spent Fuel Pool Parameters
- 6. SFP Elevations Elevation Value Reference SFP Floor EL 114'-5" D176708 & D206708 Fuel Transfer Tube C3enterline EL 11 5'-1 0%" DI176715 & D20671 5 Elevation of SFP Water Normal Level EL 153'-8" PC3B-1-VOL2-C3RV049 PC B-2-VO L2-C RV049 Figure 1, FNP-1-SOP-54.0 Figure 1, FNP-2-SOP-54.0
- 7. Spent fuel rack height = 14'5.375"
Reference:
Drawing U164392 Containment Dimensions
- 8. Containment Elevations
& Dimensions ElevationlDimension Value Reference Operating Deck EL 155'-0" FNP FSAR Figure 1.2-6 Containment Inside Radius 64'-1 1%" D176224 & D206224 Operating deck thickness 3' Grids C3-8 & C3-9, D176246 &D206246 Top of inside Containment EL 287'-0" FNP FSAR Figure 1.2-6 Fuel Transfer Tube C3enterline EL 115,-I01/2" D1 76715 & D20671 5 Southern Nuclear Operating Company SOUTHRN Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-NC2462001 Reactor Coolant System Parameters
- 9. Reactor Pressure Vessel & RCS Piping Dimensions Parameter Value Reference HL & CL centerline elevation 122'-9" Sections B-B & E-E, D175401 Section B-B & E-E, 0205401, SHT 1 Distance from HL & CL centerline to 82.437" U 168878 & U206687 reactor vessel mating surface Distance from mating surface to 124.687" U168878 & U206587 upper core plate CL Pipe ID 27.5" 0175037 & D205037 HL Pipe ID 29.0" 0175037 & 0205037 Southern Nuclear Operating Company SOTE 4II Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-S NC524602-001 SOTEN~u Unit: 1&2 I-Sheet 11 10. ROS Coolant Parameters Parameter Value Reference Full power Tavg 577.2 F Table 4.1.1-2, page 4.1-3, WCAP-15097 Full power coolant mass 417,219 Table 4.1.1-2, page 4.1-3, WCAP-15097 RCS operating pressure 2250 psia FNP-FSAR Table 4.4-1 (sheet 1 of 3)RCS coolant density 0.72 g/cc See Attachment C2*11. Fuel Assembly outside dimensions
= 8.426" x 8.426"
Reference:
FNP-FSAR Table 4.1-1 (Sheet 2) and Figure 4.2-2 (Sheets 1 thru 9)Source Terms 12. Reactor Vessel & Internals Dimensions Dimension Value
Reference:
U735579, "[FNP 1&2]Radiation Analysis Design Manual" Core effective 9.975 ft = 119.7" x I ft/12 Table 3-1 diameter in RPV OD ,172.75" Table 5-1 RPV thickness 7.875" Table 5-1 RPV ID 13.083' = 157" x 1 ft/12 in RPV OD -2 x RPV thickness 13. Reg Guide 1.183 Source Term Parameters Group Elements Total Release Fraction 1 -Noble Gases Xe & Kr 1.0 2 -Halogens I & Br 0.4
Reference:
Tables 2 and 5, Reg Guide 1.183 Southern Nuclear Operating CompanyPlant: Title:SM-SN540-1 COMPAENNY Unit: 1& il:NEI 99-01 Rev 6 EAL Calculations Shee 012I 14. Core Radionuclide Inventory
& RCS Coolant Equilibrium Activity Isotope Core Inventory (Ci)RCS Activity (IJCi/g)Kr-83m 9.7E+06 4.5E-01 Kr-85 7.2E+05 7.7E+00 Kr-85m 2.1 E+07 1.8E+00 Kr-87 4.0E+07 1 .2E+0O Kr-88 5.7E+07 3.5E+00 Kr-89 6.9E+07 1.1E-01 Xe-I131m 8.4E+05 2.9E+00 Xe-133 1.5E+08 2.4E+02 Xe-I133m 4.8E+06 4.6E+00 Xe-I135 3.5E+07 7.9E+00 Xe-I135m 3.OE+07 4.5E-01 Xe-137 1.4E+08 2.0E-01 Xe-I38 1.3E+08 7.2E-01 I-131 7.5E+07 1.4E+00 I-132 1.1IE+08 2.3E+00 1-133 1.6E+08 2.7E+00 1-134 1.7E+08 6.3E-01
Reference:
WCAP-1 4722 Table 7.6-5: Core Inventory
@Shutdown Table 7.6-6: RCS Fission Product Specific Activity 1-135 1.5E+08 1.9E+O0 Southern Nuclear Operating Companylnit: FN&2 SM-SNC524602-001 4O Plnit: FNP Title: NEI 99-01 Rev 6 EAL Calculations Sheet 13 Dose Rate vs. Depth 15. VEGP Irradiated Fuel Dose Rate vs. Water Depth above fuel Dept h (ft)8 10 Dose Rate (mREM/hr)1 .2696E+0 4 6.3753E+0 2 1.271 2E+0 2 3.1412E+0 1 1 .8273E+0 0* 193 fuel assemblies
- 100-hours after S/D* Equivalent cylinder diameter = 13.7 feet* Core source term multiplied by 0.72 to account for larger cross sectional area of effective cylindrical source in SFP VEGP FUELPCD Dose Rate vs. 'tter Deptlh I ! ~ * * ,
- u I 0,;i6 9 II I1 I2 13 14 1i II iCEm lml.nir vi
Reference:
Appendix D, X6CDE.01 Bases: 11.1 12 14 Jigureo 1: Dose Rate vs. Depth 16 1l.1519E-01 Release Path Flow Rates 16. Rated steam flow rate = 12.26x10 6 Ibm/hr
Reference:
FNP-FSAR Table 10.1-1-17. Steam generator safety relief valves (SRVs)Quantity = 15, 5 per S/G Capacity = 4,328,230 Ibm/hr for each bank of 5 SRVs (one SIG) at 1075 psig Limiting flow rate = 890,000 Ibm/hr per SRV at 1085 psig
Reference:
FNP-FSAR Table 10.3-1 18. Steam generator atmospheric relief valves (ARVs)Quantity = 3, 1 per S/G Capacity = 405,500 Ibm/hr per ARV at 1025 psig'Limiting flow rate = 890,000 Ibm/hr per ARV at 1085 psig
Reference:
EN P-FSAR Table 10.3-1 19. SJAE via Turbine Building Vent flow rate = 1060 CFM
Reference:
Table 3-4, FNP-ODCM 20. Plant Stack Vent flow rate = 150,000 CFM
Reference:
Table 3-4, FNP-ODCM 21.AFW Turbine Exhaust Flow Rate =26,106 Ibm/hr = 687 HP x [(38 Ibm/hr)/HP]
Reference:
Operating Conditions (top of sheet 15 of PDF), U-262093, "[FNP 1&2] Auxiliary Feedwater Pump Turbine Drive Manual" Southern Nuclear Operating Company SO 4EN Plant: FNP ITitle: NEI 99-01 Rev 6 EAL Calculations SM-S NC524602-001
- OMPAENZY Unit: 1&2 -Sheet 15 Conversion .Factors 22. FGR 12 Effective Dose Equivalent (EDE) Dose Conversion Factors for external exposures Isotope EDE Air EDE Air Immersion Immersion DCF DCF (Svlsec)/ (mREM/hr)l
______(Bq/m^3) (J, Ci/cc)Kr-83m 1.50E-18 2.00E+01 Kr-85 1.19E-16 1.59E+03 Kr-85m 7.48E-15 9.96E+04 Kr-87 4.12E-14 5.49E+05 Kr-88 1.02E-13 1.36E+06 Kr-89 0.00E+00 0.00E+00 Xe-131m 3.89E-16 5.18E+03 Xe-133 1.56E-15 2.08 E+04 Xe-133m 1.37E-15 1.82 E+04 Xe-135 1.19E-14 1.59E+05 Xe-135m 2.04E-14 2.72 E+05 Xe-1 37 0.00E+00 0.00E+00 Xe-138 5.77E-14 7.69E+I05 I-131 1.82 E-14 2.42E+05 1-132 1.12E-13 1.49E+06 1-133 2.94E-14 3.92E+05 I-134 1.30 E-13 1.73E+06 I-135 7.98E-14 1.06E+06
Reference:
"Effective Column" of Table 1I1.1, Federal Guidance Report 12 EDE DCF EDE D,-..l. DCF/1I I I-\r- I~lI II r)= (Sv/sec) x 100 REM 3600 x sec x 1Bq x 1.0 Ci x 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 1.0E1I~ .0E+06 pCi Ci 1 m^3 (IpCi/cc) (Bq/m^3) 1 Sv 1.0E+06 cc EDE DCF EDE DCF (m REM/h r)(pCi/cc)= (REM/hr)(IpCi/cc)x 103 mREM 1IREM
- 23. FGR 11 CEDE Dose Conversion Factors Isotope CEDE Air CEDE Air Thyroid CDE Air Thyroid CDE Air Inhalation Inhalation Inhalation Inhalation DCF. DCF DCF DCF (SvIBq) (mREMIJLCi) (Sv/Bq) (mREMIjiCi)
Kr-83m 0.00E+00 0.00E+00 O.00E+00 0.00E+00 Kr-85 0.00E+00 0.00E+00 Q.00E+00 0.00E+00 Kr-85m 0.00E+00 0.00E+00 0.00E+00 0.00E+00O Kr-87 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Kr-88 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Kr-89 0.00E+00O 0.00E+00 0.00E+00 0.00E+00 Xe-131 m 0.OOE+00O 0.00E+00 0.00OE+00 0.00E+00 Xe-133 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Xe-I133m O.OOE+00 0.00E+00 0.00E+00 0.O0E+00 Xe-I135 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Xe-i135m 0.OOE+O0 0.00E+00O 0.00E+00 0.00E+00 Xe-I137 0.00E+00 0.00E+00 0.00E+00 O.00E+00 Xe-I138 0.00E+00 0.00E+00 0.00E+00O 0.00E+O0 I-131 8.89E-09 3.29E+01 2.92 E-07 1.08E+03 I-132 1 .03E-1 0 3.81 E-0I I1.74E-09 6.44E+00 I-133 1.58 E-09 5.85E+00 4.86E-08 1.80E+02 I-134 3.55E-I1 1.31 E-01 2.88E-10 I.07E+00 I-135 3.32 E-10 1.23E+00 8.46 E-09 3.13E+01
Reference:
"Table 2.1, Federal Guidance Report 11 CEDE DCF: Column Thyroid CDE DCF: Column labeled "Thyroid" Per page 121, FGR-1I: CEDE DCF (mREM/pCi)
= 3.7x10 9 x CEDE DCF (Sv/Bq)
Southern Nuclear Operating Company COMPAENY~
Unit: 1&2 Pln:FP Title: NEI 99-01 Rev 6 EAL Calculations Sheet 18 24. Unit Conversions Conversion Reference 1 day = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Page F-308, "CRC Handbook of Chemistry
& Physics" 1 cubic foot = 0.028316847 cubic meters Page F-308, "CRC Handbook of Chemistry
& Physics" 1 foot = 12 inches Page F-310, "CRC Handbook of Chemistry
& Physics" 1 foot = 0.3048 meter Page F-310, "CRC Handbook of Chemistry
& Physics" 1 foot = 30.48 centimeters (cm) Page F-310, "CRC Handbook of Chemistry
& Physics" 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> = 3600 seconds Page F-31 3 "CRC Handbook of Chemistry
& Physics" 1 pound/cubic foot = 0.016018463 g/cc Page F-321, "CRC Handbook of Chemistry
& Physics" 1 year = 365.25 days Page F-325, "CRC Handbook of Chemistry
& Physics" 1 Becqerel (Bq) = 2.703x1 0-11 Curie (Ci) Page 22, Lamarsh, "Introduction to Nuclear Engineering" 1 Seivert (Sv) = 100 REM Page 404, Lamarsh, "Introduction to Nuclear Engineering" Miscellaneous Design Inputs 25. Iodine boiling point = 184 C = -363 F
Reference:
Page B-i, "CRC Handbook of Chemistry
& Physics" 26. Density of Refueling Cavity and Spent Fuel Pool Water @ 130 F = 61.55 Ibm/cu ft
Reference:
See Attachment C2.
ASSUMPTIONS 1.TEDE and Thyroid dose calculations based on one hour of inhalation Justification:
Pages 34, 42, and 46 of NEI 99-01 Revision 6 2. Breathing rate = 3.47x10-A m 3/sec Justification:
FNP-FSAR Table 15B-1, Section 4.1.3 of Reg Guide 1.183 3. Diffusion coefficient (X/Q) = 4.87E-05 sec/rn 3 Justification:
Ground level release diffusion coefficient used for setpoint calculations in FNP-ODCM (page 3-16)4. Release rate from S/Gs, via ARV or SRV, = ~6.13x10 5 Ibm/hr Justification:
Per section 3.3.17 of A181015, radiation monitors ND11RE0060A/B/C are each set up to view the plume from the five SRVs and one ARV for each S/G.Following an event, the reactor and turbine will be tripped, the condenser bypass may not be available, and the ARVs will likely be used to initially remove core decay heat. From FNP-FSAR Figure 15.1-6, the post trip core decay heat is -5% of rated power. Five percent of rated steam flow rate from the S/Gs is calculated as 0.05 x (12.26x10 6 Ibm/hr) = ~6.13 x10 5 Ibm/hr On a per S/G basis (~2.04x10 5 lbm/hr), this is well within the rated flow rate of a single ARV (405,500 Ibm/hr).5. The following partition factors are assumed to determine release activities Radionuclide PF Justification Noble Gases 1.0 PWR-GALE, Section 1.5.1.8 and Table 2-6 Reg Guide 1.183 Iodines Steam Generator 0.01 FNP FSAR Table 12.2-1 PWR-GALE, Section 1.5.1.8 and Table 2-6 Reg Guide 1.183 Air Ejector 1.0E-04 FNP FSAR Table 12.2-1 Liquid leakage to Auxiliary 0.01 FNP FSAR Table 12.2-1 Building Primary Coolant Leakage to 0.01 FNP FSAR Table 12.2-1 Containment Southern Nuclear Operating Company sun 4t Plant: Title:M-SNC524602-001 SOMPHEre/
Unit: 1& ite NEI 99-01 Rev 6 EAL Calculations SMSSheet 20 6. Core inventory release fractions Noble gases: 1.00 lodines: 0.40 Justification:
Table 2, "PWR Core Inventory Fraction Released into Containment," page 1.183-14, Regulatory Guide 1.183 7. No noble gases are retained in the S/G: i.e., all noble gases leaked to the secondary system are continuously released with steam through the SIG ARVs, S/G SRVs, AFWT Exhaust or SJAE.Justification:
FNP FSAR section 15.4.2.1.4, page 15.4-38 (dose consequences for MSLB)8. Specific volume of steam release = 26.804 cu ft/Ibm Justification:
Specific volume of saturated steam at atmospheric pressure (Attachment C2)9. The VEGP SFP dose rate at water surface vs. water depth assessment in Appendix 0 of calculation X6CDE01 is acceptable for estimating the water surface dose rate vs. depth for fuel in the reactor vessel at Farley.Justification:
- The source is assumed to consist of an offloaded core (193 fuel assemblies) 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after shutdown.* The VEGP SFP analysis assumed each fuel assembly's source term was spread across a storage cell cross sectional area of 110.03 sq in. This reduced the source term (MeV/sec-cc) by a factor of 0.72.* Adjusting the source term back to a geometry matching the closer spacing in the reactor increases the source term by 1/0.72, or 1.39. Since dose rate is proportional to source strength, the VEGP dose rates are multiplied by 1.39 and plotted against water depth above the fuel.* The effective diameter of the VEGP cylindrical source is 13.7', compared to the Farley reactor core effective diameter of 9.975' (=119.7" x 1 ft/12 in) in Table 3-1 of the Farley Radiation Analysis Design Manual (U-735579).
This effect is evaluated in Attachment F2 of this calculation.
- Attachment F of calculation SM-SNC467144-001 documents a comparison of the Farley and Vogtle core source terms and concludes that using the Vogtle source terms for Farley is reasonable and conservative.
- 10. The elevation at the top of active fuel (TOAF) in the reactor vessel is approximately 1 foot below the elevation of the upper core plate elevation.
Justification:
Based on review of FNP drawings U168878 and U206587 and FSAR Figures 4.2-2 and 4.2-3.
- 11. The reflected dose rate at the operating deck area radiation monitors will be calculated using the methods of Davisson's "Gamma Ray Dose Albedos" (copy in Attachment C1).The calculation will be based on an iron reflector at the top of containment, with a diameter equal to the reactor pressure vessel inside diameter (RPV ID), and a distance (r feet) from the reflector to the radiation monitor equal to the hypotenuse of the triangle formed by the difference in elevations of the reflector (y feet) and the monitor and one-half of the Containment ID (x feet).Justification:
The iron reflector is selected because the Farley containment has a carbon steel liner. The reflected dose rate is proportional to the area of the reflector.
Assuming the reactor vessel functions as a collimator with reduced RCS inventory will reduce the reflected area. This in turn reduces the dose rate at the radiation monitor and, therefore, the EAL threshold for reduced RCS inventory.
Simplified diagram, based on D176013 (D20601 3 dimensions same)
REFERENCES
- 1. FNP 1 &2 FSAR, Revision 27, December 2015 2. FNP-1 Technical Specifications, Amendment 198, 14 September 2015 Update 3. FNP-2 Technical Specifications, Amendment 194, 14 September 2015 Update Methods 4. NEI 99-01, Revision 6, "Development of Emergency Action Levels for Non-Passive Reactors", November 2012 (http://pbadupws.nrc..qov/docs/MLI232/M LI2326A805.prdf)
- 5. Deleted 6. Regulatory Guide 1.183, Revision 0, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," July 2000 (http :fp bad upws. n rc..q ov/docs/M L0037/M L00371 6792. pdf)7. Regulatory Guide 1 .195, Revision 0, "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light-Water Nuclear Power Reactors," May 2003 (http://pbad upws. nrc..qov/docs/M L0314/M L031490640.
pdf)8. NUREG-001 7, Revision 1, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE Code)," April 1985 SNC Submittal
& USNRC SER 9. NL-07-0522, "[FNP, HNP, & VEGP] Transition to NEI 99-01 Emergency Action Levels -Response to Request for Additional Information," 02 April 2007 10. ADAMS # ML07I1100068, USNRC SER: Emergency Action Level Revisions for Southern Nuclear Operating Company, Inc., Edwin I. Hatch Nuclear Plant, Unit Nos. 1&2 (HNP);Joseph M. Farley Nuclear Plant, Units 1&2 (FNP); Vogtle Electric Generating Plant, Units 1 &2 (VEGP), 30 April 2007 (http://pbadupws.
nrc..qovldocs/M L071 1/M L071 100068.pdf)
System Specifications
- 11. A181015, V14.0, "Functional System
Description:
Radiation Monitoring System" 12. U262093, VI0.0, "[FNP 1&2] Auxiliary Feedwater Pump Turbine Drive Manual" 13. WCAP-15097, Revision 1, Book 1, "Farley Nuclear Plant Units 1 and 2 Replacement Steam Generator Program NSSS Engineering Report," March 2001 Reg Guide 1.197 14. Regulatory Guide 1.97, Revision 2, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," December 1980 (http://pbadupws.nrc.,qov/docslMLO607/MLO60750525.pdf)
Procedures Dose Calculations
- 15. FNP-ODCM, V24.0, "Farley Offsite Dose Calculation Manual" (available at SNC Regulatory Affairs Farley Licensing Documents website, http://n uclear.southernco.com/req ulatory-affairs/Farley-Licensina-Documents.html)
Radiation Monitoringq System Setpoints Southern Nuclear Operating Company IOTHR ,4 Plant: FNP Tite NI9-1Rv6ELCluaion SM-S NC524602-001 SOUTHERNEW Unit: 1&2 ITteNE990Re6EACacliosSheet 23 16. FNP-1 -CCP-21 2.1, V1 2.1, "Liquid Effluent Radiation Monitoring System Setpoints" 17. FNP-2-CCP-212.1, V11.1, "Liquid Effluent Radiation Monitoring System Setpoints" 18. FNP-1-CCP-21 3.1, V19.0, "Gaseous Effluent Radiation Monitoring System Setpoints" 19. FNP-2-CCP-21 3.1, V19.0, "Gaseous Effluent Radiation Monitoring System Setpoints" 20. FNP-1-RCP-252, V47.0, "[FNP-1] Radiation Monitoring System Setpoints" 21. FNP-2-RCP-252, V36.0, "[FNP-2] Radiation Monitoring System Setpoints" System Operatingi Procedures
- 22. FNP-1-SOP-54.0, V72.0, "[FNP-1] Spent Fuel Pit Cooling & Purification System" 23. FNP-2-SOP-54.0, V70.1, "[FNP-2] Spent Fuel Pit Cooling & Purification System" Unit I Drawings 24.0D175037, SHT 1, V31 .0, "P&ID -Reactor Coolant System" 25. D175148, V19.0, "[FNP-1] Instrument Location -Containment
& Fuel Handling Area -Plan at EL 155-0" 26. D175401, V5.0, "[iFNP-1]
Reactor Coolant System -Primary Piping Arrangement" 27. D1 76013, V 5.0, "[FNP-1] Architectural
-Containment
& Auxiliary Building Sections" 28. D1 76246, V7.0, "Section B Looking West Concrete Containment" 29. D176708, V17.0, "[FNP-1] Spent Fuel Pool Liner Plan at EL 155'-0" Auxiliary Building" 30. D176715, V7.0, "[FNP-1] Fuel Transfer Tube Sleeve and Tube Supports" 31. U164392, Revision 0, "Spent Fuel Storage Racks-Fuel Module Assembly-7X8
-Sheet 1 of 3" 32. U 168878, Revision 0, "[FNP-1] Reactor Vessel: Reactor General Assembly" Unit 2 Drawings 33.0D205037, SHT 1, V29.0, "P&ID -Reactor Coolant System" 34. 0205148, V18.0, "[FNP-2] Instrument Location -Containment
& Fuel Handling Area -Plan at EL 155-0" 35.0D205401, SHT 1, V3.0, "[FNP-2] Reactor Coolant System -Primary Piping Arrangement" 36. 0206013, V2.0, "[FNP-2] Architectural
-Containment
& Auxiliary Building Sections" 37. D206246, V5.0, "Section B Looking West Concrete Containment" 38.0D206540, V6.0, "Section 18 -Concrete -Auxiliary Building" 39. 0206708, Vi19.0, "[FNP-2] Spent Fuel Pool Liner Plan at EL 155'-0" Auxiliary Building" 40.0D206715, V8.0, "[FNP-2] Fuel Transfer Tube Sleeve and Tube Supports" 41. U206587, Revision B, "[FNP-2] Reactor Vessel:] Reactor General Assembly" Calculations 42.18.01, Revision 1, "[FNP 1 &2] Steam Generator Power Operated Relief Valve, Safety Valve and Diluted Steam Jet Air Ejector Monitors" Southern Nuclear Operating Company SOTHR Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-S NC 524602-001 COMPAENEU Unit: 1&2 I Sheet 24 43. SM-95-0754-001, Revision 7, "Severe Accident Management Guideline (SAMG)Calculations" 44. SM-96-1076-001, V2, "NEI 99-01 EAL Calculations" 45. SM-96-1 076-002, V4, "NEI 99-01 EAL Calculations" 46. SNC024-CALC-001, Rev 0, "Farley EALs RA1 Threshold to Address NEI 99-01 Revision 6" 47.S5NC024-CALC-003, Rev 0, "FNP Determination of Emergency Action Level for Initiating Condition E-HUI" 48. SM-SNC467144-001, V1.0, "Radiation Dose at the Spent Fuel Pool (SFP) Instrumentation During Beyond Design Basis Event Per NEI 12-02" 49. PCB-1-VOL2-CRV049, R0, "[EN P-1] Spent Fuel Pool Volumes" 50. PCB-2-VOL2-CRV049, R0, "[EN P-2] Spent Fuel Pool Volumes" 51.X6CDE.01, V5, "[VEGP] Spent Fuel Pool Shielding" Source Term 52. WCAP-14722, VI.0, "[FNP 1&2] Power Uprate Project NSSS Engineering Report," November 1997 53. U-735579, Version 1.0, "Joseph M. Farley Nuclear Plant Radiation Analysis Design Manual," April 1974 Dose Conversion Factors 54. Federal Guidance Report #11 (EPA 520-1-88-020), "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," September 1988 (http:l/nepis.epa..qov/Simple.html)
- 55. Federal Guidance Report #12 (EPA-402-R-93-081), "External Exposure to Radionuclides in Air, Water, and Soil," September 1993 (http://nepis.epa.,qov/Simple.html)
Engineering References
- 56. Davisson, "Gamma Ray Dose Albedos," pages 5-27 thru 5-38 in ANS/SD-76/14, A Handbook of Radiation Shielding Data, edited by J. C. Courtney, July 1976, (copy in Attachment C1)57. Lamarsh, "Introduction to Nuclear Engineering," second edition, 1983 58. Etherington (editor), "Nuclear Engineering Handbook," first edition, 1958 59. CRTD-VOL 58, "ASME International Steam Tables for Industrial Use," Second Edition, September 2008 60. "CRC Handbook of Chemistry
& Physics," 5 7 th edition 61. Moe, ANL-88-26, "Operational Health Physics Training" (httr,://www.osti.cjov/scitech/biblio/1 45829)
Southern Nuclear Operating Company SOT~N41 Plant: FNP Titl:SNC59914Re02het02 SOMPAENYa Unit: 1&2 Til:NI9-0 Rv6 EAL Calculations Sh5t2562-O METHOD OF SOLUTIONS NEI 99-01 Revision 6 Methods conform to the guidance of NEI 99-01 Revision 6. Detailed descriptions of the methods are included in the individual EAL threshold calculations in the Analysis section of this calculation.
Use of Regulatory Guide 1.183, Alternate Source Term Method The NEI 99-01 Revision 6 Recognition Category A (Abnormal Rad Levels/Radiological Effluent)Initiating Conditions (ICs) for declaring a Site Area Emergency and a General Emergency (Emergency Action Levels RS1 and RGI, respectively) are expressed in terms of Total Effective Dose Equivalent (TEDE) and Thyroid Committed Dose Equivalent (CDE).Regulatory Guide 1.195, "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light-Water Nuclear Power Reactors," is the current license basis for performing dose calculations for Farley. However, it expresses doses in terms of Whole Body and Thyroid.Regulatory Guide 1.183, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," does express doses in terms of TEDE and CDE, but it is not the current licensing basis for performing dose calculations for Farley. However, per section 1.1.4 on page 1.183-6, "This guidance does not, however, preclude the appropriate use of the insights of the AST in establishing emergency response procedures such as those associated with emergency dose projections, protective measures, and severe accident management g uides." Per section 4.1.1 of RGI.183, TEDE is defined as the sum of the committed effective dose equivalent (CEDE) from inhalation and the deep dose equivalent (DDE) from external exposure.Per section 4.1.2 of RG 1.183, Table 2.1 of Federal Guidance Report 11 provides tables of conversion factors acceptable to the NRC staff. The dose conversion factors (DCFs) factors in the column headed "effective" yield doses corresponding to the CEDE.Per sections 4.1.4 and 4.1.5 of Reg Guide 1.183, the DDE should be calculated assuming submergence in a semi-infinite cloud for the most limiting person at the EAB. The effective dose equivalent (EDE) from external exposure is nominally equivalent to the DDE, thus EDE may be used in lieu of DDE in determining the external dose contribution to the TEDE. Table 1I1.1 of Federal Guidance Report 12 provides external EDE conversion factors acceptable to the NRC staff. The factors in the column headed "effective" yield doses corresponding to the EDE.Radiation Monitor System Units SNC and Bechtel have used "R/hr," exposure rate as Roentgen/hour (page 438, Lamarsh), and "REM/hr," equivalent dose rate as Roentgen Equivalent Man (REM) per hour (page 447, Lamarsh), interchangeably for decades. Since the effluent and area radiation monitors detect gamma rays, these units are essentially the same. Additionally, their system displays use Southern Nuclear Operating Company OUHe,. Plant: FNP I SM-S NC524602-O01 SOMPHENYZ Unit: 1&2 Title: NEI 99-01 Rev 6 EAL Calculations i Sheet 26"R/hr" and the existing EAL setpoints (NMP-EP-110-GL01) are expressed as "R/hr." Thus all effluent and area radiation monitoring system~EAL setpoints will be expressed as "R/hr" in the Results section of this calc to minimize confusion.
Gas Release Paths The basic process for calculating an offsite dose consists of first determining the concentrations of radionuclides in the release stream, be it air, steam, or water. The release stream concentration is determined by dividing the release rates of the radionuclides of interest, expressed as microcuries per unit time, by the release fluid's volumetric flow rate, expressed as cubic centimeters (cc) per unit time: pCi/cc ='[pCi/unit time]/[cc/unit time]As we are back-calculating release concentrations based on pre-established dose limits (100 mREM TEDE and 500 mREM Thyroid CDE), the upstream modeling of the specific release paths is not necessary.
The gaseous effluent noble gas radiation monitors care not a whit how those radionuclides arrive at them.Step 1: Identify the radionuclides of interest.
Select the same radionuclides used to calculate doses for the design basis accidents in FSAR chapter 15: the fission product noble gases and iodines. The other fission products and activated corrosion products are particulates and will not contribute significantly to the oftsite dose.Step 2: Determine the RCS coolant radionuclide activity for each radionuclide (Xrcs-i liCi/g). This is assumed to be the sum of core fission product inventory released during a LOCA divided by RCS coolant mass (Mrcs g) and the equilibrium RCS coolant activity (Xeq-i) for that radion uclide.Xrcs-i = Xeq-i + (1 .0E+06 1 iCi/1 Ci) x [Core Inventory (Ci)] x [Release Fraction]/(Mrcs g)For no fuel damage, the release fraction is 0 and the RCS activity is the equilibrium RCS coolant activity.
If fuel damage is assumed (release fraction > 0), the quotient of core*inventory and RCS coolant mass will be orders of magnitude greater than the contribution from the coolant equilibrium activity.Step 3: Convert coolant activity (Xrcs-i to release stream activity (Xris-i This conversion is accomplished by multiplying the RCS coolant activity by a dimensionless partition factor (PFi) and an arbitrarily selected density, pris g/cc: Xrjs-i
= (Xrcs-i }.iCi/g) x PFi x (pris g/cc)The partition factor will depend on the radionuclide and the release path. The partition factors used in this calculation are discussed in Assumption
- 5 of this calculation.
Arbitrarily set pris -1 .0 g/cc to make the math easy. The justification for this will be provided in Step 9.
Southern Nuclear Operating Company SO Plant: FNP I t E 90 e A acltos SM-S NC524602-001 SOMPAENY~
Unit: 1&2 Tite:.E 90 e ELCluain Sheet 27 Step 4: Determine radionuclide concentration at Exclusion Area Boundary (XEAB- iiCilcc).
This is done using standard dose assessment methods. The release concentration is multiplied by the release volumetric flow rate (Qris m 3/sec) and the diffusion coefficient
[(X/Q) m 3/sec]: XEAB-i (pL~i/cc)
= Xris-i (pCi/cc) x [Qris (m 3/sec)] x [(X/Q) (m 3 lsec)]Step 5: Calculate the TEDE for each radionuclide for one hour exposure time at EAB. This is done using the appropriate FGR-11 and FGR-12 dose conversion factors (DCFs), as discussed in the previous subsection.
TEDE~ (mREM) = External Exposure + Internal Exposure TEDE (mREM) = XEAB-i X texp (hours) x DDEDcF-i [(mREM/hr)l(pCilcc)]
+XEAB-I (gCi/cc) X texp (hours) x BR (cc/hr) x CEDEDcF-i (mREM/p.Ci)
TEDEI (mREM) = XEAB (pCi/cc) x texp (hours) x TEDEDcF-i
[(mREM/hr)l(jiCilcc)]
where TEDEDcF-i
[(mREM/hr)l(p.Ci/cc)]
= D DEDcF-I [(mREM/h r)I(p.Cilcc)]
+BR (cc/hr) x CEDEDcF-i (mREM/pCi)
BR (cc/hr) = breathing rate Step 6: Add the individual TEDEs to obtain the TEDE for the release (TEDEris):
TEDEris = [TEDE 1]TEDEris = [Xris-i x (X/Q) x Qris X texp X TEDEDcF-il TEDEris = [(XIQ) x Qris x texp ] x % [Xris-i x TEDEDcF-i]
Step 7: Calculate Thyroid CDE for each Iodine isotope for one hour exposure time at EAB. This is done using the appropriate FGR-11I dose conversion factors (DCFs), as discussed in the previous subsection.
CDETHY-i (mREM) = XEAB- (j#Ci/cc) x texp (hours) x BR (cc/hr) x CDETHY-DCF-I (mREM/pCi)
Step 8: Add the individual Thyroid CDEs to obtain the Thyroid ODE for the release (CDEris): CDEris = [CDETHY-.I]
CDEris = [Xris-i x (X/Q) x Qris x BR x CDETHY-DCF-i]
CDEris = [(X/Q) x Qris x texp x texp] x [Xris-i X TEDEDcF-I]
Southern Nuclear Operating Company Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations S-N540-0*OMPErNe"I Unit: 1&2 I MSSheet 28 Step 9: Determine the 100 mREM TEDE threshold release concentrations for each noble gas (Xio0-j This is done by multiplying each noble gas' release concentration (Xris-i determined in Step 3 by the quotient of 100 mREM and the sum of the TEDEs for all of the radionuclides considered (TEDEris mREM). Only noble gas concentrations are adjusted because the gaseous effluent monitors are noble gas detectors.(Xl00-i 1 , Ci/cc)/(Xris-i pCi/cc) = (100 mREM)/(TEDErls mREM)Xioo-i (pCi/cc) = (Xris-i plCi/cc) x (100 mREM)/(TEDEris mREM)The following demonstrates that the arbitrarily assumed relase stream density has no effect on the final result.Xris-i X (100 mREM)Xl00-i =[(X/Q) x Qris x texp ] X [Xrls-i X TEDEDcF-i]
Xrcs-i X (1.0) x pris x (100)lOi= [(X/Q) x Oris x texp X [Xrcs-i X PFj x p~s x TEDEOcF-i]
Xrcs-i x prls x (100)lOt= pris X (X/Q) x Oris x texp X [Xrcs-i X PFi x TEDEDcF-i]
Xrcs-i X (100)X 1 0 0-i =(X/Q) x Qrls x texp X [Xrcs-i X PFi x TEDEDcF-i]
The assumed release stream density has no effect on the final result: it cancels out. Thanks to the power of Excel, it is easier to calculate a postulated dose rate and adjust release concentrations than to set up the above equations.
Now to perform a dimensional check: Xris-iX (100 mREM)Xl 0 0-i ---[Xl- X (X/Q) x Qris x PFi x texp x TEDEDcF-i]
?~/c x mREM= (pCi/cc) x (sec/in 3) x (m 3/sec) x (hour) x = (,,+C,,..,..
x x x x [(m-RE-M/he-r)/(pCi/cc)]
? I iCi/cc = l/I(p.Ci/cc)]
p.Ci/cc = pCilcc Southern Nuclear Operating Company ISOUTHERN Li Ulnit: FNP SM-SNC524602-001
- OMPANY nt & il:NI9-1Rv6ELCluain Sheet 29 Step 10: Determine the 500 mREM Thyroid CDE threshold release concentrations for each noble gas (X5o0T-i jiCi/cc).
This is done using the same method as in Step 9. Again, the arbitrarily assumed release stream density cancels out and has no effect on the final result.There are four release paths that will be evaluated, one via the Plant Stack Vent and three via the secondary side: steam generator safety relief valves and atmospheric relief valves (SIG SRVs & ARVs), the condenser steam jet air ejector (SJAE), and the Turbine-Driven Auxiliary Feedwater Pump turbine exhaust (TDAFW Turbine Exhaust).
They and their major assumptions are summarized below.Radiation Monitor Release Path Core Damage Partition Factors RE0029B Plant Vent Stack Yes Noble Gases: 1.0 Iodines: 0.01 REOQ015C SJAE Two Cases: With and Noble Gases: 1.0 Without Core Damage Iodines: 1 .0E-06[S/G PF (0.01) x SJAE PF (1 .0E-04)]RE0060A/B/C S/G ARV & SRVs Two Cases: With and Noble Gases: 1 .0 Without Core Damage Iodines: 0.01 RE0060D TDAFW Turbine Two Cases: With and Noble Gases: 1.0 Exhaust Without Core Damage Iodines: 0.01 Southern Nuclear Operating Company SOTH Plant: FNP ITteNt991Re6EACacliosSM-S NC524602-001 SOMPAENZY Unit: 1&2 TteNE9-0Re6EACacaiosSheet 30 Body RU1 of Calculation:
Release of gaseous or liquid radioactivity greater than 2 times the ODCM limits for 60 minutes or longer.Operating Mode Applicability:
Emergency Action Levels: All (1 OR20OR 3)1. Reading on ANY effluent radiation monitor greater than 2 times the ODCM limits for 60 minutes or longer.Liquid Effluents Liquid Radwaste Effluent Line RE-I18 1 .60 x I104 cpm Steam Generator Blowdown 28 0 p Effluent Line RE-23B Gaseous Effluents Steam Jet Air Ejector RE-I15 3.54 x I102 cpm Plant Vent Gas R-14 3.20 x I04 cpm RE-22 4.0 x 102 cpm RE-29B (NG) 8.90 x 10-4 pCi/cc Liquid Effluent Monitors Alarm Setpoint*
RU1 EALI Setpoint Liquid Radwaste Effluent Line (REO0018)________
Planned Release in progress LWRP Specific 2 x LWRP setpoint No planned release in progress 7900 cpm 1. 6E+04 cpm SIG Blowdown Effluent Line (REOO23B) 1400 cpm 2. 8E+03 cpm Gaseous Effluent Monitors Alarm Setpoint**
RU1 EALI Setpoint Steam Jet Air Ejector (REO0015) 17[7 cpm 3. 5E+02 cpm Plant Vent Gas Monitor (R00 14) 16199 cpm 3.2E+04 cpm Plant Vent Gas Monitor (REO022) 200 cpm 4. OE+02 cpm Plant Vent Gas Monitor (REOO29B)
- 4. 44E-04 /ti Ci/ml 8. 9E-04 /p Ci/ml* Design Input #3** Design Input #4 I: Southern Nuclear Operating CompanyPlant: FNP IISM-S NC524602-001 SOTEN~Unit:
1&2 Title: NEI 99-01 Rev 6 EAL Calculations I Sheet 31 2. Reading on ANY effluent radiation monitor greater than 2 times the alarm setpoint established by a current radioactivity discharge permit for 60 minutes or longer.I Liquid Radwaste Effluent Line RE-18 I 2 x release permit setpoint (planned release)Plant Vent Gas R-14 2 x release permit setpoint (lanned release)3. Sample analysis for a gaseous or liquid release indicates a concentration or release rate greater than 2 times the ODCM limits for 60 minutes or longer.
Southern Nuclear Operating Company SOTI Ik lnt N SM-SNC524602-001 PlaAY nit: FNP Title: NEI 99-01 Rev 6 EAL Calculations
- Sheet 32 RA1 Release of gaseous or liquid radioactivity resulting in offsite dose greater than 10 mrem TEDE or 50 mrem thyroid CDE.Operating Mode Applicability:
Emergency Action Levels: All (1 OR20OR30OR 4)1. Reading on ANY of the following radiation monitors greater than the reading shown for 15 minutes or longer.This calculation is performed in Attachment H.,Radiation Monitor, V, Path, ... ,,* Monitor Reading RE0015C SJAE 1.3 iJCi/cc (1.3 R/hr)RE0029B Plant Vent Stack 0.008 pCi/cc RE0060A/B/C SIG ARV & SRVs 0.005 pCi/cc (0.005 R/hr)RE0060D TDAFW Turbine Exhaust 0.11 pCi/cc (0.11R/hr)
- 2. Dose assessment using actual meteorology indicates doses greater than 10 mrem TEDE or 50 mrem thyroid CDE at or beyond the Site Boundary.3. Analysis of a liquid effluent sample indicates a concentration or release rate that would result in doses greater than 10 mrem TEDE or 50 mrem thyroid ODE at or beyond the Site Boundary for one hour of exposure.4. Field survey results indicate EITHER of the following at or beyond the Site Boundary:* Closed window dose rates greater than 10 mR/hr expected to continue for 60 minutes or longer.* Analyses of field survey samples indicate thyroid ODE greater than 50 mrem for one hour of inhalation.
Southern Nuclear Operating Company OUHR Plant: FNP SM-SNC524602-0O1 COMPAENY~
Unit: 1& Title: NEI 99-01 Rev 6 EAL Calculations Sheet 33.RS1 Release of gaseous radioactivity resulting in offsite dose greater than 100 mrem TEDE or 500 mrem thyroid CDE.Operating Mode Applicability:
All Emergency Action Levels: (1 OR 2OR 3)1. Reading on ANY of the following radiation monitors greater than the reading shown for 15 minutes or longer::iR ad iatio nM o .. ..... ........ ' V e t at M onitor...
R eading ' RE0015C SJAE 13 pCi/cc (13 R/hr)RE0029B Plant Vent Stack 0.08 pCi/cc RE0060A/B/C SIG ARV & SRVs 0.05 pCi/cc (0.05 R/hr)RE0060D TDAFW Turbine Exhaust 1.1 pCi/cc (1.1 R/hr)The concentrations at the steam release monitors (REO015C and REOO6OA/B/C/D) are converted to REM/hr using the Accident coolant activity dose rate to concentration curves on sheets 16 and 17 of SNC calculation 18.01. At 0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> after event initiation, they are all approximately equal to-10-3 (p Ci/cc)/(mREM/hr).
REO015C: 13 IpCi/cc/[10-Y 3 (pCi/cc)/(mREM/hr)]
= 13 x 103 mREM/hr= 13 REM/hr REOO6OA/B/C:
0.05 pCi/cc/[10-3 (pCi/cc)/(mREM/hr)]
= 0.05 x i03 mREM/hr= 0. 05 REM/hr REOO6OA/B/C:
1.1 pCi/c c/[lO-3 (pCi/cc)/(mREM/hr)]
= 1.1 x i03 mREM/hr-1.1 REM/hr Plant Vent Stack The threshold calculations are performed in the Excel spreadsheet in Attachment El of this calculation.
The thresholds calculated in the spreadsheets have been rounded off to one significant digit below to reflect the radiation monitoring systems' accuracy.100 mREM TEDE threshold
= 0. 08 p Ci/cc 500 mREM Thyroid CDE threshold
= 0. 1 p Cl/cc Limiting thresh old: 100 mREM TEDE = 0.08 pCi/cc Southern Nuclear Operating Company SOTfN41 Plant: FNP SMSC240-0 COMPAENZY Unit: 1& Title: NEI 99-01 Rev 6 EAL Calculations I MSheet2460-O Steam Jet Air Ejector The threshold calculations are performed in the Excel spreadsheet in Attachment E2A (no core damage) and E2B (core damage) of this calculation.
The thresholds calculated in the spreadsheets have been rounded off to one significant figure below to reflect the radiation monitoring systems' accuracy.Dose Threshold No Core Damage Core Damage 100 mREM TEDE 90 p Ci/cc 13 p Ci/cc 500 mREM Thyroid CDE 2.2E+06 pCi/cc 2.4E+05 pCi/cc Limiting threshold:
100 mREM TEDE, with core damage = 13 pCi/cc The 500 mREM Thyroid CDE thresholds are so high because of the very low partition, factor for iodine release via the SJAEs, 1. OE-06 overall.Steam Generator ARVs & SRVs The threshold calculations are performed in the Excel spreadsheet in Attachment E3A (no core damage) and E3B (core damage) of this calculation.
The thresholds calculated in the spreadsheets have been rounded off to one significant figure below to reflect the radiation monitoring systems' accuracy.Dose Threshold No Core Damage Core Damage 100 mREM TEDE 0. 3 p Ci/cc 0. 05 p Ci/cc 500 mREM Thyroid CDE 0. 8 p Ci/cc 0. 1 p Ci/cc Limiting threshold:
100 mREM TEDE, with core damage = 0.05 pCi/cc TDAFW Turbine Exhaust The threshold calculations are performed in the Excel spreadsheet ih Attachment E3A (no core damage) and E3B (core damage) of this calculation.
The thresholds calculated in the spreadsheets have been rounded off to one significant figure below to reflect the radiation monitoring systems' accuracy.Dose Threshold No Core Damage Core Damage 100 mREM TEDE 7 p Ci/cc 1.1 p Ci/cc 500 mREM Thyroid CDE 20 p Ci/cc 2. 2 p Ci/cc Limiting threshold:
100 mREM TEDE, with core damage = 1.1 pCi/cc Southern Nuclear Operating Company COMPL Planit: FNP Title: NEI 99-01 Rev 6 EAL Calculations I MSSheet 3 2. Dose assessment using actual meteorology indicates doses greater than 100 mrem TEDE or 500 mrem thyroid CDE at or beyond the site boundary.3. Field survey results indicate EITHER of the following at 6r beyond the Site Bounday.* Closed window dose rates greater than 100 mR/hr expected to continue for 60 minutes or longer.* Analyses of field survey samples indicate thyroid CDE greater than 500 mrem for one hour of inhalation.
Southern Nuclear Operating Company U lnit: FNP2 Title: NEI 99-01 Rev 6 EAL Calculations Sheet 36 RG1 Release of gaseous radioactivity resulting in offsite dose greater than 1,000 mrem TEDE or 5,000 mrem thyroid ODE.Operating Mode Applicability:
All Emergency Action Levels: (1 OR20OR 3)1. Reading on ANY of the following radiation monitors greater than the reading shown for 15 minutes or longer: Radiation Monitor Vent Path Reading RE0015C SJAE 130 jiCi/cc (130 R/hr)RE0029B Plant Vent Stack 0.8 #iCi/cc RE0060A/B/C SIG ARV & SRVs 0.5 jiCi/cc (0.5 R/hr)REOO6OD ~TDAFW Turbine11ji/c(1Rhr RE0060D________Exhaust 11____ Ci/cc__(11__R/hr)
_Because the RG1 EAL1 dose limits are ten times the R.SI EAL1 dose limits, these readings are ten times the RSI EAL1 readings.2. Dose assessment using actual meteorology indicates doses greater than 1000 mrem TEDE or 5000 mrem thyroid ODE at or beyond the site boundary.3. Field survey results indicate EITHER of the following at or beyond the Site Boundary:* Closed window dose rates greater than 1,000 mR/hr expected to continue for 60 minutes or longer.* Analyses of field survey samples indicate thyroid ODE greater than 5,000 mrem for one hour of inhalation.
Southern Nuclear Operating Company Plant: FNP S-NC524602-001 SUHNN Unit: 1&2 Title: NEI 99-01 Rev 6 EAL Calculations SMSSheet 37 CS1 Loss of RPV inventory affecting core decay heat removal capability.
Operability Mode Applicability:
Cold Shutdown, Refueling Emergency Action Levels: (1 OR 2)1.2.a. CONTAINMENT CLOSURE not established AND b. RVilS (Mode 5) level less than 121'0" (6" below bottom ID of RCS loop).This elevation is determined in Attachment D to this calculation.
- a. RPV level cannot be monitored for 30 minutes or longer.AND'b. Core uncovery is indicated by ANY of the following:
- Containment High Range Radiation Monitor RE27A OR 27B reading >100 R/hr.* Erratic source range monitor indication.
- UNPLANNED rise in Containment Sump, or Reactor Coolant Drain Tank (RCDT), or Waste Holdup Tank (WHT) levels of sufficient magnitude to indicate core uncovery.The Containment High Range Radiation Monitor reading corresponds to the reflected dose rate from the irradiated fuel in the RPV with an RPV water level of < EL 1 18'O", TOAF. It is calculated in Attachment F3 of this calculation.
Southern Nuclear Operating Company SOI=B, Pat N ISM-SNC524602-001 I OMAN Plnit: FNP Title: NEI 99-01 Rev 6 EAL Calculations Set3 CG1 Loss of RPV inventory affecting fuel clad integrity with containment challenged.
Operating Mode Applicability:
Emergency Action Level: Cold Shutdown Refueling (1)1.a. RVLIS (Mode 5) level cannot be monitored for 30 minutes or longer.AND b. Core uncovery is indicated by ANY of the following:
- Containment High Range Radiation Monitor RE27A OR 27B reading >100 R/hr.* Erratic source range monitor indication.
- UNPLANNED rise in Containment Sump, or Ractor Coolant Drain Tank (RCDT), or Waste Holdup Tank (WHT) levels of sufficient magnitude to indicate core uncover.*The Containment High Range Radiation Monitor reading corresponds to the reflected dose rate from the irradiated fuel in the RPV with an RPV water level of < EL 1 18'O", TOAF. It is calculated in Attachment F3 of this calculation.
AND c. ANY indication from the Containment Challenge Table C1 Containment Challenge Table C1 CONTAINMENT CLOSURE not established*
>6% H2 exists inside containment UNPLANNED increase in containment pressure*lf CONTAINMENT CLOSURE is re-established prior to exceeding the 30-minute time limit, then declaration of a General Emergency is not required.Sheets 9 and 12 of FNP SAMG calculation SM-95-0754-OOlestablish the 6%by volume hydrogen limit.
Southern Nuclear Operating Company SU R __ Plant: FNP IISM-S NC524602-001 SOTEN~Unit:
1&2 ITitle: NEI 99-01 Rev 6 EAL Calculations I Sheet 39 E-HU1 Damage to a loaded cask CONFINEMENT BOUNDARY Operating Mode Applicability:
ALL Emergency Action Level: (1)1. Damage to a loaded cask CONFINEMENT BOUNDARY as indicated by an on-contact radiation reading greater than ANY value listed on Table El.The calculation is performed in attachment I.Side-Mid-height
] 1360 Top j 260 HI-STORM 100 Side- 60 inches below mid-height 340 Side-Mid-height 350 Side-60 inches above mid-height 170 Top-Center of lid 50 Top=Radially centered 60 Inlet duct 460 Outlet Duct 160 Southern Nuclear Operating CompanyPlant: FNP ITitle: NI99-01 Rev 6 EAL Calculations SM-S NC524602-001 SOTEN.a Unit: 1&2 I NI-Sheet 40 Fission Product Barrier Emergency Action Levels Fuel Clad Barrier Fuel Clad Barrier Loss Threshold 3.A Containment radiation monitor RE-27A or B greater than 600 R/hr.In Attachment G, the detector radiation level of 640.06 P/hr is calculated.
Containment radiation monitor RE-0O27A&B (QID2IREOO27A&B, Q2D21REOO27A&B) can be read to one significant digit (page 15 of U26469 8), thus the value of 600 P/hr is appropriate.
The calculation used reactor coolant system fission product concentrations from WCAP14 722 Table 7. 6-6 to calculate isotopic concentrations.
The calculation for DE/I3I was performed to find a ratio to DEl/300 pCi/gm. GRODEC was used for energy binning, a geometric factor and dose conversion factors taken from SM-94-0466-001 was applied.RCS Barrier RCS Barrier Loss Threshold 3.A Containment radiation monitor RE-2 greater than 1 R/hr OR Containment radiation monitor RE7 greater than 500 mR/hr.In Attachment G, .the containment radiation monitor RE-O002 (N1D21REO002, N2D21REO002) level of 1.07 P/hr is calculated.
Containment radiation monitor RE-O027A&B (QI D21REOO27A&B, Q2D2IREOO27A&B) can be read to one significant digit (page 15 of U264698), thus the value of 1 P/hr is appropriate.
The calculation used reactor coolant system fission product concentrations from WCAP14 722 page 7. 6-52 to calculate isotopic concentrations.
The calculation for DEI13I was performed to find a ratio to DEl 0. 5 pCi/gm. GRODEC was used for energy binning, a geometric factor and dose conversion factors taken from SM-94-0466-001 was applied.In Attachment G, the containment radiation monitor RE-O007 (NID2IREO007, N2D21REO007) level of 0.54 P/hr is calculated.
The value of 0.5 P/hr is appropriate.
The calculation used reactor coolant system fission product concentrations from WCAP14 722 page 7.6-52 to calculate isotopic concentrations.
The calculation for DEII31 was performed to find a ratio to DEl 0.5 pCi/gm. GRODEC was used for energy binning, a geometric factor and dose conversion factors taken from SM-94-0466-001 was applied.Containment Barrier Containment Barrier Potential Loss Threshold 3.A Containment radiation monitor RE-27A or B greater than 8000 R/hr.In Attachment G, the detector radiation level of 7, 969 P/hr is calculated.
Containment radiation monitor RE-OO27A&B (QI D21REOO27A&B, Q2D21REOO27A&B) can be read Southern Nuclear Operating Company SOUH~m Pant FP S-SC524602-OO1 Plnit: FNP Title: NEI 99-01 Rev 6 EAL Calculations SMIheet 4 1 COMPANY to one significant digit (page 15 of U264698), thus the value of 8,000 R/hr is appropriate.
The calculation used reactor coolant system fission product concentrations from WCAP14 722 page 7.6-52 to calculate isotopic concentrations.
The calculation for DEI13I was performed to find a ratio to DEl 0.5 pCi/gm. GRODEC was used for energy binning, a geometric factor and dose conversion factors taken from SM-94-0466-001 was applied.Containment Barrier Potential Loss Threshold 4.B Containment Hydrogen Concentration greater than 5.5%.Per calculation SM-95-0754-001 pg 9, a hydrogen concentration above 6% is potentially explosive.
Since the accuracy of the hydrogen monitor is +/-0.5% in the range of 0-10%hydrogen, use 5.5%. Per calculation SM-95-0754-001 page 12 the concentration of>6% would support a burn throughout containment.
Southern Nuclear Design Calculation SPlant: Farley Unit: 1&2 Icalculation Number: SM-SNC524602-00l ISheet: A-1I Attachment A -SNC Emergency Planning Concurrence Calculation Number: SM-SNC524602-001 Calculation Version: 1 Calculation Title: NEI 99-01 Rev 6 EAL Calculations I the undersigned have reviewed the subject calculation and concur that:* Its Methods of Analysis conform to the guidance of NEI 99-01 Revision 6* Its Assumptions are consistent with the guidance of NEI 99-01 Revision 6* Its conclusions are consistent with the Methods of Analysis, Assumptions, and Design Inputs.
/ Signature/ I,,t(= SNC Emergency Planning I Date I Organization Southern Nuclear Design Calculation Plant: Farley Unit: 1&2 Calculation Number: SM-SNC524602-OO1 Sheet: C-1 ATTACHMENT C -REFERENCES DescrptionNumber Descrptionof Pages C1 -Davisson, "Gamma Ray Dose Albedos," from "A Handbook of Radiation 13 Shielding Data" 02 -Validation of Spirax Sarco On-Line Steam Tables9.1 __________________________
4.1-4.1-++4 4 4+4 4 Total Number of Pages Including Cover Sheet 2 23 SM-SNC524602-001T AC M N C H ETC-ATTACHMENT C1 SHEET C1-1 ANS/SD-76/14 A HANDBOOK OF RADIATION SHIELDING DATA J. C. COURTNEY, EDITOR Sponsored by: Nuclear Science Center Louisiana State University Baton Rouge and Shielding and Dosimetry Division American Nuclear Society JULY, 1976 SM-SNC524602-001 ATTACHMENT C1 SHEET C1-2 5-27 Gamma Ray Dose Albedos CDC. M. Davisson U. S. Naval Research Laboratory The dose rate reflected from a surface as deduced from Reference 1 through 4 may be represented as: D.R. =D.R. co 2 aA'where D.R. = Reflected dose rate D.R. = Dose rate incident on surface at 0 0 o A = Reflecting area r = Distance from center of reflecting area to receptor (A and r 2 must be in the same units)L(E° 0o, 0, = Dose albedo The albedos, cs(E , 0,,, 0, for gammas incident on water, concrete, iron and lead have been calculated by C. M. Davisson and L. A. Beachs using Monte Carlo techniques in an extension of the original work by Theus and Beach 6.The albedos are given for incident gamma energies of 0.2, 0.662, l.0, 2.5 and 6.13 MeV and for (incident angles with respect to the normal of 0°, 22°, 44 , 66° and 88°, as well as for point sources on the surface of the materials.
The emerging polar angles, 01)as well as the emerging sectors or directions into which the emerging gammas were divided are shown in Fig. 5.13. The values of the polar angles, 0., and of the azimuthal angles defining the emerging directions, are given on each page of Table 5.8.Note: The dose albedo values have statistical errors that range from 40% or 50% at very small albedo values to 5% or 10% at large albedo values.References 1 Reactor Shielding Design Manual, T. Rockwell III, editor, TID-7004 (March 1956)2p. 334.SD. J. Raso, "Monte Carlo Calculations on the Reflection and Transmission of Scattered Gamma Rays," Nucl. Sci. and Eng. 17, 411 (1963). This report has a good discussion of the meaning of various terms and derived quantities.
The dose albedos given here are those which he described in quotes, as "dose" albedos.s W. E. Selph, "Neutrons and Gamma-Ray Albedos," DASA-1892-2 (May 1967), ORNL-RSIC-21 (February 1968), or Chapter 4 of Weapons Radiation Shielding Handbook (NTIS No.AD-816 092). The dose albedos given here are those defined as c_. in this report.'9R. L. French. and M. B. Wells, "An-Angle-Dependent Albedo for Fas~-2 eutron Reflection Calculations," Nucl. Scd. and Eng. 19, 441 (1964).s C. M. Davisson and L. A. Beach, "Ga~mma-Ray Albedos of Iron," NRL Quarterly on Nucl. Sci. and Tech. (January 1, 1960), p. 43; and private communication.
6 R. B. Theus and L. A. Beach, "Gamma-Ray Albedo," NEL Quarterly on Nucl. Sc. and 0/ Tech. (July-September 1955).
SM-SNC524602-001 A T C M N lS E T0-ATTACHMENT C1 SHEET C1-3 5-28 Figure 5.13 NORMAL letry and Solid Angle Divisions Georr C.C, V.0G191A 98 903E A123309 I in pereeenl Energing Emerging WaterWte Peter Direction 0.20 91eV 0.662 91eV Antie ineideet or Poier
- incidenr at Feint *816k ( 0'
- 250 44,° 660 850 Source 50
- 22' 44o 66 88' Source o]o05. 1 9oo18~ 5.1 5.97 6.5397 7.1396 6.7159 6.5177 1.9553 2.01+03 2.,31 3.1588 2.9581 oo1. 2 00-90 .0 6.60 6.7538 6.a554 9.0500 t.2107 e.0384 2.i973 2.3769 3.1206 3.9089 *.1833 8e 3 90.0-180.0 5.6337 5.8329 6.17o9 7.0743 6.7805 6.8310 1.8933 1.6038 2.3875 3.9538 3.2092 2.9011 15.4-21.9 0.0- 90.0 +/-.1336 5.6935 6.7787 6.5315 7.91.58 ...0066 2.0361 2.3693 3.304i 4.3959 +/-.i156z 5 150.0-480.0 5.3326 5.7366 6.6038 6.6979 1.8565 3.0093 2.5959 2.8781 6 120.0-15O.0o 5.5872 6.429a 6.1704 5.9813 1.7406 2.1703 2.6467 2.6753 8o 7 90.0-020.0 5.2967 5.0768 6.i451 6.o290 7.0716 6.6423 1.7141 1.76}.8 2.1508 2.6736 s.4651 2.8362 21.8-34.9 9 60.0- 90.0 5.7890 5. 9097 7.0255 7.0hh8 I046 +/-. 023 199335 3. 414 2.7704 4. s9 0.0- 6o.0 5.7062 5.y6es 9.3760 8.9716 1.9034 3.3758 3.4947 5.5355 10 0.0- 30.0 5.6732 5.5703 7.9005 9.3535 1.9838 2.7634 4.3674 6.o6o5 11 15O.O-180.0 4.7969 5.16o9 6.1585 5.8973 1.7233 1.6192 2.4320o 2.'2660 12 120.0-15o.o 4.9543 s.4ooa 6.n194 6.7239 1.9159 2. 5032 2.9683 84 13 90.0-190.0 4.94,23 5.3779 6.4662 6.5197 6.o1a2 i.65894 1.7150 2.1040 2.8534 3.4144h 3.9044 34.8-44.4 r4 60.o- 90.0 l 5 .3699 5.7463 6.6733 6.6347 t,.1502 +/-.oifl 1.9078 3.2060 3.1190 3.7612 *.1092 15 30.0- 6o.o 4. 8364 5.9460 7.0077 1o.6405 1.9796 3. 5214 3.7423 6.3208 i6 0.0- 30.9 5.0313 5.6693 7.3992 ii.a576 1.726i0 2.4595 4.9749 a.61e2*.17 197.5-180.0 3.8993 4.6708 5.5399 6.3103 1.3535 1.6351 3.0032 2.5697 18 135.0-197.5 L-.ia18 5.0667 5.4726 5.9877 1.2764 1.4813 1.817/7 2.3130 19 112.5-135.0 3.9395 4.3332 5.2745 6.0389 1.4636 1.6o58 2.034,6 2..624 1 3s 0 90.0-112.5 3.9793 4.1314 4. 8377 5.1716 6.3433 6.0433 t.34i0 1.5953 i.6459 2.5741 2.7190 3.9464 4445. 1 67.5- 90.0 4. 5893 4. 50a4 5.66ss 6.8699 e.0170 1.934 1.7890 2.7336 4. 5075 +/-.o448 22 4s5.o- 67.5 4.4602 5.0394 6.3773 8.8169 1.4349 2.2770 3.3172 5.94'00 23 23.5- 45.o 3.9117 7.1514 11.4543 1.4296 2.3681 4.433o 8.0746 34, 0.0- 22.5 7.3340 1.7503 2.7795 12.2539 95 197.5-199.0 3.3459 3.7645 4.6069 5.7163 .8992 i.3434 1.6lo0 2.0010 26 035.0-157.5 3.3958 3.7108 4. 7796 5.8589 1.1748 1.2018 1.7139 2.2889 37 112.5-135.0 3.555 3. 5657 4.8980 5.C029 1.1967 1.4367 1.7047 2.6920 8 n 39 90.0-112.5 3.3492 3.5478 3.7974 4.1356 6.2433 5.5b716 1.1053 1.3017 1.3056 1.8535 3.0423 3.8091 55.3-64.6 29 67.5- 90.0 j.0532 3.5931 3.8955 5.2090 6.6770 1.1743 1.6336 2.6900 3.8038 1075 30 45.o- 67.5 3.1492 4.3032 6.6316 8.9116 1.3400O 1.7871. 3.3061 6.4253 31 33.5- 4.5.o 3.33966 4.3713 7.4570 19.5727 1. 5048 2.2454 4.3399 10.7336 39 0.0- 33.5 2.9447 5.1937 9.1311 15.64 17 1.5237 5.5367 16.7499 33 065.0-190.0 2.1264 2.1916 3.3.329 .6614 .8397 1.2565 1.6597 35, 150.0-165.0 a.a34i 2.6343 3.3451 5.0043 .6472 .8533 1.1356 1.6204 35 135.0-159.0 2.3259 2.4357 3.5227 5.1316 .7441 .8133 1.1131 1.9333 36 120.0-125.0 2.1899 9.416a 3.3150 5. 1764 .615a .9166 1.1266 2.0339 37 305.0-190.0 2.0710 3.0299 2.4214 3.3894, 4.3789 .7383 .9197 1.34,17 9.1977 87 38 90.0-105.0 2.2786 9.7700 3.6111 5.6151 4.32031 .7253 .7500 1.0093 1. 5037 3.7019 9.5424 694.6-77.6 39 75.0- 90.0 2.4397 3.6761 3.64 99 6.4994 -. 1312 £,.0140 .7935 1. 9463 3.7994 +/-.0789 40 6o.o- 75.0 2.1718 2.6096 4.o436 7-5953 1,0135 1.4012 2. 1153 4.3050 41 4s.o- 6oo 2.1870 3.1039 5.0337 9.5097 .9799 1.5390 3.0h84 6.9833 43 30.0- 45.o s.s64 3. 6170 6.0641 1.3.1953 .9313 1.69891 4.0398 11.9895 43 15.0- 30.0 9.4511 3.9100 7.0110 15.0692 .8866 1.9519 4.9537 44 0.0- 15.0 2.5259 3.7460 7.5061 17.9599 1.1833 2.2426 6.3270 21.9297065.o-190.0
.6429 .7465 1.1593 3.0983 .1533 .2103 .3557 1.0093 46 15O.0-165.0
.6336 .7643 1.3960 2.8972 .2358 .2374 .3737 1.0970 47 135.0-150.0
.9538 .9478 1.9635 3.2789 .1763 .2514 .39'7e 1.1505 4,8 130.0-135.0
.9026 .8305 1.3108 3.1119 .3752 .3462 .4921 1.3059 4,9 105.0-130.0
.7090 .9667 1.2943 9.8919 .2748 .4893 1.2658 Bo 50 90.0-195.0
.7446 .9123 .9467 1. 5001 3.0809 2.0500 .3519 .1381 .3925 .6755 1.5193 1.444O 77.6-90.0
!51 75.0- 90.0 .9259 .7707 1.1957 3.6699 9.0543 .2460 .3833 .7809 2.3339 +.oh44 52 60.o- 75.0 .9780 1.0763 1.7909 4.9976 .4366 .3906 .e6oa 3.2155 53 4s.O- 6o.o .7515 1.1401t 9.0393 6.5075 .3167 .6ass 1.4,673 5. 3678 s4 30.0- 45.o .7789 1.3680 2.7729 10.19g64 .3999 .6577 1.9128 9.4998 55 15.0- 901.0 1.1137 1. 5215 3.3789 33.3710 .4299 .8547 3.7434 15. 89n6 s6 0.0- 15.0 1.0129 1.is46 3.0126 13.4418 .4a06 1.29946 3.3736 19.3931 Son ever Cl 176.5573 184.2343 213.4333 380.2336 425.5670 270.5963 59.3391 64.9476 86.0866 140.3006 396.6791 139.3021 Total Done Albedna 19.8097 90.6833 33,9476 31.4421 47.7485 30.3609 6.64s5 7.2759 9.6589 15.7305 33.3872 15.6297* Symeitrical snoures, no (1 volueo venoaged 0 6~0)CO H mII m z H 09 I m m H--0....-I OAMftA BAY DOSE AIBEDOS ( in percent)Emerging Emerging Water Water Polar Directieon 1.00 HeY 2.50 HeY Angle incident at Pit incident atPon*6 i 1\ 252 440 9o ar Bounce OP
- 93 630 or° Bounce 9j 1. 90.0-160.0 1.3792 1.2030 1.5516 2.3172 2.2959 2. 1535 .5372 .5519 .6567 1.1675 1. 5452 1.0562 0.0-x5.4 2 0.0- 23.0 2. 12n5 1.4151 1.9977 2.4499 2.9657 &.1121 9.O0443 .5907 .6154 1.2'1069 1.9145 e.0729 8a 3 no.0-160.0 1.1622 1.1999 1.5320 1.9144 2.44,15 2.09CC .ji46 .5459 .9225 1.3513 i.1062 15.4-21.9 4 0.0- 10.0 +/-.0712 1.2977 1.6ao1 2.6296 2.7242 ,. 1221 ,.0120 .5224 .g011 1.2095 2.4114 2.oo79 5 150.0-190.0 1.2604 1.2716 1.5763 2.0974 .4917 .5920 .7605 1.1507 6 i20.0-15o.o
.9 1.Oa4 .4o.69 1.9570 2.1600 .5598 .4994 .8912 0.2571 9 o 7 90.0-1 20.0 1.1302 1.1671 1.05991 1. 9764 -2.7298 2.1566 .479g .4564 .6032 .9919 1.6670 1.1502 21.8-24.8 o 6o.o- no0o *.0192 1.106 1.6245 2.4716 " ,..44o6 i.o655 -9.0202 .4a1o .7400 1.266i 2.oT16 ,.o639 9 30.0- 6o.o 1.3700 1.5146 2.7504 4.oiao .5s41 .7726 1.50o25 3.0795 10 0.0- 30.0 1. 3196 1.29229 3.1252 41.7o32 .6259 .7921 1.6996 3.3791 01 15.0.-160.0 1.1512 1.2235 1. 556L 1.9327 .3940 .5205 .67s6 .9681 12 120.2-150.0
.9574 1.2832 1.6598 2.1828 .46og .5725 .7769 1.2537 05 13 *3..0-120.0 1.1139 1.2226 1.3921 2.1096 2.5559 2.1349 .4254 .4556 .6302 1.0551 1.4250 1.13391-1.h I 6c. o.- 90.0 9. 0249 1.2667 1.4g64 2.42gB 3.4849 :. 0120 .5187 1.133 2.0963 1.0449 15 :.0- 60.o 1 .2659 1.7382 2.00(9 5.0260 .5986 .7724 1.6281 3.1771 iE 0 .0- 30.0 1.1598 1.7278 3.6425 7.oooE .5248 .9369 2.1043~ 4.60~90 17 157.5-160.0
.9520 1.0542 1.2811, 1.8321 .3764 .422 .5829 1.0529 19 115.0-157.5
.9069 1.0317 1.2798 1.6792 .3738 .4219 .5o6i .9154 13 112.5-115.0
.2506 1.1371 3.5"228 1.9245 .4212 .46a3 .7958 .920881.0-112.5
.9132 1.0273 1.2431 1.7373 2. 3077 2.2086 .3769 .4318 .5697 .9136 1.3942 1.2898.0.5 21 67.5- 20.0 +/-. O~l0 1.0146 1.2435 3.4207 +/-,.24o4 ,.0107 .4224 .5950 1.1 142 2.1150 2.0275 00 45.0- 67.5 1.1603 1.6soo 2.9209 4.4035 .4452 .7777 1.4705 2.9309 0-3 22.5- 45.o .2707 1.7171 3.5238 7.9551 .4961 .8072 2.2216 5.16ii 21- 1.0- 22.5 1.1732 1.9935 3.9307 11.8437 .5343 .9970 2.39980 7.6425 15 157.5-100.0
.66ii .8137 1.0616 1.5202 .2596 .064n .4972 .7997 16 125.0-157.5
.7220 .7575 1.0910 1.5s15 .2059 .3356 .5625 .833 27 112.5-135.0
.7570 .2089 1.2150 1.9793 .2267 .0760 .5so6 .9910 a¢ 29 0.0-111. 5 .74o06 .7229 .950C 1.3524 3.4232 2.3046 .3312 .3232 .4501 .7618 1.2094 1.4398 52.-01-. "- 29 67.5- 90.1 ,.0237 .7763 1.3659 2.0224 3.1028 +/-.0767 9. 0092 .3559 .5227 .9141 1.7159 2. 1289 on3 4s.o- 67.5 .9347 1.4032 2.4900 5.3668 .4153 .6776. i.44e2 3.5299 11 22.5- 45.0 .96o8 1.a124 2.4070 8.4919 .2770 .8216 2.0515 6.9682 01 0.1- 22.5 1.o346 1.9222 4.9906 15.5466 .5515 1.0130 9.9929 13.1935 34 150.0-165.0
.4804 .5323 .7631 1.1637 .1424 .1979 .2918 .643 15 135.0-150.0
.4703 .5316 .7746 1.3Z666 .2215 .9697 .2142 .7034 36 120.0-135.0
.4523 .6192 .90113 1.2396 .2269 .2220 .3427 .241a 27 105.0-120.0
.5962 .5983 :2496 1.5807 .2119 .2391 .4537 .961o 9v 09 60.0-105.0
.5025 .5239 .6624 1.2836 2.2205 2.1587 .2212 .2597 .2672 .5172 1.2192 1.3699 64.6-77.6 39 75.0- 20.0 9.0199 .6311 .a249 1.3734 o.o561 t.2465 9.0095 .2596 .4157 .6790 1.242 2.0750 40 6o.o- 75.0 .7199 1.0019 1.5556 4.o2o4 .9902 .4764 .8005 o.606o 11 4s.o- Eo.o .64z6 .9615 2.2296 6.oono .2563 .6178 1.2689 4.2256 42 30.0- 4s.o .7109 1. 1s34 3.3140 11.1240 .2624 .5720 2.0473 7.9192 43 15.0- 20.0 .7960 1.6053 4.1934 17.2134 ,2202 .8317 16.2923 44 0.0- 15.0 .8527 1. 7722 5.3T,79 23.'2799 .9820 3.5535 26. 2"73 45 165.0-190.0
.1127 .1537 .2231 .6492 .0613 .0667 .0697 .2852 46 150.0-165.0
.1502 .1265 .2195 .7564 .24so .0627 .1244 .3379 47 135.0-150.0
.13572 .1429 .2020 .9177 .0723 .0622 .1175 .3693 ha 120.0-115.0
.0558 .1352 .2512 .2202 .0362 .0254 .1573 .3424 49 105.0-12=0.0
.2053 .1566 .4122 1.0017 .o765 .0737 o.1626 .5771 69 53 90.0-105.0 .l6s9 .1229 .2734 .4492 1. 3044 0.3623 .0737 .1096 .0714 .1666 .7704 1.1224 77.6-90.0 51 75.0- 90.0 2.0072 .2078 .0o14 .5690 1.652 9.0422 9. 0001 .0729 .1013 .2107 1.0202 2.0927 52 6o.o- 75.0 .2749 .2520 .623 2.6556 .1012 .1911 .2448 1.7109 53 45.0- 6o.0 .2362 .1233 .2901 .1028 .2472 .5519 2.1069 54, 30.0- 45.ot .2250 .5320 1.7025 9.7994 .1301 .3102 .9996 6.6789 55 15.0- 20.0 .3140 .6676 2.8791 16.2760 .1320 .3751 1.52.80 16.5150 o6 .0- 15.0 .3203 .9174 23.6674 .1193 .4654 2'.5214 22.9159 Sam owcr .1 3292807 44.0584 60.5977 102.2329 266.7079 112.5704 16.8220 19.7945 27.9942 59.9736 913.9020 69.7539 Totol Dooe Albedoe 4.46s0 4.943 6.7990 12.2558 22.9246 12.6304 1.8952 2.1087 2.1409 6.6168 93.9999 7.9264 Sy5esoericel 0000000, 0o A values averaged z 0 01 0 0 Co"T m"1 mT H-0 Ci 911/2I
>1Y h AC.C-OA680(A SAY DOSE A.41EDOS (in percent)tmerging Emorging Water Concrete Polar Direction 6.13 (icV 0.2 9eV Angle incident or Point
- incident at Point *9i 0 i 9 4(0* 22 44u 660 o8r Source 03
- 22" 440 660 880 Source 4, 90.0-180.0
.2655 .30g6 .3638 .6899 1.0608 .6976 4.3222 4.1243 4.7637 5.z214 5.9071 5.1598 o.0-15.4 2 0.0- 90.0 e..034 .3234 .4T794 .7897 1.3721 i=.0o61 _.4.1273 3.9059 4. 5791 6.is6i 6.0659 +/-.265190.0-180.0
.2518 .2447 .3894 .6oo6 .9558 .6251 4. 1o98 4.1431 4.3651 5.0983 5.5753 5.2992 15.4-21.8 4 0.0- 90.0 :. 0025 .2420 .3649 .6566 1.4905 .4.0108 4. 1439 4. 8685 5. 3798 6.7652 i. 843c, 5 15.0-180.0
.2979 .2932 .5174 .9825 3.9914 4.6116 4.7018 5.9179 6 120.0-150.0
.2227 .3198 .5674 .9718 3.8218 4.5297 4.984,3 5.1744 On 7 80.0-120.0
.2308 .3155 .2946 .5157 i.0534 .6[ 3.7130 4.0026 4.2362 5.4393 6.0965 5.4233 21.8-34.8 8 60.0- 90.0 £.o.o78 .2423 .3401 .5961 1.2751 .4.0184 ..0822 3.6716 4. 1899 5.0787 6.1243 -t.1175 9 50.0- 6o.o .3316 .4760 .7639 1.6719 4.2174 4. 53a5 6.1474 9.1100 10 0.0- 30.0 .3057 .5149 .8429 2.0850 4.0947 4. 3494 5.9747 8.1129 11 150.0-180.0
.2141 .266s .4442 .6696 3.5770 4,161o 4.6136 4.6075 12 120.0-150.0
.2173 .3 73 .1324 .7489 5.18 377 .'4 6 94 13 90.0-120.0
.2286 .2320 .6564 .9466 .66s6 3.4,652 4.87 ..044. 4.9897 6.1442 5.02546 3h. 14 6o.o- 93.0 :.O.019 .2820 .3575 .7015 1.2473 :.4.0176 +/-E.0412 3.1292 3.9545 5.2321 6. cc,36 ~..4Cr 15 50.0- 6o.o .3593 .3974 .8255 1.9624 3,.2757 4,5277 5.796Cc 9.9277 i6 0.0- 30.0 .2636 .4xa6 1,.1195 3.u115 4.0912 ,. 3774 6.1439 10.1395 17 151.5-180.0 .i6io .2355 .3074 .8453 3.2055 3.4274 4. 6624 5,46cc 18 135.0-45'7.5
.1759 .1998 .3246 .6i713 3.1621 4.36,47 5. 2342 19 112.5-135.0
.2036 .2619 .5201 .2712 2.8823 3.6709 4.53319 4.76,37 3s 0 90.0-112.5
.2090 .2101 .3022 .4606 .8563 .6972 2.8762 3.2066 3.6614 4.3557 5.5118 4.726 64.4-55.2 21 67.5- 90.0 0o59 .2270 .2642 .4934 1.5248 .4.0308a .4.1024 3.0541 3.4,667 4.654 5 5.7264 -.4.1462 22 45.0- 67., .2187 .3081 .7226 1.9876 3.3982 3.9209 5.538,4 7.6715 23 23.5- 45.O .2429 .3885 1.1344 3.3182 4.1492 6.425t 14.5245 24 0.0- 23.5 .3118 .4739 1.0819 5.1995 2.9231 4. 5731 6.9974 12.499 25 157.5-180.0
.1590 .1479 .3316 .6ooi 2.2100 3.0600 3.9595 4.4952 26 135.0-157.5
.1393 .1202 .2993 .6923 2. 5306 2.9304 3.3742 4.sh46 27 112.5-135.0
.1558 .2492 .3912 .7071 2.2888 2.7143 3.4321 5.3244 9.8 28 90.0-112.5
.1770 .1314 .1754 .411c0 .8769 .7172 2.4196 2.6233 3.1339 3.94196 4.7437 55.2-64.6 29 67.5- 90.0 o.0071 .1795 .2525 .5295 1.1451 .4.0221 .4.0393 9.4971 3.3553 4. 1634 6.5s17 30 54.o- 67.5 .1403 .2435 .6470 2.0965 9.7271 2.8219 4.6988 7.4996 31 22.5- 45.0 .1798 .4152 1.0312 4 .2078 2.4842 3.1664 6.2s89 12.9269 32 0.0- 22.5 .1957 .3689 1.3812 8.2644h 2.6o57 3.9543 7.0842 15. 7394 23 165.0-180.0
.1096 .0873 .x6s5 .5455 1.6248 2.0742 1.8414 4.322'34, 150.0-165.0
.0913 .iii6 .1916 .4830? 1.5881 1,9i94 2.5071 4.4477 35 135.0-150.0
.1187 .1472 .2568 .4l355 1.9763 1.9715 2.6430 4.aole 36 120.0-135.0 .oZls .1622 .ooho .5520 1.5987 1.9533 2.7197 4. 1235 37 105.0-120.0
.1036 .1193 .2179 .65Si 1.98349 2.2759 2.9421 4.9545 9, 39890.0-105.0
.0982 .1021 .i6i7 .2620 .7543 .8353 1.6023 1.7625 1.8482 2.78989 4.7697 3.9456 64.6-77.6 39 75.0- 90.0 .4.0337 .1296 .194c .3141 1.4250 .4.0357 1.5941 1.2123 3.1426 5.7263 +/-.4624 40 6o.o- 75.0 .1028 .1481 .4o 64 I.l,4o3 1.6523 3.4h310 1.4418 6.6971 41 45.o- 6o.o .0867 .2014 .5064 2.4667 l. 7145 2.5723 1.9082 8.7507 42 30.0- 45.o .1103 .2846 .7999 4.2109 1,7666 2.7971 4.6234 13.1994 43 15.0- 30.0 .1021 .27404 1.3737 14.36,22 1.8128 3.2706, 5.8535 14.9223 44 0.0- 15.0 .1545 .3173 1.8092 20.2675 2.1331 3.5404 6.4699 16.8259 h5 16so-sao~o
.0510 .o26o .05o09 .2528 .3761 .65as .9831 2.6020 46 150.0-165.0
.0180 .0439 .84c5 .26!79 .5195 .6061 .0-09 2.67(9 47 135.0-150.0
.0226 .o314 .0i06 .3307 .5987 .7263 .8610 3.4193 Ig8 120.0-135.0
.0157 .0282 .0654 .3663 .5794 .51(3 .9920 3.8143 49 105.0-120.0
.0315 .0434 .0794 .5234 .72I7 .9878 2.5313 a 0 50 90.0-105.0
.0327 .0229 .4361 .0813 .3970 .8451 .5243 .5707 .9462 1.3981 2.9321 i.g64C 77.6-90.O 51 75.0- 90.0 .4.0031 .8484 .0s60 .0652 .5242 .4.0458 .4.0326 .6815 .8435 1.3997 3.3595 o.4556 5s 6o.o- 75.0 .0398 .0870 .1248 1.01'20 .7262 .92253 1.1153 4.2516 53 45.o- 6o.o .0693 .o6ss .2678 1.4684 .1681 1.4522 2.4420a 6.561s 54 30.0- 4'5.o .06s5 .1oh1 .3706 3.0541 .7039 .9577 2.0897 8.7418 55 15.0- 30.0 .0580 .1448a .9633 11. 3776 .6622 1.3774 1.1693 12.9403______ 6 0.0- 15.0 .2346 .2239 1.5243 38.5044 .6344 1.3625 3.1294 13.1c'35 Suci oeva 8' .4613 9.0474 11.6134 30.1240 158.8044 42.0600 129.6433 135.3957 164.9352 227.320,6 38L-.21S7 227.131(9 Total Dose Albedas .2949 1.0151 8.5274 3.436i0 17.9068 4.7192 14*.4304 15.1902 18.4271 2"5.5138 4-2.411a 25.5847*Swmettrioa]I boarcee, co 41 voacoe averaged.Foro enmpoultoj e cooOoloa'ieg page CD do r,o 0 oJ o -n 600 60O-I 0._.'i 080198 RAy l(ll A188992 (In pereenti tEergieg Eoerging Conccetere Concrete Polar Direction o.662 lie 1.00 Angle incident at Ptr*incident cc-8t 0 k O"
- 44 66o or CoerceP ~~
- t
- 440 or e Decree°'n 8j 1 90.0-190.0 1.7235 1.7597 2.2777 2.6910 3.3634 2.6816 i.144a 1.1025 i.44J+6 2.1125 2.5946 1.9543 0.0-15.4 2 0.0- 90.0 t.oD667 1. 7050 2.0660 2.8651 3.9974 1314 +/-. 0909 i. 1460 1.5772 2.2313 3.0676 8.01882 90.0-180.0 1.6116 1.7100 i.9468 2.5441 2.9454 2.5246 1.0172 1.1160 1.4448 2.1496 2.3D93 2.0906 1542. O .0- 90.0 +.0296 1. 9234 2.2575 3.1202 4.4469 t.14 ih~o 1.1921 1.50O12 2.4402 3.6559 5 150.0-190.0 1.6153 1.6722 2.4839 2.7653 i.C16 1. 1343 1.5255 1.9919 6 12o.0-150.0 1.3938 1.87327 2.4549 a.6187 .596s 1..1947 1.7591 1.9574 8c 7 90.0-120.0 1.6171 175 2.31 3.1994 s62 .92 .97 1257 1.9154 2.6979 1.9928 21.9-34.689 6o.o- 90.0 8. 0231 1.7227 2.1599 2.9793 4.0218 *. 0580 *. 0205 1.1299 1.3562 2.1449 3.2901 t.0695 9 20.0- 6o1.0 1.7565 2.2596 3.7976 5.5501 1.2584 1.6173 2.5944 4.,5625 10 0.0- 20.0 1.6593 2.6210 3.9159 6.2732 1.1968 1.5870 3.0996 5.1907 11 150.0-190.0 1.3301 1.5202 2.0564 2.4478 .9734 1.0391 1.4427 3.7974 12 120.0O-150.0
- 1. 3777 1. 56s8 2.1031 .9362 1.0746 1.4929 1.9761 84 13 90.0-120.0 1.4056 1.5141 1.8149 2.4soi 2.9279 2.7485 .9O65 i.o16i 1.3323 1.9556 2.1826 2.0672 24.a-44.4 14 6o.o- 90.0 8.0588 1.568 i.ai8y 2.6667 3.9192 t.0430 A.0 2 7 2 .9304 1.5497 2.2760 2.9461 8.0300 15 20.0- 6o.o 1.5502 2.1703 3.6205 6.8377{ 1.1098 1.6111 2.9121 5.2809 16 0.0- 30.0 1.6353 2.4504 4.2106 9.7624 1.1294 1.8046 2.5769 7. 5400 17 157.5-060.0 1.1835 1.3731 1.5480 2.1925 .9356 1.1753 1.5602 18 135.0-157.5 1.3369 1.729 2.1991 .7993 .8735 1.2352 19 112.5-o133.0 1.196e 2.1549 .7727 1.0402 1.49235 1.9523 9 s 20 90.0-112.5 1.1750 1.2916 1.5121 2.1287 2.9123 2.7133 .7692 .7836 1.to64 1.4984 2.3154 2.1904 21 67.5- 90.0 1.4411 1.7659 2.5523 2.9315 8. 1031 8. 0304 .9495 1.2388 2.0937 2.3244 .0O728 22 4%o0- 67.5 1.2726 2.1503 2.9475 5.8450 .9540 1.5370 2.2285 4.9460 23 22.5- 45.o 1.4413 2.1972 4.4a56 a.59o7 1 .0920 1.7867 3.4487 7.9503 24 0.0- 22.5 i.4266 2.5701 4.6773 11.89869 1.0938 1.8370 4.l5gs 10.6785 25 157.5-190.0
.9503 1.0790 1.5766 1. 8279 .ioi0 .6568 1.0369 1.3170 26 135.0-157.5 1.0391 .s991 1.4919 2.1053 .6918 .7157 1.1205 1.549s 27 112.5-135.0
.2003 1.0029 1.5000 2.5072 .644s .6550 1j1177 1.9213 9e 28 90.0-112.5
.9512 1.0942 1.3038 1.9003 2.8284 2.7574 .6573 .7078 .9658 2.2479 s5.2-64.6 09 67.5- 90.0 8.0321 .9999 o.404s 2.29999 4.2219 0526 .7260 .9233 1.76111 3.2119 8.0577 20 4S.O- 67.5 1.1202 1.7101 3.1901 5.7558 .9350 1. 3643 2;5b73 4.8773 31 22.5- 45.o 1 .1565 2.0752 4.8711 10.1097 .8927 1.7022 3.6096 8.3203 " 22 0.0- 22.5 1.2082 2.3217 5.4436 i6.134o0 .773 1.so16 4.1976 16.44oo. , 33 165.010. .587 .630 92 1.609 .o65 .46s .6229 1.95 \>-.15o.o-165.o
.5533 .7990 .9752 1.6322 .3369 .5243 .7156 1.2279 35 135.0-150.0
.7089 .6596 1.0530 1.9292 .3941 .4923 .6368 1.2729 36 120.0-135.0
.5552 1. 9709 .4061 .s11S .7719 1.5392 37 105.0-120.0
.7527 .7829 1.0294 2.2125 .4571 .5713 .9122 1.7477 97 39 90.0-105.0
.6904 .7957 .9236 1.3800 2.7667 2.4289 .4664 .4517 .6219 2.2470 2.0062 64.6-W.6 39 75.0- 90.0 .2331 1.1i604 1.7906 3.7156 8-.0200 .6194 .8151 1.4092 1 2.9299 -8.0~64 4o 60.o- 75.0 .9220 1. 1384 2.0594 4.7747 .61s4 .9820 t:64oo' 4.soa7 41l 45.o- 6o.o .e947 1.264,1 2.8966 6.7246 .6o21 .9090 2. 5313 6.3592 -42 20.0- 4s.o .9338 1.6641 3.9098 11.9356 .9603 1.1394 2.1428 10. 3936 435 15.0- 30.0 .9472 1.9589 4. 9260 17.0101 .5516 1.44I38 4. 1275 17.9330 44 0.0- 15.0 1. 1750 1.9808 5.9095 21. 3304 .8189 1.9096 5.2776 22.9816 45 165.0-180.0
.2449 .2196 .4014 .9671 .3193 .1389 .2121 .6109 46150.0-165.0
.2263 .2997 .o154 .9256 .t4oo .9011 .2152 .5955 47 135.0-150.0
.244s .2043 .4o96 1.0372 .1661 .1409 .2004+ .7449 48 120.0-135.0
.2414 .2622 1.143 1.4216 .1372 .1357 .2395 .2948 4s9105.0-120.0
.1778 .2527 .4709 1.20O59 .1293 .1785 .0137 .9934 8a 50 90.0-105.0
.2413 .2961 .3281 .5010 1.2286 1.4411 .1836 .1690O .3153 .4279 1.1825 1.2139 y 77.6-90.0 51 75.0- 90.0 +/-.0135 .2145 .3910 .7054 2. 1304 _8.0442 8.0197 .1201 .2810 .4967 1.614h2 t.0702 52 6o.o- 75.0 .3899 .4901 .8120 3. 5707 .2364 .3777 .6724 2.9629 52 45.o- 6o.o .2618 .5959 1.3892 5.4957 .2041 .3833 1.3637 4.4470 54 30.0- 45.o .2329 .6977 1.7"/61 8.5499 .2315 .6o56 1.6201 8. 0207 55 15.0- 30.0 .4218 .9078 2.9412 15.0340 ,2005 .7342 2.49865 17.0945 56 0.0- 15.0 1.11.69 3.2692 19.344h9 .0290 .a14o 3.1314 22.1170 s a ve 52.000o 57.7278 78.3201 132.3332 290.2237 133.1027 35.2959 29,0799 59.3420 103.9138 1o3.5002 109.8988 Total Dccc Albedee 5.8344 6.4770 8.7896 14.8478 32. 5620 14.s04x 3.9602 4.394b2 6.3217 11.6591 29.5647 12.2173 0ymmeeerical fonrces~ co 1 soloee *veraged ttm~pocirlon in percent by welght: 0 52.9. SI 33.7. Co 4'.4, Al13.4. Ce i.6, Fe 1.4, K 1.2, 9 1.0. Hg 0.2, 0 0. 1 Co0 c-f N, 421 0)C--)
- /..4'j Ks>-C',.', 4,':4, '?08886 RAy 8008 ALSEOOS ( in oarcOeltS Emerging Eeorgin8 Concrete T Concrete poter I Direction 2.50 NoV I6.13 KeY Angie {incident at Iincident at et 4 abb 6° c=e Source 0)01 0.0- 15.4 80 21.9-54.8 44.4-55.2 55.2-64,.6 64.°6-77.8 8.Tl4-2."o0 1 20.0-190.0 2 0.0- 20.0 3 80.0-180.0 4 o.0- 90.0 5150.0-280.0 6 420.0-150.0 7 0.0-120.0 a 6o.o- 20.0 2 30.0- 6o.o tO 0.0- 30.0 11 150.0-180.0 12 120.0-150.0 13 90.0-120.0 14 6o.o- 90.0 15 30.0- 6o.0 iS 0.0- 10.0 17 157.5-182.0 18 135.0-157.5 19 112.5-135.0 20 90.0-112.5 21 67.5- 20.0 22 45*o- 67.5 23 22.5- 45.o 3.0226 3.0183 3:.0160.3518 ,.0134 3.,0103 25 157.5-180.0 2615.0-157.5 37 113.5-135.0 28 04.0-112.5 28 67.5- 90.0 30 4.o- 47.5 32 1.0- 23.5 33 165.o-t8o.o150.0-165.0 25 135.0-150.0 36 110.0-135.1 37 105.0-120.0 38 80.0-105.0 39 75.0- 80.0 40 6u.,0- 75.0 41 45.0- 6o.o 43 30.0- 45.0 43 15.0- 30.4 44 2.1- 15.0 45 165.2-18o.0 4o 130.1-165.0 hG 122 .0-135.0 49 145.0-120.0 51 75.0- 80.0 52 60.2- 75..54 Ic.:- 49.0 55 4,.- 30.4.5148.4g5g.4676.51o02.42o5.48,07.5328.4503*5729.4760.3823 ,4 318.3172.4o6e.44 57.46cs.4361.3103.3088.3500 2 927.1873.1895.1830.169I.2286.1867.2854.2814l.2892.3426 , .710* .0711.27727.,'978.0834_.1143.67ss 1.0003 t.oo6o .o0oo0 ,7357 1.3620 1.0781 3.0052.6778 1.0381 1.3085 1.G010.7218 1.2172 2,4493 .5640 .8712 1.0862.810 1.520 1.0703.640 1.2638 2.1777 j.0,72*.6878 1.4007 2.6967* 80(4h 1.7671 3,01489.4647 .6678 1.0237.5244 ,6590 1.1,55.5820 1.3459 1.4o2 1*182h.6o01 1.2208 4.2237 t,0596.8370 1.5657 3.i6',4.8328 1,9276 5.2213 ,416g .5710 4.1315 ,4OO0 .6718 .3488.444l6 .7313 1.2493 ,1299 .91o6 1.3755 1.3021.5978 1.020h 3.4143 o,0242.y34 1.3173 2.6517.7405 1.8844 5.7291.8473 7.9927.2762 ,4512 .8(42.3117 .5cha .9721.4o48 *5icJ, .0903.4449 .4470 1.2255 1.3285.48l16 1.0276 1.83951 *.537 1.34,51 3.6224.7827 6.07,7 1.6062 2.44(7 12.9334.1971 ,3579 .5099.1828 .2305 *5967*.2251 .3040 .0127.1826 .3430 .8042.3029 .3551 .9335.2422 .5233 1.2619 i.4zts.6287 1.7791 +/-.o642.4,324 .0853 3.I4'72.4961 1.3292 *.6667 1.2249 7."5013.2916 14.71i39*.vI 4 4 7 .0C582 .2825...'97 .4095 .4197*.1327, .1773 ."'22* 1. 2750.0'12 1.4310 *.333 1h70,:3 19.1319 ,3.'G 2.227:7 22. 113.5490..o226.3163.2929.2692 3. 0117.1853.121 3.2(44.3667.14085.35 11.3565.2761.3 153*2553*.3294.3077.3108.2991.2492.270..3457*2649* 2473.2387.49837.21,?1.1273.13.91.12439.2200C ro,. a0.0799.-911..72 ?.3845 ,6si0 1.0531 .7128.4996 .7097 1.5261 + .(297.4os6 .6215 1.0783 .6370.4902 .8081 1.3683 ~.0.0(E.4h57 1.452.3900 .213 1.3324, .71(3*.454 .8157 1.7594.5229 .0995 2..(91.3069 .0117 .9o.v7.3912 .,(919 1/.4,17 .8172.4439 .9917 2. 141-.5222 1.432 3.4392.2974 .*4 h, .9979.3318 .5544 1.1214( .7944.257-: .'" 95 1.2423 .3919 .7911 2.1430..4001= 1. .469 3.391'7.1021 .3491 .0234.1309 , -4h7 .0459.2575 ,314. .2525.2202 .4177 .2232 .7,722.1424 .7530. 2.21414.3212 .4101 1.2241 9.115*.16(47 .172 1 lh.5 .2~ .1h8B .F9 , i9.2119 1'-2' a'Tq -7503-,h4c0 1,4Bo 305.Z20* "'ZA 1,; 82'2 3,. 64< ,z -44.210'" ." -:i.9 9 0- C.7-c H IllFl CD H Iun 09cr ,2 15.4759 ?J 17.4: 391/231t0 5,.4.-211 XI .U22 I ti.~i.i -.4.1151 1.19? 1290 3 .-.: --O9 m Fn C)03 3Synnntrical nasoanes o 2 valaeo averaged SFor cnomposttlon ate pcevious page 6M01£A RAy DOSE AL8E001 fi.n narcenil Emerging Polar Angle 81~ ra Emerging Direction 192*0.20 11V lanldant atPon 44n 66' 82' Pin Sourra 0.662 11v incident at 22'82' Paint *2 o roe 9'15.4-21.8 21.8-34.8 89 55.2-64.6 87 64.6-77.6 80 776-so.o 1 90.0-180.0 2 0.0- 20.0 300.0-180.0 4 0.0- 20.0 5 150.0-180.0 6 12o.0-15O.0 7 90.0-120.0 8 6oo- 20.0 9 30.0- 6o.o 10 0.0- 20.0 11 150.0-180.0 12 120.0-150.0 13 90.0-120.0 t4 6o~o- 90.0 15 20.0- 6oo0 16 0.0- 20.0 17 157.5-18o0.
18 125.0-157.5 19 112.5-135.0 20 20.0-112.5 21 67.5- 20.0 22 45,o- 67.5 23 20.5- 4S.o 24 0.0- 22.5 25 157,.5-180.0 a6 135.0-151.5 27 112.5-135.0 22 90.0-112.5 29 67.5- 90.0 30 45.o- 67.5 31 22.5- 45.o 32 0.0- 22.5 33 165.0-180.0 24 150.0-165.0 35 125.o-150.0 36120.0-125.0 37 105.0-120.0 38 20.0-105.0 32 75.0- 20.0 4o 60.0- 75.0 41 45.o- 6o.o 42 30.0- 45.o 43 15.0- 30.0 4 o 0.- 15.0 45 165.0-180.0 46 150.0-165.0 4,7 135.0-150.0 48 120.0-135.0 h9 105.0-120.0 50 90.0-105.0 51 75.0- 20.0 52 60oo- 75.0 53 45.0- 6u.o 54 30.0- 45.o 55 15.0- 30.0 s6 0.0- 15.0 1.5272 1.4n46 3.1010 1.5109 1.5593 3.1186 1.65"/6 1. 46sa 3.4646 1.4123 i.5146 3.0661 1.5i56 1. 5341 1.41s4 1.280 1.2123 1.1865+/-.o612 1.2424 1.34o 1.6122 1. 2010 3. 0210 1.1742 1.l1480 i.16a4 3.o6Oa 1.3306 1. 4372.7769.8652*9684'1.0273 .8855 ,.0417 1.1872 1.0820 1. 0701 1.3462.6655.6646 23536.7167.68L3 1.0000.7163.7262.94 21 1.0216.0823.9607.2198.2817.2152.2924.21481 .3296*.o250 .3992.2601.2070.3219.4087.2826 2.0526 2.6779 3.5226 2.0055 2.6235 3. 844 3.8762 2.3842 3.2766 1.9261 2.7796 h4.5250 1.6217 2.4083 3.5728 1.7220 2.3935 3.1727 1.9145 2.1613 3.0881 1.8528 2.3944 14.3851 1.8838 3.5823 5.7419 2.2123 3. 1433 5.0682 1.7211 2.o594 3.2251 1. 5942 2.0450 3.2534 1.6o49 2.3011 3.2273 2.1266 2.6748 4.2915 i.8646 2.0781 6.0579 2.136z 3.4489 8.4756 1.4384 1.9701 3.2361 1.2873 2.0322 2.8840 1.3293 2.0440 3.69462 1.4140 2.6974 2.5142 1.6343 1.9399 14.13873.o028 6.4329 1.80o65 2. 9566 7.8155 1.9852 3.7774 10.4674 1.lo6o 1.711,2 2.8974.2813 1.6834 2.0509 1.2082 1.5555 2.6631 1.3433 2.0747 3.6074 1.2522 2.2092 4.8249 1.3606 3.2457 6.2325 1.6630 4.4o~o 9.4597 2.0640 5.3721 13.0549.8175 1.1417 2.84+63.61722 1.1812 2.964o0.7213 1.2638 2.9775.8123 1.3c06 2.4159.9275 1.6c1O 3.2351.9591 1.2211 2.86oo 1.0928 1.5087 3.8074 1.1768 2.6475 5.6336 1.4222 2.o000 6.51os 1.7211 3.7529 8.6517 1.7245 4.2409 13.8918 1.5542 4.3207 13.4253.2168 .5323 1.8793.2286 .44u8 1.8059...807 .4237 1. 5896.2867 -5597 1.6248.2913 .5769 1.6453.5792 .7125 1.960o.2877 .7725 2.7212.4187 .9190 3.2800* 5414 1.37146 4.7145.7733 1.87143 7.28t17.8232 1.8746 8.8884.8559 2.4550 10.2815 2. 4796 2.4372 11n57 2. 6686 3.1020 2.519nS 3.0744 2.*4760 2. 5078 3.0791 13o *3.0076 o.o14o 3.*0019 1.1199 1.0222 1.0663 3.020 1.156o 1.14h27.89763.9780 1.12491.0516 1.U104 1.1921.9593.8051.2350 i.1906 3.0483 1.0621 1. 1113 1.1o00.8232.8012.8127 .e8453 3E.0220 .9119 1.1386.5564.6028.6452.6695 *6e22 t.0153 .9645.89760.9722*.3779.5067.4875.4991.5162.4958 .64o6 3.0111 .5i54.14760.8400 ,7395.7751.114o6.1467.1355.885;1504*.1780 .2223 3E.0006 .2002.2769.2854.30141 1.4037 2.0759 2.6820 1.8636 1.5665 2. 5852 2.464o 3.0953 1.3142 2.1220 2.5839 1.s6e6 i.5184 2.5446 3.5048 3.0o73 1.2309 1. 5802 1.9589 1.1774 1.7872 2.2698 1.3510 i.65oo 2.5141 1.9900 1.2809 2.1326 3. 5245 3.0443 1.8467 2.0375 4.a1on 1.6913 3.2092 4.8527 1.1079 1.5055 2.0353 1.1654 1.64141 2.2273 1.2838 1.9343 2.7315 2.12o54 1.2303 3.1302 2.30:49 3.0597 1.7646 2.7042 5.9284 1.6722 3. 2511 8.8457.9517 1.1310 1.89980.9551 1.1885 2.1297 1.0566 1. 5185 1.8741 1.0565 1.5644 2.5977 2.1006 1.4396 2.1087 3.4911 +/-.0772 1.3639 2.5177 5.7897 1.7201 3.2916 8. 1409 2.0288 4.ooa5 11.8762.7698 .8322 1.7745.9374 1.0551 1.7562.8214 1.1621 1.8226.8585 1.2879 2.6598 2.3397.9899 2.0014o 3.1054 3.0748 1.2590 2.7597 5.7641 i.6526 3.7575 2.8131 1.7716 5.5776 15.8301.4764 .7595 1.3313.452o .6842 1.448.5O26 .8462 1.7265.4678 .8450 1.6787.6129 .9326 2.0847.7639 1.C1637 2.360 2.3950.8901 1.62214 3.0763 3.0373.8809 1.7982 4.1589 1.0895 2.6715 6.7oo2 1.4074 3.65cc 11.5581 1.4113 4.9993 17.6072 1.7127 5.7382 22.1043.1434 .2227 .0085.1573 .2224 .9206.1418 .2211 .9978.2255 .2501 .2187 .4344 .9515.2504 .444a 1.41s;6 1.2989.3765 .62o5 1.8997 ÷.c66c.3052 .5g6g 2.8325.6io5 1.2954 4.7341*.7457 1.7216 8.8637.8229 2.4142 15.1331.99714 3.5438 19.4606 Cii N)C9 0-'I-a O A rn C-)-x 2.533 1.2150 Ooa aver Li TOtal Done Albedas 50.1404O -55.027& 73.3776 125.4608 272.8526 123.3752 5.6553 6.17ho 8.2329 14.0767 30.6140 13.8427 35.5022 140.5180 58.0037 100.47Gb 272.3117 110.5922 3.9833 4.54141 6.5080 12.2829 30. 5533 12.4ca14 S$yiametrieal nouman,, 00 [1 Valors aveoraed N.--N
'C>/. ..., 4<'I\ti DADI RAy 0031 62.91OS 0nmergnng Emerging Iron Irinnperont...ro polar Direction 1.00 HeV 2.50 NoV Angle incident at Point*
- inoident at Point *£t '1e £ 40 666 8 Source O=* /4° 66 85° Source1. 93.0-180.0
.7068 .3215 1.0108 1. 5835 2.h330 1.1889 .h166 .0299 .6992 3.202 1.61409 1.0061 0.0--15.4 2 0.0-- 90.0 +/-.0521 .7829 1.1293 L .9932 2.9908 j..1036 9. 0373 *,927 .7020 1.2171 1.9402 +/-. 056i 13 0.-9. .6795 .BLC13 .9391 1.h.712 2.ofi6i 1.6492 .11467 .46fi1 .6012 .7s16 1,11197 .9571.154219 4 O.- 90.0 9.0138 .84.10 1.1066 1.8599 3.35596 9.0291l ,4853 .9030 2.0295 9.,01.99 5 150.0-190.0 .2231 1. 1012 1.1913 .5163 .4657 .9239 1.2795 6 120.0-150.0
.6753 .7412 1.2472 1.9255 ".4607 .5012 .e6oj 1.1996 So 7 90012. .45920 .7030 .8511. 1.J4652 2.0551 1.5739 .3929 .3932 .541.3 .9120 1.5599 1.0292 20.9-34.9 9 6o.o- 90.0 +/-.0192 .0340o 1.0536 1.634o 2.7398 0334+ k. 0255 .4541 .6140 1.2315 1.8746 *.o5s1 9 30.0- 60.0 .90C12 1.1928 2. 3226 .5120 .7306 1.361 9 2.5990 15 1.0- 20.0 .7295 1.1.123 2.4596 4.t,117 .1.667 .7359 1. 5291 2.7762 11 15>0.0-190.0
,70127 .7197 .9706 1.6332 .3011 .1.86 .616g .8976 12 120.0-150.1 .736i5 1.2090 3.7195 .3232 .4927 .7243 1 .046i913 90.0-120.0
.1'-3 *73h9 ,9216 1,5220 2.0551 1.73144 .3783 .3799 .56149 1.0120 0.1.3354 1.0473 34.9-1h.0.
14 6o.o- 90.0 9.:, 33 .732u .9765 1.7212 2.7223 ,. 0598 :. 0129 .4522 .6211 1.2931 1.91935 9.0339 15 30.0- 60.0, .7£913 1.30.77 251,9 42h .1,i381 .3592 .7592 1. 5796 3.39829 i6 1.0- 30.0 .9671 1.3197 3.0801 7.1331. .5465 .9069 1.9161 17 157.5-190.0
.2.575 .6253 .8319 1.3291. .3510 .3519 .514s .9561 19
.5391 .7045 .938. 0. 5729 .3630 .31.53 .5650 1.1159 19. 112.5-135.0
.6236 .9l592 1.1I091 1.1254 .2712 .42a7 .5739 9 s 20 90.0-112.5
.5693 .6115 .7619 1.2430 2.o0490 1.846s ,4i1s .4932 .9275 1.6e77 n.15s5 21 67.5- 90.0 .7290 .2835 1. 5210 3.0986 9:.0119 .3902 .5211 .9427 1.9904 :. 0633 22 45.c- 67.5 .7202 1.0049 1.9769 4.1305 .0294 .7229 1.1924 2.9697 23 22.5- 45.o .70.'6 1.5370 2.7752 7.5295 .3665 .7042 "1.7239 5.1596 22. 0.0- 22.5 .9991 1.5127 3.1I9196 11.2643 .1.662 .7991 2.2427 9. 3975 25 157.1-192.0
.4329 .4976 .6702 1. 2226 .2205 .2429 .4896 .9332 26 135.0-157.5
.4562 .44s6 .7306 1. 2020 .2079 .2395 .621.9 .7977 27 112.5-1355.0 .6649 1. 5377 .2521 .3533 ,5972 .9854 Be 28 90.0-112.5
.5099 .4785 .7717 2.3434h 1.9392 .3003 .2203 .36o13 .632l 1.1.64*7 1.3119 29 67.5- 90.0 9.0129l .5996 .92 1 o0 2.9999 +/-.0149 .2592 .0983 .9969 1.93441 30 15.0~- 67.5 .7318 .9342 2.0O5J1 5.2210 .3115 .6266 0.3091 3. 9095 351 22.5- 42.0 .7313 1.2399 3.2926 9.5c3.5 .4038 .9537 2.2919 7.2019 32 0.0- 22.5 .9359 1.5394 4.5327 15.5759 .459f9 .9014 2.7a37 12.36i85 33 365.0-190.0
.3271 .2759 .4746 .9029 .1795 .1913 .2919 .6024 34 150.0-165.0
.346g .3556 *I,03 1.0597 .1784 .1701 .2979 ,.5737 355 135.0-150.0
.3061 .5030 .2.044 1.13985 .2302 .1926 .3471 .9797 36 120.0-135.0
.3509 .3421 .6s51 1.2393 .2099 .1407 .3866 ,0669 37 105.0-120.0
.3281 .4567 .6959 1.0678 .1956 .2265 .1.29 .9012 97 39 90.0-105.0
.3771. ,5391 .5452 .as94 2.0177 2.0131 .2042 .2399 .3809 .4197 1.1801 1.0324 64.6-77.6 39 75.0- 90.0 9.o009 .3796 .716s 1.3474 2.5954 ,.0059 .1962 .2513 .6906 1. 9235 4o 6oo- 75.0 .4729 .7567 1.44598 3.6365 .2379 .4212 .7620 2,.3799*l 1.O.- 6o.o .4970 .97'.6 2.2936 5.76741 .3961 .4787 1.41oo 42 30.0- 4S.o .5947 1.2299 2.9631 00.429, .4145 .6158 1.92509 9.1796 1.3 15.0- 350.0 .5491 1.0633 4.o3905 16..6909 .3302 .6207 2.7519 14.84 59 41 0.0- 15.0 .6286 1.3490 5.0520 24.5590 .4021 .654o 3.2013 24.1125 45 16s,0-oao.o
.0897 .0799 .1350 .5799 .0932 .0168 .0721. .3263 46 150.0-165.0
.1535 .1593 .1521 .5179 .oz64 .0726 .0547 .5720 47 135.0-150.0
.1279 .0177 .1534 .7210 .o029 .0720 .0759 .4237 49 120.0-135.0
.1232 .15235 .2059 .7719 .0566 .1059 .1279 .3092 49 105.0-120.0
.1107 .,s64 .2945 .8906 ..0397 .0486 .1990 .6100 8e 50 90.0-105.0
.1260 .1196 .1920 *3,30 1.0111. 1.3992 .0715 .0692 .1994& .6825 1.1729 77/.6-90.0 51 75.0- 90.0 9.0051 .2229 .2686 .3947 1.3009 9.0319 .0619 .1191 .2047 1.0654 +/-.o29 52 6oo- 75.0 .1926 .2073 .5684 2.7561 .0621 .2035 .35578 1.7955 53 45.0- 6o.o .2087 .43577 .2239 4.5211 .0995 .14o4, .6so6 3.0012 54 30.0- 4s.o .21.84 .4651 1.5180 g.1961 .1330 .2298 1.0919 6.si46 55 15.0- 30.0 .2790 .6023 2.6834 15.44a9 -.3202 .4299 1.7200 16.35709 56 0.0- 15.0 .3681 .9399 2.3991 22. 271.0 .i34o .40a1. 2.5727 30.3439 Sen over .1 25.561 29.2840 43.2632 89.3162 97.2193 14.8134 16.5i.45 24.9426 56.6i220 209.2356 67.3876 Total Dose Albedoc 2.849 3.2957 0.9541I 29.0227 10.2079 1.6621 1.89563 2.7996 6.3530 23.4974 7.5609* Sylnhetrieol souroros co 0 volues ovoroged 0 0 Ici, o 0 0 H7 Dlm Hm oo Cc 0.901A RAY ROSE ALIOROS (in pornenti EbargIng Ebarging Iron toad Polar Rlronrion 6.IZ NoV 0.20 NoR Anglo incident:
at * *incldent at Point St 0 io , 22" 44" 660 88o on " 2 66" *ot 8z 1 20.0-180.0
.4936 .5508 .538l5 .8R40 .R898 .0756 .078R .0R28 .1386 .5045 *i4842 0.2- 80.0 +/-.0173 .4627 .6624 .8116 1,6362 -+/-.0045 6.00R2 .1124 .1302 .2046 .3079 a..0010 9.- 90.3-180...
.4384 .4o72 .5387 .R101 1.2484 .9562 .0720 .oa64 .0984 .2289 .4603 .I6sg 15.4-'21.8 4 0.0- 80.u jE. oo4 .5322 .4782 1.0008 1. 5276 +/-.0820 +/-.0124 .0344 .1796 .2349 .55R8 o.0780 5 150.0-180.0
.4541 .5808 .764s 1.2228 .0882 .0922 .1145 .2531 6 120.0-150.0O
.3004 .6067 .8988 1.2146 .0R42 .0471 .1447 .3227 Ga 7 RCO.-120.i
.4150 .4263 .5307 .8518 1.2365 .R3 6 2 .0695 .062 .1292 .08R3 .2688 .2125 21.8-24.8 8 6o.0- 90o.0 i.0215 .4563 .6578 .8531 1.5707 6.01.57 +/-,0093 .0760 .1026 .1228 .3165 +/-.0216 9 3.0- 60.o .5042 .5685 .8703 1.866 .021. .1281 .524 19 0.0- 20.0 .4849 .6665 .8872 2.0287 .0842 .g6 .2511 .4994 11 150.0-180.0
.4041 .4o45 .6355 .o748 .1263 .o894 .2527 12 120.0-150.0
.4874 .4910 .7772 i.24i0 .0275 .0800 .i641 *2922,13 20.0-120.0
.3783 .5489 .5432 .7681 i.4oo8 .8058 .0673 .0569 .1120 .2214 .8108 24.a-44.4 i4 60.0- 90.0 .4ihe .4762 .8858 1.7680 *.o284 +/-.0078 .0810 .1056 .2903 .3828 6.8198 15 30.0- 6o.o .409 .625o 1.0847 2.2282 .0607 .0665 .1714 .6143 i6 0.0- 3o.0 ,424 .5326 2.8767 .0830 .0798 .2188 .7137 17 157.5-180.0
.2072 .4177 .5327 i.o5i6 .0834 .1138 .0710 .4268 18
.2628 .4537 .5784 1.2114 .0427 .0586 .1702 .1298 19 113.5-125.0
.3238 .6461 1,300 .0252 .0220 .0951 ,4808 On 20 90.0-112.5
.2340 .3217 .3854 .8849 1.4514 .8722 .o5o4 .0279 .0822 .1683 .3157 .2000 44.4-55.2 21 67.5- 80.0 6t.0101 .3964 .4871 .8621 1.5975 +/-.ulOO .0726 .1989 .0208 6.0288 22 4S.o- 67.5 .2471 .5771 .8456 2.o967 .0757 .1782 .2228 .8026 23 28.5- 45.o .4023 .5088 1.0559 2.0OS5u .0858 .1787 .8544 24 0.0- 22.5 .4100 .6562 1.2236 4.2741 .1317 .1511 .s526 1.0903 25 157.5-180.0
.3302 .3382 .5048 3.2236 .0492 .0729 .1017 .4947 26 135.0-157.5
.2906 .2325 .5580 1.0667 .0692 .0420 .o544 .3823 27 112.5-125.0
.2922 .2927 .4771 1. 1697 .0210 .0o65 .0509 .2821 Rn 28 80.0-112.5
.2588 .2102 .3183 .5188 L1.60o .8552 .0714 .o46 .0615 .0445 ,261s .2016 55.2-64.6 28 6y.5- 90.0 +/-.01014 .3177 .2680 .7308 1.5828 6.0432 +/-.o006o .0290 .0828 .1443 .6385 6.08260 30 45,o- 67.5 .2565 .064 .7834 1.8768 .1088 .1213 .2565 .5520 31 32.5- 45.o .2538 .5515 1.0420 3.8179 .oai4 .0634 .2387 .7621 33 0.0- 32.5 ,3367 .5198 1.4457 6.18s1 .0223 .2565 ,5167 1.2283 33 165.0-180.0
.1633 .1840 .3539 .8580 .0583 .0401 .0872 .1882 34 150.0-165.0
.1655 .3065 .2049 .97'i3 .0558 .0053 .1021 .2554 35 135.0-150.0
.16a6 .1786 .3828 .8720 .0127 .o411 .2921 26 120.0-135.0
.2037 .9122 .2120 .8916 .0782 .0421 .0182 .1761 37 105.0-120.0
.2034 .1359 .3249 1.0213 .0597 .0424 .0168 .2801 By 39 30.0-105,0
.1802 .1556 .1793 .3558 1.1933 .8190 .0489 .0630 .06oi .1080 .8825 .2121 64,6-77.6 39 75.0- 80.0 j,8833 ,1647 .1747 .5203 1.3515 j.0508 +/-,o079 .0565 .0508 .8407 .2108 +/-.0270 48 60.0- 75.0 .1831 .2644 .6280 1.7604 .o414 .0849 .1697 .4ih5 41 6'5.0- Eo.o .2031 .3831 .7298 .osoo .1971 .1713 .62a,6 42 20.0- 4s.o .2718 .4174 1.0074 4.3527 .0932 ,114o .3888 1.0058 41 15.0- 30.0 .3308 .3088 1.2687 8.1121 .0681 ,O8O6 .3132 1,8711 44 0.0- 15.0 .2486 ,4562 1.6175 15.4125 .08CC .102 .4205 j.,8a4 45 165.0-880.0
.0856 .1395 .5673 .0274 .0291. .0253 .2227 46 15o.0-165.0
.2628 .0797 .1151 .5638 .0044 .0196 .0205 .2167 47 135.0-150.0 .o742 .0781 ,1045 .5893 .o476 .0258 .0020 .0208 4a 120.0-125.0
.0872 .1830 .i06a ,4479 .0281 .o156 .1270 19 105.0-120.0
.0480 .0916 .3325 .6804 .0044 .0517 .1263 8o 50 90.0-105.0
.0622 .0972 .o774 .1406 .6248 .7864 .ois4 .0262 .0247 .0059 .2075 .1053 77.6-80.0 51 75.0- 80.0 .8719 .iiii .16o5 .7523 6.0810 0041 .oo16 .0282 .0703 ,3533 +/-.12 52 6oo- 75.0 .0606 .0962 .2680 1.0385 .0890 .0092 .0085 .2217 52 45.0- 6o.o .o445 .t5n4 .2647 1.6135 .0491 .0228 .o5s8 .5791 54 30.0- 45,o .0828 .,854 .5784 3.3587 .0299 .1120 .1576 1.0648 55 15.0- 30.8 .0943 .2303 .8548 2. 2847 .0131 .0252 .2877 1.0107 56 0.0- 15.0 .0828 .2245 1.2388 28. 3443 ,0435 .0419 ,2911 1.2272 Ron "one 11 14.3508 15.7692 20.7162 28.8146 48.1472 2.8820 2.2521 4.2871 8.8429 28.8204 10.1863 Total Race Albedno 0.6102 1.7693 2.3244 4.3550 36.6121 5.5143 .3245 .2650 .4810 .9261 3.2248 1.1440*9111/ca sources, an (1 values averaged CD en z C-)cn 0* CD)68O9 oo K.,?iN
- C>0810(6MA XJ D09E 61.39903 ( in percentl (Cl)do Emoerging Enoei~ng 1Load 1 end Polar Direction 0.662 MoOo Suc 1.00 14V ouc oo~1c Incident at Point Inrldcnt at on 7L m 660 440ce 2 h 64o 9. Pointce Oi o.o-15.4 21.8-34.8 55. 2-64 .6 64.6-77.6 Q8 77. 6-9o.c 1 80.0-180.0 2 0.0- 90.0 590.0-080.0 5 150.0-180.0 6
7 2.- 30.0 12 43 90.0-120.3
- 4 6c.0- n:.: 15 20.0- 6:.o 16 1.0- 3*c.17 157.5-180.0 18 125.1-157.5 10 112.5-135.0 20 3.:3-112.5 21 47.5- 23 22.5- 4s.o 24 ,.1- 22.5 25 157.5-180.0 26 135.-0-57.5 27 112.5-135.0 29 0.1-112.5 20 67.5- 90.0, 30 5.0- 67.5 31 22.5- 45.0 32 I.E.- 22.5 33 16s.o-teo.O 3415.o-465.o 55 135.0-150.0 56 121.0-135.0 37 105.0-120O.0 38 20.0-105.0 33 75.0- -20.0 4I 45.o- 6o.o 4a so.:- 45-o 43 15.0- 36.0 44 0.0- 15.0 45 165.o-18o.o 46 tLc.o-i65.o 47 435.0-15o.0 4q 120.0-115.0 49 105.0-12O.0 5: 90.3-105.0 51 75.0- 80.3 53 60.0- 75.0 52 45.O- 6O.o 54 30.2- 45.0 55 15.0- 30.0 5O .0.- 15.2.1020* .0050.0503 4.0257.0727 i,.oo66.0831 i,.0 1 0 9.o~s1.0072.0035*.0888 .1I038.0642 .1559.o663 .1216.1185 .1975.28959 .1002.0583 .0721.0835 .1L129.0851 .1643.1123 .2046.0802 .166s.0692.01,74 .o568.o5o4 .o9y4.08g04 .1t525.1877 .1507.0991 .3155.256 .0557.0159 .1287.o586 .0734.09s6 .0778.2837 .2032.1375 .3120.1094 .2465.1115 .3123.0527 .046i.0702 .0684.0431 .0o66.0326 .111.14 1988.1059 .2098.0825 .3270.1495 .44L39.0597 .0037.o386 .0171.o~o4 .0326.o5o2.0o02 .04itt.0265 .0478.0490 .1236.2073 .1283.1954 .3187 ,.1OO6 .3576.1244, .3761.1817 .5239.0903 .0187.0081 .0208.0192 .0156.oi6o .0134.0193 .0100.1121 .0119 .0603.1301 .o561* .'53 .1t602.0999 .0505 .3833.274;9 .8858.2512 .8246.4c11 1. 5805.2279 .6678.1734 .8163.2188 .88499.2880 4.4385 ,63oo 2.0108.7352 2.4173.1396 .6446.1611 .7340.2933 .089.41.35o0.7060 2.8263.9285 4,. :52.0833 .6041.0818 .7088.14;00 .6571.3258 .8955.2843 1.8167.5009 2.8@053.9168 4. 590o 1.3753 5.8686.1033 .4627.O5O6 .5525.0729 *.7983.2469 .81251. 3507.5744 o.s626 1.3758 5.0948 1.7795 8.2177.0576 .374,3.0992 .3596*.0542 ,4408.1255 .5411.0820 .7414.1855 .885.3177 1. 5105*.3935 2.0616.6866 3. 8190 1.4;203 6.6765 1.7616 8.3775 2. 5831 19.3787.oo~o .1531.0318 .1374.0093 .1855.0187 .2729.0118 .2020.0476 .4061.11 t28 .1607 1.2327.3902 2. 5494.6765 4. 5817 1.1625 8.4809 1,4270 .4361 ,. .5578-.0620 ,4099 4.0818.6103 i,.0 2 1 7 e.oo91 .77.067/4 .0483 4=. 0133 .0789.o66s.0447 .0463.o566.0580.o569.0479.o691 .o41a i,.o05I .0710.1396.1072.0537 .o476.0829.1090.0379.0599 .0280 i,.0055 .1158.1254.0926.0880.0376.0281.0233.o046.o691.0497 .0631 i,.0 0 3 1 .0571.oao ,0869.126s.1826.2068.0108.o26.0145.0220.o216 .0318 i,.0024 .o206.0404.oh6o.ol~e7.065 .1716 .8347 .4298.04 .426a 1.6013 4.o081.3750 .2394 .8420 .2204.1687 .3384 1.8244 i,.005l.0780 .1813 .6s26.0724 .1553 .66i5.0853 .2493 .8405 .46411.1462 .3598 1.5648 i,.0206.1885 .5871 92.657 ,15e4 .7888 3.0031.0575 .o865 .5672.o484 .1424 .8015.9326 .2046 1.s6so .5850.1225 .4481 1.5664 i.0348.3380 .6457 2.9778.2781 1.0228 4.9603.0467 .ops4 .4822.1091 .0805 .59145.0835 .16oo .8068.1021 .3571 .8745 .6874.2285 .6734 2.8451.3007 1.1616 h.n'z'.3129 1.5128 6.8011.0231 ,1037 .3873.0421 .061o ".4064.0585 .0730 .7321.0743 .9537 .8078 .8167.1202 .2195 1.3804 i,.0439.2216 .6844 2.9179.3523 1.2773 6.30o64.4150 2.2465 10.1802*.0187 .o414 .2324.oD26 .0544 .3415.0147 .osdo .3261.0995 .o655 .4713.0319 .1424 .7D08.0o709 .1689 1.0061 .9725.1580 .2529 1.4905 4.0310.0854 .4559 2.2054.3857 .8858 3.8378.3915 4.4840 6.8755.4270 1.8063 11.6528.5258 9.6387 17.0801.0076 .0068 .1284.0077 .0168 .1595.0027 .oio6 .1521.0183 .0118 .1852.o066 .0429 .2146.0216 .0802 .4o61 .7135.0503 .1326 .8128 i,.0417.0508 .1620 1.5821.1187 .4039 2.8039.199s6 .8404 5.5484.3873 1.7274 10.4706.2717 3.0488 16.6491 L n 0 o Z (0.8406.8644.0498024;9 Soc over 5 ] 3.3924 4.2047 0,4319 26.2228 132. 7913 36. 148! 2.6715 3.6340 7.8903 29.0588 153.1524 40.0798 local Doso Albedno J .3806 .4718 .9460 2.h423 44.8981 4.0558 J .9997 .4O80 .9852 3.2604 47.1837 4.4868 m m H)C).--lyoc~orlcil soouceos no 0 nalnes avocaged 08164 902DSE AumniS Emerging Emerglng Leiaprcnt Lead Polar Direction 2.50 HeV 6.13 9eV Ang1e incident at Poit a inridnet4h at88 Point*Si Ok C 0 e .2 2 440 6@ 88 Soarcer 0 ' ' Souceo Ri 1 90.0-150.O
.2544 .2195 .3872 .469o 1.2064 .6274 .425s .4150 .5763 .6986 1. 5990 .7166 o.o-15.4 2 0.0- 9o.o 8.10o44 .264i .3917 .7538 9.0325 +/-:.o666 8.0281 .3591 .5015 .7i65 1.9155 39 90.0-190.0
.2382 .2589 .464i .3469 1.2760 .5708 .3991 .2669 .4782 .6774 1.2943 .si96 15.4-21.9 4 0.0- so.o 9.oso4 .3070 .2657 .6o67 1.9117 t. 1325 ÷.016o .3745 .4L963 .6269 1. 5230 8.O101 2 150.0-180.0O
.2084I .2797 .44l11 1.2004 .3320 .4J724 .7205 1.5693 6 190.0-150.0
.2769 .2632 .5251 1.3404 .2994I *4 1 23 .6924 1.3625 So3 7 90.o-120.0
.2087 .1904 .2509 .4o64 1.3106 .7339 .o642 .2661 .466i .6991 1.2a65 .7441 8 60.0- 90.0 :. 0290 .2464 .2810 .6550 1.5961 +/-.0324 8.0235 .4383 .4522 .6686 1.4941 9 30.0- 6o.0 .3179 .4612 .7391 9.6510 .4746 .4987 .7563 1.928 10 0.0- 30.0 .2997 .3450 .9707 2.9S079 .4o25 .5139 .9252 2.0149 11 150.0-190.0
.2056 .3259 .3807 1.1927 .260 .4115 ,6328 1.3301 12 190.0-150.2
.2525 .2o2 .3213 1.0919 .2956 .4150 .5976 1.4035 94 13 90.0-130.0
.1959 .161o .1924 .5929 1.0946 .yio6 .3171 .3392 .5245 .6397 i.5260 .7796 34.8-44.4 14 60.0- 94.0 8:.0093 .2040 .3715 .5242 i.6536 9:. 03 8..0209 .44o4 .4204 .6600 1.5596 +/-.c499 15 90.0- 6o.o .2071 .2ya3 .7899 2.6959 .3678 .520 .544.72 16 0.0- 90.0 -.1793 .3801 .7987 4.0173 .3919 445 912 2.5121 17
.1335 .1959 .3596 1.1225 .2739 .3977 .4913 1.46o9 19 035.0-157.5
.1647 .1837 .36ii 1.0067 .3554 .2787 .6271 1.2990 19 112.5-135.0
.2109 .2201 .3099 1.1815 .2477 .3554 .5974 1.4o45 8 o 20 90.0-112.5
.1905 .1497 .200 .3895 1.4509 .7269 .2750 .2999 .3420 .5338 1.4220 .7416 44.4-55.2 21 67.5- 90.0 9:.o1g3 .t467 .2387 .5179 .0o147 .2965 .2546 .5192 1.6678 22 45.0- 67.5 .2701 .3717 .6260 .2964 .4089 .6911 1.8593 23 22.5- 45.o .3127 .4502 1.1871 4.5479 .2952 .3779 .7999 3.3353 24 0.0- 22.5 .1967 .5221 1.5019 6.ol9e .3228 .4649 .s6698 .7980 25 157.5-180.0
.1710 .1287 .3922 .8188 .2530 .3076 .5229 1.3464 26 135.0-157.5
.1345 .1550 .3990 .9670 .2162 .2885 .5249 1.5562 27 112.5-035.0
.1262 .1422 .3632 .2198 .2548 .2635 .4591 1.4296 5 o 28 90.0-112.5
.1263 .0959 .1548 .466 .8702 .2214 .1920 .1957 .4567 1. 5464 .7354 55.2-64.6 29 6y.5- .0094 .1109 .3158 .4s96 1.7775 -. 0537 +/-..0050 .2381 .2778 .4849 1.7109 8,0499 30 45.0- 67.5 .1761 .3373 .7465 2.4760 .2063 .2789 .5513 1.7226 31 22.5- 45.o .2175 .3531 1.0703 5.2397 .3077 .3447 .7439 3.2467 32 0.0- 22.5 .1803 .4648 i.5as4 9.6763 .2952 .3514 1.0045 4.5826 33 165.0-090.0
.06a4 .1624 .2297 .7074 .1251 .2577 .2381 34 150.0-165.0
.0925 .1822 .1915 .8033 .1370 .1947 .20(5 1.2729 35 135.0-150.0
.0921 .0550 .2406 .8829 .1403 .1906 .3951 1. 1301 36 020.0-135.0
.0563 .1623 .1228 .7823 .1476 .1189 .2142 1.2322 37 105.0-120.0
.1359 .1146 .2055 .9465 .o666 .1424 .2711 1,.1137 87 38 90.0-105.0
.0101 .0456 .1187 .2139 1 .4137 .9504 .1588 .2145 .2328 .2879 1.0531 .6759 64.6-77.6 39 75.0- 90.0 8.0088 .0925 .1169 .3154 1. 5508 8.o444 ..0069 .1972 .26. .4502 1.3 595 9.0442 4o 6o.o- 75.0 .i64o .1427 .5406 2.2224 .1670 .2107 .4ao7 1.7667 41 45.o- 60.o .1413 .2298 .7559 .2212 .5m03 1.s9679 42 30.0- 45.o .1458 .3313 1. 1756 6.2233 .2004 .2621 .6134 2.8381 43 15.0- 30.0 .1855 l, 85-3 10.6379 .141a .2746 .80'20 5.5990 44 0.0- 15.0 -.1771 .4o55 2.4094 19.1133 .194o .3147 1.0637 8.1543 45 165.0-120.0
.0350 .o444 .0480 .0173 .1223 .0599 ..8J1 42987 46 150.0-165.0
.0277 .0122 .0444 .5241 .0547 .0358 .0893 .&047 47 135.0-15o0o
.0527 .0174 .0429 .4927 .o04,5 .0e,95 .15.5 .556n 48 120.0-135.0
.0550 .0560 .1220 .29o8 .i5s4 .0492 .1254 .04r39 4g 105.0-120.0
.0672 .0429 .0858! .382. .0603 .u571 .0,231 .(55o 88 50 90.0-105.0
.0368 .0219 .0540 .0731 .7936 .8499 .0537 .0456 .0712 .1692 .8299 .4956 77.6-90.0 51 75.0- 90.0 .0231 .0577 .1014 .729g4 4.0552 9.0033 .0724 .0489 .v966 .7435 ..i043 52 60.o- 75.0 .3271 .0937 .2483 1.24"( .0398 .1265 .1684 .3293 53 45.o- 60o. .0428 .1051 .3725 2.2666 .0717 .1153 .-I34 1.3455 54+ 30.0- 45.0 .1011 .3767 .5700 4. 9z~4 .o546 .0-967 .:800 2.1(1'0 55 15.0- 30.0 .1187 .3195 1.4032 11.9618 .0978 .15'30 .56o2 4.3849 56 0.0- 15.3 .0704 .3395 2.1458 23.5305 .08315 .1743 .9019 15.2143 Sam over (1 7.54O91 9.44 ( 13.2991 30.4009 141.. 1631. 45.9341 -.2323 13.0220 14.1('57 29.82Cc .17,4521 37.9971 Total Door Albedon .8493 .9701' 1.491,.- 3.7700 18.822.i 5.1540 1.3732 1.4411 1.871. 3. 3458 13..1791 4.26(0 t m ymeorinal
=onraco, 00o valaeo ovoroged.CD CO 0 o" 1:N'm 0"-s I--!0~0 rt- m V t.4 ~5 C Southern Nuclear Design Calculation Plant:,Farley Unit: 1 &2 Calculation Number: SM-SNC524602-001 Sheet: C2-1 ATTACHMENT C2 -VALIDATION OF SPIRAX SARCO ON-LINE STEAM TABLES Rather than interpolate from the ASME steam tables, an on-line set of steam tables was used to determine the specific volume of the reactor coolant at normal operating conditions.
Spirax Sarco, a global provider of products for the control and efficient use of steam, provides on-line steam tables at their company website, http://www.spiraxsarco.com/resources/steam-tables.asp.
Reactor Coolant c@ Normal Operating Conditions To verify that the Spirax Sarco steam tables provide accurate results, the specific volumes of subcooled water at 2200 and 2400 psia and 570 and 580 F (see sheets C2-2 & C2-3) are compared below to the corresponding ASME steam table values (excerpt attached; sheets C2-8 & C2-9).P psia 2200 2200 2400 2400 Psat psia 649.50 649.558 0.01% 662.16 662.233 0.01%T F 570 570 570 570 SV cu ft/Ibm 0.021998 0.0219888
-0.04% 0.021921 0.0219116
-0.04%T F 580 580 580 580 SV cu ft/Ibm 0.022358 0.0223481
-0.04% 0.022271 0.0222606
-0.05%* Delta =[(Spirax Sarco -ASME)/ASME]
X 100%The Spirax Sarco steam tables agree extremely well with the ASME steam tables.The linearly interpolated results from the ASME Steam Tables would likely be less accurate than using the on-line steam tables because specific volume is a non-linear function of pressure and temperature.
For P = 2250 psia and T = 557 F, the RCS coolant density = 721 kg/in 3 (sheet C2-3).RCS coolant density = 721 kg/m3 x [103 g/1 kg] x [1 m3/10 6 cc] = 0.72 glcc Saturated Steam @ Atmospheric Conditions (14.7 psia)The specific volume of saturated steam at atmospheric conditions is 26.804 cu ft/Ibm (sheet C2-6.Refuelinq Cavity & Spent Fuel Pool Water Density During Mode 5 The specific volume of water at 130 F and 14 to 15 psia is 0.016246 cu ft/Ibm (sheetC2-7).
Thus the Refueling Cavity and SFP water density at 130 F = 1/(0.016246 cu ft/Ibm) = 61.55 Ibm/cu ft Density = 61.55 Ibm/cu ft x [(0.016018463 g/cc)/(1 Ibm/cu ft)] = 0.99 g/cc = ,-,1.0 glcc SM-SNC0524602-001 ATTACHMENT 02 International site for Spirax Sarco SHEET C2-2 Produels & Servises Industries
£ ApplIsaIlons Tr TMl (800) 575-0394 Pax: (803) 714-2222 Feature Vialtume You are hers: Hon S. Teal p. tub SIlurated WbtrRP.egla Sub Saturated Water Region -Steam Table At anly pressure, water below its saturalon Mpertaure is said to be m a substate.For exanU~ls.
water at a premusg of I atophr and a teiurtr below 5 lbs saltmurd temper~atu of 100"C is sub saturated.
Water ates pusswe of 5 10 atmosphre has a satuation tmperature of 1610". mid so water bl~owtemeratur is ulo sub satuate.Learn more inllu steen n our tutoral -Set yotr gamrjmg ter Du--,tea sts ati~se Note: -You cannot use commas (.) as decimal points.Please 5 userio (.)Exaple: 1.02 not 1.02 Tmm.~~n, mspe omof Water 1v~2000 454777 2400 570.000 456379 0.0219116 J ttp://www~spiraxsarco~com/resources/stearn-tablcs/sub-saturated-water.asp SM-SNC524602-001 ATTACHMENT C2 SHEET C2-3 Intemnational site for Spirax Sarco Fax: (803) 714-2222 Produot & Swvoa Inutmilds, & App~lsalons FealtUretaret pboII You ar bets !iomo IP 8auia I) aa Sub Saturatad watrf" egksn Sub Saturated Water Region -Steam Table At anty presure. water belwM sauaionteknysr tres sai lob Im a su ts For example, waler at a presaure of i atmosphere and a tMsperature below I.sturae d tmlperature o 100"C .s sub sauatd Watr- at a pressure of 10 atmoaphaems has a saturaton teniperetum of' 1W0C, and so watar below ths tmerte I. also sub saurated.Learn nmor albout stian hi our tutorial -s am?.Set your for Utese steati tables.Note: -You cannot use commas (,) as decimal points.Please use periods (.)Example: 1,02 not 1,02 Lw~L~Jasm~ rsueTemP~ratureljensltv of Watelpel~flo Volumle f Water (vj.,0 5 o.000 44.7464 0.0 348 /20.00 580oo 00 449225 0022260 ttp://www.spiraxsarco.com/lrcsources/steam-tables/sub-saturatcd-water.asp SM-SNC52460; 2-001 ATTACHMENT C2 Feaure Trawi International site for Spirax Sarco About Ue Prdt A betvies, indqaatdes A Training Resoures Yo~uare hare: Iw ta ti T .e Sub Saturatd WM rReqen Sub Saturated Water Region -Steam Table Al any pressure, water below it saturaton tenysag is said in be in a sub3 satraed aWle tlue saturated tenpsiatur a 100"C is sub saurated.
WAter at a prses ot 10 almehae has a saturation temperature of 180°C, andl so wate below this temperature a alo si saturated.
Learn more abowut stewu In our tutorial -kat is Stem?_____
Se your" me mm Umk Note: -You cannot use commas (,) as decimal points.Please use periods (.)Example: 1.02 not 1.02 Oupu S wnoe Vau 2SHEET C2-4 L~*ZL~1J1*D ValOUr Pressure Saturation Temperature Spatic Enthapyo tr(h 1)specrl v, ka~na oI war' (v)Speutic E.ntrop of V~ter (s*spelfrc Heat of wter c)Speed of sownd OnauacVls4ofy VibWe 188 2352[0 222I55 192.71 B.745,4E-..5 bar gauge* K Pa, wIN[]httpll/wwwspiraxsarco.co/rnlrsourccs/steam-tables/sub-saturated-water.asp I
X6CNA15 X6CNAI 5 ~ATTACHMENT C1 HETC-SHEET C1-1 ANS/SD-76/14 A HANDBOOK OF RADIATION SHIELDING DATA J. C. COURTNEY, EDITOR Sponsored by: Nuclear Science Center Louisiana State University Baton Rouge and Shielding and Dosimetry Division American Nuclear Society JULY, 1976 X6CNA15 ATTACHMENT C1 SHEET C1-2 5-27 Gamma Ray Dose Albedos C) C. N. Davisson U. S. Naval Research Laboratory The dose rate reflected from a surface as deduced from Reference 1 through 4 may be represented as: D.R. = D.R.° case -o A (Eo, 80 ,)r where D.R. = Reflected dose rate D.R. = Dose rate incident on surface at angJ.e 8 0 o A =Reflecting area r = Distance from center of reflecting area to receptor (A and r 2 must be in the same units)cs(E° e0, 0, *) = Dose albedo The albedos, cL(E , 9 , 0, 4), for gammas incident on water, concrete, iron and lead have been calculated by C. N. Davisson and L. A. Beach 5 using Monte Carlo techniques in an extension of the original work by Theus and Beach 6.The albedos are given for incident gamma energies of 0.2, 0.662, 1.0, 2.5 and 6.13 MeV and for O incident angles with respect to the normal of 0°, 22°, 44°, 66° and 88°, as well as (1 for point sources on the surface of the materials.
The emerging polar angles, 0i'as well as the emerging sectors or directions into which the emerging gammas were divided are shown in Fig. 5.13. The values of the polar angles, @. and of the aziuthl agle c, dfinng heemerging directions, are given on each page of Table 5.8.Note: The dose albedo values have statistical errors that range from 40% or 50% at very small albedo values to 5% or 10% at large albedo values.References SReactor Shielding Design Manual, T. Rockwell III, editor, TID-7004 (March 1956)SD. J. Raso, "Monte Carlo Calculations on the Reflection and Transmission of Scaterd GmmaRay,"Nuci.
Sci. and Eng. 1__7, 411 (1963). This report has a good discussion of the meaning of various terms and derived quantities.
The dose albedos given here are those which he described in quotes, as "dose" albedos.s W. E. Selph, "Neutrons and Gamma-Ray Albedos," DASA-1892-2 (May 1967), ORNL-RSIC-21 (February 1968), or Chapter 4 of Weapons Radiation Shielding Handbook (NTIS No.AD-816 092). The dose albedos given here are those defined as a_ in this report.'R. L. French. and N. B. Wells, "An-Angle-Dependent Albedo for Fas~-2 eutron Reflection Calculations," Nucl. Sci. and Eng. 19, 441 (1964).s C. N. Davisson and L. A. Beach, "Gamma-Ray Albedos of Iron," NRL Quarterly on Nucl. Sci. and Tech. (January 1, 1960), p. 43; and private communication.
6R. B. Theus and L. A. Beach, "Gamma-Ray Albedo," NRL Quarterly on Nucl. sci. and C9 Tech. (July-September 1955).
X6CNA15 X6CNAI 5 ~ATTACHMENT C1 HET0-.SHEET C1-3 5-28 Figure 5.13 NORMAL.ietry and Solid Angle Divisions Ge on 1/2>';'K..?091196 RAy 90SE AIREDOS f In poroont9 Rgng Emerging Water Water Polar Direction 0.20 HelV 0.662 NoV Angle incident or Point
- incident:
at Point *B1 ftc V (:* 22' 144c 660 88' Doorce 0'* 440 660 080 Snorce l89 1 90.0-180.0 5.7317 5.8879 6.5397 7.1396 6.7159 6.5177 1.9553 2.0403 2.3331 3.1599 2.9591 0.o-15.4 2 0.0- 90,0 +.039o 6.oo6o 6.7538 6.essk 6.0503 6.2107 t.036 2.1273 2.3769 3.1206 3.9089 +.1583 8o 3 20.0-190.0 5.6227 5.8329 6.3709 7.0713 6.7905 6.8210 1.8933 1.8038 2.3975 2.8528 1.2022 2.90111 15.4-21.8 4 0.0- 80.0 *.1326 5.6935 6.7727 6.5315 7.2458 %.0066 t. 0214 2.0361 2.3693 3.2040 4.2395s t.1563 5 150.0-180.0 5.3226 5.7366 6.605a 6.6278 1.8595 2.0083 2. 5859 2.6781120.0-150.0 5,5072 6.4osa 6.17o4 5.s813 1.7426 2.1703 2.61467 2.6752 en 7 0.0-122o.0 5.2967 5.0768 6.1451 6.82so 7.0716 6.64+23 1.7141 1.7619 2.1509 2.6726 3.4651 2.8262 21.9-34.9 8 60.0- 90.0 &.0951 5.7920 2. 9097 7.0255 7.0148 i46 +/-. 0422 1.2933 2.7734 4.2727 +.o662 9 30.0- 6oo 5.7062 5.8698 8.2760 8.2716 1.8004 2.2758 3.4947 5.5355 10 0.0- 30.0 5.6732 5. 5703 7.2005 9.2535 1.9838 2.7804 4.35674 6.0625 11 150.0-180.0 4.7862 5.1608 6.1585 5.9273 1.7232 1.6182 2.45O0 2.2660 12 120.0-150.0 4.8543 5.40o3 6.3124 6.7229 1.9158 2. 5032 2.9693 S4 13 90.0-120.0 4.94235 .3779 5.2097 6.4662 6.5197 6.0182 1.65e4 1.71,50 2.85--4 3.4144 2.8344 34.8-44.4 14 6o.0- 90.0 +. 1364 2.3698 5.7463 6.6722 6.6247 +/-.1502 *.0557 1.8078 2.2060 3.1180 3.7612 j.1092 15 30.0- 6o.o 4. 8361,, 5.a46o 7.00o77 1.9726 2. 5414 3.7423 6.320o i6 0.0- 30.0 5.0333 5.6692 7.3892 11.6576 1.7260 2.4595 4. 8742 8.6182.17 157.5-190.0 3.8943 4,.6709 5.5329 6.3102 1.2535 1.6351 2.0032 2.5697 18 135.0-127.5 4.1841 5.0667 5.4716 5.26177 1.2764 1.4813 1.8277 2.3120 19 112.5-125.0 3.9395 4.3232 5.2745 6.0289 1.4b636 1.6o58 2.0346 2.624i 20 90.0-112.5 3 .9792 4.31 4~b .8077 5. 1726 6.2428 6.0433 t.34i0 1.5351 1.64ss 2.5741 3.7130 2.2464 2 21 67.5- 90:0 6,0902 4.59892 4. 50o4 5.6655 t.69 6.0170 1.80 2.7336 6.0448 42 S.o- 6.3773 .181 2B 227 3.3179 5.9400 23 22.5- 45.o 3.29117 5. 1208 7.1514 11.4543 i.4gs6 2.3681 4.4333 8.0746 24 0.0- 22.5 4.3hs9 7. 314o 14.4690 1.7503 2.7725 12.2532 25 127.5-180.0 3.2459 3.7645 4.606s 5.7163 .6832 1.343 1.Glgo 2.0010 26 135.0-157.
5 3.3258 2.7108 4.77a6 5.8588 1.1749 1.2018 1,.7129 2.2899 27 112.5-135.0 3.5545 S. 35657 4.8880 5.6029 1.1867 1.4367 1.7247 2.6920 8e 28 90.0-112.5 o.94s2 3.5478 3.7974 4.2356 6.2432 5.5716 1.1053 1.2017 1.3056 1.8535 2.0433 2.9021 55.2-64.6 29 67.5- 80.0 ,.0532 2.5231 3.8955 5.3080 6.6770 +/-h.149,2 *-.0395 1.1743 1.6336 2.6800 3.8038 j. 1075 30 4,s.o- 67.5 3.1921 4,. 032 6.6316 8.9316 1.340oo 1.7971 3.3062 6.4853 31 23.5- 4s.o 2.3366 4.3713 7.4570 32.5727 1. 5O4a 2.2454 4.3329 1o.7o36 32 0.0- 22.5 2.9447 5.1837 8.1211 15.64 17 1.5937 5. 5367 16.7499 33 165.0-180.0 2.1264, 2.1916 3.2329 4. 5678 .6614 .8297 1.2365 1.6597 34, 150.0-165.3O 2.2341 2.63143 3.3451 5.0043 .6472 .8533 1.1356 1.6204135.0-150.0 2.2259 2.4257 3.527 5.9316 .7441 .8133 1.1131 1.9323 36 320.0-135.
0 2.10898 2.4169 3.3150 5. 1764 .6158 .9166 1.3366 2.0239 37 05.0-120.0 2.0710 2.0229 2.4214 3.3904 4. 3769 .7831 .9157 1.24,17 2.1577 er 38 S0.0-105.0
- i.0458 2.2786 3.7703 2.6111 5.6150 4.2031 .7253 .7500 1.0093 1.5037 2.7019 2.5424 64.6-T77.6 139 75.0- 90.0 2.4287 2.6761 3.6498 6.4994, 4.13. j.01 4.0 .7835 1.1006 1.9463 3.7924 &.1789 40 6o.o- 75.0 2.1719 2.6086 4.oho6 7.5953 1.0125 1.4012 2.,1352 4.30505 4i 6o.0 2.1870 3.1039 5.0227 9.5097 .9799 1,5390 2.9494 6.893330.0- 45.o 2.5634 3.6170 6.0643 13.1252 .9323 1.68g1 4. 0389 11.2933 43 15.0- 30.0 2.4511 3.9100 7.0110 35.0822 .6866 1.9528 4,9537 17.5611 44 0.0- 15.0 3. 7460 7.5061 17.9590 1.1932 2.24,26 6.3270 21.3197 45 365.0-190.0
.6499 .7465 1.1593 2.0293 .1533 .2103 1.0093 46 150.0-165.0
.6o36 .7643 1.286o 2.9972 .2359 .2374 .3727 1.0970 47 135.0-150.0
.8528 .9479 1.2625 3.2789 .1763 .2514 .3979 1.1505 48 120.0-135.0
.6o26 .9205 1.2109 3.1119 .3752 .2462 .4231 1.3052 43 1o5.O-120.0
.7090 .8667 1.29842 2.8818 .2544 .2749 .4993 1.3626 Go 50 90.0-105.0
.7446 .81223 .8467 1.5001 3.0618 2.0500 .3518 .1291 .3925 .6755 1.5183 i.444O 77.6-20.0O 51 75.0- 90.0 *..0285 .8259 .7707 -~ 1.1257 3.66as 6.,0543 +%.1067 .2460 .3933 .7809 2.2239 6.0444, 52 E0.o- 75.0 .8780 1.0763 1.7809 4.9976 .4366 .3926 .o6oa 3.2155 53 45.o- 6o.o .7515 1.1401 2.0393 6.5075 .3167 .6955 1.4,673 5.3678 5s, 30.0- 45.o .7289 1.368w 2.7729 10.1964 .3288 .6577 1.9128 2.4908 55 15.0- 30.0 1.1237 1.5215 2.3798 12.3710 .4299 .8547 3.7434 15.892.6 56 0.0- 15;.0 1.0129 t..is46 3.0126 13.44h18 .4806 1.2246 3.2726 19.2331 Dun over 01 176.5573 164.2439 213.4322 280.2326 425.5670 270".5963 53.8091 86.0986 140.22)06 226.6791 -139.3121 Tot~al Dooe Albodon 189.897 30.6833 31.4421 47.7495 20.3609 6.64,55 7,2758 g.6sao 15.7205 235.2872 15.6297* Symetrical soorcos. On 11 voloeo ooeraegd z-A I-. "-LnO Ln IT m z H9 0r CD m-m H=0 lAY DOSE ALDID0S ( in percent)Emerging Energiog Deter Woter Polar Direction 1.iO 8eV 2.50 8eV Angle incident at: Pit*incident:
Polr 8l l\ o 440 64o g8n Souron cp* 44 660 88° Soerce1 90.0-180.0 1.3792 1.2130 1.5516 2.3172 2.2958 2.1535 .5272 .5519 .6597 1.167.5 1.0562 0.0-15.4 2 0.0- 90.0 9:.1285 1.8977 2.4498 2.9657 +/-.1131 +/-.0443 .5907 .8154, 1.2089 1..91415 9.0729 G= 0 90.0-180.0 1.1622 1.1998 1. 5320 1.gi44 9.44;15 20,080 .5i46 .545 .8225 .ss45 1.2512 1.1o62 15.4-21.9 4 0.0- 90.0 1.2977 1.6221 o.6ss6 3.7843 121 *.0120 .534 .011 1.2085 2.4114 9.0172 5 50.0-180.0 1.2604 1.2716 1.5763 2.0974 .4917 .5920 .7605 1.1507 6 120.0-150.0 1.09214 i.406g 1.9570 2.1800 .5598 .4es41 .8912 1-.3571 Go 7 90.0-130.0 1.1308 1.1671 1.3991 1.9764
- 2.7299 2.1566 .4799 .4564 .doos .2818 1.6670 1.15O3 21.8-34.8 8 6o.0- 92.0 h.0l99 1.3096 1.6o45 2.4786 z.44oi r.o655 9. 0203 .4810 .7400 1,.2661 2.0716 9. 0632 9 3c.0- 6o.o 1.3700 1.5146 2.7524 4.2180 .5841 .7796 1.5035 3.0785 10 0.0- 30.0 1.3196 .93981 3.1252 4,.7032 .6258 .7921 1.6A896 3.3791 11. 15.3.0-190.0 1.1512 1.2025 1. 5561 1.8327 .5305 .6796 .9691 12 122.2-150.0
.9574 1.2832 1.65kG8 2.1939 .4609 .5725 .7768 1.252713 9,..0-120.0 1.1139 1.2226 1.2921 2.1096 2.5559 2.1148 .4354 .4556 .6202 1.0551 1.4250 1.1t359 34*.1-41., 5" .C.2- 80.0 e.0248 1.2667 1.4964 2.42098 3.4848 -F.o440o .5187 .66o5 1.1330 2.0963 .9.0448 15 2:.0- 6o.o 1.2658 1.7322 0.0008 5.2290 .5696 .7724 1.6281 3.1771 IC 0.0o- 30.0 1.1588 1.7278 3.6435 7.0896 .5248 .8362 2.1I041 4.9020 17 157.5-190.0
.8520 1.0542 1.8321 .3764 .4222 .5828 1.052g 18 105.0-157.5
.9069 1.0317 1.2798 1.6722 .3738 .4218 .5861 .8154 13 1 12.5-125.0
.2506 1.1171 1.5228 1.9945 .4312 .7858 .920880.0-112.5
.9122 1.0373 1.2421 1.7373 2.3077 2.2096 .2768 .4218 .5687 .s126 1.3843 1.88 31 67.5- 90.0 +/-.0220 i.0i46 1.34355 2.0632 1.4207 9.0494 .4294 .5950 1.1142 2.115O 9.0975 kL 67.5 1.1603 1.6922 2.89o8 .445S9 .7777 1.4705 2.9209 23 22.5- 45.0 .9707 1.7171 3.503d 7.8551 .49861 .8072 5.1611 a!. o.0- 22.5 1.17329 1.9935 3.8207 11.8427 .5343 .8870 2.0890 7.6425 aS 157.5-190.0
.66ii .8137 t.0616 1.5202 .2596 .2648 .4879 .7997 a4 135.0-157.2
.7920 .7575 1.0910 1.5915 .3059 .2365 .5625 .8336 a7 112.5-135.0
.7570 .9088 1.2150 1.9792 .2967 .2760 .5906 .9810 0 c 20 00.0-111-..5
.740o6 .7299 .8506 1.3554 2.4202 .3318 .2328 .7618 1.43589 55.3-0L.0 22 67.5- 80.0 *.0027 .7762 1.3658 2.0094 3.1028 9.0767 9.0088 .2559 .5297 .siko 1.7158 e, 12G8 0 45.o- 67.5 .8047 1.4033 2.4900 5.368s .4153 .6776. 1.4482 2.5288.1 22.5- 45.o .9608 3.8124 3.4070 9.4818 .3770 .8316 2.0515 6.8683.Ac 0.1- 22.5 1.O346 1.9922 4. 9906 15.5466 .5515 1.0130 2. 8838 12.0925 34 15oo-165.o .kaOk .5223 .7631 1.1637 .1424 .1878 .2898 .6436..5 13.5.0-150.0
.4702 .5316 .7746 1.z666 .2215 .2697 .2142 .7o14 36 120.0-135.0
.4523 .6182 .90423 1.2936 .2269 .2220 .3427/ .9418 37 13i5.0-120.0
.5262 .5983 :9486 1.5807 .2112 .2391 .4527 .961o 87 38 20.0-105.0
.5025 .5328 .6694 1.2836 2.2205 2.1587 .2212 .2597 .2672 .5172 1.2192 1.3698 04.6-77.6 32 75.0- 20.3 -,.O188 .6311 .8946 1.2734 3.o561 0465 -,. 0095 .2596 .4157 .6790 i.949 9.0750 40 6o.0- 75.0 .7128 1.0019 1.5556 4.ooik .2902 .4764 ,aoo5 2.6061 b1 4S.O- 60.0 .64z6 .96i5 2.2296 6.0820 .o565 .6178 4,.2256 42 30.0:- 45.0 .7109 1. 1s31 0.3240 11.IO94 .5720 2.01,73 7.9182 43 15.0- 90.3 .7960 1.6053 4. 1934 17.2134 .2802 .8217 2.8371 16.5923 44 0.0- 15.0 .8527 1.772 5.2778 22. 2788 .3671 .8820 3.5535 26.27,3o 45 165.0-190.0
.1197 .1537 .2331 .6492 .0613 .0667 .0687 .2852 46 150.0-165.0
.1502 .1265 .2185 .7564 .0450 .C62'7 .1044 .3378 4y 135.0-150.0
.1378 .1428 .2090 .8177 .0723 .0622 .1175 .3682 48 120.0-135.0
.1558 .1359 .2592 .8202 .o362 .0954 .1573 .3404 42 105.0-130.0
.2053 .is66 .4122 1.0017 .0765 .0727 .1626 .5771 8 n 50 90.0-105.0 .l689 .1222 .2734 .4483 1.3044 1.3622 .0737 .1096 .0714 .i666 .7704 1.1224 77.6-90.0 51 75.0- 90.0 i.0079 .2078 .3814 .5680 9.042 9.0061 .0738 .1013 .2107 1.0922 52? 6o.o- 75.0 .2748 .3520 .6 o34 2.6556 .1012 .1811 .2448 1.7108 53 ks5.o- 6O.O .2362 .3932 .9221 4.8310 .1028 .2478 .5518 3.1068 54 30.0- 45.o .2350 .5390 1.7295 8.7884 .1301 .3102. .9296 6.6789 55 15.0- 20.0 .3140 .6676 2. 8791 16.2760 .1320 .2751 1.5280 16.5150 56 0.0- 15.0 .3203 .8174 3.9470 .1183 .4654 2. 5214 32.8152 Sam over ¶0 38.8207 44.0586 40.5977 300.2228 264.7072 112.5704 16.8020 18.7845 27.9942 58.9736 213.2030 62.7539 total lone ilbedos 4.4690 4.9434 6.7990 12.2559 22.0246 12.6304 1.8852 2.1087 3.1402 6.6168 23.89989 7.8264 WSycmaerloal nourcees no 3 valnen averaged 0)0 z 01 I-n CD rt C-68.z--.-I 0 ,,1%K-)
C>'0~4~'Ci !0 z>, 03A0(9 DAY DOSE (ton percent)Eintging Eoerglng Water Concrete Polar Direction 6.13 9eV 9.2 NoV Angle inc~dent at Point
- incident or Poter u,ak (p* Ihn 660 a8V Source 00
- 220 440 66a i8 Sourn.81 1 90.0-180.0 .S09S .3638 .6899 .6976 1;.5352 4.4543 4.7637 5. 5.9071 5.1598 0.0-I5.J 2 0.0- 20.0 .*3331 .4734 .7897 1. 3721 j.0161 3.8359 4.5791 6.o659 8 o 3 9o.0-480.0
.2578 .31.7 .3899 .6o06 .9558 .6227 4.i1o9e 4.351 5.0985 .55 5.2982 1.-ia 4 0.0- 90.0 8.0095 .1243 .6566 L.505 8.0108 &.0541 4.1439 4.8685 5.3798 6.7652 515o.0-193.0
.3979 .3932 .5171. .9835 3.9934 4.6ts6 4.7019 5.8179 6 120.0-1.50.0
.2337 .3199 .9719 3.8219 4.33 99, .iy747 90.0-120.0 .S309 .3155 .3946 .5157 L053 4 .653? 3.7133 4i.0026 4.S369 5.4393 6.0265 5.4293 21.8-34.8 8 60.0- 92.0 &:.0078 .2433 .3401 .586 1.2751 :. 0194' 8. 0932 3.6716 4.1899 5.2797 6.1243 9 3o.o- 60.3 .3316 .4760 .7639 1.6719 4.2174 4. 5325 6.1074 9.1110 10 0.0- 30.3 .5057 .5149 .p439 2.0850 4.0947 4. 3484 5.9747 9.1129 41 150.0-190.0
.2141 .2S69g .4442 .f6696 3.5770 4.6975 13 130.0-150.0
.2173 .29.73 .4324 .7499 377 .%O 8-44'.4 14 6o.o- 93.0 8.0119 .9290 .3575 .7095 1.2473 t.0176 9.0412 3.1392 3.9545 5.2921 6.oos,6 +.0456r 15 30.3- 6o.o .2859 *3971, .8255 3.2757 4. 3977 9..577 16 9.0- 30.0 .2636 .4ts6 1.os .u115 4.0913 h.3774 6t.1h39 10.6395 17 157.5-190.0
.1610 .2355 .307h .8453 3.2055 3.4274 4. '6634 s.46oo 19 135.0-157.5
.1759 .1998 .3244' .67T13 3.1532 z.t62o 4.364,7 5.2342 19 112.5-135.0
.2o36 .2619 .5201 .8713 2.8923 3.6709 4.35318 4.7637 0s 20 90.0-112.5
.2090 .2101 .3022 .460'.6 .a563 .6972 2.9763 3.3066 3.6614 4.3557 5.51139 4.i36 44.4-55.3 21 67.5- 90.0 8.0059 .2370 .2649 .4900 1.3248 8.4309 8.1024 3.0541 3.4667 4.65o5 5.7364 9.12032 92 45.0- 67.5 .2187 .3091 1.9976 3.3882 3.9239 5.5390 7.6715 33 22.5- 4S.o .21.39 .3985 1.1IO44 3.2042 3.3180 4.1492 6.02% 10. 5345 34 0.0- 32.5 .2119 .4739 1.0919 5.1885 2.9231 4. 5731 6.9974 95 157. 5-190.0 .1590 .9479 .2296 .6ilOl 2.2100 3.1600 3.9595 4.4952 26 135.0-157.5
.1.393 .1903 .2893 .6823 2.5306 2.9S034 3.0702 4,. 9446 27 112.5-135.0
.1559 .2492 .3919 .7271 2.2888 2.7043 3.4321 5.3944% 29 90.9-112.5
.1770 .1314 .1754 .hiio .8769 .7173 3.4196 2.6234 3.1339 3.91196 5.464=7 =.71.37 55.3-64.6 29 67.5- 90.0 8.0071 .1795 .2525 .5295 1.1451 8.0331 9.0393 2.4971 3.-3553 4.1I31. 6.5517 j099 4~30 4S.o- 67.5 .1493 .2435 .6470 2.0265 2.7271 2.8319 4.6989 7.4996i 31 22.5- 4S.O .1769 .4152 1.0313 4.2079 9.4902 3. 164 22.92L-32 9.0- 22.5 .1957 .3699 1.3912 9.2644 2.6057 3.9543 7.603C 15.7320C 33 1.65.0-180.0 .iop6 .0973 ,i655 -5455 1.6948 2.0742 2.9494 4. 3220 3415o.0-165.0
.0913 .1116 .1916 .4832 1.5891 1.9194 2. 5071 4.4477 3%5 135.0-150.0
.1197 .1473 .2568 .h355 1.9763 1.9715 2.6490 4.8949 36 120.0-135.0
.1194 .1623 .2040 .5520 1.5997 1.9533 2.7197 4. 1335 37 105.0-120.0
.1oz6 .1993 .2179 .6sis 1.93498 2.2759 2.91.31 4.8515 8, 38 90.0-105.0
.0992 .1021 .1617 .2629 .7543 .8353 1.6023 9.7625 1.8482 2.7899 4.7097 3.8056 64.6-77.6 39 75.0- 99.0 =. 0037 .1226 .1940 .3141 1.h.250 8. 0357 8:.0353 1.5941 2.2123 3.0426 5.7263 9.06266o.o- 75.0 .1099 .1489 .4164 1.44o03 1.6523 2.4310 3.4018 6.6971 41 45.o- 60.0 .o867 .2294 .5o6,4 2.4667 1.7459 3.2292 9.7597 42 30.0- 4S.0 .1103 .2946f .7999 4.9109 1.7666i 2.7971 4.6234 13.1994 43 15.0- 33.0 .1021 .2704 1.2737 10.31622 1.8129 3.0706 5.9535 44, 0.0- 15.0 .1545 .3172 1.9099 20.2675 3.1231 3.540 6.4699 16.9059 4 s 16s.o-ieo.o
.0530 .0260 .0509 .2529 .3761 .9931 2.6021'4=6 150.0-165.0
.0190 .o439 .o415 .3679 .5195 .6o61 .930'9 2.6769 47 135.0-150.0
.0236 .0394 .o6o6 .2907 .5987 .7263 .9010 3.0199&8 120.0-135.0 .o157 .0293 .0654; .2o'65 .5794 .511.3 .9930 2.8103 49 105.0-120.0
.0315 .0o43 4 .0794 .3243 .5254 .7247 .9878 2.5313 00 50 90.0-105.0
.0907 .0339 .0369 .0813 .2970 .8157 .s043 .5707 .8062 1.3979 2.2391 1.864 77.6-s0.0 59 75.0- 90.0 -. 0331 .0494 .0960 .0652 .5242 8-.0458 8.0326 .6915 .9435 1.3-967 3.3595 ,.o5h6 52 6o.o- 75.0 .0399 .0870 .1249 1.0090O .7262 .9253 1.1153 4. 2514.53 45.o- 6o.o .0683 .0639 .2678 1.4634, .56991 .o525 2.0029 6.5419 54 3o.9- 45.o .0695 .101,1 .3726 3.3541 ,7039 .8577 2.9897 9.7499 55 15.0- 30.0 .0590 .1441 .9623 .9632 1. 3774 3.1693 12.909.3_______ 6 0.0- 15.0 .0346 .2239 1.5243 39.500h .634, 1.3625 3.1264 i3.1o'35.9cc ver F 8.4413 9.0476 30.0240 158.804h 42.0609 129.6130 135.3957 144.2352 227.221'6 391.9107 337.1319 Toctal Dose Alhedoe .s1.9 4i.o151 1.54 17.92'69 4.7193 14.h304 15. 1202 la.4271 25.5139 43,.4119 25.4847*3Syenetrlco1 fiourco, mo 01 caleo ovrerged.t+'or compoottico non follocoteg page e-g a-oTm C Z mH CCo m 0 0)
AMARAy lOSE ALIZODS Emerging Emerging Concret~e 1 Concret~e Polar Directilon 0.662 MnV 1.00 Fla Angle incident:
at incident or-.Si 1 1 1 p W°
- 90 440 68' 8or Point:
- Point */ore 5 4080 Source 9, 1 90.0-180.0 1.7235 1.7597 2.2777 2.6910 .35634 2.6826 1. l148 1.1035 1.4476 2.1105 2.5916 1.9543 o.o-x5.4 2 0.0- 90.0 *.o667 1. 7050 2.o66t 2.9851 2.9974 1311 *:. 099 1.14C60 1.5772 2.2313 3.1876 *.O198 B2 3 90.0-180.0 1.6116 1.7190 1.s46& 2.5441I 2.9454 2. 5246 1.0172 1.ii6o 1.44kgf 2.1496 2.3992 2.oso6 15.4-.21.8 4, 0.0- 20.0 +E.0296 1.8234 2.2575 2.1t202 4,.4469 8. 140 +/-E.O418 1.1828 1.5012 2.44os 3.6558 d:.o657 5 150.0-180.0 1.6153 1. 6782 2.4829 2.7652 1.o610 1.1343 1.5255 1.8818 S120.0-150.0 19 897 2.4549 2.618¶ .9692 1.19117 1.51 .97 2s 7 0.0-120.0 1.4+511 1.6171 175 2.21 3.199h 2.6659 .9262 .9827 1.87 1.9154 2.6979 1.9928 21.8B-34.8 a 6o.o- 20.0 81.0231 1.7227 2.1599 2.8g782 1.0218 0205 1.1299 1.2562 2.1449 2.2201 *.0695 9 20.0- 6o.o 1.7565 2.2596 3.7876 5.5501 1.osgl 1.6172 2.5944 5625 10 0.0- 20.0 i.65s2 2.6210 3.9159 6.2722 1.5870 3.0896 5.1207 11 150.0-180.0 1.3201l 1.5202 2.o56 .9734 1.0281 1.4427 1.7874 12 120.0-150.0 1.lrrT7 1.5699 2. 1031 2.4o0o6 .9262 1.0746 1.8761 84 03 90.0-190.0 1.10O6 i.514i i.8149 2.4931 2.8179 2.7485 .9650 i.o16i 1.3222 o.sssd 2.1826 2.9672 34.8-44.4 i4 6a.o- 20.0 *.osas i.s566s 1.9687 o.6667 3.8192 j.00 .923 1.54827 2.2760 2.s461 15 20.0- 6o.0 1.5502 2. 1703 3.6205 6.8277 1.1098 1.6111 2.8121 5.29298 16 0.0- 20.0 1.6252 4.2196 8.7624 1. 1294, 1.8946 3.5769 7.542 17 157.5-180.0
- 1. 1835 1.2371 1.5420o 2.1925 .8o24 .8256 1.1752 1.o560 19 135.0-157.5 1.3392 1.7296 2.1981 .7883 .9735 1.2253 1.6a4y 18 112.5-125.0 1.1268 1. 565a 2.1549 2.2631 .7727 1.0422 1.4835 1.9522 8 s 20 90.0-122.5 1.1750 1.2916 1.5121 2.1287 2.9122 2.7133 .7692 .7826 1.1s64 1.4884 2.2154 2.1934 21- 67.5- 20.0 6. 0370 1.4411 1.7658 2.5523 2.9315 8. 1031 8. 0204 .9495 1.2386 2.0827 2.2244 i. 0729 22 4s.o- 67.5 1.2726 2.1503 2.94I75 5.9450 .954+0 1.5370 2.2995 4.946o 22 22.5- 1.4413 2.1972 4.4g56 9.5807 1.0920 1. 7967 9.1487 7.9503 24 0.0- '22.5 i. 4266 2. 5701 4.6773 11.o96~s 1.0928 1.8270 4. 1598 10.6785 25
.8503 1.2790 1.5766 1.92.70 .6OLO .6569 1.o26s 1.2170 26 135.0-157.
5 1.0381 .g994 1.4918 2.1053 .6soa .7157 1.1205 1.5499 27
.9002 1.2028 1.5000 2. 5272 .644s .6550 1.14177 1.8911 80 29 20.0-112.5
.8512 1.0842 1.2028 1.s003 2.8284 2.7574 .6571 .7079 .9659 .*1. 236 3.2479 2.2644 29 67.5- 20.0 +/-.0221 .9898 2.2999 4t.2219 -*. .7360 .9913 Il.6lL' 9.2119 20 45.o- 67.5 1. 1232 1.7101 3.1201 5.7558 .9250 1.263 2-5073 4.8773 21 22.5- 45.n 1.i565 2.0752 4.9711 10.1097 .9927 2.7029 2.6026 8.3202 " 32 0.0- 22.5 1.2092 2.3217 5.44,6 16.1240 .773 1.9S016 11.1876 16.44oa 23 165.0-180.0
.5977 .6g33 .so22 1.6092 .4o65 .4165 1.0859 \-.I: 34150.o-165.o .7990 .o752. 1.632 .3269 .5923 .7256 1.2279 35 125.0-150.0
.7098 .65s6 1 .0520 .2941 .4+823 .626a 1.7299 26 120.0-135.0
.5552 .6505 1.1433 1.9709 .406i .5116 .7718 1.5392 37 105.0-120.0
-7537 .7829 1.0284 2.2125 .4571 .5i712 .0122 1. 7477 9, 39 90.0-105.0
.6so4 .7s57 .926 1.2800 2.7667 2.4299 .464 .4517 .6218 1 il"1.2 .2.1470 2.0862 64.6-77.6 39 75.0- 20.0 *.o179 .8291 1.1694 2.7156 A.o 6 6 9 .6194 .9151 2.9289 A.9 6 4 6 40 6o.o- 75.0 .9290 1.1294 2.0594 4.7747 .6xs4 .9823 l.640OO 4. 9087 41 45.o- 6o.o .8947 i.261 2.9866 6.7246 .6oo1 .9909 2.5312 6.3592 -42 20.0- 4s.o .9238 1.6641 2.0099 11. 9256 .8602 1.1284 9. 1438 10.2826 43 15.0- 20.0 .9473 1.98599 4.9260 17.0101 .5516 1.4438 4. 1275 17.9320 44 0.0- 15.0 1.1750 1.9909 5.9095 31,3204 .9189 i. 8096 5.2756 22.9916 45 i65.o-18o.o
.2:448 .2126 .4014 .9673 .1193 .1288 .2121 .61oa 46 150.0-165.0
.2262 .2997 .3154 .9256 .tkoo .9011 .2152 .5825 47 135.0-150.0
.2449 .2343 .4096 1.0272 .1661 .140s .2004 .7449 I8 120.0-235.0
.2414 .2693 .4143 1.4216 .1272 .1357 .2395 .9394 48 105.0-120.0
.1779 .2527 .4708 1.3059 .1293 .1785 .3137 .993450 90.0-105.0
.2413 .s96x .2291 .5010 1.2286 i,44i1 .1836 .1650 .3153 .4278 1.1935 1.3139 ,s 7.6-20.0 51 75.0- 90.0 .ails .3910 .7014 2.1334 +.044,2 0197 .0201 .2910 1.6142 52 6o.o- 75.0 .3894 .42081 .9190 2. 5707 .224 .3777 .6724 2.9628 53 45.o- 6o.o .261a .5959 9.29892 5.4957 .2041 .2383 1.267 4.4470 54 20.0- 45.o .2329 .6977 1.7761 a.5s~s .2315 .6056 1.6201 8.220o7 55 15.0- 20.0 .4218 .9078 2.9413 15.o24o .2005 .724 2.496 17.oo45________ 56 0.0- 15.0 .4069 1.1469 3.2689 19.3449 .2220 .g14o 3.1314 22. 1170 Soun ever fl 52.0000 57.7279 78.3201 132.2333 290.2227 133.1027 95.259"52 9.0749 56.2420 103.9129 242.5002 Total Dose MAcbdon 5.6344 6.41770 9.7996 32.5620 3.9602 4.3942 6.3217 11.6591 39.5647 12.2171 lSyzoet~riesi neurcens so 0 yeluensaenraged ttzoopnoition in percent: by unfght:: 0 52.9, 11 23.7, GA 4.4, Al fla 1.,6 Fe 1.4, K 1.2, 9 0.0, Hg 0.2, 0 0. 1 0)01 H 03 I-T-ooml-m m-.k at
,1.'~.-N 4'---C.,;'.77j<' Kj*.0 z Ca 02308. RAY DOSS ALSt2D2 to t percent;)EKotergng Emerging Concrete 6 ocrt Polar Direction 2.50 NoV I6.13 9ev Point *nnn 9 ; °* 22' 44 60' so' Scarce 2'
- or 440 660 so' Pointe.0.-15.4 35.4-21.6 6 o 21.8-24.8 44-4-55.2 890 64.6-77.6 1 60.0-160.0 2 0.0- 90.0 3 90.0-180.0 510.0-190.0 6120.0-150.0 7 0.0-120.0 8 6o.o- 90.06o.o 10 0.0- 00.0 11 250.o-lso.o 12 120.0-150.0 22 20.0-120.0 14 6o.o- 90.0 15 30.0- 6o.o o6 0.0- 00.0 17 257.5-160.0 18 125.0-157.5 19 112.5-135.0 20 90.0-112.5 21 67.5- 20.0 22 45.0- 67.5 04 0.0- 22.5 25 157.5-180.0 oC135-0-157.5 27 112.5-135.0 28 20.0-112.5 29 67.5- 90.0 30 5.o- 67.5 31 22.5- 4 5.o 32 0.0- 22.5 33 165.0-160.0 34 150.0-165.0 35 135.0-150.0 36 120.0-135.0 37 105.0-220.0 38 60.0-105.0 29 75.0- 00.0 40 6o.0- 75.0 41 45.o- 6o.o 42 20.0- 4s.o 43 15.0- 30.o 44 0.0- 15.0 45 165.c-16o.o 44 lso.o-i65.o h8 120.0-135.0 43 1.5.C-120.0 51 75.0- 90.1 52 60.0- 55 15.0- 30.1.. l- l$.* 446s ..514a .6759 1.0003 1.3063 2.0070 .4659 .7357 2.2620 1.0791.4780 .4676 .6778 1.0381 1.3095 o.0026 .5102 .7300 1.0172 .42oo .564o .6719 1.0862.4so81" .5844 .6105 1.-2955.4494 .5228 .5699 .8734 1.5201 2e.0183 .4502 .6s~c 2.063 2. 1777.5729 .6978 1.4007 2.866,7.4761 .80(4; 1.7671 3.1484l.3822 .4647 .g6676 1.0237.4312 .5244 .65so 1.1345.4220 .4o54 .5830 1.0456 1.41o2 2.oi60 .5154 .6o~i 1.3008 1.923x7.5159 .8370 1.5657 .5490 .8008 1.9276 5.2213.3172 ,416s .5710 1.1315.o449 .4000 .6719 .2489.3501 .4446 .7313 1.2483.3518 .4o69 .4ssc .61o6 1.3755 2.0136 -h457 .5978 1.0304l 2.0.110.3881 .7345 1.0172 2.6517.46c5 .7 4 c*5 1.886 5.7391.4361 .9473 2.4680 7.9827.2541 .27/68 .4512 .8108.2102 .3117 *.5oha .2249 .404b8 .096,3.280.0 .3088 .4t 9 .42 72 1. 2351.2.0105 .3342 .4al6 1.0276 2.8234.3500 .5207 I.3451 3.6001..7627 2.3745 6.b7,7.2445 2.o6oo 2.66-7 12.9331.16a73 .2671 .3579 .5689.1895 .1929 .3305 -.5-67.1920 .2251 .3oh46 .91.27.16e4 .1836 .3420 .81.02.2086 .3020 .3551 .86355.2050 .2058 .2422 .5331 1.2612 2.0103 .1s67 .3224 .6287 1.7711.2854 .h324 .6843 2.4~r72.2814 .4'961 1.342h9 4.422.2892 .6667 1. 2969 7.',51'1.2921. 2.0816 14.7135.3-h70 *. d4=7 .0C583 .1825.0L71t .21'."53 .08972 .dll! .,.6>97 .0i'5" .308?.7*.034 ....1123 03609.95("*0 f .3 .1'"" ." ,.2717 .-27.37 .1327, .1703 -2.2252 .o7hl .1h1.'3 .2701 .,;979 .L,.-o5 .359h .,49..0630. .1390 .6'mO .1342 .c':1. 1.1320 ...lIro'3 .3383- 1.70v?3 I.2"-3.0800 2.O0052 1.0301.,.o6oo 1.0703*.0,7a 1.1824 2.0566 1. 3021 2.0242 1. 3395.3496 .3667 .3645 .E5io 1.0531 .7128 e.on6 .4o085 .4996 .7087 1. 5261 +.1.297.3163 .3511 .4096 .6215 1.6783 .6372+/-.C110 .2345 .4902 .81.8 1.3683 ÷.6c66.2565 .43,57 .6084 1.4500.2808 .3001 .09816
- 1.3324 .7:60 2.0180 .3842 .4102 .7134 1.4951 .2721 .451.5 .8157 1.7584.3153 .5229 .0815 .2553 .2126 .7971.0.280 .3068 .4117 .D'77.2692 -3077 .3912 .91la 1.C1.47 .8170 2.0117 .3128 .4562 .7.71. 1.420 .2881 .41.39 .3917 2.i44:.3682O .5222 1.o303 3.1380.0318 .3974 .4.4.. .8973.2495 .0587 .2318 .551.4 1.1211. .7941..0391 .3919 .7801 2. 1430.3648 .4c01l I..c 68 3.2937.Ol73 .4927 1.1354 4.01.1*.1475 .1991 .04s1 ,,931..1503 .1001 .3.4-7 .2287 .2575 .*331 .2535.1833 .1837 .231.0Z .41 ]77 .9139 *.1732l.t1.. 4. .725.1118 .16147 .172 .6.25*.151o .13039 .2235 .603.3.1311 .1073 .211e ,3100 .97l' .7503+/-.01.66 .1361 .1974 .44c9 O.os9 .Cr81.1240 .225- ,h4oa *.1572 .3cr 4. 4 ,hh..1074 .o 9 c 1.'o-: LS.0549 080,".2h78 no-1.0460 .=511 .07098 1.1.912 .1411 111 1.29;.? 1..I't.4rIs i-f I>o -,-t m m m--I 0 03 bun over .2 Ttotl Dcoc Albdeno 15.ul7.0 17.8' .70 ?33139 5fla.-309 21 .: 03 2 ; 1.7-3:4 1. 3504I 2.05,1 <.054,1 03.7-91" 7.70.11*Syonoetrical socrces* no 7 calons oacogaed Fiec eompositoln coo pcevoioo pege 0808RAY DOSE At1nE10S tin parasotlS E8orging Enorgiog Iron Iron Polar Dirortion 0,20 So=S 0.662 HaS Anglo loeldent at Poa niero Point *-. 50 40 65 95 Sou~rce .P 2' 40 6 a Source 81 1 20.0-180.0 1.5372 i.484 6 .2.0526 2.6779 3.5226 2.4796 1.0076 1.01140 1.4037 2.0759 2.6992 1.2663 o.0-15.s.
2 0.0- 20.0 +/-. 1010 1.61439 2.0055 2.6215 3.9449 *.,012 j.1018 1.1198 1.5665 2.5252 3.14640 *.0953 3 0.-900 1.5109 1.5593 1.98762 2.S942 3.2766 2.14272 1.0322 1.0663 1.311*2 2.1220 2.5832 1.96265 o542. .0- 9o.o +/-.1te6 1.6576 1.9261 2.7796 4. 5250 j.1I157 :t. o36 1.156o 1.51s4 2.5446 3.5o9 8.o0r71 5; 15o.o-180.0 1.46g8 1.6217 2.4093 3.5728 1. 1427 1.2509 1.9589 6 120,.0-150.0 1.466 1.7220 2. 3935 2.1727 .9763 1.1774 1.7272 2.2689 As 7 90.0-120.0 1.4123 1.5146 2.1613 3.0891 2.6696 .s7so 1.1249 1.3510 1.6590 2.5143 1.9900 21.8-34.8 9 60.o- 90.0 6.o6.61 1.5156 1.8528 S944 4.8as1 +/-.10 +/-OO '.0212 1.0516 1.3809 2.1326 2. 5245 +/-.o443 a 10.9- 6o.o 1.5414; 1.8838 5.7419 1.114 1.8467 2.0375 4.a10a 20 0.0- 30.0 2.5341 2.2123 3.1433 5.0692 1.1921 1.6913 3,.2082 11 lso.0-xao.o i.4184 1.7211 o.o594 2.2251 .8939 1.1979 1,.5055 2.0353 12 120.0-150.0 1.2906 2.0450 3.2534 .8051 1.1654 1.6441 2.2273 84 13 90.0-120.0 1.2123 1.1965 1.6049 2.3911 3.28871 2.51s6 .9350 1.1206 1.2932 1.9343 2.7315 i4 6o.0- 90.0 *.0612 1.2424 2. 1266 2.6748 +:.0744* t.0482 1.0611 1.3302 2.1299 3.2048 +/-.0597 25 30.0- 6o.o 1.34349 1.9646 2.0721 6.0579 1.1113 1.7646 2. 7042 26 0.0- 30.0 1.6132 2.1616 3.4489 9.4756 1.1000 1.6732 2.2511 8.34:57 17 1.3010 1.4394 1.2701 3.2361 .8233 .9517 1.1310 1.9990 18 235.,0-157.5 1.0210 1.2873 2.0322 .9012 .9551 1.1895 2.1307 19 112.5-135.0 1.1742 1.3293 2.0440 3.6469 .8433 1.o566 1, 5185 1.9741 On 20 80.0-112.5 2.1498 2.6974; 3.5142 2.4760 .2127 .8453 1.9565 1.5644 2.5277 2.1996 44.4-55.21 21 67.5- 90.0 +/-.0609 1.330 1.6043 1.9129 4.1397 +/-.0402 A.0 2 3 0 .9111 2.4326 2.1287 3.4911 22 45.o- 67.5 1.2609 1.9389 3.0298 6.4339 .2494 1.3839 2.5177 5.7997 23 22.p- 4s.o 1.5067 1.2065 3.956 7.9156 1.138 1.7201 3.2916 8.1409 94 0.0- 2-2.5 1.4I372 1.9852 3.7774, 10.4674, 1.1656 2.0229 4.oo85 21.8762 25 157,.5-180.0
.7769 1,1868 1.7142 2.9974 ,56 .7698 .2321 1.7746 26 135.0-157.5
.8S39 .9813 1.623 3.0509 .6o22 .8374 1.0551 1.7562 27 112.5-135.0
.168 1.2092 1.5555 3.6631 .6452 .8314 1.1621 1.9226 98 28 90.0-112.5 1.0272 .8855 1.3433 2.0747 s.6o74 2.5078 .6625 .6182 .9525 1.2878 2.6589 2.3397 55.2-64.6 28 67.5- 20.0 +.o417 1.2879 1.2522 2.2082 4.2249 8.0791 +/-.0I5S .965 3.1054 t.0749 so 5.o- 67.5 1 .0920 i. sto 3.2457 6.2325 .9760 1.2590 2.7597 5.7641t 31 22.5- 45.o 1.0701 1.6630 4.4o~o 9.4597 .1938 1.6526 3.7575 2.2133 32 9.0- 32.5 1.0462 2.0640 5.2791 11.0549 .3722 1.7716 5.5776 15.9001 33 165.0-180.0
.65 .9175 1.1417 2. 9463 .377'8 .4764 .7595 1.1313 3415.0-165.0
.6646 .6022 1.1812 2.86li0 .5067 .4529 .6842 1.4494 35 135.0-150.0
.9336 .7313 1.0638 2.8775 .4975 .5036 .811,62 i. 726, 36 130.0-135.0
.7/167 .8123 1.300O6 2.4159 .4981 .4679 .945o 1.6787 37 105.0-120.0
.8300 .9275 1.6010 1.2351 .1163 .6129 .1336 3.0847 87 39 90.0.105.0
.6913 1.0000 .9591 1.2211 2.9600 2.3316 .4258 .64s6 .7632 1.1'637 2.160 2.1950 64.6.77.6 39 75.0- 90.0 t.o26 4 .7163 1.0922 1.50987 3.1074 8.0775 t.oS1l .5t54 .2801 1.6226 3.0780 +/-.0S73 40 6o.o- 75.0 .7262 1.1768 2.6475 5.6336 .4768 .8902 1.7992 4.1588 4I 45.9- 6o.o 2.8%000 6. slo8 .5606 1.0295 2.6715 6.7002 42 30.0- 45.o 1.oa16 L,7211 1,7528 9.6517 !.4074 3.65oo 11. 5581 43 15.0- 30.0 .9923 1.7045 4.2409 11.8919 .7395 1.4113 17.6072 44 o.0- 15.0 .96o7 1. 5542 4.310o7 13.4253 .7751 1.7127 5.7192 23.1043 4s 165.0-190.0
.2188 .2168 .5323 1.8721 .1606 .1434 .2327 .1025 46 150.0-165.0 .2286 .4428 1.9059 .1467 .1573 .2224 .9206 47 135.0-150.0
.2917 .2907 .4237 1.5886 .1125 .14191 .2211 .-8278 4a8 120.0-135.0
.2152 .2067 .5597 1.6248 .1885 .2255 .2502 1.0964 40 105.0-120,0 .2913 .5769 1.6451 .1504 .2197 .434 .9515 90 50 90.0-105.0 .3286 .5722 .7125 1.1600 1.2150 .1780 ,2223 .2584 .14449 1.4156 1.2988 77.6-90.0 51 75.0- 90.9 8.0250 .3982 .2877 .7725 2.7212 +/-.o668 8.0026 .2092 .3765 .6a, 1.8987 +. 066C 52 69.0- 75.0 .26o1 .4197 ,9190 2.28sr_0 .2384 .3052 .596s 2.1325 53 45.0- 6o.o .3070 .5444 2.3706 4.7045 .0768 .61o5 1.2054 4.7341 54 30.0- 45.0 .3219 .7733 1.8763 7.3207 .2954 .7457 1.7216 9.9637 55 15.0- 20.0 .4087 .8232 1.9746 8.2884 .3041 .9029 2.4 142 15.9231 56 0.0- 15.9 .2826 .9552 2.4550 10.2915 .2231 .9978 3.5418 ig.46s6 Suo over) 5 -0.4040 55.0273 73.3776 125.6609 272.9526 123.1752 35.5002 58.0037 109.4706 272.3117 110.5822 Total Dooe Albodom 5.6553 6.17h0 8.2129 14.0767 20.6140 13.8427 3.9233 4.5461 6.5092 12.2826 30.5533 12.4ta4 0 Syooe~rriol sourooo. 00 0 volues uvorogsd 0 z 01 i-.3 I-ll* H o I>H-t 00.(D N.
0A2964 RAY 901S81A98999 ( in percent)Emerging Emerging iron Iron Polar Direction 1.00 loB 2.50 lis Anglo incident:
or Point:
- incident:
at: Point*0 0=* 2r 601 86° Source
- 440 660 8 Source 9I 1 90.0-180.0
.7169 .7215 1.0108 1. 5934 2.4'300 1.49989 .4166 .4;299 .6992 1.2402 i.oo61 0.0-to.4 2 0.0- 90.0 +/-.0521 .7829 1.1295 1.9932 2.8909 3.10O36 t.0070 .4927 .7020 1.2171 1. 9402 +/-. 05693 90.0-180.0
.6795 .8,200 .9084; 1.4742 2.0661 1.64.69 .11167 .466i .794'6 1.4197 i5.4-21.a 4 0.0- 90.0 *.0139 .84409 3.3586 3.0291 .49835 .8030 1.2051 2.0295 8. Oh99 5 150.0-189.9
.*r3,rl.9
.9939 1.1010 1.4813 .5163 .41657 .9239 0.2795 6 120:.0-150.0
.6753 .7413 1.3472 1.8255 .4607 .5012 .8697 1.1296 9 ~ 7 90.0-120.0
.6e26 .703 .s~i4 1.4652 2.0559 1.5709 .3938 .39332 .5 .9124 1.5599 1.0292 21.9-34.19 60.0- 90.0 8.0193 .SI 4' 1.0506 i.654o 2.7399 .oos5 .4541 1.2015 1.9746 3.0551 2 30.0- 60.0 .8.013 1.1L929 2.,26 4).1249 .5120 .7346 1,.364s 2.5990 10 0.0- 90.9 .7258 1.4423 2.4536 4.o117 .4667 .7359 1.5291 2. 7762 11 150.0-990.0
.7027 .7197 .97013 1.6333 .9011 .4566 .6469 * .9976 92 190.0-150.0 .yA-3 .7265 1.2900 1.7195 .3332 .4827 .7243 0.0469 9, 13 90.0-120.0
.1'-'20 .77h9 1.5220 2.0551 1.7344 .3783 .3729 ,56h9 1.4334 1.0473 14 60.0- 90.0 .7320 .9765 1.7212 2.7323 3:. 008 .4522 .6211 1.2321 1.9435 :. 0339 15 30.0- o.u, .7913 1.3077 o. 50h8 4.4381 .3592 .7592 1.5796 3.3929 16 0.0- 30.0 ,8671 1.3197 3. 0801 7.13349 .5465 .9069 1.a161 5.3232 17 157.5-190.0
.4575 .6253 .8"219 9.03911 .3510 .3518 .5449 .9951 19 135.0-157.5
.5391 .7045 .9384 15729 .3 .5654; 1.1159 19 112.5-135.0
.6236 .8582 1.1021 1. 9254 .2712 .4287 .5"739 1.2693 9o 20 90.0-112.5
.5693 .6i15 .7619 1.2420 2.0949 1.e469 .342a .419 .4932 .8275 1.6877 1.1555 44.9-55.2 21 67.5- 90.0 8. 0097 .7209 .9805 1.5214 3.200. 88.0119 .3842 .5211 .2427 1.9904 22 45.c- 67.5 .7202 9.0049 1.8769 4. soos .4294 .7222 1.1824 2.9697 23 20.5- 45.o .704,h6 1.5370 2.7752 7.5225 .3665 .7042 1.7232 5.1596 2!. 1.0- 22.5 .2991 3.1816 11.2643 .4l660 .7991 2.2427 25 157.5-160.0
.4328 .4376 .6702 1.2226 .2905 .24;29 .49886 .9312 26 135.0-157.5
.4562 .44a6 .7306 1.2020 .2079 .2385 .6249 .7977 27 31.2.5-135.0
.4415 .6649 .9846 1. 5377 .2521 .3533 .5872 .e5&4 9n 28 90.0-112.5
.5099 .4795 .7717 1.0274, 2.o434 1.9392 .9003 .2203 .3613 .6329 1.4647 1.3119 55.2-04.6 39 67.5- 90.0 8.0129 .5996 .9340 1. 5595 2.8889 ~..0424 8.0149 .2593 .4883 .986e 1. 9344 9.0989 90 45.o- 67.5 .7328 .aoh2 2.0504 5.2210 .3115 .5266 1.3091 31 32.5- 45.o .7312 1.2399 3.2926 9.5(.35 .4058 .8537 2.2919 7.0199 32 0.0- 22.5 ,8359 1.5294 4.95027 15.5758 .4599 ,9034 2.7837 12.3695 33 165.0-190.0
.0271 .2759 .4746 .9099 .1795 .1913 .2919 .6024 oh 350.0-165.0 .3556 .4so3 1.0587 .1784 .1701 .2979 .7371 35 135.0-150.0
.3061 .3909 .44 1.1395 .2382 .1996 .3471 .9787 36 920.0-135.0
.3509 .3421 1.2393 .2099 .14'o7 .3866 .8069 37 305.0-120.0
.3291 .4567 .6e5e 1.6678 .1856 .2265 .4229 .9012 97 38 go.0-I05,0
.3774' .5391 .5452 .a594 2.0177 2.0131 .3042 .2398 .3808 .4197 1.1801 1.4324 64.6-77.6 32 75.0- 90.0 8 .0080 .3796 .7169 1.3474 2. 5854 :I.0375 8.0058 .1862 .3512 .6996 0. 9235 4o0 60.0- 75.0 .4729 .7567 1.445a 3.6395 .2379 .4212 .7630 2.3709*I 4s.o- 6o.o .4970 .97,6 2.2236 5.7674; .3261 .4787 1.410o 4.0442 43 90.0- 45.o .5947 1.2299 3.0631 .4 145 .6158 1.94o9 9.1786 43 15.0- 90.0 .5481 1.9633 4. 3905 16.6909 .3900 .69O7 2.7519 14.9459 44 0.0- 05.0 .62a6 5.0524 24. 55s0 .4021 .654o 3,9013 24.1I125 45 o65.o-180.o
.0979 .0798 .1050 .5799 .0932 .016a .0724 .3263 46 15o.o-165.o
.0535 .1593 .1521 .5178 .o364 .0786 .0547 .5720 47 135.0-150.0
.1279 .0277 .t1oh .7210 .0'389 .0790 .0759 .4237 4a 190.0-135.0
.1232 .1503 .2059 .7719 .0566 .1059 .1372 .3292 4;9 305.0-120.0
.1107 .1364 .2845 .aoo6 .9397 .1890 .6100 8 n 50 80.0-105.0
.126o .1186 .1922 .01,90 1.oiI 4 .0715 .0446 .1692 .1994= .6925 1. 1729 77.6-90.0 51 75.0- 90.0 8.0051 .2228 .2696 .3947 1.3009 9. 0319 8.0053 .13619 .1191 1.06514 +. o629 52 60.0- 75.0 .1826 .9073 .5624 2.7561 .8621 .2035 .3579 1.7955 53 45.o- So.o .2097 .4syy .3229 4.5711 .0995 .14o4 .6516 3.0012 54 0.0- 4s.o .2494 .465i 1.5190 9.1261 .1390 .2299 1.0919 6.9146 55 15.0- 30.0 .2790 .6022 2.6834 15.4489 .2002 1.7202 16.3709 56 0.0- 15.0 .0681 .9389 3.3991 22.1740 .1340 .44a4 2.5737 30. 3438 loin over 0!3 25.3560 22.28h,0 43.2632 99.3462 249.9465 97.2193 14.9134 16.5445 24.9426 56.6220 209.3356 67.3976 Total Dose Albedon 2.949 3.2857 4.9541 9.9124 28.0337 10.9079 1.6621 1.9563 2.7986 6.3530 23.4874 7.5609*s$yn29tricol oouroes, so II valueo averaged 0)0 z 00 H 1 020 r--H.o m 0881 18 DOSE A1820D00 f in percent] __________________________________
Emerging Emerging Iran Lead Poebt Direction 6.13 PleD 0.20 He inlcident atPar Angle *incident at: PaiLnt * , ac 44n 660 it Pin 81 'q 4 2 440 85 oarae Soarce 8: 1 o.0-lso.o
.4o36 .5580 .5385 .89,*0 1.498'. .8883 .0756 .0792 .0929 .1ogS .5o45 .i424o .3- 90.0 t.0173 .4627 .6624 .8116 1.6362 +.o145 -. 0082 .1134 .1202 .2046 .-079 6.0010 U_ 0 0.0-l10.o
.4384 .4072 .5387 .9101 1.24e4 .s562 .0720 .0864 .0984 .21f12 .4603 .1689 15.9.-21.8 0.0- 90.0 0062 .5333 .8782 1.0008 1.5376 3.0383 +/-.0134 .0244 .1796 .2048 .5589 *.0780 5 850.0-180.0
.4541 .5809 .7648 1. 2208 .0882 .0922 .1145 .2501 6 120.0-150,.0
.3oo4 .6067 .980B 1.2146 .0842 .0471 .1447 .0227 9s 7 80.0-120.0
.415o .4263 .5007 .8518 1.2965 .s363 .06525 .0692 .1282 .0892 .26ag .2125 21.9-34.9 8 6o.o- 90.0 3.0215 .4563 .6579 .9533 1.5707 +/-.0157 3.0083 .0760 .1026 .1228 .3165 3.0216 9 2.0- 6o.0 .5042 .56s5 .9703 1.8Q662 .0621 .0653 .1281 .5344 10 0.0- 30.0 .6665 .8973 2.0297 .o842 .oood .2511 .4294 11
.4041 .4a45 .6255 1.3514 .o749 .1263 .0904 84 1 82o.0-150.0
.4874 .7 7 1.0410 .03y5 .0800 .0641 .292], S4 13 80.0-120.0
.3793 .S4o9o 3 .7 91 1.4008 .9058 ,06ya .055s ,1120 .2214 .4044 .8109 24.8-44.4 o4 80.0- 90.0 +/-.0143 .414a .4762 .8959 1.7680 :*.0079 .0910 .1056 .2920 .3891 3:.0128 15 00.0- 6o.o .4069 .6250 1.0247 2.2382 .0607 .o665 .1714 .6142 16 0.0- 30.01 .464 .5326 1.1368 2.9767 .0910 .0788 .3108 .7237 17 157.5-180.0
.3073 .4177 .5327 1.0516 .0834 .1139 .071-3 .4269 1i8215.0-157.5
.3638 .4527 .57a4 1.2114 .0427 .0586 .1703 .2099 13 112.5-135.0
.2339 .4o4 .6461 1.2305 .0352 .0220 .0951 .4069 a 0 20 80.0-112.5
.3420 .5317 .2854 1.4514 .8722 .o6c. .0279 .0833 .1692 .3157 .2o00 44.4-55.2 21 67.5- 80.0 0101 ,3864 .4973 .8621 1.5275 3.0664 +/-.0100 ,0736 .1280 ,0808 *.34 :. 0268 22 45.0- 67.5 .3471 .5771 .0456 2.u267 .0757 .1782 .2228 .8026 23 22.5- 45.o *4023 .5092 1.0553 3.0850 .0514 .0959 .1787 .a544 24, 0.o- 22.5 .4100 .616a 1.2288 4.2741 .1317 ,1511 .2526 1.0802 25 157.5-180.0
.3302 .3392 .5o4a 1.2230 .0492 .0732 .1017 .4247 26 125.0-357.5
.2906 .2235 .5590 1.0667 .0692 .0430 .o544 .3832 27 812.5-035.0
,2823 .4771 1. 1687 .0210 .o065 .0508 .2921 8 n 28 80.0-102.5
.2588 .2102 .3183 .5188 1.1808 .8553 .0714 .0466 .0615 .o445 .2615 .2016 55.2-64.8 29 67.5- 90.0 3:.0104 .3177 .3680B .7209 1.5828 j.0432 3.0060 .0290 .0828 .1443 .6385 +/-.o026o 30 45.o- 67.5 .2565 .2644 .7804 1.9769 .1088 .1213 .25a5 .5520 31 22.5- 45.o .2538 .5515 1.0C*80 3.9179 .os14 .o634 .2287 .7821 02 0.0- 22.5 .3367 ,5199 1.4457 6.1981 .0232 .2565 .5167 1.2283 33 165.0-180.0
.1613 .1040 .3522 .8580 .0583 .0401 .0973 .1882 oh 150.0-165.0
.1655 .2065 .3042 .974i3 .0558 .0253 .1021 .2554 25 135.0-150.0 .i686 .1786 .3828 .8730 .0832 .0127 .0410 .2821 36 120.0-13,5.0
.2017 .2123 .2120 .8916 .0782 .0421 .0182 37 805.0-120.0
.2004 .1.359 .339 1.0213 .0587 .o424 .0168 .32801 87 38 00.0-105.0
.1812 .1556 .1723 .3558 1.1853 .9180 .01.82 .0630 .06o1 .1080 .1825 .2121 64.6-77.6 39 75.0- 90.0 3.0033 *1647 .1747 .5203 1.3515 3E.0508 3.0079 .0565 .0508 .0407 .3109 6. 0270 4o 6o.o- 75.0 .1931 .2644 .6280 1.7604 .0414 .0304 .1627 .4145 41 45.o- 62.0 .2031 .2831 .7229 2.6274 .0500 .1271 .1712 .6286 42 30.0- 45.o ,2718 .4174 1.0074, 4.2527 .0232 .114,2 .3898 1.0058 43 15.0-. 30.0 .2308 .3688 1.2687 8.1121 .0681 .oa06 .3132 1.87A0.0- 15.0 .2486 ,4562 1.6i75 15.4125 .0800 .1103 .4205 1. 5684 45 165.0-180.0 .o856 .0395 .0894 .5673 .0274 .0291 .0253 .2327 46 150.0-165.0
.0638 .0727 .1151 .563o .0044 .0186 .0305 .2167 47 135.0-150.0
.0742 .0751 .1045 .5883 .0476 .0258 .o0030 .0398 49 130.0-135.0
.0872 .0930 .io63 .4479 .0381 .0116 .0156 .1270 i9 105.0-120.0
.0480 .0816 .1325 .4804 .0044 ,o024 .0517 .1263 9 n 50 90.0-105.0
.0620 .0272 .0774 .1406 .6249 .7064 .0is4 .0262 .0247 .2059 .2075 .1053 77.6-80.0 51 75.0- 80.0 .0719 .1161 .1605 .7523 3.0810 3.0041 .0016 .0382 .0700 .35383 .0323 52 6o.o- 75.0 .0636 .o863 .2686 1.0385 .0283 .0093 .0085 .2217 so 45.o- do.o .o445 .15a4 .3647 1.6135 .01*81 .0238 .0584 .5791 54 2.0- 45.0 .0829 .1854 .5794 3.3587 .0388 .1120 .1576 1.068 55 15.0- 20.0 .0243 .2202 .8549 9.2047 .0131 .0352 .2877 1.0107 56 0.0- 15.0 .0828 .2245 1.2380l 28.2443 .0435 .0419 .28l11 1.2373 San aver 13 14.3508 15.7682 20.7162 38.9146' 148.0572 4.9.1472 2.8220 3.2531 4.2971 8.3422 28.8204 10.1863 nToel] Doee Albndna 1.6103 1.7693 2.2044 4.3550 16.6121 5.5143 .3245 .3650 .4810 .8361 3.2248 1.1440* Sy~nmenieal souecen, en 12 values averaged 0)a z--t 01 In -H* --H Ooo/ N,.:.
- ,,&. Cl., 1~~<L CT>V X)0 z 0A980A RAY 9098 A8125]90 (to~ peroenoll Emerging Soersiog 1Lead 1 Loa Polar jDirection 9 .662 lieUV 1.00 lieU A)820 IncdentA PEr incident at Point *o£ Qk r ¢* 660 8 0 or 440° 60 Bsr-kSource Source Al 15.4-21.8 21.8-34.9 84 4. 9-44.4 44.4-65.2 8.64.6-77.6 80 77.-0.1 90.0-180.0 2 0.0- 20.0 2 90.0-180.0 4 c.o- 9:.o.5 950.0-180.0 6 1a,2,-15u..
7 29.0.-120.0 8 60.,2- 00.0 1- 0.0- 20.0 LI 150.0-180.:
12 90.0-120.2 lh 6c.o- no.:.15 20.0C- 60.0 oS 0.0o- 20.0 17 157. 5-1820.18 225.0-157.5 is 112. 5-125.'.220 .0-112. 5 21 ls.c- 67.5 22 225-c 4s7.o 24 ".c-- 72.5 25 157.5-180.0 o6 135.0-751.
5 21 112.5-035.098.0-112.5 28 67.5- so.0 320 45.o- 67.5 21 22.5- 45.o 22 22.5 21 165.0-180.0 24 15O.0-165.o 25125.0-155.0 27 1O5.0-120.0 38 80.0-105.0 22 75.0- 20.0"o 6:.o- 75.0 4i 45.o- 60.0 42 15.o- 20.0 44' 0.0- 15.0 46 165.0-165.0 47 125C.0-165.0 49 120.0-15.0.
42 105.0-120.0 50 80.0-205.0 51 7'5.0- 80.0 52 75.0 5! 4'5.o- 6o.o 54 2o.0- 45.o 55 15.0- 20.0.% 5.0- 15.0.01028_8.0030.0502.0727 4.0o66 8.0122 8,0109.0582 8. 0072.0225.O088.0642.0662.1185.09 58.0851.1122.0802.0714.o474.0881.0562.0159.0o946.0827.109I4 ,0527.0792.0226.1059 ,0925*14195.0597.0402.0265.1072.1254.1006.12h44.1827.20209.0081.0292.0160.0 182.0121.0119.0948.0)505.1I028.1558 ,1216.1975.1002.0721.1129.1669.0692.056e.1507.2155.0557.1287.0724.0778.2022.23122.0461.068.o66s.1111.1988.2088-2270.0227.0171.0226.0602.o4ti.0478.1262.1282.2187.2576.2761.0187.0209.o156.014 2.0602.o56.1602.l1g84.2822.22 14.2748 .9858 .4098.4484 1,46s7 8.1048.2512 .s246 .4412.4o11 1.5805 8.0818.2279 .6670.1724 .8162.2196 .0e49 .4261.2880 1.4295 .6200 2.0108.7252 2.4172.1226 .6446.i6ii .7240.2839 l.osg4 .5578.542 1.2500 8.0620.7060 2.8262.9258 4. 5052.0822 .6o41.0918 .7088.1400 .6571.5258 .8855 .61o3.2843 1. 8167 8.0217.5009 2. 8052.s16s 4.580ve 1.2752 5.966.1032 .4627.os06 .5525.0729 .7082.2469 .9125 .2650 1.2507 8.,o16.5744 2.5626 1.2759 5.0918 1.7785 8.2177.0576 .2742.0832 .2596.0542 .4008.1255 .5411.0800 .7414.1855 .8815 .a614.2172 0.5105 j.0498.2855 2.0616.6a66 2.8180 1.4202 6.6765 1.7616 8.2775 2.5921 12.2787.0040 .1521.0218 .1274.0080 .1855.0197 .2729.0118 .2020.o476 .4062 .5449.1126 .8074 .0607 1.2227.2202 2.5hg4.6765 4.5817 1.1625 8.4809 1.4270 lo.206s.o696 .0774_+.0091 .o645.o674 .04820122 .0782.o665.o447 .0462 8.0014 .o566.o5da.0479.0621 .041s 8.0051 .0710.1072.o186.0527 .0476 8,0048 .0618.0928.1101.1090.0442.074*9.0279.0589 .0280 8=.0o55 .1158.1254.0o926.0880.0o276.0246.0487 ,0621,0571.0804.0868.1262 la188.2068.0108.0126.0242.0124.0220.0216 .9218 8.0021 .o206.0444.o6o5.0802.oh86.01147*.o651 ,1716 .9247 .4288*.0904 ,4262 1.6012 4.0821.1687 .2084 1.8244 8.0051*.0700 .a18 .6326.0724 .1552 .6615*.0852 .9492 .Mo5 .4641.1462 .2598 1.5649 8.0206 ,1885 .5971 2.26557*.1584 .7889 2.0021.o575 .oe65 .5672.0484 .1424 .8015 ,1326 .2046 1.1620 .5850.1225 .4481 8.0248.2280 .6457 2.8778*.2781 1,0228 4,9602.0467 .ops4 .4922.1021 ,0805 .5845.0825 .16ev .oo6a.1021 .2571 .8745 .6874.14e1 1.7241 ,2285 ,6724 2.2451.30O7 1.i6i6 4.1727.25128 1.5128 6,8o11.0221 .1027 .2972.0421 .o61o " .4061.0585 .0720 .7221.0742 .2527 .8078 .8167.1202 .2125 1.2801 .2216 .6844 2.9178.2522 1.2772 6.2064.415o 2.2465 10. 1802.0187 .o414 .2224.0226 .054 .2415.0147 .o0o .2861.0285 .065~ .4712.0219 .1121 .7208.0709 .1688 0.0061 .9725.1580 .2528 1.48o5 8.0210.0g54 .4558 .2857 .8858 2.8278.23815 1.4840 6.8755.4270 1.9062 12.6528.5258 2.6287 17.0801.0076 .o06a .1281.0077 .o168 .1585.0027 .o1v6 .1521.0180 .0118 .1852.o266 .o040 .2146.0216 .0902 .4o6o .7125.0502 .i126 .8128 .0508 .i62o 0.5821.1187 .4022 2.0209.1896 .8404 5.51181.28972 1.7274 10.4706.2717 2.0488 16.6491 mm H' 0 CD p..,.Sup over 1 5.2924 4.204,7 8.4210 26.2228 122.7812 34. 1480 2.6715 2.6340 7.9902 29.0589 152.1524 40,0798 Total Pose Albedoos .2804 .4718 .8460 2.2422 14.8891 4.0558 J .2887 .l0g0 .8852 2.2604 17.1827 4.4969 C,)I-m 0'0yrramntricol sources, so Ii velueos averaged 0138RAY DOSE AIIEDOS Emerging Emerging Lead I t ecn~Lead Polar Dilrection 2.50 31eV 6.1:3 81eV Angle incident at Pon
- fnccdent 01 Pontre Rt i 0 1c *n 22 ,44n 66" 988 Source O8' 220 h44 66n a8r Sourne 1b 50.0-180.0
.2ss44 .2195 .2872 .46so o,9964 .6274 .4258 .4450 .5763 .6986 1.5990 .7166 o.o-15.4 2 0.0- 90.0 -. 1044 .2641 .2817 .7.528 2.0225 E. 0666 +.o181 .3551 .5015 .7065 1.8155 j.0245 O8 90.0-180.0
.2829 .2589 .4641 .5469 1.8760 .5708 .5891 .2668 .4782 .6774 1.2943 .8186 15.4,-21.8 4 0.0- 90.0 00 .3O70 .2657 .6067 1.8127 +/-. 1525 ~ .. 0160 .2745 .4+963 .6262 1.5250 L 50.0-180.0
.20614 .2797 .4481 1. 2004 .3220 .4I724 .7205 1. 5693 6 120.0-i0.0
.2769 .2622 .5251 1.4O0, .2984t .44i23 .6854 1.5625 8a 7 80.0-120.0
.2087 .1ss4 .2328 ,4964 1.3106 .7559 .2642 .26Z61 .4661 .Sg9i 1.2865 .7441 21.8-54.8]
8 6o.o- 50.0 :. 0280 .2464 .2810 .6553 i.5861 :5.0524 ,.0235 .4.582 .452o .6616 1.4s41 9 3O.0- 6o.0 .5179 .4612 .7291 2.6510 -.4746 .4887 .7565 1.8284 10 0.0- 20.0 .2997 .5450 .8707 2.8079 .4025 .5159 .8252 2.0149 11 152.0-180.0
.2056 .5259 .2807 1.1017 ,2860 .4ii5 .6228 1.22501 12 120.0-150.0
.2525 .302 .3213 1.0818 .2856 .415o .5g76 1.4os5 84 15 90.0-120.0
.1859 .161o .1924 .5929 1.0946 .7106 .2171 .5382 .5245 .6297 0.5260 .77s6 14 60.0- 94.0 2.0092 .204o .2715 .5142 1.6526 k. 0238 2.o0208 .4406 .4so4 .6620 i.ss86 15 20.0- 6o.o .2171 .2782 .7888 s.685s .2678 , 208 .7564 1.7921 16 0.0- 20.0 .17D5 .3801 .7897 .2818 , 445 .8105 2.5121[17 157.5-180.0
.1525 .1858 .s586 1.1225 .2729 .2877 .4812 1.4609 18 025.0-157.5
.1647 .1837 .36ii 1.1267 .3554 .2787 .6271 1.5890 19 112.5-125.0
.2109 .2501 .2088 1.1815 .2477 .5554 .587h 2.4o45 Rs 20 50.0-112.5
.1805 .1487 .2040 .5885 i.45og .7869 .2750 .2888 .5420 .5358 1.4220 .7416 44.4-55.2 21 67.5- 80.0 2:.o183 .1467 .2287 .5178 1.6821 2.0488 .2865 .2546 .5982 1.6678 ...o462 22 45.o- 67.5 .2701 .2717 .6260 2.5642 .2964 .4089 .Ga11 1.8525 23 2-2.5- 4s.o .2127 .4502 1.1871 4. 5478 .2852 .3779 .7898 2.23555 24 0.0- 22.5 .1867 .5221 1.5018 6.079e .5228 .4649 ,e668 2.798l0 25 157.5-180.0
.1710 -.1287 .2822 .8189 .2520 .2076 .5222 1.2464 26 135.0-157.5 .i54s .1550 .5850 .s67o .2162 .2285 .5249 1.5562 27 111.5-125.0
.1262 .1422 .2612 .2198 .2548 .2635 .4581 1.42s6 8 n 28 90.0-112.5
.1265 .0952 .154a .4669 1. 1265 .8709 .22?14 .1920 .1957 .4567 1.54,64 .7154 29 67.5- 80.0 0094 .1108 .5158 ,48e6 1.7775 :. 0557 4.0050 .2381 .1778 .4849 1.7109 20 45.0- 6y.5 .1761 .1272 ,7465 2.4760 -.2663 .2788 .5512 1.7226 31 22.5- 45.o .2175 .3531 1.0705 5.2397 .2077" ,2447 .7429 2.0467 52 0.0- 22.5 .1803 .4648 1.5884 9.6765 .2952 .s514 1.0045 4.5886:33 165.0-220.0 .o624 .1624 .2297 .7074 .1251 .2577 .1581 1.1751 34 150.0-265.0
.0855 .1822 .1815 .8053 .1570 .1947 .20(5 1.1729 55 155.0-1.50.0
.0221 .0590 .2406 .8820 .14o5 .1906 .5951 1.1581 26 120.1-125.0
.056:3 .1621 .1228 .7825 .1476 .0888 .si42 1.2522 37 105.0-120.0
.11529 .i146 .1055 .9465 .1666 .1424 .5711 1.I1137 8o 28 90.0-105.0
.1101 .0456 .1187 .2138 1.1157 .859JI .1588 .2145 .2528 .2870 1.0551 .6758 64.6-77.6 59 y5 90.0 2.0088 .0935 .116s .z154 1.5508 ..o44 .,.o68 .1872 .26o5 .45c2 1.1595 4o 6o.o- 75.0 .i64s .1427 .54o6 2.25249 .4 .1670 .2107 .4857 1.7667 42l 45,o- 6o.o .14.12 .2298 .7558 2.156ti .z646 .2212 .5603 1.867Ts 42 30.0- 45.o .1458 .5351 1.1756 6.2"255 .2004 .2,21 .6154 2.8281 42 15.0- 20.0 .1855 .4563 1.8554 10.6279 .14ig .2746 .8120 5.5890 44 0.0- 15.0 .1771 .4o55 2.4oo4 19.1122 .lS4O .5147 1.0637 8. 1545 4s 165.0-180.0
.0150 .o444 .5482 .4173 .0523 .0.599 .624, .7287 46 1.50.0-165,o
.0377 .0122 .~54o .0o47 .0558 .0800 .6047 47 115.0-t50.0
.0527 .0174 .0428 .4227 .0625 .06x95 .5569 48 120.0-155.0
.0550 .0560 .1220 .2998 .o5s4 .1482 .1254 49 105.0-210.0
.0672 .0429 .0858 .2822 .o063 .c571 .0o21 .65 50 8s 50 90.0-105.0 .o36e .0219 .054o .0731 .7936 .84,98 .04J6 .0712 ,1622 .8399 .4856 77.6-80.0 51 75.0- 80.0 .0231. .0577 .1014 .7204 4.0552 +/-.0053 .o7r54 .cObi .7435 52 60.0- 75.0 .0271 .0837 .2483 1. 2278 .4188 .1265 .2093 5:3 45.0- 60.o .0428 .1051 .3725 2.26'i6 .0717 .1153 ."1,24 i.548 55 15.0- 20.0 .1187 .2185 1.4023 11.261D .4978 .1500 .56oo 6.59480.0- 15.0 .0704 ,0958 2.145g 23.5555 .06i5 .3743 .901-9 15.2152 Sue cvent 71 7$97 8.68(4 15.289] 39.6002 ib7.763i 45.8361 12.2313 13.0220 18.4757 29,820.z 117.8521 5(.897(Totnl DOnce Albedcn .8483 .9701 3. 7700 18.0220 5~i,14c 1.5752 3. 1458 12. 1101 4.26cc t Snacnrrtcal nources. nc 0 veloec averaged.0 z 5191 I-c*oo rt m C~u -..-i-m H-0 it 7<9.C-'>
Southern Nuclear Design Calculation SPlant: Votl Unit: 1&2 Calculation Number: X6CNA15 Sheet: C2-1 ATTACHMENT C2 -VALIDATION OF SPIRAX SARCO ON-LINE STEAM TABLES Rather than interpolate from the ASME steam tables, an on-line set of steam tables was used to determine the specific volume of the reactor coolant at normal operating conditions.
Spirax Sarco, a global provider of products for the control and efficient use of steam, provides on-line steam tables at their company website, http://www.spiraxsarco.com/resources/steam-tables.asp.
Reactor Coolant @ Normal Operatingq Conditions To verify that the Spirax Sarco steam tables provide accurate results, the specific volumes of subcooled water at 2200 and 2400 psia and 580 and 590 F (see sheets C2-2 & C2-3) are compared below to the corresponding ASME steam table values (excerpt attached; sheets C2-9 & C2-10).Units fASME Sprx Delta* ASME Sprx Dla Sarco ISarco P psia 2200 2200 2400 2400 Psat psia 649.50 649.558 0.01% 662.16 662.233 0.01%T F 580 580 580 580 SV cu ft/Ibm 0.022358 0.0223481
-0.04% 0.022271 0.0222606
-0.05%T F 590 590 590 590 SV cu ft/Ibm 0.022754 0.022743 -0.05% 0.022653 0.0226425
-0.05%* Delta =[(Spirax Sarco -ASME)/ASME]
X 100%The Spirax Sarco steam tables agree extremely well with the ASME steam tables.The linearly interpolated results from the ASME Steam Tables would likely be less accurate than using the on-line steam tables because specific volume is a non-linear function of pressure and temperature.
For P = 2250 psia and T = 588.4 F, the RCS coolant density = 707.149 kg/in 3 (sheet C2-4).RCS coolant density = 707.149 kg/m3 x [103 g/1 kg] x [1 m3/10 6 cc] = 0.71 g/cc CVCS Letdown (P= 385 psigq & T = 98.5 F)The density of CVCS letdown flow = 994.454 kg/rn 3 (sheet C2-5) = 0.99 g/cc.Saturated Steam Atmospheric Conditions (14.7 psia)The specific volume of saturated steam at atmospheric conditions is 26.804 cu ft/Ibm (sheet C2-7.Refueling Cavity & Spent Fuel Pool Water Density Duringq Mode 5 The specific volume of water at 130 F and 14 to 15 psia is 0.016246 cu ft/Ibm (sheet C2-8).Thus the Refueling Cavity and SFP water density at 130 F = 1/(0.016246 cu ft/Ibm) = 61.55 Ibm/cu ft X6CNA1 5 Attachment C2 Sheet C2-2 spira sarco International site tor Spirax Sarco Tel: (800) 575-0394 Fax: (803) 714-2222 Hoamo About Us v Produots & Sundae, "w Industries
& Applgcations , Training Resourses Contact V Feature that targets plant mBa improvements and energy/cost savings Eraowr your team, You are here: !:ogj Reoe ). Steam Tabls li Sub Saturated Water Region Sub Saturated Water Region -Steam Table At any presure, wate below its saturation temperature as said to be In a sub Crt,,l poin saturated state. Sub sauraod t water 'stet For example, water ata pressure of 1 atmosaphere and a temperature below the saturated temperature of 100OC is sub saturated Water at a pressure of 10 atmospheres has a, saturation temperature of 1W0C, and so water below this temperature is also sub saturated
' 4 w etrsem Learn more about steam in our" tutorial -gjaji Stam.Set your oreferences for these steam tables. Enihalp Note:. You cannot use commas (,) as decimal points.Please use periods (.)Example: 1.02 not 1,02 Pressure Temperar Stu ration Ternperature~p~lfi Volume of Water (v)SpeoifIo Entropy of Water (ee]I8 absolute PF P fta/lb J11kg K 220000 580000 649556 00223481 3268,186 2400.00 580.000 682.233 0.0222806 3262.42 ttp://www.spiraxsarco.conm/rsources/steam-tables/sub-saturated-water.asp X6CNA1 5 Attachment 02 Sheet C2-3 spira arco International site for Spirax Sarco T,,l (800) 575-o3g4 Pax: (803) 714-2222 Home About Us w Products &Services w tndustrles
&Appflcattons w, Training Resources v Contact V Feature Training tha Trainelg ,. plant improvements and energylcost savings Enu~ower your team You are here: Home ) Steam Tables I. Sub 8ahrtredm Water Region Sub Saturated Water Region -Steam Table At any pressure, water below its saturatin temperature Is said to be in a sub saturated state.For example, water at a pressure of I atmosphere end a temperature below,=the saturated temlperature of 100"C is sub saturated.
Water at a pressure of 10 atmospheres has a saturation temperature of 180"C, and so water below -this temperature Is also sub saturated,.j Learn more about steam In our tutorial -WhtsSea?Set your orefeecs for these steam table.Note: -You cannot use commas (,) as decimal points.Please use periods (.)Example: 1.02 not 1,02 Cntscat ghana Sub siztsraod 0, 5ipe~h.a~ed1 water ~' slooni 4, a 4*~ Watatram I EnthipyTemperatur
~peoficm Volume of Water =l abolute*PF Ift'b l220000 89.000 / 00227430 /2400.00 590.000 0.0228,425 ttp://www.spiraxsarco.com/resources/steam-tables/sub-saturated-water.asp X6CNA1 5 Attachment C2 Sheet C2-4 s ill ] r o. r International site for Spirax Sarco Tell: (800) 576-0394 FPaz (803) 714-2222 Home About Ua ,w Products &. Srvices v Industries
& Applications ,v TraIning Reaources v Contact v You are here: Home i. Resoures k. Steam Tables. 8aturaead Water Re~lcn Feature~Sub Saturated Water Region -Steam Table tha t traintn At any pressure, water below its saturation temperature is said to be inca sub Cutsst po~tt" the saturated temperature of IO0°C Is sub saturated Water at a pressure of -Improvements and 10 atmospheres has a saturation temperature of 180"C and so water below energy/cost savings this temrperature is also sub satur.ated. I Wet steam Emnoower your team Leaml more about steam In our tutorial -What is Steam7 I Set your orfrne for ths stea tables entheipy Note: -You cannot use commas (,) as decimal points.Please use periods ()Example: 102 not 1,02 Inputs Pressure and Temperature Output O, Single Value ' Table Pressure absolute V, Temperature
'p, " I Vapour Pressure Saturation Temperature Specific Enthalpy of Water (hq)Densiy of Water Specific Volume of Vater (v)specfc Entropy of Water (a')Specifi Heat of Water (c, Speed of sound Dynamic Viscosty of Water P+4014 13310714j914.697 f8 49904E-05 bar gauge ItNRb Pa a'V, ttp://www spiraxsarco com/resources/stearn-tables/sub-saturated-water asp X6CNA1 5 Attachment C2 Sheet C2-5 spilray ro International site for Spirax Sarco Tel: (600) 575-0304 Pax: (803) 714-2222 Home About Us w Producte & Services v Industries
& Applications v Training Resources v Contact V Feature TTaaning that targets-plantlimprovements and energylcost savigs Emonower your team You are here:, Home~ l Resoures.
St eam Tabtes I> Sub Saturated Water Region Sub Saturated Water Region -Steam Table At any pressure, waler below its saturation temperature is said to be in a sub saturated state.For example. water atea pressure of 1 atmosphere and a temperature below the saturated temperature of 100"C is sub saturated.
Water at a pressure of 10 atmospheres has a saturation temperatura of 180"C, and so water below this temperature is also sub saturated.
Leamn more about steam in our tutorial -What i Stam?.Set your ortrne for these steam tables.Note: -You cannot use commas (,) as decimal points.Please use periods (.)Example: 1.02 not 1,02 inputs Prassure arid Temperature Output si Single Value Table Pressure psigazuga Temperature
'. F Citctza pawn Sub saturated O,"" .. uperhatied w ~er doom Vapour Pressure Saturation Temperature Specifi Entalpy Of Wate (h)Density or Water Specifc Volume of Water (v)Specifc Entropy of Water (a,)Specifc Heat of Water Speed of sound Dynamic Viscosity of Water 530.374 i4178 35 6 .92848E-04 bar gauge mJtg J11kg K J11g K ntis Pasa V, iv¸,ttp://www.spiraxsarco.comlresources/steam-tables/sub-saturated-water.asp X6C NA15 X6CNA1 5 ~Attachment C2 SetC-Sheet C2-6 CRTD-Vol.
58 ASME INTERNATIONAL STEAM TABLES FOR INDUSTRIAL USE Second Edition Based on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97)
Prepared by WILLIAM T. PARRY General Electric Company JAMES C. BELLOWS Siemens Energy, Inc.JOHN S. GALLAGHER Retired ALLAN H. HARVEY National Institute of Standards and Technology on behalf of ASME Research and Technology Committee on Water and Steam in Thermal Systems, Subcommittee on Properties of Steam THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS Three Park Avenue Oe New York, N.Y. 10016 X6CNA1 5 Attachment C2 Sheet C2-7 Table U-2. Properties of Saturated Water and Steam (Pressure) p Volume, frilb., Enthalpy, Btu/)b 1 m Entropy, Btu/(lb 1-*R) p_p!_.!.1'(0 F) vL Av ~ v hL. Ah hv S L AS sv psi 01.1 0.12 8.14 1t.16 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7 0.8 0.9 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 35.0015 39,632 43,620 47,134 53.132 59.293 64.452 68.906 72.834 76.355 79.549 85.180 90.046 94.342 98. 195 i 01.694 (07.869 113.212 117.934 122. 174 (26.027 129.563 132,835 135.88 I 138,734 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7,.5 3.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12..0 12.5 13.0 13.5 14.0 14.696 15 16 17 18 19 20 21 22 23 24 25 14 1.418 147.51(5 152.913 (57 .767 162.184 166.243 170.002 173.505 176.790 179.883 182.807 185.582 188.224 190.746 193.160 (95.475 (97.700 199.842 201.908 203.904 205.834 207.704 209.517 211.954 212.988 2 16.273 219.392 222.363 225.201l 227.9 18 230.526 233.034 235.450 237.781 240.034 0(.016 0120 2945.0 0,016 020 2476.9 0.016 020 2139.9 0.016 022 1885.3 0.0(6027 1525.9 (0.016 034 (235.2 0.016 042 1039.4 0.016 050 898.40 0.016 057 791.84 0.0 16 065 708.43 0.016073 641.31 0.016 087 539.89 0.016 (00 466.80 0.016 113 411.56 0.016 125 368.30 0.016 137 333.49 0.0 16 158 280.87 0.016 (78 242.93 0.016 196 214.25 0.016214 191.79 0.016 230 173.70 0.016 245 158.82 0.016 260 146.35 0.016 273 135.75 0.0(6 287 126.63 0.016 299 118.69 0.0(6 329 102.70 0.016 356 90.612 0.016382 81.137 0.016 406 73.507 0.016 428 67.226 0.016 449 61.963 0.0 16 469 57.487 0.016 488 53.632 0.016 507 50.277 0.016 524 47.328 0.016541 44.717 0.0(6 558 42.387 0.016 573 40.295 0.016 589 38.406 0.016604 36.692 0.016618 35.128 0.016 632 33.697 0.0 16 646 32.381 0.016659 31.167 0.016 672 30.044 0.0 16 685 29.002 0.016697 28.031 0.016 714 26.787 0.016 721 26.278 0.016 745 24.738 0.016 767 23.374 0.016788 22.156 0.0(6 809 21.063.0(06 829 20.075 0.016849 19.179 0.016 868 (8.361 0.016 886 17.613 0.016 904 16.924 0,016922 16.289 2945.0 2476.9 2139.9 1885.3 (525.9 (235.2 1039.4 898.41 791.86 708.44 641. 32 539.90 466.81I 4(1.57 368.32 333.51 280.89 242.95 214.27 191.80 173.72 158.84 (46.37 135.77 126.65 118.70 102.72 90.628 8 1.154 73.523 67.242 61.979 57.503 53.649 50.293 47.345 44.733 42.404 40.3 12 38.423 36.708 35.1(45 33.714 32.398 31.184 30.061 29.018 28.048 26.804 26.295 24.755 23.390 22.173 21.079 20.092 19.196 (8.378 i17.629 16.941!16.306 3.009 7.662 11.668 (5.193 21.204 27.37 I 32.532 36.985 40.91 I 44.428 47.6(8 53.242 58.1(00 62.389 66.236 69.728 75.892 8 1.225 85.939 90. 172 94.0(9 97.55 I (00.82 103.86 106.71 109.39 115.49 (20.89 125.74 130.16 134.23 137.99 141.50 (44.79 (47.90 150.83 153.61 156.27 158.80 161.22 163.55 165.79 167.94 (70.02 (72.03 173.97 (75.85 177.68 180.13 181.18 (84.49 (87.63 190.63 (93.50 (96.25 198.88 201.42 203.86 206.23 208.51 (073.5 1076.5 (070.9 (078.5 (068.6 (080.3 1066.6 1081.8 (063.2 (084.4 (059.8 1087.1I (056.8 (089.4 (054.3 1091.3 1052.1 (093.0 (050.1 ( 094,5 (048.3 (095.9 (045.1 (098.3 (042.3 ((00.4 (039.9 ((02.3 (037.7 i1103.9 1035.7 1105.4 (032.2 (108.1I 1029.1 (((0.3 (026.4 ((32.3 (024.0 ( 114.1 1021.7 (((15.8 1019.7 (117.2 1017.8 (((8.6 (0(6.0 (119.9 10(4.4 1121.1 10(2.8 ((22.2 (009.2 ((24.7 (006.1 1(26.9 (003.2 ((28.9 (000.6 ((30.7 998.14 1132.4 995.90 ((133.9 993.79 (135.3 991.81 ((36.6 989.94 ((37.8 988.17 1139.0 986.48 1140.1 984.87 1141.1 983.32 (142.1 981.84 (143.1 980.42 1(44.0 979.04 ((44.8 977.71 ((45.7 976.43 ((46.4 975.19 (147.2 973.98 1148.0 972.81 ((48.7 971.67 (149.4 970.14 1150.3 969.48 ((50.7 967.40 1 151.9 965.42 1153.1 963.52 ((54.2 961.70 ((55.2 959.95 ((56.2 958.26 1157.1I 956.63 ((58.0 955.05 ((58.9 953.52 1(59.7 952.04 ((60.5 0.0061 0.01(55 0.0235 0.0304 0.0422 0.0542 0.064 I 0.0725 0.0799 0.0865 0.0925 0.1028 0.1117 O. 1195 0.1264 0.1(326 0.1435 O. 1529 0.16(1 0. 1684 0. (750 0.1810 0. 1865 0.19(6 0. 1964 0.2009 0.2(10 0.2(98 0.2277 0.2349 0.24(4 0.2474 0.2529 0.2581 0.2630 0.2675 0.27(9 0.2760 0.2799 0.2836 0.2871 0.29O5 0.2938 0.2969 0.3000 0.3029 0.3057 0.3084 0.3(21 0.3 137 0.3 186 0.3232 0.3276 0.33(8 0.3358 0.3396 0.3433 0.3468 0.3502 0.3534 2.1701 2.1447 2.1(233 2.1046 2.0734 2.042 I 2.0164 1.9947 (.9758 (.9591 1.9441 1.9182 1.8962 (.8770 1.8601 (.8450 (,8187 (.7964 1.7770 1.7599 1.7445 (.7305 1.7(78 (.7060 1.6951I 1.6849 (.662 I (.6423 (.6247 (.6090 1.5947 1.5816 (.5695 1.5583 1.5479 1.538 t 1.5288 1.5201 1.5(18 1.5040!(.4965 1.4893 (.4825 I1.4759 1.4696 (.4635!1.4577 1.4520 (.4445 (.44(3 (.4312 1.4217 (.4(27 1.4042 1.3961 (,3884 (.38(0 (.3739 (.3671 1.3606 2.1762 2,1602 2.1(467 2.1351 2.1156 2.0962 2.0805 2.0672 2.0557 2.0456 2.0366 2.02(I0 2.0079 (.9965 (.9865 1.9776 (.9623 (.9493 1.938 I 1.9283 1.9195 1.9(15 1.9043 1.8977 1.89(5 1.8858 1.8731 1.8621 (.8525 1.8438 1.8361 i(.829O 1.8224 (.8(64 1.8108 (.8056 (.8007 1.7961 (.79(7 1.7875 1.7836 (.7799 i(.7763 (.7728 (.7696 (.7664 (.7634 (.7605 1.7566 1.7549 1.7497 (.7449 1.7403 (.7360 (.7319 1.7280 1.7243 (.7207 (.7(73 (.7141 0.1 0.12 0.14 0.16 0.2 0.25 0.3 0.35 0.45 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.6 1.8 2.0 122 2.4 2.6 2.8 3.0 3.5 4.0 4.5 5.0 6.0 6.5 7.0 7.5 8.0 3.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 13.0 13.5 14.0 14.696 15 16 17 18 19 20 21 22 23 24 25 174 X6CNA1 5 Attachment 02 Sheet C2-8 Table U-3 (continued).
Properties of Superheated Steam and Compressed Water I 14 psia (t,,, = 209.52 0 F) f 15 psia({t,,=
2I2.99 °F) I 16 psia (t = 216.27 °F)Sat. Liq.Satl. yap.32 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 430 490 500 510 520 530 540 550 560 570 580 590 600 0.016 697 177.68 0.3084 28.048 1149.4 1.7605 0.016 021 0.024 0.0000 0.016019 8.073 0.0162 0.016 023 18.106 0.0361 0.016034 28.1 18 0.0555 0.016051 38,116 0.0746 0.016073 48.106 0.0933 0.016 100 58.090 0.1116 0.016 131 68,071 0.1296 0.016 165 78.052 0.1473 0.016 204 88.033 0,1647 0.016246 98.017 0.1817 0.0!6 292 108.00 0.1985 0.016 341 118.00 0.2151 0.016393 128.00 0.2313 0.016 449 138.01 0.2473 0.016 507 148.03 0.263 I 0.016 569 158.06 0.2787 0.016633 168.10 0.2940 28.0'70 11I 49.6 1.7608 28"521 1154.5 1.7681 28.969 1159.4 1.7752 29.415 1164.2 1.7822 29.860 1169.0 1.7890 30.303 1173.8 1.7958 30.744 1178.6 1.8023 31.185 1183.4 1.8088 31"624 1188.1 1.8152 32.062 1192.9 1.8215 32.499 1 197.6 1.8277 32.935 1202.3 1.8338 33.371 1207.1I 1.8398 33.806 1211.8 1.8457 34.240 1216.5 1.8516 34.674 1221.2 1.8574 35.107 1225.9 1.8631I 35.540 1230.6 1.8688 35.972 1235.4 1.8743 36.404 1240.1I 1.8799 36.836 1244.8 1.8853 37.267 1249.5 1.8907 37.698 1254.2 1.8961 38.129 1259.0 1.9013 38.559 1263.7 1.9066 38.990 1268.4 1.9117 39.420 1273.2 1.9 169 39.849 1277.9 i1.9220 40.279 1212.7 1.9270 40.708 1287.4 1.9320 41. 137 1292.2 1.9369 41!.567 1297.0 1.9418 41!.995 1301.7 1.9466 42.424 1306.5 1.9514 42.853 1311.3 1.9562 43.281 1316.1 1.9609 43.710 1320.9 1.9656 44.138 1325.7 1.9703 44.566 1330.5 1.9749 44.994 1335.3 1.9794 0.016721 181.18 0.3137 26.295 1150.7 1.7549 0.016 021 0.027 0.0000 0.016 019 8.076 0.0162 0.016 023 18.109 0.0361 0.016 034 28.120 0.0555 0.016 051 38. I1I9 0.0746 0.016073 48,109 0.0933 0.016 100 58.093 0.1116 0,016 130 68.074 0.1296 0.016 165 78.054 0.1473 0.016 204 88.036 0.1646 0.016246 98.019 0.1817 0.016 292 108.01 0.1985 0.016 341 118.00 0.2150 0.016 393 128.00 0.2313 0.016 449 138.01 0.2473 0.016 507 148.03 0.2831 0.0 16 568 158.06 0.2787 0.016633 168.11 0.2940 0.016 701 178,17 0.3092 0.016745 184.49 0,3186 24.755 1151.9 1.7497 0.016021 0.030 0.0000 0.016019 8.079 0.0162 0.016023 18.112 0.0361 0.016 034 28.123 0.0555 0.016051 38.122 0.0746 0.016 073 48.111 0.0933 0.016 100 58.096 0. l11I6 0.016 130 68.077 0.1296 0.016 165 78.057 0,1473 0.016 204 88.038 0.1646 0.016246 98.022 0.1817 0.016 292 108.01 0.1985 0.016 341 118.00 0.2150 0.016 393 128.00 0.2313 0.016 448 138.01 0.2473 0.016 507 148.03 0.2631 0.016 568 158.06 0.2787 0.016633 168.11 0.2940 0.016 701 178.17 0.3092 SaL. Lq.Sat. Vap.32 40 s0 26.591 1154.1 1.7601 27,012 1159.0 1.7672 27.430 I 163.9 1.7742 27.846 1168.7 1.7811 28,261 1173.6 1.7878 28.674 1178.4 1.7945 29.086 1183.1 1.8010 29.497 1187.9 1.8074 29,906 1192.7 1.8137 30.315 1197.4 1.8199 30.723 1202.1I 1.8260 31.131 1206.9 1.8320 31.537 1211.6 1.8380 31,943 1216.3 1.8438 32.349 1221I.1 1.8496 32.754 1225.8 1.8554 33.158 1230.5 1.8610 33.562 1235.2 1.8666 33.966 1239.9 1.872 I 34,369 1244.7 1.8716 34.772 1249.4 1.8830 35.174 1254.1 1.8884 35,577 1258.9 1.8936 35.979 1263.6 1.8989 36.381 1268.3 1.9041 36.782 1273.1I 1.9092 37.184 1277.8 1.9143 37.585 1282.6 1.9193 37.986 1287.3 1.9243 38.387 1292.1I 1.9292 38,787 1296.9 1.9341 39.188 1301.6 1.9390 39.588 1306.4 1.9438 39.989 1311.2 1.9485 40.389 1316.0 1.9533 40.739 1320.8 1.9580 4I. 189 1325.6 1.9626 41,589 1330.4 1.9672 41,988 1335.3 1.9718 24,903 25.299 25.692 26.084 26.474 26.862 27.249 27.635 28.020 28.405 28.788 29.,170 29,552 29.933 30.3 14 30.694 31.074 3 1.453 3 1.832 32.210 32.588 32.966 33.344 33.721 34.098 34.475 34.851I 35.228 35.6O4 35.980 36.356 36.732 37. 107 37.483 37.858 38.233 38.608 38.983 39.358 1153.7 1158.7 1163.6 1168.4 1173.3 1I78.1 1182.9 1187.7 1192.4 1197.2 1202.0 1206.7 1211.4 1216.2 1220.9 1225.6 1230.4 1235.1 1239.8 1244.5 1249.3 1254.0 1258.7 1263.5 1268.2 1273.0 1277.7 1282.5 1287.2 1292.0 1296.8 1301.6 1306.4 1311.1 1315.9 1320.7 1325.6 1330.4 1335.2 1.7525 1.7597 1.7667 1.7736 1.7804 1.7871 1,7936 1.8000 1.8063 1.8125 1.8187 1.8247 1.8307 1.8366 1.8424 1.8481I 1.8538 1.8594 1.8649 1.8704 1.8758 1.8811 1.8864 1.8917 1.8969 I1.9020 1.9071 1.9121 1.9171 1.9220 1.9269 1.93 18 1.9366 1.9414 1.946 I 1.9508 1.9554 1.9601 1.9646 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 3380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 S70 530 590 600 UNITS: v in ft 1 1/b,,,; h in Btu/Ib., ; s in Btu/(Ibm.°R) 198 X6CNA1 5 Attachment C2 Sheet C2-9 Table U-3 (continued).
Properties of Superheated Steam and Compressed Water 1800 psi. (t:, = 621.07 °F) 2000 pIia (tin= 635.85 0 F) 2...200 pita (:.,ff 649.50 F)t (0 F) h s 1 h s h s [t (F)Sat. Liq.Sal. Vap, 32 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 32,0 330 340 350 360 370 380 390 409 410 420 430 440 450 460 470 480 490 510 520 530 540 550 0.024 7 0.2184 0.015 923 0.015 923 0.015 93!0.015 944 0.015 962 0.015 986 0.016 013 0.016 044 0.0 16 079 0.016 118 0.016 160 0.016 205 0.016 253 0.016 304 0.016 358 0.016 415 0.016 475 0.016 537 0.016 603 0.016 67!0.016 742 0.016 816 0.016 893 0.016 973 0.017 056 0.017 142 0.017 23!I 0.017 324 0.017 420 0.017 5 19 0.017 623 0.017 730 0.017 841 0.017 956 0.018 076 0.018 200 0.018 329 0.018 464 0.018604 0,018 749 0.0183902 0.019 061 0.019 227 0.019 402 0.019 585 0.019 778 0.019 981 0.020 195 0.020 422 0.020 663 0.020 921 0.021 196 0.021 492 0.021 813 0.022 162 0.022 545 0.022 970 0.023 448 648.27 1150.7 5.367 13.3 13 23.232 33.144 43.053 52.960 62.868 72.776 82.687 92.601 102.52 1 12.44 122.37 132.31 142.26 152.22 162.19 172.17 182.16 192.17 202,20 212.25 222.31I 232.40 242.50 252.64 262.80 272.98 283.20 293.45 303.33 314.05 324.41 334.81I 345.26 355.76 366.31 376.92 387.60 398.34 409.15 420.04 431.02 442.09 453.27 464.56 475.96 487.51 499.20 511.06 523.10 535.35 547.84 560.59 573.66 587.10 600.97 615.39 0.8415S!.3063 0.0001 0.0161 0.0358 0.0550 0.0739 0.0925 0.1106 0.1285 0.1461 0.1633 0.1803 0.1970 0.2 134 0.2296 0.2455 0.2612 0.2766 0.2919 0.3069 0.3218 0.3364 0.3509 0.3652 0.3793 0.3932 0.4070 0.4206 0.4341 0.4475 0.4607 0.4738 0.4868 0.4997 0.5125 0.5251I 0.5377 0.5502 0.5626 035750 0.5873 0.5995 0.6117 0.6238 0.6359 0.6480 0.6601 0.6721 0.6842 0.6963 0.7085 0.7207 0.733!I 0.7455 0.758 I 0.7708 0.7838 0.7971 0.8 107 0.025 63 0.1882 0.015 912 0.015 913 0.015 921 0.015 934 0.015 953 0.015 976 0.016 003 0.0 16 035 0.016 070 0.016 108 0.016 15O 0.016 195 0.016 243 0.016 294 0.016 348 0.0 16 405 0.016 464 0.016 527 0.016 592 0.016660 0.016 73!0.016 805 0.016881 0.016 961 0.017044 0.017 129 0.017 218 0.017 310 0.017 406 0.017 505 0.017 607 0.017 713 0.017 824 0.017 938 0.018 057 0.018 180 0.018 309 0.018 442 0.018 581 0.018 726 0.018 876 0.01!9 034 0.019 199 0,019 371 0.0 19 552 0.0 19 743 0.019 943 0.020 154 0.020 378 0.020 615 0.020 867 0.02! 137 0.02! 427 0.021 739 0.022 078 0.022 450 0.022 859 0.023 317 671.80 1136.5 5.960 13.894 23.802 33.703 43.603 53.501 63.400"73.301 83.205 93. 112 103.02 1 12.94 122.86 132.80 142.74 152.69 162.65 172.62 182.61 192.62 202.64 212.67 222.73 232.8!I 242.9!253.03 263.18 273.36 283.56 293.80 304.07 314.38 324.73 335.12 345.56 356.O4 366.58 377.17 387.83 398.55 409.34 420,21 431.16 442.21 453.35 464.60 475.98 487.48 499.12 510.93 522.9!535.09 547.49 560.15 573.11I 586.4!600.11I 614.31 0.8622 1-2864 0.0900 0.0161 0.0357 0.0550 0.0739 0.0924 0. 1105 0. 1284 0. 1459 0.1632 0. 1801 0.1968 0,2132 0.2294 0.2453 0.2610 0.2764 0.2917 0.3O67 0.3215 0.3361I 0,3506 0.3649 0.3790 0.3929 0.4067 0.4203 0.4338 0.4471 0.4604 0.4735 0.4864 0.4993 0.5 120 0.5247 0.5373 0.5497 0.562!0.5744 0.5867 0.5989 0,6111 0.6232 0.6352 0.6473 0.6593 0.67 14 0.6834 0,6955 0.7076 0.7198 0.7320 0.7444 0.7568 0.7695 0.7823 0.7954 0.8089 0.026 68 0. 1627 0.015 901 0.015 903 0.015 910 0.015 924 0.015 943 0.015 966 0.015 994 0.016 025 0.016060 0.016 099 0.016 141 0.016 186 0.016 234 0.016 284 0.016 338 0.016 395 0.016 454 0.016 516 0.016 581 0.016 649 0.016 720 0.016 793 0.016 870 0.016 949 0.017 031 0.017 16 0.017 205 0.017 296 0.017 391 0.017 490 0.017 592 0.017 697 0.0 17 807 0.017 92!0.018 039 0.018 161 0.018 289 0.018 421 0.0 13 559 0.0 18 702 0.018 85!0.019 007 0.019 171 0.019 341!0.019 520 0.019 708 0.019 906 0.020 114 0.020 334 0.020 567 0.020 815 0,021 080 0.021I 363 0.021 668 0.021 998 0.022 353 0.022 754 0.023 193 695.09 1120.4 6.551I 14.475 24.370 34.262 44. 151 54.041 63.932 73.825 83.721I 93.62 I 103.53 113.44 123.35 133.28 143.21 153.16 163.11 173.08 183.06 193.06 203.07 213.10 223.15 233.22 243.31 253.43 263.57 273.74 283.93 294.16 304.42 314.72 325.06 335.43 345.85 356.32 366.85 377.42 388.06 398.76 409.53 420.38 431.31 442.33 453.44 464.66 476.00 48"7.46 499.06 510.81 522.73 534.85 547.18 559.75 572.59 585.76 599.31 613.31 0.8825 1.2659 0.0001 0.0161 0.0357 0.0549 0.0738 0.0923 0.1104 0.1283 0. 1458 0.1630 0.1800 0.1966 0.2 130 0.2292 0.245 I 0.2607 0.2762 0.29 14 0.3064 0.3213 0.3359 0.3503 0.3646 0.3787 0.3926 0.4064 0.4200 0.4335 0.4468 0.4600 0.4731 0.4860 0.4989 0.5 116 0.5242 0.5368 0.5492 0.5616 0.5739 0.5862 0.5983 0.6105 0.6225 0.6346 0.6466 0.6586 0.6706 0.6826 0.6946 0.7O67 0.7188 0.73 10 0.7433 0.7556 0.7682 0.7809 0.7939 0.807!Sat. Liq, Sat. Vap.32 40 50 60 70 50 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 310 320 330 340 350 360 370 330 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 560 580 600 570 580 590 609 UNITS: v inl fI 3/Ib. h inl B1/Ibm ; s in BtuI/(Ibm-R) 238 X6CNA1 5 Attachment C2 Sheet C2-1 0 Table U-3 (continued).
Properties of Superhteated Steam and Compressed Water I 2 4 1 1 p"a (,a. ffi662.16
~'F) 2600 p6Ia (t,, = 673.98 *F) 1 7, 8 00psia = 685.03 "F)t (*F) A s v h s ] 6 : t (F)Sat. Liq.Sat. yap.32 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 32,0 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 5OO 0,027 89 0. 407 0.015 890 0.015 892 0.015 900 0.015914 0.015 933 0.0)5 957 0.015 985 0.016016 0.0 16 05 0.016090 0.016 131 0.016 176 0.0)6 224 0.016 275 0.016 328 0.016 385 0.016 444 0.016 506 0,016 571 0.0)6 638 0.016 709 0.016 782 0.0)6 858 0.016 937 0.017 019 0.017 103 0.0)7 191 0.017 283 0.017 377 0.017 475 0.0 17 576 0.017 68)0.017 790 0.017 903 0.018021 0.018 142 0.018 269 0,018 400 0.0)8 536 0.0)8 679 0.018 827 0.018 98)0.019 143 0.019 3)2 0.0 19 488 0.0)9 674 0.0)9 869 0.020 074 0.020 291 0.020 52 I 0.020 764 0.021 024 0.02) 30)0,O21 599 0.021 921 0.022271 0.023 076 7)8.67 1101.9 7.14)15.054 24.938 34.8 19 44.700 54.581I 64 .464 74.349 84.238 94.131 104.03 I1)3.93 123.84 133.76 143.69 153.63 163.57 173.54 183.5)193.50 203.5)I 213.53 223.57 233.63 243.72 253.82 263.96 274.11 284.30 294.52 304.77 315.06 325.38 335.75 346.15 356.61i 367.12 377.68 388.30 398.98 409.73 420.55 431!.46 442.45 453.54 464.72 476.02 487.45 499.00 5)0.71I 522.58 534.63 546.88 559.37 572.1)585,16 598.56 612.38 0.9027 1.2443 0.001)0.0161I 0.0357 0.0549 0.0737 0.0922 0.I 103 0.128)O. 1457 0.1629 0.1798 0.1965 0.2128 0.2290 0.2449 0.2605 0.2760 0.2912 0.3062 0.32)0 0.3356 0.3500 0.3643 0.3784 0.3923 0.4060 0.4)96 0.433 I 0.4464 0,4596 0.4727 0,4856 0.4985 0.5)12 0.5238 0.5363 0.5488 0.5611 0.5734 0.5856 0.5978 0.6099 0.62 19 0.6339 0,6459 0.6579 0.6699 0.6818 0,6938 0.7058 0.7179 0.7300 0.7422 0.7545 0.7669 0.7795 0.7924 0.8055 0.029 38 0.12))0.015 880 0.015 882 0.015 89O 0.0)5 905 0.015 924 0,0)5 947 0.015 975 0.0)6 007 0.0)6042 0.016 080 0.0)6 122 0.0)6 167 0.016 214 0.0)6 265 0.016 319 0.016 375 0.016 434 0.016 496 0.0)6 560 0.0)6 628 0.0)6 698 0.0)6 77)0.0)6 846 0.0)6 925 0.017 006 0.017 09)0.0)7 178 0.0)7 269 0.017 363 0.0)7 460 0.017 561 0.0)7 666 0.017 774 0.017 886 0.018 003 0.0)8 123 0.018 249 0.0)8 379 0.018515 0.0 18 656 0.0)8 802 0.018 955 0.0)9 115 0.0 19 282 0.019 457 0.019641 0.0 19 833 0.020 036 0.020 249 0.020 475 0.020 7)5 0,020 970 0.02) 24)0.021 533 0.02) 847 0.022 186 0.022 557 0.022 965 743.27 1080.2 7.730 15.632 25.505 35.376 45.247 55. 120 64.995 74.873 84.754 94.640 104.53 114.43! 24.33 134.24 144.16 154.10 164.04 173.99 183.96 193.94 203.94 213.96 223.99 234.05 244.12 254.22 264.34 274.49 284.67 294.88 305.12 315.39 325.71 336.06 346.46 356.90 367.39 377.93 388.53 399.20 4039.93 420733 431.61 442.58 453.64 464.79 476.06 487.44 498.96 510.62 522.43 534.42 546.6)I 559.0)571.66 584.60 597.87 6)1.52 0.9236 1.2208 0.0001 0.0161 0.0356 0.0548 0.0736 0.092)0.1)02 0. 1280 0.1455 0.1627 0.1796 0. 1963 0.2127 0.2288 0.2447 0,2603 0,2757 0.2909 0.3059 0.3207 0.3353 0.3498 0.3640 0.378 I 0.3920 0.4057 0.4 193 0.4328 0.446 I 0.4593 0.4723 0.4852 0.4980 0.5108 0.5234 0.5359 0.5483 0.5606 0.5729 0.5851I 0.5972 0.6093 0.6213 0.6333 0.6453 0.6572 0.6691 0.6811I 0.6930 0,7049 0.7 169 0.7290 0,7411 0.7534 0.7657 0,7782 0.79O9 0.8039 0.03) 34 0. 1029 0.0)5 869 0.015 872 0.0)5 880 0.0)5 895 0.0)5 9)4 0.015 938 0.0)5 966 0,015 997 0.0)6032 0.0)6 071 0,0)6 113 0.016 157 0.0)6 205 0.016 255 0.016 309 0.0)6 365 0.016 424 0.0 16 485 0.0)6 550 0.016 617 0.0 16 687 0.016 759 0.016 835 0.016 913 0.016 994 0.017 078 0.017 165 0.017 255 0.017 349 0.017 446 0.017 546 0.017 650 0.017 758 0.017 869 0.017 985 0.018 105 0.0)8 229 0.018 359 0.0 18 493 0.0)8 633 0.0)8 778 0.0)8930 0.0 19 088 0.0)9 254 0.0)9 426 0.019608 0.019 798 0.0)9 998 0.020 208 0.020 431I 0.020 666 0.020 917 0.02) 183 0.021 468 0.02 1 775 0.022 105 0.022 465 0.022 859 770.20 1053.4 8.3 17 16.2 10 26.071 35.932 45.794 55.658 65.525 75.396 85.270 95.,149 105.03 114.92 124.82 134.73 144.64 154.56 164.50 174.45 184.4)194.39 204.38 214.39 224.41 234.46 244,53 254.62 264.73 274.87 285.04 295.24 305.47 315.73 326.04 336.38 346.76 357.19 367.66 378.19 388.78 399.42 410.13 420.92 431.77 442.7 1 453.74 464.87 476.10 487.45 498.92 510.54 522.30 534.23 546.35 558.68 571!.24 584.08 597.22 6 10.72 0.9462 1. 1936 0,.001 o.0160 0.0356 0.0547 0.0735 0.0920 0.1101 0. 1279 0. 1 454 0.1626 0.1795 0.196)0.2 125 0.2286 0.2445 0.2601 0.2755 0,2907 0.3057 0.3205 0.335)0.3495 0.3637 0.3778 0.3917 0.4054 0.4 190 0.4324 0.4457 0.4589 0.4719 0.4848 0.4976 0.5103 0.5229 0.5354 0.5478 0.5601 0.5724 0.5846 0.5967 0.6087/0.620}7 0.6327 0.6446 0.6565 0.6684 0.6803 0.6922 0.704 I 0.7160 0.7280 0.7401 0.7522 0.7645 0.7769 0.7895 0.8023 Sac. Lcq Sat. Vap 32 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 20o 210 220 230 240 250 260 270 2,80 290 300 310 32,0 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 510 520 530 540 560 580 600 UNITS: vin ft'/1b,,;
h in Btu/Ibm,;
£ in BluI(lbm.*R) 240 X6CNA15 X6CNAI5 ~~ATTACHMENT C3 SETC-SHEET C3-1 Bornt, Butch From: Collins, Reggie V.Sent: Wednesday, August 27, 2014 9:25 PM To: Pournia, Faramarz Cc: Hayden, Mark S.; Bornt, Butch; Martin, Jlustin C.; Bell, Weston Kevan; Olive, Celeste
Subject:
Re: Vogtle EAL Setpoints We always have a permit open for Ul and U2 PVS because it is a continuous release point for 1/2RE 12442-C and 1/2 RE 12444-C.We generate a new permit each week.Reggie Collins Sent from my iPhone From: Hayden, Mark S.Sent: Wednesday, August 27, 2014 4:15 PM To: Bornt, Butch; Martin, Justin C.; Bell, Weston Kevan; Olive, Celeste Cc: Poumnia, Faramarz; Collins, Reggie V.
Subject:
RE: Vogtle EAL Setpoints Butch is in need of help on the below question.He does have a very short fuse on this project, he has not gotten a response from this original request, can any of you help him with the required information??
Mark Hayden Emergency Preparedness Supervisor Southern Nuclear Co.- Plant Vogtle 1 & 2 Office (706) 826-3792 Cell (706) 551-2019 From: Bomnt Butch Sent: Wednesday, August 27, 2014 2:42 PM To: Hayden, Mark S.
Subject:
Vogtle EAL Setpoints Importance:
High Mark -I am revising the calculation that supports the EAL setpoints in NMP-EP-110-GL03.
Several of these are based on gaseous effluent monitors ARE-0014, RE-1244CC, RE-12444C, & RE-12839C high alarm setpoints.
I have reviewed procedure 34333-C for these setpoints.
The following table summarizes my results.SMonitor IRelease Path IHigh Alarm Setpoint I Gain Factor
Reference:
Procedure X6CNA15 X6CNAI5 ~~ATTACHMENT C3 SETC-SHEET C3-2 (!Cl/cc) [( ,Ci/cc)/cpm]
34333-C ARE-0014 Waste Gas Process Effluent Line Sections 10.1 & 10.2 During Release Release Permit Dependent Between Releases 9.99E+20 1.00E+00 RE-12442C Plant Vent Sections 7.1 & 7.3 During Release Release Permit Dependent Between Releases Not specified 3.28E-08 RE-12444C Plant Vent Sections 8.1 & 8.3 During Release Release Permit Dependent No Activity Not specified 1.04E-08 RE-12839C Steam Jet Air Ejector -Normal Sections 9.1 & 9.3 No Confirmed Primary-to-Secondary 7.84E-04 1.04E-08 Question:
what are the setpoints for RE-12442C
& RE-12444C between releases?I e-mailed the Rad Mon System system engineer and his supervisor Monday (Westin Bell and Justin Martin), but neither has read nor responded.
While I don't expect them to have an answer, I thought they'd be able to point me at the correct POC.I'm on a short timeline here, and I would appreciate any help the site can provide me.Thank you.&4!c PE Nuclear Safety Analysis Fleet Design Engineering Southern Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bborntc.southernco.com"Keep silence for the most part, and speak only when you must, and then briefly." -Epictetus X6CNA15 ATTACHMENT 04 SHEET 04-1 Bornt, Butch From: Collins, Reggie V.Sent: Thursday, August 28, 2014 3:38 PM To: Bornt, Butch
Subject:
RE: Turbine Building Vent Release Permit -1/2RE-12839C It is a continuous release path; however, we do not have a primary to secondary leak so a permit is not required.Thanks, Reggie Collins Vogtle Chemistry Manager Phone: 706-826-3850 Beeper 706-727-0080 From: Bornt, Butch Sent: Thursday, August 28, 2014 3:25 PM To" Collins, Reggie V.
Subject:
Turbine Building Vent Release Permit -1/2RE-12839C Reggie -Is the Turbine Building Vent also considered a continuous release path, with a new permit issued each week?The Steam Jet Air Ejectors discharge to the environment via the Turbine Building Vent.Thank you for your help.B'4 z4q., PE Nuclear Safety Analysis Fleet Design Engineering Southemn Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bbornt@southernco.com"Keep si/ence for the most part, and speak only when you must, and then briefly."-
Epictetus 1 X6CNA15 X6CN~l 5 ATTACHMENT C5 C-C5-1 Bomnt, Butch From: Stanley, John B.Sent: Thursday, September 04, 2014 4:40 PM To: Hayden, Mark S.; Bornt, Butch; Cowman, Ronald S.Cc: Griffin, Michael J.; Churchwell, J. John; Waidrup, Charles Steve; Stanley, John B.
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes No Air to Air openings in Mode 5&6. They are not required to be design pressure proof but must be closed. We have dedicated closure crews for other opening such as the equipment hatch.From: Hayden, Mark S.Sent: Thursday, September 04, 2014 5:31 PM To: Bornt, Butch Cc: Griffin, Michael J.; Stanley, John B.; Churchwell, J. John; Waldrup, Charles Steve
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes Butch, We do use penetrations during the outage to bring in Westinghouse communications for Eddy current testing and other activities such as sludge lance hoses etc.As for the details on acceptance criteria and procedures that govern this, I will pass along to someone else.Do any of you who I've CC'd on this email know who may have answers for Butch??Mark Hayden Emergency Preparedness Supervisor Southern Nuclear Co.- Plant Vogtle 1 & 2 Office (706) 826-3792 Cell (706) 551-2019 From: Bornt, Butch Sent: Thursday, September 04, 2014 4:12 PM To: Hay'den, Mark S.
Subject:
Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes Mark -Sorry to bother you, but can you point me at somebody who can answer some questions about containment integrity during Modes 5&6?Does Vogtle use temporary penetrations as Farley does?If so, what procedure governs their use and sets acceptance criteria?Thanks.1 X6CNA1 5 ATTACHMENT C5 C5-2qw, PE Nuclear Safety Analysis Fleet Design Engineering Southern Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bbornt@southernco.com"Keep silence for the most part, and speak only when you must, and then briefly."-
Epictetus Stanley, John B.Oetiaons Outage Manager Generi Org.~atui Ptn eA..clts Member Of tiame AJddess: C,4.,Suite Catvfry~e:~
John1 fre: Star~.~v, Bon .
GA USA St.ie~JBS'Mf~f Oneraban.
Outage '.lanage,&ntwrrt t,WBd: QpuraenmI Ptat I&Ad9 to~p.I.ds Ac9a~a-I 2 X6CNA15 X6CNAI 5 ~ATTACHMENT C6 SET0-SHEET C6-1 Bomt, Butch From: Cowman, Ronald S.Sent: Friday, September 05, 2014 5:37 AM To: Stanley, John 8.; Hayden, Mark S.; Bornt, Butch Cc: Griffin, Michael J.; Churchwell, J. John; Waidrup, Charles Steve
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes When we install the Sludge Lance penetration, we have isolation valves both inside and outside containment.
From: Stanley, John B.Sent: Thursday, September 04, 2014 5:40 PM To: Hayden, Mark S.; Bornt, Butch; Cowman, Ronald S.Cc: Griffin, Michael J.; Churchwell, .J. John; Waldrup, Charles Steve; Stanley, John B.
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes No Air to Air openings in Mode 5&6. They are not required to be design pressure proof but must be closed. We have dedicated closure crews for other opening such as the equipment hatch.From: Hayden, Mark S.Sent: Thursday, September 04, 2014 5:31 PM To: Bornt, Butch Cc: Griffin, Michael J.; Stanley, John B.; Churchwell, J. John; Waldrup, Charles Steve
Subject:
RE: Vogtle Containment Penetrations
-Cold Shutdown & Refueling Modes Butch, We do use penetrations during the outage to bring in Westinghouse communications for Eddy current testing and other activities such as sludge lance hoses etc.As for the details on acceptance criteria and procedures that govern this, I will pass along to someone else.Do any of you who I've CC'd on this email know who may have answers for Butch??Mark Hayden Emergency Preparedness Supervisor Southern Nuclear Co.- Plant Vogtle 1 & 2 Office (706) 826-3792 Cell (706) 55:1-2019 From: Bomt, Butch Sent: Thursday, September 04, 2014 4:12 PM To: Haydlen, Mark S.
Subject:
Vogtte Containment Penetrations
-Cold Shutdown & Refueling Modes 1 X6CNA15 X6CNAI5 ~~ATTACHMENT C6 SETC-SHEET C6-2 Mark -Sorry to bother you, but can you point me at somebody who can answer some questions about containment Integrity during Modes 5&6?Does Vogtle use temporary penetrations as Farley does?If so, what procedure governs their use and sets acceptance criteria?Thanks.& ed PE Nuclear Safety Analysis Fleet Design Engineering Southern Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bbornt@ southernco.*com T M Keep silence for the most part, and speak only when you must, and then briefly."-
Epictetus Cowman, Ronald S.UPpl~emental Generj O~gamuatcn Phone.ftlotes Piembu Of
~II Erat: Address R I~ S Last 7821 Rye' Rna: GA o~m: USA ter tefnU: MaaaneDC co:t V a g9 e 1'Add.m wtcm Acior X£ N KO i ":C :c 2 Southern Nuclear Design Calculation SPlant: Vogtle IUnit: 1&2 [Calculation Number: X6CNA15 [Sheet: D-1 Attachment D -TEDE & Thyroid CDE Dose Calculations DescrptionNumber Descrptionof Pages D1 -Plant Vent Stack TEDE & Thyroid CDE Calculations 6 D2A -SJAE Release Path TEDE & Thyroid CDE Calculations 6 (No Core Damage)D2B -SJAE Release Path TEDE & Thyroid CDE Calculations 6 (Core Damage)I _____________
4 4 4 4 4 4 4 4 4 4 Total Number of Pages Including Cover Sheet 1 19 X6CNA15 X6CNAI 5 ~ATTACHMENT D1 HETD-SHEET D1-1 Plant Vent Stack Release Path TEDE & Thyroid CDE Calculations Note: Method described in "TEDE & Thyroid CDE Calculations" in METHODS section of calc main body.Postulated Release Activity XRLS "" Release Concentration XRLS = [Partition Factor x Xrcs (gCilg)] x [pris (glcc)]Partition Factors Noble Gases: 1.0 Iodines Primary coolant leakage to steam generator:
1 .0E-02 Condenser thru SJAEs 1 .0E-04 RCS -> S/G -> Condenser
-> SJAEs: 1 .0E-06 Xrcs = RCS coolant activity (pCi/cc)Xrcs = RCS Equilibrium Activity (pCi/g) +[Release Fraction x Core Inventory (Ci) x (1 .0E+06FCi/1 Ci)]/MRcs (g)Release Fractions 1 .0 for Noble Gases for core damage 0.4 for Iodine for core damage 0 for no core damage MRCS = RCS coolant mass (g)MRCS = 2.53E+08 g pris = Density of release fluid (g/cc)pris = 1 .00E+00 g/cc [Arbitrary Value]
X6CNA15 X6CNA1 5 ~ATTACHMENT D1 HETD-SHEET D1-2 Isotope Core Core Xeq Xrcs jg) Partition XRLS Inventory Release Factor (Ci) Fraction Kr-85 1.04E+06 1.00 8.37 4.1E+03 1.00 4.1E+03 Kr-85m 2.68E+07 1.00 2.04 1.1IE+05 1.00 1.1IE+05 Kr-87 4.93E+07 1.00 1.28 1 .9E+05 1.00 1 .9E+05 Kr-88 7.02E+07 1.00 3.68 2.8E+05 1.00 2.8E+05 Xe-131 m 7.13E+05 1.00 2.02 2.8 E+03 1.00 2.8 E+03 Xe-133 2.12E+08 1.00 256 8.4 E+05 1.00 8.4 E+05 Xe-133m 3.01E+07 1.00 17.60 1.2E+05 1.00 1.2E+'05 Xe-135 4.65E+07 1.00 8.30 1.8E+05 1.00 1.8 E+05 Xe-135m 4.18E+07 1.00 0.56 1.7E+05 1.00 1.7E+05 Xe-138 1.69E+08 1.00 0.74 6.7E+05 1.00 6.7E+05 I-131 1.03E+08 0.40 2.91 1.6E+05 0.01 1.6E+03 1-132 1.50E+08 0.40 2.96 2.4E+05 0.01 2.4E+03 I-133 2.10E+08 0.40 5.56 3.3 E+05 0.01 3.3 E+03 I-134 2.26E+08 0.40 0.69 3.6E+05 0.01 3.6E+03 1-135 1.95E+08 0.40 2.72 3.1E+05 0.01 3.IE+03 X6CNA15 X6CNA1 5 ~ATTACHMENT D1 HETD-SHEET D1-3 Postulated Release TEDE Calculations TEDE = Total Effective Dose Equivalent (mREM)TEDE = EDE + CEDE EDE = Effective Dose Equivalent (mREM) from external exposure EDE = DCFFGR-12 X XEAB X texp DCFFGR-12
= FGR #12 dose conversion factor [(mREM/hr)/(#iCi/
cc)] CEDE = Committed Effective Dose Equivalent (mREM) from inhalation CEDE = DCFFGR-11 X XEAB X BR X texp DCFFGR-11
= FGR #11 dose conversion factor (mREM/jiCi)
XEAB= Radionuclide concentration at Exclusion Area Boundary (FtCi/cc)
XEAB= [QRLS (m^3/sec)]
x [X/Q (sec/m*3)]
x [XRLS (pCi/cc)]Qris = Release flow rate (mA3/sec)Qris = 187,000 CFM x [1 mini60 sec] x [0.0283 mA3/ft*3]Qris = 88.3 mA3/sec X/Q = Atmospheric dilution factor (sec/mA3)X/Q = 4.62E-07 sec/m3 texp = Exposure time texp =1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = Breathing Rate (mA3/sec)BR = 3.47E-04 m^3/sec BR = I1.25E+06 cc/hr = m^3/sec x [(1 .0E6 cc)/(1 mA3)] x [3600 sec/I hr]
X6CNA15 X6CNAI 5 ~ATTACHMENT D1 HET0-SHEET D1-4 Isotope Release XEAB FGR-12 EDE FGR-11 CEDE Activity (jltCilcc)
DCF (mREM) DCF (mREM)(mREMIhr)l (mREM/(l.tCi/cc) lpCi)Kr-85 4.1E+03 1.7E-01 1.59E+I03 2.7E+02 0.00E+00 O.OE+OO Kr-85m 1.1E+05 4.3E+00 9.96E+04 4.3E+05 O.00E+OO O.OE+OO Kr-87 1 .9E+05 7.9E+00 5.49E+'05 4.4E+06 0.00E+00OO 0.0E+O0 Kr-88 2.8E+05 1.1E+01 1.36E+06 1.5E+07 O.00E+O0 O.OE+00 Xe-131m 2.8E+03 1.1IE-01 5.18E+03 6.0E+02 O.OOE+OO O.OE+OO Xe-133 8.4E+05 3.4E+01 2.08E+04 7.1E+05 O.OOE+OO O.0E+O0 Xe-133m 1.2E+05 4.9E+00 1,82E+04 8.9E+04 O.OOE+OO O.0E+O0 Xe-135 1.8E+05 7.5E+00 1.59E+05 1.2E+06 0.00E+00 0.OE+OO Xe-135m 1.7E+05 6.7E+00 2.72E+05 1.8E+06 O.OOE+OO 0.OE+OO Xe-138 6.7E+05 2.7E+01 7.69E+05 2.1E+07 O.OOE+00 O.OE+OO 1-131 1.6E+03 6.6E-02 2.42E+05 1.6E+04 3.29E+01 2.7E+06 1-132 2.4E+03 9.7E-02 1.49E+06 1.4E+05 3.81E-01 4.6E+04 1-133 3.3E+03 1.4E-01 3.92E+05 5.3E+04 5.85E+00 9.9E+05 1-134 3.6E+03 1.5E-01 1.73E+06 2.5E+05 1.31E-01 2.4E+04 1-135 3.1E+03 1.3E-01 1.06E+06 1.3E+05 1.23E+00 1.9E+05 Total = 4.6E+07 mREM Total = 4.0E+06 mREM TEDE = EDE + CEDE EDE = 4.6E+07 mREM CEDE = 4.0E+06 mREM TEDE = 4.9E+07 mREM X6CNA15 X6CNA1 5 ~ATTACHMENT D1 HETD-SHEET D1-5 100 & 1000 mREM TEDE Thresholds Xioo = 100 mREM TEDE Noble Gas concetration (j, Ci/cc)Xioo = [(100 mREM)/(TEDE mREM)] x XRLS TEDE = 4.9E+07 mREM Xioo = 2.0E-06 X XRLS Xioo0 = 1000 mREM TEDE Noble Gas concetration Xiooo =l0 xXioo Isotope XRLS Xi00 Xl000 (lpCi/cc) (pCilcc) (lpCilcc)Kr-85 4.1E+03 8,3E-03 8.3E-02 Kr-85m 1.1 E+05 2,1E-01 2.1E+00 Kr-87 1 .9E+05 3.9E-01 3.9E+00 Kr-88 2.8E+05 5.6E-01 5.6E+00 Xe-131 m 2.8E+'03 5.7E-03 5.7 E-02 Xe-133 8.4E+'05 1.7E+00 1.7E+01 Xe-133m 1.2E+05 2.4E-01 2.4E+00 Xe-135 1.8 E+05 3.7 E-01 3.7 E+00 Xe-135m 1.7E+05 3.3E-01 3.3E+00 Xe-I138 6.7E+05 I1.3E+'00 I1.3E+01 I-131 1.6E+03 3.3E-03 3.3E-02 I-132 2.4E+03 4.8E-03 4.8E-02 I-133 3.3E+03 6.7E-03 6.7E-02 I-134 3.6E+03 7.2E-03 7.2E-02 I-135 3.1E+03 6.2 E-03 6.2 E-02 Totals 5.2E+00 5.2E+01 pCilcc pCilcc a X6CNA15 X6CNAI 5 ~ATTACHMENT D1 HET0-SHEET D1-6 Thyroid CDE Calculations CDETHY = Thyroid Committed Dose Equivalent (mREM) from inhalation CDETHY = DCFFGR-11 X XEAB X BR x texp DCFFGR-.11
= FGR #11 dose conversion factor (mREM/p#Ci/cc) texp = 1.00 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = 1 .25E+06 cc/hr X500T = 500 mREM Thyroid CDE Noble Gas concentration
(#tCi/cc)X50OT = [(500 mREM CDE)/(CDETHY mREM)] x XRLS X500r = 500/ 1 .3E+08 x XRLS X5oom = 4.0E-06 x XRLS X5000T = 5000 mREM Thyroid CDE Noble Gas concentration (pCi/cc)XSOOOT = 1 0 X X5OOT Postulated Release Thyroid CDEThresholds Isotope XEAB FGR-11I CDETHY XRLS X500T X5000T (p.Cilcc)
DCF (mREM) (jltCi/cc) (lpCi/cc) (mREM/ipCi)Kr-85 1.7E-01 0.00E+00 0.OE+00 4.1 E+03 1.6E-02 1.6E-01 Kr-85m 4.3E+00 0.00E+00 0.0E+00 1.1IE+05 4.2E-01 4.2E+00 Kr-87 7.9E+00 0.00E+00 0.0E+00 1.9E+05 7.7E-01 7.7E+00 Kr-88 1.IE+01 0.00E+00 0.OE+00 2.8E+05 1.1IE+00 1.1E+01 Xe-131m 1.1E-01 0.00E+00 0.0E+00 2.8E+03 1.1E-02 1.1E-01.Xe-I133 3.4E+01 0.00E+00 0.0E+00 8.4E+05 3.3E+00 3.3E+01 Xe-133m 4.9E+00 0.00E+00 0.0OE+00 1.2E+05 4.7E-01 4.7E+00 Xe-135 7.5E+00 0.00E+00 0.0E+00 1.8E+05 7.3E-01 7.3E+00 Xe-135m 6.7E+00 0.00E+00 0.0E+00 1.7E+05 6.6E-01 6.6E+00 Xe-I138 2.7E+01 0.00E+00 0.0E+00 6.7E+05 2.7E+00 2.7E+01 1-131 6.6E-02 1.08E+03 9.0E+07 I-132 9.7E-02 6.44E+00 7.8E+05 , 1-133 1.4E-01 1.80E+02 3.0E+07 I-134 1.5E-01 1.07E+00 1.9E+05 I-135 1.3E-01 3.13E+01 4.9E+06 -Total CDETHY =1 .3E+08 mREM Totals I1.OE+O1 pC i/cc I1.0E+02 pC i/cc a.
X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASHED2-SHEET D2A-1 SJAE Release Path TEDE & Thyroid CDE Calculations (No Core Damage)Note: Method described in "TEDE & Thyroid CDE Calculations" in METHODS section of calc main body.Postulated Release Activity XRLS = Release Concentration XRLS = [Partition Factor x Xrcs (jCi/g)] x [pris (g/cc)]Partition Factors Noble Gases: 1.0 Iodines Primary coolant leakage to steam generator:
1 .0E-02 Condenser thru SJAEs 1 .0E-04 RCS -> SIG -> Condenser
-> SJAEs: 1 .0E-06 Xrcs = RCS coolant activity '(pCi/cc)Xrcs = RCS Equilibrium Activity (jiCi/g) +[Release Fraction x Core Inventory (Ci) x (1 .0E+06jiCi/1 Ci)]/MRcs (g)Release Fractions 1.0 for Noble Gases for core damage 0.4 for Iodine for core damage 0 for no core damage MRCS = RCS coolant mass (g)MRCS = 2.53E+08 g prls = Density of release fluid (g/cc)pris = 1 .00E+00 g/cc [Arbitrary Value]
X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASHEDA2 SHEET D2A-2 Isotope Core Core Xeq Xrcs ilg) Partition XRLS Inventory Release Factor (Ci) Fraction Kr-85 1 .04E+06 0.00 8.37 8.4E+00 1.00 8.4E+00 Kr-85m 2.68E+07 0.00 2.04 2.0E+00 1.00 2.0E+00 Kr-87 4.93E+07 0.00 1.28 1.3E+00 1.00 1.3E+00 Kr-88 7.02E+07 0.00 3.68 3.7E+00 1.00 3.7E+00 Xe-131 m 7.13E+05 0.00 2.02 2.0E+00 1.00 2.OE+00 Xe-133 2.12E+08 0.00 256 2.6 E+02 1.00 2.6E+02 Xe-133m 3.01E+07 0.00 17.60 1.8E+01 1.00 1.8E+01 Xe-135 4.65E+07 0.00 8.30 8.3E+00 1.00 8.3E+00 Xe-135m 4.18E+07 0.00 0.56 5.6E-01 1.00 5.6E-01 Xe-138 1.69E+08 0.00 0.74 7.4E-01 1.00 7.4E-01 I-131 1.03E+08 0.00 2.91 2.9 E+00 1.00E-06 2.9E-06 I-132 1.50E+08 0.00 2.96 3.0E+00 1.00E-06 3.0E-06 I-133 2.10E+08 0.00 5.56 5.6E+00 1.00OE-06 5.6E-06 1-134 2.26E+08 0.00 0.69 6.9E-01 1.O0E-06 6.9E-07 I-135 1.95E+08 0.00 2.72 2.7 E+00 1.00OE-06 2.7E-06 X6CNA15 X6CNA1 5 ~~ATTACHMENT D2ASHEDA3 SHEET D2A-3 Postulated Release TEDE Calculations TEDE = Total Effective Dose Equivalent (mREM)TEDE = EDE + CEDE EDE = Effective Dose Equivalent (mREM) from external exposure EDE = DCFFER-12 x XEAB x texp DCFFGR-12
= FGR #12 dose conversion factor [(mREM/hr)/(j#Ci/
cc)] CEDE = Committed Effective Dose Equivalent (mREM) from inhalation CEDE = DCFFGR-11 X XEAB x BR x texp DCFFGR-11
= FGR #11 dose conversion factor (mREM/pCi)
XEAB= Radionuclide concentration at Exclusion Area Boundary (#Ci/cc) XEAB= [QRLS (m^3/sec)]
x [X/Q (sec/mA3)]
x [XRLS (#tCi/cc)]
Qris = Release flow rate (mA3/sec)Qris = 900 CFM x [1 mini60 sec] x [0.0283 m^3/ftA3]Qris = 0.42 m^3/sec X/Q = Atmospheric dilution factor (sec/m^3)X/Q = 2.55E-06 sec/m3 texp = Exposure time texp =1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = Breathing Rate (m^3/sec)BR = 3.47 E-04 m^3/sec BR = 1 .25E+06 cc/hr = m^3/sec x [(1 .0E6 cc)/(1 m^3)] x [3600 sec/Ilhr]
X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASETDA4 SHEET D2A-4 Isotope Release XEAB FGR-12 EDE FGR-11 CEDE Activity (J4Cilcc)
DCF (mREM) DCF (mREM)(m RE M/h r)/ (m REM/(lpCilcc)
J.LCi)Kr-85 8.4E+00 9.1 E-06 1 .59E+03 1 .4E-02 0.OOE+OO O.OE+OO Kr-85m 2.0E+00 2.2E-06 9.96E+04 2.2E-01 0.OOE+O0 O.OE+O0 Kr-87 1 .3E+00 1 .4E-06 5.49E+05 7.6E-01 O.OOE+OO O.OE+OO Kr-88 3.7E+00 4.0E-06 1 .36E+06 5.4E+00 O.OOE+00O O.OE+OO Xe-131m 2.0E+00 2.2E-06 5.18E+03 1.1IE-02 O.00E+00 O.OE+00 Xe-i133 2.6E+02 2.8E-04 2.08E+04 5.8E+00 0.OOE+00 0.OE+00 Xe-i133m I1.8E+01 1 .9E-05 1 .82E+04 3.5E-01 0.OOE+OO O.0E+O0 Xe-135 8.3E+00O 9.0E-06 1.59E+05 1.4E+00 O.OOE+O0 O.0E+00 Xe-135m 5.6E-01 6.1E-07 2.72E+05 1.6E-01 O.OOE+OO 0.0E+00 Xe-i138 7.4E-01 8.0E-07 7.69E+05 6.2E-01 0.OOE+OO 0.OE+OO 1-131 2.9E-06 3.2E-12 2.42E+05 7.6E-07 3.29E+01 i.3E-04 1-132 3.0E-06 3.2E-12 1.49E+06 4.8E-06 3.81E-01 1.5E-06 1-133 5.6E-06 6.0E-12 3.92E+05 2.4E-06 5.85E+00 4.4E-05 1-134 6.9E-07 7.5E-13 1.73E+06 1.3E-06 1.31 E-01 1.2E-07 1-135 2.7E-06 2.9E-12 1.06E+06 3.1E-06 1.23E+00 4.5E-06 Total = 1.5E+01 mREM Total = 1 .8E-04 mREM TEDE = EDE + CEDE EDE =CEDE =TEDE = 1.5E+01 1 .5E+01 mREM 1.8E-04 mREM mREM X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASHED2-SHEET D2A-5 100 & 1000 mREM TEDE Thresholds Xioo Xiooo Xlooo= 100 mREM TEDE Noble Gas concetration = [(100 mREM)/(TEDE mREM)] x XRLS TEDE = I1.5E+01 mREM= 6.8E+00 X XRLS= 1000 mREM= 10 xXioo TEDE Noble Gas concetration (pCi/cc)Isotope XRLS Xi00 Xl000(p.Ci/cc) (lpCi/cc)Kr-85 8.4E+00 5.7E+01 5.7E+02 Kr-85m 2.OE+00 I1.4E+01 I1.4E+02 Kr-87 1.3E+00 8.7E+00 8.7E+01 Kr-88 3.7E+00 2.5E+01 2.5E+02 Xe-131 m 2.OE+00 1.4E+01 1.4E+02 Xe-133 2.6E+02 1.7E+03 1.7E+04 Xe-133m 1.8E+01 1.2E+02 1.2E+03 Xe-i135 8.3E+00 5.6E+01 5.6E+02 Xe-i135m 5.6E-01 3.8E+00 3.8E+01 Xe-I138 7.4E-01 5.0E+00 5.0E+01 1-131 2.9E-06 2.0E-05 2.0E-04 1-132 3.0E-06 2.0E-05 2.0E-04 1-133 5.6E-06 3.8E-05 3.8E-04 1-134 6.9E-07 4.7E-06 4.7E-05 I-135 2.7E-06 1.8E-05 1.8 E-04 Totals 2.0E+03 2.0E+04 pCilcc pCilcc X6CNA15 X6CNAI 5 ~~ATTACHMENT D2ASHEDA6 SHEET D2A-6 Thyroid CDE Calculations CDETHY = Thyroid Committed Dose Equivalent (mREM) from inhalation CDETHY = DCFFGR-11 X XEAB X BR x texp DCFFGR-11
= FGR #11 dose conversion factor (mREM/pCi/cc) texp=- 1.00 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = 1 .25E+06 cc/hr XS00T = 500 mREM Thyroid CDE Noble Gas concentration X500T = [(500 mREM CDE)/(CDETHY mREM)] x XRLS X500T = 500/ 5.7E-03 X XRLS =X500T =X5000T =X5000T --8.7E+04 x XRLS 5000 mREM Thyroid ODE Noble Gas 1 0 X X500T concentration (j, Ci/cc)Postulated Release Thyroid CDE Thresholds Isotope XEAB FGR-11I CDETHY XRLS X500T X5000T (mREMI ipCi)Kr-85 9.1E-06 0.00E+00 0.0E+00 8.4E+00 7.3E+05 7.3E+06 Kr-85m 2.2E-06. 0.00E+00 0.0E+00 2.0E+00 I1.8E+05 1 .8E+06 Kr-87 1.4E-06 0.00E+00 0.0E+00 1.3E+00 1.1IE+05 1,1 E+06 Kr-88 4.0E-06 0.00E+'00 0.0E+00 3.7E+00 3.2E+05 3.2E+06 Xe-131 m 2.2E-06 0,00E+00 0.0E+00 2.0E+00 1.8E+05 1.8 E+06 Xe-i133 2.8E-04 0.00E+-00 0.OE+00 2.6E+02 2.2E+07 2.2E+08 Xe-133m 1.9E-05 0.00E+-00 0.OE+00 1.8E+01 1.5E+06 1.5E+07 Xe-I135 9.0E-06 0.00E+00 0.0E+00 8.3E+00 7.2E+05 7.2E+06 Xe-135m 6.IE-07 0.00E+00 0.0E+00 5.6 E-01 4.9 E+04 4.9 E+05 Xe-I138 8.0E-07 0.00E+I00 0.0E+00 7.4E-01 6.4E+04 6.4E+05 1-131 3.2E-12 1.08E+03 4.3E-03 .. ..1-132 3.2E-12 6.44E+00 2.6E-05 , ,. , ,..1-133 6.0E-12 1.80E+02 1.4E-03 ., .*,, I-134 7.5E-13 1.07 E+00 9.9 E-07 1-135 2.9E-12 3.13E+'01 1.2E-04 Total CDETHY " 5.7E-03 mREM Totals 2.6 E+07 2.6E+08 IpCi/cc a I X6CNA15 X6CNAI 5 ~~ATTACHMENT D2BSETD2-SHEET D2B-1 SJAE Release Path TEDE & Thyroid CDE Calculations (Core Damage)Note: Method described in "TEDE & Thyroid CDE Calculations" in METHODS section of caic main body.Postulated Release Activity XRLS "- Release Concentration (pCi/cc)XRLS = [Partition Factor x Xrcs (p#Ci/g)]
x [prls (glcc)]Partition Factors Noble Gases: 1.0 Iodines Primary coolant leakage to steam generator:
1 .0E-02 Condenser thru SJAEs 1 .0E-04 RCS -> S/G -> Condenser
-> SJAEs: 1 .0E-06 Xrcs = RCS coolant activity (iCi/cc)Xrcs = RCS Equilibrium Activity (j#Ci/g) +[Release Fraction x Core Inventory (Ci) x (1 .0E+06jiCi/1 Ci)]/MRcs (g)Release Fractions 1.0 for Noble Gases for core damage 0.4 for Iodine for core damage 0 for no core damage MRCS = RCS coolant mass (g)MRCS = 2.53E+08 g pris = Density of release fluid (g/cc)pris = 1 .00E+00 g/cc [Arbitrary Value]
X6CNA15 X6CNAI 5 ~~ATTACHMENT D2BSHTD22 SHEET D2B-2 Isotope Core Core Xeq Xrcs (ltCi/g) Partition XRLS Inventory Release (JLCi/g) Factor (llCilcc)(Ci) Fraction Kr-85 1.04E+06 1.00 8.37 4.IE+03 1.00 4.1E+03 Kr-85m 2.68E+07 1.00 2.04 1.1IE+05 1.00 1.1IE+05 Kr-87 4.93E+07 1.00 1.28 1 .9E+05 1.00 1 .9E+05 Kr-88 7.02E+07 1.00 3.68 2.8E+05 1.00 2.8E+05 Xe-131 m 7.13E+05 1.00 2.02 2.8 E+03 1.00 2.8 E+03 Xe-133 2.12E+08 1.00 256 8.4 E+05 1.00 8.4 E+05 Xe-133m 3.01E+07 1.00 17.60 1.2E+05 1.00 1.2E+05 Xe-135 4.65E+07 1.00 8.30 1.8E+05 1.00 1.8E+05 Xe-135m 4.18E+07 1.00 0.56 1.7E+05 1.00 1.7E+05 Xe-138 1.69E+08 1.00 0.74 6.7E+05 1.00 6.7E+05 I-131 1.03E+08 0.40 2.91 1.6E+05 1.00E-06 1.6E-01 I-132 1.50E+08 0.40 2.96 2.4E+05 1.00E-06 2.4E-01 I-133 2.10E+08 0.40 5.56 3.3E+05 1.00OE-06 3.3E-01 I-134 2.26E+08 0.40 0.69 3.6E+05 1.00E-06 3.6E-01 1-135 1.95E+08 0.40 2.72 3.1IE+05 1.00OE-06 3.IE-01 X6C NA15 X6CNAI 5 ~~ATTACHMENT D2BSHEDB3 SHEET D2B-3 Postulated Release TEDE Calculations TEDE = Total Effective Dose Equivalent (mREM)TEDE = EDE + CEDE EDE = Effective Dose Equivalent (mREM) from external exposure EDE = DCFFGR-12 X XEAB X texp DCFFGR-12
-FGR #12 dose conversion factor [(mREM/hr)/(pJCi/
cc)] CEDE = Committed Effective Dose Equivalent (mREM) from inhalation CEDE = DCFFGR-11 X XEAB X BR x texp DCFFGR-11
= FGR #11 dose conversion factor (mREM/jiCi)
XEAB= Radionuclide concentration at Exclusion Area Boundary XEAB= [QRLS (m^3/sec)]
X [X/Q (sec/mA3)]
x [XRLS (pCi/cc)]Qris = Release flow rate (mA3/sec)Oris = 900 CEM x [1 mini60 sec] x [0.0283 m^3/ft^3]Qris = 0.42 mA3/sec X/Q = Atmospheric dilution factor (sec/mA3)X/Q = 2.55E-06 sec/m3 texp = Exposure time texp =1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = Breathing Rate (mA3/sec)BR = 3.47E-04 m^3/sec BR = 1 .25E+06 cc/hr = m^3/sec x [(1 .0E6 cc)/(1 m^3)] x [3600 sec/i hr]
X6CNA15 X6CNAI 5 ~ATTACHM ENT D2BSHED2-SHEET D2B-4 Isotope Release XEAB FGR-1 2 EDE FGR-11I CEDE Activity (j+/-Ci/cc)
DCF (mREM) DCF (mREM)(liCilcc) (mREMIhr)l (mREMI Kr-85 4.1E+03 4.5E-03 1.59E+'03 7.1E+00 O.OOE+OO O.OE+OO Kr-85m 1.1E+05 1.1IE-01 9.96E+04 1.1IE+04 0.00E+OO O.OE+OO Kr-87 1.9E+05 2.1E-01 5.49E+05 1.2E+05 O.OOE+OO O.OE+OO Kr-88 2.8E+05 3.0E-01 1.36E+06 4.1E+05 O.00E+OO O.OE+00O Xe-131 m 2.8E+03 3.1E-03 5.18E+03 1.6E+01 O.OOE+OO Q.OE+OO Xe-133 8.4E+05 9.1E-01 2.08E+04 1.9E+04 0.OOE+OO O.OE+OO Xe-133m 1.2E+05 1.3E-01 1.82E+04 2.4E+03 O.OOE+OO O.OE+OO Xe-135 1.8E+05 2.0E-01 l.59E+05 3.2E+04 O.00E+O0 O.OE+OO Xe-135m 1.7E+05 1.8E-01 2.72E+05 4.9E+04 O.OOE+OO O.0E+OO Xe-1 38. 6.7E+05 7.2E-01 7.69E+05 5.6E+05 O.OOE+OO O.OE+00 1-131 1.6E-01 1.8E-07 2.42E+05 4.3E-02 3.29E+01 7.2E+00 1-132 2.4E-01 2.6E-07 1.49E+06 3.8E-01 3.81E-01 1.2E-01 1-133 3.3E-01 3.6E-07 3.92E+05 1 .4E-01 5.85E+00 2.6E+00 1-134 3.6E-01 3.9E-07 1.73E+06 6.7E-01 1.31E-01 6.4E-02 1-135 3.1E-01 3.3E-07 1.06E+06 3.5E-01 1.23E+00 5.1E-01 Total = 1.2E+06 mREM Total = 1.1E+01 mREM TEDE = EDE + CEDE EDE =CEDE =TEDE = 1.2E+06 1 .2E+06 mREM 1.1E+01 mREM mREM X6CNA15 X6CNAI 5 ~~ATTACHMENT D2BSHED2-SHEET D2B-5 100 & 1000 mREM TEDE Thresholds Xioo = 100 mREM TEDE Noble Gas concetration (pCi/cc)Xioo = [(100 mREM)/(TEDE mREM)] x XRLS TEDE = I1.2E+06 mREM Xioo = 8.4E-05 x XRLS Xiooo = 1000 mREM TEDE Noble Gas concetration (pCi/cc)Xiooo =l0 xXioo Isotope XRLS Xi00 Xl000 (lpCi/cc) (jtC i/cc) (lpCi/cc)Kr-85 4.1E+03 3.5E-01 3.5E+00 Kr-85m 1.1E+05 8.9E+00 8.9 E+01 Kr-87 I1.9E+05 1 .6E+01 1 .6E+02 Kr-88 2.8E+05 2.3E+01 2.3E+02 Xe-i131 m 2.8 E+03 2.4E-01 2.4E+00 Xe-I133 8.4E+05 7.0E+0I 7.0E+02 Xe-133m 1.2E+05 1.0E+01 1.0E+02 Xe-135 1.8E+05 1.5E+01 1.5E+02 Xe-135m 1.7E+05 1.4E+01 1.4E+02 Xe-i138 6.7E+05 5.6E+0I 5.6E+02 1-131 1.6E-01 1.4E-05 1.4E-04 I-132 2.4E-01 2.0E-05 2.OE-04 1-133 3.3E-01 2.8E-05 2.8E-04 I-134 3.6E-01 3.0E-05 3.0E-04 I-135 3.1E-01 2.6 E-05 2.6 E-04 Totals 2.1 E+02 2.1 E+03 j~CiIcc p.C i/cc X6CNA15 X6CNAI 5 ~~ATTACHMENT D2BSHED2-SHEET D2B-6 Thyroid CDE Calculations CDETHY -Thyroid Committed Dose Equivalent (mREM) from inhalation CDETHY = DCFFGR-11 X XEAB X BR x texp DCFFGR-11
-FGR #11 dose conversion factor (mREM/ltCi/cc) texp = 1.00 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> BR = 1.25E+06 cc/hr Xsoom = 500 mREM Thyroid CDE Noble Gas concentration (pCi/cc)X5oom = [(500 mREM CDE)/(CDETHY mREM)] x XRLS X500T = *500/ 3.3 E+02 X XRLS =X500T = i ,5E+00 X XRLS X5000T = 5000 mREM Thyroid ODE Noble Gas concentration
(!iCi/cc)X5OOOT = 10 X X5OOT Postulated Release Thyroid CDE Thresholds Isotope XEAB FGR-11I CDETHY XRLS X500T X5000T (jtCi/cc)
DCF (mREM) (liCilcc) (lpCilcc)(mREMI ipCi)Kr-85 4.5E-03 0.00E+00 0.0E+00 4.1E+03 6.2E+03 6.2E+04 Kr-85m 1.1E-01 0.00E+00 0.0E+00 1.1E+05 1.6E+05 1.6E+06 Kr-87 2.1E-01 0.00E+00 0.0E+00 1.9E+05 2.9E+05 2.9E+06 Kr-88 3.0E-01 0.00E+00 0.0E+00 2.8 E+05 4.1E+05 4.1E+06 Xe-131m 3.1E-03 0.00E+00 0.0E+00 2.8E+03 4.2E+03 4.2E+04 Xe-133 9.1E-01 0.00E+00 0.0E+00 8.4E+05 1.3E+06 1.3E+07 Xe-133m 1.3E-01 0.00E+00 0.0E+00 1.2E+05 1.8E+05 1.8E+06 Xe-135 2.0E-01 0O00E+00 0.0E+00 1.8E+05 2.7 E+05 2.7E+06 Xe-135m 1.8E-01 0.00E+00 0.0E+00 1.7E+05 2.5E+05 2.5E+06 Xe-138 7.2E-01 0.00E+00 0.0E+00 6.7E+05 1.0E+06 1.0E+07 1-131 1.8E-07 1.08E+03 2.4E+02
_______.....
1-132 2.6E-07 6.44E+00 2.1E+00 , ...,., ... ..1-133 3.6E-07 1.80E+02 8.1E+01 _________..
... ... ..: , 1-134 3.9E-07 1.07E+00 5.2E-01 _________
____ ___ _______ ...1-135 3.3E-07 3.13E+01 1.3E+01 .... .___..._Total CDETHY " 3.3E+02 mREM Totals 3.8E+06 3.8E+07__________________________
.5 & I Southern Nuclear Design Calculation IPlant: Vogtle lUnit: l&2 Calculation Number: X6CNA15 Sheet: E-1l Attachment E -Shielding Calculations DescrptionNumber Descrptionof Pages El -Water Shielding Properties 5 E2 -Modification of VEGP SEP Dose Rate vs. Depth Analysis for VEOP RPV 18 E3 -Operating Deck Dose Rates for Reduced RPV Water Level 3 E4 -Seal Table Room Dose Rate Evaluation 2 I-4.4-1-Total Number of Pages Including Cover Sheetl 29 Southern Nuclear Design Calculation
!Plant: Vogtle Unit: l&2 Calculation Number: X6CNA15 ISheet: El-1I Attachment El -Water Shielding Parameters Several shielding evaluations are performed in support of this calculation, using existing analyses.
The associated shielding parameters are available in tables in nuclear engineering reference books as functions of gamma energy. The energies in the tables do not align with the energies of the spent fuel gamma source terms used in Vogtle calc X6CDE.01.Linear interpolation of the tabulated values is a time consuming option. However, these parameters are non-linear functions of gamma energy, so additional error is introduced by linear interpolation.
Curvilinear regression can be performed on these parameters using the Data Analysis Regression tool in Microsoft Excel. The following on-line references provide guidance for using this tool:*Cameron, "EXCEL 2007: Multiple Regression," Department of Economics, University of California
-Davis, 2009 (http ://cameron.econ.ucdavis.edu/excel/ex61 mulItiplereciression .html)*"A Quick Guide to Using Excel 2007's Regression Analysis Tool," Fuqua School of Business, Duke University, 2009 (https://facu ui~pecklu nd/ExcelReview/Use%20ExceI%202007%20Repres sion.pdf)The regression is judged as adequate based on the following.
- The Multiple Correlation Coefficient, R 2 or R Square, is a measure of amount of reduction in variability in the dependent variable.
It varies from zero to one. A R Square approaches one, the regression fit improves.*The relative error of the regression is calculated as the difference between the regression value and the tabulated value divided by the tabulated value at each value of the dependent variable (gamma energy in this case). As the relative error approaches zero, the accuracy of the regression improves.Curvilinear regressions on several water shielding parameters are documented in the Excel spreadsheet comprising the remainder of this attachment.
X6CNA15 X6CNAI5 ~~Attachment El -Water Shielding Parameters SetE-Sheet E1-2 Water Mass Attenuation Coefficient Curvilinear regression performed using Excel Data Analysis ToolPak ,aip = Ko + [Ki x E] + [1K2 x (E^2)] + [1K3 x (EA3)] + [K4/E] + [ K5(E^2)] + [K6/(E^3)](cmA2/g)Ey, pip Error MeV Table Rgrssn ____0.1 0.1670 0.1670 0.01%0.2 0.1360 0.1356 -0.26%0.3 0.1180 0.1188 0.70%0.4 0.1060 0.1061 0.08%0.5 0.0966 0.0965 -0.12%0.6 0.0896 0.0890 -0.64%0.8 0.0786 0.0782 -0.57%1.0 0.0706 0.0705 -0.20%1.5 0.0575 0.0579 0.73%2.0 0.0493 0.0499 1.26%3.0 0.0396 0.0398 0.41%4.0 0.0339 0.0336 -0.88%5.0 0.0301 0.0297 -1.25%6.0 0.0275 0.0273 -0.75%8.0 0.0240 0.0246 2.36%10.0 0.0219 0.0217 -0.87%Ey 10.0 MeV dpi= 0.0217 cm^2Ig Ko =K1=1K2=K3 =K4 =K5=Ke =5.26E-02-1 .13E-02 1.41 E-03-6.21 E-05 3.14E-02-3.75E-03 1 .77E-04 Regression Statistics Multiple R 1.0000 R Square 0.9999 Standard Error 0.0005 Observations 16
Reference:
Table 11.4, page 648, Lamarsh, "Introduction to Nuclear Engineering" Water Mass Attenuation Coefficient vs. Energy ,..,0.20.~0.10 a)0 0.05 Coo 4)l0.0 t I 4 4-~-... --e'-- 4--4 ......
- 41, 0 1 2 3 4 5 6 Gamma Energy (MeV)7 8 9 10 Table* Table --- Regression X6CNA15 Attachment El -Water Shielding Parameters Taylor Exposure Buildup Factor Coefficient Ai for Water Curvilinear regression performed using Excel Data Analysis ToolPak Ai = Ko + [Ki x E] + [K2 x (E^2)] + [K3 x (E^3)] + [K4/E] + [Ks/(E^2)]
+ [KO/(E^3)]
Sheet E1-3 Ey Al-tab Al-reg Error MeV ___ ____ (%)0.3 226.726 226.731 0.002%0.4 103.797 103.771 -0.025%0.6 72.516 72.586 0.097%1.0 54.278 54.119 -0.293%1.5 39.009 39.252 0.622%2.0 32.003 31.835 -0.526%3.0 22.738 22.781 0.188%4.0 11.703 11.695 -0.064%
Reference:
Table 5.2, ANSI/ANS-6.4.3-1 991 Ey,(= 4.0 MeV Ai = 11.695 Ko =Ki =K2=K3 =K4 =K5 =K(6=-2.73E+02 1 .22E+02-2 .45E+01 1.64E+00 3.68E+02-1.71 E+02 3.07E+01 Regression Statistics Multiple R 1.0000 R Square 1.0000 Standard Error 0.3465 Observations 8 250 I-0 4.'U (U IL.0..5 0 I..I.0.5'(U I-200 150 50 Water Taylor Exposure Buildup Factor Coefficient A1-4 -0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Gamma Energy (MeV)3.5 4.0 4.4.5* Tabulated
...Regression X6CNA15 Attachment El -Water Shielding Parameters Taylor Exposure Buildup Factor Coefficient (al for Water Curvilinear regression performed using Excel Data Analysis ToolPak cti = K0 + [Ki x E] + [K2 x (E^2)] + [K3 x (E^3)] + [K4/E] + [KS/(E^2)]
+ [KBI(E^3)]
Sheet E1-4 S a(Xl-tab (XI-reg Error MeV ___ ____ (%)0.3 -0.1084 -0.1084 -0.002%0.4 -0.0975 -0.0975 0.009%0.6 -0.0763 -0.0763 -0.032%1.0 -0.0506 -0.0507 0.109%1.5 -0.0357 -0.0356 -0.235%2.0 -0.0274 -0.0275 0.213%3.0 -0.0194 -0.0194 -0.076%4.0 -0.0226 -0.0226 0.012%
Reference:
Table 5.2, ANSI/ANS-6.4.3-1 991 E7 = 1.5 MeV-0.0356 Ko =K1=1K2=K3=Ks=K=6.52E-02-4.58E-02 1 .53E-02-1 .95E-03-1 .04E-01 2.26E-02-1 .75E-03 Regression Statistics Multiple R 1.0000 R Square 1.0000 Standard Error 0.0001 Observations 8 0.00 I..0.==-0.05 4.'0 U U 0 C.)Water Taylor Exposure Buildup Factor Coefficient ai-0.10-0.15 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Gamma Energy (MeV)* Tabulated Regression 3.5 4.0 4.5 X6CNA15 X6CNAI 5 ~Attachment El -Water Shielding Parameters SetE-Sheet E1-5 Taylor Exposure Buildup Factor Coefficient cc2 for Water Curvilinear regression performed using Excel Data Analysis ToolPak 02 = Ko + [K1 x E] + [K2 x (E^2)] + [K3 x (E^3)] + [K4IE] + [K5/(E^2)]
+ [Kd/(E*3)]
E c(c2-tab Or=rg Error MeV ___ ____ (%)0.3 -0.0871 -0.0871 0.006%0.4 -0.0605 -0.0605 -0.043%0.6 -0.0386 -0.0387 0.183%1.0 -0.0182 -0.0180 -0.880%1.5 -0.0036 -0.0038 6.796%2.0 0.0041 0.0043 4.137%3.0 0.0151 0.0151 -0.286%4.0 0.0366 0.0366 0.021%
Reference:
Table 5.2, ANSI/ANS-6.4.3-1 991 Ey, =(2 =4.0 0.0366 MeV Ko = -5.94E-02 Ki = 7.01 E-02 K2 = -2.51E-02 K3 = 3.42E-03 K(4 = -7.87E-03 K5 = 1.87E-03 Regression Statistics Multiple R 1.0000 R Square 1.0000 Standard Error 0.0003 Observations 8 Water Taylor Exposure Buildup Factor Coefficient (a2 0.05 --L..0.0 U..0.0.00 4."C 0 U o 0-0.05 --.-0.10-0,15 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3. 40 45 Gamma Energy (MeV)3.5 4.0 4.5 4 Tabul~ated Regres~sion Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Icalculation Number: X6CNA15 Isheet: E2-1 Attachment E2 -Modification of VEGP SFP Dose Rate vs. Depth Analysis for Vogtle RPV Introduction Appendix D of VEGP calculation X6CDE.01 determined dose rate vs. SFP water depth over a full core (193 fuel assemblies) discharged to the SFP at 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after shutdown.
The core was modeled as an equivalent disc source with a water shield.These results may be used to estimate water surface dose rate vs. water depth above fuel in the Vogtle reactor vessel at 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after shutdown subject to the following modifications.
Source Strengith To account for the greater spacing between fuel assemblies in the SFP racks, the VEGP core volumetric source terms (MeV/cc-sec) were multiplied by 0.72 (sheet D4, X6CDE.01).
The water surface dose rate is proportional to the water surface gamma flux, which in turn is proportional to source strength.
Multiplying the gamma source terms in X6CDE.01 by 1.39 (~-1/0.72) will normalize them back to the source strength above an irradiated core in the reactor vessel.Source Radius The VEGP discharged core was modeled as a disc source (SA y/cm 2-sec) of radius R feet overlaid with a slab water shield of thickness d feet similar to the disc source described on pages 487-488 of "Introduction to Nuclear Engineering." _ s The shield thickness dcorresponds to the water q depth above the core and the radius R is one half of jj dp the effective cylinder diameter 13.7 feet on page D4 in X6CDE.01.
Disc._. -Shield source The buildup flux at the water surface is calculated as shown on page 488 of "Introduction to Nuclear Engineering":= (SA/2) x {Ai*{Ei[(1
+ a )*,t*d] -E4[(1 +
0]} +A 2*{Ei[(1 + a2)*,i*d]
-E4[(1 + a 2)*,i*d*sec 0]} (1)where A 1 , A 2 , ai, & a2 = Coefficients for Taylor Buildup Factor; functions of gamma energy (pages 481-482 of "Introduction to Nuclear Engineering")
The angle O is a function of water depth d and source radius R: tan 0 = R/d 0 = tan-1 (R/d)
Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: E2-2 Attachment E2 -Modification of VEGP SFP Dose Rate vs. Depth Analysis for Vogtle RPV The effective diameter of the Vogtle core is 11.06 feet (Design Input #10); the RPV disc source radius is 5.53 ft. Thus, for a given water depth the angle 8 will differ between the RPV disc source and the SFP disc source.Per page 483 of "Introduction to Nuclear Engineering," the exponential function E 1 (X) can be approximated by E,(X) = [exp(-X)]*{[1/(X
+ 1)] + [1I(X + 1)3]} for X > 14. For X = 10, the error is 0.11%; the smallest value of X used in this evaluation is -8; any error due to this approximation is negligible.
Equation (1) is modified and simplified for the Vogtle RPV and SEP as follows: (*RPv/(SA/
- 2) = A1*[E, (XRPVll) -- E1 (XRpvl2)]
+ A 2*[Ei (XRPv21) -- E1 (XRPv22)]
(2)XRPV11 " (1 +
(2a)XRPV12 = XRPV1l*sec OF (2b)XRPV21 = (1 + a 2)*Ji*d (2c)XRPV22 = XRPV 2 1*sec ORPV (2d)ORPV = tanl(RRPv/d)
(2e)(*SFP/(SA/
- 2) = AI*[El (XsFP11) -- E1 (XsFP12)]
+ A 2*[EI (XsFP 2 1) -- E1 (XsFP22)]
(3)XSFP11 = (1 + (a)*p,*d (3a)XSFP12 = XSFP11*SeC 0V (3b)XSFP21 = (1 + a 2)*14*d (3c)XSFP22 = XSFP21*sec Ov (3d)OSFP = tan-1 (RsFp/d) (3e)Equation (2) is divided by equation (3) as follows: 4RPv/(SA/2) A1*[El(XRPv11)
-- E1(XRPv12)]
+ A2*[E1(XRPv21)
-EI(XRPv22)]
(4)(*SFP/(SAI
- 2) AI*[E1(XsFPll)
-E1(XsFP12)]
+ A2*[E1(XsFP21)
-E1(XsFP22)]
- 1RPV A1*[E1(XRPv11)
-E1(XRPv12)]
+ A2*[E1(XRPv21)
-E1(XRPv22)]
(5)(1SFP AI*[E1 (XsFP1l) -- E1(XsFPl2)]
+ A2*[E1(XsFP2l)
-E1 (XsFP22)]Since dose rates is proportional to gamma flux, and applying the source term normalization described on sheet E2-1 yields DRRPv Al*[E1(XRPv11)
-E1(XRPv12)]
+ A2*[El(XRPv21)
-E1(XRPv22)]
(6)= FNORM X DRsFP A1*[E1 (XsFP11) -- E1 (XsFP12)]
+ A2*[E1(XsFP2l)
-E1 (XsFP22)]where FNORM = 1/0.72 = 1.39 Southern Nuclear Design Calculation SPlant: Vogtle Unit: l&2 ICalculation Number: X6CNA15 ISheet: E2-3 Attachment E2 -Modification of VEGP SFP Dose Rate vs. Depth Analysis for Vogtle RPV The above dose correction factor is calculated for each energy and depth listed in Attachment D to X6CDE.01 in the Excel spreadsheet that comprises the remainder of this attachment.
The results are summarized below E Depth =8' Depthl=10 Depthl=1.1'(MeV) SFP RPV SFP RPV SFP RPV 0.90 6.3E+02 8.6E+02 1.0E+01 1.4E+01 1.1IE+00 1.4E+00 1.35 3.8E+02 5.2E+i02 1.2E+01 1.5E+01 1.7E+00 2.2E+00 1.80 8.6E+03 1.1 E+04 4.0E+02 5.2E+02 7.5E+01 9.5E+01 2.20 9.4E+i02 1.2E+03 5.4E+01 6.9E+01 1.1 E+01 1.4E+01 2.60 2.0E+03 2.6E+03 1.4E+02 1.8E+02 3.4E+01 4.1E+01 3.00 6.0E+01 7.6E+01 5.2E+00 6.4E+00 1 .3E+00 1 .6E+00 4.00 7.7E+01 9.6E+01 9.2E+00O 1.1 E+01 2.8 E+00 3.4E+00 TOTALS 1 .3E+04 1 .7E+04 6.4E+02 8.1 E+02 1 .3E+02 1 .6E+02 mREM/hr mREM/hr mREM/hr mREM/hr mREM/hr mREMIhr E Depthl= 2' Depth= 4' Depthl= 6'(MeV) SFP RPV SFP RPV SFP RPV 0.90 1 .6E-01 2.0E-01 2.7E-03 3.5E-03 4.6E-05 5.8E-05 1.35 3.2 E-01 4.1E-01 9.8 E-03 1.2E-02 3.3 E-04 4.0E-04 1.80 1.7E+01 2.2E+01 8.2 E-01 1.0E+00 3.9E-02 4.7E-02 2.20 2.8E+00 3.5E+00 1.6E-01 2.0E-01 9.5E-03 1.1E-02 2.60 9.4E+00 1.1E+01 6.7E-01 8.0E-01 4.9 E-02 5.6E-02 3.00 4.1E-01 4.9E-01 3.5E-02 4.1E-02 3.1E-03 3.5E-03 4.00 1 .0E+00 1 .2E+00 1 .2E-01 1 .4E-01 1 .4E-02 1 .6E-02 TOTALS 3.1 E+01 mREM/hr 3.9E+01 mREM/hr 1.8E+00 mREMIhr 2.2E+00 mREM/hr 1.2E-01 mREMIhr 1.3E-01 mREM/hr mREMIhr mREM/hr mREMIhr mREMIhr mREMIhr_____________
I A _____________
I I Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1 &2 ICalculation Number: X6CNA1 5 Isheet: E2-4 Attachment E2 -Modification of VEGP SFP Dose Rate vs. Depth Analysis for Vogtle RPV The dose rates vs. depth are plotted below for comparison.
Dose Rate vs. Water Depth 1.0E+05 -S1.0E+03 1.0E+02____
..... ....S1.0E+01 ____1 .0E+00 ...........
..8 9 10 11 12 13 14 15 16 Water Depth (feet)----SFP ,,-,- RPV Depth Dose Rate feet SFP RPV 8.0 1.27E+04 1.67E+04 10.0 6.38E+02 8.14E+02 11.1 1.27E+02 1.60E+02 12.0 3.14E+01 3.89E+01 14.0 1.83E+00 2.19E+00 16.0 1.15E-01 1.35E-01 X6CNA15 X6CNA1 5 ~ATTACHMENT E2 SETE-SHEET E2-5 Calculations Input Parameters Water Shielding Parameters E ld ,Ai A2 CI 0L2 (MeV) (cm^A21g)
(1/cm)_____
0.90 0.0740 0.0730 58.3145 -57.3145 -0.0554 -0.0221 1.35 0.0610 0.0602 42.6872 -41.6872 -0.0391 -0.0073 1.80 0.0528 0.0520 34.2498 -33.2498 -0.0303 0.0015 2.20 0.0474 0.0467 29.8353 -28.8353 -0.0251 0.0066 2.60 0.0432 0.0426 26.3424 -25.3424 -0.0215 0.01 06 3.00 0.0398 0.0392 22.7808 -21.7808 -0.0194 0.0151 4.00 0.0336 0.0331 11.6955 -10.6955 -0.0226 0.0366 p/ap = Ko0 + [Ki x E] + [K2 x (E^2)] + [1(3 x (EA3)] + [K(4/E] + [Ks/(EA2)]
+ [K6/(E^3)l
= (/)x p p = Water density (g/cmA3)p = 61 .55 Ibm/cu ft p = 0.986 g/cm^3 = Ibm/cu ft x [(0.016018463 g/cc)/(1 Ibm/cu ft)]A= Ko +[K(1x E]A2 = 1 -Ai o = Ko0 + [Ki x E]o2= Ko + [Ki x E]+ [K2 x (EA2)] + [1(3 x (EA3)] + [K(4/E] + [K5/(EA2)]
+ [K6/(E^3)]
[page 481, Lamarsh "Introduction to Nuclear Engineering"]
+ [K2 x (EA2)] + [K3 x (EA3)l + [K(4/E] + [K5/(E^2)]
+ [K6/(E^3)]
+ [K2 x (EA2)] + [K(3 x (E^3)] + [K(4/El + [K5/(EA2)]
+ [K6/(E^3)]
1.dp Ai eLI Ko =Ki =K2 =K3 =K4=K5 =0.05261 -2.73E+02 0.0652 -0.0594-0.01131 1.22E+02 -0.0458 0.0701 0.00141 -2.45E+01 0.0153 -0.0251-0.00006 1 .64E+00 -0.0020 0.0034 0.03138 3.68E+02 -0.1043 -0.0079-0.00375 -1.71E+02 0.0226 0.0019 0.00018 3.07E+01 -0.0018 -0.0011 From Attachment F1 of this calculation X6CNA15 X6CNAI 5 ~ATTACHMENT E2 SETE-SHEET E2-6 Vogtle RPV Source Geometry DRPV -VEGP Reactor Pressure Vessel inner diameter (ft)DaPv=- 132.7 inches RRPV = VEGP Reactor Pressure Vessel inner radius (ft)RRPV=- 1/2 xDRPV x(1 ft/12 in)RRPV -5.529 ft Vogtle SFP Source Geometry DSFP -Vogtle SEP cylindrical source effective diameter DSFP=- 13.7 ft RSFP = Vogtle SEP cylindrical source effective radius RSFP = 1/2 x DsFP RSFP=- 6.850 ft Source Strength Re-Normalization Fnorrn -lNogtle SEP source strength adjustment Fnorm -- 1.39 Vogtle SEP Dose Rates vs. Depth E Depth Depth Depth Depth Depth Depth (MeV) 8 ft 10 ft 11.1lft 12 ft 14 ft 16 ft 0.90 6.335E+02 1.031E+01 1.082E+00 1.551E-01 2.736E-03 4.569E-05 1.35 3.848E+02 1.156E+01 1.687E+00 3.179E-01 9.808E-03 3.305E-04 1.80 8.601E+03 4.038E+02 7.523E+01 1.733E+01 8.218E-01 3.933E-02 2.20 9.403E+02 5.407E+01 1.1 25E+01 2.834E+00 1 .637E-01 9.471 E-03 2.60 2.000E+03 1 .435E+02 3.368E+01 9.374E+00 6.749E-01 4.870E-02 3.00 5.971E+01 5.174E+00 1.347E+00 4.081E-01 3.546E-02 3.086E-03 4.00 7.717E+01 9.187E+00 2.847E+00 9.956E-01 1.189E-01 1.423E-02 TOTALS I1.270E+04 6.375E+02 1.271 E+02 3.14 1E+01 1 .827E+00 1.1 52E-01 NOTE: All significant figures on sheets D-7 thru D-9 of X6CDE.01 entered into this spreadsheet.
X6CNA15 X6CNAI 5 ~ATTACHMENT E2 SETE-SHEET E2-7 Depth Dependent Adjustment Factors d =Water depth d= 8 d = 243.84 Vogtle RPV RRPV -ORPV "-sec ORPV =feet cm 5.529 0.605 1.216 feet radians = arctan(RRPv/d)
E'y XRPVI 1 XRPV12 XRPV2i XRPV22 MeV 0.90 16.808 20.432 17.401 21.153 1.35 14.098 17.137 14.564 17.704 1.80 12.304 14.956 12.707 15.446 2.20 11.111 13.507 11.473 13.946 2.60 10.159 12.349 10.492 12.755 3.00 9.374 11.395 9.703 11.795 4.00 7.896 9.598 8.374 10.179El (XRPv1I) El1(XRPvI2)
El1(XRPv2I)
E1 (XRPv22)MeV 0.90 2.83E-09 6.26E-11 1.51 E-09 2.94E-11 1.35 5.02 E-08 2.00E-09 3.05E-08 1.10E-09 1.80 3.43E-07 2.01E-08 2.22 E-07 1.19E-08 2.20. 1 .24E-06 9.43E-08 8.40E-07 5.90E-08 2.60 3.50E-06 3.27E-07 2.43E-06 2.11E-07 3.00 8.26 E-06 9.13E-07 5.76 E-06 5.93 E-07 4.00 4.24E-05 6.46E-06 2.49E-05 3.42E-06 X6CNA15 X6CNA1 5 ~ATTACHMENT E2 SETE-SHEET E2-8 Vogtle SFP d=RSFP =OSFP --sec OSFP "-8 6.850 0.708 1.316 feet feet radians = arctan(RsFP/d)
E'y XSFPtl XSFPI2 XSFP21 XSFP22 MeV 0.90 16.808 22.128 17.401 22.909 1.35 14.098 18.560 14.564 19.174 1.80 12.304 16.198 12.707 16.728 2.20 11.111 14.628 11.473 15.104 2.60 10.159 13.374 10.492 13.813 3.00 9.374 12.341 9.703 12.775 4.00 7.896 10.395 8.374 11.024 Ey EI(XsFPII)
EI(XsFPl2)
EI(XsFP2I)
EI(XsFP22)
MeV ___ _0.90 2.83E-09 1.06E-11 1.51E-09 4.71E-12 1.35 5.02 E-08 4.46 E-10 3.05E-08 2.34E-10 1.80 3.43E-07 5.39E-09 2.22E-07 3.07E-09 2.20 1 .24 E-06 2.85E-08 8.40E-07 1 .72E-08 2.60 3.50E-06 1.09E-07 2.43E-06 6.80E-08 3.00 8.26E-06 3.29E-07 5.76E-06 2.07E-07 4.00 4.24E-05 2.71 E-06 2.49E-05 1.37E-06 Ey DRsFP Fnorm DRRPv DRRPV MeV mREM/hr DRsFP 0.90 6.3E+02 1.39 0.98 8.6E+02 1.35 3.8E+02 1.39 0.96 5.2E+02 1.80 8.6E+03 1.39 0.95 1.1E+04 2.20 9.4E+02 1.39 0.94 1.2E+03 2.60 2.0E+03 1.39 0.93 2.6E+03 3.00 6.0E+01 1.39 0.92 7.6E+01 4.00 7.7E+01 1.39 0.90 9.6E+01 TOTAL = I1,3E+04 mREM/hr TOTAL = I1,7E+04 mREMIhr X6CNA15 X6CNA1 5 ~ATTACHMENT E2 SETE-SHEET E2-9 d= 10 d = 304.8 Vogtle RPV RRPV =ORPV -sec ORPV "" feet cm 5.529 0.505 1.143 feet radians = arctan(RRPv/d)
E"y XRPVI1 XRPV12 XRPV2I XRPV22 MeV 0.90 21.010 24.008 21.752 24.855 1.35 17.622 20.137 18.205 20.803 1.80 15.380 17.574 15.884 18.150 2.20 13.889 15.871 14.341 16.387 2.60 12.698 14.510 13.116 14.987 3.00 11.718 13.390 12.129 13.860 4.00 9.870 11.278 10.467 11.961 Ey Ei1(XRPvI i) Ei (XRPVI12)
Ei (XRPv2I) Ei1(XRPv22)
MeV 0.90 3.42E-11 1.50E-12 1.57E-11 6.22E-13 1.35 1.20E-09 8.52E-11 6.48E-10 4.24E-11 1.80 1.28E-08 1.26E-09 7.52E-09 6.87E-10 2.20 6.27E-08 7.61 E-09 3.87E-08 4.41 E-09 2.60 2.24E-07 3.23E-08 1 .43E-07 1 .95E-08 3.00 6.45 E-07 1.07E-07 4.14E-07 6.47E-08 4.00 4.80E-06 1.04E-06 2.50E-06 4.96E-07 X6CNA15 X6CNA1 5 ~~ATTACHMENT E2SHEE21 SHEET E2-10 Vogtle SEP d=RSFP =OSFP =sec OSFP =10 6.850 0.601 1.212 feet feet radians = arctan(RsFP/d)
E7XSFP1I XSFP12 XSFP21 XSFP22 MeV 0.90 21.010 25.467 21.752 26.365 1.35 17.622 21.360 18.205 22.067 1.80 15.380 18.642 15.884 19.253 2.20 13.889 16.836 14.341 17.383 2.60 12.698 15.392 13.116 15.898 3.00 11.718 14.203 12.129 14.702 4.00 9.870 11.963 10.467 12.688 Ey Ei (XSFPI i) Ei (XsFPI2) Ei (XSFP21) Ei (XSFP22)MeV 0.90 3.42E-11 3.29E-13 1.57E-11 1.30E-13 1.35 1.20E-09 2.37E-11 6.48 E-10 1.13E-11 1.80 1.28E-08 4.09E-10 7.52E-09 2.15E-10 2.20 6.27E-08 2.74E-09 3.87E-08 1.54E-09 2.60 2.24E-07 1 .27E-08 1 .43E-07 7.40E-09 3.00 6.45 E-07 4.48 E-08 4.14E-07 2.63 E-08 4.00 4.80E-06 4.95E-07 2.50E-06 2.27E-07 Ey DRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP 0.90 1.0E+01 1.39 0.96 1.4E+01 1.35 1.2E+01 1.39 0.94 1.5E+01 1.80 4.0E+02 1.39 0.93 5.2E+02 2.20 5.4E+01 1.39 0.91 6.9E+01 2.60 1.4E+02 1.39 0.90 1.8E+02 3.00 5.2E+00 1.39 0.89 6.4E+00 4.00 9.2E+00 1.39 0.87 1.1IE+01 TOTAL =6.4E+02 mnREM/hr TOTAL = 8.1E+02 mREM/hr X6CNA15 X6CNA1 S ~~ATTACHMENT E2 SETE-SHEET E2-11 d= 11.1 d = 338.328 Vogtle RPV RRPV =ORPV --sec ORPV -feet cm 5.529 0.462 1.117 feet radians = arctan(RRPv/d)XRPV11 XRPVI 2 XRPV21 XRPV22 MeV 0.90 23.321 26.055 24.144 26.974 1.35 19.561 21.853 20.208 22.576 1.80 17.071 19.072 17.631 19.697 2.20 15.417 17.224 15.918 17.784 2.60 14.095 15.747 14.558 16.264 3.00 13.007 14.531 13.463 15.041 4.00 10.955 12.239 11.619 12.981Ei (XRPVI i) Ei (XRPVI12)
E1 (XRPV2I) El (XRPV22)MeV 0.90 3.06E-12 1.79E-13 1.30E-12 6.91E-14 1.35 1.56E-10 1.42E-11 7.91 E-1I 6.66E-12 1.80 2.14E-09 2.60E-10 1.19E-09 1.35E-10 2.20 1.23E-08 1.82E-09 7.24E-09 1.01 E-09 2.60 5.03E-08 8.69E-09 3.07E-08 5.02E-09 3.00 1.61 E-07 3.16E-08 9.88 E-08 1.84E-08 4.00 1.47 E-06 3.67E-07 7.17E-07 1.66E-07 X6CNA15 X6CNA1 5 ~~ATTACHMENT E2SETE21 sHEET E2-12 Vogtle SEP d=RSFP =OSFP -" sec OSFP --11.1 6.850 0.553 1.175 feet feet radians =arctan(RsFP/d)
E'y XSFP1I XSFPI2 XSFP21 XSFP22 MeV 0.90 23.321 27.405 24.144 28.372 1.35 19.561 22.986 20.208 23.746 1.80 17.071 20.060 17.631 20.718 2.20 15.417 18.117 15.918 18.706 2.60 14.095 16.563 14.558 17.107 3.00 13.007 15.284 13.463 15.821 4.00 10.955 12.873 11.619 13.653 E'y EI (XSFP11) EI (XSFP12) EI (XSFP21) EI (XsFP22)MeV 0.90 3.06E-12 4.42E-14 1.30E-12 1.63E-14 1.35 1.56E-10 4.35E-12 7.91E-11 1.97E-12 1.80 2.14E-09 9.23E-11 1.19E-09 4.64E-11 2.20 1.23E-08 7.I1E-10 7.24E-09 3.83E-10 2.60 5.03E-08 3.66E-09 3.07E-08 2.06E-09 3.00 1.61 E-07 1.42E-08 9.88 E-08 8.03E-09 4.00 1.47 E-06 1.86E-07 7.17E-07 8.06 E-08 Ey DRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP 0.90 1 .08E+00 1.39 0.95 1 .4E+00 1.35 1.69E+00 1.39 0.93 2.2E+00 1.80 7.52E+01 1.39 0.91 9.5E+01 2.20 1.12E+01 1.39 0.90 1.4E+01 2.60 3.37E+01 1.39 0.89 4.1 E+01 3.00 1.35E+00 1.39 0.87 1.6E+00 4.00 2.85E+00 1.39 0.85 3.4E+00 TOTAL = 1 .27E+02 mREM/hr TOTAL = 1.6E+02 mREM/hr X6CNA15 X6CNAI 5 ~~ATTACHMENT E2SHEE23 SHEET E2-13 d = 12 feet d = 365.76 cm Vogtle RPV RRPV = 5 ORPV = C sec ORPV -1 p.529).432.101 feet radians = arctan(RaPv/d)
E'y XRPVI I XRPVI 2 XRPV2I XRPV22 MeV___ _0.90 25.212 27.760 26.102 28.739 1.35 21.147 23.284 21.846 24.054 1.80 18.456 20.320 19.060 20.986 2.20 16.667 18.351 17.209 18.948 2.60 15.238 16.778 15.739 17.329 3.00 14.061 15.482 1,4.555 16.026 4.00 11.843 13.040 12.561 13.830 E'y E1(XRPv11)
EIl(XRPvI2)
EI(XRPv21)
E1(XRPv22)
MeV__ _ _ __ _ _0.90 4.29E-13 3.06E-14 1.70E-13 1.11E-14 1.35 2.96E-11 3.19E-12 1.43E-11 1,43E-12 1.80 4,98E-10 7.03E-11 2,64E-10 3.50E-11 2.20 3.28 E-09 5.55E-10 1.85E-09 2.97E-10 2.60 1,.49E-08 2.92E-09 8.76E-09 1,.63E-09 3.00 5.22 E-08 1.15E-08 3.08 E-08 6.46 E-09 4.00 5.63E-07 1 .55E-07 2.60E-07 6.68E-08 X6CNA15 X6CNAI 5 ~~ATTACHMENT E2SHEE21 SHEET E2-14 Vogtle SFP d=RSFP =OSFP --sec OSFP =12 6.850 0.519 1.151 feet feet radians = arctan(RsFP/d)
E'y XSFP11 XSFP12 XSFP21 XSFP22 MeV 0.90 25.212 29.031 26.102 30.055 1.35 21.147 24.350 21.846 25.155 1.80 18.456 21.251 19.060 21.947 2.20 16.667 19.192 17.209 19.816 2.60 15.238 17.546 15.739 18.122 3.00 14.061 16.191 14.555 16.760 4.00 11.843 13.637 12.561 14.463 E, E1(XsFP11)
E1 (XSFP12) E1 (XsFP21) E1 (XSFP22)MeV 0.90 4.29E-13 8.22 E-15 1.70 E-13 2.85E-15 1.35 2.96E-11 1.05E-12 1.43E-11 4.55E-13 1.80 4.98E-10 2.66E-11 2.64E-10 1.28 E-11 2.20 3.28 E-09 2.30 E-10 1.85E-09 1.19E-10 2.60 1.49E-08 1.30E-09 8.76E-09 7.07E-10 3.00 5.22E-08 5.43E-09 3.08E-08 2.97E-09 4.00 5.63E-07 8.20E-08 2.60E-07 3.40E-08 E7DRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP 0.90 1.55E-01 1.39 0.94 2.03E-01 1.35 3.18E-01 1.39 0.92 4.07E-01 1.80 1.73E+01 1.39 0.90 2.17E+01*2.20 2.83E+00 1.39 0.89 3.49E+00 2.60 9.37E+00 1.39 0.88 1.14E+01 3.00 4.08E-01 1.39 0.86 4.90E-01 4.00 9.96E-01 1.39 0.84 1.16E+00 TOTAL = 3.14E+01 mREM/hr TOTAL = 3.89E+01 mREM/hr X6CNA15 X6CNAI 5 ~~ATTACHMENT E2SHEE21 SHEET E2-15 14 426.72 feet cm Vogtle RPV RRPV =ORPV " sec ORPV =5.529 feet 0.376 1.075 radians = arctan(RRPv/d)
Ey XRPVI 1 XRPVI 2 XRPV21 XRPV22 MeV 0.90 29.414 31 .625 30.452 32.741 1.35 24.671 26.526 25.488 27.403 1.80 21 .531 23.150 22.237 23.908 2.20 19.445 20.907 20.077 21 .586 2.60 17.778 19.114 18.362 19.742 3.00 16.405 17.638 16.981 18.257 4.00 13.817 14.856 14.654 15.756 E'y E1(XRPV1I)
E1(XRPVI2)
E1(XRPV21)
EI(XRPv22)
MeV 0.90 5.53E-15 5.65E-16 1.89E-15 1.79E-16 1.35 7.53E-13 1.10E-13 3.22E-13 4.43E-14 1.80 1.98E-11 3.66E-12 9.49E-12 1.66E-12 2.20 1.76E-10 3.81E-11 9.07E-11 1.87E-11 2.60 1.02 E-09 2.49 E- 10 5.49E- 10 1.29 E-10 3.00 4.33E-09 1.18E-09 2.35E-09 6.13E-10 4.00 6.77E-08 2.24E-08 2.77E-08 8.60E-09 X6CNA15 XGCNA1S ~~ATTACHMENT E2SHEE21 SHEET E2-16 Vogtle SFP d=RSFP =OSFP ---sec OSFP 14 6.850 0.455 1.113 feet feet radians = arctan(RsFP/d)
Ey' XSFPII XSFP12 XSFP2I XSFP22 MeV 0.90 29.414 32.747 30.452 33.902 1.35 24.671 27.466 25.488 28.375 1.80 21.531 23.971 22.237 24.756 2.20 19.445 21.648 20.077 22.352 2.60 17.778 19.791 18.362 20.442 3.00 16.405 18.263 16.981 18.905 4.00 13.817 15.383 14.654 16.315 El' EI (XsFPII) EI (XsFP12) EI (XSFP21) EI (XSFP22)MieV 0.90 5.53E-15 1.78E-16 1.89E-15 5.42E-17 1.35 7.53E-13 4.15E-14 3.22E-13 1.62E-14 1.80 1.98E-11 1.56E-12 9.49E-12 6.89E-13 2.20 1.76E-10 1.75E-11 9.07E-11 8.42E-12 2.60 1.02E-09 1.22E-10 5.49E-10 6.19E-11 3.00 4.33E-09 6.09E-10 2.35E-09 3.10E-10 4.00 6.77E-08 1.28E-08 2.77E-08 4.76E-09 EyDRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP ____0.90 2.7E-03 1.39 0.93 3.5E-03 1.35 9.8E-03 1.39 0.90 1.2 E-02 1.80 8.2E-01 1.39 0.88 1.0E+00 2.20 1.6E-01 1.39 0.87 2.0E-01 2.60 6.7E-01 1.39 0.85 8.0E-01 3.00 3.5E-02 1.39 0.84 4.1IE-02 4.00 1.2E-01 1.39 0.82 1.4E-01 TOTAL =1 .8E+00 mREM/hr TOTAL = 2.2E+00 mREM/hr X6CNA15 X6CNA1 5 ~~ATTACHMENT E2SHEE21 SHEET E2-17 d = 16 feet d = 487.68 cm Vogtle RPV RRPV = 5.529 ORPV =sec 0RPV --0.333 1.058 feet radians = arctan(RRPv/d)
E'y XRPVI 1 XRPV1 2 XRPV2I XRPV22 MeV 0.90 33.62 35.57 34.80 36.82 1.35 28.20 29.83 29.13 30.82 1.80 24.61 26.04 25.41 26.89 2.20 22.22 23.51 22.95 24.28 2.60 20.32 21.50 20.98 22.20 3.00 18.75 19.84 19.41 20.53 4.00 15.79 16.71 16.75 17.72 Ey Ei (XRPVI11)
Ei (XRPV1 2) Ei (XRPV2I) Ei (XRPV22)MeV 0.90 7.3E-17 9.8E-18 2.1E-17 2.7E-18 1.35 1.9E-14 3.6E-15 7.4E-15 1.3E-15 1.80 8.0E-13 1.8E-13 3.5E-13 7.5E-14 2.20 9.6E-12 2.5E-12 4.5E-12 1.1E-12 2.60 7.1E-11 2.IE-11 3.5E-11 9.8E-12 3.00 3.7E-10 1.2E-10 1.8E-10 5.6E-11 4.00 8.3E-09 3.IE-09 3.0E-09 1.1E-09 X6CNA15 X6CNAI 5 ~~ATTACHMENT E2SHEE21 SHEET E2-18 Vogtle SEP RdP=RSFP =sec OSFP =16 6.850 0.405 1.088 feet feet radians = arctan(RsFP/d)
E'y XSFPII XSFP12 XSFP21 XSFP22 MeV 0.90 33.62 36.57 34.80 37.86 1.35 28.20 30.67 29.13 31.69 1.80 24.61 26.77 25.41 27.64 2.20 22.22 24.17 22.95 24.96 2.60 20.32 22.10 20.98 22.83 3.00 18.75 20.39 19.41 21.11 4.00 15.79 17.18 16.75 18.22 Ey E1 (XSFP11) E1(XsFP12)
EI (XSFP21) E1(XsFP22)
MeV 0.90 7.3E-17 3.5E-18 2.1E-17 9.3E-19 1.35 1.9E-14 1.5E-15 7.4E-15 5.3E-16 1.80 8.0E-13 8.5E-14 3.5E-13 3.4E-14 2.20 9.6E-12 1.3E-12 4.5E-12 5.6E-13 2.60 7.1E-11 1.1E-11 3.5E-11 5.1E-12 3.00 3.7E-10 6.5E-11 1.8E-10 3.1E-11 4.00 8.3E-09 1.9E-09 3.0E-09 6.4E-10 Ey DRsFP Fnorm DRRPv DRRPv MeV mREM/hr DRsFP 0.90 4.6E-05 1.39 0.91 5.8E-05 1.35 3.3 E-04 1.39 0.88 4.0E-04 1.80 3.9E-02 1.39 0.86 4.7E-02 2.20 9.5 E-03 1.39 0.85 1.1IE-02 2.60 4.9E-02 1.39 0.83 5.6E-02 3.00 3.1 E-03 1.39 0.82 3.5E-03 4.00 1 .4 E-02 1.39 0.80 1 .6E-02 TOTAL = 1.2E-01 mREM/hr TOTAL = 1 .3E-O1 mREM/hr Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1 &2 ICalculation Number: X6CNA1 5 Isheet: E3-1 Attachment E3 -Operating Deck Dose Rates for Reduced RPV Water Level Introduction The purpose of this evaluation is to determine the dose rates at the Containment operating deck area radiation monitors (1/2RE-0002, II2RE-0003, 1/2RE-0004, 1/2RE-0005, & 1/2RE-0006) that correspond to an RPV water level at the Top of Active Fuel TOAF (EL 181'-10" or 63% on Full Range RVLIS).Evaluation Dose Rate at Water Surface or TOAF The dose rate vs. graph in Attachment E2 does not extend down to zero feet of water depth.The Vogtle RPV dose rate vs. depth data from Attachment E2 are used to generate another graph and the line is extended down to fuel uncovery as shown below: Vogtle RPV Dose Rate vs. Water Depth 1.0E+10 _ ---1.0E+08 ---------E" 1.0E+07 -- --" ----1.0E+04 ....-- --...... .. ....~- _ -__1.0E.0O1 ..1.0E-0" P1.. ....I 2 3 4 56778 1011012 213 14 15 16 Water Depth Above TOAF (feet)At an RPV water level 2.0E+06 REM/hr corresponding to fuel uncovery, the dose rate is ~2.0E+09 mREM/hr, or Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: E3-2 Attachment E3 -Operating Deck Dose Rates for Reduced RPV Water Level Ooeratina Deck Reflected Dose Rate A review of the instrument location drawings (Unit 1: 1X5DS4B002
& 1X5DS4D002; Unit 2: 2X5DS4B002
& 2X5DS4C002) indicates the Operating Deck rad monitors (1/2RE-0002, 1/2RE-0003, 1/2RE-0004, 1/2RE-0005, & 1/2RE-0006) do not have a direct view of the irradiated fuel. The containment operating deck area radiation monitor locations are over laid on the containment structural drawings below: 2X2D48O05
--REO"O Note: 2RE-0004 not shown on 2X5DS4C002; location inferred based on 1 RE-004 location on 2X5DS4C002 They do "see" gammas that reflect off the containment dome. The operating deck dose rate due to these reflected gammas is given by the following equation from Davisson, "Gamma Ray Dose Albedos," (copy in Attachment C1): DRmon/DRsfc
= (cos O)*(A/r)*a where DRmon = reflected dose rate at area radiation monitor (mREM/hr)DRsfc = dose rate at surface of water above irradiated fuel (mREM/hr)o = incident angle = 00 A = reflecting area (sq ft)r = distance from reflecting surface to receptor cx= dose albedo; dependent upon incident angle, gamma energy, reflected angle, and reflecting surface Rearranging the above equation to solve for the dose rate at the area radiation monitor yields DRmon = DRsfc x [(cos O)*(Ner)*(a]
Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 ]calculation Number: X6cNA15 Isheet: E3-3 I Attachment E3 -Operating Deck Dose Rates for Reduced RPV Water Level The containment geometry is shown to the .......0right= (from. AosASumptiono=10
- 11)". LLner (jSee /-,/' t/"i "'" A = area of reflecting surface (sq ft) D =RPV ID ; D = 14.4167 ft [Design Input#7] Dek ,,,' , Aljt A = H[ (14.4167)2/4
=163.24 sq ft ii r = hypotenuse of right triangle i-~ ii 4 y = 397'-9" -220'-0" ---.y= 177.75ft ' i -t x = 70 ft r = SQRT[x 2 + y 2] = SQRT [(70)2 + (1 77.75)21 r = 191 ft Containment dimensions:
Design Input #7 The containment has a carbon steel liner, so the dose albedo for iron is used. For an incident angle of 0O, a range of emerging angles of 0O to ~30, and the predominant gamma energy (-2 MeV based a review of the dose rate data in Attachment E2), ax = -0.004 based on a review of the table on sheet Cl-10 of this calculation.
DRmon = DRsfc x {(1.00)*[1 77.75/(191 2)]*(0.004)}
DRmon = 1 .95E-05 x DRsfc Operating Deck Reflected Dose Rate -RPV Water Level TOAF The Containment operating deck dose rate due to an source dose rate of 2.0E+09 mREM/hr is therefore DRmon = 1 .95E-05 x (2.0E+09 mREM/hr)DRmnon = 3.90E+04 mREM/hr DRmon = ~4E+04 mREM/hr DRmon --40 REM/hr Southern Nuclear Design Calculation JPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: E4-1 Attachment E4 -Seal Table Room Dose Rate Evaluation Introduction The purpose of this evaluation is to determine the dose rates at the seal table room area radiation monitor, RE001 1, that correspond to the operating deck dose rates calculated in Attachment E3 of this calculation.
Evaluation The dose rate is proportional to the gamma flux, DR a *, (page 442, Lamarsh, "Introduction to Nuclear Engineering"), so the dose rate in the seal table room (DRstr) may be estimated by modeling the reflected gamma flux at the operating deck (Cod) as a monodirectional planar source at the back of a concrete shield. The gamma flux in the seal table room (¢str) is the buildup flux passing through the operating deck (equation 10.26, page 484, "Introduction to Nuclear Engineering"):
- str = (Pod/2) x {A 1 E 1[(1 + cx,) X p. X aod] + A 2 E 1[(1 + cx2) x p. x aod]}4)str/lCod
= 1/2/ X {ALEt[(1 + cxi) x p. x aod] + A 2 Ei[(1 + cx2) x p. x aod]}DRstr/DRod
= % x {AEi[(l + cx,) x p. x aod] + A 2 E4[(1 + cx2) x p. x aod]}A review of the data in Attachment E2 indicates that 2 MeV gammas are predominant; the evaluation will be based on 2 MeV gammas to estimate the overall effect on dose rate.Where, for 2 MeV gammas A 1 = 18.089 [Table 10.3, page 482, "Introduction to Nuclear Engineering"]
A 2 = 1 -A 1 [page 481, "Introduction to Nuclear Engineering"]
A 2 = -17.089 cxi = -0.04250 [Table 10.3, page 482, "Introduction to Nuclear Engineering"]
cx2 = 0.00849 [Table 10.3, page 482, "Introduction to Nuclear Engineering"]
p.= (pip) x p (piap) = 0.0445 cm 2/g [Table 11.4, page 648, "Introduction to Nuclear Engineering"]
p = 2.40 g/cm 3 [Table 11.4, page 648, "Introduction to Nuclear Engineering"]
- p. = (0.0445 cm 2/g) x (2.40 g/cm 3)p. = 0.1068 cm-'aod = operating deck thickness ad= 2'9" = 2.75 ft X (30.48 cm/i ft) [Design Input #5]ad= 83.82 cm Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: E4-2 Attachment E4 -Seal Table Room Dose Rate Evaluation Per equation 10.24 on page 483 of "Introduction to Nuclear Engineering," for X > 14 the function E 1 (X) may be approximated as: El[X] = [exp(-X)]
x {[1/(X + 1)] + [1/(X +13]Xi = (1 + a1) x !t x aod = (1 -0.04250) x (0.1068 cm 1) x (83.82 cm) = 8.571 X2= (1 + cx2) x p. x aod = (1 + 0.00849) x (0.1068 cm'1) x (83.82 cm) = 9.028 For X = 10, the error is 0.11%; the values of X used in this evaluation are sufficiently close to 10 that any error due to this approximation is negligible.
For X 1 = 8.571: E4[X 1] = [exp(-8.571)]
x {[1/(8.571
+ 1)] + [1/(8.571
+1)]E,[X 1] = 2.002E-05 For X 2 = 9.028: E4[X 2] = [exp(-9.028)]
x {[1/(9.028
+ 1)] + [1/(9.028
+1)]E4[X 2] = 1 .209E-05 Therefore DRstr/DRodj
= 1/2 x [(1 8.089)x(2.002E-05)
+ (-1 7.089)x(1
.209E-05)]
DRstr/DRodj
= 1/2/ x [3.62 1E-04 -1 .979E-04]DRstr/DRodj
= 7.777E-05 DRstr = (7.777E-05) x DRod For RPV water level EL 181'-1 0" (TOAF), DRod = 3.90E+04 mREM/hr (Attachment E3): DRstr = (7.777E-05) x (3.90E+04 mREM/hr)DRstr = 3.0 mREM/hr DRstr = -3 mREM/hr Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Icalculation Number: X6CNA15 ISheet: F-I Attachment F -Evaluation of 52 psig Pressure on Mechanical Penetrations Introduction There is a discrepancy between the DBA Design Pressures for the Containment (52 psig per section 3.4.5 of DC-2101) and the pipe penetrations (50 psig per Attachment 2 of specification X4AQ10).This attachment evaluates the effect of a 52 psig Containment pressure on the pipe penetrations.
Conclusions The compressive and shear loads imposed by a 52 psig Containment pressure on the Unit 1&2 pipe penetrations' welds are well below their allowable loads, less than ~4% and ~30%respectively.
Thus, the pipe penetrations are expected to maintain containment integrity at 52 psig.Method A Type I pipe penetration is shown below:[From 1X4DL4A014
& 2X4DL4A014]
The weakest point of the penetration sleeve is the weld between the penetration sleeve and the containment liner. If the loads imposed by containment pressure on these welds are less than the weld strength, the penetration is expected to maintain containment integrity.
From page 443 of "Strength of Materials": "The strength of a butt weld is equal to the allowable stress multiplied by the product of the length of the weld times the thickness of the thinner plate of the joint. The American Welding Society specifies allowable stresses of 20,000 psi in tension or compression and 13,600 psi in shear." The specifications for Containment liner welds are likely to be more stringent (i.e., higher allowable stresses) than the values in this textbook.
Using these textbook values is conservative for the purposes of this evaluation:
establishing an allowable limit.
Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 ICalculation Number: X6CNA15 ISheet: F-2 Attachment F -Evaluation of 52 psig Pressure on Mechanical Penetrations These allowable stresses are most likely specified at standard temperature (68 F or 20 C). The maximum fluid temperature passing through one of these penetrations is 557 F (-290 F).Per VEGP ESAR Table 6.2.1-1, the peak DBA containment temperature is 250 F (-120 C). The yield strength of steel decreases with increasing temperature as shown in the representative graph to the right.Reducing the above allowable stresses by 15% conservatively addresses the effect of increased temperature 1,1 1,0 0,9 0,8 I.-0,7 _ _V\0,6 __ __ __0,5 1 __ .__ __'0200 400 600 Temperature 0 C Variation of ultimate strength (So, and yield strength (Sy))with ratio of operating temp/Iroom temp (ST/SRT)http://www.roymechi.co.uk/UsefulTables/Matter/Temperature_effects.h~tml The circumferential weld length (Lw) is calculated as follows Lw=I-x ID where ID = Inside diameter of penetration sleeve = OD -2 x t 0 = OD of penetration sleeve (inches)t = penetration wall thickness (inches)The weld compressive strength (Fc Ibf) is calculates as follows: Fc= [ac-norn x ftemp] x Lw x t where ac-nom = Nominal allowable compressive stress (20,000 psi)ftemp = Reduction due to increased temperature
= 0.85 = 1 -0.15 Lw= Weld length (inches)T = Weld thickness (inches) = Wall thickness (inches)The weld shear strength (Fs Ibf) is calculates as follows: Fs= ['s-nom X ftemp] X Lw x t where as-nom = Nominal allowable shear stress (13,600 psi)ftemp = Reduction due to increased temperature
= 0.85 = 1 -0.15 Lw= Weld length (inches)T = Weld thickness (inches) = Wall thickness (inches)
Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: F-3 Attachment F -Evaluation of 52 psig Pressure on Mechanical Penetrations The Containment pressure (Pctmt psig) exerts a compressive load (Pc Ibf) on the end of the penetration sleeve. Using the sleeve outside diameter (D in the above figure) maximizes this load: Pc = Pctrnt x [I x D 2/4 The Containment pressure (Pctrnt psig) exerts a shear load (Ps lbf) along the length of the penetration sleeve. Using the overall sleeve length (L in the above figure) maximizes this load: Ps= Pctmt x L-[ x 0 x L Evaluation The effect of a 52 psig Containment pressure on the Unit 1 and Unit 2 pipe penetrations are calculated in Excel spreadsheets Attachment Fl and Attachment F2.References FI. IX4DL4A013, Revision 7, "Containment Building Unit 1 Containment Wall Pipe Penetration Design List" F2. 1X4DL4A014, Revision 9, "Containment Building Unit 1 Containment Wall Pipe Penetration Design List" F3. 2X4DL4A013, Revision 5, "Containment Building Unit 2 Containment Wall Pipe Penetration Design List" F4. 2X4DL4A014, Revision 4, "Containment Building Unit 2 Containment Wall Pipe Penetration Design List" F5. Singer, "Strength of Materials," second edition, 1962 X6CNA15 X6CNAI 5 ~ATTACHMENT FSHEF-SHEET F-4 Bornt, Butch From: Jani, Yogendra M.Sent: Tuesday, October 14, 2014 4:52 PM To: Bornt, Butch Cc: Patel, V. R.; Evans, William P. (SNC Corporate);
Lambert, David Leslie
Subject:
FW: VEGP Pipe Penetration Eval Butch, I concur with your methodology used to evaluate 52 psig pressure on Mechanical Penetrations depicted on drawings 1X4DL4A014
& 2X4DL4A014.
The loads imposed on the weakest point (weld)of penetrations are less than the weld strength.
The penetrations shall exceed the requirements of ASME Section III code. So the penetrations are in compliance with specification no. X4AQ1 0.Therefore, I agree with your conclusion that the pipe penetrations are expected to maintain structural integrity of containment integrity at 52 psig.Thank you, Yogendra Jani SNC Fleet Des -Safety Ani & Mech 205.992.5125 office 205.410.9806 mobile SOUTHERNA COMPANY X6CNA15 X6CNAI 5 ~ATTACHMENT F1 HETF-SHEET F1-1 Evaluation of 52 psig Pressure on Ul Pipe Penetrations L = Overall Length of Penetration Sleeve (inches)D = Penetration Outside Diameter (inches)t = Penetration Sleeve Wall Thickness (inches)ID = Penetration Inside Diameter (inches)I D= D- (2 xt)Lw= Weld Length (inches)Lw= Hx ID ac = Allowable compressive stress (psi)'c= a'c-nom X ftemp ac-nomn = 20,000 psi = Nominal allowable comprssive stress ftemp = 0.85 = Reduction due to increased temperature O'c = 17,000 psi as =Allowable shear stress (psi)= a's-nara X ftemp a'c-nomn -ftemp =as = 11,560 13,600 psi = Nominal allowable comprssive stress 0.85 = Reduction due to increased temperature psi Fc= ac x Lw x t = Allowable Compressive Load (Ibf)Fs = x Lw x t = Allowable Shear Load (Ibf)Pctmt =Pc =Pc =Ps =Ps =52 psig = Containment Pressure Compressive Load (Ibf)Pctmt x ]-[ x [(D^2)/4]Shear Load (Ibf)Pctmt x(HIx D).x L X6CNA15 X6CNAI 5 ~ATTACHMENT F1 HETF-SHEET F1-2 Evaluation of 52 psig Pressure on UI Pipe Penetrations Compression ZIII= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 1X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 1X4DL4A013 or 1X4DL4A014, use B instead PEN # Type L D t ID Lw Fc Pc Pc/Fc 1 -4 I 48.25 56.000 1.500 53.000 167 4.2E+06 1.3E+05 0.030 5 VII 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 7- 10 I 18.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 11& 12 III 11.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 13 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 14 VII 15.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 15 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 16- 17 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 18-21 I 37.500 34.000 1.500 31.000 97 2.5E+06 4.7E+04 0.019 22 II 15.750 10.750 10.020 31 2.0E+05 4.7E+03 0.024 23 I 14.930 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 24 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 25 V 8.250 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 28 & 29 II 16.750 18.000 0.500 17.000 53 4.5E+05 1.3E+'04 0.029 30 &31 II 18.750 14.000 0.438 13.124 41 3.IE+'05 8.0E+03 0.026 32 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 33 II 18.750 14.000 0.438 13.124 41 3.1E+'05 8.0E+03 0.026 34 & 35 II 19.250 20.000 0.500 19.000 60 5.1E+05 1.6E+04 0.032 40 II 16.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 41 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 42 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 43-46 II 18.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 47 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 48 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 49 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 50 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 51 -55 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 X6CNA15 X6CNAI 5 ~ATTACHMENT F1 HETF-SHEET F1-3 Evaluation of 52 psig Pressure on Ul Pipe Penetrations Compression I I= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 1X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on IX4DL4A013 or 1X4DL4A014, use B instead PEN # Type L D t ID Lw Fc Pc Pcc 56 I 44.750 34.000 1.500 31.000 97 2.5E+06 4.7E+04 0.019 57 & 58 I 32.000 24.000 1.000 22.000 69 1 .2E+06 2.4E+04 0.020 59 & 60 I 28.000 26.000 1.000 24.000 75 1 .3E+06 2.8 E+04 0.022 61 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 62 & 63 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 64 VI 13.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 66 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 67 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 68 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 69 -73 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 75 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 76 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 77 & 78 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 79 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 80 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 81 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 82 V 8.250 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 83 & 84 10.000 24.000 0.500 23.000 72 6.1E+05 2.4E+04 0.038 85 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 86 III 23.670 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 87 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 88 VII 15.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 90 VII 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+'03 0.024 91 -98 II 19.750 18.000 0.750 16.500 52 6.6E+05 1.3E+04 0.020 100 9.250 4.500 0.237 4.026 13 5.1E+04 8.3E+02 0.016 101 -104 I 20.550 18.000 0.750 16.500 52 6.6E+05 1.3E+04 0.020 Maximum PclFc = 0.038 X6CNA15 X6CNAI 5 ~ATTACHMENT Fl1HETF-SHEET F1-4 Evaluation of 52 psig Pressure on Ul Pipe Penetrations Shear Type V orVII peerto;dimension B used instead of L Type V Penetration:
Per 1X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 1X4DL4A013 or 1X4DL4A014, use B instead PEN # Type L D t ID Lw Fs Ps Ps/Fs 1 -4 I 48.250 56.000 1.500 53.000 167 2.9E+06 4.4E+05 0.153 5 VII 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 7- 10 I 18.000 18.000 0.500 17.000 53.4 3.1E+05 5.3E+04 0.171 11& 12 III 11.750 12.750 0.375 12.000 37.7 1.6E+05 2.4E+04 0.150 13 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 14 VII 15.250 10.750 0.365 10.020 31.5 1.3E+05 2.7E+04 0.202 15 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 16- 17 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 18 -21 I 37.500 34.000 1.500 31.000 97.4 1.7E+06 2.1E+05 0.123 22 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 23 I 14.930 10.750 0.365 10.020 31.5 1.3E+05 2.6E+04 0.197 24 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 25 V 8.250 18.000 0.500 17.000 53.4 3.1E+05 2.4E+04 0.079 28 & 29 II 16.750 18.000 0.500 17.000 53.4 3.1E+05 4.9E+04 0.160 30 & 31 II 18.750 14.000 0.438 13.124 41.2 2.1E+05 4.3E+04 0.205 32 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 33 II 18.750 14.000 0.438 13.124 41.2 2.1E+05 4.3E+04 0.205 34 & 35 II 19.250 20.000 0.500 19.000 59.7 3.5E+05 6.3E+04 0.182 40 II 16.750 18.000 0.500 17.000 53.4 3.1E+05 4.9E+04 0.160 41 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 42 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 43-46 II 18.750 18.000 0.500 17.000 53.4 3.1E+05 5.5E+04 0.179 47 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 48 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 49 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 50 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 51 -55 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 X6CNA15 X6CNAI 5 ~ATTACHMENT F1 HETF-SHEET F1-5 Evaluation of 52 psig Pressure on Ul Pipe Penetrations Shear 11111= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 1X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 1X4DL4A013 or 1X4DL4A014, use B instead PEN # Type L D t ID Lw Fs Ps Psl__s 56 I 44.750 34.000 1.500 31.000 97.4 l.7E+06 2.5E+05 0.147 57 & 58 I 32.000 24.000 1.000 22.000 69.1 8.0E+05 l.3E+05 0.157 59 & 60 I 28.000 26.000 1.000 24.000 75.4 8.7E+05 1.2E+05 0.136 61 V 8.250 10.750 0.365 10.020 31.5 l.3E+05 1.4E+04 0.109 62 & 63 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 64 VI 13.250 10.750 0.365 10.020 31.5 l.3E+05 2.3E+04 0.175 66 V 8.250 10.750 0.365 10.020 31.5 l.3E+05 l.4E+04 0.109 67 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 68 II 16.000 18.000 0.500 17.000 53.4 3.IE+05 4.7E+04 0.152 69 -73 III 12.750 12.750 0.375 12.000 37.7 1 .6E+05 2.7E+04 0.163 75 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 76 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+Q4 0.109 77 & 78 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 79 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 80 II 16.000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+04 0.152 81 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 82 V 8.250 18.000 0.500 17.000 53.4 3.1E+05 2.4E+04 0.079 83 & 84 10.000 24.000 0.500 23.000 72.3 4.2E+05 3.9E+04 0.094 85 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 86 III 23.670 12.750 0.375 12.000 37.7 1.6E+05 4.9E+04 0.302 87 II 16.000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+04 0.152 88 VII 15.250 10.750 0.365 10.020 31.5 1.3E+05 2.7E+04 0.202 90 VII 8.250 10.750 0.365 10.02.0 31.5 1.3E+05 1.4E+04 0.109 91 -98 II 19.750 18.000 0.750 16.500 51.8 4.5E+05 5.8E+04 0.129 100 9.250 4.500 0.237 4.026 12.6 3.5E+04 6.8E+03 0.196 101 -104 I 20.550 18.000 0.750 16.500 51.8 4.5E+05 6.0E+04 0.134 Maximum Ps/Fs = 0.302 X6CNA15 ATTACHMENT F2 SHEET F2-1 Evaluation of 52 psig Pressure on U2 Pipe Penetrations L = Overall Length of Penetration Sleeve (inches)D = Penetration Outside Diameter (inches)t = Penetration Sleeve Wall Thickness (inches)ID = Penetration Inside Diameter (inches)I D= D-(2xt)Lw= Weld Length (inches)Lw= ix ID ocm = Allowable compressive stress (psi)Ocm = G-c-nom X ftemp-c-norn = 20,000 psi = Nominal allowable comprssive stress ftemp -0.85 -Reduction due to increased temperature ocm = 17,000 psi = Allowable compressive stress o-s = Allowable shear stress (psi)O-s = os-S-hin X ftemp O'c-noin = 13,600 psi = Nominal allowable comprssive stress fteinp = 0.85 = Reduction due to increased temperature a-s = 11,560 psi = Allowable shear stress Fc = a-c x Lw x t = Allowable Compressive Load (Ibf)Fs= a-s x Lw x t = Allowable Shear Load (Ibf)Pctrat = 52 psig = Containment Pressure Pc = Compressive Load (Ibf)Pc = Pctint x H- x [(D^2)/4]Ps = Shear Load (lbf)Ps = Pctint x (H x D) x L X6CNA15 X6CNAI S ~ATTACHMENT F2 SETF-SHEET F2-2 Evaluation of 52 psig Pressure on U2 Pipe Penetrations Compression
[1111= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 2X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 2X4DL4A013 or 2X4DL4A014, use B instead PEN # Type L D t ID LFcPc Pc/Fc 1 -4 I 48.25 56.000 1.500 53.000 167 4.2E+06 1.3E+05 0.030 5 VII 8.250 10.750 0.365 10.020 31 2,0E+05 4.7E+03 0.024 7- 10 I 18.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 11& 12 III 11.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 13 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 14 VII 15.250 10,750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 15 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 16- 17 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 18-21 I 37.500 34.000 1.500 31.000 97 2.5E+06 4.7E+04 0.019 22 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 23 I 14.930 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 24 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+'03 0.024 25 V 8.250 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 28 & 29 II 16.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 30 & 31 II 18.750 14.000 0.438 13.124 41 3.1E+05 8.0E+03 0.026 32 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 33 II 18.750 14.000 0.438 13.124 41 3.1E+05 8.0E+03 0.026 34&35 II 19.250 20.000 0.500 19.000 60 5.IE+05 1.6E+04 0.032 40 II 16.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 41 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 42 II 12.000 10.750 0,365 10.020 31 2.0E+05 4.7E+03 0.024 43-46 II 18.750 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 47 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 48 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 49 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 50 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 51 -55 I 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+I03 0.024 X6CNA15 X6CNAI 5 ~ATTACHMENT F2 SETF-SHEET F2-3 Evaluation of 52 psig Pressure on U2 Pipe Penetrations Compression
[113= TyeV orVII peerto;dimension B used instead ofL Type V Penetration:
Per 2X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 2X4DL4A013 or 2X4DL4A014, use B instead PEN # Type L D t ID Lw Fc Pc PclFc 56 I 44.750 34.000 1.500[ 31.000 97 2.5E+06 4.7E+04 0.019 57 & 58 I 32.000 24.000 1.000 22.000 69 1 .2E+06 2.4E+04 0.020 59 & 60 I 28.000 26.000 1.000 24.000 75 1 .3E+06 2.8E+04 0.022 61 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 62 & 63 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 64 VI 13.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 66 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 67 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 68 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 69-73 III 12.750 12.750 0.375 12.000 38 2.4E+05 6:6E+03 0.028 75 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 76 V 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 77 & 78 II 15.750 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 79 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 80 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+-04 0.029 81 II 12.000 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 82 V 8.250 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 83 & 84 10.000 24.000 0.500 23.000 72 6.1E+05 2.4E+04 0.038 85 III 12.750 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 86 III 23.670 12.750 0.375 12.000 38 2.4E+05 6.6E+03 0.028 87 II 16.000 18.000 0.500 17.000 53 4.5E+05 1.3E+04 0.029 88 VII 15.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 90 VII 8.250 10.750 0.365 10.020 31 2.0E+05 4.7E+03 0.024 91 -98 II 19.750 18.000 0.750 16.500 52 6.6E+05 1.3E+04 0.020 100 9.250 4.500 0.237 4.026 13 5.1E+04 8.3E+02 0.016 101 -104 I 20.550 18.000 0.750 16.500 52 6.6E+05 1.3E+-04 0.020 Maximum Pc/Fc = 0.038 X6CNA15 X6CNAI 5 ~ATTACHMENT F2 SETF-SHEET F2-4 Evaluation of 52 psig Pressure on U2 Pipe Penetrations Shear I=Type Vor VIpenetration; dimension B used instead o Type V Penetration:
Per 2X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 2X4DL4A013 or 2X4DL4A014, use B instead PEN # Type L D t ID Lw Fs Ps Ps/Fs 1 -4 I 48.250 56.000 1.500 53.000 167 2.9E+06 4.4E+05 0.153 5. VII 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 7-10 I 18.000 18.000 0.500 17.000 53.4 3.1E+05 5.3E+04 0.171 11& 12 III 11.750 12.750 0.375 12.000 37.7 1.6E+05 2.4E+04 0.150 13 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 14 VII 15.250 10.750 0.365 10.020 31.5 1.3E+05 2.7E+04 0.202 15 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 16-17 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 18-21 I 37.500 34.000 1.500 31.000 97.4 1.7E+06 2.1E+05 0.123 22 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 23 I 14.930 10.750 0.365 10.020 31.5 1.3E+05 2.6E+04 0.197 24 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 25 V 8.250 18.000 0.500 17.000 53.4 3.1E+05 2.4E+04 0.079 28 & 29 II 16.750 18.000 0.500 17.000 53.4 3.1E+05 4.9E+04 0.160 30&31 II 18.750 14.000 0.438 13.124 41.2 2.1E+05 4.3E+04 0.205 32 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 33 II 18.750 14.000 0.438 13.124 41.2 2.1E+05 4.3E+04 0.205 34 & 35 II 19.250 20.000 0.500 19.000 59.7 3.5E+05 6.3E+04 0.182 40 II 16.750 18.000 0.500 17.000 53.4 3.1E+05 4.9E+04 0.160 41 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 42 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 43-46 II 18.750 18.000 0.500 17.000 53.4 3.1E+05 5.5E+04 0.179 47 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 48 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 49 II 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 50 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 51 -55 I 15.750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 X6CNA15 X6CNAI5 ~~ATTACHMENT F2 SETF-SHEET F2-5 Evaluation of 52 psig Pressure on U2 Pipe Penetrations Shear I I= Type V or VII penetration; dimension B used instead of L Type V Penetration:
Per 2X4DL4A014, there is no dimension L; use B instead Type VII Penetration:
If dimension L not provided on 2X4DL4A01 3 or 2X4DL4A014, use B instead PEN # Type L D t ID Lw Fs Ps Ps/Fs 56 I 44,750 34.000 1.500 31.000 97.4 1.7E+'06 2.5E+05 0.147 57 & 58 I 32,000 24.000 1.000 22.000 69.1 8.0E+05 1.3E+05 0.157 59 & 60 I 28,000 26.000 1.000 24.000 75.4 8.7E+05 1.2E+05 0.136 61 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 62 &63 II 15,750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 64 VI 13,250 10.750 0.365 10.020 31.5 1.3E+05 2.3E+04 0.175 66 V 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 67 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 68 II 16,000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+04 0.152 69-73 III 12,750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 75 V 8.250 10.750 0.365 10,020 31.5 1.3E+05 1.4E+04 0.109 76 V 8.250 10.750 0.365 10,020 31.5 1.3E+05 1.4E+04 0.109 77 & 78 II 15,750 10.750 0.365 10.020 31.5 1.3E+05 2.8E+04 0.208 79 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 80 II 16.000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+-04 0.152 81 II 12.000 10.750 0.365 10.020 31.5 1.3E+05 2.1E+04 0.159 82 V 8.250 18,000 0.500 17,000 53.4 3,1E+05 2,4E+04 0.079 83 & 84 10,000 24.000 0.500 23,000 72.3 4.2E+05 3.9E+04 0.094 85 III 12.750 12.750 0.375 12.000 37.7 1.6E+05 2.7E+04 0.163 86 III 23.670 12.750 0.375 12.000 37.7 1.6E+05 4.9E+04 0.302 87 II 16.000 18.000 0.500 17.000 53.4 3.1E+05 4.7E+04 0.152 88 VII 15.250 10.750 0.365 10.020 31.5 1.3E+05 2.7E+04 0.202 90 VII 8.250 10.750 0.365 10.020 31.5 1.3E+05 1.4E+04 0.109 91 -98 II 19.750 18.000 0.750 16.500 51.8 4.5E+05 5.8E+04 0.129 100 9.250 4.500 0.237 4.026 12.6 3.5E+04 6.8E+03 0.196 101 -104 I 20.550 18.000 0.750 16.500 51.8 4.5E+05 6.0E+04 0.134 Maximum Ps/Fs = 0.302 Southern Nuclear Design Calculation IPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 ISheet: G1I ATTACHMENT G -REFERENCES DescrptionNumber Descrptionof Pages G1 -WCAP-8253 Section 4.1 15 G2 -Containment Rad Monitor 16MAY14 Data 5 G3 -VEGP 16 May 16 2014 Morning Report (First Page) 1 I _____________
4.I-4.*1-4.1~+*1.4 4.+4.Total Number of Pages Including Cover Sheet 2 22 SNC CALC X6CNA1 5 ATCMN ISETG ATTACHMENT G1 SHEET G1-1 c,.-J L.. Z, WESTINGHOUSE NON-PROPRIETARY CLASS 3 SOURCE TERM DATA FOR WESTINGHOUSE PRESSURIZED WATER REACTORS JULY 1975 6<APPROVED: C. EICHELDINGER, MANAGER NUCLEAR SAFETY DEPARTMENT WESTINGHOUSE ELECTRIC CORPORATION NUCLEAR ENERGY SYSTEMS.. ...........
P;O. -BO ~X 355 .. ............
.PITTSBURGH, PENNSYLVANIA 15230 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-2 4.0 REACTOR COOLANT SYSTEM ACTIVITY The long term environmental impact of normal reactor operation is eval-uated from the quantities of radioactivity in plant effluents.
The source of this activity, both fission and corrosion products, is the Reactor Coolant System.The fission product activity in the reactor coolant results fromr diffusion through fuel cladding defects and direct recoil from exposed *uranium within the system. The contribution from each mechanism, diffusion and recoil, can be resolved by observing the 1-131 and 1-133 concentrations in the coolant as described in Section 4.1.1. Although this is a useful tool-for estimating fuel defects, the total activity in the reactor coolant, regardless of source, is the important parameter for evaluating the long term environmental impact° Even more important is the total radioiodine concentration in the coolant because of offsite thyroid dose limitations.
The intent in this section, therefore, is not only to present operating plant data. in the conventional manner, relating radioiodine concentration to fuel defects, but subsequently to de-emphasize the "fuel defect" concept in favor of the "expected 1-131 concentration".
Operating plant data for seventeen Westinghouse Pressurized Water Reactors which use Zircaloy Il 1 clad fuel are presented in Section 4.1.2.The corrosion product activity in the reactor coolant results from neutron activation of metals deposited into the system from materials of construc-tion. Operating plant corrosion product data for seven Westinghouse pressurized water, reactors are given in Section 4.2.4.1 FISSION PRODUCT ACTIVITIES IN THE PRIMARY COOLANT 4.1.1 RELEASE MODEL The predicted fission product activity (disintegrations per second) in the reactor coolant during operation, with fuel defects, is computed using the following differential equations:
4-1 SNC CALC X6CNA1 5 ATCMN ISETG ATTACHMENT G1 SHEET G1-3 For parent nuclides in the coolant, dNwiB dt -DviNi -(.(i+ Rni Bo -fr w (A)For daughter nuclides in the coolant, ddt vj+Rj +~ t,) + XN(B)where: N = population of nuclide D = defective fuel fraction of reactor rated power R = purification flow (coolant system volumes per second)B°= initial boron concentration (ppm)B' = boron concentration reduction rate by feed and bleed (ppm per sec)n= removal efficiency of purification cycle for nuclide A= radioactive decay constant (sec&l)v = escape rate coefficient for diffusion into coolant (sec-l)Subscript C refers to core Subscript w refers to coolant Subscript i refers to parent nuclide Subscript j refers to daughter nuclide Predicted I-131 concentrations at the one percent defect level are cal-culated in this manner using the assigned values of D = 0.01 and v = 1.3-................... -x--l0 8-_. se c-]--a long w ith-s pe i fi cp-pant---paramete rs ms'u ch --as ""-pUrifi-cat-ion.....................
flow rate, boron values, and reactor coolant weight. The measured 1-131 concentration is compared to this predicted 1-131 value at the one percent fuel defect level to determine the apparent defects by a simple ratio. For any exposed uranium in .the system, however, there is no diffusion barrier and fission products from this source are deposited directly into the reactor coolant by the recoil mechanism.
A correction can be made for this recoil component by observing the 1-131 and 1-133 concentrations in the reactor coolant.4-2 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-4 The relationship between reactor coolant system 1-131 to 1-133 ratio and the correction of apparent fuel defect levels is derived from the solution of the simultaneous equations which describe the components of the fission product activities:
131ID 131I =131I 133ID 133I= 133I-where Uhe ar'e deffined as follows: -___________
D = diffusion component R = recoil component 0 = observed total For the diffusion relationship, the concentration in the fuel is given by: dtF -FYi -Ai IF- Vj IF (1)(2)(3)where IF =t =F -Yi =1i fission product iodine (atoms) and time (seconds)affected power fraction given as fissions/sec.
fission yield for i-th radionuclide decay constant for i-th radionucli'de (sec&l)escape rate coefficient for i-th radionuclide (sec-l)At steady state, the fuel rod inventory is given by: FY.Similarly, the reactor coolant system (RCS) concentration resulting from defective fuel can be expressed:
dlcc_(4)(5)4-3 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-5 where Icis the RCS concentration of the fission produce IF and S= purification rate in the letdown system, given by Letdown Rate (kg/sec)/RCS Mass (kg), (sec'l)Ei = purification efficiency for i-th radionuclide Ei Rq + B'/(Bo + tB') of Equation (A)Again at steady state:-IFVi (6)Substituting IF from (4) into (6) and multiplying by Ai: FYivix 1 AiIc = (Ai + j3Ei)(Ai + vi) = ID(7)A.ic is by definition ID, the diffusion component.
For practical purposes vi~ is considered to be identical for all isotopes of the same element, and for the case of the iodine radionuclides vi (13xlO'8sc is negligibly small compared to A.. When the prfcto efficiency is high, E. may be taken as 1.00; equation (7) then becomes: Fivi ID= "('i + 6 8 Then the ratio l31ID/133ID is obtained:__ 31ID _ 131 Al 3 3~ +___ (9)1 33ID 1 3 1 + 6 For the recoil relationship, the RCS concentration for the i-th radionuclide is given by: dtc -F'Y. -A.il -6IcE. (10)where F' = Effective source term, fissions/second At steady state, the result obtained when multiplied by xi is: xiIc -i + 'Y i I (11)4-4 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-6 where the recoil component IR is defined as Again, taking E. : 1.00, the usual expression for the steady-state activity derived from a recoil source results: IR = F'Yixi/(?Xi
+ 13) (12)The resulting ratio of 131IR/133IRi hs I1R 1 Y31 1i31. X133 + (13)1331R Y1V33 X131 + B os derived above as follows: RD = 131/31 (14)and RR = 131R133R (15)the simultaneous equations may be solved; rewriting equation (2) by substituting for 133D and 133R' using (14) and (15): 131~ 131~ID I R = 1331o (2')RD RR0 Then multiplying 2' by RR and subtracting from (1), the following is ob ta ined: (1l- RR/RD) 131ID 131Io -RR 1 3 3 Io (16)S rce1-1--n r-epres ent-s--th-e
"'tru-e" or corre-cted d-efec-t-level-, the rat;io ..................
131I /13]I" gives the ratio of corrected defects to apparent or observed D o defects : 131 -RD RRRD 133io 131i°- RD _RR RD _RR 131i° (17)Substituting (9) and (13) into (17), the relationship between the observed ratio of 131i to 133I and the ratio of corrected to apparent defect levels becomes : 4;5 SNC CALC X6CNA15ATAHETG ATTACHMENT G1 SHEET G1-7 13I _ ___133 _ -Y131 .131
- l133~ ++
- o1(8 11o 13 -131 Y1'33 -'131 X131 *(8 where Ro= 131~Io/3I i.e. the observed ratio of 13I to 13I For a typical purification rate constant (B) of 2 x 10-5 sec-1 , the values of equations (14) and (15) become 0.62 and 0.067 respectively when the following nuclear constants are used: Yl31 =2.93%"'133 -l.-9 A13 =1.0 x10O 6 secl 133= 9.26 x 10- sec1 substituting into equation (17) gives:-1 .12 -0(9 131 ioR Similarly, the isotopes of Xe-133 and Xe-135 can be used to estimate fuel defects. However, more uncertainties exist such as burnup of Xe-135, stripping fractions, and coolant system leaks for predicted concentrations, as well as more difficulties in the radiochemical analyses for fission gases.Typical values of RD and RR for xenon, using the applicable nuclear constants and plant parameters, are 47.5 and 0.5 respectively.
The xenon equation (17)counterpart then becomes:............-
3eD- 1.01 --.(20)1 3 3 Xe°where Ro = 1 3 5Xeo The observed concentrations of Xe-133 and Xe-135 are used in the same manner as the iodine isotopes to calculated apparent and corrected defects as shown in Table 4-18. The escape rate coefficient (v) used for xenon is 6.5 x lO sec-4-6 SNC CALC X6CNA15 ATCMN iSETG-ATTACHMENT G1 SHEET G1-8 The above model is valid for evaluating the long term environmental impact provided the value used for the escape rate coefficient (v) is consistent throughout the calculations.
The predicted reactor coolant activity concentrations are based on a defect level of one percent (chosen for equipment design purposes, not environmental impact) and an assumed value of v (1.3 x 10-8 sec-I for iodine). The term '"defect level 1' is defined as the equivalent percentage of average power density ( fuel rods, or that percentage of reactor rated power, contributing activity to the reactor coolant at a specific escape rate through cladding defects (e.g., a reactor rated at 1520 MWt having defective fuel rods generating 15.2 MWt would be operating at a defect level of one percent).to the predicted concentrations to determine an inferred defect level for the core. The "estimated" reactor coolant activity for long term environmental impact (40 years of plant operation), in turn, is based on a time integrated "average" fuel defect level and the selected value of v. If the assumed value of v were decreased by a factor of two, for example, the average defect level used for environmental impact calculations would be increased by the same factor of two. Therefore, no matter what value is assigned to v, the calculated environmental impact will not change because of the compensating change in the average defect level.4.1.2 OPERATING PLANT FISSION PRODUCT DATA The reactor system in an operating reactor plant is monitored periodically to determine activity levels and evaluate fuel performance.
Gross beta-gaimma measurements are made to determine general radioactivity
........................
evels and to-ascertain-that-Technical--Spec-i-fi-cation-concentration-limits
..-...~............
are not exceeded.
The coolant is analyzed for radioiodine in particular because of its biological importance and because it provides a good indication of fuel performance.
These analyses are usually performed three to five times per week but may vary from plant to plant and for different situations.
For this report, data points were selected on a monthly basis to be representative of normal operating conditions as near to equilibrium as possible.
Using all data points, or even a random selection of data points, would not really describe normal operating conditions because reactor power changes cause abnormal fluctuations in primary coolant activity concentrations, and because fission product saturation is time dependent.
wcap-284 4-7 SNC CALC X6CNA15 ATCMN ISETG-ATTACHMENT G1 SHEET G1-9 Operating plant data was reviewed in depth for 17 plants which have Westinghouse Pressurized Water Reactors (PWRs) with Zircaloy clad fuel.These 17 plants includeall Westinghouse PWRs using.Zircaloy clad fuel which have been operating for a sufficient period of time to provide meaningful data on coolant concentrations.
Representative data points were obtained for each month of operation from startup through December, 1974. The results were tabulated and are presented in Tables 4-1 through 4-12 and Tables 4-12-A-l through 4-12-A-5.
The effective full power ____days (EFPD) are given as a cumulative total. The percent power level given is that level at which samples were taken for analysis, and not the average power level for the month. All calculated defect levels were corrected linearly to 100 percent power. This correction is expected to underestimate the inferred fuel defect level, since the release of volatile fission products likely has a non-linear dependence on fuel temperature.
Conversely, the correction overestimates release on a calendar time basis since corrected coolant concentration values are greater than actual values. Examination of the data, however, shows this effect to be small and it should have little or no effect on the overall averages.
The inferred fuel defect levels for each plant are given on two bases. The column headed "apparent" defect level represents the level based on the measured reactor coolant 1-131 activity.
This apparent fuel defect level does not distinguish between iodine activities resulting from fission of uranimum in fuel rods, with release to the.........................
re actr_ oolant vi .d iffu sion,. and iodin ac2t iv itie s prod uced from._sourc es ...........
which permit direct recoil of fission fragments to the coolant 0 The column headed "corrected" defect level shows values inferred from measured reactor coolant iodine activities and corrected by the observed 1-131 to 1-133 ratio, as described previously, to give the contribution to the coolant activity from the diffusion mechanism only. Corrected defect levels could not be determined in the absence of 1-133 data. The apparent, rather than corrected, fuel defect levels are important because a major factor determining the radioactivity of the effluents from a plant during normal operation is the overall primary coolant activity, regardless of source.
...SNC CALC X6CNA1 5ATAHETGSETGIl ATTACHMENT G1 SHEET G1-10 The weighted average inferred fuel defect level was calculated on three bases: for each cycle of each plant, for the plant life, and for the total life of all plants through December, 1974. Summaries are presented in Table 4-13-A-I and 4-13-A-2.
Table 4-13-A-i reflects all of the data presented in the preceding seventeen tables. Table 4-13-A-2 excludes the first year of operation and periods when the reactor was operating at less than 70 percent power because these factors tend to underestimate the fuel defect levels expected over the forty year life of the plant. The summary tables are consistent with the data of Table 4-14, which was previously reported to the AEC(I 0) and covers the period through June, 1973. The values given in these summary tables are not simple arithmetic averages but rather values weighted by the effective full power days of operation during each cycle and over the plant life, according to the relationship:
Average inferred defect level=(EP.D where: EFPD = Effective full power days for the month or period D .= Representative defect level for the month or period A minimum value of 0.001 was Used in the averaging calculation when the inferred defect levels were less than 0.001.Table 4-13-A-l shows the overall average "apparent" fuel defect level for all plants to be 0.064 percent and a value of 0.028 percent excluding the first cycles of Beznau 1 and Ginna. It should be noted by comparingl Table 4-13-A-2 with Table 4-13-A-l that the elimination of both the first.....................and the data~from~those ess .........than 70 percent power does not make a significant difference in the overall time "integrated apparent fuel defect: 0.071% vs 0.064%. The high defect levels observed in the Beznau 1 and Ginna first cycle cores were due primarily to hydriding problems in a single region of fuel for each plant which have since been corrected.
Approximately once a year, about one-third of the fuel in a PWR is replaced.
Thus, after about 3 years, no original fuel remains so that even older planits will keep pace with fuel improvements.
11_0 SNC CALC X6CNA15ATAHETGSETGil ATTACHMENT G1 SHEET G1-11 During a single cycle the coolant iodine concentration generally increases with operating time. This increase might imply a correlation between fuel burnup and defect level but the core region, or regions, which are the source of the coolant activity cannot be identified by radioiodine analysis.
Thus, it is not possible to provide a simple correlation between iodine concen-tration and fuel burnup, nor is it probable that such a correlation exists, based on available data.The overall average fuel defect level is useful and valid for calculating"epctd activity concentrations in the reactor coolant and subsequently-e-valuai-ng--the-4og-term--env4r4onmenta1--impac~t.
However. i t-isnot-valid for other applications such as.Technical Specifications since it is an"average
value and the actual inferred defect level will be above the average as much as it is below.Occasionally an extensive isotopic analysis is performed on the primary coolant. The results of some recent analyses performed on Surry Unit 1, H. B. Robinson unit 2, and R. E. Ginna are presented in Tables 4-15, 4-16, and 4-17 respectively.
Fuel defect levels were calculated from this data using 1-131 and 1-133 concentrations and, for comparison, using Xe-133 and Xe-135 concentrations.
The results are given in Table 4-18. The inferred defect level values show fair agreement between the iodine and xenon methods for Surry 1 and Robinson 2. However, the iodine method results in an inferred defect level which is a factor of six greater than that provided by the xenon method for the Ginna plant. The values using iodine concentrations should be more dependable because gas predictions
.......................
and-analyses are dif~ficult as-stated prev-lousiy (Page 4-6).,and subject -.........
.......to greater errors. Additionally, where a substantial discrepancy occurs, as for Ginna, the iodine method is more conservative.
The inferred fuel defect level values and 1-131 concentrations from Tables 4-1 through 4-12 are presented graphically in Figures 4-lA through 4-12A and 4-lB through 4-12B, respectively.
The "A" Figures are plots of inferred fuel, defect levels as a function of effective full power days. These figures include average inferred defect level values and pertinent informa-tion such as fuel density, rod pressure, and number of assemblies for each 4-10 SNC CALO X6CNA15ATAHETGSETG-1 ATTACHMENT G1 SHEET G1-12 cycle .of operation.
The figures clearly show that improvements in fuel technology have significantly reduced fuel defect levels. The "B" Figures are plots of 1-131 concentration, corrected linearly to 1O00 percent power, as a function of effective full power days. These figures are included because the radioiodine concentration in the primary coolant is the important parameter for evaluating the long term environmental impact of normal plant operation.
The same scale was used in the plots for all plants to demonstrate the improvements in fuel performance and iodine concentrations.
The figures were not updated to reflect the additional data included in I1 Revision 1.I The inthioiecth-has been eVa-Tat-d-th us-far-i-ivT h---conventional manner, relating reactor coolant radioiodine concentrations with inferred fuel defect levels. To avoid possible misinterpretations, another method of data handling should be considered.
The "fuel defect" concept, with regard to radiological evaluation, should be de-emphasized in favor of "expected reactor coolant radionuclide concentrations".
The inferred defects levels,.as determined in this study using radioiodine concentrations, were based on an assumed escape rate coefficient (v) of 13x 108sc. This value of v could vary significantly depending I1 on the type of defect involved.
Post irradiation examination of fuel rods could very well show a different number of defective rods than indicated by 1-131 concentration because of this variation and the variation of rod power level. Also, radioactivity can be present in the coolant even with zero defects because of recoil sources. Therefore, since the total activity in the reactor coolant is the important parameter for evaluating long-term environmental impact, expected concentration values should be established
.............
.... .... ..w h ich in cic d e -l s r-es ;.........
..............
..... .... .............................
.............
........ .....An effort to establish such concentration values in currently in progress via the ANS 18.1 Working Group. This group is in the process of developing the American National Standard Source Term Specification, N237. The standard is to establish typical long-term concentrations of radionuclides in principal fluid streams of light water-cooled nuclear power plants. The numerical values could be used directly for radiological evaluation rather than calculating concentrations from a specified fuel defect level. The draft 4-11 SNC CALC X6CNA15ATAHET1SETGI1 ATTACHMENT G1 SHEET G1-13 version of the N237 Standard gives an 1-131 concentration value of 0.27 iiCi/gram in the reactor coolant of the reference PWR. This is the average 1-131 concentration in the primary coolant expected over the lifetime of the reactor.Although the value of 0.27 .iCi/gram is *higher than that indicated by the data presented here, it is lower than the values based on the current defect criterion.
The time integrated average 1-131 concentration for the fourteen plants given Table 4-13-A-2, corresponding to 0.071 percent defects, is 0.118 pCi/gram.
The 1-131 concentration values corresponding to thfe current WAs -1258-cirterion or 0.25 percent d~fe--W-t1-oud-range-from 0.33 to 0.59 pCi/gram f'or the plants reported here. The range is due to varying plant parameters.
The proposed N237 standard is equivalent to a compromise between the original 0.25% defects and the 0.07% defects shown in Table 4-13-A-2.
Since the proposed standard diverges from the fuel defect concept and will be revised periodically to reflect additional operating plant data, it should be adopted when available.
For shorter term hazards considerations, Technical Specifications for 1-131 could be calculated for each plant based on a specific postulated accident and offsite thyroid dose limitations.
The calculated 1-131 concentration in this case would be an upper limit. Actual iodine concentrations in the reactor coolant could then be reported as a percentage of Technical Specifications rather than as the percent fuel defects.4.
1.3 CONCLUSION
S AND RECOMMENDATIONS 4.1.3.1 Conclusions A survey was made of operating plant data from seventeen Westinghouse I Pressurized Water Reactors, which use Zircaloy clad fuel, to determine trends in radioactivity concentrations in primary coolant systems during normal operation.
The concentrations of 1-131 and 1-133 were used to estimate fuel defect levels. The "apparent" fuel defect level is that based on tOtal 1-131 in the coolant, regardless of source. The "corrected" 4-12 SNC CALC X6CNA15ATAHETGSETGI1 ATTACHMENT G1 SHEET G1-14 defect level represents only the diffusion component based on an escape rate coefficient of 1.3 x 10-8 sec-l. Corrections for recoil sources were made via the 1-131 to 1-133 ratio. The term "inferred defect level" is defined as the inferred equivalent percentage of defective average power fuel rods, expressed as a percentage of reactor rated power contri-buting activity to the reactor coolant at a specific escape rate. The following observations were made: a. The time-integrated average fuel defect levels, for the seventeen plants studied, from startup through December, 1974 are 0.064 percent- ' p -n ected.b. The time-integrated average fuel defect levels, excluding the first year of operation and points of less than 70 percent reactor rated power, through December, 1974 are 0.071 percent "apparent" and 0.058 percent "corrected".
- c. The time-integrated average fuel defect levels have been continually decreasing with reactor operating time because of fuel technology improvements.
- d. The time-integrated averages for inferred fuel defect levels in this survey are consistent with the data given in Table 4-14 which was previously submitted to the AEC.e. A simple correlation between fuel defect levels and fuel burnup cannot be provided by radioiodine analysis of the coolant and based on... ...............................
avai-lab-le-data-iti1s improbable that such -corretation-existsT.
...............
.........f. Reactor coolant concentrations of Xe-133 and Xe-135 can also be used to estimate fuel defect levels but the iodine method presents fewer uncertainties and is therefore more reliable.g. An average fuel defect level and an escape rate coefficient of 1.3 x 10-8 sec-1 for iodine could be used for evaluating the long-term environ-mental impact of normal reactor operation.
However, this should not be used for otherpurposes such as Technical Specification limits 4-13 SNC. CALC X6CNA15ATAHETGSETGI1 ATTACHMENT G1 SHEET G1-15 because the actual inferred defect level will be above the average as much as it is below. Recommendations for environmental impact calculations are given in the following section.4.1 .3.2 Recommendations The "fuel defect" concept, with regard to environmental impact evaluation, should be de-emphasized in favor of "expected reactor coolant radionuclide concentrations".
- 1. For evaluating the long-term environmental impact (40 years of plant life), the proposed N237 Standard should be adopted. This standard, which establishes typical long-term concentrations of radionuclides in principal fluid streams of light water reactors; should provide a uniform approach to radiological evaluation for those involved in design, licensing and operation of nuclear power plants.2. For accident considerations, Technical Specificationis for 1-131 con-centrations in the reactor coolant should be established for each plant based on maximum permissible thyroid doses resulting from a specific postulated accident, just as Technical Specification concentration limits are set for total activity.
Actual iodine concentrations in the reactor coolant could then be reported as a percentage of Technical Specification limits rather than as the percent fuel defects.A._AA SNC Calculation X6CNA15 Attachment G2 Sheet G2-1 Containment Rad Monitor Data Bornt, Butch From: Harris, Glenn W.Sent: Friday. May 16, 2014 4:01 PM To: Collins, Reggie V.Cc: Odom, Scott M.; Brett, H. Mike; Hayden, Mark S.; Bornt, Butch; Bell, Weston Kevan;Melton, Charles; Harris, Glenn W.
Subject:
RE: VEGP Containment Rad Monitors RE005 & RE006 Attached is 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> trend of 1RE-006 & 005 and 2RE-O06 & 005. The trends were done at "1645 toda The following data is the 10 minute average readings in mr/hr from 1/2RE-005 and 1I2RE-006:
5-16-14: 1RE-O05 12:00 5.05E+02 12:10 4.84E+02 12:20 5.09E+02 12:30 5.11E+02 12:40 5.02E+02 12:50 4.99E+02 13:00 4.93E+02 1RE-O06 12:00 2.50E+02 12:10 2.32E+02 12:20 1.93E+02 12:30 1.89E+02 12:40 2.40E+02 12:50 2.38E+02 13:00 2.50E+02 2RE-O05 12:00 4.22E+01 12:10 2.97E+01 12:20 5.33E+01 12:30 5.49E+01 12:40 4.74E+O1 12:50 6.13E+01 13:00 5.28E+01 2RE-006 12:00 1.92E+01 12:10 2.13E+01 12:20 2.31E+01 12:30 2.39E+01 12:40 1.54E+01 12:50 1.88E+01 1 SNC Calculation X6CNA15 Attachment G2 Sheet G2-2 Containment Rad Monitor Data 13:00 1.66E+01 From: Collins, Reggie V.Sent: Frdday, May 16, 2014 3:50 PM To: Harris, Glenn W.Cc: Odom, Scott M.; Brett, H. Mike; Hayden, Mark S.; Bornt, Butch; Bell, Weston Kevan; Melton, Charles
Subject:
RE: VEGP Containment Rad Monitors RE005 & RE006 Glenn, Could you have the PERMS Tech send the data to Butch?Thanks, Reggie Collins Plant Vogtle Chemistry Manager Phone: 706-826-3850 Beeper 706-727-0080 From: Hayden, Mark S.Sent: Friday, May 16, 2014 9:21 AM To: Bomt, Butch; Bell, Weston Kevan; Melton, Charles; Collins, Reggie V.Cc: Odom, Scott M.; Brett, H. MikeRE: VEGP Containment Pad Monitors REOO5 & REO06 Reggie, Do you have a specialist that can provide this data to Butch, I thought this would be easy for you guys as you probably already have a process for capturing PERMs data so this should be similar...
Thank you, Mark Hayden Emergency Preparedness Supervisor Southern Nuclear Co.- Plant Vogtle 1 & 2 Office (706) 826-3792 Cell (706) S51-2019 From: Bornt, Butch Sent: Friday, May 16, 2014 9:14 AM To: Hayden, Mark S.; Bell, Weston Kevan; Melton, Charles Cc: Odom, Scott M.; Brett, H. Mike
Subject:
VEGP Containment Rad Monitors RE005 & RE006 2 SNC Calculation X6CNA1 5 Attachment G2 Sheet G2-3 Containment Rad Monitor Data Mark-Would it be a major science project to send me an hour of data from both units' rad monitors, while they are operating at full power? I have no preference as to tabular vs. a screen cap, though the screen cap would probably require fewer pages.I would pull the data from the plant computers, but since our "upgrade" to Windows 7, the Weblcon links no longer work.If you have any questions, please do not hesitate to call me.Thank you for your help.&C PaPE Nuclear Safety Analysis Fleet Design Engineering Southern Nuclear Operating Company Bin B066 / 40 Inverness Center Parkway Birmingham AL 35242-4809 W: 205-992-5617 F: 205-992-5837 bbomt @southernco.com T M Keep silence for the most part, and speak only when you must, and then briefly." -Epictetus 3 SNC Calculation X6CNA15 Attachment G2 Containment Rad Monitor Data Sheet G2-4 1RE-O06 iRE-O05 SNC Calculation X6CNA15 Attachment G2 Containment Rad Monitor Data Sheet G2-5 2RE-O06 2RE-O05 SNC Calculation X6CNA15 Attachment G3 Sheet G3-1 SNC Calculation X6CNA15 Attachment G3 Sheet G3-1 SOUTHERN a~COMPANY MSPI STATUS U1 Emergency A/C Power High Pressure Injection Heat Removal Residual Heat Removal Cooling Water U2 VOGTLE NUCLEAR PLANT DATE: May 16, 2014 SHIFT MANAGER Night Day 51 IN WORK WEEK 37 Hi~33 El ta;Every day, every job, safely.FREE DAYS UE FREE DAYS RE FREE DAYS ISPO FREE DAYS CR 791199 CR 797929 CR 803343 CR 812741 1 M NUCLEAR SAFETY TRAIT: #6 Respectful Work Environment:
Trust and respect permeate the organization.
Protected Train: B Train Protected Train: B Train Protected Equipment B Train systems required for SFPC PoetdEupetCnest up &;HPA&B Current Risk profile: -This represents no significant Current Risk profile: -This represents no significant impact to the safety index. impact to the safety index.Projected Risk profile: I- This represents no significant Projected Risk profile: -This represents no impact to the safety index. significant impact to the safety index.Hand Protection Protect your hands! Always wear the right gloves for the job.* Our OPTICS Observation Data reveals an increase in At-Risk behaviors with hand protection.
- Use the correct hand protection for the job.* All employees shall have gloves with them when working in a PPE required area.* View the glove matrix on the SAFETY webpagelmanual for correct application of hand protection OFPI I OAI Indicators I NRC Security Threat Level No Alerts in Effect (Sustained Vigilance)
Reactor Mode / % Reactor Power 1/100 1/ 100 Gross / Net MWe 1236/1179 1235/1183 SFP reaches 200 deg on loss of cooling (hrs) 35 78 Protected SFPC Equipment
... ...Days on Line 29 36 Preceding Day's Generation Gross / Net 29267/27900 29287/28012 RCS Leak Rate (ID / UID) gpm 0.13/ 0.01 0.04/ 0.03 UID 7 day Avg 0.01 0.01 Next Scheduled Outage/ On Line Dates September 20, 2015/October 14, 2015 September 14, 2014/October 8, 2014 Southern Nuclear Design Calculation SPlant: Vogtle Unit: I &2 Icalculation Number: x6CNAI5 ISheet: HI ATTACHMENT H -VEGP 1 EAL THRESHOLDS DescrptionNumber Descrptionof Pages HI -Loss of Fuel Clad FP Barrier EAL Threshold
-Air Immersion 2 H2 -Loss of RCS FP Barrier EAL Threshold
-Air Immersion 2 H3 -Potential Loss of Containment FP Barrier EAL Threshold
-Air Immersion 2 Total Number of Pages Including Cover Sheet 7 SNC CALCULATION X6CNA15 ATCMN iSETH-ATTACHMENT H1 SHEET H1-1 VEGP I Loss of Fuel Clad FP Barrier Threshold
-Air Immersion Iodines -300 Dose Equivalent 1-131 FG R-12 DC FairDoeRt sooe A300 Xctmt-I DCFair DoseMRate Iooe (lpCi/g) (Ci/m^3) (REM/hr) (REM (rEMh_____(ci/m^3) (Ci/m^3) (E/r 1-131 2.22E+02 6.72E-01 2.42E+02 1.04E+02 7.38E+00O 1-132 2.25E+02 6.81E-01 1.49E+03 6.41E+02 4.60E+01 1-133 4.23E+02 1.28E+00 3.92E+02 1.68E+02 2.27E+01 1-134 5.40E+01 1.64E-01 i.73E+03 7.44E+02 1.28E+01 1-135 2.07E+02 6.27E-01 1 .06E+03 4.57E+02 3.02E+01 Kr-85m 1.55E+02 4.70E-01 9.96E+01 4.28E+01 2.12E+00 Kr-85 6.36E+02 1.93E+00 1.58E+00 6.81 E-01 1.38E-01 Kr-87 9.73E+01 2.95E-01 5.49E+02 2.36E+02 7.32E+00 Kr-88 2.80E+02 8.47E-01 1 .36E+03 5.84E+02 5.21 E+01 Xe-I131 m 1.54E+02 4.65E-01 5.1 8E+00 2.23E+00 1 .09E-01 Xe-133m 1.34E+03 4.05E+00 1.82E+01 7.85E+00 3.35E+00 Xe-133 1.95E+04 5.89E+01O 2.08E+01 8.93E+00 5.55E+01 Xe-135m 4.26E+O1 1.29E-01 2.72E+02 i.17E+02 1.59E+00 Xe-135 6.31E+02 1.91E+00 1.58E+02 6.81E+01 i.37E+01 Xe-I138 5.63E+01 1 .70E-01 7.68E+02 3.30E+02 5.93E+00 Total Dose Rate =Total Dose Rate =261 2,6E+05 REM/hr mREM/hr Dose Rate (REM/hr) = [Xctmt (Ci/m^3)]
x [DCFair (REM/hr)/(Ci/m^3)]/GF SNC CALCULATION X6CNA15 ATCMN ISETH-ATTACHMENT H1 SHEET H1-2 VEGP 1 Loss of Fuel Clad FP Barrier Threshold
-Air Immersion Xctmt =Radioisotope concentration in containment (Ci/m^3)Xctmnt = [A3oo (p, Ci/g) x (I Ci/I1.0E+06 p, Ci) x Mrcs (g)]/[Vctmt (mA3)]A3oo = RCS activity corresponding to 300 gCi/g DE 1-131 MRcs = Mass of RCS coolant MRcs = 2.53E+08 g Vctrnt = Containment Volume Vctmt = 2.95E+06 cu ft x [(0.3048 m)/(1 ft)]A3 Vctmt -8.35 E+04 m^3 DCFarr = (I1.2/pair) X [FGR #12 dose conversion factor for immersion in air@ density = 1 .2 kg/m^3]pair = Density of air in containment (kg/mA3)pair "- 2.791 kg/mA3 GF = Geometry Factor GF = 11 73/(VrnonA0.338)
Vrnon = Volume of containment seen by monitor (cu ft)Vmon -- fview X fspray X Vctrnt (cu ft)fview = 0.679 fspray -- 0.771 Vmon = 1 .55E+06 cu ft GF = 9.493 SNC CALCULATION X6CNA15 ATCMN 2SETH-ATTACHMENT H2 SHEET H2-1 VEGP 1 Loss of RCS FP Barrier Threshold
-Air Immersion ATS Xctmt-! OFair 1 Fi Dose Rate Isotope (Cl/rn^3) (REM/h r) (E/r______(Cilm^3) (Ci/m^3) (~lr 1-131 0.74 2.24E-03 2.42E+02 1.04E+02 0.025 1-132 0.75 2.27E-03 1.49E+03 6.41E+02 0.153 1-133 1.41 4.27E-03 3.92E+02 1.68E+02 0.076 1-134 0.18 5.45E-04 1.73E+03 7.44E+02 0.043 1-135 0.69 2.09E-03 1.06E+03 4.57E+02 0.101 Kr-85m 0.52 1 .57E-03 9.96E+01 4.28E+01 0.007 Kr-85 2.12 6.42E-03 1.58E+00 6.81 E-01 0.000 Kr-87 0.32 9.82E-04 5,49E+02 2.36E+02 0.024 Kr-88 0.93 2.82E-03 1.36E+03 5.84E+02 0.174 Xe-131m 0.51 1.55E-03 5.18E+00 2.23E+00 0.000 Xe-133m 4.46 1.35E-02 1.82E+01 7.85E+00 0.011 Xe-133 64.86 1.96E-01 2.08E+01 8.93E+00 0.185 Xe-135m 0.14 4.30E-04 2.72E+02 1.17E+02 0.005 Xe-135 2.10 6.37E-03 1.58E+02 6.81E+01 0.046 Xe-I138 0.19 5.68E-04 7.68E+021 3.30E+02 0.020 Total Dose Rate =Total Dose Rate =0.870 870 REM/hr mREM/hr Dose Rate (REM/hr) = [Xctmt (Ci/m^3)]
x [DCFaIr (REM/hr)I(CifmA3)]/GF SNC CALCULATION X6CNA15 ATTACHMENT H2 VEGP 1 Loss of RCS FP Barrier Threshold
-Air Immersion Xctmt = Radioisotope concentration in containment (Ci/mA3)Xctrnt = [ATS (pCi/g) x (1 Ci/1 .0E+06 j, Ci) x Mrcs (g)]/[Vctmt (ftA3)]ATS =RCS concentration corresponding to 1.0 mCi/g DE 1-131 MRCS = Mass of RCS coolant MRcs = 2.53E+08 g Vctmnt = Containment volume (m^3)Vctmt = 2.95E+06 cu ft x [(0.3048 m)/(1 ft)]^3 Vctrmt = 8.35E+04 mA3 DCFair = (1 .2/pair) X [FGR #12 dose conversion factor for immersion in air@ density = 1.2 kg/mA3]pair = 2.791 kg/m^3 GF =Geometry Factor GF = 11 73/(VrnonA0.338)
Vmon = Volume of containment seen by monitor (cu ft)Vmon '- fview X fspray X Vctmt (CU ft)fview = 0.679 fspray --- 0.77 1 Vrnon= 1 .55E+06 cu ft GF = 9.493 SHEET H2-2 SNC CALCULATION X6CNA15 ATCMN 3SETH-ATTACHMENT H3 SHEET H3-1 VEGP I Potential Loss of Containment FP Barrier -Air Immersion FGR-12 DCFairDoeRt Agap Aris Xctmt DCFairDoeRt Isotope (Ci) (Ci) (Cilm^3) (REM/hr) (REMIhr) (E~r______________(cilm^3) (Cilm^3) (E /r 1-131 1.03E+07 2.06E+06 2.47E+01 2.42E+02 1.04E+02 2.71E+02 1-132 1.50E+07 3.00E+06 3.59E+01 1.49E+03 6.41E+02 2.43E+03 1-133 2.10E+07 4.20E+06 5.03E+01 3.92E+02 1.68E+02 8.92E+02 1-134 2.26E+07 4.52E+06 5.41E+01 1.73E+03 7.44E+02 4.24E+03 1-135 1.95E+07 3.90E+06 4.67E+01 1.06E+03 4.57E+02 2.25E+03 Kr-85m 2.68E+06 5.36E+05 6.42E+00 9.96E+01 4.28E+01 2.90E+01 Kr-85 3.12E+05 6.24E+04 7.47E-01 1.58E+00 6.81E-01 5.36E-02 Kr-87 4.93E+06 9.86E+05 1.18E+01 5.49E+02 2.36E+02 2.93E+02 Kr-88 7.02E+06 1 .40E+06 1 .68E+01 1 .36E+03 5.84E+02 I1.03E+03 Xe-131m 7.13E+04 1.43E+04 1.71E-01 5.18E+00O 2.23E+00 4.01E-02 Xe-133m 3.01E+06 6.02E+05 7.21E+00 1.82E+01 7.85E+00 5.96E+00 Xe-133 2.12E+07 4.24E+i06 5.08E+0-1 2.08E+01 8.93E+00 4.78E+01 Xe-135m 4.18E+06 8.36E+05 1.00E+01 2.72E+02 1.17E+02 1.23E+02 Xe-135 4.65E+06 9.30E+05 1.11E+01 1.58E+02 6.81E+01 7.99E+01 Xe-I138 1 .69E+07 3.38E+06 4.05E+01 7.68E+02 3.30E+02 1.41 E+03 Total Dose Rate =Total Dose Rate =1.31 E+04 I1.3E+07 REMIhr mREMIhr Dose Rate (REM/hr) = [Xctmnt (Ci/m^3)]
x [DCFair (REM/hr)/(Ci/mA3)]/GF SNC CALCULATION X6CNA15 ATTACHMENT H3 VEGP I Potential Loss of Containment FP Barrier -Air Immersion Xctmt = Radioisotope concentration in containment (Ci/m^3)Xctmt -- Arils~ctmt Aris = Gap inventory released through fuel clad failure (Ci)Aris = D X Agap D = Fuel clad failure fraction D = 20%Agap-= Core Fuel Rod Gap Inventory (Ci)Vctmt = Containment volume (m^3)Vctmt = 2.95E+06 cu ft x [(0.3048 m)/(1 ft)]^3 Vctmt = 8.35E+04 m^3 DCFair -(1 .2/pair) X [FGR #12 dose conversion factor for immersion in air@ density = 1 .2 kg/mA3]pair = 2.791 kg/mA3 GF = Geometry Factor GF = 11 73/(Vrnon^0.338)
Vmnon = Volume of containment seen by monitor (cu ft)Vmon -fview X fspray x Vctmt (cuift)fview = 0.679 fspray "- 0.77 1 Vmon = 1 .55E+06 cu ft GF = 9.493 SHEET H3-2 Southern Nuclear Design Calculation IPlant: Vogtle Unit:l1&2 Calculation Number: X6CNA15 Sheet:l I I ATTACHMENT I -VEGP 2 EAL THRESHOLDS DescrptionNumber Descrptionof Pages Ii -Loss of Fuel Clad FP Barrier EAL Threshold
-Air Immersion 2 12 -Loss of RCS FP Barrier EAL Threshold
-Air Immersion 2 13 -Potential Loss of Containment FP Barrier EAL Threshold
-Air Immersion 2 4 4 Total Number of Pages Including Cover Sheet 7 SNC CALCULATION X6CNA15 ATCMN ISETI-ATTACHMENT I1 SHEET I1-1 VEGP 2 Loss of Fuel Clad FP Barrier Threshold
-Air Immersion Iodines -300 1Dose Equivalent 1-131 FGR-12 D~i A300 Xctmt-I DCFair DoseMRate Isotope (Ci/m^3) (REM/hr) (RE_/hr) DoeRatehr________________(Ci/m^3) (Ci/m^3)1-131 2.22E+02 6.72E-01 2.42E+02 1.04E+02 8.41E+00O 1-132 2.25E+02 6.81 E-01 1.49E+03 6.41E+02 5.25E+01 1-133 4.23E+02 1.28E+O0 3.92E+02 1.68E+02 2.59E+01 1-134 5.40E+01 1.64E-01 1.73E+03 7.44E+02 1.46E+O1 1-135 2.07E+02 6.27E-01 1.06E+03 4.57E+02 3.44E+O1 Kr-85m 1.55E+02 4.70E-O1 9.96E+01 4.28E+01 2.41E+00 Kr-85 6.36E+02 1.93E+00 1.58E+00 6.81 E-01 1.58E-01 Kr-87 9.73E+O1 2.95E-01 5.49E+02 2.36E+02 8.35E+00 Kr-88 2.80E+02 8.47E-01 I1.36E+03 5.84E+02 5.94E+01 Xe-131m 1.54E+02 4.65E-01 5.18E+00 2.23E+O0 1.24E-01 Xe-133m 1.34E+03 4.05E+00 1.82E+01 7.85E+00 3.82E+OO Xe-133 1.95E+04 5.89E+01 2.08E+01 8.93E+00 6.32E+01 Xe-135m 4.26E+01 1.29E-O1 2.72E+02 1,17E+02 1.81 E+OO Xe-135 6.31E+02 1.91E+00 1.58E+02 6.81E+01 1.56E+01 Xe-I138 5.63E+01 1.70E-01 7.68E+02 3.30E+02 6.76E+00 Total Dose Rate =Total Dose Rate =297 3.0E+05 REM/hr mREM/hr Dose Rate (REM/hr) = [Xctrnt (Ci/mA3)]
x [DCFair (REM/hr)/(Ci/m^3)]/GF SNC CALCULATION X6CNA15 ATCMN ISET1-ATTACHMENT I1 SHEET 11-2 VEGP 2 Loss of Fuel Clad FP Barrier Threshold
-Air Immersion Xctrmt = Radioisotope concentration in containment (Ci/m^3)Xctmt -[A3oo (gCi/g) x (1 Ci/1 .0E+06 pCi) x Mrcs (g)]/[Vctmt (m*l3)]A3oo = RCS activity corresponding to 300 p, Ci/g DE 1-131 MRCS = Mass of ROS coolant MRcs = 2.53E+08_g Vctrnt = Containment Volume Vctmt = 2.95E+06 cu ft x [(0.3048 m)I(1 ft)]A3 Vctrmt =8.35E+04 m^3 DCFair = (1 .2/pair) X [FGR #12 dose conversion factor for immersion in air@ density = 1 .2 kg/m^3]pair = Density of air in containment (kg/m*3)pair -2.791 kg/m^3 GF = Geometry Factor GF = 11 73/(Vmon*0.338)
Vmon = Volume of containment seen by monitor (cu ft)Vmon = fview X fspray X Vctmt (cu ft)fview = 1.000 fspray "" 0.771 Vrnon = 2.27E+06 cu ft GF = 8.331 SNC CALCULATION X6CNA15 ATCMN 2SET1-ATTACHMENT 12 SHEET 12-1 VEGP 2 Loss of RCS FP Barrier Threshold
-Air Immersion ATS Xctmt-I CFGir 1CFi Dose Rate Isotope (Cilm^3) (REM/hr) (REM/hr) (REMIhr)_________________ (CilmA3) (ci/m^3)1-131 0.74 2.24E-03 2.42E+02 1.04E+02 0.028 1-132 0.75 2.27E-03 1.49E+03 6.41E+02 0.175 1-133 1.41 4.27E-03 3.92E+02 1.68E+02 0.086 1-134 0.18 5.45E-04 1.73E+03 7.44E+02 0.049 1-135 0.69 2.09E-03 1.06E+03 4.57E+02 0.115 Kr-85m 0.52 1.57E-03 9.96E+01 4.28E+01 0.008 Kr-85 2.12 6.42E-03 1.58E+00 6.81E-01 0.001 Kr-87 0.32 9.82E-04 5.49E+02 2.36E+02 0.028 Kr-88 0.93 2.82E-03 1.36E+03 5.84E+02 0.198 Xe-131m 0.51 1.55E-03 5.18E+00 2.23E+00 0.000 Xe-133m 4.46 1.35E-02 1.82E+01 7.85E+00 0.013 Xe-133 64.86 1.96E-01 2.08E+01 8.93E+00 0.211 Xe-135m 0.14 4.30E-04 2.72E+02 1.17E+02 0.006 Xe-135 2.10 6.37E-03 1.58E+02 6.81E+01 0.052 Xe-1 38 0.19 5.68E-04 7.68E+02 3.30E+02 0.023 Total Dose Rate =Total Dose Rate =0.991 991 REM/hr mREMIhr Dose Rate (REM/hr) = [Xctmnt (Ci/m^3)]
x [DCFair (REM/hr)I(Ci/m^3)]/GF SNC CALCULATION X6CNA15 ATTACHMENT 12 VEGP 2 Loss of RCS FP Barrier Threshold
-Air Immersion Xctrmt = Radioisotope concentration in containment (Ci/m^3)Xctmt = [ATs (jCi/g) x (1 Ci/1 .0E+06 pCi) x Mrcs (g)]/[Vctmt (ft*3)]ATS = RCS concentration corresponding to 1 .0 mCi/g DE 1-131 MRCS = Mass of RCS coolant MRCS = 2.53E+08__g Vctmt = Containment volume (m*3)Vctrnt = 2.95E+06 cu ft x [(0.3048 m)I(1 ft)]^3 Vctrnt = 8.35E+04 m^3 DCFair = (1 .2/pair) x [FGR #12 dose conversion factor for immersion in air@ density = 1.2 kg/m^3]pair = 2.791_kg/m^3 GF = Geometry Factor GF = 1 173/(VmonA0.338)
Vmon = Volume of containment seen by monitor (cu ft)Vmon = fview X fspray x Vctmt (CU ft)fview = 1.000 fspray = 0.771 Vmon = 2.27E+06 cu ft GF = 8.331 SHEET 12-2 SNC CALCULATION X6CNA15 ATCMN 3SET1-ATTACHMENT 13 SHEET 13-1 VEGP 2 Potential Loss of Containment FP Barrier -Air Immersion Agap Aris Xctmt DFair-2 Car Dose Rate~Isotope (Ci) (Ci) (Cl/rn^3) (REMIhr) (REM/hr) (REM/hr)________ _______ (CilmA3) (Cilm^3)1-131 1,03E+07 2,06E+06 2.47E+01 2.42E+02 1,04E+02 3.09E+02 1-132 1,50E+07 3,00E+06 3.59E+01 1,49E+03 6.41E+02 2.77E+03 1-133 2.1OE+07 4,20E+I06 5.03E+O1 3.92E+02 1.68E+02 1.02E+03 1-134 2.26E+07 4.52E+06 5,41E+01 1.73E+i03 7.44E+02 4.84E+03 1-135 1.95E+07 3.90E+06 4.67E+O1 1.06E+03 4.57E+02 2.56E+03 Kr-85m 2.68E+06 5.36E+05 6.42E+00 9.96E+01 4.28E+01 3.30E+01 Kr-85 3.12E+05 6,24E+04 7,47E-O1 1,58E+00 6.81E-01 6.11E-02 Kr-87 4,93E+06 9.86E+05 1.18E+01 5.49E+02 2.36E+02 3.34E+02 Kr-88 7.02E+06 1,40E+06 1.68E+01 1,36E+03 5.84E+02 1.18E+03 Xe-131m 7.13E+04 1.43E+i04 1.71E-01 5.18E+00 2,23E+00 4.56E-02 Xe-133m 3,01E+06 6.02E+05 7.21E+00 1,82E+O1 7.85E+00 6,79E+00 Xe-133 2,12E+07 4.24E+I06 5,08E+01 2,08E+O1 8.93E+O0 5.44E+O1 Xe-135m 4.18E+06 8,36E+05 1.O0E+01 2.72E+02 1.17E+02 1,40E+02 Xe-135 4,65E+06 9.30E+05 1.11E+01 1.58E+02 6.81E+01 9.11E+01 Xe-1 38 1.69E+07 3.38E+06 4.05E+01 7.68E+02 3.30E+02 1 .60E+03 Total Dose Rate =Total Dose Rate =1 .49E+04 1 .5E+07 REM/hr mREM/hr Dose Rate (REM/hr) = [Xctmt (Ci/m^3)]
x [DCFair (REMIhr)I(Cilm^3)]IGF SNC CALCULATION X6CNA15 ATTACHMENT 13 VEGP 2 Potential Loss of Containment FP Barrier -Air Immersion Xctrnt = Radioisotope concentration in containment (Ci/m^3)Xctrnt = ArisNctmt Aris = Gap inventory released through fuel clad failure (Ci)Aris = D x Agap D = Fuel clad failure fraction D = 20%Agap = Core Fuel Rod Gap Inventory (Ci)Vctrnt = Containment volume (mA3)Vctrnt = 2.95 E+06 cu ft x [(0.3048 m)I(1 ft)]A3 Vctmnt = 8.35E+04 m^3 DCFair = (1 .2/pair) x [FGR #12 dose conversion factor for immersion in air@ density = 1 .2 kg/m^3]pair = 2.79 1 kg/mA3 GF = Geometry Factor GF = 1 173/(Vrnon^0.338)
Vrnon = Volume of containment seen by monitor (cu ift)Vmon -- fview X fspray X Vctmt (cu ft)fview =1.000 fspray = 0.771 Vrnon = 2.27E+06 cu ft GF = 8.331 SHEET 13-2 Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: i-1i ATTACHMENT J -REVIEWER ALTERNATE CALCULATION Purpose: The purpose of this section is to document alternate method check of the radiation EAL set points for the "Loss of RCS FP Barrier Threshold" section of this calculation.
==
Conclusion:==
The calculation main body section "Loss of RCS FP Barrier Threshold" and Attachment C2 have calculated the set point for air immersion of 0.870REM/hr.
The alternate methods have calculated the expected radiation levels as 1.34R/hr and 0.896R/hr.
Since these values are within factor of 2 the method used in the main body of this calculation is acceptable.
Calculation:
The original section used luCi/g TS limit of the RCS isotope concentration to develop the containment isotope concentration and then used FGR12 immersion dose conversion factors and the finite cloud geometry factor to determine radiation readings.
This verification section will use a different method. In this method luCi/g TS limit is used to determine total containment isotope in Ci. The curie content is converted into gamma energy source strength.The source radiation strength is converted into radiation readings via Etherington dose conversion factors and geometric factor for non-absorbing cylindrical volume source.The following MathCAD sheet will demonstrate why non-absorbing cylindrical volume vs.absorbing cylindrical volume is appropriate for this calculation.
The cylindrical model is chosen because the containment can be approximated by cylindrical geometry and locations of the radiation sensors can be approximated by the point (P1) as shown on Figure 1 below.Figure 1: Excerpt from Engineering Compendium of Radiation Shielding)Rcf. p. 415) 6.,4. Vjlunmcsources 381 C. Interior and Exterior without Slhield [[Tie uncollided fluxes at interior and exterior a points of a non-absorbing cylindrical volumle source, & p 6 with geometry shown in Fig. 6.4,-7, are given by the rollowing eNIprt'SSiOnS (31 At .;, (,) , "~ &9 ... .-( : (6.4.*- 2t Iig 6.47. t ton o o i hii V dia ot o Southern Nuclear Design Calculation Plant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: J-2 ATTACHMENT J -REVIEWER ALTERNATE CALCULATION The mean free path was calculated for the containment air (Figure 2). It can be seen that the mean free path is over 400 feet, which is much larger than the containment diameter of 140 feet. Therefore it was concluded that the containment atmosphere does not provide any appreciable gamma shielding and that the non-absorbing cylindrical model should be used.Figure 2: Mean Free Path for Containment Air.l/p= Mass Absorption Coefficient (cm^2/g)p = Density (g/cc)= Absorption Coefficient (1/cm)ja= X p X = Mean Free Path (cm)x= 1/ta Air p = 2.791 E-03 g/cm^3 Assumption
- 4 Energy X (MeV) (cm^A2Ig)
(1/cm) (cm) (ft)0.5 0.0297 8.35E-05 1 .20E+04 3.93E+02 1.0 0.0280 7.87E-05 1.27E+04 4.17E+02 1.5 0.0256 7.20E-05 1 .39E+04 4.56E+02 2.0 0.0238 6.69E-05 1.49E+04 4.90E+02 3.0 0.0211 5.93E-05 I1.69E+04 5.53E+02 4.0 0.0194 5.45E-05 1.83E+04 6.02E+02
Reference:
Table 11.5, page 649, Lamarsh, "Introduction to Nuclear Engineering," 2nd edition, 1983 Southern Nuclear Design Calculation SPlant: Vogtle IUnit: 1&2 Calculation Number: X6CNA15 Isheet: J-3 A'nTACHMENT J -REVIEWER ALTERNATE CALCULATION The Figure 3 shows the amount of isotope activity that would be present during RCS rupture and all of the activity is released into the containment.
The first part of the figure determined equivalent DEl 131 present in normal operation of the reactor (WCAP-16736 Table 7.8-1). The ratio to luCi/gm DEl 131 was found and noble gases as well as iodines were adjusted with this ratio. To find the containment activity the isotopes concentration were multiplied by the mass of RCS. The final activity was entered into GRODEC to find source strength.Figure 3: Calculation of Isotopes present in containment during RCS leak.WCAP-16736 Table 7.8-1 (uCi/gm)WCAP-16736 Table 7.8-1 (Ci/gm)DCF FGR 11 (Sv/Bq)DCF FGR 11 (Rlid)Activity (R/gm)1-131 2.91 2.91E-06 2.92E-07 1.08E+06 3.14E+O0 1-132 2.96 2.96E-06 1.74E-09 6.44E+03 1.91E-02 1-133 5.56 5.56E-06 4.86E-08 1.80E+05 1.00E+00 1-134 0.69 6.90E-07 2.88E-1O 1.07E+03 7.35E-04 1-135 2.72 2.72E-06 8.46E-09 3.13E+04 8.51E-02 SUM 4.25E+01 1.00E+06 uCi = 1*Ci 100 Rem=1*Sv 3.70E+10 Bq=1*Ci Mass RCS (gm)=2.53E+08 IDEl 131 Normal (uCi/gm)=
I 3"93E+001 WCAP-16736 Table 7.8-1 (uCi/gm)Ratio of Normal DEl to luCi/gm DEl Isotopes Concentration fat luCi/gm DEl (uCi/gm)Activity in the containment (Ci)Ratio of Normal DEl to 300uCi/gm DEl Isotopes concentration at 300uCi/gm DEl (uCi/gm)Activity in the containment (ci)1-131 2.91 3.93E+00 0.740 1.87E+02 1.31E-02 221.995 5.62E+04 1-132 2.96 3.93E+00 0.753 1.90E+02 1.31E-02 225.809 5.71E+04 1-133 5.56 3.93E+00 1.414 3.58E+02 1.31E-02 424.155 1.07E+05 1-134 0.69 3.93E+00 0.175 4.44E+01 1.31E-02 52.638 1.33E+04 1-135 2.72 3.93E+00 0.692 1.75E+02 1.31E-02 207.500 5.25E+04 Kr-85m 2.04 3.93E+00 0.519 1.31E+02 1.31E-02 155.625 3.94E+04 Kr-85 8.37 3.93E+00 2.128 5.38E+02 1.31E-02 638.522 1.62E+05 Kr-87 1.28 3.93E+00 0.325 8.23E+01 1.31E-02 97.647 2.47E+04 Kr-88 3.68 3.93E+00 0.936 2.37E+02 1.31E-02 280.736 7.10E+04 Xe-131m 2.02 3.93E+00 0.514 1.30E+02 1.31E-02 154.100 3.90E+04 Xe-133m 17.6 3.93E+00 4.4751 1.13E+03 1.31E-02 1342.650 3.40E+05 Xe-133 256 3.93E+00 65.098. 1.65E+04 1.31E-02 19529.454 4.94E+06 Xe-135m 0.56 3.93E+00 0.142 3.60E+01 1.31E-02 42.721 1.08E+04 Xe-135 8.3 3.93E+00 2.111 5.34E+02 1.31E-02 633.182 1.60E+05 Xe-138 0.74 3.93E+00 0.1881 4.76E+01 1.31E-02 56.452 1.43E+04 Southern Nuclear Design Calculation IPlant:Vogtle U nit 1&2 Icalculation Nube:x6CNA15 Sheet:' J-ATTACHMENT J -REVIEWER ALTERNATE CALCULATION The following MathCAD worksheet determined the geometric factor for non-absorbing cylindrical source. It was found that the geometric factor is 878.Pg 381 and 382 of Engineering Compendum of Radiation Shielding:
At PI:Svh j The containment volume equivalent height is found as follows: Vcontainment
- =2.95. 106£3 Design Input 4 for this calculation.
FiactionlAboveOperating_Deck
- =0.771 The .volume fraction for above operating deck.Design Input 5.Vaod := Vcontainment*
FmctionlAboveOperatingDeck
= 2.274 x 106 ft3 vcy .-d 2 h equation for cylinder volume decnt dcn =140it P~n :=- = 70ft Containment diameter Design Input 6 he-- 147.751fit or hq =4.503xx 103 cm t.dcont2-2.111 or approximately 2 the fuction is determined via page 382 table 6.4-3 of Engineering
\KR Compendum of Radiation Shielding and is 0.390.a =0.390 Sv- e2 9a --f = 8.781728686246464.
Sv. m or I-e =4503 *cm Sv- ~2
- Pa = 878.085. Sv. cm Southern Nuclear Design Calculation IPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 ISheet: l'5 A1TACHMENT J -REVIEWER ALTERNATE CALCULATION The activities from Figure 3 were entered into the GRODEC computer program (CALC F-86-03)to convert the activity to specific energy groups which are used to estimate the detector response.
The source volume 8.35E10cc and source density of 2.791E-03g/cc was used in GRODEC (DI #4 & Assumption
- 4). Note: GRODEC was installed on a computer DELL SN#CYC7LS1 that was running Windows XP. To verify the program proper operation nine test cases were executed and output results were matched/verified against the verification files listed on pages G1-G26 CALC F-86-03. The GRODEC input and output files "TSDEI" are listed on sheets E-7 through E-11.The GRODEC results were entered into the EXCEL spread sheet in Figure 4. The Dose Conversion Factors were obtained from Table 3 pg 7-66 Etherington "Nuclear Engineering Handbook".
The geometric correction factor of 878 was calculated above.Dose rate (R/hr) = Source (MeV/cc-sec) x Geometric Factor + Dose Conversion Factor (MeV/cm^2-sec per 1R/hr).Figure 4: GRODEC output converted into radiation field strength.GRODEC for luCi/gm DEI ___________
Energy Maximum Source Source Dose Conversion (R/hr)Group Energy Strength Strength times Factor (MeV) (MeV/cc-sec)
GF (878) = (1R/hr for, (MeV/ MeV/cm^2-sec) cmA2*Sec)
________ ____1 1.00E-01 2.16E+02 1.89E+05 5.90E+05 3.21E-01 21 3.OOE-01 8.14E+O1 7.14E+04 5.54E+05 1.29E-O1 3 5.00E-01 3.81E+01 3.34E+04 5.43E+05 6.1GE-02 4 7.00E-01 1.50E+02 1.31E+05 5.49E+05 2.39E-01 5 LO00E+O0 1.04E+02 9.13E+04 5.77E+05 1.58E-01 6 1.50E+00 1.10E+02 9.62E+04 6.27E+05 1.53E-01 7 2.00E+O0 9.29E+01 8.16E+04 6.81E+05 1.20E-01 81 2.50E+00 1.05E+02 9.25E+04 7.35E+05 1.26E-01 9 3.00E+O0 2.50E+01 2.20E+04 7.89E+05 2.78E-02 10 1.00E+01 O.OOE+0O0______
___________
SUM (1/(cm^2-sec)=
Geometric Factor= 878 8.09E+05 SUM (R/hr)=1.34E+00 Southern Nuclear Design Calculation Plant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: J-6 A1TACHMENT J -REVIEWER ALTERNATE CALCULATION The second method used source strength to determine the sensor current that will result from this flux.The resulting current was converted into radiation readings via the sensor constant (Flux Response).
See the following MathCAD worksheet.
Flux :=8.09. 105 2 em *see GRODEC summed all gammas. According to 2X6AZ01 -10004 Section B-8-5-2 the detector is responsive to gammas of energies 0.1MeV to 3.0MeV.therefore it is appropriate to sum all the listed gammas.The detector cross section is calculated next. The cylindrical detector cross section area is found by multiplying diamater by height.Diameter 1= 1.25in 2XSAZ01-10004 Radiation Monitoring manual Section B-8-1-2 Height : i Areacros : Diameter.
Height =72.581 cm Per B-8-1-2 of 2X6AZ01-1 0004 the detector is a gamma-sensitive ion chamber. Per Shultis/Faw"Fundamentals of Nuclear Science and Engineering" page 205 section 8.1.1 for ionization chambers the output current level is proportional to the intensity of the incident radiation and permits direct measurement of the exposure rate. On page 207-208 section 8.1.3 once charged particles enter the activie volume of the detector, they are detected with almost 100% efficiency.
Therefore it is assumed that each gamma will generate an ion-electron pair, thus allowing us to calculate the expected current.-19 Electroncharge
- =1.602. 10
- C Shultis/Faw "Fundamental of Nuclear Science and Engineering" page 6 table 1.5.InstrumentCurrent
- =Areacros
- Flux- lcroca. = 9.407>< 10- 12A FieldResponse
- =1.05- .1011 InstrumentCurrent R Radiation
- = = 0.896--FieldResponse hr 2X6AZ01-1 0004 Radiation Monitoring manual Section B-8-5-2 Southern Nuclear Design Calculation SPlant: Vogtle Unit: 1&2 Calculation Number: X6CNA15 Sheet: J-7 ATTACHMENT J -REVIEWER ALTERNATE CALCULATION GRODEC Input "TSDEI" 1 15 61,5.38e+02,0 62,1.31e+02,0 63, 8.23e+01,O 64,2.37e+02,0 141, 1.87e+02,O 142,1.90e+02,0 143,3 .58e+02,0 144,4.44e+01,0 145, 1.75e+02,0 146,1.30 e+02,0 147,1.65 e+04,0 148,1.13e+03,0 149,5.34e+02,0 150,3.60e+01,0 152,4.76e+01,0 Southern Nuclear Design Calculation IPlant: Vogtle IUnit: 1&2 Calculation Number: X6CNA15 ISheet: J-8 A1-IACHMENT J -REVIEWER ALTERNATE CALCULATION GRODEC Output "TSDEI" OUTPUT OF GRODEC CALCULATION OPERATING IN MODE 1 DATA FILE NAME:TSDEI INPUT DATA LISTING ISOTOPE INITIAL ADDITION ACTIVITY(CI)
RATE(CI/HR)
KR-85 5.380E+02 0.000E+00 KR-85M 1.310E+02 0.OOOE+O0 KR-87 8.230E+01 O.O00E+00 KR-88 2.370E+02 O.O00E+O0 1-131 1.870E+02 O.OO0E+OO 1-132 1.900E+02 O.OOOE+00 1-133 3.580E+02 0.OOOE+00 1-134 4.440E+01 0.OOOE+00 1-135 1.750E+02 O.OOOE+00 XE-131M 1.300E+02 O.O00E+OO XE-133 1.650E+04 O.O00E+OO XE-133M 1.130E+03 O.OOOE+OO XE-135 5.340E+02 0.000E+O0 XE-135M 3.600E+O1 O.OOOE+00 XE-138 4.760E+01 O.OOOE+O0 WHAT ARE THE START, STOP, AND INTERVAL TIMES 1.00 1.00 1.00 TIME THIS INCREMENT
= 1.000000 HOURS TOTAL ACTIVITY = 20102.740000 CU RIES Southern Nuclear Design Calculation SPlant: Vogtle [Unit: 1&2 Calculation Number: X6CNA15 Sheet: J-9 I ISOTOPE ISOTOPE NUMBER NAME ATTACHMENT J -REVIEWER ALTERNATE CALCULATION INITIAL ADDITION ACTIVITY ACT(CI) RATE(CI/HR) (CI)61 62 63 64 75 76 141 142 143 144 145 146 147 148 149 150 152 161 164 KR-85 KR-85M KR-87 KR-88 RB-87 RB-88 1-131 1-132 1-133 1-134 1-135 XE-131M XE-133 XE-133M XE-135 XE-135M XE-138 CS-135 CS-138 5.380E+02 1.310E+02 8.230E+01 2.370E+02 O.O00E+iO0 O.O00E+O0 1.870E+02 1.900E+02 3.580E+02 4.440E+01 1.750E+02 O.O00E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 0.O000E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 O.O00E+O0 5.380E+02 1.119E+02 4.763E+01 1.850E+02 1.044E-13 1.813E+02 1.863E+02 1.398E+02 3.460E+02 1.996E+01 1.578E+02 1.300E+02 O.O00E+O0 1.301E+02 1.650E+04 O.O00E+O0 1.642E+04 1.130E+03 O.O00E+O0 1.116E+03 5.340E+02 O.O00E+O0 5.080E+02 3.600E+01 O.O00E+O0 2.505E+00 4.760E+01 O.O00E+O0 4.424E+00 O.O00E+O00O.O00E+O0 1.373E-08 O.O00E+O000.O00E+O0 1.031E+01 START OF MESS RUN ISOTOPES NOT INCLUDED IN MESS RUN NAME ACTIVITY (CI)RB-87 1.043966E-13 CS-135 1.373235E-08 WHAT IS THE SOURCE VOLUME (CC)8.350000E+10 Southern Nuclear Design Calculation IPlant: Vogtle [Unit: 1&2 Calculation Number: X6CNA15 ISheet: J-10O A1TACHMENT J -REVIEWER ALTERNATE CALCULATION WHAT IS THE SOURCE DENSITY (GM/CC)2.791000E-03 START EXECUTION OF THE MESS SUBROUTINE, ID NUMBERS ARE MESS ID NUMBERS, NOT MAIN PROGRAM IDS.THE NUMBER OF ENERGY GROUPS INPUT: 10 THE MAXIMUM ENERGY OF EACH GROUP: ENERGY MAXIMUM GROUP ENERGY 1 1.000000E-01 2 3.000000E-01 3 5.000000E-01 4 7.000000E-01 5 1.000000E+00 6 1.500000E+00 7 2.000000E+O0 8 2.500000E+00 9 3.000000E+O0 10 1.000000E+01 MESS INPUT DATA: SOURCE DENSITY (GM/CC) = 2.791000E-03 SOURCE VOLUME (CC) = 8.350000E+10 ISOTOPE ID NO. SOURCE STRENGTH UC/GM UC/CC CI KR 85 47 2.308519E+00 6.443077E-03 5.379969E+02 KR 85M 46 4.802016E-01 1.340243E-03 1.119103E+02 Southern Nuclear Design Calculation IPlant: Vogtle IUnit:l1&2 Calculation Number: X6CNA15 ISheet: J-11 A1-TACHMENT J -REVIEWER ALTERNATE CALCULATION KR 87 48 KR 88 49 RB 88 67 1131 4 1132 5 1133 6 1134 7 1135 8 XE 131M 53 XE 133 54 XE 133M 55 XE 135 56 XE 137M 57 XE 138 59 CS 138 36 2.043672E-01 7.939883 E-01 7.780501E-01 7.995351E-01 5 .999796E-01 1.484605E+00 8.564094E-02 6.769193E-01 5.703889E-04 2.216022E-03 2.171538E-03 2.231502E-03 1.674543 E-03 4.143531E-03 2.390239E-04 1.889282E-03 4.762748E+01 1.850378E+02 1.813234E+02 1.863304E+02 1.398243E+02 3.459849 E+02 1.995 849 E+01 1.577550E+02 3 1.301385E+02 1.641791E+04
)2 1.115654E+03 5.080421E+02 5 2.504613E+00 4.424265 E+OO 1.031379E+01 5.584181E-01 1.558545E-0:
7.044848E+01 1.966217E-01 4.787219E+00 1.336113E-0 2.179984E+00 6.084336E-03 1.074717E-02 2.999536E-0!
1.898431E-02 5.298521E-05 4.425598E-02 1.235184E-04 MESS OUTPUT DATA: ENERGY MAXIMUM SOURCE STRENGTH GROUP ENERGY 1 1.000000E-01 2 3.000000E-01 3 5.000000E-01 4 7.000000E-01 5 l.000000E+O0 6 1.500000E+00 7 2.000000E+O0 8 2.500000E+00 9 3.000000E+O0 10 1.000000E+01 (M EV/CC-SEC) 2.155118E+02 8.135855E+01 3.809687E+01 1.496649E+02 1.039826E+02 1.095226E+02 9.292861E+01 1.053104E+02 2.501774E+01 (GAMMAS PER SEC)1.799524E+14 2.264480E+13 6.362 177E+12 1.785289E+13 8.682548E+12 6.096756E+12 3.879769E+12 3.517367E+12 6.963272E+11 O.O00000E+O0 O.O00000E+O0 X6CNA15 Attachment K ENERCON Calculation for RA1 SHEET K-I CALC NO. SNC024-CALC-005E N E R CO N CALCULATION COVER PAGE NO. 1 of 9 Title: Vogtle EALs RAI Threshold to Address NEi Ciet ...SN 99-01 Revision 6 Poetietfe:SC2 Item Cover Sheet Items Yes No I Does this calculation contain any open assumptions, including preliminary ri 0]____information, that require confirmation? (If YES, identify the assumptions.)
2 Does this calculation serve as an "Alternate Calculation"? (If YES, identify the [] 0 design verified calculation.)
Design Verified Calculation No. __________
3 Does this calculation supersede an existing Calculation? (If YES, identify the ][design verified calculation.)
____Superseded Calculation No. __________
Scope of Revision: Initial Issue Revision Impact on Results: Initial Issue Study Calculation EZI Final Calculation
[]Safety-Related
[] Non-Safety-Related
[]('Print Name and Sign)Originator:
David Hartmangruber Ojs Design Reviewer Dominic Naoloaoo,,,o
--, Ph. 7)L Date: /6 a/.Approver:
Jay Maisler, CHiP 21c2cA2&2~
6' I Digitally signed byIJavJMaisler(CHP O N: cn=Jay J._Mais eP9~P,.o=ENERCON, ou, Date: 2015.10.23 17:32:40 -04'00' X6CNA15 X6CNA15Attachment K ENERCON Calculation for RAI SHEET K-2 CALC NO. SNC024-CALC-005ER C ON CALCULATION REVISION STATUS SHEET -RV PAGE NO. 2 of 9 CALCULATION REVISION STATUS REVISION DATE DESCRIPTION 0 10/23/2015 Initial Issue PAGE REVISION STATUS PAGE NO. REVISION PAGE NO. REVISION 1-9 0 APPENDIX/ATTACHMENT REVISION STATUS APPENDIX NO. NO. OF REVISION ATTACHMENT NO. OF REVISION PAGES NO. NO. PAGES NO.
X6CNA15 X6CNAAt5aSHEETtK-ENERCON Calculation for RA1 SHEET K-3 CALC NO. SNCO24-CALC-005 TALOCNET ENERCON project. Eery day. T B EO ONTEN SR V PAGE NO. 3 of 9 Section 1.0 Purpose and Scope ......................................................
2.0 Summary of Results and Conclusions
.....................................
3.0 References................................................................
4.0 Assumptions..............................................................
5.0 Design Inputs..............................................................
6.0 Methodology..............................................................
7.0, Calculations
..............................................................
8.0 Computer Software........................................................
9.0 Results and Conclusion
...................................................
Page No.4 5 6 6 7 7 8 9 9 X6CNA15 Attachment K SHEET K-4___________________
ENERCON Calculation for RA1 ________CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold FiEN ER C ON to Address NEI 99-01 REV. 0...
Revision 6 PAGE NO. 4 of 9 1.0 Purpose and Scope The purpose of this calculation is to calculate the Emergency Action Level (EAL)thresholds for the update of the RA1 calculation in the Southern Nuclear (SNO) Design Calculation X6CNA14 (Reference
- 1) in response to the changes made to the Initiating Condition (IC) AA1 in Revision 6 of NEI 99-01 (Reference 2). Calculation RA1 is meant to address the IC AA1 (Section 4.1 of NEI 99-01 Revision 6 states "R may be used in lieu of A" for this recognition category provided the change is carried through for all the associated IC identifiers).
Revision 6 of NEI 99-01 IC AA1 identifies an EAL threshold for a release of gaseous or liquid radioactivity resulting in an offsite dose to a member of the public greater than 10 mrem Total Effective Dose Equivalent (TEDE) or 50 mrem thyroid Committed Dose Equivalent (CDE). IC AA1 is applicable to all operating modes and there are 4 EALs outlined in NEI 99-01 for IC AAI.1. Reading of site specific radiation monitors greater than threshold values that would generate a dose rate greater than the dose criterion established in IC AA1 in 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />. Reading must be shown for 15 minutes or longer.2. Dose assessment using actual meteorology indicates doses greater than 10 mrem Total Effective Dose Equivalent (TEDE) or 50 mrem thyroid Committed Dose Equivalent (CDE) at or beyond site boundary 3. Analysis of a liquid effluent sample indicates a concentration or release rate that would result in doses greater than 10 mrem TEDE or 50 mrem thyroid CDE at or beyond site boundary for one hour of exposure.4. Field survey results indicate either of the following at or beyond site boundary.
A closed window dose rate greater than 10 mR/hr expected to continue for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> or longer an analyses of field survey samples indicates a thyroid CDE greater than 50 mrem for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> of inhalation.
X6CNAI5 Attachment K SHEET K-5_________________
ENERCON Calculation for RA1 ________[CALC NO. SN1 4GL-0 Vogtle EAL RA1 Threshold SEN ER C ON to Address NEI 99-01 vyp poe,. doy Revision 6 REV. ]0______________I________________PAGE NO. J 5 of 9 The scope of this calculation is to determine site specific instrument readings for the RA1 EAL I threshold.
The IC RAI EAL 2, 3, and 4 are not evaluated in this calculation.
The quality rating of this calculation is non-safety related due to results only being used to generate a revised set of EALs for submission by the Vogtle Electric Generating Plant (VEGP).2.0 Summary of Results and Conclusions The instrument readings that indicate an EAL threshold value has been reached for IC RAI are calculated in this calculation.
IC RAl is the release of gaseous or liquid radioactivity resulting in offsite dose to a member of the public greater than 10 mrem TEDE or 50 mrem thyroid CDE.The RA1 EAL 1 is the valid reading on one or more of the following radiation monitors that exceeds or is expected to exceed the reading shown in Table 2-1. It should be noted here that the threshold value calculated for the turbine building vent (steam jet air ejector) is below the lower limit of the monitor RE-12839E (40 pCi/cm 3), which was used for RS1 EAL 1. The monitor RE-I12839E is not applicable for determining if an RAI EAL I threshold has been reached for the turbine building vent (steam jet air ejector) release pathway. Based on Design Input I of Reference I, the steam jet air ejector mid range monitor, RE-12839D, has sufficient range to be used for determining if an RA1 threshold has been reached.
X6CNA15 Attachment K ENERCON Calculation for RA1 SHEET K-6 CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold
-____F~EN ER C ON to Address NEI 99-01 REV. 0~xe~nc Erp e rydty Revision 6 PAGE NO. 6 of 9 Table 2-1 Radiation Monitor RA1 EAL Threshold Values RE-i12444E Plant Vent 0.5 pCi/cm 3 RE-i ~~Turbine Building Vent (Steam Jet 2 ~/m Air Ejector)3.0 References
- 1. X6CNA14 Rev 7, NEI 99-01 EAL Calculations, Southern Company, October 15, 2014.2. NEI 99-01 Rev 6, Development of Emergency Action Levels for Non-Passive Reactors, November 2012, Nuclear Energy Institute.
4.0 Assumptions
Based on the analysis of the methodology of Reference 1, the following assumption is consistent with the previously performed calculations, but were not included in the listed assumptions of Reference 1.4.1 Perfect Monitor Response This assumption is applied to be consistent with the calculations performed in Attachment D of Reference
- 1. It is assumed in this calculation that the monitors at the end of each pathway are not energy dependent or that the monitor response accounts for the relative energy spectrum associated with the thresholds determined in this calculation based on the expected proportion of each isotope in the overall concentration.
This is a simplifying assumption applied due to the limited information provided about the monitoring equipment.
X6CNA1 5 Attachment K F~NFRCOlN falclrafkiinn fnr RA1 SHEET K-7 CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold F~EN E R CON to Address NEI 99-01 REV. 0ey ...£ day,, Revision 6 PAGE NO. 7 of 9 5.0 Design Inputs 5.1 Vogtle Indication and RSI EAL 1 Thresholds X6CNA14 (Reference
- 1) addresses the IC RS1, which is based on the release of gaseous radioactivity resulting in offsite dose to a member of the public greater than 100 mrem TEDE or 500 mrem thyroid CDE. X6CNA14 evaluates two release pathways and determines the monitor readings that would indicate an EAL threshold value has been reached for IC RSI. The monitor readings that would indicate an EAL threshold value for IC RS1 are provided in Table 5-1.The indicating ranges for the radiation monitors are also provided in Table 5-1 and the ranges are based on Design Input 1 on Sheet 36 of Reference
- 1. These values are used to calculate the IC RA1 EAL threshold values.Table 5-1 Radiation Monitor RS1 EAL Threshold Values Radiation Monitor Vent Path Moio Raig Iniain ag RE-12444E Plant Vent 5 IJCi/cm 3 4.0E-01 to 5.8E+04 pCi/cm 3 RE-189 TrieBidnVet 210 tpCi/cm 3 4.0E+01 to 5.8E+04 pCi/cm 3 (Steam Jet Air Ejector)6.0 Methodology In the X6CNA14 (Reference
- 1) RS1 evaluation, EAL I thresholds were set based on readings of radiation monitoring equipment for several effluent pathways.
The thresholds are shown in Table 5-1 of this calculation.
The calculations for dose rate estimates is linear, therefore the RSI readings are scaled down by a factor of 10 (multiple of 0.1) for the RA1 evaluation performed in this calculation resulting in EAL 1 threshold values reflecting an offsite dose to a member of the public greater than 10 X6CNA15 Attachment K ENERCON CalculIation fnr RAl SHEET K-8 CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold
-____ _______I~EN ER C ON to Address NEIl99-01 REV. 0Revision 6 PAGE NO. 8 of 9 mrem Total Effective Dose Equivalent (TEDE) or 50 mrem thyroid Committed Dose Equivalent (CDE). The calculation of the RA1 EAL 1 threshold values is provided in Section 7.0.7.0 Calculations As discussed in Section 6.0, the values provided in Table 5-1 are multiplied by a scaling factor of 0.1 for the RA1 EAL I thresholds.
The resultant threshold values for RA1 EAL 1 are shown in Table 7-1. The monitor applied for the plant vent pathway for RS1 EAL 1, RE-12444E, is applicable for RAI EAL I (close to the limit of the monitor, but still within the indicating range). The monitor applied for the turbine building vent (steam jet air ejector) for RS1 EAL I, RE-I12839E, is not applicable for the RA1 EAL I because the threshold calculated in this calculation, 21 pCi/cm 3 , is below the lower limit of the monitor, 40 pCi/cm 3.Based on Design Input 1 of Reference 1, there is an additional monitor for the turbine building vent (steam jet air ejector) release path, RE-12839D, and it has a range that is applicable to the RA1 EAL I limit calculated in this calculation.
The monitor, indicating range, and the RA1 EAL 1 threshold for the turbine building vent (steam jet air ejector) release pathway are shown in Table 7-1.Table 7-1 Radiation Monitor RA1 Threshold Values Radiation.....
Vent Patti =:
Moinitor R:iesultant!I. )Indic:'
(" 4.0E-01 to 5.8E+04 RE-I12444E Plant Vent 5 IpCi/cm 3 0.1 0.5 pCi/cm 3 iaCi/cm 3 Turbine Building Vent 3.4E-03 to 4.0E+01 RE-12839D 210 pJCi/cm 3 0.1 21 iiCi/cm 3 a/m (Steam Jet Air Ejector) I~/m X6CNA1 5 Attachment K IFNFRCON CalcIulaItion fnr RAI SHEET K-9 CALC NO. SNC024-CALC-005 Vogtle EAL RA1 Threshold
____ ________F~E NE R CON to Address NEI 99-01 REV. 0 EacelIerce--Evey project Every day R v s o PAGE NO. 9 of 9 8.0 Computer Software No computer software was used in the creation of this calculation.
9.0 Results and Conclusion The purpose of this calculation is to calculate the EAL thresholds for the RA1 calculation in the SNC Design Calculation X6CNA14 (Reference
- 1) for VEGP use in development of an EAL submittal based on NEI 99-01 Revision 6. Table 2-1 contains the threshold values associated with the RA1 EAL 1. These values will be applied to the VEGP Emergency Action Level Scheme developed using the guidance of NEI 99-01 Revision 6.
X6CNA1 5 Attachment K ENERCON Calculation for RAI SHEET K-IO CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 0E NE R CON CHECKLIST E~o, ...
NO. Page 1 of 8 CHECKLIST ITEMS 1 YES NO N/A GENERAL REQUIREMENTS
- 1. If the calculation is being performed to a client procedure, is the procedure being used the latest revision?Client procedure is not used in this calculation.
ENERCON QA procedures used throughout Li L] [this project.2. Are the proper forms being used and are they the latest revision?
Jz] L [ Li[3. Have the appropriate client review forms/checklists been completed?
Client procedure is not used in this calculation.
ENERCON QA procedures used throughout z] [][this project.4. Are all pages properly identified with a calculation number, calculation revision and page number consistent with the requirements of the client's procedure?
Client procedure is not used in this calculation.
ENERCON QA procedures used throughout Li L] [this project.5. Is all information legible and reproducible?
[] []6. Is the calculation presented in a logical and orderly manner?. [] []7. Is there an existing calculation that should be revised or voided?This calculation does not replace any ENERCON produced calculation.
Information generated
[ ][by this calculation will be used by SNC to update their Vogtle EAL report.8. Is it possible to alter an existing calculation instead of preparing a new calculation for this situation?
No current ENERCON calculations exist that are similar to this calculation for addressing the Li [] Li SNC Vogtle EAL update.9. If an existing calculation is being used for design inputs, are the key design inputs, I assumptions and engineering judgments used in that calculation valid and do they Li [ Li apply to the calculation revision being performed.1 1 _ 1_ _
X6CNA15 Attachment K SHEET K-il__________________
ENERCON Calculation for RAl CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 E N R CO NCHECKLIST Fxcdae-Fe
...eryproJe42.
Ey doy. PAGE NO. Page 2of 8 CHECKLIST ITEMS 1 YES NO NIA 10. Is the format of the calculation consistent with applicable procedures and expectations?
[] [][11. Were design input/output documents properly updated to reference this calculation?
No ENERCON design inputs or outputs are affected by this calculation.
This calculation will affect the Vogtle EAL evaluation.
- 12. Can the calculation logic, methodology and presentation be properly understood without referring back to the originator for clarification?
1 1 1[ ______OBJECTIVE AND SCOPE 13. Does the calculation provide a clear concise statement of the problem and objective of the calculation?
[ ][14. Does the calculation provide a clear statement of quality classification?
[ ][15. Is the reason for performing and the end use of the calculation understood?
[] D] L 16. Does the calculation provide the basis for information found in the plant's license basis?The plant's license basis is not applied in this evaluation.
LI [] [17. If so, is this documented in the calculation?
The plant's license basis is not applied in this evaluation.
LI [] [18. Does the calculation provide the basis for information found in the plant's design basis documentation?
The plant's license basis is not applied in this evaluation.
LI LI [19. If so, is this documented in the calculation?
The plant's license basis is not applied in this evaluation.
LI LI [
X6CNA1 5 Attachment K ENERCON Calculation for RA1 SHEET K-12 CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST aco, ... ay.P AGE N O. P age 3 of 8 CHECKLIST ITEMS 1 YES NO NIA 20. Does the calculation otherwise support information found in the plant's design basis documentation?
Calculation is applied in the development of the Vogtle EAL evaluation, not the plant license Li [] [basis.21. If so, is this documented in the calculation?
Calculation is applied in the development of the Vogtle EAL evaluation, not the plant license L basis.22. Has the appropriate design or license basis documentation been revised, or has the change notice or change request documents being prepared for submittal?
Calculation is applied in the development of the Vogtle EAL evaluation, not the plant license Li LI [basis.DESIGN INPUTS 23. Are design inputs clearly identified?
[] [][24. Are design inputs retrievable or have they been added as attachments?
[ -[25. If Attachments are used as design inputs or assumptions are the Attachments traceable and verifiable?
Attachments are not included in this calculation.
Li Li [26. Are design inputs clearly distinguished from assumptions?
Iz]L [L i[27. Does the calculation rely on Attachments for design inputs or assumptions?
If yes, are the attachments properly referenced in the calculation?
Attachments are not included in this calculation.
Li Z] Li 28. Are input sources (including industry codes and standards) appropriately selected and [] Li Li are they consistent with the quality classification and objective of the calculation?
- 29. Are input sources (including industry codes and standards) consistent with the plant's Lii design and license basis? [ ][
X6CNA1 5 Attachment K ENERCON Calculation for HA1 SHEET K-13 CALC NO. SNC024-CALC-005 CALCULATION PREPARATION REV. 0 E N R (0 NCHECKLIST.... ,e~ p~j~c.
N O. Page 4of 8 CHECKLIST ITEMS 1 YES NO NIA 30. If applicable, do design inputs adequately address actual plant conditions?
[ ][31. Are input values reasonable and correctly applied? [ ][32. Are design input sources approved?
[] [ LI 33. Does the calculation reference the latest revision of the design input source? LI[][34. Were all applicable plant operating modes considered?
[] LI LI ASSUMPTIONS
- 35. Are assumptions reasonable/appropriate to the objective?
[] LI LI 36. Is adequate justification/basis for all assumptions provided?
Li[][37. Are any engineering judgments used? I Z] [ LI 38. Are engineering judgments clearly identified as such?No engineering judgments were applied in this evaluation.
LI [] [39. If engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria?
LI w][No engineering judgments were applied in this evaluation.
METHODOLOGY
- 40. Is the methodology used in the calculation described or implied in the plant's licensing LII basis? [ ][41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated?
Plant licensing basis was not affected by this evaluation.
LI LI [
X6CNA1 5 Attachment K ENERCON Calculation for RA1 SHEET K-14 CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST Exctl ... Eeryproec.
NO. Page 5 of 8 CHECKLIST ITEMS 1 YES NO NIA 42. Is the methodology used consistent with the stated objective?
[ ][43. Is the methodology used appropriate when considering the quality classification of the I 1 -1 D* calculation and intended use of the results? 1] [] [BODY OF CALCULATION
- 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? [ ][45. Is there reasonable justification provided for the use of equations not in common use?Equations applied in this evaluation are in common use in the industry.
L] [] [46. Are the mathematical operations performed properly and documented in a logical [ ][fashion?47. Is the math performed correctly?
[ ][48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? [ ][49. Has proper consideration been given to results that may be overly sensitive to very small changes in input?Results generated by calculations performed in this evaluation are not significantly affected by Li [] [minor perturbations of variables.
SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?
No software languages or codes were used in the development of this calculation.
LI [][51. Have the requirements of CSP 3.09 for use of computer codes or software languages, including verification of accuracy and applicability been met?No software languages or codes were used in the development of this calculation.
L X6CNA1 5 Attachment K ENERCON Calculation for RA1 SHEET K-I5 CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST....
NO. Page 6of 8 CHECKLIST ITEMS" YES NO NIA SOFTWARE/COMPUTER CODES (Continued)
- 52. Are the codes properly identified along with source vendor, organization, and revision level?No software languages or codes were used in the development of this calculation.
i Z 53. Is the computer code applicable for the analysis being performed?
No software languages or codes were used in the development of this calculation.
D] D][54. If applicable, does the computer model adequately consider actual plant conditions?
No software languages or codes were used in the development of this calculation.
Iii [l [55. Are the inputs to the computer code clearly identified and consistent with the inputs and assumptions documented in the calculation?
No software languages or codes were used in the development of this calculation.
[ ][56. Is the computer output clearly identified?
No software languages or codes were used in the development of this calculation.
LI E] [57. Does the computer output clearly identify the appropriate units?No software languages or codes were used in the development of this calculation.
El [] [58. Are the computer outputs reasonable when compared to the inputs and what was expected?No software languages or codes were used in the development of this calculation.
E 59. Was the computer output reviewed for ERROR or WARNING messages that could invalidate the results?No software languages or codes were used in the development of this calculation.
l E X6CNA1 5 Attachment K ENERCON Calculation for RA1 SHEET K-16 CALC NO. SNCO24-CALC-005 CALCULATION PREPARATION REV. 0 SE NE RCZO N CHECKLIST....E N O. Page 7of 8 CHECKLIST ITEMS 1 YES NO NIA RESULTS AND CONCLUSIONS
- 60. Is adequate acceptance criteria specified?
This calculation provides results for the SNC Vogtle EAL evaluation.
No acceptance criteria required for this evaluation.
- 61. Are the stated acceptance criteria consistent with the purpose of the calculation, and intended use?This calculation provides results for the SNC Vogtle EAL evaluation.
No acceptance criteria D] D][required for this evaluation.
- 62. Are the stated acceptance criteria consistent with the plant's design basis, applicable licensing commitments and industry codes, and standards?
This calculation provides results for the SNC Vogtle EAL evaluation.
No acceptance criteria zJ []l [required for this evaluation.
- 63. Do the calculation results and conclusions meet the stated acceptance criteria?This calculation provides results for the SNC Vogtle EAL evaluation.
No acceptance criteria required for this evaluation.
- 64. Are the results represented in the proper units with an appropriate tolerance, if applicable?
- 65. Are the calculation results and conclusions reasonable when considered against the [ ][stated inputs and objectives?
- 66. Is sufficient conservatism applied to the outputs and conclusions?
[] El El 67. Do the calculation results and conclusions affect any other calculations?
No ENERCON calculations are affected by this evaluation.
Results are provided to SNC Vogtle nuclear power plant for input into the Vogtle EAL evaluation.
- 68. if so, have the affected calculations been revised?No ENERCON calculations are affected by this evaluation.
Results are provided to SNC Vogtle nuclear power plant for input into the Vogtle EAL evaluation.
X6CNA15 Attachment K ENERCON Calculation for RA1 SHEET K-17 CALC NO.SNC024-CALC-005 ENERCON ExceIlence--Every proj.ct. Every CALCULATION PREPARATION CHECKLIST REV. 0 PAGE NO.Page 8 of 8 CHECKLIST ITEMS 1 YES NO N/A 69. Does the calculation contain any conceptual, unconfirmed or open assumptions requiring later confirmation?
Calculation is based on design input and assumption data provided and used by client in their j] 0] 0 current EAL evaluation.
Parameters maintained for consistency.
- 70. If so, are they properly identified?
No open assumptions applied in this evaluation.
Assumptions have basis based on information0 provided by the client.DESIGN REVIEW 71. Have alternate calculation methods been used to verify calculation results? u][][Note: 1. Where required, provide clarification/justification for answers to the questions in the space provided below each question.
An explanation is required for any questions answered as "No' or "N/A".Originator:
David Hartmangruber 4 Date Print Name and Sign X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-1 CALC NO. SNCO24-CALC-O04EN F_ R C0 N CALCULATION COVER e0y iE S H EET REV. 0 PAGE NO. I of 8 Til:Level for Initiating Condition E-HUI rjc dntfe:SC2 Item Cover Sheet Items Yes No 1 Does this calculation contain any open assumptions, including preliminary E] [information, that require confirmation? (If YES, identify the assumptions.)
2 Does this calculation serve as an 'Alternate Calculation"? (If YES, identify the design [] [verified calculation.)
Design Verified Calculation No. __________
3 Does this calculation supersede an existing Calculation? (If YES, identify the design [][verified calculation.)
Superseded Calculation No.__________
Scope of Revision: Initial Issue Revision Impact on Results: Initial Issue Study Calculation LI Final Calculation Safety-Related L'- Non-Safety-Related
[Z (Print Name and Sign)Originator:
Andrew Blackwell 1(0/ Design Reviewer:
Curt Lindner Date: 7 /j-Dg/,~ge yJy.~~eH Approver:
JayMaisler, CHP) ON .....y jmal$1 ...............
Dat:O1 /9/01 Approver:
on=aJay Maisler, CHP ~aIjas,@eeoENRCOm,cou, 6" ~ ~ ,/ Da20 2015,10.09
] 1I2IOQO040' D te 0//2 1 X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-2 CALC NO.SNCO24-CALC-004 SENERCON S CALCULATION REVISION STATUS SHEET REV. 0 PAGE NO. 2 of 8 CALCULATION REVISION STATUS REVISION DATE DESCRIPTION 0 10/07/2015 Initial Submittal PAGE REVISION STATUS PAGE NO. REVISION PAGE NO. REVISION 1-8 0 APPENDIX/ATTACHMENT REVISION STATUS APPENDIX NO. NO. OF REVISION ATTACHMENT NO. OF REVISION PAGES NO. NO. PAGES NO.
X6CNA15 X6CNAI 5Attachment L ENERCON Calculation for E-HU1 SHEET L-3 CALC NO. SNCO24-CALC-004
£,.,E NE R CON TABLE OF CONTENTS REV. 0 Eoceitence--Eoeiy project. Every doy____________________________________
PAGE NO. 3 of 8 Section 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Purpose and Scope Summary of Results and Conclusions References Assumptions Design Inputs Methodology Calculations Computer Software Page No.4 4 5 5 6 7 8 8 X6CNA15 Attachment L SHEET L-4_________________
ENERCON Calculation for E-HU1 CALC NO. SNC024-CALC-004 VEGP DETERMINATION OF EMERGENCY ACTION LEVEL REV. 0 SE N E R C 0 N FOR INITIATING CONDITION E-HU1 PAGE NO. Page 4of 8 1.0 Purpose and Scope The purpose of this calculation is to determine the emergency action level (EAL)thresholds for the initiating condition (IC) E-HUI, which is defined as damage to the confinement boundary of a storage cask containing spent fuel, as described in NEI 99-01 Rev. 6 [1]. The IC is defined as an "on-contact" radiation reading greater than two times the allowable dose readings as specified in the technical specifications listed in the cask's Certificate of Compliance (CoC). A dose rate reading greater than EAL threshold value indicates that there is degradation in the level of safety of the spent fuel cask.This calculation is performed under guidance from NEI 99-01 Rev. 6 [1], which describes development of a site-specific emergency classification scheme.2.0 Summary of Results and Conclusions The emergency action levels for initiating condition E-HUI are calculated based on the HI-STORM 100 and HI-TRAC 125 cask system technical specification for spent fuel cask surface dose rates [2]. An elevated cask surface dose rate is indicative of degradation of the cask confinement barrier. The calculated elevated dose rates used as emergency action level thresholds are provided in Table 2-1.
X6CNA15 fnr I.-I-II II SHEET L-5 CALC NO. SNC024-CALC-004 VEGP DETERMINATION OF ____________
EMERGENCY ACTION LEVEL REV. 0 SE N E R C 0 N FOR INITIATING CONDITION E- -__________
HU1 PAGE NO. Page 5 of 8 Table 2-1 Emergency Action Level Spent Fuel Cask Surface (Neutron + Gamma) Dose Rates for IC E-HU1 LocationEL
__________________________ (mrem/hr)HI-TRAC_125
______Side -Mid -height 950 Top 200 HI-STORM 100 Side -60 inches below mid-height 170 Side -Mid -height 180 Side -60 inches above mid-height 110 Top -Center of lid 50 Top -Radially centered 60 Inlet duct 360 Outlet duct 130 3.0 References
- 1. NEI 99-01, Rev. 6, "Development of Emergency Action Levels for Non-Passive Reactors." Nuclear Energy Institute.
November 2012.2. VEGP 10 CFR 72.212 Report. Docket Number 72-1 039, Version 2.4.0 Assumptions There are no assumptions made in this calculation.
X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-6 CALC NO.SNC024-CALC-004 SENER CON Excellence--FeypoetEeydy VEGP DETERMINATION OF EMERGENCY ACTION LEVEL FOR INITIATING CONDITION E-HU1 REV. 0 PAGE NO.Page 6 of 8 5.0 Design Inputs 1. The contact dose rates from the HI-STORM 100 and HI-TRAC 125 cask system technical specification
[2, Table 6.2-3] are provided below in Table 5-1. These source values are scaled to develop the emergency action levels for initiating condition E-HUI.Table 5-1 Technical Specification (Neutron +Gamma) Dose Rate Limits for HI-STORM 100 and HI-TRAC 125 Number of Technical Specification LoatonjMeasurements j Limit (mrem/hr)HI-TRAC 125 Side -Mid -height 4 472.7 Top 1 4 j102.4 HI-STORM 100 Side -60 inches below mid-height 4 87 Side -Mid -height 4 88.9 Side -60 inches above mid-height 4 54.8 Top -Center of lid 1 24.5 Top -Radially centered 4 29.2 Inlet duct 4 178.8 Outlet duct 4 64.5 X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-7 CALC NO. SNC024-CALC-004 VEGP DETERMINATION OF -____________
EMERGENCY ACTION LEVEL REV. 0 SE N E R C 0 N FOR INITIATING CONDITION E- -__________
£co ,
HU1 PAGE NO. Page 7of 8 6.0 Methodology The "on-contact" dose rates from the technical specification for the HI STORM-I100 cask system are scaled by a factor of 2, as specified in NEI 99-01 Rev. 6 [1], for use in initiating condition E-HUI.
X6CNA15 X6CNA1 5Attachment LIor'.iiIfnrn f,~r 1:=_1411 SHEET L-8 CALC NO. SNC024-CALC-004 VEGP DETERMINATION OF ____________
EMERGENCY ACTION LEVEL REV. 0 I~E N E R C 0 N FOR INITIATING CONDITION E-E~ce, ..... E'ery proj~c,. ero,,doy.
HUI1 PAGE N O. Page 8 of 8 7.0 Calculations The dose rates in Table 5-1 are multiplied by 2 in order to calculate the EAL dose rate limits. These calculations are presented below in Table 7-1.Table 7-1 Dose Rate Scaling Calculations for EAL Limits TTechnical LoainSpecification Scaling Calculated Value EAL LoainI Limit Factor (mrem/hr) (mrem/hr)I(mrem/hr)
_____________
HI-TRAC 125 _______ ______Side -Mid -height 472.7 J 2 945.4 950 Top 102.4 2 204.8 J 200 HI-STORM 100 Side -60 inches below mid-height 87 Side -Mid -height 88.9 Side -60 inches above mid-height 54.8 Top -Center of lid 24.5 Top -Radially centered 29.2 Inlet duct 178.8 Outlet duct 64.5 174 170 177.8 180 109.6 110 49 50 58.4 60 357.6 360 129 130 8.0 Computer Software Microsoft WORD 2013 is used in this calculation for basic multiplication.
X6CNA1 5 Attachment L
C'alrilIfr~n fv~tr I:iMI I1 SHEET L-9 CALC NO. SNC024-CALC-004 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST
&ey oy PAGE NO. Page 1lof 8 CHECKLIST ITEMS 1 YES NO NIA GENERAL REQUIREMENTS
- 1. If the calculation is being performed to a client procedure, is the procedure being used the latest revision?Client procedure is not used in this calculation.
ENERCON QA procedures used throughout this LI LI [project.2. Are the proper forms being used and are they the latest revision?
j ] J[]3. Have the appropriate client review forms/checklists been completed?
Client procedure is not used in this calculation.
ENERCON QA procedures used throughout this [ ][project.4. Are all pages properly identified with a calculation number, calculation revision and page number consistent with the requirements of the client's procedure?
Client procedure is not used in this calculation.
ENERCON QA procedures used throughout this LI LI [project.5. Is all information legible and reproducible?
II[][6. Is the calculation presented in a logical and orderly manner?.[
]]7. Is there an existing calculation that should be revised or voided?This calculation does not replace any ENERCON produced calculation.
Information generated LI [] LI by this calculation will be used by SNC to update their VEGP EAL report.8. Is it possible to alter an existing calculation instead of preparing a new calculation' for this situation?
No current ENERCON calculations exist that are similar to this calculation for addressing the LI [] LI SNC VEGP EAL update.9. If an existing calculation is being used for design inputs, are the key design inputs, [assumptions and engineering judgments used in that calculation valid and do they LI [ LI apply to the calculation revision being performed.
[ ___ ____
X6CNA15 Attachment L SHEET L-10 ENERCON Calculation for E-HU1 CALC NO. SNCO24-CALC-004 CALCULATION PREPARATION REV. 0 SEN E R CON CHECKLIST Fvery doy PAGE NO. Page 2of 8 CHECKLIST ITEMS 1 YES NO NIA 10. Is the format of the calculation consistent with applicable procedures and expectations?
[] [][11. Were design input/output documents properly updated to reference this calculation?
No ENERCON design inputs or outputs are affected by this calculation.
This calculation will affect the VEGP EAL evaluation.
- 12. Can the calculation logic, methodology and presentation be properly understood without referring back to the originator for clarification?
[ ][OBJECTIVE AND SCOPE 13. Does the calculation provide a clear concise statement of the problem and objective of the calculation?
[ ][14. Does the calculation provide a clear statement of quality classification?
[] [][15. Is the reason for performing and the end use of the calculation understood?
Ii[][16. Does the calculation provide the basis for information found in the plant's license basis?The plant's license basis is not applied in this evaluation.
LI LI [17. If so, is this documented in the calculation?
The plant's license basis is not applied in this evaluation.
j] [] [ " 18. Does the calculation provide the basis for information found in the plant's design basis documentation?T The plant's license basis is not applied in this evaluation.
{] [][19. If so, is this documented in the calculation?I The plant's license basis is not applied in this evaluation.
{] [] L X6CNA1 5 Attachment L ENERCON Calculation for E-HU1 SHEET L-11I CALC NO. SNCO24-CALC-004 CALCULATION PREPARATION REV. 0 OEN E R CON CHECKLIST.....~
doy PAGE NO. Page 3of 8 CHECKLIST ITEMS 1 YES NO NIA 20. Does the calculation otherwise support information found in the plant's design basis documentation?
Calculation is applied in the development of the VEGP EAL evaluation, not the plant license [] E [ [basis.21. If so, is this documented in the calculation?
Calculation is applied in the development of the VEGP EAL evaluation, not the plant license basis. _____ ____1_____
- 22. Has the appropriate design or license basis documentation been revised, or has the change notice or change request documents being prepared for submittal?
Calculation is applied in the development of the VEGP EAL evaluation, not the plant license El El [basis.DESIGN INPUTS 23. Are design inputs clearly identified?
LI[][24. Are design inputs retrievable or have they been added as attachments?
[ ][25. If Attachments are used as design inputs or assumptions are the Attachments traceable and verifiable?
Attachments are not included in this calculation.
El [][26. Are design inputs clearly distinguished from assumptions?
1z1' [{E[DESIGN INPUTS (Continued)
- 27. Does the calculation rely on Attachments for design inputs or assumptions?
If yes, are the attachments properly referenced in the calculation?
Attachments are not included in this calculation.
El [] El 28. Are input sources (including industry codes and standards) appropriately selected and [] El El are they consistent with the quality classification and objective of the calculation?
X6CNA1 5 Attachment L ENERCON Calculation for E-HU1 SHEET L-12 CALC NO. SNCO24-CALC-004 CALCULATION PREPARATION REV. 0~jEN E R CON CHECKLIST, e doy PAGE NO. Page 4of 8 CHECKLIST ITEMS 1 YES NO NIA 29. Are input sources (including industry codes and standards) consistent with the plant's design and license basis? [ ][30. If applicable, do design inputs adequately address actual plant conditions?
[ ][31. Are input values reasonable and correctly applied? [ ][32. Are design input sources approved?
[ ][33. Does the calculation reference the latest revision of the design input source? [ ][34. Were all applicable plant operating modes considered?
[] [][ASSUMPTIONS
- 35. Are assumptions reasonable/appropriate to the objective?
[] III L 36. Is adequate justification/basis for all assumptions provided?
[] []37. Are any engineering judgments used? LI Z] LI 38. Are engineering judgments clearly identified as such?No engineering judgments were applied in this evaluation.
LI L] [39. If engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria?
[ ][No engineering judgments were applied in this evaluation.
METHODOLOGY
- 40. Is the methodology used in the calculation described or implied in the plant's licensing
[ ][basis?
X6CNA1 5 Attachment L ENERCON Calculation for E-HU1 SHEET L-13 CALC NO. SNC024-CALC-004 CALCULATION PREPARATION REV. 0E N ERCON CHECKLIST NO. Page 5of 8 CHECKLIST ITIEMS 1 YES NO NIA 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated?
Plant licensing basis was not affected by this evaluation.
LI III [42. Is the methodology used consistent with the stated objective?
[] LII L 43. Is the methodology used appropriate when considering the quality classification of the [ ][calculation and intended use of the results?BODY OF CALCULATION
- 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? ________45. Is there reasonable justification provided for the use of equations not in common use?Equations applied in this evaluation are in common use in the industry.
LI [] [46. Are the mathematical operations performed properly and documented in a logical fashion? [ ][47. Is the math performed correctly?
[ ][48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? [ ][49. Has proper consideration been given to results that may be overly sensitive to very small changes in input?Results generated by calculations performed in this evaluation are not significantly affected by LI LI [minor perturbations of variables.
SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?
Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
LI LI [
X6CNA1 5 Attachment L ENERCON Calculation for E-HU1 SHEET L-14 CALC NO. SNCO24-CALC-004 CALCULATION PREPARATION REV. 0 O h ENER CON CHECKLIST NO. Page 6 of 8 CHECKLIST ITEMS 1 YES NO NIA 51. Have the requirements of CSP 3.09 for use of computer codes or software languages, including verification of accuracy and applicability been met?Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
SOFTWAREICOMPUTER CODES (Continued)
- 52. Are the codes properly identified along with source vendor, organization, and revision level? [ ][53. Is the computer code applicable for the analysis being performed?
El L] [54. If applicable, does the computer model adequately consider actual plant conditions?
Li w][55. Are the inputs to the computer code clearly identified and consistent with the inputs and [] [][assumptions documented in the calculation?
- 56. Is the computer output clearly identified?
Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
Li LI [57. Does the computer output clearly identify the appropriate units?Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
Li [] [58. Are the computer outputs reasonable when compared to the inputs and what was expected?Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
Li i 59. Was the computer output reviewed for ERROR or WARNING messages that could invalidate the results?Only basic functions and operations in Microsoft Word 2013 were applied in this calculation.
i L RESULTS AND CONCLUSIONS
- 60. Is adequate acceptance criteria specified?
This calculation provides results for the SNC VEOP EAL evaluation.
No acceptance criteria Li i required for this evaluation.
X6CNA1 5 Attachment L ENERCC)N CalcuiiItinn fnr E-HUl SHEET L-15 CALC NO. SNC024-CALC-004 CALCULATION PREPARATION REV. 0 0EN E R CON CHECKLIST E~c, ....Evoj. NO. Page 7of 8 CHECKLIST ITEMS 1 YES NO NIA 61. Are the stated acceptance criteria consistent with the purpose of the calculation, and intended use?This calculation provides results for the SNC VEGP EAL evaluation.
No acceptance criteria D] []required for this evaluation.
- 62. Are the stated acceptance criteria consistent with the plant's design basis, applicable licensing commitments and industry codes, and standards?
This calculation provides results for the SNC VEGP EAL evaluation.
No acceptance criteria El [] [required for this evaluation.
- 63. Do the calculation results and conclusions meet the stated acceptance criteria?This calculation provides results for the SNC VEGP EAL evaluation.
No acceptance criteria required for this evaluation.
T 64. Are the results represented in the proper units with an appropriate tolerance, if applicable?
[ ][65. Are the calculation results and conclusions reasonable when considered against the l E stated inputs and objectives?
[ ][66. Is sufficient conservatism applied to the outputs and conclusions?
[ ][67. Do the calculation results and conclusions affect any other calculations?
No ENERCON calculations are affected by this evaluation.
Results are provided to SNC VEGP -___for input into the VEGP EAL evaluation.
- 68. If so, have the affected calculations been revised?T No ENERCON calculations are affected by this evaluation.
Results are provided to SNC VEGP El_[]_El for input into the VEGP EAL evaluation.
X6CNA15 Attachment L ENERCON Calculation for E-HU1 SHEET L-16 CALC NO. SNC024-CALC-004 CALCULATION PREPARATION REV. 0 SE NE R CON CHECKLIST...
NO. Page 8of 8 CHECKLIST ITEMS 1 YES NO N/A 69. Does the calculation contain any conceptual, unconfirmed or open assumptions requiring later confirmation?
Calculation is based on design input and assumption data provided and used by client in their 10 [] U][CFR 72.212 Report. Parameters maintained for consistency.
- 70. If so, are they properly identified?
No open assumptions applied in this evaluation.
Assumptions have basis based on information provided by the client.DESIGN REVIEW 71. Have alternate calculation methods been used to verify calculation results? [ ][Note: 1I. Where required, provide clarification/]ustification for answers to the questions in the space provided below each question.
An explanation is required for any questions answered as "No' or "N/A'.Originator:
A Nameand ignDate vName and Sign 6-~ ~-~'~'
Southern Nuclear Operating Company Joseph M. Farley Nuclear Plant Units 1 and 2;Edwin I, Hatch Nuclear Plant Units 1 and 2;Vogtle Electric Generating Plant Units 1 and 2;License Amendment Request for Changes to Emergency Action Level Schemes to Adopt NEI 99-01 Rev. 6 and to Modify Radiation Monitors at Farley Nuclear Plant Enclosure 3 EAL Calculations Joseph M. Farley Nuclear Plant Units 1 and 2 License Amendment Request for Changes to Emergency Action Level Schemes to Adopt NEI 99-01 Rev. 6 and to Modify Radiation Monitors at Farley Nuclear Plant Enclosure 3 Farley EAL Calculations o ,.mmL Southern Nuclear Design Calculation I Calculation Number. SM-RNC524~fl0-flf1 Plant: Farley Nuclear Plant 1
~~ "-&1 DiiDsc/pline:
Mech'anical Title: .... .. I
Subject:
EmergencY*NE1 99-01 Rev 6 EAL Calculations .I Action Level Setpoints Purpose I Objective:
Document Emergency Action Level Values to support conversion to NEI 99-01 Rew.6 System or Equipment Tag Numtbers:...-..
-Topic ... Page Attachments
'#of... " (Computer Printouts.
Technical Papers, Pages-... ... .Sketches, Correspondence)-
Purpose .I A I SNC EP Concurrnce -'! I .Cniterda ...I B -. Reserved .._0 Conclusions
... .. ...=3 C*:- References
.. ... 23 Design Inputs -. .. ., ,D .Water Level! Elevations Corresponding to 2 19 -Fuel Uncovery
.. .' .. .. 22 E.-TEDE &Thyroid CDE Dose Calc~ulationis
-43 Mehdo ouin -25i F , Shieldin-gCalculations " 29 Body of :. 30 :G -Fuel Clad BarrierThreshold Calculations " .44-....____,-___
,__ .. ....._ H -RAI Calculation-18.... ... .._ _ _ _ __. _ _ __.. r _. ..E .H U l1 C a lc u la tio n 1 6:... ..* Tota.# of Pages ......... _...including cover~sheet
& 21 Attachments
- NJuclear Quality Level " .. _" 0 rSafety-Related Il i Sgnificant 0 ENon- Safety -Significant1 Notes: 1. Additional work and changes to this. calculation are required.
The calculation is"APPROPOVED NRC review and acceptance of the Emergency Plan (EP)submittal.
F01 NMP-ES-039-O01 I Southern Nuclear Operating Company$OTEN' Pat N Title: NEI 99-01 Rev 6 EAL Calculations SM-SN Sheet -00 SOTEN~Unit:
1&2She1 COMPANY Purpose: The purpose of this calculation is to provide values/data/curves and bases for use in development of the Farley Nuclear Plant Emergency Action Levels (EALs) using NEI 99-01 Rev 6 guidelines.
This combined calculation includes all unique calculations required to support emergency action level thresholds as well as references to calculations used to create thresholds, but serve purposes beyond emergency action levels.The contents of this calculation are primarily an amalgamation of the calculations which supported the previous emergency action level scheme. The work performed in calculations SM-96-1 076-001 and SM-96-1 076-002 is directly transposed into this document and edited to account for the differences between NEI 99-01 Rev 4 and 6.Several emergency action level thresholds have been eliminated due to the new scheme. The thresholds previously calculated supporting ICs RA2 and OG1 have not been carried into this document.
Attachments H and I of this document contain calculations supporting new emergency action level thresholds and represent the only portion of this document which is not directly transposed from SM-96-1076-001 and SM-96-1076-002.
The transposed material in this calculation has been further altered to reflect the new language and organization of NEI 99-01 Rev 6. These changes in language and organization are administrative in nature and have no impact on the calculation output.Criteria: The calculation performed will support the development of guidelines for NEI 99-01 initiating conditions (ICs) RU1, RA1, RS1, RG1, CS1, CG1, E-HU1, Fuel Clad Barrier Loss 3.A, ROS Barrier Loss 3.A, Containment Barrier Potential Loss 3.A, and Containment Barrier Potential Loss 4. B.1. Declaration of an emergency, when such a declaration is not required, involves risk to the public as does the failure to make such a declaration, should one be warranted.
Therefore, this calculation shall develop a "best estimate" value for the dose rates or curie concentrations sensed at the monitors chosen for the Emergency Action Level (EAL) set points. When judgments are necessary, these judgments shall be as close to anticipated conditions as possible.2. If a particular monitor is to be used for an EAL, then the dose rate or curie concentration set point developed for that specific monitor shall be within the range of the monitor, or the monitor shall not be cited as applicable for the EAL.3. In accordance with the guidance of Regulatory Guide 1.97 Revision 2, post-accident radiation monitors must read within a factor of 2 of actual radiation conditions.
Therefore, changes in the set points of this revision that are within a factor of 2 of the previous revision's set point for the same EAL do not invalidate the previous set point. It is up to the ultimate user of these calculations to determine if change to the EAL set point guidance document(s) is warranted.
Southern Nuclear Operating Company SOTHRN4. Plant: FNP ITteNE990Re6EACaclios SM-S NC524602-001 COMPAENy-u Unit: 1&2 Tite NE 90 e A acltosSheet 2 4. Methods and Assumptions shall comply with the guidance of NEI 99-01 Revision 6.Note: NEI 99-01 Rev. 6 states that the "A" Recognition Category designation may be changed to "R" provided the change is carried through for all of the associated IC identifiers.
As such, the Farley Nuclear Plant Emergency Action Levels use the Recognition Category designation of "R" for the Abnormal Radiation Recognition Category.
Southern Nuclear Operating Company SOTH Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-S NC524602-O01 I OMPHAN ZY Unit: 1&2 Sheet 3
Conclusions:
This calculation contains thresholds for the Farley Nuclear Plant Emergency Action Levels.Site specific information used to develop the scheme is included in the Body of Caclulation section. In this document, thresholds are calculated.
The results of these calculations are as follows.Initiating Condition RU1 Greater than any of the following monitor readings for 60 minutes or longer serves as the threshold for EAL 1.Liquid Effluents Liquid Radwaste Effluent Line RE-I18 1 .60 x I104 cpm Steam Generator Blowdown 28 0 p Effluent Line RE-23B Gaseous Effluents Steam Jet Air Ejector RE-I15 3.54 x I102 cpm Plant Vent Gas R-I14 3.20 x 104 cpm RE-22 4.0 x 102 cpm RE-29B (NG) 8.90 x 1 0 A pCi/cc Initiating Condition RA1 Greater than any of the following monitor readings for 15 minutes or longer serves as the threshold for EAL 1.Radiation Monitor Vent Path Monitor Reading RE00155C Steam jet Air Ejector (SJAE) 1.3 pCi/cc 1.3 R/hr RE0029B Plant Vent Stack 0.008 pCi/cc RE0060A/B/C S/G Atmospheric Relief Valves (ARVs) & Safety Relief Valves 0.005 pCi/cc 0.005 R/hr (S RVs)RE0060D Turbine Driven Auxiliary Feedwater Pump (TDAFW) 0.11 pCi/cc 0.11 R/hr_______________Turbine Exhaust Initiating Condition RS1 Greater than any of the following monitor readings for 15 minutes or longer serves as the threshold for EAL 1.
Southern Nuclear Operating Company SUIEN Plant: FPS-NC524602-001 COPAF nPt & Title: NEI 99-01 Rev 6 EAL Calculations I MSSheet 4 Radiation Monitor Vent Path Monitor Reading RE0O15C SJAE 13 IpCi/cc 13 R/hr RE0029B Plant Vent Stack 0.08 pCi/cc RE0060A/B/C S/G ARV & SRVs 0.05 pCi/cc 0.05 R/hr RE0060D TDAFW Turbine Exhaust 1.1 pJCi/cc 1.1 R/hr Initiating Condition RG1 Greater than any of the following monitor readings for 15 threshold for EAL 1.minutes or longer serves as the Radiation Monitor Vent Path Reading RE0015C SJAE 130 130 R/hr RE0029B Plant Vent Stack 0.8 !pCi/cc RE0060A/B/C S/G ARV & SRVs 0.5 pCi/cc 0.5 R/hr REOO600 ~TDAFW Turbine11gic11Rh RE0060D________Exhaust11Fic11Rh Initiating Condition CSI The following indication serves as a threshold for EAL 1 .b.Reactor Vessel Level Indication System (RVLIS) level less than 121 '0" Greater than or equal to either of the following monitor readings serve as thresholds for EAL 2.b.RE27A RE27B 100 R/hr 100 R/hr Initiating Condition CG1 Greater than or equal to either of the following monitor readings serve as thresholds for EAL l.b.RE27A RE27B 100 R/hr 100 R/hr Initiating Condition E-HU1 Greater than any of the following on-contact radiation readings serve as thresholds for EAL 1.Side-Mid-height l 1360 Southern Nuclear Operating Company SOTIEIIIi 1 Plant: FNP ITitle: NEI 99-01 Rev 6 EAL Calculations ISM-S NC524602-001I SoUT paNy. Unit: 1&2 JSheet 5 Top 260 HI-STORM 100 Side- 60 inches below mid-height 340 Side-Mid-height 350 Side-60 inches above mid-height 170 Top-Center of lid 50 Top=Radially centered 60 Inlet duct 460 Outlet Duct 160 Fuel Clad Barrier Loss Threshold 3.A Greater than the following monitor readings serve-as loss threshold 3.A.RCS Barrier Loss Threshold 3.A Greater than the following monitor readings serve as loss threshold 3.A.RE-27A RE-27B 600 R/hr 600 R/hr RE-2 RE-7 1 R/hr 500 mR/hr Containment Barrier Potential Loss Threshold 3.A Greater than the following monitor readings serve as loss threshold 3.A RE-27A RE-27B 8000 R/hr 8000 R/hr Southern Nuclear Operating Company SOUTEMPANY Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SetSM-SNC524602-001 DESIGN INPUTS Radiation Monitor System Parameters
- 1. Farley Radiation Monitoring System Operating Ranges Area Radiation Monitors TPNS ID Description Indicating Range FSD Section ND21RE0002 Containment EL 155'-0" 10.4 to 101 RAD/hr 3.1.3.2 ND21RE0005 Fuel Handling Area EL 155'-0" 10-4 to 101 RAD/hr 3.1.6.2 ND21RE0007 Incore Instrument Area 10.4 to ,101 RAD/hr 3.1.8.2 QD21RE0027A/B Containment High Range 1Ito 107 RAD/hr 3.1.11.2.1.
Liquid Effluent Monitors TPNS ID Description Indicating Range FSD Section ND11IRE0018 Waste Monitor Tank Discharge 101 to 106 CPM WR 3.2.3.4.2 101 to 104 CPM NR ND11RE0023B SIG Blowdown Discharge 10' to 106 CPM WR 3.2.6.4.2 101 to 104 CPM NR Noble Gas Monitors TPNS ID Description Indicating Range FSD Section ND11IRE0014 Plant Vent Stack 101 to 106 CPM WR 3.3.4.3.2 101 to 104 CPM NR Steam Jet Air Ejector Exhaust 3.3.5.2,1 ND11IRE0015 Normal Range 101 to 106 CPM I10-6 to 10-1 pCi/cc ND11IRE0015B Intermediate Range 10-2 to 106 mR/hr**ND11RE0015C High Range10toI pic**The FSD reports the indicating range of ND11IRE0015SB/C as 10-2 to 10Q5 mR/hr. This is not consistent with the reported range in pCi/cc based on the accident coolant activity dose rate to concentration curves. A visual field inspection of the indicator shows the indicating range is 10-2 to 106 mR/hr. This value-is in concurrence with the reported indicating range. ..in pCi/cc and is used.
2.3.ND11IRE0022 Plant Vent Stack 10Qi to 106 CPM WR 3.3.6.3.3 101 to 104 CPM NR QD11RE0024A/B Containment Purge 10.6 to 10.3 pCi/cc 3.3.7.4.1 101 to 106 CPM 3.3.7.4.2 ND11RE0029B Plant Vent Stack 10-7 to 105 pCi/cc 3.3.10.2.2 ND11RE0060A/B/C S/G ARV &SRV 10-1 to 103 pCi/cc 3.3.17.2.1 ND11RE0060D TD AFW Turbine Exhaust102t16mRh ND1 1 RE0029A Plant Vent Stack Grab Not Specified 3.3.19 Sampler
Reference:
A181015, "[FNP 1&2 FSD]: Radiation Monitoring System.Area Radiation Monitors' Alarm Setpoints Monitor Unit I Unit 2 Bounding RE002: Containment EL 155'-0" 80 mR/hr 80 mR/hr 80 mR/hr RE005: Fuel Handling Area EL 155'-0" 4 mR/hr 4 mR/hr 4 mR/hr RE0027N/B:
Containment High Range 50 R/hr 50 R/hr 50 R/hr References Section 2.1, Section 2.1, FNP-1-RCP-FNP-2-RCP-252 252 Liquid Effluent Monitors' Alarm Setpoints Monitor Unit I Unit 2 Bounding RE0018: Liquid Radwaste Effluent Line Calculated each Liquid Waste Release Permit Planned release in progress (LWRP)No planned release in progress 7900 cpm 7900 cpm 7900 cpm RE0023B: S/G Blowdown Effluent Line 1400 cpm 1770 cpm 1400 cpm References Table 1, Table 1, FNP-1-CCP-FNP-2-CCP-212.1 212.1 Southern Nuclear Operating Company SO~tH==R Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-S NC524602-001
- 4. Gaseous Effluent Monitors' Alarm Mo)nitor Unit 1 Unit 2 Bounding RE0015: Steam Jet Air Ejector 177 cpm 337 cpm 177 cpm RE0060A/B/C:
SIG SRVs & ARVs 71 mR/hr 71 mR/hr 71 mR/hr RE0060D: AFW Turbine Exhaust 71 mR/hr 71 mR/hr 71 mR/hr RE0014: Plant Vent Gas Monitor 18200 cpm 16199 cpm 16199 cpm RE0022: Plant Vent Gas Monitor 218 cpm 200 cpm 200 cpm RE0029B: Plant Vent Gas Monitor 4.44E-04 4.44E-04 4.44E-04 (Noble Gas) pCi/cc .pCi/cc pCi/cc RE0024ANB:
Containment Purge Mode 1-4 16,800 cpm 16,800 cpm 16,800 cpm Mode 5-6 Fast Purge 180,000 cpm 180,000 cpm 180,000 cpm Mode 5-6 Slow Purge 315,000 cpm 315,000 cpm 315,000 cpm References Table 1, Table 1, FNP-1-CCP-FNP-2-CCP-213.1 213.1 5. FNP ODCM Gaseous Effluent Annual Dose Limits Effluent Organ Annual Dose Limit Noble Gases Total .Body 500 mREM/year Noble Gases Skin 3000 mREM/year Iodines, Tritium, & Particulates Any Organ 1500 mREM/year with half-lives
> 8 days
Reference:
Section 3.1.2, FNP-ODCM Southern Nuclear Operating Company SI Plant: FNP ITteNE990Re6EACaclios SM-S NC524602-001
- OUTH!NN..
Unit: 1&2 TteNI9-0Re6EACacliosSheet 9 Spent Fuel Pool Parameters
- 6. SFP Elevations Elevation Value Reference SFP Floor EL 114'-5" D176708 & D206708 Fuel Transfer Tube C3enterline EL 11 5'-1 0%" DI176715 & D20671 5 Elevation of SFP Water Normal Level EL 153'-8" PC3B-1-VOL2-C3RV049 PC B-2-VO L2-C RV049 Figure 1, FNP-1-SOP-54.0 Figure 1, FNP-2-SOP-54.0
- 7. Spent fuel rack height = 14'5.375"
Reference:
Drawing U164392 Containment Dimensions
- 8. Containment Elevations
& Dimensions ElevationlDimension Value Reference Operating Deck EL 155'-0" FNP FSAR Figure 1.2-6 Containment Inside Radius 64'-1 1%" D176224 & D206224 Operating deck thickness 3' Grids C3-8 & C3-9, D176246 &D206246 Top of inside Containment EL 287'-0" FNP FSAR Figure 1.2-6 Fuel Transfer Tube C3enterline EL 115,-I01/2" D1 76715 & D20671 5 Southern Nuclear Operating Company SOUTHRN Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-NC2462001 Reactor Coolant System Parameters
- 9. Reactor Pressure Vessel & RCS Piping Dimensions Parameter Value Reference HL & CL centerline elevation 122'-9" Sections B-B & E-E, D175401 Section B-B & E-E, 0205401, SHT 1 Distance from HL & CL centerline to 82.437" U 168878 & U206687 reactor vessel mating surface Distance from mating surface to 124.687" U168878 & U206587 upper core plate CL Pipe ID 27.5" 0175037 & D205037 HL Pipe ID 29.0" 0175037 & 0205037 Southern Nuclear Operating Company SOTE 4II Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-S NC524602-001 SOTEN~u Unit: 1&2 I-Sheet 11 10. ROS Coolant Parameters Parameter Value Reference Full power Tavg 577.2 F Table 4.1.1-2, page 4.1-3, WCAP-15097 Full power coolant mass 417,219 Table 4.1.1-2, page 4.1-3, WCAP-15097 RCS operating pressure 2250 psia FNP-FSAR Table 4.4-1 (sheet 1 of 3)RCS coolant density 0.72 g/cc See Attachment C2*11. Fuel Assembly outside dimensions
= 8.426" x 8.426"
Reference:
FNP-FSAR Table 4.1-1 (Sheet 2) and Figure 4.2-2 (Sheets 1 thru 9)Source Terms 12. Reactor Vessel & Internals Dimensions Dimension Value
Reference:
U735579, "[FNP 1&2]Radiation Analysis Design Manual" Core effective 9.975 ft = 119.7" x I ft/12 Table 3-1 diameter in RPV OD ,172.75" Table 5-1 RPV thickness 7.875" Table 5-1 RPV ID 13.083' = 157" x 1 ft/12 in RPV OD -2 x RPV thickness 13. Reg Guide 1.183 Source Term Parameters Group Elements Total Release Fraction 1 -Noble Gases Xe & Kr 1.0 2 -Halogens I & Br 0.4
Reference:
Tables 2 and 5, Reg Guide 1.183 Southern Nuclear Operating CompanyPlant: Title:SM-SN540-1 COMPAENNY Unit: 1& il:NEI 99-01 Rev 6 EAL Calculations Shee 012I 14. Core Radionuclide Inventory
& RCS Coolant Equilibrium Activity Isotope Core Inventory (Ci)RCS Activity (IJCi/g)Kr-83m 9.7E+06 4.5E-01 Kr-85 7.2E+05 7.7E+00 Kr-85m 2.1 E+07 1.8E+00 Kr-87 4.0E+07 1 .2E+0O Kr-88 5.7E+07 3.5E+00 Kr-89 6.9E+07 1.1E-01 Xe-I131m 8.4E+05 2.9E+00 Xe-133 1.5E+08 2.4E+02 Xe-I133m 4.8E+06 4.6E+00 Xe-I135 3.5E+07 7.9E+00 Xe-I135m 3.OE+07 4.5E-01 Xe-137 1.4E+08 2.0E-01 Xe-I38 1.3E+08 7.2E-01 I-131 7.5E+07 1.4E+00 I-132 1.1IE+08 2.3E+00 1-133 1.6E+08 2.7E+00 1-134 1.7E+08 6.3E-01
Reference:
WCAP-1 4722 Table 7.6-5: Core Inventory
@Shutdown Table 7.6-6: RCS Fission Product Specific Activity 1-135 1.5E+08 1.9E+O0 Southern Nuclear Operating Companylnit: FN&2 SM-SNC524602-001 4O Plnit: FNP Title: NEI 99-01 Rev 6 EAL Calculations Sheet 13 Dose Rate vs. Depth 15. VEGP Irradiated Fuel Dose Rate vs. Water Depth above fuel Dept h (ft)8 10 Dose Rate (mREM/hr)1 .2696E+0 4 6.3753E+0 2 1.271 2E+0 2 3.1412E+0 1 1 .8273E+0 0* 193 fuel assemblies
- 100-hours after S/D* Equivalent cylinder diameter = 13.7 feet* Core source term multiplied by 0.72 to account for larger cross sectional area of effective cylindrical source in SFP VEGP FUELPCD Dose Rate vs. 'tter Deptlh I ! ~ * * ,
- u I 0,;i6 9 II I1 I2 13 14 1i II iCEm lml.nir vi
Reference:
Appendix D, X6CDE.01 Bases: 11.1 12 14 Jigureo 1: Dose Rate vs. Depth 16 1l.1519E-01 Release Path Flow Rates 16. Rated steam flow rate = 12.26x10 6 Ibm/hr
Reference:
FNP-FSAR Table 10.1-1-17. Steam generator safety relief valves (SRVs)Quantity = 15, 5 per S/G Capacity = 4,328,230 Ibm/hr for each bank of 5 SRVs (one SIG) at 1075 psig Limiting flow rate = 890,000 Ibm/hr per SRV at 1085 psig
Reference:
FNP-FSAR Table 10.3-1 18. Steam generator atmospheric relief valves (ARVs)Quantity = 3, 1 per S/G Capacity = 405,500 Ibm/hr per ARV at 1025 psig'Limiting flow rate = 890,000 Ibm/hr per ARV at 1085 psig
Reference:
EN P-FSAR Table 10.3-1 19. SJAE via Turbine Building Vent flow rate = 1060 CFM
Reference:
Table 3-4, FNP-ODCM 20. Plant Stack Vent flow rate = 150,000 CFM
Reference:
Table 3-4, FNP-ODCM 21.AFW Turbine Exhaust Flow Rate =26,106 Ibm/hr = 687 HP x [(38 Ibm/hr)/HP]
Reference:
Operating Conditions (top of sheet 15 of PDF), U-262093, "[FNP 1&2] Auxiliary Feedwater Pump Turbine Drive Manual" Southern Nuclear Operating Company SO 4EN Plant: FNP ITitle: NEI 99-01 Rev 6 EAL Calculations SM-S NC524602-001
- OMPAENZY Unit: 1&2 -Sheet 15 Conversion .Factors 22. FGR 12 Effective Dose Equivalent (EDE) Dose Conversion Factors for external exposures Isotope EDE Air EDE Air Immersion Immersion DCF DCF (Svlsec)/ (mREM/hr)l
______(Bq/m^3) (J, Ci/cc)Kr-83m 1.50E-18 2.00E+01 Kr-85 1.19E-16 1.59E+03 Kr-85m 7.48E-15 9.96E+04 Kr-87 4.12E-14 5.49E+05 Kr-88 1.02E-13 1.36E+06 Kr-89 0.00E+00 0.00E+00 Xe-131m 3.89E-16 5.18E+03 Xe-133 1.56E-15 2.08 E+04 Xe-133m 1.37E-15 1.82 E+04 Xe-135 1.19E-14 1.59E+05 Xe-135m 2.04E-14 2.72 E+05 Xe-1 37 0.00E+00 0.00E+00 Xe-138 5.77E-14 7.69E+I05 I-131 1.82 E-14 2.42E+05 1-132 1.12E-13 1.49E+06 1-133 2.94E-14 3.92E+05 I-134 1.30 E-13 1.73E+06 I-135 7.98E-14 1.06E+06
Reference:
"Effective Column" of Table 1I1.1, Federal Guidance Report 12 EDE DCF EDE D,-..l. DCF/1I I I-\r- I~lI II r)= (Sv/sec) x 100 REM 3600 x sec x 1Bq x 1.0 Ci x 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 1.0E1I~ .0E+06 pCi Ci 1 m^3 (IpCi/cc) (Bq/m^3) 1 Sv 1.0E+06 cc EDE DCF EDE DCF (m REM/h r)(pCi/cc)= (REM/hr)(IpCi/cc)x 103 mREM 1IREM
- 23. FGR 11 CEDE Dose Conversion Factors Isotope CEDE Air CEDE Air Thyroid CDE Air Thyroid CDE Air Inhalation Inhalation Inhalation Inhalation DCF. DCF DCF DCF (SvIBq) (mREMIJLCi) (Sv/Bq) (mREMIjiCi)
Kr-83m 0.00E+00 0.00E+00 O.00E+00 0.00E+00 Kr-85 0.00E+00 0.00E+00 Q.00E+00 0.00E+00 Kr-85m 0.00E+00 0.00E+00 0.00E+00 0.00E+00O Kr-87 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Kr-88 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Kr-89 0.00E+00O 0.00E+00 0.00E+00 0.00E+00 Xe-131 m 0.OOE+00O 0.00E+00 0.00OE+00 0.00E+00 Xe-133 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Xe-I133m O.OOE+00 0.00E+00 0.00E+00 0.O0E+00 Xe-I135 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Xe-i135m 0.OOE+O0 0.00E+00O 0.00E+00 0.00E+00 Xe-I137 0.00E+00 0.00E+00 0.00E+00 O.00E+00 Xe-I138 0.00E+00 0.00E+00 0.00E+00O 0.00E+O0 I-131 8.89E-09 3.29E+01 2.92 E-07 1.08E+03 I-132 1 .03E-1 0 3.81 E-0I I1.74E-09 6.44E+00 I-133 1.58 E-09 5.85E+00 4.86E-08 1.80E+02 I-134 3.55E-I1 1.31 E-01 2.88E-10 I.07E+00 I-135 3.32 E-10 1.23E+00 8.46 E-09 3.13E+01
Reference:
"Table 2.1, Federal Guidance Report 11 CEDE DCF: Column Thyroid CDE DCF: Column labeled "Thyroid" Per page 121, FGR-1I: CEDE DCF (mREM/pCi)
= 3.7x10 9 x CEDE DCF (Sv/Bq)
Southern Nuclear Operating Company COMPAENY~
Unit: 1&2 Pln:FP Title: NEI 99-01 Rev 6 EAL Calculations Sheet 18 24. Unit Conversions Conversion Reference 1 day = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Page F-308, "CRC Handbook of Chemistry
& Physics" 1 cubic foot = 0.028316847 cubic meters Page F-308, "CRC Handbook of Chemistry
& Physics" 1 foot = 12 inches Page F-310, "CRC Handbook of Chemistry
& Physics" 1 foot = 0.3048 meter Page F-310, "CRC Handbook of Chemistry
& Physics" 1 foot = 30.48 centimeters (cm) Page F-310, "CRC Handbook of Chemistry
& Physics" 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> = 3600 seconds Page F-31 3 "CRC Handbook of Chemistry
& Physics" 1 pound/cubic foot = 0.016018463 g/cc Page F-321, "CRC Handbook of Chemistry
& Physics" 1 year = 365.25 days Page F-325, "CRC Handbook of Chemistry
& Physics" 1 Becqerel (Bq) = 2.703x1 0-11 Curie (Ci) Page 22, Lamarsh, "Introduction to Nuclear Engineering" 1 Seivert (Sv) = 100 REM Page 404, Lamarsh, "Introduction to Nuclear Engineering" Miscellaneous Design Inputs 25. Iodine boiling point = 184 C = -363 F
Reference:
Page B-i, "CRC Handbook of Chemistry
& Physics" 26. Density of Refueling Cavity and Spent Fuel Pool Water @ 130 F = 61.55 Ibm/cu ft
Reference:
See Attachment C2.
ASSUMPTIONS 1.TEDE and Thyroid dose calculations based on one hour of inhalation Justification:
Pages 34, 42, and 46 of NEI 99-01 Revision 6 2. Breathing rate = 3.47x10-A m 3/sec Justification:
FNP-FSAR Table 15B-1, Section 4.1.3 of Reg Guide 1.183 3. Diffusion coefficient (X/Q) = 4.87E-05 sec/rn 3 Justification:
Ground level release diffusion coefficient used for setpoint calculations in FNP-ODCM (page 3-16)4. Release rate from S/Gs, via ARV or SRV, = ~6.13x10 5 Ibm/hr Justification:
Per section 3.3.17 of A181015, radiation monitors ND11RE0060A/B/C are each set up to view the plume from the five SRVs and one ARV for each S/G.Following an event, the reactor and turbine will be tripped, the condenser bypass may not be available, and the ARVs will likely be used to initially remove core decay heat. From FNP-FSAR Figure 15.1-6, the post trip core decay heat is -5% of rated power. Five percent of rated steam flow rate from the S/Gs is calculated as 0.05 x (12.26x10 6 Ibm/hr) = ~6.13 x10 5 Ibm/hr On a per S/G basis (~2.04x10 5 lbm/hr), this is well within the rated flow rate of a single ARV (405,500 Ibm/hr).5. The following partition factors are assumed to determine release activities Radionuclide PF Justification Noble Gases 1.0 PWR-GALE, Section 1.5.1.8 and Table 2-6 Reg Guide 1.183 Iodines Steam Generator 0.01 FNP FSAR Table 12.2-1 PWR-GALE, Section 1.5.1.8 and Table 2-6 Reg Guide 1.183 Air Ejector 1.0E-04 FNP FSAR Table 12.2-1 Liquid leakage to Auxiliary 0.01 FNP FSAR Table 12.2-1 Building Primary Coolant Leakage to 0.01 FNP FSAR Table 12.2-1 Containment Southern Nuclear Operating Company sun 4t Plant: Title:M-SNC524602-001 SOMPHEre/
Unit: 1& ite NEI 99-01 Rev 6 EAL Calculations SMSSheet 20 6. Core inventory release fractions Noble gases: 1.00 lodines: 0.40 Justification:
Table 2, "PWR Core Inventory Fraction Released into Containment," page 1.183-14, Regulatory Guide 1.183 7. No noble gases are retained in the S/G: i.e., all noble gases leaked to the secondary system are continuously released with steam through the SIG ARVs, S/G SRVs, AFWT Exhaust or SJAE.Justification:
FNP FSAR section 15.4.2.1.4, page 15.4-38 (dose consequences for MSLB)8. Specific volume of steam release = 26.804 cu ft/Ibm Justification:
Specific volume of saturated steam at atmospheric pressure (Attachment C2)9. The VEGP SFP dose rate at water surface vs. water depth assessment in Appendix 0 of calculation X6CDE01 is acceptable for estimating the water surface dose rate vs. depth for fuel in the reactor vessel at Farley.Justification:
- The source is assumed to consist of an offloaded core (193 fuel assemblies) 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after shutdown.* The VEGP SFP analysis assumed each fuel assembly's source term was spread across a storage cell cross sectional area of 110.03 sq in. This reduced the source term (MeV/sec-cc) by a factor of 0.72.* Adjusting the source term back to a geometry matching the closer spacing in the reactor increases the source term by 1/0.72, or 1.39. Since dose rate is proportional to source strength, the VEGP dose rates are multiplied by 1.39 and plotted against water depth above the fuel.* The effective diameter of the VEGP cylindrical source is 13.7', compared to the Farley reactor core effective diameter of 9.975' (=119.7" x 1 ft/12 in) in Table 3-1 of the Farley Radiation Analysis Design Manual (U-735579).
This effect is evaluated in Attachment F2 of this calculation.
- Attachment F of calculation SM-SNC467144-001 documents a comparison of the Farley and Vogtle core source terms and concludes that using the Vogtle source terms for Farley is reasonable and conservative.
- 10. The elevation at the top of active fuel (TOAF) in the reactor vessel is approximately 1 foot below the elevation of the upper core plate elevation.
Justification:
Based on review of FNP drawings U168878 and U206587 and FSAR Figures 4.2-2 and 4.2-3.
- 11. The reflected dose rate at the operating deck area radiation monitors will be calculated using the methods of Davisson's "Gamma Ray Dose Albedos" (copy in Attachment C1).The calculation will be based on an iron reflector at the top of containment, with a diameter equal to the reactor pressure vessel inside diameter (RPV ID), and a distance (r feet) from the reflector to the radiation monitor equal to the hypotenuse of the triangle formed by the difference in elevations of the reflector (y feet) and the monitor and one-half of the Containment ID (x feet).Justification:
The iron reflector is selected because the Farley containment has a carbon steel liner. The reflected dose rate is proportional to the area of the reflector.
Assuming the reactor vessel functions as a collimator with reduced RCS inventory will reduce the reflected area. This in turn reduces the dose rate at the radiation monitor and, therefore, the EAL threshold for reduced RCS inventory.
Simplified diagram, based on D176013 (D20601 3 dimensions same)
REFERENCES
- 1. FNP 1 &2 FSAR, Revision 27, December 2015 2. FNP-1 Technical Specifications, Amendment 198, 14 September 2015 Update 3. FNP-2 Technical Specifications, Amendment 194, 14 September 2015 Update Methods 4. NEI 99-01, Revision 6, "Development of Emergency Action Levels for Non-Passive Reactors", November 2012 (http://pbadupws.nrc..qov/docs/MLI232/M LI2326A805.prdf)
- 5. Deleted 6. Regulatory Guide 1.183, Revision 0, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," July 2000 (http :fp bad upws. n rc..q ov/docs/M L0037/M L00371 6792. pdf)7. Regulatory Guide 1 .195, Revision 0, "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light-Water Nuclear Power Reactors," May 2003 (http://pbad upws. nrc..qov/docs/M L0314/M L031490640.
pdf)8. NUREG-001 7, Revision 1, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE Code)," April 1985 SNC Submittal
& USNRC SER 9. NL-07-0522, "[FNP, HNP, & VEGP] Transition to NEI 99-01 Emergency Action Levels -Response to Request for Additional Information," 02 April 2007 10. ADAMS # ML07I1100068, USNRC SER: Emergency Action Level Revisions for Southern Nuclear Operating Company, Inc., Edwin I. Hatch Nuclear Plant, Unit Nos. 1&2 (HNP);Joseph M. Farley Nuclear Plant, Units 1&2 (FNP); Vogtle Electric Generating Plant, Units 1 &2 (VEGP), 30 April 2007 (http://pbadupws.
nrc..qovldocs/M L071 1/M L071 100068.pdf)
System Specifications
- 11. A181015, V14.0, "Functional System
Description:
Radiation Monitoring System" 12. U262093, VI0.0, "[FNP 1&2] Auxiliary Feedwater Pump Turbine Drive Manual" 13. WCAP-15097, Revision 1, Book 1, "Farley Nuclear Plant Units 1 and 2 Replacement Steam Generator Program NSSS Engineering Report," March 2001 Reg Guide 1.197 14. Regulatory Guide 1.97, Revision 2, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," December 1980 (http://pbadupws.nrc.,qov/docslMLO607/MLO60750525.pdf)
Procedures Dose Calculations
- 15. FNP-ODCM, V24.0, "Farley Offsite Dose Calculation Manual" (available at SNC Regulatory Affairs Farley Licensing Documents website, http://n uclear.southernco.com/req ulatory-affairs/Farley-Licensina-Documents.html)
Radiation Monitoringq System Setpoints Southern Nuclear Operating Company IOTHR ,4 Plant: FNP Tite NI9-1Rv6ELCluaion SM-S NC524602-001 SOUTHERNEW Unit: 1&2 ITteNE990Re6EACacliosSheet 23 16. FNP-1 -CCP-21 2.1, V1 2.1, "Liquid Effluent Radiation Monitoring System Setpoints" 17. FNP-2-CCP-212.1, V11.1, "Liquid Effluent Radiation Monitoring System Setpoints" 18. FNP-1-CCP-21 3.1, V19.0, "Gaseous Effluent Radiation Monitoring System Setpoints" 19. FNP-2-CCP-21 3.1, V19.0, "Gaseous Effluent Radiation Monitoring System Setpoints" 20. FNP-1-RCP-252, V47.0, "[FNP-1] Radiation Monitoring System Setpoints" 21. FNP-2-RCP-252, V36.0, "[FNP-2] Radiation Monitoring System Setpoints" System Operatingi Procedures
- 22. FNP-1-SOP-54.0, V72.0, "[FNP-1] Spent Fuel Pit Cooling & Purification System" 23. FNP-2-SOP-54.0, V70.1, "[FNP-2] Spent Fuel Pit Cooling & Purification System" Unit I Drawings 24.0D175037, SHT 1, V31 .0, "P&ID -Reactor Coolant System" 25. D175148, V19.0, "[FNP-1] Instrument Location -Containment
& Fuel Handling Area -Plan at EL 155-0" 26. D175401, V5.0, "[iFNP-1]
Reactor Coolant System -Primary Piping Arrangement" 27. D1 76013, V 5.0, "[FNP-1] Architectural
-Containment
& Auxiliary Building Sections" 28. D1 76246, V7.0, "Section B Looking West Concrete Containment" 29. D176708, V17.0, "[FNP-1] Spent Fuel Pool Liner Plan at EL 155'-0" Auxiliary Building" 30. D176715, V7.0, "[FNP-1] Fuel Transfer Tube Sleeve and Tube Supports" 31. U164392, Revision 0, "Spent Fuel Storage Racks-Fuel Module Assembly-7X8
-Sheet 1 of 3" 32. U 168878, Revision 0, "[FNP-1] Reactor Vessel: Reactor General Assembly" Unit 2 Drawings 33.0D205037, SHT 1, V29.0, "P&ID -Reactor Coolant System" 34. 0205148, V18.0, "[FNP-2] Instrument Location -Containment
& Fuel Handling Area -Plan at EL 155-0" 35.0D205401, SHT 1, V3.0, "[FNP-2] Reactor Coolant System -Primary Piping Arrangement" 36. 0206013, V2.0, "[FNP-2] Architectural
-Containment
& Auxiliary Building Sections" 37. D206246, V5.0, "Section B Looking West Concrete Containment" 38.0D206540, V6.0, "Section 18 -Concrete -Auxiliary Building" 39. 0206708, Vi19.0, "[FNP-2] Spent Fuel Pool Liner Plan at EL 155'-0" Auxiliary Building" 40.0D206715, V8.0, "[FNP-2] Fuel Transfer Tube Sleeve and Tube Supports" 41. U206587, Revision B, "[FNP-2] Reactor Vessel:] Reactor General Assembly" Calculations 42.18.01, Revision 1, "[FNP 1 &2] Steam Generator Power Operated Relief Valve, Safety Valve and Diluted Steam Jet Air Ejector Monitors" Southern Nuclear Operating Company SOTHR Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations SM-S NC 524602-001 COMPAENEU Unit: 1&2 I Sheet 24 43. SM-95-0754-001, Revision 7, "Severe Accident Management Guideline (SAMG)Calculations" 44. SM-96-1076-001, V2, "NEI 99-01 EAL Calculations" 45. SM-96-1 076-002, V4, "NEI 99-01 EAL Calculations" 46. SNC024-CALC-001, Rev 0, "Farley EALs RA1 Threshold to Address NEI 99-01 Revision 6" 47.S5NC024-CALC-003, Rev 0, "FNP Determination of Emergency Action Level for Initiating Condition E-HUI" 48. SM-SNC467144-001, V1.0, "Radiation Dose at the Spent Fuel Pool (SFP) Instrumentation During Beyond Design Basis Event Per NEI 12-02" 49. PCB-1-VOL2-CRV049, R0, "[EN P-1] Spent Fuel Pool Volumes" 50. PCB-2-VOL2-CRV049, R0, "[EN P-2] Spent Fuel Pool Volumes" 51.X6CDE.01, V5, "[VEGP] Spent Fuel Pool Shielding" Source Term 52. WCAP-14722, VI.0, "[FNP 1&2] Power Uprate Project NSSS Engineering Report," November 1997 53. U-735579, Version 1.0, "Joseph M. Farley Nuclear Plant Radiation Analysis Design Manual," April 1974 Dose Conversion Factors 54. Federal Guidance Report #11 (EPA 520-1-88-020), "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," September 1988 (http:l/nepis.epa..qov/Simple.html)
- 55. Federal Guidance Report #12 (EPA-402-R-93-081), "External Exposure to Radionuclides in Air, Water, and Soil," September 1993 (http://nepis.epa.,qov/Simple.html)
Engineering References
- 56. Davisson, "Gamma Ray Dose Albedos," pages 5-27 thru 5-38 in ANS/SD-76/14, A Handbook of Radiation Shielding Data, edited by J. C. Courtney, July 1976, (copy in Attachment C1)57. Lamarsh, "Introduction to Nuclear Engineering," second edition, 1983 58. Etherington (editor), "Nuclear Engineering Handbook," first edition, 1958 59. CRTD-VOL 58, "ASME International Steam Tables for Industrial Use," Second Edition, September 2008 60. "CRC Handbook of Chemistry
& Physics," 5 7 th edition 61. Moe, ANL-88-26, "Operational Health Physics Training" (httr,://www.osti.cjov/scitech/biblio/1 45829)
Southern Nuclear Operating Company SOT~N41 Plant: FNP Titl:SNC59914Re02het02 SOMPAENYa Unit: 1&2 Til:NI9-0 Rv6 EAL Calculations Sh5t2562-O METHOD OF SOLUTIONS NEI 99-01 Revision 6 Methods conform to the guidance of NEI 99-01 Revision 6. Detailed descriptions of the methods are included in the individual EAL threshold calculations in the Analysis section of this calculation.
Use of Regulatory Guide 1.183, Alternate Source Term Method The NEI 99-01 Revision 6 Recognition Category A (Abnormal Rad Levels/Radiological Effluent)Initiating Conditions (ICs) for declaring a Site Area Emergency and a General Emergency (Emergency Action Levels RS1 and RGI, respectively) are expressed in terms of Total Effective Dose Equivalent (TEDE) and Thyroid Committed Dose Equivalent (CDE).Regulatory Guide 1.195, "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light-Water Nuclear Power Reactors," is the current license basis for performing dose calculations for Farley. However, it expresses doses in terms of Whole Body and Thyroid.Regulatory Guide 1.183, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," does express doses in terms of TEDE and CDE, but it is not the current licensing basis for performing dose calculations for Farley. However, per section 1.1.4 on page 1.183-6, "This guidance does not, however, preclude the appropriate use of the insights of the AST in establishing emergency response procedures such as those associated with emergency dose projections, protective measures, and severe accident management g uides." Per section 4.1.1 of RGI.183, TEDE is defined as the sum of the committed effective dose equivalent (CEDE) from inhalation and the deep dose equivalent (DDE) from external exposure.Per section 4.1.2 of RG 1.183, Table 2.1 of Federal Guidance Report 11 provides tables of conversion factors acceptable to the NRC staff. The dose conversion factors (DCFs) factors in the column headed "effective" yield doses corresponding to the CEDE.Per sections 4.1.4 and 4.1.5 of Reg Guide 1.183, the DDE should be calculated assuming submergence in a semi-infinite cloud for the most limiting person at the EAB. The effective dose equivalent (EDE) from external exposure is nominally equivalent to the DDE, thus EDE may be used in lieu of DDE in determining the external dose contribution to the TEDE. Table 1I1.1 of Federal Guidance Report 12 provides external EDE conversion factors acceptable to the NRC staff. The factors in the column headed "effective" yield doses corresponding to the EDE.Radiation Monitor System Units SNC and Bechtel have used "R/hr," exposure rate as Roentgen/hour (page 438, Lamarsh), and "REM/hr," equivalent dose rate as Roentgen Equivalent Man (REM) per hour (page 447, Lamarsh), interchangeably for decades. Since the effluent and area radiation monitors detect gamma rays, these units are essentially the same. Additionally, their system displays use Southern Nuclear Operating Company OUHe,. Plant: FNP I SM-S NC524602-O01 SOMPHENYZ Unit: 1&2 Title: NEI 99-01 Rev 6 EAL Calculations i Sheet 26"R/hr" and the existing EAL setpoints (NMP-EP-110-GL01) are expressed as "R/hr." Thus all effluent and area radiation monitoring system~EAL setpoints will be expressed as "R/hr" in the Results section of this calc to minimize confusion.
Gas Release Paths The basic process for calculating an offsite dose consists of first determining the concentrations of radionuclides in the release stream, be it air, steam, or water. The release stream concentration is determined by dividing the release rates of the radionuclides of interest, expressed as microcuries per unit time, by the release fluid's volumetric flow rate, expressed as cubic centimeters (cc) per unit time: pCi/cc ='[pCi/unit time]/[cc/unit time]As we are back-calculating release concentrations based on pre-established dose limits (100 mREM TEDE and 500 mREM Thyroid CDE), the upstream modeling of the specific release paths is not necessary.
The gaseous effluent noble gas radiation monitors care not a whit how those radionuclides arrive at them.Step 1: Identify the radionuclides of interest.
Select the same radionuclides used to calculate doses for the design basis accidents in FSAR chapter 15: the fission product noble gases and iodines. The other fission products and activated corrosion products are particulates and will not contribute significantly to the oftsite dose.Step 2: Determine the RCS coolant radionuclide activity for each radionuclide (Xrcs-i liCi/g). This is assumed to be the sum of core fission product inventory released during a LOCA divided by RCS coolant mass (Mrcs g) and the equilibrium RCS coolant activity (Xeq-i) for that radion uclide.Xrcs-i = Xeq-i + (1 .0E+06 1 iCi/1 Ci) x [Core Inventory (Ci)] x [Release Fraction]/(Mrcs g)For no fuel damage, the release fraction is 0 and the RCS activity is the equilibrium RCS coolant activity.
If fuel damage is assumed (release fraction > 0), the quotient of core*inventory and RCS coolant mass will be orders of magnitude greater than the contribution from the coolant equilibrium activity.Step 3: Convert coolant activity (Xrcs-i to release stream activity (Xris-i This conversion is accomplished by multiplying the RCS coolant activity by a dimensionless partition factor (PFi) and an arbitrarily selected density, pris g/cc: Xrjs-i
= (Xrcs-i }.iCi/g) x PFi x (pris g/cc)The partition factor will depend on the radionuclide and the release path. The partition factors used in this calculation are discussed in Assumption
- 5 of this calculation.
Arbitrarily set pris -1 .0 g/cc to make the math easy. The justification for this will be provided in Step 9.
Southern Nuclear Operating Company SO Plant: FNP I t E 90 e A acltos SM-S NC524602-001 SOMPAENY~
Unit: 1&2 Tite:.E 90 e ELCluain Sheet 27 Step 4: Determine radionuclide concentration at Exclusion Area Boundary (XEAB- iiCilcc).
This is done using standard dose assessment methods. The release concentration is multiplied by the release volumetric flow rate (Qris m 3/sec) and the diffusion coefficient
[(X/Q) m 3/sec]: XEAB-i (pL~i/cc)
= Xris-i (pCi/cc) x [Qris (m 3/sec)] x [(X/Q) (m 3 lsec)]Step 5: Calculate the TEDE for each radionuclide for one hour exposure time at EAB. This is done using the appropriate FGR-11 and FGR-12 dose conversion factors (DCFs), as discussed in the previous subsection.
TEDE~ (mREM) = External Exposure + Internal Exposure TEDE (mREM) = XEAB-i X texp (hours) x DDEDcF-i [(mREM/hr)l(pCilcc)]
+XEAB-I (gCi/cc) X texp (hours) x BR (cc/hr) x CEDEDcF-i (mREM/p.Ci)
TEDEI (mREM) = XEAB (pCi/cc) x texp (hours) x TEDEDcF-i
[(mREM/hr)l(jiCilcc)]
where TEDEDcF-i
[(mREM/hr)l(p.Ci/cc)]
= D DEDcF-I [(mREM/h r)I(p.Cilcc)]
+BR (cc/hr) x CEDEDcF-i (mREM/pCi)
BR (cc/hr) = breathing rate Step 6: Add the individual TEDEs to obtain the TEDE for the release (TEDEris):
TEDEris = [TEDE 1]TEDEris = [Xris-i x (X/Q) x Qris X texp X TEDEDcF-il TEDEris = [(XIQ) x Qris x texp ] x % [Xris-i x TEDEDcF-i]
Step 7: Calculate Thyroid CDE for each Iodine isotope for one hour exposure time at EAB. This is done using the appropriate FGR-11I dose conversion factors (DCFs), as discussed in the previous subsection.
CDETHY-i (mREM) = XEAB- (j#Ci/cc) x texp (hours) x BR (cc/hr) x CDETHY-DCF-I (mREM/pCi)
Step 8: Add the individual Thyroid CDEs to obtain the Thyroid ODE for the release (CDEris): CDEris = [CDETHY-.I]
CDEris = [Xris-i x (X/Q) x Qris x BR x CDETHY-DCF-i]
CDEris = [(X/Q) x Qris x texp x texp] x [Xris-i X TEDEDcF-I]
Southern Nuclear Operating Company Plant: FNP Title: NEI 99-01 Rev 6 EAL Calculations S-N540-0*OMPErNe"I Unit: 1&2 I MSSheet 28 Step 9: Determine the 100 mREM TEDE threshold release concentrations for each noble gas (Xio0-j This is done by multiplying each noble gas' release concentration (Xris-i determined in Step 3 by the quotient of 100 mREM and the sum of the TEDEs for all of the radionuclides considered (TEDEris mREM). Only noble gas concentrations are adjusted because the gaseous effluent monitors are noble gas detectors.(Xl00-i 1 , Ci/cc)/(Xris-i pCi/cc) = (100 mREM)/(TEDErls mREM)Xioo-i (pCi/cc) = (Xris-i plCi/cc) x (100 mREM)/(TEDEris mREM)The following demonstrates that the arbitrarily assumed relase stream density has no effect on the final result.Xris-i X (100 mREM)Xl00-i =[(X/Q) x Qris x texp ] X [Xrls-i X TEDEDcF-i]
Xrcs-i X (1.0) x pris x (100)lOi= [(X/Q) x Oris x texp X [Xrcs-i X PFj x p~s x TEDEOcF-i]
Xrcs-i x prls x (100)lOt= pris X (X/Q) x Oris x texp X [Xrcs-i X PFi x TEDEDcF-i]
Xrcs-i X (100)X 1 0 0-i =(X/Q) x Qrls x texp X [Xrcs-i X PFi x TEDEDcF-i]
The assumed release stream density has no effect on the final result: it cancels out. Thanks to the power of Excel, it is easier to calculate a postulated dose rate and adjust release concentrations than to set up the above equations.
Now to perform a dimensional check: Xris-iX (100 mREM)Xl 0 0-i ---[Xl- X (X/Q) x Qris x PFi x texp x TEDEDcF-i]
?~/c x mREM= (pCi/cc) x (sec/in 3) x (m 3/sec) x (hour) x = (,,+C,,..,..
x x x x [(m-RE-M/he-r)/(pCi/cc)]
? I iCi/cc = l/I(p.Ci/cc)]
p.Ci/cc = pCilcc Southern Nuclear Operating Company ISOUTHERN Li Ulnit: FNP SM-SNC524602-001
- OMPANY nt & il:NI9-1Rv6ELCluain Sheet 29 Step 10: Determine the 500 mREM Thyroid CDE threshold release concentrations for each noble gas (X5o0T-i jiCi/cc).
This is done using the same method as in Step 9. Again, the arbitrarily assumed release stream density cancels out and has no effect on the final result.There are four release paths that will be evaluated, one via the Plant Stack Vent and three via the secondary side: steam generator safety relief valves and atmospheric relief valves (SIG SRVs & ARVs), the condenser steam jet air ejector (SJAE), and the Turbine-Driven Auxiliary Feedwater Pump turbine exhaust (TDAFW Turbine Exhaust).
They and their major assumptions are summarized below.Radiation Monitor Release Path Core Damage Partition Factors RE0029B Plant Vent Stack Yes Noble Gases: 1.0 Iodines: 0.01 REOQ015C SJAE Two Cases: With and Noble Gases: 1.0 Without Core Damage Iodines: 1 .0E-06[S/G PF (0.01) x SJAE PF (1 .0E-04)]RE0060A/B/C S/G ARV & SRVs Two Cases: With and Noble Gases: 1 .0 Without Core Damage Iodines: 0.01 RE0060D TDAFW Turbine Two Cases: With and Noble Gases: 1.0 Exhaust Without Core Damage Iodines: 0.01 Southern Nuclear Operating Company SOTH Plant: FNP ITteNt991Re6EACacliosSM-S NC524602-001 SOMPAENZY Unit: 1&2 TteNE9-0Re6EACacaiosSheet 30 Body RU1 of Calculation:
Release of gaseous or liquid radioactivity greater than 2 times the ODCM limits for 60 minutes or longer.Operating Mode Applicability:
Emergency Action Levels: All (1 OR20OR 3)1. Reading on ANY effluent radiation monitor greater than 2 times the ODCM limits for 60 minutes or longer.Liquid Effluents Liquid Radwaste Effluent Line RE-I18 1 .60 x I104 cpm Steam Generator Blowdown 28 0 p Effluent Line RE-23B Gaseous Effluents Steam Jet Air Ejector RE-I15 3.54 x I102 cpm Plant Vent Gas R-14 3.20 x I04 cpm RE-22 4.0 x 102 cpm RE-29B (NG) 8.90 x 10-4 pCi/cc Liquid Effluent Monitors Alarm Setpoint*
RU1 EALI Setpoint Liquid Radwaste Effluent Line (REO0018)________
Planned Release in progress LWRP Specific 2 x LWRP setpoint No planned release in progress 7900 cpm 1. 6E+04 cpm SIG Blowdown Effluent Line (REOO23B) 1400 cpm 2. 8E+03 cpm Gaseous Effluent Monitors Alarm Setpoint**
RU1 EALI Setpoint Steam Jet Air Ejector (REO0015) 17[7 cpm 3. 5E+02 cpm Plant Vent Gas Monitor (R00 14) 16199 cpm 3.2E+04 cpm Plant Vent Gas Monitor (REO022) 200 cpm 4. OE+02 cpm Plant Vent Gas Monitor (REOO29B)
- 4. 44E-04 /ti Ci/ml 8. 9E-04 /p Ci/ml* Design Input #3** Design Input #4 I: Southern Nuclear Operating CompanyPlant: FNP IISM-S NC524602-001 SOTEN~Unit:
1&2 Title: NEI 99-01 Rev 6 EAL Calculations I Sheet 31 2. Reading on ANY effluent radiation monitor greater than 2 times the alarm setpoint established by a current radioactivity discharge permit for 60 minutes or longer.I Liquid Radwaste Effluent Line RE-18 I 2 x release permit setpoint (planned release)Plant Vent Gas R-14 2 x release permit setpoint (lanned release)3. Sample analysis for a gaseous or liquid release indicates a concentration or release rate greater than 2 times the ODCM limits for 60 minutes or longer.
Southern Nuclear Operating Company SOTI Ik lnt N SM-SNC524602-001 PlaAY nit: FNP Title: NEI 99-01 Rev 6 EAL Calculations
- Sheet 32 RA1 Release of gaseous or liquid radioactivity resulting in offsite dose greater than 10 mrem TEDE or 50 mrem thyroid CDE.Operating Mode Applicability:
Emergency Action Levels: All (1 OR20OR30OR 4)1. Reading on ANY of the following radiation monitors greater than the reading shown for 15 minutes or longer.This calculation is performed in Attachment H.,Radiation Monitor, V, Path, ... ,,* Monitor Reading RE0015C SJAE 1.3 iJCi/cc (1.3 R/hr)RE0029B Plant Vent Stack 0.008 pCi/cc RE0060A/B/C SIG ARV & SRVs 0.005 pCi/cc (0.005 R/hr)RE0060D TDAFW Turbine Exhaust 0.11 pCi/cc (0.11R/hr)
- 2. Dose assessment using actual meteorology indicates doses greater than 10 mrem TEDE or 50 mrem thyroid CDE at or beyond the Site Boundary.3. Analysis of a liquid effluent sample indicates a concentration or release rate that would result in doses greater than 10 mrem TEDE or 50 mrem thyroid ODE at or beyond the Site Boundary for one hour of exposure.4. Field survey results indicate EITHER of the following at or beyond the Site Boundary:* Closed window dose rates greater than 10 mR/hr expected to continue for 60 minutes or longer.* Analyses of field survey samples indicate thyroid ODE greater than 50 mrem for one hour of inhalation.
Southern Nuclear Operating Company OUHR Plant: FNP SM-SNC524602-0O1 COMPAENY~
Unit: 1& Title: NEI 99-01 Rev 6 EAL Calculations Sheet 33.RS1 Release of gaseous radioactivity resulting in offsite dose greater than 100 mrem TEDE or 500 mrem thyroid CDE.Operating Mode Applicability:
All Emergency Action Levels: (1 OR 2OR 3)1. Reading on ANY of the following radiation monitors greater than the reading shown for 15 minutes or longer::iR ad iatio nM o .. ..... ........ ' V e t at M onitor...
R eading ' RE0015C SJAE 13 pCi/cc (13 R/hr)RE0029B Plant Vent Stack 0.08 pCi/cc RE0060A/B/C SIG ARV & SRVs 0.05 pCi/cc (0.05 R/hr)RE0060D TDAFW Turbine Exhaust 1.1 pCi/cc (1.1 R/hr)The concentrations at the steam release monitors (REO015C and REOO6OA/B/C/D) are converted to REM/hr using the Accident coolant activity dose rate to concentration curves on sheets 16 and 17 of SNC calculation 18.01. At 0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> after event initiation, they are all approximately equal to-10-3 (p Ci/cc)/(mREM/hr).
REO015C: 13 IpCi/cc/[10-Y 3 (pCi/cc)/(mREM/hr)]
= 13 x 103 mREM/hr= 13 REM/hr REOO6OA/B/C:
0.05 pCi/cc/[10-3 (pCi/cc)/(mREM/hr)]
= 0.05 x i03 mREM/hr= 0. 05 REM/hr REOO6OA/B/C:
1.1 pCi/c c/[lO-3 (pCi/cc)/(mREM/hr)]
= 1.1 x i03 mREM/hr-1.1 REM/hr Plant Vent Stack The threshold calculations are performed in the Excel spreadsheet in Attachment El of this calculation.
The thresholds calculated in the spreadsheets have been rounded off to one significant digit below to reflect the radiation monitoring systems' accuracy.100 mREM TEDE threshold
= 0. 08 p Ci/cc 500 mREM Thyroid CDE threshold
= 0. 1 p Cl/cc Limiting thresh old: 100 mREM TEDE = 0.08 pCi/cc Southern Nuclear Operating Company SOTfN41 Plant: FNP SMSC240-0 COMPAENZY Unit: 1& Title: NEI 99-01 Rev 6 EAL Calculations I MSheet2460-O Steam Jet Air Ejector The threshold calculations are performed in the Excel spreadsheet in Attachment E2A (no core damage) and E2B (core damage) of this calculation.
The thresholds calculated in the spreadsheets have been rounded off to one significant figure below to reflect the radiation monitoring systems' accuracy.Dose Threshold No Core Damage Core Damage 100 mREM TEDE 90 p Ci/cc 13 p Ci/cc 500 mREM Thyroid CDE 2.2E+06 pCi/cc 2.4E+05 pCi/cc Limiting threshold:
100 mREM TEDE, with core damage = 13 pCi/cc The 500 mREM Thyroid CDE thresholds are so high because of the very low partition, factor for iodine release via the SJAEs, 1. OE-06 overall.Steam Generator ARVs & SRVs The threshold calculations are performed in the Excel spreadsheet in Attachment E3A (no core damage) and E3B (core damage) of this calculation.
The thresholds calculated in the spreadsheets have been rounded off to one significant figure below to reflect the radiation monitoring systems' accuracy.Dose Threshold No Core Damage Core Damage 100 mREM TEDE 0. 3 p Ci/cc 0. 05 p Ci/cc 500 mREM Thyroid CDE 0. 8 p Ci/cc 0. 1 p Ci/cc Limiting threshold:
100 mREM TEDE, with core damage = 0.05 pCi/cc TDAFW Turbine Exhaust The threshold calculations are performed in the Excel spreadsheet ih Attachment E3A (no core damage) and E3B (core damage) of this calculation.
The thresholds calculated in the spreadsheets have been rounded off to one significant figure below to reflect the radiation monitoring systems' accuracy.Dose Threshold No Core Damage Core Damage 100 mREM TEDE 7 p Ci/cc 1.1 p Ci/cc 500 mREM Thyroid CDE 20 p Ci/cc 2. 2 p Ci/cc Limiting threshold:
100 mREM TEDE, with core damage = 1.1 pCi/cc Southern Nuclear Operating Company COMPL Planit: FNP Title: NEI 99-01 Rev 6 EAL Calculations I MSSheet 3 2. Dose assessment using actual meteorology indicates doses greater than 100 mrem TEDE or 500 mrem thyroid CDE at or beyond the site boundary.3. Field survey results indicate EITHER of the following at 6r beyond the Site Bounday.* Closed window dose rates greater than 100 mR/hr expected to continue for 60 minutes or longer.* Analyses of field survey samples indicate thyroid CDE greater than 500 mrem for one hour of inhalation.
Southern Nuclear Operating Company U lnit: FNP2 Title: NEI 99-01 Rev 6 EAL Calculations Sheet 36 RG1 Release of gaseous radioactivity resulting in offsite dose greater than 1,000 mrem TEDE or 5,000 mrem thyroid ODE.Operating Mode Applicability:
All Emergency Action Levels: (1 OR20OR 3)1. Reading on ANY of the following radiation monitors greater than the reading shown for 15 minutes or longer: Radiation Monitor Vent Path Reading RE0015C SJAE 130 jiCi/cc (130 R/hr)RE0029B Plant Vent Stack 0.8 #iCi/cc RE0060A/B/C SIG ARV & SRVs 0.5 jiCi/cc (0.5 R/hr)REOO6OD ~TDAFW Turbine11ji/c(1Rhr RE0060D________Exhaust 11____ Ci/cc__(11__R/hr)
_Because the RG1 EAL1 dose limits are ten times the R.SI EAL1 dose limits, these readings are ten times the RSI EAL1 readings.2. Dose assessment using actual meteorology indicates doses greater than 1000 mrem TEDE or 5000 mrem thyroid ODE at or beyond the site boundary.3. Field survey results indicate EITHER of the following at or beyond the Site Boundary:* Closed window dose rates greater than 1,000 mR/hr expected to continue for 60 minutes or longer.* Analyses of field survey samples indicate thyroid ODE greater than 5,000 mrem for one hour of inhalation.
Southern Nuclear Operating Company Plant: FNP S-NC524602-001 SUHNN Unit: 1&2 Title: NEI 99-01 Rev 6 EAL Calculations SMSSheet 37 CS1 Loss of RPV inventory affecting core decay heat removal capability.
Operability Mode Applicability:
Cold Shutdown, Refueling Emergency Action Levels: (1 OR 2)1.2.a. CONTAINMENT CLOSURE not established AND b. RVilS (Mode 5) level less than 121'0" (6" below bottom ID of RCS loop).This elevation is determined in Attachment D to this calculation.
- a. RPV level cannot be monitored for 30 minutes or longer.AND'b. Core uncovery is indicated by ANY of the following:
- Containment High Range Radiation Monitor RE27A OR 27B reading >100 R/hr.* Erratic source range monitor indication.
- UNPLANNED rise in Containment Sump, or Reactor Coolant Drain Tank (RCDT), or Waste Holdup Tank (WHT) levels of sufficient magnitude to indicate core uncovery.The Containment High Range Radiation Monitor reading corresponds to the reflected dose rate from the irradiated fuel in the RPV with an RPV water level of < EL 1 18'O", TOAF. It is calculated in Attachment F3 of this calculation.
Southern Nuclear Operating Company SOI=B, Pat N ISM-SNC524602-001 I OMAN Plnit: FNP Title: NEI 99-01 Rev 6 EAL Calculations Set3 CG1 Loss of RPV inventory affecting fuel clad integrity with containment challenged.
Operating Mode Applicability:
Emergency Action Level: Cold Shutdown Refueling (1)1.a. RVLIS (Mode 5) level cannot be monitored for 30 minutes or longer.AND b. Core uncovery is indicated by ANY of the following:
- Containment High Range Radiation Monitor RE27A OR 27B reading >100 R/hr.* Erratic source range monitor indication.
- UNPLANNED rise in Containment Sump, or Ractor Coolant Drain Tank (RCDT), or Waste Holdup Tank (WHT) levels of sufficient magnitude to indicate core uncover.*The Containment High Range Radiation Monitor reading corresponds to the reflected dose rate from the irradiated fuel in the RPV with an RPV water level of < EL 1 18'O", TOAF. It is calculated in Attachment F3 of this calculation.
AND c. ANY indication from the Containment Challenge Table C1 Containment Challenge Table C1 CONTAINMENT CLOSURE not established*
>6% H2 exists inside containment UNPLANNED increase in containment pressure*lf CONTAINMENT CLOSURE is re-established prior to exceeding the 30-minute time limit, then declaration of a General Emergency is not required.Sheets 9 and 12 of FNP SAMG calculation SM-95-0754-OOlestablish the 6%by volume hydrogen limit.
Southern Nuclear Operating Company SU R __ Plant: FNP IISM-S NC524602-001 SOTEN~Unit:
1&2 ITitle: NEI 99-01 Rev 6 EAL Calculations I Sheet 39 E-HU1 Damage to a loaded cask CONFINEMENT BOUNDARY Operating Mode Applicability:
ALL Emergency Action Level: (1)1. Damage to a loaded cask CONFINEMENT BOUNDARY as indicated by an on-contact radiation reading greater than ANY value listed on Table El.The calculation is performed in attachment I.Side-Mid-height
] 1360 Top j 260 HI-STORM 100 Side- 60 inches below mid-height 340 Side-Mid-height 350 Side-60 inches above mid-height 170 Top-Center of lid 50 Top=Radially centered 60 Inlet duct 460 Outlet Duct 160 Southern Nuclear Operating CompanyPlant: FNP ITitle: NI99-01 Rev 6 EAL Calculations SM-S NC524602-001 SOTEN.a Unit: 1&2 I NI-Sheet 40 Fission Product Barrier Emergency Action Levels Fuel Clad Barrier Fuel Clad Barrier Loss Threshold 3.A Containment radiation monitor RE-27A or B greater than 600 R/hr.In Attachment G, the detector radiation level of 640.06 P/hr is calculated.
Containment radiation monitor RE-0O27A&B (QID2IREOO27A&B, Q2D21REOO27A&B) can be read to one significant digit (page 15 of U26469 8), thus the value of 600 P/hr is appropriate.
The calculation used reactor coolant system fission product concentrations from WCAP14 722 Table 7. 6-6 to calculate isotopic concentrations.
The calculation for DE/I3I was performed to find a ratio to DEl/300 pCi/gm. GRODEC was used for energy binning, a geometric factor and dose conversion factors taken from SM-94-0466-001 was applied.RCS Barrier RCS Barrier Loss Threshold 3.A Containment radiation monitor RE-2 greater than 1 R/hr OR Containment radiation monitor RE7 greater than 500 mR/hr.In Attachment G, .the containment radiation monitor RE-O002 (N1D21REO002, N2D21REO002) level of 1.07 P/hr is calculated.
Containment radiation monitor RE-O027A&B (QI D21REOO27A&B, Q2D2IREOO27A&B) can be read to one significant digit (page 15 of U264698), thus the value of 1 P/hr is appropriate.
The calculation used reactor coolant system fission product concentrations from WCAP14 722 page 7. 6-52 to calculate isotopic concentrations.
The calculation for DEI13I was performed to find a ratio to DEl 0. 5 pCi/gm. GRODEC was used for energy binning, a geometric factor and dose conversion factors taken from SM-94-0466-001 was applied.In Attachment G, the containment radiation monitor RE-O007 (NID2IREO007, N2D21REO007) level of 0.54 P/hr is calculated.
The value of 0.5 P/hr is appropriate.
The calculation used reactor coolant system fission product concentrations from WCAP14 722 page 7.6-52 to calculate isotopic concentrations.
The calculation for DEII31 was performed to find a ratio to DEl 0.5 pCi/gm. GRODEC was used for energy binning, a geometric factor and dose conversion factors taken from SM-94-0466-001 was applied.Containment Barrier Containment Barrier Potential Loss Threshold 3.A Containment radiation monitor RE-27A or B greater than 8000 R/hr.In Attachment G, the detector radiation level of 7, 969 P/hr is calculated.
Containment radiation monitor RE-OO27A&B (QI D21REOO27A&B, Q2D21REOO27A&B) can be read Southern Nuclear Operating Company SOUH~m Pant FP S-SC524602-OO1 Plnit: FNP Title: NEI 99-01 Rev 6 EAL Calculations SMIheet 4 1 COMPANY to one significant digit (page 15 of U264698), thus the value of 8,000 R/hr is appropriate.
The calculation used reactor coolant system fission product concentrations from WCAP14 722 page 7.6-52 to calculate isotopic concentrations.
The calculation for DEI13I was performed to find a ratio to DEl 0.5 pCi/gm. GRODEC was used for energy binning, a geometric factor and dose conversion factors taken from SM-94-0466-001 was applied.Containment Barrier Potential Loss Threshold 4.B Containment Hydrogen Concentration greater than 5.5%.Per calculation SM-95-0754-001 pg 9, a hydrogen concentration above 6% is potentially explosive.
Since the accuracy of the hydrogen monitor is +/-0.5% in the range of 0-10%hydrogen, use 5.5%. Per calculation SM-95-0754-001 page 12 the concentration of>6% would support a burn throughout containment.
Southern Nuclear Design Calculation SPlant: Farley Unit: 1&2 Icalculation Number: SM-SNC524602-00l ISheet: A-1I Attachment A -SNC Emergency Planning Concurrence Calculation Number: SM-SNC524602-001 Calculation Version: 1 Calculation Title: NEI 99-01 Rev 6 EAL Calculations I the undersigned have reviewed the subject calculation and concur that:* Its Methods of Analysis conform to the guidance of NEI 99-01 Revision 6* Its Assumptions are consistent with the guidance of NEI 99-01 Revision 6* Its conclusions are consistent with the Methods of Analysis, Assumptions, and Design Inputs.
/ Signature/ I,,t(= SNC Emergency Planning I Date I Organization Southern Nuclear Design Calculation Plant: Farley Unit: 1&2 Calculation Number: SM-SNC524602-OO1 Sheet: C-1 ATTACHMENT C -REFERENCES DescrptionNumber Descrptionof Pages C1 -Davisson, "Gamma Ray Dose Albedos," from "A Handbook of Radiation 13 Shielding Data" 02 -Validation of Spirax Sarco On-Line Steam Tables9.1 __________________________
4.1-4.1-++4 4 4+4 4 Total Number of Pages Including Cover Sheet 2 23 SM-SNC524602-001T AC M N C H ETC-ATTACHMENT C1 SHEET C1-1 ANS/SD-76/14 A HANDBOOK OF RADIATION SHIELDING DATA J. C. COURTNEY, EDITOR Sponsored by: Nuclear Science Center Louisiana State University Baton Rouge and Shielding and Dosimetry Division American Nuclear Society JULY, 1976 SM-SNC524602-001 ATTACHMENT C1 SHEET C1-2 5-27 Gamma Ray Dose Albedos CDC. M. Davisson U. S. Naval Research Laboratory The dose rate reflected from a surface as deduced from Reference 1 through 4 may be represented as: D.R. =D.R. co 2 aA'where D.R. = Reflected dose rate D.R. = Dose rate incident on surface at 0 0 o A = Reflecting area r = Distance from center of reflecting area to receptor (A and r 2 must be in the same units)L(E° 0o, 0, = Dose albedo The albedos, cs(E , 0,,, 0, for gammas incident on water, concrete, iron and lead have been calculated by C. M. Davisson and L. A. Beachs using Monte Carlo techniques in an extension of the original work by Theus and Beach 6.The albedos are given for incident gamma energies of 0.2, 0.662, l.0, 2.5 and 6.13 MeV and for (incident angles with respect to the normal of 0°, 22°, 44 , 66° and 88°, as well as for point sources on the surface of the materials.
The emerging polar angles, 01)as well as the emerging sectors or directions into which the emerging gammas were divided are shown in Fig. 5.13. The values of the polar angles, 0., and of the azimuthal angles defining the emerging directions, are given on each page of Table 5.8.Note: The dose albedo values have statistical errors that range from 40% or 50% at very small albedo values to 5% or 10% at large albedo values.References 1 Reactor Shielding Design Manual, T. Rockwell III, editor, TID-7004 (March 1956)2p. 334.SD. J. Raso, "Monte Carlo Calculations on the Reflection and Transmission of Scattered Gamma Rays," Nucl. Sci. and Eng. 17, 411 (1963). This report has a good discussion of the meaning of various terms and derived quantities.
The dose albedos given here are those which he described in quotes, as "dose" albedos.s W. E. Selph, "Neutrons and Gamma-Ray Albedos," DASA-1892-2 (May 1967), ORNL-RSIC-21 (February 1968), or Chapter 4 of Weapons Radiation Shielding Handbook (NTIS No.AD-816 092). The dose albedos given here are those defined as c_. in this report.'9R. L. French. and M. B. Wells, "An-Angle-Dependent Albedo for Fas~-2 eutron Reflection Calculations," Nucl. Scd. and Eng. 19, 441 (1964).s C. M. Davisson and L. A. Beach, "Ga~mma-Ray Albedos of Iron," NRL Quarterly on Nucl. Sci. and Tech. (January 1, 1960), p. 43; and private communication.
6 R. B. Theus and L. A. Beach, "Gamma-Ray Albedo," NEL Quarterly on Nucl. Sc. and 0/ Tech. (July-September 1955).
SM-SNC524602-001 A T C M N lS E T0-ATTACHMENT C1 SHEET C1-3 5-28 Figure 5.13 NORMAL letry and Solid Angle Divisions Georr C.C, V.0G191A 98 903E A123309 I in pereeenl Energing Emerging WaterWte Peter Direction 0.20 91eV 0.662 91eV Antie ineideet or Poier
- incidenr at Feint *816k ( 0'
- 250 44,° 660 850 Source 50
- 22' 44o 66 88' Source o]o05. 1 9oo18~ 5.1 5.97 6.5397 7.1396 6.7159 6.5177 1.9553 2.01+03 2.,31 3.1588 2.9581 oo1. 2 00-90 .0 6.60 6.7538 6.a554 9.0500 t.2107 e.0384 2.i973 2.3769 3.1206 3.9089 *.1833 8e 3 90.0-180.0 5.6337 5.8329 6.17o9 7.0743 6.7805 6.8310 1.8933 1.6038 2.3875 3.9538 3.2092 2.9011 15.4-21.9 0.0- 90.0 +/-.1336 5.6935 6.7787 6.5315 7.91.58 ...0066 2.0361 2.3693 3.304i 4.3959 +/-.i156z 5 150.0-480.0 5.3326 5.7366 6.6038 6.6979 1.8565 3.0093 2.5959 2.8781 6 120.0-15O.0o 5.5872 6.429a 6.1704 5.9813 1.7406 2.1703 2.6467 2.6753 8o 7 90.0-020.0 5.2967 5.0768 6.i451 6.o290 7.0716 6.6423 1.7141 1.76}.8 2.1508 2.6736 s.4651 2.8362 21.8-34.9 9 60.0- 90.0 5.7890 5. 9097 7.0255 7.0hh8 I046 +/-. 023 199335 3. 414 2.7704 4. s9 0.0- 6o.0 5.7062 5.y6es 9.3760 8.9716 1.9034 3.3758 3.4947 5.5355 10 0.0- 30.0 5.6732 5.5703 7.9005 9.3535 1.9838 2.7634 4.3674 6.o6o5 11 15O.O-180.0 4.7969 5.16o9 6.1585 5.8973 1.7233 1.6192 2.4320o 2.'2660 12 120.0-15o.o 4.9543 s.4ooa 6.n194 6.7239 1.9159 2. 5032 2.9683 84 13 90.0-190.0 4.94,23 5.3779 6.4662 6.5197 6.o1a2 i.65894 1.7150 2.1040 2.8534 3.4144h 3.9044 34.8-44.4 r4 60.o- 90.0 l 5 .3699 5.7463 6.6733 6.6347 t,.1502 +/-.oifl 1.9078 3.2060 3.1190 3.7612 *.1092 15 30.0- 6o.o 4. 8364 5.9460 7.0077 1o.6405 1.9796 3. 5214 3.7423 6.3208 i6 0.0- 30.9 5.0313 5.6693 7.3992 ii.a576 1.726i0 2.4595 4.9749 a.61e2*.17 197.5-180.0 3.8993 4.6708 5.5399 6.3103 1.3535 1.6351 3.0032 2.5697 18 135.0-197.5 L-.ia18 5.0667 5.4726 5.9877 1.2764 1.4813 1.817/7 2.3130 19 112.5-135.0 3.9395 4.3332 5.2745 6.0389 1.4636 1.6o58 2.034,6 2..624 1 3s 0 90.0-112.5 3.9793 4.1314 4. 8377 5.1716 6.3433 6.0433 t.34i0 1.5953 i.6459 2.5741 2.7190 3.9464 4445. 1 67.5- 90.0 4. 5893 4. 50a4 5.66ss 6.8699 e.0170 1.934 1.7890 2.7336 4. 5075 +/-.o448 22 4s5.o- 67.5 4.4602 5.0394 6.3773 8.8169 1.4349 2.2770 3.3172 5.94'00 23 23.5- 45.o 3.9117 7.1514 11.4543 1.4296 2.3681 4.433o 8.0746 34, 0.0- 22.5 7.3340 1.7503 2.7795 12.2539 95 197.5-199.0 3.3459 3.7645 4.6069 5.7163 .8992 i.3434 1.6lo0 2.0010 26 035.0-157.5 3.3958 3.7108 4. 7796 5.8589 1.1748 1.2018 1.7139 2.2889 37 112.5-135.0 3.555 3. 5657 4.8980 5.C029 1.1967 1.4367 1.7047 2.6920 8 n 39 90.0-112.5 3.3492 3.5478 3.7974 4.1356 6.2433 5.5b716 1.1053 1.3017 1.3056 1.8535 3.0423 3.8091 55.3-64.6 29 67.5- 90.0 j.0532 3.5931 3.8955 5.2090 6.6770 1.1743 1.6336 2.6900 3.8038 1075 30 45.o- 67.5 3.1492 4.3032 6.6316 8.9116 1.3400O 1.7871. 3.3061 6.4253 31 33.5- 4.5.o 3.33966 4.3713 7.4570 19.5727 1. 5048 2.2454 4.3399 10.7336 39 0.0- 33.5 2.9447 5.1937 9.1311 15.64 17 1.5237 5.5367 16.7499 33 065.0-190.0 2.1264 2.1916 3.3.329 .6614 .8397 1.2565 1.6597 35, 150.0-165.0 a.a34i 2.6343 3.3451 5.0043 .6472 .8533 1.1356 1.6204 35 135.0-159.0 2.3259 2.4357 3.5227 5.1316 .7441 .8133 1.1131 1.9333 36 120.0-125.0 2.1899 9.416a 3.3150 5. 1764 .615a .9166 1.1266 2.0339 37 305.0-190.0 2.0710 3.0299 2.4214 3.3894, 4.3789 .7383 .9197 1.34,17 9.1977 87 38 90.0-105.0 2.2786 9.7700 3.6111 5.6151 4.32031 .7253 .7500 1.0093 1. 5037 3.7019 9.5424 694.6-77.6 39 75.0- 90.0 2.4397 3.6761 3.64 99 6.4994 -. 1312 £,.0140 .7935 1. 9463 3.7994 +/-.0789 40 6o.o- 75.0 2.1718 2.6096 4.o436 7-5953 1,0135 1.4012 2. 1153 4.3050 41 4s.o- 6oo 2.1870 3.1039 5.0337 9.5097 .9799 1.5390 3.0h84 6.9833 43 30.0- 45.o s.s64 3. 6170 6.0641 1.3.1953 .9313 1.69891 4.0398 11.9895 43 15.0- 30.0 9.4511 3.9100 7.0110 15.0692 .8866 1.9519 4.9537 44 0.0- 15.0 2.5259 3.7460 7.5061 17.9599 1.1833 2.2426 6.3270 21.9297065.o-190.0
.6429 .7465 1.1593 3.0983 .1533 .2103 .3557 1.0093 46 15O.0-165.0
.6336 .7643 1.3960 2.8972 .2358 .2374 .3737 1.0970 47 135.0-150.0
.9538 .9478 1.9635 3.2789 .1763 .2514 .39'7e 1.1505 4,8 130.0-135.0
.9026 .8305 1.3108 3.1119 .3752 .3462 .4921 1.3059 4,9 105.0-130.0
.7090 .9667 1.2943 9.8919 .2748 .4893 1.2658 Bo 50 90.0-195.0
.7446 .9123 .9467 1. 5001 3.0809 2.0500 .3519 .1381 .3925 .6755 1.5193 1.444O 77.6-90.0
!51 75.0- 90.0 .9259 .7707 1.1957 3.6699 9.0543 .2460 .3833 .7809 2.3339 +.oh44 52 60.o- 75.0 .9780 1.0763 1.7909 4.9976 .4366 .3906 .e6oa 3.2155 53 4s.O- 6o.o .7515 1.1401t 9.0393 6.5075 .3167 .6ass 1.4,673 5. 3678 s4 30.0- 45.o .7789 1.3680 2.7729 10.19g64 .3999 .6577 1.9128 9.4998 55 15.0- 901.0 1.1137 1. 5215 3.3789 33.3710 .4299 .8547 3.7434 15. 89n6 s6 0.0- 15.0 1.0129 1.is46 3.0126 13.4418 .4a06 1.29946 3.3736 19.3931 Son ever Cl 176.5573 184.2343 213.4333 380.2336 425.5670 270.5963 59.3391 64.9476 86.0866 140.3006 396.6791 139.3021 Total Done Albedna 19.8097 90.6833 33,9476 31.4421 47.7485 30.3609 6.64s5 7.2759 9.6589 15.7305 33.3872 15.6297* Symeitrical snoures, no (1 volueo venoaged 0 6~0)CO H mII m z H 09 I m m H--0....-I OAMftA BAY DOSE AIBEDOS ( in percent)Emerging Emerging Water Water Polar Directieon 1.00 HeY 2.50 HeY Angle incident at Pit incident atPon*6 i 1\ 252 440 9o ar Bounce OP
- 93 630 or° Bounce 9j 1. 90.0-160.0 1.3792 1.2030 1.5516 2.3172 2.2959 2. 1535 .5372 .5519 .6567 1.1675 1. 5452 1.0562 0.0-x5.4 2 0.0- 23.0 2. 12n5 1.4151 1.9977 2.4499 2.9657 &.1121 9.O0443 .5907 .6154 1.2'1069 1.9145 e.0729 8a 3 no.0-160.0 1.1622 1.1999 1.5320 1.9144 2.44,15 2.09CC .ji46 .5459 .9225 1.3513 i.1062 15.4-21.9 4 0.0- 10.0 +/-.0712 1.2977 1.6ao1 2.6296 2.7242 ,. 1221 ,.0120 .5224 .g011 1.2095 2.4114 2.oo79 5 150.0-190.0 1.2604 1.2716 1.5763 2.0974 .4917 .5920 .7605 1.1507 6 i20.0-15o.o
.9 1.Oa4 .4o.69 1.9570 2.1600 .5598 .4994 .8912 0.2571 9 o 7 90.0-1 20.0 1.1302 1.1671 1.05991 1. 9764 -2.7298 2.1566 .479g .4564 .6032 .9919 1.6670 1.1502 21.8-24.8 o 6o.o- no0o *.0192 1.106 1.6245 2.4716 " ,..44o6 i.o655 -9.0202 .4a1o .7400 1.266i 2.oT16 ,.o639 9 30.0- 6o.o 1.3700 1.5146 2.7504 4.oiao .5s41 .7726 1.50o25 3.0795 10 0.0- 30.0 1. 3196 1.29229 3.1252 41.7o32 .6259 .7921 1.6996 3.3791 01 15.0.-160.0 1.1512 1.2235 1. 556L 1.9327 .3940 .5205 .67s6 .9681 12 120.2-150.0
.9574 1.2832 1.6598 2.1828 .46og .5725 .7769 1.2537 05 13 *3..0-120.0 1.1139 1.2226 1.3921 2.1096 2.5559 2.1349 .4254 .4556 .6302 1.0551 1.4250 1.13391-1.h I 6c. o.- 90.0 9. 0249 1.2667 1.4g64 2.42gB 3.4849 :. 0120 .5187 1.133 2.0963 1.0449 15 :.0- 60.o 1 .2659 1.7382 2.00(9 5.0260 .5986 .7724 1.6281 3.1771 iE 0 .0- 30.0 1.1598 1.7278 3.6425 7.oooE .5248 .9369 2.1043~ 4.60~90 17 157.5-160.0
.9520 1.0542 1.2811, 1.8321 .3764 .422 .5829 1.0529 19 115.0-157.5
.9069 1.0317 1.2798 1.6792 .3738 .4219 .5o6i .9154 13 112.5-115.0
.2506 1.1371 3.5"228 1.9245 .4212 .46a3 .7958 .920881.0-112.5
.9132 1.0273 1.2431 1.7373 2. 3077 2.2086 .3769 .4318 .5697 .9136 1.3942 1.2898.0.5 21 67.5- 20.0 +/-. O~l0 1.0146 1.2435 3.4207 +/-,.24o4 ,.0107 .4224 .5950 1.1 142 2.1150 2.0275 00 45.0- 67.5 1.1603 1.6soo 2.9209 4.4035 .4452 .7777 1.4705 2.9309 0-3 22.5- 45.o .2707 1.7171 3.5238 7.9551 .4961 .8072 2.2216 5.16ii 21- 1.0- 22.5 1.1732 1.9935 3.9307 11.8437 .5343 .9970 2.39980 7.6425 15 157.5-100.0
.66ii .8137 1.0616 1.5202 .2596 .064n .4972 .7997 16 125.0-157.5
.7220 .7575 1.0910 1.5s15 .2059 .3356 .5625 .833 27 112.5-135.0
.7570 .2089 1.2150 1.9793 .2267 .0760 .5so6 .9910 a¢ 29 0.0-111. 5 .74o06 .7229 .950C 1.3524 3.4232 2.3046 .3312 .3232 .4501 .7618 1.2094 1.4398 52.-01-. "- 29 67.5- 90.1 ,.0237 .7763 1.3659 2.0224 3.1028 +/-.0767 9. 0092 .3559 .5227 .9141 1.7159 2. 1289 on3 4s.o- 67.5 .9347 1.4032 2.4900 5.3668 .4153 .6776. i.44e2 3.5299 11 22.5- 45.0 .96o8 1.a124 2.4070 8.4919 .2770 .8216 2.0515 6.9682 01 0.1- 22.5 1.o346 1.9222 4.9906 15.5466 .5515 1.0130 9.9929 13.1935 34 150.0-165.0
.4804 .5323 .7631 1.1637 .1424 .1979 .2918 .643 15 135.0-150.0
.4703 .5316 .7746 1.3Z666 .2215 .9697 .2142 .7034 36 120.0-135.0
.4523 .6192 .90113 1.2396 .2269 .2220 .3427 .241a 27 105.0-120.0
.5962 .5983 :2496 1.5807 .2119 .2391 .4537 .961o 9v 09 60.0-105.0
.5025 .5239 .6624 1.2836 2.2205 2.1587 .2212 .2597 .2672 .5172 1.2192 1.3699 64.6-77.6 39 75.0- 20.0 9.0199 .6311 .a249 1.3734 o.o561 t.2465 9.0095 .2596 .4157 .6790 1.242 2.0750 40 6o.o- 75.0 .7199 1.0019 1.5556 4.o2o4 .9902 .4764 .8005 o.606o 11 4s.o- Eo.o .64z6 .9615 2.2296 6.oono .2563 .6178 1.2689 4.2256 42 30.0- 4s.o .7109 1. 1s34 3.3140 11.1240 .2624 .5720 2.0473 7.9192 43 15.0- 20.0 .7960 1.6053 4.1934 17.2134 ,2202 .8317 16.2923 44 0.0- 15.0 .8527 1. 7722 5.3T,79 23.'2799 .9820 3.5535 26. 2"73 45 165.0-190.0
.1127 .1537 .2231 .6492 .0613 .0667 .0697 .2852 46 150.0-165.0
.1502 .1265 .2195 .7564 .24so .0627 .1244 .3379 47 135.0-150.0
.13572 .1429 .2020 .9177 .0723 .0622 .1175 .3693 ha 120.0-115.0
.0558 .1352 .2512 .2202 .0362 .0254 .1573 .3424 49 105.0-12=0.0
.2053 .1566 .4122 1.0017 .o765 .0737 o.1626 .5771 69 53 90.0-105.0 .l6s9 .1229 .2734 .4492 1. 3044 0.3623 .0737 .1096 .0714 .1666 .7704 1.1224 77.6-90.0 51 75.0- 90.0 2.0072 .2078 .0o14 .5690 1.652 9.0422 9. 0001 .0729 .1013 .2107 1.0202 2.0927 52 6o.o- 75.0 .2749 .2520 .623 2.6556 .1012 .1911 .2448 1.7109 53 45.0- 6o.0 .2362 .1233 .2901 .1028 .2472 .5519 2.1069 54, 30.0- 45.ot .2250 .5320 1.7025 9.7994 .1301 .3102 .9996 6.6789 55 15.0- 20.0 .3140 .6676 2.8791 16.2760 .1320 .3751 1.52.80 16.5150 o6 .0- 15.0 .3203 .9174 23.6674 .1193 .4654 2'.5214 22.9159 Sam owcr .1 3292807 44.0584 60.5977 102.2329 266.7079 112.5704 16.8220 19.7945 27.9942 59.9736 913.9020 69.7539 Totol Dooe Albedoe 4.46s0 4.943 6.7990 12.2558 22.9246 12.6304 1.8952 2.1087 2.1409 6.6168 93.9999 7.9264 Sy5esoericel 0000000, 0o A values averaged z 0 01 0 0 Co"T m"1 mT H-0 Ci 911/2I
>1Y h AC.C-OA680(A SAY DOSE A.41EDOS (in percent)tmerging Emorging Water Concrete Polar Direction 6.13 (icV 0.2 9eV Angle incident or Point
- incident at Point *9i 0 i 9 4(0* 22 44u 660 o8r Source 03
- 22" 440 660 880 Source 4, 90.0-180.0
.2655 .30g6 .3638 .6899 1.0608 .6976 4.3222 4.1243 4.7637 5.z214 5.9071 5.1598 o.0-15.4 2 0.0- 90.0 e..034 .3234 .4T794 .7897 1.3721 i=.0o61 _.4.1273 3.9059 4. 5791 6.is6i 6.0659 +/-.265190.0-180.0
.2518 .2447 .3894 .6oo6 .9558 .6251 4. 1o98 4.1431 4.3651 5.0983 5.5753 5.2992 15.4-21.8 4 0.0- 90.0 :. 0025 .2420 .3649 .6566 1.4905 .4.0108 4. 1439 4. 8685 5. 3798 6.7652 i. 843c, 5 15.0-180.0
.2979 .2932 .5174 .9825 3.9914 4.6116 4.7018 5.9179 6 120.0-150.0
.2227 .3198 .5674 .9718 3.8218 4.5297 4.984,3 5.1744 On 7 80.0-120.0
.2308 .3155 .2946 .5157 i.0534 .6[ 3.7130 4.0026 4.2362 5.4393 6.0965 5.4233 21.8-34.8 8 60.0- 90.0 £.o.o78 .2423 .3401 .5961 1.2751 .4.0184 ..0822 3.6716 4. 1899 5.0787 6.1243 -t.1175 9 50.0- 6o.o .3316 .4760 .7639 1.6719 4.2174 4. 53a5 6.1474 9.1100 10 0.0- 30.0 .3057 .5149 .8429 2.0850 4.0947 4. 3494 5.9747 8.1129 11 150.0-180.0
.2141 .266s .4442 .6696 3.5770 4,161o 4.6136 4.6075 12 120.0-150.0
.2173 .3 73 .1324 .7489 5.18 377 .'4 6 94 13 90.0-120.0
.2286 .2320 .6564 .9466 .66s6 3.4,652 4.87 ..044. 4.9897 6.1442 5.02546 3h. 14 6o.o- 93.0 :.O.019 .2820 .3575 .7015 1.2473 :.4.0176 +/-E.0412 3.1292 3.9545 5.2321 6. cc,36 ~..4Cr 15 50.0- 6o.o .3593 .3974 .8255 1.9624 3,.2757 4,5277 5.796Cc 9.9277 i6 0.0- 30.0 .2636 .4xa6 1,.1195 3.u115 4.0912 ,. 3774 6.1439 10.1395 17 151.5-180.0 .i6io .2355 .3074 .8453 3.2055 3.4274 4. 6624 5,46cc 18 135.0-45'7.5
.1759 .1998 .3246 .6i713 3.1621 4.36,47 5. 2342 19 112.5-135.0
.2036 .2619 .5201 .2712 2.8823 3.6709 4.53319 4.76,37 3s 0 90.0-112.5
.2090 .2101 .3022 .4606 .8563 .6972 2.8762 3.2066 3.6614 4.3557 5.5118 4.726 64.4-55.2 21 67.5- 90.0 0o59 .2270 .2642 .4934 1.5248 .4.0308a .4.1024 3.0541 3.4,667 4.654 5 5.7264 -.4.1462 22 45.0- 67., .2187 .3081 .7226 1.9876 3.3982 3.9209 5.538,4 7.6715 23 23.5- 45.O .2429 .3885 1.1344 3.3182 4.1492 6.425t 14.5245 24 0.0- 23.5 .3118 .4739 1.0819 5.1995 2.9231 4. 5731 6.9974 12.499 25 157.5-180.0
.1590 .1479 .3316 .6ooi 2.2100 3.0600 3.9595 4.4952 26 135.0-157.5
.1393 .1202 .2993 .6923 2. 5306 2.9304 3.3742 4.sh46 27 112.5-135.0
.1558 .2492 .3912 .7071 2.2888 2.7143 3.4321 5.3244 9.8 28 90.0-112.5
.1770 .1314 .1754 .411c0 .8769 .7172 2.4196 2.6233 3.1339 3.94196 4.7437 55.2-64.6 29 67.5- 90.0 o.0071 .1795 .2525 .5295 1.1451 .4.0221 .4.0393 9.4971 3.3553 4. 1634 6.5s17 30 54.o- 67.5 .1403 .2435 .6470 2.0965 9.7271 2.8219 4.6988 7.4996 31 22.5- 45.0 .1798 .4152 1.0312 4 .2078 2.4842 3.1664 6.2s89 12.9269 32 0.0- 22.5 .1957 .3689 1.3812 8.2644h 2.6o57 3.9543 7.0842 15. 7394 23 165.0-180.0
.1096 .0873 .x6s5 .5455 1.6248 2.0742 1.8414 4.322'34, 150.0-165.0
.0913 .iii6 .1916 .4830? 1.5881 1,9i94 2.5071 4.4477 35 135.0-150.0
.1187 .1472 .2568 .4l355 1.9763 1.9715 2.6430 4.aole 36 120.0-135.0 .oZls .1622 .ooho .5520 1.5987 1.9533 2.7197 4. 1235 37 105.0-120.0
.1036 .1193 .2179 .65Si 1.98349 2.2759 2.9421 4.9545 9, 39890.0-105.0
.0982 .1021 .i6i7 .2620 .7543 .8353 1.6023 1.7625 1.8482 2.78989 4.7697 3.9456 64.6-77.6 39 75.0- 90.0 .4.0337 .1296 .194c .3141 1.4250 .4.0357 1.5941 1.2123 3.1426 5.7263 +/-.4624 40 6o.o- 75.0 .1028 .1481 .4o 64 I.l,4o3 1.6523 3.4h310 1.4418 6.6971 41 45.o- 6o.o .0867 .2014 .5064 2.4667 l. 7145 2.5723 1.9082 8.7507 42 30.0- 45.o .1103 .2846 .7999 4.2109 1,7666 2.7971 4.6234 13.1994 43 15.0- 30.0 .1021 .27404 1.3737 14.36,22 1.8128 3.2706, 5.8535 14.9223 44 0.0- 15.0 .1545 .3173 1.8092 20.2675 2.1331 3.5404 6.4699 16.8259 h5 16so-sao~o
.0510 .o26o .05o09 .2528 .3761 .65as .9831 2.6020 46 150.0-165.0
.0180 .0439 .84c5 .26!79 .5195 .6061 .0-09 2.67(9 47 135.0-150.0
.0226 .o314 .0i06 .3307 .5987 .7263 .8610 3.4193 Ig8 120.0-135.0
.0157 .0282 .0654 .3663 .5794 .51(3 .9920 3.8143 49 105.0-120.0
.0315 .0434 .0794 .5234 .72I7 .9878 2.5313 a 0 50 90.0-105.0
.0327 .0229 .4361 .0813 .3970 .8451 .5243 .5707 .9462 1.3981 2.9321 i.g64C 77.6-90.O 51 75.0- 90.0 .4.0031 .8484 .0s60 .0652 .5242 .4.0458 .4.0326 .6815 .8435 1.3997 3.3595 o.4556 5s 6o.o- 75.0 .0398 .0870 .1248 1.01'20 .7262 .92253 1.1153 4.2516 53 45.o- 6o.o .0693 .o6ss .2678 1.4684 .1681 1.4522 2.4420a 6.561s 54 30.0- 4'5.o .06s5 .1oh1 .3706 3.0541 .7039 .9577 2.0897 8.7418 55 15.0- 30.0 .0580 .1448a .9633 11. 3776 .6622 1.3774 1.1693 12.9403______ 6 0.0- 15.0 .2346 .2239 1.5243 38.5044 .6344 1.3625 3.1294 13.1c'35 Suci oeva 8' .4613 9.0474 11.6134 30.1240 158.8044 42.0600 129.6433 135.3957 164.9352 227.320,6 38L-.21S7 227.131(9 Total Dose Albedas .2949 1.0151 8.5274 3.436i0 17.9068 4.7192 14*.4304 15.1902 18.4271 2"5.5138 4-2.411a 25.5847*Swmettrioa]I boarcee, co 41 voacoe averaged.Foro enmpoultoj e cooOoloa'ieg page CD do r,o 0 oJ o -n 600 60O-I 0._.'i 080198 RAy l(ll A188992 (In pereenti tEergieg Eoerging Conccetere Concrete Polar Direction o.662 lie 1.00 Angle incident at Ptr*incident cc-8t 0 k O"
- 44 66o or CoerceP ~~
- t
- 440 or e Decree°'n 8j 1 90.0-190.0 1.7235 1.7597 2.2777 2.6910 3.3634 2.6816 i.144a 1.1025 i.44J+6 2.1125 2.5946 1.9543 0.0-15.4 2 0.0- 90.0 t.oD667 1. 7050 2.0660 2.8651 3.9974 1314 +/-. 0909 i. 1460 1.5772 2.2313 3.0676 8.01882 90.0-180.0 1.6116 1.7100 i.9468 2.5441 2.9454 2.5246 1.0172 1.1160 1.4448 2.1496 2.3D93 2.0906 1542. O .0- 90.0 +.0296 1. 9234 2.2575 3.1202 4.4469 t.14 ih~o 1.1921 1.50O12 2.4402 3.6559 5 150.0-190.0 1.6153 1.6722 2.4839 2.7653 i.C16 1. 1343 1.5255 1.9919 6 12o.0-150.0 1.3938 1.87327 2.4549 a.6187 .596s 1..1947 1.7591 1.9574 8c 7 90.0-120.0 1.6171 175 2.31 3.1994 s62 .92 .97 1257 1.9154 2.6979 1.9928 21.9-34.689 6o.o- 90.0 8. 0231 1.7227 2.1599 2.9793 4.0218 *. 0580 *. 0205 1.1299 1.3562 2.1449 3.2901 t.0695 9 20.0- 6o1.0 1.7565 2.2596 3.7976 5.5501 1.2584 1.6173 2.5944 4.,5625 10 0.0- 20.0 1.6593 2.6210 3.9159 6.2732 1.1968 1.5870 3.0996 5.1907 11 150.0-190.0 1.3301 1.5202 2.0564 2.4478 .9734 1.0391 1.4427 3.7974 12 120.0O-150.0
- 1. 3777 1. 56s8 2.1031 .9362 1.0746 1.4929 1.9761 84 13 90.0-120.0 1.4056 1.5141 1.8149 2.4soi 2.9279 2.7485 .9O65 i.o16i 1.3323 1.9556 2.1826 2.0672 24.a-44.4 14 6o.o- 90.0 8.0588 1.568 i.ai8y 2.6667 3.9192 t.0430 A.0 2 7 2 .9304 1.5497 2.2760 2.9461 8.0300 15 20.0- 6o.o 1.5502 2.1703 3.6205 6.8377{ 1.1098 1.6111 2.9121 5.2809 16 0.0- 30.0 1.6353 2.4504 4.2106 9.7624 1.1294 1.8046 2.5769 7. 5400 17 157.5-060.0 1.1835 1.3731 1.5480 2.1925 .9356 1.1753 1.5602 18 135.0-157.5 1.3369 1.729 2.1991 .7993 .8735 1.2352 19 112.5-o133.0 1.196e 2.1549 .7727 1.0402 1.49235 1.9523 9 s 20 90.0-112.5 1.1750 1.2916 1.5121 2.1287 2.9123 2.7133 .7692 .7836 1.to64 1.4984 2.3154 2.1904 21 67.5- 90.0 1.4411 1.7659 2.5523 2.9315 8. 1031 8. 0304 .9495 1.2388 2.0937 2.3244 .0O728 22 4%o0- 67.5 1.2726 2.1503 2.9475 5.8450 .9540 1.5370 2.2285 4.9460 23 22.5- 45.o 1.4413 2.1972 4.4a56 a.59o7 1 .0920 1.7867 3.4487 7.9503 24 0.0- 22.5 i.4266 2.5701 4.6773 11.89869 1.0938 1.8370 4.l5gs 10.6785 25 157.5-190.0
.9503 1.0790 1.5766 1. 8279 .ioi0 .6568 1.0369 1.3170 26 135.0-157.5 1.0391 .s991 1.4919 2.1053 .6918 .7157 1.1205 1.549s 27 112.5-135.0
.2003 1.0029 1.5000 2.5072 .644s .6550 1j1177 1.9213 9e 28 90.0-112.5
.9512 1.0942 1.3038 1.9003 2.8284 2.7574 .6573 .7078 .9658 2.2479 s5.2-64.6 09 67.5- 90.0 8.0321 .9999 o.404s 2.29999 4.2219 0526 .7260 .9233 1.76111 3.2119 8.0577 20 4S.O- 67.5 1.1202 1.7101 3.1901 5.7558 .9350 1. 3643 2;5b73 4.8773 31 22.5- 45.o 1 .1565 2.0752 4.8711 10.1097 .8927 1.7022 3.6096 8.3203 " 22 0.0- 22.5 1.2082 2.3217 5.4436 i6.134o0 .773 1.so16 4.1976 16.44oo. , 33 165.010. .587 .630 92 1.609 .o65 .46s .6229 1.95 \>-.15o.o-165.o
.5533 .7990 .9752 1.6322 .3369 .5243 .7156 1.2279 35 135.0-150.0
.7089 .6596 1.0530 1.9292 .3941 .4923 .6368 1.2729 36 120.0-135.0
.5552 1. 9709 .4061 .s11S .7719 1.5392 37 105.0-120.0
.7527 .7829 1.0294 2.2125 .4571 .5713 .9122 1.7477 97 39 90.0-105.0
.6904 .7957 .9236 1.3800 2.7667 2.4289 .4664 .4517 .6219 2.2470 2.0062 64.6-W.6 39 75.0- 90.0 .2331 1.1i604 1.7906 3.7156 8-.0200 .6194 .8151 1.4092 1 2.9299 -8.0~64 4o 60.o- 75.0 .9220 1. 1384 2.0594 4.7747 .61s4 .9820 t:64oo' 4.soa7 41l 45.o- 6o.o .e947 1.264,1 2.8966 6.7246 .6o21 .9090 2. 5313 6.3592 -42 20.0- 4s.o .9338 1.6641 3.9098 11.9356 .9603 1.1394 2.1428 10. 3936 435 15.0- 30.0 .9472 1.9589 4. 9260 17.0101 .5516 1.44I38 4. 1275 17.9330 44 0.0- 15.0 1. 1750 1.9808 5.9095 21. 3304 .8189 1.9096 5.2776 22.9816 45 165.0-180.0
.2449 .2196 .4014 .9671 .3193 .1389 .2121 .6109 46150.0-165.0
.2263 .2997 .o154 .9256 .t4oo .9011 .2152 .5955 47 135.0-150.0
.244s .2043 .4o96 1.0372 .1661 .1409 .2004+ .7449 48 120.0-135.0
.2414 .2622 1.143 1.4216 .1372 .1357 .2395 .2948 4s9105.0-120.0
.1778 .2527 .4709 1.20O59 .1293 .1785 .0137 .9934 8a 50 90.0-105.0
.2413 .2961 .3281 .5010 1.2286 1.4411 .1836 .1690O .3153 .4279 1.1825 1.2139 y 77.6-90.0 51 75.0- 90.0 +/-.0135 .2145 .3910 .7054 2. 1304 _8.0442 8.0197 .1201 .2810 .4967 1.614h2 t.0702 52 6o.o- 75.0 .3899 .4901 .8120 3. 5707 .2364 .3777 .6724 2.9629 52 45.o- 6o.o .2618 .5959 1.3892 5.4957 .2041 .3833 1.3637 4.4470 54 30.0- 45.o .2329 .6977 1.7"/61 8.5499 .2315 .6o56 1.6201 8. 0207 55 15.0- 30.0 .4218 .9078 2.9412 15.0340 ,2005 .7342 2.49865 17.0945 56 0.0- 15.0 1.11.69 3.2692 19.344h9 .0290 .a14o 3.1314 22.1170 s a ve 52.000o 57.7278 78.3201 132.3332 290.2237 133.1027 35.2959 29,0799 59.3420 103.9138 1o3.5002 109.8988 Total Dccc Albedee 5.8344 6.4770 8.7896 14.8478 32. 5620 14.s04x 3.9602 4.394b2 6.3217 11.6591 29.5647 12.2173 0ymmeeerical fonrces~ co 1 soloee *veraged ttm~pocirlon in percent by welght: 0 52.9. SI 33.7. Co 4'.4, Al13.4. Ce i.6, Fe 1.4, K 1.2, 9 1.0. Hg 0.2, 0 0. 1 Co0 c-f N, 421 0)C--)
- /..4'j Ks>-C',.', 4,':4, '?08886 RAy 8008 ALSEOOS ( in oarcOeltS Emerging Eeorgin8 Concrete T Concrete poter I Direction 2.50 NoV I6.13 KeY Angie {incident at Iincident at et 4 abb 6° c=e Source 0)01 0.0- 15.4 80 21.9-54.8 44.4-55.2 55.2-64,.6 64.°6-77.8 8.Tl4-2."o0 1 20.0-190.0 2 0.0- 20.0 3 80.0-180.0 4 o.0- 90.0 5150.0-280.0 6 420.0-150.0 7 0.0-120.0 a 6o.o- 20.0 2 30.0- 6o.o tO 0.0- 30.0 11 150.0-180.0 12 120.0-150.0 13 90.0-120.0 14 6o.o- 90.0 15 30.0- 6o.0 iS 0.0- 10.0 17 157.5-182.0 18 135.0-157.5 19 112.5-135.0 20 90.0-112.5 21 67.5- 20.0 22 45*o- 67.5 23 22.5- 45.o 3.0226 3.0183 3:.0160.3518 ,.0134 3.,0103 25 157.5-180.0 2615.0-157.5 37 113.5-135.0 28 04.0-112.5 28 67.5- 90.0 30 4.o- 47.5 32 1.0- 23.5 33 165.o-t8o.o150.0-165.0 25 135.0-150.0 36 110.0-135.1 37 105.0-120.0 38 80.0-105.0 39 75.0- 80.0 40 6u.,0- 75.0 41 45.0- 6o.o 43 30.0- 45.0 43 15.0- 30.4 44 2.1- 15.0 45 165.2-18o.0 4o 130.1-165.0 hG 122 .0-135.0 49 145.0-120.0 51 75.0- 80.0 52 60.2- 75..54 Ic.:- 49.0 55 4,.- 30.4.5148.4g5g.4676.51o02.42o5.48,07.5328.4503*5729.4760.3823 ,4 318.3172.4o6e.44 57.46cs.4361.3103.3088.3500 2 927.1873.1895.1830.169I.2286.1867.2854.2814l.2892.3426 , .710* .0711.27727.,'978.0834_.1143.67ss 1.0003 t.oo6o .o0oo0 ,7357 1.3620 1.0781 3.0052.6778 1.0381 1.3085 1.G010.7218 1.2172 2,4493 .5640 .8712 1.0862.810 1.520 1.0703.640 1.2638 2.1777 j.0,72*.6878 1.4007 2.6967* 80(4h 1.7671 3,01489.4647 .6678 1.0237.5244 ,6590 1.1,55.5820 1.3459 1.4o2 1*182h.6o01 1.2208 4.2237 t,0596.8370 1.5657 3.i6',4.8328 1,9276 5.2213 ,416g .5710 4.1315 ,4OO0 .6718 .3488.444l6 .7313 1.2493 ,1299 .91o6 1.3755 1.3021.5978 1.020h 3.4143 o,0242.y34 1.3173 2.6517.7405 1.8844 5.7291.8473 7.9927.2762 ,4512 .8(42.3117 .5cha .9721.4o48 *5icJ, .0903.4449 .4470 1.2255 1.3285.48l16 1.0276 1.83951 *.537 1.34,51 3.6224.7827 6.07,7 1.6062 2.44(7 12.9334.1971 ,3579 .5099.1828 .2305 *5967*.2251 .3040 .0127.1826 .3430 .8042.3029 .3551 .9335.2422 .5233 1.2619 i.4zts.6287 1.7791 +/-.o642.4,324 .0853 3.I4'72.4961 1.3292 *.6667 1.2249 7."5013.2916 14.71i39*.vI 4 4 7 .0C582 .2825...'97 .4095 .4197*.1327, .1773 ."'22* 1. 2750.0'12 1.4310 *.333 1h70,:3 19.1319 ,3.'G 2.227:7 22. 113.5490..o226.3163.2929.2692 3. 0117.1853.121 3.2(44.3667.14085.35 11.3565.2761.3 153*2553*.3294.3077.3108.2991.2492.270..3457*2649* 2473.2387.49837.21,?1.1273.13.91.12439.2200C ro,. a0.0799.-911..72 ?.3845 ,6si0 1.0531 .7128.4996 .7097 1.5261 + .(297.4os6 .6215 1.0783 .6370.4902 .8081 1.3683 ~.0.0(E.4h57 1.452.3900 .213 1.3324, .71(3*.454 .8157 1.7594.5229 .0995 2..(91.3069 .0117 .9o.v7.3912 .,(919 1/.4,17 .8172.4439 .9917 2. 141-.5222 1.432 3.4392.2974 .*4 h, .9979.3318 .5544 1.1214( .7944.257-: .'" 95 1.2423 .3919 .7911 2.1430..4001= 1. .469 3.391'7.1021 .3491 .0234.1309 , -4h7 .0459.2575 ,314. .2525.2202 .4177 .2232 .7,722.1424 .7530. 2.21414.3212 .4101 1.2241 9.115*.16(47 .172 1 lh.5 .2~ .1h8B .F9 , i9.2119 1'-2' a'Tq -7503-,h4c0 1,4Bo 305.Z20* "'ZA 1,; 82'2 3,. 64< ,z -44.210'" ." -:i.9 9 0- C.7-c H IllFl CD H Iun 09cr ,2 15.4759 ?J 17.4: 391/231t0 5,.4.-211 XI .U22 I ti.~i.i -.4.1151 1.19? 1290 3 .-.: --O9 m Fn C)03 3Synnntrical nasoanes o 2 valaeo averaged SFor cnomposttlon ate pcevious page 6M01£A RAy DOSE AL8E001 fi.n narcenil Emerging Polar Angle 81~ ra Emerging Direction 192*0.20 11V lanldant atPon 44n 66' 82' Pin Sourra 0.662 11v incident at 22'82' Paint *2 o roe 9'15.4-21.8 21.8-34.8 89 55.2-64.6 87 64.6-77.6 80 776-so.o 1 90.0-180.0 2 0.0- 20.0 300.0-180.0 4 0.0- 20.0 5 150.0-180.0 6 12o.0-15O.0 7 90.0-120.0 8 6oo- 20.0 9 30.0- 6o.o 10 0.0- 20.0 11 150.0-180.0 12 120.0-150.0 13 90.0-120.0 t4 6o~o- 90.0 15 20.0- 6oo0 16 0.0- 20.0 17 157.5-18o0.
18 125.0-157.5 19 112.5-135.0 20 20.0-112.5 21 67.5- 20.0 22 45,o- 67.5 23 20.5- 4S.o 24 0.0- 22.5 25 157,.5-180.0 a6 135.0-151.5 27 112.5-135.0 22 90.0-112.5 29 67.5- 90.0 30 45.o- 67.5 31 22.5- 45.o 32 0.0- 22.5 33 165.0-180.0 24 150.0-165.0 35 125.o-150.0 36120.0-125.0 37 105.0-120.0 38 20.0-105.0 32 75.0- 20.0 4o 60.0- 75.0 41 45.o- 6o.o 42 30.0- 45.o 43 15.0- 30.0 4 o 0.- 15.0 45 165.0-180.0 46 150.0-165.0 4,7 135.0-150.0 48 120.0-135.0 h9 105.0-120.0 50 90.0-105.0 51 75.0- 20.0 52 60oo- 75.0 53 45.0- 6u.o 54 30.0- 45.o 55 15.0- 30.0 s6 0.0- 15.0 1.5272 1.4n46 3.1010 1.5109 1.5593 3.1186 1.65"/6 1. 46sa 3.4646 1.4123 i.5146 3.0661 1.5i56 1. 5341 1.41s4 1.280 1.2123 1.1865+/-.o612 1.2424 1.34o 1.6122 1. 2010 3. 0210 1.1742 1.l1480 i.16a4 3.o6Oa 1.3306 1. 4372.7769.8652*9684'1.0273 .8855 ,.0417 1.1872 1.0820 1. 0701 1.3462.6655.6646 23536.7167.68L3 1.0000.7163.7262.94 21 1.0216.0823.9607.2198.2817.2152.2924.21481 .3296*.o250 .3992.2601.2070.3219.4087.2826 2.0526 2.6779 3.5226 2.0055 2.6235 3. 844 3.8762 2.3842 3.2766 1.9261 2.7796 h4.5250 1.6217 2.4083 3.5728 1.7220 2.3935 3.1727 1.9145 2.1613 3.0881 1.8528 2.3944 14.3851 1.8838 3.5823 5.7419 2.2123 3. 1433 5.0682 1.7211 2.o594 3.2251 1. 5942 2.0450 3.2534 1.6o49 2.3011 3.2273 2.1266 2.6748 4.2915 i.8646 2.0781 6.0579 2.136z 3.4489 8.4756 1.4384 1.9701 3.2361 1.2873 2.0322 2.8840 1.3293 2.0440 3.69462 1.4140 2.6974 2.5142 1.6343 1.9399 14.13873.o028 6.4329 1.80o65 2. 9566 7.8155 1.9852 3.7774 10.4674 1.lo6o 1.711,2 2.8974.2813 1.6834 2.0509 1.2082 1.5555 2.6631 1.3433 2.0747 3.6074 1.2522 2.2092 4.8249 1.3606 3.2457 6.2325 1.6630 4.4o~o 9.4597 2.0640 5.3721 13.0549.8175 1.1417 2.84+63.61722 1.1812 2.964o0.7213 1.2638 2.9775.8123 1.3c06 2.4159.9275 1.6c1O 3.2351.9591 1.2211 2.86oo 1.0928 1.5087 3.8074 1.1768 2.6475 5.6336 1.4222 2.o000 6.51os 1.7211 3.7529 8.6517 1.7245 4.2409 13.8918 1.5542 4.3207 13.4253.2168 .5323 1.8793.2286 .44u8 1.8059...807 .4237 1. 5896.2867 -5597 1.6248.2913 .5769 1.6453.5792 .7125 1.960o.2877 .7725 2.7212.4187 .9190 3.2800* 5414 1.37146 4.7145.7733 1.87143 7.28t17.8232 1.8746 8.8884.8559 2.4550 10.2815 2. 4796 2.4372 11n57 2. 6686 3.1020 2.519nS 3.0744 2.*4760 2. 5078 3.0791 13o *3.0076 o.o14o 3.*0019 1.1199 1.0222 1.0663 3.020 1.156o 1.14h27.89763.9780 1.12491.0516 1.U104 1.1921.9593.8051.2350 i.1906 3.0483 1.0621 1. 1113 1.1o00.8232.8012.8127 .e8453 3E.0220 .9119 1.1386.5564.6028.6452.6695 *6e22 t.0153 .9645.89760.9722*.3779.5067.4875.4991.5162.4958 .64o6 3.0111 .5i54.14760.8400 ,7395.7751.114o6.1467.1355.885;1504*.1780 .2223 3E.0006 .2002.2769.2854.30141 1.4037 2.0759 2.6820 1.8636 1.5665 2. 5852 2.464o 3.0953 1.3142 2.1220 2.5839 1.s6e6 i.5184 2.5446 3.5048 3.0o73 1.2309 1. 5802 1.9589 1.1774 1.7872 2.2698 1.3510 i.65oo 2.5141 1.9900 1.2809 2.1326 3. 5245 3.0443 1.8467 2.0375 4.a1on 1.6913 3.2092 4.8527 1.1079 1.5055 2.0353 1.1654 1.64141 2.2273 1.2838 1.9343 2.7315 2.12o54 1.2303 3.1302 2.30:49 3.0597 1.7646 2.7042 5.9284 1.6722 3. 2511 8.8457.9517 1.1310 1.89980.9551 1.1885 2.1297 1.0566 1. 5185 1.8741 1.0565 1.5644 2.5977 2.1006 1.4396 2.1087 3.4911 +/-.0772 1.3639 2.5177 5.7897 1.7201 3.2916 8. 1409 2.0288 4.ooa5 11.8762.7698 .8322 1.7745.9374 1.0551 1.7562.8214 1.1621 1.8226.8585 1.2879 2.6598 2.3397.9899 2.0014o 3.1054 3.0748 1.2590 2.7597 5.7641 i.6526 3.7575 2.8131 1.7716 5.5776 15.8301.4764 .7595 1.3313.452o .6842 1.448.5O26 .8462 1.7265.4678 .8450 1.6787.6129 .9326 2.0847.7639 1.C1637 2.360 2.3950.8901 1.62214 3.0763 3.0373.8809 1.7982 4.1589 1.0895 2.6715 6.7oo2 1.4074 3.65cc 11.5581 1.4113 4.9993 17.6072 1.7127 5.7382 22.1043.1434 .2227 .0085.1573 .2224 .9206.1418 .2211 .9978.2255 .2501 .2187 .4344 .9515.2504 .444a 1.41s;6 1.2989.3765 .62o5 1.8997 ÷.c66c.3052 .5g6g 2.8325.6io5 1.2954 4.7341*.7457 1.7216 8.8637.8229 2.4142 15.1331.99714 3.5438 19.4606 Cii N)C9 0-'I-a O A rn C-)-x 2.533 1.2150 Ooa aver Li TOtal Done Albedas 50.1404O -55.027& 73.3776 125.4608 272.8526 123.3752 5.6553 6.17ho 8.2329 14.0767 30.6140 13.8427 35.5022 140.5180 58.0037 100.47Gb 272.3117 110.5922 3.9833 4.54141 6.5080 12.2829 30. 5533 12.4ca14 S$yiametrieal nouman,, 00 [1 Valors aveoraed N.--N
'C>/. ..., 4<'I\ti DADI RAy 0031 62.91OS 0nmergnng Emerging Iron Irinnperont...ro polar Direction 1.00 HeV 2.50 NoV Angle incident at Point*
- inoident at Point *£t '1e £ 40 666 8 Source O=* /4° 66 85° Source1. 93.0-180.0
.7068 .3215 1.0108 1. 5835 2.h330 1.1889 .h166 .0299 .6992 3.202 1.61409 1.0061 0.0--15.4 2 0.0-- 90.0 +/-.0521 .7829 1.1293 L .9932 2.9908 j..1036 9. 0373 *,927 .7020 1.2171 1.9402 +/-. 056i 13 0.-9. .6795 .BLC13 .9391 1.h.712 2.ofi6i 1.6492 .11467 .46fi1 .6012 .7s16 1,11197 .9571.154219 4 O.- 90.0 9.0138 .84.10 1.1066 1.8599 3.35596 9.0291l ,4853 .9030 2.0295 9.,01.99 5 150.0-190.0 .2231 1. 1012 1.1913 .5163 .4657 .9239 1.2795 6 120.0-150.0
.6753 .7412 1.2472 1.9255 ".4607 .5012 .e6oj 1.1996 So 7 90012. .45920 .7030 .8511. 1.J4652 2.0551 1.5739 .3929 .3932 .541.3 .9120 1.5599 1.0292 20.9-34.9 9 6o.o- 90.0 +/-.0192 .0340o 1.0536 1.634o 2.7398 0334+ k. 0255 .4541 .6140 1.2315 1.8746 *.o5s1 9 30.0- 60.0 .90C12 1.1928 2. 3226 .5120 .7306 1.361 9 2.5990 15 1.0- 20.0 .7295 1.1.123 2.4596 4.t,117 .1.667 .7359 1. 5291 2.7762 11 15>0.0-190.0
,70127 .7197 .9706 1.6332 .3011 .1.86 .616g .8976 12 120.0-150.1 .736i5 1.2090 3.7195 .3232 .4927 .7243 1 .046i913 90.0-120.0
.1'-3 *73h9 ,9216 1,5220 2.0551 1.73144 .3783 .3799 .56149 1.0120 0.1.3354 1.0473 34.9-1h.0.
14 6o.o- 90.0 9.:, 33 .732u .9765 1.7212 2.7223 ,. 0598 :. 0129 .4522 .6211 1.2931 1.91935 9.0339 15 30.0- 60.0, .7£913 1.30.77 251,9 42h .1,i381 .3592 .7592 1. 5796 3.39829 i6 1.0- 30.0 .9671 1.3197 3.0801 7.1331. .5465 .9069 1.9161 17 157.5-190.0
.2.575 .6253 .8319 1.3291. .3510 .3519 .514s .9561 19
.5391 .7045 .938. 0. 5729 .3630 .31.53 .5650 1.1159 19. 112.5-135.0
.6236 .9l592 1.1I091 1.1254 .2712 .42a7 .5739 9 s 20 90.0-112.5
.5693 .6115 .7619 1.2430 2.o0490 1.846s ,4i1s .4932 .9275 1.6e77 n.15s5 21 67.5- 90.0 .7290 .2835 1. 5210 3.0986 9:.0119 .3902 .5211 .9427 1.9904 :. 0633 22 45.c- 67.5 .7202 1.0049 1.9769 4.1305 .0294 .7229 1.1924 2.9697 23 22.5- 45.o .70.'6 1.5370 2.7752 7.5295 .3665 .7042 "1.7239 5.1596 22. 0.0- 22.5 .9991 1.5127 3.1I9196 11.2643 .1.662 .7991 2.2427 9. 3975 25 157.1-192.0
.4329 .4976 .6702 1. 2226 .2205 .2429 .4896 .9332 26 135.0-157.5
.4562 .44s6 .7306 1. 2020 .2079 .2395 .621.9 .7977 27 112.5-1355.0 .6649 1. 5377 .2521 .3533 ,5972 .9854 Be 28 90.0-112.5
.5099 .4785 .7717 2.3434h 1.9392 .3003 .2203 .36o13 .632l 1.1.64*7 1.3119 29 67.5- 90.0 9.0129l .5996 .92 1 o0 2.9999 +/-.0149 .2592 .0983 .9969 1.93441 30 15.0~- 67.5 .7318 .9342 2.0O5J1 5.2210 .3115 .6266 0.3091 3. 9095 351 22.5- 42.0 .7313 1.2399 3.2926 9.5c3.5 .4038 .9537 2.2919 7.2019 32 0.0- 22.5 .9359 1.5394 4.5327 15.5759 .459f9 .9014 2.7a37 12.36i85 33 365.0-190.0
.3271 .2759 .4746 .9029 .1795 .1913 .2919 .6024 34 150.0-165.0
.346g .3556 *I,03 1.0597 .1784 .1701 .2979 ,.5737 355 135.0-150.0
.3061 .5030 .2.044 1.13985 .2302 .1926 .3471 .9797 36 120.0-135.0
.3509 .3421 .6s51 1.2393 .2099 .1407 .3866 ,0669 37 105.0-120.0
.3281 .4567 .6959 1.0678 .1956 .2265 .1.29 .9012 97 39 90.0-105.0
.3771. ,5391 .5452 .as94 2.0177 2.0131 .2042 .2399 .3809 .4197 1.1801 1.0324 64.6-77.6 39 75.0- 90.0 9.o009 .3796 .716s 1.3474 2.5954 ,.0059 .1962 .2513 .6906 1. 9235 4o 6oo- 75.0 .4729 .7567 1.44598 3.6365 .2379 .4212 .7620 2,.3799*l 1.O.- 6o.o .4970 .97'.6 2.2936 5.76741 .3961 .4787 1.41oo 42 30.0- 4S.o .5947 1.2299 2.9631 00.429, .4145 .6158 1.92509 9.1796 1.3 15.0- 350.0 .5491 1.0633 4.o3905 16..6909 .3302 .6207 2.7519 14.84 59 41 0.0- 15.0 .6286 1.3490 5.0520 24.5590 .4021 .654o 3.2013 24.1125 45 16s,0-oao.o
.0897 .0799 .1350 .5799 .0932 .0168 .0721. .3263 46 150.0-165.0
.1535 .1593 .1521 .5179 .oz64 .0726 .0547 .5720 47 135.0-150.0
.1279 .0177 .1534 .7210 .o029 .0720 .0759 .4237 49 120.0-135.0
.1232 .15235 .2059 .7719 .0566 .1059 .1279 .3092 49 105.0-120.0
.1107 .,s64 .2945 .8906 ..0397 .0486 .1990 .6100 8e 50 90.0-105.0
.1260 .1196 .1920 *3,30 1.0111. 1.3992 .0715 .0692 .1994& .6825 1.1729 77/.6-90.0 51 75.0- 90.0 9.0051 .2229 .2686 .3947 1.3009 9.0319 .0619 .1191 .2047 1.0654 +/-.o29 52 6oo- 75.0 .1926 .2073 .5684 2.7561 .0621 .2035 .35578 1.7955 53 45.0- 6o.o .2087 .43577 .2239 4.5211 .0995 .14o4, .6so6 3.0012 54 30.0- 4s.o .21.84 .4651 1.5180 g.1961 .1330 .2298 1.0919 6.si46 55 15.0- 30.0 .2790 .6023 2.6834 15.44a9 -.3202 .4299 1.7200 16.35709 56 0.0- 15.0 .3681 .9399 2.3991 22. 271.0 .i34o .40a1. 2.5727 30.3439 Sen over .1 25.561 29.2840 43.2632 89.3162 97.2193 14.8134 16.5i.45 24.9426 56.6i220 209.2356 67.3876 Total Dose Albedoc 2.849 3.2957 0.9541I 29.0227 10.2079 1.6621 1.89563 2.7996 6.3530 23.4974 7.5609* Sylnhetrieol souroros co 0 volues ovoroged 0 0 Ici, o 0 0 H7 Dlm Hm oo Cc 0.901A RAY ROSE ALIOROS (in pornenti EbargIng Ebarging Iron toad Polar Rlronrion 6.IZ NoV 0.20 NoR Anglo incident:
at * *incldent at Point St 0 io , 22" 44" 660 88o on " 2 66" *ot 8z 1 20.0-180.0
.4936 .5508 .538l5 .8R40 .R898 .0756 .078R .0R28 .1386 .5045 *i4842 0.2- 80.0 +/-.0173 .4627 .6624 .8116 1,6362 -+/-.0045 6.00R2 .1124 .1302 .2046 .3079 a..0010 9.- 90.3-180...
.4384 .4o72 .5387 .R101 1.2484 .9562 .0720 .oa64 .0984 .2289 .4603 .I6sg 15.4-'21.8 4 0.0- 80.u jE. oo4 .5322 .4782 1.0008 1. 5276 +/-.0820 +/-.0124 .0344 .1796 .2349 .55R8 o.0780 5 150.0-180.0
.4541 .5808 .764s 1.2228 .0882 .0922 .1145 .2531 6 120.0-150.0O
.3004 .6067 .8988 1.2146 .0R42 .0471 .1447 .3227 Ga 7 RCO.-120.i
.4150 .4263 .5307 .8518 1.2365 .R3 6 2 .0695 .062 .1292 .08R3 .2688 .2125 21.8-24.8 8 6o.0- 90o.0 i.0215 .4563 .6578 .8531 1.5707 6.01.57 +/-,0093 .0760 .1026 .1228 .3165 +/-.0216 9 3.0- 60.o .5042 .5685 .8703 1.866 .021. .1281 .524 19 0.0- 20.0 .4849 .6665 .8872 2.0287 .0842 .g6 .2511 .4994 11 150.0-180.0
.4041 .4o45 .6355 .o748 .1263 .o894 .2527 12 120.0-150.0
.4874 .4910 .7772 i.24i0 .0275 .0800 .i641 *2922,13 20.0-120.0
.3783 .5489 .5432 .7681 i.4oo8 .8058 .0673 .0569 .1120 .2214 .8108 24.a-44.4 i4 60.0- 90.0 .4ihe .4762 .8858 1.7680 *.o284 +/-.0078 .0810 .1056 .2903 .3828 6.8198 15 30.0- 6o.o .409 .625o 1.0847 2.2282 .0607 .0665 .1714 .6143 i6 0.0- 3o.0 ,424 .5326 2.8767 .0830 .0798 .2188 .7137 17 157.5-180.0
.2072 .4177 .5327 i.o5i6 .0834 .1138 .0710 .4268 18
.2628 .4537 .5784 1.2114 .0427 .0586 .1702 .1298 19 113.5-125.0
.3238 .6461 1,300 .0252 .0220 .0951 ,4808 On 20 90.0-112.5
.2340 .3217 .3854 .8849 1.4514 .8722 .o5o4 .0279 .0822 .1683 .3157 .2000 44.4-55.2 21 67.5- 80.0 6t.0101 .3964 .4871 .8621 1.5975 +/-.ulOO .0726 .1989 .0208 6.0288 22 4S.o- 67.5 .2471 .5771 .8456 2.o967 .0757 .1782 .2228 .8026 23 28.5- 45.o .4023 .5088 1.0559 2.0OS5u .0858 .1787 .8544 24 0.0- 22.5 .4100 .6562 1.2236 4.2741 .1317 .1511 .s526 1.0903 25 157.5-180.0
.3302 .3382 .5048 3.2236 .0492 .0729 .1017 .4947 26 135.0-157.5
.2906 .2325 .5580 1.0667 .0692 .0420 .o544 .3823 27 112.5-125.0
.2922 .2927 .4771 1. 1697 .0210 .0o65 .0509 .2821 Rn 28 80.0-112.5
.2588 .2102 .3183 .5188 L1.60o .8552 .0714 .o46 .0615 .0445 ,261s .2016 55.2-64.6 28 6y.5- 90.0 +/-.01014 .3177 .2680 .7308 1.5828 6.0432 +/-.o006o .0290 .0828 .1443 .6385 6.08260 30 45,o- 67.5 .2565 .064 .7834 1.8768 .1088 .1213 .2565 .5520 31 32.5- 45.o .2538 .5515 1.0420 3.8179 .oai4 .0634 .2387 .7621 33 0.0- 32.5 ,3367 .5198 1.4457 6.18s1 .0223 .2565 ,5167 1.2283 33 165.0-180.0
.1633 .1840 .3539 .8580 .0583 .0401 .0872 .1882 34 150.0-165.0
.1655 .3065 .2049 .97'i3 .0558 .0053 .1021 .2554 35 135.0-150.0
.16a6 .1786 .3828 .8720 .0127 .o411 .2921 26 120.0-135.0
.2037 .9122 .2120 .8916 .0782 .0421 .0182 .1761 37 105.0-120.0
.2034 .1359 .3249 1.0213 .0597 .0424 .0168 .2801 By 39 30.0-105,0
.1802 .1556 .1793 .3558 1.1933 .8190 .0489 .0630 .06oi .1080 .8825 .2121 64,6-77.6 39 75.0- 80.0 j,8833 ,1647 .1747 .5203 1.3515 j.0508 +/-,o079 .0565 .0508 .8407 .2108 +/-.0270 48 60.0- 75.0 .1831 .2644 .6280 1.7604 .o414 .0849 .1697 .4ih5 41 6'5.0- Eo.o .2031 .3831 .7298 .osoo .1971 .1713 .62a,6 42 20.0- 4s.o .2718 .4174 1.0074 4.3527 .0932 ,114o .3888 1.0058 41 15.0- 30.0 .3308 .3088 1.2687 8.1121 .0681 ,O8O6 .3132 1,8711 44 0.0- 15.0 .2486 ,4562 1.6175 15.4125 .08CC .102 .4205 j.,8a4 45 165.0-880.0
.0856 .1395 .5673 .0274 .0291. .0253 .2227 46 15o.0-165.0
.2628 .0797 .1151 .5638 .0044 .0196 .0205 .2167 47 135.0-150.0 .o742 .0781 ,1045 .5893 .o476 .0258 .0020 .0208 4a 120.0-125.0
.0872 .1830 .i06a ,4479 .0281 .o156 .1270 19 105.0-120.0
.0480 .0916 .3325 .6804 .0044 .0517 .1263 8o 50 90.0-105.0
.0622 .0972 .o774 .1406 .6248 .7864 .ois4 .0262 .0247 .0059 .2075 .1053 77.6-80.0 51 75.0- 80.0 .8719 .iiii .16o5 .7523 6.0810 0041 .oo16 .0282 .0703 ,3533 +/-.12 52 6oo- 75.0 .0606 .0962 .2680 1.0385 .0890 .0092 .0085 .2217 52 45.0- 6o.o .o445 .t5n4 .2647 1.6135 .0491 .0228 .o5s8 .5791 54 30.0- 45,o .0828 .,854 .5784 3.3587 .0299 .1120 .1576 1.0648 55 15.0- 30.8 .0943 .2303 .8548 2. 2847 .0131 .0252 .2877 1.0107 56 0.0- 15.0 .0828 .2245 1.2388 28. 3443 ,0435 .0419 ,2911 1.2272 Ron "one 11 14.3508 15.7692 20.7162 28.8146 48.1472 2.8820 2.2521 4.2871 8.8429 28.8204 10.1863 Total Race Albedno 0.6102 1.7693 2.3244 4.3550 36.6121 5.5143 .3245 .2650 .4810 .9261 3.2248 1.1440*9111/ca sources, an (1 values averaged CD en z C-)cn 0* CD)68O9 oo K.,?iN
- C>0810(6MA XJ D09E 61.39903 ( in percentl (Cl)do Emoerging Enoei~ng 1Load 1 end Polar Direction 0.662 MoOo Suc 1.00 14V ouc oo~1c Incident at Point Inrldcnt at on 7L m 660 440ce 2 h 64o 9. Pointce Oi o.o-15.4 21.8-34.8 55. 2-64 .6 64.6-77.6 Q8 77. 6-9o.c 1 80.0-180.0 2 0.0- 90.0 590.0-080.0 5 150.0-180.0 6
7 2.- 30.0 12 43 90.0-120.3
- 4 6c.0- n:.: 15 20.0- 6:.o 16 1.0- 3*c.17 157.5-180.0 18 125.1-157.5 10 112.5-135.0 20 3.:3-112.5 21 47.5- 23 22.5- 4s.o 24 ,.1- 22.5 25 157.5-180.0 26 135.-0-57.5 27 112.5-135.0 29 0.1-112.5 20 67.5- 90.0, 30 5.0- 67.5 31 22.5- 45.0 32 I.E.- 22.5 33 16s.o-teo.O 3415.o-465.o 55 135.0-150.0 56 121.0-135.0 37 105.0-120O.0 38 20.0-105.0 33 75.0- -20.0 4I 45.o- 6o.o 4a so.:- 45-o 43 15.0- 36.0 44 0.0- 15.0 45 165.o-18o.o 46 tLc.o-i65.o 47 435.0-15o.0 4q 120.0-115.0 49 105.0-12O.0 5: 90.3-105.0 51 75.0- 80.3 53 60.0- 75.0 52 45.O- 6O.o 54 30.2- 45.0 55 15.0- 30.0 5O .0.- 15.2.1020* .0050.0503 4.0257.0727 i,.oo66.0831 i,.0 1 0 9.o~s1.0072.0035*.0888 .1I038.0642 .1559.o663 .1216.1185 .1975.28959 .1002.0583 .0721.0835 .1L129.0851 .1643.1123 .2046.0802 .166s.0692.01,74 .o568.o5o4 .o9y4.08g04 .1t525.1877 .1507.0991 .3155.256 .0557.0159 .1287.o586 .0734.09s6 .0778.2837 .2032.1375 .3120.1094 .2465.1115 .3123.0527 .046i.0702 .0684.0431 .0o66.0326 .111.14 1988.1059 .2098.0825 .3270.1495 .44L39.0597 .0037.o386 .0171.o~o4 .0326.o5o2.0o02 .04itt.0265 .0478.0490 .1236.2073 .1283.1954 .3187 ,.1OO6 .3576.1244, .3761.1817 .5239.0903 .0187.0081 .0208.0192 .0156.oi6o .0134.0193 .0100.1121 .0119 .0603.1301 .o561* .'53 .1t602.0999 .0505 .3833.274;9 .8858.2512 .8246.4c11 1. 5805.2279 .6678.1734 .8163.2188 .88499.2880 4.4385 ,63oo 2.0108.7352 2.4173.1396 .6446.1611 .7340.2933 .089.41.35o0.7060 2.8263.9285 4,. :52.0833 .6041.0818 .7088.14;00 .6571.3258 .8955.2843 1.8167.5009 2.8@053.9168 4. 590o 1.3753 5.8686.1033 .4627.O5O6 .5525.0729 *.7983.2469 .81251. 3507.5744 o.s626 1.3758 5.0948 1.7795 8.2177.0576 .374,3.0992 .3596*.0542 ,4408.1255 .5411.0820 .7414.1855 .885.3177 1. 5105*.3935 2.0616.6866 3. 8190 1.4;203 6.6765 1.7616 8.3775 2. 5831 19.3787.oo~o .1531.0318 .1374.0093 .1855.0187 .2729.0118 .2020.0476 .4061.11 t28 .1607 1.2327.3902 2. 5494.6765 4. 5817 1.1625 8.4809 1,4270 .4361 ,. .5578-.0620 ,4099 4.0818.6103 i,.0 2 1 7 e.oo91 .77.067/4 .0483 4=. 0133 .0789.o66s.0447 .0463.o566.0580.o569.0479.o691 .o41a i,.o05I .0710.1396.1072.0537 .o476.0829.1090.0379.0599 .0280 i,.0055 .1158.1254.0926.0880.0376.0281.0233.o046.o691.0497 .0631 i,.0 0 3 1 .0571.oao ,0869.126s.1826.2068.0108.o26.0145.0220.o216 .0318 i,.0024 .o206.0404.oh6o.ol~e7.065 .1716 .8347 .4298.04 .426a 1.6013 4.o081.3750 .2394 .8420 .2204.1687 .3384 1.8244 i,.005l.0780 .1813 .6s26.0724 .1553 .66i5.0853 .2493 .8405 .46411.1462 .3598 1.5648 i,.0206.1885 .5871 92.657 ,15e4 .7888 3.0031.0575 .o865 .5672.o484 .1424 .8015.9326 .2046 1.s6so .5850.1225 .4481 1.5664 i.0348.3380 .6457 2.9778.2781 1.0228 4.9603.0467 .ops4 .4822.1091 .0805 .59145.0835 .16oo .8068.1021 .3571 .8745 .6874.2285 .6734 2.8451.3007 1.1616 h.n'z'.3129 1.5128 6.8011.0231 ,1037 .3873.0421 .061o ".4064.0585 .0730 .7321.0743 .9537 .8078 .8167.1202 .2195 1.3804 i,.0439.2216 .6844 2.9179.3523 1.2773 6.30o64.4150 2.2465 10.1802*.0187 .o414 .2324.oD26 .0544 .3415.0147 .osdo .3261.0995 .o655 .4713.0319 .1424 .7D08.0o709 .1689 1.0061 .9725.1580 .2529 1.4905 4.0310.0854 .4559 2.2054.3857 .8858 3.8378.3915 4.4840 6.8755.4270 1.8063 11.6528.5258 9.6387 17.0801.0076 .0068 .1284.0077 .0168 .1595.0027 .oio6 .1521.0183 .0118 .1852.o066 .0429 .2146.0216 .0802 .4o61 .7135.0503 .1326 .8128 i,.0417.0508 .1620 1.5821.1187 .4039 2.8039.199s6 .8404 5.5484.3873 1.7274 10.4706.2717 3.0488 16.6491 L n 0 o Z (0.8406.8644.0498024;9 Soc over 5 ] 3.3924 4.2047 0,4319 26.2228 132. 7913 36. 148! 2.6715 3.6340 7.8903 29.0588 153.1524 40.0798 local Doso Albedno J .3806 .4718 .9460 2.h423 44.8981 4.0558 J .9997 .4O80 .9852 3.2604 47.1837 4.4868 m m H)C).--lyoc~orlcil soouceos no 0 nalnes avocaged 08164 902DSE AumniS Emerging Emerglng Leiaprcnt Lead Polar Direction 2.50 HeV 6.13 9eV Ang1e incident at Poit a inridnet4h at88 Point*Si Ok C 0 e .2 2 440 6@ 88 Soarcer 0 ' ' Souceo Ri 1 90.0-150.O
.2544 .2195 .3872 .469o 1.2064 .6274 .425s .4150 .5763 .6986 1. 5990 .7166 o.o-15.4 2 0.0- 9o.o 8.10o44 .264i .3917 .7538 9.0325 +/-:.o666 8.0281 .3591 .5015 .7i65 1.9155 39 90.0-190.0
.2382 .2589 .464i .3469 1.2760 .5708 .3991 .2669 .4782 .6774 1.2943 .si96 15.4-21.9 4 0.0- so.o 9.oso4 .3070 .2657 .6o67 1.9117 t. 1325 ÷.016o .3745 .4L963 .6269 1. 5230 8.O101 2 150.0-180.0O
.2084I .2797 .44l11 1.2004 .3320 .4J724 .7205 1.5693 6 190.0-150.0
.2769 .2632 .5251 1.3404 .2994I *4 1 23 .6924 1.3625 So3 7 90.o-120.0
.2087 .1904 .2509 .4o64 1.3106 .7339 .o642 .2661 .466i .6991 1.2a65 .7441 8 60.0- 90.0 :. 0290 .2464 .2810 .6550 1.5961 +/-.0324 8.0235 .4383 .4522 .6686 1.4941 9 30.0- 6o.0 .3179 .4612 .7391 9.6510 .4746 .4987 .7563 1.928 10 0.0- 30.0 .2997 .3450 .9707 2.9S079 .4o25 .5139 .9252 2.0149 11 150.0-190.0
.2056 .3259 .3807 1.1927 .260 .4115 ,6328 1.3301 12 190.0-150.2
.2525 .2o2 .3213 1.0919 .2956 .4150 .5976 1.4035 94 13 90.0-130.0
.1959 .161o .1924 .5929 1.0946 .yio6 .3171 .3392 .5245 .6397 i.5260 .7796 34.8-44.4 14 60.0- 94.0 8:.0093 .2040 .3715 .5242 i.6536 9:. 03 8..0209 .44o4 .4204 .6600 1.5596 +/-.c499 15 90.0- 6o.o .2071 .2ya3 .7899 2.6959 .3678 .520 .544.72 16 0.0- 90.0 -.1793 .3801 .7987 4.0173 .3919 445 912 2.5121 17
.1335 .1959 .3596 1.1225 .2739 .3977 .4913 1.46o9 19 035.0-157.5
.1647 .1837 .36ii 1.0067 .3554 .2787 .6271 1.2990 19 112.5-135.0
.2109 .2201 .3099 1.1815 .2477 .3554 .5974 1.4o45 8 o 20 90.0-112.5
.1905 .1497 .200 .3895 1.4509 .7269 .2750 .2999 .3420 .5338 1.4220 .7416 44.4-55.2 21 67.5- 90.0 9:.o1g3 .t467 .2387 .5179 .0o147 .2965 .2546 .5192 1.6678 22 45.0- 67.5 .2701 .3717 .6260 .2964 .4089 .6911 1.8593 23 22.5- 45.o .3127 .4502 1.1871 4.5479 .2952 .3779 .7999 3.3353 24 0.0- 22.5 .1967 .5221 1.5019 6.ol9e .3228 .4649 .s6698 .7980 25 157.5-180.0
.1710 .1287 .3922 .8188 .2530 .3076 .5229 1.3464 26 135.0-157.5
.1345 .1550 .3990 .9670 .2162 .2885 .5249 1.5562 27 112.5-035.0
.1262 .1422 .3632 .2198 .2548 .2635 .4591 1.4296 5 o 28 90.0-112.5
.1263 .0959 .1548 .466 .8702 .2214 .1920 .1957 .4567 1. 5464 .7354 55.2-64.6 29 6y.5- .0094 .1109 .3158 .4s96 1.7775 -. 0537 +/-..0050 .2381 .2778 .4849 1.7109 8,0499 30 45.0- 67.5 .1761 .3373 .7465 2.4760 .2063 .2789 .5513 1.7226 31 22.5- 45.o .2175 .3531 1.0703 5.2397 .3077 .3447 .7439 3.2467 32 0.0- 22.5 .1803 .4648 i.5as4 9.6763 .2952 .3514 1.0045 4.5826 33 165.0-090.0
.06a4 .1624 .2297 .7074 .1251 .2577 .2381 34 150.0-165.0
.0925 .1822 .1915 .8033 .1370 .1947 .20(5 1.2729 35 135.0-150.0
.0921 .0550 .2406 .8829 .1403 .1906 .3951 1. 1301 36 020.0-135.0
.0563 .1623 .1228 .7823 .1476 .1189 .2142 1.2322 37 105.0-120.0
.1359 .1146 .2055 .9465 .o666 .1424 .2711 1,.1137 87 38 90.0-105.0
.0101 .0456 .1187 .2139 1 .4137 .9504 .1588 .2145 .2328 .2879 1.0531 .6759 64.6-77.6 39 75.0- 90.0 8.0088 .0925 .1169 .3154 1. 5508 8.o444 ..0069 .1972 .26. .4502 1.3 595 9.0442 4o 6o.o- 75.0 .i64o .1427 .5406 2.2224 .1670 .2107 .4ao7 1.7667 41 45.o- 60.o .1413 .2298 .7559 .2212 .5m03 1.s9679 42 30.0- 45.o .1458 .3313 1. 1756 6.2233 .2004 .2621 .6134 2.8381 43 15.0- 30.0 .1855 l, 85-3 10.6379 .141a .2746 .80'20 5.5990 44 0.0- 15.0 -.1771 .4o55 2.4094 19.1133 .194o .3147 1.0637 8.1543 45 165.0-120.0
.0350 .o444 .0480 .0173 .1223 .0599 ..8J1 42987 46 150.0-165.0
.0277 .0122 .0444 .5241 .0547 .0358 .0893 .&047 47 135.0-15o0o
.0527 .0174 .0429 .4927 .o04,5 .0e,95 .15.5 .556n 48 120.0-135.0
.0550 .0560 .1220 .29o8 .i5s4 .0492 .1254 .04r39 4g 105.0-120.0
.0672 .0429 .0858! .382. .0603 .u571 .0,231 .(55o 88 50 90.0-105.0
.0368 .0219 .0540 .0731 .7936 .8499 .0537 .0456 .0712 .1692 .8299 .4956 77.6-90.0 51 75.0- 90.0 .0231 .0577 .1014 .729g4 4.0552 9.0033 .0724 .0489 .v966 .7435 ..i043 52 60.o- 75.0 .3271 .0937 .2483 1.24"( .0398 .1265 .1684 .3293 53 45.o- 60o. .0428 .1051 .3725 2.2666 .0717 .1153 .-I34 1.3455 54+ 30.0- 45.0 .1011 .3767 .5700 4. 9z~4 .o546 .0-967 .:800 2.1(1'0 55 15.0- 30.0 .1187 .3195 1.4032 11.9618 .0978 .15'30 .56o2 4.3849 56 0.0- 15.3 .0704 .3395 2.1458 23.5305 .08315 .1743 .9019 15.2143 Sam over (1 7.54O91 9.44 ( 13.2991 30.4009 141.. 1631. 45.9341 -.2323 13.0220 14.1('57 29.82Cc .17,4521 37.9971 Total Door Albedon .8493 .9701' 1.491,.- 3.7700 18.822.i 5.1540 1.3732 1.4411 1.871. 3. 3458 13..1791 4.26(0 t m ymeorinal
=onraco, 00o valaeo ovoroged.CD CO 0 o" 1:N'm 0"-s I--!0~0 rt- m V t.4 ~5 C Southern Nuclear Design Calculation Plant:,Farley Unit: 1 &2 Calculation Number: SM-SNC524602-001 Sheet: C2-1 ATTACHMENT C2 -VALIDATION OF SPIRAX SARCO ON-LINE STEAM TABLES Rather than interpolate from the ASME steam tables, an on-line set of steam tables was used to determine the specific volume of the reactor coolant at normal operating conditions.
Spirax Sarco, a global provider of products for the control and efficient use of steam, provides on-line steam tables at their company website, http://www.spiraxsarco.com/resources/steam-tables.asp.
Reactor Coolant c@ Normal Operating Conditions To verify that the Spirax Sarco steam tables provide accurate results, the specific volumes of subcooled water at 2200 and 2400 psia and 570 and 580 F (see sheets C2-2 & C2-3) are compared below to the corresponding ASME steam table values (excerpt attached; sheets C2-8 & C2-9).P psia 2200 2200 2400 2400 Psat psia 649.50 649.558 0.01% 662.16 662.233 0.01%T F 570 570 570 570 SV cu ft/Ibm 0.021998 0.0219888
-0.04% 0.021921 0.0219116
-0.04%T F 580 580 580 580 SV cu ft/Ibm 0.022358 0.0223481
-0.04% 0.022271 0.0222606
-0.05%* Delta =[(Spirax Sarco -ASME)/ASME]
X 100%The Spirax Sarco steam tables agree extremely well with the ASME steam tables.The linearly interpolated results from the ASME Steam Tables would likely be less accurate than using the on-line steam tables because specific volume is a non-linear function of pressure and temperature.
For P = 2250 psia and T = 557 F, the RCS coolant density = 721 kg/in 3 (sheet C2-3).RCS coolant density = 721 kg/m3 x [103 g/1 kg] x [1 m3/10 6 cc] = 0.72 glcc Saturated Steam @ Atmospheric Conditions (14.7 psia)The specific volume of saturated steam at atmospheric conditions is 26.804 cu ft/Ibm (sheet C2-6.Refuelinq Cavity & Spent Fuel Pool Water Density During Mode 5 The specific volume of water at 130 F and 14 to 15 psia is 0.016246 cu ft/Ibm (sheetC2-7).
Thus the Refueling Cavity and SFP water density at 130 F = 1/(0.016246 cu ft/Ibm) = 61.55 Ibm/cu ft Density = 61.55 Ibm/cu ft x [(0.016018463 g/cc)/(1 Ibm/cu ft)] = 0.99 g/cc = ,-,1.0 glcc SM-SNC0524602-001 ATTACHMENT 02 International site for Spirax Sarco SHEET C2-2 Produels & Servises Industries
£ ApplIsaIlons Tr TMl (800) 575-0394 Pax: (803) 714-2222 Feature Vialtume You are hers: Hon S. Teal p. tub SIlurated WbtrRP.egla Sub Saturated Water Region -Steam Table At anly pressure, water below its saturalon Mpertaure is said to be m a substate.For exanU~ls.
water at a premusg of I atophr and a teiurtr below 5 lbs saltmurd temper~atu of 100"C is sub saturated.
Water ates pusswe of 5 10 atmosphre has a satuation tmperature of 1610". mid so water bl~owtemeratur is ulo sub satuate.Learn more inllu steen n our tutoral -Set yotr gamrjmg ter Du--,tea sts ati~se Note: -You cannot use commas (.) as decimal points.Please 5 userio (.)Exaple: 1.02 not 1.02 Tmm.~~n, mspe omof Water 1v~2000 454777 2400 570.000 456379 0.0219116 J ttp://www~spiraxsarco~com/resources/stearn-tablcs/sub-saturated-water.asp SM-SNC524602-001 ATTACHMENT C2 SHEET C2-3 Intemnational site for Spirax Sarco Fax: (803) 714-2222 Produot & Swvoa Inutmilds, & App~lsalons FealtUretaret pboII You ar bets !iomo IP 8auia I) aa Sub Saturatad watrf" egksn Sub Saturated Water Region -Steam Table At anty presure. water belwM sauaionteknysr tres sai lob Im a su ts For example, waler at a presaure of i atmosphere and a tMsperature below I.sturae d tmlperature o 100"C .s sub sauatd Watr- at a pressure of 10 atmoaphaems has a saturaton teniperetum of' 1W0C, and so watar below ths tmerte I. also sub saurated.Learn nmor albout stian hi our tutorial -s am?.Set your for Utese steati tables.Note: -You cannot use commas (,) as decimal points.Please use periods (.)Example: 1,02 not 1,02 Lw~L~Jasm~ rsueTemP~ratureljensltv of Watelpel~flo Volumle f Water (vj.,0 5 o.000 44.7464 0.0 348 /20.00 580oo 00 449225 0022260 ttp://www.spiraxsarco.com/lrcsources/steam-tables/sub-saturatcd-water.asp SM-SNC52460; 2-001 ATTACHMENT C2 Feaure Trawi International site for Spirax Sarco About Ue Prdt A betvies, indqaatdes A Training Resoures Yo~uare hare: Iw ta ti T .e Sub Saturatd WM rReqen Sub Saturated Water Region -Steam Table Al any pressure, water below it saturaton tenysag is said in be in a sub3 satraed aWle tlue saturated tenpsiatur a 100"C is sub saurated.
WAter at a prses ot 10 almehae has a saturation temperature of 180°C, andl so wate below this temperature a alo si saturated.
Learn more abowut stewu In our tutorial -kat is Stem?_____
Se your" me mm Umk Note: -You cannot use commas (,) as decimal points.Please use periods (.)Example: 1.02 not 1.02 Oupu S wnoe Vau 2SHEET C2-4 L~*ZL~1J1*D ValOUr Pressure Saturation Temperature Spatic Enthapyo tr(h 1)specrl v, ka~na oI war' (v)Speutic E.ntrop of V~ter (s*spelfrc Heat of wter c)Speed of sownd OnauacVls4ofy VibWe 188 2352[0 222I55 192.71 B.745,4E-..5 bar gauge* K Pa, wIN[]httpll/wwwspiraxsarco.co/rnlrsourccs/steam-tables/sub-saturated-water.asp I