ML082900488
ML082900488 | |
Person / Time | |
---|---|
Site: | MIT Nuclear Research Reactor |
Issue date: | 10/06/2008 |
From: | Bernard J Massachusetts Institute of Technology (MIT) |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
TAC MA6084 | |
Download: ML082900488 (12) | |
Text
MIT NUCLEAR REACTOR LABORATORY A NJ MitT NTTF)**PA RTA/IFNTTA_ I 'FNTTI_ R John A. Bernard Mail Stop: NW12-208a Phone: 617 253-4202 Director of Reactor Operations 138 Albany Street Fax: 61.7 253-7300 Principal Research Engineer Cambridge, MA 02139 Emai: Bernardj(dmit.edu October 6, 2008 U.S. Nuclear Regulatory Commission Attn: Document Control Room Washington, DC 20555 Re: Massachusetts Institute of Technology - Request for Additional Information License Renewal Request (TAC No. MA6084); License No. R-37; Docket No. 50-20
Dear Sir or Madam:
The Massachusetts Institute of Technology hereby provides the response for #13.2. This completes our response to the set of RAIs that we received in the NRC (S. Pierce) letter of 21 April 2008.
Please contact the undersigned with any questions.
Sincerely, f~ n Bernard, Ph.D , PE, CHP Director of Reactor Operations I declare under the penalty of perjury that the foregoing is true and correct.
Executed on d I ýA cc:
Date V - - Sign?6re w/enclosures Daniel Hughes, Project Manager Research and Test Reactors Branch A Division of Policy and Rulemaking Office of Nuclear Reactor Regulation w/enclosures Senior Project Manager Research and Test Reactors Branch A Division of Policy and Rulemaking Office of Nuclear Reactor Regulation w/enclosure Senior Reactor Inspector Research and Test Reactors Branch B Division of Policy and Rulemaking Office of Nuclear Reactor Regulation w/o enclosure Document Control Desk J/-)'ý ()
/ 7 LJ
13.2 Since our initial submission of relicensing documents and subsequent response to the Request for Additional Information, Argonne National Lab (ANL) has improved the PARET code. The most updated version of the code, PARET7.41 ,
is used for the step (or fast ramp) reactivity insertion study of the MITR. New features of this version are heat transfer enhancement factor to model the effect of fins, up to 3 radial zones in the fuel to model the fuel meat, cladding, and the oxide layer, and provision for short period scram. The analyses presented below simulate the reactivity transient under both natural convection and forced convection operation mode. The average and hot coolant channels are modeled.
The power peaking of the hot coolant channel corresponds to the 4 highest power fuel plates, as assumed in the Maximum Hypothetical Accident (MHA) (SAR section 13.2.1). An oxide layer thickness of 0.5-mil is assumed. Furthermore, the interval of the reactivity insertion is assumed to be 0.1 second3 . Note that this is a very conservative assumption because there are no credible accident scenarios at the MITR that could conceivably result in such a large reactivity insertion rate.
Reactor scram set points are overpower at 7.4 MW for forced convection and 100 kW for natural convection, and low period at 7 seconds. Table 1 below provides the analysis results. These results are obtained for our proposed Technical Specification limits on the maximum experiment reactivity worth of 1.8% AK/K (2.3 beta) for forced convection and 1.2% AK/K (1.5 beta) for natural convection operation. Cladding integrity is maintained below the softening point of 450 'C as long as the reactivity insertion is below these limits. The PARET input files for these two simulation cases are attached.
1 A. Olson, A Users' Guide to the PARET/ANL v7.4 Code (Draft), RERTR Program, ANL, October 3, 2008.
2 T. Newton, File memo (Oxide layer thickness), September 26, 2008.
3 NBSR Safety Analysis Report.
Table 1 Comparisons of peak fuel temperatures calculated for fast ramp reactivity insertion under forced convection and natural convection.
Reactivity Max. Power Hot channel Avg channel Operating Condition Insertion Peak Clad Peak Clad Ternerature Temperature Forced convection Initial power 6 MW $2.3 249.6 MW 359.0 0C 234.6 0 C Forced convection Initial power 5W $2.3 18.4 MW 74.4 °C 55.6 °C Natural convection Initial power 80 kW $1.5 30.6 MW 113.6 0 C 77.6 °C Natural convection Initial power 5 W $1.5 2.62 kW 45.0°C* 45.OOC*
- Inlet coolant temperature is 45.0°C. No change in coolant and fuel temperature is predicted during transient:
NUCLEAR REACTOR LABORATORY
<ýX UAN Xw> INTERDEPARTMENTAL MASSACHUSETTS INSTITUTE OFCENTER OF TECHNOLOGY I Thomas H. Newton, Jr., Ph.D. 138 Albany Street, Cambridge, MA 02139-4296 Activation Analysis Associate Director for Telefax No. (617)253-7300 Coolant Chemistry Engineering Telephone No. (617)253-4211 Nuclear Medicine Email: tnewton@rnit.edu Reactor Engineering September 26, 2008 From: Tom Newton To: Lin-wen Hu Re: Oxide Thickness The U-Mo Fuels Handbook [1], lists a series of plate oxide thickness measurements at eight different research reactors with pH varying from 5 to 7, temperatures of up to 70 TC, and heat fluxes of up to 250 W/cm 2 . All of these reactors show a maximum oxide layer thickness of less than 45 .tm at maximum burnup. The two reactors with similar heat fluxes, temperatures, and pHs as the MITR (Oak Ridge Research Reactor and Japan Materials Testing Reactor) show measured maximum oxide thicknesses of 20 pim. It should be noted that our average heat flux is considerably less than these two reactors and, since no element remains at the maximum heat flux for more than a few cycles, our oxide thickness should be less than 20 ptm.
The attached calculation made for the MITR using the Greiss Correlation [2] also shows a maximum oxide layer of 0.00064" under current MITR operating conditions.
This is also quite a conservative calculation since the MITR operating temperature is lower than that under which the correlation was derived. Thus, it would appear that our assumption of a 0.002" (51 plm) oxide layer thickness is overly conservative. A thickness of 0.0005" (13 jtm) is certainly more justifiable for an equilibrium core.
References
- 1. J. Rest, Y. Kim, G. Hofman, M. Meyer, and S. Hayes, "U-Mo Fuels Handbook, Version 1.0," RERTR Program, Argonne National Laboratory, June, 2006.
- 2. J. Greiss, H. Savage, and J. English, "Effect of Heat Flux in the Corrosion of Aluminum Water. Part IV. Tests Relative to the Advanced Test Reactor and Correlation with Previous Results." ORNL-3541, February, 1964.
0
- PARET 7.4 MITR HEU core reactivity limit calculations Sep08 2-channel model; fast reactivity (step) insertion over 0.10 sec; fin heat transfer factor=1.9; 2-channel model k-fuel=70.0; k-clad=186; k-oxide=2.08 clad and oxide are separate; 0.5 mil oxide forced convection at 1800 gpm; initial power at 5W overpower trip at 7.4 MW; period trip 7 sec, with 0.1 sec delay 111111111111222222222222333333333333444444444444555555555555666666666666 1001, -2 20 9 0 1 1 1002, 1 1 6 -1 0 99
1004, 3.81000-4 8.89000-4 5.86740-2 5.28830-2 0.5683 0.00794 1005, 0.00794 0.0075 8.00-5 9.80664 0.01367 1006, 2.00 0.8000 1.0 992.00 0.0 1007, 3.6000-5 0.0 0.0 0.0 1.0 0.001 1008, 0.0 0.0005 0.001 0.03 0.05 0.05 1009, 1.4 0.33 1111, 0.047156 1.00 RELAP 1112, 1 2 5 0 0 2.260000+5 25.000 4227.0 1113, 0.40 0.1 7.400-0 0.0 111111111111222222222222333333333333444444444444555555555555666666666666 account for fin FINF 1114, 1.92 0.062 0. 0. 1.9 0.70 I PERTP PTDLAY 1115, 7.0 0.1 2001, 0.0 0.0 70.0 0.0 0.0 2002, 0.0 1100.0 1.92600+6 0.0 0.0
!clad 2003, 0.0 0.00 186.0 0.0 0.0 2004, 0.0 1100.0 2.10165+6 0.0 0.0
!oxide 2005, 0.0 0.0 2.08 0.0 0.0 2006, 0.0 1100.0 2.10165+6 0.0 0.0 111111111111222222222222 333333333333444444444444555555555555666666666666 3001, 9.52500-5 5 1 0.967 ICLAD 3002, 2.54000-4 7 2 0.0 7 3003, 0.63500-5 9 3 0.0 4001, 2.8415-2 20 peak channels; assumed 1.45:1 peaking vs. avg.
peak channels represent the 4 hottest channels see MHA 5100, 1 0. 2.00660-3 0.01 0.55 0.65 void coef temp coef 5100, 0.9 0.9 0.9020 2.1070-2 5101, 0.0651 1.9193 0.3875 0.387.5 5102, 2.201 1.45 1.45 1.45 5103, 2.231 1.45 1.45 1.45 5104, 2.262 1.45 1.45 1.45 5105, 2.311 1.45 1.45 1.45 5106, 2.360 1.45 1.45 1.45 5107, 2.408 1.45 1.45 1.45 5108, 2.455 1.45 1.45 1.45 5109, 2.286 1.45 1.45 1.45 5110, 2.118 1.45 1.45 1.45 5111, 1.714 1.45 1.45 1.45 5112, 1.309 1.45 1.45 1.45 5113, 1.084 1.45 1.45 1.45 5114, 0.859 1.45 1.45 1.45 5115, 0.736 1.45 1.45 1.45 5116, 0.613 1.45 1.45 1.45 5117, 0.561 1.45 1.45 1.45 5118, 0.510 1.45 1.45 1.45 5119, 0.436 1.45 1.45 1.45 5120, 0.363 1.45 1.45 1.45
5121, 0.181 1.45 1.45 1.45 5200, 1 0. 2.00660-3 0.99 0.55 0.65 5200, 0.9 0.9 0.6000 2.1070-2 5201, 0.0651 1.9193 0.3875 0.3875 5202, 1.201 1.0 1.0 1.0 5203, 1.189 1.0 1.0 1.0 5204, 1.177 1.0 1.0 1.0 5205, 1.236 1.0 1.0 1.0 5206, 1.295 1.0 1.0 1.0 5207, 1.316 1.0 1.0 1.0 5208, 1.338 1.0 1.0 1.0 5209, 1.302 1.0 1.0 1.0 5210, 1.267 1.0 1.0 1.0 5211, 1.180 1.0 1.0 1.0 5212, 1.093 1.0 1.0 1.0 5213, 1.019 1.0 1.0 1.0 5214, 0.945 1.0 1.0 1.0 5215, 0.867 1.0 1.0 1.0 5216, 0.790 1.0 1.0 1.0 5217, 0.709 1.0 1.0 1.0 5218, 0.628 1.0 1.0 1.0 5219, 0.597 1.0 1.0 1.0 5220, 0.567 1.0 1.0 1.0 5221, 0.283 1.0 1.0 1.0 6001, 3.30700-2 1.24000-2 2.19010-1 3.05000-2 1.95940-1 1.11000-1 6002, 3.94950-1 3.01000-1 1.15040-1 1.1400 4.19900-2 3.0100 9000, 3 ramp ends at 0.1 sec
$2.3 9001, 0.0 0.0 2.30 1.00-1 2.30 10.0 10000, 2 forced convection at 1800 gpm G=2291.6 kg/m2 s for 24 elements 10001, 2291.6 0.0 2291.6 10.0 11000, 2 11001, 0.0 58.0 0.0 4000.0 12000, 2 12001, 0.0 0.0 0.0 10.0 14000, 4
!14001, 1.00-6 0.0 1.00-6 0.40 1.00-5 1.40
!14002, 5.00-5 2.0 larger time step-all times changed from 1.-6 111111111111222222222222333333333333444444444444555555555555666666666666 14001, 1.00-6 0.0 1.00-5 0.20 1.00-4 1.40 14002, 5.00-4 2.0 16000, 2 16001, 0.01 100 0.0 0.01 100 10.0 17000, 3 17001, 1.00 0.0 1.0000 1.0 1.0 10.0 18000, 2 18001, 0.0 0.0 -14.2 0.5683
0 I PARET 7.4 MITR HEU core reactivity limit calculations Sep08 2-channel model; fast reactivity (step) insertion over 0.10 sec; fin heat transfer factor=1.9; 2-channel model k-fuel=70.0; k-clad=186; k-oxide=2.08 clad and oxide are separate; 0.5 mil oxide forced convection at 1800 gpm; initial power at 6MW overpower trip at 7.4 MW; period trip 7 sec, with 0.1 sec delay 111111111111222222222222333333333333444444444444555555555555666666666666 10 '01, -2 20 9 0 1 1 10 02, 1 1 6 -1 0 99 MW RS 1003, 6.00-0 8.24430-3 1.18000+5 -33.0 9.01700-4 RF RC PW(2.31")
1004, 3.81000-4 8.89000-4 5.86740-2 5.28830-2 0.5683 0.00794 1005, 0.00794 0.0075 8.00-5 9.80664 0.01367 1006, 2.00 0.8000 1.0 992.00 0.0 1007, 3.6000-5 0.0 0.0 0.0 1.0 0.001 1008, 0.0 0.0005 0.001 0.03 0.05 0.05 1009, 1.4 0.33 1111, 0.047156 1.00 RELAP 1112, 1 2 5 0 0 2.26.0000+5 25.000 4227.0 1113, 0.40 0.1 7.400-0 0.0 111111111111222222222222333333333333444444444444555555555555666666666666 account for fin FINF 1114, 1.92 0.062 0. 0. 1.9 0.70 PERTP PTDLAY 1115, 7.0 0.1 2001, 0.0 0.0 70.0 0.0 0.0 2002, 0.0 1100.0 1.92600+6 0.0 0.0
!clad 2003, 0.0 0.00 186.0 0.0 0.0 2004, 0.0 1100.0 2.10165+6 0.0 0.0
!oxide 2005, 0.0 0.0 2.08 0.0 0.0 2006, 0.0 b100.0 2.10165+6 0.0 0.0 11111111111122222222222233333333333344444444444.4555555555555666666666666 3001, 9.52500-5 5 1 0.967 I . ICLAD 3002, 2.54000-4 7 2 0.0 7 3003, 0.63500-5 9 3 0.01 4001, 2.8415-2 20
! peak channels; assumed 1.45:1 peaking vs. avg.
! peak channels represent the 4 hottest channels see MHA 5100, 1 0. 2.00660-3 0.01 0.55 0.65 void coef temp coef 5100, 0.9 0.9 0.9020 2.1070-2 5101, 0.0651 1.9193 0.3875 0.3875 5102, 2.201 1.45 1.45 1.45 5103, 2.231 1.45 1.45 1.45 5104, 2.262 1.45 1.45 1.45 5105, 2.311 1.45 1.45 1.45 5106, 2.360 1.45 1.45 1.45 5107, 2.408 1.45 1.45 1.45 5108, 2.455 1.45 1.45 1.45 5109, 2.286 1.45 1.45 1.45 5110, 2.118 1.45 1.45 1.45 5111, 1.714 1.45 1.45 1.45 5112, 1.309 1.45 1.45 1.45 5113, 1.084 1.45 1.45 1.45 5114, 0.859 1.45 1.45 1.45 5115, 0.736 1.45 1.45 1.45 5116, 0.613 1.45 1.45 1.45 5117, 0.561 1.45 1.45 1.45 5118, 0.510 1.45 1.45 1.45 5119, 0.436 1.45 1.45 1.45 5120, 0.363 1.45 1.45 1.45
5121, 0.181 1.45 1.45 1.45 5200, 1 0. 2.00660-3 0.99 0.55 0.65 5200, 0.9 0.9 0.6000 2.1070-2 5201, 0.0651 1.9193 0.3875 0.3875 5202, 1.201 1.0 1.0 1.0 5203, 1.189 1.0 1.0 1.0 5204, 1.177 1.0 1.0 1.0 5205, 1.236 1.0 1.0 1.0 5206, 1.295 1.0 1.0 1.0 5207, 1.316 1.0 1.0 1.0 5208, 1.338 1.0 1.0 1.0 5209, 1.302 1.0 1.0 1.0 5210, 1.267 1.0 1.0 1.0 5211, 1.180 1.0 1.0 1.0 5212, 1.093 1.0 1.0 1.0 5213, 1.019 1.0 1.0 1.0 5214, 0.945 1.0 1.0 1.0 5215, 0.867 1.0 1.0 1.0 5216, 0.790 1.0 1.0 1.0 5217, 0.709 1.0 1.0 1.0 5218, 0.628 1.0 1.0 1.0 5219, 0.597 1.0 1.0 1.0 5220, 0.567 1.0 1.0 1.0 5221, 0.283 1.0 1.0 1.0 6001, 3.30700-2 1.24000-2 2.19010-1 3.05000-2 1.95940-1 1.11000-1 6002, 3.94950-1 3.01000-1 1.15040-1 1.1400 4.19900-2 3.0100 9000, 3 ramp ends at 0.1 sec
$2.3 9001, 0.0 0.0 2.30 1.00-1 2.30 10.0 10000, 2 forced convection at 1800 gpm G=2291.6 kg/m2 s for 24 elements 10001, 2291.6 0.0 2291.6 10.0 11000, 2 11001, 0.0 58.0 0.0 4000.0 12000, 2 12001, 0.0 0.0 0.0 10.0 14000, 4
!14001, 1.00-6 0.0 1.00-6 0.40 1.00-5 1.40
!14002, 5.00-5 2.0 larger time step-all times changed from 1.-6 111111111111222222222222333333333333444444444444555555555555666666666666 14001, 1.00-6 0.0 1.00-5 0.20 1.00-4 1.40 14002, 5.00-4 2.0 16000, 2 16001, 0.01 100 0.0 0.01 100 10.0 17000, 3 17001, 1.00 0.0 1.0000 1.0 1.0 10.0 18000, 2 18001, 0.0 0.0 -14.2 0.5683
0
- PARET 7.4 MITR HEU core reactivity limit calculations Sep08 2-channel model; fast reactivity (stepY insertion over 0.10 sec; I fin heat transfer factor=l.9; 2-channel model k-fuel=70.0; k-clad=186; k-oxide=2.08 clad and oxide are separate; 0.5 mil oxide natural convection initial power at 5W overpower trip at 100 kW; period trip 7 sec, with 0.1 sec delay 1111111111.11222222222222333333333333444444444444555555555555666666666666 1001, -2 20 9 0 1 1 1002, 1 1 *6 -1 0 99
1004, 3.81000-4 8.89000-4 5.86740-2 5.28830-2 0.5683 0.00794 1005, 0.00794 0.0075 8.00-5 9.80664 0.01367 1006, 2.00 0.8000 1.0 992.00 0.0 1007, 3.6000-5 0.0 0.0 0.0 1.0 0.001 1008, 0.0 0.0005 0.001 0.03 0.05 0.05 1009, 1.4 0.33 1111, 0.047156 1.00 RELAP 1112, 1 2 5 0 0 2.260000+5 25.000 4227.0 1113, 0.40 0.10 0.1000 0.0 111111111111222222222222333333333333444444444444555555555555666666666666 account for fin FINF 1114, 1.92 0.062 0. 0. 1.9 0.70 PERTP PTDLAY 1115, 7.0 0.1 2001, 0.0 0.0 70.0 0.0 0.0 2002, 0.0 1100.0 1.92600+6 0.0. 0.0
!clad 2003, 0.0 0.00 186.0 0.0 0.0 2004, 0.0 1100.0 2.10165+6 0.0 0.0
!oxide 2005, 0.0 0.0 2.08 0.0 0.0 2006, 0.0 1100.0 2.10165+6 0.0 0.0 111111111111222222222222333333333333444444444444555555555555666666666666 3001, 9.52500-5 5 1 0.967 ICLAD 3002, 2.54000-4 7 2 0.0 7 3003, 0.63500-5 9 3 0.0 4001, 2.8415-2 20 peak channels; assumed 1.45:1 peaking vs. avg.
peak channels represent the 4 hottest channels see MHA 5100, 1 0. 2.00660-3 0.01 0.55 0.65 void coef temp coef 5100, 0.9 0.9 0.9020 2.1070-2 5101, 0.0651 1.9193 0.3875 0.3875 5102, 2.201 1.45 1.45 1.45 5103, 2.231 1.45 1.45 1.45 5104, 2.262 1.45 1.45 1.45 5105, 2.311 1.45 1.45 1.45 5106, 2.360 1.45 1.45 1.45 5107, 2.408 1.45 1.45 1.45 5108, 2.455 1.45 1.45 1.45 5109, 2.286 1.45 1.45 1.45 5110, 2.118 1.45 1.45 1.45 5111, 1.714 1.45 1.45 1.45 5112, 1.309 1.45 1.45 1.45 5113, 1.084 1.45 1.45 1.45 5114, 0.859 1.45 1.45 1.45 5115, 0. 736 1.45 1.45 1.45 5116, 0.613 1.45 1.45 1.45 5117, 0.561 1.45 1.45 1.45 5118, 0.510 1.45 1.45 1.45 5119, 0.436 1.45 1.45 1.45 5120, 0.363 1.45 1.45 1.45
5121, 0.181 1.45 1.45 1.45 5200, 1 0. 2.00660-3 0.99 0.55 0.65 5200, 0.9 0.9 0.6000 2. 1070-2 5201, 0.0651 1.9193 0.3875 0.3875 5202, 1.201 1.0 1.0 1.0 5203, 1.189 1.0 1.0 1.0 5204, 1.177 1.0 1.0 1.0 5205, 1.236 1.0 1.0 1.0 5206, 1.295 1.0 1.0 1.0 5207, 1.316 1.0 1.0 1.0 5208, 1.338 1.0 1.0 1.0 5209, 1.302 1.0 1.0 1.0 5210, 1.267 1.0 1.0 1.0 5211, 1.180 1.0 1.0 1.0 5212, 1.093 1.0 1.0 1.0 5213, 1.019 1.0 1.0 1.0 5214, 0.945 1.0 1.0 1.0 5215, 0.867 1.0 1.0 1.0 5216, 0.790 1.0 1.0 1.0 5217, 0.709 1.0 1.0 1.0 5218, 0.628 1.0 1.0 1.0 5219, 0.597 1.0 1.0 1.0 5220, 0.567 1.0 1.0 1.0 5221, 0.283 1.0 1.0 1.0 6001, 3.30700-2 1.24000-2 2.19010-1 3.05000-2 1.95940-1 1.11000-1 6002, 3.94950-1 3.01000-1 1.15040-1 1.1400 4.19900-2 3.0100 9000, 3 ramp ends at 0.1 sec
$1.5 9001, 0.0 0.0 1.50 1.00-1 1.50 10.0 10000, 2
! natural convection at G~i kg/m2 s for 24 elements 10001, 1.0 0.0 1.0 10.0 11000, 2 11001, 0.0 58..0 0.0 4000.0 12000, 2 12001, 0.0 0.0 0.0 10.0 14000, 4
!14001, 1.00-6 0.0 1.00-6 0.40 -1.00-5 1.40
!14002, 5.00-5 2.0 larger time step-all times changed from 1.-6 111111111111222222222222333333333333444444444444555555555555666666666666 14001, 1.00-6 0.0 1.00-5 0.20 1.00-4 1.40 14002, 5.00-4 2.0 16000, 2 16001, 0.01 100 0.0 0.01 100 10.0 17000, 3 17001, 1.00 0.0 1.0000 1.0 1.0 10.0 18000, 2 18001, 0.0 0.0 -14.2 0.5683
0
- .PARET 7.4 MITR HEU core reactivity limit calculations Sep08 2-channel model; fast reactivity (step) insertion over 0.10 sec; 1 fin heat transfer factor=l.9; 2-channel model I k-fuel=70.0; k-clad=186; k-oxide=2.08 clad and oxide are separate; 0.5 mil oxide natural convection initial power at 80KW overpower trip at 100 kW; period trip 7 sec, with 0.1 sec delay 111111111111222222222222333333333333444444444444555555555555666666666666 1001, -2 20 9 0 1 1 1002, 1 1 6 -1 0 99
1004, 3.81000-4 8.89000-4 5.86740-2 5.28830-2 0.5683 0.00794 1005, 0.00794 0.0075 8.00-5 9.80664 0.01367 1006, 2.00 0.8000 1.0 992.00 0.0 1007, 3.6000-5 0.0 0.0 0.0 1.0 0.001 1008, 0.0 0.0005 0.001 0.03 0.05 0.05 1009, 1.4 0.33 1111, 0.047156 1.00 RELAP 1112, 1 2 5 0 0 2.260000+5 25.000 4227.0 1113, 0.40 0.10 0.1000 0.0 111111111111222222222222333333333333444444444444555555555555666666666666 I account for fin FINF 1114, 1.92 0.062 0. 0. 1.9 0.70 PERTP PTDLAY 1115, 7.0 0.1 2001, 0.0 0.0 70.0 0.0 0.0 2002, 0.0 1100.0 1.92600+6 0.0 0.0
!clad 2003, 0.0 0.00 186.0 0.0 0.0 2004, 0.0 1100.0 2.10165+6 0.0 0.0
!oxide 2005, 0.0 .0.0 2.08 0.0 0.0 2006, 0.0 1100.0 2.10165+6 0.0 0.0 111111111111222222222222333333333333444444444444555555555555666666666666 3001, 9.52500-5 5 1 0.967 ICLAD 3002, 2.54000-4 7 2 0.0 7 3003, 0.63500-5 9 3 0.0 4001, 2.8415-2 20 I peak channels; assumed 1.45: 1 peaking vs. avg.
peak channels represent the 4 hottest channels see MHA 5100, 1 0. 2.00660-3 0.01 0.55 0.65 void coef temp coef 5100, 0.9 0.9 0.9020 2.1070-2 5101, 0.0651 1.9193 0.3875 0.3875 5102, 2.201 1.45 1.45 1.45 5103, 2.231 1.45 1.45 1.45 5104, 2.262 1.45 1.45 1.45 5105, 2.311 1 .45 1.45 1.45 5106, 2.360 1.45 1.45 1.45 5107, 2.408 1.45 1.45 1.45 5108, 2.455 1.45 1.45 1.45 5109, 2.286 1.45 1.45 1.45 5110, 2.118 1.45 1.45 1.45 5111, 1.714 1.45 1.45 1.45 5112, 1.309 1.45 1.45 1.45 5113, 1.084 1.45 1.45 1.45 5114, 0.859 1.45 1.45 1.45 5115, 0.736 1.45 1.45 1.4.5 5116, 0.613 1.45 1.45 1.45 5117, 0.561 1.45 1.45 1.45 5118, 0.510 1.45 1.45 1.45 5119, 0.436 1.45 1.45 1.45 5120, 0.363 1.45 1.45 1.45
5121, 0.181 1.45 1.45 1.45 5200, 1 0. 2.00660-3 0.99 0.55 0.65 5200, 0.9 0.9 0.6000 2.1070-2 5201, 0.0651 1.9193 0.3875 0.3875 5202, 1.201 1.0 1.0 1.0 5203, 1.189 1.0 1.0 1.0 5204, 1.177 1.0 1.0 1.0 5205, 1.236 1.0 1.0 1.0 5206, 1.295 1.0 1.0 1.0 5207, 1.316 1.0 1.0 1.0 5208, 1.338 1.0 1.0 1.0 5209, 1.302 1.0 1.0 1.0 5210, 1.267 1.0 1.0 1.0 5211, 1.180 1.0 1.0 1.0 5212, 1.093 1.0 1.0 1.0 5213, 1.019 1.0 1.0 1.0 5214, 0.945 1.0 1.0 1.0 5215, 0.867 1.0 1.0 1.0 5216, 0.790 1.0 1.0 1.0 5217, 0.709 1.0 1.0 1.0 5218, 0.628 1.0 1.0 1.0 5219, 0.597 1.0 1.0 1.0 5220, 0.567 1.0 1.0 1.0 5221, 0.283 1.0 1.0 1.0 6001, 3.30700-2 1.24000-2 2.19010-1 3.05000-2 1.95940-1 1.11000-1 6002, 3.94950-1 3.01000-1 1.15040-1 1.1400 4.19900-2 3.0100 9000, 3 ramp ends at 0.1 sec
$1.5 9001, 0.0 0.0 1.50 1.00-1 1.50 10.0 10000, 2
! natural convection at G=36 kg/m2 s for 24 elements 10001, 36.0 0.0 36.0 10.0 11000, 2 11001, 0.0 58.0 0.0 4000.0 12000, 2 12001, 0.0 0.0 0.0 10.0 14000, 4
!14001, 1.00-6 0.0 1.00-6 0.40 1.00-5 1.40
!14002, 5.00-5 2.0 larger time step-all times changed from 1.-6 111111111111222222222222333333333333444444444444555555555555666666666666 14001, 1.00-6 0.0 1.00-5 0.20 1.00-4 1.40 14002, 5.00-4 2.0 16000, 2 16001, 0.01 100 0.0 0.01 100 10.0 17000, 3 17001, 1.00 0.0 1.0000 1.0 1.0 10.0 18000, 2 18001, 0.0 0.0 -14.2 0.5683