ML082470562

From kanterella
Jump to navigation Jump to search

Massachusetts Institute of Technology - Response to Request for Additional Information License Renewal Request
ML082470562
Person / Time
Site: MIT Nuclear Research Reactor
Issue date: 08/26/2008
From: Bernard J
Massachusetts Institute of Technology (MIT)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
TAC MA6084
Download: ML082470562 (17)


Text

NUCLEAR REACTOR LABORATORY AN INTERDEPARTMENTAL CENTER OF MASSACHUSETTS INSTITUTE OF TECHNOLOGY John A. Bernard Director of Reactor Operations Mail Stop: NW12-208A 138 Albany Street Cambridge, MA 02139

  • Phone: 617 253-4202 Fax: 617 253-7300 Email: bernardj@mit.edu August 26, 2008 U.S. Nuclear Regulatory Commission Attn: Document Control Room Washington, DC 20555 Re: Massachusetts Institute of Technology - Request for Additional Information License Renewal Request (TAC No. MA6084); License No. R-37; Docket No. 50-20

Dear Sir or Madam:

The Massachusetts Institute of Technology hereby provides the response for

  1. 13.1.

Please contact the undersigned with any questions.

Sincerely, f~nBemnard,Ph.D, E,CHP Director of Reactor Operations I declare under the penalty of perjury that the foregoing is true and correct.

Executedon 0-.

a

, -(,&, U d

Date Signature cc:

w/enclosures w/enclosures w/enclosure Stephen Pierce, Project Manager Research and Test Reactors Branch A Division of Policy and Rulemaking Office of Nuclear Reactor Regulation Senior Project Manager Research and Test Reactors Branch A Division of Policy and Rulemaking Office of Nuclear Reactor Regulation Senior Reactor Inspector Research and Test Reactors Branch B Division-of Policy and Rulemaking Office of Nuclear Reactor Regulation w/o enclosu~re Document Control Desk

13.1 In order to determine the effective dose to members of the reactor staff, a determination of the containment concentrations at any time must be determined, along with the expected duration of exposure.

In this regard, Table 13-1 presented the total equilibrium core inventory at various assumed power levels up to 10MW. For the Maximum Hypothetical Accident (MHA), only a small fraction of the fuel is assumed to melt from channel blockage and this release would represent 1.76% of the core fission product inventory. This coupled with the fission product release fractions (Table 13-2),

the total activity in containment can be calculated. For the case of fission product gases, it is assumed that the release to containment is instantaneous with uniform mixing, that the reactor has scrammed (t=O), and that containment is isolated. For the case of the non-volatile components, a release rate from the primary coolant is stated to be linear out to two (t=2h) hours and is based on the evaporation rate of the primary coolant taking no credit for the reactor lid. acting as a barrier to release.

Dose is calculated based on the presumption of a finite cloud for noble gas immersion (DDE) and inhalation dose for the other radionuclides (committed effective dose equivalent). The summation of the two results in the Total Effective Dose Equivalent.

For the case of submersion dose, the mechanism describe in the response "to Item 65 of the second partial request for addition information" is used. Specifically, the following equation is adopted as obtained originally from equation.1 of section 4.2.7 of regulatory guide 1.183.

i =n v 0.338 DDEfii =

DDE 1

  • i~l1173 For the case of inhalation dose, the CEDE dose is determined as follows:

i~ [C]i CEDE =DCF, (mrem h-' DAC-') *T i6 DACi Where: DDEfnnite is the finite deep dose equivalent (rate),

DDE.W is the infinite deep dose equivalent (rate),

V is the volume of the space defined by an effective radius R, CEDE is the committed effective dose equivalent, DACi is the derived air concentration as listed in 10CFR20,

[Ci] is the concentration of the ith radionuclide, DCFi is the dose conversion factor, and

T is the exposure time (h).

Note that for the CEDE dose quantities, the stochastic values are used for determining the total effective dose equivalent, TEDE (effective dose). Non-Stochastic (deterministic) values are presented but the dose is not calculated.

Given that the dose rate will change over time due to decay an integral to the above equations is the more exacting method and the general form is presented as follows:

D fbJ(t)dt b (O)[ 2 ]= ()[

e

]

tj where: D is the integral dose whether it be DDE or CEDE, tj and t2 are the limits of integration for the dependent variable t which were set to 0 for the start of release, T is any time post release, and all other terms are as previously defined.

Given the above, dose rate and doses were calculated and are presented. It should be noted that the presumption of Instantaneous release and uniform mixing for equilibrium core inventories following an Instantaneous occurrence of the MHA at full power with no credit for additional barriers or removal processes is extremely conservative and that the calculations presented represents the extreme upper bound for dose considerations.

In reviewing the potentials for non-noble gas release to containment, Iodine as a halogen is reasonable using the presumption of a linear release rate as stated in the SAR out to two hours. However, the release of particulates considering the lack of driving forces (temperature and pressure) is in general not realisticexcept for those borne from the decay of its noble, gas precursors in containment spaces. In reviewing other research reactor SARs no consideration for nuclides other than noble gases and the iodine groups were made. In fact it was presumed by one such facility that only 5% of the iodine would be available due to the formation of CsI and as a particulate would not be released. Another facility took credit for a deposition fraction on surfaces of containment at 75% for Iodides and that the underlying assumption was this was an instantaneous removal at t=O post onset of the MHA.

An additional point of conservatism used in these calculations is the presumption of an equilibrium core inventory whereas in practicality, all fuel is at some fraction less due in part to operating history and an intensive fuel management program.

Given the above, the following tables and figures are presented.

Tables:

1.

Fraction of an Infinite Cloud for Reference Areas within Containment

2.

Fission Product Release Fractions (from SAR)

3.

Core Fission Product Inventory (from SAR)

4.

Instantaneous Fission Product Dose Rate from a Finite Submersion Cloud of Noble Gases

5.

Time Dependent Finite Cloud Submersion Dose Rate for the Control Room

6.

Integral Time Dependent Dose for a Finite Submersion Case in the Control Room.

7.

Listed and Calculated Stochastic and Deterministic ALIs, DACs, and Fraction of DACs for Non-Noble Gas Radionuclides Figures:

1.

Time Dependent Finite Cloud Submersion Dose Rate within the Control Room

2.

Integral Dose within the Control Room from a Submersion of Noble Gases as a Function of Time.

3.

Submersion Integral dose as a function of time for a finite cloud on the Reactor Floor

4.

Time Dependent CEDE Dose Rates for all Non-Noble Gas Radionuclides

5.

Time Dependent CEDE Dose Rates for Iodides

6.

Integral CEDE Dose as a Function of Time Post Release for Iodides In evaluating the potential dose to an operator as a result of a MHA condition, it is necessary to determine the stay time for that operator. Conversely, it may be appropriate to determine the maximum stay time for a MHA condition such that the emergency PAGs are not exceeded. In this later case, the maximum stay time without exceeding the 25 rem Emergency PAG would be 30 minutes if only noble gases and iodides are considered and approximately 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> if SCBAs are employed.

if all radionuclides were considered (Iodides contributing greater than 60% of the CEDE dose), then the estimated stay time would be on the order of 20 minutes

.and if the SCBAs were employed, then the submersion dose component would prevail permitting stay times greater than 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

Note: Contribution in percentage for the CEDE Dose determine at the maximum dose rate at t=2h 1-131 54%

Cs-137 25%

1-133 6%

Cs-134 6%

Te-132 4%.

Cs-136 1 %

1-135 1 %

Total 97%

Table 1: Fraction of an Infinite Cloud for Reference Areas within Containment Area Reflective Veffective f Eq. lb (meters)

(ftA3)

ReactorTop ---------------------- -190.7- --------- 85750............ 0-.039_

Reactor Floor 9.8 69768 0.037 Fission Converter Medical Therapy R oom ---------------------------------- 3............ 20009_

0--------

_.011 __

Basement Medical Therapy Room 2.7 1510 0.01

_PrimaryChe mistry ------

2.8 1569 0.01 Secondary Chemistry Area 2.6 1246 0.0095 Control Room 3

1953 0.011 Basement Medical

-Set-up Area.....................

3.1 ------------- 2279............ 0 _. 11_

Equipment Room 4.8 8139 0.018 From RAI Initial Request Reply Dated:

1/29/2004 Question number 65

Table 2. Fission Product Release Fractions Fission Product Fraction Released Fraction Released Fraction Remaining Airborne Total Fraction from the Melted from the Primary in the Containment from Fuel to Fuel Coolant System Atmosphere Containment Atmosphere Ff Fp

  • Fc F total Noble Gases 1

1 1

1 I

0.9 0.03 0.3 0.0081 Cs 0.9 0.03 0.3 0.0081 Te 0.23 0.03 0.9 0.00621 Sr 0.01 0.03 0.9 0.00027 Ba 0.01 0.03 0.9 0.00027 Ru 0.01 0.03 0.9 0.00027 La 0.0001 0.03 0.9 0.0000027 Ce 0.0001 0.03 0.9 0.0000027 Others 0.0001 0.03 0.9 0.0000027

Table 3. Equilibrium Core Fission Product Inventory for Various Power Levels Isotope Half-Xi(sec-1)

Yi(%)

)

life QS (xlO5 Ci) 5MW 6MW 7MW 8MW 9MW 10MW Kr 85m 4.36h 4.41E-05 1.5 0.649 0.7788 0.9086 1.0384 1.1682 1.3 87 78m 1.48E-04 2.7 1.17 1.404 1.638 1.872 2.106 2.34 88 2.77h 6.95E-05 3.7 1.6 1.92 2.24 2.56 2.88 3.2 Xe 131m 12.0d 6.68E-07 0.03 0.013 0.0156 0.0182 0.0208 0.0234 0.026 133m 2.3d 3.49E-06 0.16 0.0692 0.083 0.0969 0.1107 0.1246 0.138 133 5.27d 1.52E-06 6.5 2.81 3.372 3.934 4.496 5.058 5.62 135m 15.6m 7.40E-04 1.8 0.778 0.9336 1.0892 1.2448 1.4004 1.56 135 9.13h 2.11E-05 6.2 0.413 0.4956 0.5782 0.6608 0.7434 0.826 138 17m 6.79E-04 5.5 2.38 2.856 3.332 3.808 4.284 4.76 1

131 805d 9.96E-07 2.9 1.25 1.5 1.75 2

2.25 2.51 132 2.4h 8,02E-05 4.4 1.9 2.28 2.66 3.04 3.42 3.81 133 20.8h 9.25E706 6.5 2.81 3.372 3.934 4.496 5.058 5.62 134 52.5m 2.20E-05 7.6 3.29 3.948 4.606 5.264 5.922 6.57 135 6.68h 2.89E-05 5.9 2.55 3.06 3.57 4.08 4.59 5.1 Br 83 2.4h 8.02E705 0.48 0.208 0.2496 0.2912 0.3328 0.3744 0.415 84 30m 3.85E-05 1..1 0.476 0.5712 0.6664 0.7616 0.8568 0.951 Cs 134 2.Oy 10OE-08 0.0*

2.86 3.432 4.004 4.576 5.148 5.72 136 13d 6.17E-07 0.006*

0.414 0.4968 0.5796 0.6624 0.7452 0.828 137 26.6y 8.27E-10 5.9 2.31 2.772 3.234 3.696 4.158 4.62 Rb 86 19.5d 4.1 IE-07 2.8E-5*

0.612 0.7344 0.8568 0.9792 1.1016 1.22 Te 127m 90d 8.82E-08 0.056 0.0242 0.029 0.0339 0.0387 0.0436 0.0484 127 9.3h 2.07E-05 0.25 0 108 0.1296 0,1512 0.1728 0.1944 0.216 129m 33d 2.43E-07 0.34 0.147 0.1764 0.2058 0.2352 0.2646 0.294 129 72rr 1.60E-04 1

0.432 0.5184 0.6048 0.6912 0.7776 0.865 131m 30h 6.42E-05 0.44 0:19

.0.228 0.266

  • 0.304 0.342 0,381 131 24.8m 4.66E-04 2.9 1.25 1.5 1.75 2

2.25 2.51 132 77h 2.50E-06 4.4 1.9 2.28 2.66 3.04 3.42 3.81 133m 63m 1.83E-04 4.6 1.99 2.388 2.786 3.184 3.582 3.98 134 44m 2.63E-04 6.7 2.9 3.48 4.06 4.64 5.22 5.8 Sr 91 97h 2.99E-05 5.9 2.55 3.06 3.57 4.08 4.59 5.1 Ba 140 12.8d 6.27E-07 6.3 2.72 3.264 3.808 4.352 4.896 5.45 Ru 103 41d 1.96E-07 2.9 1.25 1.5 1.75 2

2.25 2.51 105 4.5h 4.28E-05.

0.9 0.389 0.4668 0.5446. 0.6224 0.7002 0.779 106 1.Oy 2.20E-08 0.38 0.164 0.1968 0.2296 0.2624 0.2952 0.329 Rh 103 36.5h 5.27E-06 0.9 0.389 0.4668 0.5446 0.6224 0.7002 0.779 Tc 99m 6.04h 3.19E-05 0.6 0.259 0.3108 0.3626 0.4144 0.4662 0.519 Mo 99 67h 2.88E-06 6.1 2.64 3.168 3.696 4.224 4.752 5.28 Sb 127 93h 2.07E-06 0.25 0.108 0.1296 0.1512 0.1728 0.1944 0.216.

129 4.6h 4.32E-05 1

4.32 5.184 6.048 6.912 7.776 8.65 Nd 147 11.3d 7.1OE-07 2.6 1.12 1.344 1.568 1.7.92 2.016

-2.25 La 140 40.2h 4.79E-06 6.3 2.72 3.264 3.808 4.352 4.896 5.45 Ce 141 32d 2.51E-07 6

2.59 3.108 3.626 4.144 4.662 5.19 143 32h 6.O1E-06 6.2 2.68 3.216 3.752 4.288 4.824 5.36 144 290d 2.76E-08 6:1 2.64 3.168 3.696 4.224 4.752 5.28 Zr 95 63d 1,27E-07 6.4 2.77 3.324 3.878 4.432 4.986 5.54 97 17h 1.13E-05 6.2 2.68 3.216 3.752 4.288 4.824 5.36 Nb 95 35d 2.29E-07 6.4 2.77 3,324 3.878 4.432 4.986 5.54

Table 4. Instantaneous Fission Product Dose Rate (rem/h) From a Finite Submersion Cloud of Noble Gases.

DDE (rem/h) from fission product gases in various locations in containment at T=O Fission Converter Basement Basement Medical Medical Secondary Medical DDE Reactor Reactor Therapy Therapy Primary Chemistry Control Set up Equipment Area Infinite Top Floor Room Room Chemistry Area Room Area Room Fe uilb 1.00E+00 3.90E-02 3.70E-02 1.10E-02 1.O0E-02 1.OOE-02 9.50E-03 1.10E-02 1.10E-02 1.80E-02 Isotope Dose Rate (rern/h)

Kr-85m 3.03E+01 1.18E+00 1.12E+00 3.33E-01 3.03E-01 3.03E-01 2.87E-01 3.33E-01 3.33E-01 5.45E-01 Kr-87 2.18E+02 8.51E+00 8.07E+00 2.40E+00 2.18E+00 2.18E+00 2.07E+00 2.40E+00 2.40E+00 3.93E+00 Kr-88 7.46E+02 2.91 E+01 2.76E+01 8.20E+00 7.46E+00 7.46E+00 7.09E+00 8.20E+00 8.20E+00 1.34E+01 Xe-131m 3.03E-02 1.18E-03 1.12E-03 3.33E-04 3.03E-04 3.03E-04 2.88E-04 3.33E-04 3.33E-04 5.45E-04 Xe-1 33m 6.45E-01 2.51 E-02 2.39E-02 7.09E-03 6.45E-03 6.45E-03 6.13E-03 7.09E-03 7.09E-03 1.16E-02 Xe-133m 2.62E+01 1.02E+00 9.69E-01 2.88E-01 2.62E-01 2.62E-01 2.49E-01 2.88E-01 2.88E-01 4.72E-01 Xe-1 35m 8.06E+01 3.14E+00 2.98E+00 8.87E-01 8.06E-01 8'06E-01 7.66E-01 8.87E-01 8.87E-01 1.45E+00 Xe-135m 3.85E+01 1.50E+00 1.42E+00 4.24E-01 3.85E-01 3.85E-01 3.66E-01 4.24E-01 4.24E-01 6.93E-01 Xe-138 5.55E+02 2.16E+01 2.05E+01 6.10E+00 5.55E+00 5.55E+00 5.27E+00 6.1OE+00 6.1OE+00 9.99E+00 Total 1.69E+03 6.61 E+01 6.27E+01 1.86E+01 1.69E+01 1.69E+01 1.61 E+01 1.86E+01 1.86E+01 3.05E+01

Table 5. Time Dependent Finite Cloud Submersion Dose Rate rem/h for the Control Room.

Control Room DDE Does Rate (rem/h) as a Function of Time Post Instantaneous Release (hours)

Isotope 0

i 0.25 0.5 0.75 1

2 3

4 5

6 7

8 Kr-85m 3.33E-01 3.20E-01 I 3.07E-01 I 2.95E-01 2.84E-01 2.42E-01 2.07E-01 1.76E-01 i1.0E-01 1.28E-01i 1.10E-01 9.34E-02 Kr-87 2.40E+00 2.1OE+00 1.84E+00 1.61E+00 1 1.41E+00 8.27E-01 4.85E-01 2.85L-01 1.67E-01 9.81E-02 5.76E-02 3.38E-02 Kr-88 8.20E+00 7.71 E+00 7.24E+00 6.80E+00 6.39E+00 4.97E+00 I 3.87E+00 3.02E+00 2.35E+00 1.83E+00 1.42E+00 1 1.11 E+00 Xe-1 31 m 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.32E-04 3.32E-04 3.31 E-04 3.30E-04 3.29E-04 3.29E-04 3.28E-04 3.27E-04 Xe-1 33m 7.09E-03 7.07E-03 7.05E-03 7.03E-03 7.OOE-03 6.92E-03 6.83E-03 6.75E-03 6.66E-03 6.58E-03 6.50E-03 6.42E-03 Xe-1 33m 2.88E-01 2.88E-01 2.87E-01 2.87E-01 I2.87E-01 2.85E-01 2.83E-01 2.82E-01 2.80E-01 2.79E-01 2.77E-01 2.76E-01 Xe-135m 8.87E-01 4.55E-01 2.34E-01 i1.20E-01 6.18E-02 4.30E-03 3.OOE-04 I 2.09E-05 1.46E-06 1 1.01E-07 7.06E-09 4.92E-10 Xe-135m 4.24E-01 4.16E-01 4.08E-01 4.OOE-01 3.93E-01 3.64E-01 3.37E-01 3.13E-01 2.90E-01 2.69E-01 2.49E-01 2.31 E-01 Xe-138 6.10E+00 3"31E+00 1.80E+00 9.76E-01 5.30E-0i 4.60E-02 3.99E-03 3.46E-04 3.OOE-05 2.61E-06 2.26E-07 i1.96E-08 Total 1.86E+01 1.46E+01 1.21E+01 1.05E+01 9.36E+00 6.75E+00 5.20E+00 4.08E+00 3.24E+00 2.61E+00 2.12E+00 1.75E+00

Figure 1. Time Dependent Finite Cloud Submersion Dose Ratewithin the Control Room.

Control Room Finite Cloud Dose Rate post Instanenous Release to containment IaA 2.00E+01 1.80E+01 1.60E+01 1.40E+01 1.20E+01 1.OOE+01 8.OOE+00 6.OOE+00 4.OOE+00 2.OOE+00 O.OOE+00

- *-Kr-85m

--a-Kr-87 Kr-88

.Xe-131m

-K Xe-1 33nm Xe-1 33m

-+-- Xe-1 35m

-Xe-135m Xe-138 Total 0

2 4

6 8

10 12 Time post release

Table 6. Integral Time Dependent Dose (rem) for a Finite Submersion Case in the Control Room.

Isotope "Control Room Noble Gas DDE Integral Dose (rem) as a Function of Time Post Instantaneous Release (hours) 0.1 0.25 0.5 0.75 1

2 3

4 5

6 7

8 Kr-85m Kr-87 Kr-88 Xe-131m Xe-133m Xe-1 33m Xe-135m

  • Xe-135m Xe-138 3.30E-02 2.34E-01 8.1OE-01 3.33E-05 7.09E-04 2.88E-02 7.78E-02 4.22E-02 5.41 E-01 8.16E-02 5.62E-01 1.99E+00 8.33E-05 1.77E-03 7.20E-02 1.62E-01.

1.05E-01 1.14E+00 1.60E-01 1.05E+00 3.86E+00 1.67E-04 3.54E-03 2.35E-01 1.48E+00 5.61 E+00 2.50E-04 5.29E-03 3.08E-01 5.70E-01 1.86E+00 7.26E+00 3.33E-04 7.05E-03 2.87E-01 3.1 OE-01 4.08E-01 2.28E+00 2.95E+00 1.29E+01 6.65E-04 1.40E-02 5.73E-01 3.31 E-01 7.86E-01 2.48E+00 7.94E-01 3.59E+00 1.73E+01 9.96E-04 2.09E-02 8.57E&01 3.33E-01 1.14E+00 2.49E+00 9.85E-01 3.97E+00 2.07E+01 1,33E-03 2.77E-02 1.14E+00 3.33E-01 1.46E+00 2.50E+00 1.15E+00 4.19E+00 2.34E+01 1.66E-03 3.44E-02 1.42E+00 3.33E-01 1.76E+00 2.50E+00 1.29E+00 4.32E+00 2.55E+01 1.99E-03 4.1OE-02 1.70E+00 3.33E-01 2.04E+00 2.50E+00 1.41 E+00 1.51 E+00 4.40E+00 4.44E+00 2.71 E+01 2.84E+01 2.31 E-03 2.64E-03 4.75E-02 5.40E-02 1.98E+00 2.26E+00 3.33E-01 3.33E-01 2.30E+00 2.54E+00 2.50E+00 2.50E+00 2.45E-01 2.88E-01 2.08E-01 3.09E-011 1.76E+00 2.10E+00 Total 1.77E+00 4.11E+00 7.43E+00 - 1.02E+01 1.27E+01 2.06E+01 2.65E+01 3.12E+01 3.48E+01 3.77E+01 14.01E+01 I 4.20E+01

Figure 2. Submersion Integral dose as a function of time for a finite cloud within the control room Integral Noble Gas DDE. Dose Post Release to Containment 4.50 E+01 4.00E+01 3.50E+01 E 3.OOE+01 2.50E+01 2.OOE+01 1.50E+01 1.OOE+01 5.OOE+00 Kr-85m Kr-87 Kr-88 Xe-131m Xe-1 33m

--- Xe-1 33m Xe-1 35m Xe-135m

-Xe-1 38 Total 0.00E+00 0

1 2

3 4

5 6

Time Post Instantaneous Release (h) 7 8

Figure 3. Submersion Integral dose as a function of time for a finite cloud on the Reactor Floor Reactor Floor Integral Noble Gas DDE Dose Post Realease to Containiment 6.00E +017*.,'

5.OOE+01 E 4.OOE+01 4_

o 3.OOE+01 0

2.OOE+01 1.OOE+01

-.-- Kr-85m Kr-87 Kr-88 Xe-1 31 m Xe-1 33m Xe-1 33m

-+- Xe-1 35m Xe-1 35m Xe-1 38 Total O.OOE+00 0

1 2

3 4

5 6

Time Post Instantaneous Release (h) 7 8

Table 7. Listed and calculated Stochastic and Deterministic ALIs, DACs, and Fraction of DACs for Non-Noble Gas Radionuclides Half-Activity Listed Non-Stochsatic Stochastic life Concen.

DAC Listed Fraction Listed Calc.

Fraction ALl Organ of DAC ALl DAC DAC Isotope uCi/ml uCi/ml uCi reference uCi uCi/ml 1-131 1-132 1-133 1-134 1-135 Br-83 Br-84 Cs134 Cs-136 Cs-137 Rb-86 Te-127m Te-127 Te-129m Te-129 Te-131m Te-131 Te-132 Te-133m Te-134 Sr-91 Ba-140 Ru-103 Ru-105 Ru-106 Tc-99m Mo-99 Sb-127 Sb-129 Nd-147 La-140 Ce-141 Ce-143 Ce-144 Zr-95 Zr-97 Nb-95 8.05d 24h 20.8h 52.5m 6.68h 2.4h 30m 2.Oy 13d 26.6y 19.5d 90d 9.3h 33d 72m 30h 24.8m 77h 63m 44rn 97h 12.8d 41d 4.5h 1.0 y 6.04h 67h 93h 4.6h 11.3d 40.2h 32d 32h 290d 63d P7h 35d 3.78E-03 5.74E-03 8.49E-03 9.94E-03 7.70E-03 6.28E-04 1.44E-03 8.64E-03 1.25E-03 6.98E-03 6.16E-07 5.60E-05 2.50E-04 3.40E-04 1.OOE-03 4.40E-04 2.89E-03 4.40E-03 4.61 E-03 6.72E-03 2.57E-04 2.74E-04 1.26E-04 3.92E-05 1.65E-05 2.61 E-07 2.66E-06 1.09E-07 4.35E-06 1.13E-06 2.74E-06 2.61 E-06 2.70E-06 2.66E-06 2.79E-06 2.70E-06 2.79E-06 2.OOE-08 3.OOE-06 1.OOE-07 2.OOE-05 7.OOE-07 3.OOE-05 2.OOE-05 5.OOE-07 3.OOE-07 6.00E-08 3.OOE-07 1.OOE-07 9.OOE-06 3.OOE-07 3.60E-05 2.OOE-07 2.OOE-06 9.OOE-08 3.OOE-06 1.OOE-05 2.OOE-06 6.OOE-07 7.OOE-07 6.OOE-06 4.OOE-08 6.OOE-05 1.OOE-06 9.OOE-07 4.OOE-06 4.OOE-07 6.OOE-07 3.00E-07 8.OOE-07 1.OOE-08 5.OOE-08 8.OOE-07 5.OOE-07 2.OOE+02 8.OOE+03 3.OOE+02 2.OOE+03 Thyroid Thyroid Thyroid Thyroid 3.OOE+02 I Bone surf 4.OOE+02 5.OOE+03 2.OOE+02 5.OOE+03 2.OOE+04 Thyroid Thyroid Thyroid Thyroid Thyroid 1.89E+05 1.91 E+03 8.49E+04 1.1OE+04 5.60E+02 2.20E+03 1.45E+03 4.89E+04 1.54E+03 6.72E+02 5.58E+01 5.00E+01 1.OOE+04 9.OOE+02 5.OOE+04 4.OOE+03 6.OOE+04 6.OOE+04 1.OOE+03 7.OOE+02

.OOE+02 8.00E+02 4.OOE+02

.OOE+04 6.OOE+02 6.OOE+04 1.00E+03 1.OOE+04 8.OOE+02 11.OOE+04' 5.OOE+04 5.OOE+03 1.OOE+03 2.OOE+03 1.00E+04 9.OOE+01 2.OOE+05 3.OOE+03 2.OOE+03 9.00E+03 9.OOE+02 1.OOE+03 7.OOE+02 2.OOE+03 3.OOE+01 3.OOE+02 2.OOE+03 1.00E+03 2.08E-08 4.17E-06 3.75E-07 2.08E-05 1.67E-06 2.50E-05 2.50E-05 4.17E-07 2.92E-07 8.33E-08 3.33E-07 1.67E-07 8.33E-06 2.50E-07 2.50E-05 4.17E:07 4.17E-06 3.33E-07 4.17E-06 2.08E-05 2.08E-06 4.17E-07 8.33E-07 4.17E-06 3.75E-08 8.33E-05 1.25E-06 8.33E-07 3.75E-06 3.75E-07 4ý 1 7E-07 2,92E-07 8.33E-07 1.25E-08 1.25E-07 8.33E-07 4.17E-07 1.81 E+05 1.38E+03 2.26E+04 4.77E+02 4.62E+03 2.51 E+01 5,75E+01 2.07E+04 4.29E+03 8.37E+04 1.85E+00 3.36E+02 3.OOE+01 1.36E+03 4.OOE+01 1.06E+03 6.95E+02 1.32E+04 1.11 E+03 3.22E+02 1.23E+02 6.57E+02 1.51 E+02 9.40E+00 4.40E+02 3.13E-03 2.13E+00 1.30E-01 1.16E+00 3.01 E+00 6.57E+00 8.94E+00 3.24E+00 2.13E+02 2.23E+01 3.24E+00 6.69E+00 1.OOE+02 Bone surf DAC=ALI(in pCi)/(2000 hours0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> per working year x 60 minutes/hour x 2 x 10 4 ml per minute) =

[ALI/2.4x10 9] pCi/ml, where 2x10 4 ml is the volume of air breathed per minute at work by "Reference Man" under working conditions of "light work."

Figure 4. Time Dependent CEDE Dose Rates for all Non-Noble Gas Radionuclides Inhalation Dose Containment as a Rate (CEDE), rem/m, Post Release to Function of Time for all Radionuclides 100 10 1

0.1 1

U.Uv I 0.001 0.0001 1 E-05 I I-rr

-.- 4---131

-- =--- I-132 I-133

. 1-134 1-135 Br-83 Br-84

-Cs134

.... Cs-136 Cs-137 Rb-86 Te-127m Te-127 Te-129m Te-129 Te-131 m Te-131

.... Te-132 Te-133m Te-134 Sr-91 Ba-140 Ru-1 03 Ru-105 Ru-i 06

-Tc-99m Mo-99

-Sb-127

-&--- Sb-129

ýNd-147 La-140 Ce-141

-.--- Ce-143

-.--..Ce-1 44 Zr-95 Zr-97 Nb-95

-- Total 1 E-07 1 E-08 1 E-09 1E-10 0

5 10 15 20 25 30 Time Post Instanaenous Release

Figure 5. Time Dependent CEDE Dose Rates for Iodides CEDE Dose Rate (rem/m) as a Function of Time Post Release for lodides 1-131 1.00E+01

!

  • h % *
  • -1 3 2 1.OOE+O1 A

j~

77_ý.-

1-134 E 1.OOE-01 1

E I-135 1.00 E-02 I

I S1.OOE-0101520 2

1.OOE-05 t

~~.

0 5

10 15 20 25 30 Time Post Instanaenous Release

Figure 6. Integral CEDE Dose as a Function of Time Post Release for Iodides Integral CEDE Dose (rem) Post Release for Iodides 10000 1000 10 0 1-131 E

00 1-134 0.1

,-f-Total 0.001 0

0.5 1

1.5 2

2.5 3

3.5 4

Time Post Release (h)