CP-201400397, Core Operating Limits Report, Cycle 15

From kanterella
(Redirected from CP-201400397)
Jump to navigation Jump to search
Core Operating Limits Report, Cycle 15
ML14107A036
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 04/08/2014
From: Flores R, Madden F
Luminant Generation Co, Luminant Power
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CP-201400397, TXX-14047
Download: ML14107A036 (24)


Text

Rafael Flores Luminant Power Senior Vice President P 0 Box 1002

&Chief Nuclear Officer 6322 North FM 56 Luminant rafael.flores@Luminant.com Glen Rose, TX 76043 T 254 897 5590 C 817 559 0403 F 254 897 6652 Ref: 10CFR50.36(c)(5)

CP-201400397 TXX-14047 April 8, 2014 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 .

SUBJECT:

COMANCHE PEAK NUCLEAR POWER PLANT DOCKET NO. 50-446 (UNIT 2)

CORE OPERATING LIMITS REPORT

Dear Sir or Madam:

Enclosed is Revision 0 of the Core Operating Limits Report for Comanche Peak Nuclear Power Plant (CPNPP)

Unit 2, Cycle 15. This report is prepared and submitted pursuant to Technical Specification 5.6.5.

This communication contains no new licensing basis commitments regarding CPNPP Unit 2.

Should you have any questions, please contact Mr. J. D. Seawright at (254) 897-0140.

Sincerely, Luminant Generation Company LLC Rafael Flores By: 4Y"' 2K%

B FreýdW. Madden A¶L Director, External Affairs Enclosure - Unit 2 Cycle 15 Core Operating Limits Report, Revision 0 c- Marc L. Dapas, Region IV Balwant K. Singal, NRR Resident Inspectors, Comanche Peak A member of the STARS Alliance 4k I /

Callaway *Comanche Peak -Diablo Canyon *Palo Verde *Wolf Creek

ERX-14-001, Rev. 0 CPNPP UNIT 2 CYCLE 15 CORE OPERATING LIMITS REPORT March 2014 Prepared: \.

Daniel E.

Brozak /

Jg/_ Date: Q1(K2 41t0 Principal Engineer, Westinghouse Electric Company, LLC.

Reviewed: _____

Sompofn Srinilta

____ Date: ;i/ ly Principal Engineer, Westinghouse Electric Company, LLC.

Reviewed: ~IA L UOfA,~

&Ll~~J ~ NA!'Date: MP.Qe.6 Iq Brian L. Guthrie Principal Engineer, Westinghouse Electric Company, LLC.

Approved: 06/3 14. ROL-AiJb "O'bT* II* EMAIL" Date: MARCH A(DA pVi Kevin N. Roland, Manager Westinghouse Integrated Site Engineering - TX/KS

DISCLAIMER The information contained in this report was prepared for the specific requirement of Luminant Generation Company LLC and may not be appropriate for use in situations other than those for which it was specifically prepared. Luminant Generation Company LLC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available, Luminant Generation Company LLC does not authorize its use by others, and any such use is forbidden except with the prior written approval of Luminant Generation Company LLC. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall Luminant Generation Company LLC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

ii ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 TABLE OF CONTENTS DISCLAIMER ...................................................... ii TABLE OF CONTENTS ............................................... iii LIST OF TABLES .................................................. iv LIST OF FIGURES ................................................. v SECTION PAGE 1.0 CORE OPERATING LIMITS REPORT .............................. 1 2.0 OPERATING LIMITS .......................................... 2 2.1 SAFETY LIMITS ... .................................. ...... 2 2.2 SHUTDOWN MARGIN ...................................... 2 2.3 MODERATOR TEMPERATURE COEFFICIENT .................... 2 2.4 ROD GROUP ALIGNMENT LIMITS ........................... 3 2.5 SHUTDOWN BANK INSERTION LIMITS ....................... 3 2.6 CONTROL BANK INSERTION LIMITS ........................ 4 2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 ......................... 4 2.8 HEAT FLUX HOT CHANNEL FACTOR .......................... 4 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR .................. 6 2.10 AXIAL FLUX DIFFERENCE ................................ 6 2.11 REACTOR TRIP SYSTEM INSTRUMENTATION .................. 6 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS .............................. 7 2.13 BORON CONCENTRATION -................................ 8

3.0 REFERENCES

......... .................. . ..................... 8 liii ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 LIST OF TABLES TABLE PAGE 1 F (Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD ............ 9 iv ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 LIST OF FIGURES FIGURE PAGE I REACTOR CORE SAFETY LIMITS .............................. 10 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER ............ 11 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT ............................................. 12 4 W(Z) AS A FUNCTION OF CORE HEIGHT -

(150 MWD/MTU) ........................................... 13 5 W(Z) AS A FUNCTION OF CORE HEIGHT -

(3,000 MWD/MTU) . ........................................ 14 6 W(Z) AS A FUNCTION OF CORE HEIGHT -

(6,000 MWD/MTU) ......................................... 15 7 W(Z) AS A FUNCTION OF CORE HEIGHT -

(10,000 MWD/ITU) ........................................ 16 8 W(Z) AS A FUNCTION OF CORE HEIGHT -

(20,000 MWD/MTU) . ....................................... 17 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER .................................. 18 V ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPNPP UNIT 2 CYCLE 15 has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The Technical Specifications affected by this report are listed below:

SL 2.21 SAFETY LIMITS LCO 3.1.1 SHUTDOWN MARGIN LCO 3.1.3 MODERATOR TEMPERATURE COEFFICIENT LCO 3.1.4 ROD GROUP ALIGNMENT LIMITS LCO 3.1.5 SHUTDOWN BANK INSERTION LIMITS LCO 3.1.6 CONTROL BANK INSERTION LIMITS LCO 3.1.8 PHYSICS TESTS EXCEPTIONS - MODE 2 LCO 3.2.1 HEAT FLUX HOT CHANNEL FACTOR LCO 3.2.2 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR LCO 3.2.3 AXIAL FLUX DIFFERENCE LCO 3.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION LCO 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS LCO 3.9.1 BORON CONCENTRATION 1 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5b, Items 1 through 4 and 7 through 15.

These limits have been determined such that all applicable limits of the safety analysis are met.

2.1 SAFETY LIMITS (SL 2.1) 2.1.1 In MODES 1 and 2, the combination of thermal power, reactor coolant system highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 1.

2.2 SHUTDOWN MARGIN (SDM) (LCO 3.1.1) 2.2.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 with K.,, < 1.0, and in MODES 3, 4, and 5.

2.3 MODERATOR TEMPERATURE COEFFICIENT (MTC) (LCO 3.1.3) 2.3.1 The MTC upper and lower limits, respectively, are:

The BOL/ARO/HZP-MTC shall be less positive than +5 pcm/'F.

The EOL/ARO/RTP-MTC shall be less negative than -40 pcm/'F.

2 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 2.3.2 SR 3.1.3.2 The MTC surveillance limit is:

The 300 ppm/ARO/RTP-MTC shall be less negative than or equal to -31 pcm/'F.

The 60 ppm/ARO/RTP-MTC shall be less negative than or equal to -38 pcm/'F.

where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER BOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.4 ROD GROUP ALIGNMENT LIMITS (LCO 3.1.4) 2.4.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODES 1 and 2.

2.5 SHUTDOWN BANK INSERTION LIMITS (LCO 3.1.5) 2.5.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

3 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 2.6 CONTROL BANK INSERTION LIMITS (LCO 3.1.6) 2.6.1 The control banks shall be limited in physical insertion as shown in Figure 2.

2.6.2 The control banks shall always be withdrawn and inserted in the prescribed sequence. For withdrawal, the sequence is control bank A, control bank B, control bank C, and control bank D. The insertion sequence is the reverse of the withdrawal sequence.

2.6.3 A 115 step Tip-to-Tip relationship between each sequential control bank shall be maintained.

2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 (LCO 3.1.8) 2.7.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 during PHYSICS TESTS.

2.8 HEAT FLUX HOT CHANNEL FACTOR (F(Z)) (LCO 3.2.1)

F0R 2.8.1 F (Z) S __ [K(Z)] for P > 0.5 P

F.B FO (Z) S - EK(Z)] for P S 0.5 0.5 wheres P = THERMAL POWER RATED THERMAL POWER 4 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 2.8.2 FQ" = 2.50 2.8.3 K(Z) is provided in Figure 3.

2.8.4 Elevation and burnup dependent W(Z) values are provided in Figures 4, 5, 6, 7 and 8. For W(Z) data at a desired burnup not listed in the figures, but less than the maximum listed burnup, values at 3 or more burnup steps should be used to interpolate the W(Z) data to the desired burnup with a polynomial type fit that uses the nearest three burnup steps. For W(Z) data at a desired burnup outside of the listed burnup steps, a linear extrapolation of the W(Z) data for the nearest two burnup steps can be used.

2.8.5 SR 3.2.1.2 If the two most recent FQ(Z) evaluations show an increase in the expression maximum over Z F (Z) / K(Z) 3, the burnup dependent values in Table 1 shall be used instead of a constant 2% to increase Fw(Z) per Surveillance Requirement 3.2.1.2.a. A constant factor of 2% shall be used for all cycle burnups that are outside the range of Table 1.

5 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 2.9 NUCLEAR ENTHALPY RISE NOT CHANNEL FACTOR (I"AH) (LCO 3.2.2) 2.9.1 FgAH S Fm 4 El[ + PFAH (1-P)]

where: P = THERMAL POWER RATED THERMAL POWER 2.9.2 F"AH = 1.60 for all Fuel Assembly Regions 2.9.3 PFAH = 0.3 2.10 AXIAL FLUX DIFFERENCE (AFD) (LCO 3.2.3) 2.10.1 The AFD Acceptable Operation Limits are provided in Figure 9.

2.11 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION (LCO 3.3.1) 2.11.1 The numerical values pertaining to the Overtemperature N-16 reactor trip setpoint are listed below; K1 = 1.15 Ka = 0.0139 /OF K3 = 0.00071 /psig TO = indicated loop specific TO at Rated Thermal Power, OF P1 k 2235 puig T*

  • 10 sec

,: S 3 sec f 1 (Aq) = -2.78 * {(qj-qb) + 18%) when (q,-q 0 ) S -18% RTP

= 0% when -18% RTP < (%-q.) < +10.0% RTP

= 2.34 - {(q,-qb) - 10.0%) when (q,-q%) 2 +10.0% RTP 6 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING (DNB) LIMITS (LCO 3.4.1) 2.12.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the surveillance limits specified below:

2.12.2 SR 3.4.1.1 Pressurizer pressure a 2220 psig (4 channels) a 2222 psig (3 channels)

The pressurizer pressure limits correspond to the analytical limit of 2205 psig used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

2.12.3 SR 3.4.1.2 RCS average temperature S 592 °F (4 channels) 9 591 OF (3 channels)

The RCS average temperature limits correspond to the analytical limit of 595.2 °F which is bounded by that used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

7 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 2.12.4 SR 3.4.1.3 The RCS total flow rate shall be 2 408,000 gpm.

2.12.5 SR 3.4.1.4 The RCS total flow rate based on precision heat balance shall be 2 408,000 gpm.

The required RCS flow, based on an elbow tap differential pressure instrument measurement prior to MODE 1 after the refueling outage, shall be greater than 327,000 gpm.

2.13 BORON CONCENTRATION (LCO 3.9.1) 2.13.1 The required refueling boron concentration is  ?-1950 ppm.

3.0 REFERENCES

Technical Specification 5.6.5.

8 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 Table 1 F.(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD Cycle Maximum Decrease Burnup In F,(Z) NARGIN (MWD/NMT) (Percent) 0 3.80 150 3.80 365 4.15 580 4.07 794 3.75 1009 3.25 1224 2.65 1439 2.04 1653 2.00 Note: All cycle burnups outside the range of the table shall use a constant 2% decrease in F0 (Z) margin for compliance with the 3.2.1.2.a Surveillance Requirements. Linear interpolation is acceptable to determine the F,(Z) margin decrease for cycle burnups which fall between the specified burnups.

9 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 Figure 1 Reactor Core Safety Limits 680 660 2235 sig Unacceptable

0. 1985 psig E

62--

Accepal 600, 580 -I -

560 , __

0 20 40 60 80 100 120 140 Percent of Rated Thermal Power 3.0 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240 220 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1(25.3.2161 -" (79.6,218)4-III111 200 B WmHWnH+H-Iill I I

'liii 1111 1 --------------- II I: i i i i ii i i i 180 E ..II . . . . . . . . . --..-I 160

- (00,146)-

o 140 43 BANK C Zo 120 H

E-4 H

o0 100 80 60 40 Jo.J 20 0

0 10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED THERMAL POWER I NOTES: 1. Fully withdrawn shall be the condition where control rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

2. Control Bank A shall be fully withdrawn.

11 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 FIGURE 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.1 .................

1.0 4LLW LH IIIII 0.9 0.8  :: .I...:::

0.7 ............. .......

H I 0.6 0.5 J.1 IIILLL 1111 1111 Core Height (ft) K(Z) 0.4 0 0 2 0000 6:0 2:0000 22.0 0.9250 0.3 0.2 0.1 0.0 IiiIII11111 11( 11.........................lii II 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP 12 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 FIGURE 4 w(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 N 1.400 1.350 1.300

  • 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node W(Z) Node w(Z) Node w(Z) 58 - 61 --- 44 1.1550 30 1.1580 16 1.2147 57 1.2196 43 1.1618 29 1.1579 15 1.2377 56 1.1918 42 1.1648 28 1.1625 14 1.2578 55 1.1817 41 1.1660 27 1.1707 13 1.2783 54 1.1679 40 1.1690 26 1.1787 12 1.2984 53 1.1665 39 1.1734 25 1.1851 11 1.3179 52 1.1661 38 1.1770 24 1.1905 10 1.3367 51 1.1661 37 1.1801 23 1.1948 9 1.3545 50 1.1659 36 1.1820 22 1.1981 8 1.3708 49 1.1646 35 1.1820 21 1.2005 7 1.3851 48 1.1641 34 1.1799 20 1.2019 6 1.3964 47 1.1605 33 1.1760 19 1. 2025 5 1.4062 46 1.1544 32 1.1703 18 1.2025 1-4 45 1.1524 31 1.1632 17 1. 2033 Core Height (ft) = (Node - 1)
  • 0.2013133 13 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (3,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 N,4 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Nods W(Z) Nods W(Z) Node w(Z) Nods w(Z) 58 - 61 --- 44 1.1648 30 1.1356 16 1.2508 57 1.2944 43 1.1682 29 1.1446 15 1.2770 56 1.2811 42 1.1668 28 1.1570 14 1. 3029 55 1.2660 41 1.1623 27 1.1685 13 1.3292 54 1.2473 40 1.1563 26 1.1787 12 1. 3552 53 1.2276 39 1.1495 25 1.1879 11 1.3814 52 1.2170 38 1.1460 24 1.1962 10 1.4077 51 1.2129 37 1.1467 23 1.2042 9 1.4329 50 1.2082 36 1.1470 22 1.2116 8 1.4560 49 1.2000 35 1.1450 21 1.2180 7 1.4764 48 1.1901 34 1.1422 20 1.2234 6 1.4927 47 1.1808 33 1.1399 19 1.2284 5 1.5071 46 1.1748 32 1.1373 18 1.2333 1 - 4 45 1.1691 31 1.1343 17 1.2355 Core Height (ft) = (Node - 1)

  • 0.2013133 14 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT (6,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 N 1.400 1.350

  • 1.300
  • 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node W(Z) Node w(Z) 58 - 61 --- 44 1.1980 30 1.1223 16 1.1815 57 1.3458 43 1.1945 29 1.1217 15 1.1975 56 1.3396 42 1.1895 28 1.1211 14 1.2221 55 1.3331 41 1.1832 27 1.1242 13 1.2457 54 1.3234 40 1.1779 26 1.1285 12 1.2693 53 1.3115 39 1.1738 25 1. 1325 11 1.2928 52 1.2981 38 1.1692 24 1.1364 10 1.3154 51 1.2841 37 1.1664 23 1. 1395 9 1.3369 50 1.2697 36 1.1626 22 1.1441 8 1.3568 49 1.2555 35 1.1564 21 1.1502 7 1.3743 48 1.2422 34 1.1484 20 1. 1564 6 1.3881 47 1.2277 33 1.1389 19 1. 1615 5 1.3999 46 1.2123 32 1.1308 18 1. 1660 1 - 4 45 1.2018 31 1.1250 17 1. 1730 Core Height (ft) = (Node - 1)
  • 0.2013133 is ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT (10,000 MWD/MTU) 1.650 1.600 1.550 I mI 1.500 1.450 N 1.400 D 1.350 IEL. LU - UI 12 - I- I I 2T~2 1.300

~; ~ ~

1.250 1.200 1.150 me ".. I 1.100 I~I~I. I - I- !I1~I -

1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w(Z) Node w(Z) Node 1IZ) Node w(Z) 58 - 61 44 1.2657 30 1.1315 16 1. 1235 57 1. 3601 43 1.2601 29 1.1309 15 1. 1368 56 1.3551 42 1.2531 28 1.1326 14 1. 1535 55 1. 3490 41 1.2441 27 1.1333 13 1. 1701 54 1.3408 40 1.2362 26 1.1329 12 1. 1867 53 1.3315 39 1.2306 25 1.1322 11 1. 2031 52 1.3219 38 1.2232 24 1.1313 10 1. 2191 51 1.3123 37 1.2175 23 1.1297 9 1.2343 50 1.3026 36 1.2103 22 1.1273 a 1.2482 49 1.2927 35 1.2003 21 1.1246 7 1.2606 48 1.2828 34 1.1882 20 1.1228 6 1.2699 47 1.2733 33 1.1742 19 1.1219 5 1.2774 46 1.2710 32 1.1584 18 1.1207 1 - 4 45 1.2701 31 1.1418 17 1.1196 Core Height (ft) = (Node - 1)

  • 0.2013133 16 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 FIGURE 8 W(Z) AS A FUNCTION OF CORE HEIGHT (20,000 JWD/MTU) 1.650 1.600 1.550 1.500 1.450 Ni 1.400 1.350 D 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w (Z) Node W(Z) Node w(Z) Node w (Z) 58 - 61 --- 44 1.2431 30 1.2125 16 1.1333 57 1.2795 43 1.2396 29 1.2075 15 1.1361 56 1.2808 42 1.2420 28 1.2065 14 1.1442 55 1.2806 41 1.2458 27 1.2063 13 1.1533 54 1.2782 40 1.2505 26 1.2045 12 1.1626 53 1.2747 39 1.2561 25 1.2006 11 1. 1721 52 1.2706 38 1. 2591 24 1.1949 10 1.1819 51 1.2662 37 1.2629 23 1.1875 9 1.1917 50 1.2619 36 1.2645 22 1.1786 8 1.2012 49 1.2575 35 1.2624 21 1.1685 7 1. 2100 48 1.2532 34 1.2574 20 1.1572 6 1.2170 47 1.2523 33 1.2495 19 1.1456 5 1.2221 46 1.2522 32 1.2391 18 1.1368 1-4 45 1.2494 31 1.2249 17 1.1330 Core Height (ft) = (Node - 1)

  • 0.2013133 17 ERX-14-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 15 FIGURE 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 90 UNACCEPTABLE 80 OOPERATION 70 A. 60 I

E4 50 40 0

I N

p.

30 20 10 0

30 -20 -10 0 10 20 30 40 AXIAL FLUX DII'BERENCE (%)

is ERX-14-001, Rev. 0